Contributions page is available. 7871 contributions since September, 2006 were classified by the date and the label.
Factorizations of 822...221 and Factorizations of 822...223 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
Factorizations of 688...889 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
I'm organizing about 8,000 contributions now. New contributions will stay on the CGI server for several days.
Lazarusuk and yoyo@home found the largest known ECM-factor from the near-repdigit number (64·10341-1)/9. Congratulations!
To provide equal opportunity for making reservations, I limit the maximum number of reservations per person to ten.
Factorizations of 811...117 and Factorizations of 811...119 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
Factorizations of 688...887 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / ECMNET, GMP-ECM, GGNFS/msieve / Dec 27, 2009
2·10238+9 = 2(0)2379<239> = 11 · 41 · 449 · 5945281 · 205709886542393<15> · C212
C212 = P33 · C179
P33 = 934803133267021438680222877011857<33>
C179 = [86389190127266350770385031495384179967873028613332220537337837050627344935518971489006603171048516781100773290444922675961442798454864564423577019533963800409624412975235359485611<179>]
Factor=934803133267021438680222877011857 Method=ECM B1=11000000 Sigma=3043688549
2·10236+9 = 2(0)2359<237> = 11 · 19 · 138107 · 4159291 · 8773419562122098610424962990443<31> · C192
C192 = P34 · C159
P34 = 1621538670024234287528298561381857<34>
C159 = [117098815752117581980530614048280187555582803440778045542092028045520633300570987039138508825936717768032379425461484880728406097864186809255527187439657366723<159>]
Factor=1621538670024234287528298561381857 Method=ECM B1=11000000 Sigma=632518576
2·10230+9 = 2(0)2299<231> = 11 · 6067 · 75913 · 6084433096051<13> · C208
C208 = P34 · C174
P34 = 7073788323327073327258989897992617<34>
C174 = [917223094434762491286013571173061287620094347946329312148732779955057197042337509159978376511017279572890823924278440190462392904036852604802751256146369522413326232732297267<174>]
Factor=7073788323327073327258989897992617 Method=ECM B1=11000000 Sigma=3376074941
(73·10147+17)/9 = 8(1)1463<148> = 7 · 19 · 271 · 3607 · 1058306453509113059<19> · C122
C122 = P41 · P82
P41 = 20886560597602026806323136874983100754199<41>
P82 = 2822506181531805700235175141346358488148133171290045158430063248803979898962951993<82>
N=58952446397670366423086907740884604848531269883950816758660393478899455749858136033331454447681313330213403804277730168607 ( 122 digits) SNFS difficulty: 148 digits. Divisors found: r1=20886560597602026806323136874983100754199 (pp41) r2=2822506181531805700235175141346358488148133171290045158430063248803979898962951993 (pp82) Version: Msieve-1.40 Total time: 11.58 hours. Scaled time: 21.05 units (timescale=1.818). Factorization parameters were as follows: n: 58952446397670366423086907740884604848531269883950816758660393478899455749858136033331454447681313330213403804277730168607 m: 100000000000000000000000000000 deg: 5 c5: 7300 c0: 17 skew: 0.30 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 3150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 340178 x 340406 Total sieving time: 11.35 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.15 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 11.58 hours. --------- CPU info (if available) ----------
(73·10145+17)/9 = 8(1)1443<146> = 34487617 · 6700001606333501<16> · C123
C123 = P33 · P91
P33 = 324397557949150882736842313530027<33>
P91 = 1082093232200827485232398232958400591728533542755009125044382690865675948375507134070094007<91>
N=351028401999251916134821853431037226688119725436192589359670396617620377086980693969736688732001770672798265995087907248189 ( 123 digits) SNFS difficulty: 146 digits. Divisors found: r1=324397557949150882736842313530027 (pp33) r2=1082093232200827485232398232958400591728533542755009125044382690865675948375507134070094007 (pp91) Version: Msieve-1.40 Total time: 8.47 hours. Scaled time: 15.43 units (timescale=1.823). Factorization parameters were as follows: n: 351028401999251916134821853431037226688119725436192589359670396617620377086980693969736688732001770672798265995087907248189 m: 100000000000000000000000000000 deg: 5 c5: 73 c0: 17 skew: 0.75 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2480001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 264058 x 264283 Total sieving time: 8.32 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 8.47 hours. --------- CPU info (if available) ----------
(62·10153-53)/9 = 6(8)1523<154> = 83 · 4562669 · 3487114261<10> · C136
C136 = P53 · P84
P53 = 47815697752352098457986363218128078130226492291799893<53>
P84 = 109097663147591498526380294134197245187003896362469052701235847091686578792333022573<84>
N=5216580886553157179266336194939601662516617965583607797830691218065927043923999858324138677299551882803062017504735600577449123167984689 ( 136 digits) SNFS difficulty: 154 digits. Divisors found: r1=47815697752352098457986363218128078130226492291799893 (pp53) r2=109097663147591498526380294134197245187003896362469052701235847091686578792333022573 (pp84) Version: Msieve-1.40 Total time: 20.98 hours. Scaled time: 38.93 units (timescale=1.855). Factorization parameters were as follows: n: 5216580886553157179266336194939601662516617965583607797830691218065927043923999858324138677299551882803062017504735600577449123167984689 m: 1000000000000000000000000000000 deg: 5 c5: 62000 c0: -53 skew: 0.24 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 543748 x 543975 Total sieving time: 20.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.36 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,154.000,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 20.98 hours. --------- CPU info (if available) ----------
(62·10156-53)/9 = 6(8)1553<157> = 20149 · 2889493 · C147
C147 = P45 · P50 · P53
P45 = 296092480355417714661032125185595033281118861<45>
P50 = 20758746508962225695125662243311466530433706035881<50>
P53 = 19250655970989913827479711758654941345071207658101759<53>
N=118324325232403481461848194651933546395362047639327777783779588329505585659637347051183152187156073511947777164282926783552707472321495695098960619 ( 147 digits) SNFS difficulty: 157 digits. Divisors found: r1=296092480355417714661032125185595033281118861 (pp45) r2=20758746508962225695125662243311466530433706035881 (pp50) r3=19250655970989913827479711758654941345071207658101759 (pp53) Version: Msieve-1.40 Total time: 19.06 hours. Scaled time: 35.45 units (timescale=1.860). Factorization parameters were as follows: n: 118324325232403481461848194651933546395362047639327777783779588329505585659637347051183152187156073511947777164282926783552707472321495695098960619 m: 10000000000000000000000000000000 deg: 5 c5: 620 c0: -53 skew: 0.61 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 543425 x 543651 Total sieving time: 18.43 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.37 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 19.06 hours. --------- CPU info (if available) ----------
(62·10160-53)/9 = 6(8)1593<161> = 3 · 313 · 391516847 · C150
C150 = P37 · P113
P37 = 2929674531395509720008490951855848061<37>
P113 = 63960780933066026225889687195304074812081561846826503281813538817936673009349384729463814205722125431075503229891<113>
N=187384270907771063333728440077318565961035336376917852099045312850421888141782541628479746273647356028707209272617957631716937170730104800242449591351 ( 150 digits) SNFS difficulty: 161 digits. Divisors found: r1=2929674531395509720008490951855848061 (pp37) r2=63960780933066026225889687195304074812081561846826503281813538817936673009349384729463814205722125431075503229891 (pp113) Version: Msieve-1.40 Total time: 41.96 hours. Scaled time: 39.10 units (timescale=0.932). Factorization parameters were as follows: n: 187384270907771063333728440077318565961035336376917852099045312850421888141782541628479746273647356028707209272617957631716937170730104800242449591351 m: 100000000000000000000000000000000 deg: 5 c5: 62 c0: -53 skew: 0.97 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 768947 x 769180 Total sieving time: 40.53 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.19 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 41.96 hours. --------- CPU info (if available) ----------
(62·10169-53)/9 = 6(8)1683<170> = 3 · 7 · 71 · 173 · 1072793 · C159
C159 = P29 · P37 · P94
P29 = 33706548729056745629121167503<29>
P37 = 1526568046346414834239657673989825139<37>
P94 = 4838146872015767768001030987421981831864644663863774917922618347544565075277396770748172624401<94>
N=248948493442257142683928751621912829309459505384922441830057514377894366183213675105899542351187849850875664732974936041147563855368202345946081094604866632717 ( 159 digits) SNFS difficulty: 170 digits. Divisors found: r1=33706548729056745629121167503 (pp29) r2=1526568046346414834239657673989825139 (pp37) r3=4838146872015767768001030987421981831864644663863774917922618347544565075277396770748172624401 (pp94) Version: Msieve-1.40 Total time: 69.31 hours. Scaled time: 129.34 units (timescale=1.866). Factorization parameters were as follows: n: 248948493442257142683928751621912829309459505384922441830057514377894366183213675105899542351187849850875664732974936041147563855368202345946081094604866632717 m: 2000000000000000000000000000000000 deg: 5 c5: 19375 c0: -53 skew: 0.31 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 6250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1070817 x 1071042 Total sieving time: 67.45 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.45 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 69.31 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Dec 27, 2009
(62·10161-53)/9 = 6(8)1603<162> = 13 · 149 · 77641013 · 127707233 · 102322578465517031591779<24> · C120
C120 = P56 · P65
P56 = 11960866514737977396638783337798921138905588800243622081<56>
P65 = 29307498526691833945064051908979105022980074012255518963162561629<65>
Number: 68883_161 N=350543077758640963295488151903925902635545192222483092013586934585860075590002114231556808952263151226072780805347729949 ( 120 digits) SNFS difficulty: 162 digits. Divisors found: r1=11960866514737977396638783337798921138905588800243622081 (pp56) r2=29307498526691833945064051908979105022980074012255518963162561629 (pp65) Version: Msieve v. 1.42 Total time: 1.58 hours. Scaled time: 1.25 units (timescale=0.795). Factorization parameters were as follows: name: 68883_161 n: 350543077758640963295488151903925902635545192222483092013586934585860075590002114231556808952263151226072780805347729949 m: 100000000000000000000000000000000 deg: 5 c5: 620 c0: -53 skew: 0.61 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 690612 x 690837 Total sieving time: 0.00 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.38 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,162.000,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 1.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 24 hours 46 min.
By Robert Backstrom / GGNFS / Dec 27, 2009
(62·10154-53)/9 = 6(8)1533<155> = 32 · 13903 · 274848383 · 27177024634853961229302371<26> · C116
C116 = P57 · P60
P57 = 720951878610382542862347981801121436850590767518884611777<57>
P60 = 102234334845267243275213765013617623444440744591194671442489<60>
Number: n N=73706035765178311721843203682271976549090303768877381733915205101899361643335375393433365408866574563129973347592953 ( 116 digits) Divisors found: r1=720951878610382542862347981801121436850590767518884611777 (pp57) r2=102234334845267243275213765013617623444440744591194671442489 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.02 hours. Scaled time: 45.76 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_8_153_3 n: 73706035765178311721843203682271976549090303768877381733915205101899361643335375393433365408866574563129973347592953 Y0: -36882076435815646343086 Y1: 1177126619933 c0: 722179055622719498049770419635 c1: 12974758915145902336777681 c2: 3315676937663850719 c3: -388879982959281 c4: 193270566 c5: 1080 skew: 300296.60 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [2250000, 3200001) Primes: RFBsize:315948, AFBsize:316070, largePrimes:9281020 encountered Relations: rels:9124074, finalFF:821552 Max relations in full relation-set: 48 Initial matrix: 632099 x 821552 with sparse part having weight 81612006. Pruned matrix : 469228 x 472452 with weight 39927825. Total sieving time: 21.93 hours. Total relation processing time: 0.43 hours. Matrix solve time: 2.46 hours. Total square root time: 0.21 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000 total time: 25.02 hours. --------- CPU info (if available) ----------
By juno1369 / GGNFS+Msieve v1.43, GGNFS, Msieve / Dec 26, 2009
(71·10137-53)/9 = 7(8)1363<138> = 34 · 73 · 761 · 2819 · 213289 · 1785968911<10> · C114
C114 = P45 · P69
P45 = 497338274574517430075176129186594377221125453<45>
P69 = 328272113722656687403829731159683520949633917603574352244659948723827<69>
Number: 78883_137 N=163262286629755842749264899133973489972910643771041742794018259519611687324709943115531731693939442113292017268631 ( 114 digits) SNFS difficulty: 138 digits. Divisors found: r1=497338274574517430075176129186594377221125453 (pp45) r2=328272113722656687403829731159683520949633917603574352244659948723827 (pp69) Version: Msieve v. 1.43 Total time: 10.80 hours. Scaled time: 23.30 units (timescale=2.158). Factorization parameters were as follows: n: 163262286629755842749264899133973489972910643771041742794018259519611687324709943115531731693939442113292017268631 m: 1000000000000000000000000000 deg: 5 c5: 7100 c0: -53 skew: 0.38 type: snfs lss: 1 rlim: 1440000 alim: 1440000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 qintsize: 100000Factor base limits: 1440000/1440000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [720000, 1220001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 221440 x 221665 Total sieving time: 10.59 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs ,138.000,5,0,0,0,0,0,0,0,0,1440000,1440000,26,26,48,48,2.3,2.3, total time: 10.80 hours. --------- CPU info (if available) ----------
(71·10138-53)/9 = 7(8)1373<139> = 27248575999<11> · 395925893367391<15> · C114
C114 = P42 · P73
P42 = 419162038746174165070948225788357647335121<42>
P73 = 1744520907848239545736800443327766019464664837271375568832178853070200547<73>
Number: 78883_138 N=731236940368994714565704238447233851060682074228769030364565102172640486050475266877178494695869713470771586511187 ( 114 digits) SNFS difficulty: 139 digits. Divisors found: r1=419162038746174165070948225788357647335121 (pp42) r2=1744520907848239545736800443327766019464664837271375568832178853070200547 (pp73) Version: Msieve v. 1.43 Total time: 12.73 hours. Scaled time: 27.29 units (timescale=2.144). Factorization parameters were as follows: n: 731236940368994714565704238447233851060682074228769030364565102172640486050475266877178494695869713470771586511187 m: 1000000000000000000000000000 deg: 5 c5: 71000 c0: -53 skew: 0.24 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 qintsize: 100000Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [750000, 1350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 210289 x 210514 Total sieving time: 12.46 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.12 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs ,139.000,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3, total time: 12.73 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Dec 26, 2009
2·10200-1 = 1(9)200<201> = 47 · 199 · 8832847 · 26986789362889673<17> · 22887618087703883422612434497873<32> · C142
C142 = P63 · P79
P63 = 446230848885739862951514158743047799808097303689909318714879633<63>
P79 = 8783486649009658366262878191277303628728254895476682026895585605704238396823777<79>
Number: 19999_200 N=3919462703564142473698047873878421629698357069094950750629640809045036371942703314337013367544634521328393484746001349161465007919976067433841 ( 142 digits) SNFS difficulty: 200 digits. Divisors found: r1=446230848885739862951514158743047799808097303689909318714879633 r2=8783486649009658366262878191277303628728254895476682026895585605704238396823777 Version: Total time: 292.58 hours. Scaled time: 698.68 units (timescale=2.388). Factorization parameters were as follows: n: 3919462703564142473698047873878421629698357069094950750629640809045036371942703314337013367544634521328393484746001349161465007919976067433841 m: 10000000000000000000000000000000000000000 deg: 5 c5: 2 c0: -1 skew: 0.87 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7500000, 13900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 37340287 Max relations in full relation-set: Initial matrix: Pruned matrix : 2846374 x 2846621 Total sieving time: 255.33 hours. Total relation processing time: 12.54 hours. Matrix solve time: 23.55 hours. Time per square root: 1.16 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,56,56,2.6,2.6,100000 total time: 292.58 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(5·10183+1)/3 = 1(6)1827<184> = 5234609 · C177
C177 = P41 · P136
P41 = 54006465837377625552336265338881733819761<41>
P136 = 5895474211042055406296762574818982802357058721360340818720086118739001638924818762801489852596577981672047174850728107083024670512804683<136>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 318393726573783575175656226982123529506533662144902640611107088737032062311944725320776903617188345235846013841084724124890066606057236876081225296228747298349631589802918740763 (177 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=7499907357 Step 1 took 17155ms Step 2 took 7042ms ********** Factor found in step 2: 54006465837377625552336265338881733819761 Found probable prime factor of 41 digits: 54006465837377625552336265338881733819761 Probable prime cofactor 5895474211042055406296762574818982802357058721360340818720086118739001638924818762801489852596577981672047174850728107083024670512804683 has 136 digits
By Sinkiti Sibata / Msieve / Dec 26, 2009
(73·10131+17)/9 = 8(1)1303<132> = 3 · C132
C132 = P54 · P78
P54 = 901115896568616616303029954905224423463773024413969713<54>
P78 = 300039508125337654128915079093446004442270863338652763310722672562208472089267<78>
Number: 81113_131 N=270370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 ( 132 digits) SNFS difficulty: 132 digits. Divisors found: r1=901115896568616616303029954905224423463773024413969713 (pp54) r2=300039508125337654128915079093446004442270863338652763310722672562208472089267 (pp78) Version: Msieve-1.40 Total time: 3.78 hours. Scaled time: 7.93 units (timescale=2.099). Factorization parameters were as follows: name: 81113_131 n: 270370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 m: 100000000000000000000000000 deg: 5 c5: 730 c0: 17 skew: 0.47 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 1075001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 166370 x 166606 Total sieving time: 3.61 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000 total time: 3.78 hours. --------- CPU info (if available) ----------
2·10234+9 = 2(0)2339<235> = 11 · 131 · 271489 · 823651 · 319703161 · 1078869731<10> · 140239420405201921<18> · 31537930735794751543553<23> · 87211834129437057201132899<26> · 11429780024455220807441469459289<32> · C106
C106 = P52 · P54
P52 = 4421646001155731662524341299889414727107084802590443<52>
P54 = 923111247852638260463789169912288203586464742324595249<54>
Number: 20009_234 N=4081671157689495451002320427478185479062625058013970660200302602803251158698157130376845326821666690605307 ( 106 digits) Divisors found: r1=4421646001155731662524341299889414727107084802590443 (pp52) r2=923111247852638260463789169912288203586464742324595249 (pp54) Version: Msieve-1.40 Total time: 9.09 hours. Scaled time: 30.30 units (timescale=3.333). Factorization parameters were as follows: name: 20009_234 n: 4081671157689495451002320427478185479062625058013970660200302602803251158698157130376845326821666690605307 skew: 5227.48 # norm 2.82e+14 c5: 447180 c4: 4762122818 c3: -12903767621588 c2: -188566052319945831 c1: 258817026744121798005 c0: 489303287558624884234365 # alpha -5.68 Y1: 228435784339 Y0: -98190388035999720407 # Murphy_E 1.67e-09 # M 912139391631407218912303459389075224416911338056911672306885508693816487338766124197096291587759584551275 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 275751 x 275999 Polynomial selection time: 0.97 hours. Total sieving time: 7.91 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 9.09 hours. --------- CPU info (if available) ----------
(73·10149+17)/9 = 8(1)1483<150> = 3 · 59009 · 145691963372458235831977<24> · 124135506707574799618920655151513<33> · C90
C90 = P45 · P46
P45 = 152895783386268092363880036050242160838011941<45>
P46 = 1656966451277186284241276583314458613058031559<46>
Sat Dec 26 08:14:37 2009 Msieve v. 1.42 Sat Dec 26 08:14:37 2009 random seeds: d11307ec a5c8cf28 Sat Dec 26 08:14:37 2009 factoring 253343183612790017211717265292660824382436949602662535789530283629893510565256412396846019 (90 digits) Sat Dec 26 08:14:38 2009 searching for 15-digit factors Sat Dec 26 08:14:38 2009 commencing quadratic sieve (90-digit input) Sat Dec 26 08:14:38 2009 using multiplier of 3 Sat Dec 26 08:14:38 2009 using 32kb Intel Core sieve core Sat Dec 26 08:14:38 2009 sieve interval: 35 blocks of size 32768 Sat Dec 26 08:14:38 2009 processing polynomials in batches of 6 Sat Dec 26 08:14:38 2009 using a sieve bound of 1573699 (59667 primes) Sat Dec 26 08:14:38 2009 using large prime bound of 125895920 (26 bits) Sat Dec 26 08:14:38 2009 using double large prime bound of 380207692734720 (42-49 bits) Sat Dec 26 08:14:38 2009 using trial factoring cutoff of 49 bits Sat Dec 26 08:14:38 2009 polynomial 'A' values have 11 factors Sat Dec 26 09:37:36 2009 59859 relations (15315 full + 44544 combined from 640664 partial), need 59763 Sat Dec 26 09:37:37 2009 begin with 655979 relations Sat Dec 26 09:37:37 2009 reduce to 147934 relations in 10 passes Sat Dec 26 09:37:37 2009 attempting to read 147934 relations Sat Dec 26 09:37:39 2009 recovered 147934 relations Sat Dec 26 09:37:39 2009 recovered 129529 polynomials Sat Dec 26 09:37:40 2009 attempting to build 59859 cycles Sat Dec 26 09:37:40 2009 found 59859 cycles in 6 passes Sat Dec 26 09:37:40 2009 distribution of cycle lengths: Sat Dec 26 09:37:40 2009 length 1 : 15315 Sat Dec 26 09:37:40 2009 length 2 : 11329 Sat Dec 26 09:37:40 2009 length 3 : 10572 Sat Dec 26 09:37:40 2009 length 4 : 8147 Sat Dec 26 09:37:40 2009 length 5 : 5744 Sat Dec 26 09:37:40 2009 length 6 : 3734 Sat Dec 26 09:37:40 2009 length 7 : 2259 Sat Dec 26 09:37:40 2009 length 9+: 2759 Sat Dec 26 09:37:40 2009 largest cycle: 18 relations Sat Dec 26 09:37:40 2009 matrix is 59667 x 59859 (15.1 MB) with weight 3707861 (61.94/col) Sat Dec 26 09:37:40 2009 sparse part has weight 3707861 (61.94/col) Sat Dec 26 09:37:41 2009 filtering completed in 3 passes Sat Dec 26 09:37:41 2009 matrix is 56143 x 56207 (14.2 MB) with weight 3508721 (62.42/col) Sat Dec 26 09:37:41 2009 sparse part has weight 3508721 (62.42/col) Sat Dec 26 09:37:41 2009 saving the first 48 matrix rows for later Sat Dec 26 09:37:41 2009 matrix is 56095 x 56207 (10.8 MB) with weight 2963212 (52.72/col) Sat Dec 26 09:37:41 2009 sparse part has weight 2486996 (44.25/col) Sat Dec 26 09:37:41 2009 matrix includes 64 packed rows Sat Dec 26 09:37:41 2009 using block size 22482 for processor cache size 1024 kB Sat Dec 26 09:37:42 2009 commencing Lanczos iteration Sat Dec 26 09:37:42 2009 memory use: 10.0 MB Sat Dec 26 09:38:04 2009 lanczos halted after 889 iterations (dim = 56091) Sat Dec 26 09:38:04 2009 recovered 15 nontrivial dependencies Sat Dec 26 09:38:04 2009 prp45 factor: 152895783386268092363880036050242160838011941 Sat Dec 26 09:38:04 2009 prp46 factor: 1656966451277186284241276583314458613058031559 Sat Dec 26 09:38:04 2009 elapsed time 01:23:27
By Markus Tervooren / Msieve / Dec 26, 2009
(7·10182-61)/9 = (7)1811<182> = 89 · 997 · 30467369 · 17618593319<11> · 196795518289527012783177637059304087<36> · C124
C124 = P46 · P79
P46 = 1822983903915540903242968668361589445511954993<46>
P79 = 4551621541782307730013990392915456127532722433651555998138128258792296417129087<79>
N=8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391 ( 124 digits) Divisors found: r1=1822983903915540903242968668361589445511954993 (pp46) r2=4551621541782307730013990392915456127532722433651555998138128258792296417129087 (pp79) Version: Msieve-1.39 Total time: 42.29 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: # Murphy_E = 1.855e-10, selected by Markus Tervooren n: 8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391 Y0: -1225653561529813741731415 Y1: 22064329640861 c0: -26207728649600251358721533684 c1: -77212770881249363965820 c2: 41665440464405440487 c3: 476421430964662 c4: -4195615430 c5: 3000 skew: 102794.61 type: gnfs # selected mechanically rlim: 6700000 alim: 6700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsite: 500000 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [3350000, 1910001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 737257 x 737496 Total sieving time: 40.76 hours. Total relation processing time: 0.73 hours. Matrix solve time: 0.73 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6700000,6700000,28,28,56,56,2.6,2.6,180000 total time: 42.29 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.332940] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432541] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197988k/10485760k available (2226k kernel code, 189848k reserved, 1082k data, 392k init) [ 0.083990] Calibrating delay using timer specific routine.. 5337.16 BogoMIPS (lpj=10674326) [ 0.156009] Calibrating delay using timer specific routine.. 5333.34 BogoMIPS (lpj=10666681) [ 0.256016] Calibrating delay using timer specific routine.. 5333.37 BogoMIPS (lpj=10666743) [ 0.352020] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666726) [ 0.440025] Total of 4 processors activated (21337.23 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Dec 25, 2009
(5·10191+13)/9 = (5)1907<191> = 3 · 1087 · C188
C188 = P67 · P121
P67 = 8263197315557210185325930076431111786216503129518233759467018348421<67>
P121 = 2061714725211655682692980576776961371384554185324182600243072178639205766966196819025797458956364109859801326886670622197<121>
Number: n N=17036355582813724488057514736447579133871682169750247027155950799005076833963678489897441139391461378581893761286585573614092473338103512896521176189989437459538655490817404340863402500937 ( 188 digits) SNFS difficulty: 191 digits. Divisors found: Fri Dec 25 05:20:04 2009 prp67 factor: 8263197315557210185325930076431111786216503129518233759467018348421 Fri Dec 25 05:20:04 2009 prp121 factor: 2061714725211655682692980576776961371384554185324182600243072178639205766966196819025797458956364109859801326886670622197 Fri Dec 25 05:20:04 2009 elapsed time 09:13:45 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: ~ 24.00 hours. Scaled time: 0.00 units (timescale=0.842). Factorization parameters were as follows: name: KA_5_190_7 n: 17036355582813724488057514736447579133871682169750247027155950799005076833963678489897441139391461378581893761286585573614092473338103512896521176189989437459538655490817404340863402500937 m: 100000000000000000000000000000000000000 deg: 5 c5: 50 c0: 13 skew: 0.76 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 100000) Primes: RFBsize:726517, AFBsize:726768, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2552794 hash collisions in 24691333 relations Msieve: matrix is 1871363 x 1871588 (506.0 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,56,56,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ----------
(73·10110+17)/9 = 8(1)1093<111> = 3 · 237151 · C106
C106 = P35 · P71
P35 = 17288961375083169232608048029605549<35>
P71 = 65942473216422422125262858007207153303242664770758593943399626307735729<71>
Number: n N=1140076872416183656701301577351014207700454016092575491439506349837742073068932327379477085782351203960221 ( 106 digits) SNFS difficulty: 111 digits. Divisors found: r1=17288961375083169232608048029605549 (pp35) r2=65942473216422422125262858007207153303242664770758593943399626307735729 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.58 hours. Scaled time: 1.06 units (timescale=1.823). Factorization parameters were as follows: name: KA_8_1_109_3 n: 1140076872416183656701301577351014207700454016092575491439506349837742073068932327379477085782351203960221 m: 10000000000000000000000 deg: 5 c5: 73 c0: 17 skew: 0.75 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 qintsize: 20000 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 375001) Primes: RFBsize:42291, AFBsize:42236, largePrimes:1115199 encountered Relations: rels:1060215, finalFF:113391 Max relations in full relation-set: 48 Initial matrix: 84592 x 113391 with sparse part having weight 4903067. Pruned matrix : 70920 x 71406 with weight 2269024. Total sieving time: 0.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.58 hours. --------- CPU info (if available) ----------
(73·10144+17)/9 = 8(1)1433<145> = 23 · 29 · 34883 · 7724676628270769389<19> · 11144636683362884724877<23> · C97
C97 = P43 · P55
P43 = 1643004455893277707598416968329253428023223<43>
P55 = 2464652666595249043946775012950632313839966108011752407<55>
Number: n N=4049435313445243145081571668959828155766049931757007601017678699980977351454635253218358122147761 ( 97 digits) Divisors found: Sat Dec 26 00:13:50 2009 prp43 factor: 1643004455893277707598416968329253428023223 Sat Dec 26 00:13:50 2009 prp55 factor: 2464652666595249043946775012950632313839966108011752407 Sat Dec 26 00:13:50 2009 elapsed time 00:07:56 (Msieve 1.43 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.18 hours. Scaled time: 3.99 units (timescale=1.834). Factorization parameters were as follows: name: KA_8_1_143_3 n: 4049435313445243145081571668959828155766049931757007601017678699980977351454635253218358122147761 Y0: -230281139953553709142197 Y1: 10717884922201 c0: 1605908082544278887090075744 c1: -6967643114888019667902 c2: -6574508700636113 c3: -107188944 c4: 1440 skew: 1751097.82 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 20000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 50/50 Sieved special-q in [600000, 918469) Primes: RFBsize:92938, AFBsize:93099, largePrimes:2465023 encountered Relations: rels:2425587, finalFF:203641 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 276018 hash collisions in 2772746 relations Msieve: matrix is 164646 x 164877 (45.3 MB) Total sieving time: 2.13 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,50,50,2.4,2.4,60000 total time: 2.18 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Dec 25, 2009
(61·10164+11)/9 = 6(7)1639<165> = 7 · 172 · 44711 · 167411401 · 149334670797750991643<21> · C129
C129 = P60 · P70
P60 = 120914647031434162711029575123136458526463272062610139034489<60>
P70 = 2478862669511374046524623309725596551727978452206500258616198344907609<70>
Number: 67779_164 N=299730804723366427812204067615768836287014813862082169550356765685497896283053155240966553527690369103612485282297406365169526801 ( 129 digits) SNFS difficulty: 165 digits. Divisors found: r1=120914647031434162711029575123136458526463272062610139034489 (pp60) r2=2478862669511374046524623309725596551727978452206500258616198344907609 (pp70) Version: Msieve-1.40 Total time: 48.01 hours. Scaled time: 161.12 units (timescale=3.356). Factorization parameters were as follows: name: 67779_164 n: 299730804723366427812204067615768836287014813862082169550356765685497896283053155240966553527690369103612485282297406365169526801 m: 100000000000000000000000000000000 deg: 5 c5: 610000 c0: 11 skew: 0.11 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 801796 x 802044 Total sieving time: 46.61 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.22 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,165.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 48.01 hours. --------- CPU info (if available) ----------
(73·10112+17)/9 = 8(1)1113<113> = 271 · 953 · 1061 · 427877789 · 7623957549581<13> · C83
C83 = P33 · P51
P33 = 571785873333381219056107281470633<33>
P51 = 158697155111456401907712179353505517156780184656403<51>
Fri Dec 25 16:39:59 2009 Msieve v. 1.39 Fri Dec 25 16:39:59 2009 random seeds: 28e46ee7 78aecebb Fri Dec 25 16:39:59 2009 factoring 90740791430927162098033555988150928454479341098957224962459877227052620215639913099 (83 digits) Fri Dec 25 16:40:00 2009 searching for 15-digit factors Fri Dec 25 16:40:02 2009 commencing quadratic sieve (83-digit input) Fri Dec 25 16:40:02 2009 using multiplier of 11 Fri Dec 25 16:40:02 2009 using 64kb Pentium 4 sieve core Fri Dec 25 16:40:02 2009 sieve interval: 6 blocks of size 65536 Fri Dec 25 16:40:02 2009 processing polynomials in batches of 17 Fri Dec 25 16:40:02 2009 using a sieve bound of 1380721 (52941 primes) Fri Dec 25 16:40:02 2009 using large prime bound of 121503448 (26 bits) Fri Dec 25 16:40:02 2009 using trial factoring cutoff of 27 bits Fri Dec 25 16:40:02 2009 polynomial 'A' values have 11 factors Fri Dec 25 17:18:18 2009 53124 relations (27397 full + 25727 combined from 277486 partial), need 53037 Fri Dec 25 17:18:19 2009 begin with 304883 relations Fri Dec 25 17:18:20 2009 reduce to 75578 relations in 2 passes Fri Dec 25 17:18:20 2009 attempting to read 75578 relations Fri Dec 25 17:18:22 2009 recovered 75578 relations Fri Dec 25 17:18:22 2009 recovered 68355 polynomials Fri Dec 25 17:18:22 2009 attempting to build 53124 cycles Fri Dec 25 17:18:22 2009 found 53124 cycles in 1 passes Fri Dec 25 17:18:22 2009 distribution of cycle lengths: Fri Dec 25 17:18:22 2009 length 1 : 27397 Fri Dec 25 17:18:22 2009 length 2 : 25727 Fri Dec 25 17:18:22 2009 largest cycle: 2 relations Fri Dec 25 17:18:22 2009 matrix is 52941 x 53124 (7.3 MB) with weight 1706774 (32.13/col) Fri Dec 25 17:18:22 2009 sparse part has weight 1706774 (32.13/col) Fri Dec 25 17:18:23 2009 filtering completed in 4 passes Fri Dec 25 17:18:23 2009 matrix is 38259 x 38323 (5.8 MB) with weight 1368218 (35.70/col) Fri Dec 25 17:18:23 2009 sparse part has weight 1368218 (35.70/col) Fri Dec 25 17:18:23 2009 saving the first 48 matrix rows for later Fri Dec 25 17:18:23 2009 matrix is 38211 x 38323 (3.7 MB) with weight 1020504 (26.63/col) Fri Dec 25 17:18:23 2009 sparse part has weight 728962 (19.02/col) Fri Dec 25 17:18:23 2009 matrix includes 64 packed rows Fri Dec 25 17:18:23 2009 using block size 15329 for processor cache size 512 kB Fri Dec 25 17:18:23 2009 commencing Lanczos iteration Fri Dec 25 17:18:23 2009 memory use: 4.2 MB Fri Dec 25 17:18:35 2009 lanczos halted after 606 iterations (dim = 38205) Fri Dec 25 17:18:35 2009 recovered 14 nontrivial dependencies Fri Dec 25 17:18:35 2009 prp33 factor: 571785873333381219056107281470633 Fri Dec 25 17:18:35 2009 prp51 factor: 158697155111456401907712179353505517156780184656403 Fri Dec 25 17:18:35 2009 elapsed time 00:38:36
(73·10115+17)/9 = 8(1)1143<116> = 274403 · 1673293444661515580711<22> · C90
C90 = P35 · P55
P35 = 28808302077391310472306578254891243<35>
P55 = 6131994033354338944152150549622399890480568691762354927<55>
Fri Dec 25 17:44:14 2009 Msieve v. 1.39 Fri Dec 25 17:44:14 2009 random seeds: 8d3e7221 e242d567 Fri Dec 25 17:44:14 2009 factoring 176652336449632923363153391827937121757134931223406692705517673513355035983000313950204261 (90 digits) Fri Dec 25 17:44:16 2009 searching for 15-digit factors Fri Dec 25 17:44:18 2009 commencing quadratic sieve (90-digit input) Fri Dec 25 17:44:18 2009 using multiplier of 5 Fri Dec 25 17:44:18 2009 using 64kb Pentium 4 sieve core Fri Dec 25 17:44:18 2009 sieve interval: 18 blocks of size 65536 Fri Dec 25 17:44:18 2009 processing polynomials in batches of 6 Fri Dec 25 17:44:18 2009 using a sieve bound of 1575269 (59635 primes) Fri Dec 25 17:44:18 2009 using large prime bound of 126021520 (26 bits) Fri Dec 25 17:44:18 2009 using double large prime bound of 380890718607520 (42-49 bits) Fri Dec 25 17:44:18 2009 using trial factoring cutoff of 49 bits Fri Dec 25 17:44:18 2009 polynomial 'A' values have 11 factors Fri Dec 25 19:47:24 2009 59756 relations (16412 full + 43344 combined from 629864 partial), need 59731 Fri Dec 25 19:47:27 2009 begin with 646276 relations Fri Dec 25 19:47:27 2009 reduce to 144537 relations in 11 passes Fri Dec 25 19:47:27 2009 attempting to read 144537 relations Fri Dec 25 19:47:31 2009 recovered 144537 relations Fri Dec 25 19:47:31 2009 recovered 121227 polynomials Fri Dec 25 19:47:32 2009 attempting to build 59756 cycles Fri Dec 25 19:47:32 2009 found 59756 cycles in 6 passes Fri Dec 25 19:47:32 2009 distribution of cycle lengths: Fri Dec 25 19:47:32 2009 length 1 : 16412 Fri Dec 25 19:47:32 2009 length 2 : 11517 Fri Dec 25 19:47:32 2009 length 3 : 10312 Fri Dec 25 19:47:32 2009 length 4 : 7860 Fri Dec 25 19:47:32 2009 length 5 : 5568 Fri Dec 25 19:47:32 2009 length 6 : 3577 Fri Dec 25 19:47:32 2009 length 7 : 2093 Fri Dec 25 19:47:32 2009 length 9+: 2417 Fri Dec 25 19:47:32 2009 largest cycle: 18 relations Fri Dec 25 19:47:32 2009 matrix is 59635 x 59756 (14.7 MB) with weight 3624148 (60.65/col) Fri Dec 25 19:47:32 2009 sparse part has weight 3624148 (60.65/col) Fri Dec 25 19:47:33 2009 filtering completed in 3 passes Fri Dec 25 19:47:33 2009 matrix is 55478 x 55542 (13.8 MB) with weight 3407636 (61.35/col) Fri Dec 25 19:47:33 2009 sparse part has weight 3407636 (61.35/col) Fri Dec 25 19:47:34 2009 saving the first 48 matrix rows for later Fri Dec 25 19:47:34 2009 matrix is 55430 x 55542 (10.5 MB) with weight 2861767 (51.52/col) Fri Dec 25 19:47:34 2009 sparse part has weight 2417834 (43.53/col) Fri Dec 25 19:47:34 2009 matrix includes 64 packed rows Fri Dec 25 19:47:34 2009 using block size 21845 for processor cache size 512 kB Fri Dec 25 19:47:35 2009 commencing Lanczos iteration Fri Dec 25 19:47:35 2009 memory use: 9.3 MB Fri Dec 25 19:48:08 2009 lanczos halted after 877 iterations (dim = 55430) Fri Dec 25 19:48:08 2009 recovered 18 nontrivial dependencies Fri Dec 25 19:48:09 2009 prp35 factor: 28808302077391310472306578254891243 Fri Dec 25 19:48:09 2009 prp55 factor: 6131994033354338944152150549622399890480568691762354927 Fri Dec 25 19:48:09 2009 elapsed time 02:03:55
(73·10123+17)/9 = 8(1)1223<124> = 7 · 61 · 479 · 1213 · 4957 · 16427 · 3549179 · C102
C102 = P31 · P71
P31 = 3193529529869076315969156217591<31>
P71 = 35422576410829697301610949465338800906401213092713734855093957967741107<71>
Number: 81113_123 N=113123043792028395932085995982383600135916831346114549233543698978046601074915653928514213454447213237 ( 102 digits) SNFS difficulty: 124 digits. Divisors found: r1=3193529529869076315969156217591 (pp31) r2=35422576410829697301610949465338800906401213092713734855093957967741107 (pp71) Version: Msieve-1.40 Total time: 1.87 hours. Scaled time: 6.30 units (timescale=3.367). Factorization parameters were as follows: name: 81113_123 n: 113123043792028395932085995982383600135916831346114549233543698978046601074915653928514213454447213237 m: 1000000000000000000000000 deg: 5 c5: 73000 c0: 17 skew: 0.19 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 820001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 98706 x 98954 Total sieving time: 1.83 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000 total time: 1.87 hours. --------- CPU info (if available) ----------
(61·10155+11)/9 = 6(7)1549<156> = 23 · 163 · 659 · C150
C150 = P63 · P87
P63 = 287586298285800146257914734984871284131275628557401661706046609<63>
P87 = 953933893847574957429258954829395060019674797190928406852259555726105076178805065202941<87>
Number: 67779_155 N=274338317340983504666607211706744571553032362611932844318536648833326834663356977248673607965777329302089167238841952301201525375012609443561389877069 ( 150 digits) SNFS difficulty: 156 digits. Divisors found: r1=287586298285800146257914734984871284131275628557401661706046609 (pp63) r2=953933893847574957429258954829395060019674797190928406852259555726105076178805065202941 (pp87) Version: Msieve-1.40 Total time: 21.05 hours. Scaled time: 43.74 units (timescale=2.078). Factorization parameters were as follows: name: 67779_155 n: 274338317340983504666607211706744571553032362611932844318536648833326834663356977248673607965777329302089167238841952301201525375012609443561389877069 m: 10000000000000000000000000000000 deg: 5 c5: 61 c0: 11 skew: 0.71 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 505234 x 505482 Total sieving time: 19.89 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.90 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 21.05 hours. --------- CPU info (if available) ----------
(73·10120+17)/9 = 8(1)1193<121> = 10589 · 36209 · 18764467 · 1567176671341<13> · 4390730828021<13> · C81
C81 = P39 · P42
P39 = 360048390588018911510814299879560340171<39>
P42 = 455047772435609644108134553747154826524269<42>
Fri Dec 25 19:56:23 2009 Msieve v. 1.39 Fri Dec 25 19:56:23 2009 random seeds: 1569a2e8 b5b575d0 Fri Dec 25 19:56:23 2009 factoring 163839218106104326862614741818043845416922147853654362408606857663521535227109999 (81 digits) Fri Dec 25 19:56:24 2009 searching for 15-digit factors Fri Dec 25 19:56:26 2009 commencing quadratic sieve (81-digit input) Fri Dec 25 19:56:26 2009 using multiplier of 71 Fri Dec 25 19:56:26 2009 using 64kb Pentium 4 sieve core Fri Dec 25 19:56:26 2009 sieve interval: 6 blocks of size 65536 Fri Dec 25 19:56:26 2009 processing polynomials in batches of 17 Fri Dec 25 19:56:26 2009 using a sieve bound of 1309421 (50080 primes) Fri Dec 25 19:56:26 2009 using large prime bound of 129632679 (26 bits) Fri Dec 25 19:56:26 2009 using trial factoring cutoff of 27 bits Fri Dec 25 19:56:26 2009 polynomial 'A' values have 10 factors Fri Dec 25 20:21:09 2009 50248 relations (25817 full + 24431 combined from 269212 partial), need 50176 Fri Dec 25 20:21:10 2009 begin with 295029 relations Fri Dec 25 20:21:10 2009 reduce to 71658 relations in 2 passes Fri Dec 25 20:21:10 2009 attempting to read 71658 relations Fri Dec 25 20:21:12 2009 recovered 71658 relations Fri Dec 25 20:21:12 2009 recovered 61972 polynomials Fri Dec 25 20:21:12 2009 attempting to build 50248 cycles Fri Dec 25 20:21:12 2009 found 50248 cycles in 1 passes Fri Dec 25 20:21:12 2009 distribution of cycle lengths: Fri Dec 25 20:21:12 2009 length 1 : 25817 Fri Dec 25 20:21:12 2009 length 2 : 24431 Fri Dec 25 20:21:12 2009 largest cycle: 2 relations Fri Dec 25 20:21:12 2009 matrix is 50080 x 50248 (6.7 MB) with weight 1555105 (30.95/col) Fri Dec 25 20:21:12 2009 sparse part has weight 1555105 (30.95/col) Fri Dec 25 20:21:13 2009 filtering completed in 3 passes Fri Dec 25 20:21:13 2009 matrix is 35746 x 35810 (5.3 MB) with weight 1246641 (34.81/col) Fri Dec 25 20:21:13 2009 sparse part has weight 1246641 (34.81/col) Fri Dec 25 20:21:13 2009 saving the first 48 matrix rows for later Fri Dec 25 20:21:13 2009 matrix is 35698 x 35810 (4.0 MB) with weight 1001957 (27.98/col) Fri Dec 25 20:21:13 2009 sparse part has weight 841452 (23.50/col) Fri Dec 25 20:21:13 2009 matrix includes 64 packed rows Fri Dec 25 20:21:13 2009 using block size 14324 for processor cache size 512 kB Fri Dec 25 20:21:13 2009 commencing Lanczos iteration Fri Dec 25 20:21:13 2009 memory use: 4.2 MB Fri Dec 25 20:21:25 2009 lanczos halted after 566 iterations (dim = 35692) Fri Dec 25 20:21:25 2009 recovered 15 nontrivial dependencies Fri Dec 25 20:21:26 2009 prp39 factor: 360048390588018911510814299879560340171 Fri Dec 25 20:21:26 2009 prp42 factor: 455047772435609644108134553747154826524269 Fri Dec 25 20:21:26 2009 elapsed time 00:25:03
(73·10125+17)/9 = 8(1)1243<126> = 32 · 181 · 22403867450161<14> · C110
C110 = P34 · P76
P34 = 4516668276671408372535932075721397<34>
P76 = 4920600161360611078855281402744796833170083005776431740107754894291722737241<76>
Number: 81113_125 N=22224718651001685202078956554482624604027299135041508119387553597492430813525656454710046261023614812552445677 ( 110 digits) SNFS difficulty: 126 digits. Divisors found: r1=4516668276671408372535932075721397 (pp34) r2=4920600161360611078855281402744796833170083005776431740107754894291722737241 (pp76) Version: Msieve-1.40 Total time: 1.64 hours. Scaled time: 5.46 units (timescale=3.333). Factorization parameters were as follows: name: 81113_125 n: 22224718651001685202078956554482624604027299135041508119387553597492430813525656454710046261023614812552445677 m: 10000000000000000000000000 deg: 5 c5: 73 c0: 17 skew: 0.75 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 755001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 113154 x 113400 Total sieving time: 1.59 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 1.64 hours. --------- CPU info (if available) ----------
(73·10130+17)/9 = 8(1)1293<131> = 389 · 1092391 · 43074381051448309<17> · 66226550654595469<17> · C89
C89 = P40 · P49
P40 = 8807863511118081438403447564327236999049<40>
P49 = 7596803243687871089056339899052422078693151715803<49>
Fri Dec 25 21:03:55 2009 Msieve v. 1.39 Fri Dec 25 21:03:55 2009 random seeds: cbfa3e39 c71df5d4 Fri Dec 25 21:03:55 2009 factoring 66911606091221882292853807626770775644445001777494391969489392127703598145079039029271347 (89 digits) Fri Dec 25 21:03:56 2009 searching for 15-digit factors Fri Dec 25 21:03:58 2009 commencing quadratic sieve (89-digit input) Fri Dec 25 21:03:58 2009 using multiplier of 3 Fri Dec 25 21:03:58 2009 using 64kb Pentium 4 sieve core Fri Dec 25 21:03:58 2009 sieve interval: 17 blocks of size 65536 Fri Dec 25 21:03:58 2009 processing polynomials in batches of 6 Fri Dec 25 21:03:58 2009 using a sieve bound of 1564393 (59333 primes) Fri Dec 25 21:03:58 2009 using large prime bound of 125151440 (26 bits) Fri Dec 25 21:03:58 2009 using double large prime bound of 376170311388240 (42-49 bits) Fri Dec 25 21:03:58 2009 using trial factoring cutoff of 49 bits Fri Dec 25 21:03:58 2009 polynomial 'A' values have 11 factors Fri Dec 25 22:51:44 2009 59844 relations (16470 full + 43374 combined from 627408 partial), need 59429 Fri Dec 25 22:51:46 2009 begin with 643878 relations Fri Dec 25 22:51:47 2009 reduce to 143646 relations in 12 passes Fri Dec 25 22:51:47 2009 attempting to read 143646 relations Fri Dec 25 22:51:51 2009 recovered 143646 relations Fri Dec 25 22:51:51 2009 recovered 117928 polynomials Fri Dec 25 22:51:51 2009 attempting to build 59844 cycles Fri Dec 25 22:51:51 2009 found 59844 cycles in 5 passes Fri Dec 25 22:51:51 2009 distribution of cycle lengths: Fri Dec 25 22:51:51 2009 length 1 : 16470 Fri Dec 25 22:51:51 2009 length 2 : 11794 Fri Dec 25 22:51:51 2009 length 3 : 10691 Fri Dec 25 22:51:51 2009 length 4 : 7819 Fri Dec 25 22:51:51 2009 length 5 : 5432 Fri Dec 25 22:51:51 2009 length 6 : 3362 Fri Dec 25 22:51:51 2009 length 7 : 1970 Fri Dec 25 22:51:51 2009 length 9+: 2306 Fri Dec 25 22:51:51 2009 largest cycle: 16 relations Fri Dec 25 22:51:52 2009 matrix is 59333 x 59844 (14.5 MB) with weight 3561626 (59.52/col) Fri Dec 25 22:51:52 2009 sparse part has weight 3561626 (59.52/col) Fri Dec 25 22:51:53 2009 filtering completed in 3 passes Fri Dec 25 22:51:53 2009 matrix is 54879 x 54943 (13.3 MB) with weight 3277217 (59.65/col) Fri Dec 25 22:51:53 2009 sparse part has weight 3277217 (59.65/col) Fri Dec 25 22:51:53 2009 saving the first 48 matrix rows for later Fri Dec 25 22:51:53 2009 matrix is 54831 x 54943 (9.8 MB) with weight 2710493 (49.33/col) Fri Dec 25 22:51:53 2009 sparse part has weight 2233703 (40.65/col) Fri Dec 25 22:51:53 2009 matrix includes 64 packed rows Fri Dec 25 22:51:53 2009 using block size 21845 for processor cache size 512 kB Fri Dec 25 22:51:54 2009 commencing Lanczos iteration Fri Dec 25 22:51:54 2009 memory use: 8.9 MB Fri Dec 25 22:52:25 2009 lanczos halted after 869 iterations (dim = 54824) Fri Dec 25 22:52:26 2009 recovered 13 nontrivial dependencies Fri Dec 25 22:52:26 2009 prp40 factor: 8807863511118081438403447564327236999049 Fri Dec 25 22:52:26 2009 prp49 factor: 7596803243687871089056339899052422078693151715803 Fri Dec 25 22:52:26 2009 elapsed time 01:48:31
By Dmitry Domanov / GGNFS/msieve / Dec 25, 2009
(55·10177+53)/9 = 6(1)1767<178> = 34 · 997 · C173
C173 = P48 · P126
P48 = 121267649127676182373047910614477486882780677773<48>
P126 = 624015021606932925999715651797548114366055875459187905620591759468551484260290666283449260213316132801468484092282493219437597<126>
N=75672834690628813738884692486237863109217914374123742971025559531819051117687768380587578923326908021733238123148595305807683682047514284967385008248338981278540697538431481 ( 173 digits) SNFS difficulty: 178 digits. Divisors found: r1=121267649127676182373047910614477486882780677773 (pp48) r2=624015021606932925999715651797548114366055875459187905620591759468551484260290666283449260213316132801468484092282493219437597 (pp126) Version: Msieve-1.40 Total time: 147.29 hours. Scaled time: 137.28 units (timescale=0.932). Factorization parameters were as follows: n: 75672834690628813738884692486237863109217914374123742971025559531819051117687768380587578923326908021733238123148595305807683682047514284967385008248338981278540697538431481 m: 100000000000000000000000000000000000 deg: 5 c5: 5500 c0: 53 skew: 0.40 type: snfs lss: 1 rlim: 6700000 alim: 6700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3350000, 8450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1468416 x 1468643 Total sieving time: 142.34 hours. Total relation processing time: 0.25 hours. Matrix solve time: 4.36 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,178.000,5,0,0,0,0,0,0,0,0,6700000,6700000,28,28,53,53,2.5,2.5,100000 total time: 147.29 hours. --------- CPU info (if available) ----------
(52·10177-43)/9 = 5(7)1763<178> = 1413829 · C172
C172 = P81 · P92
P81 = 271121766413527308744259064278710042949573284426474347177776678588863597246745619<81>
P92 = 15072995285706770627247105190000837027452280994595682721723013910859090500939619886537534323<92>
N=4086617107003589385829387979577288185330600643909396240830947574125143689779865724764294534754753069697804881479852073891381332380208481915265408884509921481153504262380937 ( 172 digits) SNFS difficulty: 178 digits. Divisors found: r1=271121766413527308744259064278710042949573284426474347177776678588863597246745619 (pp81) r2=15072995285706770627247105190000837027452280994595682721723013910859090500939619886537534323 (pp92) Version: Msieve-1.40 Total time: 105.99 hours. Scaled time: 193.23 units (timescale=1.823). Factorization parameters were as follows: n: 4086617107003589385829387979577288185330600643909396240830947574125143689779865724764294534754753069697804881479852073891381332380208481915265408884509921481153504262380937 m: 100000000000000000000000000000000000 deg: 5 c5: 5200 c0: -43 skew: 0.38 type: snfs lss: 1 rlim: 6700000 alim: 6700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3350000, 8650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1459175 x 1459403 Total sieving time: 102.82 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.80 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,178.000,5,0,0,0,0,0,0,0,0,6700000,6700000,28,28,53,53,2.5,2.5,100000 total time: 105.99 hours. --------- CPU info (if available) ----------
2·10217+9 = 2(0)2169<218> = 17324807 · 7919188963783<13> · 107411105875493866921<21> · 5173938809178624041155896767<28> · 102699093136418169307668176696792069<36> · C115
C115 = P57 · P58
P57 = 467066681050485435798497334956180095244989456946079206083<57>
P58 = 5468458395983536988518042915683384244729834087373257219201<58>
N=2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683 ( 115 digits) Divisors found: r1=467066681050485435798497334956180095244989456946079206083 (pp57) r2=5468458395983536988518042915683384244729834087373257219201 (pp58) Version: Msieve-1.40 Total time: 22.32 hours. Scaled time: 43.68 units (timescale=1.957). Factorization parameters were as follows: name: g115 n: 2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683 skew: 60651.13 # norm 2.66e+015 c5: 6900 c4: -682319433 c3: -117961116338270 c2: 2224219007371410074 c1: 119713655432085105195716 c0: -887417118007395530941272320 # alpha -5.12 Y1: 1998997353529 Y0: -12992127184589368498929 # Murphy_E 5.54e-010 # M 67608055054870856438233574117739099823167547769002258983372983365697756513358289959208203033225734867962755866536 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 455680 x 455911 Total sieving time: 21.73 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.26 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.32 hours. --------- CPU info (if available) ----------
(73·10134+17)/9 = 8(1)1333<135> = 34 · 1789 · 9296754845646857307863<22> · C108
C108 = P51 · P57
P51 = 702123156757712519031453798485544502938488592323083<51>
P57 = 857512216009165830019053825024336782383782476909346058033<57>
N=602079184062656978792886796353667221061735953627208317903017723089717045559245411279120372197442712003475739 ( 108 digits) SNFS difficulty: 135 digits. Divisors found: r1=702123156757712519031453798485544502938488592323083 (pp51) r2=857512216009165830019053825024336782383782476909346058033 (pp57) Version: Msieve-1.40 Total time: 4.77 hours. Scaled time: 8.73 units (timescale=1.829). Factorization parameters were as follows: n: 602079184062656978792886796353667221061735953627208317903017723089717045559245411279120372197442712003475739 m: 100000000000000000000000000 deg: 5 c5: 730000 c0: 17 skew: 0.12 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1620001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 207813 x 208040 Total sieving time: 4.55 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,135.000,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 4.77 hours. --------- CPU info (if available) ----------
(73·10146+17)/9 = 8(1)1453<147> = 3 · 92119 · 42752273 · 574403817618745025267<21> · C114
C114 = P42 · P72
P42 = 537815482522942323727899388886316826443949<42>
P72 = 222228652714126808627854028677300737955480939500280191440675614780670851<72>
N=119518010089871485840556901782793184277006355051084040481066496229121998790947123624282808570238561315302969630599 ( 114 digits) SNFS difficulty: 147 digits. Divisors found: r1=537815482522942323727899388886316826443949 (pp42) r2=222228652714126808627854028677300737955480939500280191440675614780670851 (pp72) Version: Msieve-1.40 Total time: 9.01 hours. Scaled time: 17.26 units (timescale=1.916). Factorization parameters were as follows: n: 119518010089871485840556901782793184277006355051084040481066496229121998790947123624282808570238561315302969630599 m: 100000000000000000000000000000 deg: 5 c5: 730 c0: 17 skew: 0.47 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 319844 x 320071 Total sieving time: 8.75 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,147.000,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 9.01 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 25, 2009
2·10215+9 = 2(0)2149<216> = 218794321 · C207
C207 = P32 · C176
P32 = 10826531273093526781328991763529<32>
C176 = [84431521515330295235327680873213130349430459871381881520420584924480627631102287648956120680337807274004266843502840550795215945616015601670178617482078519562517437776926226801<176>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3239976602 Step 1 took 82088ms Step 2 took 23591ms ********** Factor found in step 2: 10826531273093526781328991763529 Found probable prime factor of 32 digits: 10826531273093526781328991763529 Composite cofactor 84431521515330295235327680873213130349430459871381881520420584924480627631102287648956120680337807274004266843502840550795215945616015601670178617482078519562517437776926226801 has 176 digits
Factorizations of 811...113 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
Factorizations of 688...883 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Sinkiti Sibata / Msieve / Dec 24, 2009
(61·10162+11)/9 = 6(7)1619<163> = 3566273 · 462804838788405557<18> · C139
C139 = P39 · P101
P39 = 113990293046369827455829809216336468347<39>
P101 = 36025247970230741843823484703167564104166807793409098338045741430171486725099060883837298016220812837<101>
Number: 67779_162 N=4106528573194742072817881820216336322356298983908951601481939266256212139543924891157991054137712590592643943196774682498617901874261770439 ( 139 digits) SNFS difficulty: 163 digits. Divisors found: r1=113990293046369827455829809216336468347 (pp39) r2=36025247970230741843823484703167564104166807793409098338045741430171486725099060883837298016220812837 (pp101) Version: Msieve-1.40 Total time: 51.17 hours. Scaled time: 105.97 units (timescale=2.071). Factorization parameters were as follows: name: 67779_162 n: 4106528573194742072817881820216336322356298983908951601481939266256212139543924891157991054137712590592643943196774682498617901874261770439 m: 100000000000000000000000000000000 deg: 5 c5: 6100 c0: 11 skew: 0.28 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 751394 x 751640 Total sieving time: 48.65 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.11 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,163.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 51.17 hours. --------- CPU info (if available) ----------
By Lionel Debroux / ggnfs + msieve / Dec 24, 2009
(26·10167-11)/3 = 8(6)1663<168> = 7 · 17 · 691 · 229656809 · 1622000506706154937986411401046767<34> · C122
C122 = P55 · P67
P55 = 6538852158315471876807191983737005179049140997548308893<55>
P67 = 4327083287726406607500646865729506028074771488004120304654473098593<67>
Number: 86663_167 N=28294157895160621844921147954393461978100031316274893426210418177756993778953017327769043546792385145405456209408807687549 ( 122 digits) SNFS difficulty: 168 digits. Divisors found: r1=6538852158315471876807191983737005179049140997548308893 (pp55) r2=4327083287726406607500646865729506028074771488004120304654473098593 (pp67) Version: Msieve v. 1.44 Total time: 143.51 hours. Scaled time: 214.83 units (timescale=1.497). Factorization parameters were as follows: n: 28294157895160621844921147954393461978100031316274893426210418177756993778953017327769043546792385145405456209408807687549 m: 1000000000000000000000000000000000 deg: 5 c5: 2600 c0: -11 skew: 0.34 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 851629 x 851854 Total sieving time: 140.47 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.88 hours. Time per square root: 1.02 hours. Prototype def-par.txt line would be: snfs,168.000,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 143.51 hours. --------- CPU info (if available) ----------
By matsui / Msieve / Dec 24, 2009
4·10179+3 = 4(0)1783<180> = 9679838127597185553923930374350132743<37> · C143
C143 = P51 · P93
P51 = 191036532994880646588869280641375529254981954340701<51>
P93 = 216309437884752288522244329757285002058432970681423732981110681293149999573768732312881302121<93>
N=41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821 ( 143 digits) SNFS difficulty: 179 digits. Divisors found: r1=191036532994880646588869280641375529254981954340701 (pp51) r2=216309437884752288522244329757285002058432970681423732981110681293149999573768732312881302121 (pp93) Version: Msieve v. 1.43 Total time: 10.99 hours. Scaled time: 20.72 units (timescale=1.886). Factorization parameters were as follows: n: 41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821 m: 200000000000000000000000000000000000 deg: 5 c5: 1250 c0: 3 skew: 0.30 type: snfs lss: 1 rlim: 6900000 alim: 6900000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6900000/6900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3450000, 9050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1522746 x 1522973 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,179.000,5,0,0,0,0,0,0,0,0,6900000,6900000,28,28,53,53,2.5,2.5,100000 total time:
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 24, 2009
2·10217+9 = 2(0)2169<218> = 17324807 · 7919188963783<13> · 107411105875493866921<21> · 5173938809178624041155896767<28> · C150
C150 = P36 · C115
P36 = 102699093136418169307668176696792069<36>
C115 = [2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683<115>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=34838519 Step 1 took 15671ms Step 2 took 6740ms ********** Factor found in step 2: 102699093136418169307668176696792069 Found probable prime factor of 36 digits: 102699093136418169307668176696792069 Composite cofactor 2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683 has 115 digits
By Dmitry Domanov / ECMNET, GMP-ECM / Dec 24, 2009
2·10248+9 = 2(0)2479<249> = 112 · 41 · 11107489204958914007580419<26> · C220
C220 = P38 · C182
P38 = 63380532867978197628346597706813686961<38>
C182 = [57264962758655073499640385596911912843405767555810142578271507896184241753434450997205171439568565855573766028794311486964572257868682891212249064270760929321618096156966261093582291<182>]
Factor=63380532867978197628346597706813686961 Method=ECM B1=11000000 Sigma=2228662224
By Dmitry Domanov / GGNFS/msieve / Dec 23, 2009
(67·10168-13)/9 = 7(4)1673<169> = 3 · 165813763 · 3342031677563<13> · C148
C148 = P48 · P101
P48 = 134458719408023859753384075009085595975442745241<48>
P101 = 33303580730790575224290199066707126131966069352843461148291487710116357017637216068492699986663689089<101>
N=4477956816763840155316795837966177700076915229952603768994579222454907835059410228107125848550858785511065070923028621198385715228005928586658375449 ( 148 digits) SNFS difficulty: 169 digits. Divisors found: r1=134458719408023859753384075009085595975442745241 (pp48) r2=33303580730790575224290199066707126131966069352843461148291487710116357017637216068492699986663689089 (pp101) Version: Msieve-1.40 Total time: 74.13 hours. Scaled time: 69.09 units (timescale=0.932). Factorization parameters were as follows: n: 4477956816763840155316795837966177700076915229952603768994579222454907835059410228107125848550858785511065070923028621198385715228005928586658375449 m: 1000000000000000000000000000000000 deg: 5 c5: 67000 c0: -13 skew: 0.18 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 977381 x 977607 Total sieving time: 72.12 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.63 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 74.13 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Dec 23, 2009
(61·10190+11)/9 = 6(7)1899<191> = 3 · 139 · 1699 · C185
C185 = P70 · P116
P70 = 1246377540553231270517304854428178026702512130082057989845012070878697<70>
P116 = 76755282987069738064818275995174521908382367033378985164674128789540497512724588327483330081841463307730148032229929<116>
Number: n N=95666060833891254663524428642293149980702116744901116579759539435353816221105909073016258368623915856524119531135930964861228537280044514515913265071678188153812833586377905719371922513 ( 185 digits) SNFS difficulty: 191 digits. Divisors found: Wed Dec 23 21:52:20 2009 prp70 factor: 1246377540553231270517304854428178026702512130082057989845012070878697 Wed Dec 23 21:52:20 2009 prp116 factor: 76755282987069738064818275995174521908382367033378985164674128789540497512724588327483330081841463307730148032229929 Wed Dec 23 21:52:20 2009 elapsed time 05:36:34 (Msieve 1.42 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: ~ 24.00 hours. Scaled time: 0.00 units (timescale=0.841). Factorization parameters were as follows: name: KA_6_7_189_9 n: 95666060833891254663524428642293149980702116744901116579759539435353816221105909073016258368623915856524119531135930964861228537280044514515913265071678188153812833586377905719371922513 m: 100000000000000000000000000000000000000 deg: 5 c5: 61 c0: 11 skew: 0.71 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 100000) Primes: RFBsize:726517, AFBsize:725315, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2883289 hash collisions in 27132787 relations Msieve: matrix is 1475928 x 1476154 (394.4 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,56,56,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM / Dec 23, 2009
2·10243+9 = 2(0)2429<244> = 7 · 41 · 227 · 421 · C236
C236 = P30 · C207
P30 = 275090641212239281388428941781<30>
C207 = [265072290148445136560818600872536028741814594689355689084826099010496505157655840038152578998319195828775892660393313465582532270823126127399141068370073694442972122406251271400377317474155401123483513864341<207>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1128384573 Step 1 took 12352ms Step 2 took 5633ms ********** Factor found in step 2: 275090641212239281388428941781 Found probable prime factor of 30 digits: 275090641212239281388428941781 Composite cofactor has 207 digits
2·10241+9 = 2(0)2409<242> = 23 · 11827 · 229376321 · 2727862121<10> · 1386106253052049787<19> · C200
C200 = P36 · C165
P36 = 105073858185151552219454459705794081<36>
C165 = [806799021435633334778607190153883588562873305480699334566341552479925686226196132085236650925436195560862698365853607109043802721553143632271788112834805134902749927<165>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3024908771 Step 1 took 12365ms Step 2 took 6264ms ********** Factor found in step 2: 105073858185151552219454459705794081 Found probable prime factor of 36 digits: 105073858185151552219454459705794081 Composite cofactor has 165 digits
2·10214+9 = 2(0)2139<215> = 11 · 792769 · C208
C208 = P30 · C179
P30 = 108073286126852074103935205123<30>
C179 = [21221315106860899445933896803600324185433315879614766539100261924328043844792993941275529908813313478966866705232058311046676551390445994002560932483470016746642554197765912727337<179>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1593094740 Step 1 took 9704ms ********** Factor found in step 1: 108073286126852074103935205123 Found probable prime factor of 30 digits: 108073286126852074103935205123 Composite cofactor has 179 digits
2·10245+9 = 2(0)2449<246> = 54073807 · 17143423889<11> · 52441815947<11> · 37907299299807143021<20> · C198
C198 = P29 · C169
P29 = 48780799114142980351071675283<29>
C169 = [2224825781921510311089625162072229302525980695051171437726573831123721374767914069312979236788707893034386059250449392062243210924920047371675945471981646433600136489923<169>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2117120045 Step 1 took 12313ms Step 2 took 6164ms ********** Factor found in step 2: 48780799114142980351071675283 Found probable prime factor of 29 digits: 48780799114142980351071675283 Composite cofactor has 169 digits
2·10202+9 = 2(0)2019<203> = 11 · 8179 · 114752140758891510899<21> · C178
C178 = P29 · P150
P29 = 10154618909493427970970822721<29>
P150 = 190771140703131610829744107752674358172987961363517807716872722844099059240912537213495175536293431424182489626904601379938938663722516836938490051459<150>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1119420523 Step 1 took 8429ms Step 2 took 4324ms ********** Factor found in step 2: 10154618909493427970970822721 Found probable prime factor of 29 digits: 10154618909493427970970822721 Probable prime (finally!..) cofactor has 150 digits
2·10216+9 = 2(0)2159<217> = 11 · 107 · 37489 · C209
C209 = P29 · C181
P29 = 17914893243474064093353886339<29>
C181 = [2530086983479833387914671916161109783095426465559142662484628525176449853888833345433073938167065639727700285403571069487621676918739169062674186666507709307416989039849336443021227<181>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3828974228 Step 1 took 12349ms Step 2 took 6312ms ********** Factor found in step 2: 17914893243474064093353886339 Found probable prime factor of 29 digits: 17914893243474064093353886339 Composite cofactor has 181 digits
2·10212+9 = 2(0)2119<213> = 11 · 17 · 20353 · 1381923056737330482439098571<28> · C179
C179 = P31 · C149
P31 = 2240943540763641964491268576729<31>
C149 = [16968567436598174394441700560052214494982970741460114303653787912012932829033703060581255810085925490346029906192195604150265745128887761473827164841<149>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1282349060 Step 1 took 8312ms Step 2 took 4321ms ********** Factor found in step 2: 2240943540763641964491268576729 Found probable prime factor of 31 digits: 2240943540763641964491268576729 Composite cofactor has 149 digits
By Sinkiti Sibata / Msieve / Dec 23, 2009
(65·10166+61)/9 = 7(2)1659<167> = 17 · 89 · 137 · 224359 · 342267997426477<15> · 3264304339047261683<19> · C124
C124 = P56 · P68
P56 = 21177806111690930656883533457082414880466382692793184597<56>
P68 = 65634163160831350012251236459552088191190938657828797749306617552113<68>
Number: 72229_166 N=1389987581723173895596548377609939173843736140303008202201819784338719027287887136391659956712211103906587187700701876403461 ( 124 digits) SNFS difficulty: 167 digits. Divisors found: r1=21177806111690930656883533457082414880466382692793184597 (pp56) r2=65634163160831350012251236459552088191190938657828797749306617552113 (pp68) Version: Msieve-1.40 Total time: 52.43 hours. Scaled time: 174.18 units (timescale=3.322). Factorization parameters were as follows: name:72229_166 n: 1389987581723173895596548377609939173843736140303008202201819784338719027287887136391659956712211103906587187700701876403461 m: 1000000000000000000000000000000000 deg: 5 c5: 650 c0: 61 skew: 0.62 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 5000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 858499 x 858747 Total sieving time: 50.86 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.40 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 52.43 hours. --------- CPU info (if available) ----------
Factorizations of 200...009 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve / Dec 22, 2009
(31·10190-13)/9 = 3(4)1893<191> = 3 · 19 · 59 · 359 · C185
C185 = P61 · P124
P61 = 3258043336272548779008002886122874571288404601111566773541731<61>
P124 = 8756710898999513727194865930909654610791856616776070564855670702424349065435730402674191725009366629927668168079773573912709<124>
Number: n N=28529743592150565629776143667689964147315447760981121316476488316195700420390373401885705613724021482712862027491076862534400198493390256613999839681247298302305396548250744787362759279 ( 185 digits) SNFS difficulty: 191 digits. Divisors found: Tue Dec 22 19:08:25 2009 prp61 factor: 3258043336272548779008002886122874571288404601111566773541731 Tue Dec 22 19:08:25 2009 prp124 factor: 8756710898999513727194865930909654610791856616776070564855670702424349065435730402674191725009366629927668168079773573912709 Tue Dec 22 19:08:25 2009 elapsed time 07:20:56 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: ~ 24.00 hours. Scaled time: 0.00 units (timescale=0.841). Factorization parameters were as follows: name: KA_3_4_189_3 n: 28529743592150565629776143667689964147315447760981121316476488316195700420390373401885705613724021482712862027491076862534400198493390256613999839681247298302305396548250744787362759279 m: 100000000000000000000000000000000000000 deg: 5 c5: 31 c0: -13 skew: 0.84 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 100000) Primes: RFBsize:720341, AFBsize:720005, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2227733 hash collisions in 23635251 relations Msieve: matrix is 1696684 x 1696911 (458.6 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,56,56,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Dec 22, 2009
5·10199-1 = 4(9)199<200> = 7 · 233 · 29033 · 110474303778793<15> · C178
C178 = P49 · C130
P49 = 4139828065935440294061146400286899184110194422807<49>
C130 = [2308769366424866095094566070967993074645236095443441497801367460951396604272172809333678904945474562731467084910099433652462194263<130>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 9557908220897645269387286854345517770093707575325287236420262235191730767688983930835321863692114212272671692252102550740452830644042128960613717269023912901214844723199991756241 (178 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=6195808489 Step 1 took 17127ms Step 2 took 6986ms ********** Factor found in step 2: 4139828065935440294061146400286899184110194422807 Found probable prime factor of 49 digits: 4139828065935440294061146400286899184110194422807 Composite cofactor 2308769366424866095094566070967993074645236095443441497801367460951396604272172809333678904945474562731467084910099433652462194263 has 130 digits
By Sinkiti Sibata / Msieve / Dec 22, 2009
(61·10156+11)/9 = 6(7)1559<157> = 1031 · 856255798213763<15> · C139
C139 = P54 · P86
P54 = 661542050937201180007812167768624715936624530911929887<54>
P86 = 11605602178758045128535674160139984140449568658770410887945323629142397528821410828089<86>
Number: 67779_156 N=7677593867696847684957279122264293269278228013253544279472612563182051822662480904492016418127582884422641770308593475797958842809778195943 ( 139 digits) SNFS difficulty: 157 digits. Divisors found: r1=661542050937201180007812167768624715936624530911929887 (pp54) r2=11605602178758045128535674160139984140449568658770410887945323629142397528821410828089 (pp86) Version: Msieve v. 1.42 Total time: 1.57 hours. Scaled time: 1.25 units (timescale=0.796). Factorization parameters were as follows: name: 67779_156 n: 7677593867696847684957279122264293269278228013253544279472612563182051822662480904492016418127582884422641770308593475797958842809778195943 m: 10000000000000000000000000000000 deg: 5 c5: 610 c0: 11 skew: 0.45 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 621877 x 622123 Total sieving time: 0.00 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.26 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 1.57 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 21 hours 36 min.
(61·10160+11)/9 = 6(7)1599<161> = 3 · 37096537 · 318602231 · 306165298424039<15> · C130
C130 = P36 · P95
P36 = 329941288039669879685932268781811517<36>
P95 = 18923055277115022873260438445332513123376717790659675808990381692014965745788428750512725960013<95>
Number: 67779_160 N=6243497231777202897086408485077339585620666600947801130141434691549613209529400593909446684764902280951362671525963210087044869721 ( 130 digits) SNFS difficulty: 161 digits. Divisors found: r1=329941288039669879685932268781811517 (pp36) r2=18923055277115022873260438445332513123376717790659675808990381692014965745788428750512725960013 (pp95) Version: Msieve-1.40 Total time: 32.20 hours. Scaled time: 67.15 units (timescale=2.085). Factorization parameters were as follows: name: 67779_160 n: 6243497231777202897086408485077339585620666600947801130141434691549613209529400593909446684764902280951362671525963210087044869721 m: 100000000000000000000000000000000 deg: 5 c5: 61 c0: 11 skew: 0.71 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 613100 x 613348 Total sieving time: 30.38 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.37 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 32.20 hours. --------- CPU info (if available) ----------
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) / Dec 22, 2009
(47·10205+61)/9 = 5(2)2049<206> = 17 · 8761 · C201
C201 = P41 · P43 · P118
P41 = 20194671096761091832186829435988704365487<41>
P43 = 9471896794686022886422445694883334722867319<43>
P118 = 1833069811112554214479030625907879474746219426511471381872548281127265355644588248308625697591882480899120783940961589<118>
Sun Dec 20 15:19:03 2009 Msieve v. 1.43 Sun Dec 20 15:19:03 2009 random seeds: 5540a3c0 8848d85a Sun Dec 20 15:19:03 2009 factoring 350632967108389602464278333941345818851072750372454274103964912830406294085567872471059724730739992226392516448043281536637787938673548025153066210694603907841719802481735379537806067143975118487831917 (201 digits) Sun Dec 20 15:19:05 2009 no P-1/P+1/ECM available, skipping Sun Dec 20 15:19:05 2009 commencing number field sieve (201-digit input) Sun Dec 20 15:19:05 2009 R0: -100000000000000000000000000000000000000000 Sun Dec 20 15:19:05 2009 R1: 1 Sun Dec 20 15:19:05 2009 A0: 61 Sun Dec 20 15:19:05 2009 A1: 0 Sun Dec 20 15:19:05 2009 A2: 0 Sun Dec 20 15:19:05 2009 A3: 0 Sun Dec 20 15:19:05 2009 A4: 0 Sun Dec 20 15:19:05 2009 A5: 47 Sun Dec 20 15:19:05 2009 skew 1.05, size 2.211741e-14, alpha 0.903629, combined = 7.847376e-12 Sun Dec 20 15:19:05 2009 Sun Dec 20 15:19:05 2009 commencing linear algebra Sun Dec 20 15:19:06 2009 read 2801241 cycles Sun Dec 20 15:19:13 2009 cycles contain 7840037 unique relations Sun Dec 20 15:20:33 2009 read 7840037 relations Sun Dec 20 15:20:48 2009 using 20 quadratic characters above 536866608 Sun Dec 20 15:21:44 2009 building initial matrix Sun Dec 20 15:24:22 2009 memory use: 1037.1 MB Sun Dec 20 15:24:27 2009 read 2801241 cycles Sun Dec 20 15:24:30 2009 matrix is 2800834 x 2801241 (826.2 MB) with weight 244934261 (87.44/col) Sun Dec 20 15:24:30 2009 sparse part has weight 185757819 (66.31/col) Sun Dec 20 15:25:51 2009 filtering completed in 3 passes Sun Dec 20 15:25:52 2009 matrix is 2794922 x 2795122 (825.1 MB) with weight 244600938 (87.51/col) Sun Dec 20 15:25:52 2009 sparse part has weight 185554338 (66.39/col) Sun Dec 20 15:26:18 2009 read 2795122 cycles Sun Dec 20 15:26:21 2009 matrix is 2794922 x 2795122 (825.1 MB) with weight 244600938 (87.51/col) Sun Dec 20 15:26:21 2009 sparse part has weight 185554338 (66.39/col) Sun Dec 20 15:26:22 2009 saving the first 48 matrix rows for later Sun Dec 20 15:26:24 2009 matrix is 2794874 x 2795122 (786.2 MB) with weight 193230385 (69.13/col) Sun Dec 20 15:26:24 2009 sparse part has weight 178134501 (63.73/col) Sun Dec 20 15:26:24 2009 matrix includes 64 packed rows Sun Dec 20 15:26:24 2009 using block size 65536 for processor cache size 6144 kB Sun Dec 20 15:26:40 2009 commencing Lanczos iteration (5 threads) Sun Dec 20 15:26:40 2009 memory use: 868.2 MB Sun Dec 20 15:26:55 2009 linear algebra at 0.0%, ETA 14h22m Mon Dec 21 04:57:45 2009 lanczos halted after 44202 iterations (dim = 2794871) Mon Dec 21 04:57:53 2009 recovered 35 nontrivial dependencies Mon Dec 21 04:57:54 2009 BLanczosTime: 49129 Mon Dec 21 04:57:54 2009 elapsed time 13:38:51 Mon Dec 21 05:37:36 2009 Mon Dec 21 05:37:36 2009 Mon Dec 21 05:37:36 2009 Msieve v. 1.43 Mon Dec 21 05:37:36 2009 random seeds: 0aeca43c 249cbc15 Mon Dec 21 05:37:36 2009 factoring 350632967108389602464278333941345818851072750372454274103964912830406294085567872471059724730739992226392516448043281536637787938673548025153066210694603907841719802481735379537806067143975118487831917 (201 digits) Mon Dec 21 05:37:38 2009 no P-1/P+1/ECM available, skipping Mon Dec 21 05:37:38 2009 commencing number field sieve (201-digit input) Mon Dec 21 05:37:38 2009 R0: -100000000000000000000000000000000000000000 Mon Dec 21 05:37:38 2009 R1: 1 Mon Dec 21 05:37:38 2009 A0: 61 Mon Dec 21 05:37:38 2009 A1: 0 Mon Dec 21 05:37:38 2009 A2: 0 Mon Dec 21 05:37:38 2009 A3: 0 Mon Dec 21 05:37:39 2009 A4: 0 Mon Dec 21 05:37:39 2009 A5: 47 Mon Dec 21 05:37:39 2009 skew 1.05, size 2.211741e-14, alpha 0.903629, combined = 7.847376e-12 Mon Dec 21 05:37:39 2009 Mon Dec 21 05:37:39 2009 commencing square root phase Mon Dec 21 05:37:39 2009 reading relations for dependency 1 Mon Dec 21 05:37:39 2009 read 1398917 cycles Mon Dec 21 05:37:43 2009 cycles contain 3920050 unique relations Mon Dec 21 05:38:29 2009 read 3920050 relations Mon Dec 21 05:38:59 2009 multiplying 3920050 relations Mon Dec 21 05:42:51 2009 multiply complete, coefficients have about 115.67 million bits Mon Dec 21 05:42:52 2009 initial square root is modulo 200748451 Mon Dec 21 05:50:46 2009 reading relations for dependency 2 Mon Dec 21 05:50:46 2009 read 1397154 cycles Mon Dec 21 05:50:50 2009 cycles contain 3917288 unique relations Mon Dec 21 05:51:37 2009 read 3917288 relations Mon Dec 21 05:52:06 2009 multiplying 3917288 relations Mon Dec 21 05:55:55 2009 multiply complete, coefficients have about 115.60 million bits Mon Dec 21 05:55:56 2009 initial square root is modulo 198217301 Mon Dec 21 06:03:50 2009 sqrtTime: 1571 Mon Dec 21 06:03:50 2009 prp41 factor: 20194671096761091832186829435988704365487 Mon Dec 21 06:03:50 2009 prp43 factor: 9471896794686022886422445694883334722867319 Mon Dec 21 06:03:50 2009 prp118 factor: 1833069811112554214479030625907879474746219426511471381872548281127265355644588248308625697591882480899120783940961589 Mon Dec 21 06:03:50 2009 elapsed time 00:26:14
(52·10204-61)/9 = 5(7)2031<205> = 7523 · C201
C201 = P91 · P111
P91 = 3211532119533007796194142514339179383220263052671540257631331121185606037989314798053426139<91>
P111 = 239142906066221075904871087733166044872867257339926740249703577575802462447115323671565908100642055353656660443<111>
Mon Dec 21 06:29:10 2009 Msieve v. 1.43 Mon Dec 21 06:29:10 2009 random seeds: 7dbbed41 b0edb4a0 Mon Dec 21 06:29:10 2009 factoring 768015123990133959561049817596408052343184604250668320853087568493656490466273797391702482756583514259973119470660345311415363256384125718167988538851226608770141935102722022833680417091290413103519577 (201 digits) Mon Dec 21 06:29:13 2009 no P-1/P+1/ECM available, skipping Mon Dec 21 06:29:13 2009 commencing number field sieve (201-digit input) Mon Dec 21 06:29:13 2009 R0: -100000000000000000000000000000000000000000 Mon Dec 21 06:29:13 2009 R1: 1 Mon Dec 21 06:29:13 2009 A0: -305 Mon Dec 21 06:29:13 2009 A1: 0 Mon Dec 21 06:29:13 2009 A2: 0 Mon Dec 21 06:29:13 2009 A3: 0 Mon Dec 21 06:29:13 2009 A4: 0 Mon Dec 21 06:29:13 2009 A5: 26 Mon Dec 21 06:29:13 2009 skew 1.64, size 2.306128e-14, alpha 0.489715, combined = 8.078711e-12 Mon Dec 21 06:29:13 2009 Mon Dec 21 06:29:13 2009 commencing linear algebra Mon Dec 21 06:29:13 2009 read 2813450 cycles Mon Dec 21 06:29:20 2009 cycles contain 7921881 unique relations Mon Dec 21 06:30:39 2009 read 7921881 relations Mon Dec 21 06:30:55 2009 using 20 quadratic characters above 536868812 Mon Dec 21 06:31:51 2009 building initial matrix Mon Dec 21 06:34:32 2009 memory use: 1056.5 MB Mon Dec 21 06:34:35 2009 read 2813450 cycles Mon Dec 21 06:34:39 2009 matrix is 2812972 x 2813450 (831.2 MB) with weight 247146150 (87.84/col) Mon Dec 21 06:34:39 2009 sparse part has weight 186954905 (66.45/col) Mon Dec 21 06:35:59 2009 filtering completed in 3 passes Mon Dec 21 06:36:01 2009 matrix is 2806020 x 2806220 (829.9 MB) with weight 246729422 (87.92/col) Mon Dec 21 06:36:01 2009 sparse part has weight 186695144 (66.53/col) Mon Dec 21 06:36:26 2009 read 2806220 cycles Mon Dec 21 06:36:30 2009 matrix is 2806020 x 2806220 (829.9 MB) with weight 246729422 (87.92/col) Mon Dec 21 06:36:30 2009 sparse part has weight 186695144 (66.53/col) Mon Dec 21 06:36:30 2009 saving the first 48 matrix rows for later Mon Dec 21 06:36:32 2009 matrix is 2805972 x 2806220 (790.2 MB) with weight 195218319 (69.57/col) Mon Dec 21 06:36:32 2009 sparse part has weight 179071456 (63.81/col) Mon Dec 21 06:36:32 2009 matrix includes 64 packed rows Mon Dec 21 06:36:33 2009 using block size 65536 for processor cache size 6144 kB Mon Dec 21 06:36:49 2009 commencing Lanczos iteration (5 threads) Mon Dec 21 06:36:49 2009 memory use: 870.2 MB Mon Dec 21 06:37:03 2009 linear algebra at 0.0%, ETA 13h22m Mon Dec 21 20:02:14 2009 lanczos halted after 44375 iterations (dim = 2805971) Mon Dec 21 20:02:21 2009 recovered 36 nontrivial dependencies Mon Dec 21 20:02:21 2009 BLanczosTime: 48788 Mon Dec 21 20:02:21 2009 elapsed time 13:33:11 Mon Dec 21 20:03:02 2009 Mon Dec 21 20:03:02 2009 Mon Dec 21 20:03:02 2009 Msieve v. 1.43 Mon Dec 21 20:03:02 2009 random seeds: 4c5d3413 72c52ec2 Mon Dec 21 20:03:02 2009 factoring 768015123990133959561049817596408052343184604250668320853087568493656490466273797391702482756583514259973119470660345311415363256384125718167988538851226608770141935102722022833680417091290413103519577 (201 digits) Mon Dec 21 20:03:04 2009 no P-1/P+1/ECM available, skipping Mon Dec 21 20:03:04 2009 commencing number field sieve (201-digit input) Mon Dec 21 20:03:04 2009 R0: -100000000000000000000000000000000000000000 Mon Dec 21 20:03:04 2009 R1: 1 Mon Dec 21 20:03:04 2009 A0: -305 Mon Dec 21 20:03:04 2009 A1: 0 Mon Dec 21 20:03:04 2009 A2: 0 Mon Dec 21 20:03:04 2009 A3: 0 Mon Dec 21 20:03:04 2009 A4: 0 Mon Dec 21 20:03:04 2009 A5: 26 Mon Dec 21 20:03:04 2009 skew 1.64, size 2.306128e-14, alpha 0.489715, combined = 8.078711e-12 Mon Dec 21 20:03:04 2009 Mon Dec 21 20:03:04 2009 commencing square root phase Mon Dec 21 20:03:04 2009 reading relations for dependency 1 Mon Dec 21 20:03:05 2009 read 1402676 cycles Mon Dec 21 20:03:08 2009 cycles contain 3955496 unique relations Mon Dec 21 20:03:55 2009 read 3955496 relations Mon Dec 21 20:04:25 2009 multiplying 3955496 relations Mon Dec 21 20:08:13 2009 multiply complete, coefficients have about 114.53 million bits Mon Dec 21 20:08:14 2009 initial square root is modulo 166254931 Mon Dec 21 20:15:59 2009 reading relations for dependency 2 Mon Dec 21 20:15:59 2009 read 1402788 cycles Mon Dec 21 20:16:03 2009 cycles contain 3959826 unique relations Mon Dec 21 20:16:49 2009 read 3959826 relations Mon Dec 21 20:17:19 2009 multiplying 3959826 relations Mon Dec 21 20:21:07 2009 multiply complete, coefficients have about 114.66 million bits Mon Dec 21 20:21:08 2009 initial square root is modulo 169698701 Mon Dec 21 20:28:54 2009 reading relations for dependency 3 Mon Dec 21 20:28:55 2009 read 1403085 cycles Mon Dec 21 20:28:58 2009 cycles contain 3957196 unique relations Mon Dec 21 20:29:45 2009 read 3957196 relations Mon Dec 21 20:30:14 2009 multiplying 3957196 relations Mon Dec 21 20:34:02 2009 multiply complete, coefficients have about 114.58 million bits Mon Dec 21 20:34:04 2009 initial square root is modulo 167615221 Mon Dec 21 20:41:49 2009 sqrtTime: 2325 Mon Dec 21 20:41:49 2009 prp91 factor: 3211532119533007796194142514339179383220263052671540257631331121185606037989314798053426139 Mon Dec 21 20:41:49 2009 prp111 factor: 239142906066221075904871087733166044872867257339926740249703577575802462447115323671565908100642055353656660443 Mon Dec 21 20:41:49 2009 elapsed time 00:38:47
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 22, 2009
(61·10169+11)/9 = 6(7)1689<170> = 3 · 44939 · 665221 · 1479879893<10> · 15992251210919<14> · 17093209147337<14> · C124
C124 = P34 · P91
P34 = 1241527496479518969376421541593971<34>
P91 = 1504737326775329431837876707667921530091717850110212903089127410272542747798721969528414183<91>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1130343346 Step 1 took 11375ms Step 2 took 5675ms ********** Factor found in step 2: 1241527496479518969376421541593971 Found probable prime factor of 34 digits: 1241527496479518969376421541593971 Probable prime cofactor 1504737326775329431837876707667921530091717850110212903089127410272542747798721969528414183 has 91 digits
By Erik Branger / GMP-ECM / Dec 22, 2009
(7·10198-61)/9 = (7)1971<198> = 3 · 55217759 · 16455860360011147359007<23> · C168
C168 = P39 · P129
P39 = 434084681211224686141852439499199000759<39>
P129 = 657295177045586107322565512403951199388892719101664080289634387135256356887900786390289588541880076660837466117973684510067141071<129>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 285321767389508735329154872093616199691336844403413182896276528395142827577131174381103348822433774083626337309145249185346327131003838382411204837961455467643089072889 (168 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2338097098 Step 1 took 60922ms Step 2 took 25844ms ********** Factor found in step 2: 434084681211224686141852439499199000759 Found probable prime factor of 39 digits: 434084681211224686141852439499199000759 Probable prime cofactor 657295177045586107322565512403951199388892719101664080289634387135256356887900786390289588541880076660837466117973684510067141071 has 129 digits
By Dmitry Domanov / GGNFS/msieve / Dec 22, 2009
(16·10194-7)/9 = 1(7)194<195> = 32 · 47 · 658871 · 141500762332327<15> · C172
C172 = P65 · P107
P65 = 50759659653424490277812732539608015788481050765357913219568146221<65>
P107 = 88809460563826870360116122356762381837736186016835833547259653844156804262828325126109903907817049613269507<107>
N=4507937992224076175282785699191828465701998428817043371078391278475687732184850987495627021938332564937967244359115982438252106208394489099068936319590238462061614856583047 ( 172 digits) SNFS difficulty: 195 digits. Divisors found: r1=50759659653424490277812732539608015788481050765357913219568146221 (pp65) r2=88809460563826870360116122356762381837736186016835833547259653844156804262828325126109903907817049613269507 (pp107) Version: Msieve-1.40 Total time: 653.14 hours. Scaled time: 609.38 units (timescale=0.933). Factorization parameters were as follows: n: 4507937992224076175282785699191828465701998428817043371078391278475687732184850987495627021938332564937967244359115982438252106208394489099068936319590238462061614856583047 m: 200000000000000000000000000000000000000 deg: 5 c5: 5000 c0: -7 skew: 0.27 type: snfs lss: 1 rlim: 12500000 alim: 12500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 240000Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6250000, 13450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2046136 x 2046361 Total sieving time: 643.51 hours. Total relation processing time: 0.41 hours. Matrix solve time: 8.29 hours. Time per square root: 0.93 hours. Prototype def-par.txt line would be: snfs,195.000,5,0,0,0,0,0,0,0,0,12500000,12500000,28,28,55,55,2.5,2.5,100000 total time: 653.14 hours. --------- CPU info (if available) ----------
By Erik Branger / GMP-ECM / Dec 21, 2009
(7·10181-61)/9 = (7)1801<181> = 1543 · 401279 · 418897712018139077<18> · C155
C155 = P36 · P120
P36 = 268433173310371919110756037126438297<36>
P120 = 111711786778438585359052002351568932688057440788273618433487598683804565986777722541166941624891570654575541803729075647<120>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 29987149421107919103277239628662886957675353245492249296599091718376560326703805877339985194027146015977494170980827460525338426184127596850743513190853159 (155 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3585440498 Step 1 took 86331ms Step 2 took 16988ms ********** Factor found in step 2: 268433173310371919110756037126438297 Found probable prime factor of 36 digits: 268433173310371919110756037126438297 Probable prime cofactor 111711786778438585359052002351568932688057440788273618433487598683804565986777722541166941624891570654575541803729075647 has 120 digits
(7·10182-61)/9 = (7)1811<182> = 89 · 997 · 30467369 · 17618593319<11> · C160
C160 = P36 · C124
P36 = 196795518289527012783177637059304087<36>
C124 = [8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391<124>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1632917269353564083516157160874442162362313033488821728473083869495445441341139923036407878727107841361742487465761237276409809989350912818623879601262132645017 (160 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=866390266 Step 1 took 54928ms Step 2 took 17971ms ********** Factor found in step 2: 196795518289527012783177637059304087 Found probable prime factor of 36 digits: 196795518289527012783177637059304087 Composite cofactor 8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391 has 124 digits
(7·10189-61)/9 = (7)1881<189> = 3 · 1291 · 355909522613<12> · 6586408395714765506229052421915313517957<40> · C134
C134 = P36 · P99
P36 = 382640466874904910800421145827775571<36>
P99 = 223886997322957868294489493212024580830634045157977060128729169814295853294679370899387519951925857<99>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 85668225182877184644786666541917164742621853107779269580528230063969136871950475692301384534838463105695144272049997293525583827839347 (134 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3346361410 Step 1 took 39203ms Step 2 took 14056ms ********** Factor found in step 2: 382640466874904910800421145827775571 Found probable prime factor of 36 digits: 382640466874904910800421145827775571 Probable prime cofactor 223886997322957868294489493212024580830634045157977060128729169814295853294679370899387519951925857 has 99 digits
By Wataru Sakai / Msieve / Dec 21, 2009
(29·10182+43)/9 = 3(2)1817<183> = 3 · 742607 · C177
C177 = P62 · P115
P62 = 92642261978496379962548769773717521411016408848388445396158257<62>
P115 = 1561226968708799973532631702023503117190130380194927134171352062656951184851221466845822869614201993417026721388591<115>
Number: 32227_182 N=144635597843014417326267335760917157268120832967380333618464958460406927765840353521320708540866713359027597918424425580970025070336540602778330136138505841457739298723830245887 ( 177 digits) SNFS difficulty: 183 digits. Divisors found: r1=92642261978496379962548769773717521411016408848388445396158257 r2=1561226968708799973532631702023503117190130380194927134171352062656951184851221466845822869614201993417026721388591 Version: Total time: 343.63 hours. Scaled time: 691.04 units (timescale=2.011). Factorization parameters were as follows: n: 144635597843014417326267335760917157268120832967380333618464958460406927765840353521320708540866713359027597918424425580970025070336540602778330136138505841457739298723830245887 m: 1000000000000000000000000000000000000 deg: 5 c5: 2900 c0: 43 skew: 0.43 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4000000, 7300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1547536 x 1547784 Total sieving time: 343.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000 total time: 343.63 hours. --------- CPU info (if available) ----------
(19·10178+53)/9 = 2(1)1777<179> = 3 · 383489 · C173
C173 = P33 · P50 · P91
P33 = 730783028829272890571582357107873<33>
P50 = 15813081752003936184143208732888457782336476081569<50>
P91 = 1587932203573024046038962979456799562125934051816159402995982719650736127433087927236287023<91>
Number: 21117_178 N=18350036212347777998944003705548365238734454018334390391998302525071219870809950316794059378592442122295651340813001251762207095997634970069642250591378206511887008589651951 ( 173 digits) SNFS difficulty: 179 digits. Divisors found: r1=730783028829272890571582357107873 r2=15813081752003936184143208732888457782336476081569 r3=1587932203573024046038962979456799562125934051816159402995982719650736127433087927236287023 Version: Total time: 199.73 hours. Scaled time: 402.06 units (timescale=2.013). Factorization parameters were as follows: n: 18350036212347777998944003705548365238734454018334390391998302525071219870809950316794059378592442122295651340813001251762207095997634970069642250591378206511887008589651951 m: 100000000000000000000000000000000000 deg: 5 c5: 19000 c0: 53 skew: 0.31 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 9900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1341541 x 1341789 Total sieving time: 199.73 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 199.73 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / Msieve, ECMNET, GMP-ECM, GGNFS/msieve / Dec 21, 2009
(71·10127+1)/9 = 7(8)1269<128> = 877 · C125
C125 = P42 · P84
P42 = 724119670299098648278589761262529662613773<42>
P84 = 124224111994143947053481632133918283439721570965704847381544868928732662785337506609<84>
Number: pss5 N=89953123020397820853921195996452552894970226783225642974787786646395540352210819713670340808311161788926897250728493601925757 ( 125 digits) SNFS difficulty: 128 digits. Divisors found: r1=93855586060542351442594594185778692558497789498069 (pp50) r2=124224111994143947053481632133918283439721570965704847381544868928732662785337506609 (pp84) Version: Msieve-1.40 Total time: 2.78 hours. Scaled time: 5.27 units (timescale=1.894). Factorization parameters were as follows: n: 89953123020397820853921195996452552894970226783225642974787786646395540352210819713670340808311161788926897250728493601925757 m: 10000000000000000000000000 deg: 5 c5: 7100 c0: 1 skew: 0.17 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [490000, 840001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130951 x 131178 Total sieving time: 2.54 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.07 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,128.000,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000 total time: 2.78 hours. --------- CPU info (if available) ----------
(61·10186+11)/9 = 6(7)1859<187> = 11064356141<11> · C177
C177 = P34 · P143
P34 = 6593937000538782954599208778732781<34>
P143 = 92900143664152041610733982563617930749541509401481860046283875992578438137971694644621795839901683792618731990044520768286581883999169058387899<143>
Factor=6593937000538782954599208778732781 Method=ECM B1=11000000 Sigma=2002082671
(71·10133+1)/9 = 7(8)1329<134> = 113 · 10338933259<11> · 732116512273<12> · C110
C110 = P33 · P36 · P42
P33 = 721463809668823308576757999477337<33>
P36 = 186615596727761291998883929740028807<36>
P42 = 685044798746716350174109578435853792446181<42>
N=92231965102753226805070876269963837258857967842991246775531878200725154058404849711786393278310308556651813579 ( 110 digits) SNFS difficulty: 134 digits. Divisors found: r1=721463809668823308576757999477337 (pp33) r2=186615596727761291998883929740028807 (pp36) r3=685044798746716350174109578435853792446181 (pp42) Version: Msieve-1.40 Total time: 3.80 hours. Scaled time: 7.04 units (timescale=1.855). Factorization parameters were as follows: n: 92231965102753226805070876269963837258857967842991246775531878200725154058404849711786393278310308556651813579 m: 100000000000000000000000000 deg: 5 c5: 71000 c0: 1 skew: 0.11 type: snfs lss: 1 rlim: 1240000 alim: 1240000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1240000/1240000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [620000, 1370001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 169732 x 169958 Total sieving time: 3.60 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000 total time: 3.80 hours. --------- CPU info (if available) ----------
(71·10137+1)/9 = 7(8)1369<138> = 3 · 81203 · 91125075823<11> · 331490003387<12> · C111
C111 = P31 · P80
P31 = 1124786677524254377539152840831<31>
P80 = 95311215416391831577161704682854083086498483281881740792036442945373555652793891<80>
N=107204785319001861480239990708059678466162206746209771789971212092030666843417489070498898114318212014772163421 ( 111 digits) SNFS difficulty: 138 digits. Divisors found: r1=1124786677524254377539152840831 (pp31) r2=95311215416391831577161704682854083086498483281881740792036442945373555652793891 (pp80) Version: Msieve-1.40 Total time: 4.38 hours. Scaled time: 8.31 units (timescale=1.899). Factorization parameters were as follows: n: 107204785319001861480239990708059678466162206746209771789971212092030666843417489070498898114318212014772163421 m: 1000000000000000000000000000 deg: 5 c5: 7100 c0: 1 skew: 0.17 type: snfs lss: 1 rlim: 1440000 alim: 1440000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1440000/1440000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [720000, 1545001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 188590 x 188815 Total sieving time: 4.24 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1440000,1440000,26,26,48,48,2.3,2.3,75000 total time: 4.38 hours. --------- CPU info (if available) ----------
(71·10146+1)/9 = 7(8)1459<147> = 3 · 143873 · 484733 · 100371170821<12> · C125
C125 = P54 · P72
P54 = 275763158471737845393339532576042411061713280853158923<54>
P72 = 136228339594136412294146908581272692925053002012783776467237808792805929<72>
N=37566757199839558738674053617549413778397450213184321917251642377603230103467738504126931658773651479533067016587356533654467 ( 125 digits) SNFS difficulty: 147 digits. Divisors found: r1=275763158471737845393339532576042411061713280853158923 (pp54) r2=136228339594136412294146908581272692925053002012783776467237808792805929 (pp72) Version: Msieve-1.40 Total time: 9.29 hours. Scaled time: 17.65 units (timescale=1.899). Factorization parameters were as follows: n: 37566757199839558738674053617549413778397450213184321917251642377603230103467738504126931658773651479533067016587356533654467 m: 100000000000000000000000000000 deg: 5 c5: 710 c0: 1 skew: 0.27 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 341056 x 341281 Total sieving time: 9.04 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147.000,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 9.29 hours. --------- CPU info (if available) ----------
(61·10185+11)/9 = 6(7)1849<186> = 449 · 4241 · C180
C180 = P38 · P42 · P101
P38 = 93294348110671834780090636675095012293<38>
P42 = 211932646641119217655915149848691440234801<42>
P101 = 18001948543574024260951655439691780805894373278122437636957145375740930619748197779058194059900366167<101>
Factor=93294348110671834780090636675095012293 Method=ECM B1=11000000 Sigma=96355152 Factor=211932646641119217655915149848691440234801 Method=ECM B1=11000000 Sigma=583579203
(61·10158+11)/9 = 6(7)1579<159> = 7 · 47947 · C154
C154 = P36 · P118
P36 = 370424065561157043005740122638615381<36>
P118 = 5451658618654229583422200616066216555531534316702994687574391619950836910293242281617785667350933415824446950885802371<118>
N=2019425549573421181655273464980015963393442693503176953653521530552418824886341102162738552919377579940284593339007588074265864325722085331654230646868351 ( 154 digits) SNFS difficulty: 159 digits. Divisors found: r1=370424065561157043005740122638615381 (pp36) r2=5451658618654229583422200616066216555531534316702994687574391619950836910293242281617785667350933415824446950885802371 (pp118) Version: Msieve-1.40 Total time: 26.64 hours. Scaled time: 50.45 units (timescale=1.894). Factorization parameters were as follows: n: 2019425549573421181655273464980015963393442693503176953653521530552418824886341102162738552919377579940284593339007588074265864325722085331654230646868351 m: 10000000000000000000000000000000 deg: 5 c5: 61000 c0: 11 skew: 0.18 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 3200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 571466 x 571692 Total sieving time: 26.07 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.42 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,159.000,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 26.64 hours. --------- CPU info (if available) ----------
(61·10165+11)/9 = 6(7)1649<166> = 59 · 318756319633<12> · C153
C153 = P58 · P96
P58 = 2752738908947720923391736911537353829351043020914446781171<58>
P96 = 130921655593937280434022421470604766061837566769549361700021420587916908256274349687404863625667<96>
N=360393135377284193093901844159276001250820053284430212998748937525336740416091877204027563021808549174725531214464896270870837855123940777121408807916057 ( 153 digits) SNFS difficulty: 166 digits. Divisors found: r1=2752738908947720923391736911537353829351043020914446781171 (pp58) r2=130921655593937280434022421470604766061837566769549361700021420587916908256274349687404863625667 (pp96) Version: Msieve-1.40 Total time: 31.56 hours. Scaled time: 57.73 units (timescale=1.829). Factorization parameters were as follows: n: 360393135377284193093901844159276001250820053284430212998748937525336740416091877204027563021808549174725531214464896270870837855123940777121408807916057 m: 1000000000000000000000000000000000 deg: 5 c5: 61 c0: 11 skew: 0.71 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 3800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 789471 x 789696 Total sieving time: 30.57 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.77 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 31.56 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Dec 21, 2009
(61·10167+11)/9 = 6(7)1669<168> = 6151 · 57763746961<11> · 1494794490361357<16> · 15944572173789759241324007<26> · C113
C113 = P51 · P63
P51 = 113794270147369588653878589256850130478318915747067<51>
P63 = 703349993642721287585740997082676211944799701617899993459389933<63>
Number: n N=80037199184730508977115416119352537885292239945463872142115955448280340669721848637051339150323473728208754076511 ( 113 digits) Divisors found: Mon Dec 21 17:45:03 2009 prp51 factor: 113794270147369588653878589256850130478318915747067 Mon Dec 21 17:45:03 2009 prp63 factor: 703349993642721287585740997082676211944799701617899993459389933 Mon Dec 21 17:45:03 2009 elapsed time 00:45:19 (Msieve 1.43 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.16 hours. Scaled time: 18.57 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_7_166_9 n: 80037199184730508977115416119352537885292239945463872142115955448280340669721848637051339150323473728208754076511 Y0: -8028180428284353607319 Y1: 771316934069 c0: -34736039266361789859349168152 c1: 1204731244369413931166325 c2: 24032766499366145074 c3: -147570282929998 c4: -286500260 c5: 2400 skew: 152736.69 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1750000, 2264753) Primes: RFBsize:250150, AFBsize:250087, largePrimes:8195560 encountered Relations: rels:4505389, finalFF:42038 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1357077 hash collisions in 16229987 relations Msieve: matrix is 491541 x 491767 (136.2 MB) Total sieving time: 10.08 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,56,56,2.6,2.6,100000 total time: 10.16 hours. --------- CPU info (if available) ----------
(38·10190+43)/9 = 4(2)1897<191> = 286019 · C186
C186 = P84 · P102
P84 = 188842861071824615765500506301613040939280352144625291368044466035794298278708578687<84>
P102 = 781709935162927917642790206127488798633371159901073266383347626263833358205329671027987439772257663759<102>
Number: n N=147620340684437824837588489653562253634276821547597265294341362714442824505442723113577147749702719827082194617218514232348977593174657006080792612456592821533612180387394621414039704433 ( 186 digits) SNFS difficulty: 191 digits. Divisors found: Mon Dec 21 19:00:33 2009 prp84 factor: 188842861071824615765500506301613040939280352144625291368044466035794298278708578687 Mon Dec 21 19:00:33 2009 prp102 factor: 781709935162927917642790206127488798633371159901073266383347626263833358205329671027987439772257663759 Mon Dec 21 19:00:33 2009 elapsed time 07:33:48 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: ~ 24.00 hours. Scaled time: 0.00 units (timescale=0.842). Factorization parameters were as follows: name: KA_4_2_189_7 n: 147620340684437824837588489653562253634276821547597265294341362714442824505442723113577147749702719827082194617218514232348977593174657006080792612456592821533612180387394621414039704433 m: 100000000000000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 100000) Primes: RFBsize:720341, AFBsize:719599, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3456972 hash collisions in 28295349 relations Msieve: matrix is 1717412 x 1717637 (458.7 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,56,56,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 21, 2009
(71·10143+1)/9 = 7(8)1429<144> = 33 · 54004287143754025206083<23> · 320887221940942009472382611<27> · C94
C94 = P45 · P49
P45 = 295063233854536538035258174435435024654526569<45>
P49 = 5714211568086633684135476067653822678501841181531<49>
Number: 78889_143 N=1686053744208644329921490279259958118702718188924695072185385038825047520812339510474391597139 ( 94 digits) Divisors found: r1=295063233854536538035258174435435024654526569 (pp45) r2=5714211568086633684135476067653822678501841181531 (pp49) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.18 hours. Scaled time: 4.30 units (timescale=0.468). Factorization parameters were as follows: name: 78889_143 n: 1686053744208644329921490279259958118702718188924695072185385038825047520812339510474391597139 m: 3784972111785690146622 deg: 4 c4: 8215248 c3: -4984644872 c2: -163098087209936902 c1: 25562022657187109 c0: 152167515497780200289077 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.638 # E(F1,F2) = 5.547655e-05 # GGNFS version 0.77.1-20050930-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1261313568. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1320001) Primes: RFBsize:92938, AFBsize:92860, largePrimes:1892544 encountered Relations: rels:1980884, finalFF:243238 Max relations in full relation-set: 28 Initial matrix: 185873 x 243238 with sparse part having weight 18964805. Pruned matrix : 160862 x 161855 with weight 10326242. Polynomial selection time: 0.17 hours. Total sieving time: 8.38 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.42 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 9.18 hours. --------- CPU info (if available) ----------
(71·10147+1)/9 = 7(8)1469<148> = 7 · 2174741 · 31792409060705638610778619<26> · C116
C116 = P50 · P66
P50 = 35517930811933628614278811967488815401384738320451<50>
P66 = 458922300996904483924595822228849043087866682853051242773033813363<66>
Number: 78889_147 N=16299970534861432777150839936346263087416463359327069772929385905070511275097374886630381406471729284710112419986713 ( 116 digits) SNFS difficulty: 148 digits. Divisors found: r1=35517930811933628614278811967488815401384738320451 (pp50) r2=458922300996904483924595822228849043087866682853051242773033813363 (pp66) Version: Msieve v. 1.42 Total time: 0.60 hours. Scaled time: 0.48 units (timescale=0.796). Factorization parameters were as follows: name: 78889_147 n: 16299970534861432777150839936346263087416463359327069772929385905070511275097374886630381406471729284710112419986713 m: 100000000000000000000000000000 deg: 5 c5: 7100 c0: 1 skew: 0.17 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 369540 x 369788 Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.44 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 0.60 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 9 hours 13 min.
(71·10128+1)/9 = 7(8)1279<129> = 3 · C129
C129 = P31 · P37 · P61
P31 = 7704415077626433601853291814961<31>
P37 = 7241043645876529869856793659292249699<37>
P61 = 4713611088784942439934240499030695683756265201980233925675617<61>
Number: 78889_128 N=262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963 ( 129 digits) SNFS difficulty: 129 digits. Divisors found: r1=7704415077626433601853291814961 (pp31) r2=7241043645876529869856793659292249699 (pp37) r3=4713611088784942439934240499030695683756265201980233925675617 (pp61) Version: Msieve-1.40 Total time: 3.31 hours. Scaled time: 6.95 units (timescale=2.099). Factorization parameters were as follows: name: 78889_128 n: 262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963 m: 10000000000000000000000000 deg: 5 c5: 71000 c0: 1 skew: 0.11 type: snfs lss: 1 rlim: 1020000 alim: 1020000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1020000/1020000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [510000, 960001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 152161 x 152394 Total sieving time: 3.10 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1020000,1020000,26,26,47,47,2.3,2.3,50000 total time: 3.31 hours. --------- CPU info (if available) ----------
By juno1369 / Msieve v1.43 / Dec 21, 2009
(23·10135+7)/3 = 7(6)1349<136> = 1805893807<10> · 28528225268830327527152392361<29> · C99
C99 = P37 · P62
P37 = 3458833797702092192028014218740192151<37>
P62 = 43023914661672714363772351729455871813057323558894140821120397<62>
Msieve v. 1.43 Sat Dec 19 22:27:52 2009 random seeds: 75b3f540 5533574a factoring 1488125701412441595485831783466556452645334142990187120517913439002770 74936886619081486558885403947 (99 digits) searching for 15-digit factors searching for 20-digit factors searching for 25-digit factors 200 of 214 curves completed 214 ECM curves searching for 30-digit factors 425 of 430 curves completed 430 ECM curves commencing quadratic sieve (99-digit input) using multiplier of 47 using 64kb Opteron sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 2567269 (94118 primes) using large prime bound of 385090350 (28 bits) using double large prime bound of 2844544577802900 (43-52 bits) using trial factoring cutoff of 52 bits polynomial 'A' values have 13 factors sieving in progress (press Ctrl-C to pause) 94500 relations (22703 full + 71797 combined from 1416345 partial), need 94214 94500 relations (22703 full + 71797 combined from 1416345 partial), need 94214 sieving complete, commencing postprocessing begin with 1439048 relations reduce to 247787 relations in 11 passes attempting to read 247787 relations recovered 247787 relations recovered 237649 polynomials attempting to build 94500 cycles found 94500 cycles in 5 passes distribution of cycle lengths: length 1 : 22703 length 2 : 16212 length 3 : 16087 length 4 : 12823 length 5 : 9707 length 6 : 6522 length 7 : 4339 length 9+: 6107 largest cycle: 19 relations matrix is 94118 x 94500 (25.6 MB) with weight 6327221 (66.95/col) sparse part has weight 6327221 (66.95/col) filtering completed in 3 passes matrix is 90199 x 90263 (24.5 MB) with weight 6059463 (67.13/col) sparse part has weight 6059463 (67.13/col) saving the first 48 matrix rows for later matrix is 90151 x 90263 (14.4 MB) with weight 4716111 (52.25/col) sparse part has weight 3236903 (35.86/col) matrix includes 64 packed rows using block size 21845 for processor cache size 512 kB commencing Lanczos iteration memory use: 15.1 MB linear algebra at 26.7%, ETA 0h 0m90263 dimensions (26.7%, ETA 0h 0m) linear algebra completed 88361 of 90263 dimensions (97.9%, ETA 0h 0m) lanczos halted after 1427 iterations (dim = 90149) recovered 16 nontrivial dependencies prp37 factor: 3458833797702092192028014218740192151 prp62 factor: 43023914661672714363772351729455871813057323558894140821120397 elapsed time 17:36:29
By Jo Yeong Uk / GMP-ECM v6.2.3, YAFU v1.10, Msieve / Dec 21, 2009
(61·10159+11)/9 = 6(7)1589<160> = 167 · 5153 · 127787011978227509711432050637<30> · C125
C125 = P32 · P37 · P57
P32 = 27682035015166481474010757311683<32>
P37 = 5486643505504392984455778494096868727<37>
P57 = 405806725364661937722524130979655905519377159864333334037<57>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 61634516966514961863963271009532422308818742105568058503065608758517820356226982703368854909438046148816322722175542245883017 (125 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3551862618 Step 1 took 4258ms Step 2 took 734ms ********** Factor found in step 2: 27682035015166481474010757311683 Found probable prime factor of 32 digits: 27682035015166481474010757311683 Composite cofactor 2226516834212027242444909816545471671278027082282232388885126145417248627018316263049829960899 has 94 digits 12/20/09 23:12:45 v1.10 @ 조영욱-PC, starting SIQS on c94: 2226516834212027242444909816545471671278027082282232388885126145417248627018316263049829960899 12/20/09 23:12:45 v1.10 @ 조영욱-PC, random seeds: 3976414213, 2696250688 12/20/09 23:12:45 v1.10 @ 조영욱-PC, ==== sieve params ==== 12/20/09 23:12:45 v1.10 @ 조영욱-PC, n = 94 digits, 311 bits 12/20/09 23:12:45 v1.10 @ 조영욱-PC, factor base: 79491 primes (max prime = 2148583) 12/20/09 23:12:45 v1.10 @ 조영욱-PC, single large prime cutoff: 279315790 (130 * pmax) 12/20/09 23:12:45 v1.10 @ 조영욱-PC, double large prime range from 44 to 51 bits 12/20/09 23:12:45 v1.10 @ 조영욱-PC, double large prime cutoff: 1595775810273505 12/20/09 23:12:45 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 12/20/09 23:12:45 v1.10 @ 조영욱-PC, buckets hold 1024 elements 12/20/09 23:12:45 v1.10 @ 조영욱-PC, sieve interval: 13 blocks of size 65536 12/20/09 23:12:45 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 12/20/09 23:12:45 v1.10 @ 조영욱-PC, using multiplier of 1 12/20/09 23:12:45 v1.10 @ 조영욱-PC, using small prime variation correction of 20 bits 12/20/09 23:12:45 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 12/20/09 23:12:45 v1.10 @ 조영욱-PC, trial factoring cutoff at 98 bits 12/20/09 23:12:45 v1.10 @ 조영욱-PC, ==== sieving started ==== 12/21/09 00:58:14 v1.10 @ 조영욱-PC, sieve time = 3007.8790, relation time = 1158.4010, poly_time = 2159.9650 12/21/09 00:58:14 v1.10 @ 조영욱-PC, 79567 relations found: 20778 full + 58789 from 1066144 partial, using 770025 polys (376 A polys) 12/21/09 00:58:14 v1.10 @ 조영욱-PC, on average, sieving found 1.41 rels/poly and 171.71 rels/sec 12/21/09 00:58:14 v1.10 @ 조영욱-PC, trial division touched 54208468 sieve locations out of 1312073318400 12/21/09 00:58:14 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 12/21/09 00:58:15 v1.10 @ 조영욱-PC, begin with 1086922 relations 12/21/09 00:58:15 v1.10 @ 조영욱-PC, reduce to 198647 relations in 10 passes 12/21/09 00:58:17 v1.10 @ 조영욱-PC, recovered 198647 relations 12/21/09 00:58:17 v1.10 @ 조영욱-PC, recovered 175214 polynomials 12/21/09 00:58:18 v1.10 @ 조영욱-PC, attempting to build 79567 cycles 12/21/09 00:58:18 v1.10 @ 조영욱-PC, found 79566 cycles in 5 passes 12/21/09 00:58:18 v1.10 @ 조영욱-PC, distribution of cycle lengths: 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 1 : 20778 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 2 : 15063 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 3 : 13884 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 4 : 10553 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 5 : 7602 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 6 : 4939 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 7 : 2983 12/21/09 00:58:18 v1.10 @ 조영욱-PC, length 9+: 3764 12/21/09 00:58:18 v1.10 @ 조영욱-PC, largest cycle: 18 relations 12/21/09 00:58:18 v1.10 @ 조영욱-PC, matrix is 79491 x 79566 (21.7 MB) with weight 5045160 (63.41/col) 12/21/09 00:58:18 v1.10 @ 조영욱-PC, sparse part has weight 5045160 (63.41/col) 12/21/09 00:58:18 v1.10 @ 조영욱-PC, filtering completed in 3 passes 12/21/09 00:58:18 v1.10 @ 조영욱-PC, matrix is 75051 x 75113 (20.7 MB) with weight 4812529 (64.07/col) 12/21/09 00:58:18 v1.10 @ 조영욱-PC, sparse part has weight 4812529 (64.07/col) 12/21/09 00:58:19 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 12/21/09 00:58:19 v1.10 @ 조영욱-PC, matrix is 75003 x 75113 (14.7 MB) with weight 3938249 (52.43/col) 12/21/09 00:58:19 v1.10 @ 조영욱-PC, sparse part has weight 3094533 (41.20/col) 12/21/09 00:58:19 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 12/21/09 00:58:19 v1.10 @ 조영욱-PC, using block size 30045 for processor cache size 4096 kB 12/21/09 00:58:19 v1.10 @ 조영욱-PC, commencing Lanczos iteration 12/21/09 00:58:19 v1.10 @ 조영욱-PC, memory use: 12.5 MB 12/21/09 00:58:46 v1.10 @ 조영욱-PC, lanczos halted after 1187 iterations (dim = 75003) 12/21/09 00:58:47 v1.10 @ 조영욱-PC, recovered 18 nontrivial dependencies 12/21/09 00:58:48 v1.10 @ 조영욱-PC, prp57 = 405806725364661937722524130979655905519377159864333334037 12/21/09 00:58:52 v1.10 @ 조영욱-PC, prp37 = 5486643505504392984455778494096868727 12/21/09 00:58:52 v1.10 @ 조영욱-PC, Lanczos elapsed time = 32.2300 seconds. 12/21/09 00:58:52 v1.10 @ 조영욱-PC, Sqrt elapsed time = 5.0380 seconds. 12/21/09 00:58:52 v1.10 @ 조영욱-PC, SIQS elapsed time = 6367.1110 seconds. 12/21/09 00:58:52 v1.10 @ 조영욱-PC, 12/21/09 00:58:52 v1.10 @ 조영욱-PC,
R269 was factored!
By Dmitry Domanov / GGNFS/msieve / Dec 20, 2009
(67·10166-13)/9 = 7(4)1653<167> = 137 · 11527 · 58211147497<11> · C150
C150 = P62 · P89
P62 = 17788336493283764799874776176211295255153824486286341342116449<62>
P89 = 45525417396388831878214850618002065197423668437999160251956317248051096197439673036095869<89>
N=809821443644159015473592889696952371909415095654781991402504051499052333199909815633411495946416476907278319907167916022551376537940892055496525849181 ( 150 digits) SNFS difficulty: 167 digits. Divisors found: r1=17788336493283764799874776176211295255153824486286341342116449 (pp62) r2=45525417396388831878214850618002065197423668437999160251956317248051096197439673036095869 (pp89) Version: Msieve-1.40 Total time: 49.67 hours. Scaled time: 97.21 units (timescale=1.957). Factorization parameters were as follows: n: 809821443644159015473592889696952371909415095654781991402504051499052333199909815633411495946416476907278319907167916022551376537940892055496525849181 m: 1000000000000000000000000000000000 deg: 5 c5: 670 c0: -13 skew: 0.45 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 5000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 780936 x 781162 Total sieving time: 48.68 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.74 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 49.67 hours. --------- CPU info (if available) ----------
(71·10112+1)/9 = 7(8)1119<113> = 5051 · C110
C110 = P41 · P69
P41 = 98236346472193703857978997992081697635961<41>
P69 = 158988703783081621446358550237337124641120027141738051862791804638899<69>
N=15618469389999780021557887327041949888910886733100156184693899997800215578873270419498889108867331001561846939 ( 110 digits) SNFS difficulty: 113 digits. Divisors found: r1=98236346472193703857978997992081697635961 (pp41) r2=158988703783081621446358550237337124641120027141738051862791804638899 (pp69) Version: Msieve-1.40 Total time: 0.63 hours. Scaled time: 1.15 units (timescale=1.839). Factorization parameters were as follows: n: 15618469389999780021557887327041949888910886733100156184693899997800215578873270419498889108867331001561846939 m: 10000000000000000000000 deg: 5 c5: 7100 c0: 1 skew: 0.17 type: snfs lss: 1 rlim: 550000 alim: 550000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [275000, 425001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 58007 x 58232 Total sieving time: 0.60 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113.000,5,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,50000 total time: 0.63 hours. --------- CPU info (if available) ----------
(71·10116+1)/9 = 7(8)1159<117> = 33 · 229 · C114
C114 = P38 · P76
P38 = 69062373742930933617093979060672902017<38>
P76 = 1847460201071538131005754622201707103824735757708006940124048686203421459999<76>
N=127589986881592898089744280913616187754955343504591442485668589501680234334285765629773392995130015993674411917983 ( 114 digits) SNFS difficulty: 117 digits. Divisors found: r1=69062373742930933617093979060672902017 (pp38) r2=1847460201071538131005754622201707103824735757708006940124048686203421459999 (pp76) Version: Msieve-1.40 Total time: 1.01 hours. Scaled time: 1.74 units (timescale=1.716). Factorization parameters were as follows: n: 127589986881592898089744280913616187754955343504591442485668589501680234334285765629773392995130015993674411917983 m: 100000000000000000000000 deg: 5 c5: 710 c0: 1 skew: 0.27 type: snfs lss: 1 rlim: 640000 alim: 640000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 640000/640000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [320000, 570001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68355 x 68580 Total sieving time: 0.99 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117.000,5,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,50000 total time: 1.01 hours. --------- CPU info (if available) ----------
(71·10119+1)/9 = 7(8)1189<120> = 3 · 97 · 151 · 32503 · 55903 · C106
C106 = P33 · P74
P33 = 260989837407163028509237560550469<33>
P74 = 37858529723818689954388142150403461018862646893677049576191518747847970649<74>
N=9880691517093688526006305501973337174111399990396107651046656181201523968850157329106890129857500995184381 ( 106 digits) SNFS difficulty: 120 digits. Divisors found: r1=260989837407163028509237560550469 (pp33) r2=37858529723818689954388142150403461018862646893677049576191518747847970649 (pp74) Version: Msieve-1.40 Total time: 0.87 hours. Scaled time: 1.63 units (timescale=1.877). Factorization parameters were as follows: n: 9880691517093688526006305501973337174111399990396107651046656181201523968850157329106890129857500995184381 m: 100000000000000000000000 deg: 5 c5: 710000 c0: 1 skew: 0.07 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 560001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83243 x 83476 Total sieving time: 0.83 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120.000,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 0.87 hours. --------- CPU info (if available) ----------
(71·10125+1)/9 = 7(8)1249<126> = 32 · 172 · 8017 · C119
C119 = P50 · P69
P50 = 93855586060542351442594594185778692558497789498069<50>
P69 = 403091349005361519278707604706130227063580410609001894218505818152893<69>
N=37832374796832820648705549577241062132093143328063816374483772583456660214541642689067013300738664329499778795170263617 ( 119 digits) SNFS difficulty: 126 digits. Divisors found: r1=93855586060542351442594594185778692558497789498069 (pp50) r2=403091349005361519278707604706130227063580410609001894218505818152893 (pp69) Version: Msieve-1.40 Total time: 1.16 hours. Scaled time: 2.17 units (timescale=1.877). Factorization parameters were as follows: n: 37832374796832820648705549577241062132093143328063816374483772583456660214541642689067013300738664329499778795170263617 m: 10000000000000000000000000 deg: 5 c5: 71 c0: 1 skew: 0.43 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 805001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 105126 x 105351 Total sieving time: 1.06 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 1.16 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 20, 2009
5·10177-1 = 4(9)177<178> = 30973583 · 39989645019285243151<20> · C151
C151 = P46 · P105
P46 = 4068269709359954401976297716690750943446114169<46>
P105 = 992250373611379227883163588164400121551512275167316952271377534693843762018044616947203837967745867950487<105>
Number: 49999_177 N=4036742139064271940352924607719840667525658401516025842099488707237906836850173332467826613777240396308955876191838587875549878107435969243156241150303 ( 151 digits) SNFS difficulty: 179 digits. Divisors found: r1=4068269709359954401976297716690750943446114169 r2=992250373611379227883163588164400121551512275167316952271377534693843762018044616947203837967745867950487 Version: Total time: 58.68 hours. Scaled time: 140.12 units (timescale=2.388). Factorization parameters were as follows: n: 4036742139064271940352924607719840667525658401516025842099488707237906836850173332467826613777240396308955876191838587875549878107435969243156241150303 m: 500000000000000000000000000000000000 deg: 5 c5: 4 c0: -25 skew: 1.44 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4200000, 7900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18197177 Max relations in full relation-set: Initial matrix: Pruned matrix : 1358940 x 1359188 Total sieving time: 50.53 hours. Total relation processing time: 3.44 hours. Matrix solve time: 4.54 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,53,53,2.5,2.5,100000 total time: 58.68 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
By Sinkiti Sibata / Msieve / Dec 20, 2009
(71·10131+1)/9 = 7(8)1309<132> = 3 · 79 · 2284487 · 45931576133<11> · 39603835123065114431682400489<29> · C84
C84 = P31 · P54
P31 = 1532456056702866758290212627089<31>
P54 = 522687579393372373737375787659559334612594552826524567<54>
un Dec 20 17:15:07 2009 Msieve v. 1.42 Sun Dec 20 17:15:07 2009 random seeds: 7d08a9d0 f29a90b1 Sun Dec 20 17:15:07 2009 factoring 800995746804734024923714661924756289455931590264912350707560684056840671070668195463 (84 digits) Sun Dec 20 17:15:07 2009 searching for 15-digit factors Sun Dec 20 17:15:08 2009 commencing quadratic sieve (84-digit input) Sun Dec 20 17:15:08 2009 using multiplier of 3 Sun Dec 20 17:15:08 2009 using 32kb Intel Core sieve core Sun Dec 20 17:15:08 2009 sieve interval: 12 blocks of size 32768 Sun Dec 20 17:15:08 2009 processing polynomials in batches of 17 Sun Dec 20 17:15:08 2009 using a sieve bound of 1409171 (53780 primes) Sun Dec 20 17:15:08 2009 using large prime bound of 119779535 (26 bits) Sun Dec 20 17:15:08 2009 using trial factoring cutoff of 27 bits Sun Dec 20 17:15:08 2009 polynomial 'A' values have 11 factors Sun Dec 20 17:49:19 2009 53880 relations (27179 full + 26701 combined from 282088 partial), need 53876 Sun Dec 20 17:49:19 2009 begin with 309267 relations Sun Dec 20 17:49:19 2009 reduce to 77244 relations in 2 passes Sun Dec 20 17:49:19 2009 attempting to read 77244 relations Sun Dec 20 17:49:20 2009 recovered 77244 relations Sun Dec 20 17:49:20 2009 recovered 72260 polynomials Sun Dec 20 17:49:21 2009 attempting to build 53880 cycles Sun Dec 20 17:49:21 2009 found 53880 cycles in 1 passes Sun Dec 20 17:49:21 2009 distribution of cycle lengths: Sun Dec 20 17:49:21 2009 length 1 : 27179 Sun Dec 20 17:49:21 2009 length 2 : 26701 Sun Dec 20 17:49:21 2009 largest cycle: 2 relations Sun Dec 20 17:49:21 2009 matrix is 53780 x 53880 (7.4 MB) with weight 1725223 (32.02/col) Sun Dec 20 17:49:21 2009 sparse part has weight 1725223 (32.02/col) Sun Dec 20 17:49:21 2009 filtering completed in 3 passes Sun Dec 20 17:49:21 2009 matrix is 39816 x 39880 (6.0 MB) with weight 1405910 (35.25/col) Sun Dec 20 17:49:21 2009 sparse part has weight 1405910 (35.25/col) Sun Dec 20 17:49:21 2009 saving the first 48 matrix rows for later Sun Dec 20 17:49:21 2009 matrix is 39768 x 39880 (3.4 MB) with weight 1012656 (25.39/col) Sun Dec 20 17:49:21 2009 sparse part has weight 661658 (16.59/col) Sun Dec 20 17:49:21 2009 matrix includes 64 packed rows Sun Dec 20 17:49:21 2009 using block size 15952 for processor cache size 1024 kB Sun Dec 20 17:49:21 2009 commencing Lanczos iteration Sun Dec 20 17:49:21 2009 memory use: 4.5 MB Sun Dec 20 17:49:28 2009 lanczos halted after 631 iterations (dim = 39768) Sun Dec 20 17:49:28 2009 recovered 18 nontrivial dependencies Sun Dec 20 17:49:28 2009 prp31 factor: 1532456056702866758290212627089 Sun Dec 20 17:49:28 2009 prp54 factor: 522687579393372373737375787659559334612594552826524567 Sun Dec 20 17:49:28 2009 elapsed time 00:34:21
(71·10140+1)/9 = 7(8)1399<141> = 3 · 61487 · 493397 · 4051652638609<13> · 2427466305004739511993872503<28> · C90
C90 = P31 · P60
P31 = 6037781829603402624141784211479<31>
P60 = 145966079967011519653813948740251707221351710207307695892649<60>
Sun Dec 20 18:01:33 2009 Msieve v. 1.42 Sun Dec 20 18:01:33 2009 random seeds: 299a7a18 3d24d2a3 Sun Dec 20 18:01:33 2009 factoring 881311345363259388487258500198771493671200333042707513734834036896310666196643565497517871 (90 digits) Sun Dec 20 18:01:34 2009 searching for 15-digit factors Sun Dec 20 18:01:34 2009 commencing quadratic sieve (90-digit input) Sun Dec 20 18:01:35 2009 using multiplier of 1 Sun Dec 20 18:01:35 2009 using 32kb Intel Core sieve core Sun Dec 20 18:01:35 2009 sieve interval: 36 blocks of size 32768 Sun Dec 20 18:01:35 2009 processing polynomials in batches of 6 Sun Dec 20 18:01:35 2009 using a sieve bound of 1616473 (61176 primes) Sun Dec 20 18:01:35 2009 using large prime bound of 135783732 (27 bits) Sun Dec 20 18:01:35 2009 using double large prime bound of 435638070401436 (42-49 bits) Sun Dec 20 18:01:35 2009 using trial factoring cutoff of 49 bits Sun Dec 20 18:01:35 2009 polynomial 'A' values have 11 factors Sun Dec 20 19:27:09 2009 61479 relations (15765 full + 45714 combined from 674996 partial), need 61272 Sun Dec 20 19:27:10 2009 begin with 690761 relations Sun Dec 20 19:27:11 2009 reduce to 152744 relations in 10 passes Sun Dec 20 19:27:11 2009 attempting to read 152744 relations Sun Dec 20 19:27:13 2009 recovered 152744 relations Sun Dec 20 19:27:13 2009 recovered 133119 polynomials Sun Dec 20 19:27:13 2009 attempting to build 61479 cycles Sun Dec 20 19:27:13 2009 found 61479 cycles in 6 passes Sun Dec 20 19:27:13 2009 distribution of cycle lengths: Sun Dec 20 19:27:13 2009 length 1 : 15765 Sun Dec 20 19:27:13 2009 length 2 : 11546 Sun Dec 20 19:27:13 2009 length 3 : 10666 Sun Dec 20 19:27:13 2009 length 4 : 8235 Sun Dec 20 19:27:13 2009 length 5 : 5948 Sun Dec 20 19:27:13 2009 length 6 : 3896 Sun Dec 20 19:27:13 2009 length 7 : 2419 Sun Dec 20 19:27:13 2009 length 9+: 3004 Sun Dec 20 19:27:13 2009 largest cycle: 18 relations Sun Dec 20 19:27:13 2009 matrix is 61176 x 61479 (15.6 MB) with weight 3834534 (62.37/col) Sun Dec 20 19:27:13 2009 sparse part has weight 3834534 (62.37/col) Sun Dec 20 19:27:14 2009 filtering completed in 3 passes Sun Dec 20 19:27:14 2009 matrix is 57752 x 57813 (14.7 MB) with weight 3626853 (62.73/col) Sun Dec 20 19:27:14 2009 sparse part has weight 3626853 (62.73/col) Sun Dec 20 19:27:14 2009 saving the first 48 matrix rows for later Sun Dec 20 19:27:14 2009 matrix is 57704 x 57813 (11.1 MB) with weight 3058489 (52.90/col) Sun Dec 20 19:27:14 2009 sparse part has weight 2559872 (44.28/col) Sun Dec 20 19:27:14 2009 matrix includes 64 packed rows Sun Dec 20 19:27:14 2009 using block size 23125 for processor cache size 1024 kB Sun Dec 20 19:27:15 2009 commencing Lanczos iteration Sun Dec 20 19:27:15 2009 memory use: 10.3 MB Sun Dec 20 19:27:38 2009 lanczos halted after 914 iterations (dim = 57704) Sun Dec 20 19:27:38 2009 recovered 18 nontrivial dependencies Sun Dec 20 19:27:39 2009 prp31 factor: 6037781829603402624141784211479 Sun Dec 20 19:27:39 2009 prp60 factor: 145966079967011519653813948740251707221351710207307695892649 Sun Dec 20 19:27:39 2009 elapsed time 01:26:06
(71·10114+1)/9 = 7(8)1139<115> = 293 · 95071 · 8107423 · C101
C101 = P32 · P69
P32 = 42398963895894229799188757473783<32>
P69 = 823876433612668009486141208252372609064801449929114534675087671870307<69>
Number: 78889_114 N=34931507163421610206610224383858619167543865784783833609556884978012331018677064688324578980128661381 ( 101 digits) SNFS difficulty: 115 digits. Divisors found: r1=42398963895894229799188757473783 (pp32) r2=823876433612668009486141208252372609064801449929114534675087671870307 (pp69) Version: Msieve-1.40 Total time: 0.69 hours. Scaled time: 2.33 units (timescale=3.357). Factorization parameters were as follows: name: 78889_114 n: 34931507163421610206610224383858619167543865784783833609556884978012331018677064688324578980128661381 m: 10000000000000000000000 deg: 5 c5: 710000 c0: 1 skew: 0.07 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64107 x 64355 Total sieving time: 0.67 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.69 hours. --------- CPU info (if available) ----------
(71·10118+1)/9 = 7(8)1179<119> = 79 · 181068263 · 9695661421<10> · C99
C99 = P37 · P63
P37 = 4629826203506991550366336552853175767<37>
P63 = 122858238080954372067688156624451271378033096834390976714196851<63>
Number: 78889_118 N=568812289983903075646333463174718043205943712690409987847046675098502761266067007380611790140909717 ( 99 digits) SNFS difficulty: 119 digits. Divisors found: r1=4629826203506991550366336552853175767 (pp37) r2=122858238080954372067688156624451271378033096834390976714196851 (pp63) Version: Msieve-1.40 Total time: 1.34 hours. Scaled time: 4.50 units (timescale=3.357). Factorization parameters were as follows: name: 78889_118 n: 568812289983903075646333463174718043205943712690409987847046675098502761266067007380611790140909717 m: 100000000000000000000000 deg: 5 c5: 71000 c0: 1 skew: 0.11 type: snfs lss: 1 rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [350000, 650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80643 x 80889 Total sieving time: 1.31 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,700000,700000,25,25,45,45,2.2,2.2,50000 total time: 1.34 hours. --------- CPU info (if available) ----------
(71·10121+1)/9 = 7(8)1209<122> = 59 · 661 · 5507 · 249726804891671<15> · C100
C100 = P30 · P70
P30 = 837424794414531343286736123919<30>
P70 = 1756452120257436723413400175349062946231050201120212949001708369397677<70>
Number: 78889_121 N=1470896555705551631901652642187255901230418889313472168255707759560509498224919426240522739662736163 ( 100 digits) SNFS difficulty: 122 digits. Divisors found: r1=837424794414531343286736123919 (pp30) r2=1756452120257436723413400175349062946231050201120212949001708369397677 (pp70) Version: Msieve v. 1.42 Total time: 0.05 hours. Scaled time: 0.04 units (timescale=0.796). Factorization parameters were as follows: name: 78889_121 n: 1470896555705551631901652642187255901230418889313472168255707759560509498224919426240522739662736163 m: 1000000000000000000000000 deg: 5 c5: 710 c0: 1 skew: 0.27 type: snfs lss: 1 rlim: 780000 alim: 780000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 780000/780000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [390000, 690001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 97717 x 97954 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122.000,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000 total time: 0.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 1 hour 19 min
(71·10126+1)/9 = 7(8)1259<127> = C127
C127 = P52 · P76
P52 = 7587196654306648843559104301528059865200491996390383<52>
P76 = 1039763333985945036629986381863723907672179016478373540234641288978651293783<76>
Number: 78889_126 N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 127 digits) SNFS difficulty: 127 digits. Divisors found: r1=7587196654306648843559104301528059865200491996390383 (pp52) r2=1039763333985945036629986381863723907672179016478373540234641288978651293783 (pp76) Version: Msieve v. 1.42 Total time: 0.12 hours. Scaled time: 0.09 units (timescale=0.796). Factorization parameters were as follows: name: 78889_126 n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 10000000000000000000000000 deg: 5 c5: 710 c0: 1 skew: 0.27 type: snfs lss: 1 rlim: 950000 alim: 950000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 950000/950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [475000, 825001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 142132 x 142357 Total sieving time: 0.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,127.000,5,0,0,0,0,0,0,0,0,950000,950000,26,26,46,46,2.3,2.3,50000 total time: 0.12 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 1 hour 54 min.
(71·10108+1)/9 = 7(8)1079<109> = 191 · 254002043 · C99
C99 = P47 · P52
P47 = 91795782432987139797997126963526524873114196143<47>
P52 = 1771424040471773033547607068923205730064620491353771<52>
Number: 78889_108 N=162609255815709883194299336104259587695147701740090484869532846062341352279399593674717448496705253 ( 99 digits) SNFS difficulty: 109 digits. Divisors found: r1=91795782432987139797997126963526524873114196143 (pp47) r2=1771424040471773033547607068923205730064620491353771 (pp52) Version: Msieve-1.40 Total time: 0.64 hours. Scaled time: 2.14 units (timescale=3.357). Factorization parameters were as follows: name: 78889_108 n: 162609255815709883194299336104259587695147701740090484869532846062341352279399593674717448496705253 m: 1000000000000000000000 deg: 5 c5: 71000 c0: 1 skew: 0.11 type: snfs lss: 1 rlim: 470000 alim: 470000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 470000/470000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [235000, 385001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 49881 x 50111 Total sieving time: 0.62 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000 total time: 0.64 hours. --------- CPU info (if available) ----------
(61·10163+11)/9 = 6(7)1629<164> = 3 · 68531 · 1194517 · 53428043521649<14> · 229355260976131<15> · 10688166830659133<17> · 1484592475394454432301<22> · C88
C88 = P43 · P45
P43 = 1871588248380026241365627576216769897016787<43>
P45 = 758381797619450576082406619267293711227799391<45>
Sun Dec 20 19:38:10 2009 Msieve v. 1.42 Sun Dec 20 19:38:10 2009 random seeds: 3250e898 fa2901fd Sun Dec 20 19:38:10 2009 factoring 1419378460209883058482089957602475403206110804677664224171468339314844093054113795376717 (88 digits) Sun Dec 20 19:38:11 2009 searching for 15-digit factors Sun Dec 20 19:38:12 2009 commencing quadratic sieve (88-digit input) Sun Dec 20 19:38:12 2009 using multiplier of 7 Sun Dec 20 19:38:12 2009 using 32kb Intel Core sieve core Sun Dec 20 19:38:12 2009 sieve interval: 24 blocks of size 32768 Sun Dec 20 19:38:12 2009 processing polynomials in batches of 9 Sun Dec 20 19:38:12 2009 using a sieve bound of 1508383 (57277 primes) Sun Dec 20 19:38:12 2009 using large prime bound of 120670640 (26 bits) Sun Dec 20 19:38:12 2009 using double large prime bound of 352275850752880 (42-49 bits) Sun Dec 20 19:38:12 2009 using trial factoring cutoff of 49 bits Sun Dec 20 19:38:12 2009 polynomial 'A' values have 11 factors Sun Dec 20 20:31:41 2009 57399 relations (15538 full + 41861 combined from 608371 partial), need 57373 Sun Dec 20 20:31:41 2009 begin with 623909 relations Sun Dec 20 20:31:42 2009 reduce to 138787 relations in 10 passes Sun Dec 20 20:31:42 2009 attempting to read 138787 relations Sun Dec 20 20:31:44 2009 recovered 138787 relations Sun Dec 20 20:31:44 2009 recovered 119426 polynomials Sun Dec 20 20:31:44 2009 attempting to build 57399 cycles Sun Dec 20 20:31:44 2009 found 57399 cycles in 5 passes Sun Dec 20 20:31:44 2009 distribution of cycle lengths: Sun Dec 20 20:31:44 2009 length 1 : 15538 Sun Dec 20 20:31:44 2009 length 2 : 11111 Sun Dec 20 20:31:44 2009 length 3 : 10290 Sun Dec 20 20:31:44 2009 length 4 : 7582 Sun Dec 20 20:31:44 2009 length 5 : 5361 Sun Dec 20 20:31:44 2009 length 6 : 3370 Sun Dec 20 20:31:44 2009 length 7 : 1860 Sun Dec 20 20:31:44 2009 length 9+: 2287 Sun Dec 20 20:31:44 2009 largest cycle: 22 relations Sun Dec 20 20:31:44 2009 matrix is 57277 x 57399 (13.8 MB) with weight 3395606 (59.16/col) Sun Dec 20 20:31:44 2009 sparse part has weight 3395606 (59.16/col) Sun Dec 20 20:31:45 2009 filtering completed in 3 passes Sun Dec 20 20:31:45 2009 matrix is 53367 x 53430 (13.0 MB) with weight 3193737 (59.77/col) Sun Dec 20 20:31:45 2009 sparse part has weight 3193737 (59.77/col) Sun Dec 20 20:31:45 2009 saving the first 48 matrix rows for later Sun Dec 20 20:31:45 2009 matrix is 53319 x 53430 (9.0 MB) with weight 2572383 (48.14/col) Sun Dec 20 20:31:45 2009 sparse part has weight 2027747 (37.95/col) Sun Dec 20 20:31:45 2009 matrix includes 64 packed rows Sun Dec 20 20:31:45 2009 using block size 21372 for processor cache size 1024 kB Sun Dec 20 20:31:46 2009 commencing Lanczos iteration Sun Dec 20 20:31:46 2009 memory use: 8.8 MB Sun Dec 20 20:32:03 2009 lanczos halted after 845 iterations (dim = 53317) Sun Dec 20 20:32:03 2009 recovered 18 nontrivial dependencies Sun Dec 20 20:32:04 2009 prp43 factor: 1871588248380026241365627576216769897016787 Sun Dec 20 20:32:04 2009 prp45 factor: 758381797619450576082406619267293711227799391 Sun Dec 20 20:32:04 2009 elapsed time 00:53:54
(71·10109+1)/9 = 7(8)1089<110> = 17 · 1171 · C106
C106 = P48 · P58
P48 = 640071740902143598334229762236177766260184004567<48>
P58 = 6191293170857901796165747872454979438270371959359205290981<58>
Number: 78889_109 N=3962871798306569994920826286677494795242321238202084135675334751036765403571049826135976736268091067910227 ( 106 digits) SNFS difficulty: 110 digits. Divisors found: r1=640071740902143598334229762236177766260184004567 (pp48) r2=6191293170857901796165747872454979438270371959359205290981 (pp58) Version: Msieve-1.40 Total time: 0.46 hours. Scaled time: 1.52 units (timescale=3.287). Factorization parameters were as follows: name: 78889_109 n: 3962871798306569994920826286677494795242321238202084135675334751036765403571049826135976736268091067910227 m: 1000000000000000000000 deg: 5 c5: 710000 c0: 1 skew: 0.07 type: snfs lss: 1 rlim: 490000 alim: 490000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 490000/490000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [245000, 345001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 50567 x 50809 Total sieving time: 0.45 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110.000,5,0,0,0,0,0,0,0,0,490000,490000,25,25,44,44,2.2,2.2,50000 total time: 0.46 hours. --------- CPU info (if available) ----------
By Erik Branger / GMP-ECM / Dec 20, 2009
(7·10178-61)/9 = (7)1771<178> = 631 · 1024697 · 6580916367326053<16> · C154
C154 = P30 · P124
P30 = 186853769745984246704156867807<30>
P124 = 9782333637560272544478678024910065237123917040258780920153923456086893930036713667499114063668907467528111774118161057376943<124>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1827865917091083679227195736806847949179150862459087072361259147703090009125078037186612403122755531495802543275504447567473492126110741317289394220774001 (154 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=790654530 Step 1 took 48033ms Step 2 took 16552ms ********** Factor found in step 2: 186853769745984246704156867807 Found probable prime factor of 30 digits: 186853769745984246704156867807 Probable prime cofactor 9782333637560272544478678024910065237123917040258780920153923456086893930036713667499114063668907467528111774118161057376943 has 124 digits
By juno1369 / GMP-ECM 5.1 beta / Dec 20, 2009
(23·10147+7)/3 = 7(6)1469<148> = 277 · 268507 · 404735883876508589<18> · 11428779322469336699<20> · C104
C104 = P37 · P68
P37 = 1576927594338858417099868817129842397<37>
P68 = 14131487848710943543825233712682918947740417532191773099546602894313<68>
Using B1=3000000, B2=4016636514, polynomial Dickson(12), sigma=3492825937 Step 1 took 33200ms Step 2 took 30915ms ********** Factor found in step 2: 1576927594338858417099868817129842397 Found probable prime factor of 37 digits: 1576927594338858417099868817129842397 Probable prime cofactor 14131487848710943543825233712682918947740417532191773099 546602894313 has 68 digits
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) / Dec 20, 2009
(34·10205-61)/9 = 3(7)2041<206> = 29 · 10631 · C201
C201 = P76 · P125
P76 = 6653243940397392494635175065150674777204673885975283838243914877021705541471<76>
P125 = 18417507036875378011545196305661182023918816674371806336236801413263317602935876713906011448012567514226718926734700609166399<125>
Fri Dec 18 20:08:07 2009 Msieve v. 1.43 Fri Dec 18 20:08:07 2009 random seeds: 000c36bf be452018 Fri Dec 18 20:08:07 2009 factoring 122536167090317444356867125024011682742330587441989035896249348125611104083301527989963567114320117086911659712739184291151699414457321554003671039405829333788879554516160538236509939304953236234232929 (201 digits) Fri Dec 18 20:08:09 2009 no P-1/P+1/ECM available, skipping Fri Dec 18 20:08:09 2009 commencing number field sieve (201-digit input) Fri Dec 18 20:08:09 2009 R0: -100000000000000000000000000000000000000000 Fri Dec 18 20:08:09 2009 R1: 1 Fri Dec 18 20:08:09 2009 A0: -61 Fri Dec 18 20:08:09 2009 A1: 0 Fri Dec 18 20:08:09 2009 A2: 0 Fri Dec 18 20:08:09 2009 A3: 0 Fri Dec 18 20:08:09 2009 A4: 0 Fri Dec 18 20:08:09 2009 A5: 34 Fri Dec 18 20:08:09 2009 skew 1.12, size 2.293652e-14, alpha 0.988805, combined = 8.014853e-12 Fri Dec 18 20:08:09 2009 Fri Dec 18 20:08:09 2009 commencing linear algebra Fri Dec 18 20:08:10 2009 read 2849179 cycles Fri Dec 18 20:08:17 2009 cycles contain 8158912 unique relations Fri Dec 18 20:09:38 2009 read 8158912 relations Fri Dec 18 20:09:55 2009 using 20 quadratic characters above 536869560 Fri Dec 18 20:10:52 2009 building initial matrix Fri Dec 18 20:13:37 2009 memory use: 1077.2 MB Fri Dec 18 20:13:40 2009 read 2849179 cycles Fri Dec 18 20:13:43 2009 matrix is 2848753 x 2849179 (844.7 MB) with weight 251220916 (88.17/col) Fri Dec 18 20:13:43 2009 sparse part has weight 190104494 (66.72/col) Fri Dec 18 20:15:06 2009 filtering completed in 3 passes Fri Dec 18 20:15:07 2009 matrix is 2841034 x 2841234 (843.4 MB) with weight 250791225 (88.27/col) Fri Dec 18 20:15:07 2009 sparse part has weight 189847200 (66.82/col) Fri Dec 18 20:15:32 2009 read 2841234 cycles Fri Dec 18 20:15:35 2009 matrix is 2841034 x 2841234 (843.4 MB) with weight 250791225 (88.27/col) Fri Dec 18 20:15:35 2009 sparse part has weight 189847200 (66.82/col) Fri Dec 18 20:15:36 2009 saving the first 48 matrix rows for later Fri Dec 18 20:15:38 2009 matrix is 2840986 x 2841234 (803.6 MB) with weight 198459543 (69.85/col) Fri Dec 18 20:15:38 2009 sparse part has weight 182257595 (64.15/col) Fri Dec 18 20:15:38 2009 matrix includes 64 packed rows Fri Dec 18 20:15:38 2009 using block size 65536 for processor cache size 6144 kB Fri Dec 18 20:15:55 2009 commencing Lanczos iteration (5 threads) Fri Dec 18 20:15:55 2009 memory use: 886.4 MB Fri Dec 18 20:16:10 2009 linear algebra at 0.0%, ETA 14h39m Sat Dec 19 10:10:47 2009 lanczos halted after 44931 iterations (dim = 2840986) Sat Dec 19 10:10:54 2009 recovered 37 nontrivial dependencies Sat Dec 19 10:10:54 2009 BLanczosTime: 50565 Sat Dec 19 10:10:54 2009 elapsed time 14:02:47 Sat Dec 19 12:35:30 2009 Sat Dec 19 12:35:30 2009 Sat Dec 19 12:35:30 2009 Msieve v. 1.43 Sat Dec 19 12:35:30 2009 random seeds: 28422809 e2d017fb Sat Dec 19 12:35:30 2009 factoring 122536167090317444356867125024011682742330587441989035896249348125611104083301527989963567114320117086911659712739184291151699414457321554003671039405829333788879554516160538236509939304953236234232929 (201 digits) Sat Dec 19 12:35:33 2009 no P-1/P+1/ECM available, skipping Sat Dec 19 12:35:33 2009 commencing number field sieve (201-digit input) Sat Dec 19 12:35:33 2009 R0: -100000000000000000000000000000000000000000 Sat Dec 19 12:35:33 2009 R1: 1 Sat Dec 19 12:35:33 2009 A0: -61 Sat Dec 19 12:35:33 2009 A1: 0 Sat Dec 19 12:35:33 2009 A2: 0 Sat Dec 19 12:35:33 2009 A3: 0 Sat Dec 19 12:35:33 2009 A4: 0 Sat Dec 19 12:35:33 2009 A5: 34 Sat Dec 19 12:35:33 2009 skew 1.12, size 2.293652e-14, alpha 0.988805, combined = 8.014853e-12 Sat Dec 19 12:35:33 2009 Sat Dec 19 12:35:33 2009 commencing square root phase Sat Dec 19 12:35:33 2009 reading relations for dependency 1 Sat Dec 19 12:35:33 2009 read 1420842 cycles Sat Dec 19 12:35:37 2009 cycles contain 4076728 unique relations Sat Dec 19 12:36:24 2009 read 4076728 relations Sat Dec 19 12:36:55 2009 multiplying 4076728 relations Sat Dec 19 12:40:50 2009 multiply complete, coefficients have about 118.51 million bits Sat Dec 19 12:40:51 2009 initial square root is modulo 320981651 Sat Dec 19 12:48:53 2009 sqrtTime: 800 Sat Dec 19 12:48:54 2009 prp76 factor: 6653243940397392494635175065150674777204673885975283838243914877021705541471 Sat Dec 19 12:48:54 2009 prp125 factor: 18417507036875378011545196305661182023918816674371806336236801413263317602935876713906011448012567514226718926734700609166399 Sat Dec 19 12:48:54 2009 elapsed time 00:13:24
Factorizations of 788...889 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
Factorizations of 677...779 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve / Dec 19, 2009
(22·10190-1)/3 = 7(3)190<191> = 13 · 292 · C187
C187 = P79 · P109
P79 = 1589086954460310120342930905879429521528809366833603609513909755118328264030697<79>
P109 = 4220990897919505612367717770836984034814470888118032848168472213249861735519420554262095622041612365536173433<109>
Number: n N=6707521570779596938931064971493033324186713009542973871154608372206469709442361047592914418122503734869965547730113722979359126802646422147016677337723711088752705875179121314674227872801 ( 187 digits) SNFS difficulty: 191 digits. Divisors found: Sun Dec 20 01:10:59 2009 prp79 factor: 1589086954460310120342930905879429521528809366833603609513909755118328264030697 Sun Dec 20 01:10:59 2009 prp109 factor: 4220990897919505612367717770836984034814470888118032848168472213249861735519420554262095622041612365536173433 Sun Dec 20 01:10:59 2009 elapsed time 05:31:12 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: ~ 24.00 hours. Scaled time: 0.00 units (timescale=0.841). Factorization parameters were as follows: name: KA_7_3_190 n: 6707521570779596938931064971493033324186713009542973871154608372206469709442361047592914418122503734869965547730113722979359126802646422147016677337723711088752705875179121314674227872801 m: 100000000000000000000000000000000000000 deg: 5 c5: 22 c0: -1 skew: 0.54 type: snfs lss: 1 rlim: 10800000 alim: 10800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10800000/10800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 100000) Primes: RFBsize:714154, AFBsize:715059, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2607696 hash collisions in 25900935 relations Msieve: matrix is 1487381 x 1487606 (399.5 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10800000,10800000,28,28,56,56,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GMP-ECM 6.2.3 / Dec 19, 2009
4·10184+9 = 4(0)1839<185> = 86629 · 17315047017625261<17> · C164
C164 = P45 · P119
P45 = 288744426922067304879725083649398238432589757<45>
P119 = 92354785582575909641556220757639434258139568193136633677444230328449938740199812268290197677719701254300588804590341373<119>
GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM] Input number is 26666929636551284865749676559985064929619556026911197840995261892026232694863092865560797017860538142122468810446558611395066656624799409134739874379357033093116361 (164 digits) Run 35 out of 100: Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1323134362 Step 1 took 318837ms ********** Factor found in step 1: 288744426922067304879725083649398238432589757 Found probable prime factor of 45 digits: 288744426922067304879725083649398238432589757 Probable prime cofactor 92354785582575909641556220757639434258139568193136633677444230328449938740199812268290197677719701254300588804590341373 has 119 digits
By Erik Branger / GMP-ECM / Dec 19, 2009
4·10232+9 = 4(0)2319<233> = 6781 · 86869 · C224
C224 = P42 · C183
P42 = 101923364225918527839065891102757815508373<42>
C183 = [666235353567257533671029519064380742774418132917318448895197569176610167844598276515950058676003746683731464996043877358855070285429649231163084825310162994068656389331159825129096997<183>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 67904948601819198358348975988027569864095494226722118685189278313149540860095860499224382037763303411691122682004950443910691554199279454139415979313395714972638320593552945621688300060030181474837730472727141115135982655881 (224 digits) Run 236 out of 500: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1485941456 Step 1 took 127406ms Step 2 took 29578ms ********** Factor found in step 2: 101923364225918527839065891102757815508373 Found probable prime factor of 42 digits: 101923364225918527839065891102757815508373 Composite cofactor 666235353567257533671029519064380742774418132917318448895197569176610167844598276515950058676003746683731464996043877358855070285429649231163084825310162994068656389331159825129096997 has 183 digits
By Sinkiti Sibata / Msieve / Dec 19, 2009
(23·10141+7)/3 = 7(6)1409<142> = 9138981342729282882631<22> · C120
C120 = P49 · P72
P49 = 2083853324801408599389966838086141184874984236681<49>
P72 = 402570218528526070940163750097373007378101682310498374715713110986762579<72>
Number: 76669_141 N=838897288346698676736378991019063509193383444639059360334579951375235148072501160068008255407397685675289825881689960299 ( 120 digits) SNFS difficulty: 142 digits. Divisors found: r1=2083853324801408599389966838086141184874984236681 (pp49) r2=402570218528526070940163750097373007378101682310498374715713110986762579 (pp72) Version: Msieve v. 1.42 Total time: 0.30 hours. Scaled time: 0.21 units (timescale=0.682). Factorization parameters were as follows: name: 76669_141 n: 838897288346698676736378991019063509193383444639059360334579951375235148072501160068008255407397685675289825881689960299 m: 10000000000000000000000000000 deg: 5 c5: 230 c0: 7 skew: 0.50 type: snfs lss: 1 rlim: 1650000 alim: 1650000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1650000/1650000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [825000, 1625001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 264587 x 264812 Total sieving time: 0.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.23 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1650000,1650000,26,26,48,48,2.3,2.3,100000 total time: 0.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 4 hours 44 min.
(71·10141-53)/9 = 7(8)1403<142> = 233754297133941847<18> · C125
C125 = P49 · P77
P49 = 1028967226993553793418908374844708409590884949523<49>
P77 = 32798553711507640264348032595324966676169736366141269700962862828462355796743<77>
Number: 78883_141 N=33748636861929148339334334363836166800737368700426691036330973643596267989705810764371598304678331614234259024551154002803589 ( 125 digits) SNFS difficulty: 142 digits. Divisors found: r1=1028967226993553793418908374844708409590884949523 (pp49) r2=32798553711507640264348032595324966676169736366141269700962862828462355796743 (pp77) Version: Msieve-1.40 Total time: 8.15 hours. Scaled time: 27.07 units (timescale=3.322). Factorization parameters were as follows: name: 78883_141 n: 33748636861929148339334334363836166800737368700426691036330973643596267989705810764371598304678331614234259024551154002803589 m: 10000000000000000000000000000 deg: 5 c5: 710 c0: -53 skew: 0.60 type: snfs lss: 1 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1680000/1680000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [840000, 2240001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 293687 x 293935 Total sieving time: 7.94 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000 total time: 8.15 hours. --------- CPU info (if available) ----------
(71·10142-53)/9 = 7(8)1413<143> = 7 · 29 · 9883 · 439015815397321<15> · C122
C122 = P42 · P81
P42 = 386490477254802054771629653876754876141479<42>
P81 = 231745890891283210023353126279632762290504685320045999233520726993901299486391013<81>
Number: 78883_142 N=89567579972411332167997785100721330165586386507326808361935784453289559482928541490572916963000743105308267240364502128227 ( 122 digits) SNFS difficulty: 143 digits. Divisors found: r1=386490477254802054771629653876754876141479 (pp42) r2=231745890891283210023353126279632762290504685320045999233520726993901299486391013 (pp81) Version: Msieve-1.40 Total time: 8.84 hours. Scaled time: 29.36 units (timescale=3.322). Factorization parameters were as follows: name: 78883_142 n: 89567579972411332167997785100721330165586386507326808361935784453289559482928541490572916963000743105308267240364502128227 m: 10000000000000000000000000000 deg: 5 c5: 7100 c0: -53 skew: 0.38 type: snfs lss: 1 rlim: 1750000 alim: 1750000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1750000/1750000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [875000, 2375001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 326827 x 327075 Total sieving time: 8.56 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000 total time: 8.84 hours. --------- CPU info (if available) ----------
(23·10142+7)/3 = 7(6)1419<143> = 67 · 89 · 465529 · 37894385693<11> · C123
C123 = P32 · P92
P32 = 71949625685388118004628906184513<32>
P92 = 10129584265009358087759358380931186887271440274828731755903178974061895680101063464082645483<92>
Number: 76669_142 N=728819796216020631469069013156918914136300178569459943687460673644864973048609517087817464282035309952331459120412764004779 ( 123 digits) SNFS difficulty: 143 digits. Divisors found: r1=71949625685388118004628906184513 (pp32) r2=10129584265009358087759358380931186887271440274828731755903178974061895680101063464082645483 (pp92) Version: Msieve v. 1.42 Total time: 0.36 hours. Scaled time: 0.24 units (timescale=0.682). Factorization parameters were as follows: name: 76669_142 n: 728819796216020631469069013156918914136300178569459943687460673644864973048609517087817464282035309952331459120412764004779 m: 10000000000000000000000000000 deg: 5 c5: 2300 c0: 7 skew: 0.31 type: snfs lss: 1 rlim: 1720000 alim: 1720000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1720000/1720000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [860000, 2160001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 304107 x 304332 Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.27 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1720000,1720000,26,26,48,48,2.3,2.3,100000 total time: 0.36 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 7 hours 28 min.
By Dmitry Domanov / ECMNET, GMP-ECM / Dec 19, 2009
(10221+53)/9 = (1)2207<221> = 373669 · C215
C215 = P41 · P174
P41 = 47430347717597954312536069175541845627383<41>
P174 = 626922868782558004553335157712002344289399823572657343183104607051391681936448830280881347095951536584729574529903284010942437487887893901180186138277399954934031929504291071<174>
Factor=47430347717597954312536069175541845627383 Method=ECM B1=11000000 Sigma=2749378352
By Erik Branger / PFGW / Dec 19, 2009
(7·1037963-61)/9 = (7)379621<37963> is PRP.
(7·1091856-61)/9 = (7)918551<91856> is PRP.
PRP91856 is the second largest unprovable near-repdigit PRP in our tables so far. Congratulations!
Note: (7·1037963-61)/9-1 = 70·(1037962-1)/9 = 70·Πd|37962,d>1Φd(10) = 2·5·7·Πd=2,3,6,9,18,19,27,37,38,54,57,74,111,114,171,222,333,342,513,666,703,999,1026,1406,1998,2109,4218,6327,12654,18981,37962Φd(10)
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) / Dec 18, 2009
(10210+17)/9 = (1)2093<210> = 991 · 17033 · C202
C202 = P53 · P150
P53 = 54717842005390052986694843098297751937806958850145813<53>
P150 = 120299474039985466509894312228083847477033404838138052450639905530474929720985885145271068672098287759467609956582980764206909588207568280635808876067<150>
Thu Dec 17 06:26:40 2009 Msieve v. 1.43 Thu Dec 17 06:26:40 2009 random seeds: 55bc7df8 28c1ed01 Thu Dec 17 06:26:40 2009 factoring 6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471 (202 digits) Thu Dec 17 06:26:42 2009 no P-1/P+1/ECM available, skipping Thu Dec 17 06:26:42 2009 commencing number field sieve (202-digit input) Thu Dec 17 06:26:42 2009 R0: -1000000000000000000000000000000000000000000 Thu Dec 17 06:26:42 2009 R1: 1 Thu Dec 17 06:26:42 2009 A0: 17 Thu Dec 17 06:26:42 2009 A1: 0 Thu Dec 17 06:26:42 2009 A2: 0 Thu Dec 17 06:26:42 2009 A3: 0 Thu Dec 17 06:26:42 2009 A4: 0 Thu Dec 17 06:26:42 2009 A5: 1 Thu Dec 17 06:26:42 2009 skew 1.76, size 2.505786e-14, alpha 1.047729, combined = 7.967069e-12 Thu Dec 17 06:26:42 2009 Thu Dec 17 06:26:42 2009 commencing linear algebra Thu Dec 17 06:26:43 2009 read 2888485 cycles Thu Dec 17 06:26:50 2009 cycles contain 8004660 unique relations Thu Dec 17 06:28:10 2009 read 8004660 relations Thu Dec 17 06:28:26 2009 using 20 quadratic characters above 536868864 Thu Dec 17 06:29:23 2009 building initial matrix Thu Dec 17 06:32:05 2009 memory use: 1052.8 MB Thu Dec 17 06:32:08 2009 read 2888485 cycles Thu Dec 17 06:32:11 2009 matrix is 2888023 x 2888485 (844.9 MB) with weight 248051754 (85.88/col) Thu Dec 17 06:32:11 2009 sparse part has weight 189723693 (65.68/col) Thu Dec 17 06:33:34 2009 filtering completed in 3 passes Thu Dec 17 06:33:35 2009 matrix is 2881653 x 2881853 (843.8 MB) with weight 247679676 (85.94/col) Thu Dec 17 06:33:35 2009 sparse part has weight 189487001 (65.75/col) Thu Dec 17 06:34:00 2009 read 2881853 cycles Thu Dec 17 06:34:04 2009 matrix is 2881653 x 2881853 (843.8 MB) with weight 247679676 (85.94/col) Thu Dec 17 06:34:04 2009 sparse part has weight 189487001 (65.75/col) Thu Dec 17 06:34:04 2009 saving the first 48 matrix rows for later Thu Dec 17 06:34:06 2009 matrix is 2881605 x 2881853 (799.4 MB) with weight 195469859 (67.83/col) Thu Dec 17 06:34:07 2009 sparse part has weight 180734590 (62.71/col) Thu Dec 17 06:34:07 2009 matrix includes 64 packed rows Thu Dec 17 06:34:07 2009 using block size 65536 for processor cache size 6144 kB Thu Dec 17 06:34:23 2009 commencing Lanczos iteration (5 threads) Thu Dec 17 06:34:23 2009 memory use: 885.9 MB Thu Dec 17 06:34:38 2009 linear algebra at 0.0%, ETA 14h51m Thu Dec 17 20:55:45 2009 lanczos halted after 45570 iterations (dim = 2881603) Thu Dec 17 20:55:53 2009 recovered 34 nontrivial dependencies Thu Dec 17 20:55:54 2009 BLanczosTime: 52152 Thu Dec 17 20:55:54 2009 elapsed time 14:29:14 Thu Dec 17 21:23:08 2009 Thu Dec 17 21:23:08 2009 Thu Dec 17 21:23:08 2009 Msieve v. 1.43 Thu Dec 17 21:23:08 2009 random seeds: f9fbe826 ee5d58a0 Thu Dec 17 21:23:08 2009 factoring 6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471 (202 digits) Thu Dec 17 21:23:10 2009 no P-1/P+1/ECM available, skipping Thu Dec 17 21:23:10 2009 commencing number field sieve (202-digit input) Thu Dec 17 21:23:10 2009 R0: -1000000000000000000000000000000000000000000 Thu Dec 17 21:23:10 2009 R1: 1 Thu Dec 17 21:23:10 2009 A0: 17 Thu Dec 17 21:23:10 2009 A1: 0 Thu Dec 17 21:23:10 2009 A2: 0 Thu Dec 17 21:23:10 2009 A3: 0 Thu Dec 17 21:23:10 2009 A4: 0 Thu Dec 17 21:23:10 2009 A5: 1 Thu Dec 17 21:23:10 2009 skew 1.76, size 2.505786e-14, alpha 1.047729, combined = 7.967069e-12 Thu Dec 17 21:23:11 2009 Thu Dec 17 21:23:11 2009 commencing square root phase Thu Dec 17 21:23:11 2009 reading relations for dependency 1 Thu Dec 17 21:23:11 2009 read 1439936 cycles Thu Dec 17 21:23:15 2009 cycles contain 3996572 unique relations Thu Dec 17 21:24:02 2009 read 3996572 relations Thu Dec 17 21:24:33 2009 multiplying 3996572 relations Thu Dec 17 21:27:39 2009 multiply complete, coefficients have about 97.23 million bits Thu Dec 17 21:27:41 2009 initial square root is modulo 9532921 Thu Dec 17 21:33:58 2009 sqrtTime: 647 Thu Dec 17 21:33:59 2009 prp53 factor: 54717842005390052986694843098297751937806958850145813 Thu Dec 17 21:33:59 2009 prp150 factor: 120299474039985466509894312228083847477033404838138052450639905530474929720985885145271068672098287759467609956582980764206909588207568280635808876067 Thu Dec 17 21:33:59 2009 elapsed time 00:10:51
By Sinkiti Sibata / Msieve / Dec 18, 2009
(64·10166+71)/9 = 7(1)1659<167> = 503 · 20117 · 395429341 · C152
C152 = P48 · P104
P48 = 210228399327928377239219774246468321235282735719<48>
P104 = 84536835945892939231027778594787388720995315395727328509256533229038199119074887652958622708169064322511<104>
Number: 71119_166 N=17772043705152750668618075206786427141878408477059419522437704603544996626585922137963280383978633254754888183355446140445126615312662697395867395470409 ( 152 digits) SNFS difficulty: 167 digits. Divisors found: r1=210228399327928377239219774246468321235282735719 (pp48) r2=84536835945892939231027778594787388720995315395727328509256533229038199119074887652958622708169064322511 (pp104) Version: Msieve-1.40 Total time: 45.88 hours. Scaled time: 153.20 units (timescale=3.339). Factorization parameters were as follows: name: 71119_166 n: 17772043705152750668618075206786427141878408477059419522437704603544996626585922137963280383978633254754888183355446140445126615312662697395867395470409 m: 2000000000000000000000000000000000 deg: 5 c5: 20 c0: 71 skew: 1.29 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 798327 x 798575 Total sieving time: 44.54 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 45.88 hours. --------- CPU info (if available) ----------
(71·10139-53)/9 = 7(8)1383<140> = 801174683 · C131
C131 = P32 · P38 · P62
P32 = 14659793272247047053381486853609<32>
P38 = 68028420190133278374253607086763647043<38>
P62 = 98734831756079313401932916138550660196735650678372000189629323<62>
Number: 78883_139 N=98466527416329865342099044945593829865051900159567185036585696616288221989272330624667141271722996879681592346183621092890785827401 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=14659793272247047053381486853609 (pp32) r2=68028420190133278374253607086763647043 (pp38) r3=98734831756079313401932916138550660196735650678372000189629323 (pp62) Version: Msieve v. 1.42 Total time: 0.62 hours. Scaled time: 0.50 units (timescale=0.796). Factorization parameters were as follows: name: 78883_139 n: 98466527416329865342099044945593829865051900159567185036585696616288221989272330624667141271722996879681592346183621092890785827401 m: 1000000000000000000000000000 deg: 5 c5: 710000 c0: -53 skew: 0.15 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 2180001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 306659 x 306907 Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.30 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 0.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572) Total of 2 processors activated (7442.44 BogoMIPS). Total time: 8 hours 14 min.
By Dmitry Domanov / YAFU v1.14, Msieve, GGNFS/msieve, ECMNET, GMP-ECM / Dec 18, 2009
(23·10145+7)/3 = 7(6)1449<146> = 109 · 359 · 4339 · 1679273 · 490556707 · 74145169250683<14> · 176715146310626906597009<24> · C86
C86 = P33 · P54
P33 = 308224982757838303873874799904859<33>
P54 = 135725355871998971820929399371563345018944591056562047<54>
12/17/09 19:19:44 v1.14 @ REPGMAIL, starting SIQS on c86: 41833945473448350880238225571747760250081278595496669485943405224873781172003230286373 12/17/09 19:19:44 v1.14 @ REPGMAIL, random seeds: 0, 3887612160 12/17/09 19:19:44 v1.14 @ REPGMAIL, ==== sieve params ==== 12/17/09 19:19:44 v1.14 @ REPGMAIL, n = 86 digits, 286 bits 12/17/09 19:19:44 v1.14 @ REPGMAIL, factor base: 57516 primes (max prime = 1506473) 12/17/09 19:19:44 v1.14 @ REPGMAIL, single large prime cutoff: 165712030 (110 * pmax) 12/17/09 19:19:44 v1.14 @ REPGMAIL, double large prime range from 43 to 50 bits 12/17/09 19:19:44 v1.14 @ REPGMAIL, double large prime cutoff: 623501162502699 12/17/09 19:19:44 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base 12/17/09 19:19:44 v1.14 @ REPGMAIL, buckets hold 1024 elements 12/17/09 19:19:44 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768 12/17/09 19:19:44 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors 12/17/09 19:19:44 v1.14 @ REPGMAIL, using multiplier of 2 12/17/09 19:19:44 v1.14 @ REPGMAIL, using small prime variation correction of 21 bits 12/17/09 19:19:44 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning 12/17/09 19:19:44 v1.14 @ REPGMAIL, trial factoring cutoff at 93 bits 12/17/09 19:19:44 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ==== 12/17/09 19:27:13 v1.14 @ REPGMAIL, trial division touched 12867503 sieve locations out of 5630374969344 12/17/09 19:27:13 v1.14 @ REPGMAIL, 57789 relations found: 19383 full + 38406 from 538217 partial, using 4772928 polys (383 A polys) 12/17/09 19:27:13 v1.14 @ REPGMAIL, on average, sieving found 0.12 rels/poly and 1243.53 rels/sec 12/17/09 19:27:13 v1.14 @ REPGMAIL, trial division touched 12867503 sieve locations out of 5630374969344 12/17/09 19:27:13 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ==== 12/17/09 19:27:13 v1.14 @ REPGMAIL, begin with 557600 relations 12/17/09 19:27:13 v1.14 @ REPGMAIL, reduce to 118522 relations in 9 passes 12/17/09 19:27:17 v1.14 @ REPGMAIL, recovered 118522 relations 12/17/09 19:27:17 v1.14 @ REPGMAIL, recovered 88934 polynomials 12/17/09 19:27:17 v1.14 @ REPGMAIL, attempting to build 57789 cycles 12/17/09 19:27:17 v1.14 @ REPGMAIL, found 57789 cycles in 5 passes 12/17/09 19:27:17 v1.14 @ REPGMAIL, distribution of cycle lengths: 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 1 : 19383 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 2 : 15799 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 3 : 10625 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 4 : 6108 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 5 : 3174 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 6 : 1511 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 7 : 662 12/17/09 19:27:17 v1.14 @ REPGMAIL, length 9+: 527 12/17/09 19:27:17 v1.14 @ REPGMAIL, largest cycle: 18 relations 12/17/09 19:27:18 v1.14 @ REPGMAIL, matrix is 57516 x 57789 (11.5 MB) with weight 2782363 (48.15/col) 12/17/09 19:27:18 v1.14 @ REPGMAIL, sparse part has weight 2782363 (48.15/col) 12/17/09 19:27:19 v1.14 @ REPGMAIL, filtering completed in 3 passes 12/17/09 19:27:19 v1.14 @ REPGMAIL, matrix is 50686 x 50748 (10.3 MB) with weight 2498924 (49.24/col) 12/17/09 19:27:19 v1.14 @ REPGMAIL, sparse part has weight 2498924 (49.24/col) 12/17/09 19:27:19 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later 12/17/09 19:27:19 v1.14 @ REPGMAIL, matrix is 50638 x 50748 (8.4 MB) with weight 2108203 (41.54/col) 12/17/09 19:27:19 v1.14 @ REPGMAIL, sparse part has weight 1895287 (37.35/col) 12/17/09 19:27:19 v1.14 @ REPGMAIL, matrix includes 64 packed rows 12/17/09 19:27:19 v1.14 @ REPGMAIL, using block size 20299 for processor cache size 6144 kB 12/17/09 19:27:20 v1.14 @ REPGMAIL, commencing Lanczos iteration 12/17/09 19:27:20 v1.14 @ REPGMAIL, memory use: 7.7 MB 12/17/09 19:27:34 v1.14 @ REPGMAIL, lanczos halted after 802 iterations (dim = 50632) 12/17/09 19:27:35 v1.14 @ REPGMAIL, recovered 14 nontrivial dependencies 12/17/09 19:27:35 v1.14 @ REPGMAIL, prp54 = 135725355871998971820929399371563345018944591056562047 12/17/09 19:27:39 v1.14 @ REPGMAIL, prp33 = 308224982757838303873874799904859 12/17/09 19:27:39 v1.14 @ REPGMAIL, Lanczos elapsed time = 21.9690 seconds. 12/17/09 19:27:39 v1.14 @ REPGMAIL, Sqrt elapsed time = 4.4530 seconds. 12/17/09 19:27:39 v1.14 @ REPGMAIL, SIQS elapsed time = 474.8220 seconds.
(22·10173+23)/9 = 2(4)1727<174> = 7 · 26557 · C169
C169 = P51 · P118
P51 = 624738918926696617026480583427783554414155170496779<51>
P118 = 2104769569075983439269108367771371408243333338166694269946412434388897100049518126394608775065678536993872431454145207<118>
N=1314931465174338992917898667795116942234463038770754250665385206184242219939023041783142698155689080868882804342381854902094386975962455120492549419009486035128991788253 ( 169 digits) SNFS difficulty: 174 digits. Divisors found: r1=624738918926696617026480583427783554414155170496779 (pp51) r2=2104769569075983439269108367771371408243333338166694269946412434388897100049518126394608775065678536993872431454145207 (pp118) Version: Msieve-1.40 Total time: 94.38 hours. Scaled time: 174.60 units (timescale=1.850). Factorization parameters were as follows: n: 1314931465174338992917898667795116942234463038770754250665385206184242219939023041783142698155689080868882804342381854902094386975962455120492549419009486035128991788253 m: 10000000000000000000000000000000000 deg: 5 c5: 22000 c0: 23 skew: 0.25 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 240000Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 8080001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 970616 x 970843 Total sieving time: 92.89 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.14 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 94.38 hours. --------- CPU info (if available) ----------
(23·10102+7)/3 = 7(6)1019<103> = C103
C103 = P38 · P66
P38 = 16366251904462813283148459651532808177<38>
P66 = 468443643139581039544972884127926202489907608934281528490340905597<66>
N=7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 103 digits) SNFS difficulty: 103 digits. Divisors found: r1=16366251904462813283148459651532808177 (pp38) r2=468443643139581039544972884127926202489907608934281528490340905597 (pp66) Version: Msieve-1.40 Total time: 0.29 hours. Scaled time: 0.55 units (timescale=1.899). Factorization parameters were as follows: n: 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 10000000000000000000000000 deg: 4 c4: 2300 c0: 7 skew: 0.23 type: snfs lss: 1 rlim: 370000 alim: 370000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2Factor base limits: 370000/370000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [185000, 245001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 29258 x 29485 Total sieving time: 0.28 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103.000,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000 total time: 0.29 hours. --------- CPU info (if available) ----------
(71·10102-53)/9 = 7(8)1013<103> = C103
C103 = P32 · P72
P32 = 70844568918754187799073067693869<32>
P72 = 111354885904323972056732251864761215138728152912876090552311636191082207<72>
N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 ( 103 digits) SNFS difficulty: 103 digits. Divisors found: r1=70844568918754187799073067693869 (pp32) r2=111354885904323972056732251864761215138728152912876090552311636191082207 (pp72) Version: Msieve-1.40 Total time: 0.34 hours. Scaled time: 0.65 units (timescale=1.888). Factorization parameters were as follows: n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 m: 10000000000000000000000000 deg: 4 c4: 7100 c0: -53 skew: 0.29 type: snfs lss: 1 rlim: 380000 alim: 380000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2Factor base limits: 380000/380000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [190000, 250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 30812 x 31042 Total sieving time: 0.33 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103.000,4,0,0,0,0,0,0,0,0,380000,380000,25,25,43,43,2.2,2.2,10000 total time: 0.34 hours. --------- CPU info (if available) ----------
(23·10101+7)/3 = 7(6)1009<102> = 127 · 499 · C98
C98 = P35 · P63
P35 = 15503305797418981345720755638978753<35>
P63 = 780329456446274801345339576045023254771125029723964628297791201<63>
N=12097686186020334632519632440734487347398208490471757162619201657908993840699772247907889269352353 ( 98 digits) SNFS difficulty: 102 digits. Divisors found: r1=15503305797418981345720755638978753 (pp35) r2=780329456446274801345339576045023254771125029723964628297791201 (pp63) Version: Msieve-1.40 Total time: 0.24 hours. Scaled time: 0.46 units (timescale=1.899). Factorization parameters were as follows: n: 12097686186020334632519632440734487347398208490471757162619201657908993840699772247907889269352353 m: 10000000000000000000000000 deg: 4 c4: 230 c0: 7 skew: 0.42 type: snfs lss: 1 rlim: 360000 alim: 360000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [180000, 230001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 28464 x 28690 Total sieving time: 0.23 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,102.000,4,0,0,0,0,0,0,0,0,360000,360000,25,25,43,43,2.2,2.2,10000 total time: 0.24 hours. --------- CPU info (if available) ----------
(71·10112-53)/9 = 7(8)1113<113> = 72 · 96853717 · C104
C104 = P32 · P72
P32 = 47211579907345209783386536065091<32>
P72 = 352091007064452232705688454932089110461872691511398725150686552297151261<72>
N=16622772714681033343850236198164510360461350285372364831785947387382841694980130661290056398395768729751 ( 104 digits) SNFS difficulty: 113 digits. Divisors found: r1=47211579907345209783386536065091 (pp32) r2=352091007064452232705688454932089110461872691511398725150686552297151261 (pp72) Version: Msieve-1.40 Total time: 1.16 hours. Scaled time: 2.19 units (timescale=1.894). Factorization parameters were as follows: n: 16622772714681033343850236198164510360461350285372364831785947387382841694980130661290056398395768729751 m: 10000000000000000000000 deg: 5 c5: 7100 c0: -53 skew: 0.38 type: snfs lss: 1 rlim: 550000 alim: 550000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [275000, 575001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61515 x 61746 Total sieving time: 1.13 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113.000,5,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,50000 total time: 1.16 hours. --------- CPU info (if available) ----------
(23·10117+7)/3 = 7(6)1169<118> = C118
C118 = P56 · P63
P56 = 14569581354226241661746116562056802057508343476522953837<56>
P63 = 526210498453531331924932909008559187519482724594784737411043137<63>
N=7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 118 digits) SNFS difficulty: 118 digits. Divisors found: r1=14569581354226241661746116562056802057508343476522953837 (pp56) r2=526210498453531331924932909008559187519482724594784737411043137 (pp63) Version: Msieve-1.40 Total time: 1.40 hours. Scaled time: 2.63 units (timescale=1.883). Factorization parameters were as follows: n: 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 100000000000000000000000 deg: 5 c5: 2300 c0: 7 skew: 0.31 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 680001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73555 x 73781 Total sieving time: 1.36 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118.000,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 1.40 hours. --------- CPU info (if available) ----------
(8·10214+1)/9 = (8)2139<214> = 3 · 1699 · 2459 · C207
C207 = P30 · C178
P30 = 335641198293710957912166662603<30>
C178 = [2112997836126207443444981630168333103292685356156473714928084867103157017340713491392612217986513249301447225320298675488334218036013653216145526375104840470441559720260810151081<178>]
Factor=335641198293710957912166662603 Method=ECM B1=11000000 Sigma=265716689
(71·10114-53)/9 = 7(8)1133<115> = 29 · 103 · C112
C112 = P53 · P59
P53 = 56519698895229316188490043104959016857411842457689633<53>
P59 = 46728385615779825473711854488768379726422437915981202391673<59>
N=2641074284864040471673548339099058884797083658817840270803109771974853996949745192128854666517873749209537626009 ( 112 digits) SNFS difficulty: 115 digits. Divisors found: r1=56519698895229316188490043104959016857411842457689633 (pp53) r2=46728385615779825473711854488768379726422437915981202391673 (pp59) Version: Msieve-1.40 Total time: 1.53 hours. Scaled time: 2.87 units (timescale=1.877). Factorization parameters were as follows: n: 2641074284864040471673548339099058884797083658817840270803109771974853996949745192128854666517873749209537626009 m: 10000000000000000000000 deg: 5 c5: 710000 c0: -53 skew: 0.15 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68831 x 69064 Total sieving time: 1.49 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 1.53 hours. --------- CPU info (if available) ----------
(71·10120-53)/9 = 7(8)1193<121> = 59 · C120
C120 = P46 · P74
P46 = 2214181774753291992262900298930816059454662351<46>
P74 = 60387987423709368360648898963089341431741881661843328297994020494593986887<74>
N=133709981167608286252354048964218455743879472693032015065913370998116760828625235404896421845574387947269303201506591337 ( 120 digits) SNFS difficulty: 121 digits. Divisors found: r1=2214181774753291992262900298930816059454662351 (pp46) r2=60387987423709368360648898963089341431741881661843328297994020494593986887 (pp74) Version: Msieve-1.40 Total time: 1.30 hours. Scaled time: 2.52 units (timescale=1.934). Factorization parameters were as follows: n: 133709981167608286252354048964218455743879472693032015065913370998116760828625235404896421845574387947269303201506591337 m: 1000000000000000000000000 deg: 5 c5: 71 c0: -53 skew: 0.94 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 675001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73350 x 73577 Total sieving time: 1.27 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.30 hours. --------- CPU info (if available) ----------
(23·10127+7)/3 = 7(6)1269<128> = 977 · 2884173194897<13> · C113
C113 = P36 · P77
P36 = 903364418940510837202718011796346043<36>
P77 = 30118108980930079273273885810813189661278080103264113178198009378613739190807<77>
N=27207628019144882054012175877546708769211265306368105830557938863759367147355611190125656060628084554910176426701 ( 113 digits) SNFS difficulty: 128 digits. Divisors found: r1=903364418940510837202718011796346043 (pp36) r2=30118108980930079273273885810813189661278080103264113178198009378613739190807 (pp77) Version: Msieve-1.40 Total time: 2.10 hours. Scaled time: 3.95 units (timescale=1.877). Factorization parameters were as follows: n: 27207628019144882054012175877546708769211265306368105830557938863759367147355611190125656060628084554910176426701 m: 10000000000000000000000000 deg: 5 c5: 2300 c0: 7 skew: 0.31 type: snfs lss: 1 rlim: 960000 alim: 960000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 960000/960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [480000, 930001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147422 x 147647 Total sieving time: 2.02 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,128.000,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000 total time: 2.10 hours. --------- CPU info (if available) ----------
(71·10117-53)/9 = 7(8)1163<118> = 2341 · 54773 · 60533682573218171561<20> · C91
C91 = P43 · P48
P43 = 4704278905960870672702840636154862664420573<43>
P48 = 216051725822903176121266690809152805746919124127<48>
12/17/09 22:34:05 v1.14 @ REPGMAIL, starting SIQS on c91: 1016367576385124944414837275702956041270890279227086998560930210620703853098252911119464771 12/17/09 22:34:05 v1.14 @ REPGMAIL, random seeds: 0, 3887612160 12/17/09 22:34:06 v1.14 @ REPGMAIL, ==== sieve params ==== 12/17/09 22:34:06 v1.14 @ REPGMAIL, n = 91 digits, 302 bits 12/17/09 22:34:06 v1.14 @ REPGMAIL, factor base: 66328 primes (max prime = 1763191) 12/17/09 22:34:06 v1.14 @ REPGMAIL, single large prime cutoff: 211582920 (120 * pmax) 12/17/09 22:34:06 v1.14 @ REPGMAIL, double large prime range from 43 to 50 bits 12/17/09 22:34:06 v1.14 @ REPGMAIL, double large prime cutoff: 967977118911139 12/17/09 22:34:06 v1.14 @ REPGMAIL, allocating 13 large prime slices of factor base 12/17/09 22:34:06 v1.14 @ REPGMAIL, buckets hold 1024 elements 12/17/09 22:34:06 v1.14 @ REPGMAIL, sieve interval: 22 blocks of size 32768 12/17/09 22:34:06 v1.14 @ REPGMAIL, polynomial A has ~ 12 factors 12/17/09 22:34:06 v1.14 @ REPGMAIL, using multiplier of 5 12/17/09 22:34:06 v1.14 @ REPGMAIL, using small prime variation correction of 21 bits 12/17/09 22:34:06 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning 12/17/09 22:34:06 v1.14 @ REPGMAIL, trial factoring cutoff at 96 bits 12/17/09 22:34:06 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ==== 12/17/09 22:56:17 v1.14 @ REPGMAIL, trial division touched 29986440 sieve locations out of 34609201938432 12/17/09 22:56:17 v1.14 @ REPGMAIL, 66603 relations found: 18480 full + 48123 from 829499 partial, using 24004296 polys (847 A polys) 12/17/09 22:56:17 v1.14 @ REPGMAIL, on average, sieving found 0.04 rels/poly and 636.88 rels/sec 12/17/09 22:56:17 v1.14 @ REPGMAIL, trial division touched 29986440 sieve locations out of 34609201938432 12/17/09 22:56:17 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ==== 12/17/09 22:56:17 v1.14 @ REPGMAIL, begin with 847979 relations 12/17/09 22:56:18 v1.14 @ REPGMAIL, reduce to 160269 relations in 11 passes 12/17/09 22:56:22 v1.14 @ REPGMAIL, failed to read relation 72710 12/17/09 22:56:28 v1.14 @ REPGMAIL, recovered 160268 relations 12/17/09 22:56:28 v1.14 @ REPGMAIL, recovered 134681 polynomials 12/17/09 22:56:28 v1.14 @ REPGMAIL, attempting to build 66602 cycles 12/17/09 22:56:28 v1.14 @ REPGMAIL, found 66602 cycles in 6 passes 12/17/09 22:56:28 v1.14 @ REPGMAIL, distribution of cycle lengths: 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 1 : 18480 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 2 : 13601 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 3 : 11904 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 4 : 8618 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 5 : 5823 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 6 : 3680 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 7 : 2109 12/17/09 22:56:28 v1.14 @ REPGMAIL, length 9+: 2387 12/17/09 22:56:28 v1.14 @ REPGMAIL, largest cycle: 18 relations 12/17/09 22:56:31 v1.14 @ REPGMAIL, matrix is 66328 x 66602 (16.2 MB) with weight 3980066 (59.76/col) 12/17/09 22:56:31 v1.14 @ REPGMAIL, sparse part has weight 3980066 (59.76/col) 12/17/09 22:56:32 v1.14 @ REPGMAIL, filtering completed in 3 passes 12/17/09 22:56:32 v1.14 @ REPGMAIL, matrix is 61864 x 61928 (15.2 MB) with weight 3735380 (60.32/col) 12/17/09 22:56:32 v1.14 @ REPGMAIL, sparse part has weight 3735380 (60.32/col) 12/17/09 22:56:32 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later 12/17/09 22:56:32 v1.14 @ REPGMAIL, matrix is 61816 x 61928 (12.9 MB) with weight 3247323 (52.44/col) 12/17/09 22:56:32 v1.14 @ REPGMAIL, sparse part has weight 3019707 (48.76/col) 12/17/09 22:56:32 v1.14 @ REPGMAIL, matrix includes 64 packed rows 12/17/09 22:56:32 v1.14 @ REPGMAIL, using block size 24771 for processor cache size 6144 kB 12/17/09 22:56:33 v1.14 @ REPGMAIL, commencing Lanczos iteration 12/17/09 22:56:33 v1.14 @ REPGMAIL, memory use: 11.0 MB 12/17/09 22:57:01 v1.14 @ REPGMAIL, lanczos halted after 979 iterations (dim = 61812) 12/17/09 22:57:02 v1.14 @ REPGMAIL, recovered 16 nontrivial dependencies 12/17/09 22:57:04 v1.14 @ REPGMAIL, prp43 = 4704278905960870672702840636154862664420573 12/17/09 22:57:06 v1.14 @ REPGMAIL, prp48 = 216051725822903176121266690809152805746919124127 12/17/09 22:57:06 v1.14 @ REPGMAIL, Lanczos elapsed time = 44.6400 seconds. 12/17/09 22:57:06 v1.14 @ REPGMAIL, Sqrt elapsed time = 4.2340 seconds. 12/17/09 22:57:06 v1.14 @ REPGMAIL, SIQS elapsed time = 1380.3237 seconds.
(71·10128-53)/9 = 7(8)1273<129> = 32 · 2377 · 8831 · C121
C121 = P51 · P71
P51 = 165003680788079684382461700620601145550349398065163<51>
P71 = 25306998018702680821578149424957973175262997834761086043278516609659927<71>
N=4175747822782582172672610354365328861810822794603033200758691974801465054889408209589736969803438969113914787009215823101 ( 121 digits) SNFS difficulty: 129 digits. Divisors found: r1=165003680788079684382461700620601145550349398065163 (pp51) r2=25306998018702680821578149424957973175262997834761086043278516609659927 (pp71) Version: Msieve-1.40 Total time: 2.54 hours. Scaled time: 4.90 units (timescale=1.928). Factorization parameters were as follows: n: 4175747822782582172672610354365328861810822794603033200758691974801465054889408209589736969803438969113914787009215823101 m: 10000000000000000000000000 deg: 5 c5: 71000 c0: -53 skew: 0.24 type: snfs lss: 1 rlim: 1020000 alim: 1020000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1020000/1020000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [510000, 1060001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 162277 x 162502 Total sieving time: 2.44 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1020000,1020000,26,26,47,47,2.3,2.3,50000 total time: 2.54 hours. --------- CPU info (if available) ----------
9·10217-1 = 8(9)217<218> = 4283 · 9437 · C211
C211 = P34 · C178
P34 = 1577290686429983687836459293964961<34>
C178 = [1411720564399112483471084781044967565528016798392234290981345680970916119805289999619210137081639694786400613276406019352676005253348050274461896592584529492199240348443770814929<178>]
Factor=1577290686429983687836459293964961 Method=ECM B1=11000000 Sigma=421968920
(71·10131-53)/9 = 7(8)1303<132> = 3 · C132
C132 = P48 · P85
P48 = 196715840065308398795279369007364211116917928283<48>
P85 = 1336765574524455904141319038788517795589445839396460183951749385129955666167430296067<85>
N=262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962961 ( 132 digits) SNFS difficulty: 132 digits. Divisors found: r1=196715840065308398795279369007364211116917928283 (pp48) r2=1336765574524455904141319038788517795589445839396460183951749385129955666167430296067 (pp85) Version: Msieve-1.40 Total time: 3.13 hours. Scaled time: 5.94 units (timescale=1.899). Factorization parameters were as follows: n: 262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962961 m: 100000000000000000000000000 deg: 5 c5: 710 c0: -53 skew: 0.60 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 1225001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 185212 x 185437 Total sieving time: 3.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000 total time: 3.13 hours. --------- CPU info (if available) ----------
(71·10132-53)/9 = 7(8)1313<133> = C133
C133 = P60 · P74
P60 = 517214393087147489390495048364390108944880537532928038319981<60>
P74 = 15252647633801751029471431177710620169842615413914822823473476439081203743<74>
N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 ( 133 digits) SNFS difficulty: 133 digits. Divisors found: r1=517214393087147489390495048364390108944880537532928038319981 (pp60) r2=15252647633801751029471431177710620169842615413914822823473476439081203743 (pp74) Version: Msieve-1.40 Total time: 3.53 hours. Scaled time: 6.41 units (timescale=1.818). Factorization parameters were as follows: n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 m: 100000000000000000000000000 deg: 5 c5: 7100 c0: -53 skew: 0.38 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1345001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 205361 x 205586 Total sieving time: 3.43 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000 total time: 3.53 hours. --------- CPU info (if available) ----------
(71·10121-53)/9 = 7(8)1203<122> = 73 · 83 · 635363 · C113
C113 = P52 · P61
P52 = 3100375569266222976004203131079653569034995145663653<52>
P61 = 6609653005401652853305308565447112625996842016862736480888983<61>
N=20492406699274351032060072910217225536645754047004998692822135641463339761256101427317966891992832342738951234899 ( 113 digits) SNFS difficulty: 122 digits. Divisors found: r1=3100375569266222976004203131079653569034995145663653 (pp52) r2=6609653005401652853305308565447112625996842016862736480888983 (pp61) Version: Msieve-1.40 Total time: 1.87 hours. Scaled time: 3.54 units (timescale=1.894). Factorization parameters were as follows: n: 20492406699274351032060072910217225536645754047004998692822135641463339761256101427317966891992832342738951234899 m: 1000000000000000000000000 deg: 5 c5: 710 c0: -53 skew: 0.60 type: snfs lss: 1 rlim: 780000 alim: 780000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 780000/780000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [390000, 840001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 92638 x 92863 Total sieving time: 1.81 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,122.000,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000 total time: 1.87 hours. --------- CPU info (if available) ----------
(23·10115+7)/3 = 7(6)1149<116> = 101540519 · 3192714031843379<16> · C93
C93 = P39 · P55
P39 = 145717171735411817146963718723119073599<39>
P55 = 1622917518152125158739229174383634945061249878227930231<55>
N=236486950704981546873301241060210324387354907053759004965902155459257877449591326407926071369 ( 93 digits) SNFS difficulty: 116 digits. Divisors found: r1=145717171735411817146963718723119073599 (pp39) r2=1622917518152125158739229174383634945061249878227930231 (pp55) Version: Msieve-1.40 Total time: 1.03 hours. Scaled time: 2.00 units (timescale=1.934). Factorization parameters were as follows: n: 236486950704981546873301241060210324387354907053759004965902155459257877449591326407926071369 m: 100000000000000000000000 deg: 5 c5: 23 c0: 7 skew: 0.79 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 555001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 62040 x 62274 Total sieving time: 1.01 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.03 hours. --------- CPU info (if available) ----------
(23·10118+7)/3 = 7(6)1179<119> = 79 · 97 · 241 · 439 · 3301 · 253823 · C102
C102 = P45 · P57
P45 = 616662315237088461756368984825451529618304609<45>
P57 = 183021574262896725676823532935622444218431584201994836991<57>
N=112862507723294616972009178085600140935549884805945509772132374654095565184658821451591703944738991519 ( 102 digits) SNFS difficulty: 119 digits. Divisors found: r1=616662315237088461756368984825451529618304609 (pp45) r2=183021574262896725676823532935622444218431584201994836991 (pp57) Version: Msieve-1.40 Total time: 1.42 hours. Scaled time: 2.65 units (timescale=1.866). Factorization parameters were as follows: n: 112862507723294616972009178085600140935549884805945509772132374654095565184658821451591703944738991519 m: 100000000000000000000000 deg: 5 c5: 23000 c0: 7 skew: 0.20 type: snfs lss: 1 rlim: 680000 alim: 680000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 680000/680000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [340000, 690001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 70562 x 70793 Total sieving time: 1.39 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000 total time: 1.42 hours. --------- CPU info (if available) ----------
(23·10132+7)/3 = 7(6)1319<133> = 515119773492893<15> · C119
C119 = P43 · P77
P43 = 1325930876011785899835125289730218699242507<43>
P77 = 11224770657653797020738499348061137631067325221162132058552569512965365014419<77>
N=14883269991134289211077349683781442707264471531662519776756720046042023420857648997080679874326196989860850194432708433 ( 119 digits) SNFS difficulty: 133 digits. Divisors found: r1=1325930876011785899835125289730218699242507 (pp43) r2=11224770657653797020738499348061137631067325221162132058552569512965365014419 (pp77) Version: Msieve-1.40 Total time: 3.14 hours. Scaled time: 5.93 units (timescale=1.888). Factorization parameters were as follows: n: 14883269991134289211077349683781442707264471531662519776756720046042023420857648997080679874326196989860850194432708433 m: 100000000000000000000000000 deg: 5 c5: 2300 c0: 7 skew: 0.31 type: snfs lss: 1 rlim: 1170000 alim: 1170000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1170000/1170000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [585000, 1235001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 187019 x 187244 Total sieving time: 3.01 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1170000,1170000,26,26,47,47,2.3,2.3,50000 total time: 3.14 hours. --------- CPU info (if available) ----------
(71·10134-53)/9 = 7(8)1333<135> = 3 · 1248424878698281<16> · C120
C120 = P49 · P71
P49 = 3749028001261114267397282247344700583630333114637<49>
P71 = 56184107410696183723363555425171112886122517296076068553504744503648013<71>
N=210635791908562071728644557621682794294921668230253551186820616199446384520540884426027237215207303593232937643026266281 ( 120 digits) SNFS difficulty: 135 digits. Divisors found: r1=3749028001261114267397282247344700583630333114637 (pp49) r2=56184107410696183723363555425171112886122517296076068553504744503648013 (pp71) Version: Msieve-1.40 Total time: 4.59 hours. Scaled time: 8.74 units (timescale=1.905). Factorization parameters were as follows: n: 210635791908562071728644557621682794294921668230253551186820616199446384520540884426027237215207303593232937643026266281 m: 100000000000000000000000000 deg: 5 c5: 710000 c0: -53 skew: 0.15 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1620001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 231832 x 232057 Total sieving time: 4.41 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,135.000,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 4.59 hours. --------- CPU info (if available) ----------
(71·10150-53)/9 = 7(8)1493<151> = 1307 · C148
C148 = P48 · P101
P48 = 128415372495535273586931730868534677776502526639<48>
P101 = 47002746513966858009036774509430398095275660887836235273369621377326418835059116058961137334091595271<101>
N=6035875201904276120037405423786449035110090963189662501062654084842302133809402363342684689279945592110856074130748958598996854543908866785683924169 ( 148 digits) SNFS difficulty: 151 digits. Divisors found: r1=128415372495535273586931730868534677776502526639 (pp48) r2=47002746513966858009036774509430398095275660887836235273369621377326418835059116058961137334091595271 (pp101) Version: Msieve-1.40 Total time: 11.65 hours. Scaled time: 22.67 units (timescale=1.946). Factorization parameters were as follows: n: 6035875201904276120037405423786449035110090963189662501062654084842302133809402363342684689279945592110856074130748958598996854543908866785683924169 m: 1000000000000000000000000000000 deg: 5 c5: 71 c0: -53 skew: 0.94 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 396211 x 396438 Total sieving time: 11.37 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 11.65 hours. --------- CPU info (if available) ----------
(71·10135-53)/9 = 7(8)1343<136> = C136
C136 = P64 · P73
P64 = 6745880366212108691779530567928483529559329688486999836127929329<64>
P73 = 1169438006698389308964930379145889791962225646934827427481335042336893027<73>
N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 ( 136 digits) SNFS difficulty: 136 digits. Divisors found: r1=6745880366212108691779530567928483529559329688486999836127929329 (pp64) r2=1169438006698389308964930379145889791962225646934827427481335042336893027 (pp73) Version: Msieve-1.40 Total time: 3.20 hours. Scaled time: 6.27 units (timescale=1.958). Factorization parameters were as follows: n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 m: 1000000000000000000000000000 deg: 5 c5: 71 c0: -53 skew: 0.94 type: snfs lss: 1 rlim: 1340000 alim: 1340000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1340000/1340000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [670000, 1270001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 185613 x 185840 Total sieving time: 2.99 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1340000,1340000,26,26,48,48,2.3,2.3,75000 total time: 3.20 hours. --------- CPU info (if available) ----------
(71·10136-53)/9 = 7(8)1353<137> = 7 · 51980300653<11> · C126
C126 = P39 · P87
P39 = 954769764248960953148801851587662128903<39>
P87 = 227080768266703753928456788022703634642399994316630471933625214253812105368451884403791<87>
Number: ass5 N=216809851583473676705627523909375219620660574439738030217619127587489482104551329168343620455085044000722121819194881943871273 ( 126 digits) SNFS difficulty: 137 digits. Divisors found: r1=954769764248960953148801851587662128903 (pp39) r2=227080768266703753928456788022703634642399994316630471933625214253812105368451884403791 (pp87) Version: Msieve-1.40 Total time: 13.24 hours. Scaled time: 25.08 units (timescale=1.894). Factorization parameters were as follows: n: 216809851583473676705627523909375219620660574439738030217619127587489482104551329168343620455085044000722121819194881943871273 m: 1000000000000000000000000000 deg: 5 c5: 710 c0: -53 skew: 0.60 type: snfs lss: 1 rlim: 1390000 alim: 1390000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1390000/1390000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [695000, 1595001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 244174 x 244400 Total sieving time: 12.77 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.27 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,137.000,5,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,75000 total time: 13.24 hours. --------- CPU info (if available) ----------
(71·10148-53)/9 = 7(8)1473<149> = 7 · 103 · C147
C147 = P61 · P86
P61 = 4623071854794763055981863186790303195310782012328269473558183<61>
P86 = 23667366222130787792273066730206177697377235694310735886378311300462181777177208904581<86>
Fri Dec 18 14:56:52 2009 Msieve v. 1.42 Fri Dec 18 14:56:52 2009 random seeds: 802eda00 a82eb800 Fri Dec 18 14:56:52 2009 factoring 109415934658653105255047002619818153798736323008167668361843119124672522730775157959623979041454769610109415934658653105255047002619818153798736323 (147 digits) Fri Dec 18 14:56:53 2009 searching for 15-digit factors Fri Dec 18 14:56:54 2009 commencing number field sieve (147-digit input) Fri Dec 18 14:56:54 2009 R0: -100000000000000000000000000000 Fri Dec 18 14:56:54 2009 R1: 1 Fri Dec 18 14:56:54 2009 A0: -53 Fri Dec 18 14:56:54 2009 A1: 0 Fri Dec 18 14:56:54 2009 A2: 0 Fri Dec 18 14:56:54 2009 A3: 0 Fri Dec 18 14:56:54 2009 A4: 0 Fri Dec 18 14:56:54 2009 A5: 71000 Fri Dec 18 14:56:54 2009 skew 0.24, size 6.808355e-011, alpha 0.102333, combined = 1.009260e-009 Fri Dec 18 14:56:54 2009 Fri Dec 18 14:56:54 2009 commencing relation filtering Fri Dec 18 14:56:54 2009 estimated available RAM is 4096.0 MB Fri Dec 18 14:56:54 2009 commencing duplicate removal, pass 1 Fri Dec 18 14:57:39 2009 found 1113252 hash collisions in 5720106 relations Fri Dec 18 14:57:49 2009 added 1576 free relations Fri Dec 18 14:57:49 2009 commencing duplicate removal, pass 2 Fri Dec 18 14:57:58 2009 found 1143824 duplicates and 4577857 unique relations Fri Dec 18 14:57:58 2009 memory use: 26.6 MB Fri Dec 18 14:57:58 2009 reading ideals above 100000 Fri Dec 18 14:57:58 2009 commencing singleton removal, initial pass Fri Dec 18 14:58:48 2009 memory use: 74.6 MB Fri Dec 18 14:58:49 2009 reading all ideals from disk Fri Dec 18 14:58:49 2009 memory use: 151.9 MB Fri Dec 18 14:58:49 2009 keeping 5077417 ideals with weight <= 200, target excess is 24183 Fri Dec 18 14:58:50 2009 commencing in-memory singleton removal Fri Dec 18 14:58:50 2009 begin with 4577857 relations and 5077417 unique ideals Fri Dec 18 14:58:55 2009 reduce to 1888309 relations and 1753238 ideals in 15 passes Fri Dec 18 14:58:55 2009 max relations containing the same ideal: 113 Fri Dec 18 14:58:56 2009 removing 326014 relations and 272505 ideals in 53509 cliques Fri Dec 18 14:58:56 2009 commencing in-memory singleton removal Fri Dec 18 14:58:56 2009 begin with 1562295 relations and 1753238 unique ideals Fri Dec 18 14:58:58 2009 reduce to 1528026 relations and 1445324 ideals in 7 passes Fri Dec 18 14:58:58 2009 max relations containing the same ideal: 95 Fri Dec 18 14:58:58 2009 removing 245675 relations and 192166 ideals in 53509 cliques Fri Dec 18 14:58:59 2009 commencing in-memory singleton removal Fri Dec 18 14:58:59 2009 begin with 1282351 relations and 1445324 unique ideals Fri Dec 18 14:58:59 2009 reduce to 1257014 relations and 1226970 ideals in 7 passes Fri Dec 18 14:58:59 2009 max relations containing the same ideal: 85 Fri Dec 18 14:59:00 2009 relations with 0 large ideals: 577 Fri Dec 18 14:59:00 2009 relations with 1 large ideals: 164 Fri Dec 18 14:59:00 2009 relations with 2 large ideals: 2220 Fri Dec 18 14:59:00 2009 relations with 3 large ideals: 18794 Fri Dec 18 14:59:00 2009 relations with 4 large ideals: 86118 Fri Dec 18 14:59:00 2009 relations with 5 large ideals: 224100 Fri Dec 18 14:59:00 2009 relations with 6 large ideals: 364557 Fri Dec 18 14:59:00 2009 relations with 7+ large ideals: 560484 Fri Dec 18 14:59:00 2009 commencing 2-way merge Fri Dec 18 14:59:01 2009 reduce to 799629 relation sets and 769585 unique ideals Fri Dec 18 14:59:01 2009 commencing full merge Fri Dec 18 14:59:23 2009 memory use: 87.9 MB Fri Dec 18 14:59:23 2009 found 402653 cycles, need 397785 Fri Dec 18 14:59:23 2009 weight of 397785 cycles is about 28219113 (70.94/cycle) Fri Dec 18 14:59:23 2009 distribution of cycle lengths: Fri Dec 18 14:59:23 2009 1 relations: 33585 Fri Dec 18 14:59:23 2009 2 relations: 41457 Fri Dec 18 14:59:23 2009 3 relations: 43885 Fri Dec 18 14:59:23 2009 4 relations: 41345 Fri Dec 18 14:59:23 2009 5 relations: 38853 Fri Dec 18 14:59:23 2009 6 relations: 34460 Fri Dec 18 14:59:23 2009 7 relations: 30544 Fri Dec 18 14:59:23 2009 8 relations: 26123 Fri Dec 18 14:59:23 2009 9 relations: 22197 Fri Dec 18 14:59:23 2009 10+ relations: 85336 Fri Dec 18 14:59:23 2009 heaviest cycle: 23 relations Fri Dec 18 14:59:23 2009 commencing cycle optimization Fri Dec 18 14:59:24 2009 start with 2542001 relations Fri Dec 18 14:59:31 2009 pruned 75418 relations Fri Dec 18 14:59:31 2009 memory use: 62.5 MB Fri Dec 18 14:59:31 2009 distribution of cycle lengths: Fri Dec 18 14:59:31 2009 1 relations: 33585 Fri Dec 18 14:59:31 2009 2 relations: 42324 Fri Dec 18 14:59:31 2009 3 relations: 45477 Fri Dec 18 14:59:31 2009 4 relations: 42542 Fri Dec 18 14:59:31 2009 5 relations: 40031 Fri Dec 18 14:59:31 2009 6 relations: 35283 Fri Dec 18 14:59:31 2009 7 relations: 31283 Fri Dec 18 14:59:31 2009 8 relations: 26361 Fri Dec 18 14:59:31 2009 9 relations: 22186 Fri Dec 18 14:59:31 2009 10+ relations: 78713 Fri Dec 18 14:59:31 2009 heaviest cycle: 23 relations Fri Dec 18 14:59:32 2009 RelProcTime: 158 Fri Dec 18 14:59:32 2009 Fri Dec 18 14:59:32 2009 commencing linear algebra Fri Dec 18 14:59:32 2009 read 397785 cycles Fri Dec 18 14:59:32 2009 cycles contain 1226470 unique relations Fri Dec 18 15:00:02 2009 read 1226470 relations Fri Dec 18 15:00:03 2009 using 20 quadratic characters above 67107968 Fri Dec 18 15:00:10 2009 building initial matrix Fri Dec 18 15:00:24 2009 memory use: 134.1 MB Fri Dec 18 15:00:24 2009 read 397785 cycles Fri Dec 18 15:00:36 2009 matrix is 397608 x 397785 (113.2 MB) with weight 35897815 (90.24/col) Fri Dec 18 15:00:36 2009 sparse part has weight 26902376 (67.63/col) Fri Dec 18 15:00:39 2009 filtering completed in 2 passes Fri Dec 18 15:00:40 2009 matrix is 397460 x 397637 (113.2 MB) with weight 35892088 (90.26/col) Fri Dec 18 15:00:40 2009 sparse part has weight 26900033 (67.65/col) Fri Dec 18 15:00:41 2009 read 397637 cycles Fri Dec 18 15:01:23 2009 matrix is 397460 x 397637 (113.2 MB) with weight 35892088 (90.26/col) Fri Dec 18 15:01:23 2009 sparse part has weight 26900033 (67.65/col) Fri Dec 18 15:01:23 2009 saving the first 48 matrix rows for later Fri Dec 18 15:01:24 2009 matrix is 397412 x 397637 (106.4 MB) with weight 28341079 (71.27/col) Fri Dec 18 15:01:24 2009 sparse part has weight 25515877 (64.17/col) Fri Dec 18 15:01:24 2009 matrix includes 64 packed rows Fri Dec 18 15:01:24 2009 using block size 65536 for processor cache size 6144 kB Fri Dec 18 15:01:27 2009 commencing Lanczos iteration (6 threads) Fri Dec 18 15:01:27 2009 memory use: 123.9 MB Fri Dec 18 15:11:30 2009 lanczos halted after 6286 iterations (dim = 397412) Fri Dec 18 15:11:31 2009 recovered 37 nontrivial dependencies Fri Dec 18 15:11:31 2009 BLanczosTime: 719 Fri Dec 18 15:11:31 2009 Fri Dec 18 15:11:31 2009 commencing square root phase Fri Dec 18 15:11:31 2009 reading relations for dependency 1 Fri Dec 18 15:11:32 2009 read 198961 cycles Fri Dec 18 15:11:32 2009 cycles contain 768805 unique relations Fri Dec 18 15:11:51 2009 read 768805 relations Fri Dec 18 15:11:55 2009 multiplying 613156 relations Fri Dec 18 15:13:05 2009 multiply complete, coefficients have about 21.74 million bits Fri Dec 18 15:13:05 2009 initial square root is modulo 1749431 Fri Dec 18 15:14:40 2009 sqrtTime: 189 Fri Dec 18 15:14:40 2009 prp61 factor: 4623071854794763055981863186790303195310782012328269473558183 Fri Dec 18 15:14:40 2009 prp86 factor: 23667366222130787792273066730206177697377235694310735886378311300462181777177208904581 Fri Dec 18 15:14:40 2009 elapsed time 00:17:48
By Erik Branger / YAFU, Msieve, GGNFS, Msieve / Dec 18, 2009
(23·10104+7)/3 = 7(6)1039<105> = 31 · 59 · 1259081973381863<16> · C87
C87 = P39 · P48
P39 = 485355677072414738525607759311522393567<39>
P48 = 685928354668540614395845427196619202593904737841<48>
12/17/09 17:20:06 v1.14 @ ERIK-DATOR, starting SIQS on c87: 332919221003316962952714214283774363080007369160491821897306409696378607336009959868847 12/17/09 17:20:06 v1.14 @ ERIK-DATOR, random seeds: 0, 4234451912 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, ==== sieve params ==== 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, n = 88 digits, 292 bits 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, factor base: 59299 primes (max prime = 1555291) 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, single large prime cutoff: 171082010 (110 * pmax) 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, double large prime range from 43 to 50 bits 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, double large prime cutoff: 660340325177177 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, allocating 12 large prime slices of factor base 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, buckets hold 1024 elements 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, polynomial A has ~ 11 factors 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, using multiplier of 13 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, using small prime variation correction of 21 bits 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, trial factoring cutoff at 96 bits 12/17/09 17:20:07 v1.14 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 12/17/09 17:47:38 v1.14 @ ERIK-DATOR, trial division touched 13557846 sieve locations out of 45420989644800 12/17/09 17:47:38 v1.14 @ ERIK-DATOR, 59732 relations found: 19973 full + 39759 from 551163 partial, using 38503850 polys (547 A polys) 12/17/09 17:47:38 v1.14 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 345.78 rels/sec 12/17/09 17:47:38 v1.14 @ ERIK-DATOR, trial division touched 13557846 sieve locations out of 45420989644800 12/17/09 17:47:38 v1.14 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 12/17/09 17:47:39 v1.14 @ ERIK-DATOR, begin with 571136 relations 12/17/09 17:47:40 v1.14 @ ERIK-DATOR, reduce to 122343 relations in 9 passes 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, recovered 122343 relations 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, recovered 98940 polynomials 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, attempting to build 59732 cycles 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, found 59732 cycles in 4 passes 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, distribution of cycle lengths: 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 1 : 19973 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 2 : 16102 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 3 : 11108 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 4 : 6291 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 5 : 3390 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 6 : 1583 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 7 : 755 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, length 9+: 530 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, largest cycle: 17 relations 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, matrix is 59299 x 59732 (12.1 MB) with weight 2922762 (48.93/col) 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, sparse part has weight 2922762 (48.93/col) 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, filtering completed in 3 passes 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, matrix is 52382 x 52443 (10.8 MB) with weight 2612003 (49.81/col) 12/17/09 17:47:53 v1.14 @ ERIK-DATOR, sparse part has weight 2612003 (49.81/col) 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, saving the first 48 matrix rows for later 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, matrix is 52334 x 52443 (9.0 MB) with weight 2228680 (42.50/col) 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, sparse part has weight 2043916 (38.97/col) 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, matrix includes 64 packed rows 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, using block size 20977 for processor cache size 2048 kB 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, commencing Lanczos iteration 12/17/09 17:47:54 v1.14 @ ERIK-DATOR, memory use: 8.1 MB 12/17/09 17:48:20 v1.14 @ ERIK-DATOR, lanczos halted after 829 iterations (dim = 52333) 12/17/09 17:48:21 v1.14 @ ERIK-DATOR, recovered 19 nontrivial dependencies 12/17/09 17:48:22 v1.14 @ ERIK-DATOR, prp39 = 485355677072414738525607759311522393567 12/17/09 17:48:23 v1.14 @ ERIK-DATOR, prp48 = 685928354668540614395845427196619202593904737841 12/17/09 17:48:23 v1.14 @ ERIK-DATOR, Lanczos elapsed time = 42.5920 seconds. 12/17/09 17:48:23 v1.14 @ ERIK-DATOR, Sqrt elapsed time = 2.5280 seconds. 12/17/09 17:48:23 v1.14 @ ERIK-DATOR, SIQS elapsed time = 1696.8740 seconds.
(23·10108+7)/3 = 7(6)1079<109> = 17 · 2242460041<10> · 62518635437<11> · C88
C88 = P43 · P46
P43 = 2080914820955598617907251122725823898148173<43>
P46 = 1545856417436797515310721619019024547744620877<46>
2/17/09 18:11:31 v1.14 @ ERIK-DATOR, starting SIQS on c88: 3216795530113556618934915882743498388485970004369579124482771856979467751789282255207721 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, random seeds: 0, 4234451912 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, ==== sieve params ==== 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, n = 88 digits, 291 bits 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, factor base: 61083 primes (max prime = 1611749) 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, single large prime cutoff: 177292390 (110 * pmax) 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, double large prime range from 43 to 50 bits 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, double large prime cutoff: 704112687915357 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, allocating 12 large prime slices of factor base 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, buckets hold 1024 elements 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, polynomial A has ~ 11 factors 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, using multiplier of 1 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, using small prime variation correction of 20 bits 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, trial factoring cutoff at 97 bits 12/17/09 18:11:31 v1.14 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 12/17/09 18:39:06 v1.14 @ ERIK-DATOR, trial division touched 12387346 sieve locations out of 36035391651840 12/17/09 18:39:06 v1.14 @ ERIK-DATOR, 61605 relations found: 20676 full + 40929 from 577615 partial, using 30547580 polys (487 A polys) 12/17/09 18:39:06 v1.14 @ ERIK-DATOR, on average, sieving found 0.02 rels/poly and 361.41 rels/sec 12/17/09 18:39:06 v1.14 @ ERIK-DATOR, trial division touched 12387346 sieve locations out of 36035391651840 12/17/09 18:39:06 v1.14 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 12/17/09 18:39:07 v1.14 @ ERIK-DATOR, begin with 598291 relations 12/17/09 18:39:08 v1.14 @ ERIK-DATOR, reduce to 126888 relations in 9 passes 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, recovered 126888 relations 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, recovered 99447 polynomials 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, attempting to build 61605 cycles 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, found 61605 cycles in 5 passes 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, distribution of cycle lengths: 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 1 : 20676 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 2 : 16707 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 3 : 11348 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 4 : 6423 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 5 : 3462 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 6 : 1681 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 7 : 723 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, length 9+: 585 12/17/09 18:39:20 v1.14 @ ERIK-DATOR, largest cycle: 15 relations 12/17/09 18:39:21 v1.14 @ ERIK-DATOR, matrix is 61083 x 61605 (12.2 MB) with weight 2961410 (48.07/col) 12/17/09 18:39:21 v1.14 @ ERIK-DATOR, sparse part has weight 2961410 (48.07/col) 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, filtering completed in 4 passes 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, matrix is 53728 x 53792 (10.9 MB) with weight 2631067 (48.91/col) 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, sparse part has weight 2631067 (48.91/col) 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, saving the first 48 matrix rows for later 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, matrix is 53680 x 53792 (9.2 MB) with weight 2274175 (42.28/col) 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, sparse part has weight 2084036 (38.74/col) 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, matrix includes 64 packed rows 12/17/09 18:39:22 v1.14 @ ERIK-DATOR, using block size 21516 for processor cache size 2048 kB 12/17/09 18:39:24 v1.14 @ ERIK-DATOR, commencing Lanczos iteration 12/17/09 18:39:24 v1.14 @ ERIK-DATOR, memory use: 8.3 MB 12/17/09 18:39:47 v1.14 @ ERIK-DATOR, lanczos halted after 851 iterations (dim = 53676) 12/17/09 18:39:48 v1.14 @ ERIK-DATOR, recovered 13 nontrivial dependencies 12/17/09 18:39:49 v1.14 @ ERIK-DATOR, prp43 = 2080914820955598617907251122725823898148173 12/17/09 18:39:53 v1.14 @ ERIK-DATOR, prp46 = 1545856417436797515310721619019024547744620877 12/17/09 18:39:53 v1.14 @ ERIK-DATOR, Lanczos elapsed time = 41.3880 seconds. 12/17/09 18:39:53 v1.14 @ ERIK-DATOR, Sqrt elapsed time = 5.2320 seconds. 12/17/09 18:39:53 v1.14 @ ERIK-DATOR, SIQS elapsed time = 1702.0760 seconds.
(71·10106-53)/9 = 7(8)1053<107> = 7 · 395216035203671863<18> · C89
C89 = P41 · P48
P41 = 53297442354068332478494079591206476081077<41>
P48 = 535028447019444715581687239232391799724047883719<48>
Thu Dec 17 17:30:46 2009 Msieve v. 1.43 Thu Dec 17 17:30:46 2009 random seeds: 71c02d80 12ee9b7a Thu Dec 17 17:30:46 2009 factoring 28515647812805557665654578219032714046939482963930944496594790241418751535994394512285363 (89 digits) Thu Dec 17 17:30:49 2009 searching for 15-digit factors Thu Dec 17 17:30:50 2009 commencing quadratic sieve (89-digit input) Thu Dec 17 17:30:50 2009 using multiplier of 1 Thu Dec 17 17:30:50 2009 using 64kb Pentium 4 sieve core Thu Dec 17 17:30:50 2009 sieve interval: 15 blocks of size 65536 Thu Dec 17 17:30:50 2009 processing polynomials in batches of 7 Thu Dec 17 17:30:50 2009 using a sieve bound of 1546823 (58611 primes) Thu Dec 17 17:30:50 2009 using large prime bound of 123745840 (26 bits) Thu Dec 17 17:30:50 2009 using double large prime bound of 368599753674560 (42-49 bits) Thu Dec 17 17:30:50 2009 using trial factoring cutoff of 49 bits Thu Dec 17 17:30:50 2009 polynomial 'A' values have 11 factors Thu Dec 17 19:21:41 2009 58786 relations (15786 full + 43000 combined from 626816 partial), need 58707 Thu Dec 17 19:21:43 2009 begin with 642602 relations Thu Dec 17 19:21:44 2009 reduce to 143411 relations in 10 passes Thu Dec 17 19:21:44 2009 attempting to read 143411 relations Thu Dec 17 19:21:49 2009 recovered 143411 relations Thu Dec 17 19:21:49 2009 recovered 123175 polynomials Thu Dec 17 19:21:49 2009 attempting to build 58786 cycles Thu Dec 17 19:21:49 2009 found 58786 cycles in 6 passes Thu Dec 17 19:21:49 2009 distribution of cycle lengths: Thu Dec 17 19:21:49 2009 length 1 : 15786 Thu Dec 17 19:21:49 2009 length 2 : 11230 Thu Dec 17 19:21:49 2009 length 3 : 10197 Thu Dec 17 19:21:49 2009 length 4 : 7832 Thu Dec 17 19:21:49 2009 length 5 : 5528 Thu Dec 17 19:21:49 2009 length 6 : 3586 Thu Dec 17 19:21:49 2009 length 7 : 2143 Thu Dec 17 19:21:49 2009 length 9+: 2484 Thu Dec 17 19:21:49 2009 largest cycle: 16 relations Thu Dec 17 19:21:49 2009 matrix is 58611 x 58786 (14.3 MB) with weight 3525701 (59.98/col) Thu Dec 17 19:21:49 2009 sparse part has weight 3525701 (59.98/col) Thu Dec 17 19:21:51 2009 filtering completed in 3 passes Thu Dec 17 19:21:51 2009 matrix is 54725 x 54789 (13.5 MB) with weight 3315509 (60.51/col) Thu Dec 17 19:21:51 2009 sparse part has weight 3315509 (60.51/col) Thu Dec 17 19:21:51 2009 saving the first 48 matrix rows for later Thu Dec 17 19:21:51 2009 matrix is 54677 x 54789 (9.5 MB) with weight 2710808 (49.48/col) Thu Dec 17 19:21:51 2009 sparse part has weight 2160529 (39.43/col) Thu Dec 17 19:21:51 2009 matrix includes 64 packed rows Thu Dec 17 19:21:51 2009 using block size 21845 for processor cache size 512 kB Thu Dec 17 19:21:52 2009 commencing Lanczos iteration Thu Dec 17 19:21:52 2009 memory use: 9.2 MB Thu Dec 17 19:22:19 2009 lanczos halted after 866 iterations (dim = 54674) Thu Dec 17 19:22:20 2009 recovered 15 nontrivial dependencies Thu Dec 17 19:22:20 2009 prp41 factor: 53297442354068332478494079591206476081077 Thu Dec 17 19:22:20 2009 prp48 factor: 535028447019444715581687239232391799724047883719 Thu Dec 17 19:22:20 2009 elapsed time 01:51:34
(23·10136+7)/3 = 7(6)1359<137> = 749773 · 4153301 · 14435189 · 32457907 · 188176079764936119047<21> · C90
C90 = P36 · P55
P36 = 181640374412425783567041523872410101<36>
P55 = 1537317554685431513606392745565325440665719944957889313<55>
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, starting SIQS on c90: 279238936223856629565358566671998470909289797293239621891946305210805050327370355301150613 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, random seeds: 0, 4234451912 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, ==== sieve params ==== 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, n = 91 digits, 300 bits 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, factor base: 65244 primes (max prime = 1727969) 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, single large prime cutoff: 190076590 (110 * pmax) 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, double large prime range from 43 to 50 bits 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, double large prime cutoff: 798126145132792 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, allocating 13 large prime slices of factor base 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, buckets hold 1024 elements 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, polynomial A has ~ 12 factors 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, using multiplier of 5 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, using small prime variation correction of 19 bits 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, trial factoring cutoff at 97 bits 12/17/09 19:00:07 v1.14 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 12/17/09 20:01:35 v1.14 @ ERIK-DATOR, trial division touched 24313873 sieve locations out of 127655263862784 12/17/09 20:01:35 v1.14 @ ERIK-DATOR, 65511 relations found: 18382 full + 47129 from 776551 partial, using 108214708 polys (901 A polys) 12/17/09 20:01:35 v1.14 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 215.54 rels/sec 12/17/09 20:01:35 v1.14 @ ERIK-DATOR, trial division touched 24313873 sieve locations out of 127655263862784 12/17/09 20:01:35 v1.14 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 12/17/09 20:01:37 v1.14 @ ERIK-DATOR, begin with 794933 relations 12/17/09 20:01:37 v1.14 @ ERIK-DATOR, reduce to 155460 relations in 10 passes 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, recovered 155460 relations 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, recovered 132922 polynomials 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, attempting to build 65511 cycles 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, found 65511 cycles in 5 passes 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, distribution of cycle lengths: 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 1 : 18382 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 2 : 13580 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 3 : 11794 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 4 : 8587 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 5 : 5541 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 6 : 3548 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 7 : 1864 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, length 9+: 2215 12/17/09 20:02:01 v1.14 @ ERIK-DATOR, largest cycle: 17 relations 12/17/09 20:02:02 v1.14 @ ERIK-DATOR, matrix is 65244 x 65511 (15.5 MB) with weight 3798781 (57.99/col) 12/17/09 20:02:02 v1.14 @ ERIK-DATOR, sparse part has weight 3798781 (57.99/col) 12/17/09 20:02:02 v1.14 @ ERIK-DATOR, filtering completed in 3 passes 12/17/09 20:02:02 v1.14 @ ERIK-DATOR, matrix is 60588 x 60650 (14.5 MB) with weight 3552557 (58.57/col) 12/17/09 20:02:02 v1.14 @ ERIK-DATOR, sparse part has weight 3552557 (58.57/col) 12/17/09 20:02:03 v1.14 @ ERIK-DATOR, saving the first 48 matrix rows for later 12/17/09 20:02:04 v1.14 @ ERIK-DATOR, matrix is 60540 x 60650 (12.5 MB) with weight 3129931 (51.61/col) 12/17/09 20:02:04 v1.14 @ ERIK-DATOR, sparse part has weight 2911807 (48.01/col) 12/17/09 20:02:04 v1.14 @ ERIK-DATOR, matrix includes 64 packed rows 12/17/09 20:02:04 v1.14 @ ERIK-DATOR, using block size 24260 for processor cache size 2048 kB 12/17/09 20:02:05 v1.14 @ ERIK-DATOR, commencing Lanczos iteration 12/17/09 20:02:05 v1.14 @ ERIK-DATOR, memory use: 10.7 MB 12/17/09 20:02:54 v1.14 @ ERIK-DATOR, lanczos halted after 959 iterations (dim = 60538) 12/17/09 20:02:54 v1.14 @ ERIK-DATOR, recovered 17 nontrivial dependencies 12/17/09 20:02:57 v1.14 @ ERIK-DATOR, prp55 = 1537317554685431513606392745565325440665719944957889313 12/17/09 20:03:00 v1.14 @ ERIK-DATOR, prp36 = 181640374412425783567041523872410101 12/17/09 20:03:00 v1.14 @ ERIK-DATOR, Lanczos elapsed time = 79.7520 seconds. 12/17/09 20:03:00 v1.14 @ ERIK-DATOR, Sqrt elapsed time = 5.3220 seconds. 12/17/09 20:03:00 v1.14 @ ERIK-DATOR, SIQS elapsed time = 3773.2500 seconds.
(23·10139+7)/3 = 7(6)1389<140> = 2131 · 16091 · 9230651 · 17938289 · 371558381039545550824559959<27> · C92
C92 = P42 · P50
P42 = 775231789371928457084912814154799110990573<42>
P50 = 46877896298271797921498266587994595101347397988693<50>
Number: 76669_139 N=36341235429300947152532358431311731673430180271977943420379116126867369874894462531083591089 ( 92 digits) Divisors found: r1=775231789371928457084912814154799110990573 (pp42) r2=46877896298271797921498266587994595101347397988693 (pp50) Version: Msieve v. 1.43 Total time: 2.11 hours. Scaled time: 1.64 units (timescale=0.777). Factorization parameters were as follows: n: 36341235429300947152532358431311731673430180271977943420379116126867369874894462531083591089 # Murphy_E = 3.229128e-008 skew: 555236.39 Y0: -11092746106454675872026 Y1: 708120481289 c0: 29526976497269909000205785 c1: -682708658988982613014 c2: 439706832670957 c3: 2783592832 c4: 2400 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [350000, 790001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 105343 x 105568 Total sieving time: 2.03 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 2.11 hours. --------- CPU info (if available) ----------
(71·10143-53)/9 = 7(8)1423<144> = 3 · 17 · 6301 · 153929 · 419651 · 35797100488701217<17> · 6937361701708324267103<22> · C90
C90 = P33 · P57
P33 = 153780535368606699808334225196851<33>
P57 = 995139386383652479833893377455100373087666602506469998827<57>
Thu Dec 17 19:27:30 2009 Msieve v. 1.43 Thu Dec 17 19:27:30 2009 random seeds: 914d6de8 98ee6a6a Thu Dec 17 19:27:30 2009 factoring 153033067604464838667101747728037243338673247578173298965964268593285084430575079814093777 (90 digits) Thu Dec 17 19:27:31 2009 searching for 15-digit factors Thu Dec 17 19:27:32 2009 commencing quadratic sieve (90-digit input) Thu Dec 17 19:27:32 2009 using multiplier of 73 Thu Dec 17 19:27:32 2009 using 64kb Pentium 4 sieve core Thu Dec 17 19:27:32 2009 sieve interval: 18 blocks of size 65536 Thu Dec 17 19:27:32 2009 processing polynomials in batches of 6 Thu Dec 17 19:27:32 2009 using a sieve bound of 1575281 (59405 primes) Thu Dec 17 19:27:32 2009 using large prime bound of 126022480 (26 bits) Thu Dec 17 19:27:32 2009 using double large prime bound of 380896014563600 (42-49 bits) Thu Dec 17 19:27:32 2009 using trial factoring cutoff of 49 bits Thu Dec 17 19:27:32 2009 polynomial 'A' values have 12 factors Thu Dec 17 21:28:20 2009 60034 relations (16546 full + 43488 combined from 628080 partial), need 59501 Thu Dec 17 21:28:22 2009 begin with 644626 relations Thu Dec 17 21:28:23 2009 reduce to 144631 relations in 10 passes Thu Dec 17 21:28:23 2009 attempting to read 144631 relations Thu Dec 17 21:28:28 2009 recovered 144631 relations Thu Dec 17 21:28:28 2009 recovered 123342 polynomials Thu Dec 17 21:28:28 2009 attempting to build 60034 cycles Thu Dec 17 21:28:28 2009 found 60033 cycles in 5 passes Thu Dec 17 21:28:28 2009 distribution of cycle lengths: Thu Dec 17 21:28:28 2009 length 1 : 16546 Thu Dec 17 21:28:28 2009 length 2 : 11699 Thu Dec 17 21:28:28 2009 length 3 : 10471 Thu Dec 17 21:28:28 2009 length 4 : 7896 Thu Dec 17 21:28:28 2009 length 5 : 5549 Thu Dec 17 21:28:28 2009 length 6 : 3432 Thu Dec 17 21:28:28 2009 length 7 : 2116 Thu Dec 17 21:28:28 2009 length 9+: 2324 Thu Dec 17 21:28:28 2009 largest cycle: 18 relations Thu Dec 17 21:28:29 2009 matrix is 59405 x 60033 (14.5 MB) with weight 3561514 (59.33/col) Thu Dec 17 21:28:29 2009 sparse part has weight 3561514 (59.33/col) Thu Dec 17 21:28:30 2009 filtering completed in 3 passes Thu Dec 17 21:28:30 2009 matrix is 55134 x 55198 (13.3 MB) with weight 3276690 (59.36/col) Thu Dec 17 21:28:30 2009 sparse part has weight 3276690 (59.36/col) Thu Dec 17 21:28:30 2009 saving the first 48 matrix rows for later Thu Dec 17 21:28:30 2009 matrix is 55086 x 55198 (8.4 MB) with weight 2562204 (46.42/col) Thu Dec 17 21:28:30 2009 sparse part has weight 1871413 (33.90/col) Thu Dec 17 21:28:30 2009 matrix includes 64 packed rows Thu Dec 17 21:28:30 2009 using block size 21845 for processor cache size 512 kB Thu Dec 17 21:28:31 2009 commencing Lanczos iteration Thu Dec 17 21:28:31 2009 memory use: 8.6 MB Thu Dec 17 21:28:57 2009 lanczos halted after 872 iterations (dim = 55084) Thu Dec 17 21:28:57 2009 recovered 17 nontrivial dependencies Thu Dec 17 21:28:58 2009 prp33 factor: 153780535368606699808334225196851 Thu Dec 17 21:28:58 2009 prp57 factor: 995139386383652479833893377455100373087666602506469998827 Thu Dec 17 21:28:58 2009 elapsed time 02:01:28
(71·10146-53)/9 = 7(8)1453<147> = 32 · 155009 · 767549 · 548065700787859763<18> · 28313464398271296426643<23> · C95
C95 = P32 · P63
P32 = 90043846252206546356078001486191<32>
P63 = 527267048811299110914254879692935600567639860720341154915317553<63>
Number: 78883_146 N=47477153077019301591159437118623653232470390621832433349503030875070890539062923001884709410623 ( 95 digits) Divisors found: r1=90043846252206546356078001486191 (pp32) r2=527267048811299110914254879692935600567639860720341154915317553 (pp63) Version: Msieve v. 1.43 Total time: 3.39 hours. Scaled time: 3.11 units (timescale=0.917). Factorization parameters were as follows: n: 47477153077019301591159437118623653232470390621832433349503030875070890539062923001884709410623 # Murphy_E = 2.199459e-008 skew: 821603.19 Y0: -59297521755283477345156 Y1: 2701252515379 c0: -412061918369381128218326745 c1: 525673834041331095722 c2: -1165956053512201 c3: 1411579704 c4: 3840 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 840001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 141600 x 141825 Total sieving time: 3.14 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 3.39 hours. --------- CPU info (if available) ----------
By Markus Tervooren / Msieve / Dec 18, 2009
(55·10201+53)/9 = 6(1)2007<202> = 3 · 29 · 183770345533477853<18> · 9930904669574722752815513<25> · 3182926213879566929452257852809267<34> · C125
C125 = P37 · P43 · P46
P37 = 1013944414775298531887586674648494811<37>
P43 = 2482825775424863871031919439485952104015647<43>
P46 = 4803410675320021647238892316395541852769020721<46>
N=12092333369161073721453095497369483934473764519498218736238482790936465340160389049119166372609930051353777385455408331203957 ( 125 digits) Divisors found: r1=1013944414775298531887586674648494811 (pp37) r2=2482825775424863871031919439485952104015647 (pp43) r3=4803410675320021647238892316395541852769020721 (pp46) Version: Msieve-1.39 Total time: 41.67 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 12092333369161073721453095497369483934473764519498218736238482790936465340160389049119166372609930051353777385455408331203957 Y0: -1274220013688769562210121 Y1: 23595695924081 c0: -4189165970554800237272722358592 c1: 28436094983909550967213948 c2: 554318636804277421328 c3: -207429849887747 c4: -6490537500 c5: 3600 skew: 301287.21 type: gnfs # selected mechanically rlim: 6800000 alim: 6800000 lpbr: 29 lpba: 29 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 55/55 Sieved algebraic special-q in [3400000, 6100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 953591 x 953835 Total sieving time: 39.29 hours. Total relation processing time: 0.42 hours. Matrix solve time: 1.74 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6800000,6800000,29,29,55,55,2.6,2.6,300000 total time: 41.67 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.332940] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432541] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197988k/10485760k available (2226k kernel code, 189848k reserved, 1082k data, 392k init) [ 0.083990] Calibrating delay using timer specific routine.. 5337.16 BogoMIPS (lpj=10674326) [ 0.156009] Calibrating delay using timer specific routine.. 5333.34 BogoMIPS (lpj=10666681) [ 0.256016] Calibrating delay using timer specific routine.. 5333.37 BogoMIPS (lpj=10666743) [ 0.352020] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666726) [ 0.440025] Total of 4 processors activated (21337.23 BogoMIPS).
Factorizations of 766...669 and Factorizations of 788...883 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 17, 2009
(29·10202+43)/9 = 3(2)2017<203> = 13 · 37 · 67 · 281 · C196
C196 = P43 · P153
P43 = 3674105515071385923953475204266498683006339<43>
P153 = 968451029165192787220172854208092971645574837169322265433382588380652505264113029568531164766001228858681871429432540061664423654443730298774148095125139<153>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1735727886 Step 1 took 75389ms Step 2 took 22706ms ********** Factor found in step 2: 3674105515071385923953475204266498683006339 Found probable prime factor of 43 digits: 3674105515071385923953475204266498683006339 Probable prime cofactor 968451029165192787220172854208092971645574837169322265433382588380652505264113029568531164766001228858681871429432540061664423654443730298774148095125139 has 153 digits
(58·10197-31)/9 = 6(4)1961<198> = 7 · 701359 · C192
C192 = P34 · P158
P34 = 5096513647532794501083118207545671<34>
P158 = 25755730864699073082591851139288692898367531568560403723880529183734319522625123361538086832200835064883598563324719178361854842928202684987796418138149494567<158>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3484559451 Step 1 took 23184ms Step 2 took 9180ms ********** Factor found in step 2: 5096513647532794501083118207545671 Found probable prime factor of 34 digits: 5096513647532794501083118207545671 Probable prime cofactor 25755730864699073082591851139288692898367531568560403723880529183734319522625123361538086832200835064883598563324719178361854842928202684987796418138149494567 has 158 digits
By Robert Backstrom / GGNFS, GMP-ECM / Dec 17, 2009
(23·10145-11)/3 = 7(6)1443<146> = 73 · 3038768926042968579379669855909439<34> · C111
C111 = P48 · P63
P48 = 845283140698843865336212986554806013518603912649<48>
P63 = 408868673677092400223227385697963975271696927286475015890283721<63>
Number: n N=345609796619143374458216318336570804191938122766182957592489445289969179338203424935277656426699958813310686929 ( 111 digits) SNFS difficulty: 146 digits. Divisors found: r1=845283140698843865336212986554806013518603912649 (pp48) r2=408868673677092400223227385697963975271696927286475015890283721 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.21 hours. Scaled time: 14.97 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_6_144_3 n: 345609796619143374458216318336570804191938122766182957592489445289969179338203424935277656426699958813310686929 m: 100000000000000000000000000000 deg: 5 c5: 23 c0: -11 skew: 0.86 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 qintsize: 50000 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2265001) Primes: RFBsize:144125, AFBsize:143033, largePrimes:3989739 encountered Relations: rels:3985007, finalFF:336507 Max relations in full relation-set: 48 Initial matrix: 287225 x 336507 with sparse part having weight 43143938. Pruned matrix : 272402 x 273902 with weight 29441363. Total sieving time: 7.15 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.86 hours. Total square root time: 0.13 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 8.21 hours. --------- CPU info (if available) ----------
(23·10145-17)/3 = 7(6)1441<146> = 43 · 1398251 · 1256710869813684340075674424685443<34> · C106
C106 = P36 · P70
P36 = 352755190695254784102272351641732783<36>
P70 = 2876366371462316267559577405110123487885940029900306706265095862354433<70>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1014653167874607433393138777593797766888773887153826194843762435948768275207619865105895761692478221477039 (106 digits) Using B1=6248000, B2=14271184210, polynomial Dickson(12), sigma=1751604143 Step 1 took 43078ms Step 2 took 20937ms ********** Factor found in step 2: 352755190695254784102272351641732783 Found probable prime factor of 36 digits: 352755190695254784102272351641732783 Probable prime cofactor 2876366371462316267559577405110123487885940029900306706265095862354433 has 70 digits
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve / Dec 17, 2009
(44·10203-17)/9 = 4(8)2027<204> = 7 · 163 · C201
C201 = P47 · P70 · P85
P47 = 25630033563617031385847435547249273144166992113<47>
P70 = 4318542942595009757820233830306013464597471777655328897723327414407359<70>
P85 = 3871133112888410851242347512433614554822820895229540799493946065464240230365835632021<85>
Msieve v. 1.44 Wed Dec 16 08:27:43 2009 random seeds: b663c5c9 2a7cea5e factoring 428474048105949946440743986756256694907001655467913136624793066510857921900866686142759762391664232155029701041970980621287369753627422339078780796572207615152400428474048105949946440743986756256694907 (201 digits) searching for 15-digit factors commencing number field sieve (201-digit input) R0: -100000000000000000000000000000000000000000 R1: 1 A0: -425 A1: 0 A2: 0 A3: 0 A4: 0 A5: 11 skew 2.08, size 2.533068e-14, alpha 0.591541, combined = 8.538608e-12 commencing linear algebra read 2577934 cycles cycles contain 7049519 unique relations read 7049519 relations using 20 quadratic characters above 536869920 building initial matrix memory use: 942.8 MB read 2577934 cycles matrix is 2577640 x 2577934 (760.6 MB) with weight 223821725 (86.82/col) sparse part has weight 171040876 (66.35/col) filtering completed in 3 passes matrix is 2573115 x 2573315 (759.9 MB) with weight 223594494 (86.89/col) sparse part has weight 170906338 (66.41/col) read 2573315 cycles matrix is 2573115 x 2573315 (759.9 MB) with weight 223594494 (86.89/col) sparse part has weight 170906338 (66.41/col) saving the first 48 matrix rows for later matrix is 2573067 x 2573315 (719.2 MB) with weight 176770577 (68.69/col) sparse part has weight 162792089 (63.26/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (2 threads) memory use: 735.8 MB linear algebra at 0.0%, ETA 22h41m73315 dimensions (0.0%, ETA 22h41m) linear algebra completed 2573030 of 2573315 dimensions (100.0%, ETA 0h 0m) lanczos halted after 40690 iterations (dim = 2573066) recovered 37 nontrivial dependencies BLanczosTime: 80905 commencing square root phase reading relations for dependency 1 read 1286702 cycles cycles contain 3522180 unique relations read 3522180 relations multiplying 3522180 relations multiply complete, coefficients have about 98.19 million bits initial square root is modulo 11164921 reading relations for dependency 2 read 1286513 cycles cycles contain 3523688 unique relations read 3523688 relations multiplying 3523688 relations multiply complete, coefficients have about 98.23 million bits initial square root is modulo 11235751 sqrtTime: 3833 prp47 factor: 25630033563617031385847435547249273144166992113 prp70 factor: 4318542942595009757820233830306013464597471777655328897723327414407359 prp85 factor: 3871133112888410851242347512433614554822820895229540799493946065464240230365835632021 elapsed time 23:32:21
(47·10203+43)/9 = 5(2)2027<204> = 5113 · C201
C201 = P51 · P74 · P77
P51 = 181487491329456893529699014005976048522291563291883<51>
P74 = 30049111668022269060293639919135523844585639431557126784120834903582570631<74>
P77 = 18728423468739666763833572416758539431513609604685681999119733206665398554423<77>
Tue Dec 15 17:32:50 2009 Msieve v. 1.43 Tue Dec 15 17:32:50 2009 random seeds: c7eef5b7 40a71adb Tue Dec 15 17:32:50 2009 factoring 102136167068692005128539452810917704326661885824803876828128735032705304561357759089032314144772584045026837907729752048156116217919464545711367538083751656996327444205402351304952517547862746376339179 (201 digits) Tue Dec 15 17:32:52 2009 no P-1/P+1/ECM available, skipping Tue Dec 15 17:32:52 2009 commencing number field sieve (201-digit input) Tue Dec 15 17:32:52 2009 R0: -50000000000000000000000000000000000000000 Tue Dec 15 17:32:52 2009 R1: 1 Tue Dec 15 17:32:52 2009 A0: 1075 Tue Dec 15 17:32:52 2009 A1: 0 Tue Dec 15 17:32:52 2009 A2: 0 Tue Dec 15 17:32:52 2009 A3: 0 Tue Dec 15 17:32:52 2009 A4: 0 Tue Dec 15 17:32:52 2009 A5: 376 Tue Dec 15 17:32:52 2009 skew 1.23, size 1.228381e-14, alpha 0.965678, combined = 5.741146e-12 Tue Dec 15 17:32:52 2009 Tue Dec 15 17:32:52 2009 commencing linear algebra Tue Dec 15 17:32:53 2009 read 3494552 cycles Tue Dec 15 17:33:02 2009 cycles contain 10342707 unique relations Tue Dec 15 17:34:42 2009 read 10342707 relations Tue Dec 15 17:35:03 2009 using 20 quadratic characters above 536870684 Tue Dec 15 17:36:16 2009 building initial matrix Tue Dec 15 17:39:41 2009 memory use: 1331.6 MB Tue Dec 15 17:39:44 2009 read 3494552 cycles Tue Dec 15 17:39:49 2009 matrix is 3494250 x 3494552 (1047.8 MB) with weight 306605268 (87.74/col) Tue Dec 15 17:39:49 2009 sparse part has weight 236229949 (67.60/col) Tue Dec 15 17:41:36 2009 filtering completed in 3 passes Tue Dec 15 17:41:38 2009 matrix is 3483497 x 3483697 (1046.3 MB) with weight 306109139 (87.87/col) Tue Dec 15 17:41:38 2009 sparse part has weight 235953625 (67.73/col) Tue Dec 15 17:42:10 2009 read 3483697 cycles Tue Dec 15 17:42:14 2009 matrix is 3483497 x 3483697 (1046.3 MB) with weight 306109139 (87.87/col) Tue Dec 15 17:42:14 2009 sparse part has weight 235953625 (67.73/col) Tue Dec 15 17:42:14 2009 saving the first 48 matrix rows for later Tue Dec 15 17:42:17 2009 matrix is 3483449 x 3483697 (993.8 MB) with weight 243574570 (69.92/col) Tue Dec 15 17:42:17 2009 sparse part has weight 225668811 (64.78/col) Tue Dec 15 17:42:17 2009 matrix includes 64 packed rows Tue Dec 15 17:42:17 2009 using block size 65536 for processor cache size 6144 kB Tue Dec 15 17:42:37 2009 commencing Lanczos iteration (5 threads) Tue Dec 15 17:42:37 2009 memory use: 1100.4 MB Tue Dec 15 17:42:57 2009 linear algebra at 0.0%, ETA 22h53m Wed Dec 16 16:00:00 2009 lanczos halted after 55088 iterations (dim = 3483449) Wed Dec 16 16:00:09 2009 recovered 39 nontrivial dependencies Wed Dec 16 16:00:09 2009 BLanczosTime: 80837 Wed Dec 16 16:00:09 2009 elapsed time 22:27:19 Wed Dec 16 16:52:37 2009 Wed Dec 16 16:52:37 2009 Wed Dec 16 16:52:37 2009 Msieve v. 1.43 Wed Dec 16 16:52:37 2009 random seeds: 0a15e1d6 f5d23238 Wed Dec 16 16:52:37 2009 factoring 102136167068692005128539452810917704326661885824803876828128735032705304561357759089032314144772584045026837907729752048156116217919464545711367538083751656996327444205402351304952517547862746376339179 (201 digits) Wed Dec 16 16:52:40 2009 no P-1/P+1/ECM available, skipping Wed Dec 16 16:52:40 2009 commencing number field sieve (201-digit input) Wed Dec 16 16:52:40 2009 R0: -50000000000000000000000000000000000000000 Wed Dec 16 16:52:40 2009 R1: 1 Wed Dec 16 16:52:40 2009 A0: 1075 Wed Dec 16 16:52:40 2009 A1: 0 Wed Dec 16 16:52:40 2009 A2: 0 Wed Dec 16 16:52:40 2009 A3: 0 Wed Dec 16 16:52:40 2009 A4: 0 Wed Dec 16 16:52:40 2009 A5: 376 Wed Dec 16 16:52:40 2009 skew 1.23, size 1.228381e-14, alpha 0.965678, combined = 5.741146e-12 Wed Dec 16 16:52:40 2009 Wed Dec 16 16:52:40 2009 commencing square root phase Wed Dec 16 16:52:40 2009 reading relations for dependency 1 Wed Dec 16 16:52:41 2009 read 1742548 cycles Wed Dec 16 16:52:45 2009 cycles contain 5168802 unique relations Wed Dec 16 16:53:42 2009 read 5168802 relations Wed Dec 16 16:54:22 2009 multiplying 5168802 relations Wed Dec 16 17:00:50 2009 multiply complete, coefficients have about 169.25 million bits Wed Dec 16 17:00:51 2009 initial square root is modulo 1186001 Wed Dec 16 17:15:18 2009 reading relations for dependency 2 Wed Dec 16 17:15:19 2009 read 1741131 cycles Wed Dec 16 17:15:24 2009 cycles contain 5164836 unique relations Wed Dec 16 17:16:20 2009 read 5164836 relations Wed Dec 16 17:17:01 2009 multiplying 5164836 relations Wed Dec 16 17:23:31 2009 multiply complete, coefficients have about 169.12 million bits Wed Dec 16 17:23:33 2009 initial square root is modulo 1173121 Wed Dec 16 17:38:01 2009 reading relations for dependency 3 Wed Dec 16 17:38:01 2009 read 1741280 cycles Wed Dec 16 17:38:06 2009 cycles contain 5166270 unique relations Wed Dec 16 17:39:02 2009 read 5166270 relations Wed Dec 16 17:39:43 2009 multiplying 5166270 relations Wed Dec 16 17:46:10 2009 multiply complete, coefficients have about 169.17 million bits Wed Dec 16 17:46:12 2009 initial square root is modulo 1177921 Wed Dec 16 18:00:39 2009 sqrtTime: 4079 Wed Dec 16 18:00:40 2009 prp51 factor: 181487491329456893529699014005976048522291563291883 Wed Dec 16 18:00:40 2009 prp74 factor: 30049111668022269060293639919135523844585639431557126784120834903582570631 Wed Dec 16 18:00:40 2009 prp77 factor: 18728423468739666763833572416758539431513609604685681999119733206665398554423 Wed Dec 16 18:00:40 2009 elapsed time 01:08:03
By Sinkiti Sibata / Msieve / Dec 17, 2009
(23·10128-17)/3 = 7(6)1271<129> = 439 · 33359 · C122
C122 = P30 · P92
P30 = 796330877846429536306828912489<30>
P92 = 65740875249676750527318907470608197372316851127687878872318015560789092527574729697323746949<92>
Number: 76661_128 N=52351488897967699267919055402510909424344621384131030040809351286980551171497718965963406354783354402531463074116301746061 ( 122 digits) SNFS difficulty: 129 digits. Divisors found: r1=796330877846429536306828912489 (pp30) r2=65740875249676750527318907470608197372316851127687878872318015560789092527574729697323746949 (pp92) Version: Msieve v. 1.42 Total time: 0.19 hours. Scaled time: 0.15 units (timescale=0.796). Factorization parameters were as follows: name: 76661_128 n: 52351488897967699267919055402510909424344621384131030040809351286980551171497718965963406354783354402531463074116301746061 m: 10000000000000000000000000 deg: 5 c5: 23000 c0: -17 skew: 0.24 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 169338 x 169580 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.08 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 0.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 2 hours 24 min.
(68·10149-23)/9 = 7(5)1483<150> = 3 · 16553 · 50929 · C141
C141 = P59 · P83
P59 = 17113117275140880783030116386021552160919406381244764651037<59>
P83 = 17457182741759537230668434734479558816443041150505523061434504635431445561687384479<83>
Number: 75553_149 N=298746815553296382052316567908906005368897905967537402451862449042826513609541950162254094199336945246739671451464771736035835617887685054723 ( 141 digits) SNFS difficulty: 150 digits. Divisors found: r1=17113117275140880783030116386021552160919406381244764651037 (pp59) r2=17457182741759537230668434734479558816443041150505523061434504635431445561687384479 (pp83) Version: Msieve-1.40 Total time: 22.23 hours. Scaled time: 45.60 units (timescale=2.051). Factorization parameters were as follows: name: 75553_149 n: 298746815553296382052316567908906005368897905967537402451862449042826513609541950162254094199336945246739671451464771736035835617887685054723 m: 200000000000000000000000000000 deg: 5 c5: 21250 c0: -23 skew: 0.26 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 463542 x 463790 Total sieving time: 20.70 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.75 hours. Time per square root: 0.66 hours. Prototype def-par.txt line would be: snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 22.23 hours. --------- CPU info (if available) ----------
(68·10150-23)/9 = 7(5)1493<151> = 563 · C149
C149 = P32 · P41 · P77
P32 = 14954759575038077017989758004101<32>
P41 = 61061284304473599603372195208904250303373<41>
P77 = 14696456667525975952009223329233872114376566246538367924642568716200666134747<77>
Number: 75553_150 N=13420169725675942372212354450365107558713242549832247878429050720347345569370436155516084468127096901519636865995658180382869548056048944148411288731 ( 149 digits) SNFS difficulty: 151 digits. Divisors found: r1=14954759575038077017989758004101 (pp32) r2=61061284304473599603372195208904250303373 (pp41) r3=14696456667525975952009223329233872114376566246538367924642568716200666134747 (pp77) Version: Msieve v. 1.42 Total time: 0.63 hours. Scaled time: 0.50 units (timescale=0.796). Factorization parameters were as follows: name: 75553_150 n: 13420169725675942372212354450365107558713242549832247878429050720347345569370436155516084468127096901519636865995658180382869548056048944148411288731 m: 1000000000000000000000000000000 deg: 5 c5: 68 c0: -23 skew: 0.81 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 398069 x 398296 Total sieving time: 0.00 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.45 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 0.63 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 14 hours.
By Dmitry Domanov / GGNFS/msieve / Dec 17, 2009
(23·10150-11)/3 = 7(6)1493<151> = 5237 · 32719 · C143
C143 = P68 · P76
P68 = 20730300332205578545577304811001844751211485934910034956055592189129<68>
P76 = 2158332705171856636744098266679217747556662312757756507611949426597067237949<76>
N=44742885195034304652153743813549596473742407300168222159879171955251379934289392690015188828330301604066088673017825843645727010012790454056421 ( 143 digits) SNFS difficulty: 151 digits. Divisors found: r1=20730300332205578545577304811001844751211485934910034956055592189129 (pp68) r2=2158332705171856636744098266679217747556662312757756507611949426597067237949 (pp76) Version: Msieve-1.40 Total time: 11.42 hours. Scaled time: 22.03 units (timescale=1.928). Factorization parameters were as follows: n: 44742885195034304652153743813549596473742407300168222159879171955251379934289392690015188828330301604066088673017825843645727010012790454056421 m: 1000000000000000000000000000000 deg: 5 c5: 23 c0: -11 skew: 0.86 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 458174 x 458422 Total sieving time: 11.07 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.26 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 11.42 hours. --------- CPU info (if available) ----------
(23·10140-17)/3 = 7(6)1391<141> = 31 · 6983 · C136
C136 = P35 · P102
P35 = 12092697592643045806310843800295173<35>
P102 = 292873213870386294147063822532631373146765490196977576713937119242887016739140553003906553448857860809<102>
N=3541627208320052231302133137465950334067836019580578948259906162277358685224793238263740358689844306988246417182127409268900355548574957 ( 136 digits) SNFS difficulty: 141 digits. Divisors found: r1=12092697592643045806310843800295173 (pp35) r2=292873213870386294147063822532631373146765490196977576713937119242887016739140553003906553448857860809 (pp102) Version: Msieve-1.40 Total time: 4.50 hours. Scaled time: 8.89 units (timescale=1.976). Factorization parameters were as follows: n: 3541627208320052231302133137465950334067836019580578948259906162277358685224793238263740358689844306988246417182127409268900355548574957 m: 10000000000000000000000000000 deg: 5 c5: 23 c0: -17 skew: 0.94 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [795000, 1595001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 195465 x 195690 Total sieving time: 4.35 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 4.50 hours. --------- CPU info (if available) ----------
(23·10135-17)/3 = 7(6)1341<136> = 824172551 · 194129529985105327<18> · C110
C110 = P55 · P56
P55 = 1905320850171848469909562071495906961196008761575322601<55>
P56 = 25149462747812728594322660597906703351892283482122779893<56>
N=47917795744027780378413304806221669354275218945932946509109283412132135919751097227147273714466857302391261693 ( 110 digits) SNFS difficulty: 136 digits. Divisors found: r1=1905320850171848469909562071495906961196008761575322601 (pp55) r2=25149462747812728594322660597906703351892283482122779893 (pp56) Version: Msieve-1.40 Total time: 3.71 hours. Scaled time: 6.97 units (timescale=1.877). Factorization parameters were as follows: n: 47917795744027780378413304806221669354275218945932946509109283412132135919751097227147273714466857302391261693 m: 1000000000000000000000000000 deg: 5 c5: 23 c0: -17 skew: 0.94 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [655000, 1330001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 155675 x 155900 Total sieving time: 3.59 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000 total time: 3.71 hours. --------- CPU info (if available) ----------
(23·10131-17)/3 = 7(6)1301<132> = 7 · 191 · 2996638793<10> · 3890997715465607<16> · C104
C104 = P48 · P56
P48 = 512631118506491300694853903522261777639574203531<48>
P56 = 95934504107332076044084320068184723105024374504364475513<56>
N=49179012143907225906578389671542644025191118244977237920486566849786794594596600064062738910557527636403 ( 104 digits) SNFS difficulty: 132 digits. Divisors found: r1=512631118506491300694853903522261777639574203531 (pp48) r2=95934504107332076044084320068184723105024374504364475513 (pp56) Version: Msieve-1.40 Total time: 2.36 hours. Scaled time: 4.28 units (timescale=1.813). Factorization parameters were as follows: n: 49179012143907225906578389671542644025191118244977237920486566849786794594596600064062738910557527636403 m: 100000000000000000000000000 deg: 5 c5: 230 c0: -17 skew: 0.59 type: snfs lss: 1 rlim: 1120000 alim: 1120000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1120000/1120000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [560000, 1010001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 143159 x 143390 Total sieving time: 2.27 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1120000,1120000,26,26,47,47,2.3,2.3,50000 total time: 2.36 hours. --------- CPU info (if available) ----------
(23·10130-17)/3 = 7(6)1291<131> = 13 · 61 · 10399 · C124
C124 = P47 · P78
P47 = 30318235100717866400373492092541671420427759317<47>
P78 = 306646420444444276169168758599822702752172077221617339445341659227794033863719<78>
N=9296978267828239215778055420580947152701372448227048054585065552387441787273738328300636467090051056983564680553199310519923 ( 124 digits) SNFS difficulty: 131 digits. Divisors found: r1=30318235100717866400373492092541671420427759317 (pp47) r2=306646420444444276169168758599822702752172077221617339445341659227794033863719 (pp78) Version: Msieve-1.40 Total time: 2.14 hours. Scaled time: 4.18 units (timescale=1.957). Factorization parameters were as follows: n: 9296978267828239215778055420580947152701372448227048054585065552387441787273738328300636467090051056983564680553199310519923 m: 100000000000000000000000000 deg: 5 c5: 23 c0: -17 skew: 0.94 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 940001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 118274 x 118500 Total sieving time: 2.07 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 2.14 hours. --------- CPU info (if available) ----------
(23·10148-11)/3 = 7(6)1473<149> = 51005438018230242249981203<26> · C124
C124 = P39 · P86
P39 = 127187830640740361371221967602054087623<39>
P86 = 11818015082134451599966379985993827454800138229230558833671370815526360219428259516027<86>
N=1503107700776231921657131924014173176654439989939501657160233819006711595971027654175356316074967623086933826733503030833821 ( 124 digits) SNFS difficulty: 149 digits. Divisors found: r1=127187830640740361371221967602054087623 (pp39) r2=11818015082134451599966379985993827454800138229230558833671370815526360219428259516027 (pp86) Version: Msieve-1.40 Total time: 12.94 hours. Scaled time: 25.18 units (timescale=1.946). Factorization parameters were as follows: n: 1503107700776231921657131924014173176654439989939501657160233819006711595971027654175356316074967623086933826733503030833821 m: 100000000000000000000000000000 deg: 5 c5: 23000 c0: -11 skew: 0.22 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 3500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 440688 x 440913 Total sieving time: 12.55 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.24 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 12.94 hours. --------- CPU info (if available) ----------
By Agnew yoyo / GMP-ECM / Dec 17, 2009
(64·10347-1)/9 = 7(1)347<348> = 3 · 443 · 5987 · 2586730480696668987564422124671<31> · C311
C311 = P47 · P265
P47 = 14659087572470179449229116683122603300318536157<47>
P265 = 2356921431952052588934037590177099728109555193853091850719231714273453062213133365460581304663024067212955079325297428858553446842378615826672539689330219694793449179709509610909732438351804460200561335905172483023901987009557897904983940745732286127093215612360831<265>
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 34550317672416953827084892267499412045197057142161000818419076015596720334161716626133851628318223460475062662606699081504178180162856355490806191872531832714709422759302739849459589670365940831870050834695459866677147871642828326730993136466595287731450202444255399833480033929257170613279218153276120804066467 (311 digits) [Thu Dec 17 03:28:23 2009] Using MODMULN Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1594316881 dF=65536, k=5, d=690690, d2=17, i0=46 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 5 14 55 246 1277 7553 49797 358989 2841353 Step 1 took 848438ms Using 36 small primes for NTT Estimated memory usage: 402M Initializing tables of differences for F took 234ms Computing roots of F took 14437ms Building F from its roots took 16016ms Computing 1/F took 7422ms Initializing table of differences for G took 313ms Computing roots of G took 11594ms Building G from its roots took 15109ms Computing roots of G took 11594ms Building G from its roots took 15109ms Computing G * H took 4079ms Reducing G * H mod F took 4062ms Computing roots of G took 11594ms Building G from its roots took 15062ms Computing G * H took 4031ms Reducing G * H mod F took 4063ms Computing roots of G took 10969ms Building G from its roots took 15078ms Computing G * H took 3828ms Reducing G * H mod F took 3922ms Computing roots of G took 11328ms Building G from its roots took 14860ms Computing G * H took 3968ms Reducing G * H mod F took 4000ms Computing polyeval(F,G) took 27656ms Computing product of all F(g_i) took 188ms Step 2 took 231031ms ********** Factor found in step 2: 14659087572470179449229116683122603300318536157 Found probable prime factor of 47 digits: 14659087572470179449229116683122603300318536157 Probable prime cofactor 2356921431952052588934037590177099728109555193853091850719231714273453062213133365460581304663024067212955079325297428858553446842378615826672539689330219694793449179709509610909732438351804460200561335905172483023901987009557897904983940745732286127093215612360831 has 265 digits
By Sinkiti Sibata / Msieve, GGNFS / Dec 16, 2009
(68·10147-23)/9 = 7(5)1463<148> = 7 · 13 · 191 · 114145524058937334950410751<27> · C118
C118 = P40 · P78
P40 = 7444412125212146417878210412001724747661<40>
P78 = 511566797573705714139540064583403760560721746535899396273870560730050344203583<78>
Number: 75553_147 N=3808314070713642463132865247438710710836951689144171374141341852389397914903274595705945055940917351089773374687069363 ( 118 digits) SNFS difficulty: 148 digits. Divisors found: r1=7444412125212146417878210412001724747661 (pp40) r2=511566797573705714139540064583403760560721746535899396273870560730050344203583 (pp78) Version: Msieve v. 1.42 Total time: 0.58 hours. Scaled time: 0.46 units (timescale=0.796). Factorization parameters were as follows: name: 75553_147 n: 3808314070713642463132865247438710710836951689144171374141341852389397914903274595705945055940917351089773374687069363 m: 100000000000000000000000000000 deg: 5 c5: 6800 c0: -23 skew: 0.32 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 362627 x 362851 Total sieving time: 0.00 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.38 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 0.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 9 hours.
(68·10148+31)/9 = 7(5)1479<149> = 11 · 367 · 28001 · C141
C141 = P38 · P43 · P61
P38 = 92800742277266402244455752296406105709<38>
P43 = 5095578428923988067283965606586821860079463<43>
P61 = 1413478385719658305746935999570713543673849123265009091961921<61>
Number: 75559_148 N=668396415648338433890954543438052444688739402620290681217271324456091212669680527046851157307702894290060746844549914253438855080660983466907 ( 141 digits) SNFS difficulty: 149 digits. Divisors found: r1=92800742277266402244455752296406105709 (pp38) r2=5095578428923988067283965606586821860079463 (pp43) r3=1413478385719658305746935999570713543673849123265009091961921 (pp61) Version: Msieve-1.40 Total time: 15.20 hours. Scaled time: 30.49 units (timescale=2.006). Factorization parameters were as follows: name: 75559_148 n: 668396415648338433890954543438052444688739402620290681217271324456091212669680527046851157307702894290060746844549914253438855080660983466907 m: 200000000000000000000000000000 deg: 5 c5: 2125 c0: 31 skew: 0.43 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 361343 x 361575 Total sieving time: 14.29 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.46 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 15.20 hours. --------- CPU info (if available) ----------
(68·10148-23)/9 = 7(5)1473<149> = 31 · 61089959452919<14> · C134
C134 = P44 · P91
P44 = 33379177452900859040901458273531293497645001<44>
P91 = 1195251348071351262939369843658738348823063310087712346521340434884593591391504262928936177<91>
Number: 75553_148 N=39896506848092604746137269695445224030913290669912862255101837235764336396056343724509946701322150758800725954828675926061567732101177 ( 134 digits) SNFS difficulty: 149 digits. Divisors found: r1=33379177452900859040901458273531293497645001 (pp44) r2=1195251348071351262939369843658738348823063310087712346521340434884593591391504262928936177 (pp91) Version: Msieve-1.40 Total time: 11.69 hours. Scaled time: 38.84 units (timescale=3.322). Factorization parameters were as follows: name: 75553_148 n: 39896506848092604746137269695445224030913290669912862255101837235764336396056343724509946701322150758800725954828675926061567732101177 m: 200000000000000000000000000000 deg: 5 c5: 2125 c0: -23 skew: 0.40 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 388346 x 388594 Total sieving time: 11.35 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.28 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 11.69 hours. --------- CPU info (if available) ----------
(23·10113-11)/3 = 7(6)1123<114> = 73 · 4001 · 184073 · 271519425493<12> · C92
C92 = P38 · P55
P38 = 11411606196574225655815607303001588809<38>
P55 = 4602326201348474538346286072127148267220249089588845731<55>
Number: 76663_113 N=52519934197964169378187398269922763301280269896278975894836658825836486587279754057397024379 ( 92 digits) SNFS difficulty: 114 digits. Divisors found: r1=11411606196574225655815607303001588809 (pp38) r2=4602326201348474538346286072127148267220249089588845731 (pp55) Version: Msieve-1.40 Total time: 1.57 hours. Scaled time: 3.23 units (timescale=2.051). Factorization parameters were as follows: name: 76663_113 n: 52519934197964169378187398269922763301280269896278975894836658825836486587279754057397024379 m: 10000000000000000000000 deg: 5 c5: 23000 c0: -11 skew: 0.22 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 530001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68760 x 68985 Total sieving time: 1.49 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 1.57 hours. --------- CPU info (if available) ----------
(23·10120-11)/3 = 7(6)1193<121> = 17 · 79 · 499 · 569 · C113
C113 = P56 · P57
P56 = 25522691488157552788809468757639086299259225092491527019<56>
P57 = 787755212873123836676281249152475749953193949007977372369<57>
Number: 76663_120 N=20105633266348618800994983033463626316231562973668231677796065657826655924279261934685768126702001408007987538011 ( 113 digits) SNFS difficulty: 121 digits. Divisors found: r1=25522691488157552788809468757639086299259225092491527019 (pp56) r2=787755212873123836676281249152475749953193949007977372369 (pp57) Version: Msieve-1.40 Total time: 1.16 hours. Scaled time: 3.88 units (timescale=3.357). Factorization parameters were as follows: name: 76663_120 n: 20105633266348618800994983033463626316231562973668231677796065657826655924279261934685768126702001408007987538011 m: 1000000000000000000000000 deg: 5 c5: 23 c0: -11 skew: 0.86 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 620001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 82925 x 83157 Total sieving time: 1.13 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.16 hours. --------- CPU info (if available) ----------
(23·10114-11)/3 = 7(6)1133<115> = 107 · 22651 · 8445108594849167<16> · C93
C93 = P37 · P57
P37 = 3059870380737586822512005449734369637<37>
P57 = 122412891178728360371674809568046004111359888829192602221<57>
Number: 76663_114 N=374567579938244331406279693518468187924635006153465102723180322997238243405496028525121163777 ( 93 digits) SNFS difficulty: 115 digits. Divisors found: r1=3059870380737586822512005449734369637 (pp37) r2=122412891178728360371674809568046004111359888829192602221 (pp57) Version: Msieve-1.40 Total time: 1.06 hours. Scaled time: 2.17 units (timescale=2.045). Factorization parameters were as follows: name: 76663_114 n: 374567579938244331406279693518468187924635006153465102723180322997238243405496028525121163777 m: 10000000000000000000000 deg: 5 c5: 230000 c0: -11 skew: 0.14 type: snfs lss: 1 rlim: 590000 alim: 590000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 590000/590000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [295000, 445001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 58900 x 59126 Total sieving time: 1.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,590000,590000,25,25,45,45,2.2,2.2,50000 total time: 1.06 hours. --------- CPU info (if available) ----------
(23·10126-11)/3 = 7(6)1253<127> = 47 · 61 · 1057464970577446092973<22> · C103
C103 = P32 · P72
P32 = 13413698726583970462081322925539<32>
P72 = 188523003684124076180996738433766325149793904672787761086552059533456187<72>
Number: 76663_126 N=2528790774449520292669339776762899096930856296816157041815109917097158021385913870850834746574719859793 ( 103 digits) SNFS difficulty: 127 digits. Divisors found: r1=13413698726583970462081322925539 (pp32) r2=188523003684124076180996738433766325149793904672787761086552059533456187 (pp72) Version: Msieve-1.40 Total time: 1.66 hours. Scaled time: 5.53 units (timescale=3.339). Factorization parameters were as follows: name: 76663_126 n: 2528790774449520292669339776762899096930856296816157041815109917097158021385913870850834746574719859793 m: 10000000000000000000000000 deg: 5 c5: 230 c0: -11 skew: 0.54 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 765001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 120459 x 120690 Total sieving time: 1.59 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,127.000,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 1.66 hours. --------- CPU info (if available) ----------
(23·10120-17)/3 = 7(6)1191<121> = 251 · 941 · 641701847 · 137279406996157<15> · C93
C93 = P44 · P49
P44 = 40385545056978807490330733028374505691311499<44>
P49 = 9123859816461408438093111424239616025271490303651<49>
Number: 76661_120 N=368472051711260603290907951809574825594060081448813710281059755320847323776252661535937982849 ( 93 digits) SNFS difficulty: 121 digits. Divisors found: r1=40385545056978807490330733028374505691311499 (pp44) r2=9123859816461408438093111424239616025271490303651 (pp49) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.37 hours. Scaled time: 1.11 units (timescale=0.468). Factorization parameters were as follows: name: 76661_120 n: 368472051711260603290907951809574825594060081448813710281059755320847323776252661535937982849 m: 1000000000000000000000000 deg: 5 c5: 23 c0: -17 skew: 0.94 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 570001) Primes: RFBsize:59531, AFBsize:59778, largePrimes:1289988 encountered Relations: rels:1259145, finalFF:145398 Max relations in full relation-set: 28 Initial matrix: 119374 x 145398 with sparse part having weight 6389763. Pruned matrix : 104465 x 105125 with weight 3571061. Total sieving time: 2.21 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 2.37 hours. --------- CPU info (if available) ----------
(23·10118-17)/3 = 7(6)1171<119> = 13 · 19 · C117
C117 = P37 · P80
P37 = 9220814096092378075081918296352874047<37>
P80 = 33662034586998177818149074936349876698328006634392197039896356491332469987852029<80>
Number: 76661_118 N=310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363 ( 117 digits) SNFS difficulty: 119 digits. Divisors found: r1=9220814096092378075081918296352874047 (pp37) r2=33662034586998177818149074936349876698328006634392197039896356491332469987852029 (pp80) Version: Msieve v. 1.42 Total time: 0.04 hours. Scaled time: 0.03 units (timescale=0.795). Factorization parameters were as follows: name: 76661_118 n: 310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363 m: 100000000000000000000000 deg: 5 c5: 23000 c0: -17 skew: 0.24 type: snfs lss: 1 rlim: 680000 alim: 680000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 680000/680000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [340000, 640001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79185 x 79410 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000 total time: 0.04 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 83 min.
(23·10125-17)/3 = 7(6)1241<126> = 72 · 31 · 521 · 14370729157<11> · C110
C110 = P46 · P65
P46 = 2558995386883296022720615957313118525870831481<46>
P65 = 26342851081520675035689188882287686037742543187479440491093033967<65>
Number: 76661_125 N=67411234394965052867362708500102595217340895755614475022353081977374166777198257577218719672431852753265915127 ( 110 digits) SNFS difficulty: 126 digits. Divisors found: r1=2558995386883296022720615957313118525870831481 (pp46) r2=26342851081520675035689188882287686037742543187479440491093033967 (pp65) Version: Msieve v. 1.42 Total time: 0.09 hours. Scaled time: 0.07 units (timescale=0.795). Factorization parameters were as follows: name: 76661_125 n: 67411234394965052867362708500102595217340895755614475022353081977374166777198257577218719672431852753265915127 m: 10000000000000000000000000 deg: 5 c5: 23 c0: -17 skew: 0.94 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 645001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130853 x 131095 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 0.09 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 71 min.
(23·10139-17)/3 = 7(6)1381<140> = 7333 · 870461 · 21472703873<11> · 4636213698349<13> · 12226441866109<14> · C94
C94 = P42 · P53
P42 = 371170686541166156016178439269165816819121<42>
P53 = 26585916743770808161710550311179305870423365914583949<53>
Wed Dec 16 18:14:05 2009 Msieve v. 1.42 Wed Dec 16 18:14:05 2009 random seeds: a37cea14 4740c28b Wed Dec 16 18:14:05 2009 factoring 9867912970111695460549107729778455971521528100356802580128959817623419385028243844407302888829 (94 digits) Wed Dec 16 18:14:06 2009 searching for 15-digit factors Wed Dec 16 18:14:07 2009 commencing quadratic sieve (94-digit input) Wed Dec 16 18:14:07 2009 using multiplier of 5 Wed Dec 16 18:14:07 2009 using 32kb Intel Core sieve core Wed Dec 16 18:14:07 2009 sieve interval: 36 blocks of size 32768 Wed Dec 16 18:14:07 2009 processing polynomials in batches of 6 Wed Dec 16 18:14:07 2009 using a sieve bound of 2092049 (77647 primes) Wed Dec 16 18:14:07 2009 using large prime bound of 297070958 (28 bits) Wed Dec 16 18:14:07 2009 using double large prime bound of 1782987509181578 (42-51 bits) Wed Dec 16 18:14:07 2009 using trial factoring cutoff of 51 bits Wed Dec 16 18:14:07 2009 polynomial 'A' values have 12 factors Wed Dec 16 21:09:09 2009 77957 relations (19573 full + 58384 combined from 1128063 partial), need 77743 Wed Dec 16 21:09:10 2009 begin with 1147636 relations Wed Dec 16 21:09:12 2009 reduce to 200886 relations in 11 passes Wed Dec 16 21:09:12 2009 attempting to read 200886 relations Wed Dec 16 21:09:15 2009 recovered 200886 relations Wed Dec 16 21:09:15 2009 recovered 182269 polynomials Wed Dec 16 21:09:15 2009 attempting to build 77957 cycles Wed Dec 16 21:09:15 2009 found 77957 cycles in 6 passes Wed Dec 16 21:09:15 2009 distribution of cycle lengths: Wed Dec 16 21:09:15 2009 length 1 : 19573 Wed Dec 16 21:09:15 2009 length 2 : 13851 Wed Dec 16 21:09:15 2009 length 3 : 13195 Wed Dec 16 21:09:15 2009 length 4 : 10679 Wed Dec 16 21:09:15 2009 length 5 : 7717 Wed Dec 16 21:09:15 2009 length 6 : 5129 Wed Dec 16 21:09:15 2009 length 7 : 3326 Wed Dec 16 21:09:15 2009 length 9+: 4487 Wed Dec 16 21:09:15 2009 largest cycle: 21 relations Wed Dec 16 21:09:16 2009 matrix is 77647 x 77957 (20.5 MB) with weight 5073118 (65.08/col) Wed Dec 16 21:09:16 2009 sparse part has weight 5073118 (65.08/col) Wed Dec 16 21:09:17 2009 filtering completed in 3 passes Wed Dec 16 21:09:17 2009 matrix is 73626 x 73690 (19.5 MB) with weight 4814531 (65.33/col) Wed Dec 16 21:09:17 2009 sparse part has weight 4814531 (65.33/col) Wed Dec 16 21:09:17 2009 saving the first 48 matrix rows for later Wed Dec 16 21:09:17 2009 matrix is 73578 x 73690 (12.6 MB) with weight 3834182 (52.03/col) Wed Dec 16 21:09:17 2009 sparse part has weight 2868194 (38.92/col) Wed Dec 16 21:09:17 2009 matrix includes 64 packed rows Wed Dec 16 21:09:17 2009 using block size 29476 for processor cache size 1024 kB Wed Dec 16 21:09:18 2009 commencing Lanczos iteration Wed Dec 16 21:09:18 2009 memory use: 12.5 MB Wed Dec 16 21:09:56 2009 lanczos halted after 1165 iterations (dim = 73576) Wed Dec 16 21:09:56 2009 recovered 17 nontrivial dependencies Wed Dec 16 21:09:57 2009 prp42 factor: 371170686541166156016178439269165816819121 Wed Dec 16 21:09:57 2009 prp53 factor: 26585916743770808161710550311179305870423365914583949 Wed Dec 16 21:09:57 2009 elapsed time 02:55:52
(23·10102-11)/3 = 7(6)1013<103> = 24365927 · C96
C96 = P36 · P61
P36 = 245245101836602285803147368918044021<36>
P61 = 1282990085704394596547225527931058487571930541873060963231389<61>
Number: 76663_102 N=314647034223925347337151041561713070332463306923092508102263733559846365240553608597229510975169 ( 96 digits) SNFS difficulty: 103 digits. Divisors found: r1=245245101836602285803147368918044021 (pp36) r2=1282990085704394596547225527931058487571930541873060963231389 (pp61) Version: Msieve v. 1.42 Total time: 0.02 hours. Scaled time: 0.01 units (timescale=0.796). Factorization parameters were as follows: name: 76663_102 n: 314647034223925347337151041561713070332463306923092508102263733559846365240553608597229510975169 m: 10000000000000000000000000 deg: 4 c4: 2300 c0: -11 skew: 0.26 type: snfs lss: 1 rlim: 370000 alim: 370000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 370000/370000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [185000, 235001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 29754 x 29979 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103.000,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000 total time: 0.02 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 17 min.
(23·10104-11)/3 = 7(6)1033<105> = 7 · 17 · 317 · C101
C101 = P50 · P52
P50 = 10594311962989340631950058167917525981867419492781<50>
P52 = 1918348913925488028058767174886260061337183152503001<52>
Number: 76663_104 N=20323586847988406719154538787123682280483171186455654817131900078643444759607312956728432698000335781 ( 101 digits) SNFS difficulty: 105 digits. Divisors found: r1=10594311962989340631950058167917525981867419492781 (pp50) r2=1918348913925488028058767174886260061337183152503001 (pp52) Version: Msieve v. 1.42 Total time: 0.02 hours. Scaled time: 0.01 units (timescale=0.793). Factorization parameters were as follows: name: 76663_104 n: 20323586847988406719154538787123682280483171186455654817131900078643444759607312956728432698000335781 m: 100000000000000000000000000 deg: 4 c4: 23 c0: -11 skew: 0.83 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 240001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 39072 x 39301 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.02 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 13 min.
(23·10127-17)/3 = 7(6)1261<128> = 179 · 1291 · C123
C123 = P44 · P80
P44 = 17325323742942685585564136440668567011871023<44>
P80 = 19148993397947114116728493211346650542616183424561745135636491481312527026611163<80>
Number: 76661_127 N=331762509970905870321247080850523679909760597287913603272620794008657559064545117537687499909847144029645143934443728029749 ( 123 digits) SNFS difficulty: 128 digits. Divisors found: r1=17325323742942685585564136440668567011871023 (pp44) r2=19148993397947114116728493211346650542616183424561745135636491481312527026611163 (pp80) Version: Msieve-1.40 Total time: 2.33 hours. Scaled time: 7.77 units (timescale=3.339). Factorization parameters were as follows: name: 76661_127 n: 331762509970905870321247080850523679909760597287913603272620794008657559064545117537687499909847144029645143934443728029749 m: 10000000000000000000000000 deg: 5 c5: 2300 c0: -17 skew: 0.37 type: snfs lss: 1 rlim: 960000 alim: 960000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 960000/960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [480000, 930001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 143966 x 144214 Total sieving time: 2.26 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,128.000,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000 total time: 2.33 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 16, 2009
(2·10198+1)/3 = (6)1977<198> = 457 · 23735503197283<14> · C182
C182 = P81 · P102
P81 = 129389304721127158993072298490322182653518774585778107201775886232669989219843001<81>
P102 = 475002306456793448468446173700751795865776779342906923374169016985392423513854627200194137571758416857<102>
Number: 66667_198 N=61460218173376274139436257924925696309875419738351789195735595207504741324042282642242875514121009483559905778993186545329492535174833115309207892574829946390934849157827781851867857 ( 182 digits) SNFS difficulty: 200 digits. Divisors found: r1=129389304721127158993072298490322182653518774585778107201775886232669989219843001 r2=475002306456793448468446173700751795865776779342906923374169016985392423513854627200194137571758416857 Version: Total time: 278.57 hours. Scaled time: 663.27 units (timescale=2.381). Factorization parameters were as follows: n: 61460218173376274139436257924925696309875419738351789195735595207504741324042282642242875514121009483559905778993186545329492535174833115309207892574829946390934849157827781851867857 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 50 skew: 2.19 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7500000, 13600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 37116511 Max relations in full relation-set: Initial matrix: Pruned matrix : 2764086 x 2764334 Total sieving time: 244.16 hours. Total relation processing time: 12.36 hours. Matrix solve time: 20.63 hours. Time per square root: 1.42 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,56,56,2.6,2.6,100000 total time: 278.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
By Robert Backstrom / GMP-ECM, Msieve / Dec 16, 2009
(23·10117-17)/3 = 7(6)1161<118> = 83 · 1172292529<10> · 2618649367751318479<19> · C89
C89 = P34 · P56
P34 = 1118338087153059584933843463282641<34>
P56 = 26905559319248589651357853745624920225257541945854546857<56>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 30089511742871643769964632131175135743122042073471668918174706140412512932354920769209337 (89 digits) Using B1=922000, B2=871204962, polynomial Dickson(3), sigma=3498851850 Step 1 took 5719ms Step 2 took 2687ms ********** Factor found in step 2: 1118338087153059584933843463282641 Found probable prime factor of 34 digits: 1118338087153059584933843463282641 Probable prime cofactor 26905559319248589651357853745624920225257541945854546857 has 56 digits
(23·10111-11)/3 = 7(6)1103<112> = 29 · 102328133850591764833<21> · C91
C91 = P42 · P50
P42 = 114020995310251665818999261240617858936247<42>
P50 = 22658371947974329014450969228515292119437447560997<50>
Wed Dec 16 18:42:30 2009 Wed Dec 16 18:42:30 2009 Wed Dec 16 18:42:30 2009 Msieve v. 1.43 Wed Dec 16 18:42:30 2009 random seeds: b9219cc0 d0de1132 Wed Dec 16 18:42:30 2009 factoring 2583530121617918870290587730447033099093456835689377352764840295500870921278374451066758259 (91 digits) Wed Dec 16 18:42:30 2009 searching for 15-digit factors Wed Dec 16 18:42:31 2009 commencing quadratic sieve (91-digit input) Wed Dec 16 18:42:31 2009 using multiplier of 59 Wed Dec 16 18:42:31 2009 using 64kb Opteron sieve core Wed Dec 16 18:42:31 2009 sieve interval: 18 blocks of size 65536 Wed Dec 16 18:42:31 2009 processing polynomials in batches of 6 Wed Dec 16 18:42:31 2009 using a sieve bound of 1678553 (63529 primes) Wed Dec 16 18:42:31 2009 using large prime bound of 154426876 (27 bits) Wed Dec 16 18:42:31 2009 using double large prime bound of 549162818684260 (42-49 bits) Wed Dec 16 18:42:31 2009 using trial factoring cutoff of 49 bits Wed Dec 16 18:42:31 2009 polynomial 'A' values have 12 factors Wed Dec 16 19:47:58 2009 64234 relations (17173 full + 47061 combined from 718510 partial), need 63625 Wed Dec 16 19:47:59 2009 begin with 735683 relations Wed Dec 16 19:47:59 2009 reduce to 156774 relations in 9 passes Wed Dec 16 19:47:59 2009 attempting to read 156774 relations Wed Dec 16 19:48:00 2009 recovered 156774 relations Wed Dec 16 19:48:00 2009 recovered 135082 polynomials Wed Dec 16 19:48:00 2009 attempting to build 64234 cycles Wed Dec 16 19:48:00 2009 found 64234 cycles in 5 passes Wed Dec 16 19:48:01 2009 distribution of cycle lengths: Wed Dec 16 19:48:01 2009 length 1 : 17173 Wed Dec 16 19:48:01 2009 length 2 : 12267 Wed Dec 16 19:48:01 2009 length 3 : 11466 Wed Dec 16 19:48:01 2009 length 4 : 8568 Wed Dec 16 19:48:01 2009 length 5 : 5959 Wed Dec 16 19:48:01 2009 length 6 : 3853 Wed Dec 16 19:48:01 2009 length 7 : 2264 Wed Dec 16 19:48:01 2009 length 9+: 2684 Wed Dec 16 19:48:01 2009 largest cycle: 18 relations Wed Dec 16 19:48:01 2009 matrix is 63529 x 64234 (15.4 MB) with weight 3780171 (58.85/col) Wed Dec 16 19:48:01 2009 sparse part has weight 3780171 (58.85/col) Wed Dec 16 19:48:02 2009 filtering completed in 3 passes Wed Dec 16 19:48:02 2009 matrix is 59295 x 59359 (14.2 MB) with weight 3484662 (58.70/col) Wed Dec 16 19:48:02 2009 sparse part has weight 3484662 (58.70/col) Wed Dec 16 19:48:02 2009 saving the first 48 matrix rows for later Wed Dec 16 19:48:02 2009 matrix is 59247 x 59359 (8.2 MB) with weight 2616342 (44.08/col) Wed Dec 16 19:48:02 2009 sparse part has weight 1796079 (30.26/col) Wed Dec 16 19:48:02 2009 matrix includes 64 packed rows Wed Dec 16 19:48:02 2009 using block size 23743 for processor cache size 1024 kB Wed Dec 16 19:48:02 2009 commencing Lanczos iteration Wed Dec 16 19:48:02 2009 memory use: 8.9 MB Wed Dec 16 19:48:20 2009 lanczos halted after 939 iterations (dim = 59244) Wed Dec 16 19:48:20 2009 recovered 16 nontrivial dependencies Wed Dec 16 19:48:21 2009 prp42 factor: 114020995310251665818999261240617858936247 Wed Dec 16 19:48:21 2009 prp50 factor: 22658371947974329014450969228515292119437447560997 Wed Dec 16 19:48:21 2009 elapsed time 01:05:51
By Serge Batalov / Msieve, GMP-ECM / Dec 16, 2009
(68·10135-23)/9 = 7(5)1343<136> = 7 · 13 · 29 · 673 · 1231 · 39201067 · 19451678419<11> · 3508444016179<13> · C97
C97 = P44 · P53
P44 = 49354536817403980992556188494349510678134521<44>
P53 = 26173228415604033307918617128471408780767311182184547<53>
Divisors found: r1=49354536817403980992556188494349510678134521 (pp44) r2=26173228415604033307918617128471408780767311182184547 (pp53) Version: Msieve v. 1.44 SVN157 Total time: 1.38 hours. Scaled time: 3.31 units (timescale=2.400). Factorization parameters were as follows: name: test type: gnfs n: 1291767565468253325983099240866543604203429986670042714470360827476299445498122120010631513446987 skew: 1028695.48 Y0: -173066555608276491936265 Y1: 6118599925867 c0: -178362389484675470839201668 c1: -1431652149419258675948 c2: -1867644117274291 c3: -2880742358 c4: 1440 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [937500, 1217501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 151064 x 151296 Total sieving time: 1.28 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.08 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,25,25,46,46,2.5,2.5,70000 total time: 1.38 hours.
(23·10132-17)/3 = 7(6)1311<133> = 97 · 109 · 5616540927610014119<19> · C111
C111 = P28 · P83
P28 = 6765672016507302473411933737<28>
P83 = 19082201642817897816379464000476263038247593631835682844121143546670724325874838919<83>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=4049908066 Step 1 took 4545ms Step 2 took 2884ms ********** Factor found in step 2: 6765672016507302473411933737 Found probable prime factor of 28 digits: 6765672016507302473411933737 Probable prime cofactor has 83 digits
(23·10145-17)/3 = 7(6)1441<146> = 43 · 1398251 · C139
C139 = P34 · C106
P34 = 1256710869813684340075674424685443<34>
C106 = [1014653167874607433393138777593797766888773887153826194843762435948768275207619865105895761692478221477039<106>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=31174486 Step 1 took 6084ms Step 2 took 3536ms ********** Factor found in step 2: 1256710869813684340075674424685443 Found probable prime factor of 34 digits: 1256710869813684340075674424685443 Composite cofactor has 106 digits
(23·10109-11)/3 = 7(6)1083<110> = 31 · 2160293 · C103
C103 = P39 · P64
P39 = 395005637395866571582641984926624812093<39>
P64 = 2898203891676581815541170847707467709328545235576051915248772777<64>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3105122533 Step 1 took 4672ms Step 2 took 2761ms ********** Factor found in step 2: 395005637395866571582641984926624812093 Found probable prime factor of 39 digits: 395005637395866571582641984926624812093 Probable prime cofactor has 64 digits
(23·10108-11)/3 = 7(6)1073<109> = 4129 · 48239 · C101
C101 = P31 · P71
P31 = 3490683832872464247555442771201<31>
P71 = 11026886073725625310081747759869262788979540725428702635385850485874473<71>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1966405737 Step 1 took 4600ms Step 2 took 2760ms ********** Factor found in step 2: 3490683832872464247555442771201 Found probable prime factor of 31 digits: 3490683832872464247555442771201 Probable prime cofactor has 71 digits
(23·10122-17)/3 = 7(6)1211<123> = 783504322140893<15> · C108
C108 = P30 · P79
P30 = 741688256826905058083748714823<30>
P79 = 1319300666580334226218159946688540099971933859484532199655146475100465378632399<79>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3326129902 Step 1 took 4316ms Step 2 took 2776ms ********** Factor found in step 2: 741688256826905058083748714823 Found probable prime factor of 30 digits: 741688256826905058083748714823 Probable prime cofactor has 79 digits
(23·10149-17)/3 = 7(6)1481<150> = 7 · 2170830172909759<16> · 2025999339574266401<19> · C116
C116 = P30 · P35 · P52
P30 = 282319935301119438794660871407<30>
P35 = 38746341941048510460017005102921493<35>
P52 = 2276518268891766986132754409859082639389235326181847<52>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2296079492 Step 1 took 5028ms Step 2 took 2753ms ********** Factor found in step 2: 38746341941048510460017005102921493 Found probable prime factor of 35 digits: 38746341941048510460017005102921493 Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1494950385 Step 1 took 4837ms Step 2 took 2800ms ********** Factor found in step 2: 282319935301119438794660871407 Found probable prime factor of 30 digits: 282319935301119438794660871407
(23·10109-17)/3 = 7(6)1081<110> = 4423 · C107
C107 = P41 · P67
P41 = 15657590962371840382069424283498865142543<41>
P67 = 1107043531122213731069211459476835017897299236455125765923081029149<67>
SNFS difficulty: 110 digits. Divisors found: r1=15657590962371840382069424283498865142543 (pp41) r2=1107043531122213731069211459476835017897299236455125765923081029149 (pp67) Version: Msieve v. 1.44 SVN157 Total time: 0.63 hours. Scaled time: 1.52 units (timescale=2.400). Factorization parameters were as follows: n: 17333634787851382922601552490767955384731328660788303564699675936393096691536664405757781294747155022985907 m: 1000000000000000000000 deg: 5 c5: 230000 c0: -17 skew: 0.15 type: snfs lss: 1 rlim: 480000 alim: 480000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 480000/480000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [300000, 550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 53200 x 53427 Total sieving time: 0.61 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110.000,5,0,0,0,0,0,0,0,0,480000,480000,25,25,44,44,2.2,2.2,50000 total time: 0.63 hours.
(23·10101-11)/3 = 7(6)1003<102> = 1187 · 144616811 · C91
C91 = P39 · P53
P39 = 117490606566065595674608813209924208099<39>
P53 = 38013156698927423089936634558266123507013784775835341<53>
SNFS difficulty: 102 digits. Divisors found: r1=117490606566065595674608813209924208099 (pp39) r2=38013156698927423089936634558266123507013784775835341 (pp53) Version: Msieve v. 1.44 SVN157 Total time: 0.25 hours. Scaled time: 0.59 units (timescale=2.400). Factorization parameters were as follows: n: 4466188838047882679105645836099257794848851734404077705552959099165042916804289190642626759 m: 10000000000000000000000000 deg: 4 c4: 230 c0: -11 skew: 0.47 type: snfs lss: 1 rlim: 360000 alim: 360000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [225000, 305001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 31084 x 31313 Total sieving time: 0.23 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,102.000,4,0,0,0,0,0,0,0,0,360000,360000,25,25,43,43,2.2,2.2,10000 total time: 0.25 hours.
By Dmitry Domanov / GGNFS/msieve / Dec 16, 2009
(68·10139-41)/9 = 7(5)1381<140> = 599 · 821 · 10853 · C131
C131 = P50 · P81
P50 = 26314862340375890781828977363194955018961042928123<50>
P81 = 537954467230265270119267925540183493428275358501670203932591652282443058644303651<81>
N=14156197750554683790147026237153098492357917675483143856926387225621787416644308258645266789658964485380813320181708505491379477073 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=26314862340375890781828977363194955018961042928123 (pp50) r2=537954467230265270119267925540183493428275358501670203932591652282443058644303651 (pp81) Version: Msieve-1.40 Total time: 6.06 hours. Scaled time: 11.27 units (timescale=1.860). Factorization parameters were as follows: n: 14156197750554683790147026237153098492357917675483143856926387225621787416644308258645266789658964485380813320181708505491379477073 m: 2000000000000000000000000000 deg: 5 c5: 21250 c0: -41 skew: 0.29 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1980001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 255672 x 255897 Total sieving time: 5.92 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 6.06 hours. --------- CPU info (if available) ----------
(68·10135-41)/9 = 7(5)1341<136> = 3 · 367859203 · C127
C127 = P49 · P79
P49 = 1708072995693845187847890294158793372992730136343<49>
P79 = 4008271182346875021369471912260587784241104960646929039911381637642429568831473<79>
N=6846419765984537618101995720679356004907449654096375885744847108034751324458555189438929215856857381704593424344798894479523239 ( 127 digits) SNFS difficulty: 136 digits. Divisors found: r1=1708072995693845187847890294158793372992730136343 (pp49) r2=4008271182346875021369471912260587784241104960646929039911381637642429568831473 (pp79) Version: Msieve-1.40 Total time: 4.22 hours. Scaled time: 8.04 units (timescale=1.905). Factorization parameters were as follows: n: 6846419765984537618101995720679356004907449654096375885744847108034751324458555189438929215856857381704593424344798894479523239 m: 1000000000000000000000000000 deg: 5 c5: 68 c0: -41 skew: 0.90 type: snfs lss: 1 rlim: 1340000 alim: 1340000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1340000/1340000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [670000, 1495001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168089 x 168314 Total sieving time: 4.10 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1340000,1340000,26,26,48,48,2.3,2.3,75000 total time: 4.22 hours. --------- CPU info (if available) ----------
(68·10138-41)/9 = 7(5)1371<139> = 32 · 103969 · 4437413462063<13> · C121
C121 = P41 · P81
P41 = 11410900863836166592220488321239541570811<41>
P81 = 159466770155403882014625840449690972139449148893901469976263858019351462850409067<81>
N=1819659505319461587167496116262275636870772186566922955290666967512874577913658754479211365347032761992684206423096943337 ( 121 digits) SNFS difficulty: 139 digits. Divisors found: r1=11410900863836166592220488321239541570811 (pp41) r2=159466770155403882014625840449690972139449148893901469976263858019351462850409067 (pp81) Version: Msieve-1.40 Total time: 5.40 hours. Scaled time: 10.19 units (timescale=1.888). Factorization parameters were as follows: n: 1819659505319461587167496116262275636870772186566922955290666967512874577913658754479211365347032761992684206423096943337 m: 2000000000000000000000000000 deg: 5 c5: 2125 c0: -41 skew: 0.45 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [750000, 1800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 214144 x 214369 Total sieving time: 5.26 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,139.000,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3,75000 total time: 5.40 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 16, 2009
(53·10199-17)/9 = 5(8)1987<200> = 3 · 19 · 29 · 2087 · C194
C194 = P32 · P36 · P37 · P90
P32 = 17033129343042131723119795399783<32>
P36 = 179440627551006617308087186383630077<36>
P37 = 6418601372244116209995402203201277923<37>
P90 = 870126567592585573632839389930035462775978166234114786224389433355392972174658899238979469<90>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3769953513 Step 1 took 25038ms Step 2 took 9558ms ********** Factor found in step 2: 17033129343042131723119795399783 Found probable prime factor of 32 digits: 17033129343042131723119795399783 Composite cofactor 1002175111884014052862920762883581298496554004464709613050251304739359685726211840475054410063345510265115970720689986952986565831641247191170176592569731656952299 has 163 digits --------------------------- Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4056795063 Step 1 took 17322ms Step 2 took 7340ms ********** Factor found in step 2: 6418601372244116209995402203201277923 Found probable prime factor of 37 digits: 6418601372244116209995402203201277923 Composite cofactor 156136057337616932522918625137023487892475982796937651766950011790633232673692347250804848273683749803164350079769169093889113 has 126 digits --------------------------- Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4016537737 Step 1 took 11682ms Step 2 took 5633ms ********** Factor found in step 2: 179440627551006617308087186383630077 Found probable prime factor of 36 digits: 179440627551006617308087186383630077 Probable prime cofactor 870126567592585573632839389930035462775978166234114786224389433355392972174658899238979469 has 90 digits
By juno1369 / GMP-ECM + Msieve v1.43 / Dec 16, 2009
(68·10141+31)/9 = 7(5)1409<142> = 624851 · 1592881 · 73898372251340891<17> · C114
C114 = P38 · P76
P38 = 12691592973270826647859080507280059533<38>
P76 = 8093858248747963723614320594420759566733031650636803553239263136703583574963<76>
Number: 75559_141 N=102723954476459774940437404231851091242454241248712021855259577828447262557110513731009155996686407321671608272279 ( 114 digits) SNFS difficulty: 142 digits. Divisors found: r1=12691592973270826647859080507280059533 (pp38) r2=8093858248747963723614320594420759566733031650636803553239263136703583574963 (pp76) Version: Msieve v. 1.43 Total time: 24.33 hours. Scaled time: 39.86 units (timescale=1.638). Factorization parameters were as follows: n: 102723954476459774940437404231851091242454241248712021855259577828447262557110513731009155996686407321671608272279 m: 10000000000000000000000000000 deg: 5 c5: 680 c0: 31 skew: 0.54 type: snfs lss: 1 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 qintsize: 5 Factor base limits: 1680000/1680000 Large primes per side: 2 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [840000, 1640001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 253831 x 254056 Total sieving time: 23.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.36 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000 total time: 24.33 hours. --------- CPU info (if available) ----------
Factorizations of 766...661 and Factorizations of 766...663 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve, YAFU v1.14 / Dec 15, 2009
(68·10102-23)/9 = 7(5)1013<103> = 251 · C101
C101 = P42 · P59
P42 = 475408704971357587178647157962547319178567<42>
P59 = 63317761428424632567026630310285880151845690096680698073109<59>
N=30101814962372731297034085878707392651615759185480301018149623727312970340858787073926516157591854803 ( 101 digits) SNFS difficulty: 103 digits. Divisors found: r1=475408704971357587178647157962547319178567 (pp42) r2=63317761428424632567026630310285880151845690096680698073109 (pp59) Version: Msieve-1.40 Total time: 0.42 hours. Scaled time: 0.79 units (timescale=1.911). Factorization parameters were as follows: n: 30101814962372731297034085878707392651615759185480301018149623727312970340858787073926516157591854803 m: 20000000000000000000000000 deg: 4 c4: 425 c0: -23 skew: 0.48 type: snfs lss: 1 rlim: 380000 alim: 380000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2Factor base limits: 380000/380000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [190000, 280001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 34910 x 35140 Total sieving time: 0.40 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103.000,4,0,0,0,0,0,0,0,0,380000,380000,25,25,43,43,2.2,2.2,10000 total time: 0.42 hours. --------- CPU info (if available) ----------
(68·10106+31)/9 = 7(5)1059<107> = 11 · 191 · C104
C104 = P28 · P77
P28 = 1246448664957339799134281813<28>
P77 = 28851337696777360109702926354001502481219789662031045816855532298591111394943<77>
N=35961711354381511449574276799407689460045480987889364852715638055952192077846528108308213020254905071659 ( 104 digits) SNFS difficulty: 107 digits. Divisors found: r1=1246448664957339799134281813 (pp28) r2=28851337696777360109702926354001502481219789662031045816855532298591111394943 (pp77) Version: Msieve-1.40 Total time: 0.40 hours. Scaled time: 0.74 units (timescale=1.834). Factorization parameters were as follows: n: 35961711354381511449574276799407689460045480987889364852715638055952192077846528108308213020254905071659 m: 1000000000000000000000 deg: 5 c5: 680 c0: 31 skew: 0.54 type: snfs lss: 1 rlim: 440000 alim: 440000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 440000/440000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [220000, 320001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38652 x 38877 Total sieving time: 0.39 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107.000,5,0,0,0,0,0,0,0,0,440000,440000,25,25,44,44,2.2,2.2,50000 total time: 0.40 hours. --------- CPU info (if available) ----------
(68·10108+31)/9 = 7(5)1079<109> = 11 · 29 · 5297 · C103
C103 = P48 · P56
P48 = 150578119693288207836470725802931710300783336777<48>
P56 = 29695037467385152935692049177562015039149743749687411169<56>
N=4471422906060599484984139928708422260400283093674929001366216966459133463228168754393748372122598262313 ( 103 digits) SNFS difficulty: 109 digits. Divisors found: r1=150578119693288207836470725802931710300783336777 (pp48) r2=29695037467385152935692049177562015039149743749687411169 (pp56) Version: Msieve-1.40 Total time: 0.64 hours. Scaled time: 1.26 units (timescale=1.963). Factorization parameters were as follows: n: 4471422906060599484984139928708422260400283093674929001366216966459133463228168754393748372122598262313 m: 2000000000000000000000 deg: 5 c5: 2125 c0: 31 skew: 0.43 type: snfs lss: 1 rlim: 470000 alim: 470000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 470000/470000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [235000, 385001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 44728 x 44959 Total sieving time: 0.62 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000 total time: 0.64 hours. --------- CPU info (if available) ----------
(68·10118-23)/9 = 7(5)1173<119> = 19 · 31 · 19207 · C112
C112 = P30 · P83
P30 = 127468924906638624877222907711<30>
P83 = 52394686868873641010380131832209559693086903605068551738708211241825910072617577101<83>
N=6678694405995298965223714114871599104453867100090361753152174336867276083780960548883392519824943169466949925811 ( 112 digits) SNFS difficulty: 119 digits. Divisors found: r1=127468924906638624877222907711 (pp30) r2=52394686868873641010380131832209559693086903605068551738708211241825910072617577101 (pp83) Version: Msieve-1.40 Total time: 1.10 hours. Scaled time: 2.17 units (timescale=1.969). Factorization parameters were as follows: n: 6678694405995298965223714114871599104453867100090361753152174336867276083780960548883392519824943169466949925811 m: 200000000000000000000000 deg: 5 c5: 2125 c0: -23 skew: 0.40 type: snfs lss: 1 rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [350000, 600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 78114 x 78339 Total sieving time: 1.06 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,700000,700000,25,25,45,45,2.2,2.2,50000 total time: 1.10 hours. --------- CPU info (if available) ----------
(68·10127-23)/9 = 7(5)1263<128> = 11047 · 442948658389<12> · C113
C113 = P46 · P67
P46 = 2930179327475689888309979195558841620446520287<46>
P67 = 5269561271030268835690782346468544997247579366619279931709924249093<67>
N=15440759501239414746052470786880310377793924823079230995536396814451703822625126232937210152415871427113265849691 ( 113 digits) SNFS difficulty: 128 digits. Divisors found: r1=2930179327475689888309979195558841620446520287 (pp46) r2=5269561271030268835690782346468544997247579366619279931709924249093 (pp67) Version: Msieve-1.40 Total time: 2.86 hours. Scaled time: 2.67 units (timescale=0.932). Factorization parameters were as follows: n: 15440759501239414746052470786880310377793924823079230995536396814451703822625126232937210152415871427113265849691 m: 10000000000000000000000000 deg: 5 c5: 6800 c0: -23 skew: 0.32 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [490000, 890001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 139843 x 140068 Total sieving time: 2.70 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,128.000,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000 total time: 2.86 hours. --------- CPU info (if available) ----------
(68·10134-23)/9 = 7(5)1333<135> = 32 · 39906263 · 116212627 · 12319813631<11> · 121288423449913428549107<24> · C86
C86 = P35 · P51
P35 = 15879193363065865107998274559766137<35>
P51 = 762917520428606904550569900796832771668642509188273<51>
12/14/09 21:48:57 v1.14 @ REPGMAIL, starting SIQS on c86: 12114514826956601318952190098073537821701752211837444802265577948466686443108582911401 12/14/09 21:48:57 v1.14 @ REPGMAIL, random seeds: 0, 3887612160 12/14/09 21:48:57 v1.14 @ REPGMAIL, ==== sieve params ==== 12/14/09 21:48:57 v1.14 @ REPGMAIL, n = 86 digits, 283 bits 12/14/09 21:48:57 v1.14 @ REPGMAIL, factor base: 56327 primes (max prime = 1476803) 12/14/09 21:48:57 v1.14 @ REPGMAIL, single large prime cutoff: 162448330 (110 * pmax) 12/14/09 21:48:57 v1.14 @ REPGMAIL, double large prime range from 42 to 50 bits 12/14/09 21:48:57 v1.14 @ REPGMAIL, double large prime cutoff: 601571775592514 12/14/09 21:48:57 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base 12/14/09 21:48:57 v1.14 @ REPGMAIL, buckets hold 1024 elements 12/14/09 21:48:57 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768 12/14/09 21:48:57 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors 12/14/09 21:48:57 v1.14 @ REPGMAIL, using multiplier of 1 12/14/09 21:48:57 v1.14 @ REPGMAIL, using small prime variation correction of 19 bits 12/14/09 21:48:57 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning 12/14/09 21:48:57 v1.14 @ REPGMAIL, trial factoring cutoff at 94 bits 12/14/09 21:48:57 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ==== 12/14/09 21:55:25 v1.14 @ REPGMAIL, trial division touched 10682534 sieve locations out of 4744629190656 12/14/09 21:55:25 v1.14 @ REPGMAIL, 56750 relations found: 19827 full + 36923 from 490861 partial, using 4022072 polys (367 A polys) 12/14/09 21:55:25 v1.14 @ REPGMAIL, on average, sieving found 0.13 rels/poly and 1315.91 rels/sec 12/14/09 21:55:25 v1.14 @ REPGMAIL, trial division touched 10682534 sieve locations out of 4744629190656 12/14/09 21:55:25 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ==== 12/14/09 21:55:26 v1.14 @ REPGMAIL, begin with 510688 relations 12/14/09 21:55:26 v1.14 @ REPGMAIL, reduce to 112219 relations in 9 passes 12/14/09 21:55:33 v1.14 @ REPGMAIL, recovered 112219 relations 12/14/09 21:55:33 v1.14 @ REPGMAIL, recovered 82618 polynomials 12/14/09 21:55:36 v1.14 @ REPGMAIL, attempting to build 56750 cycles 12/14/09 21:55:36 v1.14 @ REPGMAIL, found 56750 cycles in 4 passes 12/14/09 21:55:36 v1.14 @ REPGMAIL, distribution of cycle lengths: 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 1 : 19827 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 2 : 16452 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 3 : 10389 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 4 : 5444 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 5 : 2627 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 6 : 1196 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 7 : 484 12/14/09 21:55:36 v1.14 @ REPGMAIL, length 9+: 331 12/14/09 21:55:36 v1.14 @ REPGMAIL, largest cycle: 13 relations 12/14/09 21:55:36 v1.14 @ REPGMAIL, matrix is 56327 x 56750 (10.6 MB) with weight 2564365 (45.19/col) 12/14/09 21:55:36 v1.14 @ REPGMAIL, sparse part has weight 2564365 (45.19/col) 12/14/09 21:55:36 v1.14 @ REPGMAIL, filtering completed in 3 passes 12/14/09 21:55:36 v1.14 @ REPGMAIL, matrix is 48272 x 48334 (9.3 MB) with weight 2235142 (46.24/col) 12/14/09 21:55:36 v1.14 @ REPGMAIL, sparse part has weight 2235142 (46.24/col) 12/14/09 21:55:36 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later 12/14/09 21:55:46 v1.14 @ REPGMAIL, matrix is 48224 x 48334 (7.6 MB) with weight 1897902 (39.27/col) 12/14/09 21:55:46 v1.14 @ REPGMAIL, sparse part has weight 1696057 (35.09/col) 12/14/09 21:55:46 v1.14 @ REPGMAIL, matrix includes 64 packed rows 12/14/09 21:55:46 v1.14 @ REPGMAIL, using block size 19333 for processor cache size 6144 kB 12/14/09 21:55:47 v1.14 @ REPGMAIL, commencing Lanczos iteration 12/14/09 21:55:47 v1.14 @ REPGMAIL, memory use: 7.0 MB 12/14/09 21:55:59 v1.14 @ REPGMAIL, lanczos halted after 764 iterations (dim = 48220) 12/14/09 21:55:59 v1.14 @ REPGMAIL, recovered 15 nontrivial dependencies 12/14/09 21:56:00 v1.14 @ REPGMAIL, prp35 = 15879193363065865107998274559766137 12/14/09 21:56:02 v1.14 @ REPGMAIL, prp51 = 762917520428606904550569900796832771668642509188273 12/14/09 21:56:02 v1.14 @ REPGMAIL, Lanczos elapsed time = 33.8740 seconds. 12/14/09 21:56:02 v1.14 @ REPGMAIL, Sqrt elapsed time = 3.1880 seconds. 12/14/09 21:56:02 v1.14 @ REPGMAIL, SIQS elapsed time = 425.1639 seconds.
(68·10130+31)/9 = 7(5)1299<131> = 11 · 56131 · 8228147 · 1229854799<10> · 1169247389592624844202971<25> · C86
C86 = P34 · P52
P34 = 6328328267930458654843816832915939<34>
P52 = 1634254345465820314671612324574857719012196626173507<52>
12/14/09 21:58:42 v1.14 @ REPGMAIL, starting SIQS on c86: 10342097971399540079633988595037935069400821487904349185261500024432707324650559828073 12/14/09 21:58:42 v1.14 @ REPGMAIL, random seeds: 0, 3887612160 12/14/09 21:58:43 v1.14 @ REPGMAIL, ==== sieve params ==== 12/14/09 21:58:43 v1.14 @ REPGMAIL, n = 86 digits, 284 bits 12/14/09 21:58:43 v1.14 @ REPGMAIL, factor base: 56327 primes (max prime = 1475729) 12/14/09 21:58:43 v1.14 @ REPGMAIL, single large prime cutoff: 162330190 (110 * pmax) 12/14/09 21:58:43 v1.14 @ REPGMAIL, double large prime range from 42 to 50 bits 12/14/09 21:58:43 v1.14 @ REPGMAIL, double large prime cutoff: 600784520801526 12/14/09 21:58:43 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base 12/14/09 21:58:43 v1.14 @ REPGMAIL, buckets hold 1024 elements 12/14/09 21:58:43 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768 12/14/09 21:58:43 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors 12/14/09 21:58:43 v1.14 @ REPGMAIL, using multiplier of 2 12/14/09 21:58:43 v1.14 @ REPGMAIL, using small prime variation correction of 21 bits 12/14/09 21:58:43 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning 12/14/09 21:58:43 v1.14 @ REPGMAIL, trial factoring cutoff at 92 bits 12/14/09 21:58:43 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ==== 12/14/09 22:05:23 v1.14 @ REPGMAIL, trial division touched 13815966 sieve locations out of 3668761903104 12/14/09 22:05:23 v1.14 @ REPGMAIL, 58137 relations found: 19063 full + 39074 from 549464 partial, using 3110048 polys (311 A polys) 12/14/09 22:05:23 v1.14 @ REPGMAIL, on average, sieving found 0.18 rels/poly and 1418.23 rels/sec 12/14/09 22:05:23 v1.14 @ REPGMAIL, trial division touched 13815966 sieve locations out of 3668761903104 12/14/09 22:05:23 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ==== 12/14/09 22:05:24 v1.14 @ REPGMAIL, begin with 568527 relations 12/14/09 22:05:24 v1.14 @ REPGMAIL, reduce to 121540 relations in 9 passes 12/14/09 22:05:27 v1.14 @ REPGMAIL, recovered 121540 relations 12/14/09 22:05:27 v1.14 @ REPGMAIL, recovered 84249 polynomials 12/14/09 22:05:28 v1.14 @ REPGMAIL, attempting to build 58137 cycles 12/14/09 22:05:28 v1.14 @ REPGMAIL, found 58137 cycles in 4 passes 12/14/09 22:05:28 v1.14 @ REPGMAIL, distribution of cycle lengths: 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 1 : 19063 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 2 : 15070 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 3 : 10885 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 4 : 6333 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 5 : 3437 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 6 : 1799 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 7 : 862 12/14/09 22:05:28 v1.14 @ REPGMAIL, length 9+: 688 12/14/09 22:05:28 v1.14 @ REPGMAIL, largest cycle: 16 relations 12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix is 56327 x 58137 (11.8 MB) with weight 2860361 (49.20/col) 12/14/09 22:05:28 v1.14 @ REPGMAIL, sparse part has weight 2860361 (49.20/col) 12/14/09 22:05:28 v1.14 @ REPGMAIL, filtering completed in 4 passes 12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix is 48817 x 48881 (9.8 MB) with weight 2374448 (48.58/col) 12/14/09 22:05:28 v1.14 @ REPGMAIL, sparse part has weight 2374448 (48.58/col) 12/14/09 22:05:28 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later 12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix is 48769 x 48881 (7.9 MB) with weight 1988288 (40.68/col) 12/14/09 22:05:28 v1.14 @ REPGMAIL, sparse part has weight 1773744 (36.29/col) 12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix includes 64 packed rows 12/14/09 22:05:28 v1.14 @ REPGMAIL, using block size 19552 for processor cache size 6144 kB 12/14/09 22:05:29 v1.14 @ REPGMAIL, commencing Lanczos iteration 12/14/09 22:05:29 v1.14 @ REPGMAIL, memory use: 7.2 MB 12/14/09 22:05:42 v1.14 @ REPGMAIL, lanczos halted after 773 iterations (dim = 48763) 12/14/09 22:05:42 v1.14 @ REPGMAIL, recovered 14 nontrivial dependencies 12/14/09 22:05:43 v1.14 @ REPGMAIL, prp52 = 1634254345465820314671612324574857719012196626173507 12/14/09 22:05:44 v1.14 @ REPGMAIL, prp34 = 6328328267930458654843816832915939 12/14/09 22:05:44 v1.14 @ REPGMAIL, Lanczos elapsed time = 18.6090 seconds. 12/14/09 22:05:44 v1.14 @ REPGMAIL, Sqrt elapsed time = 2.5000 seconds. 12/14/09 22:05:44 v1.14 @ REPGMAIL, SIQS elapsed time = 421.9790 seconds.
(68·10119-23)/9 = 7(5)1183<120> = 3 · 5381 · 19433 · 4054741 · 111624977 · 3066829543<10> · C88
C88 = P35 · P54
P35 = 17163877973414236572565193518549799<35>
P54 = 101091059547567240552656506384975203422975075543975963<54>
12/14/09 22:17:32 v1.14 @ REPGMAIL, starting SIQS on c88: 1735114610277596319882101492881858349358905458206119477631290544003282647794410274481437 12/14/09 22:17:32 v1.14 @ REPGMAIL, random seeds: 0, 3887612160 12/14/09 22:17:33 v1.14 @ REPGMAIL, ==== sieve params ==== 12/14/09 22:17:33 v1.14 @ REPGMAIL, n = 89 digits, 294 bits 12/14/09 22:17:33 v1.14 @ REPGMAIL, factor base: 60488 primes (max prime = 1597793) 12/14/09 22:17:33 v1.14 @ REPGMAIL, single large prime cutoff: 175757230 (110 * pmax) 12/14/09 22:17:33 v1.14 @ REPGMAIL, double large prime range from 43 to 50 bits 12/14/09 22:17:33 v1.14 @ REPGMAIL, double large prime cutoff: 693176384915362 12/14/09 22:17:33 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base 12/14/09 22:17:33 v1.14 @ REPGMAIL, buckets hold 1024 elements 12/14/09 22:17:33 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768 12/14/09 22:17:33 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors 12/14/09 22:17:33 v1.14 @ REPGMAIL, using multiplier of 13 12/14/09 22:17:33 v1.14 @ REPGMAIL, using small prime variation correction of 20 bits 12/14/09 22:17:33 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning 12/14/09 22:17:33 v1.14 @ REPGMAIL, trial factoring cutoff at 98 bits 12/14/09 22:17:33 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ==== 12/14/09 22:31:20 v1.14 @ REPGMAIL, trial division touched 13149469 sieve locations out of 20630231580672 12/14/09 22:31:20 v1.14 @ REPGMAIL, 61829 relations found: 19559 full + 42270 from 580301 partial, using 17488464 polys (735 A polys) 12/14/09 22:31:20 v1.14 @ REPGMAIL, on average, sieving found 0.03 rels/poly and 724.59 rels/sec 12/14/09 22:31:20 v1.14 @ REPGMAIL, trial division touched 13149469 sieve locations out of 20630231580672 12/14/09 22:31:20 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ==== 12/14/09 22:31:20 v1.14 @ REPGMAIL, begin with 599860 relations 12/14/09 22:31:20 v1.14 @ REPGMAIL, reduce to 130589 relations in 9 passes 12/14/09 22:31:28 v1.14 @ REPGMAIL, recovered 130589 relations 12/14/09 22:31:28 v1.14 @ REPGMAIL, recovered 110394 polynomials 12/14/09 22:31:28 v1.14 @ REPGMAIL, attempting to build 61829 cycles 12/14/09 22:31:28 v1.14 @ REPGMAIL, found 61829 cycles in 5 passes 12/14/09 22:31:28 v1.14 @ REPGMAIL, distribution of cycle lengths: 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 1 : 19559 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 2 : 16198 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 3 : 11684 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 4 : 6913 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 5 : 3770 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 6 : 1976 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 7 : 948 12/14/09 22:31:28 v1.14 @ REPGMAIL, length 9+: 781 12/14/09 22:31:28 v1.14 @ REPGMAIL, largest cycle: 18 relations 12/14/09 22:31:32 v1.14 @ REPGMAIL, matrix is 60488 x 61829 (12.7 MB) with weight 3090998 (49.99/col) 12/14/09 22:31:32 v1.14 @ REPGMAIL, sparse part has weight 3090998 (49.99/col) 12/14/09 22:31:33 v1.14 @ REPGMAIL, filtering completed in 4 passes 12/14/09 22:31:33 v1.14 @ REPGMAIL, matrix is 54334 x 54398 (11.2 MB) with weight 2705367 (49.73/col) 12/14/09 22:31:33 v1.14 @ REPGMAIL, sparse part has weight 2705367 (49.73/col) 12/14/09 22:31:33 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later 12/14/09 22:31:33 v1.14 @ REPGMAIL, matrix is 54286 x 54398 (9.5 MB) with weight 2342063 (43.05/col) 12/14/09 22:31:33 v1.14 @ REPGMAIL, sparse part has weight 2168736 (39.87/col) 12/14/09 22:31:33 v1.14 @ REPGMAIL, matrix includes 64 packed rows 12/14/09 22:31:33 v1.14 @ REPGMAIL, using block size 21759 for processor cache size 6144 kB 12/14/09 22:31:33 v1.14 @ REPGMAIL, commencing Lanczos iteration 12/14/09 22:31:33 v1.14 @ REPGMAIL, memory use: 8.5 MB 12/14/09 22:31:51 v1.14 @ REPGMAIL, lanczos halted after 860 iterations (dim = 54286) 12/14/09 22:31:51 v1.14 @ REPGMAIL, recovered 18 nontrivial dependencies 12/14/09 22:31:51 v1.14 @ REPGMAIL, prp35 = 17163877973414236572565193518549799 12/14/09 22:31:52 v1.14 @ REPGMAIL, prp54 = 101091059547567240552656506384975203422975075543975963 12/14/09 22:31:52 v1.14 @ REPGMAIL, Lanczos elapsed time = 31.2030 seconds. 12/14/09 22:31:52 v1.14 @ REPGMAIL, Sqrt elapsed time = 1.5160 seconds. 12/14/09 22:31:52 v1.14 @ REPGMAIL, SIQS elapsed time = 860.5803 seconds.
(68·10119+31)/9 = 7(5)1189<120> = 3 · 72 · 43686701 · C111
C111 = P40 · P71
P40 = 6634669135672764257553453456120632517947<40>
P71 = 17732931987917711009328662473632708127743210594667847722218063513552451<71>
N=117652136545221912976539918304840573257486417659088317570207254929124209859585794047601347460666857922983338097 ( 111 digits) SNFS difficulty: 120 digits. Divisors found: r1=6634669135672764257553453456120632517947 (pp40) r2=17732931987917711009328662473632708127743210594667847722218063513552451 (pp71) Version: Msieve-1.40 Total time: 1.52 hours. Scaled time: 2.93 units (timescale=1.922). Factorization parameters were as follows: n: 117652136545221912976539918304840573257486417659088317570207254929124209859585794047601347460666857922983338097 m: 200000000000000000000000 deg: 5 c5: 21250 c0: 31 skew: 0.27 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 710001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76233 x 76462 Total sieving time: 1.48 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120.000,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 1.52 hours. --------- CPU info (if available) ----------
(68·10123+31)/9 = 7(5)1229<124> = 643 · 509084894483527<15> · C107
C107 = P35 · P73
P35 = 15805941502604126681615117882084741<35>
P73 = 1460309293729239363139970762663567667195019351405645904493488161939164559<73>
N=23081563272393504608498474761706374197973657306420442943852972944554259658162200187498273275712430781894219 ( 107 digits) SNFS difficulty: 124 digits. Divisors found: r1=15805941502604126681615117882084741 (pp35) r2=1460309293729239363139970762663567667195019351405645904493488161939164559 (pp73) Version: Msieve-1.40 Total time: 1.58 hours. Scaled time: 3.11 units (timescale=1.963). Factorization parameters were as follows: n: 23081563272393504608498474761706374197973657306420442943852972944554259658162200187498273275712430781894219 m: 2000000000000000000000000 deg: 5 c5: 2125 c0: 31 skew: 0.43 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 770001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 99439 x 99664 Total sieving time: 1.53 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000 total time: 1.58 hours. --------- CPU info (if available) ----------
(68·10132-23)/9 = 7(5)1313<133> = 1451 · 15013853 · C123
C123 = P37 · P86
P37 = 3546780733597351884342375925933239181<37>
P86 = 97785056439323570071160433088360953550212624698377101232129668524217662486037165530171<86>
N=346822154212722509605722778538195475035879413238053901483291920294207306311553273500401847353147649829138159828113214829951 ( 123 digits) SNFS difficulty: 133 digits. Divisors found: r1=3546780733597351884342375925933239181 (pp37) r2=97785056439323570071160433088360953550212624698377101232129668524217662486037165530171 (pp86) Version: Msieve-1.40 Total time: 5.41 hours. Scaled time: 5.04 units (timescale=0.933). Factorization parameters were as follows: n: 346822154212722509605722778538195475035879413238053901483291920294207306311553273500401847353147649829138159828113214829951 m: 100000000000000000000000000 deg: 5 c5: 6800 c0: -23 skew: 0.32 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1345001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 151774 x 151999 Total sieving time: 5.26 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000 total time: 5.41 hours. --------- CPU info (if available) ----------
(68·10133+31)/9 = 7(5)1329<134> = 1622420191243<13> · C122
C122 = P58 · P65
P58 = 3775676221594506443793913356406245596727082658528011309483<58>
P65 = 12334124159941821239867158087321352017654694921147016591540360511<65>
N=46569659304886651490438767131553120040397812939779228259856637279984635433151663202704620061831030849474071331459013025813 ( 122 digits) SNFS difficulty: 134 digits. Divisors found: r1=3775676221594506443793913356406245596727082658528011309483 (pp58) r2=12334124159941821239867158087321352017654694921147016591540360511 (pp65) Version: Msieve-1.40 Total time: 4.95 hours. Scaled time: 4.61 units (timescale=0.932). Factorization parameters were as follows: n: 46569659304886651490438767131553120040397812939779228259856637279984635433151663202704620061831030849474071331459013025813 m: 200000000000000000000000000 deg: 5 c5: 2125 c0: 31 skew: 0.43 type: snfs lss: 1 rlim: 1240000 alim: 1240000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1240000/1240000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [620000, 1295001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 160015 x 160240 Total sieving time: 4.77 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000 total time: 4.95 hours. --------- CPU info (if available) ----------
(68·10133-23)/9 = 7(5)1323<134> = 31 · 1481 · 2157345597104996955689<22> · C108
C108 = P50 · P59
P50 = 47411469848704408241807854830975592670012824018181<50>
P59 = 16089646730547195710003465003961823026277166216107972643747<59>
N=762833800841643829710558482948388661851497005201100350789886529905966617825111340108110622150732462163964207 ( 108 digits) SNFS difficulty: 134 digits. Divisors found: r1=47411469848704408241807854830975592670012824018181 (pp50) r2=16089646730547195710003465003961823026277166216107972643747 (pp59) Version: Msieve-1.40 Total time: 4.88 hours. Scaled time: 4.55 units (timescale=0.932). Factorization parameters were as follows: n: 762833800841643829710558482948388661851497005201100350789886529905966617825111340108110622150732462163964207 m: 200000000000000000000000000 deg: 5 c5: 2125 c0: -23 skew: 0.40 type: snfs lss: 1 rlim: 1240000 alim: 1240000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1240000/1240000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [620000, 1295001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167310 x 167535 Total sieving time: 4.71 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000 total time: 4.88 hours. --------- CPU info (if available) ----------
(68·10129+31)/9 = 7(5)1289<130> = 2671 · 99105211 · C119
C119 = P44 · P76
P44 = 15850593937734961158350585904613693897074287<44>
P76 = 1800737813772841770073771228425346708559403534164709399543295848456867471397<76>
N=28542763874437913205487855707701668432438723177861207312592884591693426607608310073610917901821200641516476277956668939 ( 119 digits) SNFS difficulty: 130 digits. Divisors found: r1=15850593937734961158350585904613693897074287 (pp44) r2=1800737813772841770073771228425346708559403534164709399543295848456867471397 (pp76) Version: Msieve-1.40 Total time: 2.51 hours. Scaled time: 4.56 units (timescale=1.813). Factorization parameters were as follows: n: 28542763874437913205487855707701668432438723177861207312592884591693426607608310073610917901821200641516476277956668939 m: 20000000000000000000000000 deg: 5 c5: 21250 c0: 31 skew: 0.27 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 1030001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 151239 x 151466 Total sieving time: 2.42 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,130.000,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 2.51 hours. --------- CPU info (if available) ----------
(68·10131-23)/9 = 7(5)1303<132> = 3 · 43 · 1101629849<10> · 103335380363<12> · C110
C110 = P54 · P57
P54 = 107465839243862724082249298851749174717083735327064911<54>
P57 = 478764037949569470056242460435709304889925309933652412501<57>
N=51450779138031025275378865230083848138539241379756745451743759286339154927443801592785384612075213434574852411 ( 110 digits) SNFS difficulty: 132 digits. Divisors found: r1=107465839243862724082249298851749174717083735327064911 (pp54) r2=478764037949569470056242460435709304889925309933652412501 (pp57) Version: Msieve-1.40 Total time: 2.62 hours. Scaled time: 4.82 units (timescale=1.839). Factorization parameters were as follows: n: 51450779138031025275378865230083848138539241379756745451743759286339154927443801592785384612075213434574852411 m: 100000000000000000000000000 deg: 5 c5: 680 c0: -23 skew: 0.51 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 1075001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 158594 x 158824 Total sieving time: 2.52 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000 total time: 2.62 hours. --------- CPU info (if available) ----------
(68·10138-23)/9 = 7(5)1373<139> = 353 · 8747 · 3440792217051907<16> · C117
C117 = P39 · P79
P39 = 105491386872953299968777534235333470421<39>
P79 = 6741509055502669216548343696385596867253895536109530691752085630089326932209789<79>
N=711171139881550079123670628242749562640990066684770750496910658551665628899866129078044125043581325269317051798151169 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=105491386872953299968777534235333470421 (pp39) r2=6741509055502669216548343696385596867253895536109530691752085630089326932209789 (pp79) Version: Msieve-1.40 Total time: 6.88 hours. Scaled time: 6.42 units (timescale=0.933). Factorization parameters were as follows: n: 711171139881550079123670628242749562640990066684770750496910658551665628899866129078044125043581325269317051798151169 m: 2000000000000000000000000000 deg: 5 c5: 2125 c0: -23 skew: 0.40 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [750000, 1650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 228654 x 228880 Total sieving time: 6.57 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,139.000,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3,75000 total time: 6.88 hours. --------- CPU info (if available) ----------
(68·10139-23)/9 = 7(5)1383<140> = C140
C140 = P36 · P105
P36 = 164718007347958713783029320020009041<36>
P105 = 458696391317727327867207967595193328572030528906800158169735169192289759788564814046706350284250216889233<105>
N=75555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 140 digits) SNFS difficulty: 140 digits. Divisors found: r1=164718007347958713783029320020009041 (pp36) r2=458696391317727327867207967595193328572030528906800158169735169192289759788564814046706350284250216889233 (pp105) Version: Msieve-1.40 Total time: 6.80 hours. Scaled time: 13.07 units (timescale=1.922). Factorization parameters were as follows: n: 75555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 2000000000000000000000000000 deg: 5 c5: 21250 c0: -23 skew: 0.26 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 2080001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 245317 x 245544 Total sieving time: 6.67 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 6.80 hours. --------- CPU info (if available) ----------
(68·10140+31)/9 = 7(5)1399<141> = 32 · 11 · 61 · C138
C138 = P35 · P51 · P53
P35 = 64577825418450786827092826500152721<35>
P51 = 121323237318025912960150232176754713404906484098187<51>
P53 = 15968861963782638135182074151294697288027680707033603<53>
N=125112693418704347666096299976081396846424168828540413239866791779360085371014332762966642748063513090835495207079906533458446026752037681 ( 138 digits) SNFS difficulty: 141 digits. Divisors found: r1=64577825418450786827092826500152721 (pp35) r2=121323237318025912960150232176754713404906484098187 (pp51) r3=15968861963782638135182074151294697288027680707033603 (pp53) Version: Msieve-1.40 Total time: 5.62 hours. Scaled time: 5.23 units (timescale=0.930). Factorization parameters were as follows: n: 125112693418704347666096299976081396846424168828540413239866791779360085371014332762966642748063513090835495207079906533458446026752037681 m: 10000000000000000000000000000 deg: 5 c5: 68 c0: 31 skew: 0.85 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1510001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 202238 x 202469 Total sieving time: 5.44 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 5.62 hours. --------- CPU info (if available) ----------
(68·10144+31)/9 = 7(5)1439<145> = 11 · 79 · 64627 · C138
C138 = P55 · P83
P55 = 2799109163358252944851206027149459226073495227890800061<55>
P83 = 48063212413234688284492794240032724922427393061352740109590143514766355380635138413<83>
N=134534178286319345832622898895901146596617568992049775936590496402371088128677003335143827037621475929875855995224923013657314268043843193 ( 138 digits) SNFS difficulty: 145 digits. Divisors found: r1=2799109163358252944851206027149459226073495227890800061 (pp55) r2=48063212413234688284492794240032724922427393061352740109590143514766355380635138413 (pp83) Version: Msieve-1.40 Total time: 8.14 hours. Scaled time: 15.33 units (timescale=1.883). Factorization parameters were as follows: n: 134534178286319345832622898895901146596617568992049775936590496402371088128677003335143827037621475929875855995224923013657314268043843193 m: 20000000000000000000000000000 deg: 5 c5: 21250 c0: 31 skew: 0.27 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 2445001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 296638 x 296867 Total sieving time: 7.81 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,145.000,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 8.14 hours. --------- CPU info (if available) ----------
(68·10147+31)/9 = 7(5)1469<148> = 113 · 1399231 · 494128459174997<15> · 854839314133520650537403<24> · C102
C102 = P37 · P65
P37 = 3307593458679400865926471611006730181<37>
P65 = 34202831604401379070594480213491731602791057229970797659864243443<65>
N=113129062083031078829244010170332132313320715044935113709770505518972384982973295951897659466799453183 ( 102 digits) Divisors found: r1=3307593458679400865926471611006730181 (pp37) r2=34202831604401379070594480213491731602791057229970797659864243443 (pp65) Version: Msieve-1.40 Total time: 5.05 hours. Scaled time: 9.94 units (timescale=1.969). Factorization parameters were as follows: name: g2 n: 113129062083031078829244010170332132313320715044935113709770505518972384982973295951897659466799453183 skew: 9373.09 # norm 1.77e+014 c5: 95040 c4: 993742740 c3: -20272824328200 c2: -64071914268138185 c1: 842627983672225941408 c0: -11947393337441418505264 # alpha -6.12 Y1: 113350393709 Y0: -16410706557440026473 # Murphy_E 2.82e-009 # M 92210185113258973315463136410439353282245099000867708977336273077550890938594157433529679528411226221 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 213563 x 213788 Polynomial selection time: 0.50 hours. Total sieving time: 4.35 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.05 hours. --------- CPU info (if available) ----------
(68·10142-23)/9 = 7(5)1413<143> = 67 · 1201 · 81317837369<11> · 212049219970753086168503801<27> · C101
C101 = P49 · P53
P49 = 2959672947226504162711354061714811058096170521161<49>
P53 = 18398498042538049399399151846094729471619424141236051<53>
N=54453536926099656419822835317968628649294196449567335387500606200426331378061740221365333895391575211 ( 101 digits) Divisors found: r1=2959672947226504162711354061714811058096170521161 (pp49) r2=18398498042538049399399151846094729471619424141236051 (pp53) Version: Msieve-1.40 Total time: 3.76 hours. Scaled time: 7.23 units (timescale=1.922). Factorization parameters were as follows: name: g1 n: 54453536926099656419822835317968628649294196449567335387500606200426331378061740221365333895391575211 skew: 2931.88 # norm 5.35e+013 c5: 409200 c4: 8901108 c3: -4950728848596 c2: 6043929165090551 c1: 23397151429743759722 c0: -69366011719193748738633 # alpha -6.24 Y1: 38386560253 Y0: -10588101280949284690 # Murphy_E 3.19e-009 # M 37728834848942648417473990291487294399973387734390897856397569738356643094034402185983653030400545834 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 237990 x 238238 Polynomial selection time: 0.43 hours. Total sieving time: 3.07 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.15 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.76 hours. --------- CPU info (if available) ----------
(68·10132+31)/9 = 7(5)1319<133> = 11 · 19 · 15264131 · 72747172267872895085143<23> · C101
C101 = P47 · P54
P47 = 36954238232459266794746422219280310036992683933<47>
P54 = 880983270993343639800108777244778655265600180659756359<54>
N=32556065675099242514509548230892736110901273716548379934378236917526599026909990576685356401273879947 ( 101 digits) Divisors found: r1=36954238232459266794746422219280310036992683933 (pp47) r2=880983270993343639800108777244778655265600180659756359 (pp54) Version: Msieve-1.40 Total time: 3.88 hours. Scaled time: 7.39 units (timescale=1.905). Factorization parameters were as follows: name: g0 n: 32556065675099242514509548230892736110901273716548379934378236917526599026909990576685356401273879947 skew: 9331.96 # norm 1.42e+014 c5: 77700 c4: -857413225 c3: -17143839924827 c2: 70864659807859085 c1: 721204846229342710248 c0: -1087149978755970537439980 # alpha -6.52 Y1: 25776775063 Y0: -13318154067841040467 # Murphy_E 3.25e-009 # M 27532399991660424287791386334789384309991547594287584614629526678504506374241159243714975923135653028 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 195770 x 196001 Polynomial selection time: 0.43 hours. Total sieving time: 3.28 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.88 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Dec 15, 2009
(68·10140-23)/9 = 7(5)1393<141> = 3 · 48157279 · 158546731887285436938346074863<30> · C104
C104 = P44 · P60
P44 = 33766940649557270429843570725392477009158467<44>
P60 = 976864212320039983752591722330942844497734391931800612763689<60>
Number: 75553_140 N=32985715880087302264179078807117361590859919830808006197563651961591828459277939695772641530229024504763 ( 104 digits) SNFS difficulty: 141 digits. Divisors found: r1=33766940649557270429843570725392477009158467 (pp44) r2=976864212320039983752591722330942844497734391931800612763689 (pp60) Version: Msieve v. 1.42 Total time: 0.36 hours. Scaled time: 0.28 units (timescale=0.796). Factorization parameters were as follows: name: 75553_140 n: 32985715880087302264179078807117361590859919830808006197563651961591828459277939695772641530229024504763 m: 10000000000000000000000000000 deg: 5 c5: 68 c0: -23 skew: 0.81 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1710001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 274332 x 274557 Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.24 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 0.36 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 5.5 hours.
(67·10167+41)/9 = 7(4)1669<168> = 12007 · 2883731174759<13> · C152
C152 = P46 · P47 · P59
P46 = 9099568540339976268577524952845344061739489817<46>
P47 = 98953310001994328393191015800849486407545328609<47>
P59 = 23877666584598768009724339692120824825964814162219197525241<59>
Number: 74449_167 N=21500225265668832778209732491679555951323094270407199545497962211634757197950504508122504681536277486547015682731062252501472455955612542806915181492273 ( 152 digits) SNFS difficulty: 168 digits. Divisors found: r1=9099568540339976268577524952845344061739489817 (pp46) r2=98953310001994328393191015800849486407545328609 (pp47) r3=23877666584598768009724339692120824825964814162219197525241 (pp59) Version: Msieve-1.40 Total time: 70.12 hours. Scaled time: 230.47 units (timescale=3.287). Factorization parameters were as follows: name: 74449_167 n: 21500225265668832778209732491679555951323094270407199545497962211634757197950504508122504681536277486547015682731062252501472455955612542806915181492273 m: 1000000000000000000000000000000000 deg: 5 c5: 6700 c0: 41 skew: 0.36 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 984373 x 984621 Total sieving time: 67.85 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.86 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,168.000,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 70.12 hours. --------- CPU info (if available) ----------
(68·10143+31)/9 = 7(5)1429<144> = 3 · 7 · 256517971 · 722066453072714543<18> · C117
C117 = P51 · P67
P51 = 151840443799935154578099961093885897305133766399969<51>
P67 = 1279277258851732954711573830325981672571369287299325807035602299847<67>
Number: 75559_143 N=194246026727211654968913305488461548367824105430564236553497494764492736602120625486924694056985227303799150069504743 ( 117 digits) SNFS difficulty: 144 digits. Divisors found: r1=151840443799935154578099961093885897305133766399969 (pp51) r2=1279277258851732954711573830325981672571369287299325807035602299847 (pp67) Version: Msieve v. 1.42 Total time: 0.44 hours. Scaled time: 0.35 units (timescale=0.796). Factorization parameters were as follows: name: 75559_143 n: 194246026727211654968913305488461548367824105430564236553497494764492736602120625486924694056985227303799150069504743 m: 20000000000000000000000000000 deg: 5 c5: 2125 c0: 31 skew: 0.43 type: snfs lss: 1 rlim: 1820000 alim: 1820000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1820000/1820000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [910000, 2010001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 310126 x 310351 Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.30 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,144.000,5,0,0,0,0,0,0,0,0,1820000,1820000,26,26,49,49,2.3,2.3,100000 total time: 0.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 6 hours 40 min.
By [XTBA>TSA] IvanleFou + Beyond + Grubix + jiri kovar + veebee / yoyo@home, GMP-ECM / Dec 15, 2009
(10201+17)/9 = (1)2003<201> = 163 · 6610512331<10> · 591785342633<12> · C177
C177 = P33 · C144
P33 = 434937654132758116503430906897943<33>
C144 = [400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559<144>]
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 174249107424901328154797173904681562657513437449116292897023905780144007058356290870928174957782571238810560254724268067008224047626355412568808491125189068775485687967752135137 (177 digits) [Mon Dec 14 18:53:21 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3868083629 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 15735ms Using 22 small primes for NTT Estimated memory usage: 60M Initializing tables of differences for F took 15ms Computing roots of F took 750ms Building F from its roots took 1672ms Computing 1/F took 890ms Initializing table of differences for G took 16ms Computing roots of G took 687ms Building G from its roots took 1453ms Computing roots of G took 688ms Building G from its roots took 1453ms Computing G * H took 532ms Reducing G * H mod F took 515ms Computing polyeval(F,G) took 2812ms Computing product of all F(g_i) took 16ms Step 2 took 11671ms ********** Factor found in step 2: 434937654132758116503430906897943 Found probable prime factor of 33 digits: 434937654132758116503430906897943 Composite cofactor 400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559 has 144 digits
(10224+17)/9 = (1)2233<224> = 13 · 2062057 · 13114217 · 83966699 · 96847363 · C193
C193 = P30 · C163
P30 = 435014947587352996741211293991<30>
C163 = [8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387<163>]
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 3886657098257806331434095545293329839817212614797090398280354923445762056113132379813681173655176220583770329799839670015856368240944943756244089374109897160110332176285865766830274002285359517 (193 digits) [Mon Dec 14 20:03:58 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2823076904 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 16578ms Using 24 small primes for NTT Estimated memory usage: 62M Initializing tables of differences for F took 15ms Computing roots of F took 469ms Building F from its roots took 1781ms Computing 1/F took 1047ms Initializing table of differences for G took 16ms Computing roots of G took 437ms Building G from its roots took 1641ms Computing roots of G took 437ms Building G from its roots took 1625ms Computing G * H took 578ms Reducing G * H mod F took 562ms Computing polyeval(F,G) took 3141ms Computing product of all F(g_i) took 16ms Step 2 took 11922ms ********** Factor found in step 2: 435014947587352996741211293991 Found probable prime factor of 30 digits: 435014947587352996741211293991 Composite cofactor 8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387 has 163 digits
(10232+17)/9 = (1)2313<232> = 32 · 7 · 1031 · 242681851207<12> · 60172454155949833693<20> · C196
C196 = P29 · C168
P29 = 11034650601549874189730158399<29>
C168 = [106160918079293499828871171668387354975740392989821399884697192605813176167742276299320496961036627957248078891805720005695913237091468581973936046925810427808436406829<168>]
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 1171448638544762932351907908494663970476643690362893130411085823792270499423543789663011576627567935696315395295800785938152719188074903690312546061914970458942515265396550984538283442184575306771 (196 digits) [Mon Dec 14 20:25:19 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2768889511 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 11485ms Using 24 small primes for NTT Estimated memory usage: 66M Initializing tables of differences for F took 16ms Computing roots of F took 547ms Building F from its roots took 1016ms Computing 1/F took 687ms Initializing table of differences for G took 16ms Computing roots of G took 531ms Building G from its roots took 1032ms Computing roots of G took 515ms Building G from its roots took 1031ms Computing G * H took 375ms Reducing G * H mod F took 360ms Computing polyeval(F,G) took 1781ms Computing product of all F(g_i) took 16ms Step 2 took 7984ms ********** Factor found in step 2: 11034650601549874189730158399 Found probable prime factor of 29 digits: 11034650601549874189730158399 Composite cofactor 106160918079293499828871171668387354975740392989821399884697192605813176167742276299320496961036627957248078891805720005695913237091468581973936046925810427808436406829 has 168 digits
(10237+17)/9 = (1)2363<237> = 6689 · 9661 · C229
C229 = P30 · P199
P30 = 245770041528399372761722440431<30>
P199 = 6995927008257020513213147481935171254602692742046147638121409624025066318654782565640266876425207293906006549803982132091174899763423630705114910859456080952174977330381795175212974818157466438019187<199>
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 1719389271348978713120039345953880983197197850781980217907177570052513982585072918121216259313173002381434952114088919670771135995384994134329291632029354871682571868524334037507490025036216312932327429399336120762515923242549597 (229 digits) [Mon Dec 14 20:27:43 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3076026454 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 26785ms Using 27 small primes for NTT Estimated memory usage: 72M Initializing tables of differences for F took 16ms Computing roots of F took 1076ms Building F from its roots took 2277ms Computing 1/F took 1389ms Initializing table of differences for G took 15ms Computing roots of G took 952ms Building G from its roots took 2075ms Computing roots of G took 952ms Building G from its roots took 2028ms Computing G * H took 748ms Reducing G * H mod F took 702ms Computing polyeval(F,G) took 4150ms Computing product of all F(g_i) took 31ms Step 2 took 16520ms ********** Factor found in step 2: 245770041528399372761722440431 Found probable prime factor of 30 digits: 245770041528399372761722440431 Probable prime cofactor 6995927008257020513213147481935171254602692742046147638121409624025066318654782565640266876425207293906006549803982132091174899763423630705114910859456080952174977330381795175212974818157466438019187 has 199 digits
(10243+17)/9 = (1)2423<243> = 205998011 · 848344039447395897683339<24> · C210
C210 = P34 · P177
P34 = 5698757463712416358165250190011999<34>
P177 = 111568675330136835985158131132148286419662624343188790396091914312571328418864051146305057278675143858079578156757844170432496065307678374623319281825292812203036012184988862303<177>
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 635802821254124632245644134156344521699797959589567830765446538580491656222953927253387514145875048283079324184181135147768813698398498051741476677385558200484481165819627480049581712885502706227662268928773697 (210 digits) [Tue Dec 15 06:52:15 2009] Using MODMULN Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=978631340 dF=16384, k=2, d=158340, d2=11, i0=8 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 3 11 54 322 2350 20265 199745 2246256 2.8e+007 4e+008 Step 1 took 26067ms Using 25 small primes for NTT Estimated memory usage: 66M Initializing tables of differences for F took 15ms Computing roots of F took 952ms Building F from its roots took 1841ms Computing 1/F took 1029ms Initializing table of differences for G took 32ms Computing roots of G took 826ms Building G from its roots took 1592ms Computing roots of G took 734ms Building G from its roots took 1684ms Computing G * H took 546ms Reducing G * H mod F took 546ms Computing polyeval(F,G) took 3276ms Computing product of all F(g_i) took 16ms Step 2 took 13136ms ********** Factor found in step 2: 5698757463712416358165250190011999 Found probable prime factor of 34 digits: 5698757463712416358165250190011999 Probable prime cofactor 111568675330136835985158131132148286419662624343188790396091914312571328418864051146305057278675143858079578156757844170432496065307678374623319281825292812203036012184988862303 has 177 digits
By Markus Tervooren / Msieve, GMP-ECM / Dec 15, 2009
(68·10104-23)/9 = 7(5)1033<105> = 3 · 659591 · 404904091 · C90
C90 = P40 · P51
P40 = 7708013546252113778869071536500067456077<40>
P51 = 122342061281926836162513959260860360435732273533123<51>
Used 4th degree poly for snfs, n: 943014265637498297505998356358191789999906362475486416043098179590323289763284335407138471 m: 100000000000000000000000000 deg: 4 c4: 68 c0: -23 skew: 0.76 type: snfs lss: 1 rlim: 100000 alim: 100000 lpbr: 23 lpba: 23 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 total time: about 12 min. Msieve v. 1.44 Mon Dec 14 18:03:45 2009 random seeds: f7271fc6 28bb6c01 factoring 943014265637498297505998356358191789999906362475486416043098179590323289763284335407138471 (90 digits) searching for 15-digit factors commencing number field sieve (90-digit input) R0: -100000000000000000000000000 R1: 1 A0: -23 A1: 0 A2: 0 A3: 0 A4: 68 skew 0.76, size 5.461466e-11, alpha -0.039522, combined = 2.254282e-07 commencing square root phase reading relations for dependency 1 read 18586 cycles cycles contain 30766 unique relations read 30766 relations multiplying 30766 relations multiply complete, coefficients have about 0.75 million bits initial square root is modulo 9200017 sqrtTime: 1 prp40 factor: 7708013546252113778869071536500067456077 prp51 factor: 122342061281926836162513959260860360435732273533123 elapsed time 00:00:02
(68·10107-23)/9 = 7(5)1063<108> = 32 · 29 · 367 · 294703 · 713281 · C92
C92 = P38 · P54
P38 = 55841787356899758089337509139209931113<38>
P54 = 671978392635978033818610453543331621206951997598183941<54>
~12 mins. sieve time prp38 factor: 55841787356899758089337509139209931113 prp54 factor: 671978392635978033818610453543331621206951997598183941
(68·10114-23)/9 = 7(5)1133<115> = 109 · 59833 · 786691 · 273886423817<12> · C91
C91 = P40 · P52
P40 = 3046332219582280736969449366056318755789<40>
P52 = 1765010021743646241126701494557487844073819577055603<52>
~41 mins total prp40 factor: 3046332219582280736969449366056318755789 prp52 factor: 1765010021743646241126701494557487844073819577055603
(68·10108-23)/9 = 7(5)1073<109> = 1221209464999528236083<22> · C88
C88 = P30 · P59
P30 = 194946478745404642036108878353<30>
P59 = 31736632767257197268708000583187127425753435733110756525547<59>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=720988234 Step 1 took 8113ms Step 2 took 3832ms ********** Factor found in step 2: 194946478745404642036108878353 Found probable prime factor of 30 digits: 194946478745404642036108878353 Probable prime cofactor 31736632767257197268708000583187127425753435733110756525547 has 59 digits
(68·10146-23)/9 = 7(5)1453<147> = 3 · 1536852924590281489<19> · 16213118378585185452280153<26> · C104
C104 = P48 · P56
P48 = 222262927902466959012561494161438438028846547583<48>
P56 = 45475685662992432516577150080876318212189203602993452141<56>
prp48 factor: 222262927902466959012561494161438438028846547583 prp56 factor: 45475685662992432516577150080876318212189203602993452141 done by gnfs in about 12 CPU-hours (parameters were non-optimal). poly: Y0: -77566047231907110907 Y1: 31039371907 c0: -558398743597374860738736 c1: 137065067169670849580 c2: 59521037394430008 c3: -264552505753 c4: -300678770 c5: 3600
Factorizations of 755...553 and Factorizations of 755...559 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve / Dec 14, 2009
(14·10189+31)/9 = 1(5)1889<190> = 269 · C187
C187 = P65 · P123
P65 = 15476888878283271998699894906904401294117352114726080949942811469<65>
P123 = 373636746554657431899738325086669472686287739421434557195295928619410609529013993014149729410980424907284192083404696637519<123>
N=5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411 ( 187 digits) SNFS difficulty: 190 digits. Divisors found: r1=15476888878283271998699894906904401294117352114726080949942811469 (pp65) r2=373636746554657431899738325086669472686287739421434557195295928619410609529013993014149729410980424907284192083404696637519 (pp123) Version: Msieve-1.40 Total time: 477.33 hours. Scaled time: 443.92 units (timescale=0.930). Factorization parameters were as follows: n: 5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411 m: 20000000000000000000000000000000000000 deg: 5 c5: 4375 c0: 31 skew: 0.37 type: snfs lss: 1 rlim: 10300000 alim: 10300000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 300000Factor base limits: 10300000/10300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5150000, 10850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2109440 x 2109664 Total sieving time: 466.75 hours. Total relation processing time: 0.42 hours. Matrix solve time: 8.57 hours. Time per square root: 1.60 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10300000,10300000,28,28,54,54,2.5,2.5,100000 total time: 477.33 hours. --------- CPU info (if available) ----------
(28·10188-1)/9 = 3(1)188<189> = 19 · 503 · C185
C185 = P43 · P143
P43 = 2416629624381304027373196419958393926957531<43>
P143 = 13470503866653980725975346962207094079095769556923068819279584548159094120699797381682796572270886434971475080102868213043108034624212177560433<143>
N=32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923 ( 185 digits) SNFS difficulty: 189 digits. Divisors found: r1=2416629624381304027373196419958393926957531 (pp43) r2=13470503866653980725975346962207094079095769556923068819279584548159094120699797381682796572270886434971475080102868213043108034624212177560433 (pp143) Version: Msieve-1.40 Total time: 215.19 hours. Scaled time: 419.84 units (timescale=1.951). Factorization parameters were as follows: n: 32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923 m: 20000000000000000000000000000000000000 deg: 5 c5: 875 c0: -1 skew: 0.26 type: snfs lss: 1 rlim: 10100000 alim: 10100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 300000Factor base limits: 10100000/10100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5050000, 8350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1713525 x 1713749 Total sieving time: 210.31 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.72 hours. Time per square root: 0.94 hours. Prototype def-par.txt line would be: snfs,189.000,5,0,0,0,0,0,0,0,0,10100000,10100000,28,28,54,54,2.5,2.5,100000 total time: 215.19 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Dec 14, 2009
(68·10146-41)/9 = 7(5)1451<147> = 13099 · 51047 · 34085993869<11> · 257027694399899<15> · C114
C114 = P35 · P38 · P41
P35 = 91745407526091275078581201574964401<35>
P38 = 31940625612168213799541729966676659153<38>
P41 = 44012334266984213041400029357929142350469<41>
Number: 75551_146 N=128973995797215448814484116169921270822336396257811193385527946367660864173463162736114202640935324439767195543557 ( 114 digits) SNFS difficulty: 147 digits. Divisors found: r1=91745407526091275078581201574964401 (pp35) r2=31940625612168213799541729966676659153 (pp38) r3=44012334266984213041400029357929142350469 (pp41) Version: Msieve v. 1.42 Total time: 0.46 hours. Scaled time: 0.37 units (timescale=0.796). Factorization parameters were as follows: name: 75551_146 n: 128973995797215448814484116169921270822336396257811193385527946367660864173463162736114202640935324439767195543557 m: 100000000000000000000000000000 deg: 5 c5: 680 c0: -41 skew: 0.57 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 334952 x 335178 Total sieving time: 0.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.32 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147.000,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 0.46 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 8 hours 43 min.
(68·10125-41)/9 = 7(5)1241<126> = 19 · 23 · 36109 · 76006820388463240697<20> · C99
C99 = P42 · P58
P42 = 104832014910643936866343141389359887599647<42>
P58 = 6009287840164729715877654115282117404072734705183137859033<58>
Sun Dec 13 21:19:36 2009 Msieve v. 1.42 Sun Dec 13 21:19:36 2009 random seeds: 4eb821a4 a5b6dbf8 Sun Dec 13 21:19:36 2009 factoring 629965752462500244411755920304594721110450811886953027877206783027562086509752461510463877026561351 (99 digits) Sun Dec 13 21:19:37 2009 searching for 15-digit factors Sun Dec 13 21:19:38 2009 commencing quadratic sieve (99-digit input) Sun Dec 13 21:19:38 2009 using multiplier of 1 Sun Dec 13 21:19:38 2009 using 32kb Intel Core sieve core Sun Dec 13 21:19:38 2009 sieve interval: 36 blocks of size 32768 Sun Dec 13 21:19:38 2009 processing polynomials in batches of 6 Sun Dec 13 21:19:38 2009 using a sieve bound of 2632339 (96471 primes) Sun Dec 13 21:19:38 2009 using large prime bound of 394850850 (28 bits) Sun Dec 13 21:19:38 2009 using double large prime bound of 2975633911281600 (43-52 bits) Sun Dec 13 21:19:38 2009 using trial factoring cutoff of 52 bits Sun Dec 13 21:19:38 2009 polynomial 'A' values have 13 factors Mon Dec 14 07:13:00 2009 96785 relations (22492 full + 74293 combined from 1461184 partial), need 96567 Mon Dec 14 07:13:03 2009 begin with 1483676 relations Mon Dec 14 07:13:04 2009 reduce to 257448 relations in 11 passes Mon Dec 14 07:13:04 2009 attempting to read 257448 relations Mon Dec 14 07:13:09 2009 recovered 257448 relations Mon Dec 14 07:13:09 2009 recovered 248142 polynomials Mon Dec 14 07:13:09 2009 attempting to build 96785 cycles Mon Dec 14 07:13:09 2009 found 96785 cycles in 6 passes Mon Dec 14 07:13:09 2009 distribution of cycle lengths: Mon Dec 14 07:13:09 2009 length 1 : 22492 Mon Dec 14 07:13:09 2009 length 2 : 16333 Mon Dec 14 07:13:09 2009 length 3 : 16143 Mon Dec 14 07:13:09 2009 length 4 : 13204 Mon Dec 14 07:13:09 2009 length 5 : 10086 Mon Dec 14 07:13:09 2009 length 6 : 7088 Mon Dec 14 07:13:09 2009 length 7 : 4658 Mon Dec 14 07:13:09 2009 length 9+: 6781 Mon Dec 14 07:13:09 2009 largest cycle: 25 relations Mon Dec 14 07:13:10 2009 matrix is 96471 x 96785 (26.6 MB) with weight 6591370 (68.10/col) Mon Dec 14 07:13:10 2009 sparse part has weight 6591370 (68.10/col) Mon Dec 14 07:13:11 2009 filtering completed in 3 passes Mon Dec 14 07:13:11 2009 matrix is 92862 x 92926 (25.6 MB) with weight 6344118 (68.27/col) Mon Dec 14 07:13:11 2009 sparse part has weight 6344118 (68.27/col) Mon Dec 14 07:13:11 2009 saving the first 48 matrix rows for later Mon Dec 14 07:13:11 2009 matrix is 92814 x 92926 (15.5 MB) with weight 4996132 (53.76/col) Mon Dec 14 07:13:11 2009 sparse part has weight 3495382 (37.61/col) Mon Dec 14 07:13:12 2009 matrix includes 64 packed rows Mon Dec 14 07:13:12 2009 using block size 37170 for processor cache size 1024 kB Mon Dec 14 07:13:12 2009 commencing Lanczos iteration Mon Dec 14 07:13:12 2009 memory use: 16.0 MB Mon Dec 14 07:14:15 2009 lanczos halted after 1469 iterations (dim = 92810) Mon Dec 14 07:14:16 2009 recovered 14 nontrivial dependencies Mon Dec 14 07:14:17 2009 prp42 factor: 104832014910643936866343141389359887599647 Mon Dec 14 07:14:17 2009 prp58 factor: 6009287840164729715877654115282117404072734705183137859033 Mon Dec 14 07:14:17 2009 elapsed time 09:54:41
(68·10126-41)/9 = 7(5)1251<127> = 3 · 508284318280477357<18> · C109
C109 = P49 · P61
P49 = 2168385789520885323592002973154798753361401333233<49>
P61 = 2285082504146138317270373988148621575643144140324925007627257<61>
Number: 75551_126 N=4954940429873285846004037959569307310974025261223476931270036000767248081276571677583695407987754373710731881 ( 109 digits) SNFS difficulty: 127 digits. Divisors found: r1=2168385789520885323592002973154798753361401333233 (pp49) r2=2285082504146138317270373988148621575643144140324925007627257 (pp61) Version: Msieve-1.40 Total time: 2.30 hours. Scaled time: 4.79 units (timescale=2.085). Factorization parameters were as follows: name: 75551_126 n: 4954940429873285846004037959569307310974025261223476931270036000767248081276571677583695407987754373710731881 m: 10000000000000000000000000 deg: 5 c5: 680 c0: -41 skew: 0.57 type: snfs lss: 1 rlim: 950000 alim: 950000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 950000/950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [475000, 775001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 145579 x 145827 Total sieving time: 2.13 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127.000,5,0,0,0,0,0,0,0,0,950000,950000,26,26,46,46,2.3,2.3,50000 total time: 2.30 hours. --------- CPU info (if available) ----------
(68·10145-41)/9 = 7(5)1441<146> = 811 · 4057 · 12858849151<11> · C130
C130 = P43 · P88
P43 = 1255612128577662110396954971095716478536029<43>
P88 = 1422272908489788307449303177089974136622832027358183808413023957457841927697351017801047<88>
Number: 75551_145 N=1785823114047205532864564142717380990154970562116196561108798970213154646674726763889941941960613721969295735669951892273343422363 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=1255612128577662110396954971095716478536029 (pp43) r2=1422272908489788307449303177089974136622832027358183808413023957457841927697351017801047 (pp88) Version: Msieve v. 1.42 Total time: 0.44 hours. Scaled time: 0.30 units (timescale=0.682). Factorization parameters were as follows: name: 75551_145 n: 1785823114047205532864564142717380990154970562116196561108798970213154646674726763889941941960613721969295735669951892273343422363 m: 100000000000000000000000000000 deg: 5 c5: 68 c0: -41 skew: 0.90 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2280001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 329999 x 330224 Total sieving time: 0.00 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.34 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 0.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 8 hours.
(68·10133-41)/9 = 7(5)1321<134> = 2734133 · 108774481 · 391631987 · 990996343417<12> · C99
C99 = P47 · P52
P47 = 65828579710371249588047984796227037042501776203<47>
P52 = 9943861199397675884477351880290014463455082068241051<52>
Number: 75551_133 N=654590259593417765323944837115022385143444623850744621666113724888551685839988859703266523459509353 ( 99 digits) SNFS difficulty: 134 digits. Divisors found: r1=65828579710371249588047984796227037042501776203 (pp47) r2=9943861199397675884477351880290014463455082068241051 (pp52) Version: Msieve-1.40 Total time: 4.55 hours. Scaled time: 9.50 units (timescale=2.085). Factorization parameters were as follows: name: 75551_133 n: 654590259593417765323944837115022385143444623850744621666113724888551685839988859703266523459509353 m: 200000000000000000000000000 deg: 5 c5: 2125 c0: -41 skew: 0.45 type: snfs lss: 1 rlim: 1240000 alim: 1240000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1240000/1240000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [620000, 1220001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 204050 x 204298 Total sieving time: 4.29 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000 total time: 4.55 hours. --------- CPU info (if available) ----------
(68·10136-41)/9 = 7(5)1351<137> = 7 · 2716576406767969<16> · 157123207681893377227<21> · C101
C101 = P42 · P60
P42 = 181326086978689447388189009200639340728847<42>
P60 = 139458764202539283672117846442259581514338059678176104912213<60>
Number: 75551_136 N=25287512007730180440331763459094413686105338359406603987718124220534323648253614342533793796371708411 ( 101 digits) SNFS difficulty: 137 digits. Divisors found: r1=181326086978689447388189009200639340728847 (pp42) r2=139458764202539283672117846442259581514338059678176104912213 (pp60) Version: Msieve v. 1.42 Total time: 0.16 hours. Scaled time: 0.13 units (timescale=0.796). Factorization parameters were as follows: name: 75551_136 n: 25287512007730180440331763459094413686105338359406603987718124220534323648253614342533793796371708411 m: 1000000000000000000000000000 deg: 5 c5: 680 c0: -41 skew: 0.57 type: snfs lss: 1 rlim: 1390000 alim: 1390000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1390000/1390000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [695000, 1370001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 196507 x 196734 Total sieving time: 0.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137.000,5,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,75000 total time: 0.16 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 4 hours.
By Robert Backstrom / GGNFS, Msieve / Dec 14, 2009
(68·10114-41)/9 = 7(5)1131<115> = 3 · 829 · 4703 · 15359 · C104
C104 = P48 · P57
P48 = 333997449831259753820683440609596186256762920339<48>
P57 = 125924300771012935160478043723824767531313398139327105091<57>
Number: n N=42058395329302856748555982678684448285323587877262098896368420867466531192794508644386219233543914345849 ( 104 digits) SNFS difficulty: 116 digits. Divisors found: r1=333997449831259753820683440609596186256762920339 (pp48) r2=125924300771012935160478043723824767531313398139327105091 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.12 hours. Scaled time: 2.04 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_5_113_1 n: 42058395329302856748555982678684448285323587877262098896368420867466531192794508644386219233543914345849 m: 100000000000000000000000 deg: 5 c5: 34 c0: -205 skew: 1.43 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 qintsize: 50000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 550001) Primes: RFBsize:49098, AFBsize:49197, largePrimes:1306149 encountered Relations: rels:1298818, finalFF:162913 Max relations in full relation-set: 48 Initial matrix: 98361 x 162913 with sparse part having weight 8032972. Pruned matrix : 78797 x 79352 with weight 2865906. Total sieving time: 1.07 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 1.12 hours. --------- CPU info (if available) ----------
(26·10191-71)/9 = 2(8)1901<192> = 977 · C189
C189 = P64 · P126
P64 = 2357695266025173133599952969468394108657649003264896879481391411<64>
P126 = 125414746118265231875647176337445819091154835277185222972199907719810763192008226592232607294689716776008863337203936248400923<126>
Number: n N=295689753212782895485044922097122711247583304901626293642670305925167747071534174911861708176958944615034686682588422608893437962015239394973274195382690776754236324348913908791083816672353 ( 189 digits) SNFS difficulty: 192 digits. Divisors found: Mon Dec 14 17:52:20 2009 prp64 factor: 2357695266025173133599952969468394108657649003264896879481391411 Mon Dec 14 17:52:20 2009 prp126 factor: 125414746118265231875647176337445819091154835277185222972199907719810763192008226592232607294689716776008863337203936248400923 Mon Dec 14 17:52:20 2009 elapsed time 10:44:17 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: ~ 570.00 hours. Scaled time: 0.00 units (timescale=0.841). Factorization parameters were as follows: name: KA_2_8_190_1 n: 295689753212782895485044922097122711247583304901626293642670305925167747071534174911861708176958944615034686682588422608893437962015239394973274195382690776754236324348913908791083816672353 m: 100000000000000000000000000000000000000 deg: 5 c5: 260 c0: -71 skew: 0.77 type: snfs lss: 1 rlim: 11300000 alim: 11300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11300000/11300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 100000) Primes: RFBsize:745001, AFBsize:744681, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2971555 hash collisions in 25633478 relations Msieve: matrix is 1999084 x 1999311 (539.2 MB) Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11300000,11300000,28,28,56,56,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 14, 2009
(68·10144-41)/9 = 7(5)1431<145> = 3 · 433 · 2182819 · 123348484942824364443388367321<30> · C107
C107 = P47 · P60
P47 = 24892467603668557753000090400586736677794572369<47>
P60 = 867836189664191492656674254659120524677089561991211694320479<60>
Number: 75551_144 N=21602584236507048793078528427619328574849069639901071407067296022517802018044160637327267054645009844244751 ( 107 digits) SNFS difficulty: 146 digits. Divisors found: r1=24892467603668557753000090400586736677794572369 r2=867836189664191492656674254659120524677089561991211694320479 Version: Total time: 6.29 hours. Scaled time: 14.99 units (timescale=2.381). Factorization parameters were as follows: n: 21602584236507048793078528427619328574849069639901071407067296022517802018044160637327267054645009844244751 m: 100000000000000000000000000000 deg: 5 c5: 34 c0: -205 skew: 1.43 type: snfs lss: 1 rlim: 2550000 alim: 2550000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2550000/2550000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1275000, 2625001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4846416 Max relations in full relation-set: Initial matrix: Pruned matrix : 395311 x 395559 Total sieving time: 5.52 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.34 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2550000,2550000,26,26,49,49,2.3,2.3,75000 total time: 6.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
By Serge Batalov / GMP-ECM, Msieve / Dec 13, 2009
(68·10105-41)/9 = 7(5)1041<106> = 3 · 593 · 19891 · C99
C99 = P30 · P69
P30 = 894072190013208651293443978613<30>
P69 = 238814807518177285306701902214891055326157967452167884477203413512843<69>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4100245333 Step 1 took 7252ms Step 2 took 4064ms ********** Factor found in step 2: 894072190013208651293443978613 Found probable prime factor of 30 digits: 894072190013208651293443978613 Probable prime cofactor has 69 digits
(68·10104-41)/9 = 7(5)1031<105> = 29 · 251 · 3460469994043<13> · C89
C89 = P40 · P50
P40 = 1219491298385716085076638074015566815389<40>
P50 = 24596929157866137036858482091193628353907400534847<50>
SNFS difficulty: 105 digits. Divisors found: r1=1219491298385716085076638074015566815389 (pp40) r2=24596929157866137036858482091193628353907400534847 (pp50) Version: Msieve v. 1.44 SVN157 Total time: 0.27 hours. Scaled time: 0.65 units (timescale=2.400). Factorization parameters were as follows: c4: 68 c0: -41 m: 100000000000000000000000000 skew: 1 type: snfs lss: 1 n: 29995741075027653585003958776986225169555673026120542765581718340570596425604843110360483 Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [281250, 361251) Pruned matrix : 36923 x 37154 Total sieving time: 0.24 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.27 hours.
(68·10149-41)/9 = 7(5)1481<150> = 97812977672561<14> · C136
C136 = P32 · P105
P32 = 21519667365367654842470583146011<32>
P105 = 358950340046869773901826232727800735939422222200866796152564338086970669249438689493918216794682673538781<105>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2986990002 Step 1 took 9185ms Step 2 took 4904ms ********** Factor found in step 2: 21519667365367654842470583146011 Found probable prime factor of 32 digits: 21519667365367654842470583146011 Probable prime cofactor has 105 digits
(68·10111-41)/9 = 7(5)1101<112> = 32 · C111
C111 = P36 · P76
P36 = 490713461048873329138186470584317409<36>
P76 = 1710786924501943345697249840772477005309394792793479896885711790729024795271<76>
SNFS difficulty: 112 digits. Divisors found: r1=490713461048873329138186470584317409 (pp36) r2=1710786924501943345697249840772477005309394792793479896885711790729024795271 (pp76) Version: Msieve v. 1.44 SVN157 Total time: 0.55 hours. Scaled time: 1.32 units (timescale=2.400). Factorization parameters were as follows: n: 839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839 m: 10000000000000000000000 deg: 5 c5: 680 c0: -41 skew: 0.57 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [331250, 531251) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 53227 x 53452 Total sieving time: 0.52 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112.000,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 0.55 hours.
(68·10108-41)/9 = 7(5)1071<109> = 3 · C109
C109 = P40 · P70
P40 = 1007951436257840014703722478246051500193<40>
P70 = 2498650657088072640392035749835149369157792772913697850301258944896469<70>
SNFS difficulty: 109 digits. Divisors found: r1=1007951436257840014703722478246051500193 (pp40) r2=2498650657088072640392035749835149369157792772913697850301258944896469 (pp70) Version: Msieve v. 1.44 SVN157 Total time: 0.52 hours. Scaled time: 1.26 units (timescale=2.400). Factorization parameters were as follows: n: 2518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518517 m: 2000000000000000000000 deg: 5 c5: 2125 c0: -41 skew: 0.45 type: snfs lss: 1 rlim: 470000 alim: 470000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 470000/470000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [293750, 493751) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 50272 x 50498 Total sieving time: 0.50 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000 total time: 0.52 hours.
(68·10131-41)/9 = 7(5)1301<132> = 1746581 · 23676437375413375371741998899<29> · C98
C98 = P29 · P29 · P40
P29 = 34364227725649240817067390053<29>
P29 = 53175703139543086944405198143<29>
P40 = 9998652804651218056314025782798260070851<40>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1271878404 Step 1 took 7553ms Step 2 took 4068ms ********** Factor found in step 2: 53175703139543086944405198143 Found probable prime factor of 29 digits: 53175703139543086944405198143 Composite cofactor has 69 digits Input number is 18270957934982272959259478432488575544300788306364705919210711590286972123621551472888331313643729 (98 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1343956971 Step 1 took 7161ms Step 2 took 3960ms ********** Factor found in step 2: 34364227725649240817067390053 Found probable prime factor of 29 digits: 34364227725649240817067390053
By Dmitry Domanov / GGNFS/msieve, GMP-ECM / Dec 13, 2009
(64·10325-1)/9 = 7(1)325<326> = 2351 · 2693 · 559369 · 409481053 · 2055038511900243647232933024391865987<37> · C269
C269 = P47 · P223
P47 = 12496473753502778180221449028316893490069009723<47>
P223 = 1909452370878388370477013318447201720289355200397538489045339139889365737763581492405077795412274181233885926950655705548382204171049999441505150369579481408460023023185682075605079763890070556419189377761194302127528120161<223>
Factor=12496473753502778180221449028316893490069009723 Method=ECM B1=11000000 Sigma=889830216
7·10173+3 = 7(0)1723<174> = 37 · 4830247 · 253488539 · 22348446469487<14> · 4395944156853610582716741443564661893213<40> · C105
C105 = P45 · P60
P45 = 290110443363764923642894085090214904885689697<45>
P60 = 542132919827093529306769989453942968418390454867117966238849<60>
Number: g105-1 N=157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 ( 105 digits) Divisors found: r1=290110443363764923642894085090214904885689697 (pp45) r2=542132919827093529306769989453942968418390454867117966238849 (pp60) Version: Msieve-1.40 Total time: 6.56 hours. Scaled time: 12.53 units (timescale=1.911). Factorization parameters were as follows: name: g105-1 n: 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 skew: 13202.27 # norm 5.31e+014 c5: 69300 c4: 887486732 c3: 18054159829435 c2: -309959698006720573 c1: -3462703690957884986615 c0: 9494266772135327220966825 # alpha -7.07 Y1: 53466939577 Y0: -74333807980636864352 # Murphy_E 2.06e-009 # M 39261685110727373311766962481659204345999512574698899717038255884429614107360099199141019944888487217157 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 276557 x 276783 Polynomial selection time: 0.74 hours. Total sieving time: 5.46 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.23 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 6.56 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Dec 13, 2009
(68·10124-41)/9 = 7(5)1231<125> = 7 · 1783 · 4457 · C118
C118 = P54 · P65
P54 = 134509083086339760880041377384167466787761390470732873<54>
P65 = 10097707207448267830934383611435301631763864956190969829855808911<65>
Number: 75551_124 N=1358233337748190901605136788947794869526437745266105904453441981294278644002074637506547408746159417968092394414031303 ( 118 digits) SNFS difficulty: 125 digits. Divisors found: r1=134509083086339760880041377384167466787761390470732873 (pp54) r2=10097707207448267830934383611435301631763864956190969829855808911 (pp65) Version: Msieve-1.40 Total time: 2.65 hours. Scaled time: 5.30 units (timescale=2.000). Factorization parameters were as follows: name: 75551_124 n: 1358233337748190901605136788947794869526437745266105904453441981294278644002074637506547408746159417968092394414031303 m: 2000000000000000000000000 deg: 5 c5: 21250 c0: -41 skew: 0.29 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 790001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 144439 x 144679 Total sieving time: 2.45 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 2.65 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, YAFU v1.10, Msieve, GGNFS / Dec 13, 2009
(5·10197+1)/3 = 1(6)1967<198> = 43 · 1108021631163049657<19> · 3724929267509920843996372775497<31> · C147
C147 = P40 · P108
P40 = 4165800965005235814760754107643841829553<40>
P108 = 225431971171671469726015875312550232768705870586001468772728174911639271142852844564263297791187529959640337<108>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 939104723049981509289811750930030691770734096377436694089298811115147192934297884941625038686793082121971137561628863866898691665347893823937479361 (147 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4906593635 Step 1 took 4696ms Step 2 took 4555ms ********** Factor found in step 2: 4165800965005235814760754107643841829553 Found probable prime factor of 40 digits: 4165800965005235814760754107643841829553 Probable prime cofactor 225431971171671469726015875312550232768705870586001468772728174911639271142852844564263297791187529959640337 has 108 digits
(5·10184+1)/3 = 1(6)1837<185> = 7 · 1181 · 53401647263<11> · C170
C170 = P40 · C131
P40 = 2807399202518527814628463571806496953001<40>
C131 = [13447513409050908682573458648523764418473862031020518471328356268352372416765725844067113777872896048108156781413061310462101954727<131>]
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 37752538420426730353013726919101946495182605494565204069301466012242640645018256590170744393249454374498071184500225276512486394242670676202699669483096059890131548785727 (170 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8330428008 Step 1 took 5523ms Step 2 took 5085ms ********** Factor found in step 2: 2807399202518527814628463571806496953001 Found probable prime factor of 40 digits: 2807399202518527814628463571806496953001 Composite cofactor 13447513409050908682573458648523764418473862031020518471328356268352372416765725844067113777872896048108156781413061310462101954727 has 131 digits
(68·10148-41)/9 = 7(5)1471<149> = 7 · 960499 · 25761403841<11> · 180258765687439<15> · 167420142728256349478014981<27> · C92
C92 = P44 · P48
P44 = 76180334184904123317889342999934709966538801<44>
P48 = 189738274266043670657541526420182749846309412553<48>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 14454325141254200952289562052566937159494074260230698612511874552142164528479835960990968953 (92 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7439269695 Step 1 took 2839ms Step 2 took 3401ms ********** Factor found in step 2: 76180334184904123317889342999934709966538801 Found probable prime factor of 44 digits: 76180334184904123317889342999934709966538801 Probable prime cofactor 189738274266043670657541526420182749846309412553 has 48 digits
(68·10132-41)/9 = 7(5)1311<133> = 3 · 29 · 21236947 · 6386548725541727<16> · 782726109051719592811<21> · C87
C87 = P31 · P57
P31 = 2737841057306658717210311098427<31>
P57 = 298793251879729100538739305699668971422640914787280856661<57>
12/13/09 16:02:35 v1.10 @ 조영욱-PC, starting SIQS on c87: 818048432642492312825176391448402735182696250821329401587176489745428307949924449572247 12/13/09 16:02:35 v1.10 @ 조영욱-PC, random seeds: 3158097181, 843817604 12/13/09 16:02:36 v1.10 @ 조영욱-PC, ==== sieve params ==== 12/13/09 16:02:36 v1.10 @ 조영욱-PC, n = 87 digits, 290 bits 12/13/09 16:02:36 v1.10 @ 조영욱-PC, factor base: 59894 primes (max prime = 1570097) 12/13/09 16:02:36 v1.10 @ 조영욱-PC, single large prime cutoff: 172710670 (110 * pmax) 12/13/09 16:02:36 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 12/13/09 16:02:36 v1.10 @ 조영욱-PC, double large prime cutoff: 671698694327176 12/13/09 16:02:36 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 12/13/09 16:02:36 v1.10 @ 조영욱-PC, buckets hold 1024 elements 12/13/09 16:02:36 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 12/13/09 16:02:36 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 12/13/09 16:02:36 v1.10 @ 조영욱-PC, using multiplier of 2 12/13/09 16:02:36 v1.10 @ 조영욱-PC, using small prime variation correction of 20 bits 12/13/09 16:02:36 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 12/13/09 16:02:36 v1.10 @ 조영욱-PC, trial factoring cutoff at 96 bits 12/13/09 16:02:36 v1.10 @ 조영욱-PC, ==== sieving started ==== 12/13/09 16:28:36 v1.10 @ 조영욱-PC, sieve time = 715.4150, relation time = 331.7410, poly_time = 512.5390 12/13/09 16:28:36 v1.10 @ 조영욱-PC, 59960 relations found: 19502 full + 40458 from 551248 partial, using 275738 polys (269 A polys) 12/13/09 16:28:36 v1.10 @ 조영욱-PC, on average, sieving found 2.07 rels/poly and 365.77 rels/sec 12/13/09 16:28:36 v1.10 @ 조영욱-PC, trial division touched 13368403 sieve locations out of 325273780224 12/13/09 16:28:36 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 12/13/09 16:28:36 v1.10 @ 조영욱-PC, begin with 570750 relations 12/13/09 16:28:36 v1.10 @ 조영욱-PC, reduce to 124129 relations in 9 passes 12/13/09 16:28:37 v1.10 @ 조영욱-PC, recovered 124129 relations 12/13/09 16:28:37 v1.10 @ 조영욱-PC, recovered 99998 polynomials 12/13/09 16:28:37 v1.10 @ 조영욱-PC, attempting to build 59960 cycles 12/13/09 16:28:37 v1.10 @ 조영욱-PC, found 59960 cycles in 6 passes 12/13/09 16:28:37 v1.10 @ 조영욱-PC, distribution of cycle lengths: 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 1 : 19502 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 2 : 16271 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 3 : 11173 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 4 : 6439 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 5 : 3497 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 6 : 1688 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 7 : 758 12/13/09 16:28:37 v1.10 @ 조영욱-PC, length 9+: 632 12/13/09 16:28:37 v1.10 @ 조영욱-PC, largest cycle: 16 relations 12/13/09 16:28:37 v1.10 @ 조영욱-PC, matrix is 59894 x 59960 (13.1 MB) with weight 2945380 (49.12/col) 12/13/09 16:28:37 v1.10 @ 조영욱-PC, sparse part has weight 2945380 (49.12/col) 12/13/09 16:28:38 v1.10 @ 조영욱-PC, filtering completed in 4 passes 12/13/09 16:28:38 v1.10 @ 조영욱-PC, matrix is 53222 x 53286 (11.8 MB) with weight 2672822 (50.16/col) 12/13/09 16:28:38 v1.10 @ 조영욱-PC, sparse part has weight 2672822 (50.16/col) 12/13/09 16:28:38 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 12/13/09 16:28:38 v1.10 @ 조영욱-PC, matrix is 53174 x 53286 (8.4 MB) with weight 2131376 (40.00/col) 12/13/09 16:28:38 v1.10 @ 조영욱-PC, sparse part has weight 1674370 (31.42/col) 12/13/09 16:28:38 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 12/13/09 16:28:38 v1.10 @ 조영욱-PC, using block size 21314 for processor cache size 4096 kB 12/13/09 16:28:38 v1.10 @ 조영욱-PC, commencing Lanczos iteration 12/13/09 16:28:38 v1.10 @ 조영욱-PC, memory use: 7.5 MB 12/13/09 16:28:49 v1.10 @ 조영욱-PC, lanczos halted after 842 iterations (dim = 53171) 12/13/09 16:28:49 v1.10 @ 조영욱-PC, recovered 16 nontrivial dependencies 12/13/09 16:28:51 v1.10 @ 조영욱-PC, prp57 = 298793251879729100538739305699668971422640914787280856661 12/13/09 16:28:51 v1.10 @ 조영욱-PC, prp31 = 2737841057306658717210311098427 12/13/09 16:28:51 v1.10 @ 조영욱-PC, Lanczos elapsed time = 13.7280 seconds. 12/13/09 16:28:51 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.8880 seconds. 12/13/09 16:28:51 v1.10 @ 조영욱-PC, SIQS elapsed time = 1576.0030 seconds. 12/13/09 16:28:51 v1.10 @ 조영욱-PC, 12/13/09 16:28:51 v1.10 @ 조영욱-PC,
(68·10118-41)/9 = 7(5)1171<119> = 72 · 491 · 21563 · 1108229 · 34549578298961779<17> · C88
C88 = P41 · P48
P41 = 34532780382054814199867027222353498860857<41>
P48 = 110147803244464195761021537297140065029831121169<48>
12/13/09 16:32:06 v1.10 @ 조영욱-PC, starting SIQS on c88: 3803709899006866793179568153424366834859009484791078711335046454459323665574328638181833 12/13/09 16:32:06 v1.10 @ 조영욱-PC, random seeds: 1170905327, 2669193264 12/13/09 16:32:07 v1.10 @ 조영욱-PC, ==== sieve params ==== 12/13/09 16:32:07 v1.10 @ 조영욱-PC, n = 88 digits, 291 bits 12/13/09 16:32:07 v1.10 @ 조영욱-PC, factor base: 61083 primes (max prime = 1616803) 12/13/09 16:32:07 v1.10 @ 조영욱-PC, single large prime cutoff: 177848330 (110 * pmax) 12/13/09 16:32:07 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 12/13/09 16:32:07 v1.10 @ 조영욱-PC, double large prime cutoff: 708091897184765 12/13/09 16:32:07 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 12/13/09 16:32:07 v1.10 @ 조영욱-PC, buckets hold 1024 elements 12/13/09 16:32:07 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 12/13/09 16:32:07 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 12/13/09 16:32:07 v1.10 @ 조영욱-PC, using multiplier of 1 12/13/09 16:32:07 v1.10 @ 조영욱-PC, using small prime variation correction of 17 bits 12/13/09 16:32:07 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 12/13/09 16:32:07 v1.10 @ 조영욱-PC, trial factoring cutoff at 100 bits 12/13/09 16:32:07 v1.10 @ 조영욱-PC, ==== sieving started ==== 12/13/09 17:08:26 v1.10 @ 조영욱-PC, sieve time = 1059.0880, relation time = 331.8220, poly_time = 788.1500 12/13/09 17:08:26 v1.10 @ 조영욱-PC, 61186 relations found: 20399 full + 40787 from 541207 partial, using 423346 polys (413 A polys) 12/13/09 17:08:26 v1.10 @ 조영욱-PC, on average, sieving found 1.33 rels/poly and 257.62 rels/sec 12/13/09 17:08:26 v1.10 @ 조영욱-PC, trial division touched 10182730 sieve locations out of 499399262208 12/13/09 17:08:26 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 12/13/09 17:08:26 v1.10 @ 조영욱-PC, begin with 561606 relations 12/13/09 17:08:27 v1.10 @ 조영욱-PC, reduce to 123607 relations in 9 passes 12/13/09 17:08:27 v1.10 @ 조영욱-PC, failed to read relation 54067 12/13/09 17:08:28 v1.10 @ 조영욱-PC, recovered 123606 relations 12/13/09 17:08:28 v1.10 @ 조영욱-PC, recovered 107337 polynomials 12/13/09 17:08:28 v1.10 @ 조영욱-PC, attempting to build 61185 cycles 12/13/09 17:08:28 v1.10 @ 조영욱-PC, found 61185 cycles in 4 passes 12/13/09 17:08:28 v1.10 @ 조영욱-PC, distribution of cycle lengths: 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 1 : 20399 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 2 : 17522 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 3 : 11422 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 4 : 6306 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 5 : 3105 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 6 : 1417 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 7 : 612 12/13/09 17:08:28 v1.10 @ 조영욱-PC, length 9+: 402 12/13/09 17:08:28 v1.10 @ 조영욱-PC, largest cycle: 14 relations 12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix is 61083 x 61185 (12.7 MB) with weight 2845786 (46.51/col) 12/13/09 17:08:28 v1.10 @ 조영욱-PC, sparse part has weight 2845786 (46.51/col) 12/13/09 17:08:28 v1.10 @ 조영욱-PC, filtering completed in 4 passes 12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix is 54561 x 54625 (11.6 MB) with weight 2598928 (47.58/col) 12/13/09 17:08:28 v1.10 @ 조영욱-PC, sparse part has weight 2598928 (47.58/col) 12/13/09 17:08:28 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix is 54513 x 54625 (8.3 MB) with weight 2093151 (38.32/col) 12/13/09 17:08:28 v1.10 @ 조영욱-PC, sparse part has weight 1624518 (29.74/col) 12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 12/13/09 17:08:28 v1.10 @ 조영욱-PC, using block size 21850 for processor cache size 4096 kB 12/13/09 17:08:29 v1.10 @ 조영욱-PC, commencing Lanczos iteration 12/13/09 17:08:29 v1.10 @ 조영욱-PC, memory use: 7.5 MB 12/13/09 17:08:40 v1.10 @ 조영욱-PC, lanczos halted after 863 iterations (dim = 54511) 12/13/09 17:08:40 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 12/13/09 17:08:41 v1.10 @ 조영욱-PC, prp48 = 110147803244464195761021537297140065029831121169 12/13/09 17:08:42 v1.10 @ 조영욱-PC, prp41 = 34532780382054814199867027222353498860857 12/13/09 17:08:42 v1.10 @ 조영욱-PC, Lanczos elapsed time = 14.0090 seconds. 12/13/09 17:08:42 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.5600 seconds. 12/13/09 17:08:42 v1.10 @ 조영욱-PC, SIQS elapsed time = 2195.5280 seconds. 12/13/09 17:08:42 v1.10 @ 조영욱-PC, 12/13/09 17:08:42 v1.10 @ 조영욱-PC,
(68·10120-41)/9 = 7(5)1191<121> = 32 · 103 · 640763489 · C110
C110 = P31 · P79
P31 = 7522650767954371464658123338883<31>
P79 = 1690900338472253717843974265424623024998093155324732145561110307961542934925899<79>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 12720052729742606071376255874676753059000774246060165339703830758816106561742812070410938974039927844070430817 (110 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7746665774 Step 1 took 3463ms Step 2 took 3776ms ********** Factor found in step 2: 7522650767954371464658123338883 Found probable prime factor of 31 digits: 7522650767954371464658123338883 Probable prime cofactor 1690900338472253717843974265424623024998093155324732145561110307961542934925899 has 79 digits
(68·10119-41)/9 = 7(5)1181<120> = 149 · 179 · 12137278595563236544438241<26> · C91
C91 = P39 · P52
P39 = 693993837679896534923644341171069837383<39>
P52 = 3363180443604080019397353045243304202704788434190727<52>
12/13/09 17:12:04 v1.10 @ 조영욱-PC, starting SIQS on c91: 2334026502866772331445982526031065272433160759815583268239268004709042534418333865096547441 12/13/09 17:12:04 v1.10 @ 조영욱-PC, random seeds: 2799027576, 3905644624 12/13/09 17:12:05 v1.10 @ 조영욱-PC, ==== sieve params ==== 12/13/09 17:12:05 v1.10 @ 조영욱-PC, n = 91 digits, 303 bits 12/13/09 17:12:05 v1.10 @ 조영욱-PC, factor base: 68495 primes (max prime = 1836641) 12/13/09 17:12:05 v1.10 @ 조영욱-PC, single large prime cutoff: 220396920 (120 * pmax) 12/13/09 17:12:05 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 12/13/09 17:12:05 v1.10 @ 조영욱-PC, double large prime cutoff: 1041765420895216 12/13/09 17:12:05 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 12/13/09 17:12:05 v1.10 @ 조영욱-PC, buckets hold 1024 elements 12/13/09 17:12:05 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536 12/13/09 17:12:05 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 12/13/09 17:12:05 v1.10 @ 조영욱-PC, using multiplier of 5 12/13/09 17:12:05 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits 12/13/09 17:12:05 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 12/13/09 17:12:05 v1.10 @ 조영욱-PC, trial factoring cutoff at 96 bits 12/13/09 17:12:05 v1.10 @ 조영욱-PC, ==== sieving started ==== 12/13/09 18:14:06 v1.10 @ 조영욱-PC, sieve time = 1746.3940, relation time = 734.7870, poly_time = 1239.4730 12/13/09 18:14:06 v1.10 @ 조영욱-PC, 68571 relations found: 18616 full + 49955 from 860287 partial, using 569705 polys (278 A polys) 12/13/09 18:14:06 v1.10 @ 조영욱-PC, on average, sieving found 1.54 rels/poly and 236.14 rels/sec 12/13/09 18:14:06 v1.10 @ 조영욱-PC, trial division touched 32698597 sieve locations out of 821396111360 12/13/09 18:14:06 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 12/13/09 18:14:07 v1.10 @ 조영욱-PC, begin with 878903 relations 12/13/09 18:14:07 v1.10 @ 조영욱-PC, reduce to 165407 relations in 10 passes 12/13/09 18:14:08 v1.10 @ 조영욱-PC, failed to read relation 141413 12/13/09 18:14:09 v1.10 @ 조영욱-PC, recovered 165406 relations 12/13/09 18:14:09 v1.10 @ 조영욱-PC, recovered 143655 polynomials 12/13/09 18:14:09 v1.10 @ 조영욱-PC, attempting to build 68570 cycles 12/13/09 18:14:09 v1.10 @ 조영욱-PC, found 68570 cycles in 4 passes 12/13/09 18:14:09 v1.10 @ 조영욱-PC, distribution of cycle lengths: 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 1 : 18616 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 2 : 13854 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 3 : 12332 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 4 : 9209 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 5 : 6111 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 6 : 3763 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 7 : 2224 12/13/09 18:14:09 v1.10 @ 조영욱-PC, length 9+: 2461 12/13/09 18:14:09 v1.10 @ 조영욱-PC, largest cycle: 19 relations 12/13/09 18:14:09 v1.10 @ 조영욱-PC, matrix is 68495 x 68570 (17.5 MB) with weight 4049507 (59.06/col) 12/13/09 18:14:09 v1.10 @ 조영욱-PC, sparse part has weight 4049507 (59.06/col) 12/13/09 18:14:09 v1.10 @ 조영욱-PC, filtering completed in 3 passes 12/13/09 18:14:09 v1.10 @ 조영욱-PC, matrix is 64145 x 64208 (16.6 MB) with weight 3838689 (59.79/col) 12/13/09 18:14:09 v1.10 @ 조영욱-PC, sparse part has weight 3838689 (59.79/col) 12/13/09 18:14:10 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 12/13/09 18:14:10 v1.10 @ 조영욱-PC, matrix is 64097 x 64208 (11.3 MB) with weight 3041038 (47.36/col) 12/13/09 18:14:10 v1.10 @ 조영욱-PC, sparse part has weight 2315710 (36.07/col) 12/13/09 18:14:10 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 12/13/09 18:14:10 v1.10 @ 조영욱-PC, using block size 25683 for processor cache size 4096 kB 12/13/09 18:14:10 v1.10 @ 조영욱-PC, commencing Lanczos iteration 12/13/09 18:14:10 v1.10 @ 조영욱-PC, memory use: 9.9 MB 12/13/09 18:14:28 v1.10 @ 조영욱-PC, lanczos halted after 1016 iterations (dim = 64097) 12/13/09 18:14:28 v1.10 @ 조영욱-PC, recovered 18 nontrivial dependencies 12/13/09 18:14:30 v1.10 @ 조영욱-PC, prp52 = 3363180443604080019397353045243304202704788434190727 12/13/09 18:14:32 v1.10 @ 조영욱-PC, prp39 = 693993837679896534923644341171069837383 12/13/09 18:14:32 v1.10 @ 조영욱-PC, Lanczos elapsed time = 22.0890 seconds. 12/13/09 18:14:32 v1.10 @ 조영욱-PC, Sqrt elapsed time = 3.6660 seconds. 12/13/09 18:14:32 v1.10 @ 조영욱-PC, SIQS elapsed time = 3747.7380 seconds. 12/13/09 18:14:32 v1.10 @ 조영욱-PC, 12/13/09 18:14:32 v1.10 @ 조영욱-PC,
2·10197-1 = 1(9)197<198> = 3489781 · 1544884849<10> · 99635152957880897351925251119<29> · C153
C153 = P73 · P81
P73 = 3106715592670622545052652201311870702958135715650492536479382258704707479<73>
P81 = 119845468875413674461665854674334297323102627345704299514768319724130736097956971<81>
Number: 19999_197 N=372325786866169441250327851059588119485775841500993243856730119954248515508380134433190793829593497441299946322830257214959074704367324446826072083886109 ( 153 digits) SNFS difficulty: 197 digits. Divisors found: r1=3106715592670622545052652201311870702958135715650492536479382258704707479 r2=119845468875413674461665854674334297323102627345704299514768319724130736097956971 Version: Total time: 263.39 hours. Scaled time: 628.18 units (timescale=2.385). Factorization parameters were as follows: n: 372325786866169441250327851059588119485775841500993243856730119954248515508380134433190793829593497441299946322830257214959074704367324446826072083886109 m: 2000000000000000000000000000000000000000 deg: 5 c5: 25 c0: -4 skew: 0.69 type: snfs lss: 1 rlim: 14000000 alim: 14000000 lpbr: 29 lpba: 29 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14000000/14000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 55/55 Sieved rational special-q in [7000000, 13000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 33793998 Max relations in full relation-set: Initial matrix: Pruned matrix : 2655738 x 2655985 Total sieving time: 232.12 hours. Total relation processing time: 10.63 hours. Matrix solve time: 20.22 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,14000000,14000000,29,29,55,55,2.5,2.5,100000 total time: 263.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
Factorizations of 755...551 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 12, 2009
(17·10184+7)/3 = 5(6)1839<185> = 61 · 39041 · 1909371924869851302649714847256763860533<40> · C140
C140 = P37 · P103
P37 = 5124172426862591527993743217843926217<37>
P103 = 2431994737114378672034241234074769137183424168356159641033087179976549773766608679855816455013117557029<103>
********** Factor found in step 2: 5124172426862591527993743217843926217 Found probable prime factor of 37 digits: 5124172426862591527993743217843926217 Probable prime cofactor 2431994737114378672034241234074769137183424168356159641033087179976549773766608679855816455013117557029 has 103 digits
7·10173+3 = 7(0)1723<174> = 37 · 4830247 · 253488539 · 22348446469487<14> · C144
C144 = P40 · C105
P40 = 4395944156853610582716741443564661893213<40>
C105 = [157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753<105>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1786388023 Step 1 took 42364ms ********** Factor found in step 1: 4395944156853610582716741443564661893213 Found probable prime factor of 40 digits: 4395944156853610582716741443564661893213 Composite cofactor 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 has 105 digits
By Sinkiti Sibata / Msieve / Dec 12, 2009
(61·10166-43)/9 = 6(7)1653<167> = 3 · 19 · 613 · 4757101 · 6663407 · C149
C149 = P55 · P95
P55 = 1467058864327318536191200519538686958267945548946391343<55>
P95 = 41712454180418038540092264032930234816532137293588332276077015671466940950225200778451694516853<95>
Number: 67773_166 N=61194625658229398109012930480802869719547151981450925484771163997284152763997732120947147166743515730911733207086500287913412099184316954874246803579 ( 149 digits) SNFS difficulty: 167 digits. Divisors found: r1=1467058864327318536191200519538686958267945548946391343 (pp55) r2=41712454180418038540092264032930234816532137293588332276077015671466940950225200778451694516853 (pp95) Version: Msieve-1.40 Total time: 46.34 hours. Scaled time: 152.30 units (timescale=3.287). Factorization parameters were as follows: name: 67773_166 n: 61194625658229398109012930480802869719547151981450925484771163997284152763997732120947147166743515730911733207086500287913412099184316954874246803579 m: 1000000000000000000000000000000000 deg: 5 c5: 610 c0: -43 skew: 0.59 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 836871 x 837119 Total sieving time: 44.68 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.33 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 46.34 hours. --------- CPU info (if available) ----------
According to the progress report from Robert Backstrom, c241 has finally started the Lanczos step today. Msieve requires estimated 515 hours, so it will end early in the new year.
By Lionel Debroux / ggnfs + msieve / Dec 11, 2009
(22·10166-7)/3 = 7(3)1651<167> = 409 · 419 · 3011 · 115597 · 25852643 · 794728813 · 8492728860754387<16> · C121
C121 = P43 · P79
P43 = 1104239814695922526636398039119065670197823<43>
P79 = 6380757027338811217564960531118647618150226218080350862755796008818598741511437<79>
Number: 73331_166 N=7045885957488314366183623370458357518983247288396398217078479943464251420227362790070367387651860604343780717909807001651 ( 121 digits) SNFS difficulty: 167 digits. Divisors found: r1=1104239814695922526636398039119065670197823 (pp43) r2=6380757027338811217564960531118647618150226218080350862755796008818598741511437 (pp79) Version: Msieve v. 1.44 Total time: 54.51 hours. Scaled time: 81.55 units (timescale=1.496). Factorization parameters were as follows: n: 7045885957488314366183623370458357518983247288396398217078479943464251420227362790070367387651860604343780717909807001651 m: 1000000000000000000000000000000000 deg: 5 c5: 220 c0: -7 skew: 0.50 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2150000, 3850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 750134 x 750359 Total sieving time: 52.28 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.38 hours. Time per square root: 0.76 hours. Prototype def-par.txt line would be: snfs,167.000,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 54.51 hours. --------- CPU info (if available) ---------- [ 0.030572] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.102093] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2051108k/2096800k available (7372k kernel code, 452k absent, 44524k reserved, 3466k data, 772k init) [ 0.001009] Calibrating delay loop (skipped), value calculated using timer frequency.. 3989.54 BogoMIPS (lpj=1994771) [ 0.001999] Calibrating delay using timer specific routine.. 5505.93 BogoMIPS (lpj=2752967) [ 0.103024] Total of 2 processors activated (9495.47 BogoMIPS).
By Dmitry Domanov / ECMNET, GMP-ECM / Dec 11, 2009
(52·10188-43)/9 = 5(7)1873<189> = 3 · 173 · 2267 · C183
C183 = P32 · P152
P32 = 31978900502670207700576552297793<32>
P152 = 15356011491672614427520253819593535366479447274276240103542314539618926993708539558051992434641622926845696534507596506662824902117550235921708729961457<152>
Factor=31978900502670207700576552297793 Method=ECM B1=11000000 Sigma=590706511
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 11, 2009
(17·10184+7)/3 = 5(6)1839<185> = 61 · 39041 · C179
C179 = P40 · C140
P40 = 1909371924869851302649714847256763860533<40>
C140 = [12461960374196436055720590007683928054218374877066989312361949971133799082404460422570765649635829025773078205178509197929750407572765729293<140>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1534556179 Step 1 took 21297ms Step 2 took 8517ms ********** Factor found in step 2: 1909371924869851302649714847256763860533 Found probable prime factor of 40 digits: 1909371924869851302649714847256763860533 Composite cofactor 12461960374196436055720590007683928054218374877066989312361949971133799082404460422570765649635829025773078205178509197929750407572765729293 has 140 digits
By Erik Branger / GMP-ECM / Dec 11, 2009
(23·10184-41)/9 = 2(5)1831<185> = 32 · 97 · 1061 · C179
C179 = P41 · C139
P41 = 19040340637648210868379117961880200224083<41>
C139 = [1449042038886457977275736047557847119439134383903865583802730356524462608737631889822415710776695664897224875214083590924322735359677843449<139>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 27590254018670444852060458163758234041407213315968267369234491608184324969047933507967645508900436009983833310721320800640381791535957838253215434180030246115862032895499993582267 (179 digits) Run 585 out of 1000: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1385992420 Step 1 took 66581ms Step 2 took 20826ms ********** Factor found in step 2: 19040340637648210868379117961880200224083 Found probable prime factor of 41 digits: 19040340637648210868379117961880200224083 Composite cofactor 1449042038886457977275736047557847119439134383903865583802730356524462608737631889822415710776695664897224875214083590924322735359677843449 has 139 digits
By yoshida / GGNFS / Dec 10, 2009
(59·10170+13)/9 = 6(5)1697<171> = 3 · 31 · 73 · 229 · 2371 · 136027 · 233155008560892980603136314014073<33> · C124
C124 = P44 · P80
P44 = 60584128360032301920436560271643813086991257<44>
P80 = 92556713209596906998848833423411539743687317470367214287086444809227713384971181<80>
N=5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517 ( 124 digits) SNFS difficulty: 171 digits. Divisors found: r1=60584128360032301920436560271643813086991257 (pp44) r2=92556713209596906998848833423411539743687317470367214287086444809227713384971181 (pp80) Version: GGNFS-0.77.1-20060722-nocona Total time: 257.03 hours. Scaled time: 594.77 units (timescale=2.314). Factorization parameters were as follows: n: 5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517 m: 10000000000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 9500001) Primes: RFBsize:412849, AFBsize:413701, largePrimes:7914450 encountered Relations: rels:9994565, finalFF:2581166 Max relations in full relation-set: 32 Initial matrix: 826617 x 2581166 with sparse part having weight 203256814. Pruned matrix : 465392 x 469589 with weight 138232198. Total sieving time: 253.71 hours. Total relation processing time: 0.16 hours. Matrix solve time: 3.07 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 257.03 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5988.95 BogoMIPS (lpj=2994477) Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992505) Calibrating delay using timer specific routine.. 5984.97 BogoMIPS (lpj=2992487) Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992527) Calibrating delay using timer specific routine.. 5985.21 BogoMIPS (lpj=2992605) Calibrating delay using timer specific routine.. 5985.02 BogoMIPS (lpj=2992513) Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992529) Calibrating delay using timer specific routine.. 5985.00 BogoMIPS (lpj=2992504)
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Dec 10, 2009
(47·10172+7)/9 = 5(2)1713<173> = 78889 · 1367259031<10> · 100846772862529249243<21> · 288949754807407778795535378837359651<36> · C104
C104 = P47 · P58
P47 = 12289616516746838106901363670752368934979810153<47>
P58 = 1351964941985702375077635494737512490391884094055273661193<58>
N=16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529 ( 104 digits) Divisors found: r1=12289616516746838106901363670752368934979810153 (pp47) r2=1351964941985702375077635494737512490391884094055273661193 (pp58) Version: Msieve-1.40 Total time: 6.33 hours. Scaled time: 12.01 units (timescale=1.899). Factorization parameters were as follows: n: 16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529 skew: 5197.87 # norm 1.04e+013 c5: 15960 c4: -184339309 c3: -1695036569856 c2: 5342536944215639 c1: 17116190166354377245 c0: -13677862918281503944854 # alpha -3.45 Y1: 10092556199 Y0: -63605450663550372257 # Murphy_E 2.21e-009 # M 1859835780868646606837778153991172769667025259596543365334539620061107358998462310498137234116573516495 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 274907 x 275135 Polynomial selection time: 0.64 hours. Total sieving time: 5.47 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 6.33 hours. --------- CPU info (if available) ----------
(19·10177-7)/3 = 6(3)1761<178> = 13 · 47317 · C173
C173 = P38 · C135
P38 = 52374708010720593180983888284200480121<38>
C135 = [196584909774591899891929740271017992127607138646378613009944940506168200305296645686623671326556823641070931963952390382765248092716091<135>]
Factor=52374708010720593180983888284200480121 Method=ECM B1=11000000 Sigma=2413859118
(16·10183-1)/3 = 5(3)183<184> = 53 · 9923 · C179
C179 = P35 · P144
P35 = 18627864608408854457971430690578723<35>
P144 = 544398342498957622062084117964445373269473871781632235659942268003161698603526565536948832419130917001986223882572935713623771914211976408369209<144>
Factor=18627864608408854457971430690578723 Method=ECM B1=11000000 Sigma=1934621045
By Markus Tervooren / GMP-ECM / Dec 10, 2009
(26·10166-11)/3 = 8(6)1653<167> = 17119841910469978219460966052115200873127<41> · C127
C127 = P32 · P95
P32 = 96207769849890958637787012089581<32>
P95 = 52618952197183905165622175960078885504996122246347121928682073766419239235963408943829919813349<95>
$> echo 5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769 | ecm -c 0 -I 1 10 GMP-ECM 6.2 [powered by GMP 4.3.0] [ECM] Input number is 5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769 (127 digits) Using B1=10, B2=84, polynomial x^1, sigma=1268245291 Step 1 took 0ms Step 2 took 0ms Run 2 out of 0: Using B1=276, B2=276-7686, polynomial x^1, sigma=1621996872 Step 1 took 0ms Step 2 took 4ms Run 3 out of 0: Using B1=542, B2=542-24246, polynomial x^1, sigma=1027277030 Step 1 took 0ms Step 2 took 4ms Run 4 out of 0: Using B1=808, B2=808-42486, polynomial x^1, sigma=2444484533 Step 1 took 4ms Step 2 took 4ms Run 5 out of 0: Using B1=1074, B2=1074-51606, polynomial x^1, sigma=801533018 Step 1 took 4ms Step 2 took 8ms Run 6 out of 0: Using B1=1340, B2=1340-108636, polynomial x^1, sigma=1628484574 Step 1 took 4ms Step 2 took 8ms Run 7 out of 0: Using B1=1606, B2=1606-109146, polynomial x^1, sigma=3394506902 Step 1 took 4ms Step 2 took 8ms Run 8 out of 0: Using B1=1872, B2=1872-147396, polynomial x^1, sigma=1216102578 Step 1 took 8ms Step 2 took 8ms Run 9 out of 0: Using B1=2138, B2=2138-147906, polynomial x^1, sigma=356966585 Step 1 took 12ms Step 2 took 8ms Run 10 out of 0: Using B1=2540, B2=2540-186156, polynomial x^1, sigma=3077459549 Step 1 took 8ms Step 2 took 12ms Run 11 out of 0: Using B1=2950, B2=2950-224406, polynomial x^1, sigma=485575138 Step 1 took 8ms Step 2 took 12ms Run 12 out of 0: Using B1=3368, B2=3368-294786, polynomial x^1, sigma=2073073101 Step 1 took 16ms Step 2 took 12ms Run 13 out of 0: Using B1=3794, B2=3794-446766, polynomial x^1, sigma=4253881041 Step 1 took 16ms Step 2 took 12ms Run 14 out of 0: Using B1=4228, B2=4228-447786, polynomial x^1, sigma=1490636614 Step 1 took 20ms Step 2 took 12ms Run 15 out of 0: Using B1=4671, B2=4671-447786, polynomial x^1, sigma=4178903842 Step 1 took 20ms Step 2 took 16ms ********** Factor found in step 2: 96207769849890958637787012089581 Found probable prime factor of 32 digits: 96207769849890958637787012089581 Probable prime cofactor 52618952197183905165622175960078885504996122246347121928682073766419239235963408943829919813349 has 95 digits
After the composite number passed B1=1e6 (level 35) 150 times and B1=11e6 (level 45) 117 times, quite small B1=4671 found P32.
echo 5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769 | ecm -sigma 4178903842 4671
By Jo Yeong Uk / GMP-ECM / Dec 10, 2009
5·10185-1 = 4(9)185<186> = 17 · 31 · 87631 · 30963646453769<14> · C165
C165 = P38 · P128
P38 = 13467097731105253924325838530156698063<38>
P128 = 25964233709024130179916331896236768142386809082711053887820914535009226635473159313679197722834392092837158149045577065290385641<128>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 349662872872685415260187866710169543054711722129687259296757512768829622544293685012492705071389202665843507861957179339289258414384928449524545789244775692467713383 (165 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=575025177 Step 1 took 5506ms Step 2 took 5102ms ********** Factor found in step 2: 13467097731105253924325838530156698063 Found probable prime factor of 38 digits: 13467097731105253924325838530156698063 Probable prime cofactor 25964233709024130179916331896236768142386809082711053887820914535009226635473159313679197722834392092837158149045577065290385641 has 128 digits
By Sinkiti Sibata / Msieve / Dec 9, 2009
10192-3 = (9)1917<192> = 3373 · 1103279 · 30864312787215673925304239<26> · 728214226699773901950646153594957<33> · C125
C125 = P43 · P82
P43 = 4461889850767293887261615958368082112572949<43>
P82 = 2679561266563623732221821991758971715091712588908370052804206440102760114201548833<82>
Number: 99997_192 N=11955907219789388090396927468596102846705760576688639467787460136053127454112956393569754103555054189544180606793438498318517 ( 125 digits) Divisors found: r1=4461889850767293887261615958368082112572949 (pp43) r2=2679561266563623732221821991758971715091712588908370052804206440102760114201548833 (pp82) Version: Msieve-1.40 Total time: 74.34 hours. Scaled time: 245.70 units (timescale=3.305). Factorization parameters were as follows: name: 99997_192 # Murphy_E = 1.580662e-10, selected by Jeff Gilchrist n: 11955907219789388090396927468596102846705760576688639467787460136053127454112956393569754103555054189544180606793438498318517 Y0: -965904624584214002999227 Y1: 29757583127591 c0: -10062534597856893819796369537440 c1: 188270216174299077687152598 c2: -308953642659933419159 c3: -3444590731912942 c4: 12448625118 c5: 14220 skew: 302426.48 type: gnfs # selected mechanically rlim: 6800000 alim: 6800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3400000, 6800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 923005 x 923252 Total sieving time: 72.48 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.64 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6800000,6800000,27,27,52,52,2.5,2.5,100000 total time: 74.34 hours. --------- CPU info (if available) ----------
By yoshida / GGNFS / Dec 9, 2009
(7·10175+17)/3 = 2(3)1749<176> = 210011 · 53664942222963223<17> · C154
C154 = P62 · P92
P62 = 26604037908536981465562648809727926589746663642702901812957027<62>
P92 = 77820948230221907813638916631944197307795299733591181906080936319588979797488625278156383469<92>
Number: 23339_175 N=2070351456795117553558270718726790833044380782036310828359575179480567729028641533439203231515578311502363046326991595489940095893568406641805115030186663 ( 154 digits) SNFS difficulty: 175 digits. Divisors found: r1=26604037908536981465562648809727926589746663642702901812957027 (pp62) r2=77820948230221907813638916631944197307795299733591181906080936319588979797488625278156383469 (pp92) Version: GGNFS-0.77.1-20060722-nocona Total time: 340.07 hours. Scaled time: 786.91 units (timescale=2.314). Factorization parameters were as follows: n: 2070351456795117553558270718726790833044380782036310828359575179480567729028641533439203231515578311502363046326991595489940095893568406641805115030186663 m: 100000000000000000000000000000000000 deg: 5 c5: 7 c0: 17 skew: 1.19 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 13400001) Primes: RFBsize:501962, AFBsize:502556, largePrimes:7532379 encountered Relations: rels:8852741, finalFF:1897452 Max relations in full relation-set: 32 Initial matrix: 1004583 x 1897452 with sparse part having weight 145358172. Pruned matrix : 506211 x 511297 with weight 316523678. Total sieving time: 328.63 hours. Total relation processing time: 0.14 hours. Matrix solve time: 11.18 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 340.07 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5988.95 BogoMIPS (lpj=2994477) Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992505) Calibrating delay using timer specific routine.. 5984.97 BogoMIPS (lpj=2992487) Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992527) Calibrating delay using timer specific routine.. 5985.21 BogoMIPS (lpj=2992605) Calibrating delay using timer specific routine.. 5985.02 BogoMIPS (lpj=2992513) Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992529) Calibrating delay using timer specific routine.. 5985.00 BogoMIPS (lpj=2992504)
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 9, 2009
(13·10188+11)/3 = 4(3)1877<189> = 1543 · 142860607 · 255207723123768259319<21> · 106516169444251311571441538317907<33> · C125
C125 = P41 · P85
P41 = 30942293088057381698511237526930241499691<41>
P85 = 2337124414249729105204220797351745040236609507852691754539000092085018567123113821079<85>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1831739677 Step 1 took 34209ms Step 2 took 13653ms ********** Factor found in step 2: 30942293088057381698511237526930241499691 Found probable prime factor of 41 digits: 30942293088057381698511237526930241499691 Probable prime cofactor 2337124414249729105204220797351745040236609507852691754539000092085018567123113821079 has 85 digits
(65·10172+7)/9 = 7(2)1713<173> = 257 · 809 · 6563 · 7321 · 1123872308281744993<19> · C142
C142 = P38 · P40 · P66
P38 = 16755539813811419577324028768476793049<38>
P40 = 2033261506695711968567171206558801965737<40>
P66 = 188819897611386026982238522704043786485667381321427555249205867653<66>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3638956364 Step 1 took 42470ms Step 2 took 14819ms ********** Factor found in step 2: 16755539813811419577324028768476793049 Found probable prime factor of 38 digits: 16755539813811419577324028768476793049 Composite cofactor 383920229511456818641132015114512787486199837707317822637944375746076797851094768115322811270691062605261 has 105 digits Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2005714314 Step 1 took 26762ms Step 2 took 11953ms ********** Factor found in step 2: 2033261506695711968567171206558801965737 Found probable prime factor of 40 digits: 2033261506695711968567171206558801965737 Probable prime cofactor 188819897611386026982238522704043786485667381321427555249205867653 has 66 digits
(14·10189-11)/3 = 4(6)1883<190> = 47 · 48313 · 543227 · 24889499 · 158031581 · 40854831527<11> · 1413907600387<13> · 256254713349673<15> · C125
C125 = P38 · P88
P38 = 56028649144846154576918785107849174457<38>
P88 = 1159730457435645187988018725993250387128541623197163551356290007640701804261433189154169<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=314256342 Step 1 took 34298ms ********** Factor found in step 1: 56028649144846154576918785107849174457 Found probable prime factor of 38 digits: 56028649144846154576918785107849174457 Probable prime cofactor 1159730457435645187988018725993250387128541623197163551356290007640701804261433189154169 has 88 digits
By Dmitry Domanov / GGNFS/msieve / Dec 9, 2009
(58·10197+41)/9 = 6(4)1969<198> = 13 · 933299923 · 8436592305409<13> · 111772795484434550519<21> · 5087832120754440156018956894208167<34> · C122
C122 = P56 · P66
P56 = 64694662489083286414695388018448613862933185715531862603<56>
P66 = 171126198208668315251298457671101379137801125215383625298494188981<66>
N=11070951636149765536840257253607829444595086747622399008620240727882623901740891490497776510088174513384413377746808577543 ( 122 digits) Divisors found: r1=64694662489083286414695388018448613862933185715531862603 (pp56) r2=171126198208668315251298457671101379137801125215383625298494188981 (pp66) Version: Msieve-1.40 Total time: 55.80 hours. Scaled time: 52.29 units (timescale=0.937). Factorization parameters were as follows: # Murphy_E = 2.621397e-10, selected by Jeff Gilchrist n: 11070951636149765536840257253607829444595086747622399008620240727882623901740891490497776510088174513384413377746808577543 Y0: -274680933477785405343845 Y1: 8570518787149 c0: 1350928898463077874422589647232 c1: 19642762067379607582761780 c2: -384503260141907345357 c3: -122711510581868 c4: 4766478592 c5: 7080 skew: 245402.32 type: gnfs # selected mechanically rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 200000Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2800000, 4800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 695403 x 695633 Total sieving time: 54.46 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.81 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5600000,5600000,27,27,52,52,2.5,2.5,100000 total time: 55.80 hours. --------- CPU info (if available) ----------
(62·10183-71)/9 = 6(8)1821<184> = 7 · 307 · 317 · C179
C179 = P45 · P134
P45 = 158335949136530495728829921281768556200044049<45>
P134 = 63866625867023175938335010351970045440329405009221671936038865883820121592393893151960105634735076570416240607359428554200004909797393<134>
N=10112382824802804457342625634531634387777586947327696821629147279842416454999814878153126593821627679353303332176933426432496501033991143836086755763283471130859616150258265364257 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: r1=158335949136530495728829921281768556200044049 (pp45) r2=63866625867023175938335010351970045440329405009221671936038865883820121592393893151960105634735076570416240607359428554200004909797393 (pp134) Version: Msieve-1.40 Total time: 253.94 hours. Scaled time: 491.11 units (timescale=1.934). Factorization parameters were as follows: n: 10112382824802804457342625634531634387777586947327696821629147279842416454999814878153126593821627679353303332176933426432496501033991143836086755763283471130859616150258265364257 m: 1000000000000000000000000000000000000 deg: 5 c5: 62000 c0: -71 skew: 0.26 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 300000Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 8400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1833346 x 1833571 Total sieving time: 248.73 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.66 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,184.000,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 253.94 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Dec 9, 2009
(44·10197-71)/9 = 4(8)1961<198> = 37 · 73 · C195
C195 = P80 · P115
P80 = 52038938123538386499558426521065668429891280877444695007719721706031040955707989<80>
P115 = 3478220871825907204600143572083807398370519405902086642073165507604921729279187962113161108837292484759222844466529<115>
Number: 48881_197 N=181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181 ( 195 digits) SNFS difficulty: 198 digits. Divisors found: r1=52038938123538386499558426521065668429891280877444695007719721706031040955707989 r2=3478220871825907204600143572083807398370519405902086642073165507604921729279187962113161108837292484759222844466529 Version: Total time: 954.48 hours. Scaled time: 1922.33 units (timescale=2.014). Factorization parameters were as follows: n: 181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181 m: 2000000000000000000000000000000000000000 deg: 5 c5: 275 c0: -142 skew: 0.88 type: snfs lss: 1 rlim: 14500000 alim: 14500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14500000/14500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7250000, 17750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2286051 x 2286299 Total sieving time: 954.48 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14500000,14500000,28,28,55,55,2.5,2.5,100000 total time: 954.48 hours. --------- CPU info (if available) ----------
(8·10172-53)/9 = (8)1713<172> = 3 · 7 · 17 · 19 · 739 · 1530721 · 18210329 · C152
C152 = P50 · P103
P50 = 19072250153851773845855631722459189802972333856393<50>
P103 = 3335534640447268827772499537443122415609424726507539563699561628396675540925992881380483170481360493007<103>
Number: 88883_172 N=63616151059448344057594636891100636407831511205135552367798619650654780752786002498411683774793207019413490574485517559732167544208283224904732018743751 ( 152 digits) SNFS difficulty: 172 digits. Divisors found: r1=19072250153851773845855631722459189802972333856393 r2=3335534640447268827772499537443122415609424726507539563699561628396675540925992881380483170481360493007 Version: Total time: 84.29 hours. Scaled time: 169.68 units (timescale=2.013). Factorization parameters were as follows: n: 63616151059448344057594636891100636407831511205135552367798619650654780752786002498411683774793207019413490574485517559732167544208283224904732018743751 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: -53 skew: 1.16 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 749176 x 749424 Total sieving time: 84.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 84.29 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 8, 2009
(47·10172+7)/9 = 5(2)1713<173> = 78889 · 1367259031<10> · 100846772862529249243<21> · C139
C139 = P36 · C104
P36 = 288949754807407778795535378837359651<36>
C104 = [16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529<104>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=240630566 Step 1 took 42471ms Step 2 took 14596ms ********** Factor found in step 2: 288949754807407778795535378837359651 Found probable prime factor of 36 digits: 288949754807407778795535378837359651 Composite cofactor 16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529 has 104 digits
By Dmitry Domanov / GGNFS/msieve / Dec 8, 2009
(64·10178+17)/9 = 7(1)1773<179> = 7 · 23 · 7561 · C173
C173 = P35 · P64 · P75
P35 = 31770331922672269514195751652912853<35>
P64 = 2820691606995952582774864978273833453721249485749317742014394563<64>
P75 = 651860990166698295158172796521430338071271034227790252159666126584151543327<75>
N=58416071940852996958987079916563594245980403781016766416673261293538114524526489817485372478673341798187258012562923921554882492876662039931218726294141899393102650090741153 ( 173 digits) SNFS difficulty: 180 digits. Divisors found: r1=31770331922672269514195751652912853 (pp35) r2=2820691606995952582774864978273833453721249485749317742014394563 (pp64) r3=651860990166698295158172796521430338071271034227790252159666126584151543327 (pp75) Version: Msieve-1.40 Total time: 180.40 hours. Scaled time: 168.85 units (timescale=0.936). Factorization parameters were as follows: n: 58416071940852996958987079916563594245980403781016766416673261293538114524526489817485372478673341798187258012562923921554882492876662039931218726294141899393102650090741153 m: 400000000000000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 300000Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3500000, 5900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1326304 x 1326539 Total sieving time: 175.81 hours. Total relation processing time: 0.28 hours. Matrix solve time: 3.12 hours. Time per square root: 1.19 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000 total time: 180.40 hours. --------- CPU info (if available) ----------
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.44 SVN / Dec 8, 2009
(32·10197-23)/9 = 3(5)1963<198> = 11 · 2333 · C194
C194 = P48 · P147
P48 = 120096085869618304491892644395133067385455490461<48>
P147 = 115364235300837880965021708985205640774020775255855616745497866939437139692350135211083710292284840369791039781831123064423399172513464805436819371<147>
Msieve v. 1.44 Mon Dec 7 17:40:00 2009 random seeds: ab030b1e 60360f0e factoring 13854793108972277424913515783640087112011672663194309143730489637047716773391869834218741205453592937519212701381582650335329289465594652049859936700913983382907514926374763494352006996670520031 (194 digits) searching for 15-digit factors commencing number field sieve (194-digit input) R0: -2000000000000000000000000000000000000000 R1: 1 A0: -23 A1: 0 A2: 0 A3: 0 A4: 0 A5: 100 skew 0.75, size 1.190884e-13, alpha -0.297712, combined = 2.194006e-11 commencing linear algebra read 1593703 cycles cycles contain 3909055 unique relations read 3909055 relations using 20 quadratic characters above 268434578 building initial matrix memory use: 525.1 MB read 1593703 cycles matrix is 1593360 x 1593703 (459.5 MB) with weight 137748177 (86.43/col) sparse part has weight 102925632 (64.58/col) filtering completed in 3 passes matrix is 1589324 x 1589524 (458.9 MB) with weight 137556856 (86.54/col) sparse part has weight 102814796 (64.68/col) read 1589524 cycles matrix is 1589324 x 1589524 (458.9 MB) with weight 137556856 (86.54/col) sparse part has weight 102814796 (64.68/col) saving the first 48 matrix rows for later matrix is 1589276 x 1589524 (437.7 MB) with weight 108725656 (68.40/col) sparse part has weight 98852707 (62.19/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (2 threads) memory use: 447.1 MB linear algebra at 0.0%, ETA 6h24m589524 dimensions (0.0%, ETA 6h24m) linear algebra completed 2787 of 1589524 dimensions (0.2%, ETA 6h29m) linear algebra completed 1589125 of 1589524 dimensions (100.0%, ETA 0h 0m) lanczos halted after 25132 iterations (dim = 1589276) recovered 39 nontrivial dependencies BLanczosTime: 24188 commencing square root phase reading relations for dependency 1 read 795629 cycles cycles contain 1953244 unique relations read 1953244 relations multiplying 1953244 relations multiply complete, coefficients have about 58.76 million bits initial square root is modulo 273120781 reading relations for dependency 2 read 794579 cycles cycles contain 1953628 unique relations read 1953628 relations multiplying 1953628 relations multiply complete, coefficients have about 58.77 million bits initial square root is modulo 274025231 sqrtTime: 2038 prp48 factor: 120096085869618304491892644395133067385455490461 prp147 factor: 115364235300837880965021708985205640774020775255855616745497866939437139692350135211083710292284840369791039781831123064423399172513464805436819371 elapsed time 07:17:10
By Sinkiti Sibata / Msieve / Dec 8, 2009
(10207-7)/3 = (3)2061<207> = 42491 · C202
C202 = P73 · P130
P73 = 1894904832363841708654936720234411577262109484929134576621581786833131223<73>
P130 = 4139943269110878681913041512994527160505437740968307294571520268473274361574028518742477201880838434865365018944874567545447883167<130>
Number: 33331_207 N=7844798506350364390890619974425956869297812085696578883371380606089132600629152840209299224149427721948961740917684529272865626446384724608348434570458057784785797776784103300306731621598299247683823241 ( 202 digits) SNFS difficulty: 207 digits. Divisors found: r1=1894904832363841708654936720234411577262109484929134576621581786833131223 (pp73) r2=4139943269110878681913041512994527160505437740968307294571520268473274361574028518742477201880838434865365018944874567545447883167 (pp130) Version: Msieve v. 1.42 Total time: 56.54 hours. Scaled time: 57.90 units (timescale=1.024). Factorization parameters were as follows: name: 33331_207 n: 7844798506350364390890619974425956869297812085696578883371380606089132600629152840209299224149427721948961740917684529272865626446384724608348434570458057784785797776784103300306731621598299247683823241 m: 200000000000000000000000000000000000000000 deg: 5 c5: 25 c0: -56 skew: 1.18 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [10000000, 24100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 4023030 x 4023255 Total sieving time: 0.00 hours. Total relation processing time: 0.41 hours. Matrix solve time: 55.45 hours. Time per square root: 0.68 hours. Prototype def-par.txt line would be: snfs,207.000,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000 total time: 56.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Total of 4 processors activated (19151.19 BogoMIPS). Total time: 30days 3hours.
(67·10185+41)/9 = 7(4)1849<186> = 17 · 241 · 251 · C180
C180 = P54 · P127
P54 = 677632651944004039691455516087438517717661638398255957<54>
P127 = 1068312434596328427520500847735761708190001667063750632770663316658289322784604922836617494449649709779386669313247067392841031<127>
Number: 74449_185 N=723923388160265401118926242255235289687668116350263524320530370044784926143066926285042348977966041078006202618809063909793527325352672244334300041177194511623454383048177749771667 ( 180 digits) SNFS difficulty: 186 digits. Divisors found: r1=677632651944004039691455516087438517717661638398255957 (pp54) r2=1068312434596328427520500847735761708190001667063750632770663316658289322784604922836617494449649709779386669313247067392841031 (pp127) Version: Msieve v. 1.42 Total time: 13.34 hours. Scaled time: 10.62 units (timescale=0.796). Factorization parameters were as follows: name: 74449_185 n: 723923388160265401118926242255235289687668116350263524320530370044784926143066926285042348977966041078006202618809063909793527325352672244334300041177194511623454383048177749771667 m: 10000000000000000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4550000, 8050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1862951 x 1863182 Total sieving time: 0.00 hours. Total relation processing time: 0.23 hours. Matrix solve time: 12.31 hours. Time per square root: 0.81 hours. Prototype def-par.txt line would be: snfs,186.000,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000 total time: 13.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571) Total of 2 processors activated (7442.47 BogoMIPS). Total time: 9 days.
By matsui / Msieve / Dec 8, 2009
(61·10172-43)/9 = 6(7)1713<173> = 32 · 232 · 29 · 484493 · C163
C163 = P71 · P92
P71 = 45877559189501164768877797875928683802683626877074584384877703699129389<71>
P92 = 22085301644293106916524888744251665456292380269293469527602545567192966951778264232461022321<92>
N=1013219733404044411721734469880469813759529495196507933262914040634945128375826233118810109979623807613314404653217433898670300606653927616376108259237164596091869 ( 163 digits) SNFS difficulty: 173 digits. Divisors found: r1=45877559189501164768877797875928683802683626877074584384877703699129389 (pp71) r2=22085301644293106916524888744251665456292380269293469527602545567192966951778264232461022321 (pp92) Version: Msieve v. 1.43 Total time: Scaled time: 3.82 units (timescale=1.293). Factorization parameters were as follows: n: 1013219733404044411721734469880469813759529495196507933262914040634945128375826233118810109979623807613314404653217433898670300606653927616376108259237164596091869 m: 10000000000000000000000000000000000 deg: 5 c5: 6100 c0: -43 skew: 0.37 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 7450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1120864 x 1121095 Total sieving time: Total relation processing time: Matrix solve time: Time per square root: Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time:
By Wataru Sakai / GMP-ECM 6.2.3, GMP-ECM 6.2.1 / Dec 7, 2009
(46·10205+53)/9 = 5(1)2047<206> = 32 · 26988461 · 1312785826004579<16> · 36944846699201767801<20> · 8501087904039071003167365661<28> · C135
C135 = P48 · P87
P48 = 607274900896188899800306385808818802249277400279<48>
P87 = 840402056184302338438933074944598279441760700448891869373453899535604414870371463267633<87>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1222432706 Step 1 took 210809ms Step 2 took 60202ms ********** Factor found in step 2: 607274900896188899800306385808818802249277400279 Found probable prime factor of 48 digits: 607274900896188899800306385808818802249277400279 Probable prime cofactor 840402056184302338438933074944598279441760700448891869373453899535604414870371463267633 has 87 digits
(2·10174+7)/9 = (2)1733<174> = 32653 · 8605748596807443176651449709360011<34> · C135
C135 = P38 · P98
P38 = 11120774026941337846943743141659507821<38>
P98 = 71111645333526043530566149919676115731469180881995789346211441308147356101925837992819399029941861<98>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3996446347 Step 1 took 41946ms Step 2 took 14940ms ********** Factor found in step 2: 11120774026941337846943743141659507821 Found probable prime factor of 38 digits: 11120774026941337846943743141659507821 Probable prime cofactor 71111645333526043530566149919676115731469180881995789346211441308147356101925837992819399029941861 has 98 digits
By yoshida / GGNFS / Dec 7, 2009
(4·10175-7)/3 = 1(3)1741<176> = 11 · 7198571 · C168
C168 = P46 · P122
P46 = 6641146625152017219757319418286962955580247263<46>
P122 = 25354595722568226578798768090052792466524658199608562063230132957861080214476755044435971838286795392845251319202194326677<122>
N=168383587815027749425840380281199160390599913805283315426370207659438535955555791853857122644497249818222550171710637030767928969808203895080304300967679852183457135051 ( 168 digits) SNFS difficulty: 175 digits. Divisors found: r1=6641146625152017219757319418286962955580247263 (pp46) r2=25354595722568226578798768090052792466524658199608562063230132957861080214476755044435971838286795392845251319202194326677 (pp122) Version: GGNFS-0.77.1-20060722-nocona Total time: 228.69 hours. Scaled time: 529.18 units (timescale=2.314). Factorization parameters were as follows: n: 168383587815027749425840380281199160390599913805283315426370207659438535955555791853857122644497249818222550171710637030767928969808203895080304300967679852183457135051 m: 100000000000000000000000000000000000 deg: 5 c5: 4 c0: -7 skew: 1.12 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 6250001) Primes: RFBsize:406429, AFBsize:405968, largePrimes:16864502 encountered Relations: rels:18745749, finalFF:2369936 Max relations in full relation-set: 32 Initial matrix: 812461 x 2369934 with sparse part having weight 324211232. Pruned matrix : 538174 x 542300 with weight 119994356. Total sieving time: 223.94 hours. Total relation processing time: 0.31 hours. Matrix solve time: 4.33 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 228.69 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5988.95 BogoMIPS (lpj=2994477) Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992505) Calibrating delay using timer specific routine.. 5984.97 BogoMIPS (lpj=2992487) Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992527) Calibrating delay using timer specific routine.. 5985.21 BogoMIPS (lpj=2992605) Calibrating delay using timer specific routine.. 5985.02 BogoMIPS (lpj=2992513) Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992529) Calibrating delay using timer specific routine.. 5985.00 BogoMIPS (lpj=2992504)
By Dmitry Domanov / GGNFS/msieve / Dec 7, 2009
(64·10186+71)/9 = 7(1)1859<187> = 3 · 109 · C185
C185 = P73 · P112
P73 = 3527800058195301401987694858738253841359278843815495535890073943442102681<73>
P112 = 6164328136693197517668216069637997130903302377698948344739122252464657975521632190630163982737623010865444415137<112>
N=21746517159361196058443764865783214407067618076792388718994223581379544682296975874957526333673122663948352021746517159361196058443764865783214407067618076792388718994223581379544682297 ( 185 digits) SNFS difficulty: 187 digits. Divisors found: r1=3527800058195301401987694858738253841359278843815495535890073943442102681 (pp73) r2=6164328136693197517668216069637997130903302377698948344739122252464657975521632190630163982737623010865444415137 (pp112) Version: Msieve-1.40 Total time: 242.25 hours. Scaled time: 444.28 units (timescale=1.834). Factorization parameters were as follows: n: 21746517159361196058443764865783214407067618076792388718994223581379544682296975874957526333673122663948352021746517159361196058443764865783214407067618076792388718994223581379544682297 m: 20000000000000000000000000000000000000 deg: 5 c5: 20 c0: 71 skew: 1.29 type: snfs lss: 1 rlim: 9400000 alim: 9400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 200000Factor base limits: 9400000/9400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4700000, 8900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1945351 x 1945576 Total sieving time: 236.87 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.89 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,187.000,5,0,0,0,0,0,0,0,0,9400000,9400000,28,28,54,54,2.5,2.5,100000 total time: 242.25 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Dec 7, 2009
(5·10177+1)/3 = 1(6)1767<178> = 172 · 225809 · 1473977 · 205975398179<12> · C152
C152 = P35 · P118
P35 = 44928186376086850422105844151536019<35>
P118 = 1872339992492679438794581670820130546867660492569256842639997168734029160890120241815698232929039287868814759633153771<118>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 84120840142112156160459692364622682411095549541785432669929173279798144770850219502231597393973475703825025357058343212455701873856035812987746872177649 (152 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7299212132 Step 1 took 4742ms Step 2 took 4664ms ********** Factor found in step 2: 44928186376086850422105844151536019 Found probable prime factor of 35 digits: 44928186376086850422105844151536019 Probable prime cofactor 1872339992492679438794581670820130546867660492569256842639997168734029160890120241815698232929039287868814759633153771 has 118 digits
By Sinkiti Sibata / Msieve / Dec 6, 2009
(38·10185+43)/9 = 4(2)1847<186> = 132 · 47 · 145605431 · 683879683852489637896249<24> · 52526357427894006525435601<26> · C125
C125 = P62 · P63
P62 = 12355928475473544330597239983317552083603918386059392690368411<62>
P63 = 822520210340716770107651062277089751977022102040961398920039521<63>
Number: 42227_185 N=10163000888601351574091650327076122371330303933857311295882684888886742421333499613627838430705238530881569977996032169971131 ( 125 digits) Divisors found: r1=12355928475473544330597239983317552083603918386059392690368411 (pp62) r2=822520210340716770107651062277089751977022102040961398920039521 (pp63) Version: Msieve-1.40 Total time: 67.16 hours. Scaled time: 221.97 units (timescale=3.305). Factorization parameters were as follows: name: 42227_185 # Murphy_E = 1.682506e-10, selected by Jeff Gilchrist n: 10163000888601351574091650327076122371330303933857311295882684888886742421333499613627838430705238530881569977996032169971131 Y0: -923619546624448304172779 Y1: 23021935201633 c0: 79096464115109631933811720529520 c1: 1167382777930674645846480746 c2: 114086121926159006627 c3: -25474691358524626 c4: 6419648568 c5: 15120 skew: 459976.76 type: gnfs # selected mechanically rlim: 6700000 alim: 6700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3350000, 6350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 880662 x 880910 Total sieving time: 65.45 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.49 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6700000,6700000,27,27,52,52,2.5,2.5,100000 total time: 67.16 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 6, 2009
2·10174-9 = 1(9)1731<175> = 7 · 67807 · 195697 · 7483601 · 90799214287<11> · C146
C146 = P36 · P111
P36 = 174469979351152785406123306399771303<36>
P111 = 181618394791561707872745497404891429823321019239014722523833973110879902107321452734442912936754551424231080727<111>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3677067375 Step 1 took 47396ms Step 2 took 15678ms ********** Factor found in step 2: 174469979351152785406123306399771303 Found probable prime factor of 36 digits: 174469979351152785406123306399771303 Probable prime cofactor 181618394791561707872745497404891429823321019239014722523833973110879902107321452734442912936754551424231080727 has 111 digits
By Dmitry Domanov / ECMNET, GMP-ECM / Dec 5, 2009
(59·10183+13)/9 = 6(5)1827<184> = 152837 · C179
C179 = P38 · C142
P38 = 16565676361748490760573183459125786533<38>
C142 = [2589237124616989862313430226179513606732074304991694656132791636140467706731208512624523960761262512329409853525097262768135108390631536245517<142>]
Factor=16565676361748490760573183459125786533 Method=ECM B1=11000000 Sigma=498181646
By Serge Batalov / PRIMO 3.0.7,3.0.8 / Dec 5, 2009
(47·102018+7)/9 = 5(2)20173<2019> is prime.
(58·102036-31)/9 = 6(4)20351<2037> is prime.
By Dmitry Domanov / GGNFS/msieve / Dec 5, 2009
(22·10197-7)/3 = 7(3)1961<198> = C198
C198 = P85 · P114
P85 = 1691177910918677267446605245592845163445118231338319440072463508348212239791344230793<85>
P114 = 433622819100666887719364223144800146851804753218297702397853994103761436609576924767421335549798919696781901321467<114>
N=733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 198 digits) SNFS difficulty: 198 digits. Divisors found: r1=1691177910918677267446605245592845163445118231338319440072463508348212239791344230793 (pp85) r2=433622819100666887719364223144800146851804753218297702397853994103761436609576924767421335549798919696781901321467 (pp114) Version: Msieve-1.40 Total time: 884.76 hours. Scaled time: 826.37 units (timescale=0.934). Factorization parameters were as follows: n: 733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 2000000000000000000000000000000000000000 deg: 5 c5: 275 c0: -28 skew: 0.63 type: snfs lss: 1 rlim: 14500000 alim: 14500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 600000Factor base limits: 14500000/14500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7250000, 17450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2261830 x 2262055 Total sieving time: 873.62 hours. Total relation processing time: 0.48 hours. Matrix solve time: 9.77 hours. Time per square root: 0.89 hours. Prototype def-par.txt line would be: snfs,198.000,5,0,0,0,0,0,0,0,0,14500000,14500000,28,28,55,55,2.5,2.5,100000 total time: 884.76 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 4, 2009
(55·10187+53)/9 = 6(1)1867<188> = 2016801382643310733<19> · 91041909846726201221<20> · 102340704059336916678649<24> · C127
C127 = P37 · P90
P37 = 8397437812343835280132655770909271267<37>
P90 = 387275919082175736508356647496709535387646969166143986070306062251228534714159765453364743<90>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2229209567 Step 1 took 38497ms Step 2 took 13868ms ********** Factor found in step 2: 8397437812343835280132655770909271267 Found probable prime factor of 37 digits: 8397437812343835280132655770909271267 Probable prime cofactor 387275919082175736508356647496709535387646969166143986070306062251228534714159765453364743 has 90 digits
By yoshida / GGNFS / Dec 4, 2009
(64·10169+71)/9 = 7(1)1689<170> = 23 · 61 · 11549 · 23966031393282844036285531597<29> · C135
C135 = P44 · P91
P44 = 42975927797156758306397330649270731187983431<44>
P91 = 4261024457333070002753304298392271984643501354942246382861680398744526579464959645375737011<91>
Number: 64x169p71 N=183121479420265074596121733676477661039260136718147327732153993537840141616263984935289849205491402729831141669703427209999368481464741 ( 135 digits) SNFS difficulty: 171 digits. Divisors found: r1=42975927797156758306397330649270731187983431 (pp44) r2=4261024457333070002753304298392271984643501354942246382861680398744526579464959645375737011 (pp91) Version: GGNFS-0.77.1-20060722-nocona Total time: 149.69 hours. Scaled time: 346.24 units (timescale=2.313). Factorization parameters were as follows: n: 183121479420265074596121733676477661039260136718147327732153993537840141616263984935289849205491402729831141669703427209999368481464741 m: 20000000000000000000000000000000000 c5: 1 c0: 355 skew: 3.24 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7900001) Primes: RFBsize:412849, AFBsize:412917, largePrimes:6595493 encountered Relations: rels:7270557, finalFF:1290130 Max relations in full relation-set: 32 Initial matrix: 825830 x 1290130 with sparse part having weight 91072286. Pruned matrix : 474578 x 478771 with weight 104728234. Total sieving time: 146.62 hours. Total relation processing time: 0.13 hours. Matrix solve time: 2.86 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 149.69 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz stepping 0a Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5988.97 BogoMIPS (lpj=2994486) Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992506) Calibrating delay using timer specific routine.. 5985.03 BogoMIPS (lpj=2992519) Calibrating delay using timer specific routine.. 5985.06 BogoMIPS (lpj=2992533) Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992506) Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992507) Calibrating delay using timer specific routine.. 5985.04 BogoMIPS (lpj=2992520) Calibrating delay using timer specific routine.. 5984.89 BogoMIPS (lpj=2992449)
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve / Dec 4, 2009
(16·10227-7)/9 = 1(7)227<228> = 3 · 6978529417<10> · 998945248363<12> · C205
C205 = P89 · P117
P89 = 43313501227448011000083463763352610564812589301818962273432249121716141326899324578414523<89>
P117 = 196257981736799913361304440989775990019643124662452497442014310394640589026238986779888915065494733438722007484724523<117>
Thu Nov 26 22:27:46 2009 Thu Nov 26 22:27:46 2009 Thu Nov 26 22:27:46 2009 Msieve v. 1.43 Thu Nov 26 22:27:46 2009 random seeds: fb9cbe1d ae67a796 Thu Nov 26 22:27:46 2009 factoring 8500620332853352373100619494859864036219623065828944278551768110817378446210927884562453439711314210424131541144585190430418520177440149893041637577056204111557942429485079430082059275669583801816757447529 (205 digits) Thu Nov 26 22:27:49 2009 no P-1/P+1/ECM available, skipping Thu Nov 26 22:27:49 2009 commencing number field sieve (205-digit input) Thu Nov 26 22:27:49 2009 R0: -100000000000000000000000000000000000000 Thu Nov 26 22:27:49 2009 R1: 1 Thu Nov 26 22:27:49 2009 A0: -35 Thu Nov 26 22:27:49 2009 A1: 0 Thu Nov 26 22:27:49 2009 A2: 0 Thu Nov 26 22:27:49 2009 A3: 0 Thu Nov 26 22:27:49 2009 A4: 0 Thu Nov 26 22:27:49 2009 A5: 0 Thu Nov 26 22:27:49 2009 A6: 8 Thu Nov 26 22:27:49 2009 skew 1.28, size 3.592136e-11, alpha -0.268121, combined = 1.602160e-12 Thu Nov 26 22:27:49 2009 Thu Nov 26 22:27:49 2009 commencing relation filtering Thu Nov 26 22:27:49 2009 estimated available RAM is 32159.4 MB Thu Nov 26 22:27:49 2009 commencing duplicate removal, pass 1 Thu Nov 26 22:28:01 2009 error -9 reading relation 1291015 Thu Nov 26 22:28:01 2009 error -9 reading relation 1342830 Thu Nov 26 22:28:02 2009 error -9 reading relation 1370248 Thu Nov 26 22:28:13 2009 error -1 reading relation 2599430 Thu Nov 26 22:28:13 2009 error -15 reading relation 2626748 Thu Nov 26 22:28:16 2009 error -9 reading relation 2946812 Thu Nov 26 22:28:18 2009 error -1 reading relation 3185545 Thu Nov 26 22:28:19 2009 error -15 reading relation 3219303 Thu Nov 26 22:29:16 2009 error -9 reading relation 9486483 Thu Nov 26 22:29:16 2009 error -9 reading relation 9514482 Thu Nov 26 22:29:17 2009 error -9 reading relation 9556054 Thu Nov 26 22:29:24 2009 error -15 reading relation 10391075 Thu Nov 26 22:29:24 2009 error -1 reading relation 10399383 Thu Nov 26 22:29:27 2009 error -9 reading relation 10711737 Thu Nov 26 22:29:42 2009 error -9 reading relation 12335275 Thu Nov 26 22:29:59 2009 error -15 reading relation 14104824 Thu Nov 26 22:30:04 2009 error -15 reading relation 14711253 Thu Nov 26 22:30:56 2009 error -9 reading relation 20330305 Thu Nov 26 22:30:58 2009 error -15 reading relation 20604086 Thu Nov 26 22:31:59 2009 error -15 reading relation 27248323 Thu Nov 26 22:32:04 2009 error -1 reading relation 27748892 Thu Nov 26 22:32:11 2009 error -9 reading relation 28487866 Thu Nov 26 22:32:16 2009 error -9 reading relation 29006216 Thu Nov 26 22:36:02 2009 error -9 reading relation 51061370 Thu Nov 26 22:36:03 2009 error -15 reading relation 51120025 Thu Nov 26 22:36:46 2009 error -9 reading relation 55851497 Thu Nov 26 22:38:02 2009 error -11 reading relation 64156490 Thu Nov 26 22:38:02 2009 error -15 reading relation 64158279 Thu Nov 26 22:38:07 2009 error -11 reading relation 64707825 Thu Nov 26 22:38:07 2009 error -1 reading relation 64751839 Thu Nov 26 22:38:07 2009 error -15 reading relation 64756725 Thu Nov 26 22:38:12 2009 error -11 reading relation 65315616 Thu Nov 26 22:38:16 2009 error -15 reading relation 65761982 Thu Nov 26 22:38:16 2009 error -11 reading relation 65765885 Thu Nov 26 22:38:27 2009 error -11 reading relation 66855238 Thu Nov 26 22:38:40 2009 error -15 reading relation 68327551 Thu Nov 26 22:39:21 2009 error -15 reading relation 72782069 Thu Nov 26 22:39:23 2009 error -15 reading relation 72922516 Thu Nov 26 22:39:34 2009 error -9 reading relation 74169831 Thu Nov 26 22:39:47 2009 error -15 reading relation 75577775 Thu Nov 26 22:39:58 2009 error -15 reading relation 76730474 Thu Nov 26 22:40:06 2009 error -15 reading relation 77615673 Thu Nov 26 22:40:18 2009 error -11 reading relation 78886058 Thu Nov 26 22:40:29 2009 error -15 reading relation 80065667 Thu Nov 26 22:40:31 2009 error -15 reading relation 80257632 Thu Nov 26 22:40:31 2009 error -15 reading relation 80289278 Thu Nov 26 22:40:35 2009 error -5 reading relation 80739459 Thu Nov 26 22:40:36 2009 error -15 reading relation 80813499 Thu Nov 26 22:40:38 2009 error -9 reading relation 81009455 Thu Nov 26 22:40:38 2009 error -11 reading relation 81009466 Thu Nov 26 22:40:53 2009 error -15 reading relation 82668862 Thu Nov 26 22:40:53 2009 error -9 reading relation 82683063 Thu Nov 26 22:40:58 2009 error -9 reading relation 83225110 Thu Nov 26 22:41:02 2009 error -15 reading relation 83629496 Thu Nov 26 22:41:06 2009 error -9 reading relation 84004849 Thu Nov 26 22:41:06 2009 error -15 reading relation 84019522 Thu Nov 26 22:41:13 2009 error -9 reading relation 84820494 Thu Nov 26 22:41:27 2009 error -9 reading relation 86279356 Thu Nov 26 22:41:27 2009 error -9 reading relation 86286930 Thu Nov 26 22:41:45 2009 error -9 reading relation 88229805 Thu Nov 26 22:41:45 2009 error -5 reading relation 88237485 Thu Nov 26 22:42:04 2009 error -9 reading relation 90292083 Thu Nov 26 22:42:53 2009 error -15 reading relation 95546114 Thu Nov 26 22:42:54 2009 error -11 reading relation 95663440 Thu Nov 26 22:43:11 2009 error -15 reading relation 97555771 Thu Nov 26 22:43:18 2009 found 18531139 hash collisions in 98264717 relations Thu Nov 26 22:43:41 2009 added 1 free relations Thu Nov 26 22:43:41 2009 commencing duplicate removal, pass 2 Thu Nov 26 22:44:56 2009 found 18305751 duplicates and 79958967 unique relations Thu Nov 26 22:44:56 2009 memory use: 660.8 MB Thu Nov 26 22:44:56 2009 reading ideals above 720000 Thu Nov 26 22:44:57 2009 commencing singleton removal, initial pass Thu Nov 26 23:03:20 2009 memory use: 2756.0 MB Thu Nov 26 23:03:21 2009 reading all ideals from disk Thu Nov 26 23:03:27 2009 memory use: 2944.2 MB Thu Nov 26 23:03:48 2009 keeping 81907235 ideals with weight <= 200, target excess is 420496 Thu Nov 26 23:04:11 2009 commencing in-memory singleton removal Thu Nov 26 23:04:29 2009 begin with 79958967 relations and 81907235 unique ideals Thu Nov 26 23:07:40 2009 reduce to 39200401 relations and 35596299 ideals in 19 passes Thu Nov 26 23:07:40 2009 max relations containing the same ideal: 134 Thu Nov 26 23:08:24 2009 removing 3629644 relations and 3229644 ideals in 400000 cliques Thu Nov 26 23:08:28 2009 commencing in-memory singleton removal Thu Nov 26 23:08:36 2009 begin with 35570757 relations and 35596299 unique ideals Thu Nov 26 23:09:49 2009 reduce to 35317319 relations and 32109565 ideals in 9 passes Thu Nov 26 23:09:49 2009 max relations containing the same ideal: 128 Thu Nov 26 23:10:28 2009 removing 2673168 relations and 2273168 ideals in 400000 cliques Thu Nov 26 23:10:31 2009 commencing in-memory singleton removal Thu Nov 26 23:10:38 2009 begin with 32644151 relations and 32109565 unique ideals Thu Nov 26 23:11:45 2009 reduce to 32491803 relations and 29682207 ideals in 9 passes Thu Nov 26 23:11:45 2009 max relations containing the same ideal: 118 Thu Nov 26 23:12:21 2009 removing 2366440 relations and 1966440 ideals in 400000 cliques Thu Nov 26 23:12:24 2009 commencing in-memory singleton removal Thu Nov 26 23:12:30 2009 begin with 30125363 relations and 29682207 unique ideals Thu Nov 26 23:13:25 2009 reduce to 29993353 relations and 27582220 ideals in 8 passes Thu Nov 26 23:13:25 2009 max relations containing the same ideal: 110 Thu Nov 26 23:13:58 2009 removing 2206498 relations and 1806498 ideals in 400000 cliques Thu Nov 26 23:14:01 2009 commencing in-memory singleton removal Thu Nov 26 23:14:07 2009 begin with 27786855 relations and 27582220 unique ideals Thu Nov 26 23:15:04 2009 reduce to 27665060 relations and 25652382 ideals in 9 passes Thu Nov 26 23:15:04 2009 max relations containing the same ideal: 102 Thu Nov 26 23:15:35 2009 removing 2096725 relations and 1696725 ideals in 400000 cliques Thu Nov 26 23:15:37 2009 commencing in-memory singleton removal Thu Nov 26 23:15:43 2009 begin with 25568335 relations and 25652382 unique ideals Thu Nov 26 23:16:29 2009 reduce to 25446757 relations and 23832524 ideals in 8 passes Thu Nov 26 23:16:29 2009 max relations containing the same ideal: 97 Thu Nov 26 23:16:57 2009 removing 2022002 relations and 1622002 ideals in 400000 cliques Thu Nov 26 23:17:00 2009 commencing in-memory singleton removal Thu Nov 26 23:17:05 2009 begin with 23424755 relations and 23832524 unique ideals Thu Nov 26 23:17:47 2009 reduce to 23300592 relations and 22084668 ideals in 8 passes Thu Nov 26 23:17:47 2009 max relations containing the same ideal: 89 Thu Nov 26 23:18:13 2009 removing 1974033 relations and 1574033 ideals in 400000 cliques Thu Nov 26 23:18:15 2009 commencing in-memory singleton removal Thu Nov 26 23:18:20 2009 begin with 21326559 relations and 22084668 unique ideals Thu Nov 26 23:18:58 2009 reduce to 21196656 relations and 20378855 ideals in 8 passes Thu Nov 26 23:18:58 2009 max relations containing the same ideal: 83 Thu Nov 26 23:19:22 2009 removing 1656990 relations and 1326965 ideals in 330025 cliques Thu Nov 26 23:19:24 2009 commencing in-memory singleton removal Thu Nov 26 23:19:28 2009 begin with 19539666 relations and 20378855 unique ideals Thu Nov 26 23:19:59 2009 reduce to 19437929 relations and 18948678 ideals in 7 passes Thu Nov 26 23:19:59 2009 max relations containing the same ideal: 78 Thu Nov 26 23:20:28 2009 relations with 0 large ideals: 14445 Thu Nov 26 23:20:28 2009 relations with 1 large ideals: 6220 Thu Nov 26 23:20:28 2009 relations with 2 large ideals: 86100 Thu Nov 26 23:20:28 2009 relations with 3 large ideals: 559802 Thu Nov 26 23:20:28 2009 relations with 4 large ideals: 1973251 Thu Nov 26 23:20:28 2009 relations with 5 large ideals: 4114171 Thu Nov 26 23:20:28 2009 relations with 6 large ideals: 5298159 Thu Nov 26 23:20:28 2009 relations with 7+ large ideals: 7385781 Thu Nov 26 23:20:28 2009 commencing 2-way merge Thu Nov 26 23:20:57 2009 reduce to 12106757 relation sets and 11617506 unique ideals Thu Nov 26 23:20:57 2009 commencing full merge Thu Nov 26 23:26:40 2009 memory use: 1424.6 MB Thu Nov 26 23:26:43 2009 found 6358076 cycles, need 6291706 Thu Nov 26 23:26:47 2009 weight of 6291706 cycles is about 440672317 (70.04/cycle) Thu Nov 26 23:26:47 2009 distribution of cycle lengths: Thu Nov 26 23:26:47 2009 1 relations: 826579 Thu Nov 26 23:26:47 2009 2 relations: 770877 Thu Nov 26 23:26:47 2009 3 relations: 748633 Thu Nov 26 23:26:47 2009 4 relations: 676227 Thu Nov 26 23:26:47 2009 5 relations: 612398 Thu Nov 26 23:26:47 2009 6 relations: 533265 Thu Nov 26 23:26:47 2009 7 relations: 463017 Thu Nov 26 23:26:47 2009 8 relations: 390741 Thu Nov 26 23:26:47 2009 9 relations: 318530 Thu Nov 26 23:26:47 2009 10+ relations: 951439 Thu Nov 26 23:26:47 2009 heaviest cycle: 21 relations Thu Nov 26 23:26:49 2009 commencing cycle optimization Thu Nov 26 23:27:06 2009 start with 34372455 relations Thu Nov 26 23:28:31 2009 pruned 753746 relations Thu Nov 26 23:28:32 2009 memory use: 1143.5 MB Thu Nov 26 23:28:32 2009 distribution of cycle lengths: Thu Nov 26 23:28:32 2009 1 relations: 826579 Thu Nov 26 23:28:32 2009 2 relations: 785791 Thu Nov 26 23:28:32 2009 3 relations: 771707 Thu Nov 26 23:28:32 2009 4 relations: 690566 Thu Nov 26 23:28:32 2009 5 relations: 625482 Thu Nov 26 23:28:32 2009 6 relations: 539725 Thu Nov 26 23:28:32 2009 7 relations: 467763 Thu Nov 26 23:28:32 2009 8 relations: 390486 Thu Nov 26 23:28:32 2009 9 relations: 314993 Thu Nov 26 23:28:32 2009 10+ relations: 878614 Thu Nov 26 23:28:32 2009 heaviest cycle: 21 relations Thu Nov 26 23:28:48 2009 RelProcTime: 3659 Thu Nov 26 23:28:52 2009 elapsed time 01:01:06 Fri Nov 27 06:31:15 2009 Fri Nov 27 06:31:15 2009 Fri Nov 27 06:31:15 2009 Msieve v. 1.43 Fri Nov 27 06:31:15 2009 random seeds: a6634281 eaabb899 Fri Nov 27 06:31:15 2009 factoring 8500620332853352373100619494859864036219623065828944278551768110817378446210927884562453439711314210424131541144585190430418520177440149893041637577056204111557942429485079430082059275669583801816757447529 (205 digits) Fri Nov 27 06:31:18 2009 no P-1/P+1/ECM available, skipping Fri Nov 27 06:31:18 2009 commencing number field sieve (205-digit input) Fri Nov 27 06:31:18 2009 R0: -100000000000000000000000000000000000000 Fri Nov 27 06:31:18 2009 R1: 1 Fri Nov 27 06:31:18 2009 A0: -35 Fri Nov 27 06:31:18 2009 A1: 0 Fri Nov 27 06:31:18 2009 A2: 0 Fri Nov 27 06:31:18 2009 A3: 0 Fri Nov 27 06:31:18 2009 A4: 0 Fri Nov 27 06:31:18 2009 A5: 0 Fri Nov 27 06:31:18 2009 A6: 8 Fri Nov 27 06:31:18 2009 skew 1.28, size 3.592136e-11, alpha -0.268121, combined = 1.602160e-12 Fri Nov 27 06:31:18 2009 Fri Nov 27 06:31:18 2009 commencing linear algebra Fri Nov 27 06:31:19 2009 read 6291706 cycles Fri Nov 27 06:31:36 2009 cycles contain 19079877 unique relations Fri Nov 27 06:34:56 2009 read 19079877 relations Fri Nov 27 06:35:41 2009 using 20 quadratic characters above 1073739740 Fri Nov 27 06:37:59 2009 building initial matrix Fri Nov 27 06:44:18 2009 memory use: 2469.6 MB Fri Nov 27 06:44:25 2009 read 6291706 cycles Fri Nov 27 06:44:33 2009 matrix is 6291525 x 6291706 (1892.8 MB) with weight 559610983 (88.94/col) Fri Nov 27 06:44:33 2009 sparse part has weight 426984476 (67.86/col) Fri Nov 27 06:47:09 2009 filtering completed in 2 passes Fri Nov 27 06:47:11 2009 matrix is 6285857 x 6286038 (1892.4 MB) with weight 559440693 (89.00/col) Fri Nov 27 06:47:11 2009 sparse part has weight 426933495 (67.92/col) Fri Nov 27 06:47:59 2009 read 6286038 cycles Fri Nov 27 06:48:07 2009 matrix is 6285857 x 6286038 (1892.4 MB) with weight 559440693 (89.00/col) Fri Nov 27 06:48:07 2009 sparse part has weight 426933495 (67.92/col) Fri Nov 27 06:48:07 2009 saving the first 48 matrix rows for later Fri Nov 27 06:48:13 2009 matrix is 6285809 x 6286038 (1807.3 MB) with weight 443908792 (70.62/col) Fri Nov 27 06:48:13 2009 sparse part has weight 410917321 (65.37/col) Fri Nov 27 06:48:13 2009 matrix includes 64 packed rows Fri Nov 27 06:48:13 2009 using block size 65536 for processor cache size 6144 kB Fri Nov 27 06:48:50 2009 commencing Lanczos iteration (4 threads) Fri Nov 27 06:48:50 2009 memory use: 1958.3 MB Fri Nov 27 06:49:32 2009 linear algebra at 0.0%, ETA 90h 4m Tue Dec 1 00:58:29 2009 lanczos halted after 99407 iterations (dim = 6285808) Tue Dec 1 00:58:46 2009 recovered 35 nontrivial dependencies Tue Dec 1 00:58:47 2009 BLanczosTime: 325649 Tue Dec 1 00:58:47 2009 elapsed time 90:27:32 Tue Dec 1 05:38:10 2009 Tue Dec 1 05:38:10 2009 Tue Dec 1 05:38:10 2009 Msieve v. 1.43 Tue Dec 1 05:38:10 2009 random seeds: 505cf7ae 6f367940 Tue Dec 1 05:38:10 2009 factoring 8500620332853352373100619494859864036219623065828944278551768110817378446210927884562453439711314210424131541144585190430418520177440149893041637577056204111557942429485079430082059275669583801816757447529 (205 digits) Tue Dec 1 05:38:13 2009 no P-1/P+1/ECM available, skipping Tue Dec 1 05:38:13 2009 commencing number field sieve (205-digit input) Tue Dec 1 05:38:13 2009 R0: -100000000000000000000000000000000000000 Tue Dec 1 05:38:13 2009 R1: 1 Tue Dec 1 05:38:13 2009 A0: -35 Tue Dec 1 05:38:13 2009 A1: 0 Tue Dec 1 05:38:13 2009 A2: 0 Tue Dec 1 05:38:13 2009 A3: 0 Tue Dec 1 05:38:13 2009 A4: 0 Tue Dec 1 05:38:13 2009 A5: 0 Tue Dec 1 05:38:13 2009 A6: 8 Tue Dec 1 05:38:13 2009 skew 1.28, size 3.592136e-11, alpha -0.268121, combined = 1.602160e-12 Tue Dec 1 05:38:13 2009 Tue Dec 1 05:38:13 2009 commencing square root phase Tue Dec 1 05:38:13 2009 reading relations for dependency 1 Tue Dec 1 05:38:14 2009 read 3143635 cycles Tue Dec 1 05:38:23 2009 cycles contain 9541566 unique relations Tue Dec 1 05:40:18 2009 read 9541566 relations Tue Dec 1 05:41:36 2009 multiplying 9541566 relations Tue Dec 1 05:55:44 2009 multiply complete, coefficients have about 259.73 million bits Tue Dec 1 05:55:47 2009 initial square root is modulo 2093935903 Tue Dec 1 06:21:29 2009 reading relations for dependency 2 Tue Dec 1 06:21:31 2009 read 3142476 cycles Tue Dec 1 06:21:39 2009 cycles contain 9540940 unique relations Tue Dec 1 06:23:34 2009 read 9540940 relations Tue Dec 1 06:24:53 2009 multiplying 9540940 relations Tue Dec 1 06:39:00 2009 multiply complete, coefficients have about 259.72 million bits Tue Dec 1 06:39:03 2009 initial square root is modulo 2091413101 Tue Dec 1 07:04:46 2009 sqrtTime: 5193 Tue Dec 1 07:04:46 2009 prp89 factor: 43313501227448011000083463763352610564812589301818962273432249121716141326899324578414523 Tue Dec 1 07:04:46 2009 prp117 factor: 196257981736799913361304440989775990019643124662452497442014310394640589026238986779888915065494733438722007484724523 Tue Dec 1 07:04:46 2009 elapsed time 01:26:36
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 4, 2009
2·10196-1 = 1(9)196<197> = 7 · 21786481 · C189
C189 = P49 · P141
P49 = 1184519727783750416654949243024504531875874583481<49>
P141 = 110714007151192388668548159387672871512485358734847066883913445369139729551089568055349728260200404587217820110723312598003341429367614469537<141>
Number: 19999_196 N=131142925612578605184432623935130099388567747914078328797438322285405208067201989029015614906195399667475309246001814480404483076323471291341504066542130284503364396349408476883308637918297 ( 189 digits) SNFS difficulty: 196 digits. Divisors found: r1=1184519727783750416654949243024504531875874583481 r2=110714007151192388668548159387672871512485358734847066883913445369139729551089568055349728260200404587217820110723312598003341429367614469537 Version: Total time: 216.90 hours. Scaled time: 517.51 units (timescale=2.386). Factorization parameters were as follows: n: 131142925612578605184432623935130099388567747914078328797438322285405208067201989029015614906195399667475309246001814480404483076323471291341504066542130284503364396349408476883308637918297 m: 1000000000000000000000000000000000000000 deg: 5 c5: 20 c0: -1 skew: 0.55 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 29 lpba: 29 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 55/55 Sieved rational special-q in [6500000, 11500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 33192013 Max relations in full relation-set: Initial matrix: Pruned matrix : 2453224 x 2453471 Total sieving time: 190.58 hours. Total relation processing time: 8.58 hours. Matrix solve time: 17.00 hours. Time per square root: 0.74 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13000000,13000000,29,29,55,55,2.5,2.5,100000 total time: 216.90 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Tyler Cadigan / PRIMO 3.0.8 / Dec 4, 2009
(103146+71)/9 = (1)31459<3146> is prime.
By Dmitry Domanov / GGNFS/msieve / Dec 3, 2009
(67·10192-13)/9 = 7(4)1913<193> = 32 · 19 · C191
C191 = P51 · P140
P51 = 787727404219372459895283453175496131491118165296769<51>
P140 = 55266279425876806713988680815949088304298679361056635098361971746667025608752182148801770835356409734239678567210927995967156095265795663057<140>
N=43534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833 ( 191 digits) SNFS difficulty: 195 digits. Divisors found: r1=787727404219372459895283453175496131491118165296769 (pp51) r2=55266279425876806713988680815949088304298679361056635098361971746667025608752182148801770835356409734239678567210927995967156095265795663057 (pp140) Version: Msieve-1.40 Total time: 559.66 hours. Scaled time: 1017.47 units (timescale=1.818). Factorization parameters were as follows: n: 43534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833 m: 500000000000000000000000000000000000000 deg: 5 c5: 268 c0: -1625 skew: 1.43 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 15050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2349315 x 2349540 Total sieving time: 550.85 hours. Total relation processing time: 0.27 hours. Matrix solve time: 7.58 hours. Time per square root: 0.97 hours. Prototype def-par.txt line would be: snfs,195.000,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 559.66 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Dec 3, 2009
(67·10165-13)/9 = 7(4)1643<166> = 32 · 82021 · 24823583623<11> · 3186822091492756524752069<25> · C126
C126 = P47 · P79
P47 = 27450936085202690749136049312900466734576169433<47>
P79 = 4643925759015711078530301624300186286501864834476494327623680463657883765250197<79>
Number: 74443_165 N=127480109195166678118588816514385867213041373151950439735287023737133488529901544404868525808710084307279871580450709108628301 ( 126 digits) SNFS difficulty: 166 digits. Divisors found: r1=27450936085202690749136049312900466734576169433 (pp47) r2=4643925759015711078530301624300186286501864834476494327623680463657883765250197 (pp79) Version: Msieve-1.40 Total time: 43.58 hours. Scaled time: 146.26 units (timescale=3.356). Factorization parameters were as follows: name: 74443_165 n: 127480109195166678118588816514385867213041373151950439735287023737133488529901544404868525808710084307279871580450709108628301 m: 1000000000000000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 817860 x 818108 Total sieving time: 41.98 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.26 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 43.58 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 2, 2009
(83·10165+7)/9 = 9(2)1643<166> = 107 · 15031 · 42197 · C156
C156 = P71 · P85
P71 = 43567788308512159678025627034514610908398268888666684424948010635688847<71>
P85 = 3119010528746029397719209328603357416174022932664142751039778863736466253498609584641<85>
Number: 92223_165 N=135888390448427588923536357204315898704325886989730889174813579864244032329645737188860895257825731028016278138812310117354155861528825745060357373586198927 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: r1=43567788308512159678025627034514610908398268888666684424948010635688847 r2=3119010528746029397719209328603357416174022932664142751039778863736466253498609584641 Version: Total time: 24.53 hours. Scaled time: 58.48 units (timescale=2.384). Factorization parameters were as follows: n: 135888390448427588923536357204315898704325886989730889174813579864244032329645737188860895257825731028016278138812310117354155861528825745060357373586198927 m: 1000000000000000000000000000000000 deg: 5 c5: 83 c0: 7 skew: 0.61 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9785094 Max relations in full relation-set: Initial matrix: Pruned matrix : 781690 x 781938 Total sieving time: 22.13 hours. Total relation processing time: 0.96 hours. Matrix solve time: 1.36 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 24.53 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Sinkiti Sibata / Msieve / Dec 1, 2009
(64·10165+17)/9 = 7(1)1643<166> = 3 · 107 · 109 · 9250127060715581<16> · C146
C146 = P61 · P86
P61 = 1337660330747353211919119280339282908153321059315073880180853<61>
P86 = 16425265109434527326510048349197230485054669946738941787287566019735622487230213930669<86>
Number: 71113_165 N=21971425558899150573132387261603048300262553608841156778721836305533945757037303446237424248823445658589807526596416410732844148519978705723280657 ( 146 digits) SNFS difficulty: 166 digits. Divisors found: r1=1337660330747353211919119280339282908153321059315073880180853 (pp61) r2=16425265109434527326510048349197230485054669946738941787287566019735622487230213930669 (pp86) Version: Msieve-1.40 Total time: 38.63 hours. Scaled time: 129.65 units (timescale=3.356). Factorization parameters were as follows: name: 71113_165 n: 21971425558899150573132387261603048300262553608841156778721836305533945757037303446237424248823445658589807526596416410732844148519978705723280657 m: 2000000000000000000000000000000000 deg: 5 c5: 2 c0: 17 skew: 1.53 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 759798 x 760046 Total sieving time: 37.36 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.09 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 38.63 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Dec 1, 2009
(52·10185-43)/9 = 5(7)1843<186> = 32 · 7 · 30000315797<11> · 232490372587643<15> · 174803429130286213921446816952979<33> · C127
C127 = P43 · P85
P43 = 2498583802588221247133294103735572473992083<43>
P85 = 3010548420930010766455598533165141367485402944008309486583965145761377674886330486493<85>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=259561072 Step 1 took 38282ms Step 2 took 13917ms ********** Factor found in step 2: 2498583802588221247133294103735572473992083 Found probable prime factor of 43 digits: 2498583802588221247133294103735572473992083 Probable prime cofactor 3010548420930010766455598533165141367485402944008309486583965145761377674886330486493 has 85 digits
By JPascoa / ggnfs, Msieve / Dec 1, 2009
(26·10185-71)/9 = 2(8)1841<186> = 29 · 5503 · 10169 · 71875359003529<14> · 1394709746073037<16> · 2877363597220133641<19> · C129
C129 = P57 · P73
P57 = 426635400523700719380560824023990687589207990696100701579<57>
P73 = 1446570433676351806454922108543228604497249940075625639596510848668340941<73>
Number: 28881_185 N=617158156357253800238573566333189314432699040441120387582829934582368592193389049441631037244285202522375613719835416916069045839 ( 129 digits) Divisors found: r1=426635400523700719380560824023990687589207990696100701579 (pp57) r2=1446570433676351806454922108543228604497249940075625639596510848668340941 (pp73) Version: Msieve v. 1.43 Total time: 141.61 hours. Scaled time: 423.57 units (timescale=2.991). Factorization parameters were as follows: # Murphy_E = 9.098144e-11, selected by Jeff Gilchrist n: 617158156357253800238573566333189314432699040441120387582829934582368592193389049441631037244285202522375613719835416916069045839 Y0: -6966184159841423360708233 Y1: 179572073106863 c0: 451869833669647240802733941550960 c1: 6137113730802307406338953288 c2: 909117430681584103700 c3: -61431158639424524 c4: 9830138349 c5: 37620 skew: 580327.33 type: gnfs # selected mechanically rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [4550000, 9150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1356361 x 1356592 Total sieving time: 139.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.99 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,128,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,9100000,9100000,28,28,53,53,2.5,2.5,100000 total time: 141.61 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 30, 2009
(65·10165-11)/9 = 7(2)1641<166> = 3 · 1627 · 1117427261<10> · C154
C154 = P45 · P110
P45 = 113006746106565909443027295307940874726468067<45>
P110 = 11717592946789296253681058279544472082801984835493741742797532427363964872859069731881552804947725855354637643<110>
Number: 72221_165 N=1324167051117905466116290415486962399951869164503675847313184589279820521464612022488971168097567147466746257583242944662193031062572818924125189995646081 ( 154 digits) SNFS difficulty: 166 digits. Divisors found: r1=113006746106565909443027295307940874726468067 r2=11717592946789296253681058279544472082801984835493741742797532427363964872859069731881552804947725855354637643 Version: Total time: 24.57 hours. Scaled time: 58.62 units (timescale=2.386). Factorization parameters were as follows: n: 1324167051117905466116290415486962399951869164503675847313184589279820521464612022488971168097567147466746257583242944662193031062572818924125189995646081 m: 1000000000000000000000000000000000 deg: 5 c5: 65 c0: -11 skew: 0.70 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9909831 Max relations in full relation-set: Initial matrix: Pruned matrix : 750797 x 751045 Total sieving time: 22.18 hours. Total relation processing time: 0.97 hours. Matrix solve time: 1.26 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 24.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Sinkiti Sibata / Msieve / Nov 30, 2009
(62·10164-71)/9 = 6(8)1631<165> = 3 · 8819 · 51539 · 85667 · 791251537184711<15> · C136
C136 = P39 · P97
P39 = 992475357917463346229619663566535046949<39>
P97 = 7509737163976481080866171857101385836152469516008259754713441097351260965314523929224542143986219<97>
Number: 68881_164 N=7453229079683634188103196101922610125639868950413398574507032854609890070168290130051336575627502110007583354854997020130458699173995831 ( 136 digits) SNFS difficulty: 166 digits. Divisors found: r1=992475357917463346229619663566535046949 (pp39) r2=7509737163976481080866171857101385836152469516008259754713441097351260965314523929224542143986219 (pp97) Version: Msieve-1.40 Total time: 43.13 hours. Scaled time: 144.79 units (timescale=3.357). Factorization parameters were as follows: name: 68881_164 n: 7453229079683634188103196101922610125639868950413398574507032854609890070168290130051336575627502110007583354854997020130458699173995831 m: 1000000000000000000000000000000000 deg: 5 c5: 31 c0: -355 skew: 1.63 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 801871 x 802119 Total sieving time: 41.78 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.21 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 43.13 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1, Msieve / Nov 29, 2009
(5·10174+31)/9 = (5)1739<174> = 23 · 1259 · 2729 · 92569625550097<14> · C152
C152 = P36 · P41 · P76
P36 = 319209987870288110798004201214022531<36>
P41 = 29918625098920000052618788688979657934147<41>
P76 = 7952135702568029913397518486410342950297753828903848797089446457106865919507<76>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3191334078 Step 1 took 12315ms Step 2 took 5559ms ********** Factor found in step 2: 319209987870288110798004201214022531 Found probable prime factor of 36 digits: 319209987870288110798004201214022531 Composite cofactor 237916966820869688084184098718279133319024623800428369609709957288403959046532171004082771755032730649929947208705529 has 117 digits ------------------------------ Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1509897548 Step 1 took 10661ms Step 2 took 4556ms ********** Factor found in step 2: 29918625098920000052618788688979657934147 Found probable prime factor of 41 digits: 29918625098920000052618788688979657934147 Probable prime cofactor 7952135702568029913397518486410342950297753828903848797089446457106865919507 has 76 digits
(47·10200+61)/9 = 5(2)1999<201> = 23 · 29 · C198
C198 = P49 · P150
P49 = 1821402884526033038533370786121841309816963740679<49>
P150 = 429856496359875945099381474633284382898100856895829070340592911058234885519310144276396296060479619834175215447282578435029435921107042424727017527353<150>
Number: 52229_200 N=782941862402132267199733466600033316674995835415625520573046809928369148758953856405130767949358654006330168249208728968848908878893886390138264201232716974845910378144261202731967349658504081292687 ( 198 digits) SNFS difficulty: 201 digits. Divisors found: r1=1821402884526033038533370786121841309816963740679 r2=429856496359875945099381474633284382898100856895829070340592911058234885519310144276396296060479619834175215447282578435029435921107042424727017527353 Version: Total time: 879.42 hours. Scaled time: 1768.52 units (timescale=2.011). Factorization parameters were as follows: n: 782941862402132267199733466600033316674995835415625520573046809928369148758953856405130767949358654006330168249208728968848908878893886390138264201232716974845910378144261202731967349658504081292687 m: 10000000000000000000000000000000000000000 deg: 5 c5: 47 c0: 61 skew: 1.05 type: snfs lss: 1 rlim: 16100000 alim: 16100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 16100000/16100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8050000, 17750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3153324 x 3153572 Total sieving time: 879.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16100000,16100000,29,29,56,56,2.6,2.6,100000 total time: 879.42 hours. --------- CPU info (if available) ----------
By JPascoa / ggnfs, Msieve / Nov 29, 2009
(65·10165+7)/9 = 7(2)1643<166> = 709 · 67751 · 1829671 · C152
C152 = P75 · P78
P75 = 312974659587106130775379744870042305659798659750210394695905699474058989043<75>
P78 = 262558886508076207744801887760311254273758547653064352203241793866965567029249<78>
Number: 72223_165 N=82174278126434783823391208352460875362453913579954847715282054703599326256843388185088845857667117607706749934491923336032382214386373130028033751518707 ( 152 digits) SNFS difficulty: 166 digits. Divisors found: r1=312974659587106130775379744870042305659798659750210394695905699474058989043 (pp75) r2=262558886508076207744801887760311254273758547653064352203241793866965567029249 (pp78) Version: Msieve v. 1.43 Total time: 48.54 hours. Scaled time: 138.34 units (timescale=2.850). Factorization parameters were as follows: n: 82174278126434783823391208352460875362453913579954847715282054703599326256843388185088845857667117607706749934491923336032382214386373130028033751518707 m: 1000000000000000000000000000000000 deg: 5 c5: 65 c0: 7 skew: 0.64 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 816606 x 816831 Total sieving time: 47.76 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.67 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 48.54 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 29, 2009
(65·10164+61)/9 = 7(2)1639<165> = 34 · 319001 · 17439599 · C151
C151 = P76 · P76
P76 = 1097127491350443004053837025887267310248050259027019551554425722997887106267<76>
P76 = 1460831723951703039628220676876044203673473878553552062390817891003524106873<76>
Number: 72229_164 N=1602718644584274818803163723477909962133415966700972038765533352034751949940452264830643947910679050139435670063108805415833738405346671012673616073091 ( 151 digits) SNFS difficulty: 166 digits. Divisors found: r1=1097127491350443004053837025887267310248050259027019551554425722997887106267 r2=1460831723951703039628220676876044203673473878553552062390817891003524106873 Version: Total time: 28.82 hours. Scaled time: 68.70 units (timescale=2.384). Factorization parameters were as follows: n: 1602718644584274818803163723477909962133415966700972038765533352034751949940452264830643947910679050139435670063108805415833738405346671012673616073091 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: 122 skew: 1.56 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10149598 Max relations in full relation-set: Initial matrix: Pruned matrix : 782891 x 783139 Total sieving time: 26.18 hours. Total relation processing time: 1.18 hours. Matrix solve time: 1.37 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 28.82 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
Nice split. :-)
By Dmitry Domanov / GGNFS/msieve / Nov 29, 2009
(59·10167+31)/9 = 6(5)1669<168> = 1609 · 1613 · 8969 · C158
C158 = P45 · P114
P45 = 180807571184022017815614490573920266850012827<45>
P114 = 155760902333919403469684574721889190589532983161655736580938118674989762881341704303010429704566137565650015823529<114>
Number: s158 N=28162750436427633795391345241974761470071604276095120931948649687067221159896234746405373333713070886324764143370807972283060862326022280203040781466618406483 ( 158 digits) SNFS difficulty: 169 digits. Divisors found: r1=180807571184022017815614490573920266850012827 (pp45) r2=155760902333919403469684574721889190589532983161655736580938118674989762881341704303010429704566137565650015823529 (pp114) Version: Msieve-1.40 Total time: 63.41 hours. Scaled time: 119.39 units (timescale=1.883). Factorization parameters were as follows: n: 28162750436427633795391345241974761470071604276095120931948649687067221159896234746405373333713070886324764143370807972283060862326022280203040781466618406483 m: 2000000000000000000000000000000000 deg: 5 c5: 1475 c0: 248 skew: 0.70 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1020495 x 1020720 Total sieving time: 61.85 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.31 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 63.41 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 28, 2009
(26·10163-11)/3 = 8(6)1623<164> = 2239 · 8719 · 195407 · 879139434150694749919804433<27> · C125
C125 = P46 · P79
P46 = 5211438645737500317674537589757818163406227579<46>
P79 = 4958791117901422260553490157272046951176263951871311374087740608923515632809707<79>
Number: 86663_163 N=25842435667971333293845691995925430935046775646627219316454740930177241830087326929025122361662134281077043238993181242309353 ( 125 digits) SNFS difficulty: 165 digits. Divisors found: r1=5211438645737500317674537589757818163406227579 (pp46) r2=4958791117901422260553490157272046951176263951871311374087740608923515632809707 (pp79) Version: Msieve-1.40 Total time: 39.13 hours. Scaled time: 131.36 units (timescale=3.357). Factorization parameters were as follows: name: 86663_163 n: 25842435667971333293845691995925430935046775646627219316454740930177241830087326929025122361662134281077043238993181242309353 m: 500000000000000000000000000000000 deg: 5 c5: 208 c0: -275 skew: 1.06 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 757161 x 757409 Total sieving time: 37.91 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,165.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 39.13 hours. --------- CPU info (if available) ----------
(65·10164-11)/9 = 7(2)1631<165> = 7 · 642113 · 1373173 · 4123318093<10> · 4443565537<10> · 4462792390541<13> · C121
C121 = P52 · P69
P52 = 1551622602733807349047209724184123573558714451797777<52>
P69 = 922284432714733061874653609820085576890214786673481956403908905108631<69>
Number: 72221_164 N=1431037371949707131839284966982399894566209201602764234918449603635050483060354978307759067701589405764384099117429313287 ( 121 digits) SNFS difficulty: 166 digits. Divisors found: r1=1551622602733807349047209724184123573558714451797777 (pp52) r2=922284432714733061874653609820085576890214786673481956403908905108631 (pp69) Version: Msieve v. 1.42 Total time: 2.07 hours. Scaled time: 1.41 units (timescale=0.681). Factorization parameters were as follows: name: 72221_163 n: 1431037371949707131839284966982399894566209201602764234918449603635050483060354978307759067701589405764384099117429313287 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: -22 skew: 1.11 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 730980 x 731209 Total sieving time: 0.00 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.74 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 2.07 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574) Total of 2 processors activated (7442.34 BogoMIPS). Total time: 38 hours.
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 28, 2009
(43·10188+11)/9 = 4(7)1879<189> = 8387 · 200015330041<12> · 73294994688491<14> · 86021662446856582196340817<26> · C134
C134 = P38 · P96
P38 = 60652757993607889981105524809786581043<38>
P96 = 744771959182400709766779466077945682530064054931570187406997451913632109458468682650603381975097<96>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2151625036 Step 1 took 38024ms Step 2 took 14497ms ********** Factor found in step 2: 60652757993607889981105524809786581043 Found probable prime factor of 38 digits: 60652757993607889981105524809786581043 Probable prime cofactor 744771959182400709766779466077945682530064054931570187406997451913632109458468682650603381975097 has 96 digits
By Dmitry Domanov / GGNFS/msieve 1.42 / Nov 28, 2009
(26·10200-11)/3 = 8(6)1993<201> = C201
C201 = P99 · P103
P99 = 219631702931061976134369747885808367899858190913021959949302323867094375889693220762080723420749513<99>
P103 = 3945999849296329038851146075899153593764462405886868527184422610760144041919822331667205447984131245551<103>
Sieving took 39 days on Xeon E5310 1.86GHz (Windows 2003 Server SP2) Postprocessing took 23.5 hours (8 cores) Wed Nov 25 07:01:39 2009 Msieve v. 1.42 Wed Nov 25 07:01:39 2009 random seeds: 0016d1ec c3a03c82 Wed Nov 25 07:01:39 2009 factoring 866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 (201 digits) Wed Nov 25 07:01:42 2009 searching for 15-digit factors Wed Nov 25 07:01:44 2009 commencing number field sieve (201-digit input) Wed Nov 25 07:01:44 2009 R0: -10000000000000000000000000000000000000000 Wed Nov 25 07:01:44 2009 R1: 1 Wed Nov 25 07:01:44 2009 A0: -11 Wed Nov 25 07:01:44 2009 A1: 0 Wed Nov 25 07:01:44 2009 A2: 0 Wed Nov 25 07:01:44 2009 A3: 0 Wed Nov 25 07:01:44 2009 A4: 0 Wed Nov 25 07:01:44 2009 A5: 26 Wed Nov 25 07:01:44 2009 skew 0.84, size 5.578690e-014, alpha 1.471114, combined = 1.386997e-011 Wed Nov 25 07:01:44 2009 Wed Nov 25 07:01:44 2009 commencing relation filtering Wed Nov 25 07:01:44 2009 estimated available RAM is 4095.0 MB Wed Nov 25 07:01:44 2009 commencing duplicate removal, pass 1 Wed Nov 25 07:13:10 2009 found 5943338 hash collisions in 42007041 relations Wed Nov 25 07:14:27 2009 commencing duplicate removal, pass 2 Wed Nov 25 07:18:36 2009 found 5764474 duplicates and 36242567 unique relations Wed Nov 25 07:18:36 2009 memory use: 197.2 MB Wed Nov 25 07:18:36 2009 reading ideals above 18284544 Wed Nov 25 07:18:44 2009 commencing singleton removal, initial pass Wed Nov 25 07:27:59 2009 memory use: 596.8 MB Wed Nov 25 07:27:59 2009 reading all ideals from disk Wed Nov 25 07:28:12 2009 memory use: 661.3 MB Wed Nov 25 07:28:17 2009 commencing in-memory singleton removal Wed Nov 25 07:28:22 2009 begin with 36242567 relations and 36728595 unique ideals Wed Nov 25 07:29:15 2009 reduce to 14764672 relations and 11920362 ideals in 21 passes Wed Nov 25 07:29:15 2009 max relations containing the same ideal: 49 Wed Nov 25 07:29:19 2009 reading ideals above 720000 Wed Nov 25 07:29:20 2009 commencing singleton removal, initial pass Wed Nov 25 07:34:45 2009 memory use: 298.4 MB Wed Nov 25 07:34:45 2009 reading all ideals from disk Wed Nov 25 07:34:54 2009 memory use: 501.5 MB Wed Nov 25 07:34:59 2009 commencing in-memory singleton removal Wed Nov 25 07:35:03 2009 begin with 14764763 relations and 14140030 unique ideals Wed Nov 25 07:35:45 2009 reduce to 14760399 relations and 14135240 ideals in 10 passes Wed Nov 25 07:35:45 2009 max relations containing the same ideal: 189 Wed Nov 25 07:36:05 2009 removing 2180612 relations and 1935203 ideals in 245409 cliques Wed Nov 25 07:36:06 2009 commencing in-memory singleton removal Wed Nov 25 07:36:10 2009 begin with 12579787 relations and 14135240 unique ideals Wed Nov 25 07:36:49 2009 reduce to 12325260 relations and 11939746 ideals in 11 passes Wed Nov 25 07:36:49 2009 max relations containing the same ideal: 164 Wed Nov 25 07:37:05 2009 removing 1622619 relations and 1377210 ideals in 245409 cliques Wed Nov 25 07:37:07 2009 commencing in-memory singleton removal Wed Nov 25 07:37:10 2009 begin with 10702641 relations and 11939746 unique ideals Wed Nov 25 07:37:40 2009 reduce to 10529753 relations and 10386055 ideals in 10 passes Wed Nov 25 07:37:40 2009 max relations containing the same ideal: 149 Wed Nov 25 07:37:54 2009 removing 107501 relations and 98145 ideals in 9356 cliques Wed Nov 25 07:37:55 2009 commencing in-memory singleton removal Wed Nov 25 07:37:57 2009 begin with 10422252 relations and 10386055 unique ideals Wed Nov 25 07:38:15 2009 reduce to 10421333 relations and 10286989 ideals in 6 passes Wed Nov 25 07:38:15 2009 max relations containing the same ideal: 147 Wed Nov 25 07:38:21 2009 relations with 0 large ideals: 2845 Wed Nov 25 07:38:21 2009 relations with 1 large ideals: 240 Wed Nov 25 07:38:21 2009 relations with 2 large ideals: 6154 Wed Nov 25 07:38:21 2009 relations with 3 large ideals: 65255 Wed Nov 25 07:38:21 2009 relations with 4 large ideals: 363951 Wed Nov 25 07:38:21 2009 relations with 5 large ideals: 1202136 Wed Nov 25 07:38:21 2009 relations with 6 large ideals: 2522194 Wed Nov 25 07:38:21 2009 relations with 7+ large ideals: 6258558 Wed Nov 25 07:38:21 2009 commencing 2-way merge Wed Nov 25 07:38:42 2009 reduce to 6106240 relation sets and 5971895 unique ideals Wed Nov 25 07:38:42 2009 commencing full merge Wed Nov 25 07:42:16 2009 memory use: 632.6 MB Wed Nov 25 07:42:18 2009 found 3166995 cycles, need 3150095 Wed Nov 25 07:42:18 2009 weight of 3150095 cycles is about 220790303 (70.09/cycle) Wed Nov 25 07:42:18 2009 distribution of cycle lengths: Wed Nov 25 07:42:18 2009 1 relations: 431731 Wed Nov 25 07:42:18 2009 2 relations: 392606 Wed Nov 25 07:42:18 2009 3 relations: 386090 Wed Nov 25 07:42:18 2009 4 relations: 345382 Wed Nov 25 07:42:18 2009 5 relations: 293444 Wed Nov 25 07:42:18 2009 6 relations: 254531 Wed Nov 25 07:42:18 2009 7 relations: 215315 Wed Nov 25 07:42:18 2009 8 relations: 176756 Wed Nov 25 07:42:18 2009 9 relations: 145428 Wed Nov 25 07:42:18 2009 10+ relations: 508812 Wed Nov 25 07:42:18 2009 heaviest cycle: 24 relations Wed Nov 25 07:42:21 2009 commencing cycle optimization Wed Nov 25 07:42:30 2009 start with 17464318 relations Wed Nov 25 07:43:23 2009 pruned 322260 relations Wed Nov 25 07:43:23 2009 memory use: 477.8 MB Wed Nov 25 07:43:23 2009 distribution of cycle lengths: Wed Nov 25 07:43:23 2009 1 relations: 431731 Wed Nov 25 07:43:23 2009 2 relations: 400095 Wed Nov 25 07:43:23 2009 3 relations: 397367 Wed Nov 25 07:43:23 2009 4 relations: 350474 Wed Nov 25 07:43:23 2009 5 relations: 298352 Wed Nov 25 07:43:23 2009 6 relations: 255742 Wed Nov 25 07:43:23 2009 7 relations: 215378 Wed Nov 25 07:43:23 2009 8 relations: 175429 Wed Nov 25 07:43:23 2009 9 relations: 143520 Wed Nov 25 07:43:23 2009 10+ relations: 482007 Wed Nov 25 07:43:23 2009 heaviest cycle: 24 relations Wed Nov 25 07:43:43 2009 RelProcTime: 2519 Wed Nov 25 07:43:43 2009 Wed Nov 25 07:43:43 2009 commencing linear algebra Wed Nov 25 07:43:48 2009 read 3150095 cycles Wed Nov 25 07:43:57 2009 cycles contain 10285527 unique relations Wed Nov 25 07:55:13 2009 read 10285527 relations Wed Nov 25 07:55:43 2009 using 20 quadratic characters above 536869410 Wed Nov 25 07:57:06 2009 building initial matrix Wed Nov 25 08:00:39 2009 memory use: 1151.5 MB Wed Nov 25 08:00:57 2009 read 3150095 cycles Wed Nov 25 08:06:32 2009 matrix is 3149918 x 3150095 (902.9 MB) with weight 279978388 (88.88/col) Wed Nov 25 08:06:32 2009 sparse part has weight 214627921 (68.13/col) Wed Nov 25 08:08:10 2009 filtering completed in 2 passes Wed Nov 25 08:08:11 2009 matrix is 3146755 x 3146931 (902.7 MB) with weight 279889156 (88.94/col) Wed Nov 25 08:08:11 2009 sparse part has weight 214604908 (68.19/col) Wed Nov 25 08:08:46 2009 read 3146931 cycles Wed Nov 25 08:37:25 2009 matrix is 3146755 x 3146931 (902.7 MB) with weight 279889156 (88.94/col) Wed Nov 25 08:37:25 2009 sparse part has weight 214604908 (68.19/col) Wed Nov 25 08:37:25 2009 saving the first 48 matrix rows for later Wed Nov 25 08:37:28 2009 matrix is 3146707 x 3146931 (855.2 MB) with weight 221919681 (70.52/col) Wed Nov 25 08:37:28 2009 sparse part has weight 205309780 (65.24/col) Wed Nov 25 08:37:28 2009 matrix includes 64 packed rows Wed Nov 25 08:37:28 2009 using block size 65536 for processor cache size 4096 kB Wed Nov 25 08:38:02 2009 commencing Lanczos iteration (8 threads) Wed Nov 25 08:38:02 2009 memory use: 1068.7 MB Thu Nov 26 05:51:48 2009 lanczos halted after 49761 iterations (dim = 3146707) Thu Nov 26 05:51:57 2009 recovered 37 nontrivial dependencies Thu Nov 26 05:51:58 2009 BLanczosTime: 79695 Thu Nov 26 05:51:58 2009 Thu Nov 26 05:51:58 2009 commencing square root phase Thu Nov 26 05:51:58 2009 reading relations for dependency 1 Thu Nov 26 05:52:01 2009 read 1574926 cycles Thu Nov 26 05:52:06 2009 cycles contain 6243919 unique relations Thu Nov 26 06:01:37 2009 read 6243919 relations Thu Nov 26 06:02:38 2009 multiplying 5147940 relations Thu Nov 26 06:13:47 2009 multiply complete, coefficients have about 145.85 million bits Thu Nov 26 06:13:49 2009 initial square root is modulo 171541 Thu Nov 26 06:32:30 2009 sqrtTime: 2432 Thu Nov 26 06:32:30 2009 prp99 factor: 219631702931061976134369747885808367899858190913021959949302323867094375889693220762080723420749513 Thu Nov 26 06:32:30 2009 prp103 factor: 3945999849296329038851146075899153593764462405886868527184422610760144041919822331667205447984131245551 Thu Nov 26 06:32:30 2009 elapsed time 23:30:51
By Erik Branger / GGNFS, Msieve / Nov 28, 2009
(64·10205-1)/9 = 7(1)205<206> = 431 · 37940267 · 45453581976434362961<20> · 3413498540067034957579963393050135213037<40> · C137
C137 = P52 · P85
P52 = 5021904639112661884279481420515331308570490020937987<52>
P85 = 5581147687333324553148372632272707694103863113163794664870316102823081173696895306077<85>
Number: 71111_205 N=28027991462592126727645456941213879374870484455341245911407229100340608719858666765731412775742675529856705668542399476690203589001246999 ( 137 digits) Divisors found: r1=5021904639112661884279481420515331308570490020937987 (pp52) r2=5581147687333324553148372632272707694103863113163794664870316102823081173696895306077 (pp85) Version: Msieve v. 1.43 Total time: 379.42 hours. Scaled time: 380.18 units (timescale=1.002). Factorization parameters were as follows: # Murphy_E = 3.341821e-11, selected by Jeff Gilchrist n: 28027991462592126727645456941213879374870484455341245911407229100340608719858666765731412775742675529856705668542399476690203589001246999 Y0: -200712814366335223924707637 Y1: 1865037990862081 c0: 42756225136356909361925341794202800 c1: 271117863504155830697150367460 c2: -599164415210628480558292 c3: -255405301427474975 c4: 342673420962 c5: 86040 skew: 1286946.34 type: gnfs # selected mechanically rlim: 14600000 alim: 14600000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 14600000/14600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [7300000, 18600001) Primes: , , Relations: 23161909 relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2131553 x 2131777 Total sieving time: 365.37 hours. Total relation processing time: 0.57 hours. Matrix solve time: 12.50 hours. Time per square root: 0.99 hours. Prototype def-par.txt line would be: gnfs,136,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,14600000,14600000,28,28,55,55,2.6,2.6,100000 total time: 379.42 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 27, 2009
(22·10164-7)/3 = 7(3)1631<165> = 23 · 53901767 · 139612857686202560949310679923<30> · C127
C127 = P49 · P78
P49 = 6754321484568289172985434187887056943790139178677<49>
P78 = 627282892180425272457203747632461341968295653636265909025507998427062127369821<78>
Number: 73331_164 N=4236870315556380098039369903323088181940804099761376480634290491976797824420141498514838608126730235966130123927245727176506817 ( 127 digits) SNFS difficulty: 166 digits. Divisors found: r1=6754321484568289172985434187887056943790139178677 r2=627282892180425272457203747632461341968295653636265909025507998427062127369821 Version: Total time: 18.55 hours. Scaled time: 44.21 units (timescale=2.383). Factorization parameters were as follows: n: 4236870315556380098039369903323088181940804099761376480634290491976797824420141498514838608126730235966130123927245727176506817 m: 1000000000000000000000000000000000 deg: 5 c5: 11 c0: -35 skew: 1.26 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 3600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9469802 Max relations in full relation-set: Initial matrix: Pruned matrix : 701714 x 701962 Total sieving time: 16.64 hours. Total relation processing time: 0.71 hours. Matrix solve time: 1.12 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 18.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 27, 2009
(22·10172-7)/3 = 7(3)1711<173> = 48214384732603<14> · 4064286759125334773<19> · C141
C141 = P34 · P108
P34 = 2528431516575789096617651796309427<34>
P108 = 148009386868021114014136141181083786229874235422605861967736289169789771857161756134774694674396272086829287<108>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=897477864 Step 1 took 42495ms Step 2 took 14659ms ********** Factor found in step 2: 2528431516575789096617651796309427 Found probable prime factor of 34 digits: 2528431516575789096617651796309427 Probable prime cofactor 148009386868021114014136141181083786229874235422605861967736289169789771857161756134774694674396272086829287 has 108 digits
By Sinkiti Sibata / Msieve / Nov 27, 2009
(59·10184+31)/9 = 6(5)1839<185> = 3 · 13 · 41 · C182
C182 = P64 · P118
P64 = 6813977917155969100374090114813988981026000167458606630278080087<64>
P118 = 6016727141523583670134963894843856668867307701321458618205426905018934714457542819286019955552910616372334350104724943<118>
Number: 65559_184 N=40997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510041 ( 182 digits) SNFS difficulty: 186 digits. Divisors found: r1=6813977917155969100374090114813988981026000167458606630278080087 (pp64) r2=6016727141523583670134963894843856668867307701321458618205426905018934714457542819286019955552910616372334350104724943 (pp118) Version: Msieve v. 1.42 Total time: 12.43 hours. Scaled time: 9.89 units (timescale=0.796). Factorization parameters were as follows: name: 65559_184 n: 40997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510041 m: 10000000000000000000000000000000000000 deg: 5 c5: 59 c0: 310 skew: 1.39 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4550000, 8150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1832409 x 1832638 Total sieving time: 0.00 hours. Total relation processing time: 0.22 hours. Matrix solve time: 11.85 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,186.000,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000 total time: 12.43 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574) Total of 2 processors activated (7442.34 BogoMIPS). Total time: 224 hours.
By Dmitry Domanov / GGNFS/msieve / Nov 27, 2009
(67·10166-31)/9 = 7(4)1651<167> = 1361 · C164
C164 = P56 · P109
P56 = 36877280473198598114033606344601705893521134287453029239<56>
P109 = 1483253158041523948079442997084179518478110622805970858351989516224667268559875468140693529675012634339151679<109>
N=54698342721854845293493346395624132582251612376520532288350069393419871009878357416931994448526410319209731406645440444117887174463221487468364764470569026042942281 ( 164 digits) SNFS difficulty: 169 digits. Divisors found: r1=36877280473198598114033606344601705893521134287453029239 (pp56) r2=1483253158041523948079442997084179518478110622805970858351989516224667268559875468140693529675012634339151679 (pp109) Version: Msieve-1.40 Total time: 71.53 hours. Scaled time: 66.81 units (timescale=0.934). Factorization parameters were as follows: n: 54698342721854845293493346395624132582251612376520532288350069393419871009878357416931994448526410319209731406645440444117887174463221487468364764470569026042942281 m: 2000000000000000000000000000000000 deg: 5 c5: 335 c0: -496 skew: 1.08 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 5100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 881679 x 881908 Total sieving time: 69.81 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.42 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,169.000,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 71.53 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 26, 2009
(64·10164+17)/9 = 7(1)1633<165> = 17597 · 83719 · 553157761307<12> · C144
C144 = P45 · P100
P45 = 170993170796291589495847649921540863092737789<45>
P100 = 5103252092711526530908951977517372031589485749269566130240786228969544705813538735808435514565812117<100>
Number: 71113_164 N=872621256705554537562497017054806961902356913310789643713475531853359484917297314630534101155105898937701858021584802387719938765947681719989313 ( 144 digits) SNFS difficulty: 166 digits. Divisors found: r1=170993170796291589495847649921540863092737789 r2=5103252092711526530908951977517372031589485749269566130240786228969544705813538735808435514565812117 Version: Total time: 19.82 hours. Scaled time: 47.16 units (timescale=2.379). Factorization parameters were as follows: n: 872621256705554537562497017054806961902356913310789643713475531853359484917297314630534101155105898937701858021584802387719938765947681719989313 m: 2000000000000000000000000000000000 deg: 5 c5: 1 c0: 85 skew: 2.43 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9460398 Max relations in full relation-set: Initial matrix: Pruned matrix : 747913 x 748161 Total sieving time: 17.75 hours. Total relation processing time: 0.75 hours. Matrix solve time: 1.25 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 19.82 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Sinkiti Sibata / Msieve / Nov 26, 2009
(64·10168+17)/9 = 7(1)1673<169> = 3 · 20327 · 127507 · 605117 · 67091077 · 28921206504282603801987443<26> · C120
C120 = P50 · P71
P50 = 27517303792264798529463417344429815937905759318469<50>
P71 = 28306260058824912668648377802778355092603705182291293454402273353147913<71>
Number: 71113_168 N=778911957261536368479252748237453420091363555395653283447916728689860273052859142998360002144908357965800974034629705197 ( 120 digits) SNFS difficulty: 170 digits. Divisors found: r1=27517303792264798529463417344429815937905759318469 (pp50) r2=28306260058824912668648377802778355092603705182291293454402273353147913 (pp71) Version: Msieve-1.40 Total time: 53.36 hours. Scaled time: 178.43 units (timescale=3.344). Factorization parameters were as follows: name: 71113_168 n: 778911957261536368479252748237453420091363555395653283447916728689860273052859142998360002144908357965800974034629705197 m: 4000000000000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2400000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 963415 x 963663 Total sieving time: 51.24 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.77 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000 total time: 53.36 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GMP-ECM 6.2.3 / Nov 25, 2009
(64·10295-1)/9 = 7(1)295<296> = 138283 · 215123 · C286
C286 = P41 · C245
P41 = 27821253425770631779688809196979341911471<41>
C245 = [85922149607726026782156764348422317355098680473279943458089419000214805543256458905381333491902976675767807884711080103009541396355333130708765008447187044809202021290263519849408848513151067396999960418817775487954720426652016355985801204889849<245>]
$ echo 2390461899123524468141610636053234044959304079492194303969631663827271671500068555117428139137024327411407816062631071776594231652495314678420709429643785806299647702800471669183303102305194978145426958761047443438144237490094595452807414027153931517127656700294869702783643631664557879 | ecm -c 10 11e7 GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM] Input number is 2390461899123524468141610636053234044959304079492194303969631663827271671500068555117428139137024327411407816062631071776594231652495314678420709429643785806299647702800471669183303102305194978145426958761047443438144237490094595452807414027153931517127656700294869702783643631664557879 (286 digits) Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3203913405 Step 1 took 1851787ms Step 2 took 612963ms Run 2 out of 10: Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=4242926597 Step 1 took 1853684ms Step 2 took 610135ms Run 3 out of 10: Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=594201858 Step 1 took 1851104ms Step 2 took 615097ms ********** Factor found in step 2: 27821253425770631779688809196979341911471 Found probable prime factor of 41 digits: 27821253425770631779688809196979341911471 Composite cofactor 85922149607726026782156764348422317355098680473279943458089419000214805543256458905381333491902976675767807884711080103009541396355333130708765008447187044809202021290263519849408848513151067396999960418817775487954720426652016355985801204889849 has 245 digits
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 25, 2009
(67·10190-13)/9 = 7(4)1893<191> = 137 · C189
C189 = P67 · P123
P67 = 1071541119796023713943872177373953979517368086289326500970465961839<67>
P123 = 507110828875460829568417893845099794914673688551241728438396231258250485605676876586330307290817717364311369996839606707501<123>
N=543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=1071541119796023713943872177373953979517368086289326500970465961839 (pp67) r2=507110828875460829568417893845099794914673688551241728438396231258250485605676876586330307290817717364311369996839606707501 (pp123) Version: Msieve-1.40 Total time: 365.07 hours. Scaled time: 701.66 units (timescale=1.922). Factorization parameters were as follows: n: 543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339 m: 100000000000000000000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5500000, 11300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1986673 x 1986899 Total sieving time: 359.24 hours. Total relation processing time: 0.24 hours. Matrix solve time: 5.10 hours. Time per square root: 0.49 hours. Prototype def-par.txt line would be: snfs,191.000,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,54,54,2.5,2.5,100000 total time: 365.07 hours. --------- CPU info (if available) ----------
(64·10337-1)/9 = 7(1)337<338> = 641 · 10305987443<11> · 128091342428974354289<21> · 1573635359835609855768700526548279<34> · C272
C272 = P44 · P229
P44 = 23999825294513644566371981203556549145331093<44>
P229 = 2225142674642345175756085094630621961303073772087561224909653062753168834580195174703734595980867983796542324738572237891366967450081957758673889677981721953767769280970762737157451510595720274177628529785960348826659378796242959<229>
Factor=23999825294513644566371981203556549145331093 Method=ECM B1=11000000 Sigma=3143255858
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 25, 2009
2·10195-1 = 1(9)195<196> = 5899211 · 14379834023187049<17> · C173
C173 = P61 · P112
P61 = 8005520506168541677107500091857021276142810375469214148691261<61>
P112 = 2945049630407235486850246768492493463787273516148281573264435077057996480481973645153052764487171176571079917881<112>
Number: 19999_195 N=23576655207909208424624202624006807544095893996706242465497479933717817335301260997188669857591848828615161079849847110159737109007441407916694060960678075171144655502337941 ( 173 digits) SNFS difficulty: 195 digits. Divisors found: r1=8005520506168541677107500091857021276142810375469214148691261 r2=2945049630407235486850246768492493463787273516148281573264435077057996480481973645153052764487171176571079917881 Version: Total time: 209.06 hours. Scaled time: 499.43 units (timescale=2.389). Factorization parameters were as follows: n: 23576655207909208424624202624006807544095893996706242465497479933717817335301260997188669857591848828615161079849847110159737109007441407916694060960678075171144655502337941 m: 1000000000000000000000000000000000000000 deg: 5 c5: 2 c0: -1 skew: 0.87 type: snfs lss: 1 rlim: 12000000 alim: 12000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6000000, 11100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22757439 Max relations in full relation-set: Initial matrix: Pruned matrix : 2150669 x 2150917 Total sieving time: 189.52 hours. Total relation processing time: 6.29 hours. Matrix solve time: 12.68 hours. Time per square root: 0.57 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,55,55,2.5,2.5,100000 total time: 209.06 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By juno1369 / GMP-ECM + Alpertron ECM (http://www.alpertron.com.ar/ECM.HTM) / Nov 25, 2009
(59·10158+13)/9 = 6(5)1577<159> = 3 · 547 · 19577 · 20921 · 20562679 · 40037148484895545334741569<26> · C115
C115 = P33 · P41 · P41
P33 = 714946817551994226795999183397417<33>
P41 = 18512159506965237722555703148040570906717<41>
P41 = 89515591408513589807357573543702422736479<41>
********** Factor found in step 2: 714946817551994226795999183397417 Found probable prime factor of 33 digits: 714946817551994226795999183397417 Composite cofactor 1657126906514730606466839738594265639188592255458992054267231 172851540589382029443 has 82 digits From Alpertron ECM (http://www.alpertron.com.ar/ECM.HTM) Factors found for 1657126906514730606466839738594265639188592255458992054267231 172851540589382029443 (82 digits): prp41: 18512159506965237722555703148040570906717 prp41: 89515591408513589807357573543702422736479
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 25, 2009
(22·10163+17)/3 = 7(3)1629<164> = 41 · 127 · 233861 · 206092781 · 799041773 · C138
C138 = P68 · P70
P68 = 42195990389398706948573405544460493579875597777044234523676722681367<68>
P70 = 8666676725845304738171565873149213256863607609495312249724267546417367<70>
Number: 73339_163 N=365699007831793930864297489675417334693538526289939085369313738587375155136237648640690605141401806350384006471083639028582599730736100689 ( 138 digits) SNFS difficulty: 166 digits. Divisors found: r1=42195990389398706948573405544460493579875597777044234523676722681367 r2=8666676725845304738171565873149213256863607609495312249724267546417367 Version: Total time: 23.26 hours. Scaled time: 55.59 units (timescale=2.390). Factorization parameters were as follows: n: 365699007831793930864297489675417334693538526289939085369313738587375155136237648640690605141401806350384006471083639028582599730736100689 m: 1000000000000000000000000000000000 deg: 5 c5: 11 c0: 850 skew: 2.39 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9997905 Max relations in full relation-set: Initial matrix: Pruned matrix : 704228 x 704476 Total sieving time: 20.98 hours. Total relation processing time: 0.95 hours. Matrix solve time: 1.17 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 23.26 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Wataru Sakai / GMP-ECM 6.2.1, Msieve v. 1.43 / Nov 24, 2009
(44·10188+1)/9 = 4(8)1879<189> = 3 · 67 · 12367047777863<14> · 57831123768707<14> · 457613923500905847935719079<27> · C133
C133 = P43 · P44 · P47
P43 = 3845433339200043771803433770523203501433697<43>
P44 = 39455414314368368652823846825558613685063769<44>
P47 = 48981864669302978213702667920212673671860980707<47>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3869374597 Step 1 took 38192ms Step 2 took 14250ms ********** Factor found in step 2: 39455414314368368652823846825558613685063769 Found probable prime factor of 44 digits: 39455414314368368652823846825558613685063769 Composite cofactor 188356495415522399273375625775546911031815645086058261222593402241002941614660946956683779 has 90 digits ------------------------------------- Tue Nov 24 14:30:17 2009 Msieve v. 1.43 Tue Nov 24 14:30:17 2009 random seeds: 05499020 7dd90afa Tue Nov 24 14:30:17 2009 factoring 188356495415522399273375625775546911031815645086058261222593402241002941614660946956683779 (90 digits) Tue Nov 24 14:30:18 2009 searching for 15-digit factors Tue Nov 24 14:30:19 2009 commencing quadratic sieve (90-digit input) Tue Nov 24 14:30:19 2009 using multiplier of 1 Tue Nov 24 14:30:19 2009 using 64kb Pentium 3 sieve core Tue Nov 24 14:30:19 2009 sieve interval: 18 blocks of size 65536 Tue Nov 24 14:30:19 2009 processing polynomials in batches of 6 Tue Nov 24 14:30:19 2009 using a sieve bound of 1571777 (59667 primes) Tue Nov 24 14:30:19 2009 using large prime bound of 125742160 (26 bits) Tue Nov 24 14:30:19 2009 using double large prime bound of 379372269960400 (42-49 bits) Tue Nov 24 14:30:19 2009 using trial factoring cutoff of 49 bits Tue Nov 24 14:30:19 2009 polynomial 'A' values have 11 factors Tue Nov 24 16:15:50 2009 59769 relations (16430 full + 43339 combined from 626554 partial), need 59763 Tue Nov 24 16:15:51 2009 begin with 642984 relations Tue Nov 24 16:15:51 2009 reduce to 143182 relations in 9 passes Tue Nov 24 16:15:51 2009 attempting to read 143182 relations Tue Nov 24 16:15:53 2009 recovered 143182 relations Tue Nov 24 16:15:53 2009 recovered 115145 polynomials Tue Nov 24 16:15:53 2009 attempting to build 59769 cycles Tue Nov 24 16:15:53 2009 found 59769 cycles in 6 passes Tue Nov 24 16:15:53 2009 distribution of cycle lengths: Tue Nov 24 16:15:53 2009 length 1 : 16430 Tue Nov 24 16:15:53 2009 length 2 : 11866 Tue Nov 24 16:15:53 2009 length 3 : 10611 Tue Nov 24 16:15:53 2009 length 4 : 7899 Tue Nov 24 16:15:53 2009 length 5 : 5480 Tue Nov 24 16:15:53 2009 length 6 : 3258 Tue Nov 24 16:15:53 2009 length 7 : 1952 Tue Nov 24 16:15:53 2009 length 9+: 2273 Tue Nov 24 16:15:53 2009 largest cycle: 18 relations Tue Nov 24 16:15:54 2009 matrix is 59667 x 59769 (14.5 MB) with weight 3574237 (59.80/col) Tue Nov 24 16:15:54 2009 sparse part has weight 3574237 (59.80/col) Tue Nov 24 16:15:55 2009 filtering completed in 4 passes Tue Nov 24 16:15:55 2009 matrix is 55137 x 55201 (13.6 MB) with weight 3340434 (60.51/col) Tue Nov 24 16:15:55 2009 sparse part has weight 3340434 (60.51/col) Tue Nov 24 16:15:55 2009 saving the first 48 matrix rows for later Tue Nov 24 16:15:55 2009 matrix is 55089 x 55201 (9.8 MB) with weight 2725857 (49.38/col) Tue Nov 24 16:15:55 2009 sparse part has weight 2231393 (40.42/col) Tue Nov 24 16:15:55 2009 matrix includes 64 packed rows Tue Nov 24 16:15:55 2009 using block size 22080 for processor cache size 1024 kB Tue Nov 24 16:15:56 2009 commencing Lanczos iteration Tue Nov 24 16:15:56 2009 memory use: 9.3 MB Tue Nov 24 16:16:23 2009 lanczos halted after 872 iterations (dim = 55085) Tue Nov 24 16:16:23 2009 recovered 15 nontrivial dependencies Tue Nov 24 16:16:23 2009 prp43 factor: 3845433339200043771803433770523203501433697 Tue Nov 24 16:16:23 2009 prp47 factor: 48981864669302978213702667920212673671860980707 Tue Nov 24 16:16:23 2009 elapsed time 01:46:06
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.44 SVN / Nov 24, 2009
(2·10190-17)/3 = (6)1891<190> = 586961 · C185
C185 = P73 · P112
P73 = 3522100398505110525113530527897751734365915827795335855724148825683062971<73>
P112 = 3224762712419591738492616930735227996266954799592039711609720258477080717575085454686644775301672161668689243631<112>
Mon Nov 23 14:28:19 2009 Mon Nov 23 14:28:19 2009 Mon Nov 23 14:28:19 2009 Msieve v. 1.44 Mon Nov 23 14:28:19 2009 random seeds: b070f7b1 fdfdedbf Mon Nov 23 14:28:19 2009 factoring 11357938034497465192179151028205735417969280184998094705894713050214011947415018487883635653248966569613086161885826599495821130648657520119167485857947404796343652587934576005333687701 (185 digits) Mon Nov 23 14:28:24 2009 searching for 15-digit factors Mon Nov 23 14:28:26 2009 commencing number field sieve (185-digit input) Mon Nov 23 14:28:26 2009 R0: -100000000000000000000000000000000000000 Mon Nov 23 14:28:26 2009 R1: 1 Mon Nov 23 14:28:26 2009 A0: -17 Mon Nov 23 14:28:26 2009 A1: 0 Mon Nov 23 14:28:26 2009 A2: 0 Mon Nov 23 14:28:26 2009 A3: 0 Mon Nov 23 14:28:26 2009 A4: 0 Mon Nov 23 14:28:26 2009 A5: 2 Mon Nov 23 14:28:26 2009 skew 1.53, size 3.675878e-13, alpha 1.784858, combined = 4.412690e-11 Mon Nov 23 14:28:26 2009 Mon Nov 23 14:28:26 2009 commencing linear algebra Mon Nov 23 14:28:27 2009 read 1227138 cycles Mon Nov 23 14:28:32 2009 cycles contain 3011522 unique relations Mon Nov 23 14:30:07 2009 read 3011522 relations Mon Nov 23 14:30:19 2009 using 20 quadratic characters above 268432140 Mon Nov 23 14:31:05 2009 building initial matrix Mon Nov 23 14:33:20 2009 memory use: 395.9 MB Mon Nov 23 14:33:21 2009 read 1227138 cycles Mon Nov 23 14:33:28 2009 matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col) Mon Nov 23 14:33:28 2009 sparse part has weight 88420184 (72.05/col) Mon Nov 23 14:33:56 2009 filtering completed in 1 passes Mon Nov 23 14:33:57 2009 matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col) Mon Nov 23 14:33:57 2009 sparse part has weight 88420184 (72.05/col) Mon Nov 23 14:34:18 2009 read 1227138 cycles Mon Nov 23 14:34:25 2009 matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col) Mon Nov 23 14:34:25 2009 sparse part has weight 88420184 (72.05/col) Mon Nov 23 14:34:25 2009 saving the first 48 matrix rows for later Mon Nov 23 14:34:27 2009 matrix is 1226890 x 1227138 (368.4 MB) with weight 91302722 (74.40/col) Mon Nov 23 14:34:27 2009 sparse part has weight 84297943 (68.69/col) Mon Nov 23 14:34:27 2009 matrix includes 64 packed rows Mon Nov 23 14:34:27 2009 using block size 65536 for processor cache size 4096 kB Mon Nov 23 14:34:42 2009 commencing Lanczos iteration Mon Nov 23 14:34:42 2009 memory use: 361.6 MB Mon Nov 23 14:35:04 2009 linear algebra at 0.1%, ETA 9h 0m Mon Nov 23 14:35:44 2009 lanczos halted after 37 iterations (dim = 2338) Mon Nov 23 14:35:44 2009 BLanczosTime: 438 Mon Nov 23 14:35:44 2009 elapsed time 00:07:25 Mon Nov 23 14:35:51 2009 Mon Nov 23 14:35:51 2009 Mon Nov 23 14:35:51 2009 Msieve v. 1.44 Mon Nov 23 14:35:51 2009 random seeds: 6b3576c1 3d110add Mon Nov 23 14:35:51 2009 factoring 11357938034497465192179151028205735417969280184998094705894713050214011947415018487883635653248966569613086161885826599495821130648657520119167485857947404796343652587934576005333687701 (185 digits) Mon Nov 23 14:35:55 2009 searching for 15-digit factors Mon Nov 23 14:35:57 2009 commencing number field sieve (185-digit input) Mon Nov 23 14:35:57 2009 R0: -100000000000000000000000000000000000000 Mon Nov 23 14:35:57 2009 R1: 1 Mon Nov 23 14:35:57 2009 A0: -17 Mon Nov 23 14:35:57 2009 A1: 0 Mon Nov 23 14:35:57 2009 A2: 0 Mon Nov 23 14:35:57 2009 A3: 0 Mon Nov 23 14:35:57 2009 A4: 0 Mon Nov 23 14:35:57 2009 A5: 2 Mon Nov 23 14:35:57 2009 skew 1.53, size 3.675878e-13, alpha 1.784858, combined = 4.412690e-11 Mon Nov 23 14:35:57 2009 Mon Nov 23 14:35:57 2009 commencing linear algebra Mon Nov 23 14:36:01 2009 read 1227138 cycles Mon Nov 23 14:36:09 2009 matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col) Mon Nov 23 14:36:09 2009 sparse part has weight 88420184 (72.05/col) Mon Nov 23 14:36:09 2009 saving the first 48 matrix rows for later Mon Nov 23 14:36:10 2009 matrix is 1226890 x 1227138 (368.4 MB) with weight 91302722 (74.40/col) Mon Nov 23 14:36:10 2009 sparse part has weight 84297943 (68.69/col) Mon Nov 23 14:36:10 2009 matrix includes 64 packed rows Mon Nov 23 14:36:10 2009 using block size 65536 for processor cache size 4096 kB Mon Nov 23 14:36:25 2009 commencing Lanczos iteration (2 threads) Mon Nov 23 14:36:25 2009 memory use: 371.0 MB Mon Nov 23 14:36:25 2009 restarting at iteration 37 (dim = 2338) Mon Nov 23 14:36:40 2009 linear algebra at 0.3%, ETA 6h44m Mon Nov 23 21:47:28 2009 lanczos halted after 19405 iterations (dim = 1226888) Mon Nov 23 21:47:32 2009 recovered 36 nontrivial dependencies Mon Nov 23 21:47:32 2009 BLanczosTime: 25895 Mon Nov 23 21:47:32 2009 elapsed time 07:11:41 Mon Nov 23 21:49:52 2009 Mon Nov 23 21:49:52 2009 Mon Nov 23 21:49:52 2009 Msieve v. 1.44 Mon Nov 23 21:49:52 2009 random seeds: 2800b6ca f4df187c Mon Nov 23 21:49:52 2009 factoring 11357938034497465192179151028205735417969280184998094705894713050214011947415018487883635653248966569613086161885826599495821130648657520119167485857947404796343652587934576005333687701 (185 digits) Mon Nov 23 21:49:57 2009 searching for 15-digit factors Mon Nov 23 21:49:59 2009 commencing number field sieve (185-digit input) Mon Nov 23 21:49:59 2009 R0: -100000000000000000000000000000000000000 Mon Nov 23 21:49:59 2009 R1: 1 Mon Nov 23 21:49:59 2009 A0: -17 Mon Nov 23 21:49:59 2009 A1: 0 Mon Nov 23 21:49:59 2009 A2: 0 Mon Nov 23 21:49:59 2009 A3: 0 Mon Nov 23 21:49:59 2009 A4: 0 Mon Nov 23 21:49:59 2009 A5: 2 Mon Nov 23 21:49:59 2009 skew 1.53, size 3.675878e-13, alpha 1.784858, combined = 4.412690e-11 Mon Nov 23 21:49:59 2009 Mon Nov 23 21:49:59 2009 commencing square root phase Mon Nov 23 21:49:59 2009 reading relations for dependency 1 Mon Nov 23 21:50:03 2009 read 612889 cycles Mon Nov 23 21:50:05 2009 cycles contain 1503182 unique relations Mon Nov 23 21:51:23 2009 read 1503182 relations Mon Nov 23 21:51:43 2009 multiplying 1503182 relations Mon Nov 23 21:57:34 2009 multiply complete, coefficients have about 37.19 million bits Mon Nov 23 21:57:35 2009 initial square root is modulo 219041 Mon Nov 23 22:05:37 2009 reading relations for dependency 2 Mon Nov 23 22:05:41 2009 read 613137 cycles Mon Nov 23 22:05:42 2009 cycles contain 1505808 unique relations Mon Nov 23 22:06:57 2009 read 1505808 relations Mon Nov 23 22:07:09 2009 multiplying 1505808 relations Mon Nov 23 22:10:11 2009 multiply complete, coefficients have about 37.26 million bits Mon Nov 23 22:10:11 2009 initial square root is modulo 223781 Mon Nov 23 22:16:18 2009 reading relations for dependency 3 Mon Nov 23 22:16:22 2009 read 612903 cycles Mon Nov 23 22:16:24 2009 cycles contain 1504284 unique relations Mon Nov 23 22:17:40 2009 read 1504284 relations Mon Nov 23 22:17:52 2009 multiplying 1504284 relations Mon Nov 23 22:20:53 2009 multiply complete, coefficients have about 37.22 million bits Mon Nov 23 22:20:54 2009 initial square root is modulo 221101 Mon Nov 23 22:26:51 2009 reading relations for dependency 4 Mon Nov 23 22:26:56 2009 read 612973 cycles Mon Nov 23 22:26:58 2009 cycles contain 1504386 unique relations Mon Nov 23 22:28:13 2009 read 1504386 relations Mon Nov 23 22:28:24 2009 multiplying 1504386 relations Mon Nov 23 22:31:25 2009 multiply complete, coefficients have about 37.22 million bits Mon Nov 23 22:31:25 2009 initial square root is modulo 221201 Mon Nov 23 22:37:27 2009 reading relations for dependency 5 Mon Nov 23 22:37:32 2009 read 614430 cycles Mon Nov 23 22:37:33 2009 cycles contain 1508298 unique relations Mon Nov 23 22:38:49 2009 read 1508298 relations Mon Nov 23 22:39:00 2009 multiplying 1508298 relations Mon Nov 23 22:42:00 2009 multiply complete, coefficients have about 37.32 million bits Mon Nov 23 22:42:01 2009 initial square root is modulo 228451 Mon Nov 23 22:48:03 2009 reading relations for dependency 6 Mon Nov 23 22:48:08 2009 read 613942 cycles Mon Nov 23 22:48:09 2009 cycles contain 1506000 unique relations Mon Nov 23 22:49:24 2009 read 1506000 relations Mon Nov 23 22:49:36 2009 multiplying 1506000 relations Mon Nov 23 22:52:36 2009 multiply complete, coefficients have about 37.27 million bits Mon Nov 23 22:52:37 2009 initial square root is modulo 224261 Mon Nov 23 22:58:35 2009 sqrtTime: 4116 Mon Nov 23 22:58:35 2009 prp73 factor: 3522100398505110525113530527897751734365915827795335855724148825683062971 Mon Nov 23 22:58:35 2009 prp112 factor: 3224762712419591738492616930735227996266954799592039711609720258477080717575085454686644775301672161668689243631 Mon Nov 23 22:58:35 2009 elapsed time 01:08:43
By Erik Branger / GGNFS, Msieve / Nov 24, 2009
(65·10168+61)/9 = 7(2)1679<169> = 7 · 263 · 55893627458327<14> · C152
C152 = P71 · P82
P71 = 16686719216640258914430547376206697539119714819396999595221215196753619<71>
P82 = 4206140780347737673879122417993167985752911241206637624428896147475792512758851313<82>
Number: 72229_168 N=70186690187322848534813391255912423242710432254098754707341062929635389927685614871669166935399377870972333874531367371664986282656059306612965115651747 ( 152 digits) SNFS difficulty: 170 digits. Divisors found: r1=16686719216640258914430547376206697539119714819396999595221215196753619 (pp71) r2=4206140780347737673879122417993167985752911241206637624428896147475792512758851313 (pp82) Version: Msieve v. 1.43 Total time: 123.43 hours. Scaled time: 97.51 units (timescale=0.790). Factorization parameters were as follows: n: 70186690187322848534813391255912423242710432254098754707341062929635389927685614871669166935399377870972333874531367371664986282656059306612965115651747 m: 5000000000000000000000000000000000 deg: 5 c5: 104 c0: 305 skew: 1.24 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 952088 x 952313 Total sieving time: 116.58 hours. Total relation processing time: 0.39 hours. Matrix solve time: 5.86 hours. Time per square root: 0.60 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 123.43 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 23, 2009
(65·10163+7)/9 = 7(2)1623<164> = 23291 · 214849 · 16175813 · C147
C147 = P69 · P79
P69 = 813256512052658243117005216012106187806335489002678159581152113487081<69>
P79 = 1097123981090889200601269157296277423248544642116547145585024451148021609609649<79>
Number: 72223_163 N=892243222151303127585237134646888700719111322344662705134948669982776787671783703532461989654078209429613406012214041099368896840129135168614444569 ( 147 digits) SNFS difficulty: 166 digits. Divisors found: r1=813256512052658243117005216012106187806335489002678159581152113487081 r2=1097123981090889200601269157296277423248544642116547145585024451148021609609649 Version: Total time: 24.00 hours. Scaled time: 57.32 units (timescale=2.388). Factorization parameters were as follows: n: 892243222151303127585237134646888700719111322344662705134948669982776787671783703532461989654078209429613406012214041099368896840129135168614444569 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: 140 skew: 1.61 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9802166 Max relations in full relation-set: Initial matrix: Pruned matrix : 762660 x 762908 Total sieving time: 21.69 hours. Total relation processing time: 0.96 hours. Matrix solve time: 1.27 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 24.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Sinkiti Sibata / Msieve / Nov 23, 2009
(65·10161-11)/9 = 7(2)1601<162> = 20084017 · 191866891 · C147
C147 = P69 · P78
P69 = 311840341079435138195582161480994283224403261766637618030009178235597<69>
P78 = 601018626647427049816918876130796226415550083819651184343799035882306940635219<78>
Number: 72221_161 N=187421853528827335653389337039146572529035106115131310350823349232846759604043170270164712568736461349957588460504114904477258557263588332817690743 ( 147 digits) SNFS difficulty: 164 digits. Divisors found: r1=311840341079435138195582161480994283224403261766637618030009178235597 (pp69) r2=601018626647427049816918876130796226415550083819651184343799035882306940635219 (pp78) Version: Msieve-1.40 Total time: 29.98 hours. Scaled time: 100.61 units (timescale=3.356). Factorization parameters were as follows: name: 72221_161 n: 187421853528827335653389337039146572529035106115131310350823349232846759604043170270164712568736461349957588460504114904477258557263588332817690743 m: 200000000000000000000000000000000 deg: 5 c5: 325 c0: -176 skew: 0.88 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 661825 x 662073 Total sieving time: 28.97 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.82 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,164.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 29.98 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 23, 2009
(67·10197+41)/9 = 7(4)1969<198> = 6271 · C195
C195 = P32 · C163
P32 = 14804814301257493957368027068209<32>
C163 = [8018488822340487237390691124028521224201676513048994685760860292500214647027078234420861913727315979617472630756131310269280591852145065737118488621600044708379791<163>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2933211590 Step 1 took 75324ms Step 2 took 22413ms ********** Factor found in step 2: 14804814301257493957368027068209 Found probable prime factor of 32 digits: 14804814301257493957368027068209 Composite cofactor 8018488822340487237390691124028521224201676513048994685760860292500214647027078234420861913727315979617472630756131310269280591852145065737118488621600044708379791 has 163 digits
(22·10195-7)/3 = 7(3)1941<196> = 3137 · C193
C193 = P42 · P151
P42 = 865705014948683820695382200352934286953759<42>
P151 = 2700330825097480678864281228686638696675856044230083140116407966903315950254431328829179821478217319803331163711026706022488383947812078822791851974157<151>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2548502624 Step 1 took 70148ms Step 2 took 21764ms ********** Factor found in step 2: 865705014948683820695382200352934286953759 Found probable prime factor of 42 digits: 865705014948683820695382200352934286953759 Probable prime cofactor 2700330825097480678864281228686638696675856044230083140116407966903315950254431328829179821478217319803331163711026706022488383947812078822791851974157 has 151 digits
By Dmitry Domanov / ECMNET, GMP-ECM / Nov 23, 2009
(65·10171+61)/9 = 7(2)1709<172> = 59 · 103231 · 288734940313<12> · C154
C154 = P37 · P117
P37 = 5341730797111883898281272847651922239<37>
P117 = 768824761082780205497364438889436595941143966789197894042997226025202898341403395396514044299198931236559010774835143<117>
Factor=5341730797111883898281272847651922239 Method=ECM B1=11000000 Sigma=3634509346
(26·10167-11)/3 = 8(6)1663<168> = 7 · 17 · 691 · 229656809 · C155
C155 = P34 · C122
P34 = 1622000506706154937986411401046767<34>
C122 = [28294157895160621844921147954393461978100031316274893426210418177756993778953017327769043546792385145405456209408807687549<122>]
Factor=1622000506706154937986411401046767 Method=ECM B1=11000000 Sigma=420641482
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 22, 2009
(65·10162-11)/9 = 7(2)1611<163> = 3 · 59 · 1999 · 4773779 · C151
C151 = P74 · P77
P74 = 70720939585198509430447494622061780717823615546513973846559159308700434243<74>
P77 = 60460878757510508486907856776275737477095178737018964166774638595681693266091<77>
Number: 72221_162 N=4275850153877912590311748739884690843676410802291770101508765288141718738539635449718707640413237336721787300567069698882361479787286593316820647154113 ( 151 digits) SNFS difficulty: 165 digits. Divisors found: r1=70720939585198509430447494622061780717823615546513973846559159308700434243 r2=60460878757510508486907856776275737477095178737018964166774638595681693266091 Version: Total time: 24.47 hours. Scaled time: 58.51 units (timescale=2.391). Factorization parameters were as follows: n: 4275850153877912590311748739884690843676410802291770101508765288141718738539635449718707640413237336721787300567069698882361479787286593316820647154113 m: 500000000000000000000000000000000 deg: 5 c5: 52 c0: -275 skew: 1.40 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9691817 Max relations in full relation-set: Initial matrix: Pruned matrix : 780277 x 780525 Total sieving time: 21.87 hours. Total relation processing time: 0.95 hours. Matrix solve time: 1.40 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 24.47 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Sinkiti Sibata / Msieve / Nov 22, 2009
(64·10161+17)/9 = 7(1)1603<162> = 13 · 47 · 73 · 971 · 3258491 · 17762837059301<14> · C135
C135 = P61 · P75
P61 = 1045053944364224676875037140958936245274636458765532056637397<61>
P75 = 271447969722802002620888132932935879664564355019942468315186681947716233563<75>
Number: 71113_161 N=283677771448474868630729904666453613625367285272102371126053240308003259939380549919808427192636724065025504641791378151488079652355511 ( 135 digits) SNFS difficulty: 162 digits. Divisors found: r1=1045053944364224676875037140958936245274636458765532056637397 (pp61) r2=271447969722802002620888132932935879664564355019942468315186681947716233563 (pp75) Version: Msieve-1.40 Total time: 27.72 hours. Scaled time: 93.03 units (timescale=3.356). Factorization parameters were as follows: name: 71113_161 n: 283677771448474868630729904666453613625367285272102371126053240308003259939380549919808427192636724065025504641791378151488079652355511 m: 200000000000000000000000000000000 deg: 5 c5: 20 c0: 17 skew: 0.97 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 613486 x 613734 Total sieving time: 26.85 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.70 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,162.000,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 27.72 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Nov 20, 2009
(59·10161+31)/9 = 6(5)1609<162> = 210347 · 322840801 · C148
C148 = P44 · P105
P44 = 16143737774649079582774376407801783420888231<44>
P105 = 597971752607197952577929926186380895991725103128877040652814302508296522632908336217817296076502480481187<105>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 9653499170737935827020930703101546284142908607431751644711794372056984430617103889827634872490523601821211444382589425755902035305126233259825210197 (148 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5772938245 Step 1 took 4633ms Step 2 took 4586ms ********** Factor found in step 2: 16143737774649079582774376407801783420888231 Found probable prime factor of 44 digits: 16143737774649079582774376407801783420888231 Probable prime cofactor 597971752607197952577929926186380895991725103128877040652814302508296522632908336217817296076502480481187 has 105 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 21, 2009
(59·10161+13)/9 = 6(5)1607<162> = 3 · 7 · 53 · 743 · 196771241 · 2740438472617133<16> · C133
C133 = P52 · P81
P52 = 5709310195720236828643845210386126013088462671987029<52>
P81 = 257489903231838133471085108012293074391834736416021232004557239035900683554813379<81>
Number: 65557_161 N=1470089729816550615327746631666522054342149372565640256703912340728756124298045838952847268330437311459786713438678509201299203660991 ( 133 digits) SNFS difficulty: 162 digits. Divisors found: r1=5709310195720236828643845210386126013088462671987029 r2=257489903231838133471085108012293074391834736416021232004557239035900683554813379 Version: Total time: 23.22 hours. Scaled time: 54.90 units (timescale=2.365). Factorization parameters were as follows: n: 1470089729816550615327746631666522054342149372565640256703912340728756124298045838952847268330437311459786713438678509201299203660991 m: 100000000000000000000000000000000 deg: 5 c5: 590 c0: 13 skew: 0.47 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9714777 Max relations in full relation-set: Initial matrix: Pruned matrix : 739625 x 739873 Total sieving time: 20.93 hours. Total relation processing time: 0.95 hours. Matrix solve time: 1.24 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 23.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 21, 2009
(19·10188+11)/3 = 6(3)1877<189> = 7 · 13 · 43 · C186
C186 = P73 · P113
P73 = 5821078419106027523809386387218682764306133231192700907154676066616935391<73>
P113 = 27804753444740559479686096411255814898532711759314529476640305709597762933252999828353482262529345803167942993039<113>
N=161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743249 ( 186 digits) SNFS difficulty: 190 digits. Divisors found: r1=5821078419106027523809386387218682764306133231192700907154676066616935391 (pp73) r2=27804753444740559479686096411255814898532711759314529476640305709597762933252999828353482262529345803167942993039 (pp113) Version: Msieve-1.40 Total time: 302.13 hours. Scaled time: 570.42 units (timescale=1.888). Factorization parameters were as follows: n: 161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743249 m: 50000000000000000000000000000000000000 deg: 5 c5: 152 c0: 275 skew: 1.13 type: snfs lss: 1 rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5250000, 9950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1979065 x 1979290 Total sieving time: 295.46 hours. Total relation processing time: 0.24 hours. Matrix solve time: 5.00 hours. Time per square root: 1.43 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000 total time: 302.13 hours. --------- CPU info (if available) ----------
(22·10165+17)/3 = 7(3)1649<166> = 862139 · 42698939 · C153
C153 = P39 · P114
P39 = 364142907767587768742722435741327326329<39>
P114 = 547060294841478817301959720522487529530706748367558955882874997756231160054020556062246281597883447113999513409771<114>
Factor=364142907767587768742722435741327326329 Method=ECM B1=11000000 Sigma=2604005257
By Sinkiti Sibata / Msieve / Nov 21, 2009
(67·10160+41)/9 = 7(4)1599<161> = 109 · 66347 · 90637257619<11> · 58054843192433<14> · C130
C130 = P61 · P69
P61 = 6458162601207874684709389465413979594157825818758560151613079<61>
P69 = 302921652034106781572164003165353167420092868163923517757663653696611<69>
Number: 74449_160 N=1956317284262773736098062881121294614246555144986523186725985290723465938887825663867140407665727444773244943801461623492925575269 ( 130 digits) SNFS difficulty: 161 digits. Divisors found: r1=6458162601207874684709389465413979594157825818758560151613079 (pp61) r2=302921652034106781572164003165353167420092868163923517757663653696611 (pp69) Version: Msieve-1.40 Total time: 27.61 hours. Scaled time: 91.71 units (timescale=3.322). Factorization parameters were as follows: name: 74449_160 n: 1956317284262773736098062881121294614246555144986523186725985290723465938887825663867140407665727444773244943801461623492925575269 m: 100000000000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 621450 x 621698 Total sieving time: 26.76 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.72 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 27.61 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 20, 2009
(26·10161-11)/3 = 8(6)1603<162> = 7 · 181 · 17387 · 11596073 · 58262188035421<14> · C134
C134 = P48 · P87
P48 = 456470417364139674264780752174404710974590776491<48>
P87 = 127567620784121598321005285879102169613744974602163293210674456685787644756891735053249<87>
Number: 86663_161 N=58230845101478284843358896477726731596932608490207254663143255682978657099665099256090779442717396787440080924159907391956186142369259 ( 134 digits) SNFS difficulty: 162 digits. Divisors found: r1=456470417364139674264780752174404710974590776491 r2=127567620784121598321005285879102169613744974602163293210674456685787644756891735053249 Version: Total time: 16.77 hours. Scaled time: 39.99 units (timescale=2.385). Factorization parameters were as follows: n: 58230845101478284843358896477726731596932608490207254663143255682978657099665099256090779442717396787440080924159907391956186142369259 m: 100000000000000000000000000000000 deg: 5 c5: 260 c0: -11 skew: 0.53 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9344646 Max relations in full relation-set: Initial matrix: Pruned matrix : 671327 x 671575 Total sieving time: 15.03 hours. Total relation processing time: 0.64 hours. Matrix solve time: 0.94 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 16.77 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 20, 2009
(67·10181-13)/9 = 7(4)1803<182> = 127 · 15370583931178846189<20> · 2253776873153776657897948451534279<34> · C128
C128 = P41 · P87
P41 = 29200237533398076379310161749061933957963<41>
P87 = 579483271331262398610183787231750323193470397486915683574230974601792989962677800929853<87>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4221356910 Step 1 took 38433ms Step 2 took 13993ms ********** Factor found in step 2: 29200237533398076379310161749061933957963 Found probable prime factor of 41 digits: 29200237533398076379310161749061933957963 Probable prime cofactor 579483271331262398610183787231750323193470397486915683574230974601792989962677800929853 has 87 digits
(64·10198+71)/9 = 7(1)1979<199> = 3 · 2179 · C196
C196 = P36 · P160
P36 = 650785158455981940062100473969000731<36>
P160 = 1671557573283360183804878381813370410004043685577428419417647214928170607746446482254417566351134107881259634051566957814751822022316355735422517371501836929077<160>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=68033887 Step 1 took 75578ms Step 2 took 22441ms ********** Factor found in step 2: 650785158455981940062100473969000731 Found probable prime factor of 36 digits: 650785158455981940062100473969000731 Probable prime cofactor 1671557573283360183804878381813370410004043685577428419417647214928170607746446482254417566351134107881259634051566957814751822022316355735422517371501836929077 has 160 digits
By Markus Tervooren / Msieve / Nov 20, 2009
(67·10161+41)/9 = 7(4)1609<162> = 107 · 3701 · 610339 · 33303780809228167275307<23> · C128
C128 = P38 · P91
P38 = 75535187214103326538317201830040895523<38>
P91 = 1224377835729844775852488587301078768602817876340329293496172248138770697175289478200468733<91>
Sieving took ~50 Core2 2,66Ghz-hours. Msieve v. 1.43 Thu Nov 19 23:37:53 2009 random seeds: 33e3b9eb 433b3587 factoring 92483609042652474194535864343706609135442894008901028868852650839468327428630927857786325232318759223661128228852786657681182359 (128 digits) searching for 15-digit factors commencing number field sieve (128-digit input) R0: -10000000000000000000000000000000000000000 R1: 1 A0: 41 A1: 0 A2: 0 A3: 0 A4: 670 skew 0.49, size 6.343425e-17, alpha -0.256694, combined = 2.982526e-10 commencing relation filtering estimated available RAM is 8010.2 MB commencing duplicate removal, pass 1 found 954666 hash collisions in 4340988 relations added 1374 free relations commencing duplicate removal, pass 2 found 962823 duplicates and 3379539 unique relations memory use: 22.6 MB reading ideals above 100000 commencing singleton removal, initial pass memory use: 94.1 MB reading all ideals from disk memory use: 120.5 MB keeping 3494492 ideals with weight <= 200, target excess is 20944 commencing in-memory singleton removal begin with 3379539 relations and 3494492 unique ideals reduce to 2114129 relations and 1996280 ideals in 11 passes max relations containing the same ideal: 148 removing 238747 relations and 191970 ideals in 46777 cliques commencing in-memory singleton removal begin with 1875382 relations and 1996280 unique ideals reduce to 1859093 relations and 1787574 ideals in 7 passes max relations containing the same ideal: 135 removing 178875 relations and 132098 ideals in 46777 cliques commencing in-memory singleton removal begin with 1680218 relations and 1787574 unique ideals reduce to 1669207 relations and 1644169 ideals in 6 passes max relations containing the same ideal: 128 relations with 0 large ideals: 1163 relations with 1 large ideals: 16 relations with 2 large ideals: 354 relations with 3 large ideals: 4469 relations with 4 large ideals: 29966 relations with 5 large ideals: 168469 relations with 6 large ideals: 284122 relations with 7+ large ideals: 1180648 commencing 2-way merge reduce to 1229772 relation sets and 1204734 unique ideals commencing full merge memory use: 153.3 MB found 628615 cycles, need 624934 weight of 624934 cycles is about 43940256 (70.31/cycle) distribution of cycle lengths: 1 relations: 41923 2 relations: 67759 3 relations: 78031 4 relations: 75883 5 relations: 67754 6 relations: 59751 7 relations: 50497 8 relations: 41772 9 relations: 33672 10+ relations: 107892 heaviest cycle: 24 relations commencing cycle optimization start with 3747573 relations pruned 139208 relations memory use: 109.3 MB distribution of cycle lengths: 1 relations: 41923 2 relations: 69513 3 relations: 82026 4 relations: 78704 5 relations: 70580 6 relations: 61436 7 relations: 51233 8 relations: 41576 9 relations: 33373 10+ relations: 94570 heaviest cycle: 23 relations RelProcTime: 129 commencing linear algebra read 624934 cycles cycles contain 1653741 unique relations read 1653741 relations using 20 quadratic characters above 33554250 building initial matrix memory use: 212.7 MB read 624934 cycles matrix is 624757 x 624934 (186.0 MB) with weight 56594097 (90.56/col) sparse part has weight 41878845 (67.01/col) filtering completed in 2 passes matrix is 624708 x 624885 (186.0 MB) with weight 56592419 (90.56/col) sparse part has weight 41878378 (67.02/col) read 624885 cycles matrix is 624708 x 624885 (186.0 MB) with weight 56592419 (90.56/col) sparse part has weight 41878378 (67.02/col) saving the first 48 matrix rows for later matrix is 624660 x 624885 (177.1 MB) with weight 44687252 (71.51/col) sparse part has weight 40186863 (64.31/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 186.9 MB linear algebra at 0.2%, ETA 0h27m624885 dimensions (0.2%, ETA 0h27m) linear algebra completed 624534 of 624885 dimensions (99.9%, ETA 0h 0m) lanczos halted after 9879 iterations (dim = 624658) recovered 37 nontrivial dependencies BLanczosTime: 1716 commencing square root phase reading relations for dependency 1 read 312907 cycles cycles contain 828596 unique relations read 828596 relations multiplying 828596 relations multiply complete, coefficients have about 25.82 million bits initial square root is modulo 26105269 reading relations for dependency 2 read 312740 cycles cycles contain 828130 unique relations read 828130 relations multiplying 828130 relations multiply complete, coefficients have about 25.81 million bits initial square root is modulo 25855117 reading relations for dependency 3 read 312584 cycles cycles contain 827416 unique relations read 827416 relations multiplying 827416 relations multiply complete, coefficients have about 25.79 million bits initial square root is modulo 25473181 sqrtTime: 243 prp38 factor: 75535187214103326538317201830040895523 prp91 factor: 1224377835729844775852488587301078768602817876340329293496172248138770697175289478200468733 elapsed time 00:34:49
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 19, 2009
(67·10160-13)/9 = 7(4)1593<161> = 223 · 2790386777<10> · 1084302893662699352989<22> · C129
C129 = P51 · P78
P51 = 363065558163129755586591876057933957697079245966993<51>
P78 = 303897660134854542414694170874725162056604936336714237480477623856561460344929<78>
Number: 74443_160 N=110334773601330070711761593600846340762094802874387964650626689471684650737015293850889407842085069929569671853321483121928928497 ( 129 digits) SNFS difficulty: 161 digits. Divisors found: r1=363065558163129755586591876057933957697079245966993 r2=303897660134854542414694170874725162056604936336714237480477623856561460344929 Version: Total time: 18.57 hours. Scaled time: 44.30 units (timescale=2.386). Factorization parameters were as follows: n: 110334773601330070711761593600846340762094802874387964650626689471684650737015293850889407842085069929569671853321483121928928497 m: 100000000000000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9630508 Max relations in full relation-set: Initial matrix: Pruned matrix : 632716 x 632964 Total sieving time: 16.59 hours. Total relation processing time: 0.74 hours. Matrix solve time: 0.86 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 18.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Dmitry Domanov / GGNFS/msieve / Nov 19, 2009
(65·10167+61)/9 = 7(2)1669<168> = 3 · 3163 · 1283549 · 1810364976295258400527<22> · 6731034634722746219253576990142331<34> · C103
C103 = P41 · P63
P41 = 43887433213139645955484994448382146047239<41>
P63 = 110879128047013805011879885468739184560992940355555347685320723<63>
N=4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797 ( 103 digits) Divisors found: r1=43887433213139645955484994448382146047239 (pp41) r2=110879128047013805011879885468739184560992940355555347685320723 (pp63) Version: Msieve-1.40 Total time: 6.11 hours. Scaled time: 11.18 units (timescale=1.829). Factorization parameters were as follows: name: gg103 n: 4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797 skew: 3105.38 # norm 1.91e+014 c5: 1392300 c4: 5986291355 c3: -32719573776586 c2: -35617074683990928 c1: 196103299995263016226 c0: -71023059451757055174092 # alpha -6.16 Y1: 84365831159 Y0: -20355880109292170055 # Murphy_E 2.38e-009 # M 1588861051919919182070347774998276303263568046023222671646578452552654468614274410016547985992962233523 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220234 x 220457 Polynomial selection time: 0.56 hours. Total sieving time: 5.26 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 6.11 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 19, 2009
(59·10170+13)/9 = 6(5)1697<171> = 3 · 31 · 73 · 229 · 2371 · 136027 · C157
C157 = P33 · C124
P33 = 233155008560892980603136314014073<33>
C124 = [5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517<124>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3871599622 Step 1 took 52361ms Step 2 took 17180ms ********** Factor found in step 2: 233155008560892980603136314014073 Found probable prime factor of 33 digits: 233155008560892980603136314014073 Composite cofactor 5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517 has 124 digits
(59·10171+31)/9 = 6(5)1709<172> = 7 · 1319207906438579<16> · C156
C156 = P37 · P120
P37 = 2356463302077488153069650734241665823<37>
P120 = 301257269819596050498849046453150412524164514988049351771398639204280300958087733288868202951958003834996085783952664261<120>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2957564567 Step 1 took 52204ms Step 2 took 17141ms ********** Factor found in step 2: 2356463302077488153069650734241665823 Found probable prime factor of 37 digits: 2356463302077488153069650734241665823 Probable prime cofactor 301257269819596050498849046453150412524164514988049351771398639204280300958087733288868202951958003834996085783952664261 has 120 digits
(22·10172+17)/3 = 7(3)1719<173> = 7 · 241 · 3371 · 14678148955213<14> · C153
C153 = P34 · C120
P34 = 4675036528889963296972072581793651<34>
C120 = [187919259193893023850805073342750434538681070849906401604520432741490252970095903458623817348949668880171189653291036289<120>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2243017104 Step 1 took 47067ms ********** Factor found in step 1: 4675036528889963296972072581793651 Found probable prime factor of 34 digits: 4675036528889963296972072581793651 Composite cofactor 187919259193893023850805073342750434538681070849906401604520432741490252970095903458623817348949668880171189653291036289 has 120 digits
By Sinkiti Sibata / Msieve / Nov 19, 2009
(65·10160+7)/9 = 7(2)1593<161> = 89 · 691 · 1063 · 30689 · 80147 · 345231714617358424861<21> · C124
C124 = P47 · P77
P47 = 20357986503829909242696372348001111417687352381<47>
P77 = 63907821471927606482939461715126003027541213468536152840468146898123845327793<77>
Number: 72223_160 N=1301034567014673497892919265231793046878598035690062464234773174782366433468283011049257436954506807102849869231615244025133 ( 124 digits) SNFS difficulty: 161 digits. Divisors found: r1=20357986503829909242696372348001111417687352381 (pp47) r2=63907821471927606482939461715126003027541213468536152840468146898123845327793 (pp77) Version: Msieve-1.40 Total time: 26.08 hours. Scaled time: 86.65 units (timescale=3.322). Factorization parameters were as follows: name: 72223_160 n: 1301034567014673497892919265231793046878598035690062464234773174782366433468283011049257436954506807102849869231615244025133 m: 100000000000000000000000000000000 deg: 5 c5: 65 c0: 7 skew: 0.64 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 611722 x 611970 Total sieving time: 25.21 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.69 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 26.08 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve / Nov 19, 2009
(10229-7)/3 = (3)2281<229> = 3814997 · C222
C222 = P101 · P122
P101 = 32956293259679429768656597360038775832848835783382963927693572571464416807016576796602091743934862861<101>
P122 = 26512225547078900430922693339363341417936176675074791272188321866779709375923927312831198488509643069134973196513414342243<122>
Sieving ~ 220 CPU days + 161 hrs Lanczos with Msieve 1.42 Thu Nov 12 23:11:10 2009 Thu Nov 12 23:11:10 2009 Thu Nov 12 23:11:10 2009 Msieve v. 1.42 Thu Nov 12 23:11:10 2009 random seeds: a862287b 37faa132 Thu Nov 12 23:11:10 2009 factoring 873744680096297148682773101350625789046055169462343832336783838449501620403196472587877089636855109803057075361614526389754260182467596523230118748018237847456586029643885259499111882219916118763221395281132156416724137223 (222 digits) Thu Nov 12 23:11:12 2009 no P-1/P+1/ECM available, skipping Thu Nov 12 23:11:12 2009 commencing number field sieve (222-digit input) Thu Nov 12 23:11:12 2009 R0: -100000000000000000000000000000000000000 Thu Nov 12 23:11:12 2009 R1: 1 Thu Nov 12 23:11:12 2009 A0: -7 Thu Nov 12 23:11:12 2009 A1: 0 Thu Nov 12 23:11:12 2009 A2: 0 Thu Nov 12 23:11:12 2009 A3: 0 Thu Nov 12 23:11:12 2009 A4: 0 Thu Nov 12 23:11:12 2009 A5: 0 Thu Nov 12 23:11:12 2009 A6: 10 Thu Nov 12 23:11:12 2009 skew 1.00, size 2.833444e-11, alpha 1.102701, combined = 1.358953e-12 Thu Nov 12 23:11:12 2009 Thu Nov 12 23:11:12 2009 commencing relation filtering Thu Nov 12 23:11:12 2009 estimated available RAM is 7923.9 MB Thu Nov 12 23:11:12 2009 commencing duplicate removal, pass 1 Thu Nov 12 23:12:12 2009 error -6 reading relation 9929150 Thu Nov 12 23:13:31 2009 error -11 reading relation 23649746 Thu Nov 12 23:14:21 2009 error -6 reading relation 32916487 Thu Nov 12 23:15:00 2009 error -15 reading relation 40211731 Thu Nov 12 23:15:15 2009 error -11 reading relation 42932952 Thu Nov 12 23:16:49 2009 error -11 reading relation 60575181 Thu Nov 12 23:17:56 2009 error -11 reading relation 69579752 Thu Nov 12 23:18:42 2009 error -6 reading relation 77528636 Thu Nov 12 23:19:27 2009 error -6 reading relation 85390839 Thu Nov 12 23:19:48 2009 found 13696326 hash collisions in 89183073 relations Thu Nov 12 23:20:04 2009 commencing duplicate removal, pass 2 Thu Nov 12 23:21:33 2009 found 12651851 duplicates and 76531222 unique relations Thu Nov 12 23:21:33 2009 memory use: 426.4 MB Thu Nov 12 23:21:33 2009 reading ideals above 91291648 Thu Nov 12 23:21:33 2009 commencing singleton removal, initial pass Thu Nov 12 23:30:15 2009 memory use: 1193.5 MB Thu Nov 12 23:30:22 2009 reading all ideals from disk Thu Nov 12 23:30:27 2009 memory use: 1232.8 MB Thu Nov 12 23:30:34 2009 commencing in-memory singleton removal Thu Nov 12 23:30:42 2009 begin with 76531222 relations and 70805144 unique ideals Thu Nov 12 23:31:54 2009 reduce to 35000016 relations and 23227703 ideals in 19 passes Thu Nov 12 23:31:54 2009 max relations containing the same ideal: 28 Thu Nov 12 23:31:58 2009 reading ideals above 720000 Thu Nov 12 23:31:58 2009 commencing singleton removal, initial pass Thu Nov 12 23:37:32 2009 memory use: 596.8 MB Thu Nov 12 23:37:32 2009 reading all ideals from disk Thu Nov 12 23:37:41 2009 memory use: 1301.4 MB Thu Nov 12 23:37:50 2009 keeping 33583094 ideals with weight <= 200, target excess is 181953 Thu Nov 12 23:37:59 2009 commencing in-memory singleton removal Thu Nov 12 23:38:07 2009 begin with 35000019 relations and 33583094 unique ideals Thu Nov 12 23:40:13 2009 reduce to 34608397 relations and 33189936 ideals in 15 passes Thu Nov 12 23:40:13 2009 max relations containing the same ideal: 200 Thu Nov 12 23:40:50 2009 removing 3807449 relations and 3407449 ideals in 400000 cliques Thu Nov 12 23:40:51 2009 commencing in-memory singleton removal Thu Nov 12 23:40:59 2009 begin with 30800948 relations and 33189936 unique ideals Thu Nov 12 23:42:28 2009 reduce to 30471081 relations and 29447150 ideals in 12 passes Thu Nov 12 23:42:28 2009 max relations containing the same ideal: 190 Thu Nov 12 23:43:00 2009 removing 2782167 relations and 2382167 ideals in 400000 cliques Thu Nov 12 23:43:02 2009 commencing in-memory singleton removal Thu Nov 12 23:43:09 2009 begin with 27688914 relations and 29447150 unique ideals Thu Nov 12 23:44:02 2009 reduce to 27489440 relations and 26862722 ideals in 8 passes Thu Nov 12 23:44:02 2009 max relations containing the same ideal: 181 Thu Nov 12 23:44:31 2009 removing 2450585 relations and 2050585 ideals in 400000 cliques Thu Nov 12 23:44:33 2009 commencing in-memory singleton removal Thu Nov 12 23:44:39 2009 begin with 25038855 relations and 26862722 unique ideals Thu Nov 12 23:45:51 2009 reduce to 24871942 relations and 24642751 ideals in 12 passes Thu Nov 12 23:45:51 2009 max relations containing the same ideal: 166 Thu Nov 12 23:46:17 2009 removing 176554 relations and 158429 ideals in 18125 cliques Thu Nov 12 23:46:18 2009 commencing in-memory singleton removal Thu Nov 12 23:46:24 2009 begin with 24695388 relations and 24642751 unique ideals Thu Nov 12 23:46:53 2009 reduce to 24694507 relations and 24483440 ideals in 5 passes Thu Nov 12 23:46:53 2009 max relations containing the same ideal: 166 Thu Nov 12 23:47:06 2009 relations with 0 large ideals: 6717 Thu Nov 12 23:47:06 2009 relations with 1 large ideals: 1179 Thu Nov 12 23:47:06 2009 relations with 2 large ideals: 8333 Thu Nov 12 23:47:06 2009 relations with 3 large ideals: 89276 Thu Nov 12 23:47:06 2009 relations with 4 large ideals: 546118 Thu Nov 12 23:47:06 2009 relations with 5 large ideals: 2010219 Thu Nov 12 23:47:06 2009 relations with 6 large ideals: 4602823 Thu Nov 12 23:47:06 2009 relations with 7+ large ideals: 17429842 Thu Nov 12 23:47:06 2009 commencing 2-way merge Thu Nov 12 23:47:41 2009 reduce to 15238596 relation sets and 15027528 unique ideals Thu Nov 12 23:47:41 2009 commencing full merge Thu Nov 12 23:54:19 2009 memory use: 1908.0 MB Thu Nov 12 23:54:22 2009 found 8200658 cycles, need 8173728 Thu Nov 12 23:54:26 2009 weight of 8173728 cycles is about 572210818 (70.01/cycle) Thu Nov 12 23:54:26 2009 distribution of cycle lengths: Thu Nov 12 23:54:26 2009 1 relations: 1219496 Thu Nov 12 23:54:26 2009 2 relations: 1113256 Thu Nov 12 23:54:26 2009 3 relations: 1026751 Thu Nov 12 23:54:26 2009 4 relations: 875887 Thu Nov 12 23:54:26 2009 5 relations: 745030 Thu Nov 12 23:54:26 2009 6 relations: 624485 Thu Nov 12 23:54:26 2009 7 relations: 527618 Thu Nov 12 23:54:26 2009 8 relations: 437123 Thu Nov 12 23:54:26 2009 9 relations: 358263 Thu Nov 12 23:54:26 2009 10+ relations: 1245819 Thu Nov 12 23:54:26 2009 heaviest cycle: 24 relations Thu Nov 12 23:54:29 2009 commencing cycle optimization Thu Nov 12 23:54:48 2009 start with 43758680 relations Thu Nov 12 23:56:16 2009 pruned 944312 relations Thu Nov 12 23:56:16 2009 memory use: 1460.4 MB Thu Nov 12 23:56:16 2009 distribution of cycle lengths: Thu Nov 12 23:56:16 2009 1 relations: 1219496 Thu Nov 12 23:56:16 2009 2 relations: 1134660 Thu Nov 12 23:56:16 2009 3 relations: 1058293 Thu Nov 12 23:56:16 2009 4 relations: 890629 Thu Nov 12 23:56:16 2009 5 relations: 757989 Thu Nov 12 23:56:16 2009 6 relations: 628845 Thu Nov 12 23:56:16 2009 7 relations: 528837 Thu Nov 12 23:56:16 2009 8 relations: 434588 Thu Nov 12 23:56:16 2009 9 relations: 353251 Thu Nov 12 23:56:16 2009 10+ relations: 1167140 Thu Nov 12 23:56:16 2009 heaviest cycle: 24 relations Thu Nov 12 23:56:34 2009 RelProcTime: 2722 Thu Nov 12 23:56:34 2009 Thu Nov 12 23:56:34 2009 commencing linear algebra Thu Nov 12 23:56:41 2009 read 8173728 cycles Thu Nov 12 23:56:58 2009 cycles contain 24518900 unique relations Thu Nov 12 23:59:32 2009 read 24518900 relations Fri Nov 13 00:00:18 2009 using 20 quadratic characters above 1073741312 Fri Nov 13 00:02:20 2009 building initial matrix Fri Nov 13 00:07:17 2009 memory use: 3126.0 MB Fri Nov 13 00:07:22 2009 read 8173728 cycles Fri Nov 13 00:07:31 2009 matrix is 8173551 x 8173728 (2459.0 MB) with weight 723523108 (88.52/col) Fri Nov 13 00:07:31 2009 sparse part has weight 554695601 (67.86/col) Fri Nov 13 00:09:44 2009 filtering completed in 2 passes Fri Nov 13 00:09:46 2009 matrix is 8170702 x 8170878 (2458.8 MB) with weight 723445965 (88.54/col) Fri Nov 13 00:09:46 2009 sparse part has weight 554678395 (67.88/col) Fri Nov 13 00:10:31 2009 read 8170878 cycles Fri Nov 13 00:10:36 2009 matrix is 8170702 x 8170878 (2458.8 MB) with weight 723445965 (88.54/col) Fri Nov 13 00:10:36 2009 sparse part has weight 554678395 (67.88/col) Fri Nov 13 00:10:36 2009 saving the first 48 matrix rows for later Fri Nov 13 00:10:39 2009 matrix is 8170654 x 8170878 (2351.5 MB) with weight 572916754 (70.12/col) Fri Nov 13 00:10:39 2009 sparse part has weight 534727936 (65.44/col) Fri Nov 13 00:10:39 2009 matrix includes 64 packed rows Fri Nov 13 00:10:39 2009 using block size 65536 for processor cache size 6144 kB Fri Nov 13 00:11:12 2009 commencing Lanczos iteration (4 threads) Fri Nov 13 00:11:12 2009 memory use: 2546.0 MB Thu Nov 19 17:11:02 2009 lanczos halted after 129209 iterations (dim = 8170651) Thu Nov 19 17:11:17 2009 recovered 34 nontrivial dependencies Thu Nov 19 17:11:17 2009 BLanczosTime: 580483 Thu Nov 19 17:11:17 2009 Thu Nov 19 17:11:17 2009 commencing square root phase Thu Nov 19 17:11:17 2009 reading relations for dependency 1 Thu Nov 19 17:11:19 2009 read 4087359 cycles Thu Nov 19 17:11:28 2009 cycles contain 14942110 unique relations Thu Nov 19 17:13:16 2009 read 14942110 relations Thu Nov 19 17:14:47 2009 multiplying 12262068 relations Thu Nov 19 17:52:42 2009 multiply complete, coefficients have about 340.41 million bits Thu Nov 19 17:52:45 2009 initial square root is modulo 1283017 Thu Nov 19 18:37:22 2009 sqrtTime: 5165 Thu Nov 19 18:37:22 2009 prp101 factor: 32956293259679429768656597360038775832848835783382963927693572571464416807016576796602091743934862861 Thu Nov 19 18:37:22 2009 prp122 factor: 26512225547078900430922693339363341417936176675074791272188321866779709375923927312831198488509643069134973196513414342243 Thu Nov 19 18:37:22 2009 elapsed time 163:26:12
C222 is the fourth largest composite number factored by snfs in our tables so far, and P101 is the third largest prime factor found by nfs in our tables so far. Congratulations!
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 18, 2009
(67·10160-31)/9 = 7(4)1591<161> = 61982719611999597353<20> · 143698186760416432999<21> · C121
C121 = P58 · P64
P58 = 5184273162643458694917399313243984064834873060204015700713<58>
P64 = 1612213304015942235676505728696547693838364040958693307596122831<64>
Number: 74441_160 N=8358154164466588821090554087275649937241803372935761744857267124951914706311950912111526869642631543490919504968482278503 ( 121 digits) SNFS difficulty: 161 digits. Divisors found: r1=5184273162643458694917399313243984064834873060204015700713 r2=1612213304015942235676505728696547693838364040958693307596122831 Version: Total time: 17.49 hours. Scaled time: 41.84 units (timescale=2.392). Factorization parameters were as follows: n: 8358154164466588821090554087275649937241803372935761744857267124951914706311950912111526869642631543490919504968482278503 m: 100000000000000000000000000000000 deg: 5 c5: 67 c0: -31 skew: 0.86 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9409654 Max relations in full relation-set: Initial matrix: Pruned matrix : 652517 x 652764 Total sieving time: 15.59 hours. Total relation processing time: 0.68 hours. Matrix solve time: 0.91 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 17.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
(65·10162+61)/9 = 7(2)1619<163> = 7 · 433 · 40118289197111849803<20> · C140
C140 = P35 · P106
P35 = 13579168028242955813092310115106577<35>
P106 = 4373904977664475284540946690165627879231370447085692210555464579063477417774709742461792175457447644986089<106>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 59393990631274162535471601057877005972838099309322799817876122604451444243295438344356023518048699407876740752099950221084230446649917407353 (140 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4563230118 Step 1 took 3998ms ********** Factor found in step 1: 13579168028242955813092310115106577 Found probable prime factor of 35 digits: 13579168028242955813092310115106577 Probable prime cofactor 4373904977664475284540946690165627879231370447085692210555464579063477417774709742461792175457447644986089 has 106 digits
By Sinkiti Sibata / Msieve / Nov 18, 2009
(67·10158-13)/9 = 7(4)1573<159> = 137 · 367 · 27749 · 723919956530258273<18> · C132
C132 = P63 · P70
P63 = 323406167861964574204330095340435316519039701961176025430412333<63>
P70 = 2279079514444156964263123471753688115851723190657786980680661703364237<70>
Number: 74443_158 N=737068372019091742604361880412597109475278063530233380153041578836135503206432728522468364755483999138828375954292978546680195934921 ( 132 digits) SNFS difficulty: 161 digits. Divisors found: r1=323406167861964574204330095340435316519039701961176025430412333 (pp63) r2=2279079514444156964263123471753688115851723190657786980680661703364237 (pp70) Version: Msieve-1.40 Total time: 27.12 hours. Scaled time: 89.14 units (timescale=3.287). Factorization parameters were as follows: name: 74443_158 n: 737068372019091742604361880412597109475278063530233380153041578836135503206432728522468364755483999138828375954292978546680195934921 m: 50000000000000000000000000000000 deg: 5 c5: 536 c0: -325 skew: 0.90 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 587928 x 588176 Total sieving time: 26.34 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.64 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 27.12 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 18, 2009
(65·10167+61)/9 = 7(2)1669<168> = 3 · 3163 · 1283549 · 1810364976295258400527<22> · C137
C137 = P34 · C103
P34 = 6731034634722746219253576990142331<34>
C103 = [4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797<103>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2647962607 Step 1 took 42548ms Step 2 took 14762ms ********** Factor found in step 2: 6731034634722746219253576990142331 Found probable prime factor of 34 digits: 6731034634722746219253576990142331 Composite cofactor 4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797 has 103 digits
By Erik Branger / GGNFS, Msieve / Nov 18, 2009
(59·10172-41)/9 = 6(5)1711<173> = 42787 · 31693768213<11> · 2536830201015107<16> · 139446318301636885367<21> · C123
C123 = P58 · P65
P58 = 6709643923662083287600130339490360747447730333693040348921<58>
P65 = 20366943698391295213823441988462062034872745975969857861877209429<65>
Number: 65551_172 N=136654940029478911849727109316279734444197648667253976171378912414680437926200903241898447268360383419731066103731951176109 ( 123 digits) Divisors found: r1=6709643923662083287600130339490360747447730333693040348921 (pp58) r2=20366943698391295213823441988462062034872745975969857861877209429 (pp65) Version: Msieve v. 1.43 Total time: 60.19 hours. Scaled time: 58.44 units (timescale=0.971). Factorization parameters were as follows: n: 136654940029478911849727109316279734444197648667253976171378912414680437926200903241898447268360383419731066103731951176109 skew: 772856.50 #skew 772856.50, size 9.317641e-012, alpha -7.085631, combined = 2.065199e-010 c5: 600 c4: -431270722 c3: 325013098061919 c2: -1039884277173083768092 c1: -378596922670397322214778260 c0: -1308313376079945581025641373600 Y1: 9213761994587 Y0: -743867510048013670888093 type: gnfs rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3000000, 5400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 880216 x 880442 Total sieving time: 57.70 hours. Total relation processing time: 0.25 hours. Matrix solve time: 1.86 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,27,27,52,52,2.5,2.5,100000 total time: 60.19 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 17, 2009
(67·10176+41)/9 = 7(4)1759<177> = 7 · C177
C177 = P36 · P42 · P43 · P57
P36 = 381496638149806557062385644326745051<36>
P42 = 803770627877673149683896774769690484334047<42>
P43 = 2540492572298568949029546317256747678065197<43>
P57 = 136519118946285151795581433335283513926057235634807181623<57>
Number: 74449_176 N=106349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349207 ( 177 digits) SNFS difficulty: 177 digits. Divisors found: r1=381496638149806557062385644326745051 (pp36) r2=803770627877673149683896774769690484334047 (pp42) r3=2540492572298568949029546317256747678065197 (pp43) r4=136519118946285151795581433335283513926057235634807181623 (pp57) Version: Msieve-1.40 Total time: 151.29 hours. Scaled time: 507.89 units (timescale=3.357). Factorization parameters were as follows: name: 74449_176 n: 106349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349207 m: 100000000000000000000000000000000000 deg: 5 c5: 670 c0: 41 skew: 0.57 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3200000, 8900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1407232 x 1407479 Total sieving time: 146.77 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.89 hours. Time per square root: 0.46 hours. Prototype def-par.txt line would be: snfs,177.000,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,53,53,2.5,2.5,100000 total time: 151.29 hours. --------- CPU info (if available) ----------
(62·10159-71)/9 = 6(8)1581<160> = 7 · 367 · 397 · 1427 · 1295003 · 27044153094400533691<20> · C126
C126 = P48 · P78
P48 = 637642494412674002793864923763006295921649455939<48>
P78 = 211957692852734056509800472053686387750176129582452776229614596712235602760093<78>
Number: 68881_159 N=135153231980572748044136445861801829429050962561946223951226838695412239454479728772981461313692290146394175213660440191042327 ( 126 digits) SNFS difficulty: 161 digits. Divisors found: r1=637642494412674002793864923763006295921649455939 (pp48) r2=211957692852734056509800472053686387750176129582452776229614596712235602760093 (pp78) Version: Msieve v. 1.42 Total time: 1.59 hours. Scaled time: 1.08 units (timescale=0.681). Factorization parameters were as follows: name: 68881_159 n: 135153231980572748044136445861801829429050962561946223951226838695412239454479728772981461313692290146394175213660440191042327 m: 100000000000000000000000000000000 deg: 5 c5: 31 c0: -355 skew: 1.63 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 652571 x 652797 Total sieving time: 0.00 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.37 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 1.59 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574) Total of 2 processors activated (7442.34 BogoMIPS). Total time: 27.7 hours
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 17, 2009
(59·10159+31)/9 = 6(5)1589<160> = 7 · 41 · 118759055073185934621037<24> · C135
C135 = P55 · P80
P55 = 2549878433376721403304445956812713905944758972355130839<55>
P80 = 75429529077254560793474090742639833438562153315193101308443515089992511037341899<80>
Number: 65559_159 N=192336129433853713462743799811065807296497118520268229199178231611199978210902456189888686092410750956991535069761582060175816921723261 ( 135 digits) SNFS difficulty: 161 digits. Divisors found: r1=2549878433376721403304445956812713905944758972355130839 r2=75429529077254560793474090742639833438562153315193101308443515089992511037341899 Version: Total time: 17.49 hours. Scaled time: 41.79 units (timescale=2.390). Factorization parameters were as follows: n: 192336129433853713462743799811065807296497118520268229199178231611199978210902456189888686092410750956991535069761582060175816921723261 m: 100000000000000000000000000000000 deg: 5 c5: 59 c0: 310 skew: 1.39 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9616962 Max relations in full relation-set: Initial matrix: Pruned matrix : 621680 x 621928 Total sieving time: 15.89 hours. Total relation processing time: 0.71 hours. Matrix solve time: 0.80 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 17.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Ignacio Santos / GGNFS, Msieve / Nov 17, 2009
(64·10178+71)/9 = 7(1)1779<179> = 229 · C177
C177 = P38 · P139
P38 = 33350205132654546757222414370710831411<38>
P139 = 9311153207174220903648886531701264110925845510393319781488890048252156953150920948299831365494816188137632384373019136801433203324125922001<139>
Number: 71119_178 N=310528869480834546336729742843279961183891314895681707908782144590004852013585638039786511402231926249393498301795245026686074721009218825812712275594371664240659873847646773411 ( 177 digits) SNFS difficulty: 180 digits. Divisors found: r1=33350205132654546757222414370710831411 (pp38) r2=9311153207174220903648886531701264110925845510393319781488890048252156953150920948299831365494816188137632384373019136801433203324125922001 (pp139) Version: Msieve v. 1.43 Total time: 134.74 hours. Scaled time: 234.99 units (timescale=1.744). Factorization parameters were as follows: n: 310528869480834546336729742843279961183891314895681707908782144590004852013585638039786511402231926249393498301795245026686074721009218825812712275594371664240659873847646773411 m: 400000000000000000000000000000000000 deg: 5 c5: 125 c0: 142 skew: 1.03 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3500000, 10100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1578565 x 1578790 Total sieving time: 130.38 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.56 hours. Time per square root: 0.61 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000 total time: 134.74 hours.
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 17, 2009
(59·10164+13)/9 = 6(5)1637<165> = 32 · 89 · 967 · C159
C159 = P48 · P112
P48 = 172494834689383932407753106094143525376103225653<48>
P112 = 4906529533010920434450031087476390453047270898213110900861533572593100963811674429717024242278907331943447184807<112>
N=846351000695298864469510778997240465389766870465118647651598319519880856730993646199173932733456957959163707665773981534916353983006706399259916257154714253971 ( 159 digits) SNFS difficulty: 166 digits. Divisors found: r1=172494834689383932407753106094143525376103225653 (pp48) r2=4906529533010920434450031087476390453047270898213110900861533572593100963811674429717024242278907331943447184807 (pp112) Version: Msieve-1.40 Total time: 42.70 hours. Scaled time: 78.56 units (timescale=1.840). Factorization parameters were as follows: n: 846351000695298864469510778997240465389766870465118647651598319519880856730993646199173932733456957959163707665773981534916353983006706399259916257154714253971 m: 1000000000000000000000000000000000 deg: 5 c5: 59 c0: 130 skew: 1.17 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705092 x 705317 Total sieving time: 41.83 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.64 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 42.70 hours. --------- CPU info (if available) ----------
(62·10190-71)/9 = 6(8)1891<191> = 17 · C190
C190 = P39 · C152
P39 = 159056495352762286480580492048359527989<39>
C152 = [25477033004606382089474543221740888076315860678491961319226765661507788975891994600263548413995024764740782104709424866797319890147044298005667883592637<152>]
Factor=159056495352762286480580492048359527989 Method=ECM B1=11000000 Sigma=3757089473
By Wataru Sakai / Msieve / Nov 16, 2009
(55·10189+17)/9 = 6(1)1883<190> = 19 · C189
C189 = P72 · P117
P72 = 743141132482156367337598193227260139629402238122971076355782741496332829<72>
P117 = 432807999506483598225778604308585057267632076708114307439969977345662831173299530582744403436363128148721417709214863<117>
Number: 61113_189 N=321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637427 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=743141132482156367337598193227260139629402238122971076355782741496332829 r2=432807999506483598225778604308585057267632076708114307439969977345662831173299530582744403436363128148721417709214863 Version: Total time: 424.41 hours. Scaled time: 854.34 units (timescale=2.013). Factorization parameters were as follows: n: 321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637427 m: 100000000000000000000000000000000000000 deg: 5 c5: 11 c0: 34 skew: 1.25 type: snfs lss: 1 rlim: 10700000 alim: 10700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 10700000/10700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5350000, 9650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1681268 x 1681516 Total sieving time: 424.41 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10700000,10700000,28,28,54,54,2.5,2.5,100000 total time: 424.41 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve / Nov 16, 2009
(59·10160+13)/9 = 6(5)1597<161> = 7039 · 3404279 · C151
C151 = P38 · P113
P38 = 68865197719831614457352449825567313491<38>
P113 = 39725886046607481763744275688874905087926689678309758721166697739496395380193756474563848842063050364299554448367<113>
N=2735730997195124102012431130315542645538784010106985048370417728523108614122498641061319159171101423248972776136570302361644318198903522689622662019197 ( 151 digits) SNFS difficulty: 161 digits. Divisors found: r1=68865197719831614457352449825567313491 (pp38) r2=39725886046607481763744275688874905087926689678309758721166697739496395380193756474563848842063050364299554448367 (pp113) Version: Msieve-1.40 Total time: 22.07 hours. Scaled time: 40.59 units (timescale=1.839). Factorization parameters were as follows: n: 2735730997195124102012431130315542645538784010106985048370417728523108614122498641061319159171101423248972776136570302361644318198903522689622662019197 m: 100000000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 2950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 582651 x 582876 Total sieving time: 21.30 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.43 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 22.07 hours. --------- CPU info (if available) ----------
(61·10169-43)/9 = 6(7)1683<170> = 3 · 7 · 41 · 3907 · C164
C164 = P47 · P56 · P61
P47 = 94208236204350919120277255087982042989012675453<47>
P56 = 27857142756307349104741327554515339623983588929075998349<56>
P61 = 7677420362824464519085906573888170277526604508620017795302867<61>
N=20148409218683335808945252907621888875049243868186728718482231563817460300945227936806529326521585568824108780534707732295551531819144047352328923242917512115387099 ( 164 digits) SNFS difficulty: 171 digits. Divisors found: r1=94208236204350919120277255087982042989012675453 (pp47) r2=27857142756307349104741327554515339623983588929075998349 (pp56) r3=7677420362824464519085906573888170277526604508620017795302867 (pp61) Version: Msieve-1.40 Total time: 57.58 hours. Scaled time: 107.10 units (timescale=1.860). Factorization parameters were as follows: n: 20148409218683335808945252907621888875049243868186728718482231563817460300945227936806529326521585568824108780534707732295551531819144047352328923242917512115387099 m: 10000000000000000000000000000000000 deg: 5 c5: 61 c0: -430 skew: 1.48 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 902518 x 902749 Total sieving time: 56.18 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.02 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 57.58 hours. --------- CPU info (if available) ----------
(59·10171-41)/9 = 6(5)1701<172> = 17 · 197 · 2423 · C165
C165 = P42 · P124
P42 = 115282334389384451975024500292983441235287<42>
P124 = 7007743196898658551854826666555383080225449060710447335296189818414329538606806627654954847443983562896198346607513316876499<124>
N=807868994539805163632974818874059837322843743225111339751729260698680981338459001942486765633904744550249266608995774612382744832948643918636747635542034840979820213 ( 165 digits) SNFS difficulty: 172 digits. Divisors found: r1=115282334389384451975024500292983441235287 (pp42) r2=7007743196898658551854826666555383080225449060710447335296189818414329538606806627654954847443983562896198346607513316876499 (pp124) Version: Msieve-1.40 Total time: 99.95 hours. Scaled time: 93.55 units (timescale=0.936). Factorization parameters were as follows: n: 807868994539805163632974818874059837322843743225111339751729260698680981338459001942486765633904744550249266608995774612382744832948643918636747635542034840979820213 m: 10000000000000000000000000000000000 deg: 5 c5: 590 c0: -41 skew: 0.59 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 6550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1033831 x 1034061 Total sieving time: 97.83 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.79 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 99.95 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 16, 2009
(41·10198+13)/9 = 4(5)1977<199> = 3 · 31 · C197
C197 = P66 · P132
P66 = 429273887712751328262058289867997079191088552925834213834435798699<66>
P132 = 114110058266774921221247378607450666721138374033977704640115321152455033337303110382308778010226239545436861604901232470700565846651<132>
Number: 45557_198 N=48984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307049 ( 197 digits) SNFS difficulty: 201 digits. Divisors found: r1=429273887712751328262058289867997079191088552925834213834435798699 (pp66) r2=114110058266774921221247378607450666721138374033977704640115321152455033337303110382308778010226239545436861604901232470700565846651 (pp132) Version: Msieve v. 1.42 Total time: 51.51 hours. Scaled time: 43.47 units (timescale=0.844). Factorization parameters were as follows: name: 45557_198 n: 48984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307049 m: 5000000000000000000000000000000000000000 deg: 5 c5: 328 c0: 325 skew: 1.00 type: snfs rlim: 9500000 alim: 9500000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [4750000, 15250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3000927 x 3001153 Total sieving time: 0.00 hours. Total relation processing time: 0.42 hours. Matrix solve time: 48.31 hours. Time per square root: 2.78 hours. Prototype def-par.txt line would be: snfs,201.000,5,0,0,0,0,0,0,0,0,9500000,9500000,29,29,56,56,2.6,2.6,100000 total time: 51.51 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS). Total time: 19 days 1 hour.
(26·10158-11)/3 = 8(6)1573<159> = 61 · 7727 · 429686857 · 106162330928491<15> · C131
C131 = P61 · P71
P61 = 2841721909924726851632106444328355405349356896512142306774663<61>
P71 = 14184278665349773058410239428622656980638132940212009488758588338764809<71>
Number: 86663_158 N=40307775459802312601143666500637781443565300545471354124635599565639079211034939946642064287574656020645475561982776791182117234367 ( 131 digits) SNFS difficulty: 160 digits. Divisors found: r1=2841721909924726851632106444328355405349356896512142306774663 (pp61) r2=14184278665349773058410239428622656980638132940212009488758588338764809 (pp71) Version: Msieve v. 1.42 Total time: 1.48 hours. Scaled time: 0.99 units (timescale=0.668). Factorization parameters were as follows: name: 86663_158 n: 40307775459802312601143666500637781443565300545471354124635599565639079211034939946642064287574656020645475561982776791182117234367 m: 50000000000000000000000000000000 deg: 5 c5: 208 c0: -275 skew: 1.06 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 626336 x 626562 Total sieving time: 0.00 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.27 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,160.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 1.48 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574) Total of 2 processors activated (7442.34 BogoMIPS). Total time: 25 hours 51 min.
By Dmitry Domanov / GGNFS/msieve / Nov 15, 2009
(62·10170-71)/9 = 6(8)1691<171> = 35 · 5417 · C165
C165 = P83 · P83
P83 = 15602471926924933938592663806430212082428034579139978305230145191169585707783895579<83>
P83 = 33542131793373349803791167429073588671109887449475537586566666088049681406989340969<83>
N=523340169675323979218668320421602840690440997658559198931643248460219267713735290659331800959552642070185150155157698853015608451741156964995042195989374168722676051 ( 165 digits) SNFS difficulty: 171 digits. Divisors found: r1=15602471926924933938592663806430212082428034579139978305230145191169585707783895579 (pp83) r2=33542131793373349803791167429073588671109887449475537586566666088049681406989340969 (pp83) Version: Msieve-1.40 Total time: 69.39 hours. Scaled time: 129.34 units (timescale=1.864). Factorization parameters were as follows: n: 523340169675323979218668320421602840690440997658559198931643248460219267713735290659331800959552642070185150155157698853015608451741156964995042195989374168722676051 m: 10000000000000000000000000000000000 deg: 5 c5: 62 c0: -71 skew: 1.03 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 6350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1047650 x 1047883 Total sieving time: 67.68 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.38 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 69.39 hours. --------- CPU info (if available) ----------
Nice split!
By Ignacio Santos / GGNFS, Msieve / Nov 15, 2009
(59·10179+13)/9 = 6(5)1787<180> = 3 · 7 · 313 · C176
C176 = P47 · P130
P47 = 34227787132453009430793852808645752930870611989<47>
P130 = 2913849035609246999052003284781673297721777732911788271360592562809210825744751320660074392479293423943525018257580230618885051381<130>
Number: 65557_179 N=99734604526936795307402336156329766553408725932687594029447064590834558885677096539716348023057288233007082847338438392751491793025339351217945467146745102016667511875179606809 ( 176 digits) SNFS difficulty: 181 digits. Divisors found: r1=34227787132453009430793852808645752930870611989 (pp47) r2=2913849035609246999052003284781673297721777732911788271360592562809210825744751320660074392479293423943525018257580230618885051381 (pp130) Version: Msieve v. 1.43 Total time: 134.63 hours. Scaled time: 234.12 units (timescale=1.739). Factorization parameters were as follows: n: 99734604526936795307402336156329766553408725932687594029447064590834558885677096539716348023057288233007082847338438392751491793025339351217945467146745102016667511875179606809 m: 1000000000000000000000000000000000000 deg: 5 c5: 59 c0: 130 skew: 1.17 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3750000, 10050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1572029 x 1572254 Total sieving time: 129.41 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.56 hours. Time per square root: 1.46 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 134.63 hours.
By Sinkiti Sibata / Msieve / Nov 15, 2009
(22·10158-7)/3 = 7(3)1571<159> = 4938931 · 116721612901<12> · 1004920243404713858972261<25> · C118
C118 = P47 · P72
P47 = 12009077923370648080337714781707462324113111259<47>
P72 = 105408571886886114038898047458864072059719907211055171359755427498953899<72>
Number: 73331_158 N=1265859753580831970140805253178104479059768213757511408464260680420987308767554609998630957690867230291891172698848841 ( 118 digits) SNFS difficulty: 160 digits. Divisors found: r1=12009077923370648080337714781707462324113111259 (pp47) r2=105408571886886114038898047458864072059719907211055171359755427498953899 (pp72) Version: Msieve v. 1.42 Total time: 1.74 hours. Scaled time: 1.38 units (timescale=0.796). Factorization parameters were as follows: name: 73331_158 n: 1265859753580831970140805253178104479059768213757511408464260680420987308767554609998630957690867230291891172698848841 m: 50000000000000000000000000000000 deg: 5 c5: 176 c0: -175 skew: 1.00 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 641091 x 641316 Total sieving time: 0.00 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.32 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,160.000,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 1.74 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 CPU1: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 02 Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598) Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574) Total of 2 processors activated (7442.34 BogoMIPS). Total time: 25 hours 57 min.
By Markus Tervooren / Msieve / Nov 15, 2009
(59·10158+31)/9 = 6(5)1579<159> = 6007 · 2562185297819003<16> · 81019181804777423<17> · C123
C123 = P58 · P66
P58 = 1812636648515138557638066389371724168451964749993906970903<58>
P66 = 290029868680170784800973912514904723261070414310744029102462787291<66>
N=525718769133710523653027683631105261421509093029825731752283277983185064180697266071063641221234058361239671692676215193773 ( 123 digits) SNFS difficulty: 161 digits. Divisors found: r1=1812636648515138557638066389371724168451964749993906970903 (pp58) r2=290029868680170784800973912514904723261070414310744029102462787291 (pp66) Version: Msieve-1.41 Total time: 24.56 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 525718769133710523653027683631105261421509093029825731752283277983185064180697266071063641221234058361239671692676215193773 m: 50000000000000000000000000000000 deg: 5 c5: 472 c0: 775 skew: 1.10 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [1000000, 5000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 543990 x 544236 Total sieving time: 23.95 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.34 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2000000,2000000,29,29,56,56,2.5,2.5,800000 total time: 24.56 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.333347] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432500] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197988k/10485760k available (2226k kernel code, 189848k reserved, 1082k data, 392k init) [ 0.083990] Calibrating delay using timer specific routine.. 5337.18 BogoMIPS (lpj=10674366) [ 0.156009] Calibrating delay using timer specific routine.. 5333.33 BogoMIPS (lpj=10666675) [ 0.256016] Calibrating delay using timer specific routine.. 5333.38 BogoMIPS (lpj=10666763) [ 0.352018] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666735) [ 0.437221] Total of 4 processors activated (21337.26 BogoMIPS).
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 15, 2009
(22·10157+17)/3 = 7(3)1569<158> = 792 · 89 · 1795517 · 6590261 · 61755013 · C132
C132 = P55 · P77
P55 = 7950796688233200437719771201150520016921625896700384781<55>
P77 = 22723866813249437260181466059833062612216418676176293743449524658347563807251<77>
Number: 73339_157 N=180672845002635955973650145697540511621150710038462470711407017816799667146364223424285574886806960321200674321681732470921017847031 ( 132 digits) SNFS difficulty: 158 digits. Divisors found: r1=7950796688233200437719771201150520016921625896700384781 r2=22723866813249437260181466059833062612216418676176293743449524658347563807251 Version: Total time: 13.93 hours. Scaled time: 33.24 units (timescale=2.386). Factorization parameters were as follows: n: 180672845002635955973650145697540511621150710038462470711407017816799667146364223424285574886806960321200674321681732470921017847031 m: 20000000000000000000000000000000 deg: 5 c5: 275 c0: 68 skew: 0.76 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8288002 Max relations in full relation-set: Initial matrix: Pruned matrix : 569108 x 569356 Total sieving time: 12.50 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.78 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 13.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(26·10157-11)/3 = 8(6)1563<158> = 13874719638668432738273<23> · C136
C136 = P46 · P90
P46 = 7990330801087736129609580208900348960160370121<46>
P90 = 781741409377590402464709803977736132137659344702928238702437054957380692407818254347964111<90>
Number: 86663_157 N=6246372461835497797590085235144227805300158049988539661664127319813743185508874489362779286942419837673553038815625648251966340584727431 ( 136 digits) SNFS difficulty: 159 digits. Divisors found: r1=7990330801087736129609580208900348960160370121 r2=781741409377590402464709803977736132137659344702928238702437054957380692407818254347964111 Version: Total time: 13.93 hours. Scaled time: 33.31 units (timescale=2.391). Factorization parameters were as follows: n: 6246372461835497797590085235144227805300158049988539661664127319813743185508874489362779286942419837673553038815625648251966340584727431 m: 20000000000000000000000000000000 deg: 5 c5: 325 c0: -44 skew: 0.67 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8533070 Max relations in full relation-set: Initial matrix: Pruned matrix : 529316 x 529564 Total sieving time: 12.61 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.68 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 13.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(65·10157+7)/9 = 7(2)1563<158> = 9679 · 1876797653<10> · C145
C145 = P72 · P74
P72 = 340269928723054252687708121264854816897562029160532745490903501797972559<72>
P74 = 11684209505564680196886999355587721293576873890219180545631517614669025331<74>
Number: 72223_157 N=3975785135643726702230450539778066801184587100157871451338767600314164799713954972226106445526223512112153625343514325724755468276601912413892029 ( 145 digits) SNFS difficulty: 160 digits. Divisors found: r1=340269928723054252687708121264854816897562029160532745490903501797972559 r2=11684209505564680196886999355587721293576873890219180545631517614669025331 Version: Total time: 16.06 hours. Scaled time: 38.37 units (timescale=2.389). Factorization parameters were as follows: n: 3975785135643726702230450539778066801184587100157871451338767600314164799713954972226106445526223512112153625343514325724755468276601912413892029 m: 50000000000000000000000000000000 deg: 5 c5: 52 c0: 175 skew: 1.27 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1600000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9396692 Max relations in full relation-set: Initial matrix: Pruned matrix : 601720 x 601968 Total sieving time: 14.61 hours. Total relation processing time: 0.65 hours. Matrix solve time: 0.73 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,51,51,2.4,2.4,100000 total time: 16.06 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(62·10162-71)/9 = 6(8)1611<163> = 291727 · 40998522161<11> · 538331911170192824177<21> · C127
C127 = P41 · P86
P41 = 13293896052923584707628730999104405807681<41>
P86 = 80482590851823351939562778795885505113611415145477307256905540960132767325450472770079<86>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1069927196854118265491844218314408607974802302696835461705048222248058295906490484465975989906304815245214369775644395405176799 (127 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4381793230 Step 1 took 3319ms Step 2 took 2107ms ********** Factor found in step 2: 13293896052923584707628730999104405807681 Found probable prime factor of 41 digits: 13293896052923584707628730999104405807681 Probable prime cofactor 80482590851823351939562778795885505113611415145477307256905540960132767325450472770079 has 86 digits
By juno1369 / GGNFS + Msieve / Nov 15, 2009
(61·10146+11)/9 = 6(7)1459<147> = 72 · 859 · 5557 · 275800236853<12> · 43877517103969019<17> · C111
C111 = P41 · P70
P41 = 47018556761287004919324019214769957965617<41>
P70 = 5092742427046728561746607640479066938348493902951058681904891312864643<70>
Number: 67779_146 N=239453398876711150609255320785377692625826392338235113766506874627069551944324667803564622358785358784768979731 (111 digits) Divisors found: r1=47018556761287004919324019214769957965617 (pp41) r2=5092742427046728561746607640479066938348493902951058681904891312864643 (pp70) Version: Msieve-1.40 Total time: 213.24 hours. Scaled time: 369.96 units (timescale=1.735). Factorization parameters were as follows: name: 67779_146 n: 239453398876711150609255320785377692625826392338235113766506874627069551944324667803564622358785358784768979731 skew: 62268.21 # norm 6.79e+015 c5: 1740 c4: 571107120 c3: 191509397222949 c2: -1689229856928126946 c1: -167460861686685303277376 c0: 366141206224433326132512000 # alpha -5.54 Y1: 357727841273 Y0: -2677506553543671180733 # Murphy_E 7.08e-010 # M 4169860093312916150953838170334394543046091236561083577223534810475410377208532554651542786886462863183822802 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 2 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 466836 x 467084 Total sieving time: 211.86 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.07 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 213.24 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Nov 14, 2009
(22·10178-7)/3 = 7(3)1771<179> = 17 · C178
C178 = P48 · P62 · P69
P48 = 248547605560480925622741006789238584355839363443<48>
P62 = 52256505242291123397545087983645084835369273482120400731461829<62>
P69 = 332125758345610575600565424353848439016390715672904492677915743077469<69>
Number: n N=4313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843 ( 178 digits) SNFS difficulty: 180 digits. Divisors found: Sat Nov 14 06:46:51 2009 prp48 factor: 248547605560480925622741006789238584355839363443 Sat Nov 14 06:46:51 2009 prp62 factor: 52256505242291123397545087983645084835369273482120400731461829 Sat Nov 14 06:46:51 2009 prp69 factor: 332125758345610575600565424353848439016390715672904492677915743077469 Sat Nov 14 06:46:51 2009 elapsed time 05:12:36 (Msieve 1.43 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 111.82 hours. Scaled time: 203.84 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_3_177_1 n: 4313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843 m: 500000000000000000000000000000000000 deg: 5 c5: 176 c0: -175 skew: 1.00 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3600000, 5400823) Primes: RFBsize:489319, AFBsize:489694, largePrimes:20744051 encountered Relations: rels:20484312, finalFF:986940 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1849522 hash collisions in 21701103 relations Msieve: matrix is 1291973 x 1292197 (348.9 MB) Total sieving time: 111.13 hours. Total relation processing time: 0.68 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,56,56,2.5,2.5,100000 total time: 111.82 hours. --------- CPU info (if available) ----------
(67·10154-31)/9 = 7(4)1531<155> = 131 · 397 · 983 · C148
C148 = P38 · P47 · P64
P38 = 19770670872949815347485142394152319553<38>
P47 = 70311137559137507052774831616250832259377569867<47>
P64 = 1047541994464449155489159844448139419478733450739365527434608811<64>
Number: n N=1456186407891301048633085534526984980452186261655411095560996346126198256401951299349589559407742385341006983633110278828856387112542511922292572761 ( 148 digits) SNFS difficulty: 156 digits. Divisors found: Sat Nov 14 18:58:09 2009 prp38 factor: 19770670872949815347485142394152319553 Sat Nov 14 18:58:09 2009 prp47 factor: 70311137559137507052774831616250832259377569867 Sat Nov 14 18:58:09 2009 prp64 factor: 1047541994464449155489159844448139419478733450739365527434608811 Sat Nov 14 18:58:09 2009 elapsed time 00:55:11 (Msieve 1.43 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.59 hours. Scaled time: 39.25 units (timescale=1.818). Factorization parameters were as follows: name: KA_7_4_153_1 n: 1456186407891301048633085534526984980452186261655411095560996346126198256401951299349589559407742385341006983633110278828856387112542511922292572761 m: 10000000000000000000000000000000 deg: 5 c5: 67 c0: -310 skew: 1.36 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [1450000, 2750249) Primes: RFBsize:210109, AFBsize:210215, largePrimes:7718909 encountered Relations: rels:7439444, finalFF:438767 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 935880 hash collisions in 8065056 relations Msieve: matrix is 535005 x 535232 (143.1 MB) Total sieving time: 21.47 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 21.59 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 14, 2009
(62·10158-71)/9 = 6(8)1571<159> = 3 · 17 · 67 · 337 · 3559 · C150
C150 = P54 · P97
P54 = 132575299431508438665738676848358063462718878204534843<54>
P97 = 1267896186810585277293654903308370039889900735456986092170954192488322227543251134228508640175997<97>
Number: 68881_158 N=168091716614481103463083594268062800883645758833805202718252499935061086452976721473033496538452942958137049236729866564856854058353995213907038763471 ( 150 digits) SNFS difficulty: 161 digits. Divisors found: r1=132575299431508438665738676848358063462718878204534843 (pp54) r2=1267896186810585277293654903308370039889900735456986092170954192488322227543251134228508640175997 (pp97) Version: Msieve-1.40 Total time: 44.43 hours. Scaled time: 89.71 units (timescale=2.019). Factorization parameters were as follows: name: 68881_158 n: 168091716614481103463083594268062800883645758833805202718252499935061086452976721473033496538452942958137049236729866564856854058353995213907038763471 m: 50000000000000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 631071 x 631319 Total sieving time: 42.50 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.46 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 44.43 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ggnfs/msieve, GGNFS/msieve / Nov 14, 2009
(67·10162-13)/9 = 7(4)1613<163> = 3 · 1951 · 57493 · C155
C155 = P72 · P84
P72 = 173168441496788451919618027345869704057432823437379661717120302268074707<72>
P84 = 127752688946810654048296217810573665123434033505277792306486178869161540657839807481<84>
Number: s155 N=22122734041943193454188356756799938477403047488699526672317387471683928142875481754603472922346907701289933796334883132221319974580476696915572905405483067 ( 155 digits) SNFS difficulty: 165 digits. Divisors found: r1=173168441496788451919618027345869704057432823437379661717120302268074707 (pp72) r2=127752688946810654048296217810573665123434033505277792306486178869161540657839807481 (pp84) Version: Msieve-1.40 Total time: 42.12 hours. Scaled time: 78.35 units (timescale=1.860). Factorization parameters were as follows: n: 22122734041943193454188356756799938477403047488699526672317387471683928142875481754603472922346907701289933796334883132221319974580476696915572905405483067 m: 500000000000000000000000000000000 deg: 5 c5: 268 c0: -1625 skew: 1.43 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 794129 x 794355 Total sieving time: 41.11 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.83 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,165.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 42.12 hours. --------- CPU info (if available) ----------
(22·10188-7)/3 = 7(3)1871<189> = C189
C189 = P67 · P123
P67 = 1439804239664097685685896347039690976177416861734275651404144103963<67>
P123 = 509328499758007349074189685847253363748278305932331944594971040870874995118639499429499748714681777407393380275849433840937<123>
N=733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 189 digits) SNFS difficulty: 190 digits. Divisors found: r1=1439804239664097685685896347039690976177416861734275651404144103963 (pp67) r2=509328499758007349074189685847253363748278305932331944594971040870874995118639499429499748714681777407393380275849433840937 (pp123) Version: Msieve-1.40 Total time: 480.46 hours. Scaled time: 446.35 units (timescale=0.929). Factorization parameters were as follows: n: 733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 50000000000000000000000000000000000000 deg: 5 c5: 176 c0: -175 skew: 1.00 type: snfs lss: 1 rlim: 10600000 alim: 10600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 10600000/10600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5300000, 10500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1872355 x 1872580 Total sieving time: 468.26 hours. Total relation processing time: 0.39 hours. Matrix solve time: 11.41 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10600000,10600000,28,28,54,54,2.5,2.5,100000 total time: 480.46 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 14, 2009
(62·10169-71)/9 = 6(8)1681<170> = 3505219 · 1779396887<10> · 2788933419652123<16> · 49618119210892708709<20> · C119
C119 = P38 · P81
P38 = 82660081394313266012448446052941500919<38>
P81 = 965577024280041750953286497287634496570237721902454230853822326500051858350496669<81>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1887201488 Step 1 took 126018ms Step 2 took 42743ms ********** Factor found in step 2: 82660081394313266012448446052941500919 Found probable prime factor of 38 digits: 82660081394313266012448446052941500919 Probable prime cofactor 965577024280041750953286497287634496570237721902454230853822326500051858350496669 has 81 digits
(62·10171-71)/9 = 6(8)1701<172> = 7 · 19 · 4349 · 9319 · C163
C163 = P40 · P123
P40 = 1600606687685207079981972189175964607847<40>
P123 = 798461890260203983777865595532676387857491818084310489921571287545918302724829696269195481540944560007643355765101773720401<123>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=484386855 Step 1 took 52247ms ********** Factor found in step 1: 1600606687685207079981972189175964607847 Found probable prime factor of 40 digits: 1600606687685207079981972189175964607847 Probable prime cofactor 798461890260203983777865595532676387857491818084310489921571287545918302724829696269195481540944560007643355765101773720401 has 123 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 14, 2009
(83·10156+7)/9 = 9(2)1553<157> = 528078673 · 2354032321<10> · 54455392027<11> · C129
C129 = P38 · P91
P38 = 29549430643279790678513909646388049663<38>
P91 = 4610356690548903466239224249245927737326743875914578310194061475922915915676673744740852531<91>
Number: 92223_156 N=136233415268155771401978069668754675273317569461066738883978525382951633384097934807394773511147684886619441567552049872987247053 ( 129 digits) SNFS difficulty: 157 digits. Divisors found: r1=29549430643279790678513909646388049663 r2=4610356690548903466239224249245927737326743875914578310194061475922915915676673744740852531 Version: Total time: 13.30 hours. Scaled time: 31.81 units (timescale=2.392). Factorization parameters were as follows: n: 136233415268155771401978069668754675273317569461066738883978525382951633384097934807394773511147684886619441567552049872987247053 m: 10000000000000000000000000000000 deg: 5 c5: 830 c0: 7 skew: 0.38 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8688640 Max relations in full relation-set: Initial matrix: Pruned matrix : 495054 x 495302 Total sieving time: 12.20 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.52 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 13.30 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10156-31)/9 = 7(4)1551<157> = 197 · 100616918774894708640648612559<30> · C126
C126 = P38 · P44 · P44
P38 = 80153664603958430270698294749615024437<38>
P44 = 53243536433576582261971256661042578792061799<44>
P44 = 88004479143123417579377741641004702435368009<44>
Number: 74441_156 N=375573596903421635313913662354161350696820930953190410603725173618920376118848018490033787713031094858628432879290956933623467 ( 126 digits) SNFS difficulty: 157 digits. Divisors found: r1=80153664603958430270698294749615024437 r2=53243536433576582261971256661042578792061799 r3=88004479143123417579377741641004702435368009 Version: Total time: 14.44 hours. Scaled time: 34.20 units (timescale=2.368). Factorization parameters were as follows: n: 375573596903421635313913662354161350696820930953190410603725173618920376118848018490033787713031094858628432879290956933623467 m: 10000000000000000000000000000000 deg: 5 c5: 670 c0: -31 skew: 0.54 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8551031 Max relations in full relation-set: Initial matrix: Pruned matrix : 530012 x 530260 Total sieving time: 13.13 hours. Total relation processing time: 0.55 hours. Matrix solve time: 0.61 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 14.44 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Erik Branger / GGNFS, Msieve / Nov 14, 2009
(59·10164+31)/9 = 6(5)1639<165> = 41 · 257 · 5763713135701<13> · 632793202179705926119343697193231<33> · C116
C116 = P50 · P66
P50 = 34802044557813893139042598653269252013977947167193<50>
P66 = 490143898602442290601560520700188756718313923047228378482398716229<66>
Number: 65559_164 N=17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197 ( 116 digits) Divisors found: r1=34802044557813893139042598653269252013977947167193 (pp50) r2=490143898602442290601560520700188756718313923047228378482398716229 (pp66) Version: Msieve v. 1.43 Total time: 32.74 hours. Scaled time: 30.19 units (timescale=0.922). Factorization parameters were as follows: name: 65559_164 n: 17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197 skew: 28874.31 # norm 6.29e+015 c5: 38700 c4: 4290288453 c3: 226518079060538 c2: -3620472774476150580 c1: -58323442579984867482546 c0: 430888104406967566430909160 # alpha -5.57 Y1: 782134821337 Y0: -13453736550076462582111 # Murphy_E 4.89e-010 # M 1490207370408176870324831131388133250549360282891275986372669753761505327303758919313473708023388505821334417351020 type: gnfs rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [1700000, 3000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 530195 x 530424 Polynomial selection time: 3.13 hours. Total sieving time: 28.46 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.62 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3400000,3400000,27,27,53,53,2.5,2.5,100000 total time: 32.74 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Nov 13, 2009
(64·10157+71)/9 = 7(1)1569<158> = 79 · 270163 · 131876297221<12> · C140
C140 = P67 · P73
P67 = 9964004601390419339148197840705296103238041512903134110631263792189<67>
P73 = 2535618074861695477526155884291998519175671403992482425103587424791058763<73>
Number: 71119_157 N=25264910165290650509851238117231571124114862434002665400453091269791075424520683131999659561821303788450380878240060216801402515711719402207 ( 140 digits) SNFS difficulty: 158 digits. Divisors found: r1=9964004601390419339148197840705296103238041512903134110631263792189 (pp67) r2=2535618074861695477526155884291998519175671403992482425103587424791058763 (pp73) Version: Msieve v. 1.43 Total time: 24.74 hours. Scaled time: 21.77 units (timescale=0.880). Factorization parameters were as follows: n: 25264910165290650509851238117231571124114862434002665400453091269791075424520683131999659561821303788450380878240060216801402515711719402207 m: 20000000000000000000000000000000 deg: 5 c5: 200 c0: 71 skew: 0.81 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 518813 x 519045 Total sieving time: 23.40 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.62 hours. Time per square root: 0.60 hours. Prototype def-par.txt line would be: snfs,158.000,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 24.74 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve / Nov 13, 2009
(62·10191-71)/9 = 6(8)1901<192> = 3 · 67 · 887 · 2539 · 9337 · 39719 · 1602440276322618158898151<25> · 517452552714882800113775903751182527043<39> · C112
C112 = P54 · P59
P54 = 231966688952782810983569504127235672501575217898942363<54>
P59 = 21334532365287813355167771978525860077741292728723571466821<59>
N=4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023 ( 112 digits) Divisors found: r1=231966688952782810983569504127235672501575217898942363 (pp54) r2=21334532365287813355167771978525860077741292728723571466821 (pp59) Version: Msieve-1.40 Total time: 20.06 hours. Scaled time: 39.49 units (timescale=1.969). Factorization parameters were as follows: name: 112-1 n: 4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023 skew: 35745.19 # norm 5.68e+015 c5: 20520 c4: 7874928393 c3: -125171518425754 c2: -10002823683309029156 c1: 186591281683383709662296 c0: -10471410601966863892978464 # alpha -6.73 Y1: 577849820273 Y0: -2995434647356879034675 # Murphy_E 7.92e-010 # M 1904396237109010344233056436440516679725570088245749401332422872741388847060985884113432289929434595461246543295 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 392267 x 392493 Polynomial selection time: 1.84 hours. Total sieving time: 17.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.50 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 20.06 hours. --------- CPU info (if available) ----------
(65·10159+7)/9 = 7(2)1583<160> = 23 · 971 · 18793 · C152
C152 = P40 · P112
P40 = 1953853962358201528535638767049885845979<40>
P112 = 8807153537009589409364235375690005448212234630799533315826453435493873992751942939736651790454264854292839358073<112>
N=17207891835383235758484443528762219892183657200193172828691880569359507978042076647634841544083820217197423030516824039230894905196218677170418908238467 ( 152 digits) SNFS difficulty: 161 digits. Divisors found: r1=1953853962358201528535638767049885845979 (pp40) r2=8807153537009589409364235375690005448212234630799533315826453435493873992751942939736651790454264854292839358073 (pp112) Version: Msieve-1.40 Total time: 22.98 hours. Scaled time: 43.39 units (timescale=1.888). Factorization parameters were as follows: n: 17207891835383235758484443528762219892183657200193172828691880569359507978042076647634841544083820217197423030516824039230894905196218677170418908238467 m: 100000000000000000000000000000000 deg: 5 c5: 13 c0: 14 skew: 1.01 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 645407 x 645633 Total sieving time: 22.28 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.55 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 22.98 hours. --------- CPU info (if available) ----------
(22·10160-7)/3 = 7(3)1591<161> = 419726063 · C153
C153 = P38 · P48 · P67
P38 = 62892293150312003950256891682691118047<38>
P48 = 963980414783305788992504638378182452100686241977<48>
P67 = 2881839886247664950088754545652096672709151792121416684401536364123<67>
N=174717130523613286633890384198832402107308102364215903679379884811521302486601441601050476899580413554955564752082915883480253008099078501430427810563037 ( 153 digits) SNFS difficulty: 161 digits. Divisors found: r1=62892293150312003950256891682691118047 (pp38) r2=963980414783305788992504638378182452100686241977 (pp48) r3=2881839886247664950088754545652096672709151792121416684401536364123 (pp67) Version: Msieve-1.40 Total time: 19.92 hours. Scaled time: 36.76 units (timescale=1.845). Factorization parameters were as follows: n: 174717130523613286633890384198832402107308102364215903679379884811521302486601441601050476899580413554955564752082915883480253008099078501430427810563037 m: 100000000000000000000000000000000 deg: 5 c5: 22 c0: -7 skew: 0.80 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 683391 x 683639 Total sieving time: 19.13 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.58 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 19.92 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Nov 13, 2009
(22·10166+17)/3 = 7(3)1659<167> = 7 · 21629000599603<14> · C153
C153 = P51 · P102
P51 = 641923119296141775585479279443339644024656140218061<51>
P102 = 754542863764954247166210709332774211904122796445876029066108488793031852354112276874269887328583596219<102>
Number: 73339_166 N=484358508750643176663936835681906593235838524767765001810069448234657396117754486652019637082863748781456555081996193969222446620209155086837402235111359 ( 153 digits) SNFS difficulty: 168 digits. Divisors found: r1=641923119296141775585479279443339644024656140218061 r2=754542863764954247166210709332774211904122796445876029066108488793031852354112276874269887328583596219 Version: Total time: 64.38 hours. Scaled time: 129.54 units (timescale=2.012). Factorization parameters were as follows: n: 484358508750643176663936835681906593235838524767765001810069448234657396117754486652019637082863748781456555081996193969222446620209155086837402235111359 m: 2000000000000000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 744654 x 744902 Total sieving time: 64.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 64.38 hours. --------- CPU info (if available) ----------
(25·10198-43)/9 = 2(7)1973<199> = 5869 · C195
C195 = P58 · P138
P58 = 1451404622524480716557996312602451817462320347463899152439<58>
P138 = 326095561617768087884395065941298852407265226525174381101383715053134023745318575170785592323285897166994765718293103718772301298550007303<138>
Number: 27773_198 N=473296605516745233903182446375494594952764998769428825656462391851725639423714053122811003199485053293197781185513337498343461880691391681338861437685768917665322504306999110202381628518960262017 ( 195 digits) SNFS difficulty: 199 digits. Divisors found: r1=1451404622524480716557996312602451817462320347463899152439 r2=326095561617768087884395065941298852407265226525174381101383715053134023745318575170785592323285897166994765718293103718772301298550007303 Version: Total time: 721.86 hours. Scaled time: 1454.54 units (timescale=2.015). Factorization parameters were as follows: n: 473296605516745233903182446375494594952764998769428825656462391851725639423714053122811003199485053293197781185513337498343461880691391681338861437685768917665322504306999110202381628518960262017 m: 5000000000000000000000000000000000000000 deg: 5 c5: 8 c0: -43 skew: 1.40 type: snfs lss: 1 rlim: 14700000 alim: 14700000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 14700000/14700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7350000, 15150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2531515 x 2531763 Total sieving time: 721.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,14700000,14700000,28,28,55,55,2.5,2.5,100000 total time: 721.86 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Nov 13, 2009
(62·10168-71)/9 = 6(8)1671<169> = 12579647 · C162
C162 = P69 · P94
P69 = 417996494895948005785248123398354871614766916243498866195380490935959<69>
P94 = 1310110977341236383525940660843416170256038120437603143534793254416808586880932126433244177097<94>
Number: 68881_168 N=547621796453341567445325682738862933823889405552388623376227400410272950337071373218094982227155411347304808226247436743565927477049943363982223737191424281531023 ( 162 digits) SNFS difficulty: 171 digits. Divisors found: r1=417996494895948005785248123398354871614766916243498866195380490935959 (pp69) r2=1310110977341236383525940660843416170256038120437603143534793254416808586880932126433244177097 (pp94) Version: Msieve v. 1.43 Total time: 71.81 hours. Scaled time: 124.87 units (timescale=1.739). Factorization parameters were as follows: n: 547621796453341567445325682738862933823889405552388623376227400410272950337071373218094982227155411347304808226247436743565927477049943363982223737191424281531023 m: 5000000000000000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1056436 x 1056661 Total sieving time: 69.24 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.46 hours. Time per square root: 0.98 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 71.81 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 13, 2009
(65·10156-11)/9 = 7(2)1551<157> = 3 · 149 · 2909 · 484061 · 1869071 · C139
C139 = P48 · P91
P48 = 924547593040272577001488578136091171063098712873<48>
P91 = 6639944322588482605733024627603148158770302262895769428985277259280354195849327659562685229<91>
Number: 72221_156 N=6138944541370604791669877501056223782086626050274386084745206959694754003758284585091174261445808018016007420619027077079856127009549252917 ( 139 digits) SNFS difficulty: 157 digits. Divisors found: r1=924547593040272577001488578136091171063098712873 r2=6639944322588482605733024627603148158770302262895769428985277259280354195849327659562685229 Version: Total time: 12.28 hours. Scaled time: 28.83 units (timescale=2.347). Factorization parameters were as follows: n: 6138944541370604791669877501056223782086626050274386084745206959694754003758284585091174261445808018016007420619027077079856127009549252917 m: 10000000000000000000000000000000 deg: 5 c5: 650 c0: -11 skew: 0.44 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8015116 Max relations in full relation-set: Initial matrix: Pruned matrix : 554586 x 554834 Total sieving time: 11.01 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.77 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 12.28 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(61·10160-43)/9 = 6(7)1593<161> = 3 · 258846753455803<15> · 61739694542088436121217926517233<32> · C115
C115 = P46 · P69
P46 = 1817926149208691502729521475457905515096473051<46>
P69 = 777647240937270328992484826480769491945261040621892507628864171690359<69>
Number: 67773_160 N=1413705254159855371061936185876921103504280730923166822583108539086549753629478508296087325967444560737441760015309 ( 115 digits) Divisors found: r1=1817926149208691502729521475457905515096473051 r2=777647240937270328992484826480769491945261040621892507628864171690359 Version: Total time: 15.79 hours. Scaled time: 37.44 units (timescale=2.371). Factorization parameters were as follows: name: 67773_160 n: 1413705254159855371061936185876921103504280730923166822583108539086549753629478508296087325967444560737441760015309 skew: 50536.77 # norm 4.80e+15 c5: 25380 c4: -614505552 c3: -47647136645839 c2: 5452395569024831359 c1: 140859291886924652868131 c0: -4324536369697488192023050839 # alpha -6.16 Y1: 2826537573989 Y0: -8895576914842352240720 # Murphy_E 5.57e-10 # M 161569964661124522022265799579816433730413328407547361845111517972008345354236704372972149102516328162387493120225 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9221835 Max relations in full relation-set: Initial matrix: Pruned matrix : 496281 x 496529 Polynomial selection time: 1.36 hours. Total sieving time: 12.88 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.56 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 15.79 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Nov 12, 2009
(59·10156+31)/9 = 6(5)1559<157> = 211 · 1277 · 204371 · 8456385102374933467647900354881<31> · C116
C116 = P34 · P82
P34 = 3012983645866773188165757444214891<34>
P82 = 4672349839242065027594979758740290110260235772594442708775254177171296529449693617<82>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 14077713653404588690555756672692970008608629107471571113503341492890083842753884124196001195304510019047009059050747 (116 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5651182032 Step 1 took 2692ms Step 2 took 1917ms ********** Factor found in step 2: 3012983645866773188165757444214891 Found probable prime factor of 34 digits: 3012983645866773188165757444214891 Probable prime cofactor 4672349839242065027594979758740290110260235772594442708775254177171296529449693617 has 82 digits
(64·10156+17)/9 = 7(1)1553<157> = 3 · 23 · 1476527597<10> · 4262940271<10> · 19870321428695636593969<23> · C114
C114 = P55 · P60
P55 = 1982357395654855011440038146861915074032606554692317687<55>
P60 = 415671941297055391986742820832969759498307762414593330759457<60>
Number: 71113_156 N=824010346996428501902929446579336446349065675339870767096387628080340800443117481808771174671282885478191223615959 ( 114 digits) SNFS difficulty: 157 digits. Divisors found: r1=1982357395654855011440038146861915074032606554692317687 r2=415671941297055391986742820832969759498307762414593330759457 Version: Total time: 12.24 hours. Scaled time: 28.40 units (timescale=2.321). Factorization parameters were as follows: n: 824010346996428501902929446579336446349065675339870767096387628080340800443117481808771174671282885478191223615959 m: 20000000000000000000000000000000 deg: 5 c5: 20 c0: 17 skew: 0.97 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8481172 Max relations in full relation-set: Initial matrix: Pruned matrix : 485933 x 486180 Total sieving time: 11.15 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.51 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 12.24 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(65·10159+61)/9 = 7(2)1589<160> = 167 · 455921 · 4001016979670712233<19> · 5379908203555946771<19> · C115
C115 = P53 · P62
P53 = 96383262843725875562456351579696025282506312998383983<53>
P62 = 45721228945729185309354981526914135704408442080201681269449463<62>
Number: 72229_159 N=4406761227014383772744992246241231961679312963933611928862215622302455615422271185419516893972781051599907087151129 ( 115 digits) Divisors found: r1=96383262843725875562456351579696025282506312998383983 r2=45721228945729185309354981526914135704408442080201681269449463 Version: Total time: 15.08 hours. Scaled time: 36.03 units (timescale=2.389). Factorization parameters were as follows: name: 72229_159 n: 4406761227014383772744992246241231961679312963933611928862215622302455615422271185419516893972781051599907087151129 skew: 17359.92 # norm 2.35e+15 c5: 36540 c4: 5231062026 c3: -130362871646254 c2: -1226930863844106788 c1: 8425729364406378361539 c0: 53716536162268136384847162 # alpha -5.10 Y1: 159695469967 Y0: -10381736553568680581705 # Murphy_E 5.72e-10 # M 827678952077618632955342287148713937231119215230854811599520325539777306026637345719092699824163303916063189669290 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9155069 Max relations in full relation-set: Initial matrix: Pruned matrix : 523806 x 524054 Polynomial selection time: 1.34 hours. Total sieving time: 12.38 hours. Total relation processing time: 0.67 hours. Matrix solve time: 0.58 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 15.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(83·10161+7)/9 = 9(2)1603<162> = 1697 · 2711 · 20543 · 1498481 · 53973738457<11> · 810578820825230269<18> · C117
C117 = P32 · P85
P32 = 65656961003311514015883035936551<32>
P85 = 2266995127807532404937686268783558513717904515654110062784739793001401834333714626621<85>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 148844010701156356756903072727115500377610663976925506749656983744503128054493059428451193698102694635708042011524171 (117 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6209770295 Step 1 took 3580ms Step 2 took 2050ms ********** Factor found in step 2: 65656961003311514015883035936551 Found probable prime factor of 32 digits: 65656961003311514015883035936551 Probable prime cofactor 2266995127807532404937686268783558513717904515654110062784739793001401834333714626621 has 85 digits
(67·10163-31)/9 = 7(4)1621<164> = 1093 · 16633 · 26687 · 14657691415107539107<20> · C134
C134 = P37 · P38 · P59
P37 = 2379704242579980728400961963262974523<37>
P38 = 80520601705670054813859962771453621977<38>
P59 = 54631889004741725520371953058841143590754460348049791924251<59>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 10468301293755797423881824808300936684163049041001719203135482913387586546663127409790577743604090731829830211783508368815067239088721 (134 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4672242577 Step 1 took 3327ms Step 2 took 2201ms ********** Factor found in step 2: 80520601705670054813859962771453621977 Found probable prime factor of 38 digits: 80520601705670054813859962771453621977 Composite cofactor 130007738044742485114119405003336802697164449362326732828807416813930485046568036276242158857273 has 96 digits Number: 74441_163 N=130007738044742485114119405003336802697164449362326732828807416813930485046568036276242158857273 ( 96 digits) Divisors found: r1=2379704242579980728400961963262974523 r2=54631889004741725520371953058841143590754460348049791924251 Version: Total time: 1.50 hours. Scaled time: 3.46 units (timescale=2.313). Factorization parameters were as follows: name: 74441_163 n: 130007738044742485114119405003336802697164449362326732828807416813930485046568036276242158857273 skew: 1979.38 # norm 1.96e+13 c5: 273300 c4: 304405751 c3: 365710080704 c2: -4895444318937764 c1: -4512394773361583236 c0: 13984228209751842845 # alpha -6.07 Y1: 14191866557 Y0: -861914766383702208 # Murphy_E 6.01e-09 # M 46998393681213226899223521402912408001520722578974367414646002933959646617795624266321907021062 type: gnfs rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 40000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [400000, 680001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3482298 Max relations in full relation-set: Initial matrix: Pruned matrix : 128893 x 129141 Polynomial selection time: 0.10 hours. Total sieving time: 1.21 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,95,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,26,26,48,48,2.5,2.5,40000 total time: 1.50 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Dmitry Domanov / GGNFS/msieve / Nov 12, 2009
(67·10175-31)/9 = 7(4)1741<176> = 269 · 3343 · C170
C170 = P57 · P114
P57 = 393007290755296676600975185335423075552050629797117701609<57>
P114 = 210641059005337681090850353556043252785508344730403422889278293035429519751561094996454076042806528622893752218747<114>
N=82783471921514349402840807507052348684477963101553203269378776764236255132729705909862637508598052018415492222492812973726873603106134712431841093295366609076552841863923 ( 170 digits) SNFS difficulty: 176 digits. Divisors found: r1=393007290755296676600975185335423075552050629797117701609 (pp57) r2=210641059005337681090850353556043252785508344730403422889278293035429519751561094996454076042806528622893752218747 (pp114) Version: Msieve-1.40 Total time: 82.62 hours. Scaled time: 155.56 units (timescale=1.883). Factorization parameters were as follows: n: 82783471921514349402840807507052348684477963101553203269378776764236255132729705909862637508598052018415492222492812973726873603106134712431841093295366609076552841863923 m: 100000000000000000000000000000000000 deg: 5 c5: 67 c0: -31 skew: 0.86 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 7200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1326117 x 1326348 Total sieving time: 79.81 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.19 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: snfs,176.000,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000 total time: 82.62 hours. --------- CPU info (if available) ----------
(65·10158-11)/9 = 7(2)1571<159> = 7 · 31 · 3607 · C153
C153 = P41 · P50 · P63
P41 = 83363948032550770439971746177796233984623<41>
P50 = 63165174686566479174510487178756948267564308740641<50>
P63 = 175230215598453693379399967411213917661767959640494153861891613<63>
N=922709455401264339082381061686534020794464197524555073049488031109788087707366529012611450881123650022833510138660518298677075964965999576121471718742259 ( 153 digits) SNFS difficulty: 160 digits. Divisors found: r1=83363948032550770439971746177796233984623 (pp41) r2=63165174686566479174510487178756948267564308740641 (pp50) r3=175230215598453693379399967411213917661767959640494153861891613 (pp63) Version: Msieve-1.40 Total time: 19.63 hours. Scaled time: 36.21 units (timescale=1.845). Factorization parameters were as follows: n: 922709455401264339082381061686534020794464197524555073049488031109788087707366529012611450881123650022833510138660518298677075964965999576121471718742259 m: 50000000000000000000000000000000 deg: 5 c5: 104 c0: -55 skew: 0.88 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 618184 x 618411 Total sieving time: 18.94 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.47 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,160.000,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 19.63 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 12, 2009
(62·10192-71)/9 = 6(8)1911<193> = 807571049183<12> · C181
C181 = P40 · P142
P40 = 2141731664373514704800209804190966929619<40>
P142 = 3982936487128283963654011022855118528252029474284443258175563324282085584199674797758328510237897814911957350790362026615847538823628063665653<142>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2276662570 Step 1 took 63985ms ********** Factor found in step 1: 2141731664373514704800209804190966929619 Found probable prime factor of 40 digits: 2141731664373514704800209804190966929619 Probable prime cofactor 3982936487128283963654011022855118528252029474284443258175563324282085584199674797758328510237897814911957350790362026615847538823628063665653 has 142 digits
By Ignacio Santos / GGNFS, Msieve / Nov 12, 2009
(67·10164+41)/9 = 7(4)1639<165> = 7 · 97 · 461 · C160
C160 = P44 · P117
P44 = 10965272962460119234911069404341287975741259<44>
P117 = 216891307273720750758081653250952572647618179283737370490732853103987208380893592346709082214421115917317056152162969<117>
Number: 74449_164 N=2378272387441159943787579809674315119671471841787381738630704348440332517976367071789394396009329927079328872830225783241414880388872382968587991286293945237971 ( 160 digits) SNFS difficulty: 166 digits. Divisors found: r1=10965272962460119234911069404341287975741259 (pp44) r2=216891307273720750758081653250952572647618179283737370490732853103987208380893592346709082214421115917317056152162969 (pp117) Version: Msieve v. 1.43 Total time: 44.81 hours. Scaled time: 77.93 units (timescale=1.739). Factorization parameters were as follows: n: 2378272387441159943787579809674315119671471841787381738630704348440332517976367071789394396009329927079328872830225783241414880388872382968587991286293945237971 m: 1000000000000000000000000000000000 deg: 5 c5: 67 c0: 410 skew: 1.44 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 794493 x 794718 Total sieving time: 43.79 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.80 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 44.81 hours.
By Sinkiti Sibata / Msieve / Nov 12, 2009
(62·10155-71)/9 = 6(8)1541<156> = 3 · 83 · 1054865761<10> · 5865205252879032365590891631<28> · C117
C117 = P57 · P60
P57 = 690204344660474179997645180103744985808246178066443143733<57>
P60 = 647875762848916317184387762028148718967749699167161314240123<60>
Number: 68881_155 N=447166666318541071021133120076586888737388050135431182917568426080461179199315021134343779030522598595547672164599159 ( 117 digits) SNFS difficulty: 156 digits. Divisors found: r1=690204344660474179997645180103744985808246178066443143733 (pp57) r2=647875762848916317184387762028148718967749699167161314240123 (pp60) Version: Msieve-1.40 Total time: 35.60 hours. Scaled time: 120.13 units (timescale=3.374). Factorization parameters were as follows: name: 68881_155 n: 447166666318541071021133120076586888737388050135431182917568426080461179199315021134343779030522598595547672164599159 m: 10000000000000000000000000000000 deg: 5 c5: 62 c0: -71 skew: 1.03 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 507864 x 508112 Total sieving time: 35.01 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.48 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 35.60 hours. --------- CPU info (if available) ----------
(62·10152-71)/9 = 6(8)1511<153> = 32 · 23 · 443 · 1061 · 34279360770581<14> · C132
C132 = P36 · P96
P36 = 315834675110482422029126787755351387<36>
P96 = 653984116715282556173259909244692754554281589932741812886644462514507314473058785355215072340543<96>
Number: 68881_152 N=206550861030187082845434344910136822313692781358486124359562932596625872977417209449469207777000587340003595836995580001075491383141 ( 132 digits) SNFS difficulty: 154 digits. Divisors found: r1=315834675110482422029126787755351387 (pp36) r2=653984116715282556173259909244692754554281589932741812886644462514507314473058785355215072340543 (pp96) Version: Msieve-1.40 Total time: 26.52 hours. Scaled time: 55.30 units (timescale=2.085). Factorization parameters were as follows: name: 68881_152 n: 206550861030187082845434344910136822313692781358486124359562932596625872977417209449469207777000587340003595836995580001075491383141 m: 2000000000000000000000000000000 deg: 5 c5: 775 c0: -284 skew: 0.82 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 503235 x 503483 Total sieving time: 25.38 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.88 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,154.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 26.52 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Nov 12, 2009
(65·10156+61)/9 = 7(2)1559<157> = 73 · 23041 · 290912309 · C142
C142 = P54 · P88
P54 = 605691835518887929525069079127539502706299835330479941<54>
P88 = 5186347188194532049169964537904314800100966481543495236359524310108165939442379395721307<88>
Number: 72229_156 N=3141328148055769408108490574107127310905627536310764350258942664672471270571546787474991776204204338886772516964994368059599955681938189802887 ( 142 digits) SNFS difficulty: 157 digits. Divisors found: r1=605691835518887929525069079127539502706299835330479941 (pp54) r2=5186347188194532049169964537904314800100966481543495236359524310108165939442379395721307 (pp88) Version: Msieve v. 1.43 Total time: 29.78 hours. Scaled time: 25.49 units (timescale=0.856). Factorization parameters were as follows: n: 3141328148055769408108490574107127310905627536310764350258942664672471270571546787474991776204204338886772516964994368059599955681938189802887 m: 10000000000000000000000000000000 deg: 5 c5: 650 c0: 61 skew: 0.62 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 628739 x 628971 Total sieving time: 28.49 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.91 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 29.78 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 11, 2009
(62·10191-71)/9 = 6(8)1901<192> = 3 · 67 · 887 · 2539 · 9337 · 39719 · 1602440276322618158898151<25> · C151
C151 = P39 · C112
P39 = 517452552714882800113775903751182527043<39>
C112 = [4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023<112>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1659986578 Step 1 took 46926ms Step 2 took 16405ms ********** Factor found in step 2: 517452552714882800113775903751182527043 Found probable prime factor of 39 digits: 517452552714882800113775903751182527043 Composite cofactor 4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023 has 112 digits
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Nov 11, 2009
(67·10197-31)/9 = 7(4)1961<198> = 32 · 62765167725817727<17> · 569456850647072222011<21> · 7082290927670325280559<22> · 143654013588585058279631<24> · C115
C115 = P39 · P76
P39 = 876417883079711189730801115665794456501<39>
P76 = 2595419183630539862325486973334714191597155410525075313845472607910755022473<76>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 2274671786621949951263749654269552518055133473554962856563812879331411196076321546565020576595542670694967075946973 (115 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6695390019 Step 1 took 3447ms Step 2 took 3775ms ********** Factor found in step 2: 876417883079711189730801115665794456501 Found probable prime factor of 39 digits: 876417883079711189730801115665794456501 Probable prime cofactor 2595419183630539862325486973334714191597155410525075313845472607910755022473 has 76 digits
(67·10155-13)/9 = 7(4)1543<156> = 7 · 709 · 9293712784931<13> · 1383499142474187967<19> · C122
C122 = P49 · P73
P49 = 4878885565302112410069827574733270111997783354663<49>
P73 = 2391108289919426790093946899475837566572606524440706754396837686596322811<73>
Number: 74443_155 N=11665943720762109867469144547912706865819403378906466080397791627463020253271963189327366442949178885904585225639650117693 ( 122 digits) SNFS difficulty: 156 digits. Divisors found: r1=4878885565302112410069827574733270111997783354663 r2=2391108289919426790093946899475837566572606524440706754396837686596322811 Version: Total time: 11.86 hours. Scaled time: 28.30 units (timescale=2.387). Factorization parameters were as follows: n: 11665943720762109867469144547912706865819403378906466080397791627463020253271963189327366442949178885904585225639650117693 m: 10000000000000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8097644 Max relations in full relation-set: Initial matrix: Pruned matrix : 498919 x 499167 Total sieving time: 10.82 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.54 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 11.86 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(62·10157-71)/9 = 6(8)1561<158> = 99195219782129<14> · 862777452673465967877176411389<30> · C114
C114 = P35 · P80
P35 = 52297659149807374462667474009984713<35>
P80 = 15391374265113706485561084794199787764149587902549858512746210928097010187565677<80>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 804932845164033586036914469028264065136979055479450569674957239025392866722070247914821612289988269570817453495701 (114 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8562617314 Step 1 took 2683ms Step 2 took 1934ms ********** Factor found in step 2: 52297659149807374462667474009984713 Found probable prime factor of 35 digits: 52297659149807374462667474009984713 Probable prime cofactor 15391374265113706485561084794199787764149587902549858512746210928097010187565677 has 80 digits
(62·10193-71)/9 = 6(8)1921<194> = 75960033942817<14> · 4397607999596779171<19> · 369309395407669463317213<24> · 1171702087614980824891741<25> · C114
C114 = P37 · P39 · P39
P37 = 2525698696521822456119491163260313393<37>
P39 = 256813952710105392622923287549523616069<39>
P39 = 734750347974042448663022462026007717303<39>
Number: 68881_193 N=476584546263894187249410686004100765778612480514835230007919231006638024959787696980937702139804608084591272660451 ( 114 digits) Divisors found: r1=2525698696521822456119491163260313393 r2=256813952710105392622923287549523616069 r3=734750347974042448663022462026007717303 Version: Total time: 15.21 hours. Scaled time: 36.34 units (timescale=2.389). Factorization parameters were as follows: name: 68881_193 n: 476584546263894187249410686004100765778612480514835230007919231006638024959787696980937702139804608084591272660451 skew: 81967.32 # norm 9.82e+15 c5: 8820 c4: 2345585976 c3: -323570539152345 c2: -15362443811670735002 c1: 597776664594248966729850 c0: 21149383241086351023669060501 # alpha -6.44 Y1: 162832733239 Y0: -8841660780460233148288 # Murphy_E 6.11e-10 # M 113143934203780989554909325109184190545377095444258272813552631118687650210735975240448943877806470142275656860495 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9462558 Max relations in full relation-set: Initial matrix: Pruned matrix : 455180 x 455428 Polynomial selection time: 1.15 hours. Total sieving time: 12.32 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.43 hours. Time per square root: 0.62 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 15.21 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10156+41)/9 = 7(4)1559<157> = 3 · 49722859553004683571304633082687<32> · C125
C125 = P39 · P86
P39 = 977449831415406822625837597217701697963<39>
P86 = 51057608111162517212283211587392025819225649128369502205593083124860984531588715088543<86>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 49906250440729710419014031070881432285557829279347790059994308543147408208496821187368869362262186554536134835916248987737909 (125 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4701809730 Step 1 took 3299ms ********** Factor found in step 1: 977449831415406822625837597217701697963 Found probable prime factor of 39 digits: 977449831415406822625837597217701697963 Probable prime cofactor 51057608111162517212283211587392025819225649128369502205593083124860984531588715088543 has 86 digits
By Sinkiti Sibata / Msieve / Nov 11, 2009
(62·10151-71)/9 = 6(8)1501<152> = 331 · 127037 · 11400881 · 134503558337<12> · C127
C127 = P53 · P74
P53 = 12183800517956357535603106021528312450021649863093099<53>
P74 = 87687157226222913211851853713756716074490652421247217538196733958337598941<74>
Number: 68881_151 N=1068362831630975289536719380978717933839318138065193388152189421002793725428131445533649250405126709847471149909608867206808159 ( 127 digits) SNFS difficulty: 153 digits. Divisors found: r1=12183800517956357535603106021528312450021649863093099 (pp53) r2=87687157226222913211851853713756716074490652421247217538196733958337598941 (pp74) Version: Msieve-1.40 Total time: 24.61 hours. Scaled time: 51.14 units (timescale=2.078). Factorization parameters were as follows: name: 68881_151 n: 1068362831630975289536719380978717933839318138065193388152189421002793725428131445533649250405126709847471149909608867206808159 m: 2000000000000000000000000000000 deg: 5 c5: 155 c0: -568 skew: 1.30 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 451516 x 451764 Total sieving time: 23.54 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.71 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,153.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 24.61 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve, GMP-ECM / Nov 11, 2009
(62·10154-71)/9 = 6(8)1531<155> = 43 · 374993 · 2810836267<10> · 11225367031078217<17> · C123
C123 = P50 · P73
P50 = 59456498419297853938720187564291652786173012200777<50>
P73 = 2277309913700930235171299438349941993910174833496615439903369397888974873<73>
Number: 68881_154 N=135400873284210690693774015755123458723863999599882657194440727495833755486367006735978429661363061336140811098682184076321 ( 123 digits) SNFS difficulty: 156 digits. Divisors found: r1=59456498419297853938720187564291652786173012200777 (pp50) r2=2277309913700930235171299438349941993910174833496615439903369397888974873 (pp73) Version: Msieve v. 1.43 Total time: 23.11 hours. Scaled time: 23.09 units (timescale=0.999). Factorization parameters were as follows: n: 135400873284210690693774015755123458723863999599882657194440727495833755486367006735978429661363061336140811098682184076321 m: 10000000000000000000000000000000 deg: 5 c5: 31 c0: -355 skew: 1.63 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 506553 x 506780 Total sieving time: 22.27 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.61 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.11 hours. --------- CPU info (if available) ----------
(67·10177+41)/9 = 7(4)1769<178> = 32 · 13 · 29 · 83 · 4273 · 5393 · 5722060324567079183<19> · 151018584602920158933747156833<30> · C118
C118 = P32 · P86
P32 = 22758430372083446855719889404943<32>
P86 = 58328645933672237511735506021370981038299449338001585648578106455857959995279721987707<86>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1327468427179387889781842707701047813219909890609691053184956887763212589049476886379634400599684315962049865391035701 (118 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3389415600 Step 1 took 35225ms Step 2 took 12183ms ********** Factor found in step 2: 22758430372083446855719889404943 Found probable prime factor of 32 digits: 22758430372083446855719889404943 Probable prime cofactor 58328645933672237511735506021370981038299449338001585648578106455857959995279721987707 has 86 digits
By matsui / Msieve / Nov 11, 2009
9·10229-1 = 8(9)229<230> = 197 · 208440677 · 1189638653569<13> · 1894742524089853<16> · 81036479966432843<17> · 49931612314311537707693<23> · C153
C153 = P41 · P55 · P57
P41 = 67387210716432592896081650429078156564311<41>
P55 = 6243050577365052581815882169888181821426803805681795893<55>
P57 = 571212953652346708852367194795436478812329554530967996239<57>
N=240310297661166400485936362786332361583251738596432632828490772305058814102347092398830258825622814264893962996338765698926236641973725988355663176866797 ( 153 digits) Divisors found: r1=67387210716432592896081650429078156564311 (pp41) r2=6243050577365052581815882169888181821426803805681795893 (pp55) r3=571212953652346708852367194795436478812329554530967996239 (pp57) Version: Msieve v. 1.43 Total time: 251.99 hours. Scaled time: 435.68 units (timescale=1.729). Factorization parameters were as follows: name: 89999_229 n: 240310297661166400485936362786332361583251738596432632828490772305058814102347092398830258825622814264893962996338765698926236641973725988355663176866797 skew: 767614.43 # norm 1.10e+21 c5: 5687280 c4: -1576344828224 c3: -15992040188510426116 c2: 551458288805369004819659 c1: 3133393285152216531272566657368 c0: 15877934132636447372734593052780585 # alpha -6.25 Y1: 421186069282110373 Y0: -133405467847610273238880604564 # Murphy_E 3.57e-12 # M 94019805174926964203307818923509292211349668657206486672204198932322380976076648921267349291638710915588954585022947785470799284727337408767453363616776 type: gnfs rlim: 24400000 alim: 24400000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 1600000 Factor base limits: 24400000/24400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [12200000, 45800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 4602695 x 4602923 Total sieving time: 218.64 hours. Total relation processing time: 0.36 hours. Matrix solve time: 28.28 hours. Time per square root: 4.71 hours. Prototype def-par.txt line would be: gnfs,152,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,24400000,24400000,29,29,58,58,2.6,2.6,100000 total time: 251.99 hours.
c153 is the largest composite number which was factored by gnfs in our tables so far. Congratulations!
By Dmitry Domanov / GGNFS/msieve / Nov 11, 2009
(65·10156+7)/9 = 7(2)1553<157> = 103 · 5987 · C152
C152 = P34 · P45 · P73
P34 = 7031297053478820252836704940982133<34>
P45 = 216618954992476495307119418561129767797475183<45>
P73 = 7689400150761544910067260025642464616112812856275284452144717121553857737<73>
Number: s152 N=11711819333835319928165105661331302323679010383699021378394648311182679336332640173810606187552354084695192694563499592518778100483445883917131490757843 ( 152 digits) SNFS difficulty: 159 digits. Divisors found: r1=7031297053478820252836704940982133 (pp34) r2=216618954992476495307119418561129767797475183 (pp45) r3=7689400150761544910067260025642464616112812856275284452144717121553857737 (pp73) Version: Msieve-1.40 Total time: 20.84 hours. Scaled time: 39.70 units (timescale=1.905). Factorization parameters were as follows: n: 11711819333835319928165105661331302323679010383699021378394648311182679336332640173810606187552354084695192694563499592518778100483445883917131490757843 m: 20000000000000000000000000000000 deg: 5 c5: 325 c0: 112 skew: 0.81 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 563522 x 563750 Total sieving time: 19.98 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.39 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,159.000,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 20.84 hours. --------- CPU info (if available) ----------
By Lionel Debroux + Jeff Gilchrist / ggnfs + msieve / Nov 10, 2009
(16·10218-7)/9 = 1(7)218<219> = 3 · 31 · 47803226827<11> · 4200791891903<13> · C193
C193 = P84 · P110
P84 = 268323355950355689735829355470693132255531404134917945907444149722706588875965691187<84>
P110 = 35477063645140320608508880041657003639745603152097560923338385031351604960423622458603280891900739184876928587<110>
* Sieving with ggnfs-lasieve4I14e on the RSALS grid * Relation filtering and matrix creation by Lionel Debroux * Lanczos iteration and square root phase by Jeff Gilchrist: Msieve v. 1.43 Sat Nov 7 06:20:12 2009 random seeds: 0a61ba43 4d857a70 factoring 9519324776528409561729990009646664138683276667349926474618191233610006802875690133653956702500176615466439936026117646551454778085624851090212971043848299225331138444034552307364883241094262769 (193 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (193-digit input) R0: -2000000000000000000000000000000000000 R1: 1 A0: -7 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 25 skew 0.81, size 8.982341e-11, alpha 0.442034, combined = 3.092508e-12 commencing square root phase reading relations for dependency 1 read 2344667 cycles cycles contain 6788734 unique relations read 6788734 relations multiplying 6788734 relations multiply complete, coefficients have about 194.54 million bits initial square root is modulo 9585991 reading relations for dependency 2 read 2347128 cycles cycles contain 6786766 unique relations read 6786766 relations multiplying 6786766 relations multiply complete, coefficients have about 194.49 million bits initial square root is modulo 9541993 reading relations for dependency 3 read 2345872 cycles cycles contain 6789410 unique relations read 6789410 relations multiplying 6789410 relations multiply complete, coefficients have about 194.56 million bits initial square root is modulo 9600571 reading relations for dependency 4 read 2346398 cycles cycles contain 6788602 unique relations read 6788602 relations multiplying 6788602 relations multiply complete, coefficients have about 194.54 million bits initial square root is modulo 9582763 reading relations for dependency 5 read 2346536 cycles cycles contain 6786192 unique relations read 6786192 relations multiplying 6786192 relations multiply complete, coefficients have about 194.48 million bits initial square root is modulo 9533137 sqrtTime: 9409 prp84 factor: 268323355950355689735829355470693132255531404134917945907444149722706588875965691187 prp110 factor: 35477063645140320608508880041657003639745603152097560923338385031351604960423622458603280891900739184876928587 elapsed time 02:36:51
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 10, 2009
(22·10168+17)/3 = 7(3)1679<169> = 132 · 41 · 8713 · 13669 · 214273369 · 114606497028610906462852186626440387<36> · C114
C114 = P40 · P74
P40 = 4177882563148851956956378400719707432499<40>
P74 = 86614926782716481655642989173611606205822555745723844164409561209012769799<74>
Number: g114 N=361866992313925679835060995464419229628238498308302974917150353218753381622582951726188164535961708450542818297701 ( 114 digits) Divisors found: r1=4177882563148851956956378400719707432499 (pp40) r2=86614926782716481655642989173611606205822555745723844164409561209012769799 (pp74) Version: Msieve-1.40 Total time: 18.28 hours. Scaled time: 34.22 units (timescale=1.872). Factorization parameters were as follows: # Murphy_E = 6.914749e-10, selected by Erik Branger n: 361866992313925679835060995464419229628238498308302974917150353218753381622582951726188164535961708450542818297701 Y0: -9358848905036098722083 Y1: 1217111908793 c0: 250679101103598290355518496 c1: -98749734681377813022512 c2: -1818902650774914967 c3: -83088339013152 c4: 558203372 c5: 5040 skew: 74097.95 type: gnfs # selected mechanically rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 421885 x 422119 Total sieving time: 17.91 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.23 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.5,2.5,100000 total time: 18.28 hours. --------- CPU info (if available) ----------
(65·10184+61)/9 = 7(2)1839<185> = C185
C185 = P79 · P106
P79 = 7416636363322081411734736677307481195492064107754843900863362332033982448906537<79>
P106 = 9737867502765395606014252796988801940512562554168295027040851239051448736911790559819965758531428016050317<106>
Number: s185 N=72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 185 digits) SNFS difficulty: 186 digits. Divisors found: r1=7416636363322081411734736677307481195492064107754843900863362332033982448906537 (pp79) r2=9737867502765395606014252796988801940512562554168295027040851239051448736911790559819965758531428016050317 (pp106) Version: Msieve-1.40 Total time: 356.27 hours. Scaled time: 332.76 units (timescale=0.934). Factorization parameters were as follows: n: 72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 m: 10000000000000000000000000000000000000 deg: 5 c5: 13 c0: 122 skew: 1.56 type: snfs lss: 1 rlim: 8900000 alim: 8900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 8900000/8900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4450000, 8550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1689410 x 1689637 Total sieving time: 349.66 hours. Total relation processing time: 0.66 hours. Matrix solve time: 5.48 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: snfs,186.000,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000 total time: 356.27 hours. --------- CPU info (if available) ----------
(59·10162+31)/9 = 6(5)1619<163> = 11839 · C159
C159 = P64 · P96
P64 = 1603806001192770510753527225209719940802414193940206966754019963<64>
P96 = 345257123130058654867239834949430629892606823120856523120868703933491053735726127484325472092987<96>
Number: s159 N=553725446030539366125141950802901896744282080881455828664207750279209017278110951563101237904853075053260879766496794962036958827228275661420352694953590299481 ( 159 digits) SNFS difficulty: 164 digits. Divisors found: r1=1603806001192770510753527225209719940802414193940206966754019963 (pp64) r2=345257123130058654867239834949430629892606823120856523120868703933491053735726127484325472092987 (pp96) Version: Msieve-1.40 Total time: 42.53 hours. Scaled time: 77.11 units (timescale=1.813). Factorization parameters were as follows: n: 553725446030539366125141950802901896744282080881455828664207750279209017278110951563101237904853075053260879766496794962036958827228275661420352694953590299481 m: 200000000000000000000000000000000 deg: 5 c5: 1475 c0: 248 skew: 0.70 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1950000, 4450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 832432 x 832658 Total sieving time: 41.20 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.90 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,164.000,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 42.53 hours. --------- CPU info (if available) ----------
(67·10176-31)/9 = 7(4)1751<177> = 3 · 13 · 71 · C174
C174 = P38 · C137
P38 = 14585106125382471096943606647246369289<38>
C137 = [18433157929261372543020550729674096547707466849046376880307345015073860397953606708332537812839756446385684607720942028809690211884235201<137>]
Factor=14585106125382471096943606647246369289 Method=ECM B1=11000000 Sigma=2392920153
(22·10159-7)/3 = 7(3)1581<160> = 13967 · C156
C156 = P45 · P112
P45 = 324485775047405152706505180736142372790996977<45>
P112 = 1618089837178662448363775067491171510470582401491581751100635227165937052536156327577009094712259852356951106509<112>
N=525047134913247893845015632085153098971384931147227989785446648051359156106059521252476074556693157681200925992219756091740053936660222906374549533424023293 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: r1=324485775047405152706505180736142372790996977 (pp45) r2=1618089837178662448363775067491171510470582401491581751100635227165937052536156327577009094712259852356951106509 (pp112) Version: Msieve-1.40 Total time: 18.84 hours. Scaled time: 35.27 units (timescale=1.872). Factorization parameters were as follows: n: 525047134913247893845015632085153098971384931147227989785446648051359156106059521252476074556693157681200925992219756091740053936660222906374549533424023293 m: 100000000000000000000000000000000 deg: 5 c5: 11 c0: -35 skew: 1.26 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 637822 x 638049 Total sieving time: 17.98 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.52 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 18.84 hours. --------- CPU info (if available) ----------
(22·10180-7)/3 = 7(3)1791<181> = 277 · C179
C179 = P38 · C141
P38 = 28341234128475964035151410109192458499<38>
C141 = [934120491618255487715617124498006305942083239924591056032626276482155278960222427194169266237177630746177989763840285711539332572356417301997<141>]
Factor=28341234128475964035151410109192458499 Method=ECM B1=11000000 Sigma=413036558
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 10, 2009
(64·10154+17)/9 = 7(1)1533<155> = 7 · 29944451 · 99126724489936082314891547<26> · C121
C121 = P36 · P85
P36 = 371458155915584869438887303244455043<36>
P85 = 9213452798851581780246903010130941751346807705140375743997570945393621607222482291029<85>
Number: 71113_154 N=3422412186276692664840006343775380636492433642471949424208317432860971893505957363340221351729755835795279923807232709247 ( 121 digits) SNFS difficulty: 156 digits. Divisors found: r1=371458155915584869438887303244455043 r2=9213452798851581780246903010130941751346807705140375743997570945393621607222482291029 Version: Total time: 9.13 hours. Scaled time: 21.70 units (timescale=2.377). Factorization parameters were as follows: n: 3422412186276692664840006343775380636492433642471949424208317432860971893505957363340221351729755835795279923807232709247 m: 20000000000000000000000000000000 deg: 5 c5: 1 c0: 85 skew: 2.43 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8251407 Max relations in full relation-set: Initial matrix: Pruned matrix : 418737 x 418985 Total sieving time: 8.36 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.39 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 9.13 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(26·10154-11)/3 = 8(6)1533<155> = 71 · 9070459 · 259328111441557<15> · C132
C132 = P53 · P79
P53 = 99846047824272537592965345005720564798732938551338279<53>
P79 = 5197374408355423148064024399326141532315371063525619734573070180253227577341089<79>
Number: 86663_154 N=518937293737305764742350084321901012525716106131552754160789873608663212996406969680024139053939523745253009213500521776057405245831 ( 132 digits) SNFS difficulty: 156 digits. Divisors found: r1=99846047824272537592965345005720564798732938551338279 r2=5197374408355423148064024399326141532315371063525619734573070180253227577341089 Version: Total time: 10.11 hours. Scaled time: 24.03 units (timescale=2.376). Factorization parameters were as follows: n: 518937293737305764742350084321901012525716106131552754160789873608663212996406969680024139053939523745253009213500521776057405245831 m: 10000000000000000000000000000000 deg: 5 c5: 13 c0: -55 skew: 1.33 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7809905 Max relations in full relation-set: Initial matrix: Pruned matrix : 491291 x 491539 Total sieving time: 9.02 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.50 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 10.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(61·10155-43)/9 = 6(7)1543<156> = 19207 · 8129724299<10> · C142
C142 = P50 · P93
P50 = 10773558329235854559383288960393828305859609444921<50>
P93 = 402895859408850435228560980284998721882290483647477062554586284734865868390478708391490598441<93>
Number: 67773_155 N=4340622041948858448170164123031439379962172720964831379039893892595501831032998542728524811238685147412778859492166572369332930590658117968161 ( 142 digits) SNFS difficulty: 156 digits. Divisors found: r1=10773558329235854559383288960393828305859609444921 r2=402895859408850435228560980284998721882290483647477062554586284734865868390478708391490598441 Version: Total time: 12.33 hours. Scaled time: 29.14 units (timescale=2.363). Factorization parameters were as follows: n: 4340622041948858448170164123031439379962172720964831379039893892595501831032998542728524811238685147412778859492166572369332930590658117968161 m: 10000000000000000000000000000000 deg: 5 c5: 61 c0: -43 skew: 0.93 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8018085 Max relations in full relation-set: Initial matrix: Pruned matrix : 546740 x 546988 Total sieving time: 11.04 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.66 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 12.33 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10154+41)/9 = 7(4)1539<155> = 11800182871<11> · 524297866455971<15> · C131
C131 = P59 · P72
P59 = 13258140745590103120897332331500375538360937115782994093187<59>
P72 = 907575659674699981238661788307594336802623003262472252087994176094758447<72>
Number: 74449_154 N=12032765833238956496135533051537246750802755299151411853583075126019010073293713788119609205211450801525502233723112988192573400589 ( 131 digits) SNFS difficulty: 156 digits. Divisors found: r1=13258140745590103120897332331500375538360937115782994093187 r2=907575659674699981238661788307594336802623003262472252087994176094758447 Version: Total time: 14.37 hours. Scaled time: 34.37 units (timescale=2.392). Factorization parameters were as follows: n: 12032765833238956496135533051537246750802755299151411853583075126019010073293713788119609205211450801525502233723112988192573400589 m: 10000000000000000000000000000000 deg: 5 c5: 67 c0: 410 skew: 1.44 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8669259 Max relations in full relation-set: Initial matrix: Pruned matrix : 493382 x 493630 Total sieving time: 13.16 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.53 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 14.37 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Erik Branger / GGNFS, Msieve / Nov 10, 2009
(22·10161-7)/3 = 7(3)1601<162> = 8988583 · 1473843083<10> · 43685008931<11> · 792899578558552316971997<24> · C112
C112 = P47 · P65
P47 = 97195054545007868780229153979999042837726017679<47>
P65 = 16442360346075195163255521245258464415073491367475255299473133943<65>
Number: 73331_161 N=1598116110685453051884152389093381063570392044919000755814313712121566721546816342185364254479151650919152978297 ( 112 digits) Divisors found: r1=97195054545007868780229153979999042837726017679 (pp47) r2=16442360346075195163255521245258464415073491367475255299473133943 (pp65) Version: Msieve v. 1.43 Total time: 22.37 hours. Scaled time: 21.93 units (timescale=0.980). Factorization parameters were as follows: name: 73331_161 n: 1598116110685453051884152389093381063570392044919000755814313712121566721546816342185364254479151650919152978297 skew: 18801.73 # norm 1.08e+016 c5: 41040 c4: -11257294188 c3: -442650124089326 c2: 2964052129907482063 c1: -8608213059353517719384 c0: 16835718387366714053310855 # alpha -6.76 Y1: 655947863939 Y0: -2080116740162367855658 # Murphy_E 8.38e-010 # M 1271251820443806534114929805329990668883291174007574987231604085600016271988485379380744146412786916036972965427 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 439313 x 439538 Polynomial selection time: 1.84 hours. Total sieving time: 19.64 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.46 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.37 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 10, 2009
(83·10189+7)/9 = 9(2)1883<190> = 19 · C189
C189 = P34 · C155
P34 = 5990378735789383269628097762672663<34>
C155 = [81026615906465431938041626994478818515681338940598425649469860858583139654675179162239812855902595745749467893554470062276252107338980178289378117466811059<155>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3355232220 Step 1 took 69614ms ********** Factor found in step 1: 5990378735789383269628097762672663 Found probable prime factor of 34 digits: 5990378735789383269628097762672663 Composite cofactor 81026615906465431938041626994478818515681338940598425649469860858583139654675179162239812855902595745749467893554470062276252107338980178289378117466811059 has 155 digits
(22·10192+17)/3 = 7(3)1919<193> = 13 · 19 · 47 · C189
C189 = P34 · C156
P34 = 1065586090211622938492027332760513<34>
C156 = [592813482260539816573285099951893028539801844453071033975475976700379685000061841730286610971791510396786665189169314447668289344543691705287196946935621267<156>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=485063552 Step 1 took 69609ms Step 2 took 21858ms ********** Factor found in step 2: 1065586090211622938492027332760513 Found probable prime factor of 34 digits: 1065586090211622938492027332760513 Composite cofactor 592813482260539816573285099951893028539801844453071033975475976700379685000061841730286610971791510396786665189169314447668289344543691705287196946935621267 has 156 digits
By Serge Batalov / GMP-ECM / Nov 10, 2009
(62·10198-71)/9 = 6(8)1971<199> = 18090491 · 96259713961<11> · 292004497230977<15> · C167
C167 = P29 · C138
P29 = 20703814083710017434203941181<29>
C138 = [654356407770923648465491093265011628500438838155395019040655717408451346641013314886383730589549523068829008515207175565727024831982591463<138>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=4244008742 Step 1 took 7041ms Step 2 took 3980ms ********** Factor found in step 2: 20703814083710017434203941181 Found probable prime factor of 29 digits: 20703814083710017434203941181 Composite cofactor has 138 digits
Factorizations of 688...881 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 9, 2009
(59·10168+31)/9 = 6(5)1679<169> = 200353029081433643431<21> · C149
C149 = P36 · P114
P36 = 163345949950143193676363320218134933<36>
P114 = 200311193457135555149111399446648559579409439169411343631410357357163826821990473660434904444886971998129104305533<114>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2903774802 Step 1 took 47356ms Step 2 took 16435ms ********** Factor found in step 2: 163345949950143193676363320218134933 Found probable prime factor of 36 digits: 163345949950143193676363320218134933 Probable prime cofactor 200311193457135555149111399446648559579409439169411343631410357357163826821990473660434904444886971998129104305533 has 114 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 9, 2009
(64·10153+71)/9 = 7(1)1529<154> = 3 · 72 · 107 · 5851141 · 28626107 · 28548860107<11> · C125
C125 = P61 · P65
P61 = 5614634034614379921533744369479856200331498912590870991988599<61>
P65 = 16839270432055405826800110526516344410089090140539090333981785021<65>
Number: 71119_153 N=94546340885893875775565511755890916652169251907705803092120211847812361089925446153997345174676984566004539608391284500975579 ( 125 digits) SNFS difficulty: 156 digits. Divisors found: r1=5614634034614379921533744369479856200331498912590870991988599 r2=16839270432055405826800110526516344410089090140539090333981785021 Version: Total time: 12.25 hours. Scaled time: 29.09 units (timescale=2.374). Factorization parameters were as follows: n: 94546340885893875775565511755890916652169251907705803092120211847812361089925446153997345174676984566004539608391284500975579 m: 20000000000000000000000000000000 deg: 5 c5: 1 c0: 3550 skew: 5.13 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8225922 Max relations in full relation-set: Initial matrix: Pruned matrix : 512102 x 512350 Total sieving time: 11.13 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.59 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 12.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(59·10152+13)/9 = 6(5)1517<153> = 3 · 1489 · 22639 · 11683159 · 1328096507<10> · 5450109209<10> · C119
C119 = P56 · P64
P56 = 59178572867084914379468698280517827432559633138291908257<56>
P64 = 1295318881695982523785877985646207549117537913160065454433420981<64>
Number: 65557_152 N=76655122826556645524074443634510586228441763475339929480344042662902252605878456624030665388478094256481641219110940117 ( 119 digits) SNFS difficulty: 153 digits. Divisors found: r1=59178572867084914379468698280517827432559633138291908257 r2=1295318881695982523785877985646207549117537913160065454433420981 Version: Total time: 13.11 hours. Scaled time: 30.41 units (timescale=2.319). Factorization parameters were as follows: n: 76655122826556645524074443634510586228441763475339929480344042662902252605878456624030665388478094256481641219110940117 m: 1000000000000000000000000000000 deg: 5 c5: 5900 c0: 13 skew: 0.29 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8453288 Max relations in full relation-set: Initial matrix: Pruned matrix : 459884 x 460132 Total sieving time: 11.78 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.46 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 13.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(22·10167-7)/3 = 7(3)1661<168> = 673 · 554010851 · 558911987 · 5945695037<10> · 109820016330048359322910570503010931<36> · C103
C103 = P52 · P52
P52 = 1401391479136958593688939741110720276274288575652677<52>
P52 = 3845750104092990927871071735575755688207468194738649<52>
Number: 73331_167 N=5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373 ( 103 digits) Divisors found: r1=1401391479136958593688939741110720276274288575652677 r2=3845750104092990927871071735575755688207468194738649 Version: Total time: 3.55 hours. Scaled time: 8.49 units (timescale=2.390). Factorization parameters were as follows: name: 73331_167 n: 5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373 skew: 4097.75 # norm 1.64e+14 c5: 40320 c4: -1958361504 c3: -17221716378444 c2: 27188414562676651 c1: 33121214055673416898 c0: -33012256189229942644761 # alpha -5.50 Y1: 45693702307 Y0: -42189907306613412250 # Murphy_E 2.46e-09 # M 1997110600840141969487185735223388600956316936391544059751688593970011381357450945414187330994898656216 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1350001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4676874 Max relations in full relation-set: Initial matrix: Pruned matrix : 262876 x 263124 Polynomial selection time: 0.25 hours. Total sieving time: 2.82 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.15 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(65·10153-11)/9 = 7(2)1521<154> = 3 · 19 · 3191 · 30851 · 1993529 · C138
C138 = P46 · P92
P46 = 8594630348195199186618987496491138043989264641<46>
P92 = 75119066309768402960586373080898748135184106551828886169635340771025166138551902760422135897<92>
Number: 72221_153 N=645620607034023065579793268856604425328117343665574488428740228244719430439959533731717952309961769144984088201555673934488542847598917977 ( 138 digits) SNFS difficulty: 156 digits. Divisors found: r1=8594630348195199186618987496491138043989264641 r2=75119066309768402960586373080898748135184106551828886169635340771025166138551902760422135897 Version: Total time: 9.93 hours. Scaled time: 23.68 units (timescale=2.385). Factorization parameters were as follows: n: 645620607034023065579793268856604425328117343665574488428740228244719430439959533731717952309961769144984088201555673934488542847598917977 m: 10000000000000000000000000000000 deg: 5 c5: 13 c0: -220 skew: 1.76 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8428433 Max relations in full relation-set: Initial matrix: Pruned matrix : 394554 x 394802 Total sieving time: 9.12 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.34 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 9.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10153-13)/9 = 7(4)1523<154> = 3 · 73 · 599 · 6375191 · C142
C142 = P69 · P74
P69 = 630815937238830387707045431729321900960152842180793375602167922900551<69>
P74 = 14111250397994772249206335757054905306524045262423288625705324246219742983<74>
Number: 74443_153 N=8901601645422890581068982807068783308967792576347016429003625587988536935014749786660720721784929209055910888848171892379052067704627089083633 ( 142 digits) SNFS difficulty: 156 digits. Divisors found: r1=630815937238830387707045431729321900960152842180793375602167922900551 r2=14111250397994772249206335757054905306524045262423288625705324246219742983 Version: Total time: 12.11 hours. Scaled time: 28.63 units (timescale=2.364). Factorization parameters were as follows: n: 8901601645422890581068982807068783308967792576347016429003625587988536935014749786660720721784929209055910888848171892379052067704627089083633 m: 10000000000000000000000000000000 deg: 5 c5: 67 c0: -1300 skew: 1.81 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8501534 Max relations in full relation-set: Initial matrix: Pruned matrix : 447986 x 448234 Total sieving time: 11.02 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.42 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 12.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(22·10154-7)/3 = 7(3)1531<155> = 29 · 9311791740963623557<19> · C135
C135 = P38 · P97
P38 = 65155738369339103941331630969006793233<38>
P97 = 4167902040813106094398057851557338570627756214904008442532444406520855216370513619157114999436019<97>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 271562734920253252721963146431377932001653050860753475858443777890484893804596955592971171231575888296804819144102887980271374745659427 (135 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2666678006 Step 1 took 3359ms Step 2 took 2155ms ********** Factor found in step 2: 65155738369339103941331630969006793233 Found probable prime factor of 38 digits: 65155738369339103941331630969006793233 Probable prime cofactor 4167902040813106094398057851557338570627756214904008442532444406520855216370513619157114999436019 has 97 digits
By Erik Branger / GGNFS, Msieve / Nov 9, 2009
(59·10155+13)/9 = 6(5)1547<156> = 32 · 72 · 312 · C151
C151 = P37 · P114
P37 = 3250014503184800505033627409506459859<37>
P114 = 475950980723268548624810965719672919720034989274501070593621650713069860521169953430677781461307623085322624985823<114>
Number: 65557_155 N=1546847590155652194203306635792637477390462871856261678371583728107190770091518320050107374818736991077311180378421843165909366791384530842436793578957 ( 151 digits) SNFS difficulty: 156 digits. Divisors found: r1=3250014503184800505033627409506459859 (pp37) r2=475950980723268548624810965719672919720034989274501070593621650713069860521169953430677781461307623085322624985823 (pp114) Version: Msieve v. 1.43 Total time: 19.02 hours. Scaled time: 19.44 units (timescale=1.022). Factorization parameters were as follows: n: 1546847590155652194203306635792637477390462871856261678371583728107190770091518320050107374818736991077311180378421843165909366791384530842436793578957 m: 10000000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 456331 x 456559 Total sieving time: 18.33 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.47 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 19.02 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve / Nov 9, 2009
(26·10188-11)/3 = 8(6)1873<189> = C189
C189 = P62 · P128
P62 = 10259291107232450345127225587209152871731029421866962805442781<62>
P128 = 84476272055063943325183359642649984717306070885700898533399372021753856257495399877737223250194400158255639618255431995131856723<128>
N=866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 189 digits) SNFS difficulty: 190 digits. Divisors found: r1=10259291107232450345127225587209152871731029421866962805442781 (pp62) r2=84476272055063943325183359642649984717306070885700898533399372021753856257495399877737223250194400158255639618255431995131856723 (pp128) Version: Msieve-1.40 Total time: 356.05 hours. Scaled time: 660.47 units (timescale=1.855). Factorization parameters were as follows: n: 866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 50000000000000000000000000000000000000 deg: 5 c5: 208 c0: -275 skew: 1.06 type: snfs lss: 1 rlim: 10600000 alim: 10600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10600000/10600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5300000, 10600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1915479 x 1915705 Total sieving time: 349.52 hours. Total relation processing time: 1.02 hours. Matrix solve time: 4.72 hours. Time per square root: 0.79 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10600000,10600000,28,28,54,54,2.5,2.5,100000 total time: 356.05 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Nov 9, 2009
(59·10173+31)/9 = 6(5)1729<174> = 17 · C173
C173 = P64 · P109
P64 = 4177250313399903945138253417266710121030087934303335833373800887<64>
P109 = 9231453374859386654199536787033338094395429597865246821904001952487028953910042143288170856206510706346989121<109>
Number: n N=38562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150327 ( 173 digits) SNFS difficulty: 176 digits. Divisors found: Mon Nov 09 17:57:11 2009 prp64 factor: 4177250313399903945138253417266710121030087934303335833373800887 Mon Nov 09 17:57:11 2009 prp109 factor: 9231453374859386654199536787033338094395429597865246821904001952487028953910042143288170856206510706346989121 Mon Nov 09 17:57:11 2009 elapsed time 03:30:32 (Msieve 1.43 - dependency 3) Version: GGNFS-0.77.1-20051202-athlon Total time: 116.60 hours. Scaled time: 212.56 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_5_172_9 n: 38562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150327 m: 50000000000000000000000000000000000 deg: 5 c5: 472 c0: 775 skew: 1.10 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3000000, 8200000) Primes: RFBsize:412849, AFBsize:412487, largePrimes:21228147 encountered Relations: rels:21095842, finalFF:563665 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3202566 hash collisions in 24388453 relations Msieve: matrix is 1106425 x 1106655 (295.8 MB) Total sieving time: 115.54 hours. Total relation processing time: 1.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.5,2.5,100000 total time: 116.60 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Nov 8, 2009
(67·10153-31)/9 = 7(4)1521<154> = 7 · 29 · 107 · 1873 · 9283 · 3851031073116400940153<22> · C121
C121 = P37 · P84
P37 = 6384161033655476762880992360445318917<37>
P84 = 801762046385247037048308402141985803146797607769907046767693665075239890836475568119<84>
Number: 74441_153 N=5118578014796569030767959609696286789242595413285599606741445460908841782819618432069526246322988087219996094931712807123 ( 121 digits) SNFS difficulty: 156 digits. Divisors found: r1=6384161033655476762880992360445318917 (pp37) r2=801762046385247037048308402141985803146797607769907046767693665075239890836475568119 (pp84) Version: Msieve-1.40 Total time: 26.48 hours. Scaled time: 26.27 units (timescale=0.992). Factorization parameters were as follows: n: 5118578014796569030767959609696286789242595413285599606741445460908841782819618432069526246322988087219996094931712807123 m: 5000000000000000000000000000000 deg: 5 c5: 536 c0: -775 skew: 1.08 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 517516 x 517745 Total sieving time: 25.51 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.63 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 26.48 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 8, 2009
(22·10167-7)/3 = 7(3)1661<168> = 673 · 554010851 · 558911987 · 5945695037<10> · C138
C138 = P36 · C103
P36 = 109820016330048359322910570503010931<36>
C103 = [5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373<103>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4116852324 Step 1 took 42504ms Step 2 took 14782ms ********** Factor found in step 2: 109820016330048359322910570503010931 Found probable prime factor of 36 digits: 109820016330048359322910570503010931 Composite cofactor 5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373 has 103 digits
By shyguy7129 / GGNFS and Msieve v1.40 / Nov 8, 2009
(65·10170+61)/9 = 7(2)1699<171> = 3 · 79 · 2293 · 140130990851<12> · 3757774694852316444096913<25> · 10144116873340791964390133<26> · C105
C105 = P38 · P68
P38 = 21971222154598869664832900623562106017<38>
P68 = 11323613996205652033225521245915447835096235974204481742262021487883<68>
Yes! My first submitted factors! :D Number: 72229_170 N=248793638703559462811024537742910133006111369698373954144678461344908746356065631383501263120031326892011 ( 105 digits) Divisors found: r1=21971222154598869664832900623562106017 (pp38) r2=11323613996205652033225521245915447835096235974204481742262021487883 (pp68) Version: Msieve-1.40 Total time: 21.65 hours. Scaled time: 38.56 units (timescale=1.781). Factorization parameters were as follows: name: 72229_170 n: 248793638703559462811024537742910133006111369698373954144678461344908746356065631383501263120031326892011 skew: 60992.32 # norm 3.41e+014 c5: 960 c4: 182155542 c3: -5698389781438 c2: -468425103552598334 c1: 10463967835739232401989 c0: -997954568530928284717567 # alpha -5.04 Y1: 30184793243 Y0: -191739245141787164928 # Murphy_E 1.68e-009 # M 14245238078513029591920117460774843530496924943504703352168798349066508904664795693381848673546224366040 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 2 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 282011 x 282259 Total sieving time: 21.07 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.41 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 21.65 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 8, 2009
(67·10181+41)/9 = 7(4)1809<182> = 53 · 911 · 42131 · 4676297 · 8281979 · 141991566527749086929197<24> · 165108482396811425155660189<27> · C110
C110 = P48 · P63
P48 = 121710843248256603777008924948983385611121242357<48>
P63 = 331160752353019654210539187583083132861767802689536904567422471<63>
Number: 74449_181 N=40305854419613099392933000322931607765920560992330095901788930477410295183773700750837580338887703146798804147 ( 110 digits) Divisors found: r1=121710843248256603777008924948983385611121242357 (pp48) r2=331160752353019654210539187583083132861767802689536904567422471 (pp63) Version: Msieve-1.40 Total time: 21.25 hours. Scaled time: 44.16 units (timescale=2.078). Factorization parameters were as follows: name: 74449_181 n: 40305854419613099392933000322931607765920560992330095901788930477410295183773700750837580338887703146798804147 skew: 33186.82 # norm 1.64e+15 c5: 30600 c4: 1047455254 c3: -78351538124717 c2: 129431081918751312 c1: 48327712299484053859320 c0: -514868110317796072713683808 # alpha -6.04 Y1: 654077347 Y0: -1056645576467103752827 # Murphy_E 9.67e-10 # M 15796330503120420793036355885019577620524107447618867199386924482341371764583299519964820756277157127611672118 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 394960 x 395208 Polynomial selection time: 1.51 hours. Total sieving time: 18.66 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.54 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 21.25 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 8, 2009
(65·10151-11)/9 = 7(2)1501<152> = 2632819547<10> · 359828389017095641457<21> · C122
C122 = P46 · P77
P46 = 4707966628617424628297466037653799757180336867<46>
P77 = 16192762768567533085113383462849628534669727951104188819800098462441995657197<77>
Number: 72221_151 N=76234986739534643662491549126650708645656218262843499744778693818048201701410833734282766803893429828567760567175512981799 ( 122 digits) SNFS difficulty: 152 digits. Divisors found: r1=4707966628617424628297466037653799757180336867 r2=16192762768567533085113383462849628534669727951104188819800098462441995657197 Version: Total time: 7.84 hours. Scaled time: 18.42 units (timescale=2.350). Factorization parameters were as follows: n: 76234986739534643662491549126650708645656218262843499744778693818048201701410833734282766803893429828567760567175512981799 m: 1000000000000000000000000000000 deg: 5 c5: 650 c0: -11 skew: 0.44 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7347944 Max relations in full relation-set: Initial matrix: Pruned matrix : 453651 x 453899 Total sieving time: 7.07 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.44 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 7.84 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10151-31)/9 = 7(4)1501<152> = 1193 · 6254113478800077538215938702699113<34> · C115
C115 = P55 · P61
P55 = 8228829892112628636884835633777315487804386047416617137<55>
P61 = 1212517479021868655624024510948004899355487100786836051889177<61>
Number: 74441_151 N=9977600076084199905958097161900099571496695646133438177125099495316432470281666399300303712370663052339771363026249 ( 115 digits) SNFS difficulty: 152 digits. Divisors found: r1=8228829892112628636884835633777315487804386047416617137 r2=1212517479021868655624024510948004899355487100786836051889177 Version: Total time: 9.71 hours. Scaled time: 23.17 units (timescale=2.387). Factorization parameters were as follows: n: 9977600076084199905958097161900099571496695646133438177125099495316432470281666399300303712370663052339771363026249 m: 1000000000000000000000000000000 deg: 5 c5: 670 c0: -31 skew: 0.54 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7894010 Max relations in full relation-set: Initial matrix: Pruned matrix : 428637 x 428885 Total sieving time: 8.86 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.38 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 9.71 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(59·10155+31)/9 = 6(5)1549<156> = 23 · 31674983 · C147
C147 = P35 · P113
P35 = 82384832793625986764249254072567903<35>
P113 = 10922398337410720857723866317273548007359511055401276844847935368467831986721558208027076999570364927664168943417<113>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 899839960732960711222255438670508322602943884295822813523593072688578946213134106435594072781082341661234885691494267087353195443745889379497344551 (147 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3405593309 Step 1 took 4664ms Step 2 took 4649ms ********** Factor found in step 2: 82384832793625986764249254072567903 Found probable prime factor of 35 digits: 82384832793625986764249254072567903 Probable prime cofactor 10922398337410720857723866317273548007359511055401276844847935368467831986721558208027076999570364927664168943417 has 113 digits
(65·10152+7)/9 = 7(2)1513<153> = 3 · 241 · 27347519063<11> · 1725333177913<13> · C128
C128 = P38 · P91
P38 = 10514619222825497091683354104111810879<38>
P91 = 2013483581578352610412684711209758302904144260026256812619717594875763736046702067763469301<91>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 21171013171707276297284205554612886487286809273598944016623603709651069407896630669000876694960644238838461982364112370634325579 (128 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6792566349 Step 1 took 4196ms Step 2 took 5756ms ********** Factor found in step 2: 10514619222825497091683354104111810879 Found probable prime factor of 38 digits: 10514619222825497091683354104111810879 Probable prime cofactor 2013483581578352610412684711209758302904144260026256812619717594875763736046702067763469301 has 91 digits
By Dmitry Domanov / GGNFS/msieve / Nov 7, 2009
(65·10155+7)/9 = 7(2)1543<156> = 3 · 9007 · 1081789 · 8911250809018619<16> · 142782376236086436331<21> · C110
C110 = P52 · P58
P52 = 7392507812931635296203627398671630725771305605141003<52>
P58 = 2626768526217301127090637292882797495139799918052500317901<58>
N=19418406852824315665554762157458974239206989197334760372678432542908053342430535858752210495531479837429994703 ( 110 digits) Divisors found: r1=7392507812931635296203627398671630725771305605141003 (pp52) r2=2626768526217301127090637292882797495139799918052500317901 (pp58) Version: Msieve-1.40 Total time: 15.75 hours. Scaled time: 31.01 units (timescale=1.969). Factorization parameters were as follows: name: g110 n: 19418406852824315665554762157458974239206989197334760372678432542908053342430535858752210495531479837429994703 skew: 29767.14 # norm 3.00e+015 c5: 16560 c4: 3825657986 c3: 19567041570883 c2: -2418931829640980736 c1: 30620557498708644779402 c0: -74115411399096749338291340 # alpha -6.43 Y1: 203416736417 Y0: -1032349374499642407141 # Murphy_E 1.04e-009 # M 4165853837495179387505368821618801681724638475605636957434987794044042429718757847059943296685210951731399213 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 391563 x 391788 Polynomial selection time: 1.42 hours. Total sieving time: 13.33 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.44 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 15.75 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 7, 2009
(62·10150-17)/9 = 6(8)1497<151> = 19 · 96457 · 54014052471186550121<20> · C125
C125 = P61 · P64
P61 = 7152115416516333263116824921083071837423457619295848531485227<61>
P64 = 9730172787565460411900025374086137070224048862984493336589028567<64>
Number: 68887_150 N=69591318799314634387182087997398280009882822525775350033620638088104875270633081216732421635499310384553331373497069641479709 ( 125 digits) SNFS difficulty: 151 digits. Divisors found: r1=7152115416516333263116824921083071837423457619295848531485227 (pp61) r2=9730172787565460411900025374086137070224048862984493336589028567 (pp64) Version: Msieve-1.40 Total time: 17.64 hours. Scaled time: 36.65 units (timescale=2.078). Factorization parameters were as follows: name: 68887_150 n: 69591318799314634387182087997398280009882822525775350033620638088104875270633081216732421635499310384553331373497069641479709 m: 1000000000000000000000000000000 deg: 5 c5: 62 c0: -17 skew: 0.77 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 407535 x 407783 Total sieving time: 16.87 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.57 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 17.64 hours. --------- CPU info (if available) ----------
(83·10190+7)/9 = 9(2)1893<191> = 3 · C191
C191 = P86 · P105
P86 = 31409756452905266401572874729021762403039657905422482493898473135389505774302363727127<86>
P105 = 978700385239610967893947803706059231473265933390451927236545688516093764875631745635126600791366581119683<105>
Number: 92223_190 N=30740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 ( 191 digits) SNFS difficulty: 191 digits. Divisors found: r1=31409756452905266401572874729021762403039657905422482493898473135389505774302363727127 (pp86) r2=978700385239610967893947803706059231473265933390451927236545688516093764875631745635126600791366581119683 (pp105) Version: Msieve v. 1.42 Total time: 12.72 hours. Scaled time: 13.02 units (timescale=1.024). Factorization parameters were as follows: name: 92223_190 n: 30740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 m: 100000000000000000000000000000000000000 deg: 5 c5: 83 c0: 7 skew: 0.61 type: snfs lss: 1 rlim: 11100000 alim: 11100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11100000/11100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5550000, 10550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2084496 x 2084721 Total sieving time: 0.00 hours. Total relation processing time: 0.21 hours. Matrix solve time: 11.53 hours. Time per square root: 0.98 hours. Prototype def-par.txt line would be: snfs,191.000,5,0,0,0,0,0,0,0,0,11100000,11100000,28,28,54,54,2.5,2.5,100000 total time: 12.72 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Total of 4 processors activated (19151.19 BogoMIPS). total time: 9 days 1 hour.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 7, 2009
(67·10149+41)/9 = 7(4)1489<150> = 29 · 967 · 10301 · 164117 · 63136961 · 75921228000284137<17> · C112
C112 = P54 · P58
P54 = 658356174664422161569086775878853672793637262114046597<54>
P58 = 4975847405368765597872979135265543799568390928601303262351<58>
Number: 74449_149 N=3275879863512470866831524279102943957767823250262292240603618506109442210271627224143756567808563929798129769547 ( 112 digits) SNFS difficulty: 151 digits. Divisors found: r1=658356174664422161569086775878853672793637262114046597 r2=4975847405368765597872979135265543799568390928601303262351 Version: Total time: 9.16 hours. Scaled time: 21.88 units (timescale=2.390). Factorization parameters were as follows: n: 3275879863512470866831524279102943957767823250262292240603618506109442210271627224143756567808563929798129769547 m: 1000000000000000000000000000000 deg: 5 c5: 67 c0: 410 skew: 1.44 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7095270 Max relations in full relation-set: Initial matrix: Pruned matrix : 381891 x 382139 Total sieving time: 8.45 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.31 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 9.16 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(26·10155-11)/3 = 8(6)1543<156> = 7 · 1279 · 83773 · 865854809489<12> · 1961948617039<13> · 67938871020299<14> · C110
C110 = P53 · P57
P53 = 50356743151076883375850389237566626845654858552124607<53>
P57 = 198824902404933934450436748117874509387381569435016167809<57>
Number: 86663_155 N=10012174542443186661944529159441458449529896878553572027502711511349648695308726206045539833575579812190176063 ( 110 digits) Divisors found: r1=50356743151076883375850389237566626845654858552124607 r2=198824902404933934450436748117874509387381569435016167809 Version: Total time: 9.20 hours. Scaled time: 21.96 units (timescale=2.387). Factorization parameters were as follows: name: 86663_155 n: 10012174542443186661944529159441458449529896878553572027502711511349648695308726206045539833575579812190176063 skew: 19361.44 # norm 7.28e+14 c5: 36960 c4: -373375372 c3: 24010419126067 c2: 188419687096119335 c1: -10703912390072075189035 c0: -9921381275227903704194995 # alpha -5.79 Y1: 308100795223 Y0: -770122196696138062932 # Murphy_E 1.05e-09 # M 6923705748279385336736257457255098262017080868569703732932894391890534226799406036569569582345272734642801167 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7841955 Max relations in full relation-set: Initial matrix: Pruned matrix : 402815 x 403063 Polynomial selection time: 0.80 hours. Total sieving time: 7.42 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.34 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 9.20 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(26·10156-11)/3 = 8(6)1553<157> = 19 · 439 · 4201 · 22108555559<11> · 18897188991137<14> · 19562245823564779<17> · C110
C110 = P54 · P56
P54 = 694703188931333880775047897831384327876136440996742187<54>
P56 = 43561789316255219047093334112623127241673869427391777277<56>
Number: 86663_156 N=30262513953557411191067054802305039488066876688632568417434093173819283820734068340557697961554591668893884799 ( 110 digits) Divisors found: r1=694703188931333880775047897831384327876136440996742187 r2=43561789316255219047093334112623127241673869427391777277 Version: Total time: 8.76 hours. Scaled time: 20.90 units (timescale=2.387). Factorization parameters were as follows: name: 86663_156 n: 30262513953557411191067054802305039488066876688632568417434093173819283820734068340557697961554591668893884799 skew: 46936.13 # norm 2.00e+15 c5: 4800 c4: -1514434876 c3: -32339594241746 c2: 4238527376382421943 c1: -26343690099191295496866 c0: -124555876330930538048212671 # alpha -6.41 Y1: 329728317391 Y0: -1445236780624805468530 # Murphy_E 1.08e-09 # M 26147608521632649352970030633720039196717174907616904289542536532064184713838448536232324936389216869986608630 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1650001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7866072 Max relations in full relation-set: Initial matrix: Pruned matrix : 385170 x 385418 Polynomial selection time: 0.66 hours. Total sieving time: 7.20 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.36 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 8.76 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(64·10151+17)/9 = 7(1)1503<152> = 29 · 283 · 134839 · 172147 · 757057201 · C129
C129 = P56 · P74
P56 = 13630504369805610897121892199912194495690789284130587631<56>
P74 = 36174074472493502044830834515488572039115437822520724375951219171660917333<74>
Number: 71113_151 N=493070880170996278534516753255530271753988214548501769867880630567332323531819123807127232541599603419990823093435241101803308123 ( 129 digits) SNFS difficulty: 152 digits. Divisors found: r1=13630504369805610897121892199912194495690789284130587631 r2=36174074472493502044830834515488572039115437822520724375951219171660917333 Version: Total time: 8.48 hours. Scaled time: 20.14 units (timescale=2.374). Factorization parameters were as follows: n: 493070880170996278534516753255530271753988214548501769867880630567332323531819123807127232541599603419990823093435241101803308123 m: 2000000000000000000000000000000 deg: 5 c5: 20 c0: 17 skew: 0.97 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1000000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7995257 Max relations in full relation-set: Initial matrix: Pruned matrix : 358493 x 358741 Total sieving time: 7.81 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.31 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,50,50,2.4,2.4,100000 total time: 8.48 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 7, 2009
(26·10165-11)/3 = 8(6)1643<166> = 83 · 173 · 6255630651772921<16> · 166231483601086409378491<24> · C123
C123 = P41 · P83
P41 = 24162374121281115547743488148094071736559<41>
P83 = 24021709649431187683343098336454103859214433857791311652928195887896967260267801493<83>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=522846101 Step 1 took 34052ms Step 2 took 13550ms ********** Factor found in step 2: 24162374121281115547743488148094071736559 Found probable prime factor of 41 digits: 24162374121281115547743488148094071736559 Probable prime cofactor 24021709649431187683343098336454103859214433857791311652928195887896967260267801493 has 83 digits
By Erik Branger / GGNFS, Msieve / Nov 6, 2009
(67·10184-31)/9 = 7(4)1831<185> = 317 · 809 · 3547 · 33564732315787<14> · 114897340823411617<18> · 60403131124295658838209997353451<32> · C114
C114 = P48 · P67
P48 = 339804285505812771909306394351621065329986786223<48>
P67 = 1033907895700441246559141545237427637530368994032326666507566286553<67>
Number: 74441_184 N=351326333777306830594696036569012983844843250127802988338902578492097989153379793913822350569995529157766770559319 ( 114 digits) Divisors found: r1=339804285505812771909306394351621065329986786223 (pp48) r2=1033907895700441246559141545237427637530368994032326666507566286553 (pp67) Version: Msieve-1.40 Total time: 23.21 hours. Scaled time: 22.44 units (timescale=0.967). Factorization parameters were as follows: n: 351326333777306830594696036569012983844843250127802988338902578492097989153379793913822350569995529157766770559319 c5: 10800 c4: 1941725750 c3: 81144728246589 c2: -2951244695963751041 c1: 4701141700422248571895 c0: 240834821565109408055254255 Y1: 1235140464791 Y0:-7988311196055664378158 skew: 35675.38 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 525895 x 526143 Total sieving time: 22.16 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.61 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 23.21 hours. --------- CPU info (if available) ----------
By Erik Branger / PFGW / Nov 7, 2009
7·1014436+3 = 7(0)144353<14437> is PRP.
7·1028338+3 = 7(0)283373<28339> is PRP.
7·1032796+3 = 7(0)327953<32797> is PRP.
7·1038079+3 = 7(0)380783<38080> is PRP.
7·1056779+3 = 7(0)567783<56780> is PRP.
7·1091215+3 = 7(0)912143<91216> is PRP.
PRP91216 is the second largest unprovable quasi-repdigit PRP in our tables so far. Congratulations!
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 6, 2009
(64·10176+17)/9 = 7(1)1753<177> = 18122431 · 827630411 · 618217711189847<15> · 51198705749027445793243239875789577253<38> · C109
C109 = P53 · P56
P53 = 27199328739913350726751375837743051073898498013179701<53>
P56 = 55071379802039998793236341692499167334341927807025765323<56>
Number: 71113_176 N=1497904563396310154769792820729281585688689422098966010957032096218297475296578253879252017930370140253308423 ( 109 digits) Divisors found: r1=27199328739913350726751375837743051073898498013179701 r2=55071379802039998793236341692499167334341927807025765323 Version: Total time: 7.39 hours. Scaled time: 17.62 units (timescale=2.385). Factorization parameters were as follows: name: 71113_176 n: 1497904563396310154769792820729281585688689422098966010957032096218297475296578253879252017930370140253308423 skew: 37228.70 # norm 1.29e+15 c5: 6720 c4: 1929577034 c3: -28048451333417 c2: -2581066827369582849 c1: 23728062558893855083337 c0: 189889730972645309855811835 # alpha -6.65 Y1: 294450677543 Y0: -740650055075990989806 # Murphy_E 1.28e-09 # M 406037342834116125047075340806279652058520344301271931613697935723559786272925786257733844006528099117428762 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8123905 Max relations in full relation-set: Initial matrix: Pruned matrix : 371166 x 371414 Polynomial selection time: 0.58 hours. Total sieving time: 5.59 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.30 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 7.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10147-31)/9 = 7(4)1461<148> = 72 · 173 · 1007857 · C138
C138 = P49 · P90
P49 = 3543243945117669927050599146096106098149924350703<49>
P90 = 245917899090014024113532245535836223215750238360235398952104060053448988922276779413690323<90>
Number: 74441_147 N=871347106946750342151715673907223653960159603609685187432378536350270402789209264962140023280103965088548237737624848609941132704889347069 ( 138 digits) SNFS difficulty: 148 digits. Divisors found: r1=3543243945117669927050599146096106098149924350703 r2=245917899090014024113532245535836223215750238360235398952104060053448988922276779413690323 Version: Total time: 8.99 hours. Scaled time: 21.45 units (timescale=2.385). Factorization parameters were as follows: n: 871347106946750342151715673907223653960159603609685187432378536350270402789209264962140023280103965088548237737624848609941132704889347069 m: 100000000000000000000000000000 deg: 5 c5: 6700 c0: -31 skew: 0.34 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1650000, 3375001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7066652 Max relations in full relation-set: Initial matrix: Pruned matrix : 456862 x 457110 Total sieving time: 7.75 hours. Total relation processing time: 0.74 hours. Matrix solve time: 0.44 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,49,49,2.3,2.3,75000 total time: 8.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10147-13)/9 = 7(4)1463<148> = 34 · 23 · 15032488729<11> · 8212675315501962911<19> · C116
C116 = P50 · P66
P50 = 35712120107599973268429717906238004919995676811669<50>
P66 = 906333983462578850099373864796225485410057952884119428606963987551<66>
Number: 74443_147 N=32367108075015143797053757675227277037681912296576239310580627885454876717201364888999929590596992736623682287532619 ( 116 digits) SNFS difficulty: 148 digits. Divisors found: r1=35712120107599973268429717906238004919995676811669 r2=906333983462578850099373864796225485410057952884119428606963987551 Version: Total time: 8.34 hours. Scaled time: 19.90 units (timescale=2.385). Factorization parameters were as follows: n: 32367108075015143797053757675227277037681912296576239310580627885454876717201364888999929590596992736623682287532619 m: 100000000000000000000000000000 deg: 5 c5: 6700 c0: -13 skew: 0.29 type: snfs lss: 1 rlim: 3150000 alim: 3150000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 3150000/3150000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1575000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7259667 Max relations in full relation-set: Initial matrix: Pruned matrix : 442603 x 442851 Total sieving time: 7.15 hours. Total relation processing time: 0.71 hours. Matrix solve time: 0.43 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,3150000,3150000,27,27,49,49,2.4,2.4,75000 total time: 8.34 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10149-31)/9 = 7(4)1481<150> = 3 · 127 · 1753489837597<13> · C136
C136 = P44 · P92
P44 = 20881086487350036134625000283626100896654287<44>
P92 = 53364319064384742665900100125286466593148958555660756921564191235935418790516441550676542399<92>
Number: 74441_149 N=1114304961721960173022091383380176976662874322011077839586378960447874153953371814034523514291547521078222901018637342512063392400614513 ( 136 digits) SNFS difficulty: 151 digits. Divisors found: r1=20881086487350036134625000283626100896654287 r2=53364319064384742665900100125286466593148958555660756921564191235935418790516441550676542399 Version: Total time: 10.05 hours. Scaled time: 23.97 units (timescale=2.386). Factorization parameters were as follows: n: 1114304961721960173022091383380176976662874322011077839586378960447874153953371814034523514291547521078222901018637342512063392400614513 m: 1000000000000000000000000000000 deg: 5 c5: 67 c0: -310 skew: 1.36 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7412479 Max relations in full relation-set: Initial matrix: Pruned matrix : 371929 x 372177 Total sieving time: 9.35 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.30 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 10.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Ignacio Santos / GGNFS, Msieve / Nov 6, 2009
5·10174-7 = 4(9)1733<175> = 876443 · 26652181993<11> · C159
C159 = P68 · P91
P68 = 46574391450747667692326738358784174396260537130314435096266571242987<68>
P91 = 4595855531487340412820083355763538183249547281424390205839848914976852602041592456013124361<91>
Number: 49993_174 N=214049174574575365805581376060199503058514198958035247503679069080324429338324460035489376300752092001338476663839616038201832417706699020583274339297180106307 ( 159 digits) SNFS difficulty: 175 digits. Divisors found: r1=46574391450747667692326738358784174396260537130314435096266571242987 (pp68) r2=4595855531487340412820083355763538183249547281424390205839848914976852602041592456013124361 (pp91) Version: Msieve v. 1.43 Total time: 56.13 hours. Scaled time: 97.62 units (timescale=1.739). Factorization parameters were as follows: n: 214049174574575365805581376060199503058514198958035247503679069080324429338324460035489376300752092001338476663839616038201832417706699020583274339297180106307 m: 100000000000000000000000000000000000 deg: 5 c5: 1 c0: -14 skew: 1.70 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 995237 x 995463 Total sieving time: 54.41 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.30 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 56.13 hours.
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 6, 2009
(22·10157-7)/3 = 7(3)1561<158> = 367 · 316304551 · 8534437607<10> · 2443395325355902608359<22> · C116
C116 = P38 · P79
P38 = 23693488595112602719126859782566256591<38>
P79 = 1278592829499304611645554337323796642663523431026589589200118777890584774879621<79>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=236403890 Step 1 took 31182ms Step 2 took 13038ms ********** Factor found in step 2: 23693488595112602719126859782566256591 Found probable prime factor of 38 digits: 23693488595112602719126859782566256591 Probable prime cofactor 1278592829499304611645554337323796642663523431026589589200118777890584774879621 has 79 digits
(59·10164+31)/9 = 6(5)1639<165> = 41 · 257 · 5763713135701<13> · C149
C149 = P33 · C116
P33 = 632793202179705926119343697193231<33>
C116 = [17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197<116>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3331270017 Step 1 took 47229ms Step 2 took 16627ms ********** Factor found in step 2: 632793202179705926119343697193231 Found probable prime factor of 33 digits: 632793202179705926119343697193231 Composite cofactor 17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197 has 116 digits
(35·10198+1)/9 = 3(8)1979<199> = 47 · C197
C197 = P82 · P116
P82 = 6326374989656440646106970407770659705730121493408302755378873328843303115001775919<82>
P116 = 13078945987260134036462322502917867367044969527869559453471699062092522781634351546825345197002805196515382338315673<116>
Number: 38889_198 N=82742316784869976359338061465721040189125295508274231678486997635933806146572104018912529550827423167848699763593380614657210401891252955082742316784869976359338061465721040189125295508274231678487 ( 197 digits) SNFS difficulty: 200 digits. Divisors found: r1=6326374989656440646106970407770659705730121493408302755378873328843303115001775919 r2=13078945987260134036462322502917867367044969527869559453471699062092522781634351546825345197002805196515382338315673 Version: Total time: 569.79 hours. Scaled time: 1133.32 units (timescale=1.989). Factorization parameters were as follows: n: 82742316784869976359338061465721040189125295508274231678486997635933806146572104018912529550827423167848699763593380614657210401891252955082742316784869976359338061465721040189125295508274231678487 m: 10000000000000000000000000000000000000000 deg: 5 c5: 7 c0: 20 skew: 1.23 type: snfs lss: 1 rlim: 15600000 alim: 15600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 15600000/15600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7800000, 13500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2705232 x 2705480 Total sieving time: 569.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000 total time: 569.79 hours. --------- CPU info (if available) ----------
(44·10193-71)/9 = 4(8)1921<194> = 6203 · C190
C190 = P43 · P71 · P78
P43 = 1618166115802996840565371152078318243943573<43>
P71 = 18615892194719893987578001772834971645694757182039038565591672722464263<71>
P78 = 261638365738076548906793103513491078188631394698342571980380378304781956600273<78>
Number: 48881_193 N=7881491034803947910509251795726082361581313701255664821681265337560678524728178121697386569222777509090583409461371737689648378024969996596628871334658856825550360936464434771705447185053827 ( 190 digits) SNFS difficulty: 194 digits. Divisors found: r1=1618166115802996840565371152078318243943573 r2=18615892194719893987578001772834971645694757182039038565591672722464263 r3=261638365738076548906793103513491078188631394698342571980380378304781956600273 Version: Total time: 653.71 hours. Scaled time: 1316.58 units (timescale=2.014). Factorization parameters were as follows: n: 7881491034803947910509251795726082361581313701255664821681265337560678524728178121697386569222777509090583409461371737689648378024969996596628871334658856825550360936464434771705447185053827 m: 200000000000000000000000000000000000000 deg: 5 c5: 1375 c0: -71 skew: 0.55 type: snfs lss: 1 rlim: 12300000 alim: 12300000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12300000/12300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6150000, 13250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2399210 x 2399457 Total sieving time: 653.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12300000,12300000,28,28,55,55,2.5,2.5,100000 total time: 653.71 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Nov 6, 2009
(67·10140+41)/9 = 7(4)1399<141> = 7 · 3371 · C137
C137 = P30 · P108
P30 = 191509589725032360358047867623<30>
P108 = 164734656570897235288033852810835623477513274568840397755400314955254385028426104714427625363827448134452979<108>
Number: 74449_140 N=31548266493386635777617682097065069476816732823852372947596916745537332900133256110710871909329340358708498726297599035658958530509998917 ( 137 digits) SNFS difficulty: 141 digits. Divisors found: r1=191509589725032360358047867623 (pp30) r2=164734656570897235288033852810835623477513274568840397755400314955254385028426104714427625363827448134452979 (pp108) Version: Msieve-1.40 Total time: 7.22 hours. Scaled time: 14.81 units (timescale=2.051). Factorization parameters were as follows: name: 74449_140 n: 31548266493386635777617682097065069476816732823852372947596916745537332900133256110710871909329340358708498726297599035658958530509998917 m: 10000000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1710001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 239634 x 239869 Total sieving time: 6.92 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.19 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 7.22 hours. --------- CPU info (if available) ----------
(67·10131-31)/9 = 7(4)1301<132> = 3 · 143834439524998271722493<24> · C109
C109 = P42 · P67
P42 = 323849544307374500128746883591241254838333<42>
P67 = 5327271893239009943943442287524260619878365564348217121263894689563<67>
Number: 74441_131 N=1725234575026937588591813062917426515403728981243743236270453675510075150479189227318557947230693458787418479 ( 109 digits) SNFS difficulty: 134 digits. Divisors found: r1=323849544307374500128746883591241254838333 (pp42) r2=5327271893239009943943442287524260619878365564348217121263894689563 (pp67) Version: Msieve-1.40 Total time: 4.53 hours. Scaled time: 9.44 units (timescale=2.085). Factorization parameters were as follows: name: 74441_131 n: 1725234575026937588591813062917426515403728981243743236270453675510075150479189227318557947230693458787418479 m: 200000000000000000000000000 deg: 5 c5: 335 c0: -496 skew: 1.08 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 166901 x 167149 Total sieving time: 4.35 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 4.53 hours. --------- CPU info (if available) ----------
(67·10144+41)/9 = 7(4)1439<145> = 3 · 79 · 25803630551<11> · 2084763626306649558391910071<28> · C105
C105 = P42 · P64
P42 = 423626916383930124653960797887297047400541<42>
P64 = 1378360327126022364048330167071772464929240931307881983759154457<64>
Number: 74449_144 N=583910535046342049640391332785757616154332420151820936864626808268428880468476996626812295569863964361237 ( 105 digits) SNFS difficulty: 146 digits. Divisors found: r1=423626916383930124653960797887297047400541 (pp42) r2=1378360327126022364048330167071772464929240931307881983759154457 (pp64) Version: Msieve-1.40 Total time: 15.07 hours. Scaled time: 29.55 units (timescale=1.961). Factorization parameters were as follows: name: 74449_144 n: 583910535046342049640391332785757616154332420151820936864626808268428880468476996626812295569863964361237 m: 100000000000000000000000000000 deg: 5 c5: 67 c0: 410 skew: 1.44 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 353335 x 353583 Total sieving time: 15.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 15.07 hours. --------- CPU info (if available) ----------
(67·10135+41)/9 = 7(4)1349<136> = 3 · 13 · 163 · 251 · 189043 · C125
C125 = P56 · P69
P56 = 71240130359442359976794234666514935013351341284492389997<56>
P69 = 346434435442088830363099162339575704342482076530326806769161585968817<69>
Number: 74449_135 N=24680034341894226799147907831007002424011323440141068996191301321234332937934131467895911287545293909501468601748729044723549 ( 125 digits) SNFS difficulty: 136 digits. Divisors found: r1=71240130359442359976794234666514935013351341284492389997 (pp56) r2=346434435442088830363099162339575704342482076530326806769161585968817 (pp69) Version: Msieve-1.40 Total time: 4.73 hours. Scaled time: 9.85 units (timescale=2.085). Factorization parameters were as follows: name: 74449_135 n: 24680034341894226799147907831007002424011323440141068996191301321234332937934131467895911287545293909501468601748729044723549 m: 1000000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 1340000 alim: 1340000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1340000/1340000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [670000, 1270001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 189985 x 190228 Total sieving time: 4.52 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1340000,1340000,26,26,48,48,2.3,2.3,75000 total time: 4.73 hours. --------- CPU info (if available) ----------
By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.44 SVN. / Nov 6, 2009
(49·10201+41)/9 = 5(4)2009<202> = 1653191 · C196
C196 = P44 · P152
P44 = 37275012028726822642622072954781884705885423<44>
P152 = 88351259701921852832633429667747775669808345171415609203853358189987067824413888270327700386840290722262317778160874561417235000119736451519483267715993<152>
Msieve v. 1.44 Thu Nov 5 21:18:46 2009 random seeds: 0f697e6c 28abe295 factoring 3293294268142304455107996864515016380106378781667964829499098679126879135226628045062212681078256804231600852197020455860480999741980475604116187690620408920956165648400241983197612643937962670039 (196 digits) searching for 15-digit factors commencing number field sieve (196-digit input) R0: -10000000000000000000000000000000000000000 R1: 1 A0: 41 A1: 0 A2: 0 A3: 0 A4: 0 A5: 490 skew 0.61, size 2.833956e-14, alpha 1.214899, combined = 9.459428e-12 commencing relation filtering estimated available RAM is 1148.0 MB commencing duplicate removal, pass 1 error -9 reading relation 8945276 error -9 reading relation 11307712 error -9 reading relation 11518069 error -15 reading relation 11544804 error -9 reading relation 12509643 error -15 reading relation 12756522 error -15 reading relation 12795024 error -1 reading relation 23489632 error -9 reading relation 23643833 error -15 reading relation 24407655 error -15 reading relation 25776837 error -1 reading relation 26227026 error -15 reading relation 26416665 error -9 reading relation 31485538 found 8862011 hash collisions in 44999986 relations added 730520 free relations commencing duplicate removal, pass 2 found 9014662 duplicates and 36715844 unique relations memory use: 213.2 MB reading ideals above 19202048 commencing singleton removal, initial pass memory use: 753.0 MB removing singletons from LP file start with 36715844 relations and 36580329 ideals pass 1: found 14595173 singletons pruned dataset has 22120671 relations and 19124588 large ideals reading all ideals from disk memory use: 382.0 MB commencing in-memory singleton removal begin with 22120671 relations and 19124588 unique ideals reduce to 15684674 relations and 12316705 ideals in 18 passes max relations containing the same ideal: 30 reading ideals above 720000 commencing singleton removal, initial pass memory use: 376.5 MB reading all ideals from disk memory use: 531.7 MB keeping 14648359 ideals with weight <= 200, target excess is 116482 commencing in-memory singleton removal begin with 15684983 relations and 14648359 unique ideals reduce to 15682203 relations and 14644226 ideals in 9 passes max relations containing the same ideal: 200 removing 2846610 relations and 2446610 ideals in 400000 cliques commencing in-memory singleton removal begin with 12835593 relations and 14644226 unique ideals reduce to 12465195 relations and 11815179 ideals in 11 passes max relations containing the same ideal: 175 removing 2135745 relations and 1735745 ideals in 400000 cliques commencing in-memory singleton removal begin with 10329450 relations and 11815179 unique ideals reduce to 10053854 relations and 9795074 ideals in 9 passes max relations containing the same ideal: 147 removing 792609 relations and 668949 ideals in 123660 cliques commencing in-memory singleton removal begin with 9261245 relations and 9795074 unique ideals reduce to 9216708 relations and 9081049 ideals in 7 passes max relations containing the same ideal: 139 relations with 0 large ideals: 2906 relations with 1 large ideals: 272 relations with 2 large ideals: 7222 relations with 3 large ideals: 70678 relations with 4 large ideals: 374670 relations with 5 large ideals: 1150194 relations with 6 large ideals: 2257720 relations with 7+ large ideals: 5353046 commencing 2-way merge reduce to 5570453 relation sets and 5434794 unique ideals commencing full merge memory use: 661.0 MB found 2928967 cycles, need 2910994 weight of 2910994 cycles is about 203790381 (70.01/cycle) distribution of cycle lengths: 1 relations: 364884 2 relations: 359563 3 relations: 360513 4 relations: 323963 5 relations: 286525 6 relations: 247293 7 relations: 211854 8 relations: 175678 9 relations: 142574 10+ relations: 438147 heaviest cycle: 23 relations commencing cycle optimization start with 15939067 relations pruned 326649 relations memory use: 540.6 MB distribution of cycle lengths: 1 relations: 364884 2 relations: 366593 3 relations: 371489 4 relations: 329960 5 relations: 291790 6 relations: 249668 7 relations: 212738 8 relations: 175029 9 relations: 140569 10+ relations: 408274 heaviest cycle: 23 relations RelProcTime: 1858 elapsed time 00:31:01 Msieve v. 1.44 Thu Nov 5 21:54:39 2009 random seeds: 239a98bf cd32137d factoring 3293294268142304455107996864515016380106378781667964829499098679126879135226628045062212681078256804231600852197020455860480999741980475604116187690620408920956165648400241983197612643937962670039 (196 digits) searching for 15-digit factors commencing number field sieve (196-digit input) R0: -10000000000000000000000000000000000000000 R1: 1 A0: 41 A1: 0 A2: 0 A3: 0 A4: 0 A5: 490 skew 0.61, size 2.833956e-14, alpha 1.214899, combined = 9.459428e-12 commencing linear algebra read 2910994 cycles cycles contain 9097602 unique relations read 9097602 relations using 20 quadratic characters above 536868404 building initial matrix memory use: 1163.2 MB read 2910994 cycles matrix is 2910816 x 2910994 (876.2 MB) with weight 256607789 (88.15/col) sparse part has weight 197667834 (67.90/col) filtering completed in 2 passes matrix is 2908807 x 2908984 (876.0 MB) with weight 256551143 (88.19/col) sparse part has weight 197651271 (67.95/col) read 2908984 cycles matrix is 2908807 x 2908984 (876.0 MB) with weight 256551143 (88.19/col) sparse part has weight 197651271 (67.95/col) saving the first 48 matrix rows for later matrix is 2908759 x 2908984 (831.7 MB) with weight 204497989 (70.30/col) sparse part has weight 188932378 (64.95/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (2 threads) memory use: 849.9 MB restarting at iteration 45547 (dim = 2880023) linear algebra completed 2908597 of 2908984 dimensions (100.0%, ETA 0h 0m) lanczos halted after 46003 iterations (dim = 2908755) recovered 35 nontrivial dependencies BLanczosTime: 102677 commencing square root phase reading relations for dependency 1 read 1454148 cycles cycles contain 4549318 unique relations read 4549318 relations multiplying 4549318 relations multiply complete, coefficients have about 146.17 million bits initial square root is modulo 176051 reading relations for dependency 2 read 1453033 cycles cycles contain 4546544 unique relations read 4546544 relations multiplying 4546544 relations multiply complete, coefficients have about 146.07 million bits initial square root is modulo 174721 sqrtTime: 6024 prp44 factor: 37275012028726822642622072954781884705885423 prp152 factor: 88351259701921852832633429667747775669808345171415609203853358189987067824413888270327700386840290722262317778160874561417235000119736451519483267715993 elapsed time 01:57:43
By Dmitry Domanov / GGNFS/msieve / Nov 6, 2009
(67·10173-31)/9 = 7(4)1721<174> = 3 · C174
C174 = P84 · P90
P84 = 430710479242399035363062350740645865987466720557004828022753286974516590870289028663<84>
P90 = 576136778897578548828836762015811405604962956451806450404338507568484460587741229848480869<90>
N=248148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148147 ( 174 digits) SNFS difficulty: 176 digits. Divisors found: r1=430710479242399035363062350740645865987466720557004828022753286974516590870289028663 (pp84) r2=576136778897578548828836762015811405604962956451806450404338507568484460587741229848480869 (pp90) Version: Msieve-1.40 Total time: 104.00 hours. Scaled time: 197.49 units (timescale=1.899). Factorization parameters were as follows: n: 248148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148147 m: 50000000000000000000000000000000000 deg: 5 c5: 536 c0: -775 skew: 1.08 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3050000, 8350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1467553 x 1467786 Total sieving time: 100.25 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.82 hours. Time per square root: 0.75 hours. Prototype def-par.txt line would be: snfs,176.000,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000 total time: 104.00 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Nov 6, 2009
(22·10156+17)/3 = 7(3)1559<157> = 13 · 19 · 6971 · 470900400663529<15> · C136
C136 = P32 · P51 · P54
P32 = 22374456972596767383679482063529<32>
P51 = 828191017353098997423669770686587010084194267524507<51>
P54 = 488087078674160901172508648961369204695734529976060181<54>
Number: 73339_156 N=9044411846105054274209815905986355691082748507066852603612928749817550676873652715990888627685568833319637972505812247201723505291521743 ( 136 digits) SNFS difficulty: 158 digits. Divisors found: r1=22374456972596767383679482063529 (pp32) r2=828191017353098997423669770686587010084194267524507 (pp51) r3=488087078674160901172508648961369204695734529976060181 (pp54) Version: Msieve-1.40 Total time: 26.33 hours. Scaled time: 23.30 units (timescale=0.885). Factorization parameters were as follows: n: 9044411846105054274209815905986355691082748507066852603612928749817550676873652715990888627685568833319637972505812247201723505291521743 m: 20000000000000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 560422 x 560649 Total sieving time: 24.67 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.80 hours. Time per square root: 0.74 hours. Prototype def-par.txt line would be: snfs,158.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 26.33 hours. --------- CPU info (if available) ----------
By Markus Tervooren / Msieve / Nov 6, 2009
(67·10146+41)/9 = 7(4)1459<147> = 73 · 2579 · 137933 · C136
C136 = P42 · P95
P42 = 552752232810877924907944618081429138807679<42>
P95 = 11037942908547355150244790836990039717387364320115120207780436833145912926736258397877527823631<95>
Sieving time: ~5 hours Msieve v. 1.43 Thu Nov 5 15:55:15 2009 random seeds: 22e75df5 c52ae233 factoring 6101247588338546677929745539946244193317898526731142823774618663407511729661540242208206561765864438885995914092862234746612155140462449 (136 digits) searching for 15-digit factors commencing number field sieve (136-digit input) R0: 100000000000000000000000000000 R1: -1 A0: 41 A1: 0 A2: 0 A3: 0 A4: 0 A5: 670 skew 0.57, size 1.339951e-10, alpha 0.971714, combined = 1.477459e-09 commencing relation filtering estimated available RAM is 8010.2 MB commencing duplicate removal, pass 1 found 2463214 hash collisions in 18330753 relations added 379270 free relations commencing duplicate removal, pass 2 found 2223391 duplicates and 16486632 unique relations memory use: 98.6 MB reading ideals above 720000 commencing singleton removal, initial pass memory use: 344.5 MB reading all ideals from disk memory use: 435.9 MB keeping 12885881 ideals with weight <= 200, target excess is 116169 commencing in-memory singleton removal begin with 16486632 relations and 12885881 unique ideals reduce to 11845160 relations and 7680342 ideals in 12 passes max relations containing the same ideal: 166 removing 1545647 relations and 1145647 ideals in 400000 cliques commencing in-memory singleton removal begin with 10299513 relations and 7680342 unique ideals reduce to 10195507 relations and 6426531 ideals in 7 passes max relations containing the same ideal: 147 removing 1178313 relations and 778313 ideals in 400000 cliques commencing in-memory singleton removal begin with 9017194 relations and 6426531 unique ideals reduce to 8952428 relations and 5581283 ideals in 6 passes max relations containing the same ideal: 136 removing 1045750 relations and 645750 ideals in 400000 cliques commencing in-memory singleton removal begin with 7906678 relations and 5581283 unique ideals reduce to 7837859 relations and 4863952 ideals in 5 passes max relations containing the same ideal: 122 removing 954446 relations and 554446 ideals in 400000 cliques commencing in-memory singleton removal begin with 6883413 relations and 4863952 unique ideals reduce to 6814170 relations and 4236837 ideals in 5 passes max relations containing the same ideal: 110 removing 927971 relations and 527971 ideals in 400000 cliques commencing in-memory singleton removal begin with 5886199 relations and 4236837 unique ideals reduce to 5819767 relations and 3638595 ideals in 5 passes max relations containing the same ideal: 98 removing 899906 relations and 499906 ideals in 400000 cliques commencing in-memory singleton removal begin with 4919861 relations and 3638595 unique ideals reduce to 4851525 relations and 3065913 ideals in 7 passes max relations containing the same ideal: 92 removing 875905 relations and 475905 ideals in 400000 cliques commencing in-memory singleton removal begin with 3975620 relations and 3065913 unique ideals reduce to 3901513 relations and 2509651 ideals in 5 passes max relations containing the same ideal: 77 removing 854371 relations and 454371 ideals in 400000 cliques commencing in-memory singleton removal begin with 3047142 relations and 2509651 unique ideals reduce to 2976954 relations and 1979149 ideals in 8 passes max relations containing the same ideal: 60 removing 853727 relations and 453727 ideals in 400000 cliques commencing in-memory singleton removal begin with 2123227 relations and 1979149 unique ideals reduce to 2056703 relations and 1453401 ideals in 6 passes max relations containing the same ideal: 45 removing 649792 relations and 350445 ideals in 299347 cliques commencing in-memory singleton removal begin with 1406911 relations and 1453401 unique ideals reduce to 1352520 relations and 1044337 ideals in 6 passes max relations containing the same ideal: 35 removing 361208 relations and 202857 ideals in 158351 cliques commencing in-memory singleton removal begin with 991312 relations and 1044337 unique ideals reduce to 943024 relations and 789269 ideals in 7 passes max relations containing the same ideal: 28 removing 67885 relations and 48887 ideals in 18998 cliques commencing in-memory singleton removal begin with 875139 relations and 789269 unique ideals reduce to 870935 relations and 736093 ideals in 5 passes max relations containing the same ideal: 27 relations with 0 large ideals: 2892 relations with 1 large ideals: 12725 relations with 2 large ideals: 78477 relations with 3 large ideals: 199963 relations with 4 large ideals: 264046 relations with 5 large ideals: 196441 relations with 6 large ideals: 93686 relations with 7+ large ideals: 22705 commencing 2-way merge reduce to 716617 relation sets and 581775 unique ideals commencing full merge memory use: 59.6 MB found 334086 cycles, need 315975 weight of 315975 cycles is about 22212740 (70.30/cycle) distribution of cycle lengths: 1 relations: 17641 2 relations: 28997 3 relations: 35315 4 relations: 35873 5 relations: 34500 6 relations: 30819 7 relations: 27240 8 relations: 23611 9 relations: 20033 10+ relations: 61946 heaviest cycle: 18 relations commencing cycle optimization start with 1977808 relations pruned 109779 relations memory use: 55.2 MB distribution of cycle lengths: 1 relations: 17641 2 relations: 30199 3 relations: 38011 4 relations: 38567 5 relations: 37162 6 relations: 32764 7 relations: 28595 8 relations: 23952 9 relations: 19883 10+ relations: 49201 heaviest cycle: 17 relations RelProcTime: 483 commencing linear algebra read 315975 cycles cycles contain 820073 unique relations read 820073 relations using 20 quadratic characters above 134195000 building initial matrix memory use: 99.5 MB read 315975 cycles matrix is 315792 x 315975 (91.9 MB) with weight 27669770 (87.57/col) sparse part has weight 20606850 (65.22/col) filtering completed in 2 passes matrix is 315546 x 315729 (91.8 MB) with weight 27657347 (87.60/col) sparse part has weight 20599994 (65.25/col) read 315729 cycles matrix is 315546 x 315729 (91.8 MB) with weight 27657347 (87.60/col) sparse part has weight 20599994 (65.25/col) saving the first 48 matrix rows for later matrix is 315498 x 315729 (86.7 MB) with weight 21774880 (68.97/col) sparse part has weight 19583486 (62.03/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 90.9 MB linear algebra at 1.9%, ETA 0h 6m315729 dimensions (1.9%, ETA 0h 6m) linear algebra completed 313716 of 315729 dimensions (99.4%, ETA 0h 0m) lanczos halted after 4990 iterations (dim = 315494) recovered 34 nontrivial dependencies BLanczosTime: 435 commencing square root phase reading relations for dependency 1 read 157809 cycles cycles contain 410208 unique relations read 410208 relations multiplying 410208 relations multiply complete, coefficients have about 12.09 million bits initial square root is modulo 8837471 sqrtTime: 48 prp42 factor: 552752232810877924907944618081429138807679 prp95 factor: 11037942908547355150244790836990039717387364320115120207780436833145912926736258397877527823631 elapsed time 00:16:07
By Ignacio Santos / GGNFS, Msieve / Nov 5, 2009
(65·10174+7)/9 = 7(2)1733<175> = 17 · 3919 · C171
C171 = P35 · P136
P35 = 28045218294644002661656500892213117<35>
P136 = 3865341215601827188809187731591195001845176710932875113565226610209954285454175288779980587070108534688701518416552656964627055137706053<136>
Number: 72223_174 N=108404338174837852126476175228107743905591495763058136412683641118265797430650409351458538676166222208880149831472948114348231424916653741534038128307374663738081776897201 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: r1=28045218294644002661656500892213117 (pp35) r2=3865341215601827188809187731591195001845176710932875113565226610209954285454175288779980587070108534688701518416552656964627055137706053 (pp136) Version: Msieve-1.40 Total time: 77.49 hours. Scaled time: 134.75 units (timescale=1.739). Factorization parameters were as follows: n: 108404338174837852126476175228107743905591495763058136412683641118265797430650409351458538676166222208880149831472948114348231424916653741534038128307374663738081776897201 m: 100000000000000000000000000000000000 deg: 5 c5: 13 c0: 14 skew: 1.01 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3000000, 6700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1284651 x 1284877 Total sieving time: 74.58 hours. Total relation processing time: 0.35 hours. Matrix solve time: 2.34 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,176.000,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000 total time: 77.49 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM v6.2.3, YAFU v1.10 / Nov 5, 2009
(67·10168-31)/9 = 7(4)1671<169> = 7606561 · 163572667 · 590259537485086986353<21> · 151964056301483322443154779593<30> · C104
C104 = P47 · P57
P47 = 97126863769841467874236485364535089605312141371<47>
P57 = 686767840130450661304870889966446488159378580482101462377<57>
Number: 74441_168 N=66703606449858545643662707449559166574748186359301268429300565428305734048800989227920948282512461698867 ( 104 digits) Divisors found: r1=97126863769841467874236485364535089605312141371 r2=686767840130450661304870889966446488159378580482101462377 Version: Total time: 4.22 hours. Scaled time: 10.06 units (timescale=2.384). Factorization parameters were as follows: name: 74441_168 n: 66703606449858545643662707449559166574748186359301268429300565428305734048800989227920948282512461698867 skew: 22384.96 # norm 2.87e+14 c5: 15660 c4: -501824996 c3: -18525148742447 c2: 266426610854246285 c1: 4333073707957086227643 c0: 14764715322523703194493871 # alpha -6.14 Y1: 7300412317 Y0: -84308575724840796752 # Murphy_E 2.08e-09 # M 5388142146302891828223044752647144935689243276179164408869092559758099099626333652594346077847048977290 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4950394 Max relations in full relation-set: Initial matrix: Pruned matrix : 255278 x 255526 Polynomial selection time: 0.29 hours. Total sieving time: 3.36 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.14 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 4.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10144-31)/9 = 7(4)1431<145> = 1086632116511402147705630873<28> · C118
C118 = P47 · P72
P47 = 34655482245468834228541408388489501901665410519<47>
P72 = 197686862953873716181311104410965221646157892429803380406605260036919143<72>
Number: 74441_144 N=6850933569260401192979346688968304304118740526220941882187274314238921954387217432618656883866956371791087169104665217 ( 118 digits) SNFS difficulty: 146 digits. Divisors found: r1=34655482245468834228541408388489501901665410519 r2=197686862953873716181311104410965221646157892429803380406605260036919143 Version: Total time: 7.05 hours. Scaled time: 16.85 units (timescale=2.389). Factorization parameters were as follows: n: 6850933569260401192979346688968304304118740526220941882187274314238921954387217432618656883866956371791087169104665217 m: 100000000000000000000000000000 deg: 5 c5: 67 c0: -310 skew: 1.36 type: snfs lss: 1 rlim: 2550000 alim: 2550000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2550000/2550000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1275000, 2775001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4934852 Max relations in full relation-set: Initial matrix: Pruned matrix : 407050 x 407298 Total sieving time: 6.06 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.33 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2550000,2550000,26,26,49,49,2.3,2.3,75000 total time: 7.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10155+41)/9 = 7(4)1549<156> = 47 · 53 · 241 · 302983 · 14851037 · 252442321 · 79435952371<11> · 96107273394271<14> · C105
C105 = P36 · P69
P36 = 513981777262743485425131597124856197<36>
P69 = 278216723864481525034470316274854133774845275372355082172887637024697<69>
Number: 74449_155 N=142998326196084153152602303181725148518916237710184541230536160066661148293488886572640010918329062497309 ( 105 digits) Divisors found: r1=513981777262743485425131597124856197 r2=278216723864481525034470316274854133774845275372355082172887637024697 Version: Total time: 4.48 hours. Scaled time: 10.70 units (timescale=2.388). Factorization parameters were as follows: name: 74449_155 n: 142998326196084153152602303181725148518916237710184541230536160066661148293488886572640010918329062497309 skew: 16634.07 # norm 6.75e+14 c5: 36000 c4: 2507890170 c3: -33754989641093 c2: -411802020026744711 c1: 5598836560479622272525 c0: 714646846507642901515845 # alpha -6.87 Y1: 30603097547 Y0: -83138744797431074138 # Murphy_E 2.01e-09 # M 23638809882836740827105361457170598519475955087418326994978122984763654287971205979734490448061304881821 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6901969 Max relations in full relation-set: Initial matrix: Pruned matrix : 284502 x 284750 Polynomial selection time: 0.34 hours. Total sieving time: 3.45 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 4.48 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10157+41)/9 = 7(4)1569<158> = 19 · 79 · 569 · 13280256271<11> · 679103402368889<15> · 396291799469414089<18> · C110
C110 = P33 · P38 · P40
P33 = 896016956955767255596724244933401<33>
P38 = 13950563607253532674032704293646041067<38>
P40 = 1951074733192853860565440794148429905793<40>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 24388320126912700619412278763299846909289095649545527020097226863181940482234364839456257636794737384518876531 (110 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5977138773 Step 1 took 3494ms Step 2 took 3760ms ********** Factor found in step 2: 896016956955767255596724244933401 Found probable prime factor of 33 digits: 896016956955767255596724244933401 Composite cofactor 27218592167912123174017720102720354477066164208529016911587995682062219201131 has 77 digits 11/05/09 08:01:26 v1.10 @ 조영욱-PC, starting SIQS on c77: 27218592167912123174017720102720354477066164208529016911587995682062219201131 11/05/09 08:01:26 v1.10 @ 조영욱-PC, random seeds: 1415046673, 1328948052 11/05/09 08:01:27 v1.10 @ 조영욱-PC, ==== sieve params ==== 11/05/09 08:01:27 v1.10 @ 조영욱-PC, n = 77 digits, 258 bits 11/05/09 08:01:27 v1.10 @ 조영욱-PC, factor base: 32200 primes (max prime = 805451) 11/05/09 08:01:27 v1.10 @ 조영욱-PC, single large prime cutoff: 68463335 (85 * pmax) 11/05/09 08:01:27 v1.10 @ 조영욱-PC, using 12 large prime slices of factor base 11/05/09 08:01:27 v1.10 @ 조영욱-PC, buckets hold 1024 elements 11/05/09 08:01:27 v1.10 @ 조영욱-PC, sieve interval: 5 blocks of size 65536 11/05/09 08:01:27 v1.10 @ 조영욱-PC, polynomial A has ~ 10 factors 11/05/09 08:01:27 v1.10 @ 조영욱-PC, using multiplier of 11 11/05/09 08:01:27 v1.10 @ 조영욱-PC, using small prime variation correction of 18 bits 11/05/09 08:01:27 v1.10 @ 조영욱-PC, using SSE2 for trial division and x64 sieve scanning 11/05/09 08:01:27 v1.10 @ 조영욱-PC, trial factoring cutoff at 94 bits 11/05/09 08:01:27 v1.10 @ 조영욱-PC, ==== sieving started ==== 11/05/09 08:04:45 v1.10 @ 조영욱-PC, sieve time = 101.5450, relation time = 27.2180, poly_time = 69.2010 11/05/09 08:04:45 v1.10 @ 조영욱-PC, 32279 relations found: 16966 full + 15313 from 161385 partial, using 73331 polys (143 A polys) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, on average, sieving found 2.43 rels/poly and 899.51 rels/sec 11/05/09 08:04:45 v1.10 @ 조영욱-PC, trial division touched 1264882 sieve locations out of 48058204160 11/05/09 08:04:45 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 11/05/09 08:04:45 v1.10 @ 조영욱-PC, begin with 178351 relations 11/05/09 08:04:45 v1.10 @ 조영욱-PC, reduce to 45610 relations in 2 passes 11/05/09 08:04:45 v1.10 @ 조영욱-PC, recovered 45610 relations 11/05/09 08:04:45 v1.10 @ 조영욱-PC, recovered 33913 polynomials 11/05/09 08:04:45 v1.10 @ 조영욱-PC, attempting to build 32279 cycles 11/05/09 08:04:45 v1.10 @ 조영욱-PC, found 32279 cycles in 1 passes 11/05/09 08:04:45 v1.10 @ 조영욱-PC, distribution of cycle lengths: 11/05/09 08:04:45 v1.10 @ 조영욱-PC, length 1 : 16966 11/05/09 08:04:45 v1.10 @ 조영욱-PC, length 2 : 15313 11/05/09 08:04:45 v1.10 @ 조영욱-PC, largest cycle: 2 relations 11/05/09 08:04:45 v1.10 @ 조영욱-PC, matrix is 32200 x 32279 (4.7 MB) with weight 967198 (29.96/col) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, sparse part has weight 967198 (29.96/col) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, filtering completed in 4 passes 11/05/09 08:04:45 v1.10 @ 조영욱-PC, matrix is 27821 x 27885 (4.0 MB) with weight 819515 (29.39/col) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, sparse part has weight 819515 (29.39/col) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 11/05/09 08:04:45 v1.10 @ 조영욱-PC, matrix is 27773 x 27885 (2.8 MB) with weight 596633 (21.40/col) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, sparse part has weight 452964 (16.24/col) 11/05/09 08:04:45 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 11/05/09 08:04:45 v1.10 @ 조영욱-PC, commencing Lanczos iteration 11/05/09 08:04:45 v1.10 @ 조영욱-PC, memory use: 3.9 MB 11/05/09 08:04:52 v1.10 @ 조영욱-PC, lanczos halted after 441 iterations (dim = 27773) 11/05/09 08:04:52 v1.10 @ 조영욱-PC, recovered 18 nontrivial dependencies 11/05/09 08:04:52 v1.10 @ 조영욱-PC, prp38 = 13950563607253532674032704293646041067 11/05/09 08:04:52 v1.10 @ 조영욱-PC, prp40 = 1951074733192853860565440794148429905793 11/05/09 08:04:52 v1.10 @ 조영욱-PC, Lanczos elapsed time = 7.2070 seconds. 11/05/09 08:04:52 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.2030 seconds. 11/05/09 08:04:52 v1.10 @ 조영욱-PC, SIQS elapsed time = 205.6860 seconds. 11/05/09 08:04:52 v1.10 @ 조영욱-PC, 11/05/09 08:04:52 v1.10 @ 조영욱-PC,
(67·10145-31)/9 = 7(4)1441<146> = 709 · 322066412869815736192367293<27> · C117
C117 = P55 · P62
P55 = 9260894445086141962651210313544909342955325247050444087<55>
P62 = 35203649447637528618873300517503888994181400098044701486542239<62>
Number: 74441_145 N=326017281616386218615956963496149396800689269848098363793483088850308834552548967331260168013696545100284199033290793 ( 117 digits) SNFS difficulty: 146 digits. Divisors found: r1=9260894445086141962651210313544909342955325247050444087 r2=35203649447637528618873300517503888994181400098044701486542239 Version: Total time: 6.29 hours. Scaled time: 15.05 units (timescale=2.391). Factorization parameters were as follows: n: 326017281616386218615956963496149396800689269848098363793483088850308834552548967331260168013696545100284199033290793 m: 100000000000000000000000000000 deg: 5 c5: 67 c0: -31 skew: 0.86 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4800623 Max relations in full relation-set: Initial matrix: Pruned matrix : 307282 x 307530 Total sieving time: 5.82 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.20 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2400000,2400000,26,26,49,49,2.3,2.3,75000 total time: 6.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(64·10199+17)/9 = 7(1)1983<200> = 89 · 179 · 16258282818944805107865067621<29> · 490563121353478979588912991233<30> · 5075327543140798696604465814559<31> · C108
C108 = P52 · P56
P52 = 1407294183161809776961599301547364443542425110383681<52>
P56 = 78356655111566972388515530318074663443442995516794711409<56>
Number: 71113_199 N=110270864950524289144339133459841021143400357504267999886887205650991511373184710031303560333324391658116529 ( 108 digits) Divisors found: r1=1407294183161809776961599301547364443542425110383681 r2=78356655111566972388515530318074663443442995516794711409 Version: Total time: 7.36 hours. Scaled time: 17.58 units (timescale=2.389). Factorization parameters were as follows: name: 71113_199 n: 110270864950524289144339133459841021143400357504267999886887205650991511373184710031303560333324391658116529 skew: 16176.26 # norm 1.23e+15 c5: 35700 c4: -1151299406 c3: -81809870864120 c2: 211043661978170827 c1: 3912276685296992122992 c0: -12446168675693330275146900 # alpha -5.86 Y1: 307474834733 Y0: -314746746576521188279 # Murphy_E 1.37e-09 # M 20791178240142767970955924393944064521478715602414181529369486113938951120512110021307848257334770395712637 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1550001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7458099 Max relations in full relation-set: Initial matrix: Pruned matrix : 288207 x 288455 Polynomial selection time: 0.50 hours. Total sieving time: 6.22 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 7.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Dmitry Domanov / GGNFS, msieve 1.43 / Nov 5, 2009
(67·10138-31)/9 = 7(4)1371<139> = 43 · 1487 · 128826294607<12> · C123
C123 = P52 · P72
P52 = 2155169564333464472349918628266493657340772283669081<52>
P72 = 419340596308113045083191970050775890985316605601219929324602580966516003<72>
Number: 123-1 N=903750090252691191717440333954198932390180191786769441344692739715470950187355528108887414276522629304579395374002342803243 ( 123 digits) SNFS difficulty: 141 digits. Divisors found: r1=2155169564333464472349918628266493657340772283669081 (pp52) r2=419340596308113045083191970050775890985316605601219929324602580966516003 (pp72) Version: Msieve-1.40 Total time: 6.21 hours. Scaled time: 12.23 units (timescale=1.969). Factorization parameters were as follows: n: 903750090252691191717440333954198932390180191786769441344692739715470950187355528108887414276522629304579395374002342803243 m: 5000000000000000000000000000 deg: 5 c5: 536 c0: -775 skew: 1.08 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1990001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 264792 x 265017 Total sieving time: 5.97 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.18 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 6.21 hours. --------- CPU info (if available) ----------
(67·10141+41)/9 = 7(4)1409<142> = 32 · 13 · C140
C140 = P30 · P45 · P67
P30 = 104293407448198211674022417719<30>
P45 = 266908416852904564619693685732080119715284043<45>
P67 = 2285742510120211041888511644779295382229835659384985236947755209441<67>
Number: 140-1 N=63627730294396961063627730294396961063627730294396961063627730294396961063627730294396961063627730294396961063627730294396961063627730294397 ( 140 digits) SNFS difficulty: 142 digits. Divisors found: r1=104293407448198211674022417719 (pp30) r2=266908416852904564619693685732080119715284043 (pp45) r3=2285742510120211041888511644779295382229835659384985236947755209441 (pp67) Version: Msieve-1.40 Total time: 6.69 hours. Scaled time: 12.74 units (timescale=1.905). Factorization parameters were as follows: n: 63627730294396961063627730294396961063627730294396961063627730294396961063627730294396961063627730294396961063627730294396961063627730294397 m: 10000000000000000000000000000 deg: 5 c5: 670 c0: 41 skew: 0.57 type: snfs lss: 1 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1680000/1680000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [840000, 2040001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 294207 x 294432 Total sieving time: 6.17 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.32 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000 total time: 6.69 hours. --------- CPU info (if available) ----------
(67·10133+41)/9 = 7(4)1329<134> = 353081 · 7404732168439<13> · 949521322502583250865947<24> · C92
C92 = P36 · P57
P36 = 206990362108995995540706786083800799<36>
P57 = 144875098665335013194730379024627109574296907971431258387<57>
Thu Nov 05 13:28:38 2009 Msieve v. 1.43 Thu Nov 05 13:28:38 2009 random seeds: b092c728 739803fc Thu Nov 05 13:28:38 2009 factoring 29987749133314216840538328401109372365462907275873647359634749454350166358605722808406051213 (92 digits) Thu Nov 05 13:28:39 2009 searching for 15-digit factors Thu Nov 05 13:28:40 2009 commencing quadratic sieve (92-digit input) Thu Nov 05 13:28:40 2009 using multiplier of 53 Thu Nov 05 13:28:40 2009 using VC8 32kb sieve core Thu Nov 05 13:28:40 2009 sieve interval: 36 blocks of size 32768 Thu Nov 05 13:28:40 2009 processing polynomials in batches of 6 Thu Nov 05 13:28:40 2009 using a sieve bound of 1787717 (66930 primes) Thu Nov 05 13:28:40 2009 using large prime bound of 187710285 (27 bits) Thu Nov 05 13:28:40 2009 using double large prime bound of 780330238063215 (42-50 bits) Thu Nov 05 13:28:40 2009 using trial factoring cutoff of 50 bits Thu Nov 05 13:28:40 2009 polynomial 'A' values have 12 factors Thu Nov 05 15:11:33 2009 67077 relations (17712 full + 49365 combined from 818509 partial), need 67026 Thu Nov 05 15:11:37 2009 begin with 836221 relations Thu Nov 05 15:11:37 2009 reduce to 166378 relations in 11 passes Thu Nov 05 15:11:37 2009 attempting to read 166378 relations Thu Nov 05 15:11:39 2009 recovered 166378 relations Thu Nov 05 15:11:39 2009 recovered 145981 polynomials Thu Nov 05 15:11:40 2009 attempting to build 67077 cycles Thu Nov 05 15:11:40 2009 found 67077 cycles in 6 passes Thu Nov 05 15:11:40 2009 distribution of cycle lengths: Thu Nov 05 15:11:40 2009 length 1 : 17712 Thu Nov 05 15:11:40 2009 length 2 : 12595 Thu Nov 05 15:11:40 2009 length 3 : 11833 Thu Nov 05 15:11:40 2009 length 4 : 8937 Thu Nov 05 15:11:40 2009 length 5 : 6400 Thu Nov 05 15:11:40 2009 length 6 : 4055 Thu Nov 05 15:11:40 2009 length 7 : 2510 Thu Nov 05 15:11:40 2009 length 9+: 3035 Thu Nov 05 15:11:40 2009 largest cycle: 23 relations Thu Nov 05 15:11:40 2009 matrix is 66930 x 67077 (16.4 MB) with weight 4018873 (59.91/col) Thu Nov 05 15:11:40 2009 sparse part has weight 4018873 (59.91/col) Thu Nov 05 15:11:40 2009 filtering completed in 3 passes Thu Nov 05 15:11:40 2009 matrix is 62762 x 62826 (15.4 MB) with weight 3798024 (60.45/col) Thu Nov 05 15:11:40 2009 sparse part has weight 3798024 (60.45/col) Thu Nov 05 15:11:40 2009 saving the first 48 matrix rows for later Thu Nov 05 15:11:41 2009 matrix is 62714 x 62826 (9.0 MB) with weight 2879392 (45.83/col) Thu Nov 05 15:11:41 2009 sparse part has weight 1970064 (31.36/col) Thu Nov 05 15:11:41 2009 matrix includes 64 packed rows Thu Nov 05 15:11:41 2009 using block size 25130 for processor cache size 6144 kB Thu Nov 05 15:11:41 2009 commencing Lanczos iteration Thu Nov 05 15:11:41 2009 memory use: 9.6 MB Thu Nov 05 15:11:48 2009 linear algebra at 38.3%, ETA 0h 0m Thu Nov 05 15:11:59 2009 lanczos halted after 993 iterations (dim = 62714) Thu Nov 05 15:11:59 2009 recovered 18 nontrivial dependencies Thu Nov 05 15:12:00 2009 prp36 factor: 206990362108995995540706786083800799 Thu Nov 05 15:12:00 2009 prp57 factor: 144875098665335013194730379024627109574296907971431258387 Thu Nov 05 15:12:00 2009 elapsed time 01:43:22
By Sinkiti Sibata / Msieve, GGNFS / Nov 5, 2009
(67·10150+41)/9 = 7(4)1499<151> = 32 · 23 · 198148463 · C141
C141 = P35 · P106
P35 = 20717939788962621561499247182422137<35>
P106 = 8760414861837486390460724581872136579955758254687113253234500957057212238208046927618976198274194583616297<106>
Number: 74449_150 N=181497747633882346312517962380201339855560835063081505846794519711730643938420467789908245811486286339700685380221257507780590325469086766689 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=20717939788962621561499247182422137 (pp35) r2=8760414861837486390460724581872136579955758254687113253234500957057212238208046927618976198274194583616297 (pp106) Version: Msieve-1.40 Total time: 17.61 hours. Scaled time: 36.48 units (timescale=2.071). Factorization parameters were as follows: name: 74449_150 n: 181497747633882346312517962380201339855560835063081505846794519711730643938420467789908245811486286339700685380221257507780590325469086766689 m: 1000000000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 448148 x 448396 Total sieving time: 16.69 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.69 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 17.61 hours. --------- CPU info (if available) ----------
(62·10150-71)/9 = 6(8)1491<151> = 985483 · 41851752012515441<17> · C129
C129 = P42 · P87
P42 = 487000537391850390878280007869998072687387<42>
P87 = 342970652274908800371221025897560617960050601182101051487751425298682261487633167922521<87>
Number: 68881_150 N=167026891967514041560512106776883305292659958797087512558130233271448139287140102811153939235403213386239930950692215778269942627 ( 129 digits) SNFS difficulty: 151 digits. Divisors found: r1=487000537391850390878280007869998072687387 (pp42) r2=342970652274908800371221025897560617960050601182101051487751425298682261487633167922521 (pp87) Version: GGNFS-0.77.1-20060513-k8 Total time: 28.87 hours. Scaled time: 56.06 units (timescale=1.942). Factorization parameters were as follows: name: 68881_150 n: 167026891967514041560512106776883305292659958797087512558130233271448139287140102811153939235403213386239930950692215778269942627 m: 1000000000000000000000000000000 deg: 5 c5: 62 c0: -71 skew: 1.03 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176285, largePrimes:6922539 encountered Relations: rels:6824198, finalFF:406801 Max relations in full relation-set: 28 Initial matrix: 352653 x 406801 with sparse part having weight 42278766. Pruned matrix : 332656 x 334483 with weight 31669257. Total sieving time: 26.80 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.72 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 28.87 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve / Nov 5, 2009
(67·10120-31)/9 = 7(4)1191<121> = 72126317 · 10506700696103<14> · C100
C100 = P48 · P53
P48 = 248173394390078679300038958119545859112216157363<48>
P53 = 39583751858057050006460477944893403895270269829507257<53>
SNFS difficulty: 121 digits. Divisors found: r1=248173394390078679300038958119545859112216157363 (pp48) r2=39583751858057050006460477944893403895270269829507257 (pp53) Version: Msieve v. 1.44 SVN130 Total time: 0.86 hours. Scaled time: 2.06 units (timescale=2.400). Factorization parameters were as follows: n: 9823634061308601992262375977557460526603204910482843794627402711296077541420800355402220532262483291 m: 1000000000000000000000000 deg: 5 c5: 67 c0: -31 skew: 0.86 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 675001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80715 x 80940 Total sieving time: 0.79 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 0.86 hours.
(67·10120+41)/9 = 7(4)1199<121> = 3 · 10878293325400967777<20> · C102
C102 = P44 · P58
P44 = 38149372465301295430054963118277813058918169<44>
P58 = 5979472529270312373079165688301574540864076057469555901091<58>
SNFS difficulty: 121 digits. Divisors found: r1=38149372465301295430054963118277813058918169 (pp44) r2=5979472529270312373079165688301574540864076057469555901091 (pp58) Version: Msieve v. 1.44 SVN130 Total time: 0.92 hours. Scaled time: 2.20 units (timescale=2.400). Factorization parameters were as follows: n: 228113124665170349134703467583011286242415225834237151834456021181025487623010089878132800918426822379 m: 1000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 675001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 78053 x 78278 Total sieving time: 0.86 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 0.92 hours.
By Robert Backstrom / Msieve / Nov 5, 2009
(8·10220+7)/3 = 2(6)2199<221> = 23432840917<11> · C211
C211 = P63 · P72 · P76
P63 = 609079768500831052828490055657690521244152789163817285070668259<63>
P72 = 796566640808664328548424906689815506613506880016762451255084828876058099<72>
P76 = 2345565144724188907165081244897249978800113689094388155072548075040871134977<76>
Sieving ~ 220 CPU days + 117 hrs Lanczos with Msieve 1.42 Sat Oct 31 15:34:27 2009 Sat Oct 31 15:34:27 2009 Sat Oct 31 15:34:27 2009 Msieve v. 1.42 Sat Oct 31 15:34:27 2009 random seeds: b45cd8a4 5e8cbb4f Sat Oct 31 15:34:27 2009 factoring 1138003998794725682926321155405412538979627242039312593634276438708887713594111225991671194456334842477805341329483266540910587391526508465762511226229679040784257745433430779376748272005804726927838540861403257 (211 digits) Sat Oct 31 15:34:29 2009 no P-1/P+1/ECM available, skipping Sat Oct 31 15:34:29 2009 commencing number field sieve (211-digit input) Sat Oct 31 15:34:29 2009 R0: -10000000000000000000000000000000000000 Sat Oct 31 15:34:29 2009 R1: 1 Sat Oct 31 15:34:29 2009 A0: 175 Sat Oct 31 15:34:29 2009 A1: 0 Sat Oct 31 15:34:29 2009 A2: 0 Sat Oct 31 15:34:29 2009 A3: 0 Sat Oct 31 15:34:29 2009 A4: 0 Sat Oct 31 15:34:29 2009 A5: 0 Sat Oct 31 15:34:29 2009 A6: 2 Sat Oct 31 15:34:29 2009 skew 1.00, size 3.489374e-11, alpha 1.918928, combined = 1.519785e-12 Sat Oct 31 15:34:29 2009 Sat Oct 31 15:34:29 2009 commencing relation filtering Sat Oct 31 15:34:29 2009 estimated available RAM is 7923.2 MB Sat Oct 31 15:34:29 2009 commencing duplicate removal, pass 1 Sat Oct 31 15:36:03 2009 error -11 reading relation 17254458 Sat Oct 31 15:36:54 2009 error -11 reading relation 26696095 Sat Oct 31 15:36:58 2009 error -11 reading relation 27363947 Sat Oct 31 15:36:58 2009 error -15 reading relation 27363955 Sat Oct 31 15:38:59 2009 error -11 reading relation 45804540 Sat Oct 31 15:39:03 2009 error -9 reading relation 46551733 Sat Oct 31 15:39:43 2009 found 10149236 hash collisions in 53207787 relations Sat Oct 31 15:39:58 2009 added 11 free relations Sat Oct 31 15:39:58 2009 commencing duplicate removal, pass 2 Sat Oct 31 15:40:36 2009 found 10095437 duplicates and 43112361 unique relations Sat Oct 31 15:40:36 2009 memory use: 330.4 MB Sat Oct 31 15:40:36 2009 reading ideals above 42532864 Sat Oct 31 15:40:36 2009 commencing singleton removal, initial pass Sat Oct 31 15:45:48 2009 memory use: 596.8 MB Sat Oct 31 15:45:52 2009 reading all ideals from disk Sat Oct 31 15:45:55 2009 memory use: 817.8 MB Sat Oct 31 15:46:00 2009 commencing in-memory singleton removal Sat Oct 31 15:46:04 2009 begin with 43112361 relations and 40663350 unique ideals Sat Oct 31 15:46:48 2009 reduce to 22314083 relations and 17056552 ideals in 16 passes Sat Oct 31 15:46:48 2009 max relations containing the same ideal: 27 Sat Oct 31 15:46:51 2009 reading ideals above 720000 Sat Oct 31 15:46:51 2009 commencing singleton removal, initial pass Sat Oct 31 15:50:17 2009 memory use: 532.8 MB Sat Oct 31 15:50:17 2009 reading all ideals from disk Sat Oct 31 15:50:18 2009 memory use: 816.4 MB Sat Oct 31 15:50:24 2009 keeping 22080764 ideals with weight <= 200, target excess is 125696 Sat Oct 31 15:50:29 2009 commencing in-memory singleton removal Sat Oct 31 15:50:34 2009 begin with 22314094 relations and 22080764 unique ideals Sat Oct 31 15:51:34 2009 reduce to 22292479 relations and 22059060 ideals in 11 passes Sat Oct 31 15:51:34 2009 max relations containing the same ideal: 200 Sat Oct 31 15:51:56 2009 removing 650811 relations and 607005 ideals in 43806 cliques Sat Oct 31 15:51:57 2009 commencing in-memory singleton removal Sat Oct 31 15:52:02 2009 begin with 21641668 relations and 22059060 unique ideals Sat Oct 31 15:52:44 2009 reduce to 21625957 relations and 21436291 ideals in 8 passes Sat Oct 31 15:52:44 2009 max relations containing the same ideal: 200 Sat Oct 31 15:53:06 2009 removing 467462 relations and 423656 ideals in 43806 cliques Sat Oct 31 15:53:06 2009 commencing in-memory singleton removal Sat Oct 31 15:53:12 2009 begin with 21158495 relations and 21436291 unique ideals Sat Oct 31 15:53:52 2009 reduce to 21150366 relations and 21004483 ideals in 8 passes Sat Oct 31 15:53:52 2009 max relations containing the same ideal: 198 Sat Oct 31 15:54:03 2009 relations with 0 large ideals: 4811 Sat Oct 31 15:54:03 2009 relations with 1 large ideals: 417 Sat Oct 31 15:54:03 2009 relations with 2 large ideals: 3897 Sat Oct 31 15:54:03 2009 relations with 3 large ideals: 44781 Sat Oct 31 15:54:03 2009 relations with 4 large ideals: 304685 Sat Oct 31 15:54:03 2009 relations with 5 large ideals: 1255957 Sat Oct 31 15:54:03 2009 relations with 6 large ideals: 3252807 Sat Oct 31 15:54:03 2009 relations with 7+ large ideals: 16283011 Sat Oct 31 15:54:03 2009 commencing 2-way merge Sat Oct 31 15:54:34 2009 reduce to 13461304 relation sets and 13315421 unique ideals Sat Oct 31 15:54:34 2009 commencing full merge Sat Oct 31 16:00:41 2009 memory use: 1639.9 MB Sat Oct 31 16:00:43 2009 found 7160180 cycles, need 7153621 Sat Oct 31 16:00:47 2009 weight of 7153621 cycles is about 500859937 (70.01/cycle) Sat Oct 31 16:00:47 2009 distribution of cycle lengths: Sat Oct 31 16:00:47 2009 1 relations: 1050682 Sat Oct 31 16:00:47 2009 2 relations: 1061471 Sat Oct 31 16:00:47 2009 3 relations: 984923 Sat Oct 31 16:00:47 2009 4 relations: 812616 Sat Oct 31 16:00:47 2009 5 relations: 657769 Sat Oct 31 16:00:47 2009 6 relations: 527246 Sat Oct 31 16:00:47 2009 7 relations: 421690 Sat Oct 31 16:00:47 2009 8 relations: 331726 Sat Oct 31 16:00:47 2009 9 relations: 261587 Sat Oct 31 16:00:47 2009 10+ relations: 1043911 Sat Oct 31 16:00:47 2009 heaviest cycle: 28 relations Sat Oct 31 16:00:50 2009 commencing cycle optimization Sat Oct 31 16:01:06 2009 start with 38264635 relations Sat Oct 31 16:02:27 2009 pruned 895565 relations Sat Oct 31 16:02:27 2009 memory use: 1259.8 MB Sat Oct 31 16:02:27 2009 distribution of cycle lengths: Sat Oct 31 16:02:27 2009 1 relations: 1050682 Sat Oct 31 16:02:27 2009 2 relations: 1084140 Sat Oct 31 16:02:27 2009 3 relations: 1019860 Sat Oct 31 16:02:27 2009 4 relations: 826893 Sat Oct 31 16:02:27 2009 5 relations: 666675 Sat Oct 31 16:02:27 2009 6 relations: 526965 Sat Oct 31 16:02:27 2009 7 relations: 417613 Sat Oct 31 16:02:27 2009 8 relations: 325306 Sat Oct 31 16:02:27 2009 9 relations: 253971 Sat Oct 31 16:02:27 2009 10+ relations: 981516 Sat Oct 31 16:02:27 2009 heaviest cycle: 28 relations Sat Oct 31 16:02:43 2009 RelProcTime: 1694 Sat Oct 31 16:02:43 2009 Sat Oct 31 16:02:43 2009 commencing linear algebra Sat Oct 31 16:02:48 2009 read 7153621 cycles Sat Oct 31 16:03:02 2009 cycles contain 20976846 unique relations Sat Oct 31 16:05:09 2009 read 20976846 relations Sat Oct 31 16:05:47 2009 using 20 quadratic characters above 536870702 Sat Oct 31 16:07:28 2009 building initial matrix Sat Oct 31 16:11:42 2009 memory use: 2662.3 MB Sat Oct 31 16:11:46 2009 read 7153621 cycles Sat Oct 31 16:11:50 2009 matrix is 7153443 x 7153621 (2122.1 MB) with weight 619248046 (86.56/col) Sat Oct 31 16:11:50 2009 sparse part has weight 484755663 (67.76/col) Sat Oct 31 16:13:28 2009 filtering completed in 2 passes Sat Oct 31 16:13:29 2009 matrix is 7151802 x 7151980 (2122.0 MB) with weight 619201053 (86.58/col) Sat Oct 31 16:13:29 2009 sparse part has weight 484741960 (67.78/col) Sat Oct 31 16:14:11 2009 read 7151980 cycles Sat Oct 31 16:14:15 2009 matrix is 7151802 x 7151980 (2122.0 MB) with weight 619201053 (86.58/col) Sat Oct 31 16:14:15 2009 sparse part has weight 484741960 (67.78/col) Sat Oct 31 16:14:15 2009 saving the first 48 matrix rows for later Sat Oct 31 16:14:18 2009 matrix is 7151754 x 7151980 (2042.1 MB) with weight 494163750 (69.09/col) Sat Oct 31 16:14:18 2009 sparse part has weight 463811895 (64.85/col) Sat Oct 31 16:14:18 2009 matrix includes 64 packed rows Sat Oct 31 16:14:18 2009 using block size 65536 for processor cache size 6144 kB Sat Oct 31 16:14:46 2009 commencing Lanczos iteration (4 threads) Sat Oct 31 16:14:46 2009 memory use: 2218.4 MB Thu Nov 5 10:26:49 2009 lanczos halted after 113099 iterations (dim = 7151754) Thu Nov 5 10:27:00 2009 recovered 40 nontrivial dependencies Thu Nov 5 10:27:00 2009 BLanczosTime: 411857 Thu Nov 5 10:27:00 2009 Thu Nov 5 10:27:00 2009 commencing square root phase Thu Nov 5 10:27:00 2009 reading relations for dependency 1 Thu Nov 5 10:27:02 2009 read 3576106 cycles Thu Nov 5 10:27:10 2009 cycles contain 12847903 unique relations Thu Nov 5 10:28:35 2009 read 12847903 relations Thu Nov 5 10:29:52 2009 multiplying 10490752 relations Thu Nov 5 10:49:26 2009 multiply complete, coefficients have about 272.47 million bits Thu Nov 5 10:49:29 2009 initial square root is modulo 77557 Thu Nov 5 11:21:08 2009 reading relations for dependency 2 Thu Nov 5 11:21:09 2009 read 3577523 cycles Thu Nov 5 11:21:17 2009 cycles contain 12847085 unique relations Thu Nov 5 11:22:42 2009 read 12847085 relations Thu Nov 5 11:24:00 2009 multiplying 10490164 relations Thu Nov 5 11:43:34 2009 multiply complete, coefficients have about 272.46 million bits Thu Nov 5 11:43:36 2009 initial square root is modulo 77557 Thu Nov 5 12:15:13 2009 reading relations for dependency 3 Thu Nov 5 12:15:14 2009 read 3574396 cycles Thu Nov 5 12:15:22 2009 cycles contain 12841056 unique relations Thu Nov 5 12:16:47 2009 read 12841056 relations Thu Nov 5 12:18:05 2009 multiplying 10485418 relations Thu Nov 5 12:37:39 2009 multiply complete, coefficients have about 272.32 million bits Thu Nov 5 12:37:41 2009 initial square root is modulo 77017 Thu Nov 5 13:09:16 2009 sqrtTime: 9736 Thu Nov 5 13:09:16 2009 prp63 factor: 609079768500831052828490055657690521244152789163817285070668259 Thu Nov 5 13:09:16 2009 prp72 factor: 796566640808664328548424906689815506613506880016762451255084828876058099 Thu Nov 5 13:09:16 2009 prp76 factor: 2345565144724188907165081244897249978800113689094388155072548075040871134977 Thu Nov 5 13:09:16 2009 elapsed time 117:34:49
By Erik Branger / GGNFS, Msieve / Nov 5, 2009
(67·10145+41)/9 = 7(4)1449<146> = 563 · C144
C144 = P37 · P38 · P69
P37 = 6082655084179705302299740326973200613<37>
P38 = 75145263081390269628363377895509391047<38>
P69 = 289287120475685604509159180322914778804255865863282240870880979061193<69>
Number: 74449_145 N=132228142885336491020327610025656206828498125123347148213933293862245904874679297414643773435958160647325833826721926189066508782316952832050523 ( 144 digits) SNFS difficulty: 146 digits. Divisors found: r1=6082655084179705302299740326973200613 (pp37) r2=75145263081390269628363377895509391047 (pp38) r3=289287120475685604509159180322914778804255865863282240870880979061193 (pp69) Version: Msieve-1.40 Total time: 9.60 hours. Scaled time: 9.62 units (timescale=1.002). Factorization parameters were as follows: n: 132228142885336491020327610025656206828498125123347148213933293862245904874679297414643773435958160647325833826721926189066508782316952832050523 m: 100000000000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2280001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 317816 x 318042 Total sieving time: 9.11 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.24 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 9.60 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, YAFU v1.10, Msieve, GGNFS / Nov 4, 2009
(67·10114-31)/9 = 7(4)1131<115> = 2179 · C112
C112 = P35 · P78
P35 = 13079519603592591828724136575259833<35>
P78 = 261206072937066617575379951763202353709110249235984400041972053868280867577163<78>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 3416449951557799194329712916220488501351282443526592218652796899699148437101626638111264086482076385701901993779 (112 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2024510530 Step 1 took 3463ms Step 2 took 3791ms ********** Factor found in step 2: 13079519603592591828724136575259833 Found probable prime factor of 35 digits: 13079519603592591828724136575259833 Probable prime cofactor 261206072937066617575379951763202353709110249235984400041972053868280867577163 has 78 digits
(67·10128+41)/9 = 7(4)1279<129> = 7 · 232 · 850211 · 156528760163174468436985270573<30> · C91
C91 = P34 · P57
P34 = 9280978564452803005420807952719117<34>
P57 = 162766095942852035592368755877316356049781939213380763333<57>
11/03/09 23:20:43 v1.10 @ 조영욱-PC, starting SIQS on c91: 1510628647465278088780074442873108582826769882337327979799715993558798504460665158401736961 11/03/09 23:20:43 v1.10 @ 조영욱-PC, random seeds: 3179975179, 4127114576 11/03/09 23:20:43 v1.10 @ 조영욱-PC, ==== sieve params ==== 11/03/09 23:20:43 v1.10 @ 조영욱-PC, n = 91 digits, 300 bits 11/03/09 23:20:43 v1.10 @ 조영욱-PC, factor base: 67412 primes (max prime = 1795439) 11/03/09 23:20:43 v1.10 @ 조영욱-PC, single large prime cutoff: 215452680 (120 * pmax) 11/03/09 23:20:43 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 11/03/09 23:20:43 v1.10 @ 조영욱-PC, double large prime cutoff: 1000076957903973 11/03/09 23:20:43 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 11/03/09 23:20:43 v1.10 @ 조영욱-PC, buckets hold 1024 elements 11/03/09 23:20:43 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536 11/03/09 23:20:43 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 11/03/09 23:20:43 v1.10 @ 조영욱-PC, using multiplier of 1 11/03/09 23:20:43 v1.10 @ 조영욱-PC, using small prime variation correction of 20 bits 11/03/09 23:20:43 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 11/03/09 23:20:43 v1.10 @ 조영욱-PC, trial factoring cutoff at 96 bits 11/03/09 23:20:43 v1.10 @ 조영욱-PC, ==== sieving started ==== 11/04/09 00:02:57 v1.10 @ 조영욱-PC, sieve time = 1131.6620, relation time = 624.9660, poly_time = 777.0980 11/04/09 00:02:57 v1.10 @ 조영욱-PC, 67543 relations found: 20169 full + 47374 from 802231 partial, using 353318 polys (191 A polys) 11/04/09 00:02:57 v1.10 @ 조영욱-PC, on average, sieving found 2.33 rels/poly and 324.47 rels/sec 11/04/09 00:02:57 v1.10 @ 조영욱-PC, trial division touched 22403114 sieve locations out of 509411065856 11/04/09 00:02:57 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 11/04/09 00:02:58 v1.10 @ 조영욱-PC, begin with 822400 relations 11/04/09 00:02:58 v1.10 @ 조영욱-PC, reduce to 153642 relations in 9 passes 11/04/09 00:02:59 v1.10 @ 조영욱-PC, failed to read relation 81905 11/04/09 00:02:59 v1.10 @ 조영욱-PC, recovered 153641 relations 11/04/09 00:02:59 v1.10 @ 조영욱-PC, recovered 124453 polynomials 11/04/09 00:03:00 v1.10 @ 조영욱-PC, attempting to build 67542 cycles 11/04/09 00:03:00 v1.10 @ 조영욱-PC, found 67542 cycles in 5 passes 11/04/09 00:03:00 v1.10 @ 조영욱-PC, distribution of cycle lengths: 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 1 : 20169 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 2 : 15486 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 3 : 12345 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 4 : 8239 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 5 : 5235 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 6 : 2848 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 7 : 1600 11/04/09 00:03:00 v1.10 @ 조영욱-PC, length 9+: 1620 11/04/09 00:03:00 v1.10 @ 조영욱-PC, largest cycle: 17 relations 11/04/09 00:03:00 v1.10 @ 조영욱-PC, matrix is 67412 x 67542 (16.1 MB) with weight 3671773 (54.36/col) 11/04/09 00:03:00 v1.10 @ 조영욱-PC, sparse part has weight 3671773 (54.36/col) 11/04/09 00:03:00 v1.10 @ 조영욱-PC, filtering completed in 3 passes 11/04/09 00:03:00 v1.10 @ 조영욱-PC, matrix is 61730 x 61793 (14.9 MB) with weight 3405157 (55.11/col) 11/04/09 00:03:00 v1.10 @ 조영욱-PC, sparse part has weight 3405157 (55.11/col) 11/04/09 00:03:00 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 11/04/09 00:03:00 v1.10 @ 조영욱-PC, matrix is 61682 x 61793 (10.0 MB) with weight 2620105 (42.40/col) 11/04/09 00:03:00 v1.10 @ 조영욱-PC, sparse part has weight 1998266 (32.34/col) 11/04/09 00:03:00 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 11/04/09 00:03:00 v1.10 @ 조영욱-PC, using block size 24717 for processor cache size 4096 kB 11/04/09 00:03:01 v1.10 @ 조영욱-PC, commencing Lanczos iteration 11/04/09 00:03:01 v1.10 @ 조영욱-PC, memory use: 8.9 MB 11/04/09 00:03:17 v1.10 @ 조영욱-PC, lanczos halted after 977 iterations (dim = 61681) 11/04/09 00:03:17 v1.10 @ 조영욱-PC, recovered 16 nontrivial dependencies 11/04/09 00:03:19 v1.10 @ 조영욱-PC, prp34 = 9280978564452803005420807952719117 11/04/09 00:03:20 v1.10 @ 조영욱-PC, prp57 = 162766095942852035592368755877316356049781939213380763333 11/04/09 00:03:20 v1.10 @ 조영욱-PC, Lanczos elapsed time = 19.4370 seconds. 11/04/09 00:03:20 v1.10 @ 조영욱-PC, Sqrt elapsed time = 2.8390 seconds. 11/04/09 00:03:20 v1.10 @ 조영욱-PC, SIQS elapsed time = 2556.8360 seconds. 11/04/09 00:03:20 v1.10 @ 조영욱-PC, 11/04/09 00:03:20 v1.10 @ 조영욱-PC,
(67·10139+41)/9 = 7(4)1389<140> = 19 · 61 · 786547 · 1674291299<10> · C122
C122 = P36 · P86
P36 = 534377673459567913254367877976611999<36>
P86 = 91273531275261258156042651910406956385468817913185449840182337837085448090326006202513<86>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 48774537291313219904007442623079158405753926520188764791281515395495425389421219582074322630262240994295077354023619753487 (122 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4575964169 Step 1 took 4212ms Step 2 took 4056ms ********** Factor found in step 2: 534377673459567913254367877976611999 Found probable prime factor of 36 digits: 534377673459567913254367877976611999 Probable prime cofactor 91273531275261258156042651910406956385468817913185449840182337837085448090326006202513 has 86 digits
(65·10179+61)/9 = 7(2)1789<180> = 3 · 87323 · 1020080559737<13> · 54796149540726227<17> · 83447890470698339<17> · 27708832797767384789479<23> · C107
C107 = P53 · P55
P53 = 21317743601667445804930194324444375759367676750060383<53>
P55 = 1000602544242060901983833714061031406596803672213547933<55>
Number: 72229_179 N=21330588485328361158875002080392748528233289527820690150638446324869293334374003458821833553113928414838339 ( 107 digits) Divisors found: r1=21317743601667445804930194324444375759367676750060383 r2=1000602544242060901983833714061031406596803672213547933 Version: Total time: 5.92 hours. Scaled time: 14.12 units (timescale=2.384). Factorization parameters were as follows: name: 72229_179 n: 21330588485328361158875002080392748528233289527820690150638446324869293334374003458821833553113928414838339 skew: 9489.31 # norm 3.74e+14 c5: 83520 c4: -436405264 c3: -43730910773101 c2: 49262942741116958 c1: 1251380323824997943208 c0: 1910004788418672326199040 # alpha -5.50 Y1: 141394237039 Y0: -191180153518733060139 # Murphy_E 1.54e-09 # M 1630275644399714633370982263982210328654134408964574373092281722022933840800618587339707463745250196639887 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7190161 Max relations in full relation-set: Initial matrix: Pruned matrix : 325405 x 325653 Polynomial selection time: 0.48 hours. Total sieving time: 4.47 hours. Total relation processing time: 0.62 hours. Matrix solve time: 0.23 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 5.92 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(62·10146+1)/9 = 6(8)1459<147> = 132 · 6211201993<10> · C135
C135 = P44 · P92
P44 = 37581034560382870644756808555485568620305131<44>
P92 = 17462969313698974114395124223099743671734245518631937018327064999870014820154330993298790107<92>
Number: 68889_146 N=656276453305026685950132845745911740356925604415194223087379708869983185964276540678527362642992488434795315111654799315241895464139017 ( 135 digits) SNFS difficulty: 147 digits. Divisors found: r1=37581034560382870644756808555485568620305131 r2=17462969313698974114395124223099743671734245518631937018327064999870014820154330993298790107 Version: Total time: 5.79 hours. Scaled time: 13.84 units (timescale=2.390). Factorization parameters were as follows: n: 656276453305026685950132845745911740356925604415194223087379708869983185964276540678527362642992488434795315111654799315241895464139017 m: 100000000000000000000000000000 deg: 5 c5: 620 c0: 1 skew: 0.28 type: snfs lss: 1 rlim: 2550000 alim: 2550000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2550000/2550000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1275000, 2475001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6418793 Max relations in full relation-set: Initial matrix: Pruned matrix : 368564 x 368812 Total sieving time: 4.91 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.27 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2550000,2550000,27,27,49,49,2.3,2.3,75000 total time: 5.79 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10171-13)/9 = 7(4)1703<172> = 3 · 61 · 83 · 41231 · 19326177205969<14> · 168398177444718134299<21> · 2407940199983494858529<22> · C109
C109 = P46 · P64
P46 = 1214668126324414697566041461258645928187122911<46>
P64 = 1248799068463420195167977322133851867633591392772046781046404093<64>
Number: 74443_171 N=1516876424646137080131556036817394582794742250003026910441101316886042947544731337541309623794566063964474723 ( 109 digits) Divisors found: r1=1214668126324414697566041461258645928187122911 r2=1248799068463420195167977322133851867633591392772046781046404093 Version: Total time: 6.92 hours. Scaled time: 16.50 units (timescale=2.385). Factorization parameters were as follows: name: 74443_171 n: 1516876424646137080131556036817394582794742250003026910441101316886042947544731337541309623794566063964474723 skew: 36638.54 # norm 1.70e+14 c5: 3060 c4: -1398829 c3: -9178005934770 c2: 64214779489920807 c1: 6712137520935301876937 c0: -90999322526528824438261920 # alpha -4.43 Y1: 258078464281 Y0: -869052006919087136947 # Murphy_E 1.27e-09 # M 110391089666132681615043182607453260645570670579022439977078871060208071876625052537906603026807031519173360 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7879005 Max relations in full relation-set: Initial matrix: Pruned matrix : 383485 x 383733 Polynomial selection time: 0.59 hours. Total sieving time: 5.13 hours. Total relation processing time: 0.74 hours. Matrix solve time: 0.32 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 6.92 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(62·10146-53)/9 = 6(8)1453<147> = 109 · 3546785903202467<16> · 185105741159841547<18> · C112
C112 = P43 · P70
P43 = 7988310259462790706409802227377510746398133<43>
P70 = 1205071721783088836806307130889214158089504203258137865788043317649411<70>
Number: 68883_146 N=9626486798508338321166672386969836655287169461778109422543113922006059190158733271959627346684232163256318949663 ( 112 digits) SNFS difficulty: 147 digits. Divisors found: r1=7988310259462790706409802227377510746398133 r2=1205071721783088836806307130889214158089504203258137865788043317649411 Version: Total time: 6.61 hours. Scaled time: 15.77 units (timescale=2.387). Factorization parameters were as follows: n: 9626486798508338321166672386969836655287169461778109422543113922006059190158733271959627346684232163256318949663 m: 100000000000000000000000000000 deg: 5 c5: 620 c0: -53 skew: 0.61 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1350000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6538304 Max relations in full relation-set: Initial matrix: Pruned matrix : 327576 x 327824 Total sieving time: 6.03 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.23 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,49,49,2.3,2.3,75000 total time: 6.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10142+41)/9 = 7(4)1419<143> = 53 · 179 · 78816360949<11> · C128
C128 = P31 · P32 · P66
P31 = 5118133093176327142512580486229<31>
P32 = 27674980031210292772854978064813<32>
P66 = 702891226094754909284926680011670954449302856594259786842594019299<66>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 99560487302786486582644809814735788246936425457152388359549310276129385428030351314778327957138435828264320333796516810153455923 (128 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1716764280 Step 1 took 3338ms Step 2 took 2186ms ********** Factor found in step 2: 5118133093176327142512580486229 Found probable prime factor of 31 digits: 5118133093176327142512580486229 Composite cofactor 19452500646285261173250463683416786680393536413987397222165417022651024930736875120889266594826087 has 98 digits Number: 74449_142 N=19452500646285261173250463683416786680393536413987397222165417022651024930736875120889266594826087 ( 98 digits) Divisors found: r1=27674980031210292772854978064813 r2=702891226094754909284926680011670954449302856594259786842594019299 Version: Total time: 1.87 hours. Scaled time: 4.47 units (timescale=2.388). Factorization parameters were as follows: name: 74449_142 n: 19452500646285261173250463683416786680393536413987397222165417022651024930736875120889266594826087 skew: 5805.73 # norm 4.06e+13 c5: 35280 c4: 259186874 c3: -2930668561767 c2: 524670497488280 c1: -23868613045324035750 c0: -31419060311344238082400 # alpha -6.08 Y1: 13298192977 Y0: -3534166219473880023 # Murphy_E 4.66e-09 # M 8517735180229158762591976824665689918174103680536278391078828022506025160905842757400524632744508 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4177363 Max relations in full relation-set: Initial matrix: Pruned matrix : 140601 x 140849 Polynomial selection time: 0.13 hours. Total sieving time: 1.54 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 1.87 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Erik Branger / GGNFS, Msieve / Nov 4, 2009
(65·10194+7)/9 = 7(2)1933<195> = 34 · 7884797231020992193<19> · 2877176822753658311521667<25> · 7624190601160779016659090250310483321<37> · C113
C113 = P54 · P60
P54 = 273052063919366325763016102592425759636306414864987143<54>
P60 = 188794586580741684905644457692277873007482836138123024351931<60>
Number: 72223_194 N=51550751522675018522266287786788814275048077732851829746459474778039978537603238494488272159493076802130222223133 ( 113 digits) Divisors found: r1=273052063919366325763016102592425759636306414864987143 (pp54) r2=188794586580741684905644457692277873007482836138123024351931 (pp60) Version: Msieve-1.40 Total time: 26.12 hours. Scaled time: 26.30 units (timescale=1.007). Factorization parameters were as follows: name: 72223_194 n: 51550751522675018522266287786788814275048077732851829746459474778039978537603238494488272159493076802130222223133 skew: 28101.07 # norm 2.49e+015 c5: 87480 c4: 1004856129 c3: -222070576128524 c2: -740136820656606496 c1: 74425772279683296958096 c0: 159258230282416511732846400 # alpha -5.86 Y1: 1063974041153 Y0: -3581499945924918201797 # Murphy_E 7.00e-010 # M 40610620651381900874736357795463379534833466793705614090822895704528946406243335529977265381704063465118931453860 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 432800 x 433031 Polynomial selection time: 2.11 hours. Total sieving time: 23.07 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.42 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 26.12 hours. --------- CPU info (if available) ----------
(67·10118-31)/9 = 7(4)1171<119> = 431 · 3539 · 123923 · 1288218067<10> · C99
C99 = P48 · P51
P48 = 479267594069721891682480549097268372227422319287<48>
P51 = 637903656034309727455345127696823887454307086504547<51>
Number: 74441_118 N=305726550475843054138201474310211542232754706418797583515046928519829271317105437137867816611297989 ( 99 digits) SNFS difficulty: 121 digits. Divisors found: r1=479267594069721891682480549097268372227422319287 (pp48) r2=637903656034309727455345127696823887454307086504547 (pp51) Version: Msieve-1.40 Total time: 1.99 hours. Scaled time: 2.01 units (timescale=1.010). Factorization parameters were as follows: n: 305726550475843054138201474310211542232754706418797583515046928519829271317105437137867816611297989 m: 500000000000000000000000 deg: 5 c5: 536 c0: -775 skew: 1.08 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 715001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 95723 x 95968 Total sieving time: 1.93 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.99 hours. --------- CPU info (if available) ----------
(67·10119+41)/9 = 7(4)1189<120> = 811 · 853 · 1039 · 333881591 · C103
C103 = P45 · P58
P45 = 727595767725356441642506603221253749877381111<45>
P58 = 4263479919140776269933631073169481493401714827270904579177<58>
Number: 74449_119 N=3102089944948873714259994593663261709240030517685023487311603560248802223498469606951297942226303725647 ( 103 digits) SNFS difficulty: 121 digits. Divisors found: r1=727595767725356441642506603221253749877381111 (pp45) r2=4263479919140776269933631073169481493401714827270904579177 (pp58) Version: Msieve-1.40 Total time: 1.69 hours. Scaled time: 1.67 units (timescale=0.987). Factorization parameters were as follows: n: 3102089944948873714259994593663261709240030517685023487311603560248802223498469606951297942226303725647 m: 1000000000000000000000000 deg: 5 c5: 67 c0: 410 skew: 1.44 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 675001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 95333 x 95575 Total sieving time: 1.63 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.69 hours. --------- CPU info (if available) ----------
(59·10178+31)/9 = 6(5)1779<179> = 32 · 132 · 10671276340193789<17> · 290179339919672299<18> · 169217453948985191765727316229<30> · C113
C113 = P46 · P67
P46 = 9637005396204158450469257031873149606840099171<46>
P67 = 8535130676803352925904743730167548657372518054588374638333334952871<67>
Number: 65559_178 N=82253100389661563231365197085823719682424676832690472227216104481816562001877507221746140576667601734398251169941 ( 113 digits) Divisors found: r1=9637005396204158450469257031873149606840099171 (pp46) r2=8535130676803352925904743730167548657372518054588374638333334952871 (pp67) Version: Msieve-1.40 Total time: 25.72 hours. Scaled time: 26.06 units (timescale=1.013). Factorization parameters were as follows: name: 65559_178 n: 82253100389661563231365197085823719682424676832690472227216104481816562001877507221746140576667601734398251169941 skew: 12858.02 # norm 8.46e+014 c5: 162060 c4: -2600632228 c3: -43692937574329 c2: 145313605466800506 c1: 4516704750475308887274 c0: 19446884015649887308035447 # alpha -4.68 Y1: 926005928683 Y0: -3476127198522949132180 # Murphy_E 6.68e-010 # M 50982245736449504221446289649068838682897607864980664373131986764254935603578078285367076831133484162907276979025 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 464548 x 464773 Polynomial selection time: 2.10 hours. Total sieving time: 22.63 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.51 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 25.72 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Nov 4, 2009
(62·10147-17)/9 = 6(8)1467<148> = 433 · 21503 · 127314740505811<15> · C127
C127 = P43 · P84
P43 = 7380239265137471589931683785983880322126223<43>
P84 = 787432068869086227477331279235335612534521397355267720469263971274835068264710154221<84>
Number: 68887_147 N=5811437073296063859169550612223697098994871055649316965880296678454586156059632707044651861383469849288953521078203648958237283 ( 127 digits) SNFS difficulty: 149 digits. Divisors found: r1=7380239265137471589931683785983880322126223 (pp43) r2=787432068869086227477331279235335612534521397355267720469263971274835068264710154221 (pp84) Version: Msieve-1.40 Total time: 16.55 hours. Scaled time: 34.61 units (timescale=2.092). Factorization parameters were as follows: name: 68887_147 n: 5811437073296063859169550612223697098994871055649316965880296678454586156059632707044651861383469849288953521078203648958237283 m: 200000000000000000000000000000 deg: 5 c5: 775 c0: -68 skew: 0.61 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 403004 x 403252 Total sieving time: 15.72 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.54 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 16.55 hours. --------- CPU info (if available) ----------
(65·10148+61)/9 = 7(2)1479<149> = 107 · 311 · 928044632639367136695800189501<30> · C115
C115 = P56 · P59
P56 = 50242177561928748451743732864142031671748151278840517047<56>
P59 = 46546750019341659505338843132529449656489198973335043828091<59>
Number: 72229_148 N=2338610079402474063205803718148611082030518374643004494619329802098483811535795841671290368340696296730300622967277 ( 115 digits) SNFS difficulty: 150 digits. Divisors found: r1=50242177561928748451743732864142031671748151278840517047 (pp56) r2=46546750019341659505338843132529449656489198973335043828091 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 28.48 hours. Scaled time: 56.48 units (timescale=1.983). Factorization parameters were as follows: name: 72229_148 n: 2338610079402474063205803718148611082030518374643004494619329802098483811535795841671290368340696296730300622967277 m: 500000000000000000000000000000 deg: 5 c5: 104 c0: 305 skew: 1.24 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:169717, largePrimes:7420057 encountered Relations: rels:7854988, finalFF:832362 Max relations in full relation-set: 28 Initial matrix: 339294 x 832362 with sparse part having weight 97295036. Pruned matrix : 241666 x 243426 with weight 37932161. Total sieving time: 26.92 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.22 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 28.48 hours. --------- CPU info (if available) ----------
(67·10150-31)/9 = 7(4)1491<151> = 691 · 877 · 32363 · 30693713 · 88802717 · 44229582577<11> · 5862187185226627723561<22> · C93
C93 = P41 · P53
P41 = 52149321682005352760460016522007528725573<41>
P53 = 10299330898577574176970919887050802682776591407979701<53>
Wed Nov 04 11:38:20 2009 Msieve v. 1.42 Wed Nov 04 11:38:20 2009 random seeds: 089ec948 20f939fa Wed Nov 04 11:38:20 2009 factoring 537103120139339161837271430024183269497567761442391196882272189956546662230998950851183593673 (93 digits) Wed Nov 04 11:38:21 2009 searching for 15-digit factors Wed Nov 04 11:38:21 2009 commencing quadratic sieve (93-digit input) Wed Nov 04 11:38:21 2009 using multiplier of 5 Wed Nov 04 11:38:21 2009 using 32kb Intel Core sieve core Wed Nov 04 11:38:21 2009 sieve interval: 36 blocks of size 32768 Wed Nov 04 11:38:21 2009 processing polynomials in batches of 6 Wed Nov 04 11:38:21 2009 using a sieve bound of 1954487 (72941 primes) Wed Nov 04 11:38:21 2009 using large prime bound of 244310875 (27 bits) Wed Nov 04 11:38:21 2009 using double large prime bound of 1253998370578250 (42-51 bits) Wed Nov 04 11:38:21 2009 using trial factoring cutoff of 51 bits Wed Nov 04 11:38:21 2009 polynomial 'A' values have 12 factors Wed Nov 04 14:26:40 2009 73249 relations (18003 full + 55246 combined from 1003555 partial), need 73037 Wed Nov 04 14:26:42 2009 begin with 1021558 relations Wed Nov 04 14:26:43 2009 reduce to 190009 relations in 11 passes Wed Nov 04 14:26:43 2009 attempting to read 190009 relations Wed Nov 04 14:26:45 2009 recovered 190009 relations Wed Nov 04 14:26:45 2009 recovered 173099 polynomials Wed Nov 04 14:26:46 2009 attempting to build 73249 cycles Wed Nov 04 14:26:46 2009 found 73249 cycles in 6 passes Wed Nov 04 14:26:46 2009 distribution of cycle lengths: Wed Nov 04 14:26:46 2009 length 1 : 18003 Wed Nov 04 14:26:46 2009 length 2 : 12924 Wed Nov 04 14:26:46 2009 length 3 : 12314 Wed Nov 04 14:26:46 2009 length 4 : 9925 Wed Nov 04 14:26:46 2009 length 5 : 7590 Wed Nov 04 14:26:46 2009 length 6 : 5002 Wed Nov 04 14:26:46 2009 length 7 : 3092 Wed Nov 04 14:26:46 2009 length 9+: 4399 Wed Nov 04 14:26:46 2009 largest cycle: 22 relations Wed Nov 04 14:26:46 2009 matrix is 72941 x 73249 (18.7 MB) with weight 4614755 (63.00/col) Wed Nov 04 14:26:46 2009 sparse part has weight 4614755 (63.00/col) Wed Nov 04 14:26:47 2009 filtering completed in 3 passes Wed Nov 04 14:26:47 2009 matrix is 69394 x 69458 (17.8 MB) with weight 4391238 (63.22/col) Wed Nov 04 14:26:47 2009 sparse part has weight 4391238 (63.22/col) Wed Nov 04 14:26:47 2009 saving the first 48 matrix rows for later Wed Nov 04 14:26:47 2009 matrix is 69346 x 69458 (10.7 MB) with weight 3426212 (49.33/col) Wed Nov 04 14:26:47 2009 sparse part has weight 2392857 (34.45/col) Wed Nov 04 14:26:47 2009 matrix includes 64 packed rows Wed Nov 04 14:26:47 2009 using block size 27783 for processor cache size 1024 kB Wed Nov 04 14:26:48 2009 commencing Lanczos iteration Wed Nov 04 14:26:48 2009 memory use: 11.2 MB Wed Nov 04 14:27:19 2009 lanczos halted after 1098 iterations (dim = 69346) Wed Nov 04 14:27:19 2009 recovered 18 nontrivial dependencies Wed Nov 04 14:27:19 2009 prp41 factor: 52149321682005352760460016522007528725573 Wed Nov 04 14:27:19 2009 prp53 factor: 10299330898577574176970919887050802682776591407979701 Wed Nov 04 14:27:19 2009 elapsed time 02:48:59
(67·10136-31)/9 = 7(4)1351<137> = 1229 · 2243 · 973091086236793<15> · 31185773135760457<17> · C99
C99 = P43 · P57
P43 = 4810783287458379447319665714720974617182731<43>
P57 = 184980237899848999666716380766074086221876478826386870813<57>
Number: 74441_136 N=889899836998668686633900800566801256698255608757109609947713814087374076702236000012655652911530303 ( 99 digits) SNFS difficulty: 139 digits. Divisors found: r1=4810783287458379447319665714720974617182731 (pp43) r2=184980237899848999666716380766074086221876478826386870813 (pp57) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.69 hours. Scaled time: 18.94 units (timescale=1.956). Factorization parameters were as follows: name: 74441_136 n: 889899836998668686633900800566801256698255608757109609947713814087374076702236000012655652911530303 m: 2000000000000000000000000000 deg: 5 c5: 335 c0: -496 skew: 1.08 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1550001) Primes: RFBsize:110630, AFBsize:110790, largePrimes:3539552 encountered Relations: rels:3573888, finalFF:316292 Max relations in full relation-set: 28 Initial matrix: 221487 x 316292 with sparse part having weight 29442668. Pruned matrix : 194165 x 195336 with weight 14866622. Total sieving time: 9.16 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.34 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 9.69 hours. --------- CPU info (if available) ----------
(67·10158-31)/9 = 7(4)1571<159> = 3 · 13 · 47 · 7057 · 8995960241<10> · 311380275064099<15> · 693785995312617674467398121<27> · C101
C101 = P50 · P51
P50 = 93224551460111137035240108268625574954487489831903<50>
P51 = 317654677042421270612800208132930793843765449092733<51>
Number: 74441_158 N=29613214786486185544278227521549428503432789847535163482886575624753396192189049354232057714028860899 ( 101 digits) Divisors found: r1=93224551460111137035240108268625574954487489831903 (pp50) r2=317654677042421270612800208132930793843765449092733 (pp51) Version: Msieve-1.40 Total time: 5.22 hours. Scaled time: 17.25 units (timescale=3.305). Factorization parameters were as follows: name: 74441_158 n: 29613214786486185544278227521549428503432789847535163482886575624753396192189049354232057714028860899 skew: 2475.53 # norm 7.83e+13 c5: 286800 c4: -2941514404 c3: 3174525952836 c2: 18842763152668317 c1: 16056592382406591394 c0: 4443972655071256500177 # alpha -4.91 Y1: 60202425107 Y0: -10064370379691956090 # Murphy_E 3.01e-09 # M 5135300505416392765969601109169315018788510709089396459401407529503863629792793102008601301469075470 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 214611 x 214859 Polynomial selection time: 0.55 hours. Total sieving time: 4.53 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 5.22 hours. --------- CPU info (if available) ----------
(67·10167-31)/9 = 7(4)1661<168> = 3 · 97 · 1789 · 13892257 · 96862933 · 31292114101<11> · 51882071872753<14> · 186886300862329234750824700241<30> · C94
C94 = P38 · P56
P38 = 84574198791351340668356637482340533647<38>
P56 = 41412453686437193224539957363738958943723854038718898569<56>
Wed Nov 04 14:47:54 2009 Msieve v. 1.42 Wed Nov 04 14:47:54 2009 random seeds: b7fa92a0 b09111fb Wed Nov 04 14:47:54 2009 factoring 3502425090514369839464801792831352863378564620939980353829959014019250494360162188995524651143 (94 digits) Wed Nov 04 14:47:55 2009 searching for 15-digit factors Wed Nov 04 14:47:55 2009 commencing quadratic sieve (94-digit input) Wed Nov 04 14:47:55 2009 using multiplier of 7 Wed Nov 04 14:47:55 2009 using 32kb Intel Core sieve core Wed Nov 04 14:47:55 2009 sieve interval: 36 blocks of size 32768 Wed Nov 04 14:47:55 2009 processing polynomials in batches of 6 Wed Nov 04 14:47:55 2009 using a sieve bound of 2025253 (75248 primes) Wed Nov 04 14:47:55 2009 using large prime bound of 271383902 (28 bits) Wed Nov 04 14:47:55 2009 using double large prime bound of 1515134967946490 (42-51 bits) Wed Nov 04 14:47:55 2009 using trial factoring cutoff of 51 bits Wed Nov 04 14:47:55 2009 polynomial 'A' values have 12 factors Wed Nov 04 17:50:50 2009 75673 relations (18625 full + 57048 combined from 1070859 partial), need 75344 Wed Nov 04 17:50:51 2009 begin with 1089484 relations Wed Nov 04 17:50:52 2009 reduce to 195943 relations in 11 passes Wed Nov 04 17:50:52 2009 attempting to read 195943 relations Wed Nov 04 17:50:55 2009 recovered 195943 relations Wed Nov 04 17:50:55 2009 recovered 179427 polynomials Wed Nov 04 17:50:56 2009 attempting to build 75673 cycles Wed Nov 04 17:50:56 2009 found 75673 cycles in 6 passes Wed Nov 04 17:50:56 2009 distribution of cycle lengths: Wed Nov 04 17:50:56 2009 length 1 : 18625 Wed Nov 04 17:50:56 2009 length 2 : 13525 Wed Nov 04 17:50:56 2009 length 3 : 12818 Wed Nov 04 17:50:56 2009 length 4 : 10120 Wed Nov 04 17:50:56 2009 length 5 : 7691 Wed Nov 04 17:50:56 2009 length 6 : 5105 Wed Nov 04 17:50:56 2009 length 7 : 3291 Wed Nov 04 17:50:56 2009 length 9+: 4498 Wed Nov 04 17:50:56 2009 largest cycle: 20 relations Wed Nov 04 17:50:56 2009 matrix is 75248 x 75673 (19.9 MB) with weight 4909489 (64.88/col) Wed Nov 04 17:50:56 2009 sparse part has weight 4909489 (64.88/col) Wed Nov 04 17:50:57 2009 filtering completed in 3 passes Wed Nov 04 17:50:57 2009 matrix is 71566 x 71630 (18.9 MB) with weight 4655436 (64.99/col) Wed Nov 04 17:50:57 2009 sparse part has weight 4655436 (64.99/col) Wed Nov 04 17:50:57 2009 saving the first 48 matrix rows for later Wed Nov 04 17:50:57 2009 matrix is 71518 x 71630 (12.2 MB) with weight 3691149 (51.53/col) Wed Nov 04 17:50:57 2009 sparse part has weight 2758033 (38.50/col) Wed Nov 04 17:50:57 2009 matrix includes 64 packed rows Wed Nov 04 17:50:57 2009 using block size 28652 for processor cache size 1024 kB Wed Nov 04 17:50:58 2009 commencing Lanczos iteration Wed Nov 04 17:50:58 2009 memory use: 12.2 MB Wed Nov 04 17:51:32 2009 lanczos halted after 1132 iterations (dim = 71517) Wed Nov 04 17:51:32 2009 recovered 17 nontrivial dependencies Wed Nov 04 17:51:33 2009 prp38 factor: 84574198791351340668356637482340533647 Wed Nov 04 17:51:33 2009 prp56 factor: 41412453686437193224539957363738958943723854038718898569 Wed Nov 04 17:51:33 2009 elapsed time 03:03:39
(67·10131+41)/9 = 7(4)1309<132> = 79 · 18493896401067727171723339878571<32> · C99
C99 = P37 · P63
P37 = 4525308800973640811158291449529412591<37>
P63 = 112597451591228804139139623565260342727756344221799002605550371<63>
Number: 74449_131 N=509538238652991184285965430122845534851877702982919855855689867384284811642128713318697751892121261 ( 99 digits) SNFS difficulty: 132 digits. Divisors found: r1=4525308800973640811158291449529412591 (pp37) r2=112597451591228804139139623565260342727756344221799002605550371 (pp63) Version: Msieve-1.40 Total time: 3.42 hours. Scaled time: 11.42 units (timescale=3.339). Factorization parameters were as follows: name: 74449_131 n: 509538238652991184285965430122845534851877702982919855855689867384284811642128713318697751892121261 m: 100000000000000000000000000 deg: 5 c5: 670 c0: 41 skew: 0.57 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 1175001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178722 x 178970 Total sieving time: 3.32 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000 total time: 3.42 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve / Nov 4, 2009
(65·10149-11)/9 = 7(2)1481<150> = 229 · 10309737107<11> · C138
C138 = P61 · P78
P61 = 1760809446734728886340349673660727500140667053250604025945597<61>
P78 = 173730237829917538457626291929595253008299451778851719371130464180604004301231<78>
Number: 138-1 N=305905843954389967281676045820831821698738895584262287043064623509243937335538029868173413204853119730514843003514032989035405710006129907 ( 138 digits) SNFS difficulty: 151 digits. Divisors found: r1=1760809446734728886340349673660727500140667053250604025945597 (pp61) r2=173730237829917538457626291929595253008299451778851719371130464180604004301231 (pp78) Version: Msieve-1.40 Total time: 11.49 hours. Scaled time: 21.02 units (timescale=1.829). Factorization parameters were as follows: n: 305905843954389967281676045820831821698738895584262287043064623509243937335538029868173413204853119730514843003514032989035405710006129907 m: 1000000000000000000000000000000 deg: 5 c5: 13 c0: -22 skew: 1.11 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 379854 x 380082 Total sieving time: 11.15 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.18 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 11.49 hours. --------- CPU info (if available) ----------
(62·10149+1)/9 = 6(8)1489<150> = 20483 · 1451521 · C140
C140 = P46 · P95
P46 = 2159958576333471630827291022074668095705599543<46>
P95 = 10727212141443721091591595069382603712040863221467467516173427204992746524141860104161935808261<95>
Number: 140-1 N=23170333865059911320172901781817463495296432410996862069873982088491668836825268806120304124323254449187510933228247007723728437099297224723 ( 140 digits) SNFS difficulty: 151 digits. Divisors found: r1=2159958576333471630827291022074668095705599543 (pp46) r2=10727212141443721091591595069382603712040863221467467516173427204992746524141860104161935808261 (pp95) Version: Msieve-1.40 Total time: 11.72 hours. Scaled time: 21.56 units (timescale=1.839). Factorization parameters were as follows: n: 23170333865059911320172901781817463495296432410996862069873982088491668836825268806120304124323254449187510933228247007723728437099297224723 m: 1000000000000000000000000000000 deg: 5 c5: 31 c0: 5 skew: 0.69 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 347406 x 347631 Total sieving time: 11.26 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.15 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 11.72 hours. --------- CPU info (if available) ----------
(62·10150-53)/9 = 6(8)1493<151> = 29 · 9210591331619<13> · C137
C137 = P63 · P74
P63 = 661875852763457366391885680418340090691973432419556589889316841<63>
P74 = 38966117144008027984903360062825590816642015961644316334865082860882091613<74>
Number: 137-1 N=25790732013571089390629829637694401439543992384512237925102922325233751728027886870816186678957658224553701159626991355378692243745754533 ( 137 digits) SNFS difficulty: 151 digits. Divisors found: r1=661875852763457366391885680418340090691973432419556589889316841 (pp63) r2=38966117144008027984903360062825590816642015961644316334865082860882091613 (pp74) Version: Msieve-1.40 Total time: 14.57 hours. Scaled time: 27.09 units (timescale=1.860). Factorization parameters were as follows: n: 25790732013571089390629829637694401439543992384512237925102922325233751728027886870816186678957658224553701159626991355378692243745754533 m: 1000000000000000000000000000000 deg: 5 c5: 62 c0: -53 skew: 0.97 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416838 x 417064 Total sieving time: 14.21 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.23 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 14.57 hours. --------- CPU info (if available) ----------
(67·10115+41)/9 = 7(4)1149<116> = C116
C116 = P44 · P72
P44 = 75238973175295618288828136185615790213603981<44>
P72 = 989439931230852392677882277821169072176642871144176663604322784136109029<72>
Number: s116 N=74444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 116 digits) SNFS difficulty: 116 digits. Divisors found: r1=75238973175295618288828136185615790213603981 (pp44) r2=989439931230852392677882277821169072176642871144176663604322784136109029 (pp72) Version: Msieve-1.40 Total time: 0.85 hours. Scaled time: 1.52 units (timescale=1.793). Factorization parameters were as follows: n: 74444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 m: 100000000000000000000000 deg: 5 c5: 67 c0: 41 skew: 0.91 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64899 x 65124 Total sieving time: 0.82 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 0.85 hours. --------- CPU info (if available) ----------
(22·10152+17)/3 = 7(3)1519<153> = 1753 · 95413 · C145
C145 = P68 · P78
P68 = 37075204362561186462930457952094323461588666020443762432927480355047<68>
P78 = 118257421447605116816883585559520072232239649472035949275385244191705024440833<78>
Number: 145-1 N=4384418067559486045520299858642176375544954019382081362056620665890389504466832173267132048330947004189612394065907772127770862786533603484434151 ( 145 digits) SNFS difficulty: 153 digits. Divisors found: r1=37075204362561186462930457952094323461588666020443762432927480355047 (pp68) r2=118257421447605116816883585559520072232239649472035949275385244191705024440833 (pp78) Version: Msieve-1.40 Total time: 15.24 hours. Scaled time: 26.72 units (timescale=1.753). Factorization parameters were as follows: n: 4384418067559486045520299858642176375544954019382081362056620665890389504466832173267132048330947004189612394065907772127770862786533603484434151 m: 2000000000000000000000000000000 deg: 5 c5: 275 c0: 68 skew: 0.76 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 422616 x 422841 Total sieving time: 14.81 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.22 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,153.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 15.24 hours. --------- CPU info (if available) ----------
(67·10122+41)/9 = 7(4)1219<123> = 7 · 6101 · 1433828959<10> · C110
C110 = P45 · P65
P45 = 799833486774886669446684467145607740034837573<45>
P65 = 15199744852895041003829511211189301714478486024060607047766140001<65>
Number: s110 N=12157264923779677503705120562162102877408669455504567715147187442947226381072628485040055315520075129213057573 ( 110 digits) SNFS difficulty: 124 digits. Divisors found: r1=799833486774886669446684467145607740034837573 (pp45) r2=15199744852895041003829511211189301714478486024060607047766140001 (pp65) Version: Msieve-1.40 Total time: 2.10 hours. Scaled time: 4.13 units (timescale=1.969). Factorization parameters were as follows: n: 12157264923779677503705120562162102877408669455504567715147187442947226381072628485040055315520075129213057573 m: 2000000000000000000000000 deg: 5 c5: 1675 c0: 328 skew: 0.72 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 920001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 109064 x 109289 Total sieving time: 2.03 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000 total time: 2.10 hours. --------- CPU info (if available) ----------
(67·10129+41)/9 = 7(4)1289<130> = 3 · 13 · 53 · 12241 · C123
C123 = P50 · P73
P50 = 31174567399065703189714283064966059346296400375499<50>
P73 = 9437880695028528118480341072386914262636733329993003874835658761941901633<73>
Number: s123 N=294221847831507912923138279310623104215007700510333942982958894533513082682052414146690573113990857947526921112443321289867 ( 123 digits) SNFS difficulty: 131 digits. Divisors found: r1=31174567399065703189714283064966059346296400375499 (pp50) r2=9437880695028528118480341072386914262636733329993003874835658761941901633 (pp73) Version: Msieve-1.40 Total time: 2.51 hours. Scaled time: 4.95 units (timescale=1.969). Factorization parameters were as follows: n: 294221847831507912923138279310623104215007700510333942982958894533513082682052414146690573113990857947526921112443321289867 m: 100000000000000000000000000 deg: 5 c5: 67 c0: 410 skew: 1.44 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 157655 x 157880 Total sieving time: 2.41 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.51 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 4, 2009
(59·10163+31)/9 = 6(5)1629<164> = 3 · 32818728326958597007<20> · 30206450459581731645292633773887341<35> · C110
C110 = P38 · P72
P38 = 28333720901589950932983121220696385373<38>
P72 = 777970613242584704317750496597008213030025384705460732425451218674131803<72>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1029933060 Step 1 took 30438ms Step 2 took 12835ms ********** Factor found in step 2: 28333720901589950932983121220696385373 Found probable prime factor of 38 digits: 28333720901589950932983121220696385373 Probable prime cofactor 777970613242584704317750496597008213030025384705460732425451218674131803 has 72 digits
By Robert Backstrom / Msieve, GGNFS / Nov 4, 2009
(67·10115-31)/9 = 7(4)1141<116> = 23 · 1303 · 2584579451<10> · 10003719409<11> · C92
C92 = P38 · P55
P38 = 13606100517264678251735534718702197189<38>
P55 = 7061142524531661338165749232263043327688308648736184639<55>
Wed Nov 04 03:16:06 2009 Wed Nov 04 03:16:06 2009 Wed Nov 04 03:16:06 2009 Msieve v. 1.43 Wed Nov 04 03:16:06 2009 random seeds: 60f2ff78 55277435 Wed Nov 04 03:16:06 2009 factoring 96074614955509853374734392658394094992047014932306016222428043900796653215149734058090779771 (92 digits) Wed Nov 04 03:16:07 2009 searching for 15-digit factors Wed Nov 04 03:16:07 2009 commencing quadratic sieve (92-digit input) Wed Nov 04 03:16:08 2009 using multiplier of 29 Wed Nov 04 03:16:08 2009 using 64kb Opteron sieve core Wed Nov 04 03:16:08 2009 sieve interval: 18 blocks of size 65536 Wed Nov 04 03:16:08 2009 processing polynomials in batches of 6 Wed Nov 04 03:16:08 2009 using a sieve bound of 1847539 (69412 primes) Wed Nov 04 03:16:08 2009 using large prime bound of 208771907 (27 bits) Wed Nov 04 03:16:08 2009 using double large prime bound of 944951756339680 (42-50 bits) Wed Nov 04 03:16:08 2009 using trial factoring cutoff of 50 bits Wed Nov 04 03:16:08 2009 polynomial 'A' values have 12 factors Wed Nov 04 03:16:08 2009 restarting with 2240 full and 114056 partial relations Wed Nov 04 04:40:28 2009 69576 relations (17880 full + 51696 combined from 889191 partial), need 69508 Wed Nov 04 04:40:29 2009 begin with 907071 relations Wed Nov 04 04:40:29 2009 reduce to 175853 relations in 12 passes Wed Nov 04 04:40:29 2009 attempting to read 175853 relations Wed Nov 04 04:40:31 2009 recovered 175853 relations Wed Nov 04 04:40:31 2009 recovered 157201 polynomials Wed Nov 04 04:40:31 2009 attempting to build 69576 cycles Wed Nov 04 04:40:31 2009 found 69576 cycles in 5 passes Wed Nov 04 04:40:31 2009 distribution of cycle lengths: Wed Nov 04 04:40:31 2009 length 1 : 17880 Wed Nov 04 04:40:31 2009 length 2 : 12677 Wed Nov 04 04:40:31 2009 length 3 : 12033 Wed Nov 04 04:40:31 2009 length 4 : 9369 Wed Nov 04 04:40:31 2009 length 5 : 6758 Wed Nov 04 04:40:31 2009 length 6 : 4430 Wed Nov 04 04:40:31 2009 length 7 : 2778 Wed Nov 04 04:40:31 2009 length 9+: 3651 Wed Nov 04 04:40:31 2009 largest cycle: 19 relations Wed Nov 04 04:40:32 2009 matrix is 69412 x 69576 (17.7 MB) with weight 4370660 (62.82/col) Wed Nov 04 04:40:32 2009 sparse part has weight 4370660 (62.82/col) Wed Nov 04 04:40:33 2009 filtering completed in 3 passes Wed Nov 04 04:40:33 2009 matrix is 65447 x 65511 (16.8 MB) with weight 4148934 (63.33/col) Wed Nov 04 04:40:33 2009 sparse part has weight 4148934 (63.33/col) Wed Nov 04 04:40:33 2009 saving the first 48 matrix rows for later Wed Nov 04 04:40:33 2009 matrix is 65399 x 65511 (10.2 MB) with weight 3230916 (49.32/col) Wed Nov 04 04:40:33 2009 sparse part has weight 2284762 (34.88/col) Wed Nov 04 04:40:33 2009 matrix includes 64 packed rows Wed Nov 04 04:40:33 2009 using block size 26204 for processor cache size 1024 kB Wed Nov 04 04:40:33 2009 commencing Lanczos iteration Wed Nov 04 04:40:33 2009 memory use: 10.5 MB Wed Nov 04 04:40:42 2009 linear algebra at 36.8%, ETA 0h 0m Wed Nov 04 04:40:58 2009 lanczos halted after 1036 iterations (dim = 65397) Wed Nov 04 04:40:58 2009 recovered 17 nontrivial dependencies Wed Nov 04 04:40:59 2009 prp38 factor: 13606100517264678251735534718702197189 Wed Nov 04 04:40:59 2009 prp55 factor: 7061142524531661338165749232263043327688308648736184639 Wed Nov 04 04:40:59 2009 elapsed time 01:24:53
(67·10118+41)/9 = 7(4)1179<119> = 79 · 307 · 14737 · C111
C111 = P51 · P60
P51 = 394121494818965174452737614446926695666843079535589<51>
P60 = 528478862616451509745863971040078685044093400122478146340481<60>
Number: n N=208284879314622401916862034075270093518284946714987602220269436455654582860537149251344762334391880301350878309 ( 111 digits) SNFS difficulty: 121 digits. Divisors found: Wed Nov 04 16:21:19 2009 prp51 factor: 394121494818965174452737614446926695666843079535589 Wed Nov 04 16:21:19 2009 prp60 factor: 528478862616451509745863971040078685044093400122478146340481 Wed Nov 04 16:21:19 2009 elapsed time 00:03:01 (Msieve 1.43 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.55 hours. Scaled time: 2.83 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_4_117_9 n: 208284879314622401916862034075270093518284946714987602220269436455654582860537149251344762334391880301350878309 m: 500000000000000000000000 deg: 5 c5: 536 c0: 1025 skew: 1.14 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 qintsize: 20000 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved special-q in [365000, 731243) Primes: RFBsize:58789, AFBsize:58652, largePrimes:1288707 encountered Relations: rels:1226476, finalFF:120008 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 114038 hash collisions in 1344703 relations Msieve: matrix is 96123 x 96371 (25.5 MB) Total sieving time: 1.53 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.55 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Nov 4, 2009
(65·10169-11)/9 = 7(2)1681<170> = 7283 · C166
C166 = P55 · P112
P55 = 4542588659828027852927753185791967431732095768199561187<55>
P112 = 2183017035769276937291582142435683590937076880103696235615273791181575193188745388390184796157340731360291701301<112>
Number: 72221_169 N=9916548430896913665003737775947030375150655255007856957602941400826887576853250339451080903778967763589485407417578226310891421422795856408378720612690130745877004287 ( 166 digits) SNFS difficulty: 171 digits. Divisors found: r1=4542588659828027852927753185791967431732095768199561187 (pp55) r2=2183017035769276937291582142435683590937076880103696235615273791181575193188745388390184796157340731360291701301 (pp112) Version: Msieve v. 1.43 Total time: 55.07 hours. Scaled time: 95.77 units (timescale=1.739). Factorization parameters were as follows: n: 9916548430896913665003737775947030375150655255007856957602941400826887576853250339451080903778967763589485407417578226310891421422795856408378720612690130745877004287 m: 10000000000000000000000000000000000 deg: 5 c5: 13 c0: -22 skew: 1.11 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 948039 x 948264 Total sieving time: 53.64 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.18 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 55.07 hours.
By Markus Tervooren / Msieve / Nov 4, 2009
(19·10171+71)/9 = 2(1)1709<172> = 132 · 66191 · 54788299 · C157
C157 = P53 · P104
P53 = 36770347511060861410054629572166650094512885628335317<53>
P104 = 93678492425462393852818727293289502166124539235947642213770088451030209181339994735034641839970928805567<104>
Sieving: ~200M Rels @ 0.00076secs/rel, 43 Hours total rlim: 12000000 alim: 12000000 lpbr: 33 lpba: 33 mfbr: 65 mfba: 65 rlambda: 2.6 alambda: 2.6 Msieve v. 1.43 Tue Nov 3 13:48:17 2009 random seeds: dc994ee7 1f3797af factoring 3444590720796534891970900366617273075288864508894370522444950161612774095027857693356068550244426897682148456369374381691702403566455224593338052625372309739 (157 digits) searching for 15-digit factors commencing number field sieve (157-digit input) R0: -10000000000000000000000000000000000 R1: 1 A0: 71 A1: 0 A2: 0 A3: 0 A4: 0 A5: 190 skew 0.82, size 2.796412e-12, alpha 1.603695, combined = 1.575994e-10 commencing relation filtering estimated available RAM is 8010.2 MB commencing duplicate removal, pass 1 error -11 reading relation 42019041 error -9 reading relation 83306597 error -11 reading relation 141242284 error -6 reading relation 141242342 error -11 reading relation 141242368 error -11 reading relation 141242384 error -6 reading relation 141242387 error -6 reading relation 141242425 error -6 reading relation 141242455 error -11 reading relation 141242501 error -11 reading relation 141242542 error -11 reading relation 141242553 error -11 reading relation 180726972 error -11 reading relation 180727060 error -11 reading relation 180727075 error -11 reading relation 180727116 error -11 reading relation 180727119 error -11 reading relation 180727135 error -11 reading relation 180727207 error -6 reading relation 180727245 error -11 reading relation 180727254 error -11 reading relation 180727292 error -6 reading relation 180749356 error -11 reading relation 180749523 error -11 reading relation 189285988 error -11 reading relation 189286082 error -11 reading relation 189286097 error -6 reading relation 189286104 error -11 reading relation 189286184 error -11 reading relation 189286215 error -6 reading relation 197048646 error -6 reading relation 197048659 found 19055345 hash collisions in 203204031 relations commencing duplicate removal, pass 2 found 12204124 duplicates and 190999907 unique relations memory use: 788.8 MB reading ideals above 47775744 commencing singleton removal, initial pass memory use: 6024.0 MB reading all ideals from disk memory use: 3283.9 MB commencing in-memory singleton removal begin with 190999907 relations and 224304224 unique ideals reduce to 35532778 relations and 23616995 ideals in 21 passes max relations containing the same ideal: 23 reading ideals above 720000 commencing singleton removal, initial pass memory use: 753.0 MB reading all ideals from disk memory use: 1144.1 MB keeping 29131945 ideals with weight <= 200, target excess is 228616 commencing in-memory singleton removal begin with 35532778 relations and 29131945 unique ideals reduce to 35435748 relations and 29034868 ideals in 17 passes max relations containing the same ideal: 200 removing 3757157 relations and 3357157 ideals in 400000 cliques commencing in-memory singleton removal begin with 31678591 relations and 29034868 unique ideals reduce to 31452550 relations and 25448201 ideals in 9 passes max relations containing the same ideal: 193 removing 2631341 relations and 2231341 ideals in 400000 cliques commencing in-memory singleton removal begin with 28821209 relations and 25448201 unique ideals reduce to 28692432 relations and 23086444 ideals in 8 passes max relations containing the same ideal: 189 removing 2262214 relations and 1862214 ideals in 400000 cliques commencing in-memory singleton removal begin with 26430218 relations and 23086444 unique ideals reduce to 26326344 relations and 21119040 ideals in 7 passes max relations containing the same ideal: 180 removing 2053924 relations and 1653924 ideals in 400000 cliques commencing in-memory singleton removal begin with 24272420 relations and 21119040 unique ideals reduce to 24181657 relations and 19373112 ideals in 8 passes max relations containing the same ideal: 173 removing 1904878 relations and 1504878 ideals in 400000 cliques commencing in-memory singleton removal begin with 22276779 relations and 19373112 unique ideals reduce to 22189508 relations and 17779698 ideals in 7 passes max relations containing the same ideal: 162 removing 1798573 relations and 1398573 ideals in 400000 cliques commencing in-memory singleton removal begin with 20390935 relations and 17779698 unique ideals reduce to 20304028 relations and 16292889 ideals in 7 passes max relations containing the same ideal: 153 removing 1716636 relations and 1316636 ideals in 400000 cliques commencing in-memory singleton removal begin with 18587392 relations and 16292889 unique ideals reduce to 18505170 relations and 14892697 ideals in 6 passes max relations containing the same ideal: 148 removing 1648470 relations and 1248470 ideals in 400000 cliques commencing in-memory singleton removal begin with 16856700 relations and 14892697 unique ideals reduce to 16772185 relations and 13558246 ideals in 7 passes max relations containing the same ideal: 143 removing 1586891 relations and 1186891 ideals in 400000 cliques commencing in-memory singleton removal begin with 15185294 relations and 13558246 unique ideals reduce to 15093866 relations and 12278107 ideals in 6 passes max relations containing the same ideal: 134 removing 1541129 relations and 1141129 ideals in 400000 cliques commencing in-memory singleton removal begin with 13552737 relations and 12278107 unique ideals reduce to 13458160 relations and 11040351 ideals in 6 passes max relations containing the same ideal: 131 removing 1498638 relations and 1098638 ideals in 400000 cliques commencing in-memory singleton removal begin with 11959522 relations and 11040351 unique ideals reduce to 11854632 relations and 9834292 ideals in 7 passes max relations containing the same ideal: 119 removing 1469127 relations and 1069127 ideals in 400000 cliques commencing in-memory singleton removal begin with 10385505 relations and 9834292 unique ideals reduce to 10270302 relations and 8646644 ideals in 8 passes max relations containing the same ideal: 105 removing 1437254 relations and 1037254 ideals in 400000 cliques commencing in-memory singleton removal begin with 8833048 relations and 8646644 unique ideals reduce to 8699917 relations and 7471726 ideals in 7 passes max relations containing the same ideal: 91 removing 1420498 relations and 1020498 ideals in 400000 cliques commencing in-memory singleton removal begin with 7279419 relations and 7471726 unique ideals reduce to 7131989 relations and 6298123 ideals in 8 passes max relations containing the same ideal: 80 removing 1400326 relations and 1000326 ideals in 400000 cliques commencing in-memory singleton removal begin with 5731663 relations and 6298123 unique ideals reduce to 5546349 relations and 5103685 ideals in 9 passes max relations containing the same ideal: 64 removing 757743 relations and 580274 ideals in 177469 cliques commencing in-memory singleton removal begin with 4788606 relations and 5103685 unique ideals reduce to 4717295 relations and 4450118 ideals in 7 passes max relations containing the same ideal: 59 relations with 0 large ideals: 5175 relations with 1 large ideals: 19840 relations with 2 large ideals: 124171 relations with 3 large ideals: 447449 relations with 4 large ideals: 956838 relations with 5 large ideals: 1277456 relations with 6 large ideals: 1118098 relations with 7+ large ideals: 768268 commencing 2-way merge reduce to 2954600 relation sets and 2687423 unique ideals commencing full merge memory use: 304.6 MB found 1500953 cycles, need 1463623 weight of 1463623 cycles is about 102593098 (70.10/cycle) distribution of cycle lengths: 1 relations: 142922 2 relations: 150396 3 relations: 161403 4 relations: 160081 5 relations: 152703 6 relations: 138807 7 relations: 121703 8 relations: 102796 9 relations: 84561 10+ relations: 248251 heaviest cycle: 20 relations commencing cycle optimization start with 8578451 relations pruned 224613 relations memory use: 278.0 MB distribution of cycle lengths: 1 relations: 142922 2 relations: 153537 3 relations: 166845 4 relations: 164248 5 relations: 157743 6 relations: 142321 7 relations: 124060 8 relations: 103421 9 relations: 84487 10+ relations: 224039 heaviest cycle: 19 relations RelProcTime: 5988 commencing linear algebra read 1463623 cycles cycles contain 4542980 unique relations read 4542980 relations using 20 quadratic characters above 4294609058 building initial matrix memory use: 570.6 MB read 1463623 cycles matrix is 1463440 x 1463623 (438.2 MB) with weight 129707074 (88.62/col) sparse part has weight 98784045 (67.49/col) filtering completed in 2 passes matrix is 1461933 x 1462116 (438.1 MB) with weight 129652551 (88.67/col) sparse part has weight 98760802 (67.55/col) read 1462116 cycles matrix is 1461933 x 1462116 (438.1 MB) with weight 129652551 (88.67/col) sparse part has weight 98760802 (67.55/col) saving the first 48 matrix rows for later matrix is 1461885 x 1462116 (414.7 MB) with weight 102322884 (69.98/col) sparse part has weight 94100608 (64.36/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 444.3 MB linear algebra at 0.1%, ETA 3h12m462116 dimensions (0.1%, ETA 3h12m) linear algebra completed 1461694 of 1462116 dimensions (100.0%, ETA 0h 0m) 5m) lanczos halted after 23120 iterations (dim = 1461880) recovered 34 nontrivial dependencies BLanczosTime: 11908 commencing square root phase reading relations for dependency 1 read 730527 cycles cycles contain 2268188 unique relations read 2268188 relations multiplying 2268188 relations multiply complete, coefficients have about 70.08 million bits initial square root is modulo 107251 sqrtTime: 758 prp53 factor: 36770347511060861410054629572166650094512885628335317 prp104 factor: 93678492425462393852818727293289502166124539235947642213770088451030209181339994735034641839970928805567 elapsed time 05:10:56
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39, YAFU v1.10 / Nov 3, 2009
(62·10150+1)/9 = 6(8)1499<151> = 7 · 61 · 335899951 · 631812782018320361<18> · C122
C122 = P32 · P91
P32 = 12191688122843586596710384365301<32>
P91 = 6235325251854743704987134113434328800026549545253723826064948248579721224281529557691548137<91>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 76019140815104174106040378633604961828787051133016498888962165752162413165265840336691286063511280469440153338034833994237 (122 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5303952899 Step 1 took 4180ms Step 2 took 4072ms ********** Factor found in step 2: 12191688122843586596710384365301 Found probable prime factor of 32 digits: 12191688122843586596710384365301 Probable prime cofactor 6235325251854743704987134113434328800026549545253723826064948248579721224281529557691548137 has 91 digits
2·10192-1 = 1(9)192<193> = 13126437311707103<17> · 151419514294581983<18> · C160
C160 = P59 · P101
P59 = 34800207118492911860248366555234613008736732153524878679537<59>
P101 = 28914750508730044277748248804535726260023740804371880053958065619493865157416478604450813537747698223<101>
Number: 19999_192 N=1006239306483353831476825306401787972745351092928340869203919022242287714541569486966508596822901307295892131075739094628996817962709248807383479467349401362751 ( 160 digits) SNFS difficulty: 192 digits. Divisors found: r1=34800207118492911860248366555234613008736732153524878679537 r2=28914750508730044277748248804535726260023740804371880053958065619493865157416478604450813537747698223 Version: Total time: 185.08 hours. Scaled time: 442.16 units (timescale=2.389). Factorization parameters were as follows: n: 1006239306483353831476825306401787972745351092928340869203919022242287714541569486966508596822901307295892131075739094628996817962709248807383479467349401362751 m: 200000000000000000000000000000000000000 deg: 5 c5: 25 c0: -4 skew: 0.69 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5500000, 10000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22159829 Max relations in full relation-set: Initial matrix: Pruned matrix : 2122554 x 2122801 Total sieving time: 166.68 hours. Total relation processing time: 5.41 hours. Matrix solve time: 12.11 hours. Time per square root: 0.89 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,55,55,2.5,2.5,100000 total time: 185.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10104+41)/9 = 7(4)1039<105> = 72 · 8677 · C100
C100 = P30 · P70
P30 = 386165004928233317676708760481<30>
P70 = 4534127216695181047132731334402401495791222239561382135000425713957373<70>
Number: 74449_104 N=1750921258980331404967964674248939712645074932896596078406776640201622502944553027695654344100976413 ( 100 digits) SNFS difficulty: 105 digits. Divisors found: r1=386165004928233317676708760481 r2=4534127216695181047132731334402401495791222239561382135000425713957373 Version: Total time: 0.22 hours. Scaled time: 0.52 units (timescale=2.385). Factorization parameters were as follows: n: 1750921258980331404967964674248939712645074932896596078406776640201622502944553027695654344100976413 m: 100000000000000000000000000 deg: 4 c4: 67 c0: 41 skew: 0.88 type: snfs lss: 1 rlim: 240000 alim: 240000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 240000/240000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [120000, 200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 862464 Max relations in full relation-set: Initial matrix: Pruned matrix : 34960 x 35193 Total sieving time: 0.20 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,240000,240000,25,25,44,44,2.2,2.2,20000 total time: 0.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10110-31)/9 = 7(4)1091<111> = 3 · 13 · 19 · 229016210936117939<18> · C91
C91 = P36 · P56
P36 = 275211394124960265212782044900640703<36>
P56 = 15939747957337225794603273784899858020247830193184194553<56>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 4386800257339265571199285250527432245987346642377889940905440634181278349895045122702690759 (91 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3447484428 Step 1 took 2948ms Step 2 took 3432ms ********** Factor found in step 2: 275211394124960265212782044900640703 Found probable prime factor of 36 digits: 275211394124960265212782044900640703 Probable prime cofactor 15939747957337225794603273784899858020247830193184194553 has 56 digits
(62·10145+1)/9 = 6(8)1449<146> = 3 · 53 · 3037 · 6329 · 20233 · 24151 · 289021 · 912403 · C117
C117 = P55 · P62
P55 = 5929006956554283372161105073815933362297298798067922111<55>
P62 = 29503850915816027505202414387618333019676491925964734615718733<62>
Number: 68889_145 N=174928537325013691471989457029058752780352462735033025143487876074013410863034271275317125323398497713637324127605363 ( 117 digits) SNFS difficulty: 146 digits. Divisors found: r1=5929006956554283372161105073815933362297298798067922111 r2=29503850915816027505202414387618333019676491925964734615718733 Version: Total time: 4.05 hours. Scaled time: 9.67 units (timescale=2.386). Factorization parameters were as follows: n: 174928537325013691471989457029058752780352462735033025143487876074013410863034271275317125323398497713637324127605363 m: 100000000000000000000000000000 deg: 5 c5: 62 c0: 1 skew: 0.44 type: snfs lss: 1 rlim: 2250000 alim: 2250000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2250000/2250000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1125000, 2025001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4642203 Max relations in full relation-set: Initial matrix: Pruned matrix : 287889 x 288137 Total sieving time: 3.57 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2250000,2250000,26,26,49,49,2.3,2.3,75000 total time: 4.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(67·10133-31)/9 = 7(4)1321<134> = 811 · 30307 · 64765307 · C119
C119 = P34 · P42 · P44
P34 = 8625640909763231199919977502862827<34>
P42 = 119417958244208526547468954975940805596503<42>
P44 = 45400961013383699554747369470928758093181399<44>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 46765551638031908225910312923474405199786280869339065071698203645956926057134044970216126092746638328533578261081259419 (119 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2597803104 Step 1 took 4212ms Step 2 took 4119ms ********** Factor found in step 2: 8625640909763231199919977502862827 Found probable prime factor of 34 digits: 8625640909763231199919977502862827 Composite cofactor 5421690066543193864230956289682168517981529320315248970797035445413782539943179047697 has 85 digits 11/03/09 22:52:19 v1.10 @ 조영욱-PC, starting SIQS on c85: 5421690066543193864230956289682168517981529320315248970797035445413782539943179047697 11/03/09 22:52:19 v1.10 @ 조영욱-PC, random seeds: 2623786136, 2605774612 11/03/09 22:52:19 v1.10 @ 조영욱-PC, ==== sieve params ==== 11/03/09 22:52:19 v1.10 @ 조영욱-PC, n = 85 digits, 282 bits 11/03/09 22:52:19 v1.10 @ 조영욱-PC, factor base: 55732 primes (max prime = 1463621) 11/03/09 22:52:19 v1.10 @ 조영욱-PC, single large prime cutoff: 160998310 (110 * pmax) 11/03/09 22:52:19 v1.10 @ 조영욱-PC, double large prime range from 42 to 50 bits 11/03/09 22:52:19 v1.10 @ 조영욱-PC, double large prime cutoff: 591940930810882 11/03/09 22:52:19 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 11/03/09 22:52:19 v1.10 @ 조영욱-PC, buckets hold 1024 elements 11/03/09 22:52:19 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 11/03/09 22:52:19 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 11/03/09 22:52:19 v1.10 @ 조영욱-PC, using multiplier of 1 11/03/09 22:52:19 v1.10 @ 조영욱-PC, using small prime variation correction of 18 bits 11/03/09 22:52:19 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 11/03/09 22:52:19 v1.10 @ 조영욱-PC, trial factoring cutoff at 94 bits 11/03/09 22:52:19 v1.10 @ 조영욱-PC, ==== sieving started ==== 11/03/09 23:12:08 v1.10 @ 조영욱-PC, sieve time = 528.9270, relation time = 286.5150, poly_time = 373.1850 11/03/09 23:12:08 v1.10 @ 조영욱-PC, 55814 relations found: 18396 full + 37418 from 517693 partial, using 211761 polys (207 A polys) 11/03/09 23:12:08 v1.10 @ 조영욱-PC, on average, sieving found 2.53 rels/poly and 450.81 rels/sec 11/03/09 23:12:08 v1.10 @ 조영욱-PC, trial division touched 10174530 sieve locations out of 249803440128 11/03/09 23:12:08 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 11/03/09 23:12:08 v1.10 @ 조영욱-PC, begin with 536089 relations 11/03/09 23:12:08 v1.10 @ 조영욱-PC, reduce to 114934 relations in 9 passes 11/03/09 23:12:09 v1.10 @ 조영욱-PC, recovered 114934 relations 11/03/09 23:12:09 v1.10 @ 조영욱-PC, recovered 88632 polynomials 11/03/09 23:12:09 v1.10 @ 조영욱-PC, attempting to build 55814 cycles 11/03/09 23:12:09 v1.10 @ 조영욱-PC, found 55814 cycles in 4 passes 11/03/09 23:12:09 v1.10 @ 조영욱-PC, distribution of cycle lengths: 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 1 : 18396 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 2 : 15365 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 3 : 10307 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 4 : 5958 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 5 : 3118 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 6 : 1481 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 7 : 700 11/03/09 23:12:09 v1.10 @ 조영욱-PC, length 9+: 489 11/03/09 23:12:09 v1.10 @ 조영욱-PC, largest cycle: 15 relations 11/03/09 23:12:09 v1.10 @ 조영욱-PC, matrix is 55732 x 55814 (11.6 MB) with weight 2587778 (46.36/col) 11/03/09 23:12:09 v1.10 @ 조영욱-PC, sparse part has weight 2587778 (46.36/col) 11/03/09 23:12:10 v1.10 @ 조영욱-PC, filtering completed in 3 passes 11/03/09 23:12:10 v1.10 @ 조영욱-PC, matrix is 49309 x 49373 (10.4 MB) with weight 2337344 (47.34/col) 11/03/09 23:12:10 v1.10 @ 조영욱-PC, sparse part has weight 2337344 (47.34/col) 11/03/09 23:12:10 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 11/03/09 23:12:10 v1.10 @ 조영욱-PC, matrix is 49261 x 49373 (7.0 MB) with weight 1814592 (36.75/col) 11/03/09 23:12:10 v1.10 @ 조영욱-PC, sparse part has weight 1344877 (27.24/col) 11/03/09 23:12:10 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 11/03/09 23:12:10 v1.10 @ 조영욱-PC, using block size 19749 for processor cache size 4096 kB 11/03/09 23:12:10 v1.10 @ 조영욱-PC, commencing Lanczos iteration 11/03/09 23:12:10 v1.10 @ 조영욱-PC, memory use: 6.5 MB 11/03/09 23:12:19 v1.10 @ 조영욱-PC, lanczos halted after 781 iterations (dim = 49258) 11/03/09 23:12:19 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 11/03/09 23:12:19 v1.10 @ 조영욱-PC, prp44 = 45400961013383699554747369470928758093181399 11/03/09 23:12:20 v1.10 @ 조영욱-PC, prp42 = 119417958244208526547468954975940805596503 11/03/09 23:12:20 v1.10 @ 조영욱-PC, Lanczos elapsed time = 11.0290 seconds. 11/03/09 23:12:20 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.5610 seconds. 11/03/09 23:12:20 v1.10 @ 조영욱-PC, SIQS elapsed time = 1200.7470 seconds. 11/03/09 23:12:20 v1.10 @ 조영욱-PC, 11/03/09 23:12:20 v1.10 @ 조영욱-PC,
(67·10113+41)/9 = 7(4)1129<114> = 6906511 · 105421943647<12> · C97
C97 = P45 · P52
P45 = 869590929989825884177330375669983213482524877<45>
P52 = 1175784051662201321889393008064659953020649677298261<52>
Number: 74449_113 N=1022451146952139130224967621542222236077630734065060300433981671904917587999691828091026081338897 ( 97 digits) SNFS difficulty: 116 digits. Divisors found: r1=869590929989825884177330375669983213482524877 r2=1175784051662201321889393008064659953020649677298261 Version: Total time: 0.79 hours. Scaled time: 1.89 units (timescale=2.392). Factorization parameters were as follows: n: 1022451146952139130224967621542222236077630734065060300433981671904917587999691828091026081338897 m: 100000000000000000000000 deg: 5 c5: 67 c0: 4100 skew: 2.28 type: snfs lss: 1 rlim: 450000 alim: 450000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [225000, 525001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1168115 Max relations in full relation-set: Initial matrix: Pruned matrix : 70222 x 70453 Total sieving time: 0.71 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,450000,450000,25,25,45,45,2.2,2.2,25000 total time: 0.79 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Ignacio Santos / GGNFS, Msieve / Nov 3, 2009
(59·10169+13)/9 = 6(5)1687<170> = 397 · 34327 · C163
C163 = P38 · P125
P38 = 48178106573504420424833109041979951647<38>
P125 = 99846631422582109990143221984485218923595671756459611686870528046668598368786968287093778636678542799792559888673331323201649<125>
Number: 65557_169 N=4810421649682576174188661850847560828005974804593130827137897528251259835161852058319497459979146740616055698681906147678917334868885149968278530523156754250665903 ( 163 digits) SNFS difficulty: 171 digits. Divisors found: r1=48178106573504420424833109041979951647 (pp38) r2=99846631422582109990143221984485218923595671756459611686870528046668598368786968287093778636678542799792559888673331323201649 (pp125) Version: Msieve-1.40 Total time: 62.49 hours. Scaled time: 108.68 units (timescale=1.739). Factorization parameters were as follows: n: 4810421649682576174188661850847560828005974804593130827137897528251259835161852058319497459979146740616055698681906147678917334868885149968278530523156754250665903 m: 10000000000000000000000000000000000 deg: 5 c5: 59 c0: 130 skew: 1.17 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 990440 x 990665 Total sieving time: 60.96 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.26 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 62.49 hours.
By Dmitry Domanov / GGNFS/msieve / Nov 3, 2009
2·10194+9 = 2(0)1939<195> = 11 · 83 · 386297 · 30012787171<11> · 305322490515193<15> · C161
C161 = P49 · P113
P49 = 2643304814085557167142740766212794564787092479761<49>
P113 = 23411298965592819498323902257006544390074859563323248495186898066821901827724109659825174326068861411467793246643<113>
N=61883199259747724562380534631415342215058277850786191528768621756932108340713067029550933363785618882216426350755693966004769148805814527697569597938687958692323 ( 161 digits) SNFS difficulty: 195 digits. Divisors found: r1=2643304814085557167142740766212794564787092479761 (pp49) r2=23411298965592819498323902257006544390074859563323248495186898066821901827724109659825174326068861411467793246643 (pp113) Version: Msieve-1.40 Total time: 376.74 hours. Scaled time: 352.62 units (timescale=0.936). Factorization parameters were as follows: n: 61883199259747724562380534631415342215058277850786191528768621756932108340713067029550933363785618882216426350755693966004769148805814527697569597938687958692323 m: 1000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 45 skew: 2.14 type: snfs lss: 1 rlim: 12400000 alim: 12400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12400000/12400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6200000, 6200000) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2243697 x 2243921 Total sieving time: 371.28 hours. Total relation processing time: 0.36 hours. Matrix solve time: 3.25 hours. Time per square root: 1.85 hours. Prototype def-par.txt line would be: snfs,195.000,5,0,0,0,0,0,0,0,0,12400000,12400000,28,28,55,55,2.5,2.5,100000 total time: 376.74 hours. --------- CPU info (if available) ----------
(65·10178+7)/9 = 7(2)1773<179> = C179
C179 = P85 · P95
P85 = 4546037810993042721512544690503200646940652284786594915763822514701850550736979210131<85>
P95 = 15886850313382215611347659103956660765448868131186254125303005503365575849391011481816610070933<95>
N=72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 ( 179 digits) SNFS difficulty: 180 digits. Divisors found: r1=4546037810993042721512544690503200646940652284786594915763822514701850550736979210131 (pp85) r2=15886850313382215611347659103956660765448868131186254125303005503365575849391011481816610070933 (pp95) Version: Msieve-1.40 Total time: 138.67 hours. Scaled time: 255.70 units (timescale=1.844). Factorization parameters were as follows: n: 72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 m: 500000000000000000000000000000000000 deg: 5 c5: 104 c0: 35 skew: 0.80 type: snfs lss: 1 rlim: 7100000 alim: 7100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7100000/7100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3550000, 5850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1505997 x 1506225 Total sieving time: 135.42 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.90 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7100000,7100000,28,28,53,53,2.5,2.5,100000 total time: 138.67 hours. --------- CPU info (if available) ----------
(67·10163-13)/9 = 7(4)1623<164> = 43 · C163
C163 = P46 · P117
P46 = 2669049180343301609996606512118950634407146589<46>
P117 = 648645278858488499280074851252251346928425857765018089955890174635513009455895281838295786860964371014209079639413509<117>
Number: s163 N=1731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801 ( 163 digits) SNFS difficulty: 166 digits. Divisors found: r1=2669049180343301609996606512118950634407146589 (pp46) r2=648645278858488499280074851252251346928425857765018089955890174635513009455895281838295786860964371014209079639413509 (pp117) Version: Msieve-1.40 Total time: 36.37 hours. Scaled time: 66.31 units (timescale=1.823). Factorization parameters were as follows: n: 1731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801033591731266149870801 m: 500000000000000000000000000000000 deg: 5 c5: 536 c0: -325 skew: 0.90 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 787813 x 788038 Total sieving time: 35.34 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.76 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 36.37 hours. --------- CPU info (if available) ----------
(67·10154-13)/9 = 7(4)1533<155> = 151 · C153
C153 = P46 · P107
P46 = 5070369631976571758208280028273870693194253729<46>
P107 = 97233456659265110040429583804655748695553519367231505112386341847877549966443762203651496204999326757169917<107>
Number: s153 N=493009565857247976453274466519499632082413539367181751287711552612214863870493009565857247976453274466519499632082413539367181751287711552612214863870493 ( 153 digits) SNFS difficulty: 156 digits. Divisors found: r1=5070369631976571758208280028273870693194253729 (pp46) r2=97233456659265110040429583804655748695553519367231505112386341847877549966443762203651496204999326757169917 (pp107) Version: Msieve-1.40 Total time: 24.90 hours. Scaled time: 23.25 units (timescale=0.934). Factorization parameters were as follows: n: 493009565857247976453274466519499632082413539367181751287711552612214863870493009565857247976453274466519499632082413539367181751287711552612214863870493 m: 10000000000000000000000000000000 deg: 5 c5: 67 c0: -130 skew: 1.14 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 549521 x 549746 Total sieving time: 23.87 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.52 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 24.90 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Nov 3, 2009
(22·10146+17)/3 = 7(3)1459<147> = 47 · 307 · 7224559039<10> · C133
C133 = P62 · P72
P62 = 27842231927103510676920959473150529572734085970185311105905803<62>
P72 = 252667743244057755987225257364727780951613659443847192687667040767338523<72>
Number: n N=7034833907898897215918782067746477148998748541039862569997295891558565179414446486816975422989742881398338017849564728134375451148969 ( 133 digits) SNFS difficulty: 148 digits. Divisors found: Tue Nov 03 19:38:24 2009 prp62 factor: 27842231927103510676920959473150529572734085970185311105905803 Tue Nov 03 19:38:24 2009 prp72 factor: 252667743244057755987225257364727780951613659443847192687667040767338523 Tue Nov 03 19:38:24 2009 elapsed time 00:30:55 (Msieve 1.43 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.55 hours. Scaled time: 15.59 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_3_145_9 n: 7034833907898897215918782067746477148998748541039862569997295891558565179414446486816975422989742881398338017849564728134375451148969 m: 200000000000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [1050000, 2565463) Primes: RFBsize:155805, AFBsize:155943, largePrimes:4072211 encountered Relations: rels:3998604, finalFF:308817 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 592028 hash collisions in 4536224 relations Msieve: matrix is 361542 x 361767 (96.3 MB) Total sieving time: 8.43 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 8.55 hours. --------- CPU info (if available) ----------
(65·10146-11)/9 = 7(2)1451<147> = 7 · 42602801 · C139
C139 = P36 · P104
P36 = 228010369498745966470246714367913773<36>
P104 = 10621358195754820181708181688331386998838914009256762910359610187203730566466660828760503361669159883911<104>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2421779806792590341728343241436242058431195713507268562064137594488286688078903618910014264160110110473796654900099248746653409083938006203 (139 digits) Using B1=1532000, B2=2140123450, polynomial Dickson(6), sigma=4260663187 Step 1 took 16297ms Step 2 took 7547ms ********** Factor found in step 2: 228010369498745966470246714367913773 Found probable prime factor of 36 digits: 228010369498745966470246714367913773 Probable prime cofactor 10621358195754820181708181688331386998838914009256762910359610187203730566466660828760503361669159883911 has 104 digits
By Lionel Debroux / GGNFS (gnfs-lasieve4I14e) + msieve 1.43 SVN + msieve 1.44 SVN. / Nov 3, 2009
(16·10217-7)/9 = 1(7)217<218> = 2091503 · C211
C211 = P82 · P130
P82 = 7897261403265468514843287619013563217249733055445218350552148477846264432526263073<82>
P130 = 1076322620591986724257847200110126010314558644320810310385662610774870419875504652264090292435220197925549910589490097242891233983<130>
Fri Oct 29 15:12:53 2009 Msieve v. 1.43 Fri Oct 29 15:12:53 2009 random seeds: 1be0c4fb f4fd774d Fri Oct 29 15:12:53 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Fri Oct 29 15:12:56 2009 searching for 15-digit factors Fri Oct 29 15:12:57 2009 commencing number field sieve (211-digit input) Fri Oct 29 15:12:57 2009 R0: -2000000000000000000000000000000000000 Fri Oct 29 15:12:57 2009 R1: 1 Fri Oct 29 15:12:57 2009 A0: -14 Fri Oct 29 15:12:57 2009 A1: 0 Fri Oct 29 15:12:57 2009 A2: 0 Fri Oct 29 15:12:57 2009 A3: 0 Fri Oct 29 15:12:57 2009 A4: 0 Fri Oct 29 15:12:57 2009 A5: 0 Fri Oct 29 15:12:57 2009 A6: 5 Fri Oct 29 15:12:57 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Fri Oct 29 15:12:57 2009 Fri Oct 29 15:12:57 2009 commencing relation filtering Fri Oct 29 15:12:57 2009 estimated available RAM is 1280.0 MB Fri Oct 29 15:12:57 2009 commencing duplicate removal, pass 1 Fri Oct 29 15:21:42 2009 found 8759283 hash collisions in 53865618 relations Fri Oct 29 15:22:15 2009 added 1218610 free relations Fri Oct 29 15:22:15 2009 commencing duplicate removal, pass 2 Fri Oct 29 15:24:28 2009 found 7936035 duplicates and 47148193 unique relations Fri Oct 29 15:24:28 2009 memory use: 330.4 MB Fri Oct 29 15:24:28 2009 reading ideals above 44892160 Fri Oct 29 15:24:28 2009 commencing singleton removal, initial pass Fri Oct 29 15:34:08 2009 memory use: 1065.5 MB Fri Oct 29 15:34:08 2009 removing singletons from LP file Fri Oct 29 15:34:08 2009 start with 47148193 relations and 41210405 ideals Fri Oct 29 15:34:39 2009 pass 1: found 13606580 singletons Fri Oct 29 15:35:08 2009 pruned dataset has 33541613 relations and 25481673 large ideals Fri Oct 29 15:35:10 2009 reading all ideals from disk Fri Oct 29 15:35:18 2009 memory use: 542.1 MB Fri Oct 29 15:35:23 2009 commencing in-memory singleton removal Fri Oct 29 15:35:27 2009 begin with 33541613 relations and 25481673 unique ideals Fri Oct 29 15:36:24 2009 reduce to 27492294 relations and 19190861 ideals in 15 passes Fri Oct 29 15:36:24 2009 max relations containing the same ideal: 34 Fri Oct 29 15:36:29 2009 reading ideals above 720000 Fri Oct 29 15:36:29 2009 commencing singleton removal, initial pass Fri Oct 29 15:43:46 2009 memory use: 532.8 MB Fri Oct 29 15:43:46 2009 reading large ideals from disk Fri Oct 29 15:44:15 2009 keeping 21950765 ideals with weight <= 20, target excess is 2659545 Fri Oct 29 15:44:53 2009 memory use: 698.7 MB Fri Oct 29 15:44:53 2009 commencing in-memory singleton removal Fri Oct 29 15:44:58 2009 begin with 27492304 relations and 21950765 unique ideals Fri Oct 29 15:45:44 2009 reduce to 27467887 relations and 21926298 ideals in 10 passes Fri Oct 29 15:45:44 2009 max relations containing the same ideal: 20 Fri Oct 29 15:46:07 2009 removing 2899482 relations and 2499482 ideals in 400000 cliques Fri Oct 29 15:46:09 2009 commencing in-memory singleton removal Fri Oct 29 15:46:13 2009 begin with 24568405 relations and 21926298 unique ideals Fri Oct 29 15:46:50 2009 reduce to 24338001 relations and 19191920 ideals in 9 passes Fri Oct 29 15:46:50 2009 max relations containing the same ideal: 20 Fri Oct 29 15:47:10 2009 removing 2148119 relations and 1748119 ideals in 400000 cliques Fri Oct 29 15:47:11 2009 commencing in-memory singleton removal Fri Oct 29 15:47:15 2009 begin with 22189882 relations and 19191920 unique ideals Fri Oct 29 15:47:48 2009 reduce to 22052686 relations and 17304302 ideals in 9 passes Fri Oct 29 15:47:48 2009 max relations containing the same ideal: 20 Fri Oct 29 15:48:06 2009 removing 1906876 relations and 1506876 ideals in 400000 cliques Fri Oct 29 15:48:07 2009 commencing in-memory singleton removal Fri Oct 29 15:48:11 2009 begin with 20145810 relations and 17304302 unique ideals Fri Oct 29 15:48:34 2009 reduce to 20026245 relations and 15675818 ideals in 7 passes Fri Oct 29 15:48:34 2009 max relations containing the same ideal: 20 Fri Oct 29 15:48:50 2009 removing 1784485 relations and 1384485 ideals in 400000 cliques Fri Oct 29 15:48:51 2009 commencing in-memory singleton removal Fri Oct 29 15:48:54 2009 begin with 18241760 relations and 15675818 unique ideals Fri Oct 29 15:49:18 2009 reduce to 18128520 relations and 14176097 ideals in 8 passes Fri Oct 29 15:49:18 2009 max relations containing the same ideal: 20 Fri Oct 29 15:49:32 2009 removing 1699578 relations and 1299578 ideals in 400000 cliques Fri Oct 29 15:49:34 2009 commencing in-memory singleton removal Fri Oct 29 15:49:36 2009 begin with 16428942 relations and 14176097 unique ideals Fri Oct 29 15:49:55 2009 reduce to 16315703 relations and 12761159 ideals in 7 passes Fri Oct 29 15:49:55 2009 max relations containing the same ideal: 20 Fri Oct 29 15:50:08 2009 removing 1641895 relations and 1241895 ideals in 400000 cliques Fri Oct 29 15:50:09 2009 commencing in-memory singleton removal Fri Oct 29 15:50:11 2009 begin with 14673808 relations and 12761159 unique ideals Fri Oct 29 15:50:27 2009 reduce to 14553594 relations and 11396492 ideals in 7 passes Fri Oct 29 15:50:27 2009 max relations containing the same ideal: 20 Fri Oct 29 15:50:39 2009 removing 403128 relations and 331099 ideals in 72029 cliques Fri Oct 29 15:50:39 2009 commencing in-memory singleton removal Fri Oct 29 15:50:42 2009 begin with 14150466 relations and 11396492 unique ideals Fri Oct 29 15:50:55 2009 reduce to 14143576 relations and 11058472 ideals in 6 passes Fri Oct 29 15:50:55 2009 max relations containing the same ideal: 19 Fri Oct 29 15:50:59 2009 relations with 0 large ideals: 292627 Fri Oct 29 15:50:59 2009 relations with 1 large ideals: 1412588 Fri Oct 29 15:50:59 2009 relations with 2 large ideals: 3397450 Fri Oct 29 15:50:59 2009 relations with 3 large ideals: 4284035 Fri Oct 29 15:50:59 2009 relations with 4 large ideals: 3066394 Fri Oct 29 15:50:59 2009 relations with 5 large ideals: 1284602 Fri Oct 29 15:50:59 2009 relations with 6 large ideals: 317678 Fri Oct 29 15:50:59 2009 relations with 7+ large ideals: 88202 Fri Oct 29 15:50:59 2009 commencing 2-way merge Fri Oct 29 15:51:14 2009 reduce to 9477159 relation sets and 6392055 unique ideals Fri Oct 29 15:51:14 2009 commencing full merge Fri Oct 29 15:53:33 2009 memory use: 619.5 MB Fri Oct 29 15:53:34 2009 found 4822262 cycles, need 4400255 Fri Oct 29 15:53:37 2009 weight of 4400255 cycles is about 308133690 (70.03/cycle) Fri Oct 29 15:53:37 2009 distribution of cycle lengths: Fri Oct 29 15:53:37 2009 1 relations: 568844 Fri Oct 29 15:53:37 2009 2 relations: 499899 Fri Oct 29 15:53:37 2009 3 relations: 498118 Fri Oct 29 15:53:37 2009 4 relations: 463201 Fri Oct 29 15:53:37 2009 5 relations: 432873 Fri Oct 29 15:53:37 2009 6 relations: 389387 Fri Oct 29 15:53:37 2009 7 relations: 346960 Fri Oct 29 15:53:37 2009 8 relations: 302531 Fri Oct 29 15:53:37 2009 9 relations: 258712 Fri Oct 29 15:53:37 2009 10+ relations: 639730 Fri Oct 29 15:53:37 2009 heaviest cycle: 16 relations Fri Oct 29 15:53:38 2009 commencing cycle optimization Fri Oct 29 15:53:49 2009 start with 23784516 relations Fri Oct 29 15:54:49 2009 pruned 791684 relations Fri Oct 29 15:54:49 2009 memory use: 766.7 MB Fri Oct 29 15:54:49 2009 distribution of cycle lengths: Fri Oct 29 15:54:49 2009 1 relations: 568844 Fri Oct 29 15:54:49 2009 2 relations: 514768 Fri Oct 29 15:54:49 2009 3 relations: 523157 Fri Oct 29 15:54:49 2009 4 relations: 482746 Fri Oct 29 15:54:49 2009 5 relations: 451923 Fri Oct 29 15:54:49 2009 6 relations: 401981 Fri Oct 29 15:54:49 2009 7 relations: 356417 Fri Oct 29 15:54:49 2009 8 relations: 305132 Fri Oct 29 15:54:49 2009 9 relations: 255583 Fri Oct 29 15:54:49 2009 10+ relations: 539704 Fri Oct 29 15:54:49 2009 heaviest cycle: 16 relations Fri Oct 29 15:55:03 2009 RelProcTime: 2526 Fri Oct 29 15:55:03 2009 elapsed time 00:42:10 Fri Oct 29 15:55:57 2009 Fri Oct 29 15:55:57 2009 Fri Oct 29 15:55:57 2009 Msieve v. 1.43 Fri Oct 29 15:55:57 2009 random seeds: 06696a6a 921726f3 Fri Oct 29 15:55:57 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Fri Oct 29 15:56:00 2009 searching for 15-digit factors Fri Oct 29 15:56:01 2009 commencing number field sieve (211-digit input) Fri Oct 29 15:56:01 2009 R0: -2000000000000000000000000000000000000 Fri Oct 29 15:56:01 2009 R1: 1 Fri Oct 29 15:56:01 2009 A0: -14 Fri Oct 29 15:56:01 2009 A1: 0 Fri Oct 29 15:56:01 2009 A2: 0 Fri Oct 29 15:56:01 2009 A3: 0 Fri Oct 29 15:56:01 2009 A4: 0 Fri Oct 29 15:56:01 2009 A5: 0 Fri Oct 29 15:56:01 2009 A6: 5 Fri Oct 29 15:56:01 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Fri Oct 29 15:56:01 2009 Fri Oct 29 15:56:01 2009 commencing linear algebra Fri Oct 29 15:56:02 2009 read 4400255 cycles Fri Oct 29 15:56:15 2009 cycles contain 12582213 unique relations Fri Oct 29 16:00:54 2009 read 12582213 relations Fri Oct 29 16:04:52 2009 using 20 quadratic characters above 536870870 Fri Oct 29 16:06:32 2009 building initial matrix Fri Oct 29 16:13:53 2009 memory use: 1588.0 MB Fri Oct 29 16:14:05 2009 read 4400255 cycles Fri Oct 29 16:14:32 2009 matrix is 4399717 x 4400255 (1290.6 MB) with weight 382534401 (86.93/col) Fri Oct 29 16:14:32 2009 sparse part has weight 294330484 (66.89/col) Fri Oct 29 16:16:46 2009 filtering completed in 3 passes Fri Oct 29 16:16:47 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Fri Oct 29 16:16:47 2009 sparse part has weight 293829804 (67.01/col) Fri Oct 29 16:17:32 2009 read 4384555 cycles Fri Oct 29 16:18:02 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Fri Oct 29 16:18:02 2009 sparse part has weight 293829804 (67.01/col) Fri Oct 29 16:18:02 2009 saving the first 48 matrix rows for later Fri Oct 29 16:18:05 2009 matrix is 4384307 x 4384555 (1242.3 MB) with weight 301340925 (68.73/col) Fri Oct 29 16:18:05 2009 sparse part has weight 281805898 (64.27/col) Fri Oct 29 16:18:05 2009 matrix includes 64 packed rows Fri Oct 29 16:18:05 2009 using block size 65536 for processor cache size 4096 kB Fri Oct 29 16:18:30 2009 commencing Lanczos iteration (2 threads) Fri Oct 29 16:18:30 2009 memory use: 1280.3 MB Fri Oct 29 16:47:22 2009 lanczos halted after 378 iterations (dim = 23886) Fri Oct 29 16:47:22 2009 BLanczosTime: 3081 Fri Oct 29 16:47:22 2009 elapsed time 00:51:25 Fri Oct 29 17:03:15 2009 Fri Oct 29 17:03:15 2009 Fri Oct 29 17:03:15 2009 Msieve v. 1.43 Fri Oct 29 17:03:15 2009 random seeds: 9d027af2 4992c51d Fri Oct 29 17:03:15 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Fri Oct 29 17:03:18 2009 searching for 15-digit factors Fri Oct 29 17:03:19 2009 commencing number field sieve (211-digit input) Fri Oct 29 17:03:19 2009 R0: -2000000000000000000000000000000000000 Fri Oct 29 17:03:19 2009 R1: 1 Fri Oct 29 17:03:19 2009 A0: -14 Fri Oct 29 17:03:19 2009 A1: 0 Fri Oct 29 17:03:19 2009 A2: 0 Fri Oct 29 17:03:19 2009 A3: 0 Fri Oct 29 17:03:19 2009 A4: 0 Fri Oct 29 17:03:19 2009 A5: 0 Fri Oct 29 17:03:19 2009 A6: 5 Fri Oct 29 17:03:19 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Fri Oct 29 17:03:19 2009 Fri Oct 29 17:03:19 2009 commencing linear algebra Fri Oct 29 17:03:21 2009 read 4384555 cycles Fri Oct 29 17:03:50 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Fri Oct 29 17:03:51 2009 sparse part has weight 293829804 (67.01/col) Fri Oct 29 17:03:51 2009 saving the first 48 matrix rows for later Fri Oct 29 17:03:54 2009 matrix is 4384307 x 4384555 (1242.3 MB) with weight 301340925 (68.73/col) Fri Oct 29 17:03:54 2009 sparse part has weight 281805898 (64.27/col) Fri Oct 29 17:03:54 2009 matrix includes 64 packed rows Fri Oct 29 17:03:54 2009 using block size 65536 for processor cache size 4096 kB Fri Oct 29 17:04:19 2009 commencing Lanczos iteration (2 threads) Fri Oct 29 17:04:19 2009 memory use: 1280.3 MB Fri Oct 29 17:04:23 2009 restarting at iteration 378 (dim = 23886) Fri Oct 29 17:09:53 2009 lanczos halted after 455 iterations (dim = 28764) Fri Oct 29 17:09:53 2009 BLanczosTime: 394 Fri Oct 29 17:09:53 2009 elapsed time 00:06:38 Fri Oct 30 11:29:31 2009 Fri Oct 30 11:29:32 2009 Fri Oct 30 11:29:32 2009 Msieve v. 1.44 Fri Oct 30 11:29:32 2009 random seeds: dbcaf00b 6da27e00 Fri Oct 30 11:29:32 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Fri Oct 30 11:29:34 2009 no P-1/P+1/ECM available, skipping Fri Oct 30 11:29:34 2009 commencing number field sieve (211-digit input) Fri Oct 30 11:29:34 2009 R0: -2000000000000000000000000000000000000 Fri Oct 30 11:29:34 2009 R1: 1 Fri Oct 30 11:29:34 2009 A0: -14 Fri Oct 30 11:29:34 2009 A1: 0 Fri Oct 30 11:29:34 2009 A2: 0 Fri Oct 30 11:29:34 2009 A3: 0 Fri Oct 30 11:29:34 2009 A4: 0 Fri Oct 30 11:29:34 2009 A5: 0 Fri Oct 30 11:29:34 2009 A6: 5 Fri Oct 30 11:29:34 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Fri Oct 30 11:29:34 2009 Fri Oct 30 11:29:34 2009 commencing linear algebra Fri Oct 30 11:29:37 2009 read 4384555 cycles Fri Oct 30 11:31:33 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Fri Oct 30 11:31:33 2009 sparse part has weight 293829804 (67.01/col) Fri Oct 30 11:31:36 2009 saving the first 48 matrix rows for later Fri Oct 30 11:31:38 2009 matrix is 4384307 x 4384555 (1242.3 MB) with weight 301340925 (68.73/col) Fri Oct 30 11:31:39 2009 sparse part has weight 281805898 (64.27/col) Fri Oct 30 11:31:39 2009 matrix includes 64 packed rows Fri Oct 30 11:31:39 2009 using block size 65536 for processor cache size 4096 kB Fri Oct 30 11:32:12 2009 commencing Lanczos iteration (2 threads) Fri Oct 30 11:32:12 2009 memory use: 1280.3 MB Fri Oct 30 11:32:29 2009 restarting at iteration 455 (dim = 28764) Fri Oct 30 11:36:05 2009 linear algebra at 0.7%, ETA 346h33m Sat Oct 31 08:13:02 2009 Sat Oct 31 08:13:02 2009 Sat Oct 31 08:13:02 2009 Msieve v. 1.44 Sat Oct 31 08:13:02 2009 random seeds: 5697b0eb 2dd51323 Sat Oct 31 08:13:02 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Sat Oct 31 08:13:05 2009 no P-1/P+1/ECM available, skipping Sat Oct 31 08:13:05 2009 commencing number field sieve (211-digit input) Sat Oct 31 08:13:05 2009 R0: -2000000000000000000000000000000000000 Sat Oct 31 08:13:05 2009 R1: 1 Sat Oct 31 08:13:05 2009 A0: -14 Sat Oct 31 08:13:05 2009 A1: 0 Sat Oct 31 08:13:05 2009 A2: 0 Sat Oct 31 08:13:05 2009 A3: 0 Sat Oct 31 08:13:05 2009 A4: 0 Sat Oct 31 08:13:05 2009 A5: 0 Sat Oct 31 08:13:05 2009 A6: 5 Sat Oct 31 08:13:05 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Sat Oct 31 08:13:05 2009 Sat Oct 31 08:13:05 2009 commencing linear algebra Sat Oct 31 08:13:07 2009 read 4384555 cycles Sat Oct 31 08:14:44 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Sat Oct 31 08:14:44 2009 sparse part has weight 293829804 (67.01/col) Sat Oct 31 08:14:54 2009 saving the first 48 matrix rows for later Sat Oct 31 08:15:00 2009 matrix is 4384307 x 4384555 (1242.3 MB) with weight 301340925 (68.73/col) Sat Oct 31 08:15:00 2009 sparse part has weight 281805898 (64.27/col) Sat Oct 31 08:15:00 2009 matrix includes 64 packed rows Sat Oct 31 08:15:00 2009 using block size 65536 for processor cache size 4096 kB Sat Oct 31 08:15:26 2009 commencing Lanczos iteration (2 threads) Sat Oct 31 08:15:26 2009 memory use: 1280.3 MB Sat Oct 31 08:15:30 2009 restarting at iteration 17397 (dim = 1100025) Sat Oct 31 08:16:20 2009 linear algebra at 25.1%, ETA 60h 0m Sat Oct 31 16:27:58 2009 lanczos halted after 24801 iterations (dim = 1568121) Sat Oct 31 16:27:58 2009 BLanczosTime: 29693 Sat Oct 31 16:27:58 2009 elapsed time 08:14:56 Sat Oct 31 16:31:56 2009 Sat Oct 31 16:31:56 2009 Sat Oct 31 16:31:56 2009 Msieve v. 1.44 Sat Oct 31 16:31:56 2009 random seeds: 9ab3ec5e 2d1353ca Sat Oct 31 16:31:56 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Sat Oct 31 16:31:58 2009 no P-1/P+1/ECM available, skipping Sat Oct 31 16:31:58 2009 commencing number field sieve (211-digit input) Sat Oct 31 16:31:58 2009 R0: -2000000000000000000000000000000000000 Sat Oct 31 16:31:58 2009 R1: 1 Sat Oct 31 16:31:58 2009 A0: -14 Sat Oct 31 16:31:58 2009 A1: 0 Sat Oct 31 16:31:58 2009 A2: 0 Sat Oct 31 16:31:58 2009 A3: 0 Sat Oct 31 16:31:58 2009 A4: 0 Sat Oct 31 16:31:58 2009 A5: 0 Sat Oct 31 16:31:58 2009 A6: 5 Sat Oct 31 16:31:58 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Sat Oct 31 16:31:58 2009 Sat Oct 31 16:31:58 2009 commencing linear algebra Sat Oct 31 16:32:01 2009 read 4384555 cycles Sat Oct 31 16:32:28 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Sat Oct 31 16:32:28 2009 sparse part has weight 293829804 (67.01/col) Sat Oct 31 16:32:28 2009 saving the first 48 matrix rows for later Sat Oct 31 16:32:31 2009 matrix is 4384307 x 4384555 (1242.3 MB) with weight 301340925 (68.73/col) Sat Oct 31 16:32:31 2009 sparse part has weight 281805898 (64.27/col) Sat Oct 31 16:32:31 2009 matrix includes 64 packed rows Sat Oct 31 16:32:31 2009 using block size 65536 for processor cache size 4096 kB Sat Oct 31 16:32:55 2009 commencing Lanczos iteration (2 threads) Sat Oct 31 16:32:55 2009 memory use: 1280.3 MB Sat Oct 31 16:32:59 2009 restarting at iteration 24801 (dim = 1568121) Sat Oct 31 16:33:46 2009 linear algebra at 35.8%, ETA 48h22m Sun Nov 1 12:19:24 2009 lanczos halted after 43056 iterations (dim = 2722803) Sun Nov 1 12:19:24 2009 BLanczosTime: 71246 Sun Nov 1 12:19:24 2009 elapsed time 19:47:28 Sun Nov 1 19:00:07 2009 Sun Nov 1 19:00:07 2009 Sun Nov 1 19:00:07 2009 Msieve v. 1.44 Sun Nov 1 19:00:07 2009 random seeds: 14e84e25 6a7484ee Sun Nov 1 19:00:07 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Sun Nov 1 19:00:10 2009 no P-1/P+1/ECM available, skipping Sun Nov 1 19:00:10 2009 commencing number field sieve (211-digit input) Sun Nov 1 19:00:10 2009 R0: -2000000000000000000000000000000000000 Sun Nov 1 19:00:10 2009 R1: 1 Sun Nov 1 19:00:10 2009 A0: -14 Sun Nov 1 19:00:10 2009 A1: 0 Sun Nov 1 19:00:10 2009 A2: 0 Sun Nov 1 19:00:10 2009 A3: 0 Sun Nov 1 19:00:10 2009 A4: 0 Sun Nov 1 19:00:10 2009 A5: 0 Sun Nov 1 19:00:10 2009 A6: 5 Sun Nov 1 19:00:10 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Sun Nov 1 19:00:10 2009 Sun Nov 1 19:00:10 2009 commencing linear algebra Sun Nov 1 19:00:12 2009 read 4384555 cycles Sun Nov 1 19:00:58 2009 matrix is 4384355 x 4384555 (1288.1 MB) with weight 381708992 (87.06/col) Sun Nov 1 19:00:58 2009 sparse part has weight 293829804 (67.01/col) Sun Nov 1 19:00:58 2009 saving the first 48 matrix rows for later Sun Nov 1 19:01:01 2009 matrix is 4384307 x 4384555 (1242.3 MB) with weight 301340925 (68.73/col) Sun Nov 1 19:01:01 2009 sparse part has weight 281805898 (64.27/col) Sun Nov 1 19:01:01 2009 matrix includes 64 packed rows Sun Nov 1 19:01:01 2009 using block size 65536 for processor cache size 4096 kB Sun Nov 1 19:01:25 2009 commencing Lanczos iteration (2 threads) Sun Nov 1 19:01:25 2009 memory use: 1280.3 MB Sun Nov 1 19:01:28 2009 restarting at iteration 43056 (dim = 2722803) Sun Nov 1 19:02:13 2009 linear algebra at 62.1%, ETA 27h16m Mon Nov 2 22:49:52 2009 lanczos halted after 69333 iterations (dim = 4384301) Mon Nov 2 22:50:08 2009 recovered 29 nontrivial dependencies Mon Nov 2 22:50:08 2009 BLanczosTime: 100198 Mon Nov 2 22:50:08 2009 elapsed time 27:50:01 Tue Nov 3 07:13:41 2009 Tue Nov 3 07:13:41 2009 Tue Nov 3 07:13:41 2009 Msieve v. 1.44 Tue Nov 3 07:13:41 2009 random seeds: 1e73deaa db0725d4 Tue Nov 3 07:13:41 2009 factoring 8500001089062639536150690569307229192488740287619849351293198134441010975254531204486810574872604905552503523914514001547106448223013678573627567246032053397856841600407830052253225444944510133515360856655609759 (211 digits) Tue Nov 3 07:13:44 2009 no P-1/P+1/ECM available, skipping Tue Nov 3 07:13:44 2009 commencing number field sieve (211-digit input) Tue Nov 3 07:13:44 2009 R0: -2000000000000000000000000000000000000 Tue Nov 3 07:13:44 2009 R1: 1 Tue Nov 3 07:13:44 2009 A0: -14 Tue Nov 3 07:13:44 2009 A1: 0 Tue Nov 3 07:13:44 2009 A2: 0 Tue Nov 3 07:13:44 2009 A3: 0 Tue Nov 3 07:13:44 2009 A4: 0 Tue Nov 3 07:13:44 2009 A5: 0 Tue Nov 3 07:13:44 2009 A6: 5 Tue Nov 3 07:13:44 2009 skew 1.19, size 9.452967e-11, alpha 0.913323, combined = 3.206796e-12 Tue Nov 3 07:13:44 2009 Tue Nov 3 07:13:44 2009 commencing square root phase Tue Nov 3 07:13:44 2009 reading relations for dependency 1 Tue Nov 3 07:13:55 2009 read 2192196 cycles Tue Nov 3 07:14:01 2009 cycles contain 6282928 unique relations Tue Nov 3 07:16:39 2009 read 6282928 relations Tue Nov 3 07:17:34 2009 multiplying 6282928 relations Tue Nov 3 07:43:49 2009 multiply complete, coefficients have about 166.71 million bits Tue Nov 3 07:43:51 2009 initial square root is modulo 961063 Tue Nov 3 08:32:47 2009 sqrtTime: 4743 Tue Nov 3 08:32:47 2009 prp82 factor: 7897261403265468514843287619013563217249733055445218350552148477846264432526263073 Tue Nov 3 08:32:47 2009 prp130 factor: 1076322620591986724257847200110126010314558644320810310385662610774870419875504652264090292435220197925549910589490097242891233983 Tue Nov 3 08:32:47 2009 elapsed time 01:19:06
By Wataru Sakai / GMP-ECM 6.2.1 / Nov 3, 2009
(22·10164+17)/3 = 7(3)1639<165> = 43 · 8807563 · 1054663007<10> · 20960261227181<14> · 1061845031479378537<19> · C116
C116 = P45 · P72
P45 = 269086021530847369814271946140389205816260519<45>
P72 = 306559325047837647788312601146073338380622501550858942342560398202515871<72>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=798243210 Step 1 took 34709ms Step 2 took 13773ms ********** Factor found in step 2: 269086021530847369814271946140389205816260519 Found probable prime factor of 45 digits: 269086021530847369814271946140389205816260519 Probable prime cofactor 306559325047837647788312601146073338380622501550858942342560398202515871 has 72 digits
(83·10162+7)/9 = 9(2)1613<163> = 79 · 7163407 · 123782203 · 1379440969<10> · C137
C137 = P35 · P103
P35 = 77479813795087138515341741319858289<35>
P103 = 1231796507361522933848450105124016132668124640732119124805549061730851641307686899069575749709590710917<103>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=33045363 Step 1 took 42515ms Step 2 took 14795ms ********** Factor found in step 2: 77479813795087138515341741319858289 Found probable prime factor of 35 digits: 77479813795087138515341741319858289 Probable prime cofactor 1231796507361522933848450105124016132668124640732119124805549061730851641307686899069575749709590710917 has 103 digits
By Erik Branger / GGNFS, Msieve / Nov 3, 2009
(65·10188+7)/9 = 7(2)1873<189> = 3 · 8861 · 65413 · 1138313480230062656887<22> · 4936904042105335591272083<25> · 54844619696574357771146978801<29> · C106
C106 = P46 · P61
P46 = 1138013643656600919904580369595610705548818987<46>
P61 = 1184144563479191562090572761473075877638386411991788655406931<61>
Number: 72223_188 N=1347572669301109953949998348172900968329488051278258747576035982677855617296089367339361336974878944198897 ( 106 digits) Divisors found: r1=1138013643656600919904580369595610705548818987 (pp46) r2=1184144563479191562090572761473075877638386411991788655406931 (pp61) Version: Msieve-1.40 Total time: 9.28 hours. Scaled time: 9.54 units (timescale=1.028). Factorization parameters were as follows: name: 72223_188 n: 1347572669301109953949998348172900968329488051278258747576035982677855617296089367339361336974878944198897 skew: 20299.51 # norm 3.91e+014 c5: 25380 c4: -407224297 c3: -35695951343608 c2: 270716599948667212 c1: 6171660106286066625728 c0: 10630957816144681327805185 # alpha -5.87 Y1: 230111174513 Y0: -139641470087173881524 # Murphy_E 1.71e-009 # M 1023586989596875295902999083337639354687779000129821085247661007333863292560625974576569941944116155178271 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 307925 x 308152 Polynomial selection time: 0.84 hours. Total sieving time: 8.08 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.21 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 9.28 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GMP-ECM
Factorizations of 744...441 and Factorizations of 744...449 have been extended up to n=200. Composite numbers that appeared newly have passed 150 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Nov 2, 2009
(59·10180+13)/9 = 6(5)1797<181> = 51817 · C177
C177 = P65 · P112
P65 = 95780468341750701326160056307507237638238922434045248449733251961<65>
P112 = 1320870620450520196921038614538489008181444841181434809163897968164710430144823057566665219559813287555704606661<112>
Number: 65557_180 N=126513606645609656204634686600064757812215210366396270636191897553998794904289240124969711784849673959425585339860577716879702714467366994529894736390674017321642618359911912221 ( 177 digits) SNFS difficulty: 181 digits. Divisors found: r1=95780468341750701326160056307507237638238922434045248449733251961 (pp65) r2=1320870620450520196921038614538489008181444841181434809163897968164710430144823057566665219559813287555704606661 (pp112) Version: Msieve-1.40 Total time: 133.06 hours. Scaled time: 231.40 units (timescale=1.739). Factorization parameters were as follows: n: 126513606645609656204634686600064757812215210366396270636191897553998794904289240124969711784849673959425585339860577716879702714467366994529894736390674017321642618359911912221 m: 1000000000000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3750000, 5850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1364571 x 1364796 Total sieving time: 129.77 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.60 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 133.06 hours.
By Dmitry Domanov / GGNFS/msieve / Nov 2, 2009
(22·10159+17)/3 = 7(3)1589<160> = 4987135339<10> · 264530257997<12> · 48219886937134417<17> · 167443476449759357<18> · C105
C105 = P50 · P56
P50 = 38574187745663264247371938272992130524286949118369<50>
P56 = 17847759560428889439656259202106657143289384297059785353<56>
N=688462828123440434779271573945370660625212689440916856718770629482448614016937671446277553177927729449257 ( 105 digits) Divisors found: r1=38574187745663264247371938272992130524286949118369 (pp50) r2=17847759560428889439656259202106657143289384297059785353 (pp56) Version: Msieve-1.40 Total time: 7.43 hours. Scaled time: 13.72 units (timescale=1.845). Factorization parameters were as follows: name: g105 n: 688462828123440434779271573945370660625212689440916856718770629482448614016937671446277553177927729449257 skew: 11711.95 # norm 3.55e+014 c5: 119280 c4: -33389416 c3: -38876261063554 c2: 57165069223953227 c1: 2940141257243004481354 c0: -7304026992600891397053451 # alpha -6.00 Y1: 135355970453 Y0: -89590634015656412400 # Murphy_E 1.88e-009 # M 59537625610639280219550455181988197619035910092365477801901749653682236582435332856660485432069236618267 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 266780 x 267011 Polynomial selection time: 0.74 hours. Total sieving time: 6.39 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.19 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 7.43 hours. --------- CPU info (if available) ----------
(67·10173-13)/9 = 7(4)1723<174> = 7 · C174
C174 = P49 · P125
P49 = 3241667577833561934029047613037266732688187964683<49>
P125 = 32806943894068423044978703902535750856846944093496801328720438946228682490197034377217104129805138286814146349521206468868103<125>
Number: s174 N=106349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349 ( 174 digits) SNFS difficulty: 176 digits. Divisors found: r1=3241667577833561934029047613037266732688187964683 (pp49) r2=32806943894068423044978703902535750856846944093496801328720438946228682490197034377217104129805138286814146349521206468868103 (pp125) Version: Msieve-1.40 Total time: 79.24 hours. Scaled time: 153.25 units (timescale=1.934). Factorization parameters were as follows: n: 106349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349 m: 50000000000000000000000000000000000 deg: 5 c5: 536 c0: -325 skew: 0.90 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3050000, 7050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1268890 x 1269119 Total sieving time: 76.92 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.01 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,176.000,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000 total time: 79.24 hours. --------- CPU info (if available) ----------
(61·10162-43)/9 = 6(7)1613<163> = 59 · 61175137 · 386218229 · 6104474861<10> · 103375043945431<15> · 87828043997778083<17> · C104
C104 = P47 · P58
P47 = 44852631056757965967627131512225496265304129001<47>
P58 = 1955881072075677630830269684042401294980535053861409508963<58>
Number: 104-1 N=87726412116706604176181689442432094886173812740815595253113673769486917695859001854338992189607817735963 ( 104 digits) Divisors found: r1=44852631056757965967627131512225496265304129001 (pp47) r2=1955881072075677630830269684042401294980535053861409508963 (pp58) Version: Msieve-1.40 Total time: 6.49 hours. Scaled time: 12.75 units (timescale=1.963). Factorization parameters were as follows: name: 104-1 n: 87726412116706604176181689442432094886173812740815595253113673769486917695859001854338992189607817735963 skew: 5632.48 # norm 3.26e+014 c5: 332760 c4: -1844824732 c3: -51516079167636 c2: 54800028999535425 c1: 509268002826041010748 c0: 204082045054914963700680 # alpha -6.10 Y1: 36944582543 Y0: -48328155326484662947 # Murphy_E 2.08e-009 # M 40661182499693352341660221196869806519260094789467311883817922215784162525054796969538126733752536416370 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 283957 x 284182 Polynomial selection time: 0.64 hours. Total sieving time: 5.53 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 6.49 hours. --------- CPU info (if available) ----------
(61·10158-43)/9 = 6(7)1573<159> = 797 · 30899928821819713155011<23> · 52479345442178546077447913843<29> · C105
C105 = P45 · P60
P45 = 538930019607965917593456121461723178381422529<45>
P60 = 973084915107460761577962192463788650452260933314120111165177<60>
Number: 105-1 N=524424672379079678588623369392639247096995884972668201702910020068551232364523701651887851582888948072633 ( 105 digits) Divisors found: r1=538930019607965917593456121461723178381422529 (pp45) r2=973084915107460761577962192463788650452260933314120111165177 (pp60) Version: Msieve-1.40 Total time: 7.43 hours. Scaled time: 14.55 units (timescale=1.957). Factorization parameters were as follows: name: 105-1 n: 524424672379079678588623369392639247096995884972668201702910020068551232364523701651887851582888948072633 skew: 10475.57 # norm 2.35e+014 c5: 33780 c4: 697987307 c3: -22064199777319 c2: -115402330232616307 c1: 654120283538760778254 c0: -688732206002588239770960 # alpha -5.48 Y1: 17799602311 Y0: -109195414579225721363 # Murphy_E 1.89e-009 # M 96514144602388307565875898422554406240271026751061528882716032843747888924680983653499298113795581082078 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 294609 x 294834 Polynomial selection time: 0.74 hours. Total sieving time: 6.36 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.24 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 7.43 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Nov 2, 2009
(22·10165-7)/3 = 7(3)1641<166> = 47 · C165
C165 = P52 · P113
P52 = 1564682708516157729593076746118340115858134618497421<52>
P113 = 99718855423597857720868501793338779777648696574003544048348780020772616457565445007512772585819256887992072879313<113>
Number: 73331_165 N=156028368794326241134751773049645390070921985815602836879432624113475177304964539007092198581560283687943262411347517730496453900709219858156028368794326241134751773 ( 165 digits) SNFS difficulty: 166 digits. Divisors found: r1=1564682708516157729593076746118340115858134618497421 (pp52) r2=99718855423597857720868501793338779777648696574003544048348780020772616457565445007512772585819256887992072879313 (pp113) Version: Msieve-1.40 Total time: 38.13 hours. Scaled time: 37.71 units (timescale=0.989). Factorization parameters were as follows: n: 156028368794326241134751773049645390070921985815602836879432624113475177304964539007092198581560283687943262411347517730496453900709219858156028368794326241134751773 m: 1000000000000000000000000000000000 deg: 5 c5: 22 c0: -7 skew: 0.80 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 805551 x 805782 Total sieving time: 35.57 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.49 hours. Time per square root: 0.94 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 38.13 hours. --------- CPU info (if available) ----------
(59·10152+31)/9 = 6(5)1519<153> = 20963 · 83107515433<11> · C138
C138 = P58 · P80
P58 = 5989047883343168355118336561559445805153409691369558165139<58>
P80 = 62828686959834010448240898643866203654300950428702935348705432337206310724710439<80>
Number: 65559_152 N=376284014650024403464688154317761647052634033520374653105045692233247804740445138130561820412152041878569194583325890024179836183919186021 ( 138 digits) SNFS difficulty: 154 digits. Divisors found: r1=5989047883343168355118336561559445805153409691369558165139 (pp58) r2=62828686959834010448240898643866203654300950428702935348705432337206310724710439 (pp80) Version: Msieve-1.40 Total time: 24.70 hours. Scaled time: 24.90 units (timescale=1.008). Factorization parameters were as follows: n: 376284014650024403464688154317761647052634033520374653105045692233247804740445138130561820412152041878569194583325890024179836183919186021 m: 2000000000000000000000000000000 deg: 5 c5: 1475 c0: 248 skew: 0.70 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 543593 x 543818 Total sieving time: 23.50 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.80 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,154.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 24.70 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Nov 2, 2009
(62·10142-17)/9 = 6(8)1417<143> = 7 · 13 · 2173389745922927702807531<25> · C117
C117 = P48 · P69
P48 = 358166541419012241609637868825419291785725536283<48>
P69 = 972490037068366127364333661129741553894152723185471642264624912216109<69>
Number: 68887_142 N=348313393141223706734704749064438289199394936931752715023824086413973108957877891594866729630631067309563042016582847 ( 117 digits) SNFS difficulty: 144 digits. Divisors found: r1=358166541419012241609637868825419291785725536283 (pp48) r2=972490037068366127364333661129741553894152723185471642264624912216109 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.57 hours. Scaled time: 34.21 units (timescale=1.947). Factorization parameters were as follows: name: 68887_142 n: 348313393141223706734704749064438289199394936931752715023824086413973108957877891594866729630631067309563042016582847 m: 20000000000000000000000000000 deg: 5 c5: 775 c0: -68 skew: 0.61 type: snfs lss: 1 rlim: 1790000 alim: 1790000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1790000/1790000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [895000, 2395001) Primes: RFBsize:134359, AFBsize:134558, largePrimes:4088931 encountered Relations: rels:4299967, finalFF:392227 Max relations in full relation-set: 28 Initial matrix: 268984 x 392227 with sparse part having weight 42978490. Pruned matrix : 232463 x 233871 with weight 23727956. Total sieving time: 16.59 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.74 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1790000,1790000,26,26,49,49,2.3,2.3,100000 total time: 17.57 hours. --------- CPU info (if available) ----------
(65·10142-11)/9 = 7(2)1411<143> = 14182188136387<14> · 2301042251793941<16> · C115
C115 = P47 · P68
P47 = 49683938243911040863561670600066704163687710361<47>
P68 = 44543772791552787387347470419203004445531100088375155605652133154283<68>
Number: 72221_142 N=2213110056526313597857792138014442333018479113407539281242501814967691047326942981949448418956015199512081030626163 ( 115 digits) SNFS difficulty: 145 digits. Divisors found: r1=49683938243911040863561670600066704163687710361 (pp47) r2=44543772791552787387347470419203004445531100088375155605652133154283 (pp68) Version: Msieve-1.40 Total time: 10.58 hours. Scaled time: 21.50 units (timescale=2.032). Factorization parameters were as follows: name: 72221_142 n: 2213110056526313597857792138014442333018479113407539281242501814967691047326942981949448418956015199512081030626163 m: 50000000000000000000000000000 deg: 5 c5: 52 c0: -275 skew: 1.40 type: snfs lss: 1 rlim: 1840000 alim: 1840000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 *1 These parameters were not fully adjusted. The approximate Factor base limits: 1840000/1840000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [920000, 2220001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 293564 x 293799 Total sieving time: 10.16 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.29 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,145.000,5,0,0,0,0,0,0,0,0,1840000,1840000,26,26,49,49,2.3,2.3,100000 total time: 10.58 hours. --------- CPU info (if available) ----------
(61·10179-43)/9 = 6(7)1783<180> = 412 · 2671211 · 274287654587<12> · 89842750365457<14> · 851082649636320944341<21> · 1050299838228593445391615122607<31> · C94
C94 = P33 · P62
P33 = 623546059778895442296480169519561<33>
P62 = 10989262396970049806453474363931603119465274029106206008787431<62>
Mon Nov 2 01:27:00 2009 Msieve v. 1.42 Mon Nov 2 01:27:00 2009 random seeds: d6c920ea 1c141072 Mon Nov 2 01:27:00 2009 factoring 6852311267507054493047841489595293852612752095255092259071980445075187069060064528087445437791 (94 digits) Mon Nov 2 01:27:02 2009 no P-1/P+1/ECM available, skipping Mon Nov 2 01:27:02 2009 commencing quadratic sieve (94-digit input) Mon Nov 2 01:27:02 2009 using multiplier of 1 Mon Nov 2 01:27:02 2009 using 64kb Pentium 4 sieve core Mon Nov 2 01:27:02 2009 sieve interval: 18 blocks of size 65536 Mon Nov 2 01:27:02 2009 processing polynomials in batches of 6 Mon Nov 2 01:27:02 2009 using a sieve bound of 2059517 (76466 primes) Mon Nov 2 01:27:02 2009 using large prime bound of 284213346 (28 bits) Mon Nov 2 01:27:02 2009 using double large prime bound of 1646493387513360 (42-51 bits) Mon Nov 2 01:27:02 2009 using trial factoring cutoff of 51 bits Mon Nov 2 01:27:02 2009 polynomial 'A' values have 12 factors Mon Nov 2 07:38:32 2009 76759 relations (18206 full + 58553 combined from 1116861 partial), need 76562 Mon Nov 2 07:38:37 2009 begin with 1135067 relations Mon Nov 2 07:38:38 2009 reduce to 202625 relations in 11 passes Mon Nov 2 07:38:38 2009 attempting to read 202625 relations Mon Nov 2 07:38:44 2009 recovered 202625 relations Mon Nov 2 07:38:44 2009 recovered 188056 polynomials Mon Nov 2 07:38:45 2009 attempting to build 76759 cycles Mon Nov 2 07:38:45 2009 found 76759 cycles in 7 passes Mon Nov 2 07:38:45 2009 distribution of cycle lengths: Mon Nov 2 07:38:45 2009 length 1 : 18206 Mon Nov 2 07:38:45 2009 length 2 : 13145 Mon Nov 2 07:38:45 2009 length 3 : 12782 Mon Nov 2 07:38:45 2009 length 4 : 10530 Mon Nov 2 07:38:45 2009 length 5 : 8057 Mon Nov 2 07:38:45 2009 length 6 : 5385 Mon Nov 2 07:38:45 2009 length 7 : 3551 Mon Nov 2 07:38:45 2009 length 9+: 5103 Mon Nov 2 07:38:45 2009 largest cycle: 21 relations Mon Nov 2 07:38:45 2009 matrix is 76466 x 76759 (20.3 MB) with weight 5004334 (65.20/col) Mon Nov 2 07:38:45 2009 sparse part has weight 5004334 (65.20/col) Mon Nov 2 07:38:47 2009 filtering completed in 3 passes Mon Nov 2 07:38:47 2009 matrix is 73244 x 73308 (19.4 MB) with weight 4800140 (65.48/col) Mon Nov 2 07:38:47 2009 sparse part has weight 4800140 (65.48/col) Mon Nov 2 07:38:47 2009 saving the first 48 matrix rows for later Mon Nov 2 07:38:48 2009 matrix is 73196 x 73308 (12.0 MB) with weight 3773269 (51.47/col) Mon Nov 2 07:38:48 2009 sparse part has weight 2718479 (37.08/col) Mon Nov 2 07:38:48 2009 matrix includes 64 packed rows Mon Nov 2 07:38:48 2009 using block size 21845 for processor cache size 512 kB Mon Nov 2 07:38:48 2009 commencing Lanczos iteration Mon Nov 2 07:38:48 2009 memory use: 12.3 MB Mon Nov 2 07:39:43 2009 lanczos halted after 1159 iterations (dim = 73193) Mon Nov 2 07:39:44 2009 recovered 15 nontrivial dependencies Mon Nov 2 07:39:45 2009 prp33 factor: 623546059778895442296480169519561 Mon Nov 2 07:39:45 2009 prp62 factor: 10989262396970049806453474363931603119465274029106206008787431 Mon Nov 2 07:39:45 2009 elapsed time 06:12:45
(22·10145+17)/3 = 7(3)1449<146> = 2752274513<10> · 1566730008456407<16> · 17181518528359567<17> · C105
C105 = P45 · P61
P45 = 206001556297406951388011103876042896419902713<45>
P61 = 4804890221710012505146226057101997093818448342097762588344699<61>
Number: 73339_145 N=989814863510455309432420159547073597905623407332372470876308281179701943588715244504145580284145289268387 ( 105 digits) SNFS difficulty: 146 digits. Divisors found: r1=206001556297406951388011103876042896419902713 (pp45) r2=4804890221710012505146226057101997093818448342097762588344699 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 16.48 hours. Scaled time: 32.29 units (timescale=1.960). Factorization parameters were as follows: name: 73339_145 n: 989814863510455309432420159547073597905623407332372470876308281179701943588715244504145580284145289268387 m: 100000000000000000000000000000 deg: 5 c5: 22 c0: 17 skew: 0.95 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [960000, 2260001) Primes: RFBsize:143414, AFBsize:143078, largePrimes:4258182 encountered Relations: rels:4535046, finalFF:474607 Max relations in full relation-set: 28 Initial matrix: 286558 x 474607 with sparse part having weight 50088625. Pruned matrix : 232008 x 233504 with weight 23287895. Total sieving time: 15.65 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.59 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 16.48 hours. --------- CPU info (if available) ----------
(62·10145-53)/9 = 6(8)1443<146> = 34 · 7 · 4444002491<10> · 286154403651761<15> · C119
C119 = P38 · P82
P38 = 20277487323458673341622013549649441909<38>
P82 = 4711695927599623445659927588915785695966831005489230458903957349220464530717361011<82>
Number: 68883_145 N=95541354443893219554761713158295632329924591379995392706939600940086281817187950677547878289330951136062210113426009999 ( 119 digits) SNFS difficulty: 146 digits. Divisors found: r1=20277487323458673341622013549649441909 (pp38) r2=4711695927599623445659927588915785695966831005489230458903957349220464530717361011 (pp82) Version: Msieve-1.40 Total time: 12.36 hours. Scaled time: 25.94 units (timescale=2.099). Factorization parameters were as follows: name: 68883_145 n: 95541354443893219554761713158295632329924591379995392706939600940086281817187950677547878289330951136062210113426009999 m: 100000000000000000000000000000 deg: 5 c5: 62 c0: -53 skew: 0.97 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 360185 x 360433 Total sieving time: 11.70 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.45 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 12.36 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1 / Nov 24, 2009
(61·10183-43)/9 = 6(7)1823<184> = 13 · 1153 · 10894858720091063<17> · 61039604038917041<17> · 16476593553706548463<20> · C128
C128 = P32 · P97
P32 = 11030417785044302030364559806857<32>
P97 = 3741295097064541878566783638460453589780064807775104741236268852291803197624791377605215812186769<97>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2321782276 Step 1 took 2544ms Step 2 took 1980ms ********** Factor found in step 2: 11030417785044302030364559806857 Found probable prime factor of 32 digits: 11030417785044302030364559806857 Probable prime cofactor has 97 digits
(61·10151-43)/9 = 6(7)1503<152> = 3 · 7 · 600947 · C145
C145 = P29 · P116
P29 = 83744503330471900677166329923<29>
P116 = 64132112858217976351724434584972306655962105958394673205655435117315367038933800044622855933622801454864869748712673<116>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2553111147 Step 1 took 2976ms Step 2 took 2160ms ********** Factor found in step 2: 83744503330471900677166329923 Found probable prime factor of 29 digits: 83744503330471900677166329923 Probable prime cofactor has 116 digits
(61·10176-43)/9 = 6(7)1753<177> = 31 · 2442558941<10> · 4657225973816284327<19> · C148
C148 = P29 · P119
P29 = 55936980294674513391151031033<29>
P119 = 34360086679144844121313260956712869553310827453400056575190343859366941459700585511846417879165851191447319575871210593<119>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3489160518 Step 1 took 2980ms Step 2 took 2196ms ********** Factor found in step 2: 55936980294674513391151031033 Found probable prime factor of 29 digits: 55936980294674513391151031033 Probable prime cofactor has 119 digits
(61·10194-43)/9 = 6(7)1933<195> = 23 · 41 · 67 · 95971 · 749939 · 22698602179251101<17> · C163
C163 = P33 · C131
P33 = 623655988907658070344904037133739<33>
C131 = [10529085689163555069923502028408334316210581368163244809718003699545475280131011357908335141861212186917544347038254869011830606263<131>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3314643275 Step 1 took 10664ms Step 2 took 5561ms ********** Factor found in step 2: 623655988907658070344904037133739 Found probable prime factor of 33 digits: 623655988907658070344904037133739 Composite cofactor has 131 digits
By Robert Backstrom / Msieve, GMP-ECM / Nov 2, 2009
(61·10153-43)/9 = 6(7)1523<154> = 13 · 47 · 115811 · 96593309 · 138654749 · 151234649 · 260725193 · 735770064081398185730057<24> · C90
C90 = P32 · P58
P32 = 45693359951345274428864482310057<32>
P58 = 5394919918315846661654873441474430625034440751142940650701<58>
Mon Nov 02 03:33:12 2009 Mon Nov 02 03:33:12 2009 Mon Nov 02 03:33:12 2009 Msieve v. 1.43 Mon Nov 02 03:33:12 2009 random seeds: cc560800 188deb0c Mon Nov 02 03:33:12 2009 factoring 246512017736288227111883965007638091540411285199799444194590282370792883170754051216399957 (90 digits) Mon Nov 02 03:33:13 2009 searching for 15-digit factors Mon Nov 02 03:33:13 2009 commencing quadratic sieve (90-digit input) Mon Nov 02 03:33:13 2009 using multiplier of 13 Mon Nov 02 03:33:13 2009 using 64kb Opteron sieve core Mon Nov 02 03:33:13 2009 sieve interval: 18 blocks of size 65536 Mon Nov 02 03:33:13 2009 processing polynomials in batches of 6 Mon Nov 02 03:33:13 2009 using a sieve bound of 1573933 (59667 primes) Mon Nov 02 03:33:13 2009 using large prime bound of 125914640 (26 bits) Mon Nov 02 03:33:13 2009 using double large prime bound of 380309430790000 (42-49 bits) Mon Nov 02 03:33:13 2009 using trial factoring cutoff of 49 bits Mon Nov 02 03:33:13 2009 polynomial 'A' values have 12 factors Mon Nov 02 04:18:09 2009 60043 relations (17135 full + 42908 combined from 621739 partial), need 59763 Mon Nov 02 04:18:10 2009 begin with 638874 relations Mon Nov 02 04:18:11 2009 reduce to 141771 relations in 9 passes Mon Nov 02 04:18:11 2009 attempting to read 141771 relations Mon Nov 02 04:18:13 2009 recovered 141771 relations Mon Nov 02 04:18:13 2009 recovered 114749 polynomials Mon Nov 02 04:18:13 2009 attempting to build 60043 cycles Mon Nov 02 04:18:13 2009 found 60043 cycles in 5 passes Mon Nov 02 04:18:13 2009 distribution of cycle lengths: Mon Nov 02 04:18:13 2009 length 1 : 17135 Mon Nov 02 04:18:13 2009 length 2 : 12120 Mon Nov 02 04:18:13 2009 length 3 : 10745 Mon Nov 02 04:18:13 2009 length 4 : 7680 Mon Nov 02 04:18:13 2009 length 5 : 5263 Mon Nov 02 04:18:13 2009 length 6 : 3247 Mon Nov 02 04:18:13 2009 length 7 : 1823 Mon Nov 02 04:18:13 2009 length 9+: 2030 Mon Nov 02 04:18:13 2009 largest cycle: 18 relations Mon Nov 02 04:18:13 2009 matrix is 59667 x 60043 (14.3 MB) with weight 3498442 (58.27/col) Mon Nov 02 04:18:13 2009 sparse part has weight 3498442 (58.27/col) Mon Nov 02 04:18:14 2009 filtering completed in 3 passes Mon Nov 02 04:18:14 2009 matrix is 54812 x 54876 (13.1 MB) with weight 3213472 (58.56/col) Mon Nov 02 04:18:14 2009 sparse part has weight 3213472 (58.56/col) Mon Nov 02 04:18:14 2009 saving the first 48 matrix rows for later Mon Nov 02 04:18:14 2009 matrix is 54764 x 54876 (8.3 MB) with weight 2511809 (45.77/col) Mon Nov 02 04:18:14 2009 sparse part has weight 1845177 (33.62/col) Mon Nov 02 04:18:14 2009 matrix includes 64 packed rows Mon Nov 02 04:18:14 2009 using block size 21950 for processor cache size 1024 kB Mon Nov 02 04:18:15 2009 commencing Lanczos iteration Mon Nov 02 04:18:15 2009 memory use: 8.5 MB Mon Nov 02 04:18:31 2009 lanczos halted after 868 iterations (dim = 54761) Mon Nov 02 04:18:31 2009 recovered 16 nontrivial dependencies Mon Nov 02 04:18:31 2009 prp32 factor: 45693359951345274428864482310057 Mon Nov 02 04:18:31 2009 prp58 factor: 5394919918315846661654873441474430625034440751142940650701 Mon Nov 02 04:18:31 2009 elapsed time 00:45:19
(61·10170-43)/9 = 6(7)1693<171> = 124054861451<12> · 428268889962110713<18> · 141351960293925516511<21> · 117582689526846515424017975289967<33> · C90
C90 = P35 · P56
P35 = 38211612373060375875899611707596153<35>
P56 = 20087062029305696571393777932719711095353116697806519111<56>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 767559027977448817671123325954882817351796463364504665823517850583942819516922282264579983 (90 digits) Using B1=2354000, B2=3567716890, polynomial Dickson(6), sigma=1412220974 Step 1 took 14609ms Step 2 took 7110ms ********** Factor found in step 2: 38211612373060375875899611707596153 Found probable prime factor of 35 digits: 38211612373060375875899611707596153 Probable prime cofactor 20087062029305696571393777932719711095353116697806519111 has 56 digits
By Alexander Mkrtychyan / GGNFS / Nov 1, 2009
The progress report of (64·10224+53)/9.
I am doing the classic sieving n: 133391692198670251568394505929677567269013526751287021405198107505366931365805873402947122699514370870589216115383813751849767606661247629171095687696700639863273515496362992142395631422080493549261135079930803059671939807 m: 2000000000000000000000000000000000000000000000 skew: 3.05 c5: 1 c0: 265 type: snfs a0: -2140000000 a1: 2140000000 Already sieved b in [0; 250000] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matbuild largePrimes: 22993308 , relations: 15050039 rels:15050039, initialFF:0, finalFF:2464508
Factorizations of 677...773 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve / Nov 1, 2009
(62·10141+1)/9 = 6(8)1409<142> = C142
C142 = P33 · P51 · P60
P33 = 568661993488414430953673552639897<33>
P51 = 107136670558984692997845953645695662813997409001629<51>
P60 = 113072457467357463380646477639339817944564509365675623543253<60>
Number: 142-2 N=6888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 142 digits) SNFS difficulty: 143 digits. Divisors found: r1=568661993488414430953673552639897 (pp33) r2=107136670558984692997845953645695662813997409001629 (pp51) r3=113072457467357463380646477639339817944564509365675623543253 (pp60) Version: Msieve-1.40 Total time: 6.00 hours. Scaled time: 11.17 units (timescale=1.860). Factorization parameters were as follows: n: 6888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 20000000000000000000000000000 deg: 5 c5: 155 c0: 8 skew: 0.55 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 1870001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 261982 x 262208 Total sieving time: 5.74 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.18 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 6.00 hours. --------- CPU info (if available) ----------
2·10200+9 = 2(0)1999<201> = 11 · 19 · 139 · 1259 · 5326345617905713<16> · 1991350749169858454527790418207027923203<40> · C138
C138 = P62 · P77
P62 = 26929252008257191020431416687258193026593735560915113070125073<62>
P77 = 19144401031633854466395611803227504370594464318406318304124607255623786615883<77>
N=515544399928007014946837975043806426611470201510365146903403741438897213435687943769990979066673545308632679985149733037848236754218334459 ( 138 digits) Divisors found: r1=26929252008257191020431416687258193026593735560915113070125073 (pp62) r2=19144401031633854466395611803227504370594464318406318304124607255623786615883 (pp77) Version: Msieve-1.40 Total time: 393.79 hours. Scaled time: 728.52 units (timescale=1.850). Factorization parameters were as follows: name: 138 n: 515544399928007014946837975043806426611470201510365146903403741438897213435687943769990979066673545308632679985149733037848236754218334459 skew: 59396.92 # norm 6.88e+018 c5: 11646900 c4: -656423698046 c3: -91862773336305875 c2: -7446857964439791899471 c1: 144615163516304815228906947 c0: 872413083934548205729822156721 # alpha -5.87 Y1: 3733924185275977 Y0: -134651526480555153942964818 # Murphy_E 2.69e-011 # M 115470477286257391141601787983228737831086354664957529203110934439337617085329047796142281722271255945999979840269516821464770418268211574 type: gnfs rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [5500000, 11700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1968879 x 1969105 Total sieving time: 386.79 hours. Total relation processing time: 0.26 hours. Matrix solve time: 5.16 hours. Time per square root: 1.60 hours. Prototype def-par.txt line would be: gnfs,137,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,11000000,11000000,28,28,56,56,2.5,2.5,100000 total time: 393.79 hours. --------- CPU info (if available) ----------
(62·10144+1)/9 = 6(8)1439<145> = 7 · 6947 · C141
C141 = P61 · P80
P61 = 4257496835970046328258574077329808655160261495634343872354609<61>
P80 = 33273578231402606240782600493794607850183398235273622964448002794566112533642949<80>
Number: s141 N=141662154041598406072279686789547160930491864708073143368954510454438480924733983608317853315694110281702047932075282010505848133601120501941 ( 141 digits) SNFS difficulty: 146 digits. Divisors found: r1=4257496835970046328258574077329808655160261495634343872354609 (pp61) r2=33273578231402606240782600493794607850183398235273622964448002794566112533642949 (pp80) Version: Msieve-1.40 Total time: 6.07 hours. Scaled time: 10.97 units (timescale=1.808). Factorization parameters were as follows: n: 141662154041598406072279686789547160930491864708073143368954510454438480924733983608317853315694110281702047932075282010505848133601120501941 m: 100000000000000000000000000000 deg: 5 c5: 31 c0: 5 skew: 0.69 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2065001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 295233 x 295458 Total sieving time: 5.87 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 6.07 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Nov 1, 2009
(67·10138-13)/9 = 7(4)1373<139> = 32 · 19 · 36017 · C133
C133 = P59 · P74
P59 = 42023764615347595396734863188057129653368717733683543157781<59>
P74 = 28762967581330039305542481296456056372151385010601032288129901194001326429<74>
Number: 74443_138 N=1208728179276687315532519722159215010787538185662560653123101947219603160827796952356066497585439176861161313922169054418981232294049 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=42023764615347595396734863188057129653368717733683543157781 (pp59) r2=28762967581330039305542481296456056372151385010601032288129901194001326429 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.22 hours. Scaled time: 19.90 units (timescale=1.948). Factorization parameters were as follows: name: 74443_138 n: 1208728179276687315532519722159215010787538185662560653123101947219603160827796952356066497585439176861161313922169054418981232294049 m: 5000000000000000000000000000 deg: 5 c5: 536 c0: -325 skew: 0.90 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1690001) Primes: RFBsize:119758, AFBsize:119698, largePrimes:3701668 encountered Relations: rels:3802277, finalFF:375456 Max relations in full relation-set: 28 Initial matrix: 239523 x 375456 with sparse part having weight 35117704. Pruned matrix : 200088 x 201349 with weight 15754132. Total sieving time: 9.66 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.36 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 10.22 hours. --------- CPU info (if available) ----------
(22·10140+17)/3 = 7(3)1399<141> = 18999512297<11> · C131
C131 = P50 · P82
P50 = 17503953742095815633532786349291591409121689703227<50>
P82 = 2205072210500590718176371702165784035293904953432860513137148250438246160864874681<82>
Number: 73339_140 N=38597481970583306985468424591600627933388333190715549730478080878147992039131304936218139038336670907512891583847234230579436295587 ( 131 digits) SNFS difficulty: 141 digits. Divisors found: r1=17503953742095815633532786349291591409121689703227 (pp50) r2=2205072210500590718176371702165784035293904953432860513137148250438246160864874681 (pp82) Version: Msieve-1.40 Total time: 6.61 hours. Scaled time: 13.02 units (timescale=1.969). Factorization parameters were as follows: name: 73339_140 n: 38597481970583306985468424591600627933388333190715549730478080878147992039131304936218139038336670907512891583847234230579436295587 m: 10000000000000000000000000000 deg: 5 c5: 22 c0: 17 skew: 0.95 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [795000, 1595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 242040 x 242274 Total sieving time: 6.32 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.20 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 6.61 hours. --------- CPU info (if available) ----------
(62·10140-17)/9 = 6(8)1397<141> = 32 · 479 · 2663 · 25237 · 4157699964847379<16> · C114
C114 = P54 · P61
P54 = 189991277415596029678484840140503978996511068131431747<54>
P61 = 3010062092706075056003895448693420219313246593121390246857139<61>
Number: 68887_140 N=571885542093489440362382768505594648425665028980993844375232112444849040293722899734811215715075731527647038191833 ( 114 digits) SNFS difficulty: 141 digits. Divisors found: r1=189991277415596029678484840140503978996511068131431747 (pp54) r2=3010062092706075056003895448693420219313246593121390246857139 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.49 hours. Scaled time: 19.74 units (timescale=1.882). Factorization parameters were as follows: name: 68887_140 n: 571885542093489440362382768505594648425665028980993844375232112444849040293722899734811215715075731527647038191833 m: 10000000000000000000000000000 deg: 5 c5: 62 c0: -17 skew: 0.77 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1710001) Primes: RFBsize:122540, AFBsize:122556, largePrimes:3860497 encountered Relations: rels:4035041, finalFF:430705 Max relations in full relation-set: 28 Initial matrix: 245162 x 430705 with sparse part having weight 41572703. Pruned matrix : 195424 x 196713 with weight 16613410. Total sieving time: 9.92 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.38 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 10.49 hours. --------- CPU info (if available) ----------
(22·10142+17)/3 = 7(3)1419<143> = 7 · 241 · 4729 · C136
C136 = P61 · P76
P61 = 7890278994627629478652174071224520898225084894273485579113341<61>
P76 = 1164996631608428630808474583554267570501191000927767091966829090137072008873<76>
Number: 73339_142 N=9192148451191927087544225201954635159658635361217381400080364446959193420728102557970179751209488269335297779022338968078551421024674693 ( 136 digits) SNFS difficulty: 143 digits. Divisors found: r1=7890278994627629478652174071224520898225084894273485579113341 (pp61) r2=1164996631608428630808474583554267570501191000927767091966829090137072008873 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 12.74 hours. Scaled time: 24.98 units (timescale=1.961). Factorization parameters were as follows: name: 73339_142 n: 9192148451191927087544225201954635159658635361217381400080364446959193420728102557970179751209488269335297779022338968078551421024674693 m: 20000000000000000000000000000 deg: 5 c5: 275 c0: 68 skew: 0.76 type: snfs lss: 1 rlim: 1750000 alim: 1750000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1750000/1750000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [875000, 1975001) Primes: RFBsize:131608, AFBsize:131403, largePrimes:3900124 encountered Relations: rels:4052152, finalFF:401107 Max relations in full relation-set: 28 Initial matrix: 263078 x 401107 with sparse part having weight 39060172. Pruned matrix : 221049 x 222428 with weight 18826482. Total sieving time: 11.95 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.58 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000 total time: 12.74 hours. --------- CPU info (if available) ----------
(67·10139-13)/9 = 7(4)1383<140> = 127 · 314267 · C133
C133 = P58 · P75
P58 = 2566690768266226258423170836580440422708903717424718866809<58>
P75 = 726701813472812676847611319548437610784202539957759174853069485338437045303<75>
Number: 74443_139 N=1865218835922993421448331234781188853794100513820184457837996284378290310404457086842036156287198501190320023140071912983276356048127 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=2566690768266226258423170836580440422708903717424718866809 (pp58) r2=726701813472812676847611319548437610784202539957759174853069485338437045303 (pp75) Version: Msieve-1.40 Total time: 7.39 hours. Scaled time: 15.21 units (timescale=2.058). Factorization parameters were as follows: name: 74443_139 n: 1865218835922993421448331234781188853794100513820184457837996284378290310404457086842036156287198501190320023140071912983276356048127 m: 10000000000000000000000000000 deg: 5 c5: 67 c0: -130 skew: 1.14 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1710001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 241552 x 241791 Total sieving time: 7.01 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 7.39 hours. --------- CPU info (if available) ----------
By juno1369 / GMP-ECM, Msieve v-1.40, Alpertron ECM, GGNFS / Nov 1, 2009
(67·10143-13)/9 = 7(4)1423<144> = 7 · 313 · 1129 · 426868832072472269<18> · 67933898702369285064861293<26> · C95
C95 = P42 · P53
P42 = 240268262875952563650189119243541705525181<42>
P53 = 43193518248142142096188006740990085557670555853768681<53>
Number: 74443_143 N=10378031596981870252939464149157434908883206662215579250592526126932431653369574440179194656261 ( 95 digits) Divisors found: r1=240268262875952563650189119243541705525181 (pp42) r2=43193518248142142096188006740990085557670555853768681 (pp53) Version: Msieve-1.40 Total time: 4.91 hours. Scaled time: 8.45 units (timescale=1.720). Factorization parameters were as follows: name: 74443_143 n: 10378031596981870252939464149157434908883206662215579250592526126932431653369574440179194656261 m: 4835729701784787971244 deg: 4 c4: 18978720 c3: 78652993 c2: -5560682268093890 c1: 16083300182081943339 c0: -2029851474788969042047 skew: 1635.250 type: gnfs # adj. I(F,S) = 52.154 # E(F1,F2) = 5.152788e-005 # GGNFS version 0.77.1-20060513-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1256969454. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 2 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1320001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159725 x 159954 Total sieving time: 4.71 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 4.91 hours. --------- CPU info (if available) ----------
(22·10148+17)/3 = 7(3)1479<149> = 7 · 41 · 74343761 · 360046997 · 2870153148092932417635948631<28> · C103
C103 = P40 · P64
P40 = 1289700889060485219183727689624462207083<40>
P64 = 2578824207884392367663721272453581663123001803062041082460324117<64>
Number: 73339_148 N=3325911873639202393250906590833897427097798202533779599082871166424239204175531089139368010881353120711 ( 103 digits) Divisors found: r1=1289700889060485219183727689624462207083 (pp40) r2=2578824207884392367663721272453581663123001803062041082460324117 (pp64) Version: Msieve-1.40 Total time: -639.96 hours. Scaled time: -1146.17 units (timescale=1.791). Factorization parameters were as follows: name: 73339_148 n: 3325911873639202393250906590833897427097798202533779599082871166424239204175531089139368010881353120711 skew: 12521.91 # norm 1.49e+014 c5: 7020 c4: 437449634 c3: -11015077232503 c2: -72660396839571297 c1: 387503975999076601291 c0: -163681226940922413934154 # alpha -5.26 Y1: 330796961 Y0: -54339381655504281315 # Murphy_E 2.31e-009 # M 1447140866410042080494015316695201142127604977322561648360653862423286968002221708106929140054468402564 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 2 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 226107 x 226351 Total sieving time: -640.39 hours. (glitch) Total relation processing time: 0.09 hours. Matrix solve time: 0.27 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: -639.96 hours. (glitch) --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Nov 1, 2009
(67·10148-13)/9 = 7(4)1473<149> = 17 · 71 · 19717 · 10485116375196939239516371649991113<35> · C108
C108 = P33 · P75
P33 = 493110501797734488620529137369077<33>
P75 = 605015749007193241077747897233415261264358597396216286880140160508083364397<75>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 298339619588469240853281754870823326690224613752882667372313547932421348293005050207542165389168819270551569 (108 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3697172534 Step 1 took 3448ms Step 2 took 3650ms ********** Factor found in step 2: 493110501797734488620529137369077 Found probable prime factor of 33 digits: 493110501797734488620529137369077 Probable prime cofactor 605015749007193241077747897233415261264358597396216286880140160508083364397 has 75 digits
(22·10174+17)/3 = 7(3)1739<175> = 13 · 19 · 5708523429678096119<19> · 24284845928264463317467<23> · 42122343917678177961329<23> · C109
C109 = P40 · P69
P40 = 5876623023071862162976999206484510040519<40>
P69 = 865177009851691364199653394697094788721195171472216998317404188606519<69>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 5084319135126920777631876200778913427885337276529824188767754686508222745647975461621247367668558838837543361 (109 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2954220047 Step 1 took 3495ms Step 2 took 3806ms ********** Factor found in step 2: 5876623023071862162976999206484510040519 Found probable prime factor of 40 digits: 5876623023071862162976999206484510040519 Probable prime cofactor 865177009851691364199653394697094788721195171472216998317404188606519 has 69 digits
By Sinkiti Sibata / GGNFS, Msieve / Oct 30, 2009
(67·10135-13)/9 = 7(4)1343<136> = 3 · 6366299 · 343322550875497<15> · 18427413715447589<17> · C98
C98 = P39 · P60
P39 = 209356080628475924973631219217832056833<39>
P60 = 294287428717985459743101905958444395235619064479793257863671<60>
Number: 74443_135 N=61610862654629425320461097325772360749579711146654232773145044842857294758491948071998405438013943 ( 98 digits) SNFS difficulty: 136 digits. Divisors found: r1=209356080628475924973631219217832056833 (pp39) r2=294287428717985459743101905958444395235619064479793257863671 (pp60) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 8.70 hours. Scaled time: 4.09 units (timescale=0.470). Factorization parameters were as follows: name: 74443_135 n: 61610862654629425320461097325772360749579711146654232773145044842857294758491948071998405438013943 m: 1000000000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 1340000 alim: 1340000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1340000/1340000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [670000, 1345001) Primes: RFBsize:102852, AFBsize:102619, largePrimes:3220602 encountered Relations: rels:3134916, finalFF:237995 Max relations in full relation-set: 28 Initial matrix: 205536 x 237995 with sparse part having weight 19742667. Pruned matrix : 195806 x 196897 with weight 13765686. Total sieving time: 7.72 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.78 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1340000,1340000,26,26,48,48,2.3,2.3,75000 total time: 8.70 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Oct 31, 2009
(62·10142-53)/9 = 6(8)1413<143> = 3 · 38231 · C138
C138 = P31 · P108
P31 = 1897221955530729728636794936489<31>
P108 = 316587764021525936138950181020917122053434327967423987470819925009163201030651339553471066974369806252970879<108>
Number: 68883_142 N=600637256754020636733618345399360805706441447070779288089847583452249822472939838428577933168448718656665087571943264967250737960371503831 ( 138 digits) SNFS difficulty: 144 digits. Divisors found: r1=1897221955530729728636794936489 (pp31) r2=316587764021525936138950181020917122053434327967423987470819925009163201030651339553471066974369806252970879 (pp108) Version: GGNFS-0.77.1-20060513-k8 Total time: 23.85 hours. Scaled time: 46.67 units (timescale=1.957). Factorization parameters were as follows: name: 68883_142 n: 600637256754020636733618345399360805706441447070779288089847583452249822472939838428577933168448718656665087571943264967250737960371503831 m: 20000000000000000000000000000 deg: 5 c5: 775 c0: -212 skew: 0.77 type: snfs lss: 1 rlim: 1790000 alim: 1790000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1790000/1790000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [895000, 2995001) Primes: RFBsize:134359, AFBsize:134018, largePrimes:4285211 encountered Relations: rels:4611288, finalFF:372028 Max relations in full relation-set: 28 Initial matrix: 268444 x 372028 with sparse part having weight 44790153. Pruned matrix : 239391 x 240797 with weight 28079612. Total sieving time: 22.68 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.91 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1790000,1790000,26,26,49,49,2.3,2.3,100000 total time: 23.85 hours. --------- CPU info (if available) ----------
(62·10146-17)/9 = 6(8)1457<147> = 3 · 467 · 8199181 · C137
C137 = P34 · P104
P34 = 1362518920977791402556581436857353<34>
P104 = 44014728682733656162984696344578934532017463783335918028526772701777175353463305906690407115138338099859<104>
Number: 68887_146 N=59970900631928507134678788225256830909677272320730651392923130286217054871587593448388419881377479427147482375478201781976233202452413227 ( 137 digits) SNFS difficulty: 148 digits. Divisors found: r1=1362518920977791402556581436857353 (pp34) r2=44014728682733656162984696344578934532017463783335918028526772701777175353463305906690407115138338099859 (pp104) Version: Msieve-1.40 Total time: 13.52 hours. Scaled time: 28.20 units (timescale=2.085). Factorization parameters were as follows: name: 68887_146 n: 59970900631928507134678788225256830909677272320730651392923130286217054871587593448388419881377479427147482375478201781976233202452413227 m: 200000000000000000000000000000 deg: 5 c5: 155 c0: -136 skew: 0.97 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 356196 x 356425 Total sieving time: 12.87 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.44 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 13.52 hours. --------- CPU info (if available) ----------
(67·10136-13)/9 = 7(4)1353<137> = 107071636716652010184212485927<30> · C108
C108 = P49 · P60
P49 = 1388497017615733774323439876017921362377077183293<49>
P60 = 500740709756802603000974713552278904512748721414586970310513<60>
Number: 73339_136 N=695276982096106176900642839859448798309712051367578561086347155086278922700828965871905561126372859625859309 ( 108 digits) SNFS difficulty: 139 digits. Divisors found: r1=1388497017615733774323439876017921362377077183293 (pp49) r2=500740709756802603000974713552278904512748721414586970310513 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.04 hours. Scaled time: 17.71 units (timescale=1.960). Factorization parameters were as follows: name: 73339_136 n: 695276982096106176900642839859448798309712051367578561086347155086278922700828965871905561126372859625859309 m: 2000000000000000000000000000 deg: 5 c5: 335 c0: -208 skew: 0.91 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1550001) Primes: RFBsize:110630, AFBsize:110649, largePrimes:3508814 encountered Relations: rels:3522800, finalFF:297635 Max relations in full relation-set: 28 Initial matrix: 221346 x 297635 with sparse part having weight 27324926. Pruned matrix : 198752 x 199922 with weight 15189467. Total sieving time: 8.42 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.42 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 9.04 hours. --------- CPU info (if available) ----------
(64·10185+71)/9 = 7(1)1849<186> = 593707 · 594449 · 4422329046727<13> · 40284292656009544724056072361587<32> · 9116432441824664823352631671213357<34> · C97
C97 = P47 · P50
P47 = 13226685334951086277235559910788997247553626789<47>
P50 = 93796786332729755561282648937916873301551400163929<50>
Sat Oct 31 07:48:36 2009 Msieve v. 1.40 Sat Oct 31 07:48:36 2009 random seeds: 95692308 2fbe9ed9 Sat Oct 31 07:48:36 2009 factoring 1240620578252657138397677340020548602052064584196378623862760965588007134959583060094673085893981 (97 digits) Sat Oct 31 07:48:37 2009 no P-1/P+1/ECM available, skipping Sat Oct 31 07:48:37 2009 commencing quadratic sieve (97-digit input) Sat Oct 31 07:48:37 2009 using multiplier of 1 Sat Oct 31 07:48:37 2009 using 32kb Intel Core sieve core Sat Oct 31 07:48:37 2009 sieve interval: 36 blocks of size 32768 Sat Oct 31 07:48:37 2009 processing polynomials in batches of 6 Sat Oct 31 07:48:37 2009 using a sieve bound of 2319689 (85882 primes) Sat Oct 31 07:48:37 2009 using large prime bound of 347953350 (28 bits) Sat Oct 31 07:48:37 2009 using double large prime bound of 2369942626511550 (43-52 bits) Sat Oct 31 07:48:37 2009 using trial factoring cutoff of 52 bits Sat Oct 31 07:48:37 2009 polynomial 'A' values have 12 factors Sat Oct 31 12:43:57 2009 86053 relations (20821 full + 65232 combined from 1294325 partial), need 85978 Sat Oct 31 12:43:58 2009 begin with 1315146 relations Sat Oct 31 12:43:58 2009 reduce to 225963 relations in 11 passes Sat Oct 31 12:43:58 2009 attempting to read 225963 relations Sat Oct 31 12:44:00 2009 recovered 225963 relations Sat Oct 31 12:44:00 2009 recovered 211772 polynomials Sat Oct 31 12:44:00 2009 attempting to build 86053 cycles Sat Oct 31 12:44:00 2009 found 86053 cycles in 6 passes Sat Oct 31 12:44:00 2009 distribution of cycle lengths: Sat Oct 31 12:44:00 2009 length 1 : 20821 Sat Oct 31 12:44:00 2009 length 2 : 14726 Sat Oct 31 12:44:00 2009 length 3 : 14389 Sat Oct 31 12:44:00 2009 length 4 : 11723 Sat Oct 31 12:44:00 2009 length 5 : 8681 Sat Oct 31 12:44:00 2009 length 6 : 6191 Sat Oct 31 12:44:00 2009 length 7 : 3942 Sat Oct 31 12:44:00 2009 length 9+: 5580 Sat Oct 31 12:44:00 2009 largest cycle: 21 relations Sat Oct 31 12:44:00 2009 matrix is 85882 x 86053 (23.8 MB) with weight 5898371 (68.54/col) Sat Oct 31 12:44:00 2009 sparse part has weight 5898371 (68.54/col) Sat Oct 31 12:44:01 2009 filtering completed in 3 passes Sat Oct 31 12:44:01 2009 matrix is 82214 x 82278 (22.9 MB) with weight 5679157 (69.02/col) Sat Oct 31 12:44:01 2009 sparse part has weight 5679157 (69.02/col) Sat Oct 31 12:44:01 2009 saving the first 48 matrix rows for later Sat Oct 31 12:44:01 2009 matrix is 82166 x 82278 (16.5 MB) with weight 4746522 (57.69/col) Sat Oct 31 12:44:01 2009 sparse part has weight 3827985 (46.53/col) Sat Oct 31 12:44:01 2009 matrix includes 64 packed rows Sat Oct 31 12:44:01 2009 using block size 32911 for processor cache size 8192 kB Sat Oct 31 12:44:01 2009 commencing Lanczos iteration Sat Oct 31 12:44:01 2009 memory use: 14.7 MB Sat Oct 31 12:44:26 2009 lanczos halted after 1301 iterations (dim = 82164) Sat Oct 31 12:44:26 2009 recovered 16 nontrivial dependencies Sat Oct 31 12:44:27 2009 prp47 factor: 13226685334951086277235559910788997247553626789 Sat Oct 31 12:44:27 2009 prp50 factor: 93796786332729755561282648937916873301551400163929 Sat Oct 31 12:44:27 2009 elapsed time 04:55:51
(59·10174+31)/9 = 6(5)1739<175> = 41 · 251 · 3754148753<10> · 182442596131<12> · 247407888474658786954353161<27> · 3665302763719338852949381637894473<34> · C91
C91 = P34 · P57
P34 = 1673659438408664325758148924770227<34>
P57 = 612806996955643428028548588301906533880212069329060037253<57>
Sat Oct 31 11:29:05 2009 Msieve v. 1.42 Sat Oct 31 11:29:05 2009 random seeds: 27e0594c 2c6ccd51 Sat Oct 31 11:29:05 2009 factoring 1025630214377682248913408120542627988922255145298292474518193455947066469922875791085266431 (91 digits) Sat Oct 31 11:29:06 2009 searching for 15-digit factors Sat Oct 31 11:29:07 2009 commencing quadratic sieve (91-digit input) Sat Oct 31 11:29:07 2009 using multiplier of 39 Sat Oct 31 11:29:07 2009 using 32kb Intel Core sieve core Sat Oct 31 11:29:07 2009 sieve interval: 36 blocks of size 32768 Sat Oct 31 11:29:07 2009 processing polynomials in batches of 6 Sat Oct 31 11:29:07 2009 using a sieve bound of 1652503 (62270 primes) Sat Oct 31 11:29:07 2009 using large prime bound of 145420264 (27 bits) Sat Oct 31 11:29:07 2009 using double large prime bound of 492861412574344 (42-49 bits) Sat Oct 31 11:29:07 2009 using trial factoring cutoff of 49 bits Sat Oct 31 11:29:07 2009 polynomial 'A' values have 12 factors Sat Oct 31 13:01:36 2009 62513 relations (16385 full + 46128 combined from 695793 partial), need 62366 Sat Oct 31 13:01:37 2009 begin with 712178 relations Sat Oct 31 13:01:38 2009 reduce to 153635 relations in 10 passes Sat Oct 31 13:01:38 2009 attempting to read 153635 relations Sat Oct 31 13:01:40 2009 recovered 153635 relations Sat Oct 31 13:01:40 2009 recovered 135212 polynomials Sat Oct 31 13:01:40 2009 attempting to build 62513 cycles Sat Oct 31 13:01:40 2009 found 62513 cycles in 5 passes Sat Oct 31 13:01:40 2009 distribution of cycle lengths: Sat Oct 31 13:01:40 2009 length 1 : 16385 Sat Oct 31 13:01:40 2009 length 2 : 11845 Sat Oct 31 13:01:40 2009 length 3 : 11127 Sat Oct 31 13:01:40 2009 length 4 : 8447 Sat Oct 31 13:01:40 2009 length 5 : 6027 Sat Oct 31 13:01:40 2009 length 6 : 3706 Sat Oct 31 13:01:40 2009 length 7 : 2267 Sat Oct 31 13:01:40 2009 length 9+: 2709 Sat Oct 31 13:01:40 2009 largest cycle: 17 relations Sat Oct 31 13:01:41 2009 matrix is 62270 x 62513 (15.3 MB) with weight 3763141 (60.20/col) Sat Oct 31 13:01:41 2009 sparse part has weight 3763141 (60.20/col) Sat Oct 31 13:01:41 2009 filtering completed in 3 passes Sat Oct 31 13:01:41 2009 matrix is 58420 x 58484 (14.4 MB) with weight 3545107 (60.62/col) Sat Oct 31 13:01:42 2009 sparse part has weight 3545107 (60.62/col) Sat Oct 31 13:01:42 2009 saving the first 48 matrix rows for later Sat Oct 31 13:01:42 2009 matrix is 58372 x 58484 (8.7 MB) with weight 2731776 (46.71/col) Sat Oct 31 13:01:42 2009 sparse part has weight 1934628 (33.08/col) Sat Oct 31 13:01:42 2009 matrix includes 64 packed rows Sat Oct 31 13:01:42 2009 using block size 23393 for processor cache size 1024 kB Sat Oct 31 13:01:42 2009 commencing Lanczos iteration Sat Oct 31 13:01:42 2009 memory use: 9.1 MB Sat Oct 31 13:02:02 2009 lanczos halted after 925 iterations (dim = 58372) Sat Oct 31 13:02:03 2009 recovered 19 nontrivial dependencies Sat Oct 31 13:02:04 2009 prp34 factor: 1673659438408664325758148924770227 Sat Oct 31 13:02:04 2009 prp57 factor: 612806996955643428028548588301906533880212069329060037253 Sat Oct 31 13:02:04 2009 elapsed time 01:32:59
(65·10187+61)/9 = 7(2)1869<188> = 131 · 5507 · 220729284101<12> · 2299975915314223<16> · 1109471659166831215174847<25> · 1512052274095148841868452958388463932723<40> · C93
C93 = P42 · P51
P42 = 309843707618510847624745331660074576027487<42>
P51 = 379380961349370970936336620824720600414315083305277<51>
Sat Oct 31 13:27:52 2009 Msieve v. 1.42 Sat Oct 31 13:27:52 2009 random seeds: 12ba8844 239eac6d Sat Oct 31 13:27:52 2009 factoring 117548803664364063729993986270961475590052376474609853792498756031020401498410673032364148899 (93 digits) Sat Oct 31 13:27:53 2009 searching for 15-digit factors Sat Oct 31 13:27:53 2009 commencing quadratic sieve (93-digit input) Sat Oct 31 13:27:54 2009 using multiplier of 59 Sat Oct 31 13:27:54 2009 using 32kb Intel Core sieve core Sat Oct 31 13:27:54 2009 sieve interval: 36 blocks of size 32768 Sat Oct 31 13:27:54 2009 processing polynomials in batches of 6 Sat Oct 31 13:27:54 2009 using a sieve bound of 1850521 (69412 primes) Sat Oct 31 13:27:54 2009 using large prime bound of 209108873 (27 bits) Sat Oct 31 13:27:54 2009 using double large prime bound of 947698977581332 (42-50 bits) Sat Oct 31 13:27:54 2009 using trial factoring cutoff of 50 bits Sat Oct 31 13:27:54 2009 polynomial 'A' values have 12 factors Sat Oct 31 15:05:32 2009 69729 relations (18960 full + 50769 combined from 871863 partial), need 69508 Sat Oct 31 15:05:33 2009 begin with 890823 relations Sat Oct 31 15:05:34 2009 reduce to 171658 relations in 13 passes Sat Oct 31 15:05:34 2009 attempting to read 171658 relations Sat Oct 31 15:05:37 2009 recovered 171658 relations Sat Oct 31 15:05:37 2009 recovered 148129 polynomials Sat Oct 31 15:05:37 2009 attempting to build 69729 cycles Sat Oct 31 15:05:37 2009 found 69729 cycles in 5 passes Sat Oct 31 15:05:37 2009 distribution of cycle lengths: Sat Oct 31 15:05:37 2009 length 1 : 18960 Sat Oct 31 15:05:37 2009 length 2 : 13312 Sat Oct 31 15:05:37 2009 length 3 : 12246 Sat Oct 31 15:05:37 2009 length 4 : 9183 Sat Oct 31 15:05:37 2009 length 5 : 6467 Sat Oct 31 15:05:37 2009 length 6 : 4046 Sat Oct 31 15:05:37 2009 length 7 : 2505 Sat Oct 31 15:05:37 2009 length 9+: 3010 Sat Oct 31 15:05:37 2009 largest cycle: 20 relations Sat Oct 31 15:05:38 2009 matrix is 69412 x 69729 (17.5 MB) with weight 4296010 (61.61/col) Sat Oct 31 15:05:38 2009 sparse part has weight 4296010 (61.61/col) Sat Oct 31 15:05:39 2009 filtering completed in 3 passes Sat Oct 31 15:05:39 2009 matrix is 64555 x 64618 (16.3 MB) with weight 4009614 (62.05/col) Sat Oct 31 15:05:39 2009 sparse part has weight 4009614 (62.05/col) Sat Oct 31 15:05:39 2009 saving the first 48 matrix rows for later Sat Oct 31 15:05:39 2009 matrix is 64507 x 64618 (10.2 MB) with weight 3145901 (48.68/col) Sat Oct 31 15:05:39 2009 sparse part has weight 2297112 (35.55/col) Sat Oct 31 15:05:39 2009 matrix includes 64 packed rows Sat Oct 31 15:05:39 2009 using block size 25847 for processor cache size 1024 kB Sat Oct 31 15:05:39 2009 commencing Lanczos iteration Sat Oct 31 15:05:39 2009 memory use: 10.4 MB Sat Oct 31 15:06:15 2009 lanczos halted after 1022 iterations (dim = 64503) Sat Oct 31 15:06:15 2009 recovered 15 nontrivial dependencies Sat Oct 31 15:06:16 2009 prp42 factor: 309843707618510847624745331660074576027487 Sat Oct 31 15:06:16 2009 prp51 factor: 379380961349370970936336620824720600414315083305277 Sat Oct 31 15:06:16 2009 elapsed time 01:38:24
(22·10137+17)/3 = 7(3)1369<138> = 99233 · 6090360415818263634173<22> · C112
C112 = P35 · P77
P35 = 24060802183399412367506978238260797<35>
P77 = 50430376250228200083232843381013952500349332497781653637769170585369111950243<77>
Number: 73339_137 N=1213395306991144546783180912710761066871854197431551041872076438143619148233733680631064690192492448101121523671 ( 112 digits) SNFS difficulty: 138 digits. Divisors found: r1=24060802183399412367506978238260797 (pp35) r2=50430376250228200083232843381013952500349332497781653637769170585369111950243 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.84 hours. Scaled time: 19.18 units (timescale=1.949). Factorization parameters were as follows: name: 73339_137 n: 1213395306991144546783180912710761066871854197431551041872076438143619148233733680631064690192492448101121523671 m: 2000000000000000000000000000 deg: 5 c5: 275 c0: 68 skew: 0.76 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1550001) Primes: RFBsize:110630, AFBsize:110510, largePrimes:3624560 encountered Relations: rels:3789230, finalFF:422683 Max relations in full relation-set: 28 Initial matrix: 221207 x 422683 with sparse part having weight 40398695. Pruned matrix : 173233 x 174403 with weight 14551791. Total sieving time: 9.35 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.32 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 9.84 hours. --------- CPU info (if available) ----------
(62·10138-53)/9 = 6(8)1373<139> = 302791 · 77761357942084376053452253<26> · C108
C108 = P34 · P75
P34 = 2598917760441813104579654155912123<34>
P75 = 112577044979171717082980452895774413486489534296882540558515482893898057627<75>
Number: 68883_138 N=292578481614426219363304516419595857892000196250239350859450480767231738398900672852889995261550968201912121 ( 108 digits) SNFS difficulty: 141 digits. Divisors found: r1=2598917760441813104579654155912123 (pp34) r2=112577044979171717082980452895774413486489534296882540558515482893898057627 (pp75) Version: Msieve-1.40 Total time: 9.15 hours. Scaled time: 30.73 units (timescale=3.357). Factorization parameters were as follows: name: 68883_138 n: 292578481614426219363304516419595857892000196250239350859450480767231738398900672852889995261550968201912121 m: 5000000000000000000000000000 deg: 5 c5: 496 c0: -1325 skew: 1.22 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1990001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 277070 x 277318 Total sieving time: 8.97 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 9.15 hours. --------- CPU info (if available) ----------
(62·10138-17)/9 = 6(8)1373<139> = 127867 · 32744763151<11> · C124
C124 = P39 · P85
P39 = 971875626191891557665240752440339768261<39>
P85 = 1692926721964495127439620152695166412870828555923484903620152946476576710419052305151<85>
Number: 68887_138 N=1645314218006229997445207528172151195583233097326614361854592382318318016040391840164344928471593225843499909801429196612411 ( 124 digits) SNFS difficulty: 141 digits. Divisors found: r1=971875626191891557665240752440339768261 (pp39) r2=1692926721964495127439620152695166412870828555923484903620152946476576710419052305151 (pp85) Version: Msieve-1.40 Total time: 7.31 hours. Scaled time: 15.09 units (timescale=2.064). Factorization parameters were as follows: name: 68887_138 n: 1645314218006229997445207528172151195583233097326614361854592382318318016040391840164344928471593225843499909801429196612411 m: 5000000000000000000000000000 deg: 5 c5: 496 c0: -425 skew: 0.97 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1690001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 227733 x 227977 Total sieving time: 6.95 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 7.31 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Oct 31, 2009
(67·10169-13)/9 = 7(4)1683<170> = 23 · 73 · 409 · 443 · 19531 · 28429 · 307440589 · 230276573803<12> · 291650412038164334986511683<27> · C107
C107 = P42 · P65
P42 = 393857077963053849631651147459903660023143<42>
P65 = 54194634030097109172706023869603113274357441497744516636274957483<65>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=750763233 Step 1 took 31013ms Step 2 took 12299ms ********** Factor found in step 2: 393857077963053849631651147459903660023143 Found probable prime factor of 42 digits: 393857077963053849631651147459903660023143 Probable prime cofactor 54194634030097109172706023869603113274357441497744516636274957483 has 65 digits
By Dmitry Domanov / GGNFS/msieve / Oct 31, 2009
(67·10174-13)/9 = 7(4)1733<175> = 33 · 19 · 137 · 31440401 · 4039164379<10> · 21853548229100149169939<23> · 6941387106858984105338581430971<31> · C100
C100 = P41 · P60
P41 = 45447270246285945938556880752125388129671<41>
P60 = 120987005656784401807364834160943893119911420811939979029743<60>
Number: g100 N=5498529142372807175182476307775514287810474350786223541016287633379554796119682890402386436049804553 ( 100 digits) Divisors found: r1=45447270246285945938556880752125388129671 (pp41) r2=120987005656784401807364834160943893119911420811939979029743 (pp60) Version: Msieve-1.40 Total time: 3.76 hours. Scaled time: 7.40 units (timescale=1.969). Factorization parameters were as follows: name: g100 n: 5498529142372807175182476307775514287810474350786223541016287633379554796119682890402386436049804553 skew: 28871.49 # norm 5.18e+013 c5: 1860 c4: -19207852 c3: -4079387662045 c2: 20205124276853681 c1: 1594619980425421631937 c0: -8929492543484694695004813 # alpha -5.55 Y1: 7628741191 Y0: -19685527873587608852 # Murphy_E 3.35e-009 # M 1964019609939265345418848352462673916351410918179450993688452056155422116082900383504670895533042190 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 233609 x 233857 Polynomial selection time: 0.38 hours. Total sieving time: 3.13 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.15 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.76 hours. --------- CPU info (if available) ----------
(67·10164-13)/9 = 7(4)1633<165> = 17 · 2859771989<10> · 263447695627<12> · 398722735777<12> · 151262176674730970257358082173<30> · C102
C102 = P39 · P64
P39 = 224280627189667359179586493987006022837<39>
P64 = 4296991075348987428139366522540260942980725114590177648731306909<64>
Number: g102 N=963731853407674093877908577792914764065479764108496015908002087521494488533136960353559408101309880833 ( 102 digits) Divisors found: r1=224280627189667359179586493987006022837 (pp39) r2=4296991075348987428139366522540260942980725114590177648731306909 (pp64) Version: Msieve-1.40 Total time: 5.24 hours. Scaled time: 10.31 units (timescale=1.969). Factorization parameters were as follows: name: g102 n: 963731853407674093877908577792914764065479764108496015908002087521494488533136960353559408101309880833 skew: 1562.33 # norm 1.03e+014 c5: 1528560 c4: 13594030180 c3: 3000195359306 c2: -30653164647004551 c1: 3594495509332078518 c0: 7733172680002833841155 # alpha -5.72 Y1: 89251703579 Y0: -14452067262770819782 # Murphy_E 2.76e-009 # M 129344431061528792284070628029008878021022211209342795954905427200961353231646508782196747326379618063 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 276517 x 276742 Polynomial selection time: 0.50 hours. Total sieving time: 4.33 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.21 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.24 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve / Oct 31, 2009
(67·10144-13)/9 = 7(4)1433<145> = 3 · 29 · C143
C143 = P59 · P85
P59 = 43105680901206764377509983041410360068255898727809426039017<59>
P85 = 1985082364056607809703148754055340488055249934086925223804597770313599535606384757717<85>
SNFS difficulty: 146 digits. Divisors found: r1=43105680901206764377509983041410360068255898727809426039017 (pp59) r2=1985082364056607809703148754055340488055249934086925223804597770313599535606384757717 (pp85) Version: Msieve v. 1.44 SVN130 Total time: 5.35 hours. Scaled time: 12.83 units (timescale=2.400). Factorization parameters were as follows: n: 85568326947637292464878671775223499361430395913154533844189016602809706257982120051085568326947637292464878671775223499361430395913154533844189 m: 100000000000000000000000000000 deg: 5 c5: 67 c0: -130 skew: 1.14 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1225000, 2525001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 323954 x 324180 Total sieving time: 5.00 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.26 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 5.35 hours.
(22·10144+17)/3 = 7(3)1439<145> = 13 · 79 · C142
C142 = P39 · P49 · P55
P39 = 355704369772481560789194645513945473203<39>
P49 = 5325835763078243037856500964485555354952804736467<49>
P55 = 3769241919049291518517227454568595454414179901716545857<55>
SNFS difficulty: 146 digits. Divisors found: r1=355704369772481560789194645513945473203 (pp39) r2=5325835763078243037856500964485555354952804736467 (pp49) r3=3769241919049291518517227454568595454414179901716545857 (pp55) Version: Msieve v. 1.44 SVN130 Total time: 5.14 hours. Scaled time: 12.33 units (timescale=2.400). Factorization parameters were as follows: n: 7140538786108406361570918532943849399545602077247646867900032456994482310938007140538786108406361570918532943849399545602077247646867900032457 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: 85 skew: 1.51 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1187500, 2387501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 328823 x 329048 Total sieving time: 4.60 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.41 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 5.14 hours.
By Ignacio Santos / GGNFS, Msieve / Oct 30, 2009
(26·10170-11)/3 = 8(6)1693<171> = 1574849 · C165
C165 = P64 · P101
P64 = 6879741969361830247705267902282155696253164397146995711289478697<64>
P101 = 79990981245460272814684156404787112141167933425430834180983411533442461790764746144400168831077267471<101>
Number: 86663_170 N=550317310844828086163604679983075626086479825473214680687905104976201951213523751589305810694654958454217938778045810529559765200769512928964406534637077374825565287 ( 165 digits) SNFS difficulty: 171 digits. Divisors found: r1=6879741969361830247705267902282155696253164397146995711289478697 (pp64) r2=79990981245460272814684156404787112141167933425430834180983411533442461790764746144400168831077267471 (pp101) Version: Msieve-1.40 Total time: 58.86 hours. Scaled time: 102.35 units (timescale=1.739). Factorization parameters were as follows: n: 550317310844828086163604679983075626086479825473214680687905104976201951213523751589305810694654958454217938778045810529559765200769512928964406534637077374825565287 m: 10000000000000000000000000000000000 deg: 5 c5: 26 c0: -11 skew: 0.84 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1074714 x 1074941 Total sieving time: 57.03 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.54 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 58.86 hours.
(83·10170+7)/9 = 9(2)1693<171> = 132 · 1303 · C166
C166 = P44 · P46 · P76
P44 = 75175740784686081593779300770475028296195771<44>
P46 = 7924410550370980851226220768780461448204670107<46>
P76 = 7030072093617251150883355788994421962121941534602600580932819909233991111337<76>
Number: 92223_170 N=4187978684702222101124043387459173515020967645089494077037615617224803127158638109697794448960397363490816469150491229716685764858620399089139864864523935307334563489 ( 166 digits) SNFS difficulty: 171 digits. Divisors found: r1=75175740784686081593779300770475028296195771 (pp44) r2=7924410550370980851226220768780461448204670107 (pp46) r3=7030072093617251150883355788994421962121941534602600580932819909233991111337 (pp76) Version: Msieve-1.40 Total time: 54.19 hours. Scaled time: 94.23 units (timescale=1.739). Factorization parameters were as follows: n: 4187978684702222101124043387459173515020967645089494077037615617224803127158638109697794448960397363490816469150491229716685764858620399089139864864523935307334563489 m: 10000000000000000000000000000000000 deg: 5 c5: 83 c0: 7 skew: 0.61 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 982004 x 982229 Total sieving time: 52.51 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.25 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 54.19 hours.
By Robert Backstrom / GGNFS / Oct 30, 2009
(62·10139+1)/9 = 6(8)1389<140> = 3 · 17 · 45022889 · C131
C131 = P36 · P95
P36 = 484214506163729990618092275284042969<36>
P95 = 61959492079224298660493435009803532533981674214668390763156707898945653153181452537824772870179<95>
Number: n N=30001684859297133695920447411646111254476339752905477978706189100135479668056060999868132384792574078543187957473551055021294721451 ( 131 digits) SNFS difficulty: 141 digits. Divisors found: r1=484214506163729990618092275284042969 (pp36) r2=61959492079224298660493435009803532533981674214668390763156707898945653153181452537824772870179 (pp95) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.64 hours. Scaled time: 8.46 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_8_138_9 n: 30001684859297133695920447411646111254476339752905477978706189100135479668056060999868132384792574078543187957473551055021294721451 m: 10000000000000000000000000000 deg: 5 c5: 31 c0: 5 skew: 0.69 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1540001) Primes: RFBsize:121127, AFBsize:121136, largePrimes:3480094 encountered Relations: rels:3388656, finalFF:277961 Max relations in full relation-set: 48 Initial matrix: 242328 x 277961 with sparse part having weight 26767212. Pruned matrix : 230728 x 232003 with weight 17588153. Total sieving time: 4.07 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.43 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 4.64 hours. --------- CPU info (if available) ----------
(67·10124-13)/9 = 7(4)1233<125> = 167 · 2098015493895221<16> · C108
C108 = P50 · P59
P50 = 18413459563540298067804775297170844243589025668543<50>
P59 = 11539094725850237919675966907571710452758307093471194899943<59>
Number: n N=212474654134304477312475815582067521840594360125311988630953593272073000222223112697185992344600977567593049 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=18413459563540298067804775297170844243589025668543 (pp50) r2=11539094725850237919675966907571710452758307093471194899943 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.71 hours. Scaled time: 3.11 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_4_123_3 n: 212474654134304477312475815582067521840594360125311988630953593272073000222223112697185992344600977567593049 m: 10000000000000000000000000 deg: 5 c5: 67 c0: -130 skew: 1.14 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 735001) Primes: RFBsize:72026, AFBsize:72442, largePrimes:2399626 encountered Relations: rels:2237187, finalFF:162283 Max relations in full relation-set: 48 Initial matrix: 144533 x 162283 with sparse part having weight 13056975. Pruned matrix : 138055 x 138841 with weight 8687947. Total sieving time: 1.51 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Total square root time: 0.06 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 1.71 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Oct 30, 2009
(65·10187+61)/9 = 7(2)1869<188> = 131 · 5507 · 220729284101<12> · 2299975915314223<16> · 1109471659166831215174847<25> · C132
C132 = P40 · C93
P40 = 1512052274095148841868452958388463932723<40>
C93 = [117548803664364063729993986270961475590052376474609853792498756031020401498410673032364148899<93>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2945990577 Step 1 took 38221ms Step 2 took 14029ms ********** Factor found in step 2: 1512052274095148841868452958388463932723 Found probable prime factor of 40 digits: 1512052274095148841868452958388463932723 Composite cofactor 117548803664364063729993986270961475590052376474609853792498756031020401498410673032364148899 has 93 digits
(64·10185+71)/9 = 7(1)1849<186> = 593707 · 594449 · 4422329046727<13> · 40284292656009544724056072361587<32> · C131
C131 = P34 · C97
P34 = 9116432441824664823352631671213357<34>
C97 = [1240620578252657138397677340020548602052064584196378623862760965588007134959583060094673085893981<97>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=630455973 Step 1 took 38243ms Step 2 took 13952ms ********** Factor found in step 2: 9116432441824664823352631671213357 Found probable prime factor of 34 digits: 9116432441824664823352631671213357 Composite cofactor 1240620578252657138397677340020548602052064584196378623862760965588007134959583060094673085893981 has 97 digits
(59·10166+31)/9 = 6(5)1659<167> = 3 · 13 · 7259437319<10> · 8758021819<10> · 3392702120053749464840779<25> · C121
C121 = P35 · P86
P35 = 80699902067736399108835652452339219<35>
P86 = 96564428551450245513740093588018269772203313974459102582096055520689780511463138067621<86>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1299118853 Step 1 took 34255ms Step 2 took 13280ms ********** Factor found in step 2: 80699902067736399108835652452339219 Found probable prime factor of 35 digits: 80699902067736399108835652452339219 Probable prime cofactor 96564428551450245513740093588018269772203313974459102582096055520689780511463138067621 has 86 digits
By Erik Branger / GGNFS, Msieve, YAFU / Oct 30, 2009
(67·10105-13)/9 = 7(4)1043<106> = 3 · 73 · 5669 · 569057 · C95
C95 = P41 · P54
P41 = 60058359933313649972243137470065257329163<41>
P54 = 175449640663427204253932925983205548218359311006550343<54>
Number: 74443_105 N=10537217669134653717350764785332255258069098699759163662633735476197589541582812554582281552909 ( 95 digits) SNFS difficulty: 107 digits. Divisors found: r1=60058359933313649972243137470065257329163 (pp41) r2=175449640663427204253932925983205548218359311006550343 (pp54) Version: Msieve v. 1.43 Total time: 0.80 hours. Scaled time: 0.63 units (timescale=0.788). Factorization parameters were as follows: n: 10537217669134653717350764785332255258069098699759163662633735476197589541582812554582281552909 m: 200000000000000000000000000 deg: 4 c4: 335 c0: -104 skew: 0.75 type: snfs lss: 1 rlim: 440000 alim: 440000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 440000/440000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [220000, 300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 36011 x 36238 Total sieving time: 0.78 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107.000,4,0,0,0,0,0,0,0,0,440000,440000,25,25,44,44,2.2,2.2,20000 total time: 0.80 hours. --------- CPU info (if available) ----------
(22·10111+17)/3 = 7(3)1109<112> = 4561 · C109
C109 = P41 · P69
P41 = 10353494998124320950439689240019536224501<41>
P69 = 155293892497221396344263249494507201244620736494605530331157572978399<69>
Number: 73339_111 N=1607834539209237740261638529562230505006212087992399327632829057955126799678433092158152451947672294087553899 ( 109 digits) SNFS difficulty: 113 digits. Divisors found: r1=10353494998124320950439689240019536224501 (pp41) r2=155293892497221396344263249494507201244620736494605530331157572978399 (pp69) Version: Msieve v. 1.43 Total time: 1.33 hours. Scaled time: 1.05 units (timescale=0.788). Factorization parameters were as follows: n: 1607834539209237740261638529562230505006212087992399327632829057955126799678433092158152451947672294087553899 m: 20000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [270000, 420001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64236 x 64465 Total sieving time: 1.28 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113.000,5,0,0,0,0,0,0,0,0,540000,540000,25,25,45,45,2.2,2.2,50000 total time: 1.33 hours. --------- CPU info (if available) ----------
(62·10137-53)/9 = 6(8)1363<138> = 13 · 379 · 9913338693829<13> · C122
C122 = P41 · P81
P41 = 92016598929517614098722805673273505224217<41>
P81 = 153278236964167015210420723223931171496148765949262538905208174029503679220103953<81>
Number: 68883_137 N=14104142055355317759668354177413145279996340994172427429184656761606188941098694112179225964159993307036446344359313029801 ( 122 digits) SNFS difficulty: 139 digits. Divisors found: r1=92016598929517614098722805673273505224217 (pp41) r2=153278236964167015210420723223931171496148765949262538905208174029503679220103953 (pp81) Version: Msieve-1.40 Total time: 7.17 hours. Scaled time: 6.96 units (timescale=0.970). Factorization parameters were as follows: n: 14104142055355317759668354177413145279996340994172427429184656761606188941098694112179225964159993307036446344359313029801 m: 2000000000000000000000000000 deg: 5 c5: 775 c0: -212 skew: 0.77 type: snfs lss: 1 rlim: 1470000 alim: 1470000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1470000/1470000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [735000, 1860001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 261076 x 261302 Total sieving time: 6.82 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.15 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,139.000,5,0,0,0,0,0,0,0,0,1470000,1470000,26,26,48,48,2.3,2.3,75000 total time: 7.17 hours. --------- CPU info (if available) ----------
(22·10173-7)/3 = 7(3)1721<174> = 97 · 541859 · 65483111511553<14> · 29019575156728627496451041059487<32> · 7085999215281227635840096984763449<34> · C88
C88 = P43 · P45
P43 = 2918897382864143812189601638526072779141423<43>
P45 = 354979371562529997440931835199505599882907401<45>
10/29/09 19:43:40 v1.12 @ ERIK-DATOR, starting SIQS on c88: 1036148358624627286217516372248460715568726928814760434392187296717805689495977792371623 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, random seeds: 1579246471, 485612288 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, n = 88 digits, 291 bits 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, factor base: 60488 primes (max prime = 1595317) 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, single large prime cutoff: 175484870 (110 * pmax) 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, double large prime range from 43 to 50 bits 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, double large prime cutoff: 691244073679672 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, using 0 large prime slices of factor base 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, polynomial A has ~ 0 factors 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, using multiplier of 3 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, using small prime variation correction of 20 bits 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, trial factoring cutoff at 97 bits 10/29/09 19:43:40 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, sieve time = 379.8600, relation time = 165.2976, poly_time = 696.2156 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, 60850 relations found: 20164 full + 40686 from 522236 partial, using 48318116 polys (613 A polys) 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 428.14 rels/sec 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, trial division touched 13914331 sieve locations out of 56998368903168 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, begin with 542400 relations 10/29/09 20:04:47 v1.12 @ ERIK-DATOR, reduce to 123655 relations in 8 passes 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, recovered 123655 relations 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, recovered 102177 polynomials 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, attempting to build 60850 cycles 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, found 60850 cycles in 4 passes 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 1 : 20164 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 2 : 16960 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 3 : 11354 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 4 : 6358 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 5 : 3250 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 6 : 1545 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 7 : 694 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, length 9+: 525 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, largest cycle: 15 relations 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, matrix is 60488 x 60850 (12.1 MB) with weight 2920285 (47.99/col) 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, sparse part has weight 2920285 (47.99/col) 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, filtering completed in 3 passes 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, matrix is 53491 x 53554 (10.8 MB) with weight 2626833 (49.05/col) 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, sparse part has weight 2626833 (49.05/col) 10/29/09 20:04:54 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/29/09 20:04:55 v1.12 @ ERIK-DATOR, matrix is 53443 x 53554 (9.2 MB) with weight 2268111 (42.35/col) 10/29/09 20:04:55 v1.12 @ ERIK-DATOR, sparse part has weight 2086592 (38.96/col) 10/29/09 20:04:55 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/29/09 20:04:55 v1.12 @ ERIK-DATOR, using block size 21421 for processor cache size 2048 kB 10/29/09 20:04:55 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/29/09 20:04:55 v1.12 @ ERIK-DATOR, memory use: 8.3 MB 10/29/09 20:05:13 v1.12 @ ERIK-DATOR, lanczos halted after 847 iterations (dim = 53443) 10/29/09 20:05:13 v1.12 @ ERIK-DATOR, recovered 18 nontrivial dependencies 10/29/09 20:05:14 v1.12 @ ERIK-DATOR, prp43 = 2918897382864143812189601638526072779141423 10/29/09 20:05:21 v1.12 @ ERIK-DATOR, prp45 = 354979371562529997440931835199505599882907401 10/29/09 20:05:21 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 26.7540 seconds. 10/29/09 20:05:21 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 7.7850 seconds. 10/29/09 20:05:21 v1.12 @ ERIK-DATOR, SIQS elapsed time = 1301.4064 seconds.
(22·10113+17)/3 = 7(3)1129<114> = 41 · 89 · 30226562196724237<17> · C94
C94 = P40 · P55
P40 = 4742658220612723377993912832802326986709<40>
P55 = 1401899815697364732864295246904507767152298674388612267<55>
Number: 73339_113 N=6648731685392568673340087143484735074721518359722676856044541286039486751148900577046263359303 ( 94 digits) SNFS difficulty: 115 digits. Divisors found: r1=4742658220612723377993912832802326986709 (pp40) r2=1401899815697364732864295246904507767152298674388612267 (pp55) Version: Msieve v. 1.43 Total time: 1.39 hours. Scaled time: 1.10 units (timescale=0.788). Factorization parameters were as follows: n: 6648731685392568673340087143484735074721518359722676856044541286039486751148900577046263359303 m: 50000000000000000000000 deg: 5 c5: 176 c0: 425 skew: 1.19 type: snfs lss: 1 rlim: 590000 alim: 590000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 590000/590000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [295000, 445001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63916 x 64141 Total sieving time: 1.34 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,590000,590000,25,25,45,45,2.2,2.2,50000 total time: 1.39 hours. --------- CPU info (if available) ----------
(67·10115-13)/9 = 7(4)1143<116> = 934023203657<12> · C104
C104 = P46 · P59
P46 = 2363136207298356542813024663867821003977095941<46>
P59 = 33727633771518272875025217406971537221298425870762282057639<59>
Number: 74443_115 N=79702992551973656202412085387411627658370929220796610067063903154859269670308077208497397166333194943299 ( 104 digits) SNFS difficulty: 116 digits. Divisors found: r1=2363136207298356542813024663867821003977095941 (pp46) r2=33727633771518272875025217406971537221298425870762282057639 (pp59) Version: Msieve-1.40 Total time: 1.15 hours. Scaled time: 1.12 units (timescale=0.969). Factorization parameters were as follows: n: 79702992551973656202412085387411627658370929220796610067063903154859269670308077208497397166333194943299 m: 100000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68923 x 69148 Total sieving time: 1.12 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 1.15 hours. --------- CPU info (if available) ----------
(22·10119+17)/3 = 7(3)1189<120> = 4871 · 88395289 · C109
C109 = P35 · P36 · P39
P35 = 50397412484330388603542395361078269<35>
P36 = 284229425704179960225725802324609161<36>
P39 = 118898643426182964310318249358540813809<39>
Number: 73339_119 N=1703155010376173589245963363912844479505898920513548079792184363384189269662871013342757311335327814133864981 ( 109 digits) SNFS difficulty: 121 digits. Divisors found: r1=50397412484330388603542395361078269 (pp35) r2=284229425704179960225725802324609161 (pp36) r3=118898643426182964310318249358540813809 (pp39) Version: Msieve-1.40 Total time: 1.44 hours. Scaled time: 1.45 units (timescale=1.003). Factorization parameters were as follows: n: 1703155010376173589245963363912844479505898920513548079792184363384189269662871013342757311335327814133864981 m: 1000000000000000000000000 deg: 5 c5: 11 c0: 85 skew: 1.51 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 615001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 86095 x 86343 Total sieving time: 1.37 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.44 hours. --------- CPU info (if available) ----------
(67·10123-13)/9 = 7(4)1223<124> = 3 · 36172259 · 12953224991209<14> · C103
C103 = P37 · P67
P37 = 1598370800869751930125360162910027197<37>
P67 = 3313446482445314661395426297353620629334616744119570057380870392583<67>
Number: 74443_123 N=5296116107785180025060234384281114220424865461631383972660953328631925645912935715468651123228597079851 ( 103 digits) SNFS difficulty: 126 digits. Divisors found: r1=1598370800869751930125360162910027197 (pp37) r2=3313446482445314661395426297353620629334616744119570057380870392583 (pp67) Version: Msieve-1.40 Total time: 1.93 hours. Scaled time: 1.73 units (timescale=0.894). Factorization parameters were as follows: n: 5296116107785180025060234384281114220424865461631383972660953328631925645912935715468651123228597079851 m: 5000000000000000000000000 deg: 5 c5: 536 c0: -325 skew: 0.90 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 120758 x 120983 Total sieving time: 1.83 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.93 hours. --------- CPU info (if available) ----------
(65·10138+61)/9 = 7(2)1379<139> = 7 · 820888039693842689<18> · C121
C121 = P39 · P82
P39 = 231983952017062808710371389960379972197<39>
P82 = 5417899396106871046513719119689905295688836403624747656508338369048000425620143559<82>
Number: 72229_138 N=1256865713539729940732436596428989152859916869094343065781795420088325741227881969351681537465013212501751088675568629123 ( 121 digits) SNFS difficulty: 140 digits. Divisors found: r1=231983952017062808710371389960379972197 (pp39) r2=5417899396106871046513719119689905295688836403624747656508338369048000425620143559 (pp82) Version: Msieve-1.40 Total time: 5.96 hours. Scaled time: 5.98 units (timescale=1.003). Factorization parameters were as follows: n: 1256865713539729940732436596428989152859916869094343065781795420088325741227881969351681537465013212501751088675568629123 m: 5000000000000000000000000000 deg: 5 c5: 104 c0: 305 skew: 1.24 type: snfs lss: 1 rlim: 1540000 alim: 1540000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1540000/1540000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [770000, 1670001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 260716 x 260941 Total sieving time: 5.73 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.15 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1540000,1540000,26,26,48,48,2.3,2.3,100000 total time: 5.96 hours. --------- CPU info (if available) ----------
(22·10132+17)/3 = 7(3)1319<133> = 13 · 12133421 · 30027659 · 3606149550515935321<19> · C99
C99 = P47 · P53
P47 = 12453067396570738943402028834555057839784395671<47>
P53 = 34477300948705518718980721337704600617529621152055447<53>
Number: 73339_132 N=429348152366082101879424461334080508049160634782916238895467141839271983897081546365941358378769937 ( 99 digits) SNFS difficulty: 133 digits. Divisors found: r1=12453067396570738943402028834555057839784395671 (pp47) r2=34477300948705518718980721337704600617529621152055447 (pp53) Version: Msieve v. 1.43 Total time: 5.61 hours. Scaled time: 4.43 units (timescale=0.789). Factorization parameters were as follows: n: 429348152366082101879424461334080508049160634782916238895467141839271983897081546365941358378769937 m: 200000000000000000000000000 deg: 5 c5: 275 c0: 68 skew: 0.76 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1125001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 163998 x 164223 Total sieving time: 5.36 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 5.61 hours. --------- CPU info (if available) ----------
(22·10136+17)/3 = 7(3)1359<137> = 7 · 8980812433<10> · C127
C127 = P61 · P66
P61 = 4113360418876992191345184069972901753084088769096918837906397<61>
P66 = 283590053967020542468512853768491642154157101023860518632668590177<66>
Number: 73339_136 N=1166508103175132439655105140329176295856416365286589900933541796885056511509952662674708395223890149826768594586479376279662269 ( 127 digits) SNFS difficulty: 138 digits. Divisors found: r1=4113360418876992191345184069972901753084088769096918837906397 (pp61) r2=283590053967020542468512853768491642154157101023860518632668590177 (pp66) Version: Msieve-1.40 Total time: 4.90 hours. Scaled time: 4.82 units (timescale=0.983). Factorization parameters were as follows: n: 1166508103175132439655105140329176295856416365286589900933541796885056511509952662674708395223890149826768594586479376279662269 m: 2000000000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1455001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 214678 x 214903 Total sieving time: 4.73 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 4.90 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Oct 30, 2009
(62·10148-53)/9 = 6(8)1473<149> = 3 · 2957 · 554396173829032040309<21> · 80618323734034493160877932323<29> · C96
C96 = P41 · P56
P41 = 15649311336687670483003413809050773543817<41>
P56 = 11102668729253886618598862637858746443379270194714314067<56>
Number: 68883_148 N=173749119612200540250170808346984527455185833744652662545780871322071342123571560550077923973739 ( 96 digits) Divisors found: r1=15649311336687670483003413809050773543817 (pp41) r2=11102668729253886618598862637858746443379270194714314067 (pp56) Version: Msieve-1.40 Total time: 7.06 hours. Scaled time: 14.35 units (timescale=2.032). Factorization parameters were as follows: name: 68883_148 n: 173749119612200540250170808346984527455185833744652662545780871322071342123571560550077923973739 m: 6500700344411699054074 deg: 4 c4: 97293096 c3: -223649123332 c2: -642136958186635483 c1: 738328517650567800 c0: 471523111539404624724519 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.605 # E(F1,F2) = 2.998325e-05 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1256814568. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 179842 x 180070 Polynomial selection time: 0.17 hours. Total sieving time: 6.60 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 7.06 hours. --------- CPU info (if available) ----------
(62·10148+1)/9 = 6(8)1479<149> = 3 · 968893963 · 1010325931287078378105743<25> · 26271799596027579924616943<26> · C90
C90 = P40 · P51
P40 = 1154296887283017820556565817700236598461<40>
P51 = 773540093204736296456243349622971513303636130557709<51>
Fri Oct 30 07:07:22 2009 Msieve v. 1.42 Fri Oct 30 07:07:22 2009 random seeds: dc8593b8 2e6a889f Fri Oct 30 07:07:22 2009 factoring 892894921774842591947278084980579648441470220219533682231568136751789747957843249021085849 (90 digits) Fri Oct 30 07:07:23 2009 searching for 15-digit factors Fri Oct 30 07:07:24 2009 commencing quadratic sieve (90-digit input) Fri Oct 30 07:07:24 2009 using multiplier of 1 Fri Oct 30 07:07:24 2009 using 32kb Intel Core sieve core Fri Oct 30 07:07:24 2009 sieve interval: 36 blocks of size 32768 Fri Oct 30 07:07:24 2009 processing polynomials in batches of 6 Fri Oct 30 07:07:24 2009 using a sieve bound of 1606249 (61176 primes) Fri Oct 30 07:07:24 2009 using large prime bound of 134924916 (27 bits) Fri Oct 30 07:07:24 2009 using double large prime bound of 430690990940364 (42-49 bits) Fri Oct 30 07:07:24 2009 using trial factoring cutoff of 49 bits Fri Oct 30 07:07:24 2009 polynomial 'A' values have 11 factors Fri Oct 30 08:13:01 2009 61413 relations (16479 full + 44934 combined from 660424 partial), need 61272 Fri Oct 30 08:13:02 2009 begin with 676903 relations Fri Oct 30 08:13:03 2009 reduce to 149572 relations in 11 passes Fri Oct 30 08:13:03 2009 attempting to read 149572 relations Fri Oct 30 08:13:05 2009 recovered 149572 relations Fri Oct 30 08:13:05 2009 recovered 125294 polynomials Fri Oct 30 08:13:05 2009 attempting to build 61413 cycles Fri Oct 30 08:13:05 2009 found 61413 cycles in 5 passes Fri Oct 30 08:13:05 2009 distribution of cycle lengths: Fri Oct 30 08:13:05 2009 length 1 : 16479 Fri Oct 30 08:13:05 2009 length 2 : 11841 Fri Oct 30 08:13:05 2009 length 3 : 10776 Fri Oct 30 08:13:05 2009 length 4 : 8279 Fri Oct 30 08:13:05 2009 length 5 : 5761 Fri Oct 30 08:13:05 2009 length 6 : 3579 Fri Oct 30 08:13:05 2009 length 7 : 2062 Fri Oct 30 08:13:05 2009 length 9+: 2636 Fri Oct 30 08:13:05 2009 largest cycle: 19 relations Fri Oct 30 08:13:05 2009 matrix is 61176 x 61413 (15.1 MB) with weight 3709126 (60.40/col) Fri Oct 30 08:13:05 2009 sparse part has weight 3709126 (60.40/col) Fri Oct 30 08:13:06 2009 filtering completed in 3 passes Fri Oct 30 08:13:06 2009 matrix is 57171 x 57235 (14.2 MB) with weight 3482985 (60.85/col) Fri Oct 30 08:13:06 2009 sparse part has weight 3482985 (60.85/col) Fri Oct 30 08:13:06 2009 saving the first 48 matrix rows for later Fri Oct 30 08:13:06 2009 matrix is 57123 x 57235 (10.6 MB) with weight 2895121 (50.58/col) Fri Oct 30 08:13:06 2009 sparse part has weight 2423000 (42.33/col) Fri Oct 30 08:13:06 2009 matrix includes 64 packed rows Fri Oct 30 08:13:06 2009 using block size 22894 for processor cache size 1024 kB Fri Oct 30 08:13:07 2009 commencing Lanczos iteration Fri Oct 30 08:13:07 2009 memory use: 9.9 MB Fri Oct 30 08:13:29 2009 lanczos halted after 905 iterations (dim = 57121) Fri Oct 30 08:13:30 2009 recovered 15 nontrivial dependencies Fri Oct 30 08:13:30 2009 prp40 factor: 1154296887283017820556565817700236598461 Fri Oct 30 08:13:30 2009 prp51 factor: 773540093204736296456243349622971513303636130557709 Fri Oct 30 08:13:30 2009 elapsed time 01:06:08
(62·10148-17)/9 = 6(8)1477<149> = 72 · 13 · 33403 · 2587105617619<13> · 248476266691661817327986323<27> · C103
C103 = P44 · P59
P44 = 77534847850900282536204141003399873814651531<44>
P59 = 64957344590901786161929874304410491618727520507584961391411<59>
Number: 68887_148 N=5036457829654070447291851666637862041967460202109673946848020460954015526291427291729686600891861400241 ( 103 digits) Divisors found: r1=77534847850900282536204141003399873814651531 (pp44) r2=64957344590901786161929874304410491618727520507584961391411 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 12.94 hours. Scaled time: 6.08 units (timescale=0.470). Factorization parameters were as follows: name: 68887_148 n: 5036457829654070447291851666637862041967460202109673946848020460954015526291427291729686600891861400241 skew: 5250.84 # norm 1.51e+14 c5: 158400 c4: -2369595480 c3: -9089246452964 c2: 12488829579152730 c1: 148149926348795334669 c0: 243869513540266992110835 # alpha -5.95 Y1: 46917187199 Y0: -31657450076936910292 # Murphy_E 2.45e-09 # M 4472840802460327703162608013156768940227082287739066635374172230098893954410321033694631482111869343000 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: RFBsize:169511, AFBsize:170119, largePrimes:4420988 encountered Relations: rels:4544685, finalFF:508022 Max relations in full relation-set: 28 Initial matrix: 339708 x 508022 with sparse part having weight 36322270. Pruned matrix : 211251 x 213013 with weight 16139750. Polynomial selection time: 0.70 hours. Total sieving time: 10.80 hours. Total relation processing time: 0.28 hours. Matrix solve time: 1.00 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 12.94 hours. --------- CPU info (if available) ----------
(22·10136-7)/3 = 7(3)1351<137> = 19389191 · 4895993365661197097<19> · C111
C111 = P46 · P66
P46 = 6443188619669826476280091645257651931718381011<46>
P66 = 119894723769212387435501631561188909687989725490025836640734845023<66>
Number: 73331_136 N=772504319748246697665149190240682725304722032243784064764023030120508817790677757304825249856253631163551058253 ( 111 digits) SNFS difficulty: 138 digits. Divisors found: r1=6443188619669826476280091645257651931718381011 (pp46) r2=119894723769212387435501631561188909687989725490025836640734845023 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.27 hours. Scaled time: 12.36 units (timescale=1.972). Factorization parameters were as follows: name: 73331_136 n: 772504319748246697665149190240682725304722032243784064764023030120508817790677757304825249856253631163551058253 m: 2000000000000000000000000000 deg: 5 c5: 55 c0: -56 skew: 1.00 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1230001) Primes: RFBsize:107805, AFBsize:107265, largePrimes:3428918 encountered Relations: rels:3561302, finalFF:431806 Max relations in full relation-set: 28 Initial matrix: 215137 x 431806 with sparse part having weight 35153928. Pruned matrix : 155036 x 156175 with weight 10589950. Total sieving time: 5.94 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 6.27 hours. --------- CPU info (if available) ----------
(22·10126+17)/3 = 7(3)1259<127> = 13 · 191 · 840251492083<12> · 1895876995008967<16> · C97
C97 = P47 · P50
P47 = 62954221240549700803517895855591515615873618567<47>
P50 = 29449667885623623024571417153719273982755349467859<50>
Number: 73339_126 N=1853980907532261085359289430354461486793949958322168440086644145089512112616560650231980192138053 ( 97 digits) SNFS difficulty: 128 digits. Divisors found: r1=62954221240549700803517895855591515615873618567 (pp47) r2=29449667885623623024571417153719273982755349467859 (pp50) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.65 hours. Scaled time: 2.18 units (timescale=0.470). Factorization parameters were as follows: name: 73339_126 n: 1853980907532261085359289430354461486793949958322168440086644145089512112616560650231980192138053 m: 20000000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 960000 alim: 960000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 960000/960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [480000, 880001) Primes: RFBsize:75618, AFBsize:75331, largePrimes:2684351 encountered Relations: rels:2649373, finalFF:258875 Max relations in full relation-set: 28 Initial matrix: 151016 x 258875 with sparse part having weight 20919788. Pruned matrix : 123819 x 124638 with weight 7186531. Total sieving time: 4.30 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.19 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000 total time: 4.65 hours. --------- CPU info (if available) ----------
(22·10130+17)/3 = 7(3)1299<131> = 7 · 2543 · 783371639 · 23314400769738955085791<23> · C96
C96 = P46 · P50
P46 = 5668358868056523752203461746253003242713937413<46>
P50 = 39793082832407892372132468962834943667647868416847<50>
Fri Oct 30 10:44:12 2009 Msieve v. 1.40 Fri Oct 30 10:44:12 2009 random seeds: 4f9e5c6b 8f5e88a9 Fri Oct 30 10:44:12 2009 factoring 225561473960387088874197487909377436905992883142405706677354077914645400486794949390462152796811 (96 digits) Fri Oct 30 10:44:12 2009 no P-1/P+1/ECM available, skipping Fri Oct 30 10:44:12 2009 commencing quadratic sieve (96-digit input) Fri Oct 30 10:44:12 2009 using multiplier of 19 Fri Oct 30 10:44:12 2009 using 32kb Intel Core sieve core Fri Oct 30 10:44:12 2009 sieve interval: 36 blocks of size 32768 Fri Oct 30 10:44:12 2009 processing polynomials in batches of 6 Fri Oct 30 10:44:12 2009 using a sieve bound of 2225473 (82353 primes) Fri Oct 30 10:44:12 2009 using large prime bound of 333820950 (28 bits) Fri Oct 30 10:44:12 2009 using double large prime bound of 2199502175184600 (43-51 bits) Fri Oct 30 10:44:12 2009 using trial factoring cutoff of 51 bits Fri Oct 30 10:44:12 2009 polynomial 'A' values have 12 factors Fri Oct 30 13:12:19 2009 82483 relations (20939 full + 61544 combined from 1214119 partial), need 82449 Fri Oct 30 13:12:20 2009 begin with 1235058 relations Fri Oct 30 13:12:20 2009 reduce to 211848 relations in 10 passes Fri Oct 30 13:12:20 2009 attempting to read 211848 relations Fri Oct 30 13:12:22 2009 recovered 211848 relations Fri Oct 30 13:12:22 2009 recovered 194844 polynomials Fri Oct 30 13:12:22 2009 attempting to build 82483 cycles Fri Oct 30 13:12:22 2009 found 82483 cycles in 6 passes Fri Oct 30 13:12:22 2009 distribution of cycle lengths: Fri Oct 30 13:12:22 2009 length 1 : 20939 Fri Oct 30 13:12:22 2009 length 2 : 14842 Fri Oct 30 13:12:22 2009 length 3 : 13930 Fri Oct 30 13:12:22 2009 length 4 : 10990 Fri Oct 30 13:12:22 2009 length 5 : 8283 Fri Oct 30 13:12:22 2009 length 6 : 5570 Fri Oct 30 13:12:22 2009 length 7 : 3442 Fri Oct 30 13:12:22 2009 length 9+: 4487 Fri Oct 30 13:12:22 2009 largest cycle: 21 relations Fri Oct 30 13:12:22 2009 matrix is 82353 x 82483 (22.5 MB) with weight 5580538 (67.66/col) Fri Oct 30 13:12:22 2009 sparse part has weight 5580538 (67.66/col) Fri Oct 30 13:12:23 2009 filtering completed in 3 passes Fri Oct 30 13:12:23 2009 matrix is 78173 x 78237 (21.6 MB) with weight 5337663 (68.22/col) Fri Oct 30 13:12:23 2009 sparse part has weight 5337663 (68.22/col) Fri Oct 30 13:12:23 2009 saving the first 48 matrix rows for later Fri Oct 30 13:12:23 2009 matrix is 78125 x 78237 (15.9 MB) with weight 4472451 (57.17/col) Fri Oct 30 13:12:23 2009 sparse part has weight 3699137 (47.28/col) Fri Oct 30 13:12:23 2009 matrix includes 64 packed rows Fri Oct 30 13:12:23 2009 using block size 31294 for processor cache size 8192 kB Fri Oct 30 13:12:24 2009 commencing Lanczos iteration Fri Oct 30 13:12:24 2009 memory use: 14.0 MB Fri Oct 30 13:12:45 2009 lanczos halted after 1238 iterations (dim = 78125) Fri Oct 30 13:12:45 2009 recovered 18 nontrivial dependencies Fri Oct 30 13:12:46 2009 prp46 factor: 5668358868056523752203461746253003242713937413 Fri Oct 30 13:12:46 2009 prp50 factor: 39793082832407892372132468962834943667647868416847 Fri Oct 30 13:12:46 2009 elapsed time 02:28:34
(59·10190+31)/9 = 6(5)1899<191> = 3 · 13 · 431 · 6199 · 19576751 · 104183263 · 36559727551187<14> · 135004420102133<15> · 12932888608664243860259<23> · 490648692732801719123587<24> · C94
C94 = P31 · P63
P31 = 9865405008537377442324456789611<31>
P63 = 998332882065300959385122964248060387944996253698508642405943101<63>
Number: 65559_190 N=9848958214914575038497851680581147805444684312048313010541252541165888436426497955577193923711 ( 94 digits) Divisors found: r1=9865405008537377442324456789611 (pp31) r2=998332882065300959385122964248060387944996253698508642405943101 (pp63) Version: Msieve-1.40 Total time: 5.33 hours. Scaled time: 10.87 units (timescale=2.038). Factorization parameters were as follows: name: 65559_190 n: 9848958214914575038497851680581147805444684312048313010541252541165888436426497955577193923711 m: 4626552704081064038673 deg: 4 c4: 21496128 c3: 80594542214 c2: -148327043924384507 c1: -201872463427757100 c0: 35697740878523611215328 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.239 # E(F1,F2) = 4.784960e-05 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1256859102. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1260001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 160364 x 160593 Polynomial selection time: 0.17 hours. Total sieving time: 5.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 5.33 hours. --------- CPU info (if available) ----------
(67·10125-13)/9 = 7(4)1243<126> = 7 · 23 · 383 · 2112973088280065635622951<25> · C97
C97 = P34 · P64
P34 = 3637308040834686028487388657126347<34>
P64 = 1570845943462575746091980845703965709073524066171708229509776313<64>
Number: 74443_125 N=5713650581068975362283662920696280343317363639223493296916903514253804648431669229237353348818611 ( 97 digits) SNFS difficulty: 126 digits. Divisors found: r1=3637308040834686028487388657126347 (pp34) r2=1570845943462575746091980845703965709073524066171708229509776313 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.85 hours. Scaled time: 5.61 units (timescale=1.967). Factorization parameters were as follows: name: 74443_125 n: 5713650581068975362283662920696280343317363639223493296916903514253804648431669229237353348818611 m: 10000000000000000000000000 deg: 5 c5: 67 c0: -13 skew: 0.72 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 705001) Primes: RFBsize:72026, AFBsize:71722, largePrimes:2409478 encountered Relations: rels:2267940, finalFF:164897 Max relations in full relation-set: 28 Initial matrix: 143813 x 164897 with sparse part having weight 11603791. Pruned matrix : 135848 x 136631 with weight 7820050. Total sieving time: 2.65 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 2.85 hours. --------- CPU info (if available) ----------
(67·10128-13)/9 = 7(4)1273<129> = 97 · 3307 · 102539 · 14264757233<11> · C109
C109 = P41 · P68
P41 = 16848849103457524845559641834441573294541<41>
P68 = 94167851235718598569337274009848709690744380558238621290057509744751<68>
Number: 74443_128 N=1586619915867458882658700891790336634603941150882959229493854020939935382701589118280696639658681911051704291 ( 109 digits) SNFS difficulty: 131 digits. Divisors found: r1=16848849103457524845559641834441573294541 (pp41) r2=94167851235718598569337274009848709690744380558238621290057509744751 (pp68) Version: Msieve-1.40 Total time: 3.09 hours. Scaled time: 6.24 units (timescale=2.019). Factorization parameters were as follows: name: 74443_128 n: 1586619915867458882658700891790336634603941150882959229493854020939935382701589118280696639658681911051704291 m: 50000000000000000000000000 deg: 5 c5: 536 c0: -325 skew: 0.90 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 940001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167097 x 167345 Total sieving time: 2.89 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 3.09 hours. --------- CPU info (if available) ----------
(67·10152-13)/9 = 7(4)1513<153> = 173 · 385193 · 59290667 · 1714313748613543313<19> · 197788961175491971099981<24> · C96
C96 = P47 · P49
P47 = 97221051417449319448358224662337021824557951429<47>
P49 = 5715691719482093033732344844964775540735095156253<49>
Fri Oct 30 14:37:10 2009 Msieve v. 1.40 Fri Oct 30 14:37:10 2009 random seeds: 58df9d7d a63c1257 Fri Oct 30 14:37:10 2009 factoring 555685558546057878893653180212330583409127836210597174985850701280488576149477345118354339635537 (96 digits) Fri Oct 30 14:37:11 2009 no P-1/P+1/ECM available, skipping Fri Oct 30 14:37:11 2009 commencing quadratic sieve (96-digit input) Fri Oct 30 14:37:11 2009 using multiplier of 3 Fri Oct 30 14:37:11 2009 using 32kb Intel Core sieve core Fri Oct 30 14:37:11 2009 sieve interval: 36 blocks of size 32768 Fri Oct 30 14:37:11 2009 processing polynomials in batches of 6 Fri Oct 30 14:37:11 2009 using a sieve bound of 2299949 (84350 primes) Fri Oct 30 14:37:11 2009 using large prime bound of 344992350 (28 bits) Fri Oct 30 14:37:11 2009 using double large prime bound of 2333764230167400 (43-52 bits) Fri Oct 30 14:37:11 2009 using trial factoring cutoff of 52 bits Fri Oct 30 14:37:11 2009 polynomial 'A' values have 12 factors Fri Oct 30 18:38:25 2009 84448 relations (20475 full + 63973 combined from 1281737 partial), need 84446 Fri Oct 30 18:38:26 2009 begin with 1302212 relations Fri Oct 30 18:38:26 2009 reduce to 222956 relations in 11 passes Fri Oct 30 18:38:26 2009 attempting to read 222956 relations Fri Oct 30 18:38:28 2009 recovered 222956 relations Fri Oct 30 18:38:28 2009 recovered 209931 polynomials Fri Oct 30 18:38:28 2009 attempting to build 84448 cycles Fri Oct 30 18:38:28 2009 found 84448 cycles in 5 passes Fri Oct 30 18:38:28 2009 distribution of cycle lengths: Fri Oct 30 18:38:28 2009 length 1 : 20475 Fri Oct 30 18:38:28 2009 length 2 : 14393 Fri Oct 30 18:38:28 2009 length 3 : 13940 Fri Oct 30 18:38:28 2009 length 4 : 11339 Fri Oct 30 18:38:28 2009 length 5 : 8544 Fri Oct 30 18:38:28 2009 length 6 : 6044 Fri Oct 30 18:38:28 2009 length 7 : 3948 Fri Oct 30 18:38:28 2009 length 9+: 5765 Fri Oct 30 18:38:28 2009 largest cycle: 20 relations Fri Oct 30 18:38:28 2009 matrix is 84350 x 84448 (24.0 MB) with weight 5954508 (70.51/col) Fri Oct 30 18:38:28 2009 sparse part has weight 5954508 (70.51/col) Fri Oct 30 18:38:29 2009 filtering completed in 3 passes Fri Oct 30 18:38:29 2009 matrix is 80666 x 80730 (23.1 MB) with weight 5735368 (71.04/col) Fri Oct 30 18:38:29 2009 sparse part has weight 5735368 (71.04/col) Fri Oct 30 18:38:29 2009 saving the first 48 matrix rows for later Fri Oct 30 18:38:29 2009 matrix is 80618 x 80730 (17.1 MB) with weight 4813504 (59.62/col) Fri Oct 30 18:38:29 2009 sparse part has weight 3986473 (49.38/col) Fri Oct 30 18:38:29 2009 matrix includes 64 packed rows Fri Oct 30 18:38:29 2009 using block size 32292 for processor cache size 8192 kB Fri Oct 30 18:38:29 2009 commencing Lanczos iteration Fri Oct 30 18:38:29 2009 memory use: 14.9 MB Fri Oct 30 18:38:53 2009 lanczos halted after 1276 iterations (dim = 80614) Fri Oct 30 18:38:54 2009 recovered 16 nontrivial dependencies Fri Oct 30 18:38:55 2009 prp47 factor: 97221051417449319448358224662337021824557951429 Fri Oct 30 18:38:55 2009 prp49 factor: 5715691719482093033732344844964775540735095156253 Fri Oct 30 18:38:55 2009 elapsed time 04:01:45
By Serge Batalov / GMP-ECM / Oct 30, 2009
(59·10154+31)/9 = 6(5)1539<155> = 3 · 13 · 41 · 561602387 · 1468996097<10> · 629373674601490057<18> · C116
C116 = P32 · P85
P32 = 11515653024662605644224396059681<32>
P85 = 6856686724641505888344919729757159600810076382419241778190435348457495481603278102507<85>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3333432130 Step 1 took 2768ms Step 2 took 1908ms ********** Factor found in step 2: 11515653024662605644224396059681 Found probable prime factor of 32 digits: 11515653024662605644224396059681 Probable prime cofactor has 85 digits
(59·10174+31)/9 = 6(5)1739<175> = 41 · 251 · 3754148753<10> · 182442596131<12> · 247407888474658786954353161<27> · C124
C124 = P34 · C91
P34 = 3665302763719338852949381637894473<34>
C91 = [1025630214377682248913408120542627988922255145298292474518193455947066469922875791085266431<91>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1424803983 Step 1 took 2564ms ********** Factor found in step 1: 3665302763719338852949381637894473 Found probable prime factor of 34 digits: 3665302763719338852949381637894473 Composite cofactor has 91 digits
(59·10199+31)/9 = 6(5)1989<200> = 3 · 23 · 41 · 151760533 · 458867159 · 30185840183<11> · C170
C170 = P28 · P142
P28 = 1602687943698543126131675611<28>
P142 = 6878258551729128554685038747479659603886933282297464944457396121908040776440780280432667254915111985042970315141255881530546102872883667527461<142>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2091762947 Step 1 took 3492ms Step 2 took 2452ms ********** Factor found in step 2: 1602687943698543126131675611 Found probable prime factor of 28 digits: 1602687943698543126131675611 Probable prime cofactor has 142 digits
(59·10200+31)/9 = 6(5)1999<201> = 647 · 59141 · 357238529 · C185
C185 = P28 · P158
P28 = 2286251887838065901353298057<28>
P158 = 20976556125252658394173548582655076279566955914498617474180556805568901829064519383634511266481239826594839102020809479854759222807301826314172217673409387589<158>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=741387217 Step 1 took 4080ms ********** Factor found in step 1: 2286251887838065901353298057 Found probable prime factor of 28 digits: 2286251887838065901353298057 Probable prime cofactor has 158 digits
(67·10161-13)/9 = 7(4)1603<162> = 7 · 73 · 5280887 · 354444281 · 5910599194139687430907<22> · 65963915942544805370686211<26> · C97
C97 = P34 · P63
P34 = 2668794540328995477716550306660659<34>
P63 = 748003215572714369503951702881054047348463244791006660340612553<63>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3974447949 Step 1 took 2048ms Step 2 took 1480ms ********** Factor found in step 2: 2668794540328995477716550306660659 Found probable prime factor of 34 digits: 2668794540328995477716550306660659 Probable prime cofactor has 63 digits
(22·10183+17)/3 = 7(3)1829<184> = 29 · 41 · 79 · 457 · 176257138459<12> · C165
C165 = P31 · C135
P31 = 8048080087752238884475113802981<31>
C135 = [120430718000717344755122639668146818766081866163800205532918460738996973886808495543748787636747999455799416767695465023104549925150223<135>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1294281311 Step 1 took 3488ms Step 2 took 2468ms ********** Factor found in step 2: 8048080087752238884475113802981 Found probable prime factor of 31 digits: 8048080087752238884475113802981 Composite cofactor has 135 digits
(67·10181-13)/9 = 7(4)1803<182> = 127 · 15370583931178846189<20> · C161
C161 = P34 · C128
P34 = 2253776873153776657897948451534279<34>
C128 = [16921049169503429770691052650078474147642338224813289853061010395893828071230552899451200517984291274406940600654599798013769439<128>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=736395422 Step 1 took 3560ms Step 2 took 2413ms ********** Factor found in step 2: 2253776873153776657897948451534279 Found probable prime factor of 34 digits: 2253776873153776657897948451534279 Composite cofactor has 128 digits
(22·10197+17)/3 = 7(3)1969<198> = 2999609 · 17526737 · C185
C185 = P32 · C153
P32 = 85768965380696892224398060458083<32>
C153 = [162631825549783751295866446947190481527542400941976286560382655837239566893610989918569146348381161296601343514990401403459613148506298287882369753536801<153>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4294209017 Step 1 took 4064ms Step 2 took 2681ms ********** Factor found in step 2: 85768965380696892224398060458083 Found probable prime factor of 32 digits: 85768965380696892224398060458083 Composite cofactor has 153 digits
(22·10179+17)/3 = 7(3)1789<180> = 15559 · 184211 · 8689564994090088209<19> · 60523080194263634333609<23> · 61570408566381724845907<23> · C106
C106 = P33 · P74
P33 = 446056747541793215384851975393451<33>
P74 = 17714258502083168870661444117316394335176926736315549830701596471827794183<74>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1545800992 Step 1 took 2365ms Step 2 took 1700ms ********** Factor found in step 2: 446056747541793215384851975393451 Found probable prime factor of 33 digits: 446056747541793215384851975393451 Probable prime cofactor has 74 digits
(67·10156-13)/9 = 7(4)1553<157> = 32 · 19 · 47 · 139 · 33161 · C147
C147 = P36 · P112
P36 = 134467084183425554399242168453850521<36>
P112 = 1494444938340149006807751226662925392418214556242644418555585617423575237956535769730952159502701461363114458621<112>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2881240165 Step 1 took 2980ms ********** Factor found in step 1: 134467084183425554399242168453850521 Found probable prime factor of 36 digits: 134467084183425554399242168453850521 Probable prime cofactor has 112 digits
(67·10195-13)/9 = 7(4)1943<196> = 3 · 173 · 4373 · 31069 · 125294581708453<15> · 1784960739592187<16> · 87066488362644079096453<23> · 5741354370893543162557514479<28> · C105
C105 = P36 · P70
P36 = 123426397951350582174645249823462411<36>
P70 = 7651098400206075515266178289261247157235344735713694647781980737240803<70>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=26946518 Step 1 took 2156ms Step 2 took 1684ms ********** Factor found in step 2: 123426397951350582174645249823462411 Found probable prime factor of 36 digits: 123426397951350582174645249823462411 Probable prime cofactor has 70 digits
By Dmitry Domanov / GGNFS/msieve / Oct 30, 2009
(22·10147-7)/3 = 7(3)1461<148> = 877 · 2089 · 125294657 · 1955716477250593<16> · 5297185565183853217<19> · C100
C100 = P34 · P66
P34 = 5357601451931949330338251285732117<34>
P66 = 575584852032572576040227977297423130731945405191587010014254749643<66>
Number: g100 N=3083754238959747050060530712204481731076920353986016215023861867048446187911390233584704185799384231 ( 100 digits) Divisors found: r1=5357601451931949330338251285732117 (pp34) r2=575584852032572576040227977297423130731945405191587010014254749643 (pp66) Version: Msieve-1.40 Total time: 3.29 hours. Scaled time: 6.46 units (timescale=1.963). Factorization parameters were as follows: name: g100 n: 3083754238959747050060530712204481731076920353986016215023861867048446187911390233584704185799384231 skew: 2378.52 # norm 6.26e+013 c5: 716040 c4: 768401206 c3: -3347407358048 c2: -21666142625728748 c1: -5359048822522704315 c0: 22498539625274014910685 # alpha -6.46 Y1: 3195251251 Y0: -5331242520959992304 # Murphy_E 3.76e-009 # M 2889047347447943462753756483416340182973701438603636079111165743841444508017748937466511011496473051 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 228951 x 229176 Polynomial selection time: 0.38 hours. Total sieving time: 2.65 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.16 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.29 hours. --------- CPU info (if available) ----------
(65·10157+61)/9 = 7(2)1569<158> = 79 · 153773771 · 85677699739844835667027<23> · 1389841419191345191370059<25> · C101
C101 = P50 · P51
P50 = 70655337767515623403718126937284154445695756983599<50>
P51 = 706615998528579354350895287081083417163425558047983<51>
Number: g101 N=49926192047967097030608276609867645116088896365617729035992426846122079146222535243827882930586030817 ( 101 digits) Divisors found: r1=70655337767515623403718126937284154445695756983599 (pp50) r2=706615998528579354350895287081083417163425558047983 (pp51) Version: Msieve-1.40 Total time: 4.53 hours. Scaled time: 8.43 units (timescale=1.860). Factorization parameters were as follows: name: g101 n: 49926192047967097030608276609867645116088896365617729035992426846122079146222535243827882930586030817 skew: 1704.10 # norm 3.47e+013 c5: 755040 c4: -778190204 c3: -4882519895824 c2: 9111802450446 c1: -4465344687580793315 c0: 612530740196218749242 # alpha -5.35 Y1: 11385808801 Y0: -9206017737240624105 # Murphy_E 3.21e-009 # M 42391844600785429460091656032734960392745250527381026440482151276186691213655918782772522577390152249 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 182786 x 183011 Polynomial selection time: 0.43 hours. Total sieving time: 3.77 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.09 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.53 hours. --------- CPU info (if available) ----------
(22·10162-7)/3 = 7(3)1611<163> = 17 · 6151 · 32670611801<11> · 2202000923674657459<19> · 6467789994663449185869367399<28> · C102
C102 = P45 · P57
P45 = 199209648585588769622820458941437925059772499<45>
P57 = 756598949668130460359016509976391729974682603903888934227<57>
Number: g102 N=150721810883613833860276412458540167568640519018256430521087768408836448415786099602290956392194423273 ( 102 digits) Divisors found: r1=199209648585588769622820458941437925059772499 (pp45) r2=756598949668130460359016509976391729974682603903888934227 (pp57) Version: Msieve-1.40 Total time: 4.99 hours. Scaled time: 9.77 units (timescale=1.957). Factorization parameters were as follows: name: g102 n: 150721810883613833860276412458540167568640519018256430521087768408836448415786099602290956392194423273 skew: 5475.89 # norm 1.34e+014 c5: 68040 c4: -664173246 c3: -7626252806023 c2: -37813406180968319 c1: 52258057748767061759 c0: 107057378213323747343421 # alpha -5.71 Y1: 17409096199 Y0: -18581602017512027734 # Murphy_E 2.75e-009 # M 67503055058093048970044476777557095622419620092815774496828876992418422713533293625409912225975661918 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262112 x 262337 Polynomial selection time: 0.50 hours. Total sieving time: 4.23 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.19 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.99 hours. --------- CPU info (if available) ----------
(62·10147+1)/9 = 6(8)1469<148> = C148
C148 = P38 · P47 · P64
P38 = 14609058570850068072790171345251209857<38>
P47 = 54119127478220719186968454440445122879267586001<47>
P64 = 8713169520734770932259156884452356918743245463266750664655868777<64>
N=6888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 148 digits) SNFS difficulty: 150 digits. Divisors found: r1=14609058570850068072790171345251209857 (pp38) r2=54119127478220719186968454440445122879267586001 (pp47) r3=8713169520734770932259156884452356918743245463266750664655868777 (pp64) Version: Msieve-1.40 Total time: 14.47 hours. Scaled time: 13.52 units (timescale=0.934). Factorization parameters were as follows: n: 6888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 500000000000000000000000000000 deg: 5 c5: 248 c0: 125 skew: 0.87 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 304330 x 304556 Total sieving time: 14.04 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.17 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 14.47 hours.
(22·10116+17)/3 = 7(3)1159<117> = 643 · C115
C115 = P45 · P70
P45 = 127199283710829473583831003888420738835436659<45>
P70 = 8966145609054367047114636580013011049277494734917626941664754253624147<70>
Number: s115 N=1140487299118714359771902540176257128045619491964748574390876101607050285121824779678589942975635044064282011404873 ( 115 digits) SNFS difficulty: 118 digits. Divisors found: r1=127199283710829473583831003888420738835436659 (pp45) r2=8966145609054367047114636580013011049277494734917626941664754253624147 (pp70) Version: Msieve-1.40 Total time: 1.46 hours. Scaled time: 1.36 units (timescale=0.934). Factorization parameters were as follows: n: 1140487299118714359771902540176257128045619491964748574390876101607050285121824779678589942975635044064282011404873 m: 200000000000000000000000 deg: 5 c5: 55 c0: 136 skew: 1.20 type: snfs lss: 1 rlim: 650000 alim: 650000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 650000/650000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [325000, 575001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 71229 x 71454 Total sieving time: 1.42 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118.000,5,0,0,0,0,0,0,0,0,650000,650000,25,25,45,45,2.2,2.2,50000 total time: 1.46 hours. --------- CPU info (if available) ----------
(22·10154+17)/3 = 7(3)1539<155> = 7 · C155
C155 = P39 · P116
P39 = 184686752453367787287809095416797694533<39>
P116 = 56724103580930346666691668641253433479051981833696382842269072327040745086396602948789182818404047086941094879036969<116>
Number: s154 N=10476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190477 ( 155 digits) SNFS difficulty: 156 digits. Divisors found: r1=184686752453367787287809095416797694533 (pp39) r2=56724103580930346666691668641253433479051981833696382842269072327040745086396602948789182818404047086941094879036969 (pp116) Version: Msieve-1.40 Total time: 23.76 hours. Scaled time: 22.19 units (timescale=0.934). Factorization parameters were as follows: n: 10476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190476190477 m: 10000000000000000000000000000000 deg: 5 c5: 11 c0: 85 skew: 1.51 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 481528 x 481757 Total sieving time: 23.09 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.43 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.76 hours. --------- CPU info (if available) ----------
(22·10153-7)/3 = 7(3)1521<154> = C154
C154 = P41 · P53 · P62
P41 = 16102595691756429004184189289923007311587<41>
P53 = 16804048553475014199523698985582044088874738998911019<53>
P62 = 27101392731833721574475833973613757042141875062514354080413427<62>
Number: s154 N=7333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 154 digits) SNFS difficulty: 155 digits. Divisors found: r1=16102595691756429004184189289923007311587 (pp41) r2=16804048553475014199523698985582044088874738998911019 (pp53) r3=27101392731833721574475833973613757042141875062514354080413427 (pp62) Version: Msieve-1.40 Total time: 17.81 hours. Scaled time: 34.95 units (timescale=1.963). Factorization parameters were as follows: n: 7333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 5000000000000000000000000000000 deg: 5 c5: 176 c0: -175 skew: 1.00 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 499206 x 499433 Total sieving time: 16.85 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.71 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,155.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 17.81 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Oct 30, 2009
(62·10141-17)/9 = 6(8)1407<142> = 449 · 643 · 739570927 · 2076569140741<13> · C116
C116 = P29 · P88
P29 = 12449586199568989558573448867<29>
P88 = 1247988902077611754486563333046373100040151974373538545203846142963842189794646273724189<88>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 15536945412520690380033798617839461767749986899777529309993270411105848832394342125721382926624823181351370052543863 (116 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5231726309 Step 1 took 3478ms Step 2 took 1358ms ********** Factor found in step 2: 12449586199568989558573448867 Found probable prime factor of 29 digits: 12449586199568989558573448867 Probable prime cofactor 1247988902077611754486563333046373100040151974373538545203846142963842189794646273724189 has 88 digits
By Lionel Debroux / GGNFS + Msieve / Oct 30, 2009
(22·10103+17)/3 = 7(3)1029<104> = 41 · C103
C103 = P37 · P66
P37 = 1968440256387558857469214196952117053<37>
P66 = 908647280695882845564443412045563169110619998478775609933242429343<66>
Number: 73339_103 N=1788617886178861788617886178861788617886178861788617886178861788617886178861788617886178861788617886179 ( 103 digits) SNFS difficulty: 105 digits. Divisors found: r1=1968440256387558857469214196952117053 (pp37) r2=908647280695882845564443412045563169110619998478775609933242429343 (pp66) Version: Msieve v. 1.44 Total time: 1.48 hours. Scaled time: 2.20 units (timescale=1.485). Factorization parameters were as follows: n: 1788617886178861788617886178861788617886178861788617886178861788617886178861788617886178861788617886179 m: 100000000000000000000000000 deg: 4 c4: 11 c0: 85 skew: 1.67 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [195000, 355001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 62433 x 62681 Total sieving time: 1.45 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,390000,390000,25,25,44,44,2.2,2.2,20000 total time: 1.48 hours. --------- CPU info (if available) ---------- [ 0.029106] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101090] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2051108k/2096800k available (7368k kernel code, 452k absent, 44504k reserved, 3461k data, 768k init) [ 0.001009] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.00 BogoMIPS (lpj=1995001) [ 0.001999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102026] Total of 2 processors activated (7979.82 BogoMIPS).
(22·10105+17)/3 = 7(3)1049<106> = 23 · 79 · 941 · C100
C100 = P42 · P58
P42 = 667319846833294484773950178480591643333119<42>
P58 = 6427215088318733045674430056423147409336405409180529236673<58>
Number: 73339_105 N=4289008188301496220506488976956523688679611283288795882396175296443573905752164340757021642530273087 ( 100 digits) SNFS difficulty: 106 digits. Divisors found: r1=667319846833294484773950178480591643333119 (pp42) r2=6427215088318733045674430056423147409336405409180529236673 (pp58) Version: Msieve v. 1.44 Total time: 2.09 hours. Scaled time: 3.01 units (timescale=1.441). Factorization parameters were as follows: n: 4289008188301496220506488976956523688679611283288795882396175296443573905752164340757021642530273087 m: 200000000000000000000000000 deg: 4 c4: 55 c0: 68 skew: 1.05 type: snfs lss: 1 rlim: 420000 alim: 420000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 420000/420000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [210000, 450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68749 x 68997 Total sieving time: 2.06 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,106.000,4,0,0,0,0,0,0,0,0,420000,420000,25,25,44,44,2.2,2.2,20000 total time: 2.09 hours. --------- CPU info (if available) ---------- [ 0.029106] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101090] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2051108k/2096800k available (7368k kernel code, 452k absent, 44504k reserved, 3461k data, 768k init) [ 0.001009] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.00 BogoMIPS (lpj=1995001) [ 0.001999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102026] Total of 2 processors activated (7979.82 BogoMIPS).
Factorizations of 655...559 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Lionel Debroux / GMP-ECM
Factorizations of 733...339 and Factorizations of 744...443 have been extended up to n=200. Composite numbers that appeared newly have passed 150 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Erik Branger / GGNFS, Msieve / Oct 29, 2009
(22·10144-7)/3 = 7(3)1431<145> = 35933501 · 33082734446491157<17> · C121
C121 = P61 · P61
P61 = 1611222895107357825861684897891027348379434665936113039177013<61>
P61 = 3828642978160722759423548127980286671936987166408740855033191<61>
Number: 73331_144 N=6168797223604576285866739275513559616412539375347282679742557779151130854164360406427707025619267418222104317849439238483 ( 121 digits) SNFS difficulty: 146 digits. Divisors found: r1=1611222895107357825861684897891027348379434665936113039177013 (pp61) r2=3828642978160722759423548127980286671936987166408740855033191 (pp61) Version: Msieve-1.40 Total time: 6.72 hours. Scaled time: 6.67 units (timescale=0.992). Factorization parameters were as follows: n: 6168797223604576285866739275513559616412539375347282679742557779151130854164360406427707025619267418222104317849439238483 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: -35 skew: 1.26 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 270431 x 270656 Total sieving time: 6.48 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.16 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 6.72 hours. --------- CPU info (if available) ----------
(65·10148+7)/9 = 7(2)1473<149> = 701 · C147
C147 = P34 · P47 · P66
P34 = 3755550574749161555183061499920779<34>
P47 = 46814150630339904680428759046932495299316986541<47>
P66 = 586006004706828862487443318948487124438444839144237964283793539957<66>
Number: 72223_148 N=103027421144396893326993184339831986051672214297035980345538120145823426850530987478205737834839118719289903312727849104453954667934696465366936123 ( 147 digits) SNFS difficulty: 150 digits. Divisors found: r1=3755550574749161555183061499920779 (pp34) r2=46814150630339904680428759046932495299316986541 (pp47) r3=586006004706828862487443318948487124438444839144237964283793539957 (pp66) Version: Msieve v. 1.43 Total time: 25.27 hours. Scaled time: 19.91 units (timescale=0.788). Factorization parameters were as follows: n: 103027421144396893326993184339831986051672214297035980345538120145823426850530987478205737834839118719289903312727849104453954667934696465366936123 m: 500000000000000000000000000000 deg: 5 c5: 104 c0: 35 skew: 0.80 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 363568 x 363798 Total sieving time: 23.94 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.74 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 25.27 hours. --------- CPU info (if available) ----------
(65·10145+7)/9 = 7(2)1443<146> = 73 · 127 · C142
C142 = P33 · P110
P33 = 215020535686146100995565648128067<33>
P110 = 36229665693495144004165159106176063374327069676193814029155021451148871281621766835872766224697315800096474339<110>
Number: 72223_145 N=7790122125145315739642133774374093649252747516149522405589712244873500401490909526720118889248432986972518846103141216936923980392861851172713 ( 142 digits) SNFS difficulty: 146 digits. Divisors found: r1=215020535686146100995565648128067 (pp33) r2=36229665693495144004165159106176063374327069676193814029155021451148871281621766835872766224697315800096474339 (pp110) Version: Msieve-1.40 Total time: 8.81 hours. Scaled time: 9.16 units (timescale=1.039). Factorization parameters were as follows: n: 7790122125145315739642133774374093649252747516149522405589712244873500401490909526720118889248432986972518846103141216936923980392861851172713 m: 100000000000000000000000000000 deg: 5 c5: 65 c0: 7 skew: 0.64 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2180001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 308284 x 308510 Total sieving time: 8.34 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.20 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 8.81 hours. --------- CPU info (if available) ----------
(62·10131-53)/9 = 6(8)1303<132> = 13 · 19 · 199 · 10513 · 81899 · C119
C119 = P52 · P67
P52 = 2213322253356502762971124059611562807329201224533739<52>
P67 = 7354433687504421692647292079401137480439947289067440673701943894427<67>
Number: 68883_131 N=16277731741388260497915416758923984903955258653210841577364643431610859290705103072764367923074919035554697010915572553 ( 119 digits) SNFS difficulty: 133 digits. Divisors found: r1=2213322253356502762971124059611562807329201224533739 (pp52) r2=7354433687504421692647292079401137480439947289067440673701943894427 (pp67) Version: Msieve v. 1.43 Total time: 4.98 hours. Scaled time: 3.91 units (timescale=0.785). Factorization parameters were as follows: n: 16277731741388260497915416758923984903955258653210841577364643431610859290705103072764367923074919035554697010915572553 m: 200000000000000000000000000 deg: 5 c5: 155 c0: -424 skew: 1.22 type: snfs lss: 1 rlim: 1180000 alim: 1180000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1180000/1180000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [590000, 1040001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 161442 x 161667 Total sieving time: 4.69 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.14 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1180000,1180000,26,26,47,47,2.3,2.3,75000 total time: 4.98 hours. --------- CPU info (if available) ----------
(62·10140+1)/9 = 6(8)1399<141> = 13 · 12015911326813<14> · C127
C127 = P53 · P75
P53 = 10098947505940741188253378705758426820362239035432097<53>
P75 = 436689750002543719167336765795082713550194093289913311609891257071910504673<75>
Number: 68889_140 N=4410106861658074670653860173486054163974219973878488208662754414022560015885316271061355644080305761472103499186111823892689281 ( 127 digits) SNFS difficulty: 142 digits. Divisors found: r1=10098947505940741188253378705758426820362239035432097 (pp53) r2=436689750002543719167336765795082713550194093289913311609891257071910504673 (pp75) Version: Msieve-1.40 Total time: 5.09 hours. Scaled time: 5.12 units (timescale=1.006). Factorization parameters were as follows: n: 4410106861658074670653860173486054163974219973878488208662754414022560015885316271061355644080305761472103499186111823892689281 m: 20000000000000000000000000000 deg: 5 c5: 31 c0: 16 skew: 0.88 type: snfs lss: 1 rlim: 1690000 alim: 1690000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1690000/1690000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [845000, 1545001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 219150 x 219377 Total sieving time: 4.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1690000,1690000,26,26,48,48,2.3,2.3,100000 total time: 5.09 hours. --------- CPU info (if available) ----------
(65·10130+61)/9 = 7(2)1299<131> = 5309 · 133853 · 11432210892981839783<20> · C103
C103 = P44 · P60
P44 = 88242340891347424067333022942264527163159569<44>
P60 = 100744829127432112190700097504794978919085457423286387865851<60>
Number: 72229_130 N=8889959554903411701690137669062704823054606208746224362590409854700706089629534587027889575236078978219 ( 103 digits) SNFS difficulty: 131 digits. Divisors found: r1=88242340891347424067333022942264527163159569 (pp44) r2=100744829127432112190700097504794978919085457423286387865851 (pp60) Version: Msieve v. 1.43 Total time: 5.60 hours. Scaled time: 4.35 units (timescale=0.776). Factorization parameters were as follows: n: 8889959554903411701690137669062704823054606208746224362590409854700706089629534587027889575236078978219 m: 100000000000000000000000000 deg: 5 c5: 65 c0: 61 skew: 0.99 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 170836 x 171061 Total sieving time: 5.33 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 5.60 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Oct 29, 2009
(83·10183+7)/9 = 9(2)1823<184> = 197 · 187504159 · 103695324197<12> · 10933903999027<14> · 231095300840004022549<21> · C129
C129 = P42 · P88
P42 = 224437963133592964448686504282443534327677<42>
P88 = 4245575694068388034155339395025821288916179217836087032692125228590049200357040943403523<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4111386264 Step 1 took 38383ms Step 2 took 14033ms ********** Factor found in step 2: 224437963133592964448686504282443534327677 Found probable prime factor of 42 digits: 224437963133592964448686504282443534327677 Probable prime cofactor 4245575694068388034155339395025821288916179217836087032692125228590049200357040943403523 has 88 digits
(22·10173-7)/3 = 7(3)1721<174> = 97 · 541859 · 65483111511553<14> · 29019575156728627496451041059487<32> · C121
C121 = P34 · C88
P34 = 7085999215281227635840096984763449<34>
C88 = [1036148358624627286217516372248460715568726928814760434392187296717805689495977792371623<88>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2752642412 Step 1 took 34284ms Step 2 took 13203ms ********** Factor found in step 2: 7085999215281227635840096984763449 Found probable prime factor of 34 digits: 7085999215281227635840096984763449 Composite cofactor 1036148358624627286217516372248460715568726928814760434392187296717805689495977792371623 has 88 digits
By Sinkiti Sibata / Msieve, GGNFS / Oct 29, 2009
(65·10119+61)/9 = 7(2)1189<120> = 32 · 7761437 · C113
C113 = P50 · P63
P50 = 61337291745830448794575516401101672468419237064719<50>
P63 = 168562748737289305529363034257681167433141794253215672631853727<63>
Number: 72229_119 N=10339182496778227225222199649400866563787983279416803045653390419872880960091142088797076312060113814007240357713 ( 113 digits) SNFS difficulty: 121 digits. Divisors found: r1=61337291745830448794575516401101672468419237064719 (pp50) r2=168562748737289305529363034257681167433141794253215672631853727 (pp63) Version: Msieve-1.40 Total time: 1.93 hours. Scaled time: 3.95 units (timescale=2.045). Factorization parameters were as follows: name: 72229_119 n: 10339182496778227225222199649400866563787983279416803045653390419872880960091142088797076312060113814007240357713 m: 1000000000000000000000000 deg: 5 c5: 13 c0: 122 skew: 1.56 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 87883 x 88110 Total sieving time: 1.87 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.93 hours. --------- CPU info (if available) ----------
(64·10183+17)/9 = 7(1)1823<184> = 3 · 59 · C182
C182 = P33 · P46 · P104
P33 = 384410432843509184562551441772217<33>
P46 = 5960154262873601562601591019221235861490470119<46>
P104 = 17535232633606003339861798618760092993549136117476670102764910728473797048681628830125019112178672954103<104>
Number: 71113_183 N=40175768989328311362209667294413057124921531701192718141870684243565599497802887633396107972379158819836785938480853735091023226616446955430006277463904582548650345260514752040175769 ( 182 digits) SNFS difficulty: 185 digits. Divisors found: r1=384410432843509184562551441772217 (pp33) r2=5960154262873601562601591019221235861490470119 (pp46) r3=17535232633606003339861798618760092993549136117476670102764910728473797048681628830125019112178672954103 (pp104) Version: Msieve v. 1.42 Total time: 12.89 hours. Scaled time: 10.99 units (timescale=0.853). Factorization parameters were as follows: name: 71113_183 n: 40175768989328311362209667294413057124921531701192718141870684243565599497802887633396107972379158819836785938480853735091023226616446955430006277463904582548650345260514752040175769 m: 4000000000000000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4250000, 7450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1649596 x 1649831 Total sieving time: 0.00 hours. Total relation processing time: 0.20 hours. Matrix solve time: 11.71 hours. Time per square root: 0.97 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,54,54,2.5,2.5,100000 total time: 12.89 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS). Total time: 125hours 39min
(62·10128-17)/9 = 6(8)1277<129> = 3 · 1657 · 105522593823052741<18> · 4736156499474908470847<22> · C87
C87 = P41 · P47
P41 = 19238524155145887995567897573406759382183<41>
P47 = 14413258025958972317973107989704103083120550217<47>
Thu Oct 29 08:01:12 2009 Msieve v. 1.42 Thu Oct 29 08:01:12 2009 random seeds: 0947fb50 3b7d3568 Thu Oct 29 08:01:12 2009 factoring 277289812686762027301312045381903076962595440431498977011201304744729183842977946583711 (87 digits) Thu Oct 29 08:01:13 2009 searching for 15-digit factors Thu Oct 29 08:01:13 2009 commencing quadratic sieve (87-digit input) Thu Oct 29 08:01:13 2009 using multiplier of 35 Thu Oct 29 08:01:13 2009 using 32kb Intel Core sieve core Thu Oct 29 08:01:13 2009 sieve interval: 20 blocks of size 32768 Thu Oct 29 08:01:13 2009 processing polynomials in batches of 11 Thu Oct 29 08:01:13 2009 using a sieve bound of 1484803 (56667 primes) Thu Oct 29 08:01:13 2009 using large prime bound of 118784240 (26 bits) Thu Oct 29 08:01:13 2009 using double large prime bound of 342425267860000 (42-49 bits) Thu Oct 29 08:01:13 2009 using trial factoring cutoff of 49 bits Thu Oct 29 08:01:13 2009 polynomial 'A' values have 11 factors Thu Oct 29 08:50:06 2009 56767 relations (15620 full + 41147 combined from 598038 partial), need 56763 Thu Oct 29 08:50:07 2009 begin with 613658 relations Thu Oct 29 08:50:08 2009 reduce to 136464 relations in 11 passes Thu Oct 29 08:50:08 2009 attempting to read 136464 relations Thu Oct 29 08:50:09 2009 recovered 136464 relations Thu Oct 29 08:50:09 2009 recovered 117722 polynomials Thu Oct 29 08:50:10 2009 attempting to build 56767 cycles Thu Oct 29 08:50:10 2009 found 56767 cycles in 5 passes Thu Oct 29 08:50:10 2009 distribution of cycle lengths: Thu Oct 29 08:50:10 2009 length 1 : 15620 Thu Oct 29 08:50:10 2009 length 2 : 11099 Thu Oct 29 08:50:10 2009 length 3 : 10028 Thu Oct 29 08:50:10 2009 length 4 : 7451 Thu Oct 29 08:50:10 2009 length 5 : 5227 Thu Oct 29 08:50:10 2009 length 6 : 3205 Thu Oct 29 08:50:10 2009 length 7 : 1902 Thu Oct 29 08:50:10 2009 length 9+: 2235 Thu Oct 29 08:50:10 2009 largest cycle: 22 relations Thu Oct 29 08:50:10 2009 matrix is 56667 x 56767 (13.5 MB) with weight 3322806 (58.53/col) Thu Oct 29 08:50:10 2009 sparse part has weight 3322806 (58.53/col) Thu Oct 29 08:50:11 2009 filtering completed in 4 passes Thu Oct 29 08:50:11 2009 matrix is 52465 x 52529 (12.7 MB) with weight 3116575 (59.33/col) Thu Oct 29 08:50:11 2009 sparse part has weight 3116575 (59.33/col) Thu Oct 29 08:50:11 2009 saving the first 48 matrix rows for later Thu Oct 29 08:50:11 2009 matrix is 52417 x 52529 (8.7 MB) with weight 2519016 (47.95/col) Thu Oct 29 08:50:11 2009 sparse part has weight 1975140 (37.60/col) Thu Oct 29 08:50:11 2009 matrix includes 64 packed rows Thu Oct 29 08:50:11 2009 using block size 21011 for processor cache size 1024 kB Thu Oct 29 08:50:11 2009 commencing Lanczos iteration Thu Oct 29 08:50:11 2009 memory use: 8.6 MB Thu Oct 29 08:50:29 2009 lanczos halted after 831 iterations (dim = 52415) Thu Oct 29 08:50:29 2009 recovered 18 nontrivial dependencies Thu Oct 29 08:50:29 2009 prp41 factor: 19238524155145887995567897573406759382183 Thu Oct 29 08:50:29 2009 prp47 factor: 14413258025958972317973107989704103083120550217 Thu Oct 29 08:50:29 2009 elapsed time 00:49:17
(62·10130-17)/9 = 6(8)1297<131> = 7 · 13 · 1512 · 619 · 1091 · 4691 · 3632610707018230033248932603<28> · C88
C88 = P40 · P49
P40 = 2216843675469889748033783817831646405793<40>
P49 = 1301424962816481848646950520141595158687854696197<49>
Thu Oct 29 09:38:44 2009 Msieve v. 1.42 Thu Oct 29 09:38:44 2009 random seeds: 844858f0 9939bf40 Thu Oct 29 09:38:44 2009 factoring 2885055697918354219788012698586494272919721129686201143026490798695353880043070995869221 (88 digits) Thu Oct 29 09:38:45 2009 searching for 15-digit factors Thu Oct 29 09:38:45 2009 commencing quadratic sieve (88-digit input) Thu Oct 29 09:38:46 2009 using multiplier of 5 Thu Oct 29 09:38:46 2009 using 32kb Intel Core sieve core Thu Oct 29 09:38:46 2009 sieve interval: 25 blocks of size 32768 Thu Oct 29 09:38:46 2009 processing polynomials in batches of 9 Thu Oct 29 09:38:46 2009 using a sieve bound of 1517707 (57351 primes) Thu Oct 29 09:38:46 2009 using large prime bound of 121416560 (26 bits) Thu Oct 29 09:38:46 2009 using double large prime bound of 356205104400640 (42-49 bits) Thu Oct 29 09:38:46 2009 using trial factoring cutoff of 49 bits Thu Oct 29 09:38:46 2009 polynomial 'A' values have 11 factors Thu Oct 29 10:19:57 2009 57823 relations (16380 full + 41443 combined from 602864 partial), need 57447 Thu Oct 29 10:19:58 2009 begin with 619244 relations Thu Oct 29 10:19:59 2009 reduce to 137627 relations in 10 passes Thu Oct 29 10:19:59 2009 attempting to read 137627 relations Thu Oct 29 10:20:01 2009 recovered 137627 relations Thu Oct 29 10:20:01 2009 recovered 111021 polynomials Thu Oct 29 10:20:01 2009 attempting to build 57823 cycles Thu Oct 29 10:20:01 2009 found 57823 cycles in 5 passes Thu Oct 29 10:20:01 2009 distribution of cycle lengths: Thu Oct 29 10:20:01 2009 length 1 : 16380 Thu Oct 29 10:20:01 2009 length 2 : 11364 Thu Oct 29 10:20:01 2009 length 3 : 10278 Thu Oct 29 10:20:01 2009 length 4 : 7544 Thu Oct 29 10:20:01 2009 length 5 : 5180 Thu Oct 29 10:20:01 2009 length 6 : 3069 Thu Oct 29 10:20:01 2009 length 7 : 1919 Thu Oct 29 10:20:01 2009 length 9+: 2089 Thu Oct 29 10:20:01 2009 largest cycle: 18 relations Thu Oct 29 10:20:01 2009 matrix is 57351 x 57823 (13.7 MB) with weight 3355406 (58.03/col) Thu Oct 29 10:20:01 2009 sparse part has weight 3355406 (58.03/col) Thu Oct 29 10:20:02 2009 filtering completed in 3 passes Thu Oct 29 10:20:02 2009 matrix is 52428 x 52492 (12.5 MB) with weight 3061277 (58.32/col) Thu Oct 29 10:20:02 2009 sparse part has weight 3061277 (58.32/col) Thu Oct 29 10:20:02 2009 saving the first 48 matrix rows for later Thu Oct 29 10:20:02 2009 matrix is 52380 x 52492 (8.7 MB) with weight 2464760 (46.95/col) Thu Oct 29 10:20:02 2009 sparse part has weight 1969615 (37.52/col) Thu Oct 29 10:20:02 2009 matrix includes 64 packed rows Thu Oct 29 10:20:02 2009 using block size 20996 for processor cache size 1024 kB Thu Oct 29 10:20:03 2009 commencing Lanczos iteration Thu Oct 29 10:20:03 2009 memory use: 8.5 MB Thu Oct 29 10:20:20 2009 lanczos halted after 830 iterations (dim = 52377) Thu Oct 29 10:20:20 2009 recovered 16 nontrivial dependencies Thu Oct 29 10:20:21 2009 prp40 factor: 2216843675469889748033783817831646405793 Thu Oct 29 10:20:21 2009 prp49 factor: 1301424962816481848646950520141595158687854696197 Thu Oct 29 10:20:21 2009 elapsed time 00:41:37
(62·10149-17)/9 = 6(8)1487<150> = 34 · 53 · 563 · 3259 · 12479 · 27827 · 1543019 · 317866189 · 30231364087<11> · 1303276091026529<16> · C92
C92 = P44 · P48
P44 = 14990515629278420189522772956896539661364399<44>
P48 = 869406757400744216491505254904358858761686953217<48>
Thu Oct 29 10:31:36 2009 Msieve v. 1.42 Thu Oct 29 10:31:36 2009 random seeds: 10de91b8 65f02773 Thu Oct 29 10:31:36 2009 factoring 13032855585016127987715163764187861752979788193972047216203105388131327964051192003502321583 (92 digits) Thu Oct 29 10:31:37 2009 searching for 15-digit factors Thu Oct 29 10:31:37 2009 commencing quadratic sieve (92-digit input) Thu Oct 29 10:31:37 2009 using multiplier of 3 Thu Oct 29 10:31:37 2009 using 32kb Intel Core sieve core Thu Oct 29 10:31:37 2009 sieve interval: 36 blocks of size 32768 Thu Oct 29 10:31:37 2009 processing polynomials in batches of 6 Thu Oct 29 10:31:37 2009 using a sieve bound of 1748623 (65882 primes) Thu Oct 29 10:31:37 2009 using large prime bound of 176610923 (27 bits) Thu Oct 29 10:31:37 2009 using double large prime bound of 699248562996980 (42-50 bits) Thu Oct 29 10:31:37 2009 using trial factoring cutoff of 50 bits Thu Oct 29 10:31:37 2009 polynomial 'A' values have 12 factors Thu Oct 29 12:23:28 2009 66409 relations (16846 full + 49563 combined from 801134 partial), need 65978 Thu Oct 29 12:23:29 2009 begin with 817980 relations Thu Oct 29 12:23:30 2009 reduce to 167485 relations in 11 passes Thu Oct 29 12:23:30 2009 attempting to read 167485 relations Thu Oct 29 12:23:32 2009 recovered 167485 relations Thu Oct 29 12:23:32 2009 recovered 148683 polynomials Thu Oct 29 12:23:32 2009 attempting to build 66409 cycles Thu Oct 29 12:23:32 2009 found 66409 cycles in 6 passes Thu Oct 29 12:23:32 2009 distribution of cycle lengths: Thu Oct 29 12:23:32 2009 length 1 : 16846 Thu Oct 29 12:23:32 2009 length 2 : 12029 Thu Oct 29 12:23:32 2009 length 3 : 11566 Thu Oct 29 12:23:32 2009 length 4 : 9050 Thu Oct 29 12:23:32 2009 length 5 : 6594 Thu Oct 29 12:23:32 2009 length 6 : 4335 Thu Oct 29 12:23:32 2009 length 7 : 2615 Thu Oct 29 12:23:33 2009 length 9+: 3374 Thu Oct 29 12:23:33 2009 largest cycle: 19 relations Thu Oct 29 12:23:33 2009 matrix is 65882 x 66409 (16.6 MB) with weight 4091728 (61.61/col) Thu Oct 29 12:23:33 2009 sparse part has weight 4091728 (61.61/col) Thu Oct 29 12:23:34 2009 filtering completed in 3 passes Thu Oct 29 12:23:34 2009 matrix is 62231 x 62295 (15.6 MB) with weight 3839753 (61.64/col) Thu Oct 29 12:23:34 2009 sparse part has weight 3839753 (61.64/col) Thu Oct 29 12:23:34 2009 saving the first 48 matrix rows for later Thu Oct 29 12:23:34 2009 matrix is 62183 x 62295 (9.7 MB) with weight 3001449 (48.18/col) Thu Oct 29 12:23:34 2009 sparse part has weight 2164215 (34.74/col) Thu Oct 29 12:23:34 2009 matrix includes 64 packed rows Thu Oct 29 12:23:34 2009 using block size 24918 for processor cache size 1024 kB Thu Oct 29 12:23:35 2009 commencing Lanczos iteration Thu Oct 29 12:23:35 2009 memory use: 10.0 MB Thu Oct 29 12:23:59 2009 lanczos halted after 984 iterations (dim = 62181) Thu Oct 29 12:23:59 2009 recovered 16 nontrivial dependencies Thu Oct 29 12:24:00 2009 prp44 factor: 14990515629278420189522772956896539661364399 Thu Oct 29 12:24:00 2009 prp48 factor: 869406757400744216491505254904358858761686953217 Thu Oct 29 12:24:00 2009 elapsed time 01:52:24
(62·10136-17)/9 = 6(8)1357<137> = 7 · 13 · 53 · 69581581 · 1013310464338031<16> · C111
C111 = P44 · P67
P44 = 21445140596559027674445600227216279078028913<44>
P67 = 9446397147569998958870814273587432081956274848493168972552660851483<67>
Number: 68887_136 N=202579314960572784853853841483578465366236882142762231912399875722301397628634517434793217876549853255872927979 ( 111 digits) SNFS difficulty: 138 digits. Divisors found: r1=21445140596559027674445600227216279078028913 (pp44) r2=9446397147569998958870814273587432081956274848493168972552660851483 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.69 hours. Scaled time: 15.12 units (timescale=1.967). Factorization parameters were as follows: name: 68887_136 n: 202579314960572784853853841483578465366236882142762231912399875722301397628634517434793217876549853255872927979 m: 2000000000000000000000000000 deg: 5 c5: 155 c0: -136 skew: 0.97 type: snfs lss: 1 rlim: 1430000 alim: 1430000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1430000/1430000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [715000, 1390001) Primes: RFBsize:109205, AFBsize:109105, largePrimes:3313683 encountered Relations: rels:3256308, finalFF:265958 Max relations in full relation-set: 28 Initial matrix: 218377 x 265958 with sparse part having weight 21751660. Pruned matrix : 202781 x 203936 with weight 13649675. Total sieving time: 7.13 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.38 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1430000,1430000,26,26,48,48,2.3,2.3,75000 total time: 7.69 hours. --------- CPU info (if available) ----------
(62·10126+1)/9 = 6(8)1259<127> = 7 · 47 · 83 · 1541963399<10> · 660931435820087<15> · C99
C99 = P41 · P59
P41 = 24438968728948515381731252918147334447671<41>
P59 = 10128889662287420283252120128975774558249253186011221512749<59>
Number: 68889_126 N=247539617715612152894729759876354338742558857147054971673720876347783084339220280796770906999857579 ( 99 digits) SNFS difficulty: 128 digits. Divisors found: r1=24438968728948515381731252918147334447671 (pp41) r2=10128889662287420283252120128975774558249253186011221512749 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.21 hours. Scaled time: 1.98 units (timescale=0.470). Factorization parameters were as follows: name: 68889_126 n: 247539617715612152894729759876354338742558857147054971673720876347783084339220280796770906999857579 m: 20000000000000000000000000 deg: 5 c5: 155 c0: 8 skew: 0.55 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [490000, 840001) Primes: RFBsize:77067, AFBsize:76704, largePrimes:2697581 encountered Relations: rels:2682573, finalFF:279654 Max relations in full relation-set: 28 Initial matrix: 153838 x 279654 with sparse part having weight 21371172. Pruned matrix : 119190 x 120023 with weight 6566874. Total sieving time: 3.90 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.17 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000 total time: 4.21 hours. --------- CPU info (if available) ----------
(22·10125-7)/3 = 7(3)1241<126> = 139 · 1753 · 29813712015624763<17> · C105
C105 = P46 · P59
P46 = 5835514109274418429331289019347933750642074023<46>
P59 = 17298543348572175255854507216815323864835034117825029046357<59>
Number: 73331_125 N=100945893780488072805794054903888609442778207215050028770210697409559135193502458841115087258636292484211 ( 105 digits) SNFS difficulty: 126 digits. Divisors found: r1=5835514109274418429331289019347933750642074023 (pp46) r2=17298543348572175255854507216815323864835034117825029046357 (pp59) Version: Msieve v. 1.42 Total time: 0.06 hours. Scaled time: 0.06 units (timescale=1.024). Factorization parameters were as follows: name: 73331_125 n: 100945893780488072805794054903888609442778207215050028770210697409559135193502458841115087258636292484211 m: 10000000000000000000000000 deg: 5 c5: 22 c0: -7 skew: 0.80 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 102874 x 103106 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 0.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Total of 4 processors activated (19151.19 BogoMIPS). total time: 57 min
(62·10127-53)/9 = 6(8)1263<128> = 32 · 7 · 4373075016167159<16> · C111
C111 = P40 · P71
P40 = 5453325435685665821475301936816985008441<40>
P71 = 45852211565333095184206412202116635585191607632222241319520518384375539<71>
Number: 68883_127 N=250047031611671426524712294764192025608047985060941485564187383018891286802343657348586214528075249412428924699 ( 111 digits) SNFS difficulty: 129 digits. Divisors found: r1=5453325435685665821475301936816985008441 (pp40) r2=45852211565333095184206412202116635585191607632222241319520518384375539 (pp71) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.22 hours. Scaled time: 10.27 units (timescale=1.967). Factorization parameters were as follows: name: 68883_127 n: 250047031611671426524712294764192025608047985060941485564187383018891286802343657348586214528075249412428924699 m: 20000000000000000000000000 deg: 5 c5: 775 c0: -212 skew: 0.77 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 1050001) Primes: RFBsize:78498, AFBsize:78237, largePrimes:2790052 encountered Relations: rels:2715447, finalFF:211136 Max relations in full relation-set: 28 Initial matrix: 156802 x 211136 with sparse part having weight 18694044. Pruned matrix : 143833 x 144681 with weight 10166225. Total sieving time: 4.95 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 5.22 hours. --------- CPU info (if available) ----------
(62·10130+1)/9 = 6(8)1299<131> = 3 · 1021 · 4517 · 97829 · C119
C119 = P36 · P84
P36 = 172646517491005006256239973571080363<36>
P84 = 294799441210256853477729159395431700808480725079520017412819392555476174232512350517<84>
Number: 68889_130 N=50896096883245111904087491066818110988048098986769458408393871306471379148082206150305806791176779739197015576231597671 ( 119 digits) SNFS difficulty: 132 digits. Divisors found: r1=172646517491005006256239973571080363 (pp36) r2=294799441210256853477729159395431700808480725079520017412819392555476174232512350517 (pp84) Version: Msieve v. 1.42 Total time: 0.11 hours. Scaled time: 0.11 units (timescale=1.025). Factorization parameters were as follows: name: 68889_130 n: 50896096883245111904087491066818110988048098986769458408393871306471379148082206150305806791176779739197015576231597671 m: 200000000000000000000000000 deg: 5 c5: 31 c0: 16 skew: 0.88 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 875001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165872 x 166120 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000 total time: 0.11 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Total of 4 processors activated (19151.19 BogoMIPS). total time: 1 hour 17 min
(62·10130-53)/9 = 6(8)1293<131> = 3 · 827 · 209767934901885224303739917497<30> · C99
C99 = P38 · P61
P38 = 27526445632823402801555781212943586751<38>
P61 = 4808760820477327944086801289662261340494201135301405931889669<61>
Number: 68883_130 N=132368093286120427073132380496392850742543712691797795425763461226071196035292063716102728062175419 ( 99 digits) SNFS difficulty: 131 digits. Divisors found: r1=27526445632823402801555781212943586751 (pp38) r2=4808760820477327944086801289662261340494201135301405931889669 (pp61) Version: Msieve v. 1.42 Total time: 0.12 hours. Scaled time: 0.13 units (timescale=1.025). Factorization parameters were as follows: name: 68883_130 n: 132368093286120427073132380496392850742543712691797795425763461226071196035292063716102728062175419 m: 100000000000000000000000000 deg: 5 c5: 62 c0: -53 skew: 0.97 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 180005 x 180230 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 0.12 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Total of 4 processors activated (19151.19 BogoMIPS). total time: 1 hour 55 min
(62·10139-17)/9 = 6(8)1387<140> = 23 · 757 · 18719 · 30161 · 130303 · 696107 · 2665811 · 5686673 · C103
C103 = P39 · P64
P39 = 926007323380718041367848667604976818917<39>
P64 = 5503825234459097628568763534609341243640504139868724244565262153<64>
Number: 68887_139 N=5096582473716721911320817165106487433415795470035694878499516371602090541767465977942766273924114548301 ( 103 digits) SNFS difficulty: 141 digits. Divisors found: r1=926007323380718041367848667604976818917 (pp39) r2=5503825234459097628568763534609341243640504139868724244565262153 (pp64) Version: Msieve-1.40 Total time: 6.59 hours. Scaled time: 13.64 units (timescale=2.071). Factorization parameters were as follows: name: 68887_139 n: 5096582473716721911320817165106487433415795470035694878499516371602090541767465977942766273924114548301 m: 10000000000000000000000000000 deg: 5 c5: 31 c0: -85 skew: 1.22 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 227013 x 227254 Total sieving time: 6.28 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 6.59 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Oct 29, 2009
(22·10127-7)/3 = 7(3)1261<128> = 479 · 44075527 · C118
C118 = P46 · P72
P46 = 6577399073481143560931762320945836405658976407<46>
P72 = 528097615006827450101667740710985593710548414937408630323507149175477101<72>
Number: n N=3473508763653508525973618996598802094452506079093510872225215128682143135403106733322106848803942284172130817527756107 ( 118 digits) SNFS difficulty: 128 digits. Divisors found: r1=6577399073481143560931762320945836405658976407 (pp46) r2=528097615006827450101667740710985593710548414937408630323507149175477101 (pp72) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.95 hours. Scaled time: 3.55 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_3_126_1 n: 3473508763653508525973618996598802094452506079093510872225215128682143135403106733322106848803942284172130817527756107 m: 20000000000000000000000000 deg: 5 c5: 275 c0: -28 skew: 0.63 type: snfs lss: 1 rlim: 990000 alim: 990000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 990000/990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [495000, 835001) Primes: RFBsize:77777, AFBsize:77453, largePrimes:2595907 encountered Relations: rels:2454373, finalFF:189776 Max relations in full relation-set: 48 Initial matrix: 155297 x 189776 with sparse part having weight 16134020. Pruned matrix : 143607 x 144447 with weight 8818753. Total sieving time: 1.77 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.11 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,990000,990000,26,26,47,47,2.3,2.3,50000 total time: 1.95 hours. --------- CPU info (if available) ----------
(62·10126-17)/9 = 6(8)1257<127> = 126222973133549<15> · C113
C113 = P44 · P70
P44 = 17478016109900362123148044512875872521564383<44>
P70 = 3122616420509176390118982265005374742402752146903093305407083770722861<70>
Number: n N=54577140102698788478968629476910731542323421602049717663968754282023809748791855193804422746495616416174461459763 ( 113 digits) SNFS difficulty: 128 digits. Divisors found: r1=17478016109900362123148044512875872521564383 (pp44) r2=3122616420509176390118982265005374742402752146903093305407083770722861 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.44 hours. Scaled time: 4.44 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_8_125_7 n: 54577140102698788478968629476910731542323421602049717663968754282023809748791855193804422746495616416174461459763 m: 20000000000000000000000000 deg: 5 c5: 155 c0: -136 skew: 0.97 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [490000, 850001) Primes: RFBsize:77067, AFBsize:77074, largePrimes:2525068 encountered Relations: rels:2371743, finalFF:176884 Max relations in full relation-set: 48 Initial matrix: 154208 x 176884 with sparse part having weight 15357027. Pruned matrix : 146855 x 147690 with weight 9842125. Total sieving time: 2.24 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000 total time: 2.44 hours. --------- CPU info (if available) ----------
(62·10128+1)/9 = 6(8)1279<129> = 13 · 97 · 197 · 1571 · C121
C121 = P54 · P67
P54 = 221839062921055719484107373612660853699302142746356139<54>
P67 = 7957078823320286782689262399302302972074139970168996053248181231993<67>
Number: n N=1765190909754349106047805048835653555356153326809056765104083714705035874397650631344173890587328534974454782088558755027 ( 121 digits) SNFS difficulty: 131 digits. Divisors found: Thu Oct 29 22:10:41 2009 prp54 factor: 221839062921055719484107373612660853699302142746356139 Thu Oct 29 22:10:41 2009 prp67 factor: 7957078823320286782689262399302302972074139970168996053248181231993 Thu Oct 29 22:10:41 2009 elapsed time 00:08:18 (Msieve 1.43 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.84 hours. Scaled time: 3.36 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_8_127_9 n: 1765190909754349106047805048835653555356153326809056765104083714705035874397650631344173890587328534974454782088558755027 m: 100000000000000000000000000 deg: 5 c5: 31 c0: 50 skew: 1.10 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved special-q in [545000, 885331) Primes: RFBsize:84976, AFBsize:85149, largePrimes:2650390 encountered Relations: rels:2480173, finalFF:181106 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 234173 hash collisions in 2642513 relations Msieve: matrix is 158517 x 158742 (42.6 MB) Total sieving time: 1.79 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 1.84 hours. --------- CPU info (if available) ----------
By matsui / Msieve / Oct 29, 2009
(64·10333-1)/9 = 7(1)333<334> = 13 · 4999 · 228777281 · 1541677987<10> · 1103253089147723<16> · 897821565552123255197697079<27> · 1138685703753966317205547366328393186964066889<46> · 3426549570671671064841267094850481127005282543233354557266456990784769879505493<79> · C146
C146 = P56 · P91
P56 = 12174361251367883129391909180738935636343765462088551283<56>
P91 = 6593745087362144980904245668229480104648255993069991196974660634291764657660612015236166117<91>
N=80274634692979035236916096891593763332243932346695290164007809815885473899897686446683991310308022576677193511877133845257360068833629111661478111 ( 146 digits) Divisors found: r1=12174361251367883129391909180738935636343765462088551283 (pp56) r2=6593745087362144980904245668229480104648255993069991196974660634291764657660612015236166117 (pp91) Version: Msieve v. 1.43 Total time: 6730.09 hours. Scaled time: 12289.14 units (timescale=1.826). Factorization parameters were as follows: name: 71111_333 n: 80274634692979035236916096891593763332243932346695290164007809815885473899897686446683991310308022576677193511877133845257360068833629111661478111 skew: 377073.07 # norm 6.21e+19 c5: 1288500 c4: 68290971667 c3: 619913143244182622 c2: -26447842285036047361452 c1: -55420844824743942680919908090 c0: 1642140321092668673121090476858417 # alpha -5.93 Y1: 7265089991871023 Y0: -9097012245689260132720497456 # Murphy_E 8.85e-12 # M 51307725631548334216899866953555587407604198005490433969505896061629967361718503918766814953119299580128428318493399064108307143252143563690561581 type: gnfs rlim: 16800000 alim: 16800000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 800000 Factor base limits: 16800000/16800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [8400000, 23600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3285994 x 3286224 Total sieving time: 6713.90 hours. Total relation processing time: 0.29 hours. Matrix solve time: 14.23 hours. Time per square root: 1.66 hours. Prototype def-par.txt line would be: gnfs,145,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,16800000,16800000,29,29,58,58,2.6,2.6,100000 total time: 6730.09 hours.
c146 is the second largest composite number which was factored by gnfs in our tables so far. Congratulations!
By juno1369 / GGNFS, Msieve v1.41 / Oct 29, 2009
(62·10149-71)/9 = 6(8)1481<150> = 3 · 2417 · 74029477891<11> · 3497744479903<13> · 382748316025440940507<21> · C102
C102 = P35 · P68
P35 = 43565025495414996045361762082014639<35>
P68 = 22004284299797228251633148946891172189744868497880149030614978474539<68>
Number: 68881_149 N=958617206529026163078164168986373017228530684647348271505022568050178553786224842053248585300086776421 ( 102 digits) Divisors found: r1=43565025495414996045361762082014639 (pp35) r2=22004284299797228251633148946891172189744868497880149030614978474539 (pp68) Version: Msieve-1.40 Total time: 8.42 hours. Scaled time: 14.82 units (timescale=1.761). Factorization parameters were as follows: name: 68881_149 n: 958617206529026163078164168986373017228530684647348271505022568050178553786224842053248585300086776421 skew: 22580.98 # norm 2.26e+014 c5: 6720 c4: 338199084 c3: -10505707699312 c2: -4051122316080619 c1: 2503178937575702048042 c0: -9365976316249819726224600 # alpha -6.53 Y1: 38483326871 Y0: -42741647054392727347 # Murphy_E 2.68e-009 # M 52154113368020348603538907067962726876078627937292628552976680809307400113998793692763656046280578354 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 2 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 280615 x 280863 Total sieving time: 7.77 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.47 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 8.42 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve / Oct 29, 2009
(65·10134+61)/9 = 7(2)1339<135> = 3 · 17 · 137 · 14707723 · C124
C124 = P58 · P66
P58 = 8170620663352175538141363624278865919798181514357283034749<58>
P66 = 860160735400974356984124869352479240710535091232943755301407369921<66>
Number: s124 N=7028047078471404241385538249417286890637656454374573587608436511688677005460215314566301659645079212232217122710089340384829 ( 124 digits) SNFS difficulty: 136 digits. Divisors found: r1=8170620663352175538141363624278865919798181514357283034749 (pp58) r2=860160735400974356984124869352479240710535091232943755301407369921 (pp66) Version: Msieve-1.40 Total time: 3.37 hours. Scaled time: 6.60 units (timescale=1.957). Factorization parameters were as follows: n: 7028047078471404241385538249417286890637656454374573587608436511688677005460215314566301659645079212232217122710089340384829 m: 1000000000000000000000000000 deg: 5 c5: 13 c0: 122 skew: 1.56 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1325001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 196084 x 196310 Total sieving time: 3.24 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 3.37 hours. --------- CPU info (if available) ----------
(62·10135-17)/9 = 6(8)1347<136> = C136
C136 = P34 · P103
P34 = 3006133944868273649904641611835927<34>
P103 = 2291610758279353520262479427436718759759968530711012838648548023370471952701819314481826902624062304481<103>
Number: 136-2 N=6888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 136 digits) SNFS difficulty: 136 digits. Divisors found: r1=3006133944868273649904641611835927 (pp34) r2=2291610758279353520262479427436718759759968530711012838648548023370471952701819314481826902624062304481 (pp103) Version: Msieve-1.40 Total time: 4.00 hours. Scaled time: 7.87 units (timescale=1.969). Factorization parameters were as follows: n: 6888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 1000000000000000000000000000 deg: 5 c5: 62 c0: -17 skew: 0.77 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1415001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 166629 x 166854 Total sieving time: 3.88 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 4.00 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Oct 29, 2009
(64·10167+17)/9 = 7(1)1663<168> = 13 · 19 · 31 · C164
C164 = P66 · P99
P66 = 147801285874676743702605376197388769702296463745069614255372510569<66>
P99 = 628348532318111008341516309337363050902767140223828818956120842657819837747040849338498348275327161<99>
Number: 71113_167 N=92870721054082683963838462989566554931580398473437522673515882344405264608999753312147200092870721054082683963838462989566554931580398473437522673515882344405264609 ( 164 digits) SNFS difficulty: 169 digits. Divisors found: r1=147801285874676743702605376197388769702296463745069614255372510569 (pp66) r2=628348532318111008341516309337363050902767140223828818956120842657819837747040849338498348275327161 (pp99) Version: Msieve-1.40 Total time: 37.66 hours. Scaled time: 65.68 units (timescale=1.744). Factorization parameters were as follows: n: 92870721054082683963838462989566554931580398473437522673515882344405264608999753312147200092870721054082683963838462989566554931580398473437522673515882344405264609 m: 4000000000000000000000000000000000 deg: 5 c5: 25 c0: 68 skew: 1.22 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 4250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 799987 x 800213 Total sieving time: 36.03 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.81 hours. Time per square root: 0.72 hours. Prototype def-par.txt line would be: snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 37.66 hours.
Factorizations of 688...883, Factorizations of 688...887 and Factorizations of 688...889 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Oct 28, 2009
(62·10142-71)/9 = 6(8)1411<143> = 17 · 127 · C140
C140 = P32 · P39 · P70
P32 = 88605204287423670249671527649293<32>
P39 = 282298075240783523797463502563785239997<39>
P70 = 1275643702644799867268139877864205097833015033358005502736075772881079<70>
Number: s140 N=31907776233853121301013843857753074983274149554835057382533065719726210694251453862384848952704441356595131490916576604395038855437187998559 ( 140 digits) SNFS difficulty: 144 digits. Divisors found: r1=88605204287423670249671527649293 (pp32) r2=282298075240783523797463502563785239997 (pp39) r3=1275643702644799867268139877864205097833015033358005502736075772881079 (pp70) Version: Msieve-1.40 Total time: 7.72 hours. Scaled time: 15.16 units (timescale=1.963). Factorization parameters were as follows: n: 31907776233853121301013843857753074983274149554835057382533065719726210694251453862384848952704441356595131490916576604395038855437187998559 m: 20000000000000000000000000000 deg: 5 c5: 775 c0: -284 skew: 0.82 type: snfs lss: 1 rlim: 1790000 alim: 1790000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1790000/1790000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [895000, 2295001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 313997 x 314222 Total sieving time: 7.26 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.26 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,144.000,5,0,0,0,0,0,0,0,0,1790000,1790000,26,26,49,49,2.3,2.3,100000 total time: 7.72 hours. --------- CPU info (if available) ----------
(61·10144+11)/9 = 6(7)1439<145> = 139 · C143
C143 = P32 · P36 · P76
P32 = 35451613663413251648447982109961<32>
P36 = 902835582445713727649667691606922077<36>
P76 = 1523448755300188337671604898103869412215946977128520856830739463707719389413<76>
Number: s143 N=48760991207034372501998401278976818545163868904876099120703437250199840127897681854516386890487609912070343725019984012789768185451638689048761 ( 143 digits) SNFS difficulty: 146 digits. Divisors found: r1=35451613663413251648447982109961 (pp32) r2=902835582445713727649667691606922077 (pp36) r3=1523448755300188337671604898103869412215946977128520856830739463707719389413 (pp76) Version: Msieve-1.40 Total time: 8.06 hours. Scaled time: 15.04 units (timescale=1.866). Factorization parameters were as follows: n: 48760991207034372501998401278976818545163868904876099120703437250199840127897681854516386890487609912070343725019984012789768185451638689048761 m: 100000000000000000000000000000 deg: 5 c5: 61 c0: 110 skew: 1.13 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2480001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 325579 x 325804 Total sieving time: 7.78 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 8.06 hours. --------- CPU info (if available) ----------
(59·10166+13)/9 = 6(5)1657<167> = 17 · 67 · C164
C164 = P64 · P101
P64 = 1520300600803178723554489839762734450050310979284651413036412657<64>
P101 = 37857881804580042766073071926977642450283485731120277261311868008262073402242471720348178440977797559<101>
Number: 164-1 N=57555360452638766949565896010145351673007511462296361330601892498292849478099697590478977660716027704614183982050531655448248951321822261242805579943420154131304263 ( 164 digits) SNFS difficulty: 168 digits. Divisors found: r1=1520300600803178723554489839762734450050310979284651413036412657 (pp64) r2=37857881804580042766073071926977642450283485731120277261311868008262073402242471720348178440977797559 (pp101) Version: Msieve-1.40 Total time: 54.33 hours. Scaled time: 101.39 units (timescale=1.866). Factorization parameters were as follows: n: 57555360452638766949565896010145351673007511462296361330601892498292849478099697590478977660716027704614183982050531655448248951321822261242805579943420154131304263 m: 2000000000000000000000000000000000 deg: 5 c5: 295 c0: 208 skew: 0.93 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 5400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 963749 x 963974 Total sieving time: 52.94 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.17 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,168.000,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 54.33 hours. --------- CPU info (if available) ----------
(59·10165+13)/9 = 6(5)1647<166> = 232 · C164
C164 = P81 · P84
P81 = 110196508485120959229584433888099581893885727408622561715778078112344496125474827<81>
P84 = 112456871072618870945836117361013701928460846350502379302614333335364545406654278879<84>
Number: 164-2 N=12392354547363999159840369670237345095568157950010501995379122033186305398025624868725057760974585171182524679689140936777987817685360218441503885738290275152278933 ( 164 digits) SNFS difficulty: 166 digits. Divisors found: r1=110196508485120959229584433888099581893885727408622561715778078112344496125474827 (pp81) r2=112456871072618870945836117361013701928460846350502379302614333335364545406654278879 (pp84) Version: Msieve-1.40 Total time: 30.84 hours. Scaled time: 58.75 units (timescale=1.905). Factorization parameters were as follows: n: 12392354547363999159840369670237345095568157950010501995379122033186305398025624868725057760974585171182524679689140936777987817685360218441503885738290275152278933 m: 1000000000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 3800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 716975 x 717202 Total sieving time: 30.05 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.63 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 30.84 hours. --------- CPU info (if available) ----------
(65·10176+7)/9 = 7(2)1753<177> = 32 · C176
C176 = P37 · P140
P37 = 4442942910712936991397591050639207179<37>
P140 = 18061657597884841998286548530250959539096033255123941595949495422393933276866461274947045522461378351677425535396899275108324213821248779493<140>
Factor=4442942910712936991397591050639207179 Method=ECM B1=11000000 Sigma=1661063128
(65·10131+61)/9 = 7(2)1309<132> = 3 · 79 · C130
C130 = P52 · P79
P52 = 1280509510648682082491308652467981505699141252049001<52>
P79 = 2379795794779564354598086165038364450138527040490957073655723750806221001915617<79>
Number: s130-1 N=3047351148616971401781528363806844819503047351148616971401781528363806844819503047351148616971401781528363806844819503047351148617 ( 130 digits) SNFS difficulty: 132 digits. Divisors found: r1=1280509510648682082491308652467981505699141252049001 (pp52) r2=2379795794779564354598086165038364450138527040490957073655723750806221001915617 (pp79) Version: Msieve-1.40 Total time: 3.55 hours. Scaled time: 6.62 units (timescale=1.866). Factorization parameters were as follows: n: 3047351148616971401781528363806844819503047351148616971401781528363806844819503047351148616971401781528363806844819503047351148617 m: 100000000000000000000000000 deg: 5 c5: 650 c0: 61 skew: 0.62 type: snfs lss: 1 rlim: 1140000 alim: 1140000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1140000/1140000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [570000, 1320001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149370 x 149595 Total sieving time: 3.44 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1140000,1140000,26,26,47,47,2.3,2.3,50000 total time: 3.55 hours. --------- CPU info (if available) ----------
(65·10152+61)/9 = 7(2)1519<153> = 3 · C153
C153 = P35 · P118
P35 = 31146531695975924298765364037305309<35>
P118 = 7729295290102686139699794454856781365379879804351612416391812646752847109285668325511683064669740001403032177197768627<118>
Factor=31146531695975924298765364037305309 Method=ECM B1=11000000 Sigma=190775455
(22·10143-7)/3 = 7(3)1421<144> = C144
C144 = P43 · P44 · P58
P43 = 3107752485792958896855128352023536341050509<43>
P44 = 59206074072516662497430087693127541112104321<44>
P58 = 3985554382642451971682452172996902377956999045276349984479<58>
Number: s144 N=733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 144 digits) SNFS difficulty: 145 digits. Divisors found: r1=3107752485792958896855128352023536341050509 (pp43) r2=59206074072516662497430087693127541112104321 (pp44) r3=3985554382642451971682452172996902377956999045276349984479 (pp58) Version: Msieve-1.40 Total time: 6.51 hours. Scaled time: 12.04 units (timescale=1.850). Factorization parameters were as follows: n: 733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 50000000000000000000000000000 deg: 5 c5: 176 c0: -175 skew: 1.00 type: snfs lss: 1 rlim: 1880000 alim: 1880000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1880000/1880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [940000, 2140001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 331290 x 331538 Total sieving time: 6.24 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,145.000,5,0,0,0,0,0,0,0,0,1880000,1880000,26,26,49,49,2.3,2.3,100000 total time: 6.51 hours. --------- CPU info (if available) ----------
(65·10137-11)/9 = 7(2)1361<138> = C138
C138 = P40 · P99
P40 = 3856127651773716445077580043028022865033<40>
P99 = 187292093893732785337096962993710590056537036033026265546665061444636987452833698017865574966552037<99>
Number: s138-2 N=722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 138 digits) SNFS difficulty: 140 digits. Divisors found: r1=3856127651773716445077580043028022865033 (pp40) r2=187292093893732785337096962993710590056537036033026265546665061444636987452833698017865574966552037 (pp99) Version: Msieve-1.40 Total time: 4.39 hours. Scaled time: 8.15 units (timescale=1.855). Factorization parameters were as follows: n: 722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 5000000000000000000000000000 deg: 5 c5: 52 c0: -275 skew: 1.40 type: snfs lss: 1 rlim: 1520000 alim: 1520000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1520000/1520000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [760000, 1585001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262716 x 262964 Total sieving time: 4.26 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1520000,1520000,26,26,48,48,2.3,2.3,75000 total time: 4.39 hours. --------- CPU info (if available) ----------
(65·10185+61)/9 = 7(2)1849<186> = 3 · C186
C186 = P38 · C148
P38 = 35141952992942757477971514122621284567<38>
C148 = [6850522530409352594617032385273079677147742201520609487175172835765408849862204938465321362129623843494992872240521378843361310626504793995366334929<148>]
Factor=35141952992942757477971514122621284567 Method=ECM B1=11000000 Sigma=2647286449
(22·10150-7)/3 = 7(3)1491<151> = C151
C151 = P63 · P89
P63 = 557437416104319050904396406476585854891860424980271017156626667<63>
P89 = 13155437940608153459755208722920934403344534831120327715310189648982331381764859489159993<89>
Number: s151-1 N=7333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 151 digits) SNFS difficulty: 151 digits. Divisors found: r1=557437416104319050904396406476585854891860424980271017156626667 (pp63) r2=13155437940608153459755208722920934403344534831120327715310189648982331381764859489159993 (pp89) Version: Msieve-1.40 Total time: 10.22 hours. Scaled time: 19.13 units (timescale=1.872). Factorization parameters were as follows: n: 7333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 1000000000000000000000000000000 deg: 5 c5: 22 c0: -7 skew: 0.80 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 352545 x 352780 Total sieving time: 9.85 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.15 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 10.22 hours. --------- CPU info (if available) ----------
(65·10163-11)/9 = 7(2)1621<164> = C164
C164 = P42 · P47 · P77
P42 = 382159282100879841810432048201209139152111<42>
P47 = 12134760941028933954849302273360311799514764407<47>
P77 = 15573822111719989074008727773441965485234326451554657360445839721618992013973<77>
Number: 164-3 N=72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 164 digits) SNFS difficulty: 165 digits. Divisors found: r1=382159282100879841810432048201209139152111 (pp42) r2=12134760941028933954849302273360311799514764407 (pp47) r3=15573822111719989074008727773441965485234326451554657360445839721618992013973 (pp77) Version: Msieve-1.40 Total time: 30.58 hours. Scaled time: 55.93 units (timescale=1.829). Factorization parameters were as follows: n: 72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 500000000000000000000000000000000 deg: 5 c5: 104 c0: -55 skew: 0.88 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 743661 x 743886 Total sieving time: 29.67 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.68 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,165.000,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 30.58 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Oct 28, 2009
(65·10148-11)/9 = 7(2)1471<149> = 821 · 15121 · 434867 · 2659663 · 4831786039<10> · 5683466138107710514513519<25> · C96
C96 = P39 · P57
P39 = 939723580029040882857358260430399230301<39>
P57 = 194913992192781453472395092670134360915528563343150609321<57>
Tue Oct 27 22:38:26 2009 Msieve v. 1.42 Tue Oct 27 22:38:26 2009 random seeds: a4cc6856 2144dfb9 Tue Oct 27 22:38:26 2009 factoring 183165274541153112029213156380438260588196891503607577322934423409998681788864687052077556235621 (96 digits) Tue Oct 27 22:38:28 2009 no P-1/P+1/ECM available, skipping Tue Oct 27 22:38:28 2009 commencing quadratic sieve (96-digit input) Tue Oct 27 22:38:28 2009 using multiplier of 5 Tue Oct 27 22:38:28 2009 using 64kb Pentium 4 sieve core Tue Oct 27 22:38:28 2009 sieve interval: 18 blocks of size 65536 Tue Oct 27 22:38:28 2009 processing polynomials in batches of 6 Tue Oct 27 22:38:28 2009 using a sieve bound of 2231357 (82234 primes) Tue Oct 27 22:38:28 2009 using large prime bound of 334703550 (28 bits) Tue Oct 27 22:38:28 2009 using double large prime bound of 2209980934643550 (43-51 bits) Tue Oct 27 22:38:28 2009 using trial factoring cutoff of 51 bits Tue Oct 27 22:38:28 2009 polynomial 'A' values have 12 factors Wed Oct 28 06:29:56 2009 82388 relations (19397 full + 62991 combined from 1246766 partial), need 82330 Wed Oct 28 06:30:01 2009 begin with 1266163 relations Wed Oct 28 06:30:02 2009 reduce to 217857 relations in 11 passes Wed Oct 28 06:30:03 2009 attempting to read 217857 relations Wed Oct 28 06:30:10 2009 recovered 217857 relations Wed Oct 28 06:30:10 2009 recovered 205011 polynomials Wed Oct 28 06:30:10 2009 attempting to build 82388 cycles Wed Oct 28 06:30:10 2009 found 82388 cycles in 6 passes Wed Oct 28 06:30:10 2009 distribution of cycle lengths: Wed Oct 28 06:30:10 2009 length 1 : 19397 Wed Oct 28 06:30:10 2009 length 2 : 13993 Wed Oct 28 06:30:10 2009 length 3 : 13942 Wed Oct 28 06:30:10 2009 length 4 : 11324 Wed Oct 28 06:30:10 2009 length 5 : 8561 Wed Oct 28 06:30:10 2009 length 6 : 5904 Wed Oct 28 06:30:10 2009 length 7 : 3771 Wed Oct 28 06:30:10 2009 length 9+: 5496 Wed Oct 28 06:30:10 2009 largest cycle: 21 relations Wed Oct 28 06:30:11 2009 matrix is 82234 x 82388 (22.9 MB) with weight 5663813 (68.75/col) Wed Oct 28 06:30:11 2009 sparse part has weight 5663813 (68.75/col) Wed Oct 28 06:30:13 2009 filtering completed in 3 passes Wed Oct 28 06:30:13 2009 matrix is 78854 x 78918 (22.0 MB) with weight 5462402 (69.22/col) Wed Oct 28 06:30:13 2009 sparse part has weight 5462402 (69.22/col) Wed Oct 28 06:30:13 2009 saving the first 48 matrix rows for later Wed Oct 28 06:30:14 2009 matrix is 78806 x 78918 (15.6 MB) with weight 4513875 (57.20/col) Wed Oct 28 06:30:14 2009 sparse part has weight 3618396 (45.85/col) Wed Oct 28 06:30:14 2009 matrix includes 64 packed rows Wed Oct 28 06:30:14 2009 using block size 21845 for processor cache size 512 kB Wed Oct 28 06:30:15 2009 commencing Lanczos iteration Wed Oct 28 06:30:15 2009 memory use: 14.7 MB Wed Oct 28 06:31:23 2009 lanczos halted after 1248 iterations (dim = 78806) Wed Oct 28 06:31:24 2009 recovered 18 nontrivial dependencies Wed Oct 28 06:31:26 2009 prp39 factor: 939723580029040882857358260430399230301 Wed Oct 28 06:31:26 2009 prp57 factor: 194913992192781453472395092670134360915528563343150609321 Wed Oct 28 06:31:26 2009 elapsed time 07:53:00
(62·10141-71)/9 = 6(8)1401<142> = 7 · 965308026157<12> · 39824757917563793<17> · C113
C113 = P47 · P66
P47 = 67396829659826934567187683042527026494165158749<47>
P66 = 379832927230764651413352296349336303801716583716324523571650614767<66>
Number: 68881_141 N=25599535095765284772907421390742729405999308114306671311586277227479931833907608502472969991698711464297998646483 ( 113 digits) SNFS difficulty: 143 digits. Divisors found: r1=67396829659826934567187683042527026494165158749 (pp47) r2=379832927230764651413352296349336303801716583716324523571650614767 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 15.56 hours. Scaled time: 30.54 units (timescale=1.963). Factorization parameters were as follows: name: 68881_141 n: 25599535095765284772907421390742729405999308114306671311586277227479931833907608502472969991698711464297998646483 m: 20000000000000000000000000000 deg: 5 c5: 155 c0: -568 skew: 1.30 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 2170001) Primes: RFBsize:130902, AFBsize:130802, largePrimes:3951723 encountered Relations: rels:4084666, finalFF:353287 Max relations in full relation-set: 28 Initial matrix: 261771 x 353287 with sparse part having weight 36947158. Pruned matrix : 232903 x 234275 with weight 21833316. Total sieving time: 14.65 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.68 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 15.56 hours. --------- CPU info (if available) ----------
(22·10120-7)/3 = 7(3)1191<121> = 23 · 5569172379466719569647<22> · C98
C98 = P38 · P61
P38 = 12467268040968644200593760852105178561<38>
P61 = 4592103128437975144998245779741025244221395688765409799392491<61>
Number: 73331_120 N=57250980574006896711440906216273061639096909115796536426296321791734696445274584207837732877585451 ( 98 digits) SNFS difficulty: 121 digits. Divisors found: r1=12467268040968644200593760852105178561 (pp38) r2=4592103128437975144998245779741025244221395688765409799392491 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.72 hours. Scaled time: 3.40 units (timescale=1.981). Factorization parameters were as follows: name: 73331_120 n: 57250980574006896711440906216273061639096909115796536426296321791734696445274584207837732877585451 m: 1000000000000000000000000 deg: 5 c5: 22 c0: -7 skew: 0.80 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 520001) Primes: RFBsize:59531, AFBsize:59739, largePrimes:1304416 encountered Relations: rels:1281725, finalFF:153417 Max relations in full relation-set: 28 Initial matrix: 119336 x 153417 with sparse part having weight 6853124. Pruned matrix : 101139 x 101799 with weight 3462450. Total sieving time: 1.62 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.72 hours. --------- CPU info (if available) ----------
(65·10114-11)/9 = 7(2)1131<115> = 32 · 233 · 409 · 558040613659747<15> · C95
C95 = P39 · P56
P39 = 160981721112651612109794172448162077483<39>
P56 = 93736068617683451547390765327106178850798232594071318277<56>
Wed Oct 28 07:53:02 2009 Msieve v. 1.42 Wed Oct 28 07:53:02 2009 random seeds: 2df2b7a0 fd14a991 Wed Oct 28 07:53:02 2009 factoring 15089793656408292305935405066824835096685463605339172081455823016898078435395327872084828056791 (95 digits) Wed Oct 28 07:53:04 2009 no P-1/P+1/ECM available, skipping Wed Oct 28 07:53:04 2009 commencing quadratic sieve (95-digit input) Wed Oct 28 07:53:04 2009 using multiplier of 1 Wed Oct 28 07:53:04 2009 using 64kb Pentium 4 sieve core Wed Oct 28 07:53:04 2009 sieve interval: 18 blocks of size 65536 Wed Oct 28 07:53:04 2009 processing polynomials in batches of 6 Wed Oct 28 07:53:04 2009 using a sieve bound of 2083057 (77647 primes) Wed Oct 28 07:53:04 2009 using large prime bound of 295794094 (28 bits) Wed Oct 28 07:53:04 2009 using double large prime bound of 1769216945767030 (42-51 bits) Wed Oct 28 07:53:04 2009 using trial factoring cutoff of 51 bits Wed Oct 28 07:53:04 2009 polynomial 'A' values have 12 factors Wed Oct 28 12:47:27 2009 77846 relations (19670 full + 58176 combined from 1126255 partial), need 77743 Wed Oct 28 12:47:32 2009 begin with 1145925 relations Wed Oct 28 12:47:33 2009 reduce to 200673 relations in 12 passes Wed Oct 28 12:47:33 2009 attempting to read 200673 relations Wed Oct 28 12:47:39 2009 recovered 200673 relations Wed Oct 28 12:47:40 2009 recovered 182034 polynomials Wed Oct 28 12:47:40 2009 attempting to build 77846 cycles Wed Oct 28 12:47:40 2009 found 77846 cycles in 5 passes Wed Oct 28 12:47:40 2009 distribution of cycle lengths: Wed Oct 28 12:47:40 2009 length 1 : 19670 Wed Oct 28 12:47:40 2009 length 2 : 13856 Wed Oct 28 12:47:40 2009 length 3 : 13168 Wed Oct 28 12:47:40 2009 length 4 : 10392 Wed Oct 28 12:47:40 2009 length 5 : 7815 Wed Oct 28 12:47:40 2009 length 6 : 5267 Wed Oct 28 12:47:40 2009 length 7 : 3239 Wed Oct 28 12:47:40 2009 length 9+: 4439 Wed Oct 28 12:47:40 2009 largest cycle: 22 relations Wed Oct 28 12:47:40 2009 matrix is 77647 x 77846 (20.2 MB) with weight 4991551 (64.12/col) Wed Oct 28 12:47:40 2009 sparse part has weight 4991551 (64.12/col) Wed Oct 28 12:47:42 2009 filtering completed in 3 passes Wed Oct 28 12:47:42 2009 matrix is 73601 x 73665 (19.3 MB) with weight 4757494 (64.58/col) Wed Oct 28 12:47:42 2009 sparse part has weight 4757494 (64.58/col) Wed Oct 28 12:47:43 2009 saving the first 48 matrix rows for later Wed Oct 28 12:47:43 2009 matrix is 73553 x 73665 (12.1 MB) with weight 3744511 (50.83/col) Wed Oct 28 12:47:43 2009 sparse part has weight 2717431 (36.89/col) Wed Oct 28 12:47:43 2009 matrix includes 64 packed rows Wed Oct 28 12:47:43 2009 using block size 21845 for processor cache size 512 kB Wed Oct 28 12:47:44 2009 commencing Lanczos iteration Wed Oct 28 12:47:44 2009 memory use: 12.3 MB Wed Oct 28 12:48:38 2009 lanczos halted after 1165 iterations (dim = 73552) Wed Oct 28 12:48:38 2009 recovered 17 nontrivial dependencies Wed Oct 28 12:48:40 2009 prp39 factor: 160981721112651612109794172448162077483 Wed Oct 28 12:48:40 2009 prp56 factor: 93736068617683451547390765327106178850798232594071318277 Wed Oct 28 12:48:40 2009 elapsed time 04:55:38
(22·10130-7)/3 = 7(3)1291<131> = 17 · 7433 · 3557979273660185577548488019<28> · C99
C99 = P39 · P61
P39 = 134460901537550527043746602103014314371<39>
P61 = 1213078594105218010976731081776468633605124806837098291598179<61>
Number: 73331_130 N=163111641399291940164106253116807208918321091467924877033762537156128353415965974233879839517130409 ( 99 digits) SNFS difficulty: 131 digits. Divisors found: r1=134460901537550527043746602103014314371 (pp39) r2=1213078594105218010976731081776468633605124806837098291598179 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.02 hours. Scaled time: 7.72 units (timescale=1.919). Factorization parameters were as follows: name: 73331_130 n: 163111641399291940164106253116807208918321091467924877033762537156128353415965974233879839517130409 m: 100000000000000000000000000 deg: 5 c5: 22 c0: -7 skew: 0.80 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 890001) Primes: RFBsize:84270, AFBsize:84284, largePrimes:3048064 encountered Relations: rels:3176662, finalFF:414631 Max relations in full relation-set: 28 Initial matrix: 168620 x 414631 with sparse part having weight 33226394. Pruned matrix : 113770 x 114677 with weight 7927149. Total sieving time: 3.83 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 4.02 hours. --------- CPU info (if available) ----------
(65·10149+7)/9 = 7(2)1483<150> = 32 · C149
C149 = P36 · P114
P36 = 105819244784386683109998203139936629<36>
P114 = 758339503780763218629421606198547022990365677947048506292345087129713241005798463428316768844290881088734441938843<114>
Number: 72223_149 N=80246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 ( 149 digits) SNFS difficulty: 151 digits. Divisors found: r1=105819244784386683109998203139936629 (pp36) r2=758339503780763218629421606198547022990365677947048506292345087129713241005798463428316768844290881088734441938843 (pp114) Version: Msieve-1.40 Total time: 17.34 hours. Scaled time: 34.91 units (timescale=2.013). Factorization parameters were as follows: name: 72223_149 n: 80246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 m: 1000000000000000000000000000000 deg: 5 c5: 13 c0: 14 skew: 1.01 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 373221 x 373469 Total sieving time: 16.65 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.49 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 17.34 hours. --------- CPU info (if available) ----------
(22·10118-7)/3 = 7(3)1171<119> = 235522201 · C111
C111 = P33 · P78
P33 = 677750033164238962514135169268793<33>
P78 = 459409558976066599817050888415589308499006600496142633440871915604917908812067<78>
Number: 73331_118 N=311364843831997533571509606151028341202251813761426819093514387347854877312960120194076028243865355747644925131 ( 111 digits) SNFS difficulty: 120 digits. Divisors found: r1=677750033164238962514135169268793 (pp33) r2=459409558976066599817050888415589308499006600496142633440871915604917908812067 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.39 hours. Scaled time: 4.76 units (timescale=1.989). Factorization parameters were as follows: name: 73331_118 n: 311364843831997533571509606151028341202251813761426819093514387347854877312960120194076028243865355747644925131 m: 500000000000000000000000 deg: 5 c5: 176 c0: -175 skew: 1.00 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 610001) Primes: RFBsize:58029, AFBsize:57998, largePrimes:1411373 encountered Relations: rels:1434070, finalFF:193473 Max relations in full relation-set: 28 Initial matrix: 116094 x 193473 with sparse part having weight 9266838. Pruned matrix : 90589 x 91233 with weight 3277602. Total sieving time: 2.29 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 2.39 hours. --------- CPU info (if available) ----------
(22·10122-7)/3 = 7(3)1211<123> = 1530693038761<13> · C111
C111 = P37 · P75
P37 = 1563778519534554459376784440862037907<37>
P75 = 306364243034504327427694743241261865971138614286892595581588786721014964953<75>
Number: 73331_122 N=479085822410821615351658824263053170082524325756116963166672692714955311750266379072262180668088864623762473371 ( 111 digits) SNFS difficulty: 123 digits. Divisors found: r1=1563778519534554459376784440862037907 (pp37) r2=306364243034504327427694743241261865971138614286892595581588786721014964953 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.26 hours. Scaled time: 6.24 units (timescale=1.914). Factorization parameters were as follows: name: 73331_122 n: 479085822410821615351658824263053170082524325756116963166672692714955311750266379072262180668088864623762473371 m: 2000000000000000000000000 deg: 5 c5: 275 c0: -28 skew: 0.63 type: snfs lss: 1 rlim: 810000 alim: 810000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 810000/810000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [405000, 755001) Primes: RFBsize:64683, AFBsize:64458, largePrimes:1606389 encountered Relations: rels:1722493, finalFF:278867 Max relations in full relation-set: 28 Initial matrix: 129208 x 278867 with sparse part having weight 14688172. Pruned matrix : 91624 x 92334 with weight 4159609. Total sieving time: 3.15 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,810000,810000,25,25,46,46,2.2,2.2,50000 total time: 3.26 hours. --------- CPU info (if available) ----------
(65·10123+61)/9 = 7(2)1229<124> = 205592060411<12> · C113
C113 = P53 · P60
P53 = 43832229960417833389559695476524062451127923298934897<53>
P60 = 801439867065015004955353448349678622394919140325219877510687<60>
Number: 72229_123 N=35128896552640436304237638852300777831238242048760563711369157626269703401120520531589052046752787199110834744239 ( 113 digits) SNFS difficulty: 125 digits. Divisors found: r1=43832229960417833389559695476524062451127923298934897 (pp53) r2=801439867065015004955353448349678622394919140325219877510687 (pp60) Version: Msieve-1.40 Total time: 2.23 hours. Scaled time: 4.63 units (timescale=2.078). Factorization parameters were as follows: name: 72229_123 n: 35128896552640436304237638852300777831238242048760563711369157626269703401120520531589052046752787199110834744239 m: 5000000000000000000000000 deg: 5 c5: 104 c0: 305 skew: 1.24 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [430000, 730001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 138461 x 138703 Total sieving time: 2.08 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,50000 total time: 2.23 hours. --------- CPU info (if available) ----------
(65·10121+61)/9 = 7(2)1209<122> = 179 · 7207 · 7309 · 801733 · 9292867 · C100
C100 = P41 · P59
P41 = 20970409353518247468689112397010047726039<41>
P59 = 49025151298473527075633438557521717012039531437304980040413<59>
Number: 72229_121 N=1028077491347156507372296855523252062931863952111775925648980556755371523816490127643897432972414107 ( 100 digits) SNFS difficulty: 122 digits. Divisors found: r1=20970409353518247468689112397010047726039 (pp41) r2=49025151298473527075633438557521717012039531437304980040413 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.16 hours. Scaled time: 6.05 units (timescale=1.916). Factorization parameters were as follows: name: 72229_121 n: 1028077491347156507372296855523252062931863952111775925648980556755371523816490127643897432972414107 m: 1000000000000000000000000 deg: 5 c5: 650 c0: 61 skew: 0.62 type: snfs lss: 1 rlim: 780000 alim: 780000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 780000/780000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [390000, 740001) Primes: RFBsize:62468, AFBsize:62166, largePrimes:1452590 encountered Relations: rels:1463616, finalFF:183399 Max relations in full relation-set: 28 Initial matrix: 124701 x 183399 with sparse part having weight 9655301. Pruned matrix : 106872 x 107559 with weight 4217800. Total sieving time: 3.03 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000 total time: 3.16 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Oct 28, 2009
(65·10116+61)/9 = 7(2)1159<117> = 3 · C117
C117 = P47 · P70
P47 = 34527480997338766455831224411614972334483833577<47>
P70 = 6972438584769506590625189732568805545326881025591814765362809896626159<70>
Number: n N=240740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 ( 117 digits) SNFS difficulty: 117 digits. Divisors found: Wed Oct 28 16:56:37 2009 prp47 factor: 34527480997338766455831224411614972334483833577 Wed Oct 28 16:56:37 2009 prp70 factor: 6972438584769506590625189732568805545326881025591814765362809896626159 Wed Oct 28 16:56:37 2009 elapsed time 00:02:19 (Msieve 1.43 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.05 hours. Scaled time: 1.92 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_2_115_9 n: 240740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 m: 100000000000000000000000 deg: 5 c5: 650 c0: 61 skew: 0.62 type: snfs lss: 1 rlim: 640000 alim: 640000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 qintsize: 10000 Factor base limits: 640000/640000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved special-q in [320000, 561061) Primes: RFBsize:52074, AFBsize:51702, largePrimes:1210995 encountered Relations: rels:1144261, finalFF:109583 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 87777 hash collisions in 1223142 relations Msieve: matrix is 79909 x 80151 (21.9 MB) Total sieving time: 1.03 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,50000 total time: 1.05 hours. --------- CPU info (if available) ----------
(22·10124-7)/3 = 7(3)1231<125> = 75534607 · C117
C117 = P37 · P81
P37 = 8115001058452151810981501720352816797<37>
P81 = 119637373860289775776679722919530050967368885966201837192042266522620691868053089<81>
Number: n N=970857415506687329866339720723420634641460878102315847533744808301356930781851202765023101706656570455623517486935933 ( 117 digits) SNFS difficulty: 126 digits. Divisors found: r1=8115001058452151810981501720352816797 (pp37) r2=119637373860289775776679722919530050967368885966201837192042266522620691868053089 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.22 hours. Scaled time: 2.22 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_3_123_1 n: 970857415506687329866339720723420634641460878102315847533744808301356930781851202765023101706656570455623517486935933 m: 10000000000000000000000000 deg: 5 c5: 11 c0: -35 skew: 1.26 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 640001) Primes: RFBsize:69823, AFBsize:69714, largePrimes:2298551 encountered Relations: rels:2160546, finalFF:174436 Max relations in full relation-set: 48 Initial matrix: 139602 x 174436 with sparse part having weight 12948806. Pruned matrix : 125159 x 125921 with weight 6476055. Total sieving time: 1.10 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.22 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Oct 28, 2009
(65·10185-11)/9 = 7(2)1841<186> = 3673 · 145459 · 51028247 · 523181223872965338269<21> · 1045359163418150399691709<25> · C125
C125 = P32 · P93
P32 = 61950651458183075429960343799297<32>
P93 = 781871016839220677109463407665525311825701689960463807826403466950410272126295951203562513177<93>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2064621114 Step 1 took 34199ms Step 2 took 13550ms ********** Factor found in step 2: 61950651458183075429960343799297 Found probable prime factor of 32 digits: 61950651458183075429960343799297 Probable prime cofactor 781871016839220677109463407665525311825701689960463807826403466950410272126295951203562513177 has 93 digits
(65·10194+7)/9 = 7(2)1933<195> = 34 · 7884797231020992193<19> · 2877176822753658311521667<25> · C150
C150 = P37 · C113
P37 = 7624190601160779016659090250310483321<37>
C113 = [51550751522675018522266287786788814275048077732851829746459474778039978537603238494488272159493076802130222223133<113>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1441488083 Step 1 took 47275ms Step 2 took 16303ms ********** Factor found in step 2: 7624190601160779016659090250310483321 Found probable prime factor of 37 digits: 7624190601160779016659090250310483321 Composite cofactor 51550751522675018522266287786788814275048077732851829746459474778039978537603238494488272159493076802130222223133 has 113 digits
(65·10184+7)/9 = 7(2)1833<185> = 60719 · 171726193 · 51058810193<11> · 228486884552752127332609<24> · C138
C138 = P38 · P101
P38 = 21849812748236144008464710337280850879<38>
P101 = 27172525737692482212391401687104134737901694575685983842308802500321577962738259082419630105067070303<101>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3570817345 Step 1 took 42646ms Step 2 took 14810ms ********** Factor found in step 2: 21849812748236144008464710337280850879 Found probable prime factor of 38 digits: 21849812748236144008464710337280850879 Probable prime cofactor 27172525737692482212391401687104134737901694575685983842308802500321577962738259082419630105067070303 has 101 digits
By Serge Batalov / Msieve / Oct 28, 2009
(65·10102+61)/9 = 7(2)1019<103> = 7 · 17 · 137 · 38468687 · C92
C92 = P42 · P50
P42 = 175788552003242654918707023394121127082163<42>
P50 = 65509663177054239063561837808654735019636969220503<50>
SNFS difficulty: 104 digits. Divisors found: r1=175788552003242654918707023394121127082163 (pp42) r2=65509663177054239063561837808654735019636969220503 (pp50) Version: Msieve v. 1.44 SVN130 Total time: 0.26 hours. Scaled time: 0.63 units (timescale=2.400). Factorization parameters were as follows: n: 11515848832114509541969286728301648150391951381143915818708913267971130126036386168945187989 m: 50000000000000000000000000 deg: 4 c4: 52 c0: 305 skew: 1.56 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [195000, 275001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 31248 x 31496 Total sieving time: 0.25 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,104.000,4,0,0,0,0,0,0,0,0,390000,390000,25,25,44,44,2.2,2.2,10000 total time: 0.26 hours.
(22·10109-7)/3 = 7(3)1081<110> = C110
C110 = P36 · P75
P36 = 366976113897403798134036390219247147<36>
P75 = 199831352930603192222342071083610479760495108319628605228753948824443242873<75>
SNFS difficulty: 111 digits. Divisors found: r1=366976113897403798134036390219247147 (pp36) r2=199831352930603192222342071083610479760495108319628605228753948824443242873 (pp75) Version: Msieve v. 1.44 SVN130 Total time: 0.46 hours. Scaled time: 1.12 units (timescale=2.400). Factorization parameters were as follows: n: 73333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 10000000000000000000000 deg: 5 c5: 11 c0: -35 skew: 1.26 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37502 x 37737 Total sieving time: 0.44 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.46 hours.
(65·10112-11)/9 = 7(2)1111<113> = 349 · 1609 · C108
C108 = P41 · P67
P41 = 70607932059021754016721120546462990586001<41>
P67 = 1821528136121762022116250471027322875569923541409150218970043515481<67>
SNFS difficulty: 115 digits. Divisors found: r1=70607932059021754016721120546462990586001 (pp41) r2=1821528136121762022116250471027322875569923541409150218970043515481 (pp67) Version: Msieve v. 1.44 SVN130 Total time: 0.72 hours. Scaled time: 1.73 units (timescale=2.400). Factorization parameters were as follows: n: 128614334878881902162481853012019108528535266743162515688475502629767411858122954908407796086523018305381481 m: 50000000000000000000000 deg: 5 c5: 52 c0: -275 skew: 1.40 type: snfs lss: 1 rlim: 580000 alim: 580000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 580000/580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [362500, 612501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64101 x 64332 Total sieving time: 0.68 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,580000,580000,25,25,45,45,2.2,2.2,50000 total time: 0.72 hours.
(65·10123+7)/9 = 7(2)1223<124> = 31 · 433341079 · C114
C114 = P47 · P68
P47 = 31760089599647095470964140303933168837398685341<47>
P68 = 16927685203118105408193075223017693529147950521552388939439515578947<68>
SNFS difficulty: 125 digits. Divisors found: r1=31760089599647095470964140303933168837398685341 (pp47) r2=16927685203118105408193075223017693529147950521552388939439515578947 (pp68) Version: Msieve v. 1.44 SVN130 Total time: 1.07 hours. Scaled time: 2.57 units (timescale=2.400). Factorization parameters were as follows: n: 537624798765651370372182957215632388524131277277257415040186469316725900027661524584873859219275425292106297115927 m: 5000000000000000000000000 deg: 5 c5: 104 c0: 35 skew: 0.80 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [537500, 837501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 114687 x 114917 Total sieving time: 0.98 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,50000 total time: 1.07 hours.
(65·10124+7)/9 = 7(2)1233<125> = 23627 · 122179984837067<15> · C107
C107 = P52 · P55
P52 = 2779713843164198342229108373215405036999849001718309<52>
P55 = 9000406178344471728392191196472373929710255397699359483<55>
SNFS difficulty: 126 digits. Divisors found: r1=2779713843164198342229108373215405036999849001718309 (pp52) r2=9000406178344471728392191196472373929710255397699359483 (pp55) Version: Msieve v. 1.44 SVN130 Total time: 1.10 hours. Scaled time: 2.64 units (timescale=2.400). Factorization parameters were as follows: n: 25018553648044706659806696982403245276792059272573860134171871212230208677668993529533362509883455693874247 m: 10000000000000000000000000 deg: 5 c5: 13 c0: 14 skew: 1.01 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [556250, 856251) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 121199 x 121429 Total sieving time: 1.01 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.10 hours.
By Jo Yeong Uk / GMP-ECM v6.2.3, YAFU v1.10, Msieve / Oct 28, 2009
(65·10145-11)/9 = 7(2)1441<146> = 47 · 607 · 351457 · 10203519393642125535430984893281<32> · C105
C105 = P41 · P65
P41 = 70454049702556330053008041614724445605807<41>
P65 = 10019732907879640889882400544847060911821000275230632388769933171<65>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 705930760298091485229453256487302969635908437931309773233506439012655251426409443017893127773611999523997 (105 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1037193634 Step 1 took 3494ms Step 2 took 3588ms ********** Factor found in step 2: 70454049702556330053008041614724445605807 Found probable prime factor of 41 digits: 70454049702556330053008041614724445605807 Probable prime cofactor 10019732907879640889882400544847060911821000275230632388769933171 has 65 digits
(65·10137+7)/9 = 7(2)1363<138> = 3 · 23 · 73 · 30871 · 1386083 · 720941959457<12> · C112
C112 = P30 · P31 · P53
P30 = 190061403203275865525088244967<30>
P31 = 1244841026681448907106941991207<31>
P53 = 19644945785038727533820766473773169516200342274306591<53>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 4647920156400974489982688051665613882176378983480078042769794813814236946086858104526358893394750640417706768879 (112 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6061696595 Step 1 took 3495ms Step 2 took 3822ms ********** Factor found in step 2: 190061403203275865525088244967 Found probable prime factor of 30 digits: 190061403203275865525088244967 Composite cofactor 24454834480149011868325660087316764591350057434391682905368504067395322836744145337 has 83 digits 10/27/09 21:28:44 v1.10 @ 조영욱-PC, starting SIQS on c83: 24454834480149011868325660087316764591350057434391682905368504067395322836744145337 10/27/09 21:28:44 v1.10 @ 조영욱-PC, random seeds: 2880975533, 481832920 10/27/09 21:28:45 v1.10 @ 조영욱-PC, ==== sieve params ==== 10/27/09 21:28:45 v1.10 @ 조영욱-PC, n = 83 digits, 274 bits 10/27/09 21:28:45 v1.10 @ 조영욱-PC, factor base: 49771 primes (max prime = 1295131) 10/27/09 21:28:45 v1.10 @ 조영욱-PC, single large prime cutoff: 123037445 (95 * pmax) 10/27/09 21:28:45 v1.10 @ 조영욱-PC, double large prime range from 42 to 49 bits 10/27/09 21:28:45 v1.10 @ 조영욱-PC, double large prime cutoff: 364810346638489 10/27/09 21:28:45 v1.10 @ 조영욱-PC, using 14 large prime slices of factor base 10/27/09 21:28:45 v1.10 @ 조영욱-PC, buckets hold 1024 elements 10/27/09 21:28:45 v1.10 @ 조영욱-PC, sieve interval: 7 blocks of size 65536 10/27/09 21:28:45 v1.10 @ 조영욱-PC, polynomial A has ~ 10 factors 10/27/09 21:28:45 v1.10 @ 조영욱-PC, using multiplier of 1 10/27/09 21:28:45 v1.10 @ 조영욱-PC, using small prime variation correction of 18 bits 10/27/09 21:28:45 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 10/27/09 21:28:45 v1.10 @ 조영욱-PC, trial factoring cutoff at 94 bits 10/27/09 21:28:45 v1.10 @ 조영욱-PC, ==== sieving started ==== 10/27/09 21:40:57 v1.10 @ 조영욱-PC, sieve time = 340.0500, relation time = 136.3560, poly_time = 255.6500 10/27/09 21:40:57 v1.10 @ 조영욱-PC, 49848 relations found: 21802 full + 28046 from 290299 partial, using 172944 polys (244 A polys) 10/27/09 21:40:57 v1.10 @ 조영욱-PC, on average, sieving found 1.80 rels/poly and 426.07 rels/sec 10/27/09 21:40:57 v1.10 @ 조영욱-PC, trial division touched 6239436 sieve locations out of 158676811776 10/27/09 21:40:57 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 10/27/09 21:40:57 v1.10 @ 조영욱-PC, begin with 312101 relations 10/27/09 21:40:57 v1.10 @ 조영욱-PC, reduce to 79841 relations in 7 passes 10/27/09 21:40:58 v1.10 @ 조영욱-PC, recovered 79841 relations 10/27/09 21:40:58 v1.10 @ 조영욱-PC, recovered 63984 polynomials 10/27/09 21:40:58 v1.10 @ 조영욱-PC, attempting to build 49848 cycles 10/27/09 21:40:58 v1.10 @ 조영욱-PC, found 49848 cycles in 3 passes 10/27/09 21:40:58 v1.10 @ 조영욱-PC, distribution of cycle lengths: 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 1 : 21802 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 2 : 20836 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 3 : 5377 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 4 : 1388 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 5 : 329 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 6 : 97 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 7 : 16 10/27/09 21:40:58 v1.10 @ 조영욱-PC, length 9+: 3 10/27/09 21:40:58 v1.10 @ 조영욱-PC, largest cycle: 9 relations 10/27/09 21:40:58 v1.10 @ 조영욱-PC, matrix is 49771 x 49848 (8.2 MB) with weight 1749155 (35.09/col) 10/27/09 21:40:58 v1.10 @ 조영욱-PC, sparse part has weight 1749155 (35.09/col) 10/27/09 21:40:58 v1.10 @ 조영욱-PC, filtering completed in 3 passes 10/27/09 21:40:58 v1.10 @ 조영욱-PC, matrix is 38980 x 39042 (6.8 MB) with weight 1458401 (37.35/col) 10/27/09 21:40:58 v1.10 @ 조영욱-PC, sparse part has weight 1458401 (37.35/col) 10/27/09 21:40:58 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 10/27/09 21:40:58 v1.10 @ 조영욱-PC, matrix is 38932 x 39042 (4.7 MB) with weight 1118471 (28.65/col) 10/27/09 21:40:58 v1.10 @ 조영욱-PC, sparse part has weight 846197 (21.67/col) 10/27/09 21:40:58 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 10/27/09 21:40:58 v1.10 @ 조영욱-PC, using block size 15616 for processor cache size 4096 kB 10/27/09 21:40:58 v1.10 @ 조영욱-PC, commencing Lanczos iteration 10/27/09 21:40:58 v1.10 @ 조영욱-PC, memory use: 4.6 MB 10/27/09 21:41:03 v1.10 @ 조영욱-PC, lanczos halted after 617 iterations (dim = 38926) 10/27/09 21:41:03 v1.10 @ 조영욱-PC, recovered 13 nontrivial dependencies 10/27/09 21:41:03 v1.10 @ 조영욱-PC, prp31 = 1244841026681448907106941991207 10/27/09 21:41:03 v1.10 @ 조영욱-PC, prp53 = 19644945785038727533820766473773169516200342274306591 10/27/09 21:41:03 v1.10 @ 조영욱-PC, Lanczos elapsed time = 6.0210 seconds. 10/27/09 21:41:03 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.5150 seconds. 10/27/09 21:41:03 v1.10 @ 조영욱-PC, SIQS elapsed time = 739.0400 seconds. 10/27/09 21:41:03 v1.10 @ 조영욱-PC, 10/27/09 21:41:03 v1.10 @ 조영욱-PC,
(22·10108-7)/3 = 7(3)1071<109> = 197 · 2311 · 315155716987<12> · 2708183643299<13> · C80
C80 = P33 · P48
P33 = 133878894470440665305883428582177<33>
P48 = 140967772262343217162849205986846194637148762593<48>
10/28/09 01:14:46 v1.10 @ 조영욱-PC, starting SIQS on c80: 18872609506443360331949072625824394175999049219789808838348481048176363964104961 10/28/09 01:14:46 v1.10 @ 조영욱-PC, random seeds: 2953276341, 473520796 10/28/09 01:14:47 v1.10 @ 조영욱-PC, ==== sieve params ==== 10/28/09 01:14:47 v1.10 @ 조영욱-PC, n = 80 digits, 264 bits 10/28/09 01:14:47 v1.10 @ 조영욱-PC, factor base: 41901 primes (max prime = 1074701) 10/28/09 01:14:47 v1.10 @ 조영욱-PC, single large prime cutoff: 91349585 (85 * pmax) 10/28/09 01:14:47 v1.10 @ 조영욱-PC, using 13 large prime slices of factor base 10/28/09 01:14:47 v1.10 @ 조영욱-PC, buckets hold 1024 elements 10/28/09 01:14:47 v1.10 @ 조영욱-PC, sieve interval: 5 blocks of size 65536 10/28/09 01:14:47 v1.10 @ 조영욱-PC, polynomial A has ~ 10 factors 10/28/09 01:14:47 v1.10 @ 조영욱-PC, using multiplier of 1 10/28/09 01:14:47 v1.10 @ 조영욱-PC, using small prime variation correction of 17 bits 10/28/09 01:14:47 v1.10 @ 조영욱-PC, using SSE2 for trial division and x64 sieve scanning 10/28/09 01:14:47 v1.10 @ 조영욱-PC, trial factoring cutoff at 95 bits 10/28/09 01:14:47 v1.10 @ 조영욱-PC, ==== sieving started ==== 10/28/09 01:21:38 v1.10 @ 조영욱-PC, sieve time = 193.1750, relation time = 50.4470, poly_time = 167.9450 10/28/09 01:21:38 v1.10 @ 조영욱-PC, 42077 relations found: 21186 full + 20891 from 219340 partial, using 140092 polys (274 A polys) 10/28/09 01:21:38 v1.10 @ 조영욱-PC, on average, sieving found 1.72 rels/poly and 583.88 rels/sec 10/28/09 01:21:38 v1.10 @ 조영욱-PC, trial division touched 2486400 sieve locations out of 91810693120 10/28/09 01:21:38 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 10/28/09 01:21:38 v1.10 @ 조영욱-PC, begin with 240526 relations 10/28/09 01:21:38 v1.10 @ 조영욱-PC, reduce to 60274 relations in 2 passes 10/28/09 01:21:39 v1.10 @ 조영욱-PC, recovered 60274 relations 10/28/09 01:21:39 v1.10 @ 조영욱-PC, recovered 49064 polynomials 10/28/09 01:21:39 v1.10 @ 조영욱-PC, attempting to build 42077 cycles 10/28/09 01:21:39 v1.10 @ 조영욱-PC, found 42077 cycles in 1 passes 10/28/09 01:21:39 v1.10 @ 조영욱-PC, distribution of cycle lengths: 10/28/09 01:21:39 v1.10 @ 조영욱-PC, length 1 : 21186 10/28/09 01:21:39 v1.10 @ 조영욱-PC, length 2 : 20891 10/28/09 01:21:39 v1.10 @ 조영욱-PC, largest cycle: 2 relations 10/28/09 01:21:39 v1.10 @ 조영욱-PC, matrix is 41901 x 42077 (6.1 MB) with weight 1266037 (30.09/col) 10/28/09 01:21:39 v1.10 @ 조영욱-PC, sparse part has weight 1266037 (30.09/col) 10/28/09 01:21:39 v1.10 @ 조영욱-PC, filtering completed in 4 passes 10/28/09 01:21:39 v1.10 @ 조영욱-PC, matrix is 30689 x 30753 (4.9 MB) with weight 1028952 (33.46/col) 10/28/09 01:21:39 v1.10 @ 조영욱-PC, sparse part has weight 1028952 (33.46/col) 10/28/09 01:21:39 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 10/28/09 01:21:39 v1.10 @ 조영욱-PC, matrix is 30641 x 30753 (3.6 MB) with weight 811519 (26.39/col) 10/28/09 01:21:39 v1.10 @ 조영욱-PC, sparse part has weight 632898 (20.58/col) 10/28/09 01:21:39 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 10/28/09 01:21:39 v1.10 @ 조영욱-PC, using block size 12301 for processor cache size 4096 kB 10/28/09 01:21:39 v1.10 @ 조영욱-PC, commencing Lanczos iteration 10/28/09 01:21:39 v1.10 @ 조영욱-PC, memory use: 3.5 MB 10/28/09 01:21:42 v1.10 @ 조영욱-PC, lanczos halted after 486 iterations (dim = 30639) 10/28/09 01:21:42 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 10/28/09 01:21:42 v1.10 @ 조영욱-PC, prp48 = 140967772262343217162849205986846194637148762593 10/28/09 01:21:43 v1.10 @ 조영욱-PC, prp33 = 133878894470440665305883428582177 10/28/09 01:21:43 v1.10 @ 조영욱-PC, Lanczos elapsed time = 3.7600 seconds. 10/28/09 01:21:43 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.7330 seconds. 10/28/09 01:21:43 v1.10 @ 조영욱-PC, SIQS elapsed time = 416.4350 seconds. 10/28/09 01:21:43 v1.10 @ 조영욱-PC, 10/28/09 01:21:43 v1.10 @ 조영욱-PC,
(65·10184-11)/9 = 7(2)1831<185> = 691 · 219621875269<12> · 2157276602733659502141754392473<31> · 1366875469678489414121668461325082477<37> · C105
C105 = P34 · P71
P34 = 4503477033199215094729890033147187<34>
P71 = 35837232906713279419812768310828169169378234147431171772663813102526637<71>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 161392155328794403131606385552815547402281189086153913445436817927538091137682507550470946122430609120119 (105 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4945725169 Step 1 took 3478ms Step 2 took 3698ms ********** Factor found in step 2: 4503477033199215094729890033147187 Found probable prime factor of 34 digits: 4503477033199215094729890033147187 Probable prime cofactor 35837232906713279419812768310828169169378234147431171772663813102526637 has 71 digits
(59·10153+13)/9 = 6(5)1527<154> = 61 · 14431 · 448464904859558179943943527591218691<36> · C113
C113 = P34 · P79
P34 = 1945389686705257859216885747713751<34>
P79 = 8535877402069090294321958359979736349858550365095150663138218416934201553637547<79>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 16605607864965677941097681100617903499359254644723048816511846628405008244182350794304630346346316241452961808797 (113 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2517939697 Step 1 took 3448ms Step 2 took 3775ms ********** Factor found in step 2: 1945389686705257859216885747713751 Found probable prime factor of 34 digits: 1945389686705257859216885747713751 Probable prime cofactor 8535877402069090294321958359979736349858550365095150663138218416934201553637547 has 79 digits
By Erik Branger / GGNFS, Msieve, YAFU / Oct 28, 2009
(65·10138+7)/9 = 7(2)1373<139> = 31 · 229 · 33461 · 1259007165190111865378078821<28> · C104
C104 = P51 · P54
P51 = 241431719926832113054176853658594117687436004218661<51>
P54 = 100025844120941294664361239378525121327867816498537297<54>
Number: 72223_138 N=24149411583252065135541995261870948312801057540026010846855723972400408737150851077914404918027851899317 ( 104 digits) SNFS difficulty: 140 digits. Divisors found: r1=241431719926832113054176853658594117687436004218661 (pp51) r2=100025844120941294664361239378525121327867816498537297 (pp54) Version: Msieve-1.40 Total time: 5.45 hours. Scaled time: 5.30 units (timescale=0.971). Factorization parameters were as follows: n: 24149411583252065135541995261870948312801057540026010846855723972400408737150851077914404918027851899317 m: 5000000000000000000000000000 deg: 5 c5: 104 c0: 35 skew: 0.80 type: snfs lss: 1 rlim: 1540000 alim: 1540000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1540000/1540000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [770000, 1570001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 229296 x 229521 Total sieving time: 5.25 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1540000,1540000,26,26,48,48,2.3,2.3,100000 total time: 5.45 hours. --------- CPU info (if available) ----------
(65·10104+61)/9 = 7(2)1039<105> = 3 · 743 · 4139 · 158017 · 318523367 · C85
C85 = P38 · P47
P38 = 40936918812214106518239018554059251721<38>
P47 = 37993131474820395090146307173650064397787555261<47>
10/27/09 17:32:06 v1.12 @ ERIK-DATOR, starting SIQS on c85: 1555321738606498913184153860786756010560527305346283314428864765623009053835596854181 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, random seeds: 3962589134, 1153892920 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, n = 85 digits, 280 bits 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, factor base: 54371 primes (max prime = 1426717) 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, single large prime cutoff: 135538115 (95 * pmax) 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, double large prime range from 42 to 49 bits 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, double large prime cutoff: 434220771349436 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, using 0 large prime slices of factor base 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, sieve interval: 14 blocks of size 32768 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, polynomial A has ~ -1878638032 factors 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, using multiplier of 1 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, using small prime variation correction of 19 bits 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, trial factoring cutoff at 91 bits 10/27/09 17:32:06 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/27/09 17:45:18 v1.12 @ ERIK-DATOR, sieve time = 169.0812, relation time = 175.8406, poly_time = 323.7462 10/27/09 17:45:18 v1.12 @ ERIK-DATOR, 54712 relations found: 17242 full + 37470 from 548555 partial, using 22772460 polys (501 A polys) 10/27/09 17:45:18 v1.12 @ ERIK-DATOR, on average, sieving found 0.02 rels/poly and 714.15 rels/sec 10/27/09 17:45:18 v1.12 @ ERIK-DATOR, trial division touched 13327686 sieve locations out of 20893823139840 10/27/09 17:45:18 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/27/09 17:45:19 v1.12 @ ERIK-DATOR, begin with 565797 relations 10/27/09 17:45:19 v1.12 @ ERIK-DATOR, reduce to 119482 relations in 11 passes 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, recovered 119482 relations 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, recovered 87233 polynomials 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, attempting to build 54712 cycles 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, found 54712 cycles in 5 passes 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 1 : 17242 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 2 : 12987 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 3 : 10242 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 4 : 6560 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 5 : 3769 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 6 : 1911 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 7 : 1038 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, length 9+: 963 10/27/09 17:45:24 v1.12 @ ERIK-DATOR, largest cycle: 16 relations 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, matrix is 54371 x 54712 (11.1 MB) with weight 2693387 (49.23/col) 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, sparse part has weight 2693387 (49.23/col) 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, filtering completed in 3 passes 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, matrix is 48327 x 48390 (10.0 MB) with weight 2415324 (49.91/col) 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, sparse part has weight 2415324 (49.91/col) 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, matrix is 48279 x 48390 (8.4 MB) with weight 2085580 (43.10/col) 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, sparse part has weight 1899415 (39.25/col) 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/27/09 17:45:25 v1.12 @ ERIK-DATOR, using block size 19356 for processor cache size 2048 kB 10/27/09 17:45:26 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/27/09 17:45:26 v1.12 @ ERIK-DATOR, memory use: 7.5 MB 10/27/09 17:45:42 v1.12 @ ERIK-DATOR, lanczos halted after 764 iterations (dim = 48277) 10/27/09 17:45:42 v1.12 @ ERIK-DATOR, recovered 15 nontrivial dependencies 10/27/09 17:45:43 v1.12 @ ERIK-DATOR, prp38 = 40936918812214106518239018554059251721 10/27/09 17:45:50 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 23.2130 seconds. 10/27/09 17:45:50 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 8.6580 seconds. 10/27/09 17:45:50 v1.12 @ ERIK-DATOR, SIQS elapsed time = 824.1340 seconds.
(65·10107+61)/9 = 7(2)1069<108> = 3 · 23 · C107
C107 = P47 · P60
P47 = 79042814270215615286909496928517614545370473299<47>
P60 = 132421761857768186465514068388207008726242724827202973362059<60>
Number: 72229_107 N=10466988727858293075684380032206119162640901771336553945249597423510466988727858293075684380032206119162641 ( 107 digits) SNFS difficulty: 110 digits. Divisors found: r1=79042814270215615286909496928517614545370473299 (pp47) r2=132421761857768186465514068388207008726242724827202973362059 (pp60) Version: Msieve-1.40 Total time: 0.81 hours. Scaled time: 0.81 units (timescale=1.005). Factorization parameters were as follows: n: 10466988727858293075684380032206119162640901771336553945249597423510466988727858293075684380032206119162641 m: 5000000000000000000000 deg: 5 c5: 52 c0: 1525 skew: 1.97 type: snfs lss: 1 rlim: 480000 alim: 480000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 480000/480000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [240000, 390001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46369 x 46594 Total sieving time: 0.79 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110.000,5,0,0,0,0,0,0,0,0,480000,480000,25,25,44,44,2.2,2.2,50000 total time: 0.81 hours. --------- CPU info (if available) ----------
(65·10135-11)/9 = 7(2)1341<136> = 3 · 19 · 8053 · 180391 · 10080019 · C118
C118 = P47 · P72
P47 = 47143046448625917952027767536030904815495237561<47>
P72 = 183545791821273701961220689454604108763314382917801245535477001041814229<72>
Number: 72221_135 N=8652907789280129252198822257687729096160252806243514414209614921213401995731190366456215067084773588979155172785055469 ( 118 digits) SNFS difficulty: 136 digits. Divisors found: r1=47143046448625917952027767536030904815495237561 (pp47) r2=183545791821273701961220689454604108763314382917801245535477001041814229 (pp72) Version: Msieve v. 1.43 Total time: 6.58 hours. Scaled time: 5.15 units (timescale=0.782). Factorization parameters were as follows: n: 8652907789280129252198822257687729096160252806243514414209614921213401995731190366456215067084773588979155172785055469 m: 1000000000000000000000000000 deg: 5 c5: 65 c0: -11 skew: 0.70 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1190001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 201818 x 202043 Total sieving time: 5.65 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.21 hours. Time per square root: 0.61 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 6.58 hours. --------- CPU info (if available) ----------
(65·10111+61)/9 = 7(2)1109<112> = C112
C112 = P32 · P32 · P50
P32 = 14428621383131545651735579585663<32>
P32 = 18758370112130867494247173697377<32>
P50 = 26683998610560713798271832980145381354268977407179<50>
Number: 72229_111 N=7222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 112 digits) SNFS difficulty: 112 digits. Divisors found: r1=14428621383131545651735579585663 (pp32) r2=18758370112130867494247173697377 (pp32) r3=26683998610560713798271832980145381354268977407179 (pp50) Version: Msieve-1.40 Total time: 1.11 hours. Scaled time: 1.06 units (timescale=0.954). Factorization parameters were as follows: n: 7222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 m: 10000000000000000000000 deg: 5 c5: 650 c0: 61 skew: 0.62 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 57157 x 57383 Total sieving time: 1.07 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112.000,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 1.11 hours. --------- CPU info (if available) ----------
(22·10117-7)/3 = 7(3)1161<118> = 131 · 2340703 · 874029479 · C101
C101 = P32 · P69
P32 = 73599418399459784738905045672909<32>
P69 = 371777716502150259894247513418601899164271481551734543209609930979997<69>
Number: 73331_117 N=27362623708437501481435967480647416522582967037243405954798475215929239453117920160504986430683801273 ( 101 digits) SNFS difficulty: 118 digits. Divisors found: r1=73599418399459784738905045672909 (pp32) r2=371777716502150259894247513418601899164271481551734543209609930979997 (pp69) Version: Msieve-1.40 Total time: 1.12 hours. Scaled time: 1.10 units (timescale=0.985). Factorization parameters were as follows: n: 27362623708437501481435967480647416522582967037243405954798475215929239453117920160504986430683801273 m: 200000000000000000000000 deg: 5 c5: 275 c0: -28 skew: 0.63 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 535001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79136 x 79384 Total sieving time: 1.08 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118.000,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 1.12 hours. --------- CPU info (if available) ----------
(65·10115+61)/9 = 7(2)1149<116> = 205397 · C111
C111 = P42 · P70
P42 = 328435207543886906309884067988371073769559<42>
P70 = 1070599521074343091789542842721123619754026479476702613661538459978023<70>
Number: 72229_115 N=351622575900437797154886498937288384067061457675731496673379953077319640609269961207915511045547024650906401857 ( 111 digits) SNFS difficulty: 116 digits. Divisors found: r1=328435207543886906309884067988371073769559 (pp42) r2=1070599521074343091789542842721123619754026479476702613661538459978023 (pp70) Version: Msieve v. 1.43 Total time: 2.15 hours. Scaled time: 1.69 units (timescale=0.786). Factorization parameters were as follows: n: 351622575900437797154886498937288384067061457675731496673379953077319640609269961207915511045547024650906401857 m: 100000000000000000000000 deg: 5 c5: 65 c0: 61 skew: 0.99 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 560001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 71961 x 72186 Total sieving time: 2.09 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 2.15 hours. --------- CPU info (if available) ----------
(65·10117+61)/9 = 7(2)1169<118> = 47 · 55405520323687<14> · C103
C103 = P38 · P65
P38 = 42093341119931891329454249457027079313<38>
P65 = 65888034547824796575698532984997713657408166425194274082537404797<65>
Number: 72229_117 N=2773447513943446569817561422303395282509228786333955391050715933373497446320373021357915263447705664461 ( 103 digits) SNFS difficulty: 120 digits. Divisors found: r1=42093341119931891329454249457027079313 (pp38) r2=65888034547824796575698532984997713657408166425194274082537404797 (pp65) Version: Msieve-1.40 Total time: 1.41 hours. Scaled time: 1.34 units (timescale=0.948). Factorization parameters were as follows: n: 2773447513943446569817561422303395282509228786333955391050715933373497446320373021357915263447705664461 m: 500000000000000000000000 deg: 5 c5: 52 c0: 1525 skew: 1.97 type: snfs lss: 1 rlim: 710000 alim: 710000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 710000/710000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [355000, 605001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 90219 x 90444 Total sieving time: 1.34 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,120.000,5,0,0,0,0,0,0,0,0,710000,710000,25,25,46,46,2.2,2.2,50000 total time: 1.41 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GMP-ECM
Factorizations of 722...229 and Factorizations of 733...331 have been extended up to n=200. Composite numbers that appeared newly have passed 150 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / Msieve, GGNFS / Oct 27, 2009
(73·10228-1)/9 = 8(1)228<229> = C229
C229 = P95 · P134
P95 = 82040674460345276418092109635781689113066914859498489130035782209201051170000071099537504824993<95>
P134 = 98866948187166021079702228415749082839158698719028540432556084739146464048408908049274520025910320723752161628884636948875147203809127<134>
Sieving ~ 240 CPU days + 203 hrs Lanczos with Msieve 1.42 Sun Oct 18 23:45:19 2009 Sun Oct 18 23:45:19 2009 Sun Oct 18 23:45:19 2009 Msieve v. 1.42 Sun Oct 18 23:45:19 2009 random seeds: 6d66a88d 9990fcd1 Sun Oct 18 23:45:19 2009 factoring 8111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 (229 digits) Sun Oct 18 23:45:21 2009 no P-1/P+1/ECM available, skipping Sun Oct 18 23:45:21 2009 commencing number field sieve (229-digit input) Sun Oct 18 23:45:21 2009 R0: -100000000000000000000000000000000000000 Sun Oct 18 23:45:21 2009 R1: 1 Sun Oct 18 23:45:21 2009 A0: -1 Sun Oct 18 23:45:21 2009 A1: 0 Sun Oct 18 23:45:21 2009 A2: 0 Sun Oct 18 23:45:21 2009 A3: 0 Sun Oct 18 23:45:21 2009 A4: 0 Sun Oct 18 23:45:21 2009 A5: 0 Sun Oct 18 23:45:21 2009 A6: 73 Sun Oct 18 23:45:21 2009 skew 1.00, size 2.476818e-11, alpha 1.224717, combined = 1.221636e-12 Sun Oct 18 23:45:21 2009 Sun Oct 18 23:45:21 2009 commencing relation filtering Sun Oct 18 23:45:21 2009 estimated available RAM is 7924.4 MB Sun Oct 18 23:45:21 2009 commencing duplicate removal, pass 1 Sun Oct 18 23:45:36 2009 error -11 reading relation 2694508 Sun Oct 18 23:45:37 2009 error -15 reading relation 2872732 Sun Oct 18 23:46:12 2009 error -11 reading relation 9214336 Sun Oct 18 23:46:56 2009 error -11 reading relation 17266893 Sun Oct 18 23:47:08 2009 error -11 reading relation 19445707 Sun Oct 18 23:47:49 2009 error -11 reading relation 26762938 Sun Oct 18 23:48:17 2009 error -11 reading relation 31897864 Sun Oct 18 23:48:20 2009 error -11 reading relation 32438426 Sun Oct 18 23:48:24 2009 error -11 reading relation 33197093 Sun Oct 18 23:48:36 2009 error -11 reading relation 35426385 Sun Oct 18 23:49:25 2009 error -11 reading relation 43496383 Sun Oct 18 23:50:28 2009 error -11 reading relation 55107936 Sun Oct 18 23:51:15 2009 error -11 reading relation 60505135 Sun Oct 18 23:51:38 2009 error -6 reading relation 64394186 Sun Oct 18 23:51:50 2009 error -11 reading relation 66647536 Sun Oct 18 23:52:00 2009 error -11 reading relation 68358255 Sun Oct 18 23:52:09 2009 error -6 reading relation 70104845 Sun Oct 18 23:52:57 2009 error -11 reading relation 78093580 Sun Oct 18 23:53:09 2009 error -11 reading relation 80154003 Sun Oct 18 23:53:26 2009 error -11 reading relation 83269566 Sun Oct 18 23:53:38 2009 error -11 reading relation 85439373 Sun Oct 18 23:53:57 2009 error -11 reading relation 88668784 Sun Oct 18 23:54:02 2009 error -11 reading relation 89540526 Sun Oct 18 23:54:06 2009 found 15179751 hash collisions in 90256777 relations Sun Oct 18 23:54:22 2009 commencing duplicate removal, pass 2 Sun Oct 18 23:55:57 2009 found 14787900 duplicates and 75468877 unique relations Sun Oct 18 23:55:57 2009 memory use: 426.4 MB Sun Oct 18 23:55:57 2009 reading ideals above 83951616 Sun Oct 18 23:55:57 2009 commencing singleton removal, initial pass Mon Oct 19 00:04:47 2009 memory use: 1193.5 MB Mon Oct 19 00:04:47 2009 reading all ideals from disk Mon Oct 19 00:04:55 2009 memory use: 1253.5 MB Mon Oct 19 00:05:02 2009 commencing in-memory singleton removal Mon Oct 19 00:05:09 2009 begin with 75468877 relations and 71429593 unique ideals Mon Oct 19 00:06:20 2009 reduce to 33368308 relations and 23102541 ideals in 19 passes Mon Oct 19 00:06:20 2009 max relations containing the same ideal: 28 Mon Oct 19 00:06:25 2009 reading ideals above 720000 Mon Oct 19 00:06:25 2009 commencing singleton removal, initial pass Mon Oct 19 00:11:51 2009 memory use: 596.8 MB Mon Oct 19 00:11:52 2009 reading all ideals from disk Mon Oct 19 00:11:59 2009 memory use: 1246.6 MB Mon Oct 19 00:12:08 2009 keeping 32677867 ideals with weight <= 200, target excess is 174639 Mon Oct 19 00:12:16 2009 commencing in-memory singleton removal Mon Oct 19 00:12:24 2009 begin with 33368308 relations and 32677867 unique ideals Mon Oct 19 00:14:33 2009 reduce to 33118187 relations and 32426869 ideals in 16 passes Mon Oct 19 00:14:33 2009 max relations containing the same ideal: 200 Mon Oct 19 00:15:09 2009 removing 2785840 relations and 2541472 ideals in 244368 cliques Mon Oct 19 00:15:10 2009 commencing in-memory singleton removal Mon Oct 19 00:15:18 2009 begin with 30332347 relations and 32426869 unique ideals Mon Oct 19 00:16:45 2009 reduce to 30140693 relations and 29691582 ideals in 12 passes Mon Oct 19 00:16:45 2009 max relations containing the same ideal: 196 Mon Oct 19 00:17:17 2009 removing 2018847 relations and 1774479 ideals in 244368 cliques Mon Oct 19 00:17:18 2009 commencing in-memory singleton removal Mon Oct 19 00:17:25 2009 begin with 28121846 relations and 29691582 unique ideals Mon Oct 19 00:18:19 2009 reduce to 28011472 relations and 27805669 ideals in 8 passes Mon Oct 19 00:18:19 2009 max relations containing the same ideal: 187 Mon Oct 19 00:18:58 2009 relations with 0 large ideals: 6501 Mon Oct 19 00:18:58 2009 relations with 1 large ideals: 1045 Mon Oct 19 00:18:58 2009 relations with 2 large ideals: 6849 Mon Oct 19 00:18:58 2009 relations with 3 large ideals: 76396 Mon Oct 19 00:18:58 2009 relations with 4 large ideals: 501001 Mon Oct 19 00:18:58 2009 relations with 5 large ideals: 1974881 Mon Oct 19 00:18:58 2009 relations with 6 large ideals: 4825536 Mon Oct 19 00:18:58 2009 relations with 7+ large ideals: 20619263 Mon Oct 19 00:18:58 2009 commencing 2-way merge Mon Oct 19 00:19:39 2009 reduce to 16924970 relation sets and 16719168 unique ideals Mon Oct 19 00:19:39 2009 ignored 1 oversize relation sets Mon Oct 19 00:19:39 2009 commencing full merge Mon Oct 19 00:27:27 2009 memory use: 2107.1 MB Mon Oct 19 00:27:30 2009 found 8999888 cycles, need 8981368 Mon Oct 19 00:27:36 2009 weight of 8981368 cycles is about 629038424 (70.04/cycle) Mon Oct 19 00:27:36 2009 distribution of cycle lengths: Mon Oct 19 00:27:36 2009 1 relations: 1407270 Mon Oct 19 00:27:36 2009 2 relations: 1249187 Mon Oct 19 00:27:36 2009 3 relations: 1131311 Mon Oct 19 00:27:36 2009 4 relations: 950440 Mon Oct 19 00:27:36 2009 5 relations: 792936 Mon Oct 19 00:27:36 2009 6 relations: 650379 Mon Oct 19 00:27:36 2009 7 relations: 540476 Mon Oct 19 00:27:36 2009 8 relations: 441114 Mon Oct 19 00:27:36 2009 9 relations: 358546 Mon Oct 19 00:27:36 2009 10+ relations: 1459709 Mon Oct 19 00:27:36 2009 heaviest cycle: 28 relations Mon Oct 19 00:27:38 2009 commencing cycle optimization Mon Oct 19 00:28:01 2009 start with 49064201 relations Mon Oct 19 00:29:42 2009 pruned 1034355 relations Mon Oct 19 00:29:42 2009 memory use: 1642.5 MB Mon Oct 19 00:29:43 2009 distribution of cycle lengths: Mon Oct 19 00:29:43 2009 1 relations: 1407270 Mon Oct 19 00:29:43 2009 2 relations: 1273515 Mon Oct 19 00:29:43 2009 3 relations: 1165835 Mon Oct 19 00:29:43 2009 4 relations: 965226 Mon Oct 19 00:29:43 2009 5 relations: 804038 Mon Oct 19 00:29:43 2009 6 relations: 654272 Mon Oct 19 00:29:43 2009 7 relations: 539463 Mon Oct 19 00:29:43 2009 8 relations: 435494 Mon Oct 19 00:29:43 2009 9 relations: 353137 Mon Oct 19 00:29:43 2009 10+ relations: 1383118 Mon Oct 19 00:29:43 2009 heaviest cycle: 28 relations Mon Oct 19 00:30:03 2009 RelProcTime: 2682 Mon Oct 19 00:30:03 2009 Mon Oct 19 00:30:03 2009 commencing linear algebra Mon Oct 19 00:30:10 2009 read 8981368 cycles Mon Oct 19 00:30:29 2009 cycles contain 27737847 unique relations Mon Oct 19 00:33:24 2009 read 27737847 relations Mon Oct 19 00:34:16 2009 using 20 quadratic characters above 1073741672 Mon Oct 19 00:36:34 2009 building initial matrix Mon Oct 19 00:42:04 2009 memory use: 3378.6 MB Mon Oct 19 00:42:10 2009 read 8981368 cycles Mon Oct 19 00:42:15 2009 matrix is 8981191 x 8981368 (2704.3 MB) with weight 782303917 (87.10/col) Mon Oct 19 00:42:15 2009 sparse part has weight 610125085 (67.93/col) Mon Oct 19 00:44:22 2009 filtering completed in 2 passes Mon Oct 19 00:44:24 2009 matrix is 8977172 x 8977349 (2704.0 MB) with weight 782193362 (87.13/col) Mon Oct 19 00:44:24 2009 sparse part has weight 610095193 (67.96/col) Mon Oct 19 00:45:05 2009 read 8977349 cycles Mon Oct 19 00:45:10 2009 matrix is 8977172 x 8977349 (2704.0 MB) with weight 782193362 (87.13/col) Mon Oct 19 00:45:10 2009 sparse part has weight 610095193 (67.96/col) Mon Oct 19 00:45:10 2009 saving the first 48 matrix rows for later Mon Oct 19 00:45:14 2009 matrix is 8977124 x 8977349 (2578.3 MB) with weight 627869172 (69.94/col) Mon Oct 19 00:45:14 2009 sparse part has weight 586117479 (65.29/col) Mon Oct 19 00:45:14 2009 matrix includes 64 packed rows Mon Oct 19 00:45:14 2009 using block size 65536 for processor cache size 6144 kB Mon Oct 19 00:45:49 2009 commencing Lanczos iteration (4 threads) Mon Oct 19 00:45:49 2009 memory use: 2813.4 MB Tue Oct 27 11:21:10 2009 lanczos halted after 141967 iterations (dim = 8977122) Tue Oct 27 11:21:29 2009 recovered 30 nontrivial dependencies Tue Oct 27 11:21:30 2009 BLanczosTime: 730287 Tue Oct 27 11:21:30 2009 Tue Oct 27 11:21:30 2009 commencing square root phase Tue Oct 27 11:21:30 2009 reading relations for dependency 1 Tue Oct 27 11:21:32 2009 read 4490596 cycles Tue Oct 27 11:21:42 2009 cycles contain 16870428 unique relations Tue Oct 27 11:23:42 2009 read 16870428 relations Tue Oct 27 11:25:27 2009 multiplying 13873600 relations Tue Oct 27 12:05:42 2009 multiply complete, coefficients have about 419.03 million bits Tue Oct 27 12:05:46 2009 initial square root is modulo 33011653 Tue Oct 27 13:04:31 2009 sqrtTime: 6181 Tue Oct 27 13:04:31 2009 prp95 factor: 82040674460345276418092109635781689113066914859498489130035782209201051170000071099537504824993 Tue Oct 27 13:04:31 2009 prp134 factor: 98866948187166021079702228415749082839158698719028540432556084739146464048408908049274520025910320723752161628884636948875147203809127 Tue Oct 27 13:04:31 2009 elapsed time 205:19:12
c229 is the largest composite number which was factored by SNFS in our tables so far. Congratulations!
(14·10173-17)/3 = 4(6)1721<174> = 13 · 859 · 5998697 · 13845991 · 409103341929942277576340139824293<33> · C124
C124 = P55 · P69
P55 = 4187044847170696975495032484814703095237037002928822757<55>
P69 = 293730235942494492861511218837078094643977016140350496314412187630029<69>
Number: n N=1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953 ( 124 digits) Divisors found: Wed Oct 28 01:20:11 2009 prp55 factor: 4187044847170696975495032484814703095237037002928822757 Wed Oct 28 01:20:11 2009 prp69 factor: 293730235942494492861511218837078094643977016140350496314412187630029 Wed Oct 28 01:20:11 2009 elapsed time 02:55:22 (Msieve 1.43 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.12 hours. Scaled time: 44.11 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_6_172_1 n: 1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953 Y0: -679980794164857001434425 Y1: 20228359617079 c0: 574058941022120395736367581472 c1: 15189963738966010296654600 c2: -20437377482172436876 c3: -1303581716936282 c4: 1749624141 c5: 8460 skew: 186678.04 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5100269) Primes: RFBsize:348513, AFBsize:349151, largePrimes:15654479 encountered Relations: rels:14625624, finalFF:735763 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1637074 hash collisions in 15982632 relations Msieve: matrix is 846990 x 847215 (231.9 MB) Total sieving time: 23.66 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,28,28,56,56,2.4,2.4,60000 total time: 24.12 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Oct 27, 2009
(65·10157-11)/9 = 7(2)1561<158> = 467 · 881 · 34893421 · 76139466457<11> · 45062034422087<14> · 16026975876783402520793945195297<32> · C89
C89 = P37 · P53
P37 = 2781337945606846567176996666297459217<37>
P53 = 32893382824650786898544395629261720525621863468742293<53>
ue Oct 27 07:50:11 2009 Msieve v. 1.42 Tue Oct 27 07:50:11 2009 random seeds: f5d8dff7 b54d31b6 Tue Oct 27 07:50:11 2009 factoring 91487613809573751425008504937197311213425423081348495271434108401057020019688124450564581 (89 digits) Tue Oct 27 07:50:13 2009 no P-1/P+1/ECM available, skipping Tue Oct 27 07:50:13 2009 commencing quadratic sieve (89-digit input) Tue Oct 27 07:50:13 2009 using multiplier of 5 Tue Oct 27 07:50:13 2009 using 64kb Pentium 4 sieve core Tue Oct 27 07:50:13 2009 sieve interval: 17 blocks of size 65536 Tue Oct 27 07:50:13 2009 processing polynomials in batches of 6 Tue Oct 27 07:50:13 2009 using a sieve bound of 1561823 (59333 primes) Tue Oct 27 07:50:13 2009 using large prime bound of 124945840 (26 bits) Tue Oct 27 07:50:13 2009 using double large prime bound of 375058674136800 (42-49 bits) Tue Oct 27 07:50:13 2009 using trial factoring cutoff of 49 bits Tue Oct 27 07:50:13 2009 polynomial 'A' values have 11 factors Tue Oct 27 09:57:07 2009 59872 relations (15645 full + 44227 combined from 638789 partial), need 59429 Tue Oct 27 09:57:09 2009 begin with 654434 relations Tue Oct 27 09:57:10 2009 reduce to 147759 relations in 9 passes Tue Oct 27 09:57:10 2009 attempting to read 147759 relations Tue Oct 27 09:57:14 2009 recovered 147759 relations Tue Oct 27 09:57:14 2009 recovered 127871 polynomials Tue Oct 27 09:57:14 2009 attempting to build 59872 cycles Tue Oct 27 09:57:14 2009 found 59872 cycles in 6 passes Tue Oct 27 09:57:14 2009 distribution of cycle lengths: Tue Oct 27 09:57:14 2009 length 1 : 15645 Tue Oct 27 09:57:14 2009 length 2 : 11335 Tue Oct 27 09:57:14 2009 length 3 : 10329 Tue Oct 27 09:57:14 2009 length 4 : 8029 Tue Oct 27 09:57:14 2009 length 5 : 5649 Tue Oct 27 09:57:14 2009 length 6 : 3678 Tue Oct 27 09:57:14 2009 length 7 : 2279 Tue Oct 27 09:57:14 2009 length 9+: 2928 Tue Oct 27 09:57:14 2009 largest cycle: 18 relations Tue Oct 27 09:57:14 2009 matrix is 59333 x 59872 (15.0 MB) with weight 3697274 (61.75/col) Tue Oct 27 09:57:14 2009 sparse part has weight 3697274 (61.75/col) Tue Oct 27 09:57:16 2009 filtering completed in 3 passes Tue Oct 27 09:57:16 2009 matrix is 55708 x 55771 (14.0 MB) with weight 3439964 (61.68/col) Tue Oct 27 09:57:16 2009 sparse part has weight 3439964 (61.68/col) Tue Oct 27 09:57:16 2009 saving the first 48 matrix rows for later Tue Oct 27 09:57:16 2009 matrix is 55660 x 55771 (10.7 MB) with weight 2917754 (52.32/col) Tue Oct 27 09:57:16 2009 sparse part has weight 2471995 (44.32/col) Tue Oct 27 09:57:16 2009 matrix includes 64 packed rows Tue Oct 27 09:57:16 2009 using block size 21845 for processor cache size 512 kB Tue Oct 27 09:57:17 2009 commencing Lanczos iteration Tue Oct 27 09:57:17 2009 memory use: 9.9 MB Tue Oct 27 09:57:50 2009 lanczos halted after 881 iterations (dim = 55654) Tue Oct 27 09:57:50 2009 recovered 15 nontrivial dependencies Tue Oct 27 09:57:54 2009 prp37 factor: 2781337945606846567176996666297459217 Tue Oct 27 09:57:54 2009 prp53 factor: 32893382824650786898544395629261720525621863468742293 Tue Oct 27 09:57:54 2009 elapsed time 02:07:43
(62·10143-71)/9 = 6(8)1421<144> = 33 · 213480877273187<15> · C129
C129 = P51 · P79
P51 = 103755478159889828751485057885748821715212892879557<51>
P79 = 1151901651383832725319629282005586242558015694434569307514321563885225997402317<79>
Number: 68881_143 N=119516106632496283665894694538282365100792261988213590436675492772858536245889750978063107224994882728409718860150351667953733569 ( 129 digits) SNFS difficulty: 146 digits. Divisors found: r1=103755478159889828751485057885748821715212892879557 (pp51) r2=1151901651383832725319629282005586242558015694434569307514321563885225997402317 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.93 hours. Scaled time: 43.67 units (timescale=1.991). Factorization parameters were as follows: name: 68881_143 n: 119516106632496283665894694538282365100792261988213590436675492772858536245889750978063107224994882728409718860150351667953733569 m: 50000000000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2855001) Primes: RFBsize:142718, AFBsize:142742, largePrimes:4317703 encountered Relations: rels:4561580, finalFF:361745 Max relations in full relation-set: 28 Initial matrix: 285527 x 361745 with sparse part having weight 41726282. Pruned matrix : 260885 x 262376 with weight 28387579. Total sieving time: 20.68 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.99 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 21.93 hours. --------- CPU info (if available) ----------
(61·10142+11)/9 = 6(7)1419<143> = 3 · 33353 · 19906792880765389<17> · C122
C122 = P34 · P88
P34 = 6333596761890210427769088539424107<34>
P88 = 5372537550577884027041044748259697776204681547417165620095560642583786697767311429280647<88>
Number: 67779_142 N=34027486433473648903006226725877484429114615245532918207296038291178904927843612374299078287204050202839724770542660357229 ( 122 digits) SNFS difficulty: 145 digits. Divisors found: r1=6333596761890210427769088539424107 (pp34) r2=5372537550577884027041044748259697776204681547417165620095560642583786697767311429280647 (pp88) Version: Msieve-1.40 Total time: 11.35 hours. Scaled time: 23.67 units (timescale=2.085). Factorization parameters were as follows: name: 67779_142 n: 34027486433473648903006226725877484429114615245532918207296038291178904927843612374299078287204050202839724770542660357229 m: 50000000000000000000000000000 deg: 5 c5: 244 c0: 1375 skew: 1.41 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 2345001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 315046 x 315276 Total sieving time: 10.88 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.34 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,145.000,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 11.35 hours. --------- CPU info (if available) ----------
(65·10109-11)/9 = 7(2)1081<110> = 52391597 · 2542076848723<13> · C90
C90 = P33 · P58
P33 = 137580139588561846772155174238321<33>
P58 = 3941529571374024940821143658563287380985182879516137168171<58>
Tue Oct 27 14:22:59 2009 Msieve v. 1.42 Tue Oct 27 14:22:59 2009 random seeds: e7404b6c 37a5d6c9 Tue Oct 27 14:22:59 2009 factoring 542276188622082695982597047253643601927608428763762474084725223935309903592111092809680891 (90 digits) Tue Oct 27 14:22:59 2009 searching for 15-digit factors Tue Oct 27 14:23:00 2009 commencing quadratic sieve (90-digit input) Tue Oct 27 14:23:00 2009 using multiplier of 1 Tue Oct 27 14:23:00 2009 using 32kb Intel Core sieve core Tue Oct 27 14:23:00 2009 sieve interval: 36 blocks of size 32768 Tue Oct 27 14:23:00 2009 processing polynomials in batches of 6 Tue Oct 27 14:23:00 2009 using a sieve bound of 1618559 (61176 primes) Tue Oct 27 14:23:00 2009 using large prime bound of 135958956 (27 bits) Tue Oct 27 14:23:00 2009 using double large prime bound of 436650541653060 (42-49 bits) Tue Oct 27 14:23:00 2009 using trial factoring cutoff of 49 bits Tue Oct 27 14:23:00 2009 polynomial 'A' values have 11 factors Tue Oct 27 15:37:19 2009 61746 relations (16189 full + 45557 combined from 673042 partial), need 61272 Tue Oct 27 15:37:20 2009 begin with 689231 relations Tue Oct 27 15:37:21 2009 reduce to 152393 relations in 13 passes Tue Oct 27 15:37:21 2009 attempting to read 152393 relations Tue Oct 27 15:37:22 2009 recovered 152393 relations Tue Oct 27 15:37:23 2009 recovered 129486 polynomials Tue Oct 27 15:37:23 2009 attempting to build 61746 cycles Tue Oct 27 15:37:23 2009 found 61746 cycles in 6 passes Tue Oct 27 15:37:23 2009 distribution of cycle lengths: Tue Oct 27 15:37:23 2009 length 1 : 16189 Tue Oct 27 15:37:23 2009 length 2 : 11482 Tue Oct 27 15:37:23 2009 length 3 : 10776 Tue Oct 27 15:37:23 2009 length 4 : 8189 Tue Oct 27 15:37:23 2009 length 5 : 6077 Tue Oct 27 15:37:23 2009 length 6 : 3830 Tue Oct 27 15:37:23 2009 length 7 : 2326 Tue Oct 27 15:37:23 2009 length 9+: 2877 Tue Oct 27 15:37:23 2009 largest cycle: 18 relations Tue Oct 27 15:37:23 2009 matrix is 61176 x 61746 (15.6 MB) with weight 3833340 (62.08/col) Tue Oct 27 15:37:23 2009 sparse part has weight 3833340 (62.08/col) Tue Oct 27 15:37:24 2009 filtering completed in 3 passes Tue Oct 27 15:37:24 2009 matrix is 57219 x 57282 (14.4 MB) with weight 3554565 (62.05/col) Tue Oct 27 15:37:24 2009 sparse part has weight 3554565 (62.05/col) Tue Oct 27 15:37:24 2009 saving the first 48 matrix rows for later Tue Oct 27 15:37:24 2009 matrix is 57171 x 57282 (10.9 MB) with weight 2991811 (52.23/col) Tue Oct 27 15:37:24 2009 sparse part has weight 2516615 (43.93/col) Tue Oct 27 15:37:24 2009 matrix includes 64 packed rows Tue Oct 27 15:37:24 2009 using block size 22912 for processor cache size 1024 kB Tue Oct 27 15:37:25 2009 commencing Lanczos iteration Tue Oct 27 15:37:25 2009 memory use: 10.1 MB Tue Oct 27 15:37:47 2009 lanczos halted after 906 iterations (dim = 57169) Tue Oct 27 15:37:47 2009 recovered 17 nontrivial dependencies Tue Oct 27 15:37:48 2009 prp33 factor: 137580139588561846772155174238321 Tue Oct 27 15:37:48 2009 prp58 factor: 3941529571374024940821143658563287380985182879516137168171 Tue Oct 27 15:37:48 2009 elapsed time 01:14:49
(65·10122+7)/9 = 7(2)1213<123> = 32 · 103 · 241 · 1237726493<10> · 38487393601<11> · C98
C98 = P44 · P55
P44 = 11234321827921433174867669812024514743374959<44>
P55 = 6040654844216834979500238535767959586811972858326905147<55>
Number: 72223_122 N=67862660571324533702443114986666233918366106026626913499884976055568855064095612384649480248013973 ( 98 digits) SNFS difficulty: 125 digits. Divisors found: r1=11234321827921433174867669812024514743374959 (pp44) r2=6040654844216834979500238535767959586811972858326905147 (pp55) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.78 hours. Scaled time: 5.49 units (timescale=1.977). Factorization parameters were as follows: name: 72223_122 n: 67862660571324533702443114986666233918366106026626913499884976055568855064095612384649480248013973 m: 5000000000000000000000000 deg: 5 c5: 52 c0: 175 skew: 1.27 type: snfs lss: 1 rlim: 850000 alim: 850000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 850000/850000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [425000, 675001) Primes: RFBsize:67617, AFBsize:67460, largePrimes:2468450 encountered Relations: rels:2389203, finalFF:214856 Max relations in full relation-set: 28 Initial matrix: 135144 x 214856 with sparse part having weight 16202448. Pruned matrix : 112573 x 113312 with weight 5963078. Total sieving time: 2.61 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,850000,850000,26,26,46,46,2.3,2.3,50000 total time: 2.78 hours. --------- CPU info (if available) ----------
(65·10161+7)/9 = 7(2)1603<162> = 3 · 73 · 4787 · 197829613 · 123623015233<12> · 46276777179460717<17> · 63995894158538638194695901113<29> · C91
C91 = P40 · P52
P40 = 2848409643006055036625993604980263881331<40>
P52 = 3339296686306871044335539412177570631478147640034229<52>
Tue Oct 27 16:31:08 2009 Msieve v. 1.42 Tue Oct 27 16:31:08 2009 random seeds: b1198b50 756956c1 Tue Oct 27 16:31:08 2009 factoring 9511684882134657103583478171233840687877877382184865824492238380051531346401527161234078799 (91 digits) Tue Oct 27 16:31:09 2009 searching for 15-digit factors Tue Oct 27 16:31:10 2009 commencing quadratic sieve (91-digit input) Tue Oct 27 16:31:10 2009 using multiplier of 23 Tue Oct 27 16:31:10 2009 using 32kb Intel Core sieve core Tue Oct 27 16:31:10 2009 sieve interval: 36 blocks of size 32768 Tue Oct 27 16:31:10 2009 processing polynomials in batches of 6 Tue Oct 27 16:31:10 2009 using a sieve bound of 1753553 (65751 primes) Tue Oct 27 16:31:10 2009 using large prime bound of 177108853 (27 bits) Tue Oct 27 16:31:10 2009 using double large prime bound of 702801048059511 (42-50 bits) Tue Oct 27 16:31:10 2009 using trial factoring cutoff of 50 bits Tue Oct 27 16:31:10 2009 polynomial 'A' values have 12 factors Tue Oct 27 18:27:20 2009 65975 relations (16850 full + 49125 combined from 800521 partial), need 65847 Tue Oct 27 18:27:21 2009 begin with 817371 relations Tue Oct 27 18:27:22 2009 reduce to 165324 relations in 10 passes Tue Oct 27 18:27:22 2009 attempting to read 165324 relations Tue Oct 27 18:27:24 2009 recovered 165324 relations Tue Oct 27 18:27:24 2009 recovered 147877 polynomials Tue Oct 27 18:27:25 2009 attempting to build 65975 cycles Tue Oct 27 18:27:25 2009 found 65975 cycles in 6 passes Tue Oct 27 18:27:25 2009 distribution of cycle lengths: Tue Oct 27 18:27:25 2009 length 1 : 16850 Tue Oct 27 18:27:25 2009 length 2 : 12355 Tue Oct 27 18:27:25 2009 length 3 : 11631 Tue Oct 27 18:27:25 2009 length 4 : 8792 Tue Oct 27 18:27:25 2009 length 5 : 6353 Tue Oct 27 18:27:25 2009 length 6 : 4131 Tue Oct 27 18:27:25 2009 length 7 : 2598 Tue Oct 27 18:27:25 2009 length 9+: 3265 Tue Oct 27 18:27:25 2009 largest cycle: 22 relations Tue Oct 27 18:27:25 2009 matrix is 65751 x 65975 (16.1 MB) with weight 3946793 (59.82/col) Tue Oct 27 18:27:25 2009 sparse part has weight 3946793 (59.82/col) Tue Oct 27 18:27:26 2009 filtering completed in 3 passes Tue Oct 27 18:27:26 2009 matrix is 62108 x 62171 (15.2 MB) with weight 3745410 (60.24/col) Tue Oct 27 18:27:26 2009 sparse part has weight 3745410 (60.24/col) Tue Oct 27 18:27:26 2009 saving the first 48 matrix rows for later Tue Oct 27 18:27:26 2009 matrix is 62060 x 62171 (8.8 MB) with weight 2840677 (45.69/col) Tue Oct 27 18:27:26 2009 sparse part has weight 1934538 (31.12/col) Tue Oct 27 18:27:26 2009 matrix includes 64 packed rows Tue Oct 27 18:27:26 2009 using block size 24868 for processor cache size 1024 kB Tue Oct 27 18:27:27 2009 commencing Lanczos iteration Tue Oct 27 18:27:27 2009 memory use: 9.5 MB Tue Oct 27 18:27:49 2009 lanczos halted after 983 iterations (dim = 62058) Tue Oct 27 18:27:49 2009 recovered 16 nontrivial dependencies Tue Oct 27 18:27:50 2009 prp40 factor: 2848409643006055036625993604980263881331 Tue Oct 27 18:27:50 2009 prp52 factor: 3339296686306871044335539412177570631478147640034229 Tue Oct 27 18:27:50 2009 elapsed time 01:56:42
(65·10141-11)/9 = 7(2)1401<142> = 32 · 71 · 145991 · 3380926859<10> · 12718567937<11> · 6088571724331250328637<22> · C93
C93 = P34 · P59
P34 = 6943388399896641031086000361099687<34>
P59 = 42587586623151738614250628439153952183704337824580960958877<59>
Tue Oct 27 18:51:10 2009 Msieve v. 1.42 Tue Oct 27 18:51:10 2009 random seeds: 8c180bf0 06ebb811 Tue Oct 27 18:51:10 2009 factoring 295702154938785144292115280791360472969719657708376609043932299246578073523096330409704571499 (93 digits) Tue Oct 27 18:51:11 2009 searching for 15-digit factors Tue Oct 27 18:51:11 2009 commencing quadratic sieve (93-digit input) Tue Oct 27 18:51:11 2009 using multiplier of 59 Tue Oct 27 18:51:11 2009 using 32kb Intel Core sieve core Tue Oct 27 18:51:11 2009 sieve interval: 36 blocks of size 32768 Tue Oct 27 18:51:11 2009 processing polynomials in batches of 6 Tue Oct 27 18:51:11 2009 using a sieve bound of 1914637 (71765 primes) Tue Oct 27 18:51:11 2009 using large prime bound of 231671077 (27 bits) Tue Oct 27 18:51:11 2009 using double large prime bound of 1139644007123941 (42-51 bits) Tue Oct 27 18:51:11 2009 using trial factoring cutoff of 51 bits Tue Oct 27 18:51:11 2009 polynomial 'A' values have 12 factors Tue Oct 27 21:14:42 2009 71939 relations (18409 full + 53530 combined from 952627 partial), need 71861 Tue Oct 27 21:14:43 2009 begin with 971036 relations Tue Oct 27 21:14:44 2009 reduce to 182111 relations in 11 passes Tue Oct 27 21:14:44 2009 attempting to read 182111 relations Tue Oct 27 21:14:47 2009 recovered 182111 relations Tue Oct 27 21:14:47 2009 recovered 164123 polynomials Tue Oct 27 21:14:47 2009 attempting to build 71939 cycles Tue Oct 27 21:14:47 2009 found 71939 cycles in 6 passes Tue Oct 27 21:14:47 2009 distribution of cycle lengths: Tue Oct 27 21:14:47 2009 length 1 : 18409 Tue Oct 27 21:14:47 2009 length 2 : 13122 Tue Oct 27 21:14:47 2009 length 3 : 12329 Tue Oct 27 21:14:47 2009 length 4 : 9818 Tue Oct 27 21:14:47 2009 length 5 : 6996 Tue Oct 27 21:14:47 2009 length 6 : 4630 Tue Oct 27 21:14:47 2009 length 7 : 2874 Tue Oct 27 21:14:47 2009 length 9+: 3761 Tue Oct 27 21:14:47 2009 largest cycle: 21 relations Tue Oct 27 21:14:48 2009 matrix is 71765 x 71939 (18.4 MB) with weight 4526395 (62.92/col) Tue Oct 27 21:14:48 2009 sparse part has weight 4526395 (62.92/col) Tue Oct 27 21:14:49 2009 filtering completed in 3 passes Tue Oct 27 21:14:49 2009 matrix is 67785 x 67848 (17.4 MB) with weight 4302286 (63.41/col) Tue Oct 27 21:14:49 2009 sparse part has weight 4302286 (63.41/col) Tue Oct 27 21:14:49 2009 saving the first 48 matrix rows for later Tue Oct 27 21:14:49 2009 matrix is 67737 x 67848 (10.8 MB) with weight 3365472 (49.60/col) Tue Oct 27 21:14:49 2009 sparse part has weight 2433869 (35.87/col) Tue Oct 27 21:14:49 2009 matrix includes 64 packed rows Tue Oct 27 21:14:49 2009 using block size 27139 for processor cache size 1024 kB Tue Oct 27 21:14:50 2009 commencing Lanczos iteration Tue Oct 27 21:14:50 2009 memory use: 11.1 MB Tue Oct 27 21:15:20 2009 lanczos halted after 1073 iterations (dim = 67735) Tue Oct 27 21:15:20 2009 recovered 17 nontrivial dependencies Tue Oct 27 21:15:21 2009 prp34 factor: 6943388399896641031086000361099687 Tue Oct 27 21:15:21 2009 prp59 factor: 42587586623151738614250628439153952183704337824580960958877 Tue Oct 27 21:15:21 2009 elapsed time 02:24:11
By Jo Yeong Uk / GMP-ECM / Oct 27, 2009
(64·10152+17)/9 = 7(1)1513<153> = 31 · 2963 · 10369 · C144
C144 = P36 · P109
P36 = 283694462391482906919275678331316889<36>
P109 = 2631821231403694835169657384499841538907632715198481209702013976288681679080749181540420214573026569499688181<109>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 746633109353561737237420791374811444472516566080481664330335589383152179299440880191222604195404494840956714093295250625621585698340692598988909 (144 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5550384773 Step 1 took 4836ms Step 2 took 4587ms ********** Factor found in step 2: 283694462391482906919275678331316889 Found probable prime factor of 36 digits: 283694462391482906919275678331316889 Probable prime cofactor 2631821231403694835169657384499841538907632715198481209702013976288681679080749181540420214573026569499688181 has 109 digits
(65·10136-11)/9 = 7(2)1351<137> = 123427 · 1375629339975159871097<22> · C111
C111 = P35 · P76
P35 = 62806303538900550603721255401770903<35>
P76 = 6772609105223622686935968347184377631672554842728485633440352400986340351953<76>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 425362543212996505062160779945012195556672752416538326291513581129682622441372293849259290070706914884494623559 (111 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6175954588 Step 1 took 2668ms Step 2 took 1914ms ********** Factor found in step 2: 62806303538900550603721255401770903 Found probable prime factor of 35 digits: 62806303538900550603721255401770903 Probable prime cofactor 6772609105223622686935968347184377631672554842728485633440352400986340351953 has 76 digits
(65·10138-11)/9 = 7(2)1371<139> = 3 · 17 · 103 · 773 · 5441 · C129
C129 = P33 · P97
P33 = 112083887363024514430569516904031<33>
P97 = 2916500408302875083987535970330480585387768895593985589434940784587907313673484732150584806331979<97>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 326892703258434457249483455127619453214466851802822900044820676463512268062759713949088227925259582699844814203345266405269307349 (129 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2474648913 Step 1 took 4228ms Step 2 took 4227ms ********** Factor found in step 2: 112083887363024514430569516904031 Found probable prime factor of 33 digits: 112083887363024514430569516904031 Probable prime cofactor 2916500408302875083987535970330480585387768895593985589434940784587907313673484732150584806331979 has 97 digits
(65·10140+7)/9 = 7(2)1393<141> = 33 · 62547324597825074395248779<26> · C114
C114 = P35 · P80
P35 = 22106601597297777135014061131159201<35>
P80 = 19345339717907152871106612963136797155474171896145552677486729052119091953982231<80>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 427659717908154394995200702825198766565175314645691050004375381571272656253058536994853204719480586679929186157431 (114 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=534140875 Step 1 took 3510ms Step 2 took 3729ms ********** Factor found in step 2: 22106601597297777135014061131159201 Found probable prime factor of 35 digits: 22106601597297777135014061131159201 Probable prime cofactor 19345339717907152871106612963136797155474171896145552677486729052119091953982231 has 80 digits
By Erik Branger / YAFU, Msieve, GGNFS / Oct 27, 2009
(65·10121-11)/9 = 7(2)1201<122> = 7963 · 534570376243<12> · 73739065922107105379<20> · C87
C87 = P42 · P45
P42 = 947352483431407184943321232710242057202163<42>
P45 = 242873434001740665351347420833894420438989397<45>
10/26/09 22:29:21 v1.12 @ ERIK-DATOR, starting SIQS on c87: 230086750861062990102879505215238593179218694592354480636195783944430374045677042465711 10/26/09 22:29:21 v1.12 @ ERIK-DATOR, random seeds: 678843804, 631501508 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, n = 88 digits, 290 bits 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, factor base: 58705 primes (max prime = 1550441) 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, single large prime cutoff: 170548510 (110 * pmax) 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, double large prime range from 43 to 50 bits 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, double large prime cutoff: 656638394910403 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, using 0 large prime slices of factor base 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, polynomial A has ~ 16860432 factors 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, using multiplier of 7 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, using small prime variation correction of 19 bits 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, trial factoring cutoff at 97 bits 10/26/09 22:29:22 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/26/09 22:53:27 v1.12 @ ERIK-DATOR, sieve time = 428.5008, relation time = 216.6216, poly_time = 749.0964 10/26/09 22:53:27 v1.12 @ ERIK-DATOR, 58825 relations found: 19764 full + 39061 from 557035 partial, using 39156060 polys (551 A polys) 10/26/09 22:53:27 v1.12 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 398.98 rels/sec 10/26/09 22:53:27 v1.12 @ ERIK-DATOR, trial division touched 11945439 sieve locations out of 46190367866880 10/26/09 22:53:27 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/26/09 22:53:27 v1.12 @ ERIK-DATOR, begin with 576799 relations 10/26/09 22:53:28 v1.12 @ ERIK-DATOR, reduce to 121036 relations in 8 passes 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, recovered 121036 relations 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, recovered 98465 polynomials 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, attempting to build 58825 cycles 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, found 58825 cycles in 4 passes 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 1 : 19764 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 2 : 15983 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 3 : 10840 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 4 : 6126 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 5 : 3262 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 6 : 1595 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 7 : 705 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, length 9+: 550 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, largest cycle: 18 relations 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, matrix is 58705 x 58825 (11.7 MB) with weight 2823437 (48.00/col) 10/26/09 22:53:33 v1.12 @ ERIK-DATOR, sparse part has weight 2823437 (48.00/col) 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, filtering completed in 4 passes 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, matrix is 51811 x 51875 (10.6 MB) with weight 2563413 (49.42/col) 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, sparse part has weight 2563413 (49.42/col) 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, matrix is 51763 x 51875 (9.0 MB) with weight 2223575 (42.86/col) 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, sparse part has weight 2036371 (39.26/col) 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, using block size 20750 for processor cache size 2048 kB 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/26/09 22:53:34 v1.12 @ ERIK-DATOR, memory use: 8.0 MB 10/26/09 22:53:51 v1.12 @ ERIK-DATOR, lanczos halted after 820 iterations (dim = 51759) 10/26/09 22:53:51 v1.12 @ ERIK-DATOR, recovered 16 nontrivial dependencies 10/26/09 22:53:52 v1.12 @ ERIK-DATOR, prp45 = 242873434001740665351347420833894420438989397 10/26/09 22:53:56 v1.12 @ ERIK-DATOR, prp42 = 947352483431407184943321232710242057202163 10/26/09 22:53:56 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 23.8370 seconds. 10/26/09 22:53:56 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 5.6940 seconds. 10/26/09 22:53:56 v1.12 @ ERIK-DATOR, SIQS elapsed time = 1475.2452 seconds.
(65·10140-11)/9 = 7(2)1391<141> = 7 · 241 · C138
C138 = P61 · P78
P61 = 1977175504445211461870746854270739911051029758911560186271011<61>
P78 = 216526244460396024191855897937745004522218028630947175795677723021683328286153<78>
Number: 72221_140 N=428110386616610683000724494500428110386616610683000724494500428110386616610683000724494500428110386616610683000724494500428110386616610683 ( 138 digits) SNFS difficulty: 141 digits. Divisors found: r1=1977175504445211461870746854270739911051029758911560186271011 (pp61) r2=216526244460396024191855897937745004522218028630947175795677723021683328286153 (pp78) Version: Msieve-1.40 Total time: 5.60 hours. Scaled time: 4.90 units (timescale=0.875). Factorization parameters were as follows: n: 428110386616610683000724494500428110386616610683000724494500428110386616610683000724494500428110386616610683000724494500428110386616610683 m: 10000000000000000000000000000 deg: 5 c5: 65 c0: -11 skew: 0.70 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1610001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 234432 x 234658 Total sieving time: 5.39 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 5.60 hours. --------- CPU info (if available) ----------
(65·10129+7)/9 = 7(2)1283<130> = 73 · 2221 · 2567729 · C119
C119 = P44 · P75
P44 = 85683277507409068791600540542053437197885827<44>
P75 = 202466964608723252374887795280215191067174586508857815139998546556449041857<75>
Number: 72223_129 N=17348033114652005022752627590558703019224037688666980158306193742390894985894433406088781202803253598064633340230060739 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=85683277507409068791600540542053437197885827 (pp44) r2=202466964608723252374887795280215191067174586508857815139998546556449041857 (pp75) Version: Msieve-1.40 Total time: 2.64 hours. Scaled time: 2.63 units (timescale=0.995). Factorization parameters were as follows: n: 17348033114652005022752627590558703019224037688666980158306193742390894985894433406088781202803253598064633340230060739 m: 100000000000000000000000000 deg: 5 c5: 13 c0: 14 skew: 1.01 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 935001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 145078 x 145303 Total sieving time: 2.52 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 2.64 hours. --------- CPU info (if available) ----------
(65·10141+7)/9 = 7(2)1403<142> = 1407927869<10> · C133
C133 = P53 · P81
P53 = 12049710125367851790960582688070194854908188364815339<53>
P81 = 425709990455910147905908526532864228292366077716772356573508558892819462447043953<81>
Number: 72223_141 N=5129681982466832057731092630443713606341165636960782557122762815502036363357349113047653027331489112118869650858670674003273261595067 ( 133 digits) SNFS difficulty: 144 digits. Divisors found: r1=12049710125367851790960582688070194854908188364815339 (pp53) r2=425709990455910147905908526532864228292366077716772356573508558892819462447043953 (pp81) Version: Msieve v. 1.43 Total time: 11.54 hours. Scaled time: 9.10 units (timescale=0.789). Factorization parameters were as follows: n: 5129681982466832057731092630443713606341165636960782557122762815502036363357349113047653027331489112118869650858670674003273261595067 m: 20000000000000000000000000000 deg: 5 c5: 325 c0: 112 skew: 0.81 type: snfs lss: 1 rlim: 1760000 alim: 1760000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1760000/1760000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [880000, 1880001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 304431 x 304677 Total sieving time: 10.67 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.46 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,144.000,5,0,0,0,0,0,0,0,0,1760000,1760000,26,26,49,49,2.3,2.3,100000 total time: 11.54 hours. --------- CPU info (if available) ----------
(65·10108-11)/9 = 7(2)1071<109> = 3 · 23 · 9033556013789<13> · C95
C95 = P45 · P50
P45 = 135554491375990857956197246460694492102127861<45>
P50 = 85476966858717394152054163418298515138093927220521<50>
Number: 72221_108 N=11586786766895863381830670020753519733562146967072224373606260076037382144838546474453485035581 ( 95 digits) SNFS difficulty: 110 digits. Divisors found: r1=135554491375990857956197246460694492102127861 (pp45) r2=85476966858717394152054163418298515138093927220521 (pp50) Version: Msieve-1.40 Total time: 0.59 hours. Scaled time: 0.59 units (timescale=1.002). Factorization parameters were as follows: n: 11586786766895863381830670020753519733562146967072224373606260076037382144838546474453485035581 m: 5000000000000000000000 deg: 5 c5: 104 c0: -55 skew: 0.88 type: snfs lss: 1 rlim: 490000 alim: 490000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 490000/490000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [245000, 345001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 45830 x 46055 Total sieving time: 0.56 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,110.000,5,0,0,0,0,0,0,0,0,490000,490000,25,25,44,44,2.2,2.2,50000 total time: 0.59 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1, Msieve / Oct 27, 2009
(59·10189+13)/9 = 6(5)1887<190> = 225241963 · 31687580934872183<17> · 261849580258534788772143093627569<33> · C133
C133 = P44 · P89
P44 = 84827586340642371205886492540524983243965279<44>
P89 = 41350629053536239606694402476456416541139861065143806414400328891246290212348829620411783<89>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2453899015 Step 1 took 38020ms Step 2 took 14078ms ********** Factor found in step 2: 84827586340642371205886492540524983243965279 Found probable prime factor of 44 digits: 84827586340642371205886492540524983243965279 Probable prime cofactor 41350629053536239606694402476456416541139861065143806414400328891246290212348829620411783 has 89 digits
(11·10193+1)/3 = 3(6)1927<194> = 37 · 1949 · C189
C189 = P49 · P65 · P76
P49 = 3877282014566842518519492328248181190291969603383<49>
P65 = 92484341434178074305109486526779408950878040850072954005996360127<65>
P76 = 1417954412002055454225203117654102106991785323552900390351400853029752285699<76>
Number: 36667_193 N=508461257563361206254997943043094402766029241144684962027188810154433551047199071827086193427907127240118517696762950739348892247814772186244736270390452022057973828112360693171365310924059 ( 189 digits) SNFS difficulty: 195 digits. Divisors found: r1=3877282014566842518519492328248181190291969603383 r2=92484341434178074305109486526779408950878040850072954005996360127 r3=1417954412002055454225203117654102106991785323552900390351400853029752285699 Version: Total time: 548.33 hours. Scaled time: 1104.89 units (timescale=2.015). Factorization parameters were as follows: n: 508461257563361206254997943043094402766029241144684962027188810154433551047199071827086193427907127240118517696762950739348892247814772186244736270390452022057973828112360693171365310924059 m: 500000000000000000000000000000000000000 deg: 5 c5: 88 c0: 25 skew: 0.78 type: snfs lss: 1 rlim: 12700000 alim: 12700000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12700000/12700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6350000, 12050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1962220 x 1962468 Total sieving time: 548.33 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12700000,12700000,28,28,55,55,2.5,2.5,100000 total time: 548.33 hours. --------- CPU info (if available) ----------
(65·10189+43)/9 = 7(2)1887<190> = 3 · 11 · C189
C189 = P93 · P96
P93 = 344169962009931548308268017081595995989862134133897845813087998330100327017231481133237154389<93>
P96 = 635892852406752029790139607998304098096231541911114002251357000552628373073014289921768913242471<96>
Number: 72227_189 N=218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855219 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=344169962009931548308268017081595995989862134133897845813087998330100327017231481133237154389 r2=635892852406752029790139607998304098096231541911114002251357000552628373073014289921768913242471 Version: Total time: 327.17 hours. Scaled time: 656.96 units (timescale=2.008). Factorization parameters were as follows: n: 218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855218855219 m: 100000000000000000000000000000000000000 deg: 5 c5: 13 c0: 86 skew: 1.46 type: snfs lss: 1 rlim: 10700000 alim: 10700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10700000/10700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5350000, 8950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1761109 x 1761357 Total sieving time: 327.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10700000,10700000,28,28,54,54,2.5,2.5,100000 total time: 327.17 hours. --------- CPU info (if available) ----------
7·10173-9 = 6(9)1721<174> = 17 · 23 · 16421 · 951988489 · 967778104050840161<18> · C141
C141 = P61 · P80
P61 = 5822198849636541604216008139984546047314947195596463077900521<61>
P80 = 20324841068780494305293498995060419802226786782151713853158153045709315773873709<80>
Number: 69991_173 N=118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389 ( 141 digits) SNFS difficulty: 175 digits. Divisors found: r1=5822198849636541604216008139984546047314947195596463077900521 r2=20324841068780494305293498995060419802226786782151713853158153045709315773873709 Version: Total time: 117.44 hours. Scaled time: 236.63 units (timescale=2.015). Factorization parameters were as follows: n: 118335266289699330717287805739976609910028642379095256867623958931583444124800011987668345641662168237014794505569635206720802429547119302389 m: 50000000000000000000000000000000000 deg: 5 c5: 56 c0: -225 skew: 1.32 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 6500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1100358 x 1100606 Total sieving time: 117.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 117.44 hours. --------- CPU info (if available) ----------
(19·10189+53)/9 = 2(1)1887<190> = 137 · C188
C188 = P53 · P135
P53 = 50276311039073491284553796865897030204461721150551647<53>
P135 = 306497629512232293365247269171182637897810549798966215737832495828240735616622890851416942888914546319515586789212490295293970999607803<135>
Number: 21117_189 N=15409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701541 ( 188 digits) SNFS difficulty: 190 digits. Divisors found: r1=50276311039073491284553796865897030204461721150551647 r2=306497629512232293365247269171182637897810549798966215737832495828240735616622890851416942888914546319515586789212490295293970999607803 Version: Total time: 526.99 hours. Scaled time: 1061.88 units (timescale=2.015). Factorization parameters were as follows: n: 15409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701540957015409570154095701541 m: 50000000000000000000000000000000000000 deg: 5 c5: 304 c0: 265 skew: 0.97 type: snfs lss: 1 rlim: 10700000 alim: 10700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 10700000/10700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5350000, 11050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1964631 x 1964879 Total sieving time: 526.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,10700000,10700000,28,28,54,54,2.5,2.5,100000 total time: 526.99 hours. --------- CPU info (if available) ----------
(11·10194-17)/3 = 3(6)1931<195> = 43 · 53 · C192
C192 = P44 · P61 · P87
P44 = 78977963478275827768612875134173255212037391<44>
P61 = 7989706671541663001611625673535523086770395124467865271255451<61>
P87 = 254970736930429047359472790175682836301063560469885661449512858357441037849002410792199<87>
Number: 36661_194 N=160889278923504461020915606260055579932719028813807225391253473745794939300862951586953342109112183706303934474184583881819511481643995904636536492613719467602749744039783530788357466725171859 ( 192 digits) SNFS difficulty: 196 digits. Divisors found: r1=78977963478275827768612875134173255212037391 r2=7989706671541663001611625673535523086770395124467865271255451 r3=254970736930429047359472790175682836301063560469885661449512858357441037849002410792199 Version: Total time: 613.96 hours. Scaled time: 1235.91 units (timescale=2.013). Factorization parameters were as follows: n: 160889278923504461020915606260055579932719028813807225391253473745794939300862951586953342109112183706303934474184583881819511481643995904636536492613719467602749744039783530788357466725171859 m: 1000000000000000000000000000000000000000 deg: 5 c5: 11 c0: -170 skew: 1.73 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6500000, 13800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2233237 x 2233485 Total sieving time: 613.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,55,55,2.5,2.5,100000 total time: 613.96 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / msieve/SIQS, GGNFS/msieve / Oct 27, 2009
(65·10107-11)/9 = 7(2)1061<108> = 36749656866201527263<20> · C89
C89 = P36 · P54
P36 = 174577584931942788813973330285134439<36>
P54 = 112571661871895252862906862024566402469110010962824053<54>
Tue Oct 27 00:50:36 2009 Msieve v. 1.43 Tue Oct 27 00:50:36 2009 random seeds: cb1332a0 13eb75b0 Tue Oct 27 00:50:36 2009 factoring 19652488861370739252193054495891224009287472706110752921759607452304062429675176207861267 (89 digits) Tue Oct 27 00:50:37 2009 searching for 15-digit factors Tue Oct 27 00:50:37 2009 commencing quadratic sieve (89-digit input) Tue Oct 27 00:50:37 2009 using multiplier of 3 Tue Oct 27 00:50:37 2009 using VC8 32kb sieve core Tue Oct 27 00:50:37 2009 sieve interval: 30 blocks of size 32768 Tue Oct 27 00:50:37 2009 processing polynomials in batches of 7 Tue Oct 27 00:50:37 2009 using a sieve bound of 1544869 (58667 primes) Tue Oct 27 00:50:37 2009 using large prime bound of 123589520 (26 bits) Tue Oct 27 00:50:37 2009 using double large prime bound of 367761997746960 (42-49 bits) Tue Oct 27 00:50:37 2009 using trial factoring cutoff of 49 bits Tue Oct 27 00:50:37 2009 polynomial 'A' values have 11 factors Tue Oct 27 01:40:58 2009 58889 relations (15988 full + 42901 combined from 620648 partial), need 58763 Tue Oct 27 01:41:02 2009 begin with 636636 relations Tue Oct 27 01:41:02 2009 reduce to 142394 relations in 11 passes Tue Oct 27 01:41:02 2009 attempting to read 142394 relations Tue Oct 27 01:41:03 2009 recovered 142394 relations Tue Oct 27 01:41:03 2009 recovered 118558 polynomials Tue Oct 27 01:41:04 2009 attempting to build 58889 cycles Tue Oct 27 01:41:04 2009 found 58889 cycles in 5 passes Tue Oct 27 01:41:04 2009 distribution of cycle lengths: Tue Oct 27 01:41:04 2009 length 1 : 15988 Tue Oct 27 01:41:04 2009 length 2 : 11412 Tue Oct 27 01:41:04 2009 length 3 : 10470 Tue Oct 27 01:41:04 2009 length 4 : 7779 Tue Oct 27 01:41:04 2009 length 5 : 5448 Tue Oct 27 01:41:04 2009 length 6 : 3426 Tue Oct 27 01:41:04 2009 length 7 : 2061 Tue Oct 27 01:41:04 2009 length 9+: 2305 Tue Oct 27 01:41:04 2009 largest cycle: 18 relations Tue Oct 27 01:41:04 2009 matrix is 58667 x 58889 (14.3 MB) with weight 3504276 (59.51/col) Tue Oct 27 01:41:04 2009 sparse part has weight 3504276 (59.51/col) Tue Oct 27 01:41:04 2009 filtering completed in 3 passes Tue Oct 27 01:41:04 2009 matrix is 54552 x 54616 (13.4 MB) with weight 3281370 (60.08/col) Tue Oct 27 01:41:04 2009 sparse part has weight 3281370 (60.08/col) Tue Oct 27 01:41:04 2009 saving the first 48 matrix rows for later Tue Oct 27 01:41:04 2009 matrix is 54504 x 54616 (9.7 MB) with weight 2701329 (49.46/col) Tue Oct 27 01:41:04 2009 sparse part has weight 2208475 (40.44/col) Tue Oct 27 01:41:04 2009 matrix includes 64 packed rows Tue Oct 27 01:41:04 2009 using block size 21846 for processor cache size 6144 kB Tue Oct 27 01:41:05 2009 commencing Lanczos iteration Tue Oct 27 01:41:05 2009 memory use: 9.2 MB Tue Oct 27 01:41:20 2009 lanczos halted after 863 iterations (dim = 54500) Tue Oct 27 01:41:20 2009 recovered 15 nontrivial dependencies Tue Oct 27 01:41:20 2009 prp36 factor: 174577584931942788813973330285134439 Tue Oct 27 01:41:20 2009 prp54 factor: 112571661871895252862906862024566402469110010962824053 Tue Oct 27 01:41:20 2009 elapsed time 00:50:44
2·10191+9 = 2(0)1909<192> = 139787422364207720750158040677389843257571643<45> · C148
C148 = P68 · P80
P68 = 46096944919325148346223203940223926055682830814085225169569170904023<68>
P80 = 31037716041925551555377656141714970107015368138481092969610634477807320110383981<80>
Number: 209-191 N=1430743886806296706788516093667434949145159858014350886258366962866810355411884866166709798529837275207436439253831768696683312353651987615427655563 ( 148 digits) SNFS difficulty: 191 digits. Divisors found: r1=46096944919325148346223203940223926055682830814085225169569170904023 (pp68) r2=31037716041925551555377656141714970107015368138481092969610634477807320110383981 (pp80) Version: Msieve-1.40 Total time: 245.12 hours. Scaled time: 458.63 units (timescale=1.871). Factorization parameters were as follows: n: 1430743886806296706788516093667434949145159858014350886258366962866810355411884866166709798529837275207436439253831768696683312353651987615427655563 m: 100000000000000000000000000000000000000 deg: 5 c5: 20 c0: 9 skew: 0.85 type: snfs lss: 1 rlim: 10800000 alim: 10800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10800000/10800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5400000, 9300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1851073 x 1851298 Total sieving time: 240.25 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.45 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,191.000,5,0,0,0,0,0,0,0,0,10800000,10800000,28,28,54,54,2.5,2.5,100000 total time: 245.12 hours. --------- CPU info (if available) ----------
(65·10125-11)/9 = 7(2)1241<126> = C126
C126 = P41 · P85
P41 = 91555041401965548538648038653167603029653<41>
P85 = 7888393813851928434485152622480874620149146146332238895830736022441467295327701644057<85>
Number: s126 N=722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 126 digits) SNFS difficulty: 126 digits. Divisors found: r1=91555041401965548538648038653167603029653 (pp41) r2=7888393813851928434485152622480874620149146146332238895830736022441467295327701644057 (pp85) Version: Msieve-1.40 Total time: 1.50 hours. Scaled time: 2.94 units (timescale=1.963). Factorization parameters were as follows: n: 722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 10000000000000000000000000 deg: 5 c5: 65 c0: -11 skew: 0.70 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 755001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 110745 x 110974 Total sieving time: 1.41 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 1.50 hours. --------- CPU info (if available) ----------
(62·10132-71)/9 = 6(8)1311<133> = 5717 · C130
C130 = P41 · P89
P41 = 14196147689937141374294318249731425936067<41>
P89 = 84880998342609810093756094165793232255873270007284083264233059727258303257959873758507279<89>
Number: s130 N=1204983188540998581229471556566186616912522107554467183643324976191864419956076419256408761393893456163877713641575807047208131693 ( 130 digits) SNFS difficulty: 134 digits. Divisors found: r1=14196147689937141374294318249731425936067 (pp41) r2=84880998342609810093756094165793232255873270007284083264233059727258303257959873758507279 (pp89) Version: Msieve-1.40 Total time: 3.18 hours. Scaled time: 5.79 units (timescale=1.823). Factorization parameters were as follows: n: 1204983188540998581229471556566186616912522107554467183643324976191864419956076419256408761393893456163877713641575807047208131693 m: 200000000000000000000000000 deg: 5 c5: 775 c0: -284 skew: 0.82 type: snfs lss: 1 rlim: 1220000 alim: 1220000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1220000/1220000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [610000, 1285001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 206175 x 206400 Total sieving time: 3.08 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1220000,1220000,26,26,47,47,2.3,2.3,75000 total time: 3.18 hours. --------- CPU info (if available) ----------
(65·10130+7)/9 = 7(2)1293<131> = C131
C131 = P53 · P79
P53 = 46485863897376296550853545500186122961951356602030151<53>
P79 = 1553638378791073916029398963967193954361536667650255332339812815429978361841273<79>
Number: s131 N=72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 ( 131 digits) SNFS difficulty: 131 digits. Divisors found: r1=46485863897376296550853545500186122961951356602030151 (pp53) r2=1553638378791073916029398963967193954361536667650255332339812815429978361841273 (pp79) Version: Msieve-1.40 Total time: 2.03 hours. Scaled time: 3.81 units (timescale=1.877). Factorization parameters were as follows: n: 72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 m: 100000000000000000000000000 deg: 5 c5: 65 c0: 7 skew: 0.64 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 157737 x 157962 Total sieving time: 1.93 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.03 hours. --------- CPU info (if available) ----------
By Norbert Schneider / Msieve / Oct 27, 2009
(61·10130+11)/9 = 6(7)1299<131> = 33 · 12141019215809417<17> · 258286671235162236352303<24> · C90
C90 = P40 · P51
P40 = 2603800835257585405318811667397972553087<40>
P51 = 307438786873328469652390333446782493394750798060721<51>
Mon Oct 26 19:16:40 2009 Mon Oct 26 19:16:40 2009 Mon Oct 26 19:16:40 2009 Msieve v. 1.43 Mon Oct 26 19:16:40 2009 random seeds: a73f8f44 bd2ae005 Mon Oct 26 19:16:40 2009 factoring 800509370051351453037656179793997623801994692989397392614271301898208518060262904821995727 (90 digits) Mon Oct 26 19:16:45 2009 searching for 15-digit factors Mon Oct 26 19:16:46 2009 commencing quadratic sieve (90-digit input) Mon Oct 26 19:16:48 2009 using multiplier of 13 Mon Oct 26 19:16:48 2009 using 64kb Pentium 4 sieve core Mon Oct 26 19:16:48 2009 sieve interval: 18 blocks of size 65536 Mon Oct 26 19:16:48 2009 processing polynomials in batches of 6 Mon Oct 26 19:16:48 2009 using a sieve bound of 1618703 (61070 primes) Mon Oct 26 19:16:49 2009 using large prime bound of 135971052 (27 bits) Mon Oct 26 19:16:49 2009 using double large prime bound of 436720526960928 (42-49 bits) Mon Oct 26 19:16:49 2009 using trial factoring cutoff of 49 bits Mon Oct 26 19:16:49 2009 polynomial 'A' values have 12 factors Mon Oct 26 22:15:13 2009 61446 relations (16348 full + 45098 combined from 666206 partial), need 61166 Mon Oct 26 22:15:15 2009 begin with 682554 relations Mon Oct 26 22:15:16 2009 reduce to 150056 relations in 10 passes Mon Oct 26 22:15:16 2009 attempting to read 150056 relations Mon Oct 26 22:15:19 2009 recovered 150056 relations Mon Oct 26 22:15:19 2009 recovered 129311 polynomials Mon Oct 26 22:15:19 2009 attempting to build 61446 cycles Mon Oct 26 22:15:19 2009 found 61446 cycles in 6 passes Mon Oct 26 22:15:19 2009 distribution of cycle lengths: Mon Oct 26 22:15:19 2009 length 1 : 16348 Mon Oct 26 22:15:19 2009 length 2 : 11864 Mon Oct 26 22:15:19 2009 length 3 : 10847 Mon Oct 26 22:15:19 2009 length 4 : 8262 Mon Oct 26 22:15:19 2009 length 5 : 5686 Mon Oct 26 22:15:19 2009 length 6 : 3736 Mon Oct 26 22:15:19 2009 length 7 : 2192 Mon Oct 26 22:15:19 2009 length 9+: 2511 Mon Oct 26 22:15:19 2009 largest cycle: 20 relations Mon Oct 26 22:15:19 2009 matrix is 61070 x 61446 (15.3 MB) with weight 3754514 (61.10/col) Mon Oct 26 22:15:19 2009 sparse part has weight 3754514 (61.10/col) Mon Oct 26 22:15:21 2009 filtering completed in 3 passes Mon Oct 26 22:15:21 2009 matrix is 57065 x 57129 (14.3 MB) with weight 3510750 (61.45/col) Mon Oct 26 22:15:21 2009 sparse part has weight 3510750 (61.45/col) Mon Oct 26 22:15:22 2009 saving the first 48 matrix rows for later Mon Oct 26 22:15:22 2009 matrix is 57017 x 57129 (9.2 MB) with weight 2773047 (48.54/col) Mon Oct 26 22:15:22 2009 sparse part has weight 2059967 (36.06/col) Mon Oct 26 22:15:22 2009 matrix includes 64 packed rows Mon Oct 26 22:15:22 2009 using block size 10922 for processor cache size 256 kB Mon Oct 26 22:15:22 2009 commencing Lanczos iteration Mon Oct 26 22:15:22 2009 memory use: 9.3 MB Mon Oct 26 22:15:54 2009 lanczos halted after 904 iterations (dim = 57015) Mon Oct 26 22:15:54 2009 recovered 17 nontrivial dependencies Mon Oct 26 22:15:56 2009 prp40 factor: 2603800835257585405318811667397972553087 Mon Oct 26 22:15:56 2009 prp51 factor: 307438786873328469652390333446782493394750798060721 Mon Oct 26 22:15:56 2009 elapsed time 02:59:16
By Lionel Debroux / GMP-ECM
Factorizations of 722...221 and Factorizations of 722...223 have been extended up to n=200. Composite numbers that appeared newly have passed 150 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Oct 26, 2009
(83·10146+7)/9 = 9(2)1453<147> = 13 · 6112473163<10> · 70315458832223316419214342764791<32> · C105
C105 = P52 · P53
P52 = 5791378332563386734299789562740645717003706558548593<52>
P53 = 28499846000487846733642226699203988710334388566768759<53>
Number: 92223_146 N=165053390608618612168814333894623116123683611767851606138040337603496776755267221271940941504830895806087 ( 105 digits) Divisors found: r1=5791378332563386734299789562740645717003706558548593 r2=28499846000487846733642226699203988710334388566768759 Version: Total time: 4.39 hours. Scaled time: 10.46 units (timescale=2.385). Factorization parameters were as follows: name: 92223_146 n: 165053390608618612168814333894623116123683611767851606138040337603496776755267221271940941504830895806087 skew: 19553.75 # norm 1.36e+14 c5: 5700 c4: 235810005 c3: 245079180905 c2: -154319593207427431 c1: -148483831425267567230 c0: -814720965704383267381256 # alpha -5.81 Y1: 82920931379 Y0: -123693679908535878411 # Murphy_E 2.07e-09 # M 16105943711929144827060288703611641223991067736201404894401156909521716930802385512633608291851676404138 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1650001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6891219 Max relations in full relation-set: Initial matrix: Pruned matrix : 274339 x 274587 Polynomial selection time: 0.36 hours. Total sieving time: 3.24 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.17 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 4.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(62·10144-71)/9 = 6(8)1431<145> = 173 · 617 · 1283 · 92610038086816262454859531913<29> · C108
C108 = P35 · P74
P35 = 45060620799576548736690063731376301<35>
P74 = 12054134222394110709717782635167614241122684394866782704597181919381457779<74>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 543166771262499552479231555893942724170566107989350047498766678598794980817702546211216551464640875392695479 (108 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4831068078 Step 1 took 2670ms Step 2 took 1844ms ********** Factor found in step 2: 45060620799576548736690063731376301 Found probable prime factor of 35 digits: 45060620799576548736690063731376301 Probable prime cofactor 12054134222394110709717782635167614241122684394866782704597181919381457779 has 74 digits
(26·10180-11)/3 = 8(6)1793<181> = 3540853596198710609<19> · 750709090610386998791821<24> · 311104155382289880239512627969<30> · C110
C110 = P41 · P69
P41 = 72785908957299479303025193305881070533587<41>
P69 = 143985688074871851263884561113056280933967878093323444574394933207489<69>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 10480129183371743899045412556645811521917224266909621512471309641624950039890299342336256862579936558614433043 (110 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5524291184 Step 1 took 3526ms Step 2 took 3900ms ********** Factor found in step 2: 72785908957299479303025193305881070533587 Found probable prime factor of 41 digits: 72785908957299479303025193305881070533587 Probable prime cofactor 143985688074871851263884561113056280933967878093323444574394933207489 has 69 digits
By Sinkiti Sibata / Msieve, GGNFS / Oct 26, 2009
(83·10140+7)/9 = 9(2)1393<141> = 13 · 59 · 179 · 196835519 · 780759681572696281<18> · C110
C110 = P54 · P56
P54 = 950945206033983716590046745708439382556184867498061651<54>
P56 = 45963262403462441886100482311242817697783998352022258799<56>
Number: 92223_140 N=43708544036254649395714070133193976331990037910375971143155353250353772955674359691405658669750880139179217149 ( 110 digits) SNFS difficulty: 141 digits. Divisors found: r1=950945206033983716590046745708439382556184867498061651 (pp54) r2=45963262403462441886100482311242817697783998352022258799 (pp56) Version: Msieve-1.40 Total time: 6.58 hours. Scaled time: 13.36 units (timescale=2.032). Factorization parameters were as follows: name: 92223_140 n: 43708544036254649395714070133193976331990037910375971143155353250353772955674359691405658669750880139179217149 m: 10000000000000000000000000000 deg: 5 c5: 83 c0: 7 skew: 0.61 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1610001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 235126 x 235372 Total sieving time: 6.28 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 6.58 hours. --------- CPU info (if available) ----------
(61·10136+11)/9 = 6(7)1359<137> = 3 · 2213363 · 20975235357953<14> · C117
C117 = P38 · P79
P38 = 56099438243208509545785301147285196647<38>
P79 = 8674572279336327283237021925543194621541044909983854234310679612701120002673821<79>
Number: 67779_136 N=486638631870876768578237462710217409611440936923179732511602138246948855664505898321050283688239457736079891783878187 ( 117 digits) SNFS difficulty: 138 digits. Divisors found: r1=56099438243208509545785301147285196647 (pp38) r2=8674572279336327283237021925543194621541044909983854234310679612701120002673821 (pp79) Version: Msieve-1.40 Total time: 5.94 hours. Scaled time: 12.39 units (timescale=2.085). Factorization parameters were as follows: name: 67779_136 n: 486638631870876768578237462710217409611440936923179732511602138246948855664505898321050283688239457736079891783878187 m: 2000000000000000000000000000 deg: 5 c5: 305 c0: 176 skew: 0.90 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1475001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 247395 x 247643 Total sieving time: 5.59 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.20 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 5.94 hours. --------- CPU info (if available) ----------
(62·10136-71)/9 = 6(8)1351<137> = 797 · 91957 · 141665756784889<15> · C115
C115 = P41 · P74
P41 = 87940173824683258876381753531354451770847<41>
P74 = 75449064368628461623561903771559610802465731814491611535253595307663468583<74>
SNFS difficulty: 138 digits. Divisors found: r1=87940173824683258876381753531354451770847 (pp41) r2=75449064368628461623561903771559610802465731814491611535253595307663468583 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.91 hours. Scaled time: 17.36 units (timescale=1.949). Factorization parameters were as follows: name: 68881_136 n: 6635003835486902970594310750805950658360102961790601430840554603116519491417799716317124902425292622802174699799801 m: 2000000000000000000000000000 deg: 5 c5: 155 c0: -568 skew: 1.30 type: snfs lss: 1 rlim: 1430000 alim: 1430000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1430000/1430000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [715000, 1540001) Primes: RFBsize:109205, AFBsize:109291, largePrimes:3393933 encountered Relations: rels:3341469, finalFF:248129 Max relations in full relation-set: 28 Initial matrix: 218563 x 248129 with sparse part having weight 22264177. Pruned matrix : 209570 x 210726 with weight 16662072. Total sieving time: 8.30 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.42 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1430000,1430000,26,26,48,48,2.3,2.3,75000 total time: 8.91 hours. --------- CPU info (if available) ----------
(61·10140+11)/9 = 6(7)1399<141> = 7 · 173 · 4668508477118735351<19> · 11868308233560420583480229<26> · C95
C95 = P38 · P57
P38 = 34654709996381233356360236722003259611<38>
P57 = 291483479342020082267398383224796794589186280350551363081<57>
Number: 67779_140 N=10101275445333886072937871136953074721594155330052969136352011175659007415845411001561163821491 ( 95 digits) Divisors found: r1=34654709996381233356360236722003259611 (pp38) r2=291483479342020082267398383224796794589186280350551363081 (pp57) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 10.42 hours. Scaled time: 4.92 units (timescale=0.472). Factorization parameters were as follows: name: 67779_140 n: 10101275445333886072937871136953074721594155330052969136352011175659007415845411001561163821491 m: 7926501998682499714959 deg: 4 c4: 2558880 c3: 12052800 c2: -345390808657415679 c1: 764061773339347700034 c0: -2640085652055857279596 skew: 1635.250 type: gnfs # adj. I(F,S) = 57.775 # E(F1,F2) = 3.595557e-05 # GGNFS version 0.77.1-20050930-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1256504580. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1440001) Primes: RFBsize:92938, AFBsize:93122, largePrimes:1879615 encountered Relations: rels:1950424, finalFF:223451 Max relations in full relation-set: 28 Initial matrix: 186133 x 223451 with sparse part having weight 18769959. Pruned matrix : 169528 x 170522 with weight 12045876. Polynomial selection time: 0.17 hours. Total sieving time: 9.52 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.54 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 10.42 hours. --------- CPU info (if available) ----------
(61·10137+11)/9 = 6(7)1369<138> = 41854649 · C131
C131 = P43 · P89
P43 = 1497100862179284466393211599484926776042967<43>
P89 = 10816644611377158968597922580922419233088088735788862949569901953744310105884107215906413<89>
Number: 67779_137 N=16193607973579656056314742426290034776728811601735754080216460010876635897192156067962194063024582472971587404251742208560338847371 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=1497100862179284466393211599484926776042967 (pp43) r2=10816644611377158968597922580922419233088088735788862949569901953744310105884107215906413 (pp89) Version: Msieve-1.40 Total time: 7.87 hours. Scaled time: 16.35 units (timescale=2.078). Factorization parameters were as follows: name: 67779_137 n: 16193607973579656056314742426290034776728811601735754080216460010876635897192156067962194063024582472971587404251742208560338847371 m: 5000000000000000000000000000 deg: 5 c5: 244 c0: 1375 skew: 1.41 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1780001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240232 x 240464 Total sieving time: 7.52 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.19 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 7.87 hours. --------- CPU info (if available) ----------
(62·10138-71)/9 = 6(8)1371<139> = 178973 · 371864911123<12> · C123
C123 = P42 · P81
P42 = 586223530914985362890505263147233484304329<42>
P81 = 176568494706771364851457868738726420430749628421559284794116630853036260388793391<81>
Number: 68881_138 N=103508606415347412610445012420502440976795110134999813227178254855128575837561314714804310858344623651363750600965347889639 ( 123 digits) SNFS difficulty: 141 digits. Divisors found: r1=586223530914985362890505263147233484304329 (pp42) r2=176568494706771364851457868738726420430749628421559284794116630853036260388793391 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.59 hours. Scaled time: 28.97 units (timescale=1.985). Factorization parameters were as follows: name: 68881_138 n: 103508606415347412610445012420502440976795110134999813227178254855128575837561314714804310858344623651363750600965347889639 m: 5000000000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 2090001) Primes: RFBsize:119758, AFBsize:119825, largePrimes:3944588 encountered Relations: rels:4138860, finalFF:373069 Max relations in full relation-set: 28 Initial matrix: 239650 x 373069 with sparse part having weight 41359806. Pruned matrix : 204694 x 205956 with weight 20997592. Total sieving time: 13.95 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.43 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 14.59 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve, YAFU / Oct 26, 2009
(64·10138+17)/9 = 7(1)1373<139> = 3 · 293 · 1997 · 8020147355672225249324209607<28> · C105
C105 = P40 · P66
P40 = 1025076302214321651403303364378397080819<40>
P66 = 492756070518680163420363928894391737927860973928594193525801851047<66>
Number: 71113_138 N=505112570660948178612268467748518628903549911512652796501301806603729962592526334904318991700411458767493 ( 105 digits) SNFS difficulty: 140 digits. Divisors found: r1=1025076302214321651403303364378397080819 (pp40) r2=492756070518680163420363928894391737927860973928594193525801851047 (pp66) Version: Msieve-1.40 Total time: 5.34 hours. Scaled time: 5.21 units (timescale=0.977). Factorization parameters were as follows: n: 505112570660948178612268467748518628903549911512652796501301806603729962592526334904318991700411458767493 m: 4000000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 1510000 alim: 1510000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1510000/1510000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [755000, 1505001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240146 x 240371 Total sieving time: 5.01 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000 total time: 5.34 hours. --------- CPU info (if available) ----------
(62·10135-71)/9 = 6(8)1341<136> = 72 · 19 · 3908604569<10> · 4071319992583851580553<22> · 6092834482135211337409<22> · C80
C80 = P34 · P47
P34 = 3023609198798573489557559745506843<34>
P47 = 25240472910189074574471536572739850312627201889<47>
10/25/09 16:58:59 v1.12 @ ERIK-DATOR, starting SIQS on c80: 76317326073273886332452818555423918091234042295879702293589897638297267192026427 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, random seeds: 2974791847, 2559185332 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, n = 81 digits, 267 bits 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, factor base: 43638 primes (max prime = 1126361) 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, single large prime cutoff: 107004295 (95 * pmax) 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, using 0 large prime slices of factor base 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, sieve interval: 14 blocks of size 32768 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, polynomial A has ~ 568396561 factors 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, using multiplier of 2 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, using small prime variation correction of 21 bits 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x64 sieve scanning 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, trial factoring cutoff at 92 bits 10/25/09 16:58:59 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/25/09 17:04:18 v1.12 @ ERIK-DATOR, sieve time = 94.7714, relation time = 39.4308, poly_time = 161.4446 10/25/09 17:04:18 v1.12 @ ERIK-DATOR, 43726 relations found: 22156 full + 21570 from 236834 partial, using 7943760 polys (351 A polys) 10/25/09 17:04:18 v1.12 @ ERIK-DATOR, on average, sieving found 0.03 rels/poly and 811.84 rels/sec 10/25/09 17:04:18 v1.12 @ ERIK-DATOR, trial division touched 4575910 sieve locations out of 7288431575040 10/25/09 17:04:18 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/25/09 17:04:26 v1.12 @ ERIK-DATOR, begin with 258990 relations 10/25/09 17:04:26 v1.12 @ ERIK-DATOR, reduce to 62563 relations in 2 passes 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, recovered 62563 relations 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, recovered 44959 polynomials 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, attempting to build 43726 cycles 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, found 43726 cycles in 1 passes 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, length 1 : 22156 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, length 2 : 21570 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, largest cycle: 2 relations 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, matrix is 43638 x 43726 (5.7 MB) with weight 1316031 (30.10/col) 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, sparse part has weight 1316031 (30.10/col) 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, filtering completed in 3 passes 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, matrix is 31257 x 31321 (4.5 MB) with weight 1063089 (33.94/col) 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, sparse part has weight 1063089 (33.94/col) 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, matrix is 31209 x 31321 (3.8 MB) with weight 875970 (27.97/col) 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, sparse part has weight 800848 (25.57/col) 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, using block size 12528 for processor cache size 2048 kB 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/25/09 17:04:34 v1.12 @ ERIK-DATOR, memory use: 3.8 MB 10/25/09 17:04:39 v1.12 @ ERIK-DATOR, lanczos halted after 495 iterations (dim = 31207) 10/25/09 17:04:39 v1.12 @ ERIK-DATOR, recovered 16 nontrivial dependencies 10/25/09 17:04:40 v1.12 @ ERIK-DATOR, prp34 = 3023609198798573489557559745506843 10/25/09 17:04:41 v1.12 @ ERIK-DATOR, prp47 = 25240472910189074574471536572739850312627201889 10/25/09 17:04:41 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 21.1420 seconds. 10/25/09 17:04:41 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 1.4820 seconds. 10/25/09 17:04:41 v1.12 @ ERIK-DATOR, SIQS elapsed time = 341.6886 seconds.
(61·10148+11)/9 = 6(7)1479<149> = 32 · 17 · 15319 · 159589 · 97217642812415666311<20> · 268978493809359271513416809599<30> · C88
C88 = P41 · P48
P41 = 15778348857742482280322540725154142893917<41>
P48 = 439175725135905508379395921376984663405910180421<48>
10/25/09 17:09:43 v1.12 @ ERIK-DATOR, starting SIQS on c88: 6929467801046341041659258046990532322098586303429838696777373698294583310076464533399057 10/25/09 17:09:43 v1.12 @ ERIK-DATOR, random seeds: 2974791847, 2559185332 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, n = 88 digits, 292 bits 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, factor base: 61677 primes (max prime = 1631843) 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, single large prime cutoff: 179502730 (110 * pmax) 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, double large prime range from 43 to 50 bits 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, double large prime cutoff: 719992387123441 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, using 3224628 large prime slices of factor base 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, polynomial A has ~ 24220 factors 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, using multiplier of 1 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, using small prime variation correction of 18 bits 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, trial factoring cutoff at 99 bits 10/25/09 17:09:44 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/25/09 17:41:01 v1.12 @ ERIK-DATOR, sieve time = 533.6376, relation time = 233.5958, poly_time = 958.4928 10/25/09 17:41:01 v1.12 @ ERIK-DATOR, 62052 relations found: 18755 full + 43297 from 625600 partial, using 72681032 polys (751 A polys) 10/25/09 17:41:01 v1.12 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 343.14 rels/sec 10/25/09 17:41:01 v1.12 @ ERIK-DATOR, trial division touched 13403412 sieve locations out of 85738034036736 10/25/09 17:41:01 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/25/09 17:41:04 v1.12 @ ERIK-DATOR, begin with 644355 relations 10/25/09 17:41:04 v1.12 @ ERIK-DATOR, reduce to 134988 relations in 10 passes 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, recovered 134988 relations 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, recovered 113960 polynomials 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, attempting to build 62052 cycles 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, found 62052 cycles in 5 passes 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 1 : 18755 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 2 : 15491 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 3 : 11875 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 4 : 7479 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 5 : 4105 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 6 : 2226 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 7 : 1131 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, length 9+: 990 10/25/09 17:41:14 v1.12 @ ERIK-DATOR, largest cycle: 16 relations 10/25/09 17:41:15 v1.12 @ ERIK-DATOR, matrix is 61677 x 62052 (13.1 MB) with weight 3173720 (51.15/col) 10/25/09 17:41:15 v1.12 @ ERIK-DATOR, sparse part has weight 3173720 (51.15/col) 10/25/09 17:41:15 v1.12 @ ERIK-DATOR, filtering completed in 4 passes 10/25/09 17:41:15 v1.12 @ ERIK-DATOR, matrix is 55966 x 56030 (11.9 MB) with weight 2905052 (51.85/col) 10/25/09 17:41:15 v1.12 @ ERIK-DATOR, sparse part has weight 2905052 (51.85/col) 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, matrix is 55918 x 56030 (10.4 MB) with weight 2572396 (45.91/col) 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, sparse part has weight 2378132 (42.44/col) 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, using block size 22412 for processor cache size 2048 kB 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/25/09 17:41:16 v1.12 @ ERIK-DATOR, memory use: 9.1 MB 10/25/09 17:42:19 v1.12 @ ERIK-DATOR, lanczos halted after 886 iterations (dim = 55914) 10/25/09 17:42:19 v1.12 @ ERIK-DATOR, recovered 14 nontrivial dependencies 10/25/09 17:42:20 v1.12 @ ERIK-DATOR, prp41 = 15778348857742482280322540725154142893917 10/25/09 17:42:22 v1.12 @ ERIK-DATOR, prp48 = 439175725135905508379395921376984663405910180421 10/25/09 17:42:22 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 77.8740 seconds. 10/25/09 17:42:22 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 3.1200 seconds. 10/25/09 17:42:22 v1.12 @ ERIK-DATOR, SIQS elapsed time = 1958.8982 seconds.
(62·10129-71)/9 = 6(8)1281<130> = 7 · 74507 · 863695087070633<15> · 446537572767580550602547<24> · C86
C86 = P29 · P58
P29 = 27413652247099964745959987129<29>
P58 = 1249305658838193522558789938622451015178573054392034321111<58>
Sun Oct 25 17:00:39 2009 Msieve v. 1.43 Sun Oct 25 17:00:39 2009 random seeds: 312f2c38 e5b608c2 Sun Oct 25 17:00:39 2009 factoring 34248030881724345791926751354933118415888088772687415035676269296160679100087812980319 (86 digits) Sun Oct 25 17:00:40 2009 searching for 15-digit factors Sun Oct 25 17:00:41 2009 commencing quadratic sieve (86-digit input) Sun Oct 25 17:00:41 2009 using multiplier of 1 Sun Oct 25 17:00:41 2009 using 64kb Pentium 4 sieve core Sun Oct 25 17:00:41 2009 sieve interval: 8 blocks of size 65536 Sun Oct 25 17:00:41 2009 processing polynomials in batches of 13 Sun Oct 25 17:00:41 2009 using a sieve bound of 1461403 (55559 primes) Sun Oct 25 17:00:41 2009 using large prime bound of 116912240 (26 bits) Sun Oct 25 17:00:41 2009 using double large prime bound of 332772803587280 (41-49 bits) Sun Oct 25 17:00:41 2009 using trial factoring cutoff of 49 bits Sun Oct 25 17:00:41 2009 polynomial 'A' values have 11 factors Sun Oct 25 17:52:41 2009 55902 relations (16079 full + 39823 combined from 580400 partial), need 55655 Sun Oct 25 17:52:43 2009 begin with 596479 relations Sun Oct 25 17:52:44 2009 reduce to 132644 relations in 9 passes Sun Oct 25 17:52:44 2009 attempting to read 132644 relations Sun Oct 25 17:52:48 2009 recovered 132644 relations Sun Oct 25 17:52:48 2009 recovered 108900 polynomials Sun Oct 25 17:52:48 2009 attempting to build 55902 cycles Sun Oct 25 17:52:48 2009 found 55902 cycles in 5 passes Sun Oct 25 17:52:48 2009 distribution of cycle lengths: Sun Oct 25 17:52:48 2009 length 1 : 16079 Sun Oct 25 17:52:48 2009 length 2 : 11136 Sun Oct 25 17:52:48 2009 length 3 : 9863 Sun Oct 25 17:52:48 2009 length 4 : 7144 Sun Oct 25 17:52:48 2009 length 5 : 4967 Sun Oct 25 17:52:48 2009 length 6 : 3039 Sun Oct 25 17:52:48 2009 length 7 : 1735 Sun Oct 25 17:52:48 2009 length 9+: 1939 Sun Oct 25 17:52:48 2009 largest cycle: 18 relations Sun Oct 25 17:52:49 2009 matrix is 55559 x 55902 (12.1 MB) with weight 2954402 (52.85/col) Sun Oct 25 17:52:49 2009 sparse part has weight 2954402 (52.85/col) Sun Oct 25 17:52:50 2009 filtering completed in 3 passes Sun Oct 25 17:52:50 2009 matrix is 50604 x 50668 (11.1 MB) with weight 2695723 (53.20/col) Sun Oct 25 17:52:50 2009 sparse part has weight 2695723 (53.20/col) Sun Oct 25 17:52:50 2009 saving the first 48 matrix rows for later Sun Oct 25 17:52:50 2009 matrix is 50556 x 50668 (6.1 MB) with weight 1989485 (39.27/col) Sun Oct 25 17:52:50 2009 sparse part has weight 1292326 (25.51/col) Sun Oct 25 17:52:50 2009 matrix includes 64 packed rows Sun Oct 25 17:52:50 2009 using block size 20267 for processor cache size 512 kB Sun Oct 25 17:52:50 2009 commencing Lanczos iteration Sun Oct 25 17:52:50 2009 memory use: 7.0 MB Sun Oct 25 17:53:10 2009 lanczos halted after 801 iterations (dim = 50550) Sun Oct 25 17:53:11 2009 recovered 15 nontrivial dependencies Sun Oct 25 17:53:11 2009 prp29 factor: 27413652247099964745959987129 Sun Oct 25 17:53:11 2009 prp58 factor: 1249305658838193522558789938622451015178573054392034321111 Sun Oct 25 17:53:11 2009 elapsed time 00:52:32
(61·10126+11)/9 = 6(7)1259<127> = 4583 · 6317 · 17909 · 3879167 · 10801069060460037677<20> · C90
C90 = P43 · P48
P43 = 2195586039900908690698168329609801270916603<43>
P48 = 142101798548019649379224996185134551483183791973<48>
10/25/09 17:45:35 v1.12 @ ERIK-DATOR, starting SIQS on c90: 311996725136843158550452678007225947321786519109975065421192818805281768398691918983827719 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, random seeds: 2974791847, 2559185332 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, n = 90 digits, 298 bits 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, factor base: 65244 primes (max prime = 1734011) 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, single large prime cutoff: 190741210 (110 * pmax) 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, double large prime range from 43 to 50 bits 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, double large prime cutoff: 803156465804099 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, using 3750192 large prime slices of factor base 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, polynomial A has ~ 112967 factors 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, using multiplier of 1 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, using small prime variation correction of 19 bits 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, trial factoring cutoff at 97 bits 10/25/09 17:45:35 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/25/09 18:24:28 v1.12 @ ERIK-DATOR, sieve time = 658.7142, relation time = 356.6018, poly_time = 1203.0792 10/25/09 18:24:28 v1.12 @ ERIK-DATOR, 65578 relations found: 18773 full + 46805 from 764136 partial, using 103699520 polys (895 A polys) 10/25/09 18:24:28 v1.12 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 335.54 rels/sec 10/25/09 18:24:28 v1.12 @ ERIK-DATOR, trial division touched 24098010 sieve locations out of 122328931368960 10/25/09 18:24:28 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/25/09 18:24:28 v1.12 @ ERIK-DATOR, begin with 782909 relations 10/25/09 18:24:29 v1.12 @ ERIK-DATOR, reduce to 153559 relations in 9 passes 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, recovered 153559 relations 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, recovered 130881 polynomials 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, attempting to build 65578 cycles 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, found 65578 cycles in 5 passes 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 1 : 18773 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 2 : 13847 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 3 : 12128 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 4 : 8263 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 5 : 5490 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 6 : 3283 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 7 : 1832 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, length 9+: 1962 10/25/09 18:24:38 v1.12 @ ERIK-DATOR, largest cycle: 17 relations 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, matrix is 65244 x 65578 (15.3 MB) with weight 3744054 (57.09/col) 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, sparse part has weight 3744054 (57.09/col) 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, filtering completed in 4 passes 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, matrix is 60363 x 60427 (14.2 MB) with weight 3485480 (57.68/col) 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, sparse part has weight 3485480 (57.68/col) 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, matrix is 60315 x 60427 (12.3 MB) with weight 3066599 (50.75/col) 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, sparse part has weight 2853662 (47.22/col) 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/25/09 18:24:39 v1.12 @ ERIK-DATOR, using block size 24170 for processor cache size 2048 kB 10/25/09 18:24:40 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/25/09 18:24:40 v1.12 @ ERIK-DATOR, memory use: 10.5 MB 10/25/09 18:25:48 v1.12 @ ERIK-DATOR, lanczos halted after 955 iterations (dim = 60312) 10/25/09 18:25:49 v1.12 @ ERIK-DATOR, recovered 16 nontrivial dependencies 10/25/09 18:25:49 v1.12 @ ERIK-DATOR, prp48 = 142101798548019649379224996185134551483183791973 10/25/09 18:25:50 v1.12 @ ERIK-DATOR, prp43 = 2195586039900908690698168329609801270916603 10/25/09 18:25:50 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 80.6840 seconds. 10/25/09 18:25:50 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 1.4040 seconds. 10/25/09 18:25:50 v1.12 @ ERIK-DATOR, SIQS elapsed time = 2415.3788 seconds.
(64·10148+71)/9 = 7(1)1479<149> = 178488573881573<15> · C135
C135 = P54 · P81
P54 = 975169651366129558075327576737355940889743354566764389<54>
P81 = 408551555183519006487997988119774128669000839667774060646809837018531358174074727<81>
Number: 71119_148 N=398407077633402270859097355117764757231141518424162589329272214800757115653354785873245636091652410515292878810302450340483976288496803 ( 135 digits) SNFS difficulty: 150 digits. Divisors found: r1=975169651366129558075327576737355940889743354566764389 (pp54) r2=408551555183519006487997988119774128669000839667774060646809837018531358174074727 (pp81) Version: Msieve-1.40 Total time: 16.08 hours. Scaled time: 15.11 units (timescale=0.940). Factorization parameters were as follows: n: 398407077633402270859097355117764757231141518424162589329272214800757115653354785873245636091652410515292878810302450340483976288496803 m: 400000000000000000000000000000 deg: 5 c5: 125 c0: 142 skew: 1.03 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 410063 x 410289 Total sieving time: 15.38 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.38 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,150.000,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 16.08 hours. --------- CPU info (if available) ----------
(62·10133-71)/9 = 6(8)1321<134> = 43 · 163 · 2767 · 3169 · C124
C124 = P54 · P70
P54 = 660658928585086985809163336350428170481943780205911441<54>
P70 = 1696619339049209242025102064325212037235881003135077451714444644950863<70>
Number: 68881_133 N=1120886714752989012233833245860000318452629651590483870856165594382614990996828653825284052587494909528216045838705574523583 ( 124 digits) SNFS difficulty: 136 digits. Divisors found: r1=660658928585086985809163336350428170481943780205911441 (pp54) r2=1696619339049209242025102064325212037235881003135077451714444644950863 (pp70) Version: Msieve v. 1.43 Total time: 7.68 hours. Scaled time: 6.05 units (timescale=0.788). Factorization parameters were as follows: n: 1120886714752989012233833245860000318452629651590483870856165594382614990996828653825284052587494909528216045838705574523583 m: 500000000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 211824 x 212049 Total sieving time: 7.30 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 7.68 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET, GMP-ECM / Oct 26, 2009
(64·10187+71)/9 = 7(1)1869<188> = C188
C188 = P40 · C148
P40 = 7275715586058467200945112931785663485369<40>
C148 = [9773761806656149658840124430630023407923748725432364869224515384214314070359484134600992488023678710746726151284389176767268774084013256015079671751<148>]
Factor=7275715586058467200945112931785663485369 Method=ECM B1=11000000 Sigma=3065088127
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Oct 26, 2009
(64·10145+71)/9 = 7(1)1449<146> = 195178673 · 13433198376877<14> · C125
C125 = P58 · P67
P58 = 3985975919104421112065980519315938875570010459634054863923<58>
P67 = 6804418311733872599573710011672467323159706487887800210790835847993<67>
Number: n N=27122247534084376245588110450780566165130294252738929924863032247137344769809668138430297488719079932927938298601631927656539 ( 125 digits) SNFS difficulty: 146 digits. Divisors found: Mon Oct 26 05:47:24 2009 prp58 factor: 3985975919104421112065980519315938875570010459634054863923 Mon Oct 26 05:47:24 2009 prp67 factor: 6804418311733872599573710011672467323159706487887800210790835847993 Mon Oct 26 05:47:24 2009 elapsed time 00:38:06 (Msieve 1.42 - dependency 6) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.17 hours. Scaled time: 13.11 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_1_144_9 n: 27122247534084376245588110450780566165130294252738929924863032247137344769809668138430297488719079932927938298601631927656539 m: 200000000000000000000000000000 deg: 5 c5: 2 c0: 71 skew: 2.04 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 qintsize: 20000 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [980000, 2260327) Primes: RFBsize:146186, AFBsize:145537, largePrimes:3949671 encountered Relations: rels:3857064, finalFF:293739 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 617581 hash collisions in 4330650 relations Msieve: matrix is 336970 x 337195 (89.4 MB) Total sieving time: 7.09 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 7.17 hours. --------- CPU info (if available) ----------
(61·10134+11)/9 = 6(7)1339<135> = 7 · 956689 · 147489889 · C120
C120 = P40 · P81
P40 = 1605024511121898730823739355562491316477<40>
P81 = 427537867971104787643044373647126483897763339452030506462774083723736087616393641<81>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 686208757526421347401301256515966628463717052016141591646519249049878232120521785773458876968529245559700231093141322757 (120 digits) Using B1=2118000, B2=2854078510, polynomial Dickson(6), sigma=3579718577 Step 1 took 18312ms Step 2 took 7875ms ********** Factor found in step 2: 1605024511121898730823739355562491316477 Found probable prime factor of 40 digits: 1605024511121898730823739355562491316477 Probable prime cofactor 427537867971104787643044373647126483897763339452030506462774083723736087616393641 has 81 digits
By Wataru Sakai / GMP-ECM 6.2.1 / Oct 26, 2009
(26·10192-11)/3 = 8(6)1913<193> = 19 · 31 · C191
C191 = P39 · P153
P39 = 101077267653156631307592584180426757637<39>
P153 = 145573828899862454232548939907903440117030008911903381461583149437913645824448129191836349310485548267196198682523833675203109703598164258322341355722791<153>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=97527106 Step 1 took 69743ms Step 2 took 21801ms ********** Factor found in step 2: 101077267653156631307592584180426757637 Found probable prime factor of 39 digits: 101077267653156631307592584180426757637 Probable prime cofactor 145573828899862454232548939907903440117030008911903381461583149437913645824448129191836349310485548267196198682523833675203109703598164258322341355722791 has 153 digits
(26·10189-11)/3 = 8(6)1883<190> = 71 · C189
C189 = P39 · P150
P39 = 141538917737574835614928365545711650133<39>
P150 = 862418122525500258553228011718122233569703757701307710205000528958821534542694199458423775010924655490594982609345756497272737613083229460774392256541<150>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4145718496 Step 1 took 70088ms Step 2 took 21780ms ********** Factor found in step 2: 141538917737574835614928365545711650133 Found probable prime factor of 39 digits: 141538917737574835614928365545711650133 Probable prime cofactor 862418122525500258553228011718122233569703757701307710205000528958821534542694199458423775010924655490594982609345756497272737613083229460774392256541 has 150 digits
Factorizations of 677...779 and Factorizations of 688...881 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GMP-ECM v6.2.3, YAFU v1.10, GGNFS, Msieve v1.39 / Oct 25, 2009
(83·10141+7)/9 = 9(2)1403<142> = 61 · 91303 · 45529459 · 61880267 · C120
C120 = P32 · P35 · P54
P32 = 90583254195064513964951551233389<32>
P35 = 32008672599379556241790724929001261<35>
P54 = 202703127076465420436501533853575825089948645698619413<54>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 587727526365835134078809853742617748922618069947582969642059147943446920904864207550850301733379285639847576970969808477 (120 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8461231021 Step 1 took 4243ms Step 2 took 4087ms ********** Factor found in step 2: 90583254195064513964951551233389 Found probable prime factor of 32 digits: 90583254195064513964951551233389 Composite cofactor 6488258029461010918009232216393658197894504657730103080991528610887031948984672636079793 has 88 digits 10/24/09 23:23:31 v1.10 @ 조영욱-PC, starting SIQS on c88: 6488258029461010918009232216393658197894504657730103080991528610887031948984672636079793 10/24/09 23:23:31 v1.10 @ 조영욱-PC, random seeds: 170176739, 2015898184 10/24/09 23:23:31 v1.10 @ 조영욱-PC, ==== sieve params ==== 10/24/09 23:23:31 v1.10 @ 조영욱-PC, n = 88 digits, 292 bits 10/24/09 23:23:31 v1.10 @ 조영욱-PC, factor base: 61677 primes (max prime = 1636883) 10/24/09 23:23:31 v1.10 @ 조영욱-PC, single large prime cutoff: 180057130 (110 * pmax) 10/24/09 23:23:31 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 10/24/09 23:23:31 v1.10 @ 조영욱-PC, double large prime cutoff: 724000026774137 10/24/09 23:23:31 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 10/24/09 23:23:31 v1.10 @ 조영욱-PC, buckets hold 1024 elements 10/24/09 23:23:31 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 10/24/09 23:23:31 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 10/24/09 23:23:31 v1.10 @ 조영욱-PC, using multiplier of 1 10/24/09 23:23:31 v1.10 @ 조영욱-PC, using small prime variation correction of 18 bits 10/24/09 23:23:31 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 10/24/09 23:23:31 v1.10 @ 조영욱-PC, trial factoring cutoff at 99 bits 10/24/09 23:23:31 v1.10 @ 조영욱-PC, ==== sieving started ==== 10/24/09 23:59:49 v1.10 @ 조영욱-PC, sieve time = 1044.0410, relation time = 341.2810, poly_time = 792.4710 10/24/09 23:59:49 v1.10 @ 조영욱-PC, 61780 relations found: 20672 full + 41108 from 551741 partial, using 422103 polys (412 A polys) 10/24/09 23:59:49 v1.10 @ 조영욱-PC, on average, sieving found 1.36 rels/poly and 262.74 rels/sec 10/24/09 23:59:49 v1.10 @ 조영욱-PC, trial division touched 11670223 sieve locations out of 497932959744 10/24/09 23:59:49 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 10/24/09 23:59:50 v1.10 @ 조영욱-PC, begin with 572413 relations 10/24/09 23:59:50 v1.10 @ 조영욱-PC, reduce to 125508 relations in 9 passes 10/24/09 23:59:51 v1.10 @ 조영욱-PC, recovered 125508 relations 10/24/09 23:59:51 v1.10 @ 조영욱-PC, recovered 108512 polynomials 10/24/09 23:59:51 v1.10 @ 조영욱-PC, attempting to build 61780 cycles 10/24/09 23:59:51 v1.10 @ 조영욱-PC, found 61780 cycles in 4 passes 10/24/09 23:59:51 v1.10 @ 조영욱-PC, distribution of cycle lengths: 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 1 : 20672 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 2 : 17282 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 3 : 11476 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 4 : 6357 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 5 : 3343 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 6 : 1500 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 7 : 675 10/24/09 23:59:51 v1.10 @ 조영욱-PC, length 9+: 475 10/24/09 23:59:51 v1.10 @ 조영욱-PC, largest cycle: 15 relations 10/24/09 23:59:51 v1.10 @ 조영욱-PC, matrix is 61677 x 61780 (13.0 MB) with weight 2901214 (46.96/col) 10/24/09 23:59:51 v1.10 @ 조영욱-PC, sparse part has weight 2901214 (46.96/col) 10/24/09 23:59:51 v1.10 @ 조영욱-PC, filtering completed in 3 passes 10/24/09 23:59:51 v1.10 @ 조영욱-PC, matrix is 55117 x 55181 (11.8 MB) with weight 2649715 (48.02/col) 10/24/09 23:59:51 v1.10 @ 조영욱-PC, sparse part has weight 2649715 (48.02/col) 10/24/09 23:59:52 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 10/24/09 23:59:52 v1.10 @ 조영욱-PC, matrix is 55069 x 55181 (8.3 MB) with weight 2124201 (38.50/col) 10/24/09 23:59:52 v1.10 @ 조영욱-PC, sparse part has weight 1633043 (29.59/col) 10/24/09 23:59:52 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 10/24/09 23:59:52 v1.10 @ 조영욱-PC, using block size 22072 for processor cache size 4096 kB 10/24/09 23:59:52 v1.10 @ 조영욱-PC, commencing Lanczos iteration 10/24/09 23:59:52 v1.10 @ 조영욱-PC, memory use: 7.6 MB 10/25/09 00:00:04 v1.10 @ 조영욱-PC, lanczos halted after 872 iterations (dim = 55067) 10/25/09 00:00:04 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 10/25/09 00:00:04 v1.10 @ 조영욱-PC, prp35 = 32008672599379556241790724929001261 10/25/09 00:00:05 v1.10 @ 조영욱-PC, prp54 = 202703127076465420436501533853575825089948645698619413 10/25/09 00:00:05 v1.10 @ 조영욱-PC, Lanczos elapsed time = 14.2900 seconds. 10/25/09 00:00:05 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.9510 seconds. 10/25/09 00:00:05 v1.10 @ 조영욱-PC, SIQS elapsed time = 2193.8590 seconds. 10/25/09 00:00:05 v1.10 @ 조영욱-PC, 10/25/09 00:00:05 v1.10 @ 조영욱-PC,
(2·10191+1)/3 = (6)1907<191> = 107 · 434363 · C184
C184 = P50 · P51 · P84
P50 = 15883788275518933823378174648633065329129145471009<50>
P51 = 129154159023019835829280546025015851553267122632403<51>
P84 = 699213257067203864864521928555707071916884215419505461497175542943038439663014948481<84>
Number: 66667_191 N=1434406152231100789889456270633080821191497646465831588396179221102111192683398311573427864141340128230028944236263102878843823887829783153004453694834093105998031722221970005807121587 ( 184 digits) SNFS difficulty: 191 digits. Divisors found: r1=15883788275518933823378174648633065329129145471009 r2=129154159023019835829280546025015851553267122632403 r3=699213257067203864864521928555707071916884215419505461497175542943038439663014948481 Version: Total time: 149.38 hours. Scaled time: 353.14 units (timescale=2.364). Factorization parameters were as follows: n: 1434406152231100789889456270633080821191497646465831588396179221102111192683398311573427864141340128230028944236263102878843823887829783153004453694834093105998031722221970005807121587 m: 100000000000000000000000000000000000000 deg: 5 c5: 20 c0: 1 skew: 0.55 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5000000, 8700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 21632821 Max relations in full relation-set: Initial matrix: Pruned matrix : 1981244 x 1981491 Total sieving time: 133.97 hours. Total relation processing time: 4.32 hours. Matrix solve time: 10.51 hours. Time per square root: 0.59 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,55,55,2.5,2.5,100000 total time: 149.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(64·10146+71)/9 = 7(1)1459<147> = 29 · 43 · 2942688563887<13> · C132
C132 = P38 · P94
P38 = 20922248714492232747363242068574188327<38>
P94 = 9262289457946675998505921238040544871349507594919771113867620230027339113642857153369700991273<94>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 193787923704779801177073863032680063432689263509288681043015945411329156407124011875072237800285489154167790197935985497233285470271 (132 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5589003022 Step 1 took 3281ms Step 2 took 2185ms ********** Factor found in step 2: 20922248714492232747363242068574188327 Found probable prime factor of 38 digits: 20922248714492232747363242068574188327 Probable prime cofactor 9262289457946675998505921238040544871349507594919771113867620230027339113642857153369700991273 has 94 digits
(26·10149-11)/3 = 8(6)1483<150> = 7 · 367 · 437964631187<12> · 2462434045223432635184577368617<31> · C105
C105 = P32 · P74
P32 = 14879455248887629252872247910309<32>
P74 = 21023126856417165892087401739868084915754062458746846717606000991769788457<74>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 312812675251746883894906550322388849288538455287149121253041175155208857123669318024554523653217239503213 (105 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7586851862 Step 1 took 2674ms Step 2 took 1850ms ********** Factor found in step 2: 14879455248887629252872247910309 Found probable prime factor of 32 digits: 14879455248887629252872247910309 Probable prime cofactor 21023126856417165892087401739868084915754062458746846717606000991769788457 has 74 digits
(64·10147+71)/9 = 7(1)1469<148> = 33 · 7 · 23 · 1361 · 34037098252908254717<20> · C122
C122 = P31 · P43 · P49
P31 = 9092679240857687203699489343863<31>
P43 = 1133692009344949981305377259795459982489171<43>
P49 = 3425706994020588576485113095334514017387044260077<49>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 35313207866128717054296738530445351859223418556327577583962195210110904762886801944682119343082073509336326076720727163121 (122 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7176917761 Step 1 took 4196ms Step 2 took 16ms ********** Factor found in step 2: 9092679240857687203699489343863 Found probable prime factor of 31 digits: 9092679240857687203699489343863 Composite cofactor 3883696645478249614182960181405500086959054640731065811210010188998322859496291566360126167 has 91 digits 10/25/09 09:34:43 v1.10 @ 조영욱-PC, starting SIQS on c91: 3883696645478249614182960181405500086959054640731065811210010188998322859496291566360126167 10/25/09 09:34:43 v1.10 @ 조영욱-PC, random seeds: 2850916953, 456782072 10/25/09 09:34:44 v1.10 @ 조영욱-PC, ==== sieve params ==== 10/25/09 09:34:44 v1.10 @ 조영욱-PC, n = 91 digits, 304 bits 10/25/09 09:34:44 v1.10 @ 조영욱-PC, factor base: 68495 primes (max prime = 1822187) 10/25/09 09:34:44 v1.10 @ 조영욱-PC, single large prime cutoff: 218662440 (120 * pmax) 10/25/09 09:34:44 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 10/25/09 09:34:44 v1.10 @ 조영욱-PC, double large prime cutoff: 1027054623429564 10/25/09 09:34:44 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 10/25/09 09:34:44 v1.10 @ 조영욱-PC, buckets hold 1024 elements 10/25/09 09:34:44 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536 10/25/09 09:34:44 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 10/25/09 09:34:44 v1.10 @ 조영욱-PC, using multiplier of 7 10/25/09 09:34:44 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits 10/25/09 09:34:44 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 10/25/09 09:34:44 v1.10 @ 조영욱-PC, trial factoring cutoff at 96 bits 10/25/09 09:34:44 v1.10 @ 조영욱-PC, ==== sieving started ==== 10/25/09 10:24:05 v1.10 @ 조영욱-PC, sieve time = 1336.7250, relation time = 691.6450, poly_time = 932.2880 10/25/09 10:24:05 v1.10 @ 조영욱-PC, 68584 relations found: 19869 full + 48715 from 829684 partial, using 424594 polys (207 A polys) 10/25/09 10:24:05 v1.10 @ 조영욱-PC, on average, sieving found 2.00 rels/poly and 286.83 rels/sec 10/25/09 10:24:05 v1.10 @ 조영욱-PC, trial division touched 25510065 sieve locations out of 612176232448 10/25/09 10:24:05 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 10/25/09 10:24:06 v1.10 @ 조영욱-PC, begin with 849553 relations 10/25/09 10:24:06 v1.10 @ 조영욱-PC, reduce to 159157 relations in 9 passes 10/25/09 10:24:07 v1.10 @ 조영욱-PC, recovered 159157 relations 10/25/09 10:24:07 v1.10 @ 조영욱-PC, recovered 132584 polynomials 10/25/09 10:24:08 v1.10 @ 조영욱-PC, attempting to build 68584 cycles 10/25/09 10:24:08 v1.10 @ 조영욱-PC, found 68584 cycles in 5 passes 10/25/09 10:24:08 v1.10 @ 조영욱-PC, distribution of cycle lengths: 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 1 : 19869 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 2 : 14935 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 3 : 12558 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 4 : 8791 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 5 : 5600 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 6 : 3169 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 7 : 1793 10/25/09 10:24:08 v1.10 @ 조영욱-PC, length 9+: 1869 10/25/09 10:24:08 v1.10 @ 조영욱-PC, largest cycle: 16 relations 10/25/09 10:24:08 v1.10 @ 조영욱-PC, matrix is 68495 x 68584 (16.9 MB) with weight 3885812 (56.66/col) 10/25/09 10:24:08 v1.10 @ 조영욱-PC, sparse part has weight 3885812 (56.66/col) 10/25/09 10:24:08 v1.10 @ 조영욱-PC, filtering completed in 3 passes 10/25/09 10:24:08 v1.10 @ 조영욱-PC, matrix is 63408 x 63471 (15.8 MB) with weight 3643439 (57.40/col) 10/25/09 10:24:08 v1.10 @ 조영욱-PC, sparse part has weight 3643439 (57.40/col) 10/25/09 10:24:08 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 10/25/09 10:24:08 v1.10 @ 조영욱-PC, matrix is 63360 x 63471 (10.5 MB) with weight 2826606 (44.53/col) 10/25/09 10:24:08 v1.10 @ 조영욱-PC, sparse part has weight 2120045 (33.40/col) 10/25/09 10:24:08 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 10/25/09 10:24:08 v1.10 @ 조영욱-PC, using block size 25388 for processor cache size 4096 kB 10/25/09 10:24:09 v1.10 @ 조영욱-PC, commencing Lanczos iteration 10/25/09 10:24:09 v1.10 @ 조영욱-PC, memory use: 9.4 MB 10/25/09 10:24:26 v1.10 @ 조영욱-PC, lanczos halted after 1004 iterations (dim = 63356) 10/25/09 10:24:26 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 10/25/09 10:24:29 v1.10 @ 조영욱-PC, prp49 = 3425706994020588576485113095334514017387044260077 10/25/09 10:24:30 v1.10 @ 조영욱-PC, prp43 = 1133692009344949981305377259795459982489171 10/25/09 10:24:30 v1.10 @ 조영욱-PC, Lanczos elapsed time = 20.9670 seconds. 10/25/09 10:24:30 v1.10 @ 조영욱-PC, Sqrt elapsed time = 3.5410 seconds. 10/25/09 10:24:30 v1.10 @ 조영욱-PC, SIQS elapsed time = 2986.4140 seconds. 10/25/09 10:24:30 v1.10 @ 조영욱-PC, 10/25/09 10:24:30 v1.10 @ 조영욱-PC,
(83·10144+7)/9 = 9(2)1433<145> = 89 · 607 · 530743 · 26578672453<11> · C125
C125 = P37 · P88
P37 = 7620243200305720178433627196673681023<37>
P88 = 1588073113575697728528935879433186144051276413419026749657921230265554117895252647777853<88>
Number: 92223_144 N=12101503345313544296726077856879492583269902651699773591285503600604622679901120704345584900671105410790856437888630685783619 ( 125 digits) SNFS difficulty: 146 digits. Divisors found: r1=7620243200305720178433627196673681023 r2=1588073113575697728528935879433186144051276413419026749657921230265554117895252647777853 Version: Total time: 7.02 hours. Scaled time: 16.72 units (timescale=2.383). Factorization parameters were as follows: n: 12101503345313544296726077856879492583269902651699773591285503600604622679901120704345584900671105410790856437888630685783619 m: 100000000000000000000000000000 deg: 5 c5: 83 c0: 70 skew: 0.97 type: snfs lss: 1 rlim: 2550000 alim: 2550000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2550000/2550000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1275000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4760461 Max relations in full relation-set: Initial matrix: Pruned matrix : 349434 x 349682 Total sieving time: 6.52 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.25 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2550000,2550000,26,26,49,49,2.3,2.3,75000 total time: 7.02 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(64·10145+17)/9 = 7(1)1443<146> = 73 · 7109 · 9487363 · 211475533 · 146365173826136249057<21> · C105
C105 = P49 · P57
P49 = 1169813637472724608879846874031360720284904573943<49>
P57 = 398883444547249357116524080979030956658275082357933999821<57>
Number: 71113_145 N=466619293193467609106637409577082544935587703521242296864100906176497819573361078885346853164715843264203 ( 105 digits) Divisors found: r1=1169813637472724608879846874031360720284904573943 r2=398883444547249357116524080979030956658275082357933999821 Version: Total time: 4.96 hours. Scaled time: 11.85 units (timescale=2.387). Factorization parameters were as follows: name: 71113_145 n: 466619293193467609106637409577082544935587703521242296864100906176497819573361078885346853164715843264203 skew: 6309.61 # norm 1.33e+14 c5: 31200 c4: -790565510 c3: -11376259783517 c2: 23289595609209357 c1: 16856853205610039493 c0: 20770263123537894491952 # alpha -4.99 Y1: 71362036229 Y0: -108383474337977239085 # Murphy_E 1.96e-09 # M 165076693542715147816953182526660278637643445471452452355295693622258007479330605559673783801438412873209 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7220317 Max relations in full relation-set: Initial matrix: Pruned matrix : 288024 x 288272 Polynomial selection time: 0.33 hours. Total sieving time: 3.86 hours. Total relation processing time: 0.53 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 4.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(59·10153+13)/9 = 6(5)1527<154> = 61 · 14431 · C148
C148 = P36 · C113
P36 = 448464904859558179943943527591218691<36>
C113 = [16605607864965677941097681100617903499359254644723048816511846628405008244182350794304630346346316241452961808797<113>]
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 7447032351296963794422021303813801976341409324366096615273307980605908223025744390838433603837316927647284313432212252034333595998999825688954624727 (148 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3255258886 Step 1 took 4664ms Step 2 took 4586ms ********** Factor found in step 2: 448464904859558179943943527591218691 Found probable prime factor of 36 digits: 448464904859558179943943527591218691 Composite cofactor 16605607864965677941097681100617903499359254644723048816511846628405008244182350794304630346346316241452961808797 has 113 digits
By Sinkiti Sibata / GGNFS, Msieve / Oct 25, 2009
(26·10128-11)/3 = 8(6)1273<129> = 534716673012120673637<21> · C109
C109 = P53 · P56
P53 = 28231457338923355714210349805249384803656629093653461<53>
P56 = 57410994463621940343419240971956483368602008129962515759<56>
Number: 86663_128 N=1620796040984907771562505445804590777389195101791022914125100946213000619690680554239828560158443812097391899 ( 109 digits) SNFS difficulty: 130 digits. Divisors found: r1=28231457338923355714210349805249384803656629093653461 (pp53) r2=57410994463621940343419240971956483368602008129962515759 (pp56) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.82 hours. Scaled time: 9.40 units (timescale=1.949). Factorization parameters were as follows: name: 86663_128 n: 1620796040984907771562505445804590777389195101791022914125100946213000619690680554239828560158443812097391899 m: 50000000000000000000000000 deg: 5 c5: 208 c0: -275 skew: 1.06 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 980001) Primes: RFBsize:82832, AFBsize:83234, largePrimes:2781623 encountered Relations: rels:2702185, finalFF:229580 Max relations in full relation-set: 28 Initial matrix: 166133 x 229580 with sparse part having weight 17710428. Pruned matrix : 146994 x 147888 with weight 8493934. Total sieving time: 4.56 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 4.82 hours. --------- CPU info (if available) ----------
(64·10139+17)/9 = 7(1)1383<140> = 113 · 2066992703<10> · 732894075941<12> · 3316020366531589<16> · C102
C102 = P41 · P61
P41 = 35340792430636249735607064473287711611151<41>
P61 = 3544748225760749980193652509393545530287763093943914933592433<61>
Number: 71113_139 N=125274211265476789012584372600934384359407136184462238841338702440456197293391775672309177070812020383 ( 102 digits) SNFS difficulty: 141 digits. Divisors found: r1=35340792430636249735607064473287711611151 (pp41) r2=3544748225760749980193652509393545530287763093943914933592433 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.57 hours. Scaled time: 16.96 units (timescale=1.979). Factorization parameters were as follows: name: 71113_139 n: 125274211265476789012584372600934384359407136184462238841338702440456197293391775672309177070812020383 m: 20000000000000000000000000000 deg: 5 c5: 1 c0: 85 skew: 2.43 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1500001) Primes: RFBsize:121127, AFBsize:121640, largePrimes:3807169 encountered Relations: rels:4056948, finalFF:533305 Max relations in full relation-set: 28 Initial matrix: 242831 x 533305 with sparse part having weight 45727150. Pruned matrix : 171742 x 173020 with weight 14020652. Total sieving time: 8.12 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.29 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 8.57 hours. --------- CPU info (if available) ----------
(59·10162+13)/9 = 6(5)1617<163> = 732 · 97 · 727 · 110119 · 187420399057<12> · 2334523065937<13> · 382716642977363<15> · 12076827793624644509443<23> · C89
C89 = P29 · P61
P29 = 69516819691144244489845582123<29>
P61 = 1126834753234250582167665892728317395683413561745942050448631<61>
Sun Oct 25 15:43:55 2009 Msieve v. 1.42 Sun Oct 25 15:43:55 2009 random seeds: eca55479 eedbe34a Sun Oct 25 15:43:55 2009 factoring 78333968362300416510181956690557714648145208117374814352621832119111721264997885503423613 (89 digits) Sun Oct 25 15:43:56 2009 no P-1/P+1/ECM available, skipping Sun Oct 25 15:43:56 2009 commencing quadratic sieve (89-digit input) Sun Oct 25 15:43:56 2009 using multiplier of 1 Sun Oct 25 15:43:56 2009 using 64kb Pentium 4 sieve core Sun Oct 25 15:43:56 2009 sieve interval: 17 blocks of size 65536 Sun Oct 25 15:43:56 2009 processing polynomials in batches of 6 Sun Oct 25 15:43:56 2009 using a sieve bound of 1565017 (59333 primes) Sun Oct 25 15:43:56 2009 using large prime bound of 125201360 (26 bits) Sun Oct 25 15:43:56 2009 using double large prime bound of 376440425084800 (42-49 bits) Sun Oct 25 15:43:56 2009 using trial factoring cutoff of 49 bits Sun Oct 25 15:43:56 2009 polynomial 'A' values have 11 factors Sun Oct 25 17:47:06 2009 59646 relations (15545 full + 44101 combined from 638233 partial), need 59429 Sun Oct 25 17:47:08 2009 begin with 653778 relations Sun Oct 25 17:47:09 2009 reduce to 147069 relations in 10 passes Sun Oct 25 17:47:09 2009 attempting to read 147069 relations Sun Oct 25 17:47:12 2009 recovered 147069 relations Sun Oct 25 17:47:12 2009 recovered 125914 polynomials Sun Oct 25 17:47:13 2009 attempting to build 59646 cycles Sun Oct 25 17:47:13 2009 found 59646 cycles in 5 passes Sun Oct 25 17:47:13 2009 distribution of cycle lengths: Sun Oct 25 17:47:13 2009 length 1 : 15545 Sun Oct 25 17:47:13 2009 length 2 : 11194 Sun Oct 25 17:47:13 2009 length 3 : 10420 Sun Oct 25 17:47:13 2009 length 4 : 8120 Sun Oct 25 17:47:13 2009 length 5 : 5800 Sun Oct 25 17:47:13 2009 length 6 : 3610 Sun Oct 25 17:47:13 2009 length 7 : 2239 Sun Oct 25 17:47:13 2009 length 9+: 2718 Sun Oct 25 17:47:13 2009 largest cycle: 18 relations Sun Oct 25 17:47:13 2009 matrix is 59333 x 59646 (14.8 MB) with weight 3630587 (60.87/col) Sun Oct 25 17:47:13 2009 sparse part has weight 3630587 (60.87/col) Sun Oct 25 17:47:14 2009 filtering completed in 3 passes Sun Oct 25 17:47:14 2009 matrix is 55723 x 55787 (13.9 MB) with weight 3413972 (61.20/col) Sun Oct 25 17:47:15 2009 sparse part has weight 3413972 (61.20/col) Sun Oct 25 17:47:15 2009 saving the first 48 matrix rows for later Sun Oct 25 17:47:15 2009 matrix is 55675 x 55787 (10.3 MB) with weight 2849057 (51.07/col) Sun Oct 25 17:47:15 2009 sparse part has weight 2368968 (42.46/col) Sun Oct 25 17:47:15 2009 matrix includes 64 packed rows Sun Oct 25 17:47:15 2009 using block size 21845 for processor cache size 512 kB Sun Oct 25 17:47:15 2009 commencing Lanczos iteration Sun Oct 25 17:47:15 2009 memory use: 9.7 MB Sun Oct 25 17:47:48 2009 lanczos halted after 881 iterations (dim = 55671) Sun Oct 25 17:47:48 2009 recovered 14 nontrivial dependencies Sun Oct 25 17:47:51 2009 prp29 factor: 69516819691144244489845582123 Sun Oct 25 17:47:51 2009 prp61 factor: 1126834753234250582167665892728317395683413561745942050448631 Sun Oct 25 17:47:51 2009 elapsed time 02:03:56
(26·10139-11)/3 = 8(6)1383<140> = 1693 · 6888904706941<13> · C124
C124 = P61 · P63
P61 = 8870595788892487911104375936030780894093930167133280256610899<61>
P63 = 837707045164910241217663948652115615923423788814338069923561749<63>
Number: 86663_139 N=7430960587165421962000123662758431206353926455170965852483838812840294402028743639310757689822470021911230605916761692902351 ( 124 digits) SNFS difficulty: 141 digits. Divisors found: r1=8870595788892487911104375936030780894093930167133280256610899 (pp61) r2=837707045164910241217663948652115615923423788814338069923561749 (pp63) Version: Msieve-1.40 Total time: 6.51 hours. Scaled time: 13.48 units (timescale=2.071). Factorization parameters were as follows: name: 86663_139 n: 7430960587165421962000123662758431206353926455170965852483838812840294402028743639310757689822470021911230605916761692902351 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: -55 skew: 1.33 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 229759 x 229996 Total sieving time: 6.20 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 6.51 hours. --------- CPU info (if available) ----------
(64·10141+17)/9 = 7(1)1403<142> = 3 · 3631 · 23774027 · 38210935379<11> · C120
C120 = P47 · P74
P47 = 23562641469567864876337026588185070376527483949<47>
P74 = 30498295302175290423634367739758902230843046755702055066361643029047633073<74>
SNFS difficulty: 142 digits. Divisors found: r1=23562641469567864876337026588185070376527483949 (pp47) r2=30498295302175290423634367739758902230843046755702055066361643029047633073 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.53 hours. Scaled time: 20.20 units (timescale=1.919). Factorization parameters were as follows: name: 71113_141 n: 718620397638162294733305621236272925576662114980663962005049956604711481492309440291240165113252665825820512650449045277 m: 20000000000000000000000000000 deg: 5 c5: 20 c0: 17 skew: 0.97 type: snfs lss: 1 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1680000/1680000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [840000, 1740001) Primes: RFBsize:126753, AFBsize:126821, largePrimes:3769249 encountered Relations: rels:3815360, finalFF:333077 Max relations in full relation-set: 28 Initial matrix: 253640 x 333077 with sparse part having weight 30096722. Pruned matrix : 227339 x 228671 with weight 17309106. Total sieving time: 9.84 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.49 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000 total time: 10.53 hours. --------- CPU info (if available) ----------
By Norbert Schneider / Msieve / Oct 25, 2009
(26·10147-11)/3 = 8(6)1463<148> = 31 · 79 · 167 · 1353459067381824712130681<25> · 21398446694347252792235023<26> · C93
C93 = P42 · P52
P42 = 126483774862839140088316862326098266953543<42>
P52 = 5784750647104411502104764644569097235027045860205329<52>
Sat Oct 24 19:10:22 2009 Sat Oct 24 19:10:22 2009 Sat Oct 24 19:10:22 2009 Msieve v. 1.43 Sat Oct 24 19:10:22 2009 random seeds: b616bf80 3a42ab57 Sat Oct 24 19:10:22 2009 factoring 731677098486017412808124512800179508883325488052549521445809992284550135852428581537284030647 (93 digits) Sat Oct 24 19:10:24 2009 searching for 15-digit factors Sat Oct 24 19:10:24 2009 commencing quadratic sieve (93-digit input) Sat Oct 24 19:10:25 2009 using multiplier of 47 Sat Oct 24 19:10:25 2009 using 64kb Pentium 4 sieve core Sat Oct 24 19:10:25 2009 sieve interval: 18 blocks of size 65536 Sat Oct 24 19:10:25 2009 processing polynomials in batches of 6 Sat Oct 24 19:10:25 2009 using a sieve bound of 1956901 (72705 primes) Sat Oct 24 19:10:25 2009 using large prime bound of 244612625 (27 bits) Sat Oct 24 19:10:25 2009 using double large prime bound of 1256787622996125 (42-51 bits) Sat Oct 24 19:10:25 2009 using trial factoring cutoff of 51 bits Sat Oct 24 19:10:25 2009 polynomial 'A' values have 12 factors Sat Oct 24 23:59:39 2009 73218 relations (18983 full + 54235 combined from 989961 partial), need 72801 Sat Oct 24 23:59:45 2009 begin with 1008944 relations Sat Oct 24 23:59:47 2009 reduce to 185654 relations in 13 passes Sat Oct 24 23:59:47 2009 attempting to read 185654 relations Sat Oct 24 23:59:53 2009 recovered 185654 relations Sat Oct 24 23:59:53 2009 recovered 166490 polynomials Sat Oct 24 23:59:53 2009 attempting to build 73218 cycles Sat Oct 24 23:59:54 2009 found 73218 cycles in 6 passes Sat Oct 24 23:59:54 2009 distribution of cycle lengths: Sat Oct 24 23:59:54 2009 length 1 : 18983 Sat Oct 24 23:59:54 2009 length 2 : 13497 Sat Oct 24 23:59:54 2009 length 3 : 12531 Sat Oct 24 23:59:54 2009 length 4 : 9663 Sat Oct 24 23:59:54 2009 length 5 : 7152 Sat Oct 24 23:59:54 2009 length 6 : 4604 Sat Oct 24 23:59:54 2009 length 7 : 2958 Sat Oct 24 23:59:54 2009 length 9+: 3830 Sat Oct 24 23:59:54 2009 largest cycle: 21 relations Sat Oct 24 23:59:54 2009 matrix is 72705 x 73218 (19.0 MB) with weight 4700937 (64.20/col) Sat Oct 24 23:59:54 2009 sparse part has weight 4700937 (64.20/col) Sat Oct 24 23:59:58 2009 filtering completed in 3 passes Sat Oct 24 23:59:58 2009 matrix is 68396 x 68460 (17.8 MB) with weight 4402031 (64.30/col) Sat Oct 24 23:59:58 2009 sparse part has weight 4402031 (64.30/col) Sat Oct 24 23:59:58 2009 saving the first 48 matrix rows for later Sat Oct 24 23:59:58 2009 matrix is 68348 x 68460 (11.8 MB) with weight 3524777 (51.49/col) Sat Oct 24 23:59:58 2009 sparse part has weight 2669452 (38.99/col) Sat Oct 24 23:59:58 2009 matrix includes 64 packed rows Sat Oct 24 23:59:59 2009 using block size 10922 for processor cache size 256 kB Sun Oct 25 00:00:00 2009 commencing Lanczos iteration Sun Oct 25 00:00:00 2009 memory use: 11.6 MB Sun Oct 25 00:00:23 2009 linear algebra at 35.2%, ETA 0h 0m Sun Oct 25 00:01:04 2009 lanczos halted after 1082 iterations (dim = 68345) Sun Oct 25 00:01:04 2009 recovered 16 nontrivial dependencies Sun Oct 25 00:01:05 2009 prp42 factor: 126483774862839140088316862326098266953543 Sun Oct 25 00:01:05 2009 prp52 factor: 5784750647104411502104764644569097235027045860205329 Sun Oct 25 00:01:05 2009 elapsed time 04:50:43
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Oct 25, 2009
(64·10150+17)/9 = 7(1)1493<151> = 3 · 163 · 593 · C146
C146 = P45 · P102
P45 = 181460493643859860267546457615776892302547113<45>
P102 = 135142461223855023769374585953390591400230384542853999743362412572020686220483774158288305519116127913<102>
Number: s146 N=24523017725926922173521041707139225218245278456950417140363239536622253182532101204961466292537377485494060256886274122123861930812137207816865169 ( 146 digits) SNFS difficulty: 151 digits. Divisors found: r1=181460493643859860267546457615776892302547113 (pp45) r2=135142461223855023769374585953390591400230384542853999743362412572020686220483774158288305519116127913 (pp102) Version: Msieve-1.40 Total time: 11.57 hours. Scaled time: 21.45 units (timescale=1.855). Factorization parameters were as follows: n: 24523017725926922173521041707139225218245278456950417140363239536622253182532101204961466292537377485494060256886274122123861930812137207816865169 m: 2000000000000000000000000000000 deg: 5 c5: 2 c0: 17 skew: 1.53 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 385402 x 385626 Total sieving time: 11.29 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 11.57 hours. --------- CPU info (if available) ----------
(64·10150+71)/9 = 7(1)1499<151> = 3 · 37589 · 1608992995552909<16> · 38743674467950353459894799<26> · C106
C106 = P47 · P59
P47 = 60033171818637036837946345942978850104908263861<47>
P59 = 16850360145293193596749837297116847910388052640299429895407<59>
Number: gnfs106 N=1011580565808300035324835095269093337415387040964529896988277350606665747712644305132003455465229187986427 ( 106 digits) Divisors found: r1=60033171818637036837946345942978850104908263861 (pp47) r2=16850360145293193596749837297116847910388052640299429895407 (pp59) Version: Msieve-1.40 Total time: 7.46 hours. Scaled time: 14.39 units (timescale=1.928). Factorization parameters were as follows: name: gnfs106 n: 1011580565808300035324835095269093337415387040964529896988277350606665747712644305132003455465229187986427 skew: 12656.69 # norm 7.40e+014 c5: 92400 c4: 839948774 c3: -73701608093115 c2: -18833223482297583 c1: 3377810069304610720235 c0: 488844492386143255374089 # alpha -6.62 Y1: 273354832543 Y0: -101827148467019791260 # Murphy_E 1.89e-009 # M 301070719605173866416940685340759894911051254330603743674021012391945810541977611780615421200839662171667 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 241887 x 242112 Polynomial selection time: 0.85 hours. Total sieving time: 6.35 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.16 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 7.46 hours. --------- CPU info (if available) ----------
(83·10157+7)/9 = 9(2)1563<158> = 33 · 23 · 139 · 677 · C151
C151 = P36 · P40 · P76
P36 = 626045116755851438475264246925740973<36>
P40 = 1012848459600439964833165666804565900201<40>
P76 = 2488802357902899188563060987762312568445426174233937076223149292666541768377<76>
Number: s151 N=1578121780566208685648783175796566047694410946908300383814237710890474095105303759855938548409399934460792588239638370389847815575334517088184990675021 ( 151 digits) SNFS difficulty: 161 digits. Divisors found: r1=626045116755851438475264246925740973 (pp36) r2=1012848459600439964833165666804565900201 (pp40) r3=2488802357902899188563060987762312568445426174233937076223149292666541768377 (pp76) Version: Msieve-1.40 Total time: 25.44 hours. Scaled time: 49.04 units (timescale=1.928). Factorization parameters were as follows: n: 1578121780566208685648783175796566047694410946908300383814237710890474095105303759855938548409399934460792588239638370389847815575334517088184990675021 m: 50000000000000000000000000000000 deg: 5 c5: 332 c0: 875 skew: 1.21 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 703919 x 704146 Total sieving time: 24.62 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.59 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 25.44 hours. --------- CPU info (if available) ----------
(26·10194-11)/3 = 8(6)1933<195> = C195
C195 = P39 · C157
P39 = 195721309769165290517468167522075066993<39>
C157 = [4428064923992271188897172141909552065313113376249145079122632080472355721315498754192989009423534511274168794443365639986065578670493920034925645440231447191<157>]
Factor=195721309769165290517468167522075066993 Method=ECM B1=11000000 Sigma=1337364280
By Robert Backstrom / GGNFS, Msieve / Oct 25, 2009
(64·10146+17)/9 = 7(1)1453<147> = 131 · 409831 · C140
C140 = P46 · P94
P46 = 2851884250413709181276276969836114316460554033<46>
P94 = 4644398416732077928294402657397906910999332994134532480822741775205785263948309822994189042901<94>
Number: n N=13245286697324579779982501279220476135398858805552173350901633259539081117631248358192387495398840924415131962718930283162354169988465569733 ( 140 digits) SNFS difficulty: 147 digits. Divisors found: Sun Oct 25 04:44:32 2009 prp46 factor: 2851884250413709181276276969836114316460554033 Sun Oct 25 04:44:32 2009 prp94 factor: 4644398416732077928294402657397906910999332994134532480822741775205785263948309822994189042901 Sun Oct 25 04:44:32 2009 elapsed time 00:02:10 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.35 hours. Scaled time: 13.44 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_1_145_3 n: 13245286697324579779982501279220476135398858805552173350901633259539081117631248358192387495398840924415131962718930283162354169988465569733 m: 200000000000000000000000000000 deg: 5 c5: 20 c0: 17 skew: 0.97 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 qintsize: 20000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [1000000, 2300323) Primes: RFBsize:148933, AFBsize:148990, largePrimes:3965971 encountered Relations: rels:3886206, finalFF:306420 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 553406 hash collisions in 4547224 relations Msieve: matrix is 338967 x 339192 (89.4 MB) Total sieving time: 7.26 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 7.35 hours. --------- CPU info (if available) ----------
(83·10138+7)/9 = 9(2)1373<139> = 29 · 296315088385031<15> · C124
C124 = P50 · P74
P50 = 93988310201234862601570372294932527271313227418747<50>
P74 = 11418524212125215153704901048888926793883689926626226465167573286606626391<74>
Number: n N=1073207795689535631622836147825278952552729693717888979960708463097569132782518985104571996377844886200285553772238738352077 ( 124 digits) SNFS difficulty: 141 digits. Divisors found: Sun Oct 25 18:47:01 2009 prp50 factor: 93988310201234862601570372294932527271313227418747 Sun Oct 25 18:47:01 2009 prp74 factor: 11418524212125215153704901048888926793883689926626226465167573286606626391 Sun Oct 25 18:47:01 2009 elapsed time 00:20:23 (Msieve 1.42 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.21 hours. Scaled time: 9.50 units (timescale=1.823). Factorization parameters were as follows: name: KA_9_2_137_3 n: 1073207795689535631622836147825278952552729693717888979960708463097569132782518985104571996377844886200285553772238738352077 m: 5000000000000000000000000000 deg: 5 c5: 664 c0: 175 skew: 0.77 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 qintsize: 20000 Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [795000, 1787953) Primes: RFBsize:120451, AFBsize:120228, largePrimes:3468598 encountered Relations: rels:3326883, finalFF:241527 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 497871 hash collisions in 3752395 relations Msieve: matrix is 266381 x 266606 (71.1 MB) Total sieving time: 5.14 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 5.21 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve / Oct 25, 2009
(26·10119-11)/3 = 8(6)1183<120> = 7 · 17 · 71 · 3803 · C113
C113 = P55 · P59
P55 = 1274995380145892465903774193098344924077906451577513651<55>
P59 = 21154942370976421697486933878627177564197928329200354011079<59>
SNFS difficulty: 121 digits. Divisors found: r1=1274995380145892465903774193098344924077906451577513651 (pp55) r2=21154942370976421697486933878627177564197928329200354011079 (pp59) Version: Msieve v. 1.44 SVN130 Total time: 0.74 hours. Scaled time: 1.77 units (timescale=2.400). Factorization parameters were as follows: n: 26972453790247530461781583895312188568657048061416609249055660677236196149119949520845251137975605926059727739429 m: 1000000000000000000000000 deg: 5 c5: 13 c0: -55 skew: 1.33 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 name: 86663_119 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [456250, 706251) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76157 x 76382 Total sieving time: 0.70 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 0.74 hours.
(83·10118+7)/9 = 9(2)1173<119> = 3 · 1092919 · C113
C113 = P42 · P71
P42 = 705070381600235455186991830596638083559201<42>
P71 = 39892741314093663141511170138983554044263787963680068665654734350406339<71>
SNFS difficulty: 121 digits. Divisors found: r1=705070381600235455186991830596638083559201 (pp42) r2=39892741314093663141511170138983554044263787963680068665654734350406339 (pp71) Version: Msieve v. 1.44 SVN130 Total time: 1.05 hours. Scaled time: 2.52 units (timescale=2.400). Factorization parameters were as follows: name: 92223_118 n: 28127190341407497482192862179851151586476894207842246992449340473301992865656778535958054293813851475489712175139 m: 500000000000000000000000 deg: 5 c5: 664 c0: 175 skew: 0.77 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [462500, 812501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 88790 x 89015 Total sieving time: 0.96 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.05 hours.
By Erik Branger / GGNFS, Msieve / Oct 25, 2009
(64·10135+71)/9 = 7(1)1349<136> = 3 · 7 · 17 · 47 · 59 · 71705902740581<14> · C117
C117 = P44 · P73
P44 = 49396726635866252941349225764082311779594253<44>
P73 = 2027992294691125275972524809223849871442123743225447567390794349798850103<73>
Number: 71119_135 N=1001761810005006313080634948875632238963927787480139812249508104174234067865331438566434001609614270508832793072 58059 ( 117 digits) SNFS difficulty: 136 digits. Divisors found: r1=49396726635866252941349225764082311779594253 (pp44) r2=2027992294691125275972524809223849871442123743225447567390794349798850103 (pp73) Version: Msieve-1.40 Total time: 4.15 hours. Scaled time: 4.18 units (timescale=1.006). Factorization parameters were as follows: n: 100176181000500631308063494887563223896392778748013981224950810417423406786533143856643400160961427050883279307258 059 m: 2000000000000000000000000000 deg: 5 c5: 2 c0: 71 skew: 2.04 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 183913 x 184139 Total sieving time: 3.98 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 4.15 hours. --------- CPU info (if available) ----------
Factorizations of 655...557 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Oct 24, 2009
(83·10153+7)/9 = 9(2)1523<154> = 19 · C153
C153 = P41 · P50 · P63
P41 = 11845787618552744408592793547872783337647<41>
P50 = 99267096564836654377879865186188878175450767609761<50>
P63 = 412774367410497933703892824746397001142527586353054293958148251<63>
Number: s153 N=485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380117 ( 153 digits) SNFS difficulty: 156 digits. Divisors found: r1=11845787618552744408592793547872783337647 (pp41) r2=99267096564836654377879865186188878175450767609761 (pp50) r3=412774367410497933703892824746397001142527586353054293958148251 (pp63) Version: Msieve-1.40 Total time: 19.76 hours. Scaled time: 37.09 units (timescale=1.877). Factorization parameters were as follows: n: 485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380117 m: 5000000000000000000000000000000 deg: 5 c5: 664 c0: 175 skew: 0.77 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 496610 x 496839 Total sieving time: 19.17 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.30 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 19.76 hours. --------- CPU info (if available) ----------
(64·10170+17)/9 = 7(1)1693<171> = C171
C171 = P41 · C131
P41 = 20144781073759431713450953582651849027061<41>
C131 = [35300016838475530194639813738214629072622370366721985133667932037689576825363959054040956101074677617174755632664566964527186992133<131>]
Factor=20144781073759431713450953582651849027061 Method=ECM B1=11000000 Sigma=2496299565
(64·10147+17)/9 = 7(1)1463<148> = 3 · 57503 · 216157 · C138
C138 = P48 · P91
P48 = 107549954987785579928593402880636566882663688597<48>
P91 = 1773152830631860446188329106257338288543867985415407300744686996376641282910154550813699133<91>
Number: s138 N=190702507120921179029693498224047177003466422091042164816733207692270771454237644049874031134578027075937711938152210610862622491960886401 ( 138 digits) SNFS difficulty: 149 digits. Divisors found: r1=107549954987785579928593402880636566882663688597 (pp48) r2=1773152830631860446188329106257338288543867985415407300744686996376641282910154550813699133 (pp91) Version: Msieve-1.40 Total time: 6.95 hours. Scaled time: 13.17 units (timescale=1.894). Factorization parameters were as follows: n: 190702507120921179029693498224047177003466422091042164816733207692270771454237644049874031134578027075937711938152210610862622491960886401 m: 400000000000000000000000000000 deg: 5 c5: 25 c0: 68 skew: 1.22 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 324891 x 325117 Total sieving time: 6.76 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 6.95 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Oct 24, 2009
(26·10134-11)/3 = 8(6)1333<135> = 79 · 971 · C131
C131 = P40 · P91
P40 = 5793892158320044697483839891106768191867<40>
P91 = 1950003382206205302748093895603935525675119062485432522884303420606445893015445347133372321<91>
Number: 86663_134 N=11298109304862097885080846662929599742750741981601463539697645213295267395829259495843599403807462835738526987272245325407275113307 ( 131 digits) SNFS difficulty: 136 digits. Divisors found: r1=5793892158320044697483839891106768191867 (pp40) r2=1950003382206205302748093895603935525675119062485432522884303420606445893015445347133372321 (pp91) Version: Msieve-1.40 Total time: 3.59 hours. Scaled time: 3.70 units (timescale=1.029). Factorization parameters were as follows: n: 11298109304862097885080846662929599742750741981601463539697645213295267395829259495843599403807462835738526987272245325407275113307 m: 1000000000000000000000000000 deg: 5 c5: 13 c0: -55 skew: 1.33 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1175001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 190282 x 190507 Total sieving time: 3.43 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 3.59 hours. --------- CPU info (if available) ----------
(83·10122+7)/9 = 9(2)1213<123> = 13 · 108887 · 128563 · 1114283 · C106
C106 = P50 · P57
P50 = 15088320696223135169809198089153969811751774911547<50>
P57 = 301414255803061414574888662754994760101373439276969078791<57>
Number: 92223_122 N=4547834953970025762840857831440101814378063031264673061402797428646893129342321038178952983343358098699677 ( 106 digits) SNFS difficulty: 126 digits. Divisors found: r1=15088320696223135169809198089153969811751774911547 (pp50) r2=301414255803061414574888662754994760101373439276969078791 (pp57) Version: Msieve v. 1.41 Total time: 3.72 hours. Scaled time: 2.90 units (timescale=0.780). Factorization parameters were as follows: n: 4547834953970025762840857831440101814378063031264673061402797428646893129342321038178952983343358098699677 m: 5000000000000000000000000 deg: 5 c5: 332 c0: 875 skew: 1.21 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 790001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 114621 x 114866 Total sieving time: 3.38 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 3.72 hours. --------- CPU info (if available) ----------
(61·10135-43)/9 = 6(7)1343<136> = 13 · 113 · 2237 · 2689 · 48222969881785793<17> · C110
C110 = P36 · P74
P36 = 344359163910943223401461453853061057<36>
P74 = 46189487683276597744389391866230132568115599033739994894011952870193891269<74>
Number: 67773_135 N=15905773360087939094211704956938899126912493543414565319868815848987679577477410100590419453658538537876211333 ( 110 digits) SNFS difficulty: 136 digits. Divisors found: r1=344359163910943223401461453853061057 (pp36) r2=46189487683276597744389391866230132568115599033739994894011952870193891269 (pp74) Version: Msieve-1.40 Total time: 4.16 hours. Scaled time: 4.09 units (timescale=0.982). Factorization parameters were as follows: n: 15905773360087939094211704956938899126912493543414565319868815848987679577477410100590419453658538537876211333 m: 1000000000000000000000000000 deg: 5 c5: 61 c0: -43 skew: 0.93 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 222182 x 222426 Total sieving time: 3.99 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 4.16 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Oct 24, 2009
(26·10122-11)/3 = 8(6)1213<123> = 29 · 173 · 694609010965955053<18> · C102
C102 = P39 · P64
P39 = 120746948127208544826323464254407158937<39>
P64 = 2059640468687729008837858895651778106818536471694582461670919699<64>
Number: 86663_122 N=248695300833336709755409333590044888311569315534462185870771869373467855384404691791683714454457199963 ( 102 digits) SNFS difficulty: 124 digits. Divisors found: r1=120746948127208544826323464254407158937 (pp39) r2=2059640468687729008837858895651778106818536471694582461670919699 (pp64) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.28 hours. Scaled time: 1.54 units (timescale=0.469). Factorization parameters were as follows: name: 86663_122 n: 248695300833336709755409333590044888311569315534462185870771869373467855384404691791683714454457199963 m: 2000000000000000000000000 deg: 5 c5: 325 c0: -44 skew: 0.67 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 710001) Primes: RFBsize:65416, AFBsize:65484, largePrimes:1429398 encountered Relations: rels:1437565, finalFF:182524 Max relations in full relation-set: 28 Initial matrix: 130967 x 182524 with sparse part having weight 8950961. Pruned matrix : 108472 x 109190 with weight 4019574. Total sieving time: 3.09 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 3.28 hours. --------- CPU info (if available) ----------
(61·10132-43)/9 = 6(7)1313<133> = C133
C133 = P64 · P70
P64 = 4725606646772188984100152280396967524259863324041339868262971543<64>
P70 = 1434266176683858768188100131193185398372991118836079821228326791155611<70>
Number: 67773_132 N=6777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 133 digits) SNFS difficulty: 134 digits. Divisors found: r1=4725606646772188984100152280396967524259863324041339868262971543 (pp64) r2=1434266176683858768188100131193185398372991118836079821228326791155611 (pp70) Version: Msieve-1.40 Total time: 5.14 hours. Scaled time: 10.57 units (timescale=2.058). Factorization parameters were as follows: name: 67773_132 n: 6777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 m: 200000000000000000000000000 deg: 5 c5: 1525 c0: -344 skew: 0.74 type: snfs lss: 1 rlim: 1230000 alim: 1230000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1230000/1230000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [615000, 1290001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 209854 x 210102 Total sieving time: 4.89 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1230000,1230000,26,26,47,47,2.3,2.3,75000 total time: 5.14 hours. --------- CPU info (if available) ----------
By Norbert Schneider / Msieve / Oct 24, 2009
(26·10184-11)/3 = 8(6)1833<185> = 997 · 3359 · 7535765227<10> · 71533389013<11> · 7870346972320838175697646839916923<34> · 343812931207218909137926438686226411<36> · C89
C89 = P39 · P50
P39 = 876770922639554917353142630986272212417<39>
P50 = 20235248676411114188095713258897648593212272464731<50>
Sat Oct 24 11:22:12 2009 Sat Oct 24 11:22:12 2009 Sat Oct 24 11:22:12 2009 Msieve v. 1.43 Sat Oct 24 11:22:12 2009 random seeds: 38021554 97df5c5b Sat Oct 24 11:22:12 2009 factoring 17741677651857805032606358886945695648559407609858617356573827167385163195236452972764827 (89 digits) Sat Oct 24 11:22:14 2009 searching for 15-digit factors Sat Oct 24 11:22:14 2009 commencing quadratic sieve (89-digit input) Sat Oct 24 11:22:15 2009 using multiplier of 3 Sat Oct 24 11:22:15 2009 using 64kb Pentium 4 sieve core Sat Oct 24 11:22:15 2009 sieve interval: 15 blocks of size 65536 Sat Oct 24 11:22:15 2009 processing polynomials in batches of 7 Sat Oct 24 11:22:15 2009 using a sieve bound of 1533841 (58667 primes) Sat Oct 24 11:22:15 2009 using large prime bound of 122707280 (26 bits) Sat Oct 24 11:22:15 2009 using double large prime bound of 363050102703040 (42-49 bits) Sat Oct 24 11:22:15 2009 using trial factoring cutoff of 49 bits Sat Oct 24 11:22:15 2009 polynomial 'A' values have 11 factors Sat Oct 24 13:21:58 2009 59137 relations (15514 full + 43623 combined from 623536 partial), need 58763 Sat Oct 24 13:22:00 2009 begin with 639050 relations Sat Oct 24 13:22:01 2009 reduce to 143799 relations in 11 passes Sat Oct 24 13:22:01 2009 attempting to read 143799 relations Sat Oct 24 13:22:03 2009 recovered 143799 relations Sat Oct 24 13:22:03 2009 recovered 121653 polynomials Sat Oct 24 13:22:03 2009 attempting to build 59137 cycles Sat Oct 24 13:22:03 2009 found 59137 cycles in 5 passes Sat Oct 24 13:22:03 2009 distribution of cycle lengths: Sat Oct 24 13:22:03 2009 length 1 : 15514 Sat Oct 24 13:22:03 2009 length 2 : 11441 Sat Oct 24 13:22:03 2009 length 3 : 10453 Sat Oct 24 13:22:03 2009 length 4 : 7982 Sat Oct 24 13:22:03 2009 length 5 : 5575 Sat Oct 24 13:22:03 2009 length 6 : 3626 Sat Oct 24 13:22:03 2009 length 7 : 2155 Sat Oct 24 13:22:03 2009 length 9+: 2391 Sat Oct 24 13:22:03 2009 largest cycle: 17 relations Sat Oct 24 13:22:04 2009 matrix is 58667 x 59137 (14.2 MB) with weight 3493263 (59.07/col) Sat Oct 24 13:22:04 2009 sparse part has weight 3493263 (59.07/col) Sat Oct 24 13:22:06 2009 filtering completed in 3 passes Sat Oct 24 13:22:06 2009 matrix is 54726 x 54790 (13.2 MB) with weight 3244734 (59.22/col) Sat Oct 24 13:22:06 2009 sparse part has weight 3244734 (59.22/col) Sat Oct 24 13:22:06 2009 saving the first 48 matrix rows for later Sat Oct 24 13:22:06 2009 matrix is 54678 x 54790 (8.9 MB) with weight 2562127 (46.76/col) Sat Oct 24 13:22:06 2009 sparse part has weight 2001405 (36.53/col) Sat Oct 24 13:22:06 2009 matrix includes 64 packed rows Sat Oct 24 13:22:06 2009 using block size 10922 for processor cache size 256 kB Sat Oct 24 13:22:07 2009 commencing Lanczos iteration Sat Oct 24 13:22:07 2009 memory use: 8.9 MB Sat Oct 24 13:22:36 2009 lanczos halted after 867 iterations (dim = 54676) Sat Oct 24 13:22:37 2009 recovered 16 nontrivial dependencies Sat Oct 24 13:22:38 2009 prp39 factor: 876770922639554917353142630986272212417 Sat Oct 24 13:22:38 2009 prp50 factor: 20235248676411114188095713258897648593212272464731 Sat Oct 24 13:22:38 2009 elapsed time 02:00:26
By Jo Yeong Uk / GMP-ECM / Oct 24, 2009
(26·10133-11)/3 = 8(6)1323<134> = 8009 · 80177 · 32126005968869790559<20> · C106
C106 = P45 · P61
P45 = 550163656152061301729216721644787738922797889<45>
P61 = 7636166060905673296895325749165505687838183112138994178407041<61>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 4201141039052149243603287764147523672856402177150099821931686403318057752296883188700119512080564817536449 (106 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3051414086 Step 1 took 3463ms Step 2 took 3744ms ********** Factor found in step 2: 550163656152061301729216721644787738922797889 Found probable prime factor of 45 digits: 550163656152061301729216721644787738922797889 Probable prime cofactor 7636166060905673296895325749165505687838183112138994178407041 has 61 digits
(26·10137-11)/3 = 8(6)1363<138> = 7 · 23 · 1621 · 12781 · 818398784008789836734085037<27> · C102
C102 = P34 · P69
P34 = 2800432686063638191873112356083593<34>
P69 = 113367417640850910889863553364828353318982821587846623336743491667163<69>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 317477821896066397184834973712219743381652191068754392191236772976186795003721381583904453464961156659 (102 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6788081729 Step 1 took 3494ms Step 2 took 3666ms ********** Factor found in step 2: 2800432686063638191873112356083593 Found probable prime factor of 34 digits: 2800432686063638191873112356083593 Probable prime cofactor 113367417640850910889863553364828353318982821587846623336743491667163 has 69 digits
By Erik Branger / GGNFS, Msieve / Oct 24, 2009
(64·10133+71)/9 = 7(1)1329<134> = 97 · 277 · 28460161 · 8090129964135488682227<22> · C101
C101 = P43 · P58
P43 = 1664789434755203812778700766914906617226821<43>
P58 = 6904524884467902638231307540947107049825316235236603917773<58>
Number: 71119_133 N=11494580079666558542443783728928619354494775302497272662571411224326978098568361652889243341174189633 ( 101 digits) SNFS difficulty: 135 digits. Divisors found: r1=1664789434755203812778700766914906617226821 (pp43) r2=6904524884467902638231307540947107049825316235236603917773 (pp58) Version: Msieve-1.40 Total time: 4.57 hours. Scaled time: 4.67 units (timescale=1.022). Factorization parameters were as follows: n: 11494580079666558542443783728928619354494775302497272662571411224326978098568361652889243341174189633 m: 400000000000000000000000000 deg: 5 c5: 125 c0: 142 skew: 1.03 type: snfs lss: 1 rlim: 1250000 alim: 1250000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1250000/1250000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [625000, 1300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 192195 x 192420 Total sieving time: 4.37 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135.000,5,0,0,0,0,0,0,0,0,1250000,1250000,26,26,47,47,2.3,2.3,75000 total time: 4.57 hours. --------- CPU info (if available) ----------
(64·10130+17)/9 = 7(1)1293<131> = 7 · 157 · 165063455625212909<18> · C111
C111 = P54 · P57
P54 = 501311136493860382206840311242822408732912729612367501<54>
P57 = 781954506321762288842405664687450652305558751607526123043<57>
Number: 71113_130 N=392002502250658185901973161083526625449589937750275737553700107399876492854647059016885556452815419107060425543 ( 111 digits) SNFS difficulty: 131 digits. Divisors found: r1=501311136493860382206840311242822408732912729612367501 (pp54) r2=781954506321762288842405664687450652305558751607526123043 (pp57) Version: Msieve v. 1.41 Total time: 4.37 hours. Scaled time: 3.45 units (timescale=0.789). Factorization parameters were as follows: n: 392002502250658185901973161083526625449589937750275737553700107399876492854647059016885556452815419107060425543 m: 200000000000000000000000000 deg: 5 c5: 2 c0: 17 skew: 1.53 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 145871 x 146108 Total sieving time: 4.17 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 4.37 hours. --------- CPU info (if available) ----------
(26·10107-11)/3 = 8(6)1063<108> = 7 · 131289139 · 697721177 · C91
C91 = P28 · P63
P28 = 3978386986036076319565900111<28>
P63 = 339731895873013988365966755540530078047599588313131089726670973<63>
Number: 86663_107 N=1351584953282562236353361499271620221383262966791354356378814555478909569263862450281178003 ( 91 digits) SNFS difficulty: 109 digits. Divisors found: r1=3978386986036076319565900111 (pp28) r2=339731895873013988365966755540530078047599588313131089726670973 (pp63) Version: Msieve-1.40 Total time: 0.60 hours. Scaled time: 0.55 units (timescale=0.922). Factorization parameters were as follows: n: 1351584953282562236353361499271620221383262966791354356378814555478909569263862450281178003 m: 2000000000000000000000 deg: 5 c5: 325 c0: -44 skew: 0.67 type: snfs lss: 1 rlim: 460000 alim: 460000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 460000/460000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [230000, 330001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 44372 x 44597 Total sieving time: 0.58 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,460000,460000,25,25,44,44,2.2,2.2,50000 total time: 0.60 hours. --------- CPU info (if available) ----------
(26·10110-11)/3 = 8(6)1093<111> = 5700415541281<13> · C99
C99 = P47 · P53
P47 = 12272738724182301305612091265295950998101974637<47>
P53 = 12388082508652856169851007015980590350203785032347779<53>
Number: 86663_110 N=152035699922309336604290501684473783819776715715277959163551715561100466551758956332833140021281223 ( 99 digits) SNFS difficulty: 111 digits. Divisors found: r1=12272738724182301305612091265295950998101974637 (pp47) r2=12388082508652856169851007015980590350203785032347779 (pp53) Version: Msieve-1.40 Total time: 0.82 hours. Scaled time: 0.75 units (timescale=0.920). Factorization parameters were as follows: n: 152035699922309336604290501684473783819776715715277959163551715561100466551758956332833140021281223 m: 10000000000000000000000 deg: 5 c5: 26 c0: -11 skew: 0.84 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 51155 x 51381 Total sieving time: 0.79 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.82 hours. --------- CPU info (if available) ----------
(83·10110+7)/9 = 9(2)1093<111> = 13 · 29 · 79 · 571 · 62260951271<11> · C93
C93 = P42 · P52
P42 = 393854541172230339186777355842066105426479<42>
P52 = 2211461708879282181705305020872043074904345739338579<52>
Number: 92223_110 N=870994236670606108303870557022767515535183065838195376207590467620873957918857961332172833341 ( 93 digits) SNFS difficulty: 111 digits. Divisors found: r1=393854541172230339186777355842066105426479 (pp42) r2=2211461708879282181705305020872043074904345739338579 (pp52) Version: Msieve-1.40 Total time: 0.61 hours. Scaled time: 0.60 units (timescale=0.991). Factorization parameters were as follows: n: 870994236670606108303870557022767515535183065838195376207590467620873957918857961332172833341 m: 10000000000000000000000 deg: 5 c5: 83 c0: 7 skew: 0.61 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 355001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 56979 x 57211 Total sieving time: 0.57 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.61 hours. --------- CPU info (if available) ----------
(26·10146-11)/3 = 8(6)1453<147> = C147
C147 = P72 · P76
P72 = 131158134929014941897991043155494762191194655999220655657005466227475003<72>
P76 = 6607799562991054291615354621323538605634856746762653073904905905353439897221<76>
Number: 86663_146 N=866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 147 digits) SNFS difficulty: 148 digits. Divisors found: r1=131158134929014941897991043155494762191194655999220655657005466227475003 (pp72) r2=6607799562991054291615354621323538605634856746762653073904905905353439897221 (pp76) Version: Msieve-1.40 Total time: 9.56 hours. Scaled time: 9.83 units (timescale=1.029). Factorization parameters were as follows: n: 866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 200000000000000000000000000000 deg: 5 c5: 65 c0: -88 skew: 1.06 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 344320 x 344545 Total sieving time: 9.20 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.26 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 9.56 hours. --------- CPU info (if available) ----------
(64·10141+71)/9 = 7(1)1409<142> = 3 · 7 · 57847 · 30874858832399<14> · C123
C123 = P37 · P86
P37 = 6510739734848601425260429916535506287<37>
P86 = 29120713619885368879626705765668284768909292908607215351267930881138585180884368345349<86>
Number: 71119_141 N=189597387272134522772268193701446398461691904062379603481427004394227700656471441219573544266601776458865910529642176709163 ( 123 digits) SNFS difficulty: 142 digits. Divisors found: r1=6510739734848601425260429916535506287 (pp37) r2=29120713619885368879626705765668284768909292908607215351267930881138585180884368345349 (pp86) Version: Msieve v. 1.41 Total time: 10.10 hours. Scaled time: 7.97 units (timescale=0.789). Factorization parameters were as follows: n: 189597387272134522772268193701446398461691904062379603481427004394227700656471441219573544266601776458865910529642176709163 m: 20000000000000000000000000000 deg: 5 c5: 20 c0: 71 skew: 1.29 type: snfs lss: 1 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1680000/1680000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [840000, 1740001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 287547 x 287795 Total sieving time: 9.54 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.40 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000 total time: 10.10 hours. --------- CPU info (if available) ----------
(26·10124-11)/3 = 8(6)1233<125> = 83 · 27431 · 381461 · 2016101 · C107
C107 = P45 · P63
P45 = 438878110517843642539991775562600262919496931<45>
P63 = 112778421637215029419777137694092275643046196593126789882595041<63>
Number: 86663_124 N=49495980595325626435872640529294835369469109074742694477217163577982039477317528441557433297428732515319171 ( 107 digits) SNFS difficulty: 126 digits. Divisors found: r1=438878110517843642539991775562600262919496931 (pp45) r2=112778421637215029419777137694092275643046196593126789882595041 (pp63) Version: Msieve-1.40 Total time: 1.72 hours. Scaled time: 1.70 units (timescale=0.994). Factorization parameters were as follows: n: 49495980595325626435872640529294835369469109074742694477217163577982039477317528441557433297428732515319171 m: 10000000000000000000000000 deg: 5 c5: 13 c0: -55 skew: 1.33 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123067 x 123293 Total sieving time: 1.62 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.72 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Oct 23, 2009
(64·10129+17)/9 = 7(1)1283<130> = 3 · 73 · 12269 · 39990589935139<14> · 95328430487254801<17> · C93
C93 = P44 · P49
P44 = 90121920285179397280256156598295853120418907<44>
P49 = 7703241133517384550461381620028772328027196622071<49>
Fri Oct 23 19:53:21 2009 Msieve v. 1.42 Fri Oct 23 19:53:21 2009 random seeds: 2d359c10 ab5736ee Fri Oct 23 19:53:21 2009 factoring 694230883372368712626881565996878478687550383836869743633600004878384701569568055066881896397 (93 digits) Fri Oct 23 19:53:22 2009 searching for 15-digit factors Fri Oct 23 19:53:23 2009 commencing quadratic sieve (93-digit input) Fri Oct 23 19:53:23 2009 using multiplier of 5 Fri Oct 23 19:53:23 2009 using 32kb Intel Core sieve core Fri Oct 23 19:53:23 2009 sieve interval: 36 blocks of size 32768 Fri Oct 23 19:53:23 2009 processing polynomials in batches of 6 Fri Oct 23 19:53:23 2009 using a sieve bound of 1944721 (72941 primes) Fri Oct 23 19:53:23 2009 using large prime bound of 243090125 (27 bits) Fri Oct 23 19:53:23 2009 using double large prime bound of 1242742353333750 (42-51 bits) Fri Oct 23 19:53:23 2009 using trial factoring cutoff of 51 bits Fri Oct 23 19:53:23 2009 polynomial 'A' values have 12 factors Fri Oct 23 22:31:03 2009 73411 relations (18165 full + 55246 combined from 994698 partial), need 73037 Fri Oct 23 22:31:05 2009 begin with 1012863 relations Fri Oct 23 22:31:06 2009 reduce to 188691 relations in 10 passes Fri Oct 23 22:31:06 2009 attempting to read 188691 relations Fri Oct 23 22:31:09 2009 recovered 188691 relations Fri Oct 23 22:31:09 2009 recovered 170591 polynomials Fri Oct 23 22:31:09 2009 attempting to build 73411 cycles Fri Oct 23 22:31:09 2009 found 73411 cycles in 5 passes Fri Oct 23 22:31:09 2009 distribution of cycle lengths: Fri Oct 23 22:31:09 2009 length 1 : 18165 Fri Oct 23 22:31:09 2009 length 2 : 13171 Fri Oct 23 22:31:09 2009 length 3 : 12398 Fri Oct 23 22:31:09 2009 length 4 : 10001 Fri Oct 23 22:31:09 2009 length 5 : 7388 Fri Oct 23 22:31:09 2009 length 6 : 4931 Fri Oct 23 22:31:09 2009 length 7 : 3103 Fri Oct 23 22:31:09 2009 length 9+: 4254 Fri Oct 23 22:31:09 2009 largest cycle: 22 relations Fri Oct 23 22:31:09 2009 matrix is 72941 x 73411 (18.4 MB) with weight 4529616 (61.70/col) Fri Oct 23 22:31:09 2009 sparse part has weight 4529616 (61.70/col) Fri Oct 23 22:31:10 2009 filtering completed in 3 passes Fri Oct 23 22:31:10 2009 matrix is 69213 x 69277 (17.4 MB) with weight 4281226 (61.80/col) Fri Oct 23 22:31:10 2009 sparse part has weight 4281226 (61.80/col) Fri Oct 23 22:31:11 2009 saving the first 48 matrix rows for later Fri Oct 23 22:31:11 2009 matrix is 69165 x 69277 (10.2 MB) with weight 3257486 (47.02/col) Fri Oct 23 22:31:11 2009 sparse part has weight 2253122 (32.52/col) Fri Oct 23 22:31:11 2009 matrix includes 64 packed rows Fri Oct 23 22:31:11 2009 using block size 27710 for processor cache size 1024 kB Fri Oct 23 22:31:11 2009 commencing Lanczos iteration Fri Oct 23 22:31:11 2009 memory use: 10.9 MB Fri Oct 23 22:31:42 2009 lanczos halted after 1095 iterations (dim = 69159) Fri Oct 23 22:31:42 2009 recovered 13 nontrivial dependencies Fri Oct 23 22:31:43 2009 prp44 factor: 90121920285179397280256156598295853120418907 Fri Oct 23 22:31:43 2009 prp49 factor: 7703241133517384550461381620028772328027196622071 Fri Oct 23 22:31:43 2009 elapsed time 02:38:22
(64·10120+71)/9 = 7(1)1199<121> = 33 · 25056137 · 39405479110031809<17> · C96
C96 = P31 · P66
P31 = 1909784723324945661063074631191<31>
P66 = 139674960799589269574939897676758027913533545895886397551579842899<66>
Number: 71119_120 N=266749106366066224179930490595843183605440843999355589847519042761546631831691215229244145262709 ( 96 digits) SNFS difficulty: 121 digits. Divisors found: r1=1909784723324945661063074631191 (pp31) r2=139674960799589269574939897676758027913533545895886397551579842899 (pp66) Version: Msieve v. 1.42 Total time: 0.05 hours. Scaled time: 0.04 units (timescale=0.854). Factorization parameters were as follows: name: 71119_120 n: 266749106366066224179930490595843183605440843999355589847519042761546631831691215229244145262709 m: 2000000000000000000000000 deg: 5 c5: 2 c0: 71 skew: 2.04 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 625001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 94388 x 94615 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 0.05 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS). Total time: 42 min.
By Sinkiti Sibata / Msieve, GGNFS / Oct 24, 2009
(64·10128+71)/9 = 7(1)1279<129> = 4493 · 35149 · C121
C121 = P33 · P33 · P56
P33 = 219246084445885541879554806930967<33>
P33 = 226366253431612444268772260693243<33>
P56 = 90728669742939326666422767939725447916165155744870994707<56>
Number: 71119_128 N=4502856141598834885410504283773545671340260559585847498662674592011490095616482702936322973148554888563657439779014792567 ( 121 digits) SNFS difficulty: 130 digits. Divisors found: r1=219246084445885541879554806930967 (pp33) r2=226366253431612444268772260693243 (pp33) r3=90728669742939326666422767939725447916165155744870994707 (pp56) Version: Msieve-1.40 Total time: 3.48 hours. Scaled time: 6.96 units (timescale=1.999). Factorization parameters were as follows: name: 71119_128 n: 4502856141598834885410504283773545671340260559585847498662674592011490095616482702936322973148554888563657439779014792567 m: 40000000000000000000000000 deg: 5 c5: 125 c0: 142 skew: 1.03 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 965001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 170055 x 170303 Total sieving time: 3.22 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,130.000,5,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,50000 total time: 3.48 hours. --------- CPU info (if available) ----------
(7·10171+11)/9 = (7)1709<171> = 79 · 38849977 · 203457481442417<15> · 81709955186191980351449<23> · C125
C125 = P44 · P81
P44 = 98257468015187235416827038555249763862904983<44>
P81 = 155139886054848009277581492355401445786172323675067944033931354665035918101197867<81>
Number: 77779_171 N=15243652391914020488510365474725098887583903365784101043635177021944272391291910540061456099835261086105261271359058703271261 ( 125 digits) SNFS difficulty: 171 digits. Divisors found: r1=98257468015187235416827038555249763862904983 (pp44) r2=155139886054848009277581492355401445786172323675067944033931354665035918101197867 (pp81) Version: Msieve-1.40 Total time: 59.76 hours. Scaled time: 198.54 units (timescale=3.322). Factorization parameters were as follows: name: 77779_171 n: 15243652391914020488510365474725098887583903365784101043635177021944272391291910540061456099835261086105261271359058703271261 m: 10000000000000000000000000000000000 deg: 5 c5: 70 c0: 11 skew: 0.69 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 950870 x 951118 Total sieving time: 57.71 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.71 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 59.76 hours. --------- CPU info (if available) ----------
(83·10117+7)/9 = 9(2)1163<118> = 19 · 16547 · C113
C113 = P38 · P75
P38 = 36779934795762142506535701356535567163<38>
P75 = 797538689045240465818445964027040354448230908021748469854654299849630902597<75>
Number: 92223_117 N=29333420980181563273426005738748070797448487155319050431218959144199209976755914483535645584418934970633004622311 ( 113 digits) SNFS difficulty: 121 digits. Divisors found: r1=36779934795762142506535701356535567163 (pp38) r2=797538689045240465818445964027040354448230908021748469854654299849630902597 (pp75) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.04 hours. Scaled time: 1.43 units (timescale=0.470). Factorization parameters were as follows: name: 92223_117 n: 29333420980181563273426005738748070797448487155319050431218959144199209976755914483535645584418934970633004622311 m: 500000000000000000000000 deg: 5 c5: 332 c0: 875 skew: 1.21 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: RFBsize:58789, AFBsize:58546, largePrimes:1331675 encountered Relations: rels:1305723, finalFF:150232 Max relations in full relation-set: 28 Initial matrix: 117402 x 150232 with sparse part having weight 7226670. Pruned matrix : 103906 x 104557 with weight 3808187. Total sieving time: 2.87 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 3.04 hours. --------- CPU info (if available) ----------
(83·10115+7)/9 = 9(2)1143<116> = 3 · 1331261 · C110
C110 = P36 · P74
P36 = 448998983579618286682910369713303867<36>
P74 = 51428725407187141859088119824597898798122680510169179933669682357162579243<74>
Number: 92223_115 N=23091445434622317292206968235936259486863012392566702352687219666722559093025891046714912207854613588725832681 ( 110 digits) SNFS difficulty: 116 digits. Divisors found: r1=448998983579618286682910369713303867 (pp36) r2=51428725407187141859088119824597898798122680510169179933669682357162579243 (pp74) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.08 hours. Scaled time: 0.98 units (timescale=0.470). Factorization parameters were as follows: name: 92223_115 n: 23091445434622317292206968235936259486863012392566702352687219666722559093025891046714912207854613588725832681 m: 100000000000000000000000 deg: 5 c5: 83 c0: 7 skew: 0.61 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: RFBsize:50612, AFBsize:50913, largePrimes:1330235 encountered Relations: rels:1344098, finalFF:182266 Max relations in full relation-set: 28 Initial matrix: 101590 x 182266 with sparse part having weight 8528252. Pruned matrix : 74591 x 75162 with weight 2650532. Total sieving time: 1.97 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 2.08 hours. --------- CPU info (if available) ----------
(61·10140-43)/9 = 6(7)1393<141> = C141
C141 = P54 · P88
P54 = 325989444321476741768568655839830941695732012474364613<54>
P88 = 2079140259245273419208476348596406001746636489082295143446360245837532934734529053949321<88>
Number: 67773_140 N=677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 141 digits) SNFS difficulty: 141 digits. Divisors found: r1=325989444321476741768568655839830941695732012474364613 (pp54) r2=2079140259245273419208476348596406001746636489082295143446360245837532934734529053949321 (pp88) Version: Msieve-1.40 Total time: 8.13 hours. Scaled time: 16.63 units (timescale=2.047). Factorization parameters were as follows: name: 67773_140 n: 677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 m: 10000000000000000000000000000 deg: 5 c5: 61 c0: -43 skew: 0.93 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [810000, 1810001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 248303 x 248545 Total sieving time: 7.81 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.21 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 8.13 hours. --------- CPU info (if available) ----------
(26·10121-11)/3 = 8(6)1203<122> = 79 · 336307 · 6093956023<10> · C105
C105 = P39 · P66
P39 = 789884894421491276071791572937175094431<39>
P66 = 677682031517397071638948408764507850205264432110583575670993308667<66>
Number: 86663_121 N=535290799916460909322632937046079933332540413019329214648720061719617671786879004686665942761564855733477 ( 105 digits) SNFS difficulty: 123 digits. Divisors found: r1=789884894421491276071791572937175094431 (pp39) r2=677682031517397071638948408764507850205264432110583575670993308667 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.21 hours. Scaled time: 1.50 units (timescale=0.469). Factorization parameters were as follows: name: 86663_121 n: 535290799916460909322632937046079933332540413019329214648720061719617671786879004686665942761564855733477 m: 2000000000000000000000000 deg: 5 c5: 65 c0: -88 skew: 1.06 type: snfs lss: 1 rlim: 800000 alim: 800000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [400000, 700001) Primes: RFBsize:63951, AFBsize:64009, largePrimes:1439328 encountered Relations: rels:1469098, finalFF:201631 Max relations in full relation-set: 28 Initial matrix: 128027 x 201631 with sparse part having weight 9518384. Pruned matrix : 99188 x 99892 with weight 3617086. Total sieving time: 3.03 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,800000,800000,25,25,46,46,2.2,2.2,50000 total time: 3.21 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Oct 24, 2009
(83·10129+7)/9 = 9(2)1283<130> = 370756134989<12> · C119
C119 = P32 · P88
P32 = 13462314290065597650967239163411<32>
P88 = 1847683206138391614740683802658317179021351885853039473016213575460366458036348637474537<88>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 24874092029511088830793977824159149728669959484925561047172970971177927785079482037048683023491324655978050891694565707 (119 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2972610773 Step 1 took 4305ms Step 2 took 4056ms ********** Factor found in step 2: 13462314290065597650967239163411 Found probable prime factor of 32 digits: 13462314290065597650967239163411 Probable prime cofactor 1847683206138391614740683802658317179021351885853039473016213575460366458036348637474537 has 88 digits
By Dmitry Domanov / GGNFS/msieve / Oct 23, 2009
(61·10127-43)/9 = 6(7)1263<128> = 33 · 7 · C126
C126 = P42 · P84
P42 = 407477037943091526384154945619729486878481<42>
P84 = 880080464521505363745973815942538725788188776246941876761082167649369496854560358497<84>
Number: s126 N=358612580834803057025279247501469723691945914168136390358612580834803057025279247501469723691945914168136390358612580834803057 ( 126 digits) SNFS difficulty: 129 digits. Divisors found: r1=407477037943091526384154945619729486878481 (pp42) r2=880080464521505363745973815942538725788188776246941876761082167649369496854560358497 (pp84) Version: Msieve-1.40 Total time: 2.34 hours. Scaled time: 4.27 units (timescale=1.823). Factorization parameters were as follows: n: 358612580834803057025279247501469723691945914168136390358612580834803057025279247501469723691945914168136390358612580834803057 m: 20000000000000000000000000 deg: 5 c5: 1525 c0: -344 skew: 0.74 type: snfs lss: 1 rlim: 1020000 alim: 1020000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1020000/1020000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [510000, 960001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 164071 x 164319 Total sieving time: 2.14 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.09 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1020000,1020000,26,26,47,47,2.3,2.3,50000 total time: 2.34 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Oct 24, 2009
(61·10129-43)/9 = 6(7)1283<130> = 13 · 41 · C128
C128 = P49 · P79
P49 = 2287528054637314045109190267051066417529641653837<49>
P79 = 5558961772374893628056239196627218661806824030916893112945718861901654135077213<79>
Number: s128 N=12716281008963935793204085887012716281008963935793204085887012716281008963935793204085887012716281008963935793204085887012716281 ( 128 digits) SNFS difficulty: 131 digits. Divisors found: r1=2287528054637314045109190267051066417529641653837 (pp49) r2=5558961772374893628056239196627218661806824030916893112945718861901654135077213 (pp79) Version: Msieve-1.40 Total time: 2.30 hours. Scaled time: 4.36 units (timescale=1.894). Factorization parameters were as follows: n: 12716281008963935793204085887012716281008963935793204085887012716281008963935793204085887012716281008963935793204085887012716281 m: 100000000000000000000000000 deg: 5 c5: 61 c0: -430 skew: 1.48 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 157778 x 158003 Total sieving time: 2.18 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.09 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.30 hours. --------- CPU info (if available) ----------
(61·10144-43)/9 = 6(7)1433<145> = 29 · 41 · C142
C142 = P50 · P92
P50 = 71125248172047812172367744106022257084097146704433<50>
P92 = 80145967544683774899184978886451319499171988890775611014685828126239600820562577193465265529<92>
Number: s142 N=5700401831604522941781141949350527988038501074665919072983833286608728156247079712176432109148677693673488459022521259695355574245397626390057 ( 142 digits) SNFS difficulty: 146 digits. Divisors found: r1=71125248172047812172367744106022257084097146704433 (pp50) r2=80145967544683774899184978886451319499171988890775611014685828126239600820562577193465265529 (pp92) Version: Msieve-1.40 Total time: 8.24 hours. Scaled time: 14.82 units (timescale=1.798). Factorization parameters were as follows: n: 5700401831604522941781141949350527988038501074665919072983833286608728156247079712176432109148677693673488459022521259695355574245397626390057 m: 100000000000000000000000000000 deg: 5 c5: 61 c0: -430 skew: 1.48 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2480001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 269112 x 269338 Total sieving time: 8.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 8.24 hours. --------- CPU info (if available) ----------
(64·10190+17)/9 = 7(1)1893<191> = 7 · 6691 · 290494829 · 1380866687<10> · 4086027269<10> · 9660969623051<13> · 3941138284671811<16> · 5842416003241847136942269089<28> · C103
C103 = P32 · P71
P32 = 78312274930106768612277915759019<32>
P71 = 53173135201406687225987643466447677679826748068879261893091308053037777<71>
Number: gnfs103 N=4164109182788298634637983560598824442861592984170310779241065618584708338011804829543687064903635460763 ( 103 digits) Divisors found: r1=78312274930106768612277915759019 (pp32) r2=53173135201406687225987643466447677679826748068879261893091308053037777 (pp71) Version: Msieve-1.40 Total time: 5.84 hours. Scaled time: 11.16 units (timescale=1.911). Factorization parameters were as follows: name: gnfs103 n: 4164109182788298634637983560598824442861592984170310779241065618584708338011804829543687064903635460763 skew: 2491.34 # norm 7.07e+013 c5: 744120 c4: -3420269382 c3: -5627753013815 c2: 15061763833701973 c1: -8412804937219830845 c0: -17049204468924793063920 # alpha -5.55 Y1: 56538318353 Y0: -22365408527022715867 # Murphy_E 2.54e-009 # M 1237890708516201371853183408783352573063846900088206779982914609995757268982164069799294337788323393398 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 258653 x 258879 Polynomial selection time: 0.56 hours. Total sieving time: 5.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.19 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.84 hours. --------- CPU info (if available) ----------
(26·10142-11)/3 = 8(6)1413<143> = C143
C143 = P55 · P88
P55 = 9115691638023963245342223206652254475126670948607632921<55>
P88 = 9507415356741232292647529763366614856021224385838795802922228204646406610693093895859903<88>
Number: snfs144 N=86666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 143 digits) SNFS difficulty: 144 digits. Divisors found: r1=9115691638023963245342223206652254475126670948607632921 (pp55) r2=9507415356741232292647529763366614856021224385838795802922228204646406610693093895859903 (pp88) Version: Msieve-1.40 Total time: 6.14 hours. Scaled time: 11.17 units (timescale=1.818). Factorization parameters were as follows: n: 86666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 20000000000000000000000000000 deg: 5 c5: 325 c0: -44 skew: 0.67 type: snfs lss: 1 rlim: 1760000 alim: 1760000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1760000/1760000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [880000, 1980001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 250506 x 250735 Total sieving time: 5.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,144.000,5,0,0,0,0,0,0,0,0,1760000,1760000,26,26,49,49,2.3,2.3,100000 total time: 6.14 hours. --------- CPU info (if available) ----------
(64·10163+17)/9 = 7(1)1623<164> = C164
C164 = P43 · P59 · P64
P43 = 2888653647017384944658914318490351960163173<43>
P59 = 11446809117705912722904058389563035914239392318736582956591<59>
P64 = 2150589649330390921462700175523316447389381808394324271813972091<64>
Number: snfs164 N=71111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 164 digits) SNFS difficulty: 165 digits. Divisors found: r1=2888653647017384944658914318490351960163173 (pp43) r2=11446809117705912722904058389563035914239392318736582956591 (pp59) r3=2150589649330390921462700175523316447389381808394324271813972091 (pp64) Version: Msieve-1.40 Total time: 33.78 hours. Scaled time: 63.40 units (timescale=1.877). Factorization parameters were as follows: n: 71111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 m: 400000000000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 747981 x 748207 Total sieving time: 32.73 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.68 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,165.000,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 33.78 hours. --------- CPU info (if available) ----------
(64·10160+17)/9 = 7(1)1593<161> = 7 · C161
C161 = P36 · P125
P36 = 131913096460266010557621868043636567<36>
P125 = 77010777787254081793969654885395836435882049747648388057048074731510796864579726325788840724789541809298412181124172069193577<125>
C161=P36*P125 C161=131913096460266010557621868043636567<36>*77010777787254081793969654885395836435882049747648388057048074731510796864579726325788840724789541809298412181124172069193577<125>
(26·10166-11)/3 = 8(6)1653<167> = C167
C167 = P41 · C127
P41 = 17119841910469978219460966052115200873127<41>
C127 = [5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769<127>]
C167=P41*C127 C167=17119841910469978219460966052115200873127<41>*5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769<127>
(61·10138-43)/9 = 6(7)1373<139> = 1913 · C136
C136 = P35 · P38 · P64
P35 = 19822961305870189378473837722701931<35>
P38 = 49642245410591432336300254111585192267<38>
P64 = 3600413696042753233794529585243447232275463312210167503100777373<64>
Number: s136 N=3543009815879653830516350119068362664808038566533077771969564964860312481849334959632920950223616193297322413893245048498576987860835221 ( 136 digits) SNFS difficulty: 141 digits. Divisors found: r1=19822961305870189378473837722701931 (pp35) r2=49642245410591432336300254111585192267 (pp38) r3=3600413696042753233794529585243447232275463312210167503100777373 (pp64) Version: Msieve-1.40 Total time: 6.18 hours. Scaled time: 11.18 units (timescale=1.808). Factorization parameters were as follows: n: 3543009815879653830516350119068362664808038566533077771969564964860312481849334959632920950223616193297322413893245048498576987860835221 m: 5000000000000000000000000000 deg: 5 c5: 488 c0: -1075 skew: 1.17 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1990001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240685 x 240913 Total sieving time: 6.03 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 6.18 hours. --------- CPU info (if available) ----------
(26·10162-11)/3 = 8(6)1613<163> = 31 · C162
C162 = P46 · P117
P46 = 2196424621818773603600345463796839158507351567<46>
P117 = 127284082365465995552850204415842628504762600410597057869464777586572822332556289495204674872568853707859104015568119<117>
Factor=2196424621818773603600345463796839158507351567 Method=ECM B1=11000000 Sigma=2633918174
(26·10152-11)/3 = 8(6)1513<153> = 63149 · C149
C149 = P33 · P116
P33 = 232675221140264800583789692746517<33>
P116 = 58984171040930859733047313827260929303323028868561821673181544466560112712053036164869422569370489494475243023777111<116>
Number: s149 N=13724155040723790822763094691391259824647526748906026487619228596916287932772754385131461569726625388631121105111192048435710251415963303720829572387 ( 149 digits) SNFS difficulty: 154 digits. Divisors found: r1=232675221140264800583789692746517 (pp33) r2=58984171040930859733047313827260929303323028868561821673181544466560112712053036164869422569370489494475243023777111 (pp116) Version: Msieve-1.40 Total time: 13.58 hours. Scaled time: 25.79 units (timescale=1.899). Factorization parameters were as follows: n: 13724155040723790822763094691391259824647526748906026487619228596916287932772754385131461569726625388631121105111192048435710251415963303720829572387 m: 2000000000000000000000000000000 deg: 5 c5: 325 c0: -44 skew: 0.67 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 458985 x 459215 Total sieving time: 13.15 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.26 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,154.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 13.58 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve, GMP-ECM / Oct 24, 2009
(64·10112+17)/9 = 7(1)1113<113> = 7 · 23 · 107 · 58217 · C104
C104 = P44 · P61
P44 = 29421594806177130768713735992366864817252927<44>
P61 = 2409970790474565626502863955858891453277441083926831383294141<61>
SNFS difficulty: 114 digits. Divisors found: r1=29421594806177130768713735992366864817252927 (pp44) r2=2409970790474565626502863955858891453277441083926831383294141 (pp61) Version: Msieve v. 1.44 SVN130 Total time: 0.49 hours. Scaled time: 1.17 units (timescale=2.400). Factorization parameters were as follows: #res 5444 n: 70905184092065074290517207895425949239199622454800155665817260340412126130088665932279295576419634200707 m: 40000000000000000000000 deg: 5 c5: 25 c0: 68 skew: 1.22 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [350000, 500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52873 x 53108 Total sieving time: 0.43 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 0.49 hours.
(26·10187-11)/3 = 8(6)1863<188> = 337 · 43665343 · 5821288230130187<16> · C163
C163 = P34 · P129
P34 = 9991165980682396704453204886294931<34>
P129 = 101262825097714124221150710784145645266502910002869015154872310194798802000025178431518800026396746555000440686019072606961525369<129>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=610105107 Step 1 took 3540ms Step 2 took 2388ms ********** Factor found in step 2: 9991165980682396704453204886294931 Found probable prime factor of 34 digits: 9991165980682396704453204886294931 Probable prime cofactor has 129 digits
(83·10142+7)/9 = 9(2)1413<143> = 3 · 43 · 71 · 557 · 3493359870103<13> · 391944702424322680440077<24> · C101
C101 = P34 · P67
P34 = 1535181644225391274770405393769327<34>
P67 = 8600118470782546419223756731522576547964652510173823240589849178233<67>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4109546562 Step 1 took 2184ms Step 2 took 1692ms ********** Factor found in step 2: 1535181644225391274770405393769327 Found probable prime factor of 34 digits: 1535181644225391274770405393769327 Probable prime cofactor has 67 digits
(26·10135-11)/3 = 8(6)1343<136> = 17 · 193573 · 192815039 · C122
C122 = P37 · P85
P37 = 5454710823688942334175811855714794721<37>
P85 = 2504065903217569708844174464681505132806673398424266096733702746000918751373630975797<85>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=765632283 Step 1 took 5037ms Step 2 took 3092ms ********** Factor found in step 2: 5454710823688942334175811855714794721 Found probable prime factor of 37 digits: 5454710823688942334175811855714794721 Probable prime cofactor 2504065903217569708844174464681505132806673398424266096733702746000918751373630975797 has 85 digits
(26·10183-11)/3 = 8(6)1823<184> = 17 · 48989 · 53857 · 90797663536907<14> · 567087650203225062437861<24> · C136
C136 = P32 · P104
P32 = 61186619953122149431960957214347<32>
P104 = 61331150820779255676079631245412342285786210808138765086237596311374322119595871484930746172259468195647<104>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1343869211 Step 1 took 6509ms Step 2 took 3392ms ********** Factor found in step 2: 61186619953122149431960957214347 Found probable prime factor of 32 digits: 61186619953122149431960957214347 Probable prime cofactor has 104 digits
(83·10146+7)/9 = 9(2)1453<147> = 13 · 6112473163<10> · C137
C137 = P32 · C105
P32 = 70315458832223316419214342764791<32>
C105 = [165053390608618612168814333894623116123683611767851606138040337603496776755267221271940941504830895806087<105>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=4092763463 Step 1 took 6060ms ********** Factor found in step 1: 70315458832223316419214342764791 Found probable prime factor of 32 digits: 70315458832223316419214342764791 Composite cofactor has 105 digits
By Robert Backstrom / GGNFS / Oct 24, 2009
(64·10148+17)/9 = 7(1)1473<149> = 7 · 311 · C146
C146 = P65 · P82
P65 = 13862318111733729004439259370064720101102185805867897760100165383<65>
P82 = 2356368316987349258771784289940244839436834125337731025218453398175647281594404143<82>
Number: n N=32664727198489256367069871893023018424947685397846169550349614658296330322053794722605011994079518195273822283468585719389577910478232021640381769 ( 146 digits) SNFS difficulty: 150 digits. Divisors found: r1=13862318111733729004439259370064720101102185805867897760100165383 (pp65) r2=2356368316987349258771784289940244839436834125337731025218453398175647281594404143 (pp82) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.47 hours. Scaled time: 22.81 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_1_147_3 n: 32664727198489256367069871893023018424947685397846169550349614658296330322053794722605011994079518195273822283468585719389577910478232021640381769 m: 400000000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 qintsize: 20000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [1100000, 1100000) Primes: RFBsize:162662, AFBsize:162170, largePrimes:6640238 encountered Relations: rels:6390194, finalFF:415657 Max relations in full relation-set: 28 Initial matrix: 324897 x 415657 with sparse part having weight 56474105. Pruned matrix : 293478 x 295166 with weight 32001067. Total sieving time: 11.21 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.07 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 12.47 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GMP-ECM
Factorizations of 866...663 and Factorizations of 922...223 have been extended up to n=200. Composite numbers that appeared newly have passed 150 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Sinkiti Sibata / Msieve / Oct 23, 2009
(62·10111-17)/9 = 6(8)1107<112> = 3962587 · 482246250193<12> · C94
C94 = P45 · P49
P45 = 660147994517388539314411545518085157537248401<45>
P49 = 5460849429187019232147638751889511274742905293557<49>
Thu Oct 22 20:45:19 2009 Msieve v. 1.42 Thu Oct 22 20:45:19 2009 random seeds: 280bcafc e7ff4b71 Thu Oct 22 20:45:19 2009 factoring 3604968799039236706524693981054537071333612156402064636673186885165658800240706988506933852357 (94 digits) Thu Oct 22 20:45:20 2009 searching for 15-digit factors Thu Oct 22 20:45:21 2009 commencing quadratic sieve (94-digit input) Thu Oct 22 20:45:21 2009 using multiplier of 29 Thu Oct 22 20:45:21 2009 using 32kb Intel Core sieve core Thu Oct 22 20:45:21 2009 sieve interval: 36 blocks of size 32768 Thu Oct 22 20:45:21 2009 processing polynomials in batches of 6 Thu Oct 22 20:45:21 2009 using a sieve bound of 2023369 (75294 primes) Thu Oct 22 20:45:21 2009 using large prime bound of 271131446 (28 bits) Thu Oct 22 20:45:21 2009 using double large prime bound of 1512598956202640 (42-51 bits) Thu Oct 22 20:45:21 2009 using trial factoring cutoff of 51 bits Thu Oct 22 20:45:21 2009 polynomial 'A' values have 12 factors Thu Oct 22 23:57:17 2009 75593 relations (18708 full + 56885 combined from 1066860 partial), need 75390 Thu Oct 22 23:57:19 2009 begin with 1085568 relations Thu Oct 22 23:57:20 2009 reduce to 195381 relations in 11 passes Thu Oct 22 23:57:20 2009 attempting to read 195381 relations Thu Oct 22 23:57:23 2009 recovered 195381 relations Thu Oct 22 23:57:23 2009 recovered 179758 polynomials Thu Oct 22 23:57:23 2009 attempting to build 75593 cycles Thu Oct 22 23:57:23 2009 found 75593 cycles in 5 passes Thu Oct 22 23:57:23 2009 distribution of cycle lengths: Thu Oct 22 23:57:23 2009 length 1 : 18708 Thu Oct 22 23:57:23 2009 length 2 : 13355 Thu Oct 22 23:57:23 2009 length 3 : 12883 Thu Oct 22 23:57:23 2009 length 4 : 10340 Thu Oct 22 23:57:23 2009 length 5 : 7585 Thu Oct 22 23:57:23 2009 length 6 : 5128 Thu Oct 22 23:57:23 2009 length 7 : 3230 Thu Oct 22 23:57:23 2009 length 9+: 4364 Thu Oct 22 23:57:23 2009 largest cycle: 20 relations Thu Oct 22 23:57:24 2009 matrix is 75294 x 75593 (20.3 MB) with weight 5015048 (66.34/col) Thu Oct 22 23:57:24 2009 sparse part has weight 5015048 (66.34/col) Thu Oct 22 23:57:25 2009 filtering completed in 4 passes Thu Oct 22 23:57:25 2009 matrix is 71654 x 71718 (19.3 MB) with weight 4778097 (66.62/col) Thu Oct 22 23:57:25 2009 sparse part has weight 4778097 (66.62/col) Thu Oct 22 23:57:25 2009 saving the first 48 matrix rows for later Thu Oct 22 23:57:25 2009 matrix is 71606 x 71718 (13.2 MB) with weight 3887217 (54.20/col) Thu Oct 22 23:57:25 2009 sparse part has weight 3026218 (42.20/col) Thu Oct 22 23:57:25 2009 matrix includes 64 packed rows Thu Oct 22 23:57:25 2009 using block size 28687 for processor cache size 1024 kB Thu Oct 22 23:57:26 2009 commencing Lanczos iteration Thu Oct 22 23:57:26 2009 memory use: 12.7 MB Thu Oct 22 23:58:03 2009 lanczos halted after 1134 iterations (dim = 71604) Thu Oct 22 23:58:03 2009 recovered 16 nontrivial dependencies Thu Oct 22 23:58:04 2009 prp45 factor: 660147994517388539314411545518085157537248401 Thu Oct 22 23:58:04 2009 prp49 factor: 5460849429187019232147638751889511274742905293557 Thu Oct 22 23:58:04 2009 elapsed time 03:12:45
(11·10171+7)/9 = 1(2)1703<172> = 50222149146929<14> · 143622706373009<15> · 75094583901802513<17> · C127
C127 = P41 · P86
P41 = 24901499544721371734264989415030097233317<41>
P86 = 90614492030344526375011699819556672642162000003956105269511487846415420194738095567283<86>
Number: 12223_171 N=2256436732038782590955720508896276694051180539535330232627385110920722833921004383641867215954888860165018041347441759922767711 ( 127 digits) SNFS difficulty: 172 digits. Divisors found: r1=24901499544721371734264989415030097233317 (pp41) r2=90614492030344526375011699819556672642162000003956105269511487846415420194738095567283 (pp86) Version: Msieve v. 1.42 Total time: 4.35 hours. Scaled time: 3.72 units (timescale=0.854). Factorization parameters were as follows: name: 12223_171 n: 2256436732038782590955720508896276694051180539535330232627385110920722833921004383641867215954888860165018041347441759922767711 m: 10000000000000000000000000000000000 deg: 5 c5: 110 c0: 7 skew: 0.58 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2600000, 6100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1055791 x 1056020 Total sieving time: 0.00 hours. Total relation processing time: 0.11 hours. Matrix solve time: 4.11 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 4.35 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS).
(61·10143-43)/9 = 6(7)1423<144> = C144
C144 = P46 · P99
P46 = 1200283367986996913095104606977284717546493557<46>
P99 = 564681470938386259483663674816910554996872081880213418373669960124803403134080700332834602060881689<99>
Number: 67773_143 N=677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 144 digits) SNFS difficulty: 146 digits. Divisors found: r1=1200283367986996913095104606977284717546493557 (pp46) r2=564681470938386259483663674816910554996872081880213418373669960124803403134080700332834602060881689 (pp99) Version: Msieve-1.40 Total time: 13.06 hours. Scaled time: 27.23 units (timescale=2.085). Factorization parameters were as follows: name: 67773_143 n: 677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 m: 50000000000000000000000000000 deg: 5 c5: 488 c0: -1075 skew: 1.17 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2555001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 328328 x 328560 Total sieving time: 12.55 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.37 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 13.06 hours. --------- CPU info (if available) ----------
(64·10126+71)/9 = 7(1)1259<127> = 3 · C127
C127 = P41 · P86
P41 = 83875743501839534174392033664726057850617<41>
P86 = 28260499059759562269210391206123758704930814197669847316807229716561932184297190743469<86>
Number: 71119_126 N=2370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370373 ( 127 digits) SNFS difficulty: 127 digits. Divisors found: r1=83875743501839534174392033664726057850617 (pp41) r2=28260499059759562269210391206123758704930814197669847316807229716561932184297190743469 (pp86) Version: Msieve v. 1.42 Total time: 0.10 hours. Scaled time: 0.08 units (timescale=0.854). Factorization parameters were as follows: name: 71119_126 n: 2370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370373 m: 20000000000000000000000000 deg: 5 c5: 20 c0: 71 skew: 1.29 type: snfs lss: 1 rlim: 940000 alim: 940000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 940000/940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [470000, 770001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148947 x 149195 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127.000,5,0,0,0,0,0,0,0,0,940000,940000,26,26,46,46,2.3,2.3,50000 total time: 0.10 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS).
(64·10152+71)/9 = 7(1)1519<153> = 19 · 2131 · 5581 · 2583903677<10> · 964660848422868911<18> · 244287028094134326208459<24> · C94
C94 = P31 · P64
P31 = 3928758742686927379474311715139<31>
P64 = 1315472132328471305168939778776883400661078541357517237138695553<64>
Fri Oct 23 14:56:27 2009 Msieve v. 1.42 Fri Oct 23 14:56:27 2009 random seeds: f194aed4 464868b8 Fri Oct 23 14:56:27 2009 factoring 5168172640646496280310503746779910476782570941333542739924774727373152267839256863568582076867 (94 digits) Fri Oct 23 14:56:28 2009 searching for 15-digit factors Fri Oct 23 14:56:29 2009 commencing quadratic sieve (94-digit input) Fri Oct 23 14:56:29 2009 using multiplier of 2 Fri Oct 23 14:56:29 2009 using 32kb Intel Core sieve core Fri Oct 23 14:56:29 2009 sieve interval: 36 blocks of size 32768 Fri Oct 23 14:56:29 2009 processing polynomials in batches of 6 Fri Oct 23 14:56:29 2009 using a sieve bound of 2056211 (76471 primes) Fri Oct 23 14:56:29 2009 using large prime bound of 283757118 (28 bits) Fri Oct 23 14:56:29 2009 using double large prime bound of 1641738948997842 (42-51 bits) Fri Oct 23 14:56:29 2009 using trial factoring cutoff of 51 bits Fri Oct 23 14:56:29 2009 polynomial 'A' values have 12 factors Fri Oct 23 18:15:47 2009 76840 relations (18623 full + 58217 combined from 1108711 partial), need 76567 Fri Oct 23 18:15:50 2009 begin with 1127334 relations Fri Oct 23 18:15:51 2009 reduce to 200273 relations in 11 passes Fri Oct 23 18:15:51 2009 attempting to read 200273 relations Fri Oct 23 18:15:54 2009 recovered 200273 relations Fri Oct 23 18:15:54 2009 recovered 184455 polynomials Fri Oct 23 18:15:54 2009 attempting to build 76840 cycles Fri Oct 23 18:15:54 2009 found 76840 cycles in 6 passes Fri Oct 23 18:15:54 2009 distribution of cycle lengths: Fri Oct 23 18:15:54 2009 length 1 : 18623 Fri Oct 23 18:15:54 2009 length 2 : 13514 Fri Oct 23 18:15:54 2009 length 3 : 12946 Fri Oct 23 18:15:54 2009 length 4 : 10395 Fri Oct 23 18:15:54 2009 length 5 : 7844 Fri Oct 23 18:15:54 2009 length 6 : 5278 Fri Oct 23 18:15:54 2009 length 7 : 3534 Fri Oct 23 18:15:54 2009 length 9+: 4706 Fri Oct 23 18:15:54 2009 largest cycle: 22 relations Fri Oct 23 18:15:55 2009 matrix is 76471 x 76840 (20.2 MB) with weight 4987394 (64.91/col) Fri Oct 23 18:15:55 2009 sparse part has weight 4987394 (64.91/col) Fri Oct 23 18:15:56 2009 filtering completed in 3 passes Fri Oct 23 18:15:56 2009 matrix is 72965 x 73029 (19.2 MB) with weight 4748338 (65.02/col) Fri Oct 23 18:15:56 2009 sparse part has weight 4748338 (65.02/col) Fri Oct 23 18:15:56 2009 saving the first 48 matrix rows for later Fri Oct 23 18:15:56 2009 matrix is 72917 x 73029 (12.0 MB) with weight 3734396 (51.14/col) Fri Oct 23 18:15:56 2009 sparse part has weight 2704773 (37.04/col) Fri Oct 23 18:15:56 2009 matrix includes 64 packed rows Fri Oct 23 18:15:56 2009 using block size 29211 for processor cache size 1024 kB Fri Oct 23 18:15:57 2009 commencing Lanczos iteration Fri Oct 23 18:15:57 2009 memory use: 12.2 MB Fri Oct 23 18:16:32 2009 lanczos halted after 1154 iterations (dim = 72917) Fri Oct 23 18:16:32 2009 recovered 18 nontrivial dependencies Fri Oct 23 18:16:33 2009 prp31 factor: 3928758742686927379474311715139 Fri Oct 23 18:16:33 2009 prp64 factor: 1315472132328471305168939778776883400661078541357517237138695553 Fri Oct 23 18:16:33 2009 elapsed time 03:20:06
(64·10137+71)/9 = 7(1)1369<138> = C138
C138 = P52 · P87
P52 = 4678254969758935869078035834515686537386950155297113<52>
P87 = 152003496112943519578771055918308270279589141828614745466191423566662228372256519561063<87>
Number: 71119_137 N=711111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 ( 138 digits) SNFS difficulty: 138 digits. Divisors found: r1=4678254969758935869078035834515686537386950155297113 (pp52) r2=152003496112943519578771055918308270279589141828614745466191423566662228372256519561063 (pp87) Version: Msieve v. 1.42 Total time: 0.16 hours. Scaled time: 0.14 units (timescale=0.854). Factorization parameters were as follows: name: 71119_137 n: 711111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 m: 2000000000000000000000000000 deg: 5 c5: 200 c0: 71 skew: 0.81 type: snfs lss: 1 rlim: 1440000 alim: 1440000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1440000/1440000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [720000, 1395001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 199344 x 199572 Total sieving time: 0.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1440000,1440000,26,26,48,48,2.3,2.3,75000 total time: 0.16 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS). Total time: 2 hours 24 min.
(64·10142+71)/9 = 7(1)1419<143> = C143
C143 = P67 · P77
P67 = 2751554361959943194224637967034286786872683258385468032588376648693<67>
P77 = 25843978259785636875135096179738241197288805889331674506170937558923404767283<77>
Number: 71119_142 N=71111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 ( 143 digits) SNFS difficulty: 143 digits. Divisors found: r1=2751554361959943194224637967034286786872683258385468032588376648693 (pp67) r2=25843978259785636875135096179738241197288805889331674506170937558923404767283 (pp77) Version: Msieve v. 1.42 Total time: 0.35 hours. Scaled time: 0.30 units (timescale=0.854). Factorization parameters were as follows: name: 71119_142 n: 71111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 m: 20000000000000000000000000000 deg: 5 c5: 200 c0: 71 skew: 0.81 type: snfs lss: 1 rlim: 1750000 alim: 1750000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1750000/1750000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [875000, 1775001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 279652 x 279877 Total sieving time: 0.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.23 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000 total time: 0.35 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS). Total time: 3 hours 26 min.
(64·10117+71)/9 = 7(1)1169<118> = 3 · 7 · 701 · 7515499 · 23743504943<11> · C97
C97 = P37 · P60
P37 = 4516580461486691478502658597295084017<37>
P60 = 599359992790028012792514906989104429264325175899011050976531<60>
Number: 71119_117 N=2707057632832244799267652406416240543325923557196933707581792296587876751972688319636553540205027 ( 97 digits) SNFS difficulty: 118 digits. Divisors found: r1=4516580461486691478502658597295084017 (pp37) r2=599359992790028012792514906989104429264325175899011050976531 (pp60) Version: Msieve v. 1.42 Total time: 0.03 hours. Scaled time: 0.02 units (timescale=0.854). Factorization parameters were as follows: name: 71119_117 n: 2707057632832244799267652406416240543325923557196933707581792296587876751972688319636553540205027 m: 200000000000000000000000 deg: 5 c5: 200 c0: 71 skew: 0.81 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 535001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65411 x 65637 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118.000,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 0.03 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS). Total time: 34 min
By Erik Branger / GGNFS, Msieve / Oct 23, 2009
(61·10130-43)/9 = 6(7)1293<131> = 3 · 19 · 104561 · C125
C125 = P41 · P84
P41 = 24361422306134632500392015614068389799001<41>
P84 = 466809946821758952510988775171027699846042995590601360581498213062383282235577864749<84>
Number: 67773_130 N=11372154251229120142204873907697593091009877685396735218571779350453496343656658033710159918029512157140502014987268873315749 ( 125 digits) SNFS difficulty: 131 digits. Divisors found: r1=24361422306134632500392015614068389799001 (pp41) r2=466809946821758952510988775171027699846042995590601360581498213062383282235577864749 (pp84) Version: Msieve-1.40 Total time: 2.99 hours. Scaled time: 3.03 units (timescale=1.016). Factorization parameters were as follows: n: 11372154251229120142204873907697593091009877685396735218571779350453496343656658033710159918029512157140502014987268873315749 m: 100000000000000000000000000 deg: 5 c5: 61 c0: -43 skew: 0.93 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 158677 x 158902 Total sieving time: 2.87 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.99 hours. --------- CPU info (if available) ----------
(64·10124+71)/9 = 7(1)1239<125> = 783406759 · 1633240943<10> · C107
C107 = P52 · P56
P52 = 4300286476281171151258495079275806409526889381253159<52>
P56 = 12924165284242435730941431622919751804153543973171327793<56>
Number: 71119_124 N=55577613189050344711092134103356742462283334416640186952779668783769271578241242367317453883505946305748087 ( 107 digits) SNFS difficulty: 126 digits. Divisors found: r1=4300286476281171151258495079275806409526889381253159 (pp52) r2=12924165284242435730941431622919751804153543973171327793 (pp56) Version: Msieve-1.40 Total time: 1.42 hours. Scaled time: 1.41 units (timescale=0.988). Factorization parameters were as follows: n: 55577613189050344711092134103356742462283334416640186952779668783769271578241242367317453883505946305748087 m: 20000000000000000000000000 deg: 5 c5: 1 c0: 355 skew: 3.24 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 131335 x 131571 Total sieving time: 1.34 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.42 hours. --------- CPU info (if available) ----------
(64·10128+17)/9 = 7(1)1273<129> = 121313 · C124
C124 = P34 · P90
P34 = 9945734072532744106094589386357869<34>
P90 = 589377128997571574070207750719380203511023715515564916726810532898128176314108510769595629<90>
Number: 71113_128 N=5861788193442674001229143711812510704632736072070685838377676845112321936734819113459490006109082382853536810655998212154601 ( 124 digits) SNFS difficulty: 130 digits. Divisors found: r1=9945734072532744106094589386357869 (pp34) r2=589377128997571574070207750719380203511023715515564916726810532898128176314108510769595629 (pp90) Version: Msieve-1.40 Total time: 2.34 hours. Scaled time: 2.06 units (timescale=0.882). Factorization parameters were as follows: n: 5861788193442674001229143711812510704632736072070685838377676845112321936734819113459490006109082382853536810655998212154601 m: 40000000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 865001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168923 x 169147 Total sieving time: 2.19 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130.000,5,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,50000 total time: 2.34 hours. --------- CPU info (if available) ----------
(64·10120+17)/9 = 7(1)1193<121> = 3 · 317069430763113141972035184913<30> · C91
C91 = P43 · P49
P43 = 2483220410140889475298484044606681873376039<43>
P49 = 3010555013680947198263188604057952229055006361653<49>
Number: 71113_120 N=7475871655824512827094195598536550953335744647383126234581928937795878542508172953298632467 ( 91 digits) SNFS difficulty: 121 digits. Divisors found: r1=2483220410140889475298484044606681873376039 (pp43) r2=3010555013680947198263188604057952229055006361653 (pp49) Version: Msieve v. 1.41 Total time: 2.33 hours. Scaled time: 1.82 units (timescale=0.778). Factorization parameters were as follows: n: 7475871655824512827094195598536550953335744647383126234581928937795878542508172953298632467 m: 2000000000000000000000000 deg: 5 c5: 2 c0: 17 skew: 1.53 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 625001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83122 x 83348 Total sieving time: 2.26 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 2.33 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM v6.2.3, YAFU v1.10, Msieve / Oct 23, 2009
(64·10140+71)/9 = 7(1)1399<141> = 4261 · 290870269 · 605275506321521939515134243439<30> · C99
C99 = P40 · P60
P40 = 4365243825947720194516559610136906553161<40>
P60 = 217152578872431638637153816457693436327459716445307037022729<60>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 947923954211507557584220578170638095302115735929727807120717193980875431937747867188809643003796369 (99 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3295075564 Step 1 took 2713ms Step 2 took 1770ms ********** Factor found in step 2: 4365243825947720194516559610136906553161 Found probable prime factor of 40 digits: 4365243825947720194516559610136906553161 Probable prime cofactor 217152578872431638637153816457693436327459716445307037022729 has 60 digits
(64·10156+71)/9 = 7(1)1559<157> = 32 · 191 · 12568412159<11> · 1665303397181<13> · 790909645848014343691<21> · C111
C111 = P34 · P37 · P41
P34 = 1509622802506911568366078614272501<34>
P37 = 3540605850217335430143189930721214149<37>
P41 = 46753583509719466111127548763912412200641<41>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 249896937284161970702752522215730960916460132881437417396746833828803352253291147384499572487883163961983272009 (111 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3636675759 Step 1 took 3447ms Step 2 took 3775ms ********** Factor found in step 2: 1509622802506911568366078614272501 Found probable prime factor of 34 digits: 1509622802506911568366078614272501 Composite cofactor 165536011293137483754755380980026119736404254846460957351992023020952516069509 has 78 digits 10/23/09 18:51:26 v1.10 @ 조영욱-PC, starting SIQS on c78: 165536011293137483754755380980026119736404254846460957351992023020952516069509 10/23/09 18:51:26 v1.10 @ 조영욱-PC, random seeds: 3287229736, 2548667776 10/23/09 18:51:27 v1.10 @ 조영욱-PC, ==== sieve params ==== 10/23/09 18:51:27 v1.10 @ 조영욱-PC, n = 78 digits, 257 bits 10/23/09 18:51:27 v1.10 @ 조영욱-PC, factor base: 35111 primes (max prime = 879097) 10/23/09 18:51:27 v1.10 @ 조영욱-PC, single large prime cutoff: 74723245 (85 * pmax) 10/23/09 18:51:27 v1.10 @ 조영욱-PC, using 12 large prime slices of factor base 10/23/09 18:51:27 v1.10 @ 조영욱-PC, buckets hold 1024 elements 10/23/09 18:51:27 v1.10 @ 조영욱-PC, sieve interval: 5 blocks of size 65536 10/23/09 18:51:27 v1.10 @ 조영욱-PC, polynomial A has ~ 10 factors 10/23/09 18:51:27 v1.10 @ 조영욱-PC, using multiplier of 1 10/23/09 18:51:27 v1.10 @ 조영욱-PC, using small prime variation correction of 18 bits 10/23/09 18:51:27 v1.10 @ 조영욱-PC, using SSE2 for trial division and x64 sieve scanning 10/23/09 18:51:27 v1.10 @ 조영욱-PC, trial factoring cutoff at 91 bits 10/23/09 18:51:27 v1.10 @ 조영욱-PC, ==== sieving started ==== 10/23/09 18:55:46 v1.10 @ 조영욱-PC, sieve time = 124.7190, relation time = 44.5060, poly_time = 89.7600 10/23/09 18:55:46 v1.10 @ 조영욱-PC, 35322 relations found: 17489 full + 17833 from 185428 partial, using 88776 polys (173 A polys) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, on average, sieving found 2.29 rels/poly and 782.63 rels/sec 10/23/09 18:55:46 v1.10 @ 조영욱-PC, trial division touched 2499810 sieve locations out of 58180239360 10/23/09 18:55:46 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 10/23/09 18:55:46 v1.10 @ 조영욱-PC, begin with 202917 relations 10/23/09 18:55:46 v1.10 @ 조영욱-PC, reduce to 50918 relations in 2 passes 10/23/09 18:55:46 v1.10 @ 조영욱-PC, recovered 50918 relations 10/23/09 18:55:46 v1.10 @ 조영욱-PC, recovered 38684 polynomials 10/23/09 18:55:46 v1.10 @ 조영욱-PC, attempting to build 35322 cycles 10/23/09 18:55:46 v1.10 @ 조영욱-PC, found 35322 cycles in 1 passes 10/23/09 18:55:46 v1.10 @ 조영욱-PC, distribution of cycle lengths: 10/23/09 18:55:46 v1.10 @ 조영욱-PC, length 1 : 17489 10/23/09 18:55:46 v1.10 @ 조영욱-PC, length 2 : 17833 10/23/09 18:55:46 v1.10 @ 조영욱-PC, largest cycle: 2 relations 10/23/09 18:55:46 v1.10 @ 조영욱-PC, matrix is 35111 x 35322 (5.1 MB) with weight 1049121 (29.70/col) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, sparse part has weight 1049121 (29.70/col) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, filtering completed in 3 passes 10/23/09 18:55:46 v1.10 @ 조영욱-PC, matrix is 26735 x 26799 (4.1 MB) with weight 861999 (32.17/col) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, sparse part has weight 861999 (32.17/col) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 10/23/09 18:55:46 v1.10 @ 조영욱-PC, matrix is 26687 x 26799 (2.8 MB) with weight 634513 (23.68/col) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, sparse part has weight 469328 (17.51/col) 10/23/09 18:55:46 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 10/23/09 18:55:46 v1.10 @ 조영욱-PC, commencing Lanczos iteration 10/23/09 18:55:46 v1.10 @ 조영욱-PC, memory use: 3.8 MB 10/23/09 18:55:53 v1.10 @ 조영욱-PC, lanczos halted after 424 iterations (dim = 26685) 10/23/09 18:55:53 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 10/23/09 18:55:53 v1.10 @ 조영욱-PC, prp37 = 3540605850217335430143189930721214149 10/23/09 18:55:54 v1.10 @ 조영욱-PC, prp41 = 46753583509719466111127548763912412200641 10/23/09 18:55:54 v1.10 @ 조영욱-PC, Lanczos elapsed time = 7.4720 seconds. 10/23/09 18:55:54 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.1390 seconds. 10/23/09 18:55:54 v1.10 @ 조영욱-PC, SIQS elapsed time = 267.8880 seconds. 10/23/09 18:55:54 v1.10 @ 조영욱-PC, 10/23/09 18:55:54 v1.10 @ 조영욱-PC,
(64·10132+71)/9 = 7(1)1319<133> = 3 · 40621759 · 15607242535519221001<20> · C106
C106 = P32 · P75
P32 = 33406633458733228036889158768693<32>
P75 = 111917652785707680031519794663165296371462657267249967130393240919514596279<75>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 3738792004173910248793834600429365849248846138515661337826580068398171638128399400957869379586676639493347 (106 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8392278160 Step 1 took 3541ms Step 2 took 3791ms ********** Factor found in step 2: 33406633458733228036889158768693 Found probable prime factor of 32 digits: 33406633458733228036889158768693 Probable prime cofactor 111917652785707680031519794663165296371462657267249967130393240919514596279 has 75 digits
(64·10134+17)/9 = 7(1)1333<135> = 23 · 14221 · 975649 · 34880230928998141<17> · C107
C107 = P35 · P73
P35 = 10208742076409209802516091161404393<35>
P73 = 6257981936958239643101695299355915454578456422592818381228632246736931903<73>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 63886123513234388051995446841980835995324452787258192996393457188745439536452888704414805133551897486049879 (107 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6549767235 Step 1 took 3573ms Step 2 took 3556ms ********** Factor found in step 2: 10208742076409209802516091161404393 Found probable prime factor of 35 digits: 10208742076409209802516091161404393 Probable prime cofactor 6257981936958239643101695299355915454578456422592818381228632246736931903 has 73 digits
By Dmitry Domanov / GGNFS/msieve / Oct 23, 2009
(62·10122+1)/9 = 6(8)1219<123> = 13 · 43 · 71 · 12852950743<11> · C109
C109 = P45 · P64
P45 = 298297116435961716457125618861217437142706371<45>
P64 = 4527173357582149631512924797923598004872719944155101719816241917<64>
Number: snfs109 N=1350442758172466235831250671045390216870069256104474538043817178620260152392578018490262908301541399833153207 ( 109 digits) SNFS difficulty: 125 digits. Divisors found: r1=298297116435961716457125618861217437142706371 (pp45) r2=4527173357582149631512924797923598004872719944155101719816241917 (pp64) Version: Msieve-1.40 Total time: 1.11 hours. Scaled time: 2.16 units (timescale=1.957). Factorization parameters were as follows: n: 1350442758172466235831250671045390216870069256104474538043817178620260152392578018490262908301541399833153207 m: 5000000000000000000000000 deg: 5 c5: 248 c0: 125 skew: 0.87 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 640001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 102486 x 102715 Total sieving time: 1.05 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.11 hours. --------- CPU info (if available) ----------
(64·10136+17)/9 = 7(1)1353<137> = 7 · 77093 · 5547661787<10> · 66111733711<11> · 3770592903491924639<19> · C92
C92 = P46 · P47
P46 = 5422249164127684148858996648996091821227445417<46>
P47 = 17573037645400070249428839877166074647419899393<47>
Number: 92 N=95285388683954857710126813040472911888407431629029171998566805703742921828445711644538931881 ( 92 digits) Divisors found: r1=5422249164127684148858996648996091821227445417 (pp46) r2=17573037645400070249428839877166074647419899393 (pp47) Version: Msieve-1.40 Total time: 2.77 hours. Scaled time: 5.44 units (timescale=1.963). Factorization parameters were as follows: name: 92 n: 95285388683954857710126813040472911888407431629029171998566805703742921828445711644538931881 m: 1219925083891547904536 deg: 4 c4: 43022304 c3: 117357957168 c2: -116549645048442254 c1: -345234638576714221 c0: 178970559087716997950049 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.624 # E(F1,F2) = 8.591379e-005 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1256249799. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 40000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [350000, 910001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130314 x 130562 Polynomial selection time: 0.17 hours. Total sieving time: 2.52 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 2.77 hours. --------- CPU info (if available) ----------
(64·10101+71)/9 = 7(1)1009<102> = 3250990037<10> · C93
C93 = P38 · P56
P38 = 10748647274212289142063536058100292177<38>
P56 = 20350168736847131287336811282510747218369900720674640931<56>
Number: snfs93 N=218736785723072060928346398100976742892156427457889226103190026820470108721871518645663296787 ( 93 digits) SNFS difficulty: 102 digits. Divisors found: r1=10748647274212289142063536058100292177 (pp38) r2=20350168736847131287336811282510747218369900720674640931 (pp56) Version: Msieve-1.40 Total time: 0.21 hours. Scaled time: 0.40 units (timescale=1.951). Factorization parameters were as follows: n: 218736785723072060928346398100976742892156427457889226103190026820470108721871518645663296787 m: 20000000000000000000000000 deg: 4 c4: 40 c0: 71 skew: 1.15 type: snfs lss: 1 rlim: 360000 alim: 360000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [180000, 220001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 31327 x 31552 Total sieving time: 0.20 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,102.000,4,0,0,0,0,0,0,0,0,360000,360000,25,25,43,43,2.2,2.2,10000 total time: 0.21 hours. --------- CPU info (if available) ----------
(64·10108+17)/9 = 7(1)1073<109> = 32 · 1399 · 890949611 · C96
C96 = P45 · P52
P45 = 433190132097380420384996916362442135529201421<45>
P52 = 1463341007385146117446818610976026834508899289208553<52>
Number: snfs96 N=633904884292685183921845263177093156427638567190056943304369860206601718459519750575711212953813 ( 96 digits) SNFS difficulty: 110 digits. Divisors found: r1=433190132097380420384996916362442135529201421 (pp45) r2=1463341007385146117446818610976026834508899289208553 (pp52) Version: Msieve-1.40 Total time: 0.66 hours. Scaled time: 1.29 units (timescale=1.963). Factorization parameters were as follows: n: 633904884292685183921845263177093156427638567190056943304369860206601718459519750575711212953813 m: 4000000000000000000000 deg: 5 c5: 125 c0: 34 skew: 0.77 type: snfs lss: 1 rlim: 480000 alim: 480000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 480000/480000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [240000, 390001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 45435 x 45665 Total sieving time: 0.64 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110.000,5,0,0,0,0,0,0,0,0,480000,480000,25,25,44,44,2.2,2.2,50000 total time: 0.66 hours. --------- CPU info (if available) ----------
(64·10111+17)/9 = 7(1)1103<112> = 3 · 89 · 417370571 · C101
C101 = P47 · P55
P47 = 54782810780936906708981933325626845098262652917<47>
P55 = 1164823351692625310889945891417246864769307437537167277<55>
Number: snfs101 N=63812297268993815940902221849348184534482795624962936864923878115416909012601683655932390427220997009 ( 101 digits) SNFS difficulty: 112 digits. Divisors found: r1=54782810780936906708981933325626845098262652917 (pp47) r2=1164823351692625310889945891417246864769307437537167277 (pp55) Version: Msieve-1.40 Total time: 0.66 hours. Scaled time: 1.30 units (timescale=1.963). Factorization parameters were as follows: n: 63812297268993815940902221849348184534482795624962936864923878115416909012601683655932390427220997009 m: 20000000000000000000000 deg: 5 c5: 20 c0: 17 skew: 0.97 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 415001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 50310 x 50535 Total sieving time: 0.64 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112.000,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 0.66 hours. --------- CPU info (if available) ----------
(64·10119+17)/9 = 7(1)1183<120> = 13 · C119
C119 = P45 · P75
P45 = 488727793725958700489283586125677588925075041<45>
P75 = 111924992609539966693906747228138885053736779654620027718067011364684909261<75>
Number: s119 N=54700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=488727793725958700489283586125677588925075041 (pp45) r2=111924992609539966693906747228138885053736779654620027718067011364684909261 (pp75) Version: Msieve-1.40 Total time: 1.49 hours. Scaled time: 2.93 units (timescale=1.975). Factorization parameters were as follows: n: 54700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701 m: 2000000000000000000000000 deg: 5 c5: 1 c0: 85 skew: 2.43 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 670001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63745 x 63970 Total sieving time: 1.46 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.49 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve, GMP-ECM 6.2.1 / Oct 23, 2009
(62·10119+1)/9 = 6(8)1189<120> = 53 · C119
C119 = P59 · P60
P59 = 81639827347528296394011236911324937968186783394226152874541<59>
P60 = 159210326457590438894678389977581407772306683697429931033193<60>
SNFS difficulty: 121 digits. Divisors found: r1=81639827347528296394011236911324937968186783394226152874541 (pp59) r2=159210326457590438894678389977581407772306683697429931033193 (pp60) Version: Msieve v. 1.44 SVN130 Total time: 0.77 hours. Scaled time: 1.84 units (timescale=2.400). Factorization parameters were as follows: n: 12997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639413 m: 1000000000000000000000000 deg: 5 c5: 31 c0: 5 skew: 0.69 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [462500, 712501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80641 x 80867 Total sieving time: 0.73 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 0.77 hours.
(62·10108-17)/9 = 6(8)1077<109> = 71 · 6691 · C104
C104 = P44 · P60
P44 = 46859901000776781131465690847842935612263181<44>
P60 = 309455663057323235274691052519448169795958335578466652421607<60>
SNFS difficulty: 111 digits. Divisors found: r1=46859901000776781131465690847842935612263181 (pp44) r2=309455663057323235274691052519448169795958335578466652421607 (pp60) Version: Msieve v. 1.44 SVN130 Total time: 0.57 hours. Scaled time: 1.36 units (timescale=2.400). Factorization parameters were as follows: n: 14501061734995903450059863657275358088516819711339993998431546451695443088127396037327604010619454951867 m: 5000000000000000000000 deg: 5 c5: 496 c0: -425 skew: 0.97 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [312500, 512501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46087 x 46312 Total sieving time: 0.54 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.57 hours.
(64·10183+71)/9 = 7(1)1829<184> = 32 · 7 · 17 · 79 · 193 · 293 · 5011 · C171
C171 = P35 · P137
P35 = 17301463376975847179315279150325763<35>
P137 = 17143075290875582464063217144806230401728131829237471188559245402738466206829167056208532345413386033226412355136311495896727090101119163<137>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=238477675 Step 1 took 3528ms Step 2 took 2501ms ********** Factor found in step 2: 17301463376975847179315279150325763 Found probable prime factor of 35 digits: 17301463376975847179315279150325763 Probable prime cofactor has 137 digits
(64·10185+71)/9 = 7(1)1849<186> = 593707 · 594449 · 4422329046727<13> · C162
C162 = P32 · C131
P32 = 40284292656009544724056072361587<32>
C131 = [11310033687577798780951179717781239801201300667676599750525383725016871763434743855775671472835920548897294389560503214459333104217<131>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1330655251 Step 1 took 3552ms Step 2 took 2400ms ********** Factor found in step 2: 40284292656009544724056072361587 Found probable prime factor of 32 digits: 40284292656009544724056072361587 Composite cofactor has 131 digits
By Sinkiti Sibata / Msieve / Oct 23, 2009
(64·10123+71)/9 = 7(1)1229<124> = 3 · 7 · 15583 · 15881 · 105885567595491756562319<24> · C92
C92 = P34 · P59
P34 = 1136814553249137324245558559567913<34>
P59 = 11367444950762975702690695066334498127534988253058760353619<59>
Number: 71119_123 N=12922676853285774050945956342016639234286997338578012703264913559170745694076371843725827147 ( 92 digits) SNFS difficulty: 125 digits. Divisors found: r1=1136814553249137324245558559567913 (pp34) r2=11367444950762975702690695066334498127534988253058760353619 (pp59) Version: Msieve v. 1.42 Total time: 0.10 hours. Scaled time: 0.08 units (timescale=0.854). Factorization parameters were as follows: name: 71119_123 n: 12922676853285774050945956342016639234286997338578012703264913559170745694076371843725827147 m: 4000000000000000000000000 deg: 5 c5: 125 c0: 142 skew: 1.03 type: snfs lss: 1 rlim: 850000 alim: 850000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 850000/850000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [425000, 725001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135545 x 135793 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,850000,850000,26,26,46,46,2.3,2.3,50000 total time: 0.10 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02 Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583) Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268) Total of 2 processors activated (11653.70 BogoMIPS).
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Oct 23, 2009
(64·10110+17)/9 = 7(1)1093<111> = 2269 · C108
C108 = P34 · P74
P34 = 6107263899343395071821741879117103<34>
P74 = 51316411859772317742603311829444405836304533254101354511869738454046382259<74>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 313402869595024729445178982420057783654081582684491454874883698153861221291807453111992556681847118162675677 (108 digits) Using B1=1636000, B2=2140202620, polynomial Dickson(6), sigma=2170076982 Step 1 took 12735ms Step 2 took 5781ms ********** Factor found in step 2: 6107263899343395071821741879117103 Found probable prime factor of 34 digits: 6107263899343395071821741879117103 Probable prime cofactor 51316411859772317742603311829444405836304533254101354511869738454046382259 has 74 digits
(64·10119+71)/9 = 7(1)1189<120> = 17 · C119
C119 = P36 · P84
P36 = 103311831147289688284420593945175543<36>
P84 = 404891336209507364975901542183933484748064918129084275135374317142656084838015829849<84>
Number: n N=41830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183007 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: Fri Oct 23 16:15:18 2009 prp36 factor: 103311831147289688284420593945175543 Fri Oct 23 16:15:18 2009 prp84 factor: 404891336209507364975901542183933484748064918129084275135374317142656084838015829849 Fri Oct 23 16:15:18 2009 elapsed time 00:02:51 (Msieve 1.42 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.86 hours. Scaled time: 1.58 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_1_118_9 n: 41830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183007 m: 2000000000000000000000000 deg: 5 c5: 1 c0: 355 skew: 3.24 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 qintsize: 5000 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved special-q in [370000, 546619) Primes: RFBsize:59531, AFBsize:59449, largePrimes:1251581 encountered Relations: rels:1204967, finalFF:131396 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 75390 hash collisions in 1272423 relations Msieve: matrix is 76797 x 77022 (21.4 MB) Total sieving time: 0.84 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 0.86 hours. --------- CPU info (if available) ----------
By Lionel Debroux / YAFU 1.12, Msieve / Oct 23, 2009
(64·10172+71)/9 = 7(1)1719<173> = 4021 · 337153 · 158556479 · 188086429328935981<18> · 8071301100515705712881743<25> · 97882710111745450070186029019<29> · C85
C85 = P36 · P49
P36 = 338146457983804408117822558114121347<36>
P49 = 6583859148809103810072706544327361794424594066463<49>
starting SIQS on c85: 2226308651034063875746538036419884476852225589307711032572873916862364437146965085661 ==== sieve params ==== n = 87 digits, 287 bits factor base: 55137 primes (max prime = 1449001) single large prime cutoff: 137655095 (95 * pmax) double large prime range from 42 to 49 bits double large prime cutoff: 446504790620886 using 27 large prime slices of factor base buckets hold 1024 elements sieve interval: 7 blocks of size 65536 polynomial A has ~ 11 factors using multiplier of 61 using small prime variation correction of 21 bits using SSE2 for trial division and x128 sieve scanning trial factoring cutoff at 93 bits ==== sieving in progress (1 thread): 55201 relations needed ==== ==== Press ctrl-c to abort and save state ==== 55346 rels found: 21109 full + 34237 from 443418 partial, (414.95 rels/sec) sieve time = 542.0653, relation time = 225.0556, poly_time = 425.8309 trial division touched 8721453 sieve locations out of 58844064907264 QS elapsed time = 1202.4044 seconds. ==== post processing stage (msieve-1.38) ==== begin with 464527 relations reduce to 104232 relations in 7 passes attempting to read 104232 relations recovered 104232 relations recovered 79138 polynomials attempting to build 55346 cycles found 55346 cycles in 4 passes distribution of cycle lengths: length 1 : 21109 length 2 : 17041 length 3 : 9430 length 4 : 4522 length 5 : 1963 length 6 : 775 length 7 : 339 length 9+: 167 largest cycle: 12 relations seed1 = 3257297759, seed2 = 496421594 matrix is 55137 x 55346 (10.5 MB) with weight 2312373 (41.78/col) sparse part has weight 2312373 (41.78/col) filtering completed in 4 passes matrix is 45917 x 45981 (9.0 MB) with weight 1993204 (43.35/col) sparse part has weight 1993204 (43.35/col) saving the first 48 matrix rows for later matrix is 45869 x 45981 (7.8 MB) with weight 1684454 (36.63/col) sparse part has weight 1591912 (34.62/col) matrix includes 64 packed rows using block size 18392 for processor cache size 4096 kB commencing Lanczos iteration memory use: 6.6 MB lanczos halted after 727 iterations (dim = 45864) recovered 14 nontrivial dependencies Lanczos elapsed time = 17.7000 seconds. Sqrt elapsed time = 1.4300 seconds. SIQS elapsed time = 1222.1363 seconds. ECM/SIQS ratio was = 0.301022 Total factoring time = 1605.5181 seconds ***factors found*** PRP49 = 6583859148809103810072706544327361794424594066463 PRP36 = 338146457983804408117822558114121347
By Lionel Debroux / GMP-ECM
Factorizations of 711...113 and Factorizations of 711...119 have been extended up to n=200. Composite numbers that appeared newly have passed 150 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GMP-ECM / Oct 22, 2009
(61·10131-43)/9 = 6(7)1303<132> = 31 · 193 · 373 · 509 · 5437 · C120
C120 = P37 · P83
P37 = 3176842301068964566003730214226708951<37>
P83 = 34545121036016200581235088091939562853984600621026803667217884043326708540802158409<83>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 109744401802763599807563603019940736292097143021592772647580168164876472110366275650925686730214991920095467557440218959 (120 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5415166480 Step 1 took 4446ms Step 2 took 3744ms ********** Factor found in step 2: 3176842301068964566003730214226708951 Found probable prime factor of 37 digits: 3176842301068964566003730214226708951 Probable prime cofactor 34545121036016200581235088091939562853984600621026803667217884043326708540802158409 has 83 digits
By Erik Branger / GGNFS, Msieve, YAFU / Oct 22, 2009
(62·10107-17)/9 = 6(8)1067<108> = 3 · C108
C108 = P47 · P61
P47 = 64491293756081752461179581215688846049520648869<47>
P61 = 3560629912281373017071203551569816106852159704383341998954041<61>
Number: 68887_107 N=229629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629 ( 108 digits) SNFS difficulty: 109 digits. Divisors found: r1=64491293756081752461179581215688846049520648869 (pp47) r2=3560629912281373017071203551569816106852159704383341998954041 (pp61) Version: Msieve-1.40 Total time: 0.79 hours. Scaled time: 0.77 units (timescale=0.982). Factorization parameters were as follows: n: 229629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629 m: 2000000000000000000000 deg: 5 c5: 775 c0: -68 skew: 0.61 type: snfs lss: 1 rlim: 470000 alim: 470000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 470000/470000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [235000, 385001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 49917 x 50142 Total sieving time: 0.77 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000 total time: 0.79 hours. --------- CPU info (if available) ----------
(62·10108+1)/9 = 6(8)1079<109> = 7 · 139 · 359 · 571261 · 786719 · 2979701 · C86
C86 = P35 · P51
P35 = 88487325486117617422437582413031689<35>
P51 = 166430884397911127150765051393953307715521219894077<51>
10/22/09 10:32:20 v1.12 @ ERIK-DATOR, starting SIQS on c86: 14727023838660376218327768453568687574256162565042157953529770729131644970005024406053 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, random seeds: 1449736531, 3653992088 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, ==== sieve params ==== 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, n = 87 digits, 289 bits 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, factor base: 56327 primes (max prime = 1480903) 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, single large prime cutoff: 162899330 (110 * pmax) 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, double large prime range from 42 to 50 bits 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, double large prime cutoff: 604581336785488 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, using 0 large prime slices of factor base 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, buckets hold 1024 elements 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, polynomial A has ~ -1878638032 factors 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, using multiplier of 53 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, using small prime variation correction of 21 bits 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, trial factoring cutoff at 95 bits 10/22/09 10:32:20 v1.12 @ ERIK-DATOR, ==== sieving started ( 2 threads) ==== 10/22/09 10:47:46 v1.12 @ ERIK-DATOR, sieve time = 273.9536, relation time = 157.2822, poly_time = 456.9534 10/22/09 10:47:46 v1.12 @ ERIK-DATOR, 56755 relations found: 19831 full + 36924 from 499168 partial, using 21641994 polys (409 A polys) 10/22/09 10:47:46 v1.12 @ ERIK-DATOR, on average, sieving found 0.02 rels/poly and 560.54 rels/sec 10/22/09 10:47:46 v1.12 @ ERIK-DATOR, trial division touched 10587663 sieve locations out of 25529934938112 10/22/09 10:47:46 v1.12 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ==== 10/22/09 10:47:46 v1.12 @ ERIK-DATOR, begin with 518999 relations 10/22/09 10:47:47 v1.12 @ ERIK-DATOR, reduce to 112382 relations in 8 passes 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, recovered 112382 relations 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, recovered 87260 polynomials 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, attempting to build 56755 cycles 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, found 56755 cycles in 4 passes 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, distribution of cycle lengths: 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 1 : 19831 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 2 : 16544 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 3 : 10341 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 4 : 5393 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 5 : 2628 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 6 : 1199 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 7 : 470 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, length 9+: 349 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, largest cycle: 13 relations 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, matrix is 56327 x 56755 (10.9 MB) with weight 2617883 (46.13/col) 10/22/09 10:47:51 v1.12 @ ERIK-DATOR, sparse part has weight 2617883 (46.13/col) 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, filtering completed in 3 passes 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, matrix is 48415 x 48479 (9.5 MB) with weight 2292126 (47.28/col) 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, sparse part has weight 2292126 (47.28/col) 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, saving the first 48 matrix rows for later 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, matrix is 48367 x 48479 (7.9 MB) with weight 1946755 (40.16/col) 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, sparse part has weight 1768625 (36.48/col) 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, matrix includes 64 packed rows 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, using block size 19391 for processor cache size 2048 kB 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, commencing Lanczos iteration 10/22/09 10:47:52 v1.12 @ ERIK-DATOR, memory use: 7.2 MB 10/22/09 10:48:07 v1.12 @ ERIK-DATOR, lanczos halted after 766 iterations (dim = 48365) 10/22/09 10:48:07 v1.12 @ ERIK-DATOR, recovered 17 nontrivial dependencies 10/22/09 10:48:08 v1.12 @ ERIK-DATOR, prp51 = 166430884397911127150765051393953307715521219894077 10/22/09 10:48:09 v1.12 @ ERIK-DATOR, prp35 = 88487325486117617422437582413031689 10/22/09 10:48:09 v1.12 @ ERIK-DATOR, Lanczos elapsed time = 20.6080 seconds. 10/22/09 10:48:09 v1.12 @ ERIK-DATOR, Sqrt elapsed time = 2.7920 seconds. 10/22/09 10:48:09 v1.12 @ ERIK-DATOR, SIQS elapsed time = 949.2848 seconds.
(62·10103-17)/9 = 6(8)1027<104> = 8301041583370987531<19> · C85
C85 = P42 · P43
P42 = 935821881014050738831123008109811617879289<42>
P43 = 8867953254436831317618185581870422405366893<43>
Thu Oct 22 10:09:34 2009 Msieve v. 1.40 Thu Oct 22 10:09:34 2009 random seeds: fd34b190 bd975fae Thu Oct 22 10:09:34 2009 factoring 8298824695311748374477858110031838988136273574343649262984615204677773844988630979077 (85 digits) Thu Oct 22 10:09:35 2009 searching for 15-digit factors Thu Oct 22 10:09:37 2009 commencing quadratic sieve (85-digit input) Thu Oct 22 10:09:37 2009 using multiplier of 1 Thu Oct 22 10:09:37 2009 using 64kb Pentium 4 sieve core Thu Oct 22 10:09:37 2009 sieve interval: 6 blocks of size 65536 Thu Oct 22 10:09:37 2009 processing polynomials in batches of 17 Thu Oct 22 10:09:37 2009 using a sieve bound of 1433021 (55000 primes) Thu Oct 22 10:09:37 2009 using large prime bound of 114641680 (26 bits) Thu Oct 22 10:09:37 2009 using double large prime bound of 321230343743840 (41-49 bits) Thu Oct 22 10:09:37 2009 using trial factoring cutoff of 49 bits Thu Oct 22 10:09:37 2009 polynomial 'A' values have 11 factors Thu Oct 22 10:59:23 2009 55345 relations (15653 full + 39692 combined from 575487 partial), need 55096 Thu Oct 22 10:59:25 2009 begin with 591140 relations Thu Oct 22 10:59:26 2009 reduce to 131511 relations in 10 passes Thu Oct 22 10:59:26 2009 attempting to read 131511 relations Thu Oct 22 10:59:28 2009 recovered 131511 relations Thu Oct 22 10:59:28 2009 recovered 113568 polynomials Thu Oct 22 10:59:28 2009 attempting to build 55345 cycles Thu Oct 22 10:59:29 2009 found 55345 cycles in 5 passes Thu Oct 22 10:59:29 2009 distribution of cycle lengths: Thu Oct 22 10:59:29 2009 length 1 : 15653 Thu Oct 22 10:59:29 2009 length 2 : 11068 Thu Oct 22 10:59:29 2009 length 3 : 9764 Thu Oct 22 10:59:29 2009 length 4 : 7259 Thu Oct 22 10:59:29 2009 length 5 : 4848 Thu Oct 22 10:59:29 2009 length 6 : 2983 Thu Oct 22 10:59:29 2009 length 7 : 1791 Thu Oct 22 10:59:29 2009 length 9+: 1979 Thu Oct 22 10:59:29 2009 largest cycle: 19 relations Thu Oct 22 10:59:29 2009 matrix is 55000 x 55345 (12.0 MB) with weight 2926649 (52.88/col) Thu Oct 22 10:59:29 2009 sparse part has weight 2926649 (52.88/col) Thu Oct 22 10:59:30 2009 filtering completed in 3 passes Thu Oct 22 10:59:30 2009 matrix is 50419 x 50482 (11.0 MB) with weight 2681514 (53.12/col) Thu Oct 22 10:59:30 2009 sparse part has weight 2681514 (53.12/col) Thu Oct 22 10:59:30 2009 saving the first 48 matrix rows for later Thu Oct 22 10:59:30 2009 matrix is 50371 x 50482 (6.5 MB) with weight 2036405 (40.34/col) Thu Oct 22 10:59:30 2009 sparse part has weight 1390788 (27.55/col) Thu Oct 22 10:59:30 2009 matrix includes 64 packed rows Thu Oct 22 10:59:30 2009 using block size 20192 for processor cache size 512 kB Thu Oct 22 10:59:31 2009 commencing Lanczos iteration Thu Oct 22 10:59:31 2009 memory use: 6.8 MB Thu Oct 22 10:59:52 2009 lanczos halted after 798 iterations (dim = 50368) Thu Oct 22 10:59:52 2009 recovered 15 nontrivial dependencies Thu Oct 22 10:59:52 2009 prp42 factor: 935821881014050738831123008109811617879289 Thu Oct 22 10:59:52 2009 prp43 factor: 8867953254436831317618185581870422405366893 Thu Oct 22 10:59:52 2009 elapsed time 00:50:18
(62·10110+1)/9 = 6(8)1099<111> = 13 · 181 · 21559 · 2174310109<10> · C94
C94 = P35 · P59
P35 = 63432888137017016044348166423759881<35>
P59 = 98460643496494633707032806939239407637455939456098771653683<59>
Number: 68889_110 N=6245642984811856062235287029426084575778440342963469250312594651400868154281248395588881291723 ( 94 digits) SNFS difficulty: 112 digits. Divisors found: r1=63432888137017016044348166423759881 (pp35) r2=98460643496494633707032806939239407637455939456098771653683 (pp59) Version: Msieve v. 1.41 Total time: 1.02 hours. Scaled time: 0.80 units (timescale=0.782). Factorization parameters were as follows: n: 6245642984811856062235287029426084575778440342963469250312594651400868154281248395588881291723 m: 20000000000000000000000 deg: 5 c5: 31 c0: 16 skew: 0.88 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [270000, 370001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46726 x 46954 Total sieving time: 0.96 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,112.000,5,0,0,0,0,0,0,0,0,540000,540000,25,25,45,45,2.2,2.2,50000 total time: 1.02 hours. --------- CPU info (if available) ----------
(62·10112+1)/9 = 6(8)1119<113> = 3 · 886283 · C107
C107 = P45 · P62
P45 = 424474417621500274841350325647806085712007847<45>
P62 = 61038518645710499741252246219722199134494898635738764960652863<62>
Number: 68889_112 N=25909289654617050042664660117550447162997556043569562953326378778519911769675107119241780518144839699015961 ( 107 digits) SNFS difficulty: 115 digits. Divisors found: r1=424474417621500274841350325647806085712007847 (pp45) r2=61038518645710499741252246219722199134494898635738764960652863 (pp62) Version: Msieve-1.40 Total time: 0.89 hours. Scaled time: 0.92 units (timescale=1.037). Factorization parameters were as follows: n: 25909289654617050042664660117550447162997556043569562953326378778519911769675107119241780518144839699015961 m: 50000000000000000000000 deg: 5 c5: 248 c0: 125 skew: 0.87 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52135 x 52363 Total sieving time: 0.86 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.89 hours. --------- CPU info (if available) ----------
(62·10118-17)/9 = 6(8)1177<119> = 7 · 13 · 797 · 1637 · 10495884173<11> · C101
C101 = P46 · P56
P46 = 1107425712352658416164331896759556635993194543<46>
P56 = 49919146890014271345218701495435856544040574826259751767<56>
Number: 68887_118 N=55281746804711047413147085542352502587218872411016410646872878050579577112931965008102182600519007481 ( 101 digits) SNFS difficulty: 121 digits. Divisors found: r1=1107425712352658416164331896759556635993194543 (pp46) r2=49919146890014271345218701495435856544040574826259751767 (pp56) Version: Msieve-1.40 Total time: 1.39 hours. Scaled time: 1.31 units (timescale=0.944). Factorization parameters were as follows: n: 55281746804711047413147085542352502587218872411016410646872878050579577112931965008102182600519007481 m: 500000000000000000000000 deg: 5 c5: 496 c0: -425 skew: 0.97 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 615001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76178 x 76404 Total sieving time: 1.35 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.39 hours. --------- CPU info (if available) ----------
(62·10124-17)/9 = 6(8)1237<125> = 7 · 13 · 565929251 · 243301560941<12> · C103
C103 = P44 · P59
P44 = 99814881408334166492104918462203337432729043<44>
P59 = 55081461574459782075149704562271031348782495790432760592689<59>
Number: 68887_124 N=5497949554852418488290940989144761344184679566894847209327534296291745092060974983110450650315423766627 ( 103 digits) SNFS difficulty: 126 digits. Divisors found: r1=99814881408334166492104918462203337432729043 (pp44) r2=55081461574459782075149704562271031348782495790432760592689 (pp59) Version: Msieve-1.40 Total time: 1.66 hours. Scaled time: 1.71 units (timescale=1.031). Factorization parameters were as follows: n: 5497949554852418488290940989144761344184679566894847209327534296291745092060974983110450650315423766627 m: 10000000000000000000000000 deg: 5 c5: 31 c0: -85 skew: 1.22 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 118843 x 119069 Total sieving time: 1.59 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.66 hours. --------- CPU info (if available) ----------
(62·10117+1)/9 = 6(8)1169<118> = 40464497 · C111
C111 = P41 · P70
P41 = 45130259711000452950944547303930885114601<41>
P70 = 3772308490515012510449614847679149216069295945683508079802035124362337<70>
Number: 68889_117 N=170245261886954603411699122044909859843034472636318422267522289697284236324224885061314091928262172365293182537 ( 111 digits) SNFS difficulty: 120 digits. Divisors found: r1=45130259711000452950944547303930885114601 (pp41) r2=3772308490515012510449614847679149216069295945683508079802035124362337 (pp70) Version: Msieve v. 1.41 Total time: 1.96 hours. Scaled time: 1.53 units (timescale=0.780). Factorization parameters were as follows: n: 170245261886954603411699122044909859843034472636318422267522289697284236324224885061314091928262172365293182537 m: 500000000000000000000000 deg: 5 c5: 248 c0: 125 skew: 0.87 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 560001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 67528 x 67758 Total sieving time: 1.90 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120.000,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 1.96 hours. --------- CPU info (if available) ----------
(61·10128-43)/9 = 6(7)1273<129> = 23 · 67 · 9587 · C122
C122 = P58 · P64
P58 = 5536611687315353779610747923377308454801944617579961851913<58>
P64 = 8286247372898555574310188241936816191159007996701514902479901563<64>
Number: 67773_128 N=45877734048776289285977975243066063718922977624684531351012100041769044522408012755333751001215737389472547677739423240019 ( 122 digits) SNFS difficulty: 131 digits. Divisors found: r1=5536611687315353779610747923377308454801944617579961851913 (pp58) r2=8286247372898555574310188241936816191159007996701514902479901563 (pp64) Version: Msieve-1.40 Total time: 3.17 hours. Scaled time: 3.20 units (timescale=1.009). Factorization parameters were as follows: n: 45877734048776289285977975243066063718922977624684531351012100041769044522408012755333751001215737389472547677739423240019 m: 50000000000000000000000000 deg: 5 c5: 488 c0: -1075 skew: 1.17 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 1040001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 158781 x 159007 Total sieving time: 3.02 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 3.17 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Oct 22, 2009
(62·10111+1)/9 = 6(8)1109<112> = 23 · 4639 · 315057233 · C99
C99 = P46 · P53
P46 = 3077974809623148102960387293801097224185933679<46>
P53 = 66579795337873101825458429741248933989066545646212591<53>
Number: n N=204930932879838124217739423206018620661313423302611716631311830955133216392871644371769123460752289 ( 99 digits) SNFS difficulty: 113 digits. Divisors found: Fri Oct 23 00:59:50 2009 prp46 factor: 3077974809623148102960387293801097224185933679 Fri Oct 23 00:59:50 2009 prp53 factor: 66579795337873101825458429741248933989066545646212591 Fri Oct 23 00:59:50 2009 elapsed time 00:01:38 (Msieve 1.42 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.57 hours. Scaled time: 1.04 units (timescale=1.834). Factorization parameters were as follows: name: KA_6_8_110_9 n: 204930932879838124217739423206018620661313423302611716631311830955133216392871644371769123460752289 m: 20000000000000000000000 deg: 5 c5: 155 c0: 8 skew: 0.55 type: snfs lss: 1 rlim: 550000 alim: 550000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 qintsize: 2000 Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved special-q in [275000, 399389) Primes: RFBsize:45322, AFBsize:45075, largePrimes:1074629 encountered Relations: rels:995016, finalFF:92748 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 53214 hash collisions in 1035831 relations Msieve: matrix is 62559 x 62790 (16.9 MB) Total sieving time: 0.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,50000 total time: 0.57 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Oct 22, 2009
(62·10123+1)/9 = 6(8)1229<124> = 17 · 797 · 9853043 · 138595979 · 158482889 · 76444739699<11> · C86
C86 = P39 · P48
P39 = 140344436011805338070535887144534289733<39>
P48 = 218975609300055754225391098819657487228955178651<48>
Thu Oct 22 17:39:32 2009 Msieve v. 1.42 Thu Oct 22 17:39:32 2009 random seeds: b48856c4 3e37d87c Thu Oct 22 17:39:32 2009 factoring 30732008387557760692305871105735131794858801889438045066750574222364303535014410090183 (86 digits) Thu Oct 22 17:39:33 2009 searching for 15-digit factors Thu Oct 22 17:39:33 2009 commencing quadratic sieve (86-digit input) Thu Oct 22 17:39:34 2009 using multiplier of 31 Thu Oct 22 17:39:34 2009 using 32kb Intel Core sieve core Thu Oct 22 17:39:34 2009 sieve interval: 14 blocks of size 32768 Thu Oct 22 17:39:34 2009 processing polynomials in batches of 15 Thu Oct 22 17:39:34 2009 using a sieve bound of 1451909 (55262 primes) Thu Oct 22 17:39:34 2009 using large prime bound of 116152720 (26 bits) Thu Oct 22 17:39:34 2009 using double large prime bound of 328891653552400 (41-49 bits) Thu Oct 22 17:39:34 2009 using trial factoring cutoff of 49 bits Thu Oct 22 17:39:34 2009 polynomial 'A' values have 11 factors Thu Oct 22 18:17:35 2009 55502 relations (15906 full + 39596 combined from 580000 partial), need 55358 Thu Oct 22 18:17:36 2009 begin with 595906 relations Thu Oct 22 18:17:36 2009 reduce to 131595 relations in 9 passes Thu Oct 22 18:17:36 2009 attempting to read 131595 relations Thu Oct 22 18:17:38 2009 recovered 131595 relations Thu Oct 22 18:17:38 2009 recovered 113637 polynomials Thu Oct 22 18:17:38 2009 attempting to build 55502 cycles Thu Oct 22 18:17:38 2009 found 55502 cycles in 5 passes Thu Oct 22 18:17:38 2009 distribution of cycle lengths: Thu Oct 22 18:17:38 2009 length 1 : 15906 Thu Oct 22 18:17:38 2009 length 2 : 11109 Thu Oct 22 18:17:38 2009 length 3 : 9801 Thu Oct 22 18:17:38 2009 length 4 : 7092 Thu Oct 22 18:17:38 2009 length 5 : 4922 Thu Oct 22 18:17:38 2009 length 6 : 3058 Thu Oct 22 18:17:38 2009 length 7 : 1706 Thu Oct 22 18:17:38 2009 length 9+: 1908 Thu Oct 22 18:17:38 2009 largest cycle: 21 relations Thu Oct 22 18:17:39 2009 matrix is 55262 x 55502 (12.7 MB) with weight 3100505 (55.86/col) Thu Oct 22 18:17:39 2009 sparse part has weight 3100505 (55.86/col) Thu Oct 22 18:17:39 2009 filtering completed in 3 passes Thu Oct 22 18:17:39 2009 matrix is 50446 x 50510 (11.7 MB) with weight 2853284 (56.49/col) Thu Oct 22 18:17:39 2009 sparse part has weight 2853284 (56.49/col) Thu Oct 22 18:17:39 2009 saving the first 48 matrix rows for later Thu Oct 22 18:17:40 2009 matrix is 50398 x 50510 (7.6 MB) with weight 2247840 (44.50/col) Thu Oct 22 18:17:40 2009 sparse part has weight 1682043 (33.30/col) Thu Oct 22 18:17:40 2009 matrix includes 64 packed rows Thu Oct 22 18:17:40 2009 using block size 20204 for processor cache size 1024 kB Thu Oct 22 18:17:40 2009 commencing Lanczos iteration Thu Oct 22 18:17:40 2009 memory use: 7.8 MB Thu Oct 22 18:17:55 2009 lanczos halted after 798 iterations (dim = 50396) Thu Oct 22 18:17:55 2009 recovered 17 nontrivial dependencies Thu Oct 22 18:17:56 2009 prp39 factor: 140344436011805338070535887144534289733 Thu Oct 22 18:17:56 2009 prp48 factor: 218975609300055754225391098819657487228955178651 Thu Oct 22 18:17:56 2009 elapsed time 00:38:24
(62·10109-17)/9 = 6(8)1087<110> = 61 · 233 · 449 · 48978172804973327<17> · C87
C87 = P33 · P54
P33 = 373226485798271546570745311604637<33>
P54 = 590530112548685105063077860747536971066839589208013449<54>
Thu Oct 22 18:51:43 2009 Msieve v. 1.42 Thu Oct 22 18:51:43 2009 random seeds: d2657204 ab8952dc Thu Oct 22 18:51:43 2009 factoring 220401478664603519375383405432518926127525657644225991138432451226602722341653266763013 (87 digits) Thu Oct 22 18:51:44 2009 searching for 15-digit factors Thu Oct 22 18:51:44 2009 commencing quadratic sieve (87-digit input) Thu Oct 22 18:51:44 2009 using multiplier of 5 Thu Oct 22 18:51:44 2009 using 32kb Intel Core sieve core Thu Oct 22 18:51:44 2009 sieve interval: 19 blocks of size 32768 Thu Oct 22 18:51:44 2009 processing polynomials in batches of 11 Thu Oct 22 18:51:44 2009 using a sieve bound of 1480181 (56048 primes) Thu Oct 22 18:51:44 2009 using large prime bound of 118414480 (26 bits) Thu Oct 22 18:51:44 2009 using double large prime bound of 340509007839120 (41-49 bits) Thu Oct 22 18:51:44 2009 using trial factoring cutoff of 49 bits Thu Oct 22 18:51:44 2009 polynomial 'A' values have 11 factors Thu Oct 22 19:34:44 2009 56304 relations (15498 full + 40806 combined from 596323 partial), need 56144 Thu Oct 22 19:34:44 2009 begin with 611821 relations Thu Oct 22 19:34:45 2009 reduce to 135195 relations in 9 passes Thu Oct 22 19:34:45 2009 attempting to read 135195 relations Thu Oct 22 19:34:47 2009 recovered 135195 relations Thu Oct 22 19:34:47 2009 recovered 115179 polynomials Thu Oct 22 19:34:47 2009 attempting to build 56304 cycles Thu Oct 22 19:34:47 2009 found 56304 cycles in 6 passes Thu Oct 22 19:34:47 2009 distribution of cycle lengths: Thu Oct 22 19:34:47 2009 length 1 : 15498 Thu Oct 22 19:34:47 2009 length 2 : 11196 Thu Oct 22 19:34:47 2009 length 3 : 9916 Thu Oct 22 19:34:47 2009 length 4 : 7345 Thu Oct 22 19:34:47 2009 length 5 : 5139 Thu Oct 22 19:34:47 2009 length 6 : 3312 Thu Oct 22 19:34:47 2009 length 7 : 1821 Thu Oct 22 19:34:47 2009 length 9+: 2077 Thu Oct 22 19:34:47 2009 largest cycle: 20 relations Thu Oct 22 19:34:47 2009 matrix is 56048 x 56304 (13.0 MB) with weight 3169763 (56.30/col) Thu Oct 22 19:34:47 2009 sparse part has weight 3169763 (56.30/col) Thu Oct 22 19:34:48 2009 filtering completed in 3 passes Thu Oct 22 19:34:48 2009 matrix is 51650 x 51714 (12.0 MB) with weight 2942276 (56.90/col) Thu Oct 22 19:34:48 2009 sparse part has weight 2942276 (56.90/col) Thu Oct 22 19:34:48 2009 saving the first 48 matrix rows for later Thu Oct 22 19:34:48 2009 matrix is 51602 x 51714 (7.6 MB) with weight 2309506 (44.66/col) Thu Oct 22 19:34:48 2009 sparse part has weight 1690525 (32.69/col) Thu Oct 22 19:34:48 2009 matrix includes 64 packed rows Thu Oct 22 19:34:48 2009 using block size 20685 for processor cache size 1024 kB Thu Oct 22 19:34:49 2009 commencing Lanczos iteration Thu Oct 22 19:34:49 2009 memory use: 7.9 MB Thu Oct 22 19:35:05 2009 lanczos halted after 818 iterations (dim = 51597) Thu Oct 22 19:35:05 2009 recovered 14 nontrivial dependencies Thu Oct 22 19:35:07 2009 prp33 factor: 373226485798271546570745311604637 Thu Oct 22 19:35:07 2009 prp54 factor: 590530112548685105063077860747536971066839589208013449 Thu Oct 22 19:35:07 2009 elapsed time 00:43:24
(62·10110-17)/9 = 6(8)1097<111> = 3 · 53 · 2300021 · 517718138007541<15> · C88
C88 = P35 · P54
P35 = 34175041639276303340196029466299407<35>
P54 = 106467687573370376329491577608022327612581959057576959<54>
Thu Oct 22 19:47:44 2009 Msieve v. 1.42 Thu Oct 22 19:47:44 2009 random seeds: f96bc3d0 b313e32a Thu Oct 22 19:47:44 2009 factoring 3638537656057392856328944182463998331622023069282498652558204204437534061142225838563313 (88 digits) Thu Oct 22 19:47:45 2009 searching for 15-digit factors Thu Oct 22 19:47:46 2009 commencing quadratic sieve (88-digit input) Thu Oct 22 19:47:46 2009 using multiplier of 1 Thu Oct 22 19:47:46 2009 using 32kb Intel Core sieve core Thu Oct 22 19:47:46 2009 sieve interval: 25 blocks of size 32768 Thu Oct 22 19:47:46 2009 processing polynomials in batches of 9 Thu Oct 22 19:47:46 2009 using a sieve bound of 1517707 (57593 primes) Thu Oct 22 19:47:46 2009 using large prime bound of 121416560 (26 bits) Thu Oct 22 19:47:46 2009 using double large prime bound of 356205104400640 (42-49 bits) Thu Oct 22 19:47:46 2009 using trial factoring cutoff of 49 bits Thu Oct 22 19:47:46 2009 polynomial 'A' values have 11 factors Thu Oct 22 20:28:46 2009 57741 relations (16316 full + 41425 combined from 604418 partial), need 57689 Thu Oct 22 20:28:47 2009 begin with 620734 relations Thu Oct 22 20:28:47 2009 reduce to 137770 relations in 10 passes Thu Oct 22 20:28:47 2009 attempting to read 137770 relations Thu Oct 22 20:28:49 2009 recovered 137770 relations Thu Oct 22 20:28:49 2009 recovered 111771 polynomials Thu Oct 22 20:28:49 2009 attempting to build 57741 cycles Thu Oct 22 20:28:49 2009 found 57741 cycles in 5 passes Thu Oct 22 20:28:49 2009 distribution of cycle lengths: Thu Oct 22 20:28:49 2009 length 1 : 16316 Thu Oct 22 20:28:49 2009 length 2 : 11459 Thu Oct 22 20:28:49 2009 length 3 : 10045 Thu Oct 22 20:28:49 2009 length 4 : 7511 Thu Oct 22 20:28:49 2009 length 5 : 5051 Thu Oct 22 20:28:49 2009 length 6 : 3272 Thu Oct 22 20:28:49 2009 length 7 : 1919 Thu Oct 22 20:28:49 2009 length 9+: 2168 Thu Oct 22 20:28:49 2009 largest cycle: 19 relations Thu Oct 22 20:28:50 2009 matrix is 57593 x 57741 (13.4 MB) with weight 3285957 (56.91/col) Thu Oct 22 20:28:50 2009 sparse part has weight 3285957 (56.91/col) Thu Oct 22 20:28:50 2009 filtering completed in 3 passes Thu Oct 22 20:28:50 2009 matrix is 52948 x 53010 (12.5 MB) with weight 3058098 (57.69/col) Thu Oct 22 20:28:50 2009 sparse part has weight 3058098 (57.69/col) Thu Oct 22 20:28:50 2009 saving the first 48 matrix rows for later Thu Oct 22 20:28:50 2009 matrix is 52900 x 53010 (8.3 MB) with weight 2433607 (45.91/col) Thu Oct 22 20:28:50 2009 sparse part has weight 1856684 (35.03/col) Thu Oct 22 20:28:50 2009 matrix includes 64 packed rows Thu Oct 22 20:28:50 2009 using block size 21204 for processor cache size 1024 kB Thu Oct 22 20:28:51 2009 commencing Lanczos iteration Thu Oct 22 20:28:51 2009 memory use: 8.4 MB Thu Oct 22 20:29:08 2009 lanczos halted after 838 iterations (dim = 52899) Thu Oct 22 20:29:08 2009 recovered 16 nontrivial dependencies Thu Oct 22 20:29:08 2009 prp35 factor: 34175041639276303340196029466299407 Thu Oct 22 20:29:08 2009 prp54 factor: 106467687573370376329491577608022327612581959057576959 Thu Oct 22 20:29:08 2009 elapsed time 00:41:24
By Serge Batalov / GMP-ECM 6.2.1 + yafu v1.12 / Oct 22, 2009
(61·10134-43)/9 = 6(7)1333<135> = 41 · 4049 · 8804479 · 2278670221979<13> · C111
C111 = P34 · P78
P34 = 1831503425435850397873609102464649<34>
P78 = 111112474093513840929249072675763204026659155993419160560629525083563818952233<78>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3439666732 Step 1 took 2376ms Step 2 took 1740ms ********** Factor found in step 2: 1831503425435850397873609102464649 Found probable prime factor of 34 digits: 1831503425435850397873609102464649 Probable prime cofactor has 78 digits
(61·10136-43)/9 = 6(7)1353<137> = 32 · 359 · 547 · 2246441856895399<16> · C116
C116 = P29 · P41 · P48
P29 = 12762555760914007064522497751<29>
P41 = 10349872985004151773018766049391856485769<41>
P48 = 129239475256057751190438900176125167669174590569<48>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3786057409 Step 1 took 2316ms Step 2 took 1736ms ********** Factor found in step 2: 12762555760914007064522497751 Found probable prime factor of 29 digits: 12762555760914007064522497751 Composite cofactor has 88 digits ======= Welcome to YAFU (Yet Another Factoring Utility) ======= 10/22/09 01:58:55 v1.12 ... matrix is 52455 x 52519 (11.1 MB) with weight 2478722 (47.20/col) sparse part has weight 2478722 (47.20/col) saving the first 48 matrix rows for later matrix is 52407 x 52519 (9.5 MB) with weight 2096421 (39.92/col) sparse part has weight 1970874 (37.53/col) matrix includes 64 packed rows using block size 21007 for processor cache size 1024 kB commencing Lanczos iteration memory use: 7.9 MB lanczos halted after 830 iterations (dim = 52400) recovered 15 nontrivial dependencies Lanczos elapsed time = 25.8200 seconds. Sqrt elapsed time = 1.3100 seconds. SIQS elapsed time = 396.6406 seconds. ***factors found*** PRP48 = 129239475256057751190438900176125167669174590569 PRP41 = 10349872985004151773018766049391856485769
By matsui / Msieve / Oct 22, 2009
3·10198+7 = 3(0)1977<199> = 17 · 31 · 709 · C193
C193 = P63 · P131
P63 = 353042910133991541918917440370516843496015546212267909038130357<63>
P131 = 22742432269025299197225941631406058277981194146870968014849567950717154661158756620175583489442241367223874181066482274509852878657<131>
N=8029054471781888058922554416916682501746319347612560652815655585679378444129824458105731941987405089885264811598236819637996697382260607050045096522616508271264281680641682033384808493669090549 ( 193 digits) SNFS difficulty: 199 digits. Divisors found: r1=353042910133991541918917440370516843496015546212267909038130357 (pp63) r2=22742432269025299197225941631406058277981194146870968014849567950717154661158756620175583489442241367223874181066482274509852878657 (pp131) Version: Msieve v. 1.43 Total time: 1205.18 hours. Scaled time: 2272.97 units (timescale=1.886). Factorization parameters were as follows: n: 8029054471781888058922554416916682501746319347612560652815655585679378444129824458105731941987405089885264811598236819637996697382260607050045096522616508271264281680641682033384808493669090549 m: 5000000000000000000000000000000000000000 deg: 5 c5: 24 c0: 175 skew: 1.49 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 800000 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7500000, 16300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2316723 x 2316948 Total sieving time: 1197.29 hours. Total relation processing time: 0.18 hours. Matrix solve time: 6.39 hours. Time per square root: 1.33 hours. Prototype def-par.txt line would be: snfs,199.000,5,0,0,0,0,0,0,0,0,15000000,15000000,28,28,55,55,2.5,2.5,100000 total time: 1205.18 hours.
Factorizations of 677...773 have been extended up to n=150. Factorizations of 688...887 and Factorizations of 688...889 have been extended up to n=125. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve / Oct 21, 2009
(59·10141+31)/9 = 6(5)1409<142> = 7 · 17 · C140
C140 = P36 · P41 · P64
P36 = 202714043003433505522841193369798581<36>
P41 = 86513847521584999083688598808746082189283<41>
P64 = 3141181843994201078957348087713428893317675535697181603656810607<64>
Number: snfs140 N=55088702147525676937441643323996265172735760971055088702147525676937441643323996265172735760971055088702147525676937441643323996265172735761 ( 140 digits) SNFS difficulty: 143 digits. Divisors found: r1=202714043003433505522841193369798581 (pp36) r2=86513847521584999083688598808746082189283 (pp41) r3=3141181843994201078957348087713428893317675535697181603656810607 (pp64) Version: Msieve-1.40 Total time: 6.30 hours. Scaled time: 12.41 units (timescale=1.969). Factorization parameters were as follows: n: 55088702147525676937441643323996265172735760971055088702147525676937441643323996265172735760971055088702147525676937441643323996265172735761 m: 20000000000000000000000000000 deg: 5 c5: 295 c0: 496 skew: 1.11 type: snfs lss: 1 rlim: 1760000 alim: 1760000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1760000/1760000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [880000, 1980001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 247066 x 247294 Total sieving time: 6.03 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.18 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1760000,1760000,26,26,48,48,2.3,2.3,100000 total time: 6.30 hours. --------- CPU info (if available) ----------
(59·10131+31)/9 = 6(5)1309<132> = C132
C132 = P60 · P72
P60 = 962401406006965270685850985472472580434859585288363395786281<60>
P72 = 681166456598891384831603529297408001491769285992504947897110656742762639<72>
Number: snfs132 N=655555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 ( 132 digits) SNFS difficulty: 133 digits. Divisors found: r1=962401406006965270685850985472472580434859585288363395786281 (pp60) r2=681166456598891384831603529297408001491769285992504947897110656742762639 (pp72) Version: Msieve-1.40 Total time: 2.82 hours. Scaled time: 5.55 units (timescale=1.969). Factorization parameters were as follows: n: 655555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 m: 200000000000000000000000000 deg: 5 c5: 295 c0: 496 skew: 1.11 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1125001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 164603 x 164829 Total sieving time: 2.70 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.08 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 2.82 hours. --------- CPU info (if available) ----------
(59·10140+31)/9 = 6(5)1399<141> = 811 · 4052733593<10> · C129
C129 = P47 · P82
P47 = 31794353533825285890787673170665277009742634727<47>
P82 = 6273221073510123167356629219122283975484886020536105467461277146298668332360249979<82>
Number: snfs129 N=199453008607023838079070199839409106867052042733553353774401098454087543645601510715530328724351254418399859063987332319806420733 ( 129 digits) SNFS difficulty: 141 digits. Divisors found: r1=31794353533825285890787673170665277009742634727 (pp47) r2=6273221073510123167356629219122283975484886020536105467461277146298668332360249979 (pp82) Version: Msieve-1.40 Total time: 5.08 hours. Scaled time: 9.97 units (timescale=1.963). Factorization parameters were as follows: n: 199453008607023838079070199839409106867052042733553353774401098454087543645601510715530328724351254418399859063987332319806420733 m: 10000000000000000000000000000 deg: 5 c5: 59 c0: 31 skew: 0.88 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1705001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 234539 x 234767 Total sieving time: 4.87 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 5.08 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Oct 21, 2009
(59·10144+31)/9 = 6(5)1439<145> = 41 · 491 · 1759 · 1228273 · 2402256211<10> · C122
C122 = P55 · P68
P55 = 1030195935055164467478862513328465269354231688740061333<55>
P68 = 60903780534711599292134161407897559561055557454763874546243443709229<68>
Number: 65559_144 N=62742827136351740608752368348775357908083902056152539473369030841599845559493036149816207568881950588591862942514478142257 ( 122 digits) SNFS difficulty: 146 digits. Divisors found: r1=1030195935055164467478862513328465269354231688740061333 (pp55) r2=60903780534711599292134161407897559561055557454763874546243443709229 (pp68) Version: Msieve-1.40 Total time: 8.09 hours. Scaled time: 27.01 units (timescale=3.339). Factorization parameters were as follows: name: 65559_144 n: 62742827136351740608752368348775357908083902056152539473369030841599845559493036149816207568881950588591862942514478142257 m: 100000000000000000000000000000 deg: 5 c5: 59 c0: 310 skew: 1.39 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2280001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 324431 x 324679 Total sieving time: 7.84 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.19 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 8.09 hours. --------- CPU info (if available) ----------
(59·10145+31)/9 = 6(5)1449<146> = 3 · 2143658599<10> · C137
C137 = P54 · P83
P54 = 856760062815768361763837738866357554854223635115877933<54>
P83 = 11897984890774166492465857218086872188431455311420879587059651870192417086397727159<83>
Number: 65559_145 N=10193718282400737754721106059786272828909474988583222552525422846892352494349708645864393004425352458771748594026866239744854004082882347 ( 137 digits) SNFS difficulty: 146 digits. Divisors found: r1=856760062815768361763837738866357554854223635115877933 (pp54) r2=11897984890774166492465857218086872188431455311420879587059651870192417086397727159 (pp83) Version: Msieve-1.40 Total time: 7.57 hours. Scaled time: 25.27 units (timescale=3.339). Factorization parameters were as follows: name: 65559_145 n: 10193718282400737754721106059786272828909474988583222552525422846892352494349708645864393004425352458771748594026866239744854004082882347 m: 100000000000000000000000000000 deg: 5 c5: 59 c0: 31 skew: 0.88 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2180001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 335250 x 335498 Total sieving time: 7.31 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.20 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 7.57 hours. --------- CPU info (if available) ----------
By matsui / Msieve / Oct 21, 2009
8·10233-1 = 7(9)233<234> = 251 · 22619 · 1265981 · 4809859 · 14315261 · 40726433021<11> · 2351450509731229<16> · 7081017649253969149<19> · 272948639013718877611<21> · C142
C142 = P70 · P73
P70 = 1785804940045810268542281264886517345574261488360972972534774913824921<70>
P73 = 4890589531830131453443601232937114394472385643177136672532799323334425579<73>
N=8733638945678575210192171022888274858270746192656520260829050364149960473732896910446297879380855039388000593643582111989506447519057310054259 ( 142 digits) Divisors found: r1=1785804940045810268542281264886517345574261488360972972534774913824921 (pp70) r2=4890589531830131453443601232937114394472385643177136672532799323334425579 (pp73) Version: Msieve v. 1.43 Total time: 1342.16 hours. Scaled time: 2533.99 units (timescale=1.888). Factorization parameters were as follows: name: 7000 n: 8733638945678575210192171022888274858270746192656520260829050364149960473732896910446297879380855039388000593643582111989506447519057310054259 skew: 39478.21 # norm 4.84e+18 c5: 9922500 c4: -6744744256836 c3: -44821959062049922 c2: 10988881498159521937057 c1: 22740484884858987376479382 c0: -287570098211633116512417041221 # alpha -3.80 Y1: 6452082614797201 Y0: -974799316644565507313460462 # Murphy_E 1.22e-11 # M 3435918130069844254378482473890559378131699265221876409311131180564615316974237565411588830396621180889267775934771369077552493459036293694981 type: gnfs qintsize: 800000 Factor base limits: 13600000/13600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [6800000, 21200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2568303 x 2568529 Total sieving time: 1332.71 hours. Total relation processing time: 0.17 hours. Matrix solve time: 8.09 hours. Time per square root: 1.19 hours. Prototype def-par.txt line would be: gnfs,141,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,13600000,13600000,28,28,56,56,2.5,2.5,100000 total time: 1342.16 hours.
By Ignacio Santos / GGNFS, Msieve / Oct 20, 2009
(14·10173-11)/3 = 4(6)1723<174> = 1834597 · C168
C168 = P35 · P133
P35 = 55831386470652144487827908959483409<35>
P133 = 4556041686157135365348400676745137231156165354308554677850364179698731841758069758997276163618396665365348456597581960663884011681131<133>
Number: 46663_173 N=254370124156240671202812752155741378987683216895409000814166090245796034042717101721340799459863210648805523320198750279580020389582380580948658842605033512355392855579 ( 168 digits) SNFS difficulty: 175 digits. Divisors found: r1=55831386470652144487827908959483409 (pp35) r2=4556041686157135365348400676745137231156165354308554677850364179698731841758069758997276163618396665365348456597581960663884011681131 (pp133) Version: Msieve-1.40 Total time: 82.26 hours. Scaled time: 143.05 units (timescale=1.739). Factorization parameters were as follows: n: 254370124156240671202812752155741378987683216895409000814166090245796034042717101721340799459863210648805523320198750279580020389582380580948658842605033512355392855579 m: 50000000000000000000000000000000000 deg: 5 c5: 112 c0: -275 skew: 1.20 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 7050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1233796 x 1234022 Total sieving time: 79.56 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.05 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 82.26 hours.
By Sinkiti Sibata / Msieve / Oct 20, 2009
6·10188-1 = 5(9)188<189> = 21778727 · 185311002839<12> · C171
C171 = P68 · P103
P68 = 57117698157139964753400093009593909972789011805862001560536999047391<68>
P103 = 2602836306674356872625815446311670047901248629915432935538570606381323277317170808071072441498712577313<103>
Number: 59999_188 N=148668018517070905684544307890946774127347759757216531741882636657144128128110225281721236039764486753579971468028454082958518441954727658584230754908987838649991438440383 ( 171 digits) SNFS difficulty: 190 digits. Divisors found: r1=57117698157139964753400093009593909972789011805862001560536999047391 (pp68) r2=2602836306674356872625815446311670047901248629915432935538570606381323277317170808071072441498712577313 (pp103) Version: Msieve-1.40 Total time: 243.25 hours. Scaled time: 812.21 units (timescale=3.339). Factorization parameters were as follows: name: 59999_188 n: 148668018517070905684544307890946774127347759757216531741882636657144128128110225281721236039764486753579971468028454082958518441954727658584230754908987838649991438440383 m: 100000000000000000000000000000000000000 deg: 5 c5: 3 c0: -50 skew: 1.76 type: snfs lss: 1 rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5250000, 9150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1934519 x 1934767 Total sieving time: 234.93 hours. Total relation processing time: 0.22 hours. Matrix solve time: 7.80 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000 total time: 243.25 hours. --------- CPU info (if available) ----------
(59·10150+31)/9 = 6(5)1499<151> = 1672192031089117<16> · 1989189259030257673<19> · 103995178078529090828533<24> · C95
C95 = P45 · P50
P45 = 444429722052295448763841071950487303554810699<45>
P50 = 42641350302515484249310749133351387744656981445997<50>
Mon Oct 19 22:33:28 2009 Msieve v. 1.42 Mon Oct 19 22:33:28 2009 random seeds: 12967db8 e38ac4e7 Mon Oct 19 22:33:28 2009 factoring 18951083462881521115582752429191411052867539550272427835447499040608071744746902067374626321903 (95 digits) Mon Oct 19 22:33:29 2009 searching for 15-digit factors Mon Oct 19 22:33:29 2009 commencing quadratic sieve (95-digit input) Mon Oct 19 22:33:29 2009 using multiplier of 1 Mon Oct 19 22:33:29 2009 using 64kb Opteron sieve core Mon Oct 19 22:33:29 2009 sieve interval: 18 blocks of size 65536 Mon Oct 19 22:33:29 2009 processing polynomials in batches of 6 Mon Oct 19 22:33:29 2009 using a sieve bound of 2124667 (78824 primes) Mon Oct 19 22:33:29 2009 using large prime bound of 310201382 (28 bits) Mon Oct 19 22:33:29 2009 using double large prime bound of 1927341365434108 (43-51 bits) Mon Oct 19 22:33:29 2009 using trial factoring cutoff of 51 bits Mon Oct 19 22:33:29 2009 polynomial 'A' values have 12 factors Tue Oct 20 00:53:14 2009 79064 relations (19624 full + 59440 combined from 1168935 partial), need 78920 Tue Oct 20 00:53:14 2009 begin with 1188559 relations Tue Oct 20 00:53:15 2009 reduce to 205061 relations in 12 passes Tue Oct 20 00:53:15 2009 attempting to read 205061 relations Tue Oct 20 00:53:16 2009 recovered 205061 relations Tue Oct 20 00:53:16 2009 recovered 187902 polynomials Tue Oct 20 00:53:16 2009 attempting to build 79064 cycles Tue Oct 20 00:53:16 2009 found 79064 cycles in 6 passes Tue Oct 20 00:53:16 2009 distribution of cycle lengths: Tue Oct 20 00:53:16 2009 length 1 : 19624 Tue Oct 20 00:53:16 2009 length 2 : 13937 Tue Oct 20 00:53:16 2009 length 3 : 13165 Tue Oct 20 00:53:16 2009 length 4 : 10815 Tue Oct 20 00:53:16 2009 length 5 : 7949 Tue Oct 20 00:53:16 2009 length 6 : 5413 Tue Oct 20 00:53:16 2009 length 7 : 3545 Tue Oct 20 00:53:16 2009 length 9+: 4616 Tue Oct 20 00:53:16 2009 largest cycle: 21 relations Tue Oct 20 00:53:17 2009 matrix is 78824 x 79064 (22.1 MB) with weight 5156821 (65.22/col) Tue Oct 20 00:53:17 2009 sparse part has weight 5156821 (65.22/col) Tue Oct 20 00:53:18 2009 filtering completed in 3 passes Tue Oct 20 00:53:18 2009 matrix is 74759 x 74821 (21.0 MB) with weight 4910309 (65.63/col) Tue Oct 20 00:53:18 2009 sparse part has weight 4910309 (65.63/col) Tue Oct 20 00:53:18 2009 saving the first 48 matrix rows for later Tue Oct 20 00:53:18 2009 matrix is 74711 x 74821 (13.8 MB) with weight 3918099 (52.37/col) Tue Oct 20 00:53:18 2009 sparse part has weight 2879909 (38.49/col) Tue Oct 20 00:53:18 2009 matrix includes 64 packed rows Tue Oct 20 00:53:18 2009 using block size 21845 for processor cache size 512 kB Tue Oct 20 00:53:18 2009 commencing Lanczos iteration Tue Oct 20 00:53:18 2009 memory use: 12.7 MB Tue Oct 20 00:53:52 2009 lanczos halted after 1184 iterations (dim = 74710) Tue Oct 20 00:53:52 2009 recovered 17 nontrivial dependencies Tue Oct 20 00:53:53 2009 prp45 factor: 444429722052295448763841071950487303554810699 Tue Oct 20 00:53:53 2009 prp50 factor: 42641350302515484249310749133351387744656981445997 Tue Oct 20 00:53:53 2009 elapsed time 02:20:25
(61·10112-43)/9 = 6(7)1113<113> = 3 · 19 · 277 · 433 · C106
C106 = P39 · P68
P39 = 169614191986582534837876557862778719969<39>
P68 = 58449744446171562033124569550340500630093465656033560005869360417841<68>
Number: 67773_112 N=9913906176059629577784776020399763476951866506555456692782983472396995449338289831356817361778572970566929 ( 106 digits) SNFS difficulty: 114 digits. Divisors found: r1=169614191986582534837876557862778719969 (pp39) r2=58449744446171562033124569550340500630093465656033560005869360417841 (pp68) Version: Msieve-1.40 Total time: 0.85 hours. Scaled time: 2.87 units (timescale=3.357). Factorization parameters were as follows: name: 67773_112 n: 9913906176059629577784776020399763476951866506555456692782983472396995449338289831356817361778572970566929 m: 20000000000000000000000 deg: 5 c5: 1525 c0: -344 skew: 0.74 type: snfs lss: 1 rlim: 570000 alim: 570000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 570000/570000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [285000, 485001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 66720 x 66968 Total sieving time: 0.83 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,570000,570000,25,25,45,45,2.2,2.2,50000 total time: 0.85 hours. --------- CPU info (if available) ----------
(59·10129+31)/9 = 6(5)1289<130> = 7 · 41 · 48871 · C123
C123 = P43 · P81
P43 = 1236242545703608932814642627753389991234997<43>
P81 = 378070414900992267005464279661868960650787886552209763730065731639757888766166211<81>
Number: 65559_129 N=467386732172422324345431020994512935216958901013138375712120129353951996039602485841489370441399950645545444396176862086367 ( 123 digits) SNFS difficulty: 131 digits. Divisors found: r1=1236242545703608932814642627753389991234997 (pp43) r2=378070414900992267005464279661868960650787886552209763730065731639757888766166211 (pp81) Version: Msieve-1.40 Total time: 2.45 hours. Scaled time: 7.93 units (timescale=3.238). Factorization parameters were as follows: name: 65559_129 n: 467386732172422324345431020994512935216958901013138375712120129353951996039602485841489370441399950645545444396176862086367 m: 100000000000000000000000000 deg: 5 c5: 59 c0: 310 skew: 1.39 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149376 x 149624 Total sieving time: 2.37 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.45 hours. --------- CPU info (if available) ----------
(59·10126+31)/9 = 6(5)1259<127> = 211 · 1019 · 2347 · 2146589 · C112
C112 = P31 · P36 · P46
P31 = 1949088156959011078581266061017<31>
P36 = 380263709629486527054620749765086821<36>
P46 = 8165344461828363571084992097156251589533371821<46>
Number: 65559_126 N=6051887883929230133923042308956916907181672199061927414123640902154029039892048029146863724006972034082017308697 ( 112 digits) SNFS difficulty: 128 digits. Divisors found: r1=1949088156959011078581266061017 (pp31) r2=380263709629486527054620749765086821 (pp36) r3=8165344461828363571084992097156251589533371821 (pp46) Version: Msieve-1.40 Total time: 1.92 hours. Scaled time: 6.38 units (timescale=3.322). Factorization parameters were as follows: name: 65559_126 n: 6051887883929230133923042308956916907181672199061927414123640902154029039892048029146863724006972034082017308697 m: 20000000000000000000000000 deg: 5 c5: 295 c0: 496 skew: 1.11 type: snfs lss: 1 rlim: 990000 alim: 990000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 990000/990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [495000, 845001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 132978 x 133225 Total sieving time: 1.82 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,128.000,5,0,0,0,0,0,0,0,0,990000,990000,26,26,47,47,2.3,2.3,50000 total time: 1.92 hours. --------- CPU info (if available) ----------
(59·10139+31)/9 = 6(5)1389<140> = 3 · 19 · 41 · 2724256829731<13> · 48611410979828843<17> · C108
C108 = P37 · P72
P37 = 1466383660274322468742131090215645489<37>
P72 = 144449785677974204985195425001317857003543007276143363103750607134733911<72>
Number: 65559_139 N=211818805448309217908234727207176026830900904345340715812395900675577543737039589720487059640009573122477479 ( 108 digits) SNFS difficulty: 141 digits. Divisors found: r1=1466383660274322468742131090215645489 (pp37) r2=144449785677974204985195425001317857003543007276143363103750607134733911 (pp72) Version: Msieve-1.40 Total time: 5.31 hours. Scaled time: 17.72 units (timescale=3.339). Factorization parameters were as follows: name: 65559_139 n: 211818805448309217908234727207176026830900904345340715812395900675577543737039589720487059640009573122477479 m: 10000000000000000000000000000 deg: 5 c5: 59 c0: 310 skew: 1.39 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1705001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 245774 x 246022 Total sieving time: 5.14 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 5.31 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GGNFS + Msieve / Oct 20, 2009
(62·10112-71)/9 = 6(8)1111<113> = 43 · 283 · 1313462617<10> · C100
C100 = P49 · P52
P49 = 3816895807268228595866518144384814798429514241609<49>
P52 = 1129188034433739419733408412782832185204350656820233<52>
Number: 68881_112 N=4309993074247592131456495093979585021239721431404665412061236285630073614776160187259377400441674897 ( 100 digits) SNFS difficulty: 114 digits. Divisors found: r1=3816895807268228595866518144384814798429514241609 (pp49) r2=1129188034433739419733408412782832185204350656820233 (pp52) Version: Msieve v. 1.44 Total time: 4.65 hours. Scaled time: 7.00 units (timescale=1.506). Factorization parameters were as follows: n: 4309993074247592131456495093979585021239721431404665412061236285630073614776160187259377400441674897 m: 20000000000000000000000 deg: 5 c5: 775 c0: -284 skew: 0.82 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 880001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85536 x 85784 Total sieving time: 4.61 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 4.65 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
(61·10118+11)/9 = 6(7)1179<119> = 3 · 2309837 · 448500547927<12> · C101
C101 = P47 · P55
P47 = 17632003377816731628383189280973540932700525483<47>
P55 = 1236858729965652988254596588296867185555187756209443929<55>
Number: 67779_118 N=21808297304636506227519999537204668039161178741858088267345270253166028218516910475914708785524142707 ( 101 digits) SNFS difficulty: 121 digits. Divisors found: r1=17632003377816731628383189280973540932700525483 (pp47) r2=1236858729965652988254596588296867185555187756209443929 (pp55) Version: Msieve v. 1.44 Total time: 5.80 hours. Scaled time: 8.46 units (timescale=1.459). Factorization parameters were as follows: n: 21808297304636506227519999537204668039161178741858088267345270253166028218516910475914708785524142707 m: 500000000000000000000000 deg: 5 c5: 488 c0: 275 skew: 0.89 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 1115001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 95495 x 95743 Total sieving time: 5.75 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 5.80 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
(59·10130+31)/9 = 6(5)1299<131> = 3 · 13 · 76355233 · 695075253179683703<18> · C104
C104 = P39 · P65
P39 = 453918589660553342818948542406995277321<39>
P65 = 69774429265765009327283464876302066657719254024336529627412341039<65>
Number: 65559_130 N=31671910526686091534197699821958606232566539240654305812988468252560819489060433423435233682785634276519 ( 104 digits) SNFS difficulty: 131 digits. Divisors found: r1=453918589660553342818948542406995277321 (pp39) r2=69774429265765009327283464876302066657719254024336529627412341039 (pp65) Version: Msieve v. 1.44 Total time: 8.26 hours. Scaled time: 12.31 units (timescale=1.490). Factorization parameters were as follows: n: 31671910526686091534197699821958606232566539240654305812988468252560819489060433423435233682785634276519 m: 100000000000000000000000000 deg: 5 c5: 59 c0: 31 skew: 0.88 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 116487 x 116715 Total sieving time: 8.16 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 8.26 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
(59·10148+31)/9 = 6(5)1479<149> = 3 · 13 · 6151 · 33181 · 1231091243230620759491070891943314637<37> · C103
C103 = P41 · P63
P41 = 60042495029962113831175878010034866884047<41>
P63 = 111419376709386730266055919954390268992184409379699350676792609<63>
Number: 65559_148 N=6689897372314829253031322880269310476024668892292054776187400625966564530383884672709397008871869608623 ( 103 digits) Divisors found: r1=60042495029962113831175878010034866884047 (pp41) r2=111419376709386730266055919954390268992184409379699350676792609 (pp63) Version: Msieve v. 1.44 Total time: 13.01 hours. Scaled time: 19.63 units (timescale=1.509). Factorization parameters were as follows: name: 65559_148 n: 6689897372314829253031322880269310476024668892292054776187400625966564530383884672709397008871869608623 skew: 5385.20 # norm 3.23e+14 c5: 519360 c4: -1126803032 c3: -37922374639378 c2: 42052036895894335 c1: 7654416014436206220 c0: -343397591649440870896800 # alpha -6.51 Y1: 2856422107 Y0: -26423492031371032309 # Murphy_E 2.36e-09 # M 4414740576895752756429830961025563153776401794061336229152725799050742962692043342322830049977452821193 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 201618 x 201844 Polynomial selection time: 0.56 hours. Total sieving time: 12.20 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 13.01 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
By Serge Batalov / Msieve v. 1.44 SVN130 / Oct 20, 2009
(62·10116-53)/9 = 6(8)1153<117> = 163 · 2801 · C112
C112 = P34 · P78
P34 = 6679840150123809044106204970050911<34>
P78 = 225882401828618911503033856318130927193899656636246403015114140502544786702431<78>
SNFS difficulty: 118 digits. Divisors found: r1=6679840150123809044106204970050911 (pp34) r2=225882401828618911503033856318130927193899656636246403015114140502544786702431 (pp78) Version: Msieve v. 1.44 SVN130 Total time: 0.77 hours. Scaled time: 1.85 units (timescale=2.400). Factorization parameters were as follows: n: 1508858336941208308358077393237929680874028094455505349511215076317811318238422493476012924588477140917877464641 m: 200000000000000000000000 deg: 5 c5: 155 c0: -424 skew: 1.22 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [418750, 668751) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68447 x 68674 Total sieving time: 0.70 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,118.000,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 0.77 hours.
(61·10103-43)/9 = 6(7)1023<104> = 3 · 73 · 337 · C99
C99 = P38 · P61
P38 = 97989546065894474339264225075840493661<38>
P61 = 1994629804412981161026332592472277161520353745624731661492941<61>
SNFS difficulty: 105 digits. Divisors found: r1=97989546065894474339264225075840493661 (pp38) r2=1994629804412981161026332592472277161520353745624731661492941 (pp61) Version: Msieve v. 1.43 SVN74 Total time: 0.28 hours. Scaled time: 0.67 units (timescale=2.400). Factorization parameters were as follows: n: 195452869103931902938746032066446285546388495580041634665264532641750591244929039394006389706747001 m: 100000000000000000000000000 deg: 4 c4: 61 c0: -430 skew: 1.63 type: snfs lss: 1 rlim: 410000 alim: 410000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 410000/410000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [256250, 336251) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 32701 x 32929 Total sieving time: 0.25 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,410000,410000,25,25,44,44,2.2,2.2,20000 total time: 0.28 hours.
(61·10108+11)/9 = 6(7)1079<109> = 57855953 · 674919914887<12> · C90
C90 = P32 · P58
P32 = 91108247087160828584254860711097<32>
P58 = 1905150723036496927643831385952647134842981729524119029837<58>
SNFS difficulty: 111 digits. Divisors found: r1=91108247087160828584254860711097 (pp32) r2=1905150723036496927643831385952647134842981729524119029837 (pp58) Version: Msieve v. 1.43 SVN74 Total time: 0.57 hours. Scaled time: 1.37 units (timescale=2.400). Factorization parameters were as follows: n: 173574942812692267696268634691952789207197670714827952015840958361261434356164727580001189 m: 10000000000000000000000 deg: 5 c5: 61 c0: 1100 skew: 3 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [318750, 518751) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 53594 x 53821 Total sieving time: 0.54 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.57 hours.
(62·10108-71)/9 = 6(8)1071<109> = 23 · 59 · 92179 · C101
C101 = P41 · P61
P41 = 50970031012402836704852021263665414998443<41>
P61 = 1080494205493017112862343898915962169212827499405439214582789<61>
SNFS difficulty: 111 digits. Divisors found: r1=50970031012402836704852021263665414998443 (pp41) r2=1080494205493017112862343898915962169212827499405439214582789 (pp61) Version: Msieve v. 1.43 SVN74 Total time: 0.68 hours. Scaled time: 1.63 units (timescale=2.400). Factorization parameters were as follows: n: 55072823162700645717392882361863966596797818944233425372190155582386502037618509820239844685329597527 m: 5000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [312500, 562501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52609 x 52834 Total sieving time: 0.65 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.68 hours.
By Robert Backstrom / Msieve / Oct 20, 2009
(61·10110+11)/9 = 6(7)1099<111> = 7 · 1965797247224922563675203<25> · C86
C86 = P36 · P51
P36 = 351440429148987573975248485100660149<36>
P51 = 140151852450797442864198764926068611764798232457451<51>
Tue Oct 20 01:11:15 2009 Tue Oct 20 01:11:15 2009 Tue Oct 20 01:11:15 2009 Msieve v. 1.42 Tue Oct 20 01:11:15 2009 random seeds: ddb16310 877aabd1 Tue Oct 20 01:11:15 2009 factoring 49255027171333839197078297400522298323494816812153624247751143235697657745838653820199 (86 digits) Tue Oct 20 01:11:16 2009 searching for 15-digit factors Tue Oct 20 01:11:17 2009 commencing quadratic sieve (86-digit input) Tue Oct 20 01:11:17 2009 using multiplier of 55 Tue Oct 20 01:11:17 2009 using 64kb Opteron sieve core Tue Oct 20 01:11:17 2009 sieve interval: 8 blocks of size 65536 Tue Oct 20 01:11:17 2009 processing polynomials in batches of 13 Tue Oct 20 01:11:17 2009 using a sieve bound of 1451959 (55667 primes) Tue Oct 20 01:11:17 2009 using large prime bound of 116156720 (26 bits) Tue Oct 20 01:11:17 2009 using double large prime bound of 328912039956560 (41-49 bits) Tue Oct 20 01:11:17 2009 using trial factoring cutoff of 49 bits Tue Oct 20 01:11:17 2009 polynomial 'A' values have 11 factors Tue Oct 20 01:51:49 2009 55822 relations (16352 full + 39470 combined from 572353 partial), need 55763 Tue Oct 20 01:51:49 2009 begin with 588705 relations Tue Oct 20 01:51:50 2009 reduce to 130643 relations in 10 passes Tue Oct 20 01:51:50 2009 attempting to read 130643 relations Tue Oct 20 01:51:51 2009 recovered 130643 relations Tue Oct 20 01:51:51 2009 recovered 107436 polynomials Tue Oct 20 01:51:52 2009 attempting to build 55822 cycles Tue Oct 20 01:51:52 2009 found 55822 cycles in 5 passes Tue Oct 20 01:51:52 2009 distribution of cycle lengths: Tue Oct 20 01:51:52 2009 length 1 : 16352 Tue Oct 20 01:51:52 2009 length 2 : 11285 Tue Oct 20 01:51:52 2009 length 3 : 9947 Tue Oct 20 01:51:52 2009 length 4 : 7242 Tue Oct 20 01:51:52 2009 length 5 : 4665 Tue Oct 20 01:51:52 2009 length 6 : 2879 Tue Oct 20 01:51:52 2009 length 7 : 1643 Tue Oct 20 01:51:52 2009 length 9+: 1809 Tue Oct 20 01:51:52 2009 largest cycle: 17 relations Tue Oct 20 01:51:52 2009 matrix is 55667 x 55822 (12.7 MB) with weight 3109913 (55.71/col) Tue Oct 20 01:51:52 2009 sparse part has weight 3109913 (55.71/col) Tue Oct 20 01:51:54 2009 filtering completed in 3 passes Tue Oct 20 01:51:54 2009 matrix is 50493 x 50557 (11.7 MB) with weight 2853258 (56.44/col) Tue Oct 20 01:51:54 2009 sparse part has weight 2853258 (56.44/col) Tue Oct 20 01:51:54 2009 saving the first 48 matrix rows for later Tue Oct 20 01:51:54 2009 matrix is 50445 x 50557 (7.5 MB) with weight 2226765 (44.04/col) Tue Oct 20 01:51:54 2009 sparse part has weight 1663865 (32.91/col) Tue Oct 20 01:51:54 2009 matrix includes 64 packed rows Tue Oct 20 01:51:54 2009 using block size 20222 for processor cache size 1024 kB Tue Oct 20 01:51:54 2009 commencing Lanczos iteration Tue Oct 20 01:51:54 2009 memory use: 7.7 MB Tue Oct 20 01:52:17 2009 lanczos halted after 799 iterations (dim = 50445) Tue Oct 20 01:52:17 2009 recovered 19 nontrivial dependencies Tue Oct 20 01:52:18 2009 prp36 factor: 351440429148987573975248485100660149 Tue Oct 20 01:52:18 2009 prp51 factor: 140151852450797442864198764926068611764798232457451 Tue Oct 20 01:52:18 2009 elapsed time 00:41:03
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM v6.2.3, YAFU v1.10 / Oct 20, 2009
(61·10124+11)/9 = 6(7)1239<125> = 3 · 43 · 149791 · C118
C118 = P48 · P71
P48 = 135329388429488114701900710450078109693022954591<48>
P71 = 25919091566712232464070995868800192058033785202911487150859363568422771<71>
Number: 67779_124 N=3507614810371069363249630546094627132811654407869164771534010658353366557805828460925725905628911569126252748223391661 ( 118 digits) SNFS difficulty: 126 digits. Divisors found: r1=135329388429488114701900710450078109693022954591 r2=25919091566712232464070995868800192058033785202911487150859363568422771 Version: Total time: 1.25 hours. Scaled time: 2.97 units (timescale=2.380). Factorization parameters were as follows: n: 3507614810371069363249630546094627132811654407869164771534010658353366557805828460925725905628911569126252748223391661 m: 10000000000000000000000000 deg: 5 c5: 61 c0: 110 skew: 1.13 type: snfs lss: 1 rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [400000, 760001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2621857 Max relations in full relation-set: Initial matrix: Pruned matrix : 117578 x 117822 Total sieving time: 1.09 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,800000,800000,26,26,46,46,2.3,2.3,40000 total time: 1.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(59·10137+31)/9 = 6(5)1369<138> = 29 · 4643 · 15511 · C129
C129 = P36 · P39 · P54
P36 = 458432638558521664727323056207540619<36>
P39 = 833711589045185494167470359553557417141<39>
P54 = 821261859814952443151209166814163983713873321125972913<54>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 313886778504384332722732947585730727116664052955402577662899770863518870526491597934334795814136562606767041549876452187557992727 (129 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=742684458 Step 1 took 4196ms Step 2 took 5710ms ********** Factor found in step 2: 833711589045185494167470359553557417141 Found probable prime factor of 39 digits: 833711589045185494167470359553557417141 Composite cofactor 376493241342447381479258507689377998474130607563998113822613663653382400010452323341253147 has 90 digits 10/20/09 00:27:21 v1.10 @ 조영욱-PC, starting SIQS on c90: 376493241342447381479258507689377998474130607563998113822613663653382400010452323341253147 10/20/09 00:27:21 v1.10 @ 조영욱-PC, random seeds: 1541049209, 1117130648 10/20/09 00:27:22 v1.10 @ 조영욱-PC, ==== sieve params ==== 10/20/09 00:27:22 v1.10 @ 조영욱-PC, n = 90 digits, 300 bits 10/20/09 00:27:22 v1.10 @ 조영욱-PC, factor base: 65244 primes (max prime = 1726447) 10/20/09 00:27:22 v1.10 @ 조영욱-PC, single large prime cutoff: 189909170 (110 * pmax) 10/20/09 00:27:22 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 10/20/09 00:27:22 v1.10 @ 조영욱-PC, double large prime cutoff: 796861205787554 10/20/09 00:27:22 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 10/20/09 00:27:22 v1.10 @ 조영욱-PC, buckets hold 1024 elements 10/20/09 00:27:22 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 10/20/09 00:27:22 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 10/20/09 00:27:22 v1.10 @ 조영욱-PC, using multiplier of 3 10/20/09 00:27:22 v1.10 @ 조영욱-PC, using small prime variation correction of 19 bits 10/20/09 00:27:22 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 10/20/09 00:27:22 v1.10 @ 조영욱-PC, trial factoring cutoff at 98 bits 10/20/09 00:27:22 v1.10 @ 조영욱-PC, ==== sieving started ==== 10/20/09 01:16:35 v1.10 @ 조영욱-PC, sieve time = 1379.3150, relation time = 528.0080, poly_time = 1045.8110 10/20/09 01:16:35 v1.10 @ 조영욱-PC, 65331 relations found: 19036 full + 46295 from 733853 partial, using 534260 polys (268 A polys) 10/20/09 01:16:35 v1.10 @ 조영욱-PC, on average, sieving found 1.41 rels/poly and 254.85 rels/sec 10/20/09 01:16:35 v1.10 @ 조영욱-PC, trial division touched 19389324 sieve locations out of 630238740480 10/20/09 01:16:35 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 10/20/09 01:16:36 v1.10 @ 조영욱-PC, begin with 752889 relations 10/20/09 01:16:36 v1.10 @ 조영욱-PC, reduce to 148640 relations in 9 passes 10/20/09 01:16:37 v1.10 @ 조영욱-PC, failed to read relation 75051 10/20/09 01:16:37 v1.10 @ 조영욱-PC, recovered 148639 relations 10/20/09 01:16:37 v1.10 @ 조영욱-PC, recovered 129737 polynomials 10/20/09 01:16:38 v1.10 @ 조영욱-PC, attempting to build 65330 cycles 10/20/09 01:16:38 v1.10 @ 조영욱-PC, found 65330 cycles in 5 passes 10/20/09 01:16:38 v1.10 @ 조영욱-PC, distribution of cycle lengths: 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 1 : 19036 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 2 : 15014 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 3 : 12245 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 4 : 8019 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 5 : 5076 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 6 : 2899 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 7 : 1552 10/20/09 01:16:38 v1.10 @ 조영욱-PC, length 9+: 1489 10/20/09 01:16:38 v1.10 @ 조영욱-PC, largest cycle: 16 relations 10/20/09 01:16:38 v1.10 @ 조영욱-PC, matrix is 65244 x 65330 (15.6 MB) with weight 3561192 (54.51/col) 10/20/09 01:16:38 v1.10 @ 조영욱-PC, sparse part has weight 3561192 (54.51/col) 10/20/09 01:16:38 v1.10 @ 조영욱-PC, filtering completed in 3 passes 10/20/09 01:16:38 v1.10 @ 조영욱-PC, matrix is 60204 x 60266 (14.5 MB) with weight 3330401 (55.26/col) 10/20/09 01:16:38 v1.10 @ 조영욱-PC, sparse part has weight 3330401 (55.26/col) 10/20/09 01:16:38 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 10/20/09 01:16:38 v1.10 @ 조영욱-PC, matrix is 60156 x 60266 (9.5 MB) with weight 2543062 (42.20/col) 10/20/09 01:16:38 v1.10 @ 조영욱-PC, sparse part has weight 1881855 (31.23/col) 10/20/09 01:16:38 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 10/20/09 01:16:38 v1.10 @ 조영욱-PC, using block size 24106 for processor cache size 4096 kB 10/20/09 01:16:39 v1.10 @ 조영욱-PC, commencing Lanczos iteration 10/20/09 01:16:39 v1.10 @ 조영욱-PC, memory use: 8.6 MB 10/20/09 01:16:53 v1.10 @ 조영욱-PC, lanczos halted after 953 iterations (dim = 60150) 10/20/09 01:16:53 v1.10 @ 조영욱-PC, recovered 14 nontrivial dependencies 10/20/09 01:16:54 v1.10 @ 조영욱-PC, prp36 = 458432638558521664727323056207540619 10/20/09 01:16:55 v1.10 @ 조영욱-PC, prp54 = 821261859814952443151209166814163983713873321125972913 10/20/09 01:16:55 v1.10 @ 조영욱-PC, Lanczos elapsed time = 17.7840 seconds. 10/20/09 01:16:55 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.6230 seconds. 10/20/09 01:16:55 v1.10 @ 조영욱-PC, SIQS elapsed time = 2973.6220 seconds. 10/20/09 01:16:55 v1.10 @ 조영욱-PC, 10/20/09 01:16:55 v1.10 @ 조영욱-PC,
(59·10138+31)/9 = 6(5)1379<139> = 193 · 203928801453501282368735246883167<33> · C105
C105 = P51 · P54
P51 = 214816488267831012951485925904547340708767077033201<51>
P54 = 775364679954002204097646833219325678871472956062921289<54>
Number: 67779_138 N=166561117674629462667400805969917378172898099683604562150617253375526486989499027211799183699847302716089 ( 105 digits) SNFS difficulty: 141 digits. Divisors found: r1=214816488267831012951485925904547340708767077033201 r2=775364679954002204097646833219325678871472956062921289 Version: Total time: 5.03 hours. Scaled time: 12.01 units (timescale=2.388). Factorization parameters were as follows: n: 166561117674629462667400805969917378172898099683604562150617253375526486989499027211799183699847302716089 m: 10000000000000000000000000000 deg: 5 c5: 59 c0: 3100 skew: 2.21 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [950000, 1450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4048289 Max relations in full relation-set: Initial matrix: Pruned matrix : 270753 x 271001 Total sieving time: 4.63 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,48,48,2.3,2.3,50000 total time: 5.03 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Dmitry Domanov / GGNFS/msieve / Oct 20, 2009
(62·10118-71)/9 = 6(8)1171<119> = C119
C119 = P37 · P83
P37 = 3038209372850070299895662480934267163<37>
P83 = 22674174302959870778545300248598034085760547885859190102759989856304629514396173987<83>
Number: snfs119 N=68888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=3038209372850070299895662480934267163 (pp37) r2=22674174302959870778545300248598034085760547885859190102759989856304629514396173987 (pp83) Version: Msieve-1.40 Total time: 1.91 hours. Scaled time: 3.75 units (timescale=1.963). Factorization parameters were as follows: n: 68888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 m: 500000000000000000000000 deg: 5 c5: 496 c0: -1775 skew: 1.29 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 815001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 82546 x 82776 Total sieving time: 1.87 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.91 hours. --------- CPU info (if available) ----------
(61·10122+11)/9 = 6(7)1219<123> = 7 · 29 · C121
C121 = P48 · P73
P48 = 361533924210305081649450654391335109543178661701<48>
P73 = 9235113397381922794432779026073798516430287706951852241880434020450688293<73>
Number: snfs121 N=3338806787082649151614668856048166392993979200875752599890530925013683634373289545703338806787082649151614668856048166393 ( 121 digits) SNFS difficulty: 125 digits. Divisors found: r1=361533924210305081649450654391335109543178661701 (pp48) r2=9235113397381922794432779026073798516430287706951852241880434020450688293 (pp73) Version: Msieve-1.40 Total time: 1.57 hours. Scaled time: 3.08 units (timescale=1.969). Factorization parameters were as follows: n: 3338806787082649151614668856048166392993979200875752599890530925013683634373289545703338806787082649151614668856048166393 m: 5000000000000000000000000 deg: 5 c5: 244 c0: 1375 skew: 1.41 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 125315 x 125540 Total sieving time: 1.44 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.57 hours. --------- CPU info (if available) ----------
(61·10122-43)/9 = 6(7)1213<123> = C123
C123 = P47 · P77
P47 = 59544934507775516158943494685175067246137026467<47>
P77 = 11382626975419243727594986795981518800792864977351934231028615329300433644719<77>
Number: snfs123 N=677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 123 digits) SNFS difficulty: 124 digits. Divisors found: r1=59544934507775516158943494685175067246137026467 (pp47) r2=11382626975419243727594986795981518800792864977351934231028615329300433644719 (pp77) Version: Msieve-1.40 Total time: 2.44 hours. Scaled time: 4.78 units (timescale=1.957). Factorization parameters were as follows: n: 677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 m: 2000000000000000000000000 deg: 5 c5: 1525 c0: -344 skew: 0.74 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 970001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 96128 x 96356 Total sieving time: 2.38 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000 total time: 2.44 hours. --------- CPU info (if available) ----------
(61·10109+11)/9 = 6(7)1089<110> = 3 · C110
C110 = P40 · P70
P40 = 4047537538542415495109532620351832243679<40>
P70 = 5581811750343532307079939582977515751345075804424834298521615160645967<70>
Number: s110-1 N=22592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 ( 110 digits) SNFS difficulty: 111 digits. Divisors found: r1=4047537538542415495109532620351832243679 (pp40) r2=5581811750343532307079939582977515751345075804424834298521615160645967 (pp70) Version: Msieve-1.40 Total time: 0.84 hours. Scaled time: 1.66 units (timescale=1.963). Factorization parameters were as follows: n: 22592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 m: 10000000000000000000000 deg: 5 c5: 61 c0: 110 skew: 1.13 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 455001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 51096 x 51323 Total sieving time: 0.82 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.84 hours. --------- CPU info (if available) ----------
(62·10109-71)/9 = 6(8)1081<110> = C110
C110 = P45 · P66
P45 = 449061934552096085392042792527494669801996839<45>
P66 = 153406208784095962906433077939688161815955308844860423263872277479<66>
Number: s110-2 N=68888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 ( 110 digits) SNFS difficulty: 111 digits. Divisors found: r1=449061934552096085392042792527494669801996839 (pp45) r2=153406208784095962906433077939688161815955308844860423263872277479 (pp66) Version: Msieve-1.40 Total time: 0.65 hours. Scaled time: 1.27 units (timescale=1.963). Factorization parameters were as follows: n: 68888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 m: 10000000000000000000000 deg: 5 c5: 31 c0: -355 skew: 1.63 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52311 x 52536 Total sieving time: 0.63 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.65 hours. --------- CPU info (if available) ----------
By Markus Tervooren / Msieve / Oct 19, 2009
(4·10171+17)/3 = 1(3)1709<172> = 13 · 58573 · 31758781 · 4329375293<10> · 3037485901254559<16> · C133
C133 = P58 · P76
P58 = 1811998610010835822993607900189787073446791070400527729757<58>
P76 = 2313858122637101115780520754396976599766152089544026425029700261948700504409<76>
lpbr: 32 lpba: 32 mfbr: 65 mfba: 65 rlambda: 2.4 alambda: 2.4 Sieve time: ~21 hours @ 0.0018secs/rel, 41718887 total relations commencing linear algebra read 913581 cycles cycles contain 3080119 unique relations read 3080119 relations using 20 quadratic characters above 4291404732 building initial matrix memory use: 372.8 MB read 913581 cycles matrix is 913322 x 913581 (273.3 MB) with weight 81825084 (89.57/col) sparse part has weight 61599757 (67.43/col) filtering completed in 3 passes matrix is 908377 x 908577 (272.6 MB) with weight 81576027 (89.78/col) sparse part has weight 61464641 (67.65/col) read 908577 cycles matrix is 908377 x 908577 (272.6 MB) with weight 81576027 (89.78/col) sparse part has weight 61464641 (67.65/col) saving the first 48 matrix rows for later matrix is 908329 x 908577 (258.5 MB) with weight 64431455 (70.91/col) sparse part has weight 58682398 (64.59/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 274.1 MB linear algebra completed 908252 of 908577 dimensions (100.0%, ETA 0h 0m) lanczos halted after 14367 iterations (dim = 908323) recovered 35 nontrivial dependencies BLanczosTime: 4268 elapsed time 01:11:09 commencing square root phase reading relations for dependency 1 read 454350 cycles cycles contain 1875691 unique relations read 1875691 relations multiplying 1537770 relations multiply complete, coefficients have about 41.57 million bits initial square root is modulo 929311 sqrtTime: 293 prp58 factor: 1811998610010835822993607900189787073446791070400527729757 prp76 factor: 2313858122637101115780520754396976599766152089544026425029700261948700504409 elapsed time 00:04:55
(61·10119-43)/9 = 6(7)1183<120> = 41 · 163 · C117
C117 = P41 · P76
P41 = 18859024783656836768732557272811082267693<41>
P76 = 5377700769761967291695951620134659861264810742042450512996183272621691379667<76>
N=101418192096031389761750378239978718805592963905099173691123414301627678853475651320930387217982609273945500191198231 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=18859024783656836768732557272811082267693 (pp41) r2=5377700769761967291695951620134659861264810742042450512996183272621691379667 (pp76) Version: Msieve-1.39 Total time: 1.38 hours. Scaled time: 2.83 units (timescale=2.056). Factorization parameters were as follows: n: 101418192096031389761750378239978718805592963905099173691123414301627678853475651320930387217982609273945500191198231 m: 1000000000000000000000000 deg: 5 c5: 61 c0: -430 skew: 1.48 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 28 lpba: 28 mfbr: 51 mfba: 51 rlambda: 2.3 alambda: 2.3 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 51/51 Sieved rational special-q in [375000, 775001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 77736 x 77972 Total sieving time: 1.31 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,28,28,51,51,2.3,2.3,100000 total time: 1.38 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.330177] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.428493] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083761] Calibrating delay using timer specific routine.. 5402.28 BogoMIPS (lpj=10804578) [ 0.156009] Calibrating delay using timer specific routine.. 10281.27 BogoMIPS (lpj=20562558) [ 0.252015] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666723) [ 0.348020] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666724) [ 0.433291] Total of 4 processors activated (26350.29 BogoMIPS).
(62·10123-53)/9 = 6(8)1223<124> = 942637 · 1099236740404454597537<22> · C97
C97 = P43 · P54
P43 = 8226127289692476371319524848640942547201787<43>
P54 = 808198493369811057446035929143293359486982523771510861<54>
commencing square root phase reading relations for dependency 1 read 65712 cycles cycles contain 211206 unique relations read 211206 relations multiplying 171662 relations multiply complete, coefficients have about 4.87 million bits initial square root is modulo 405071 reading relations for dependency 2 read 65445 cycles cycles contain 210916 unique relations read 210916 relations multiplying 171198 relations multiply complete, coefficients have about 4.86 million bits initial square root is modulo 391961 reading relations for dependency 3 read 65872 cycles cycles contain 211966 unique relations read 211966 relations multiplying 172616 relations multiply complete, coefficients have about 4.90 million bits initial square root is modulo 435131 reading relations for dependency 4 read 65643 cycles cycles contain 211460 unique relations read 211460 relations multiplying 171780 relations multiply complete, coefficients have about 4.88 million bits initial square root is modulo 409291 sqrtTime: 86 prp43 factor: 8226127289692476371319524848640942547201787 prp54 factor: 808198493369811057446035929143293359486982523771510861 elapsed time 00:01:27
By Sinkiti Sibata / Msieve / Oct 19, 2009
(61·10111-43)/9 = 6(7)1103<112> = 13 · 2909 · 8623 · 6623483621084453<16> · C88
C88 = P36 · P53
P36 = 164701123892984704612134915020665091<36>
P53 = 19052801221803116360701047315305558212064213085545461<53>
Mon Oct 19 16:15:52 2009 Msieve v. 1.42 Mon Oct 19 16:15:52 2009 random seeds: 3e9a9666 ea53b05f Mon Oct 19 16:15:52 2009 factoring 3138017774540605420592714626559217146263294135298585087177017274548906759127002736201951 (88 digits) Mon Oct 19 16:15:53 2009 searching for 15-digit factors Mon Oct 19 16:15:53 2009 commencing quadratic sieve (88-digit input) Mon Oct 19 16:15:53 2009 using multiplier of 71 Mon Oct 19 16:15:53 2009 using 64kb Opteron sieve core Mon Oct 19 16:15:53 2009 sieve interval: 13 blocks of size 65536 Mon Oct 19 16:15:53 2009 processing polynomials in batches of 8 Mon Oct 19 16:15:53 2009 using a sieve bound of 1515149 (57667 primes) Mon Oct 19 16:15:53 2009 using large prime bound of 121211920 (26 bits) Mon Oct 19 16:15:53 2009 using double large prime bound of 355125228672960 (42-49 bits) Mon Oct 19 16:15:53 2009 using trial factoring cutoff of 49 bits Mon Oct 19 16:15:53 2009 polynomial 'A' values have 11 factors Mon Oct 19 16:53:23 2009 57972 relations (16496 full + 41476 combined from 604157 partial), need 57763 Mon Oct 19 16:53:23 2009 begin with 620653 relations Mon Oct 19 16:53:24 2009 reduce to 137721 relations in 11 passes Mon Oct 19 16:53:24 2009 attempting to read 137721 relations Mon Oct 19 16:53:25 2009 recovered 137721 relations Mon Oct 19 16:53:25 2009 recovered 114692 polynomials Mon Oct 19 16:53:25 2009 attempting to build 57972 cycles Mon Oct 19 16:53:25 2009 found 57972 cycles in 5 passes Mon Oct 19 16:53:25 2009 distribution of cycle lengths: Mon Oct 19 16:53:25 2009 length 1 : 16496 Mon Oct 19 16:53:25 2009 length 2 : 11362 Mon Oct 19 16:53:25 2009 length 3 : 10368 Mon Oct 19 16:53:25 2009 length 4 : 7452 Mon Oct 19 16:53:25 2009 length 5 : 5185 Mon Oct 19 16:53:25 2009 length 6 : 3124 Mon Oct 19 16:53:25 2009 length 7 : 1900 Mon Oct 19 16:53:25 2009 length 9+: 2085 Mon Oct 19 16:53:25 2009 largest cycle: 22 relations Mon Oct 19 16:53:25 2009 matrix is 57667 x 57972 (14.8 MB) with weight 3412338 (58.86/col) Mon Oct 19 16:53:25 2009 sparse part has weight 3412338 (58.86/col) Mon Oct 19 16:53:26 2009 filtering completed in 3 passes Mon Oct 19 16:53:26 2009 matrix is 52967 x 53031 (13.6 MB) with weight 3152165 (59.44/col) Mon Oct 19 16:53:26 2009 sparse part has weight 3152165 (59.44/col) Mon Oct 19 16:53:26 2009 saving the first 48 matrix rows for later Mon Oct 19 16:53:26 2009 matrix is 52919 x 53031 (10.4 MB) with weight 2627265 (49.54/col) Mon Oct 19 16:53:26 2009 sparse part has weight 2196751 (41.42/col) Mon Oct 19 16:53:26 2009 matrix includes 64 packed rows Mon Oct 19 16:53:26 2009 using block size 21212 for processor cache size 512 kB Mon Oct 19 16:53:26 2009 commencing Lanczos iteration Mon Oct 19 16:53:26 2009 memory use: 9.0 MB Mon Oct 19 16:53:44 2009 lanczos halted after 839 iterations (dim = 52917) Mon Oct 19 16:53:44 2009 recovered 16 nontrivial dependencies Mon Oct 19 16:53:44 2009 prp36 factor: 164701123892984704612134915020665091 Mon Oct 19 16:53:44 2009 prp53 factor: 19052801221803116360701047315305558212064213085545461 Mon Oct 19 16:53:44 2009 elapsed time 00:37:52
(62·10102-53)/9 = 6(8)1013<103> = 461 · 971 · 5234821 · C91
C91 = P30 · P61
P30 = 608238767329856403231492542029<30>
P61 = 4833403936780460989909255914993332444536391473076934345986077<61>
Mon oct 19 17:10:42 2009 Msieve v. 1.42 Mon Oct 19 17:10:42 2009 random seeds: de1ed4c7 1764d00d Mon Oct 19 17:10:42 2009 factoring 2939863652514622780145344486414572716464648415149310198823161693782443293339686557371330233 (91 digits) Mon Oct 19 17:10:43 2009 searching for 15-digit factors Mon Oct 19 17:10:43 2009 commencing quadratic sieve (91-digit input) Mon Oct 19 17:10:43 2009 using multiplier of 1 Mon Oct 19 17:10:43 2009 using 64kb Opteron sieve core Mon Oct 19 17:10:43 2009 sieve interval: 18 blocks of size 65536 Mon Oct 19 17:10:43 2009 processing polynomials in batches of 6 Mon Oct 19 17:10:43 2009 using a sieve bound of 1685951 (63338 primes) Mon Oct 19 17:10:43 2009 using large prime bound of 155107492 (27 bits) Mon Oct 19 17:10:43 2009 using double large prime bound of 553527143260656 (42-49 bits) Mon Oct 19 17:10:43 2009 using trial factoring cutoff of 49 bits Mon Oct 19 17:10:43 2009 polynomial 'A' values have 12 factors Mon Oct 19 18:15:38 2009 63759 relations (16500 full + 47259 combined from 732755 partial), need 63434 Mon Oct 19 18:15:38 2009 begin with 749255 relations Mon Oct 19 18:15:38 2009 reduce to 158191 relations in 9 passes Mon Oct 19 18:15:38 2009 attempting to read 158191 relations Mon Oct 19 18:15:39 2009 recovered 158191 relations Mon Oct 19 18:15:39 2009 recovered 137477 polynomials Mon Oct 19 18:15:39 2009 attempting to build 63759 cycles Mon Oct 19 18:15:40 2009 found 63759 cycles in 5 passes Mon Oct 19 18:15:40 2009 distribution of cycle lengths: Mon Oct 19 18:15:40 2009 length 1 : 16500 Mon Oct 19 18:15:40 2009 length 2 : 12001 Mon Oct 19 18:15:40 2009 length 3 : 11058 Mon Oct 19 18:15:40 2009 length 4 : 8700 Mon Oct 19 18:15:40 2009 length 5 : 6250 Mon Oct 19 18:15:40 2009 length 6 : 3970 Mon Oct 19 18:15:40 2009 length 7 : 2363 Mon Oct 19 18:15:40 2009 length 9+: 2917 Mon Oct 19 18:15:40 2009 largest cycle: 20 relations Mon Oct 19 18:15:40 2009 matrix is 63338 x 63759 (16.4 MB) with weight 3779864 (59.28/col) Mon Oct 19 18:15:40 2009 sparse part has weight 3779864 (59.28/col) Mon Oct 19 18:15:41 2009 filtering completed in 4 passes Mon Oct 19 18:15:41 2009 matrix is 59565 x 59629 (15.3 MB) with weight 3541921 (59.40/col) Mon Oct 19 18:15:41 2009 sparse part has weight 3541921 (59.40/col) Mon Oct 19 18:15:41 2009 saving the first 48 matrix rows for later Mon Oct 19 18:15:41 2009 matrix is 59517 x 59629 (9.6 MB) with weight 2743720 (46.01/col) Mon Oct 19 18:15:41 2009 sparse part has weight 1918101 (32.17/col) Mon Oct 19 18:15:41 2009 matrix includes 64 packed rows Mon Oct 19 18:15:41 2009 using block size 21845 for processor cache size 512 kB Mon Oct 19 18:15:41 2009 commencing Lanczos iteration Mon Oct 19 18:15:41 2009 memory use: 9.2 MB Mon Oct 19 18:16:00 2009 lanczos halted after 943 iterations (dim = 59511) Mon Oct 19 18:16:00 2009 recovered 13 nontrivial dependencies Mon Oct 19 18:16:01 2009 prp30 factor: 608238767329856403231492542029 Mon Oct 19 18:16:01 2009 prp61 factor: 4833403936780460989909255914993332444536391473076934345986077 Mon Oct 19 18:16:01 2009 elapsed time 01:05:19
(61·10114+11)/9 = 6(7)1139<115> = 222679 · 11178637 · 18903334723259647<17> · C87
C87 = P41 · P46
P41 = 41036055173181597710179425086539396815889<41>
P46 = 3510065170731752561733587750619799871556698231<46>
Mon Oct 19 18:17:44 2009 Msieve v. 1.42 Mon Oct 19 18:17:44 2009 random seeds: d73481a6 1eb8ed9a Mon Oct 19 18:17:44 2009 factoring 144039228007611282703869034498185993003990944521551709780755994380929317069531438992359 (87 digits) Mon Oct 19 18:17:44 2009 searching for 15-digit factors Mon Oct 19 18:17:45 2009 commencing quadratic sieve (87-digit input) Mon Oct 19 18:17:45 2009 using multiplier of 35 Mon Oct 19 18:17:45 2009 using 64kb Opteron sieve core Mon Oct 19 18:17:45 2009 sieve interval: 10 blocks of size 65536 Mon Oct 19 18:17:45 2009 processing polynomials in batches of 11 Mon Oct 19 18:17:45 2009 using a sieve bound of 1471661 (56333 primes) Mon Oct 19 18:17:45 2009 using large prime bound of 117732880 (26 bits) Mon Oct 19 18:17:45 2009 using double large prime bound of 336989177081600 (41-49 bits) Mon Oct 19 18:17:45 2009 using trial factoring cutoff of 49 bits Mon Oct 19 18:17:45 2009 polynomial 'A' values have 11 factors Mon Oct 19 18:52:29 2009 56701 relations (15919 full + 40782 combined from 592248 partial), need 56429 Mon Oct 19 18:52:29 2009 begin with 608167 relations Mon Oct 19 18:52:29 2009 reduce to 135179 relations in 9 passes Mon Oct 19 18:52:29 2009 attempting to read 135179 relations Mon Oct 19 18:52:30 2009 recovered 135179 relations Mon Oct 19 18:52:30 2009 recovered 114408 polynomials Mon Oct 19 18:52:30 2009 attempting to build 56701 cycles Mon Oct 19 18:52:30 2009 found 56701 cycles in 6 passes Mon Oct 19 18:52:30 2009 distribution of cycle lengths: Mon Oct 19 18:52:30 2009 length 1 : 15919 Mon Oct 19 18:52:30 2009 length 2 : 11227 Mon Oct 19 18:52:30 2009 length 3 : 9893 Mon Oct 19 18:52:30 2009 length 4 : 7490 Mon Oct 19 18:52:30 2009 length 5 : 5026 Mon Oct 19 18:52:30 2009 length 6 : 3180 Mon Oct 19 18:52:30 2009 length 7 : 1836 Mon Oct 19 18:52:30 2009 length 9+: 2130 Mon Oct 19 18:52:30 2009 largest cycle: 22 relations Mon Oct 19 18:52:30 2009 matrix is 56333 x 56701 (14.3 MB) with weight 3283269 (57.90/col) Mon Oct 19 18:52:30 2009 sparse part has weight 3283269 (57.90/col) Mon Oct 19 18:52:31 2009 filtering completed in 3 passes Mon Oct 19 18:52:31 2009 matrix is 51687 x 51748 (13.1 MB) with weight 3019515 (58.35/col) Mon Oct 19 18:52:31 2009 sparse part has weight 3019515 (58.35/col) Mon Oct 19 18:52:31 2009 saving the first 48 matrix rows for later Mon Oct 19 18:52:31 2009 matrix is 51639 x 51748 (9.3 MB) with weight 2437777 (47.11/col) Mon Oct 19 18:52:31 2009 sparse part has weight 1912064 (36.95/col) Mon Oct 19 18:52:31 2009 matrix includes 64 packed rows Mon Oct 19 18:52:31 2009 using block size 20699 for processor cache size 512 kB Mon Oct 19 18:52:31 2009 commencing Lanczos iteration Mon Oct 19 18:52:31 2009 memory use: 8.3 MB Mon Oct 19 18:52:46 2009 lanczos halted after 819 iterations (dim = 51638) Mon Oct 19 18:52:46 2009 recovered 18 nontrivial dependencies Mon Oct 19 18:52:48 2009 prp41 factor: 41036055173181597710179425086539396815889 Mon Oct 19 18:52:48 2009 prp46 factor: 3510065170731752561733587750619799871556698231 Mon Oct 19 18:52:48 2009 elapsed time 00:35:04
(61·10120-43)/9 = 6(7)1193<121> = 503 · 2719 · 85991 · 167081 · 9073215409241<13> · C92
C92 = P39 · P54
P39 = 115735921965516571335680014573986691277<39>
P54 = 328473751248953343156797620176244809016068048692926687<54>
Mon Oct 19 21:04:35 2009 Msieve v. 1.42 Mon Oct 19 21:04:35 2009 random seeds: 3f195b67 1c332412 Mon Oct 19 21:04:35 2009 factoring 38016212442269365535939492811864166233423748155738998756090918118704266190664331664663409299 (92 digits) Mon Oct 19 21:04:35 2009 searching for 15-digit factors Mon Oct 19 21:04:36 2009 commencing quadratic sieve (92-digit input) Mon Oct 19 21:04:36 2009 using multiplier of 11 Mon Oct 19 21:04:36 2009 using 64kb Opteron sieve core Mon Oct 19 21:04:36 2009 sieve interval: 18 blocks of size 65536 Mon Oct 19 21:04:36 2009 processing polynomials in batches of 6 Mon Oct 19 21:04:36 2009 using a sieve bound of 1817833 (68235 primes) Mon Oct 19 21:04:36 2009 using large prime bound of 198143797 (27 bits) Mon Oct 19 21:04:36 2009 using double large prime bound of 860131523011962 (42-50 bits) Mon Oct 19 21:04:36 2009 using trial factoring cutoff of 50 bits Mon Oct 19 21:04:36 2009 polynomial 'A' values have 12 factors Mon Oct 19 22:26:01 2009 68577 relations (17398 full + 51179 combined from 859308 partial), need 68331 Mon Oct 19 22:26:01 2009 begin with 876706 relations Mon Oct 19 22:26:01 2009 reduce to 172614 relations in 10 passes Mon Oct 19 22:26:01 2009 attempting to read 172614 relations Mon Oct 19 22:26:03 2009 recovered 172614 relations Mon Oct 19 22:26:03 2009 recovered 152321 polynomials Mon Oct 19 22:26:03 2009 attempting to build 68577 cycles Mon Oct 19 22:26:03 2009 found 68577 cycles in 5 passes Mon Oct 19 22:26:03 2009 distribution of cycle lengths: Mon Oct 19 22:26:03 2009 length 1 : 17398 Mon Oct 19 22:26:03 2009 length 2 : 12761 Mon Oct 19 22:26:03 2009 length 3 : 11901 Mon Oct 19 22:26:03 2009 length 4 : 9302 Mon Oct 19 22:26:03 2009 length 5 : 6806 Mon Oct 19 22:26:03 2009 length 6 : 4380 Mon Oct 19 22:26:03 2009 length 7 : 2524 Mon Oct 19 22:26:03 2009 length 9+: 3505 Mon Oct 19 22:26:03 2009 largest cycle: 19 relations Mon Oct 19 22:26:03 2009 matrix is 68235 x 68577 (17.6 MB) with weight 4075157 (59.42/col) Mon Oct 19 22:26:03 2009 sparse part has weight 4075157 (59.42/col) Mon Oct 19 22:26:04 2009 filtering completed in 3 passes Mon Oct 19 22:26:04 2009 matrix is 64380 x 64442 (16.6 MB) with weight 3842512 (59.63/col) Mon Oct 19 22:26:04 2009 sparse part has weight 3842512 (59.63/col) Mon Oct 19 22:26:04 2009 saving the first 48 matrix rows for later Mon Oct 19 22:26:04 2009 matrix is 64332 x 64442 (9.7 MB) with weight 2887480 (44.81/col) Mon Oct 19 22:26:04 2009 sparse part has weight 1908982 (29.62/col) Mon Oct 19 22:26:04 2009 matrix includes 64 packed rows Mon Oct 19 22:26:04 2009 using block size 21845 for processor cache size 512 kB Mon Oct 19 22:26:04 2009 commencing Lanczos iteration Mon Oct 19 22:26:04 2009 memory use: 9.7 MB Mon Oct 19 22:26:26 2009 lanczos halted after 1019 iterations (dim = 64328) Mon Oct 19 22:26:26 2009 recovered 15 nontrivial dependencies Mon Oct 19 22:26:26 2009 prp39 factor: 115735921965516571335680014573986691277 Mon Oct 19 22:26:26 2009 prp54 factor: 328473751248953343156797620176244809016068048692926687 Mon Oct 19 22:26:26 2009 elapsed time 01:21:51
(62·10121-71)/9 = 6(8)1201<122> = 61 · 114968631523579456592837576959<30> · C91
C91 = P35 · P57
P35 = 15339977635830331306565193967618163<35>
P57 = 640346819253660171166999735090684748846178296261435303513<57>
Mon Oct 19 19:42:02 2009 Msieve v. 1.42 Mon Oct 19 19:42:02 2009 random seeds: a5d802e6 78b647cf Mon Oct 19 19:42:02 2009 factoring 9822905886526234428677805540972954060517545347969510161922102565209757680436219137596506619 (91 digits) Mon Oct 19 19:42:03 2009 searching for 15-digit factors Mon Oct 19 19:42:03 2009 commencing quadratic sieve (91-digit input) Mon Oct 19 19:42:03 2009 using multiplier of 19 Mon Oct 19 19:42:03 2009 using 64kb Opteron sieve core Mon Oct 19 19:42:03 2009 sieve interval: 18 blocks of size 65536 Mon Oct 19 19:42:03 2009 processing polynomials in batches of 6 Mon Oct 19 19:42:03 2009 using a sieve bound of 1753547 (65869 primes) Mon Oct 19 19:42:03 2009 using large prime bound of 177108247 (27 bits) Mon Oct 19 19:42:03 2009 using double large prime bound of 702796695147472 (42-50 bits) Mon Oct 19 19:42:03 2009 using trial factoring cutoff of 50 bits Mon Oct 19 19:42:03 2009 polynomial 'A' values have 12 factors Mon Oct 19 20:49:59 2009 66216 relations (17589 full + 48627 combined from 792474 partial), need 65965 Mon Oct 19 20:49:59 2009 begin with 810063 relations Mon Oct 19 20:50:00 2009 reduce to 163501 relations in 11 passes Mon Oct 19 20:50:00 2009 attempting to read 163501 relations Mon Oct 19 20:50:01 2009 recovered 163501 relations Mon Oct 19 20:50:01 2009 recovered 141320 polynomials Mon Oct 19 20:50:01 2009 attempting to build 66216 cycles Mon Oct 19 20:50:01 2009 found 66216 cycles in 5 passes Mon Oct 19 20:50:01 2009 distribution of cycle lengths: Mon Oct 19 20:50:01 2009 length 1 : 17589 Mon Oct 19 20:50:01 2009 length 2 : 12626 Mon Oct 19 20:50:01 2009 length 3 : 11681 Mon Oct 19 20:50:01 2009 length 4 : 8758 Mon Oct 19 20:50:01 2009 length 5 : 6231 Mon Oct 19 20:50:01 2009 length 6 : 3920 Mon Oct 19 20:50:01 2009 length 7 : 2420 Mon Oct 19 20:50:01 2009 length 9+: 2991 Mon Oct 19 20:50:01 2009 largest cycle: 18 relations Mon Oct 19 20:50:01 2009 matrix is 65869 x 66216 (17.0 MB) with weight 3932079 (59.38/col) Mon Oct 19 20:50:01 2009 sparse part has weight 3932079 (59.38/col) Mon Oct 19 20:50:02 2009 filtering completed in 3 passes Mon Oct 19 20:50:02 2009 matrix is 61735 x 61799 (16.0 MB) with weight 3687676 (59.67/col) Mon Oct 19 20:50:02 2009 sparse part has weight 3687676 (59.67/col) Mon Oct 19 20:50:02 2009 saving the first 48 matrix rows for later Mon Oct 19 20:50:02 2009 matrix is 61687 x 61799 (9.7 MB) with weight 2816849 (45.58/col) Mon Oct 19 20:50:02 2009 sparse part has weight 1926080 (31.17/col) Mon Oct 19 20:50:02 2009 matrix includes 64 packed rows Mon Oct 19 20:50:02 2009 using block size 21845 for processor cache size 512 kB Mon Oct 19 20:50:02 2009 commencing Lanczos iteration Mon Oct 19 20:50:02 2009 memory use: 9.4 MB Mon Oct 19 20:50:23 2009 lanczos halted after 977 iterations (dim = 61685) Mon Oct 19 20:50:23 2009 recovered 17 nontrivial dependencies Mon Oct 19 20:50:23 2009 prp35 factor: 15339977635830331306565193967618163 Mon Oct 19 20:50:23 2009 prp57 factor: 640346819253660171166999735090684748846178296261435303513 Mon Oct 19 20:50:23 2009 elapsed time 01:08:21
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Oct 19, 2009
(61·10115+11)/9 = 6(7)1149<116> = 3 · 11689 · C112
C112 = P53 · P60
P53 = 16395185245811434412457687799934663376577264400981837<53>
P60 = 117888755802769552667826097972841639069866714575824487244301<60>
Number: 67779_115 N=1932807989784634493334980972931182529950602497441405816801487945298365351406672306663751611993548857266882760937 ( 112 digits) SNFS difficulty: 116 digits. Divisors found: r1=16395185245811434412457687799934663376577264400981837 r2=117888755802769552667826097972841639069866714575824487244301 Version: Total time: 0.49 hours. Scaled time: 1.17 units (timescale=2.389). Factorization parameters were as follows: n: 1932807989784634493334980972931182529950602497441405816801487945298365351406672306663751611993548857266882760937 m: 100000000000000000000000 deg: 5 c5: 61 c0: 11 skew: 0.71 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [200000, 375001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1158405 Max relations in full relation-set: Initial matrix: Pruned matrix : 48565 x 48792 Total sieving time: 0.44 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,400000,400000,25,25,45,45,2.2,2.2,25000 total time: 0.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
(62·10120-71)/9 = 6(8)1191<121> = 29 · 577 · 56672831 · C109
C109 = P38 · P72
P38 = 21679127389566080283674645480303460667<38>
P72 = 335087836893671128683748066753771626945672527368526518443982836779830241<72>
Number: 68881_120 N=7264411902712037064371078921236694765958027268481835393958066954761270532172238326642527264043720097080630747 ( 109 digits) SNFS difficulty: 121 digits. Divisors found: r1=21679127389566080283674645480303460667 r2=335087836893671128683748066753771626945672527368526518443982836779830241 Version: Total time: 0.99 hours. Scaled time: 2.34 units (timescale=2.375). Factorization parameters were as follows: n: 7264411902712037064371078921236694765958027268481835393958066954761270532172238326642527264043720097080630747 m: 1000000000000000000000000 deg: 5 c5: 62 c0: -71 skew: 1.03 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [270000, 630001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1298818 Max relations in full relation-set: Initial matrix: Pruned matrix : 83780 x 84026 Total sieving time: 0.89 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,540000,540000,25,25,46,46,2.2,2.2,30000 total time: 0.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)
By Dmitry Domanov / GGNFS/msieve / Oct 19, 2009
(59·10135+31)/9 = 6(5)1349<136> = 7 · C135
C135 = P68 · P68
P68 = 15163281148863922855510327593559872326794565482235986495845009675589<68>
P68 = 61761562508395645457663130539560263571682161366507241664417293471533<68>
Number: snfs135 N=936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 ( 135 digits) SNFS difficulty: 136 digits. Divisors found: r1=15163281148863922855510327593559872326794565482235986495845009675589 (pp68) r2=61761562508395645457663130539560263571682161366507241664417293471533 (pp68) Version: Msieve-1.40 Total time: 3.29 hours. Scaled time: 6.08 units (timescale=1.845). Factorization parameters were as follows: n: 936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 m: 1000000000000000000000000000 deg: 5 c5: 59 c0: 31 skew: 0.88 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 185316 x 185541 Total sieving time: 3.14 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.29 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve / Oct 19, 2009
(61·10110-43)/9 = 6(7)1093<111> = 7789 · 6772021363007171633797<22> · C86
C86 = P40 · P46
P40 = 4647466076771159017101224620731157755017<40>
P46 = 2764846811338785817801461431188838166283593893<46>
Mon Oct 19 21:52:53 2009 Mon Oct 19 21:52:53 2009 Mon Oct 19 21:52:53 2009 Msieve v. 1.42 Mon Oct 19 21:52:53 2009 random seeds: 53af9528 bb7b3299 Mon Oct 19 21:52:53 2009 factoring 12849531763165915780729681999759369299308766942340673904026379524101685112964411311181 (86 digits) Mon Oct 19 21:52:54 2009 searching for 15-digit factors Mon Oct 19 21:52:54 2009 commencing quadratic sieve (86-digit input) Mon Oct 19 21:52:54 2009 using multiplier of 1 Mon Oct 19 21:52:54 2009 using 64kb Opteron sieve core Mon Oct 19 21:52:54 2009 sieve interval: 6 blocks of size 65536 Mon Oct 19 21:52:54 2009 processing polynomials in batches of 17 Mon Oct 19 21:52:54 2009 using a sieve bound of 1442509 (54980 primes) Mon Oct 19 21:52:54 2009 using large prime bound of 115400720 (26 bits) Mon Oct 19 21:52:54 2009 using double large prime bound of 325068826146400 (41-49 bits) Mon Oct 19 21:52:54 2009 using trial factoring cutoff of 49 bits Mon Oct 19 21:52:54 2009 polynomial 'A' values have 11 factors Mon Oct 19 22:40:36 2009 55214 relations (15494 full + 39720 combined from 580149 partial), need 55076 Mon Oct 19 22:40:37 2009 begin with 595643 relations Mon Oct 19 22:40:37 2009 reduce to 131993 relations in 10 passes Mon Oct 19 22:40:37 2009 attempting to read 131993 relations Mon Oct 19 22:40:39 2009 recovered 131993 relations Mon Oct 19 22:40:39 2009 recovered 114693 polynomials Mon Oct 19 22:40:39 2009 attempting to build 55214 cycles Mon Oct 19 22:40:39 2009 found 55214 cycles in 5 passes Mon Oct 19 22:40:40 2009 distribution of cycle lengths: Mon Oct 19 22:40:40 2009 length 1 : 15494 Mon Oct 19 22:40:40 2009 length 2 : 10796 Mon Oct 19 22:40:40 2009 length 3 : 9826 Mon Oct 19 22:40:40 2009 length 4 : 7278 Mon Oct 19 22:40:40 2009 length 5 : 5027 Mon Oct 19 22:40:40 2009 length 6 : 3028 Mon Oct 19 22:40:40 2009 length 7 : 1758 Mon Oct 19 22:40:40 2009 length 9+: 2007 Mon Oct 19 22:40:40 2009 largest cycle: 21 relations Mon Oct 19 22:40:40 2009 matrix is 54980 x 55214 (11.7 MB) with weight 2856852 (51.74/col) Mon Oct 19 22:40:40 2009 sparse part has weight 2856852 (51.74/col) Mon Oct 19 22:40:41 2009 filtering completed in 3 passes Mon Oct 19 22:40:41 2009 matrix is 50553 x 50617 (10.8 MB) with weight 2639886 (52.15/col) Mon Oct 19 22:40:41 2009 sparse part has weight 2639886 (52.15/col) Mon Oct 19 22:40:41 2009 saving the first 48 matrix rows for later Mon Oct 19 22:40:41 2009 matrix is 50505 x 50617 (5.9 MB) with weight 1941977 (38.37/col) Mon Oct 19 22:40:41 2009 sparse part has weight 1250286 (24.70/col) Mon Oct 19 22:40:41 2009 matrix includes 64 packed rows Mon Oct 19 22:40:41 2009 using block size 20246 for processor cache size 1024 kB Mon Oct 19 22:40:42 2009 commencing Lanczos iteration Mon Oct 19 22:40:42 2009 memory use: 7.0 MB Mon Oct 19 22:41:03 2009 lanczos halted after 800 iterations (dim = 50502) Mon Oct 19 22:41:03 2009 recovered 15 nontrivial dependencies Mon Oct 19 22:41:04 2009 prp40 factor: 4647466076771159017101224620731157755017 Mon Oct 19 22:41:04 2009 prp46 factor: 2764846811338785817801461431188838166283593893 Mon Oct 19 22:41:04 2009 elapsed time 00:48:11
By Serge Batalov / GMP-ECM / Oct 19, 2009
(61·10117-43)/9 = 6(7)1163<118> = 13 · 17 · 50321 · 186071 · 80481263 · C98
C98 = P29 · C69
P29 = 54281847730996426207359531089<29>
C69 = [749752101263345470108990615445763113552625379099289239504849511949049<69>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2961023599 Step 1 took 2252ms Step 2 took 1636ms ********** Factor found in step 2: 54281847730996426207359531089 Found probable prime factor of 29 digits: 54281847730996426207359531089 Composite cofactor 749752101263345470108990615445763113552625379099289239504849511949049 has 69 digits
(62·10117-71)/9 = 6(8)1161<118> = 7 · 19 · 137650277 · C108
C108 = P32 · P76
P32 = 60874828950569996693918573606471<32>
P76 = 6181340899496695595754737044042673115580750936683073986286488159140340843071<76>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2871096336 Step 1 took 4636ms Step 2 took 2768ms ********** Factor found in step 2: 60874828950569996693918573606471 Found probable prime factor of 32 digits: 60874828950569996693918573606471 Probable prime cofactor has 76 digits
Factorizations of 655...559 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
Factorizations of 677...773, Factorizations of 677...779, Factorizations of 688...881 and Factorizations of 688...883 have been extended up to n=125. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve / Oct 18, 2009
2·10195+9 = 2(0)1949<196> = 7 · 263 · 5309 · 376787 · 398925029 · 208929543907045046083316767984164355764039923<45> · C130
C130 = P59 · P72
P59 = 22272790228074941650412202144206513847480230663694503321323<59>
P72 = 292551145750263592463612261169824232947788536994442651259033585380015683<72>
N=6515930300278598936340223067286726695961677601878157142390817149184366337340674057734940096025365308355623172051113615953328308609 ( 130 digits) Divisors found: r1=22272790228074941650412202144206513847480230663694503321323 (pp59) r2=292551145750263592463612261169824232947788536994442651259033585380015683 (pp72) Version: Msieve-1.40 Total time: 114.52 hours. Scaled time: 216.90 units (timescale=1.894). Factorization parameters were as follows: # Murphy_E = 7.675034e-11, selected by Jeff Gilchrist n: 6515930300278598936340223067286726695961677601878157142390817149184366337340674057734940096025365308355623172051113615953328308609 Y0: -11564669034526998847875422 Y1: 178145966422721 c0: 594526530049952023356115970449323 c1: 20042533683248693847400228035 c2: 3094152334001331708481 c3: -77649993471691511 c4: -777885780 c5: 31500 skew: 834742.04 type: gnfs # selected mechanically rlim: 9700000 alim: 9700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 9700000/9700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [4850000, 9950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1429066 x 1429292 Total sieving time: 111.39 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.62 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: gnfs,129,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,9700000,9700000,28,28,53,53,2.5,2.5,100000 total time: 114.52 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve / Oct 18, 2009
(16·10193-7)/9 = 1(7)193<194> = 17 · 259033 · 148157323 · 877141007 · 1039070261623<13> · C158
C158 = P54 · P105
P54 = 114914680770244681417922046941865901060341833763525707<54>
P105 = 260171960010602604461664775697366067467941159766507302878646963259902230029113380029567278481926693891417<105>
Number: 17777_193 N=29897577729987263351121737742387080067460264201163135704886761830414910918621330073647432413064902874620571121025724773256600087828620159733970422977746156819 ( 158 digits) SNFS difficulty: 195 digits. Divisors found: r1=114914680770244681417922046941865901060341833763525707 (pp54) r2=260171960010602604461664775697366067467941159766507302878646963259902230029113380029567278481926693891417 (pp105) Version: Msieve v. 1.42 Total time: 392.12 hours. Scaled time: 948.53 units (timescale=2.419). Factorization parameters were as follows: n: 29897577729987263351121737742387080067460264201163135704886761830414910918621330073647432413064902874620571121025724773256600087828620159733970422977746156819 m: 400000000000000000000000000000000000000 deg: 5 c5: 125 c0: -56 skew: 0.85 type: snfs lss: 1 rlim: 12500000 alim: 12500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6250000, 11450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2224158 x 2224384 Total sieving time: 379.54 hours. Total relation processing time: 0.34 hours. Matrix solve time: 11.84 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,195.000,5,0,0,0,0,0,0,0,0,12500000,12500000,28,28,55,55,2.5,2.5,100000 total time: 392.12 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve / Oct 17, 2009
(59·10143+13)/9 = 6(5)1427<144> = 3 · 7 · 23 · C142
C142 = P65 · P77
P65 = 56824861300809670417610968582565253327225489040825124747375566909<65>
P77 = 23884930784295121718305209081680340072427488597788659427641111525802353279331<77>
Number: snfs142 N=1357257878997009431792040487692661605705083965953531170922475270301357257878997009431792040487692661605705083965953531170922475270301357257879 ( 142 digits) SNFS difficulty: 146 digits. Divisors found: r1=56824861300809670417610968582565253327225489040825124747375566909 (pp65) r2=23884930784295121718305209081680340072427488597788659427641111525802353279331 (pp77) Version: Msieve-1.40 Total time: 8.41 hours. Scaled time: 16.46 units (timescale=1.957). Factorization parameters were as follows: n: 1357257878997009431792040487692661605705083965953531170922475270301357257878997009431792040487692661605705083965953531170922475270301357257879 m: 50000000000000000000000000000 deg: 5 c5: 472 c0: 325 skew: 0.93 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2455001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 287686 x 287915 Total sieving time: 8.12 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.23 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 8.41 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS / Oct 17, 2009
5·10181-1 = 4(9)181<182> = 7 · 972 · 193 · 457 · 422822039 · 5656697469953<13> · 173579002511793813594159069431<30> · C122
C122 = P61 · P62
P61 = 1064331088086742281466450399965259429540937717843448019984241<61>
P62 = 19478723013143054838808802263731536889575609008494945550219489<62>
Number: 49999_181 N=20731810459118814730446116833653693666321827958599665647784054670803472164424057194952315997453223210542179715535871072849 ( 122 digits) Divisors found: r1=1064331088086742281466450399965259429540937717843448019984241 (pp61) r2=19478723013143054838808802263731536889575609008494945550219489 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 140.90 hours. Scaled time: 66.50 units (timescale=0.472). Factorization parameters were as follows: name: 49999_181 n: 20731810459118814730446116833653693666321827958599665647784054670803472164424057194952315997453223210542179715535871072849 skew: 101517.10 # norm 3.04e+17 c5: 29580 c4: 2156779898 c3: -6149966082058983 c2: 23385979761564979461 c1: 1440918581264063038291103 c0: -22754533970254442683757639139 # alpha -6.80 Y1: 1261519391909 Y0: -233952547110868141002320 # Murphy_E 2.33e-10 # M 2835204791081285862371599358752498154223875050445617820813767572498702847699896488863776551489942795073240664812599984655 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5320001) Primes: RFBsize:348513, AFBsize:348097, largePrimes:7741397 encountered Relations: rels:7907865, finalFF:796206 Max relations in full relation-set: 28 Initial matrix: 696692 x 796206 with sparse part having weight 72088621. Pruned matrix : 615148 x 618695 with weight 51491407. Total sieving time: 118.03 hours. Total relation processing time: 1.24 hours. Matrix solve time: 21.10 hours. Time per square root: 0.53 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 140.90 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Oct 17, 2009
(23·10172+13)/9 = 2(5)1717<173> = 32 · 7 · 109 · 33627663967<11> · C159
C159 = P57 · P102
P57 = 262044081161281157435640211298473487606075469399350823529<57>
P102 = 422325422840311044324580075575239212407342269048398853475771102425965377556331402375340114140038778897<102>
Number: 25557_172 N=110667877379238850374366379526440928413416400335450304067327752353284785156750297646457827005075711428545511839998879588251140758182679780479921677512496267513 ( 159 digits) SNFS difficulty: 174 digits. Divisors found: r1=262044081161281157435640211298473487606075469399350823529 (pp57) r2=422325422840311044324580075575239212407342269048398853475771102425965377556331402375340114140038778897 (pp102) Version: Msieve-1.40 Total time: 84.35 hours. Scaled time: 146.68 units (timescale=1.739). Factorization parameters were as follows: n: 110667877379238850374366379526440928413416400335450304067327752353284785156750297646457827005075711428545511839998879588251140758182679780479921677512496267513 m: 20000000000000000000000000000000000 deg: 5 c5: 575 c0: 104 skew: 0.71 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 7300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1175091 x 1175339 Total sieving time: 82.08 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.85 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 84.35 hours.
By Dmitry Domanov / GGNFS/msieve / Oct 16, 2009
(59·10122+31)/9 = 6(5)1219<123> = 199 · 223 · C119
C119 = P37 · P82
P37 = 2617252350806544967013566147544617337<37>
P82 = 5644246393918487080312117373821903275185792933757964322841397161481678551382767991<82>
Number: snfs122 N=14772417143014524540990953772349540427598881302376356120412726312178731224633381155904084448150067727776901447947259967 ( 119 digits) SNFS difficulty: 124 digits. Divisors found: r1=2617252350806544967013566147544617337 (pp37) r2=5644246393918487080312117373821903275185792933757964322841397161481678551382767991 (pp82) Version: Msieve-1.40 Total time: 1.99 hours. Scaled time: 3.91 units (timescale=1.963). Factorization parameters were as follows: n: 14772417143014524540990953772349540427598881302376356120412726312178731224633381155904084448150067727776901447947259967 m: 2000000000000000000000000 deg: 5 c5: 1475 c0: 248 skew: 0.70 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 870001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112892 x 113134 Total sieving time: 1.86 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.04 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000 total time: 1.99 hours. --------- CPU info (if available) ----------
(59·10123+13)/9 = 6(5)1227<124> = 997 · 664043 · C115
C115 = P33 · P83
P33 = 981967760548551132769078879770631<33>
P83 = 10083723101151866053703913121273268266204944970451697080119605510395613352043008357<83>
Number: snfs115 N=9901890991629789058242256365154084293252981092378255560901687199133003716802836976489009944306161264087447376163267 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=981967760548551132769078879770631 (pp33) r2=10083723101151866053703913121273268266204944970451697080119605510395613352043008357 (pp83) Version: Msieve-1.40 Total time: 1.73 hours. Scaled time: 3.40 units (timescale=1.963). Factorization parameters were as follows: n: 9901890991629789058242256365154084293252981092378255560901687199133003716802836976489009944306161264087447376163267 m: 5000000000000000000000000 deg: 5 c5: 472 c0: 325 skew: 0.93 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 795001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 117791 x 118016 Total sieving time: 1.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.73 hours. --------- CPU info (if available) ----------
(59·10138+13)/9 = 6(5)1377<139> = 73 · C137
C137 = P59 · P79
P59 = 37063799104643516016870773501344256457436258106731212535903<59>
P79 = 2422906800365494708429142047443049503908526352762410639292675584284260956111203<79>
Number: snfs137 N=89802130898021308980213089802130898021308980213089802130898021308980213089802130898021308980213089802130898021308980213089802130898021309 ( 137 digits) SNFS difficulty: 141 digits. Divisors found: r1=37063799104643516016870773501344256457436258106731212535903 (pp59) r2=2422906800365494708429142047443049503908526352762410639292675584284260956111203 (pp79) Version: Msieve-1.40 Total time: 5.39 hours. Scaled time: 10.61 units (timescale=1.969). Factorization parameters were as follows: n: 89802130898021308980213089802130898021308980213089802130898021308980213089802130898021308980213089802130898021308980213089802130898021309 m: 5000000000000000000000000000 deg: 5 c5: 472 c0: 325 skew: 0.93 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1790001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 244216 x 244441 Total sieving time: 5.14 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 5.39 hours. --------- CPU info (if available) ----------
2·10186+9 = 2(0)1859<187> = 11 · 571 · 1297 · 90336178769<11> · C169
C169 = P45 · P124
P45 = 357262445685375714446644002349895705129177657<45>
P124 = 7606977704130228676753060368209396335418132864772317258963737679591760422481190900647054523251242045655517818742535330613289<124>
Number: 209-5 N=2717687458851689874213860204251139251360870739438748418027921708986397314502883556437734594257957018606360831173069385218160418921517658081506947281834237272090046083873 ( 169 digits) SNFS difficulty: 186 digits. Divisors found: r1=357262445685375714446644002349895705129177657 (pp45) r2=7606977704130228676753060368209396335418132864772317258963737679591760422481190900647054523251242045655517818742535330613289 (pp124) Version: Msieve-1.40 Total time: 167.46 hours. Scaled time: 310.65 units (timescale=1.855). Factorization parameters were as follows: n: 2717687458851689874213860204251139251360870739438748418027921708986397314502883556437734594257957018606360831173069385218160418921517658081506947281834237272090046083873 m: 10000000000000000000000000000000000000 deg: 5 c5: 20 c0: 9 skew: 0.85 type: snfs lss: 1 rlim: 8900000 alim: 8900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8900000/8900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4450000, 7050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1562571 x 1562799 Total sieving time: 163.98 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.13 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,186.000,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000 total time: 167.46 hours. --------- CPU info (if available) ----------
2·10185+9 = 2(0)1849<186> = 3221 · 25309 · C178
C178 = P43 · P135
P43 = 5227693762306268399155697518001267230014289<43>
P135 = 469303881636488913910845986301497789032248197460711815322014514424627055233095974458951755240392494538034911487605992840453516750955929<135>
Number: 209-4 N=2453376974657192395380246995934962890035878062208538048730420963056203100555740178987834549997731239642685761332372116590509143067439321761972654439436543214413776182761079269481 ( 178 digits) SNFS difficulty: 185 digits. Divisors found: r1=5227693762306268399155697518001267230014289 (pp43) r2=469303881636488913910845986301497789032248197460711815322014514424627055233095974458951755240392494538034911487605992840453516750955929 (pp135) Version: Msieve-1.40 Total time: 146.87 hours. Scaled time: 287.43 units (timescale=1.957). Factorization parameters were as follows: n: 2453376974657192395380246995934962890035878062208538048730420963056203100555740178987834549997731239642685761332372116590509143067439321761972654439436543214413776182761079269481 m: 10000000000000000000000000000000000000 deg: 5 c5: 2 c0: 9 skew: 1.35 type: snfs lss: 1 rlim: 8600000 alim: 8600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8600000/8600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4300000, 6600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1604184 x 1604416 Total sieving time: 143.24 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.30 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8600000,8600000,28,28,54,54,2.5,2.5,100000 total time: 146.87 hours. --------- CPU info (if available) ----------
2·10183+9 = 2(0)1829<184> = 7 · 41 · 349 · 266221 · 10939063185828649<17> · C157
C157 = P48 · P110
P48 = 344618225745749586411461042704126893948843706169<48>
P110 = 19895826657608469488864484374369820394043609778637709304640322693139917994922066124762553757203947117837606543<110>
Number: 209-3 N=6856464482490018001444773324050028540933716416510729022191794797020840270795309636458372328059570593686611556858681441235580276482585545763581260344523863767 ( 157 digits) SNFS difficulty: 183 digits. Divisors found: r1=344618225745749586411461042704126893948843706169 (pp48) r2=19895826657608469488864484374369820394043609778637709304640322693139917994922066124762553757203947117837606543 (pp110) Version: Msieve-1.40 Total time: 134.56 hours. Scaled time: 258.62 units (timescale=1.922). Factorization parameters were as follows: n: 6856464482490018001444773324050028540933716416510729022191794797020840270795309636458372328059570593686611556858681441235580276482585545763581260344523863767 m: 2000000000000000000000000000000000000 deg: 5 c5: 125 c0: 18 skew: 0.68 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4000000, 6100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1511833 x 1512065 Total sieving time: 131.06 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.98 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,183.000,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000 total time: 134.56 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Oct 16, 2009
(59·10149+13)/9 = 6(5)1487<150> = 3 · 7 · 19 · 937 · 1103 · 54493 · 962810321078392375635049<24> · C113
C113 = P39 · P75
P39 = 147943116229641901909832786463660049913<39>
P75 = 204807231016911815436363214460668291459094734809973992870141049693597139393<75>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 30299819983006104728482599785278540686702021001078729957142502737791357700632490766461943016847001905472398522809 (113 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6964078966 Step 1 took 3463ms Step 2 took 3759ms ********** Factor found in step 2: 147943116229641901909832786463660049913 Found probable prime factor of 39 digits: 147943116229641901909832786463660049913 Probable prime cofactor 204807231016911815436363214460668291459094734809973992870141049693597139393 has 75 digits
(59·10135+13)/9 = 6(5)1347<136> = 53 · 13810561 · 80236733 · 54404033543<11> · C109
C109 = P52 · P58
P52 = 1069870404942196780013630862628023931905624513873353<52>
P58 = 1917727080979938123004390143694320794532808882295629538747<58>
Number: 65557_135 N=2051719448696623396197945795300720223247072182095324565313553803658214982417215832376273813292701449764308691 ( 109 digits) SNFS difficulty: 136 digits. Divisors found: r1=1069870404942196780013630862628023931905624513873353 r2=1917727080979938123004390143694320794532808882295629538747 Version: Total time: 1.88 hours. Scaled time: 4.47 units (timescale=2.383). Factorization parameters were as follows: n: 2051719448696623396197945795300720223247072182095324565313553803658214982417215832376273813292701449764308691 m: 1000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3148405 Max relations in full relation-set: Initial matrix: Pruned matrix : 198946 x 199194 Total sieving time: 1.61 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,50000 total time: 1.88 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(59·10142+13)/9 = 6(5)1417<143> = 523 · 31564933 · 1495279771564938081250317434363<31> · C103
C103 = P46 · P57
P46 = 6703894625173431679040967401885793269992102259<46>
P57 = 396144202180882171589894416421744649266280406656475887619<57>
Number: 65557_142 N=2655708987794033222006395738022718318106965876613728083162673950146053935377047128704039001596840031321 ( 103 digits) Divisors found: r1=6703894625173431679040967401885793269992102259 r2=396144202180882171589894416421744649266280406656475887619 Version: Total time: 3.81 hours. Scaled time: 9.04 units (timescale=2.373). Factorization parameters were as follows: name: 65557_142 n: 2655708987794033222006395738022718318106965876613728083162673950146053935377047128704039001596840031321 skew: 3751.30 # norm 3.50e+13 c5: 78660 c4: -1283237721 c3: -3748094967622 c2: 14675610712833839 c1: 18454912549082743215 c0: -37744419676925558612862 # alpha -4.56 Y1: 84744210287 Y0: -32039745393925761293 # Murphy_E 2.48e-09 # M 2531415688351974972911924921557373481077501563677208680072258910721872535231990746324431917159123062258 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4809031 Max relations in full relation-set: Initial matrix: Pruned matrix : 252586 x 252833 Polynomial selection time: 0.25 hours. Total sieving time: 3.02 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.14 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.81 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(59·10150+13)/9 = 6(5)1497<151> = 17 · 911 · 1279043 · 5013488891<10> · C131
C131 = P51 · P81
P51 = 429592179251930619925076023414555204538013859122257<51>
P81 = 153659931504969338803760692827314585527035777416990495872633452162987819002153371<81>
Number: 65557_150 N=66011104838922169386588454921857859398757669838483669807968869166926747641548905738955030158002277581277821586625150229314953678347 ( 131 digits) SNFS difficulty: 151 digits. Divisors found: r1=429592179251930619925076023414555204538013859122257 r2=153659931504969338803760692827314585527035777416990495872633452162987819002153371 Version: Total time: 6.36 hours. Scaled time: 15.20 units (timescale=2.391). Factorization parameters were as follows: n: 66011104838922169386588454921857859398757669838483669807968869166926747641548905738955030158002277581277821586625150229314953678347 m: 1000000000000000000000000000000 deg: 5 c5: 59 c0: 13 skew: 0.74 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6668876 Max relations in full relation-set: Initial matrix: Pruned matrix : 335862 x 336110 Total sieving time: 5.82 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.25 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,1800000,1800000,27,27,49,49,2.4,2.4,100000 total time: 6.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Serge Batalov / Msieve, GMP-ECM 6.2.3 / Oct 16, 2009
(59·10118+31)/9 = 6(5)1179<119> = 3 · 13 · 733 · 47857 · 64952802419<11> · C99
C99 = P48 · P52
P48 = 130974788754003500820212128935309549948386590481<48>
P52 = 5632612175418019323602106433020886254974107858338359<52>
SNFS difficulty: 121 digits. Divisors found: r1=130974788754003500820212128935309549948386590481 (pp48) r2=5632612175418019323602106433020886254974107858338359 (pp52) Version: Msieve v. 1.43 SVN74 Total time: 0.97 hours. Scaled time: 2.32 units (timescale=2.400). Factorization parameters were as follows: n: 737730189808603191316426643348526512468446270875955771055721823848214715493569424394356238066560679 m: 500000000000000000000000 deg: 5 c5: 472 c0: 775 skew: 1.10 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [456250, 706251) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112931 x 113167 Total sieving time: 0.90 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,48,48,2.4,2.4,50000 total time: 0.97 hours.
(59·10121+13)/9 = 6(5)1207<122> = 23 · 337 · 258733 · C113
C113 = P35 · P39 · P40
P35 = 31077092723645769101180302178920757<35>
P39 = 958494576036167836035177225945730085227<39>
P40 = 1097412488009198204946538922458400988361<40>
SNFS difficulty: 123 digits. Divisors found: r1=31077092723645769101180302178920757 (pp35) r2=958494576036167836035177225945730085227 (pp39) r3=1097412488009198204946538922458400988361 (pp40) Version: Msieve v. 1.43 SVN74 Total time: 1.28 hours. Scaled time: 3.07 units (timescale=2.400). Factorization parameters were as follows: n: 32688872494665826600540483901281380902958693546154519166587863352421866900860032362071309411611676918178814750879 m: 2000000000000000000000000 deg: 5 c5: 295 c0: 208 skew: 0.93 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [512500, 812501) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 133412 x 133645 Total sieving time: 1.06 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,123.000,5,0,0,0,0,0,0,0,0,820000,820000,25,25,48,48,2.4,2.4,50000 total time: 1.28 hours.
(8·10218+7)/3 = 2(6)2179<219> = 307 · 89690143 · 615046225945003<15> · 14652967475174650405061<23> · C172
C172 = P34 · C138
P34 = 1342390712063055001925603562834767<34>
C138 = [800522159352933722050896549761388621424585536007720393498837602232681478070960919646071118994305807360849237736779454745588953403185113129<138>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3543900038 Step 1 took 3504ms Step 2 took 2464ms ********** Factor found in step 2: 1342390712063055001925603562834767 Found probable prime factor of 34 digits: 1342390712063055001925603562834767 Composite cofactor has 138 digits
(8·10215+7)/3 = 2(6)2149<216> = 13 · 1064519 · 7642157 · 6044612843<10> · C192
C192 = P31 · C162
P31 = 1639123903073298608883820431719<31>
C162 = [254492937102404188685188052615787881342045720743990894848429549297697033088006979176092744516914821078431270738413278211316625145666683242254247672880860742129183<162>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3657846809 Step 1 took 4113ms Step 2 took 2712ms ********** Factor found in step 2: 1639123903073298608883820431719 Found probable prime factor of 31 digits: 1639123903073298608883820431719 Composite cofactor has 162 digits
By Jo Yeong Uk / GMP-ECM / Oct 15, 2009
(59·10139+13)/9 = 6(5)1387<140> = 201554609984047<15> · C126
C126 = P41 · P85
P41 = 88640247102350796577040881684578110160059<41>
P85 = 3669321860674046149889305251133408005163302741051006855356289605523585561498123504209<85>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 325249596428205052553125481768616288985949223457346887364028093674830338705476019372238692494311489163742306574802414950188331 (126 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1397171321 Step 1 took 4196ms Step 2 took 4087ms ********** Factor found in step 2: 88640247102350796577040881684578110160059 Found probable prime factor of 41 digits: 88640247102350796577040881684578110160059 Probable prime cofactor 3669321860674046149889305251133408005163302741051006855356289605523585561498123504209 has 85 digits
By Dmitry Domanov / YAFU v1.11/SIQS, Msieve, GGNFS, ECMNET / Oct 15, 2009
(59·10110+13)/9 = 6(5)1097<111> = 32 · 31 · 433 · 607 · 1753 · 492055353683<12> · C89
C89 = P41 · P48
P41 = 79383400887881116058417233520726189876581<41>
P48 = 130557893200089547416664789600785124972153290347<48>
10/15/09 10:49:09 v1.11 @ DB-SERVER, starting SIQS on c89: 10364129574979876503127217254081877275064792906654360328149891993601289490418900988663607 10/15/09 10:49:09 v1.11 @ DB-SERVER, random seeds: 1344519226, 1972906752 10/15/09 10:49:10 v1.11 @ DB-SERVER, ==== sieve params ==== 10/15/09 10:49:10 v1.11 @ DB-SERVER, n = 89 digits, 294 bits 10/15/09 10:49:10 v1.11 @ DB-SERVER, factor base: 62272 primes (max prime = 1654859) 10/15/09 10:49:10 v1.11 @ DB-SERVER, single large prime cutoff: 182034490 (110 * pmax) 10/15/09 10:49:10 v1.11 @ DB-SERVER, double large prime range from 43 to 50 bits 10/15/09 10:49:10 v1.11 @ DB-SERVER, double large prime cutoff: 738374392384870 10/15/09 10:49:10 v1.11 @ DB-SERVER, using 3159864 large prime slices of factor base 10/15/09 10:49:10 v1.11 @ DB-SERVER, buckets hold 1024 elements 10/15/09 10:49:10 v1.11 @ DB-SERVER, sieve interval: 18 blocks of size 32768 10/15/09 10:49:10 v1.11 @ DB-SERVER, polynomial A has ~ 0 factors 10/15/09 10:49:10 v1.11 @ DB-SERVER, using multiplier of 2 10/15/09 10:49:10 v1.11 @ DB-SERVER, using small prime variation correction of 20 bits 10/15/09 10:49:10 v1.11 @ DB-SERVER, using SSE2 for trial division and x128 sieve scanning 10/15/09 10:49:10 v1.11 @ DB-SERVER, trial factoring cutoff at 98 bits 10/15/09 10:49:10 v1.11 @ DB-SERVER, ==== sieving started ( 8 threads) ==== 10/15/09 10:56:42 v1.11 @ DB-SERVER, sieve time = 112.7813, relation time = 53.9219, poly_time = 224.5469 10/15/09 10:56:42 v1.11 @ DB-SERVER, 63386 relations found: 19900 full + 43486 from 611150 partial, using 18049896 polys (743 A polys) 10/15/09 10:56:42 v1.11 @ DB-SERVER, on average, sieving found 0.03 rels/poly and 1390.89 rels/sec 10/15/09 10:56:42 v1.11 @ DB-SERVER, trial division touched 15764889 sieve locations out of 21292523716608 10/15/09 10:56:42 v1.11 @ DB-SERVER, ==== post processing stage (msieve-1.38) ==== 10/15/09 10:56:43 v1.11 @ DB-SERVER, begin with 631050 relations 10/15/09 10:56:44 v1.11 @ DB-SERVER, reduce to 135193 relations in 10 passes 10/15/09 10:57:02 v1.11 @ DB-SERVER, failed to read relation 102445 10/15/09 10:57:04 v1.11 @ DB-SERVER, recovered 135192 relations 10/15/09 10:57:04 v1.11 @ DB-SERVER, recovered 114027 polynomials 10/15/09 10:57:05 v1.11 @ DB-SERVER, attempting to build 63385 cycles 10/15/09 10:57:05 v1.11 @ DB-SERVER, found 63385 cycles in 4 passes 10/15/09 10:57:05 v1.11 @ DB-SERVER, distribution of cycle lengths: 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 1 : 19900 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 2 : 16082 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 3 : 12004 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 4 : 7301 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 5 : 4010 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 6 : 2188 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 7 : 1060 10/15/09 10:57:05 v1.11 @ DB-SERVER, length 9+: 840 10/15/09 10:57:05 v1.11 @ DB-SERVER, largest cycle: 14 relations 10/15/09 10:57:05 v1.11 @ DB-SERVER, matrix is 62272 x 63385 (13.4 MB) with weight 3246634 (51.22/col) 10/15/09 10:57:05 v1.11 @ DB-SERVER, sparse part has weight 3246634 (51.22/col) 10/15/09 10:57:05 v1.11 @ DB-SERVER, filtering completed in 4 passes 10/15/09 10:57:05 v1.11 @ DB-SERVER, matrix is 55816 x 55880 (11.8 MB) with weight 2866829 (51.30/col) 10/15/09 10:57:05 v1.11 @ DB-SERVER, sparse part has weight 2866829 (51.30/col) 10/15/09 10:57:06 v1.11 @ DB-SERVER, saving the first 48 matrix rows for later 10/15/09 10:57:06 v1.11 @ DB-SERVER, matrix is 55768 x 55880 (10.1 MB) with weight 2493883 (44.63/col) 10/15/09 10:57:06 v1.11 @ DB-SERVER, sparse part has weight 2314701 (41.42/col) 10/15/09 10:57:06 v1.11 @ DB-SERVER, matrix includes 64 packed rows 10/15/09 10:57:06 v1.11 @ DB-SERVER, using block size 22352 for processor cache size 4096 kB 10/15/09 10:57:06 v1.11 @ DB-SERVER, commencing Lanczos iteration 10/15/09 10:57:06 v1.11 @ DB-SERVER, memory use: 8.9 MB 10/15/09 10:57:31 v1.11 @ DB-SERVER, lanczos halted after 884 iterations (dim = 55768) 10/15/09 10:57:31 v1.11 @ DB-SERVER, recovered 18 nontrivial dependencies 10/15/09 10:57:32 v1.11 @ DB-SERVER, prp48 = 130557893200089547416664789600785124972153290347 10/15/09 10:57:34 v1.11 @ DB-SERVER, prp41 = 79383400887881116058417233520726189876581 10/15/09 10:57:34 v1.11 @ DB-SERVER, Lanczos elapsed time = 48.9380 seconds. 10/15/09 10:57:34 v1.11 @ DB-SERVER, Sqrt elapsed time = 2.5620 seconds. 10/15/09 10:57:34 v1.11 @ DB-SERVER, SIQS elapsed time = 505.2031 seconds.
(59·10128+13)/9 = 6(5)1277<129> = 32 · 29 · 3163 · 6907 · 25308891017989766962105996429<29> · C91
C91 = P45 · P47
P45 = 388037870916555061008960738628118331241660151<45>
P47 = 11706663046031675214351099687927177731673630683<47>
10/15/09 11:03:03 v1.11 @ DB-SERVER, starting SIQS on c91: 4542628603919644465075502386845628450173962547307743182559982213018865442956437146572013133 10/15/09 11:03:03 v1.11 @ DB-SERVER, random seeds: 1344519226, 1972906752 10/15/09 11:03:04 v1.11 @ DB-SERVER, ==== sieve params ==== 10/15/09 11:03:04 v1.11 @ DB-SERVER, n = 92 digits, 305 bits 10/15/09 11:03:04 v1.11 @ DB-SERVER, factor base: 69579 primes (max prime = 1856333) 10/15/09 11:03:04 v1.11 @ DB-SERVER, single large prime cutoff: 222759960 (120 * pmax) 10/15/09 11:03:04 v1.11 @ DB-SERVER, double large prime range from 43 to 50 bits 10/15/09 11:03:04 v1.11 @ DB-SERVER, double large prime cutoff: 1061956765889454 10/15/09 11:03:04 v1.11 @ DB-SERVER, using 875902009 large prime slices of factor base 10/15/09 11:03:04 v1.11 @ DB-SERVER, buckets hold 1024 elements 10/15/09 11:03:04 v1.11 @ DB-SERVER, sieve interval: 22 blocks of size 32768 10/15/09 11:03:04 v1.11 @ DB-SERVER, polynomial A has ~ 538443777 factors 10/15/09 11:03:04 v1.11 @ DB-SERVER, using multiplier of 13 10/15/09 11:03:04 v1.11 @ DB-SERVER, using small prime variation correction of 20 bits 10/15/09 11:03:04 v1.11 @ DB-SERVER, using SSE2 for trial division and x128 sieve scanning 10/15/09 11:03:04 v1.11 @ DB-SERVER, trial factoring cutoff at 97 bits 10/15/09 11:03:04 v1.11 @ DB-SERVER, ==== sieving started ( 8 threads) ==== 10/15/09 11:22:00 v1.11 @ DB-SERVER, sieve time = 226.7188, relation time = 109.3594, poly_time = 408.7031 10/15/09 11:22:00 v1.11 @ DB-SERVER, 70162 relations found: 18480 full + 51682 from 889705 partial, using 29037424 polys (855 A polys) 10/15/09 11:22:00 v1.11 @ DB-SERVER, on average, sieving found 0.03 rels/poly and 799.02 rels/sec 10/15/09 11:22:00 v1.11 @ DB-SERVER, trial division touched 35103913 sieve locations out of 41865925623808 10/15/09 11:22:00 v1.11 @ DB-SERVER, ==== post processing stage (msieve-1.38) ==== 10/15/09 11:22:01 v1.11 @ DB-SERVER, begin with 908185 relations 10/15/09 11:22:02 v1.11 @ DB-SERVER, reduce to 171825 relations in 10 passes 10/15/09 11:22:21 v1.11 @ DB-SERVER, recovered 171825 relations 10/15/09 11:22:21 v1.11 @ DB-SERVER, recovered 147381 polynomials 10/15/09 11:22:21 v1.11 @ DB-SERVER, attempting to build 70162 cycles 10/15/09 11:22:21 v1.11 @ DB-SERVER, found 70162 cycles in 6 passes 10/15/09 11:22:21 v1.11 @ DB-SERVER, distribution of cycle lengths: 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 1 : 18480 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 2 : 13955 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 3 : 12442 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 4 : 9383 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 5 : 6554 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 6 : 4095 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 7 : 2377 10/15/09 11:22:21 v1.11 @ DB-SERVER, length 9+: 2876 10/15/09 11:22:21 v1.11 @ DB-SERVER, largest cycle: 17 relations 10/15/09 11:22:22 v1.11 @ DB-SERVER, matrix is 69579 x 70162 (17.5 MB) with weight 4314262 (61.49/col) 10/15/09 11:22:22 v1.11 @ DB-SERVER, sparse part has weight 4314262 (61.49/col) 10/15/09 11:22:22 v1.11 @ DB-SERVER, filtering completed in 3 passes 10/15/09 11:22:22 v1.11 @ DB-SERVER, matrix is 65189 x 65253 (16.3 MB) with weight 4022563 (61.65/col) 10/15/09 11:22:22 v1.11 @ DB-SERVER, sparse part has weight 4022563 (61.65/col) 10/15/09 11:22:23 v1.11 @ DB-SERVER, saving the first 48 matrix rows for later 10/15/09 11:22:23 v1.11 @ DB-SERVER, matrix is 65141 x 65253 (14.0 MB) with weight 3551848 (54.43/col) 10/15/09 11:22:23 v1.11 @ DB-SERVER, sparse part has weight 3288973 (50.40/col) 10/15/09 11:22:23 v1.11 @ DB-SERVER, matrix includes 64 packed rows 10/15/09 11:22:23 v1.11 @ DB-SERVER, using block size 26101 for processor cache size 4096 kB 10/15/09 11:22:23 v1.11 @ DB-SERVER, commencing Lanczos iteration 10/15/09 11:22:24 v1.11 @ DB-SERVER, memory use: 11.9 MB 10/15/09 11:23:03 v1.11 @ DB-SERVER, lanczos halted after 1032 iterations (dim = 65138) 10/15/09 11:23:03 v1.11 @ DB-SERVER, recovered 16 nontrivial dependencies 10/15/09 11:23:05 v1.11 @ DB-SERVER, prp45 = 388037870916555061008960738628118331241660151 10/15/09 11:23:06 v1.11 @ DB-SERVER, prp47 = 11706663046031675214351099687927177731673630683 10/15/09 11:23:06 v1.11 @ DB-SERVER, Lanczos elapsed time = 63.3600 seconds. 10/15/09 11:23:06 v1.11 @ DB-SERVER, Sqrt elapsed time = 2.7500 seconds. 10/15/09 11:23:06 v1.11 @ DB-SERVER, SIQS elapsed time = 1202.7344 seconds.
(59·10121+31)/9 = 6(5)1209<122> = 3 · 19 · 53898503 · 27129825864773534023226576461<29> · C84
C84 = P41 · P44
P41 = 49585585839260812980296174140738246117879<41>
P44 = 15861910263201857558262504213501787137788891<44>
10/15/09 11:26:17 v1.11 @ DB-SERVER, starting SIQS on c84: 786522112930647783028412494827668993729597868210456036262629440824180003640602682189 10/15/09 11:26:17 v1.11 @ DB-SERVER, random seeds: 1344519226, 1972906752 10/15/09 11:26:18 v1.11 @ DB-SERVER, ==== sieve params ==== 10/15/09 11:26:18 v1.11 @ DB-SERVER, n = 85 digits, 282 bits 10/15/09 11:26:18 v1.11 @ DB-SERVER, factor base: 53604 primes (max prime = 1408241) 10/15/09 11:26:18 v1.11 @ DB-SERVER, single large prime cutoff: 133782895 (95 * pmax) 10/15/09 11:26:18 v1.11 @ DB-SERVER, double large prime range from 42 to 49 bits 10/15/09 11:26:18 v1.11 @ DB-SERVER, double large prime cutoff: 424151552894538 10/15/09 11:26:18 v1.11 @ DB-SERVER, using 3683125 large prime slices of factor base 10/15/09 11:26:18 v1.11 @ DB-SERVER, buckets hold 1024 elements 10/15/09 11:26:18 v1.11 @ DB-SERVER, sieve interval: 14 blocks of size 32768 10/15/09 11:26:18 v1.11 @ DB-SERVER, polynomial A has ~ 4456449 factors 10/15/09 11:26:18 v1.11 @ DB-SERVER, using multiplier of 5 10/15/09 11:26:18 v1.11 @ DB-SERVER, using small prime variation correction of 20 bits 10/15/09 11:26:18 v1.11 @ DB-SERVER, using SSE2 for trial division and x128 sieve scanning 10/15/09 11:26:18 v1.11 @ DB-SERVER, trial factoring cutoff at 91 bits 10/15/09 11:26:18 v1.11 @ DB-SERVER, ==== sieving started ( 8 threads) ==== 10/15/09 11:29:48 v1.11 @ DB-SERVER, sieve time = 40.4219, relation time = 42.5313, poly_time = 75.6875 10/15/09 11:29:48 v1.11 @ DB-SERVER, 54303 relations found: 17846 full + 36457 from 515948 partial, using 4615496 polys (423 A polys) 10/15/09 11:29:48 v1.11 @ DB-SERVER, on average, sieving found 0.12 rels/poly and 2530.39 rels/sec 10/15/09 11:29:48 v1.11 @ DB-SERVER, trial division touched 12004008 sieve locations out of 4234736041984 10/15/09 11:29:48 v1.11 @ DB-SERVER, ==== post processing stage (msieve-1.38) ==== 10/15/09 11:29:49 v1.11 @ DB-SERVER, begin with 533794 relations 10/15/09 11:29:49 v1.11 @ DB-SERVER, reduce to 114564 relations in 9 passes 10/15/09 11:29:54 v1.11 @ DB-SERVER, recovered 114564 relations 10/15/09 11:29:54 v1.11 @ DB-SERVER, recovered 83430 polynomials 10/15/09 11:29:54 v1.11 @ DB-SERVER, attempting to build 54303 cycles 10/15/09 11:29:54 v1.11 @ DB-SERVER, found 54303 cycles in 5 passes 10/15/09 11:29:54 v1.11 @ DB-SERVER, distribution of cycle lengths: 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 1 : 17846 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 2 : 13793 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 3 : 10091 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 4 : 5975 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 5 : 3378 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 6 : 1681 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 7 : 833 10/15/09 11:29:54 v1.11 @ DB-SERVER, length 9+: 706 10/15/09 11:29:54 v1.11 @ DB-SERVER, largest cycle: 16 relations 10/15/09 11:29:54 v1.11 @ DB-SERVER, matrix is 53604 x 54303 (10.8 MB) with weight 2622699 (48.30/col) 10/15/09 11:29:54 v1.11 @ DB-SERVER, sparse part has weight 2622699 (48.30/col) 10/15/09 11:29:55 v1.11 @ DB-SERVER, filtering completed in 4 passes 10/15/09 11:29:55 v1.11 @ DB-SERVER, matrix is 46804 x 46868 (9.4 MB) with weight 2289260 (48.84/col) 10/15/09 11:29:55 v1.11 @ DB-SERVER, sparse part has weight 2289260 (48.84/col) 10/15/09 11:29:55 v1.11 @ DB-SERVER, saving the first 48 matrix rows for later 10/15/09 11:29:55 v1.11 @ DB-SERVER, matrix is 46756 x 46868 (7.7 MB) with weight 1933098 (41.25/col) 10/15/09 11:29:55 v1.11 @ DB-SERVER, sparse part has weight 1749204 (37.32/col) 10/15/09 11:29:55 v1.11 @ DB-SERVER, matrix includes 64 packed rows 10/15/09 11:29:55 v1.11 @ DB-SERVER, using block size 18747 for processor cache size 4096 kB 10/15/09 11:29:56 v1.11 @ DB-SERVER, commencing Lanczos iteration 10/15/09 11:29:56 v1.11 @ DB-SERVER, memory use: 7.1 MB 10/15/09 11:30:11 v1.11 @ DB-SERVER, lanczos halted after 741 iterations (dim = 46751) 10/15/09 11:30:12 v1.11 @ DB-SERVER, recovered 15 nontrivial dependencies 10/15/09 11:30:13 v1.11 @ DB-SERVER, prp41 = 49585585839260812980296174140738246117879 10/15/09 11:30:13 v1.11 @ DB-SERVER, prp44 = 15861910263201857558262504213501787137788891 10/15/09 11:30:13 v1.11 @ DB-SERVER, Lanczos elapsed time = 23.2190 seconds. 10/15/09 11:30:13 v1.11 @ DB-SERVER, Sqrt elapsed time = 1.5310 seconds. 10/15/09 11:30:13 v1.11 @ DB-SERVER, SIQS elapsed time = 235.7031 seconds.
(59·10117+31)/9 = 6(5)1169<118> = 7 · 149 · 21611 · 77141 · 10743395076680282999<20> · C87
C87 = P37 · P51
P37 = 1006339068803322500630304410519443319<37>
P51 = 348721870691372066316258363091558353915003674550923<51>
10/15/09 11:32:39 v1.11 @ DB-SERVER, starting SIQS on c87: 350932442622908006046208304245469699700822566574232521739951595142937689076357277633437 10/15/09 11:32:39 v1.11 @ DB-SERVER, random seeds: 1344519226, 1972906752 10/15/09 11:32:39 v1.11 @ DB-SERVER, ==== sieve params ==== 10/15/09 11:32:39 v1.11 @ DB-SERVER, n = 88 digits, 292 bits 10/15/09 11:32:39 v1.11 @ DB-SERVER, factor base: 59299 primes (max prime = 1563811) 10/15/09 11:32:39 v1.11 @ DB-SERVER, single large prime cutoff: 172019210 (110 * pmax) 10/15/09 11:32:39 v1.11 @ DB-SERVER, double large prime range from 43 to 50 bits 10/15/09 11:32:39 v1.11 @ DB-SERVER, double large prime cutoff: 666865896067036 10/15/09 11:32:39 v1.11 @ DB-SERVER, using 3552048 large prime slices of factor base 10/15/09 11:32:39 v1.11 @ DB-SERVER, buckets hold 1024 elements 10/15/09 11:32:39 v1.11 @ DB-SERVER, sieve interval: 18 blocks of size 32768 10/15/09 11:32:39 v1.11 @ DB-SERVER, polynomial A has ~ 0 factors 10/15/09 11:32:39 v1.11 @ DB-SERVER, using multiplier of 13 10/15/09 11:32:39 v1.11 @ DB-SERVER, using small prime variation correction of 20 bits 10/15/09 11:32:39 v1.11 @ DB-SERVER, using SSE2 for trial division and x128 sieve scanning 10/15/09 11:32:39 v1.11 @ DB-SERVER, trial factoring cutoff at 97 bits 10/15/09 11:32:39 v1.11 @ DB-SERVER, ==== sieving started ( 8 threads) ==== 10/15/09 11:37:46 v1.11 @ DB-SERVER, sieve time = 82.0781, relation time = 40.9531, poly_time = 143.0938 10/15/09 11:37:46 v1.11 @ DB-SERVER, 60057 relations found: 20679 full + 39378 from 537344 partial, using 8253696 polys (503 A polys) 10/15/09 11:37:46 v1.11 @ DB-SERVER, on average, sieving found 0.07 rels/poly and 1817.76 rels/sec 10/15/09 11:37:46 v1.11 @ DB-SERVER, trial division touched 10999568 sieve locations out of 9736455979008 10/15/09 11:37:46 v1.11 @ DB-SERVER, ==== post processing stage (msieve-1.38) ==== 10/15/09 11:37:47 v1.11 @ DB-SERVER, begin with 558023 relations 10/15/09 11:37:47 v1.11 @ DB-SERVER, reduce to 120144 relations in 10 passes 10/15/09 11:37:57 v1.11 @ DB-SERVER, recovered 120144 relations 10/15/09 11:37:57 v1.11 @ DB-SERVER, recovered 95960 polynomials 10/15/09 11:37:57 v1.11 @ DB-SERVER, attempting to build 60057 cycles 10/15/09 11:37:57 v1.11 @ DB-SERVER, found 60057 cycles in 5 passes 10/15/09 11:37:57 v1.11 @ DB-SERVER, distribution of cycle lengths: 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 1 : 20679 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 2 : 17162 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 3 : 11039 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 4 : 5919 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 5 : 2987 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 6 : 1259 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 7 : 615 10/15/09 11:37:57 v1.11 @ DB-SERVER, length 9+: 397 10/15/09 11:37:57 v1.11 @ DB-SERVER, largest cycle: 15 relations 10/15/09 11:37:58 v1.11 @ DB-SERVER, matrix is 59299 x 60057 (11.6 MB) with weight 2806270 (46.73/col) 10/15/09 11:37:58 v1.11 @ DB-SERVER, sparse part has weight 2806270 (46.73/col) 10/15/09 11:37:59 v1.11 @ DB-SERVER, filtering completed in 4 passes 10/15/09 11:37:59 v1.11 @ DB-SERVER, matrix is 51616 x 51680 (10.1 MB) with weight 2451748 (47.44/col) 10/15/09 11:37:59 v1.11 @ DB-SERVER, sparse part has weight 2451748 (47.44/col) 10/15/09 11:37:59 v1.11 @ DB-SERVER, saving the first 48 matrix rows for later 10/15/09 11:37:59 v1.11 @ DB-SERVER, matrix is 51568 x 51680 (8.6 MB) with weight 2106940 (40.77/col) 10/15/09 11:37:59 v1.11 @ DB-SERVER, sparse part has weight 1933573 (37.41/col) 10/15/09 11:37:59 v1.11 @ DB-SERVER, matrix includes 64 packed rows 10/15/09 11:37:59 v1.11 @ DB-SERVER, using block size 20672 for processor cache size 4096 kB 10/15/09 11:38:00 v1.11 @ DB-SERVER, commencing Lanczos iteration 10/15/09 11:38:00 v1.11 @ DB-SERVER, memory use: 7.8 MB 10/15/09 11:38:19 v1.11 @ DB-SERVER, lanczos halted after 817 iterations (dim = 51560) 10/15/09 11:38:19 v1.11 @ DB-SERVER, recovered 12 nontrivial dependencies 10/15/09 11:38:21 v1.11 @ DB-SERVER, prp37 = 1006339068803322500630304410519443319 10/15/09 11:38:22 v1.11 @ DB-SERVER, prp51 = 348721870691372066316258363091558353915003674550923 10/15/09 11:38:22 v1.11 @ DB-SERVER, Lanczos elapsed time = 33.1250 seconds. 10/15/09 11:38:22 v1.11 @ DB-SERVER, Sqrt elapsed time = 2.7500 seconds. 10/15/09 11:38:22 v1.11 @ DB-SERVER, SIQS elapsed time = 342.8594 seconds.
(59·10111+31)/9 = 6(5)1109<112> = 72 · 23 · 7099524661<10> · 97037762429<11> · C88
C88 = P41 · P48
P41 = 13591305598907925889100220889634951249279<41>
P48 = 621232778672766303826611081595480582684960831967<48>
10/15/09 11:39:04 v1.11 @ DB-SERVER, starting SIQS on c88: 8443364543000296998259060102897487391031322808944578108402658675669115095005629848901793 10/15/09 11:39:04 v1.11 @ DB-SERVER, random seeds: 1344519226, 1972906752 10/15/09 11:40:59 v1.11 @ DB-SERVER, starting SIQS on c88: 8443364543000296998259060102897487391031322808944578108402658675669115095005629848901793 10/15/09 11:40:59 v1.11 @ DB-SERVER, random seeds: 3553357154, 3455292184 10/15/09 11:40:59 v1.11 @ DB-SERVER, ==== sieve params ==== 10/15/09 11:40:59 v1.11 @ DB-SERVER, n = 88 digits, 293 bits 10/15/09 11:40:59 v1.11 @ DB-SERVER, factor base: 62272 primes (max prime = 1648081) 10/15/09 11:40:59 v1.11 @ DB-SERVER, single large prime cutoff: 181288910 (110 * pmax) 10/15/09 11:40:59 v1.11 @ DB-SERVER, double large prime range from 43 to 50 bits 10/15/09 11:40:59 v1.11 @ DB-SERVER, double large prime cutoff: 732939669490134 10/15/09 11:40:59 v1.11 @ DB-SERVER, using 3420977 large prime slices of factor base 10/15/09 11:40:59 v1.11 @ DB-SERVER, buckets hold 1024 elements 10/15/09 11:40:59 v1.11 @ DB-SERVER, sieve interval: 18 blocks of size 32768 10/15/09 11:40:59 v1.11 @ DB-SERVER, polynomial A has ~ 0 factors 10/15/09 11:40:59 v1.11 @ DB-SERVER, using multiplier of 1 10/15/09 11:40:59 v1.11 @ DB-SERVER, using small prime variation correction of 19 bits 10/15/09 11:40:59 v1.11 @ DB-SERVER, using SSE2 for trial division and x128 sieve scanning 10/15/09 11:40:59 v1.11 @ DB-SERVER, trial factoring cutoff at 99 bits 10/15/09 11:40:59 v1.11 @ DB-SERVER, ==== sieving started ( 8 threads) ==== 10/15/09 11:46:35 v1.11 @ DB-SERVER, sieve time = 94.3594, relation time = 34.8906, poly_time = 179.8125 10/15/09 11:46:35 v1.11 @ DB-SERVER, 63213 relations found: 20750 full + 42463 from 567952 partial, using 11344200 polys (591 A polys) 10/15/09 11:46:35 v1.11 @ DB-SERVER, on average, sieving found 0.05 rels/poly and 1748.35 rels/sec 10/15/09 11:46:35 v1.11 @ DB-SERVER, trial division touched 9909419 sieve locations out of 13382162841600 10/15/09 11:46:35 v1.11 @ DB-SERVER, ==== post processing stage (msieve-1.38) ==== 10/15/09 11:46:36 v1.11 @ DB-SERVER, begin with 588782 relations 10/15/09 11:46:36 v1.11 @ DB-SERVER, reduce to 129673 relations in 9 passes 10/15/09 11:46:43 v1.11 @ DB-SERVER, failed to read relation 27450 10/15/09 11:49:23 v1.11 @ DB-SERVER, recovered 129672 relations 10/15/09 11:49:23 v1.11 @ DB-SERVER, recovered 110212 polynomials 10/15/09 11:49:24 v1.11 @ DB-SERVER, attempting to build 63208 cycles 10/15/09 11:49:24 v1.11 @ DB-SERVER, found 63208 cycles in 5 passes 10/15/09 11:49:24 v1.11 @ DB-SERVER, distribution of cycle lengths: 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 1 : 20749 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 2 : 17320 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 3 : 11955 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 4 : 6663 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 5 : 3524 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 6 : 1686 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 7 : 732 10/15/09 11:49:24 v1.11 @ DB-SERVER, length 9+: 579 10/15/09 11:49:24 v1.11 @ DB-SERVER, largest cycle: 16 relations 10/15/09 11:49:24 v1.11 @ DB-SERVER, matrix is 62272 x 63208 (12.5 MB) with weight 3031794 (47.97/col) 10/15/09 11:49:24 v1.11 @ DB-SERVER, sparse part has weight 3031794 (47.97/col) 10/15/09 11:49:24 v1.11 @ DB-SERVER, filtering completed in 4 passes 10/15/09 11:49:24 v1.11 @ DB-SERVER, matrix is 55233 x 55297 (11.1 MB) with weight 2678208 (48.43/col) 10/15/09 11:49:24 v1.11 @ DB-SERVER, sparse part has weight 2678208 (48.43/col) 10/15/09 11:49:25 v1.11 @ DB-SERVER, saving the first 48 matrix rows for later 10/15/09 11:49:25 v1.11 @ DB-SERVER, matrix is 55185 x 55297 (9.5 MB) with weight 2346295 (42.43/col) 10/15/09 11:49:25 v1.11 @ DB-SERVER, sparse part has weight 2169291 (39.23/col) 10/15/09 11:49:25 v1.11 @ DB-SERVER, matrix includes 64 packed rows 10/15/09 11:49:25 v1.11 @ DB-SERVER, using block size 22118 for processor cache size 4096 kB 10/15/09 11:49:25 v1.11 @ DB-SERVER, commencing Lanczos iteration 10/15/09 11:49:25 v1.11 @ DB-SERVER, memory use: 8.6 MB 10/15/09 11:49:49 v1.11 @ DB-SERVER, lanczos halted after 874 iterations (dim = 55182) 10/15/09 11:49:49 v1.11 @ DB-SERVER, recovered 15 nontrivial dependencies 10/15/09 11:49:49 v1.11 @ DB-SERVER, prp48 = 621232778672766303826611081595480582684960831967 10/15/09 11:49:51 v1.11 @ DB-SERVER, prp41 = 13591305598907925889100220889634951249279 10/15/09 11:49:51 v1.11 @ DB-SERVER, Lanczos elapsed time = 193.4850 seconds. 10/15/09 11:49:51 v1.11 @ DB-SERVER, Sqrt elapsed time = 1.7970 seconds. 10/15/09 11:49:51 v1.11 @ DB-SERVER, SIQS elapsed time = 532.0000 seconds.
(59·10112+13)/9 = 6(5)1117<113> = C113
C113 = P55 · P59
P55 = 1188089508824001504560958518820730054517080662378037633<55>
P59 = 55177286785777581520805192991429931927549802414792232067429<59>
Number: snfs113 N=65555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 113 digits) SNFS difficulty: 114 digits. Divisors found: r1=1188089508824001504560958518820730054517080662378037633 (pp55) r2=55177286785777581520805192991429931927549802414792232067429 (pp59) Version: Msieve-1.40 Total time: 1.03 hours. Scaled time: 2.03 units (timescale=1.975). Factorization parameters were as follows: n: 65555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 20000000000000000000000 deg: 5 c5: 1475 c0: 104 skew: 0.59 type: snfs lss: 1 rlim: 570000 alim: 570000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 570000/570000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [285000, 535001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65504 x 65729 Total sieving time: 0.99 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,570000,570000,25,25,45,45,2.2,2.2,50000 total time: 1.03 hours. --------- CPU info (if available) ----------
(59·10119+13)/9 = 6(5)1187<120> = 33 · 7 · C118
C118 = P37 · P38 · P44
P37 = 1736960267193906384095189045045358053<37>
P38 = 21996508258490260973039613031960873529<38>
P44 = 90782903336123624963421654695248978637772349<44>
Number: snfs118 N=3468547912992357436801881246325690770135214579659024103468547912992357436801881246325690770135214579659024103468547913 ( 118 digits) SNFS difficulty: 121 digits. Divisors found: r1=1736960267193906384095189045045358053 (pp37) r2=21996508258490260973039613031960873529 (pp38) r3=90782903336123624963421654695248978637772349 (pp44) Version: Msieve-1.40 Total time: 1.15 hours. Scaled time: 2.27 units (timescale=1.969). Factorization parameters were as follows: n: 3468547912992357436801881246325690770135214579659024103468547912992357436801881246325690770135214579659024103468547913 m: 1000000000000000000000000 deg: 5 c5: 59 c0: 130 skew: 1.17 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 625001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 93874 x 94099 Total sieving time: 1.10 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.15 hours. --------- CPU info (if available) ----------
(59·10148+13)/9 = 6(5)1477<149> = 53 · 151 · 199 · C143
C143 = P34 · P110
P34 = 3076164667088108516745389482013017<34>
P110 = 13381168187372788462574554082701315063843264662751447519557625636265408132014611579978744571007801716168358393<110>
C143=P34*P110 P34=3076164667088108516745389482013017
(59·10123+31)/9 = 6(5)1229<124> = 7 · C123
C123 = P44 · P80
P44 = 67796015868967415476904212737855081432567281<44>
P80 = 13813613152695726854162911859174511245014894719610845098773886175320964172803377<80>
Number: snfs123 N=936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 ( 123 digits) SNFS difficulty: 126 digits. Divisors found: r1=67796015868967415476904212737855081432567281 (pp44) r2=13813613152695726854162911859174511245014894719610845098773886175320964172803377 (pp80) Version: Msieve-1.40 Total time: 1.71 hours. Scaled time: 3.37 units (timescale=1.969). Factorization parameters were as follows: n: 936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 m: 5000000000000000000000000 deg: 5 c5: 472 c0: 775 skew: 1.10 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 795001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 141708 x 141956 Total sieving time: 1.62 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.71 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Oct 15, 2009
(59·10105+13)/9 = 6(5)1047<106> = 113 · C104
C104 = P47 · P57
P47 = 89044848505139686952915504208989039493279059687<47>
P57 = 651511760110627643845574012013444624423762847008384690947<57>
Number: 65557_105 N=58013765978367748279252704031465093411996066863323500491642084562438544739429695181907571288102261553589 ( 104 digits) SNFS difficulty: 107 digits. Divisors found: r1=89044848505139686952915504208989039493279059687 (pp47) r2=651511760110627643845574012013444624423762847008384690947 (pp57) Version: Msieve-1.40 Total time: 0.50 hours. Scaled time: 0.49 units (timescale=0.983). Factorization parameters were as follows: n: 58013765978367748279252704031465093411996066863323500491642084562438544739429695181907571288102261553589 m: 200000000000000000000000000 deg: 4 c4: 295 c0: 104 skew: 0.77 type: snfs lss: 1 rlim: 440000 alim: 440000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 440000/440000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [220000, 300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37846 x 38071 Total sieving time: 0.48 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107.000,4,0,0,0,0,0,0,0,0,440000,440000,25,25,44,44,2.2,2.2,20000 total time: 0.50 hours. --------- CPU info (if available) ----------
(59·10110+31)/9 = 6(5)1099<111> = 67 · C109
C109 = P34 · P76
P34 = 2059102914028292755130681069223181<34>
P76 = 4751783512270892417414894843292320160601424521926456341003456625783895801217<76>
Number: 65559_110 N=9784411276948590381426202321724709784411276948590381426202321724709784411276948590381426202321724709784411277 ( 109 digits) SNFS difficulty: 111 digits. Divisors found: r1=2059102914028292755130681069223181 (pp34) r2=4751783512270892417414894843292320160601424521926456341003456625783895801217 (pp76) Version: Msieve-1.40 Total time: 0.85 hours. Scaled time: 0.86 units (timescale=1.006). Factorization parameters were as follows: n: 9784411276948590381426202321724709784411276948590381426202321724709784411276948590381426202321724709784411277 m: 10000000000000000000000 deg: 5 c5: 59 c0: 31 skew: 0.88 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46749 x 46976 Total sieving time: 0.83 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.85 hours. --------- CPU info (if available) ----------
(59·10111+13)/9 = 6(5)1107<112> = 439 · 11927 · C106
C106 = P37 · P69
P37 = 8734694642299804010496711075496249163<37>
P69 = 143339549665432578318932537462122730827724811404061270500557851348863<69>
Number: 65557_111 N=1252027196492320606307114589369987766421042273594807966296786001622924337853215175070432365522676684751669 ( 106 digits) SNFS difficulty: 113 digits. Divisors found: r1=8734694642299804010496711075496249163 (pp37) r2=143339549665432578318932537462122730827724811404061270500557851348863 (pp69) Version: Msieve-1.40 Total time: 1.04 hours. Scaled time: 1.02 units (timescale=0.979). Factorization parameters were as follows: n: 1252027196492320606307114589369987766421042273594807966296786001622924337853215175070432365522676684751669 m: 20000000000000000000000 deg: 5 c5: 295 c0: 208 skew: 0.93 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 480001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65478 x 65703 Total sieving time: 1.01 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 1.04 hours. --------- CPU info (if available) ----------
(59·10117+13)/9 = 6(5)1167<118> = 77621 · 448529057554232471<18> · C96
C96 = P42 · P54
P42 = 203428417563359135166031212662690530896047<42>
P54 = 925610055995915867960673659959661342458083279262053241<54>
Number: 65557_117 N=188295388971981404131261747856072315862697613453392705361511379866453078255604311299432750438327 ( 96 digits) SNFS difficulty: 119 digits. Divisors found: r1=203428417563359135166031212662690530896047 (pp42) r2=925610055995915867960673659959661342458083279262053241 (pp54) Version: Msieve-1.40 Total time: 1.85 hours. Scaled time: 1.84 units (timescale=0.997). Factorization parameters were as follows: n: 188295388971981404131261747856072315862697613453392705361511379866453078255604311299432750438327 m: 200000000000000000000000 deg: 5 c5: 1475 c0: 104 skew: 0.59 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 695001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 81706 x 81931 Total sieving time: 1.79 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 1.85 hours. --------- CPU info (if available) ----------
(59·10126+13)/9 = 6(5)1257<127> = 83 · 311 · 2308817372749<13> · 426718586346187<15> · C96
C96 = P35 · P62
P35 = 18919908904716415662053348709684209<35>
P62 = 13624508322953365952503185313920601420001183323669772126013967<62>
Number: 65557_126 N=257774456341828307211875452312310580375006737357665999128945835024477312715502955571986493347103 ( 96 digits) SNFS difficulty: 128 digits. Divisors found: r1=18919908904716415662053348709684209 (pp35) r2=13624508322953365952503185313920601420001183323669772126013967 (pp62) Version: Msieve-1.40 Total time: 2.74 hours. Scaled time: 2.47 units (timescale=0.902). Factorization parameters were as follows: n: 257774456341828307211875452312310580375006737357665999128945835024477312715502955571986493347103 m: 20000000000000000000000000 deg: 5 c5: 295 c0: 208 skew: 0.93 type: snfs lss: 1 rlim: 990000 alim: 990000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 990000/990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [495000, 945001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 151331 x 151557 Total sieving time: 2.63 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,128.000,5,0,0,0,0,0,0,0,0,990000,990000,26,26,47,47,2.3,2.3,50000 total time: 2.74 hours. --------- CPU info (if available) ----------
By matsui / Msieve / Oct 15, 2009
(17·10196+1)/9 = 1(8)1959<197> = 132 · 1567 · C191
C191 = P71 · P120
P71 = 76185120133903791191690400321137479269091823110582049300522285191069163<71>
P120 = 936225690358746416834066797014232431566481342739412821308251213266451379641923167403248207342648269437398079244571833261<120>
N=71326466692428108166167171616094103944479478326613960603455473614032349489617174070563693066270259338837219157281991703473221317215230130649108607971697658016444526679664866302733859554830543 ( 191 digits) SNFS difficulty: 198 digits. Divisors found: r1=76185120133903791191690400321137479269091823110582049300522285191069163 (pp71) r2=936225690358746416834066797014232431566481342739412821308251213266451379641923167403248207342648269437398079244571833261 (pp120) Version: Msieve v. 1.42 Total time: 985.18 hours. Scaled time: 2773.28 units (timescale=2.815). Factorization parameters were as follows: n: 71326466692428108166167171616094103944479478326613960603455473614032349489617174070563693066270259338837219157281991703473221317215230130649108607971697658016444526679664866302733859554830543 m: 2000000000000000000000000000000000000000 deg: 5 c5: 85 c0: 16 skew: 0.72 type: snfs lss: 1 rlim: 14200000 alim: 14200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 400000 Factor base limits: 14200000/14200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7100000, 14300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2354821 x 2355050 Total sieving time: 977.67 hours. Total relation processing time: 0.17 hours. Matrix solve time: 7.12 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,198.000,5,0,0,0,0,0,0,0,0,14200000,14200000,28,28,55,55,2.5,2.5,100000 total time: 985.18 hours.
Factorizations of 655...557 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
Factorizations of 655...559 have been extended up to n=125. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Oct 14, 2009
(13·10173-31)/9 = 1(4)1721<174> = 3 · 11 · 61 · 241 · 3529 · C164
C164 = P42 · P123
P42 = 825797712453284854898455720327785686620847<42>
P123 = 102167952869081650152765818487263698573598530904222949149986942533196188277263383377597803183509917577439764618936491835579<123>
Number: 14441_173 N=84370061765322647928872401971571207460554744255313121875885604347392453902982301215842039579141719551627224992917852082827356743544863594372624173011525868837715413 ( 164 digits) SNFS difficulty: 175 digits. Divisors found: r1=825797712453284854898455720327785686620847 (pp42) r2=102167952869081650152765818487263698573598530904222949149986942533196188277263383377597803183509917577439764618936491835579 (pp123) Version: Msieve-1.40 Total time: 66.57 hours. Scaled time: 115.77 units (timescale=1.739). Factorization parameters were as follows: n: 84370061765322647928872401971571207460554744255313121875885604347392453902982301215842039579141719551627224992917852082827356743544863594372624173011525868837715413 m: 50000000000000000000000000000000000 deg: 5 c5: 104 c0: -775 skew: 1.49 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 6150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1099439 x 1099664 Total sieving time: 64.51 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.61 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 66.57 hours.
Factorizations of 266...669 have been extended up to n=225. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Oct 13, 2009
(2·10189+7)/9 = (2)1883<189> = 152681 · C184
C184 = P63 · P121
P63 = 297293579162492102984765796920071685141276210227714826259719041<63>
P121 = 4895724391704181343633928137933080872158292132133342690122300077373183639565891040652324217278579186451361094776320686263<121>
Number: 22223_189 N=1455467427002850532955785082768793905084602682863108194354387397398643067717805242448125321567334653442289624918766724230403404629405245067966690172465612762702773902595753382688233783 ( 184 digits) SNFS difficulty: 190 digits. Divisors found: r1=297293579162492102984765796920071685141276210227714826259719041 (pp63) r2=4895724391704181343633928137933080872158292132133342690122300077373183639565891040652324217278579186451361094776320686263 (pp121) Version: Msieve-1.40 Total time: 249.40 hours. Scaled time: 433.71 units (timescale=1.739). Factorization parameters were as follows: n: 1455467427002850532955785082768793905084602682863108194354387397398643067717805242448125321567334653442289624918766724230403404629405245067966690172465612762702773902595753382688233783 m: 100000000000000000000000000000000000000 deg: 5 c5: 1 c0: 35 skew: 2.04 type: snfs lss: 1 rlim: 10300000 alim: 10300000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10300000/10300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5150000, 9150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2021483 x 2021708 Total sieving time: 242.72 hours. Total relation processing time: 0.23 hours. Matrix solve time: 6.21 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10300000,10300000,28,28,54,54,2.5,2.5,100000 total time: 249.40 hours.
(13·10173-7)/3 = 4(3)1721<174> = 17 · 47 · 137 · 13564427 · C162
C162 = P62 · P100
P62 = 36827193780046573232594260772222003028836546657202581604583859<62>
P100 = 7924733594026371980820223389077532702295260397172538624856138458497367165468734245221852075206541109<100>
Number: 43331_173 N=291845699722454131828950952434067433348183921452070308492393626701016645808266368050060324324481132861030766646948380844607174467577204438194077672931174721359631 ( 162 digits) SNFS difficulty: 175 digits. Divisors found: r1=36827193780046573232594260772222003028836546657202581604583859 (pp62) r2=7924733594026371980820223389077532702295260397172538624856138458497367165468734245221852075206541109 (pp100) Version: Msieve-1.40 Total time: 60.95 hours. Scaled time: 105.99 units (timescale=1.739). Factorization parameters were as follows: n: 291845699722454131828950952434067433348183921452070308492393626701016645808266368050060324324481132861030766646948380844607174467577204438194077672931174721359631 m: 50000000000000000000000000000000000 deg: 5 c5: 104 c0: -175 skew: 1.11 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 5850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1073147 x 1073372 Total sieving time: 58.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.51 hours. Time per square root: 0.56 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 60.95 hours.
By matsui / Msieve / Oct 13, 2009
(41·10205-23)/9 = 4(5)2043<206> = 7649 · C202
C202 = P43 · P160
P43 = 5232600658096703417078110461726312950053631<43>
P160 = 1138201346022551538972137406175594602676219601032471693317267548973571082701802077584706733314967476041455463058018604261123628329460178633626227973006641842687<160>
N=5955753112244156825147804360773376330965558315538705132116035502099039816388489417643555439345738731279324820964250955099432024520271349922284684998765270696242065048444967388620153687482750105315146497 ( 202 digits) SNFS difficulty: 206 digits. Divisors found: r1=5232600658096703417078110461726312950053631 (pp43) r2=1138201346022551538972137406175594602676219601032471693317267548973571082701802077584706733314967476041455463058018604261123628329460178633626227973006641842687 (pp160) Version: Msieve v. 1.42 Total time: 1681.27 hours. Scaled time: 2891.78 units (timescale=1.720). Factorization parameters were as follows: n: 5955753112244156825147804360773376330965558315538705132116035502099039816388489417643555439345738731279324820964250955099432024520271349922284684998765270696242065048444967388620153687482750105315146497 m: 100000000000000000000000000000000000000000 deg: 5 c5: 41 c0: -23 skew: 0.89 type: snfs lss: 1 rlim: 19400000 alim: 19400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 400000 Factor base limits: 19400000/19400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9700000, 23300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 4011114 x 4011338 Total sieving time: 1662.59 hours. Total relation processing time: 0.27 hours. Matrix solve time: 17.55 hours. Time per square root: 0.86 hours. Prototype def-par.txt line would be: snfs,206.000,5,0,0,0,0,0,0,0,0,19400000,19400000,29,29,56,56,2.6,2.6,100000 total time: 1681.27 hours.
By Jo Yeong Uk / GMP-ECM v6.2.3, GGNFS, Msieve v1.39 / Oct 13, 2009
5·10180-1 = 4(9)180<181> = 10621939 · 371220517601500959349955067754789808321<39> · C136
C136 = P40 · P45 · P52
P40 = 1166301555538974517603112159803243199069<40>
P45 = 455836425176168552226557086859741685930538511<45>
P52 = 2385142595979479983692619755161942793993731666526119<52>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1268043725350051353132819056594165736383974526766996545360477852847986781906687610303669898118623904197788874590155678924925008343938821 (136 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2748895193 Step 1 took 4322ms Step 2 took 2401ms ********** Factor found in step 2: 1166301555538974517603112159803243199069 Found probable prime factor of 40 digits: 1166301555538974517603112159803243199069 Composite cofactor 1087234874486692647113099056807700552174954940627876797305797217283126817336364453873278316868809 has 97 digits Number: 49999_180 N=1087234874486692647113099056807700552174954940627876797305797217283126817336364453873278316868809 ( 97 digits) Divisors found: r1=455836425176168552226557086859741685930538511 r2=2385142595979479983692619755161942793993731666526119 Version: Total time: 1.87 hours. Scaled time: 4.47 units (timescale=2.387). Factorization parameters were as follows: name: 49999_180 n: 1087234874486692647113099056807700552174954940627876797305797217283126817336364453873278316868809 skew: 8632.98 # norm 2.89e+13 c5: 10920 c4: 318464128 c3: -1505481553212 c2: -20180759028973709 c1: 58577666676270824122 c0: -57414147493511642220285 # alpha -5.91 Y1: 11822671531 Y0: -2509621434827683634 # Murphy_E 5.11e-09 # M 156070940597455959127173067169783594525935570814263899470527292638724944750891421285089957590333 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4117386 Max relations in full relation-set: Initial matrix: Pruned matrix : 143255 x 143503 Polynomial selection time: 0.11 hours. Total sieving time: 1.52 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.04 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 1.87 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Dmitry Domanov / ECMNET, GGNFS, Msieve / Oct 13, 2009
2·10197+9 = 2(0)1969<198> = 23 · 29 · 43 · 1663 · 1270728829<10> · 7478155481<10> · C171
C171 = P42 · P129
P42 = 467185812127459488296885761755886497555061<42>
P129 = 944509734505196888324435883534798002347210233678036138305231061654282177613689218732584175782493585739887365690596605198501571127<129>
C171=P42*P129 C171=467185812127459488296885761755886497555061<42>*944509734505196888324435883534798002347210233678036138305231061654282177613689218732584175782493585739887365690596605198501571127<129>
2·10196+9 = 2(0)1959<197> = 11 · 17 · 276401 · 1726033 · 192367662427<12> · 16215174894011<14> · C158
C158 = P42 · P47 · P70
P42 = 193963468016641857772145026803551171115923<42>
P47 = 53708156977454565812877224264090874901376708881<47>
P70 = 6898994351244504504781634659534366111507825716105635993739478162742689<70>
C158=P40*C117 P40=193963468016641857772145026803551171115923 C117 cofactor done by gnfs: Number: gnfs117 N=370532271603212170226704518044426969864269542358617420627750419622394581621041361936134785090231721575559523264121009 ( 117 digits) Divisors found: r1=53708156977454565812877224264090874901376708881 (pp47) r2=6898994351244504504781634659534366111507825716105635993739478162742689 (pp70) Version: Msieve-1.40 Total time: 31.25 hours. Scaled time: 58.50 units (timescale=1.872). Factorization parameters were as follows: name: gnfs117 n: 370532271603212170226704518044426969864269542358617420627750419622394581621041361936134785090231721575559523264121009 skew: 27131.14 # norm 5.13e+015 c5: 12840 c4: -5005419988 c3: 132835511575086 c2: 5619850704837977301 c1: 5643984592240713617760 c0: -148947437176552868590359 # alpha -4.75 Y1: 2796746329349 Y0: -31049545900540173580930 # Murphy_E 4.14e-010 # M 274660023481842263283986019784205274017274293306493453239176921056062773765217075988162189695088128426042817861964202 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [1800000, 3300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 573142 x 573370 Polynomial selection time: 3.55 hours. Total sieving time: 26.99 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.41 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,53,53,2.5,2.5,100000 total time: 31.25 hours. --------- CPU info (if available) ----------
2·10181+9 = 2(0)1809<182> = 19526445927449<14> · C169
C169 = P52 · P117
P52 = 1261481608100983452099826583383264628723756547588583<52>
P117 = 811943612296195715347682002355010911159697937936474250522482727122338922394138319045468538601865056237746879402333927<117>
Number: 209-2 N=1024251933726726412159577217922272529137088964444678845265845863752286681411054066011468935166086174372679904828164827085696310014344289168171848755274554265733978755441 ( 169 digits) SNFS difficulty: 181 digits. Divisors found: r1=1261481608100983452099826583383264628723756547588583 (pp52) r2=811943612296195715347682002355010911159697937936474250522482727122338922394138319045468538601865056237746879402333927 (pp117) Version: Msieve-1.40 Total time: 123.07 hours. Scaled time: 242.33 units (timescale=1.969). Factorization parameters were as follows: n: 1024251933726726412159577217922272529137088964444678845265845863752286681411054066011468935166086174372679904828164827085696310014344289168171848755274554265733978755441 m: 1000000000000000000000000000000000000 deg: 5 c5: 20 c0: 9 skew: 0.85 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 5600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1270346 x 1270578 Total sieving time: 120.58 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.06 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 123.07 hours. --------- CPU info (if available) ----------
2·10180+9 = 2(0)1799<181> = 11 · 17 · 6079571 · C172
C172 = P41 · P60 · P72
P41 = 25230643818391368849433612677582025214393<41>
P60 = 188381030611937474058452477960311181949708981007667786593139<60>
P72 = 370126306304570492482152625078331368757963894231215299250456690859821771<72>
Number: 209-1 N=1759200964307415945881496667699103596597795757959022961844803753598653378104728130809208685572388363453139337529090378040913995429439325843510012580688204114303635818829417 ( 172 digits) SNFS difficulty: 180 digits. Divisors found: r1=25230643818391368849433612677582025214393 (pp41) r2=188381030611937474058452477960311181949708981007667786593139 (pp60) r3=370126306304570492482152625078331368757963894231215299250456690859821771 (pp72) Version: Msieve-1.40 Total time: 103.49 hours. Scaled time: 199.53 units (timescale=1.928). Factorization parameters were as follows: n: 1759200964307415945881496667699103596597795757959022961844803753598653378104728130809208685572388363453139337529090378040913995429439325843510012580688204114303635818829417 m: 1000000000000000000000000000000000000 deg: 5 c5: 2 c0: 9 skew: 1.35 type: snfs lss: 1 rlim: 7100000 alim: 7100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7100000/7100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3550000, 5150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1210652 x 1210890 Total sieving time: 100.89 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.86 hours. Time per square root: 0.58 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7100000,7100000,28,28,53,53,2.5,2.5,100000 total time: 103.49 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GGNFS + Msieve / Oct 13, 2009
(2·10174-11)/9 = (2)1731<174> = 14519 · 48049681 · 498348657919234104075045395918906731471<39> · C123
C123 = P51 · P73
P51 = 292418693276777073349480324433832146379750349557037<51>
P73 = 2185857505314291987785721476537254875502814208773838232705659519834440857<73>
Number: 22221_174 N=639185595393241060368558509801103716904374062098782041091490513631206214345337531118525083250572654266352921615626524660709 ( 123 digits) SNFS difficulty: 175 digits. Divisors found: r1=292418693276777073349480324433832146379750349557037 (pp51) r2=2185857505314291987785721476537254875502814208773838232705659519834440857 (pp73) Version: Msieve v. 1.43 Total time: 138.60 hours. Scaled time: 297.29 units (timescale=2.145). Factorization parameters were as follows: n: 639185595393241060368558509801103716904374062098782041091490513631206214345337531118525083250572654266352921615626524660709 m: 100000000000000000000000000000000000 deg: 5 c5: 1 c0: -55 skew: 2.23 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 7000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 684584 x 684812 Total sieving time: 137.12 hours. Total relation processing time: 0.25 hours. Matrix solve time: 1.14 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 138.60 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
By Dmitry Domanov / ECMNET / Oct 12, 2009
2·10200+9 = 2(0)1999<201> = 11 · 19 · 139 · 1259 · 5326345617905713<16> · C178
C178 = P40 · C138
P40 = 1991350749169858454527790418207027923203<40>
C138 = [515544399928007014946837975043806426611470201510365146903403741438897213435687943769990979066673545308632679985149733037848236754218334459<138>]
C178=P40*C138 C178=1991350749169858454527790418207027923203<40>*515544399928007014946837975043806426611470201510365146903403741438897213435687943769990979066673545308632679985149733037848236754218334459<138>
By Sinkiti Sibata / Msieve / Oct 12, 2009
(7·10191+17)/3 = 2(3)1909<192> = 239 · C189
C189 = P43 · P147
P43 = 8675408230576332396338916381447764186777501<43>
P147 = 112535349539874274622788901129843613428659566264370680778829606260498582342933455605684400377824563882400936911787444933628331607635998443024485401<147>
Number: 23339_191 N=976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762901 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=8675408230576332396338916381447764186777501 (pp43) r2=112535349539874274622788901129843613428659566264370680778829606260498582342933455605684400377824563882400936911787444933628331607635998443024485401 (pp147) Version: Msieve-1.40 Total time: 393.64 hours. Scaled time: 716.83 units (timescale=1.821). Factorization parameters were as follows: name: 23339_191 n: 976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762901 m: 100000000000000000000000000000000000000 deg: 5 c5: 70 c0: 17 skew: 0.75 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5500000, 10300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2139635 x 2139859 Total sieving time: 380.36 hours. Total relation processing time: 0.21 hours. Matrix solve time: 12.20 hours. Time per square root: 0.87 hours. Prototype def-par.txt line would be: snfs,191.000,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,54,54,2.5,2.5,100000 total time: 393.64 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393995) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393884) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Total of 4 processors activated (19151.29 BogoMIPS).
By Robert Backstrom / Msieve / Oct 12, 2009
10225+3 = 1(0)2243<226> = 47 · C224
C224 = P50 · P85 · P89
P50 = 55596542276628893687893904461674188425734045987539<50>
P85 = 5081699578026248101117725776351792155214522626704131970999327867748681087438765113013<85>
P89 = 75308738556551420873071265981065825474555301071112117762996787038235739437080945584086307<89>
Sieving ~ 170 CPU days + 147 hrs Lanczos with Msieve 1.42 Mon Oct 5 22:38:47 2009 Mon Oct 5 22:38:47 2009 Mon Oct 5 22:38:47 2009 Msieve v. 1.42 Mon Oct 5 22:38:47 2009 random seeds: a92c9797 c60b7a61 Mon Oct 5 22:38:47 2009 factoring 21276595744680851063829787234042553191489361702127659574468085106382978723404255319148936170212765957446808510638297872340425531914893617021276595744680851063829787234042553191489361702127659574468085106382978723404255319149 (224 digits) Mon Oct 5 22:38:49 2009 no P-1/P+1/ECM available, skipping Mon Oct 5 22:38:49 2009 commencing number field sieve (224-digit input) Mon Oct 5 22:38:49 2009 R0: -20000000000000000000000000000000000000 Mon Oct 5 22:38:49 2009 R1: 1 Mon Oct 5 22:38:49 2009 A0: 24 Mon Oct 5 22:38:49 2009 A1: 0 Mon Oct 5 22:38:49 2009 A2: 0 Mon Oct 5 22:38:49 2009 A3: 0 Mon Oct 5 22:38:49 2009 A4: 0 Mon Oct 5 22:38:49 2009 A5: 0 Mon Oct 5 22:38:49 2009 A6: 125 Mon Oct 5 22:38:49 2009 skew 1.00, size 2.851665e-11, alpha 0.347772, combined = 1.390632e-12 Mon Oct 5 22:38:49 2009 Mon Oct 5 22:38:49 2009 commencing relation filtering Mon Oct 5 22:38:49 2009 estimated available RAM is 7924.4 MB Mon Oct 5 22:38:49 2009 commencing duplicate removal, pass 1 Mon Oct 5 22:39:07 2009 error -11 reading relation 3251910 Mon Oct 5 22:39:54 2009 error -15 reading relation 11873790 Mon Oct 5 22:40:58 2009 error -11 reading relation 23569318 Mon Oct 5 22:41:28 2009 error -6 reading relation 28974234 Mon Oct 5 22:41:34 2009 error -11 reading relation 30144945 Mon Oct 5 22:41:58 2009 error -11 reading relation 34362278 Mon Oct 5 22:42:30 2009 error -11 reading relation 40140606 Mon Oct 5 22:42:49 2009 error -11 reading relation 43702742 Mon Oct 5 22:43:30 2009 error -6 reading relation 51057163 Mon Oct 5 22:43:34 2009 error -11 reading relation 51788557 Mon Oct 5 22:43:36 2009 error -11 reading relation 52106781 Mon Oct 5 22:43:41 2009 error -15 reading relation 52952486 Mon Oct 5 22:44:00 2009 error -11 reading relation 56495038 Mon Oct 5 22:44:01 2009 error -11 reading relation 56678613 Mon Oct 5 22:44:38 2009 error -11 reading relation 63414952 Mon Oct 5 22:44:40 2009 error -11 reading relation 63768255 Mon Oct 5 22:44:41 2009 error -11 reading relation 63804611 Mon Oct 5 22:46:05 2009 error -11 reading relation 79139720 Mon Oct 5 22:46:44 2009 found 12731978 hash collisions in 86131812 relations Mon Oct 5 22:47:05 2009 added 1218273 free relations Mon Oct 5 22:47:05 2009 commencing duplicate removal, pass 2 Mon Oct 5 22:48:25 2009 found 11567825 duplicates and 75782260 unique relations Mon Oct 5 22:48:25 2009 memory use: 394.4 MB Mon Oct 5 22:48:25 2009 reading ideals above 83951616 Mon Oct 5 22:48:25 2009 commencing singleton removal, initial pass Mon Oct 5 22:57:02 2009 memory use: 1193.5 MB Mon Oct 5 22:57:02 2009 reading all ideals from disk Mon Oct 5 22:57:11 2009 memory use: 1256.8 MB Mon Oct 5 22:57:18 2009 commencing in-memory singleton removal Mon Oct 5 22:57:25 2009 begin with 75782260 relations and 70939492 unique ideals Mon Oct 5 22:58:30 2009 reduce to 34052535 relations and 23016820 ideals in 17 passes Mon Oct 5 22:58:30 2009 max relations containing the same ideal: 30 Mon Oct 5 22:58:34 2009 reading ideals above 720000 Mon Oct 5 22:58:35 2009 commencing singleton removal, initial pass Mon Oct 5 23:03:57 2009 memory use: 596.8 MB Mon Oct 5 23:03:58 2009 reading all ideals from disk Mon Oct 5 23:04:09 2009 memory use: 1260.8 MB Mon Oct 5 23:04:18 2009 keeping 32585445 ideals with weight <= 200, target excess is 178408 Mon Oct 5 23:04:26 2009 commencing in-memory singleton removal Mon Oct 5 23:04:34 2009 begin with 34052577 relations and 32585445 unique ideals Mon Oct 5 23:06:37 2009 reduce to 33793542 relations and 32325423 ideals in 15 passes Mon Oct 5 23:06:37 2009 max relations containing the same ideal: 200 Mon Oct 5 23:07:13 2009 removing 3747467 relations and 3347468 ideals in 400000 cliques Mon Oct 5 23:07:14 2009 commencing in-memory singleton removal Mon Oct 5 23:07:22 2009 begin with 30046075 relations and 32325423 unique ideals Mon Oct 5 23:08:41 2009 reduce to 29726997 relations and 28653594 ideals in 11 passes Mon Oct 5 23:08:41 2009 max relations containing the same ideal: 189 Mon Oct 5 23:09:12 2009 removing 2727933 relations and 2327933 ideals in 400000 cliques Mon Oct 5 23:09:14 2009 commencing in-memory singleton removal Mon Oct 5 23:09:21 2009 begin with 26999064 relations and 28653594 unique ideals Mon Oct 5 23:10:18 2009 reduce to 26809549 relations and 26133402 ideals in 9 passes Mon Oct 5 23:10:18 2009 max relations containing the same ideal: 178 Mon Oct 5 23:10:47 2009 removing 2395260 relations and 1995260 ideals in 400000 cliques Mon Oct 5 23:10:48 2009 commencing in-memory singleton removal Mon Oct 5 23:10:54 2009 begin with 24414289 relations and 26133402 unique ideals Mon Oct 5 23:11:41 2009 reduce to 24254867 relations and 23976350 ideals in 8 passes Mon Oct 5 23:11:41 2009 max relations containing the same ideal: 170 Mon Oct 5 23:12:06 2009 removing 546494 relations and 474931 ideals in 71563 cliques Mon Oct 5 23:12:07 2009 commencing in-memory singleton removal Mon Oct 5 23:12:13 2009 begin with 23708373 relations and 23976350 unique ideals Mon Oct 5 23:12:47 2009 reduce to 23699883 relations and 23492905 ideals in 6 passes Mon Oct 5 23:12:47 2009 max relations containing the same ideal: 167 Mon Oct 5 23:12:58 2009 relations with 0 large ideals: 6457 Mon Oct 5 23:12:58 2009 relations with 1 large ideals: 1417 Mon Oct 5 23:12:58 2009 relations with 2 large ideals: 8809 Mon Oct 5 23:12:58 2009 relations with 3 large ideals: 90909 Mon Oct 5 23:12:58 2009 relations with 4 large ideals: 548714 Mon Oct 5 23:12:58 2009 relations with 5 large ideals: 1993979 Mon Oct 5 23:12:58 2009 relations with 6 large ideals: 4494587 Mon Oct 5 23:12:58 2009 relations with 7+ large ideals: 16555011 Mon Oct 5 23:12:58 2009 commencing 2-way merge Mon Oct 5 23:13:32 2009 reduce to 14756653 relation sets and 14549675 unique ideals Mon Oct 5 23:13:32 2009 commencing full merge Mon Oct 5 23:19:52 2009 memory use: 1834.9 MB Mon Oct 5 23:19:54 2009 found 7936903 cycles, need 7909875 Mon Oct 5 23:19:59 2009 weight of 7909875 cycles is about 553733050 (70.01/cycle) Mon Oct 5 23:19:59 2009 distribution of cycle lengths: Mon Oct 5 23:19:59 2009 1 relations: 1091511 Mon Oct 5 23:19:59 2009 2 relations: 1071229 Mon Oct 5 23:19:59 2009 3 relations: 1009555 Mon Oct 5 23:19:59 2009 4 relations: 864999 Mon Oct 5 23:19:59 2009 5 relations: 740720 Mon Oct 5 23:19:59 2009 6 relations: 619505 Mon Oct 5 23:19:59 2009 7 relations: 521785 Mon Oct 5 23:19:59 2009 8 relations: 434165 Mon Oct 5 23:19:59 2009 9 relations: 355277 Mon Oct 5 23:19:59 2009 10+ relations: 1201129 Mon Oct 5 23:19:59 2009 heaviest cycle: 24 relations Mon Oct 5 23:20:01 2009 commencing cycle optimization Mon Oct 5 23:20:20 2009 start with 42551860 relations Mon Oct 5 23:21:46 2009 pruned 932820 relations Mon Oct 5 23:21:46 2009 memory use: 1412.7 MB Mon Oct 5 23:21:46 2009 distribution of cycle lengths: Mon Oct 5 23:21:46 2009 1 relations: 1091511 Mon Oct 5 23:21:46 2009 2 relations: 1091986 Mon Oct 5 23:21:46 2009 3 relations: 1041031 Mon Oct 5 23:21:46 2009 4 relations: 880791 Mon Oct 5 23:21:46 2009 5 relations: 753600 Mon Oct 5 23:21:46 2009 6 relations: 623951 Mon Oct 5 23:21:46 2009 7 relations: 523485 Mon Oct 5 23:21:46 2009 8 relations: 430902 Mon Oct 5 23:21:46 2009 9 relations: 350799 Mon Oct 5 23:21:46 2009 10+ relations: 1121819 Mon Oct 5 23:21:46 2009 heaviest cycle: 23 relations Mon Oct 5 23:22:03 2009 RelProcTime: 2594 Mon Oct 5 23:22:03 2009 Mon Oct 5 23:22:03 2009 commencing linear algebra Mon Oct 5 23:22:09 2009 read 7909875 cycles Mon Oct 5 23:22:25 2009 cycles contain 23546063 unique relations Mon Oct 5 23:24:51 2009 read 23546063 relations Mon Oct 5 23:25:34 2009 using 20 quadratic characters above 1073739680 Mon Oct 5 23:27:32 2009 building initial matrix Mon Oct 5 23:32:17 2009 memory use: 3001.5 MB Mon Oct 5 23:32:22 2009 read 7909875 cycles Mon Oct 5 23:32:28 2009 matrix is 7909697 x 7909875 (2379.0 MB) with weight 699771227 (88.47/col) Mon Oct 5 23:32:28 2009 sparse part has weight 536644660 (67.84/col) Mon Oct 5 23:34:17 2009 filtering completed in 2 passes Mon Oct 5 23:34:19 2009 matrix is 7907420 x 7907598 (2378.9 MB) with weight 699711876 (88.49/col) Mon Oct 5 23:34:19 2009 sparse part has weight 536632510 (67.86/col) Mon Oct 5 23:34:56 2009 read 7907598 cycles Mon Oct 5 23:35:01 2009 matrix is 7907420 x 7907598 (2378.9 MB) with weight 699711876 (88.49/col) Mon Oct 5 23:35:01 2009 sparse part has weight 536632510 (67.86/col) Mon Oct 5 23:35:01 2009 saving the first 48 matrix rows for later Mon Oct 5 23:35:04 2009 matrix is 7907372 x 7907598 (2266.9 MB) with weight 556480788 (70.37/col) Mon Oct 5 23:35:04 2009 sparse part has weight 515190655 (65.15/col) Mon Oct 5 23:35:04 2009 matrix includes 64 packed rows Mon Oct 5 23:35:04 2009 using block size 65536 for processor cache size 6144 kB Mon Oct 5 23:35:35 2009 commencing Lanczos iteration (4 threads) Mon Oct 5 23:35:35 2009 memory use: 2461.2 MB Mon Oct 12 03:14:41 2009 lanczos halted after 125050 iterations (dim = 7907370) Mon Oct 12 03:14:57 2009 recovered 37 nontrivial dependencies Mon Oct 12 03:14:58 2009 BLanczosTime: 532375 Mon Oct 12 03:14:58 2009 Mon Oct 12 03:14:58 2009 commencing square root phase Mon Oct 12 03:14:58 2009 reading relations for dependency 1 Mon Oct 12 03:15:00 2009 read 3953999 cycles Mon Oct 12 03:15:09 2009 cycles contain 14376401 unique relations Mon Oct 12 03:16:52 2009 read 14376401 relations Mon Oct 12 03:18:20 2009 multiplying 11773886 relations Mon Oct 12 03:57:27 2009 multiply complete, coefficients have about 368.81 million bits Mon Oct 12 03:57:30 2009 initial square root is modulo 4146367 Mon Oct 12 04:45:29 2009 reading relations for dependency 2 Mon Oct 12 04:45:32 2009 read 3952310 cycles Mon Oct 12 04:45:41 2009 cycles contain 14373732 unique relations Mon Oct 12 04:47:24 2009 read 14373732 relations Mon Oct 12 04:48:52 2009 multiplying 11772002 relations Mon Oct 12 05:27:58 2009 multiply complete, coefficients have about 368.75 million bits Mon Oct 12 05:28:02 2009 initial square root is modulo 4136383 Mon Oct 12 06:16:19 2009 reading relations for dependency 3 Mon Oct 12 06:16:23 2009 read 3954075 cycles Mon Oct 12 06:16:32 2009 cycles contain 14379643 unique relations Mon Oct 12 06:18:15 2009 read 14379643 relations Mon Oct 12 06:19:42 2009 multiplying 11773544 relations Mon Oct 12 06:58:48 2009 multiply complete, coefficients have about 368.80 million bits Mon Oct 12 06:58:51 2009 initial square root is modulo 4144423 Mon Oct 12 07:46:39 2009 reading relations for dependency 4 Mon Oct 12 07:46:43 2009 read 3955162 cycles Mon Oct 12 07:46:51 2009 cycles contain 14381706 unique relations Mon Oct 12 07:48:34 2009 read 14381706 relations Mon Oct 12 07:50:02 2009 multiplying 11775114 relations Mon Oct 12 08:29:07 2009 multiply complete, coefficients have about 368.85 million bits Mon Oct 12 08:29:10 2009 initial square root is modulo 4153753 Mon Oct 12 09:17:18 2009 reading relations for dependency 5 Mon Oct 12 09:17:22 2009 read 3955387 cycles Mon Oct 12 09:17:31 2009 cycles contain 14382445 unique relations Mon Oct 12 09:19:14 2009 read 14382445 relations Mon Oct 12 09:20:42 2009 multiplying 11776370 relations Mon Oct 12 09:59:46 2009 multiply complete, coefficients have about 368.89 million bits Mon Oct 12 09:59:49 2009 initial square root is modulo 4159699 Mon Oct 12 10:47:38 2009 sqrtTime: 27160 Mon Oct 12 10:47:38 2009 prp50 factor: 55596542276628893687893904461674188425734045987539 Mon Oct 12 10:47:38 2009 prp85 factor: 5081699578026248101117725776351792155214522626704131970999327867748681087438765113013 Mon Oct 12 10:47:38 2009 prp89 factor: 75308738556551420873071265981065825474555301071112117762996787038235739437080945584086307 Mon Oct 12 10:47:38 2009 elapsed time 156:08:51
c224 is the largest number factored by SNFS in our table so far. Congratulations!
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Oct 11, 2009
5·10173-1 = 4(9)173<174> = 127 · 3911 · 18127 · 60115481 · 23178928080286249351<20> · C137
C137 = P67 · P71
P67 = 2847970263141744131023830845478132413777645258337832393628729170631<67>
P71 = 13993856238980368759578357212092380131077296745377065063456859221722961<71>
Number: 49999_173 N=39854086435296658660320043879991005179189198819489180447210923684885908343283437049105322157599299450760049515223879981997674408379558391 ( 137 digits) SNFS difficulty: 175 digits. Divisors found: r1=2847970263141744131023830845478132413777645258337832393628729170631 r2=13993856238980368759578357212092380131077296745377065063456859221722961 Version: Total time: 37.09 hours. Scaled time: 88.50 units (timescale=2.386). Factorization parameters were as follows: n: 39854086435296658660320043879991005179189198819489180447210923684885908343283437049105322157599299450760049515223879981997674408379558391 m: 100000000000000000000000000000000000 deg: 5 c5: 1 c0: -20 skew: 1.82 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3200000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 15479928 Max relations in full relation-set: Initial matrix: Pruned matrix : 1090838 x 1091085 Total sieving time: 32.09 hours. Total relation processing time: 2.00 hours. Matrix solve time: 2.87 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,52,52,2.4,2.4,100000 total time: 37.09 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Jo Yeong Uk / GMP-ECM v6.2.3, GGNFS, Msieve v1.39 / Oct 10, 2009
5·10179-1 = 4(9)179<180> = 100633529 · 10276894318800611063<20> · C153
C153 = P33 · P120
P33 = 551421612914557051308292624692847<33>
P120 = 876761814633993523106354211564896283956156882713530327635666576447814027168039294731780218758528595761801494512642521871<120>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 483465413967370598400238048693329074423316487627052497512382988498499804040391586617159120691337958260268162836645299451358426769745806731188812854756737 (153 digits) Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4222987752 Step 1 took 1170ms Step 2 took 1061ms ********** Factor found in step 2: 551421612914557051308292624692847 Found probable prime factor of 33 digits: 551421612914557051308292624692847 Probable prime cofactor 876761814633993523106354211564896283956156882713530327635666576447814027168039294731780218758528595761801494512642521871 has 120 digits
5·10174-1 = 4(9)174<175> = 100836539 · 386045671789<12> · 202149331951309<15> · C141
C141 = P38 · P51 · P53
P38 = 28345499727878470190919484864294064341<38>
P51 = 463029342608148463454164159741210468863485451451681<51>
P53 = 48411489356292646627148450479697213943551789779252721<53>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 635391023758808768021982182663640242957235141906592712342373275630037497448167738145615536255657952171914822743853474214435578032037202498341 (141 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=8051102569 Step 1 took 12060ms Step 2 took 5548ms ********** Factor found in step 2: 28345499727878470190919484864294064341 Found probable prime factor of 38 digits: 28345499727878470190919484864294064341 Composite cofactor 22415940091325560592764062171757453501035854403561664187105229615762632752555588053316070194944819274001 has 104 digits Number: 49999_174 N=22415940091325560592764062171757453501035854403561664187105229615762632752555588053316070194944819274001 ( 104 digits) Divisors found: r1=463029342608148463454164159741210468863485451451681 r2=48411489356292646627148450479697213943551789779252721 Version: Total time: 4.42 hours. Scaled time: 10.55 units (timescale=2.386). Factorization parameters were as follows: name: 49999_174 n: 22415940091325560592764062171757453501035854403561664187105229615762632752555588053316070194944819274001 skew: 7223.23 # norm 5.68e+14 c5: 103320 c4: -1087558846 c3: -54783974263837 c2: 45158299175990806 c1: 473317516833711936848 c0: -566285402745446146869216 # alpha -5.98 Y1: 70717608599 Y0: -46481047104932086595 # Murphy_E 2.12e-09 # M 11389210777915482262951976616597298590964859459226496768929040960719519334499979514459734483204362702854 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 5061933 Max relations in full relation-set: Initial matrix: Pruned matrix : 241571 x 241818 Polynomial selection time: 0.29 hours. Total sieving time: 3.46 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.13 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 4.42 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Dmitry Domanov / GGNFS/msieve 1.42 / Oct 10, 2009
(49·10187-31)/9 = 5(4)1861<188> = 3 · 173 · C186
C186 = P49 · P137
P49 = 2121703601345068272130158885480734551644871829999<49>
P137 = 49442622610066597773870255896387437835807325763621162874103458717719730334494584048229510097211957639731087242512079125873691747378918161<137>
N=104902590451723399700278312995076000856347677156925711839006636694497966174266752301434382359237850567330336116463284093341896810104902590451723399700278312995076000856347677156925711839 ( 186 digits) SNFS difficulty: 189 digits. Divisors found: r1=2121703601345068272130158885480734551644871829999 (pp49) r2=49442622610066597773870255896387437835807325763621162874103458717719730334494584048229510097211957639731087242512079125873691747378918161 (pp137) Version: Msieve-1.40 Total time: 294.69 hours. Scaled time: 568.17 units (timescale=1.928). Factorization parameters were as follows: n: 104902590451723399700278312995076000856347677156925711839006636694497966174266752301434382359237850567330336116463284093341896810104902590451723399700278312995076000856347677156925711839 m: 20000000000000000000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs lss: 1 rlim: 10100000 alim: 10100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10100000/10100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5050000, 9650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1995813 x 1996038 Total sieving time: 289.12 hours. Total relation processing time: 0.23 hours. Matrix solve time: 5.06 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,189.000,5,0,0,0,0,0,0,0,0,10100000,10100000,28,28,54,54,2.5,2.5,100000 total time: 294.69 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Oct 9, 2009
5·10181-1 = 4(9)181<182> = 7 · 972 · 193 · 457 · 422822039 · 5656697469953<13> · C151
C151 = P30 · C122
P30 = 173579002511793813594159069431<30>
C122 = [20731810459118814730446116833653693666321827958599665647784054670803472164424057194952315997453223210542179715535871072849<122>]
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 3598606979757417997917427995706501314058534392261408149235484668120477312161588275805313695459204431109019053455906018698429200104947933380953449978919 (151 digits) Using B1=50000, B2=12746592, polynomial x^2, sigma=1211348993 Step 1 took 218ms Step 2 took 297ms ********** Factor found in step 2: 173579002511793813594159069431 Found probable prime factor of 30 digits: 173579002511793813594159069431 Composite cofactor 20731810459118814730446116833653693666321827958599665647784054670803472164424057194952315997453223210542179715535871072849 has 122 digits
By Sinkiti Sibata / Msieve / Oct 9, 2009
(28·10172-1)/9 = 3(1)172<173> = 149 · 19009 · 6877246441372402649<19> · C148
C148 = P34 · P34 · P80
P34 = 1724230517504569670736836635964441<34>
P34 = 9768844483733605983857894729980673<34>
P80 = 94823694499320570244033199429122419011801625776673637024727322019611784153183003<80>
Number: 31111_172 N=1597185635087759228897797601527268513200647569431010321238582064646751736038007343385916525405877553475410220832933182429409759009145752755793865379 ( 148 digits) SNFS difficulty: 175 digits. Divisors found: r1=1724230517504569670736836635964441 (pp34) r2=9768844483733605983857894729980673 (pp34) r3=94823694499320570244033199429122419011801625776673637024727322019611784153183003 (pp80) Version: Msieve-1.40 Total time: 79.64 hours. Scaled time: 265.92 units (timescale=3.339). Factorization parameters were as follows: name: 31111_172 n: 1597185635087759228897797601527268513200647569431010321238582064646751736038007343385916525405877553475410220832933182429409759009145752755793865379 m: 50000000000000000000000000000000000 deg: 5 c5: 112 c0: -125 skew: 1.02 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 6750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1131674 x 1131922 Total sieving time: 76.63 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.46 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 79.64 hours. --------- CPU info (if available) ----------
By Lionel Debroux / GGNFS + Msieve / Oct 9, 2009
(43·10171+11)/9 = 4(7)1709<172> = 3 · 355093 · 448570037 · 19956188840224140440597442401083283<35> · C123
C123 = P50 · P73
P50 = 58975899398354383022435457259841236596129255822293<50>
P73 = 8495327815107557534376716075033317622504746422419098776300330543786722167<73>
Number: 47779_171 N=501019598579825057644595959540665425580414504347777059326970261905824979340160312991495080272365020643529680147710715868931 ( 123 digits) SNFS difficulty: 173 digits. Divisors found: r1=58975899398354383022435457259841236596129255822293 (pp50) r2=8495327815107557534376716075033317622504746422419098776300330543786722167 (pp73) Version: Msieve v. 1.43 Total time: 128.20 hours. Scaled time: 278.97 units (timescale=2.176). Factorization parameters were as follows: n: 501019598579825057644595959540665425580414504347777059326970261905824979340160312991495080272365020643529680147710715868931 m: 20000000000000000000000000000000000 deg: 5 c5: 215 c0: 176 skew: 0.96 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 910750 x 910975 Total sieving time: 125.56 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.08 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 128.20 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Oct 9, 2009
(4·10174+11)/3 = 1(3)1737<175> = 23 · 47 · 22572731 · C164
C164 = P59 · P106
P59 = 18804671853396239905276877417725760828564252709047581852637<59>
P106 = 2905782990887764523718537323099507259736355681474055210659402454039634545496153174870499580675672943930991<106>
Number: 13337_174 N=54642295620824688198326459065548316610303351155710226746068295134663195402219582503829185601603695575758916612449293442593845354571480914637894943713551377259373267 ( 164 digits) SNFS difficulty: 175 digits. Divisors found: r1=18804671853396239905276877417725760828564252709047581852637 (pp59) r2=2905782990887764523718537323099507259736355681474055210659402454039634545496153174870499580675672943930991 (pp106) Version: Msieve-1.40 Total time: 62.16 hours. Scaled time: 108.10 units (timescale=1.739). Factorization parameters were as follows: n: 54642295620824688198326459065548316610303351155710226746068295134663195402219582503829185601603695575758916612449293442593845354571480914637894943713551377259373267 m: 100000000000000000000000000000000000 deg: 5 c5: 2 c0: 55 skew: 1.94 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1109882 x 1110112 Total sieving time: 60.14 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.64 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 62.16 hours.
By Wataru Sakai / Msieve / Oct 8, 2009
8·10173+9 = 8(0)1729<174> = 7 · 643 · 661 · 443227 · 260680181687<12> · C151
C151 = P46 · P52 · P53
P46 = 8189545458237210393744457523666003154315736867<46>
P52 = 4183880356288717606362756534826033091154894241628947<52>
P53 = 67921338602004285032869683860445350931844687971789469<53>
Number: 80009_173 N=2327262068830754550218468227408715341596597253444007699138876048165527205915900775607263778983095431120139789820533451020131945533106053158603012224981 ( 151 digits) SNFS difficulty: 175 digits. Divisors found: r1=8189545458237210393744457523666003154315736867 r2=4183880356288717606362756534826033091154894241628947 r3=67921338602004285032869683860445350931844687971789469 Version: Total time: 100.92 hours. Scaled time: 203.36 units (timescale=2.015). Factorization parameters were as follows: n: 2327262068830754550218468227408715341596597253444007699138876048165527205915900775607263778983095431120139789820533451020131945533106053158603012224981 m: 40000000000000000000000000000000000 deg: 5 c5: 125 c0: 144 skew: 1.03 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 853065 x 853313 Total sieving time: 100.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 100.92 hours. --------- CPU info (if available) ----------
2·10172-9 = 1(9)1711<173> = 17 · 31 · 20023 · 6637427143417951<16> · C150
C150 = P62 · P88
P62 = 66028934282635233891831912901618375839864457254966050086431689<62>
P88 = 4324701912262433203651625569596822613898499886371331781703808091038595706400686381022889<88>
Number: 19991_172 N=285555458356763129168067288530927414585092843830940080941964946733783405647248783370316145632743341813305821377190485658733089506833402589555843929521 ( 150 digits) SNFS difficulty: 172 digits. Divisors found: r1=66028934282635233891831912901618375839864457254966050086431689 r2=4324701912262433203651625569596822613898499886371331781703808091038595706400686381022889 Version: Total time: 69.35 hours. Scaled time: 139.46 units (timescale=2.011). Factorization parameters were as follows: n: 285555458356763129168067288530927414585092843830940080941964946733783405647248783370316145632743341813305821377190485658733089506833402589555843929521 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: -36 skew: 1.08 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 4850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 674254 x 674502 Total sieving time: 69.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 69.35 hours. --------- CPU info (if available) ----------
(44·10195+1)/9 = 4(8)1949<196> = 139 · C194
C194 = P56 · P139
P56 = 10412466420126431250346726146039796224775804741205443513<56>
P139 = 3377860834394406548885117292303092018330749711789663082853036841147182942536410699923182290582604658203414033362067157941568625306147377827<139>
Number: 48889_195 N=35171862509992006394884092725819344524380495603517186250999200639488409272581934452438049560351718625099920063948840927258193445243804956035171862509992006394884092725819344524380495603517186251 ( 194 digits) SNFS difficulty: 197 digits. Divisors found: r1=10412466420126431250346726146039796224775804741205443513 r2=3377860834394406548885117292303092018330749711789663082853036841147182942536410699923182290582604658203414033362067157941568625306147377827 Version: Total time: 569.46 hours. Scaled time: 1147.46 units (timescale=2.015). Factorization parameters were as follows: n: 35171862509992006394884092725819344524380495603517186250999200639488409272581934452438049560351718625099920063948840927258193445243804956035171862509992006394884092725819344524380495603517186251 m: 2000000000000000000000000000000000000000 deg: 5 c5: 11 c0: 8 skew: 0.94 type: snfs lss: 1 rlim: 13700000 alim: 13700000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13700000/13700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6850000, 12550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1875703 x 1875951 Total sieving time: 569.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13700000,13700000,28,28,55,55,2.5,2.5,100000 total time: 569.46 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Oct 8, 2009
(2·10175+7)/9 = (2)1743<175> = 33 · 440484472271<12> · C162
C162 = P72 · P90
P72 = 978020707228890018577814164641282499503678266666331249424162522348474303<72>
P90 = 191049131852004376166589287066630797271854337936691707239370904079629644614194662598382573<90>
Number: 22223_175 N=186850007049362778684422153838889746512181414900901879338348429790457559971430414759426262701870399244019166893981526142656397274721585238661891239820642053521619 ( 162 digits) SNFS difficulty: 175 digits. Divisors found: r1=978020707228890018577814164641282499503678266666331249424162522348474303 (pp72) r2=191049131852004376166589287066630797271854337936691707239370904079629644614194662598382573 (pp90) Version: Msieve-1.40 Total time: 57.76 hours. Scaled time: 100.73 units (timescale=1.744). Factorization parameters were as follows: n: 186850007049362778684422153838889746512181414900901879338348429790457559971430414759426262701870399244019166893981526142656397274721585238661891239820642053521619 m: 100000000000000000000000000000000000 deg: 5 c5: 2 c0: 7 skew: 1.28 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1052282 x 1052515 Total sieving time: 56.07 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.45 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 57.76 hours.
By Tyler Cadigan / GGNFS, msieve / Oct 8, 2009
10200+3 = 1(0)1993<201> = 16892897616604738393032473779<29> · C172
C172 = P63 · P110
P63 = 142382085188774470405910710620318311201708781764203691159141491<63>
P110 = 41575789136886395098758671741723670103749259409601292912421292205993178486578323921284022171938244838107449227<110>
Number: 10003_200 N=5919647550678682918318585392550030687321219331802429980672060525048639901448866420111089641083403610030206379807979210510870824800479444820240779860283084327969945191577457 ( 172 digits) SNFS difficulty: 200 digits. Divisors found: r1=142382085188774470405910710620318311201708781764203691159141491 (pp63) r2=41575789136886395098758671741723670103749259409601292912421292205993178486578323921284022171938244838107449227 (pp110) Version: Msieve v. 1.42 Total time: 478.11 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 5919647550678682918318585392550030687321219331802429980672060525048639901448866420111089641083403610030206379807979210510870824800479444820240779860283084327969945191577457 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 3 skew: 1.25 type: snfs lss: 1 rlim: 15100000 alim: 15100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15100000/15100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7550000, 13550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3112395 x 3112621 Total sieving time: 452.35 hours. Total relation processing time: 0.50 hours. Matrix solve time: 24.85 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,200.000,5,0,0,0,0,0,0,0,0,15100000,15100000,29,29,56,56,2.6,2.6,100000 total time: 478.11 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Oct 7, 2009
(35·10173-17)/9 = 3(8)1727<174> = 33 · 509 · 134369 · C165
C165 = P36 · P41 · P89
P36 = 337724536741041059203277713140298669<36>
P41 = 35379397955005834588592053197139791721891<41>
P89 = 17625110578008454198749170325730853946484306159435410277383328749926110210790680918234559<89>
Number: 38887_173 N=210593471317678812647952883264166395690481437610228349639995873034640934123809598449007435643491227778261219159012802941218313387354473358101928258547783837616347161 ( 165 digits) SNFS difficulty: 175 digits. Divisors found: r1=337724536741041059203277713140298669 (pp36) r2=35379397955005834588592053197139791721891 (pp41) r3=17625110578008454198749170325730853946484306159435410277383328749926110210790680918234559 (pp89) Version: Msieve-1.40 Total time: 82.53 hours. Scaled time: 143.52 units (timescale=1.739). Factorization parameters were as follows: n: 210593471317678812647952883264166395690481437610228349639995873034640934123809598449007435643491227778261219159012802941218313387354473358101928258547783837616347161 m: 50000000000000000000000000000000000 deg: 5 c5: 56 c0: -85 skew: 1.09 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 7000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1196567 x 1196792 Total sieving time: 79.16 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.00 hours. Time per square root: 1.21 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 82.53 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Oct 7, 2009
(53·10170-17)/9 = 5(8)1697<171> = 307 · 122533 · 5167733 · 294126417229<12> · C146
C146 = P51 · P95
P51 = 193846180805187407600600338763753217911145985598911<51>
P95 = 53131315566490633270278975197275951466009849466986055887204243258100677263931552140266771322951<95>
Number: 58887_170 N=10299302603719411508616502097188696854986727292241823681488296293899090572336868769552116649099303398527333908486413361785907527066254281534906361 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: r1=193846180805187407600600338763753217911145985598911 r2=53131315566490633270278975197275951466009849466986055887204243258100677263931552140266771322951 Version: Total time: 40.30 hours. Scaled time: 96.07 units (timescale=2.384). Factorization parameters were as follows: n: 10299302603719411508616502097188696854986727292241823681488296293899090572336868769552116649099303398527333908486413361785907527066254281534906361 m: 10000000000000000000000000000000000 deg: 5 c5: 53 c0: -17 skew: 0.80 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11211532 Max relations in full relation-set: Initial matrix: Pruned matrix : 1011596 x 1011844 Total sieving time: 36.00 hours. Total relation processing time: 1.69 hours. Matrix solve time: 2.35 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 40.30 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Ignacio Santos / GGNFS, Msieve / Oct 6, 2009
(13·10187-7)/3 = 4(3)1861<188> = 277 · 2731 · C182
C182 = P61 · P122
P61 = 4621636202770150308574184509740627534498826420127262707612729<61>
P122 = 12394381849058326533133616843178663059816232578757698684763135584464171107781199862640891030032321710302395320971040108797<122>
Number: 43331_187 N=57282323864565198520706017860628580971428898756136368943991546891530632163319836736564320779251108523125094460755218970495637510404452863477275000539775744108402832214345168302077013 ( 182 digits) SNFS difficulty: 189 digits. Divisors found: r1=4621636202770150308574184509740627534498826420127262707612729 (pp61) r2=12394381849058326533133616843178663059816232578757698684763135584464171107781199862640891030032321710302395320971040108797 (pp122) Version: Msieve-1.40 Total time: 314.92 hours. Scaled time: 547.65 units (timescale=1.739). Factorization parameters were as follows: n: 57282323864565198520706017860628580971428898756136368943991546891530632163319836736564320779251108523125094460755218970495637510404452863477275000539775744108402832214345168302077013 m: 20000000000000000000000000000000000000 deg: 5 c5: 325 c0: -56 skew: 0.70 type: snfs lss: 1 rlim: 9900000 alim: 9900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9900000/9900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4950000, 10050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2086172 x 2086398 Total sieving time: 307.66 hours. Total relation processing time: 0.24 hours. Matrix solve time: 6.69 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,189.000,5,0,0,0,0,0,0,0,0,9900000,9900000,28,28,54,54,2.5,2.5,100000 total time: 314.92 hours.
By Lionel Debroux / GGNFS + Msieve / Oct 6, 2009
(43·10203-7)/9 = 4(7)203<204> = 3 · 67 · 547 · 2838580823343361<16> · 70019741574365087<17> · 2334561165143153784276485597559959244336157<43> · C124
C124 = P60 · P65
P60 = 375528253117018963232975349935219398139299723906573412769943<60>
P65 = 24938648869152625653899078805207205944348712733762951036782202663<65>
Number: 47777_203 N=9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209 ( 124 digits) Divisors found: r1=375528253117018963232975349935219398139299723906573412769943 (pp60) r2=24938648869152625653899078805207205944348712733762951036782202663 (pp65) Version: Msieve v. 1.43 Total time: 124.36 hours. Scaled time: 263.27 units (timescale=2.117). Factorization parameters were as follows: # Murphy_E = 1.720399e-10, selected by Jeff Gilchrist n: 9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209 Y0: -791009809091308516245887 Y1: 36802700256773 c0: 14133203719709143941404877603600 c1: 178200169790415316254562260 c2: -3251458876158126409286 c3: 3149167561132455 c4: 36525171834 c5: 30240 skew: 289012.3 type: gnfs # selected mechanically rlim: 6700000 alim: 6700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3350000, 6750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 798924 x 799149 Total sieving time: 120.74 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.58 hours. Time per square root: 1.89 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6700000,6700000,27,27,52,52,2.5,2.5,100000 total time: 124.36 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
By Sinkiti Sibata / Msieve / Oct 6, 2009
6·10176-1 = 5(9)176<177> = 19 · 1103 · 1997 · 36996060425134747<17> · C153
C153 = P70 · P84
P70 = 1199957761620461468118405565148809667093672061199543170259030057791043<70>
P84 = 322940588839473726687584052243149346589728994478475409111736442256055691359527808711<84>
Number: 59999_176 N=387515066120208673360721553568032958377932806855532462895231578125905792872581648553959939875118989601130150913793808472733556843936511913610382913175573 ( 153 digits) SNFS difficulty: 177 digits. Divisors found: r1=1199957761620461468118405565148809667093672061199543170259030057791043 (pp70) r2=322940588839473726687584052243149346589728994478475409111736442256055691359527808711 (pp84) Version: Msieve-1.40 Total time: 70.81 hours. Scaled time: 237.72 units (timescale=3.357). Factorization parameters were as follows: name: 59999_176 n: 387515066120208673360721553568032958377932806855532462895231578125905792872581648553959939875118989601130150913793808472733556843936511913610382913175573 m: 200000000000000000000000000000000000 deg: 5 c5: 15 c0: -8 skew: 0.88 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3200000, 6400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1188531 x 1188779 Total sieving time: 67.80 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.75 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,177.000,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,53,53,2.5,2.5,100000 total time: 70.81 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GMP-ECM 6.2.3 / Oct 4, 2009
6·10179-1 = 5(9)179<180> = 67 · 353 · 125707 · C171
C171 = P33 · P138
P33 = 298716705932280059000729938505471<33>
P138 = 675589309562746723090472275034259356819506679454841812592974658819494178186471751132798670903173117107700007029230329053233402544370951617<138>
input number is 201809813115647133250553212747864288202896217227991350567295137528404617678007456453502911258079727890895528445717591847212096503608090210582105616636279664187139030796607 Run 116 out of 2350: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3490299074 Step 1 took 10244ms Step 2 took 5970ms ********** Factor found in step 2: 298716705932280059000729938505471 Found probable prime factor of 33 digits: 298716705932280059000729938505471 Probable prime cofactor 675589309562746723090472275034259356819506679454841812592974658819494178186471751132798670903173117107700007029230329053233402544370951617 has 138 digits
6·10177-1 = 5(9)177<178> = 7 · 20780271302226927560453<23> · 2134599379553078846457397762501<31> · C125
C125 = P31 · P42 · P53
P31 = 2612221635774246750954450916549<31>
P42 = 630726357249729854245007611079998752429959<42>
P53 = 11728287839848260529211822787806892333944451684664859<53>
input number is 19323492290039138638815316517611068312752099363413275545931587268134829069485406364310774661002256608058736716295392500214769 Run 460 out of 7553: Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3697522187 Step 1 took 72052ms Step 2 took 33792ms ********** Factor found in step 2: 630726357249729854245007611079998752429959 Found probable prime factor of 42 digits: 630726357249729854245007611079998752429959 Probable prime cofactor 11728287839848260529211822787806892333944451684664859 has 53 digits
6·10180-1 = 5(9)180<181> = 937 · 6389 · 279187417 · C166
C166 = P36 · C130
P36 = 681683799034595926517755346160165173<36>
C130 = [5266231639949962957625555506172842343649977284297109659058979603488997179970876035150164573856074896623381506221376644219732362423<130>]
input numer is 3589904790917281081704651844819933368931090596346351831443364502544397381852188944206243859153785535672534395186545124553864469943600705340445084551330647199178494179 Run 1018 out of 2350: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3992605710 Step 1 took 10102ms Step 2 took 5989ms ********** Factor found in step 2: 681683799034595926517755346160165173 Found probable prime factor of 36 digits: 681683799034595926517755346160165173 Composite cofactor 5266231639949962957625555506172842343649977284297109659058979603488997179970876035150164573856074896623381506221376644219732362423 has 130 digits
By matsui / Msieve / Oct 4, 2009
(25·10174-61)/9 = 2(7)1731<175> = 19 · 403409639 · C165
C165 = P44 · P121
P44 = 66522182025933914980141308358046139455527739<44>
P121 = 5447925262173541576005437341883756530635970709270997946040684543445936204837528913808007878742336075875516134731712620029<121>
N=362407875953992078870973210457563521793287716680851855268135599529779022325737810170065681415705662921348106771932711328587577814913912875930872703313939430576484431 ( 165 digits) SNFS difficulty: 175 digits. Divisors found: r1=66522182025933914980141308358046139455527739 (pp44) r2=5447925262173541576005437341883756530635970709270997946040684543445936204837528913808007878742336075875516134731712620029 (pp121) Version: Msieve v. 1.42 Total time: 144.27 hours. Scaled time: 429.36 units (timescale=2.976). Factorization parameters were as follows: n: 362407875953992078870973210457563521793287716680851855268135599529779022325737810170065681415705662921348106771932711328587577814913912875930872703313939430576484431 m: 50000000000000000000000000000000000 deg: 5 c5: 80 c0: -61 skew: 0.95 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 7050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1169139 x 1169367 Total sieving time: 142.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.29 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 144.27 hours.
By Erik Branger / GGNFS, Msieve / Oct 3, 2009
6·10198+7 = 6(0)1977<199> = 13 · 5936837 · 1592801512885567<16> · 31002981535411234004171<23> · 335224324447072705491257699413<30> · C124
C124 = P61 · P63
P61 = 5578023513293801818533172337270300793467390504065490987063639<61>
P63 = 841921861803218150630322445765550878314463032851719559505591353<63>
Number: 60007_198 N=4696259941494445597344934071014281667903341455948176056974276671061552942678133843753512726575345913843588902774011739113567 ( 124 digits) Divisors found: r1=5578023513293801818533172337270300793467390504065490987063639 (pp61) r2=841921861803218150630322445765550878314463032851719559505591353 (pp63) Version: Msieve-1.40 Total time: 105.45 hours. Scaled time: 103.02 units (timescale=0.977). Factorization parameters were as follows: # Murphy_E = 1.871862e-10, selected by Jeff Gilchrist n: 4696259941494445597344934071014281667903341455948176056974276671061552942678133843753512726575345913843588902774011739113567 Y0: -731385356919230950702233 Y1: 27519743625683 c0: 32127868542654071627549661608 c1: 153965668232279984138120 c2: -7127488219309338392 c3: -341107411740763 c4: -2788317394 c5: 22440 skew: 88733.3 type: gnfs # selected mechanically rlim: 6600000 alim: 6600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3300000, 6100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 933962 x 934187 Total sieving time: 101.60 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.86 hours. Time per square root: 0.75 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6600000,6600000,27,27,52,52,2.5,2.5,100000 total time: 105.45 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GMP-ECM / Oct 3, 2009
6·10174-1 = 5(9)174<175> = 139 · 2371 · 30091 · 1665313208678010547<19> · C147
C147 = P73 · P74
P73 = 4377830453093505504381429331801225862588053958648601821602876203502681051<73>
P74 = 82987639321330983463201182406477468083679082354734448996697936818652462173<74>
Number: 59999_174 N=363305814651262832969806732578323590200700059687593582374442939450804796010110135509146831467516569517986092290018743800270527413991185207861383823 ( 147 digits) SNFS difficulty: 175 digits. Divisors found: r1=4377830453093505504381429331801225862588053958648601821602876203502681051 (pp73) r2=82987639321330983463201182406477468083679082354734448996697936818652462173 (pp74) Version: Msieve-1.40 Total time: 62.19 hours. Scaled time: 207.66 units (timescale=3.339). Factorization parameters were as follows: name: 59999_174 n: 363305814651262832969806732578323590200700059687593582374442939450804796010110135509146831467516569517986092290018743800270527413991185207861383823 m: 100000000000000000000000000000000000 deg: 5 c5: 3 c0: -5 skew: 1.11 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 5850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1022541 x 1022789 Total sieving time: 59.77 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.21 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 62.19 hours. --------- CPU info (if available) ----------
6·10177-1 = 5(9)177<178> = 7 · 20780271302226927560453<23> · C155
C155 = P31 · C125
P31 = 2134599379553078846457397762501<31>
C125 = [19323492290039138638815316517611068312752099363413275545931587268134829069485406364310774661002256608058736716295392500214769<125>]
GMP-ECM6.2.3[powered by GMP 4.3.1][ECM] input number is 41247914653116248049413346164540241593723737985855781308700472753384433598071487379042959672169128034542488669258083369424096252382458746050385502554577269 Run 28 out of 10000: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3657672614 Step 1 took 39920ms Step 2 took 17734ms ********** Factor found in step 2: 2134599379553078846457397762501 Found probable prime factor of 31 digits: 2134599379553078846457397762501 Composite cofactor 19323492290039138638815316517611068312752099363413275545931587268134829069485406364310774661002256608058736716295392500214769 has 125 digits
By Lionel Debroux / GGNFS + Msieve, GMP-ECM 6.2.3
(55·10172+71)/9 = 6(1)1719<173> = 3 · 97 · 1289 · 4415852847060229<16> · 4051314161189975816333577239<28> · C124
C124 = P38 · P87
P38 = 15505584418716736261260920800939868311<38>
P87 = 587321121219860526817229192460046953047699552171738577900691895117464529118402936396041<87>
Number: 61119_172 N=9106757225969912881333194990833285699269760699586847310985480208600176868257330699000978309517694764014428821400787481756751 ( 124 digits) SNFS difficulty: 174 digits. Divisors found: r1=15505584418716736261260920800939868311 (pp38) r2=587321121219860526817229192460046953047699552171738577900691895117464529118402936396041 (pp87) Version: Msieve v. 1.43 Total time: 168.60 hours. Scaled time: 368.73 units (timescale=2.187). Factorization parameters were as follows: n: 9106757225969912881333194990833285699269760699586847310985480208600176868257330699000978309517694764014428821400787481756751 m: 20000000000000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 10000 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 7430001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1067303 x 1067528 Total sieving time: 163.84 hours. Total relation processing time: 0.16 hours. Matrix solve time: 3.85 hours. Time per square root: 0.75 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 168.60 hours. --------- CPU info (if available) ---------- [ 0.029439] CPU0: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.101689] CPU1: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz stepping 06 [ 0.000000] Memory: 2043420k/2096800k available (7091k kernel code, 452k absent, 52268k reserved, 3271k data, 540k init) [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 3990.57 BogoMIPS (lpj=1995288) [ 0.000999] Calibrating delay using timer specific routine.. 3989.82 BogoMIPS (lpj=1994913) [ 0.102027] Total of 2 processors activated (7980.40 BogoMIPS).
(4·10174+17)/3 = 1(3)1739<175> = 72 · 311 · 1367 · 1847 · C164
C164 = P32 · P133
P32 = 17046294381955175722850377313441<32>
P133 = 2032904013590983323124640548830455534219890792230587335816686586190726080165488832358711164967138379379602576761258463473790718398589<133>
$ echo 34653480265930107213911468312089814676202650490024533804881869022835266218664881461304021116792725096000602005734429619839477009825529617570745711284331483625134749 | ecm -n -c 1000 1e6 GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM] Input number is 34653480265930107213911468312089814676202650490024533804881869022835266218664881461304021116792725096000602005734429619839477009825529617570745711284331483625134749 (164 digits) Run 445 out of 1000: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=811603726 Step 1 took 7293ms Step 2 took 5490ms ********** Factor found in step 2: 17046294381955175722850377313441 Found probable prime factor of 32 digits: 17046294381955175722850377313441 Probable prime cofactor 2032904013590983323124640548830455534219890792230587335816686586190726080165488832358711164967138379379602576761258463473790718398589 has 133 digits
By Robert Backstrom / GGNFS, Msieve / Oct 3, 2009
(44·10204+1)/9 = 4(8)2039<205> = 3727 · C202
C202 = P65 · P138
P65 = 12642215777443416767752239365062569151194901640368783823119996813<65>
P138 = 103759429617785294941240486367388306991041521908442118224429949294529777836170876768851200709291701192031411549441181450806379682224633939<138>
Number: n N=1311749098172495006409683093342873326774587842470858301284917866618966699460394120979041826908744000238499836031362728438124198789613332140834153176519691142712339385266672629162567450734877619771636407 ( 202 digits) SNFS difficulty: 206 digits. Divisors found: Sat Oct 3 03:07:12 2009 prp65 factor: 12642215777443416767752239365062569151194901640368783823119996813 Sat Oct 3 03:07:12 2009 prp138 factor: 103759429617785294941240486367388306991041521908442118224429949294529777836170876768851200709291701192031411549441181450806379682224633939 Sat Oct 3 03:07:12 2009 elapsed time 14:00:17 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 51.07 hours. Scaled time: 102.71 units (timescale=2.011). Factorization parameters were as follows: name: KA_4_8_203_9 n: 1311749098172495006409683093342873326774587842470858301284917866618966699460394120979041826908744000238499836031362728438124198789613332140834153176519691142712339385266672629162567450734877619771636407 m: 100000000000000000000000000000000000000000 deg: 5 c5: 22 c0: 5 skew: 0.74 type: snfs lss: 1 rlim: 19200000 alim: 19200000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 19200000/19200000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 21099990) Primes: RFBsize:1222953, AFBsize:1222884, largePrimes:37218454 encountered Relations: rels:32489696, finalFF:699411 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8283779 hash collisions in 51853947 relations Msieve: matrix is 2958153 x 2958401 (781.2 MB) Total sieving time: 50.30 hours. Total relation processing time: 0.78 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19200000,19200000,29,29,58,58,2.6,2.6,100000 total time: 51.07 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.02 BogoMIPS (lpj=2830511) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830460) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Total of 4 processors activated (22643.75 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Oct 2, 2009
(64·10173+53)/9 = 7(1)1727<174> = 3 · 11 · 2753 · 147028199 · C161
C161 = P51 · P53 · P58
P51 = 439231572111653323454876092277539599135182889732971<51>
P53 = 66354886809665594141565452524880020064086534990625821<53>
P58 = 1826628432327857002931189663671146473104422650646339516437<58>
Number: 71117_173 N=53237380205309160401938268502777912648314709782189098631100825123672071173417036027520915538137652984326635588082815651085876674764067883749576740330280312067467 ( 161 digits) SNFS difficulty: 175 digits. Divisors found: r1=439231572111653323454876092277539599135182889732971 (pp51) r2=66354886809665594141565452524880020064086534990625821 (pp53) r3=1826628432327857002931189663671146473104422650646339516437 (pp58) Version: Msieve-1.40 Total time: 61.30 hours. Scaled time: 106.61 units (timescale=1.739). Factorization parameters were as follows: n: 53237380205309160401938268502777912648314709782189098631100825123672071173417036027520915538137652984326635588082815651085876674764067883749576740330280312067467 m: 40000000000000000000000000000000000 deg: 5 c5: 125 c0: 106 skew: 0.97 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1057736 x 1057961 Total sieving time: 59.41 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.46 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 61.30 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Oct 2, 2009
(52·10170-43)/9 = 5(7)1693<171> = 3 · 53 · 1871 · 7045130639<10> · 14036622641<11> · C146
C146 = P69 · P77
P69 = 578927665551376438914204663528267269983143581603946449236868953675283<69>
P77 = 33924538095586390606363467907555617985564551366711291445601666869966930931921<77>
Number: 57773_170 N=19639853644586566926473635125864399983081674601955455224960515746857290977151949664285028054097717990517694394899376140667033181948320569213408643 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: r1=578927665551376438914204663528267269983143581603946449236868953675283 r2=33924538095586390606363467907555617985564551366711291445601666869966930931921 Version: Total time: 38.40 hours. Scaled time: 91.31 units (timescale=2.378). Factorization parameters were as follows: n: 19639853644586566926473635125864399983081674601955455224960515746857290977151949664285028054097717990517694394899376140667033181948320569213408643 m: 10000000000000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10967118 Max relations in full relation-set: Initial matrix: Pruned matrix : 1032176 x 1032423 Total sieving time: 33.77 hours. Total relation processing time: 1.54 hours. Matrix solve time: 2.44 hours. Time per square root: 0.65 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 38.40 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Wataru Sakai / Msieve / Oct 1, 2009
(22·10197+23)/9 = 2(4)1967<198> = 7 · 113 · C195
C195 = P60 · P68 · P68
P60 = 695297672042072244900952876381872976120480443321416660609207<60>
P68 = 15289769744936237230919203210804611301606749732361166218939120705391<68>
P68 = 29069125530481941095166355250055849161785796071989116662232205007841<68>
Number: 24447_197 N=309032167439247085264784379828627616238235707262255934822306503722432925972748981598539120663014468324202837477173760359601067565669335580840005618766680713583368450625087793229386149740132041017 ( 195 digits) SNFS difficulty: 198 digits. Divisors found: r1=695297672042072244900952876381872976120480443321416660609207 r2=15289769744936237230919203210804611301606749732361166218939120705391 r3=29069125530481941095166355250055849161785796071989116662232205007841 Version: Total time: 843.82 hours. Scaled time: 1700.29 units (timescale=2.015). Factorization parameters were as follows: n: 309032167439247085264784379828627616238235707262255934822306503722432925972748981598539120663014468324202837477173760359601067565669335580840005618766680713583368450625087793229386149740132041017 m: 2000000000000000000000000000000000000000 deg: 5 c5: 275 c0: 92 skew: 0.80 type: snfs lss: 1 rlim: 14500000 alim: 14500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 14500000/14500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7250000, 16450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2462811 x 2463059 Total sieving time: 843.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14500000,14500000,28,28,55,55,2.5,2.5,100000 total time: 843.82 hours. --------- CPU info (if available) ----------
(14·10171+1)/3 = 4(6)1707<172> = 13 · 83 · 157 · 179 · 6269917 · C158
C158 = P52 · P106
P52 = 8716281892569658959466816355313570524828127197103157<52>
P106 = 2816045021746225571280058016558802032880013547923850367154664124292968300123708807461754097927827102820139<106>
Number: 46667_171 N=24545442231707557443195388045005997931178690810482840774904483526903568635628800068776271020858144863975192360888664449533761102657624998421849365666000078823 ( 158 digits) SNFS difficulty: 173 digits. Divisors found: r1=8716281892569658959466816355313570524828127197103157 r2=2816045021746225571280058016558802032880013547923850367154664124292968300123708807461754097927827102820139 Version: Total time: 77.95 hours. Scaled time: 156.90 units (timescale=2.013). Factorization parameters were as follows: n: 24545442231707557443195388045005997931178690810482840774904483526903568635628800068776271020858144863975192360888664449533761102657624998421849365666000078823 m: 20000000000000000000000000000000000 deg: 5 c5: 35 c0: 8 skew: 0.74 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 827628 x 827876 Total sieving time: 77.95 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 77.95 hours. --------- CPU info (if available) ----------
(55·10205+71)/9 = 6(1)2049<206> = 3 · 38653 · C201
C201 = P50 · P152
P50 = 26200194537354193414830555249424744078537286162689<50>
P152 = 20114590830632865891174418642478448899424128172100897058014500078728469238559651699262525227509652933449801787184330996714251345648259452695413875227369<152>
Number: 61119_205 N=527006192801861960788822869385826982908710070896705828017757234118189283376979028028105719358662209152468640736045594659415061453713046086212463983917687381842816091127994473142327125200382127399435241 ( 201 digits) SNFS difficulty: 206 digits. Divisors found: r1=26200194537354193414830555249424744078537286162689 r2=20114590830632865891174418642478448899424128172100897058014500078728469238559651699262525227509652933449801787184330996714251345648259452695413875227369 Version: Total time: 1461.40 hours. Scaled time: 2941.80 units (timescale=2.013). Factorization parameters were as follows: n: 527006192801861960788822869385826982908710070896705828017757234118189283376979028028105719358662209152468640736045594659415061453713046086212463983917687381842816091127994473142327125200382127399435241 m: 100000000000000000000000000000000000000000 deg: 5 c5: 55 c0: 71 skew: 1.05 type: snfs lss: 1 rlim: 19500000 alim: 19500000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 19500000/19500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9750000, 28250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3839828 x 3840076 Total sieving time: 1461.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19500000,19500000,29,29,56,56,2.6,2.6,100000 total time: 1461.40 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.42 / Oct 1, 2009
(35·10171+1)/9 = 3(8)1709<172> = 1315747 · C166
C166 = P41 · P126
P41 = 12878217459996999966612430708842525173647<41>
P126 = 229507769468070544234606674705372447688355761067510543219870223637687579557401800773214413613089328397784365674061380352422621<126>
Number: snfs166 N=2955650963968672464302703246816362787746344007540118950595280771218850500049697159779873249864061167450040842873963527098210285783580649538922671979407050815155868787 ( 166 digits) SNFS difficulty: 174 digits. Divisors found: r1=12878217459996999966612430708842525173647 (pp41) r2=229507769468070544234606674705372447688355761067510543219870223637687579557401800773214413613089328397784365674061380352422621 (pp126) Version: Msieve-1.40 Total time: 78.20 hours. Scaled time: 144.67 units (timescale=1.850). Factorization parameters were as follows: n: 2955650963968672464302703246816362787746344007540118950595280771218850500049697159779873249864061167450040842873963527098210285783580649538922671979407050815155868787 m: 50000000000000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 6750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1087516 x 1087746 Total sieving time: 74.03 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.93 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 78.20 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Oct 1, 2009
(5·10174-17)/3 = 1(6)1731<175> = 84299 · 47682601 · C162
C162 = P80 · P83
P80 = 32158440488038156759395809693301845189137482437122786675893457460513811317417207<80>
P83 = 12893517373837962160956529482356192177502664332718530798514584467954575263274442177<83>
Number: 16661_174 N=414635411148054129148515657697916605888472579438489618948350222853369651192320106315500229014738785629430279620882810700768750294540964719699877769269657306339639 ( 162 digits) SNFS difficulty: 174 digits. Divisors found: r1=32158440488038156759395809693301845189137482437122786675893457460513811317417207 (pp80) r2=12893517373837962160956529482356192177502664332718530798514584467954575263274442177 (pp83) Version: Msieve-1.40 Total time: 53.36 hours. Scaled time: 93.06 units (timescale=1.744). Factorization parameters were as follows: n: 414635411148054129148515657697916605888472579438489618948350222853369651192320106315500229014738785629430279620882810700768750294540964719699877769269657306339639 m: 50000000000000000000000000000000000 deg: 5 c5: 16 c0: -17 skew: 1.01 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 5450001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 980277 x 980508 Total sieving time: 51.66 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.25 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 53.36 hours.
(47·10172+61)/9 = 5(2)1719<173> = 29 · 1252682099<10> · C163
C163 = P48 · P115
P48 = 155705137976349535618955127465479103372581214599<48>
P115 = 9232377109645985396433945968057508694695399541386192131778368096665877091302329437777202702426026982598638033918501<115>
Number: 52229_172 N=1437528551707119281313675875542368254399786406986836567956741962539411239838906542666098053887433178858381201289266668628552414894416032281242016585115461957396099 ( 163 digits) SNFS difficulty: 174 digits. Divisors found: r1=155705137976349535618955127465479103372581214599 (pp48) r2=9232377109645985396433945968057508694695399541386192131778368096665877091302329437777202702426026982598638033918501 (pp115) Version: Msieve-1.40 Total time: 113.19 hours. Scaled time: 196.84 units (timescale=1.739). Factorization parameters were as follows: n: 1437528551707119281313675875542368254399786406986836567956741962539411239838906542666098053887433178858381201289266668628552414894416032281242016585115461957396099 m: 20000000000000000000000000000000000 deg: 5 c5: 1175 c0: 488 skew: 0.84 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 9050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1275294 x 1275542 Total sieving time: 110.55 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.22 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 113.19 hours.
By Markus Tervooren / Msieve / Sep 30, 2009
5·10171+3 = 5(0)1703<172> = 2141 · 3463 · 22115239687<11> · 2126176738288566290549353<25> · C131
C131 = P54 · P77
P54 = 147260649364933694278877144916097788377722854278739967<54>
P77 = 97391963406433881857367240605552004713811188886749910103549282496731302376393<77>
N=14342003774157313216888357848440703925791970886954343965424053505716746519075757175850873535193063392798657509444707017884806399031 ( 131 digits) SNFS difficulty: 171 digits. Divisors found: r1=147260649364933694278877144916097788377722854278739967 (pp54) r2=97391963406433881857367240605552004713811188886749910103549282496731302376393 (pp77) Version: Msieve-1.42 Total time: 30.58 hours. Scaled time: 64.74 units (timescale=2.117). Factorization parameters were as follows: n: 14342003774157313216888357848440703925791970886954343965424053505716746519075757175850873535193063392798657509444707017884806399031 m: 10000000000000000000000000000000000 deg: 5 c5: 50 c0: 3 skew: 0.57 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [2550000, 4950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 957853 x 958079 Total sieving time: 29.27 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.08 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,28,28,56,56,2.5,2.5,200000 total time: 30.58 hours. --------- CPU info (if available) ---------- [ 0.148007] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.240015] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335125] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432094] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 5503.93 BogoMIPS (lpj=11007873) [ 0.160010] Calibrating delay using timer specific routine.. 5499.97 BogoMIPS (lpj=10999957) [ 0.252015] Calibrating delay using timer specific routine.. 5500.01 BogoMIPS (lpj=11000021) [ 0.351657] Calibrating delay using timer specific routine.. 5499.99 BogoMIPS (lpj=10999983) [ 0.436823] Total of 4 processors activated (22003.91 BogoMIPS).
By Sinkiti Sibata / Msieve / Sep 30, 2009
10178+7 = 1(0)1777<179> = 9779956187<10> · 15061360829503<14> · 28611712108180931576351076849383<32> · C124
C124 = P62 · P63
P62 = 14520779712977015969339895588943857520182395580183706784454421<62>
P63 = 163404906987574736909472325954343135617120818034514302156773209<63>
Number: 10007_178 N=2372766658386071479394164140981662985967236676580748175830928608025753371979903404338599883260199063087303313743132894406989 ( 124 digits) Divisors found: r1=14520779712977015969339895588943857520182395580183706784454421 (pp62) r2=163404906987574736909472325954343135617120818034514302156773209 (pp63) Version: Msieve-1.40 Total time: 62.63 hours. Scaled time: 209.13 units (timescale=3.339). Factorization parameters were as follows: name: 10007_178 # Murphy_E = 1.911810e-10, selected by Jeff Gilchrist n: 2372766658386071479394164140981662985967236676580748175830928608025753371979903404338599883260199063087303313743132894406989 Y0: -617353060601615830149752 Y1: 20088237568453 c0: -130899536347007954275021914327 c1: 19214420838302689840482678 c2: -385427287466242970753 c3: -3461889503623372 c4: -5310923826 c5: 26460 skew: 149044.72 type: gnfs # selected mechanically rlim: 6500000 alim: 6500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3250000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 885610 x 885858 Total sieving time: 60.70 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.50 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6500000,6500000,27,27,52,52,2.5,2.5,100000 total time: 62.63 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Sep 30, 2009
(19·10197+17)/9 = 2(1)1963<198> = 3 · 7 · 90017 · 189037603483<12> · 1167987135194728007608387<25> · 130987118004416341717932217759037<33> · C124
C124 = P62 · P63
P62 = 15872932989461007548410407402377925558623951734243828910973433<62>
P63 = 243273738880783002227362363624452946028222802288282346250262049<63>
Number: 21113_197 N=3861467755350303484159223919449335539186556972805576020551599415949486879617583193229971628069176142786276497779467927144217 ( 124 digits) Divisors found: r1=15872932989461007548410407402377925558623951734243828910973433 (pp62) r2=243273738880783002227362363624452946028222802288282346250262049 (pp63) Version: Msieve-1.40 Total time: 99.47 hours. Scaled time: 98.87 units (timescale=0.994). Factorization parameters were as follows: # Murphy_E = 1.697274e-10, selected by Jeff Gilchrist n: 3861467755350303484159223919449335539186556972805576020551599415949486879617583193229971628069176142786276497779467927144217 Y0: -755771304549153749000013 Y1: 22680260791903 c0: 121490305313515955986026122165920 c1: 1176066474224985519877609868 c2: -1293811007753745607480 c3: -14927256567925211 c4: 10409629152 c5: 15660 skew: 478491.47 type: gnfs # selected mechanically rlim: 6600000 alim: 6600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3300000, 6200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 909121 x 909347 Total sieving time: 96.67 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.91 hours. Time per square root: 0.65 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6600000,6600000,27,27,52,52,2.5,2.5,100000 total time: 99.47 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 30, 2009
(47·10170+7)/9 = 5(2)1693<171> = 53 · 6724829 · 67618339 · 1783969331<10> · C146
C146 = P65 · P81
P65 = 63031244433350462277961874790503249892506486100802703001462978317<65>
P81 = 192703884630974675279313413532569965260638475935521459497205658966223021555132643<81>
Number: 52223_170 N=12146365655431132202943080014873332479426617499334645447393097560540169951246527581811497428728533243733416133954869342564412853855411676767901831 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: r1=63031244433350462277961874790503249892506486100802703001462978317 r2=192703884630974675279313413532569965260638475935521459497205658966223021555132643 Version: Total time: 37.80 hours. Scaled time: 90.07 units (timescale=2.383). Factorization parameters were as follows: n: 12146365655431132202943080014873332479426617499334645447393097560540169951246527581811497428728533243733416133954869342564412853855411676767901831 m: 10000000000000000000000000000000000 deg: 5 c5: 47 c0: 7 skew: 0.68 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11056590 Max relations in full relation-set: Initial matrix: Pruned matrix : 1006773 x 1007021 Total sieving time: 33.71 hours. Total relation processing time: 1.54 hours. Matrix solve time: 2.41 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 37.80 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By matsui / Msieve / Sep 30, 2009
(11·10177+43)/9 = 1(2)1767<178> = 32 · 17 · 1607 · C172
C172 = P53 · P58 · P62
P53 = 55787633447660991296304360824773479896272139981968559<53>
P58 = 5262473431773579047842882158186090489494636716739379529237<58>
P62 = 16932263297944616820513923713596671722409861171887225084414439<62>
N=4970989755693929834027690220571853623331837517325029068992366819276052166470312571316756438222572902954078448545059084732328018441468177305262606091089320099654787356875037 ( 172 digits) SNFS difficulty: 178 digits. Divisors found: r1=55787633447660991296304360824773479896272139981968559 (pp53) r2=5262473431773579047842882158186090489494636716739379529237 (pp58) r3=16932263297944616820513923713596671722409861171887225084414439 (pp62) Version: Msieve v. 1.42 Total time: 233.29 hours. Scaled time: 624.52 units (timescale=2.677). Factorization parameters were as follows: n: 4970989755693929834027690220571853623331837517325029068992366819276052166470312571316756438222572902954078448545059084732328018441468177305262606091089320099654787356875037 m: 200000000000000000000000000000000000 deg: 5 c5: 275 c0: 344 skew: 1.05 type: snfs lss: 1 rlim: 6700000 alim: 6700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3350000, 8950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1521728 x 1521960 Total sieving time: 230.29 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.59 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,178.000,5,0,0,0,0,0,0,0,0,6700000,6700000,28,28,53,53,2.5,2.5,100000 total time: 233.29 hours.
By Robert Backstrom / GGNFS, Msieve / Sep 30, 2009
(49·10202-31)/9 = 5(4)2011<203> = 32 · 23 · C201
C201 = P62 · P139
P62 = 72555232079315990732521685350024064032570967598738850170782353<62>
P139 = 3625054076606209123383325667965643130420860066851944590450555110710082259860226719865091185627928789968916520685882384826434539903193794471<139>
Number: n N=263016639828234031132581857219538378958668813741277509393451422436929683306494900697799248523886205045625335480407944176060118089103596349973161567364465915190552871712292002147074610842726784755770263 ( 201 digits) SNFS difficulty: 204 digits. Divisors found: Wed Sep 30 06:38:38 2009 prp62 factor: 72555232079315990732521685350024064032570967598738850170782353 Wed Sep 30 06:38:38 2009 prp139 factor: 3625054076606209123383325667965643130420860066851944590450555110710082259860226719865091185627928789968916520685882384826434539903193794471 Wed Sep 30 06:38:38 2009 elapsed time 14:01:14 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 39.66 hours. Scaled time: 79.76 units (timescale=2.011). Factorization parameters were as follows: name: KA_5_4_201_1 n: 263016639828234031132581857219538378958668813741277509393451422436929683306494900697799248523886205045625335480407944176060118089103596349973161567364465915190552871712292002147074610842726784755770263 m: 20000000000000000000000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs lss: 1 rlim: 18000000 alim: 18000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 18000000/18000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 18599990) Primes: RFBsize:1151367, AFBsize:1151002, largePrimes:37720524 encountered Relations: rels:33609893, finalFF:756148 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7375100 hash collisions in 48807446 relations Msieve: matrix is 2918084 x 2918332 (782.2 MB) Total sieving time: 38.67 hours. Total relation processing time: 0.99 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,18000000,18000000,29,29,58,58,2.6,2.6,100000 total time: 39.66 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.09 BogoMIPS (lpj=2830549) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Total of 4 processors activated (22643.81 BogoMIPS).
By matsui / Msieve / Sep 29, 2009
4·10196+7 = 4(0)1957<197> = 11 · 1067789 · C190
C190 = P54 · P137
P54 = 239682331904859805861970201199983371009733444205017707<54>
P137 = 14208421828248700902749113805654452031722484299404367220663206740298549292027313504104977551440016026904929687743143349558675496264509019<137>
N=3405507676482560097206811117518195414671216538439369916375204873213374893013847901002572946187274486217442175969562934590669470875204404956069376661834535066044287435404968925168140556199433 ( 190 digits) SNFS difficulty: 197 digits. Divisors found: r1=239682331904859805861970201199983371009733444205017707 (pp54) r2=14208421828248700902749113805654452031722484299404367220663206740298549292027313504104977551440016026904929687743143349558675496264509019 (pp137) Version: Msieve v. 1.42 Total time: 814.38 hours. Scaled time: 2140.18 units (timescale=2.628). Factorization parameters were as follows: n: 3405507676482560097206811117518195414671216538439369916375204873213374893013847901002572946187274486217442175969562934590669470875204404956069376661834535066044287435404968925168140556199433 m: 2000000000000000000000000000000000000000 deg: 5 c5: 5 c0: 28 skew: 1.41 type: snfs lss: 1 rlim: 13500000 alim: 13500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13500000/13500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6750000, 12350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2472594 x 2472824 Total sieving time: 803.27 hours. Total relation processing time: 0.24 hours. Matrix solve time: 10.47 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,197.000,5,0,0,0,0,0,0,0,0,13500000,13500000,28,28,55,55,2.5,2.5,100000 total time: 814.38 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 28, 2009
(49·10170+23)/9 = 5(4)1697<171> = 47 · 1384635630495587<16> · 27987342719835283<17> · C138
C138 = P57 · P81
P57 = 962128401894883341725044165527926493779232928255590121579<57>
P81 = 310688736195671470313673402667663190506849516928902094903767311503739238397988139<81>
Number: 54447_170 N=298922457242682389337326729911467005415371768958433454824941098921844718993540983395208066140217244944288244615587531117495645636009951481 ( 138 digits) SNFS difficulty: 171 digits. Divisors found: r1=962128401894883341725044165527926493779232928255590121579 r2=310688736195671470313673402667663190506849516928902094903767311503739238397988139 Version: Total time: 40.57 hours. Scaled time: 96.91 units (timescale=2.389). Factorization parameters were as follows: n: 298922457242682389337326729911467005415371768958433454824941098921844718993540983395208066140217244944288244615587531117495645636009951481 m: 10000000000000000000000000000000000 deg: 5 c5: 49 c0: 23 skew: 0.86 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11315878 Max relations in full relation-set: Initial matrix: Pruned matrix : 972111 x 972359 Total sieving time: 36.23 hours. Total relation processing time: 1.71 hours. Matrix solve time: 2.25 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 40.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Ignacio Santos / GGNFS, Msieve / Sep 28, 2009
5·10173+9 = 5(0)1729<174> = 2083 · 4217 · 10278689 · C160
C160 = P78 · P83
P78 = 226341838289515047722055879603441350450576514056429807821686474775748639597657<78>
P83 = 24466653341794257255957958567501020770819886635243086406040717196519997052907339603<83>
Number: 50009_173 N=5537827294174018715006923146346517706518949763642303394687652952323188747315622781370433986338555803686968324980195112714660389533930115707061390787492182110171 ( 160 digits) SNFS difficulty: 174 digits. Divisors found: r1=226341838289515047722055879603441350450576514056429807821686474775748639597657 (pp78) r2=24466653341794257255957958567501020770819886635243086406040717196519997052907339603 (pp83) Version: Msieve-1.40 Total time: 57.65 hours. Scaled time: 100.54 units (timescale=1.744). Factorization parameters were as follows: n: 5537827294174018715006923146346517706518949763642303394687652952323188747315622781370433986338555803686968324980195112714660389533930115707061390787492182110171 m: 50000000000000000000000000000000000 deg: 5 c5: 8 c0: 45 skew: 1.41 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1001445 x 1001678 Total sieving time: 56.14 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.29 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 57.65 hours.
(35·10172-53)/9 = 3(8)1713<173> = 3 · 132 · 823 · 2957 · C164
C164 = P52 · P112
P52 = 3423371497246031422544753307472705733156021261934907<52>
P112 = 9206877937016644470383489347435768756055010285968683328710645790936751051020760012596536946190038569116233788897<112>
Number: 38883_172 N=31518563508206123170533606775818926341813461469744316035754497428876018488801240914806375287180907369937643817139696371770090144207390617702764486352268521993327579 ( 164 digits) SNFS difficulty: 174 digits. Divisors found: r1=3423371497246031422544753307472705733156021261934907 (pp52) r2=9206877937016644470383489347435768756055010285968683328710645790936751051020760012596536946190038569116233788897 (pp112) Version: Msieve-1.40 Total time: 59.97 hours. Scaled time: 104.29 units (timescale=1.739). Factorization parameters were as follows: n: 31518563508206123170533606775818926341813461469744316035754497428876018488801240914806375287180907369937643817139696371770090144207390617702764486352268521993327579 m: 20000000000000000000000000000000000 deg: 5 c5: 875 c0: -424 skew: 0.87 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 5850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1046216 x 1046441 Total sieving time: 58.12 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.44 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 59.97 hours.
By Sinkiti Sibata / Msieve / Sep 27, 2009
(37·10170+17)/9 = 4(1)1693<171> = 7 · 19 · 349 · 73073906498809<14> · 30445651912471563466043<23> · C130
C130 = P64 · P66
P64 = 6128198903992383225192559986628700854438637463216120687360319601<64>
P66 = 649623446059833056859631161403636566829760031296775263008078058147<66>
Number: 41113_170 N=3981021690151624021971890462313322717513474933240117370947613991952532408909658873370458969162811205598079652891096332677381839347 ( 130 digits) SNFS difficulty: 171 digits. Divisors found: r1=6128198903992383225192559986628700854438637463216120687360319601 (pp64) r2=649623446059833056859631161403636566829760031296775263008078058147 (pp66) Version: Msieve-1.40 Total time: 57.28 hours. Scaled time: 191.26 units (timescale=3.339). Factorization parameters were as follows: name: 41113_170 n: 3981021690151624021971890462313322717513474933240117370947613991952532408909658873370458969162811205598079652891096332677381839347 m: 10000000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 945627 x 945875 Total sieving time: 55.40 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.70 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 57.28 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Sep 27, 2009
(56·10201+61)/9 = 6(2)2009<202> = 509 · C200
C200 = P56 · P61 · P84
P56 = 12976230882709148313796352258421392734651435365133427111<56>
P61 = 1992170746350625100689831072711659409098813349881993208178477<61>
P84 = 472881814205812910730841366893587785212540261528760193335109318680466487590313204923<84>
Number: n N=12224405151713599650731281379611438550534817725387469984719493560358000436585898275485701811831477843265662519100633049552499454267627155642872735210652695917921851124208688059375682165466055446409081 ( 200 digits) SNFS difficulty: 203 digits. Divisors found: Sun Sep 27 22:33:34 2009 prp56 factor: 12976230882709148313796352258421392734651435365133427111 Sun Sep 27 22:33:34 2009 prp61 factor: 1992170746350625100689831072711659409098813349881993208178477 Sun Sep 27 22:33:34 2009 prp84 factor: 472881814205812910730841366893587785212540261528760193335109318680466487590313204923 Sun Sep 27 22:33:34 2009 elapsed time 26:37:21 (Msieve 1.39 - dependency 7) Version: GGNFS-0.77.1-20050930-k8 Total time: 41.29 hours. Scaled time: 83.00 units (timescale=2.010). Factorization parameters were as follows: name: KA_6_2_200_9 n: 12224405151713599650731281379611438550534817725387469984719493560358000436585898275485701811831477843265662519100633049552499454267627155642872735210652695917921851124208688059375682165466055446409081 m: 20000000000000000000000000000000000000000 deg: 5 c5: 35 c0: 122 skew: 1.28 type: snfs lss: 1 rlim: 17000000 alim: 17000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 17000000/17000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 23799990) Primes: RFBsize:1091314, AFBsize:1090698, largePrimes:33497097 encountered Relations: rels:25939384, finalFF:334162 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 5638443 hash collisions in 42981489 relations Msieve: matrix is 3697471 x 3697718 (1002.5 MB) Total sieving time: 40.54 hours. Total relation processing time: 0.75 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17000000,17000000,29,29,58,58,2.6,2.6,100000 total time: 41.29 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.09 BogoMIPS (lpj=2830549) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Total of 4 processors activated (22643.81 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Sep 27, 2009
(58·10172-31)/9 = 6(4)1711<173> = 13 · 653 · 1654157 · C163
C163 = P73 · P90
P73 = 7434039565736917357902408688727950296148541622746377622861130440219054119<73>
P90 = 617344175817281752770171093631930863567548241523686189857572426999876286631986362431351043<90>
Number: 64441_172 N=4589361028702920399805711594247925927718250761973469099858784342783424252977537814598297905914338911400846931684460461245752456034671923153229789295463220704096117 ( 163 digits) SNFS difficulty: 174 digits. Divisors found: r1=7434039565736917357902408688727950296148541622746377622861130440219054119 (pp73) r2=617344175817281752770171093631930863567548241523686189857572426999876286631986362431351043 (pp90) Version: Msieve-1.40 Total time: 92.31 hours. Scaled time: 160.53 units (timescale=1.739). Factorization parameters were as follows: n: 4589361028702920399805711594247925927718250761973469099858784342783424252977537814598297905914338911400846931684460461245752456034671923153229789295463220704096117 m: 20000000000000000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 7400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1134846 x 1135078 Total sieving time: 90.32 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.73 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 92.31 hours.
By Markus Tervooren / Msieve / Sep 26, 2009
(4·10171+11)/3 = 1(3)1707<172> = 7 · 1926108869857<13> · 448777904681194973<18> · C141
C141 = P62 · P79
P62 = 32796263790032162260416666480613909929429271255997211512456887<62>
P79 = 6718990513951552009093589590607436430709568483272900615696735525954611962696013<79>
Next experiment: rlim: 5100000 alim: 5100000 lpbr: 24 lpba: 24 mfbr: 32 mfba: 32 rlambda: 2.4 alambda: 2.4 N=220357785298278872892784664585406020968375369048489031248965332108618856387803229103228141852982521439836899650582755926946518515901949291531 ( 141 digits) SNFS difficulty: 171 digits. Divisors found: r1=32796263790032162260416666480613909929429271255997211512456887 (pp62) r2=6718990513951552009093589590607436430709568483272900615696735525954611962696013 (pp79) Version: Msieve-1.39 Total time: 112.67 hours. Scaled time: 238.86 units (timescale=2.120). Factorization parameters were as follows: n: 220357785298278872892784664585406020968375369048489031248965332108618856387803229103228141852982521439836899650582755926946518515901949291531 m: 10000000000000000000000000000000000 deg: 5 c5: 40 c0: 11 skew: 0.77 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 24 lpba: 24 mfbr: 32 mfba: 32 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 24/24 Max factor residue bits: 32/32 Sieved rational special-q in [2550000, 12750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 527505 x 527730 Total sieving time: 112.13 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.41 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,24,24,32,32,2.4,2.4,200000 total time: 112.67 hours. --------- CPU info (if available) ---------- [ 0.148007] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.240015] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335125] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432094] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 5503.93 BogoMIPS (lpj=11007873) [ 0.160010] Calibrating delay using timer specific routine.. 5499.97 BogoMIPS (lpj=10999957) [ 0.252015] Calibrating delay using timer specific routine.. 5500.01 BogoMIPS (lpj=11000021) [ 0.351657] Calibrating delay using timer specific routine.. 5499.99 BogoMIPS (lpj=10999983) [ 0.436823] Total of 4 processors activated (22003.91 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 26, 2009
(2·10174-17)/3 = (6)1731<174> = 223 · 161291696491<12> · C161
C161 = P39 · P122
P39 = 708395699616853860878877455778481321243<39>
P122 = 26164711586953036192884166397945253119833753204315227454071423665754582933911493497071983338468814151656453317768389781539<122>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=205173984 Step 1 took 52113ms Step 2 took 17726ms ********** Factor found in step 2: 708395699616853860878877455778481321243 Found probable prime factor of 39 digits: 708395699616853860878877455778481321243 Probable prime cofactor 26164711586953036192884166397945253119833753204315227454071423665754582933911493497071983338468814151656453317768389781539 has 122 digits
By matsui / Msieve / Sep 26, 2009
(58·10198+23)/9 = 6(4)1977<199> = 32 · 26953 · C194
C194 = P87 · P108
P87 = 120122654799524499176412214703101874912457837887590623290818089496051374264866997231397<87>
P108 = 221162220425611739516129953287180898210393040202298784816406964454293545788847480164075208005108893026032963<108>
N=26566593058882105246764715716842258105444640029534722766150312867437739127965324183432248088006877999334002994696300327089725919788126839908336093052698501689955949840440125998938252367060539311 ( 194 digits) SNFS difficulty: 201 digits. Divisors found: r1=120122654799524499176412214703101874912457837887590623290818089496051374264866997231397 (pp87) r2=221162220425611739516129953287180898210393040202298784816406964454293545788847480164075208005108893026032963 (pp108) Version: Msieve v. 1.42 Total time: 1399.41 hours. Scaled time: 3504.12 units (timescale=2.504). Factorization parameters were as follows: n: 26566593058882105246764715716842258105444640029534722766150312867437739127965324183432248088006877999334002994696300327089725919788126839908336093052698501689955949840440125998938252367060539311 m: 5000000000000000000000000000000000000000 deg: 5 c5: 464 c0: 575 skew: 1.04 type: snfs lss: 1 rlim: 15800000 alim: 15800000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15800000/15800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7900000, 18900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3625589 x 3625822 Total sieving time: 1382.77 hours. Total relation processing time: 0.26 hours. Matrix solve time: 14.66 hours. Time per square root: 1.72 hours. Prototype def-par.txt line would be: snfs,201.000,5,0,0,0,0,0,0,0,0,15800000,15800000,29,29,56,56,2.6,2.6,100000 total time: 1399.41 hours.
By Tyler Cadigan / GGNFS, Msieve / Sep 26, 2009
10194+3 = 1(0)1933<195> = 19 · 31 · 12409 · 25729399 · 5851870639<10> · 104158554145423<15> · 209791664762566759429<21> · C136
C136 = P67 · P69
P67 = 7588861276621421644017922022901115597982312020844439616721880396337<67>
P69 = 547978823634499643594275398528213777607811823908668830812226219613837<69>
Number: 10003_194 N=4158535275088413824378355739836501505392291656144512892575213767449847733859690592784109621148873117954270828493388445606731856649315069 ( 136 digits) Divisors found: r1=7588861276621421644017922022901115597982312020844439616721880396337 (pp67) r2=547978823634499643594275398528213777607811823908668830812226219613837 (pp69) Version: Msieve v. 1.42 Total time: 339.26 hours. Scaled time: 843.06 units (timescale=2.485). Factorization parameters were as follows: # Murphy_E = 3.450591e-11, selected by Jeff Gilchrist n: 4158535275088413824378355739836501505392291656144512892575213767449847733859690592784109621148873117954270828493388445606731856649315069 Y0: -144086758106095012795679247 Y1: 1263192996076717 c0: 5480555000941595632576275173174560 c1: 244004651297638614588297790208 c2: -157910048756582916016798 c3: -234900742537823939 c4: 80808230616 c5: 66960 skew: 1322167.18 type: gnfs # selected mechanically rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [6950000, 11350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1992546 x 1992771 Total sieving time: 329.61 hours. Total relation processing time: 0.54 hours. Matrix solve time: 8.55 hours. Time per square root: 0.56 hours. Prototype def-par.txt line would be: gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,13900000,13900000,28,28,55,55,2.6,2.6,100000 total time: 339.26 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 26, 2009
(10174+11)/3 = (3)1737<174> = 53 · 106657 · C167
C167 = P52 · P116
P52 = 1663813141164232605521375253659366783876558160712747<52>
P116 = 35441244351012120797734685671866214672247079787653946935153849461644924094039152738627620585090548532721770420013151<116>
Sieving ~4 cpu-days Fri Sep 25 16:27:31 2009 Msieve v. 1.42 Fri Sep 25 16:27:31 2009 random seeds: 37744bb0 1e3de700 Fri Sep 25 16:27:31 2009 factoring 58967608090426591136236815801054612083654043411835140955875541315271319104803306761939451706207101433661765220114582317984831526300467206255661258924231517915273335797 (167 digits) Fri Sep 25 16:27:32 2009 searching for 15-digit factors Fri Sep 25 16:27:34 2009 commencing number field sieve (167-digit input) Fri Sep 25 16:27:34 2009 R0: -50000000000000000000000000000000000 Fri Sep 25 16:27:34 2009 R1: 1 Fri Sep 25 16:27:34 2009 A0: 55 Fri Sep 25 16:27:34 2009 A1: 0 Fri Sep 25 16:27:34 2009 A2: 0 Fri Sep 25 16:27:34 2009 A3: 0 Fri Sep 25 16:27:34 2009 A4: 0 Fri Sep 25 16:27:34 2009 A5: 16 Fri Sep 25 16:27:34 2009 skew 1.28, size 4.220308e-012, alpha 0.346343, combined = 1.950576e-010 Fri Sep 25 16:27:34 2009 Fri Sep 25 16:27:34 2009 commencing relation filtering Fri Sep 25 16:27:34 2009 estimated available RAM is 4094.1 MB Fri Sep 25 16:27:34 2009 commencing duplicate removal, pass 1 Fri Sep 25 16:29:40 2009 found 1616363 hash collisions in 12545241 relations Fri Sep 25 16:30:13 2009 added 375841 free relations Fri Sep 25 16:30:14 2009 commencing duplicate removal, pass 2 Fri Sep 25 16:30:40 2009 found 1316264 duplicates and 11604817 unique relations Fri Sep 25 16:30:40 2009 memory use: 49.3 MB Fri Sep 25 16:30:40 2009 reading ideals above 720000 Fri Sep 25 16:30:41 2009 commencing singleton removal, initial pass Fri Sep 25 16:33:18 2009 memory use: 266.4 MB Fri Sep 25 16:33:18 2009 reading all ideals from disk Fri Sep 25 16:33:19 2009 memory use: 344.5 MB Fri Sep 25 16:33:21 2009 commencing in-memory singleton removal Fri Sep 25 16:33:23 2009 begin with 11604817 relations and 11624327 unique ideals Fri Sep 25 16:33:42 2009 reduce to 6235504 relations and 5342672 ideals in 14 passes Fri Sep 25 16:33:42 2009 max relations containing the same ideal: 92 Fri Sep 25 16:33:47 2009 removing 1629665 relations and 1250632 ideals in 379033 cliques Fri Sep 25 16:33:48 2009 commencing in-memory singleton removal Fri Sep 25 16:33:49 2009 begin with 4605839 relations and 5342672 unique ideals Fri Sep 25 16:33:56 2009 reduce to 4338262 relations and 3805194 ideals in 8 passes Fri Sep 25 16:33:56 2009 max relations containing the same ideal: 69 Fri Sep 25 16:34:00 2009 removing 1264439 relations and 885406 ideals in 379033 cliques Fri Sep 25 16:34:00 2009 commencing in-memory singleton removal Fri Sep 25 16:34:01 2009 begin with 3073823 relations and 3805194 unique ideals Fri Sep 25 16:34:06 2009 reduce to 2828642 relations and 2653232 ideals in 11 passes Fri Sep 25 16:34:06 2009 max relations containing the same ideal: 52 Fri Sep 25 16:34:09 2009 removing 226289 relations and 185645 ideals in 40644 cliques Fri Sep 25 16:34:09 2009 commencing in-memory singleton removal Fri Sep 25 16:34:10 2009 begin with 2602353 relations and 2653232 unique ideals Fri Sep 25 16:34:12 2009 reduce to 2591305 relations and 2456371 ideals in 6 passes Fri Sep 25 16:34:12 2009 max relations containing the same ideal: 48 Fri Sep 25 16:34:15 2009 relations with 0 large ideals: 2916 Fri Sep 25 16:34:15 2009 relations with 1 large ideals: 2398 Fri Sep 25 16:34:15 2009 relations with 2 large ideals: 29858 Fri Sep 25 16:34:15 2009 relations with 3 large ideals: 159102 Fri Sep 25 16:34:15 2009 relations with 4 large ideals: 441739 Fri Sep 25 16:34:15 2009 relations with 5 large ideals: 709449 Fri Sep 25 16:34:15 2009 relations with 6 large ideals: 703744 Fri Sep 25 16:34:15 2009 relations with 7+ large ideals: 542099 Fri Sep 25 16:34:15 2009 commencing 2-way merge Fri Sep 25 16:34:19 2009 reduce to 1695841 relation sets and 1560907 unique ideals Fri Sep 25 16:34:19 2009 commencing full merge Fri Sep 25 16:34:56 2009 memory use: 167.0 MB Fri Sep 25 16:34:56 2009 found 859064 cycles, need 841107 Fri Sep 25 16:34:56 2009 weight of 841107 cycles is about 59157155 (70.33/cycle) Fri Sep 25 16:34:56 2009 distribution of cycle lengths: Fri Sep 25 16:34:56 2009 1 relations: 87608 Fri Sep 25 16:34:56 2009 2 relations: 91978 Fri Sep 25 16:34:56 2009 3 relations: 94002 Fri Sep 25 16:34:56 2009 4 relations: 89624 Fri Sep 25 16:34:56 2009 5 relations: 83419 Fri Sep 25 16:34:56 2009 6 relations: 74269 Fri Sep 25 16:34:56 2009 7 relations: 64927 Fri Sep 25 16:34:56 2009 8 relations: 54915 Fri Sep 25 16:34:56 2009 9 relations: 46193 Fri Sep 25 16:34:56 2009 10+ relations: 154172 Fri Sep 25 16:34:56 2009 heaviest cycle: 20 relations Fri Sep 25 16:34:56 2009 commencing cycle optimization Fri Sep 25 16:34:58 2009 start with 4988233 relations Fri Sep 25 16:35:11 2009 pruned 156130 relations Fri Sep 25 16:35:11 2009 memory use: 125.1 MB Fri Sep 25 16:35:11 2009 distribution of cycle lengths: Fri Sep 25 16:35:11 2009 1 relations: 87608 Fri Sep 25 16:35:11 2009 2 relations: 94043 Fri Sep 25 16:35:11 2009 3 relations: 97631 Fri Sep 25 16:35:11 2009 4 relations: 92599 Fri Sep 25 16:35:11 2009 5 relations: 86536 Fri Sep 25 16:35:11 2009 6 relations: 76379 Fri Sep 25 16:35:11 2009 7 relations: 66348 Fri Sep 25 16:35:11 2009 8 relations: 55388 Fri Sep 25 16:35:11 2009 9 relations: 45801 Fri Sep 25 16:35:11 2009 10+ relations: 138774 Fri Sep 25 16:35:11 2009 heaviest cycle: 20 relations Fri Sep 25 16:35:13 2009 RelProcTime: 459 Fri Sep 25 16:35:13 2009 Fri Sep 25 16:35:13 2009 commencing linear algebra Fri Sep 25 16:35:14 2009 read 841107 cycles Fri Sep 25 16:35:16 2009 cycles contain 2510407 unique relations Fri Sep 25 16:36:20 2009 read 2510407 relations Fri Sep 25 16:36:25 2009 using 20 quadratic characters above 134215932 Fri Sep 25 16:36:41 2009 building initial matrix Fri Sep 25 16:37:19 2009 memory use: 277.4 MB Fri Sep 25 16:37:21 2009 read 841107 cycles Fri Sep 25 16:37:42 2009 matrix is 840929 x 841107 (238.0 MB) with weight 74768823 (88.89/col) Fri Sep 25 16:37:42 2009 sparse part has weight 56501333 (67.17/col) Fri Sep 25 16:37:53 2009 filtering completed in 2 passes Fri Sep 25 16:37:53 2009 matrix is 840412 x 840590 (238.0 MB) with weight 74749732 (88.93/col) Fri Sep 25 16:37:53 2009 sparse part has weight 56493595 (67.21/col) Fri Sep 25 16:37:57 2009 read 840590 cycles Fri Sep 25 16:39:25 2009 matrix is 840412 x 840590 (238.0 MB) with weight 74749732 (88.93/col) Fri Sep 25 16:39:25 2009 sparse part has weight 56493595 (67.21/col) Fri Sep 25 16:39:25 2009 saving the first 48 matrix rows for later Fri Sep 25 16:39:26 2009 matrix is 840364 x 840590 (225.3 MB) with weight 59300992 (70.55/col) Fri Sep 25 16:39:26 2009 sparse part has weight 54009505 (64.25/col) Fri Sep 25 16:39:26 2009 matrix includes 64 packed rows Fri Sep 25 16:39:26 2009 using block size 65536 for processor cache size 4096 kB Fri Sep 25 16:39:33 2009 commencing Lanczos iteration (4 threads) Fri Sep 25 16:39:33 2009 memory use: 252.7 MB Fri Sep 25 17:34:03 2009 lanczos halted after 13288 iterations (dim = 840361) Fri Sep 25 17:34:05 2009 recovered 36 nontrivial dependencies Fri Sep 25 17:34:06 2009 BLanczosTime: 3533 Fri Sep 25 17:34:06 2009 Fri Sep 25 17:34:06 2009 commencing square root phase Fri Sep 25 17:34:06 2009 reading relations for dependency 1 Fri Sep 25 17:34:07 2009 read 420473 cycles Fri Sep 25 17:34:07 2009 cycles contain 1569020 unique relations Fri Sep 25 17:34:53 2009 read 1569020 relations Fri Sep 25 17:35:02 2009 multiplying 1254520 relations Fri Sep 25 17:36:39 2009 multiply complete, coefficients have about 32.80 million bits Fri Sep 25 17:36:39 2009 initial square root is modulo 2630865701 Fri Sep 25 17:39:23 2009 reading relations for dependency 2 Fri Sep 25 17:39:23 2009 read 419883 cycles Fri Sep 25 17:39:24 2009 cycles contain 1567776 unique relations Fri Sep 25 17:40:10 2009 read 1567776 relations Fri Sep 25 17:40:19 2009 multiplying 1254088 relations Fri Sep 25 17:41:56 2009 multiply complete, coefficients have about 32.79 million bits Fri Sep 25 17:41:56 2009 initial square root is modulo 2610199171 Fri Sep 25 17:44:40 2009 reading relations for dependency 3 Fri Sep 25 17:44:40 2009 read 420742 cycles Fri Sep 25 17:44:41 2009 cycles contain 1570664 unique relations Fri Sep 25 17:45:38 2009 read 1570664 relations Fri Sep 25 17:45:47 2009 multiplying 1256638 relations Fri Sep 25 17:47:24 2009 multiply complete, coefficients have about 32.86 million bits Fri Sep 25 17:47:25 2009 initial square root is modulo 2728664321 Fri Sep 25 17:50:08 2009 reading relations for dependency 4 Fri Sep 25 17:50:09 2009 read 420585 cycles Fri Sep 25 17:50:10 2009 cycles contain 1568813 unique relations Fri Sep 25 17:50:56 2009 read 1568813 relations Fri Sep 25 17:51:05 2009 multiplying 1255100 relations Fri Sep 25 17:52:42 2009 multiply complete, coefficients have about 32.82 million bits Fri Sep 25 17:52:42 2009 initial square root is modulo 2658738211 Fri Sep 25 17:55:26 2009 reading relations for dependency 5 Fri Sep 25 17:55:26 2009 read 419920 cycles Fri Sep 25 17:55:27 2009 cycles contain 1569762 unique relations Fri Sep 25 17:56:15 2009 read 1569762 relations Fri Sep 25 17:56:24 2009 multiplying 1255676 relations Fri Sep 25 17:58:01 2009 multiply complete, coefficients have about 32.83 million bits Fri Sep 25 17:58:01 2009 initial square root is modulo 2686915471 Fri Sep 25 18:00:45 2009 sqrtTime: 1599 Fri Sep 25 18:00:45 2009 prp52 factor: 1663813141164232605521375253659366783876558160712747 Fri Sep 25 18:00:45 2009 prp116 factor: 35441244351012120797734685671866214672247079787653946935153849461644924094039152738627620585090548532721770420013151 Fri Sep 25 18:00:45 2009 elapsed time 01:33:14
By Sinkiti Sibata / Msieve / Sep 25, 2009
(29·10170+61)/9 = 3(2)1699<171> = 7 · 17 · 1023943 · 50202296843<11> · 1504744007909<13> · C140
C140 = P66 · P75
P66 = 167947834692183450740511533147613054941648814323210418408876837823<66>
P75 = 208435710396318151256506590232155224650182410075738412602346314976990700237<75>
Number: 32229_170 N=35006326233588664358088072938856017419625931388340362803570219538504947562072904955252882575767520615701620286254407141842171583383056664051 ( 140 digits) SNFS difficulty: 171 digits. Divisors found: r1=167947834692183450740511533147613054941648814323210418408876837823 (pp66) r2=208435710396318151256506590232155224650182410075738412602346314976990700237 (pp75) Version: Msieve-1.40 Total time: 60.58 hours. Scaled time: 203.38 units (timescale=3.357). Factorization parameters were as follows: name: 32229_170 n: 35006326233588664358088072938856017419625931388340362803570219538504947562072904955252882575767520615701620286254407141842171583383056664051 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: 61 skew: 1.16 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1003436 x 1003684 Total sieving time: 58.49 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.91 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 60.58 hours. --------- CPU info (if available) ----------
(2·10171+43)/9 = (2)1707<171> = 457 · 316037 · 870329 · 5794475053377775913<19> · C138
C138 = P59 · P79
P59 = 81317872091067859211776561786730306649095464142918715845659<59>
P79 = 3751887414744125246302985151074553352323146938504677201795126577989619237545421<79>
Number: 22227_171 N=305095500892250044395188955647056790908387517500077469449147119054695887540930792072824496609898271372962839988185876655738738257438177439 ( 138 digits) SNFS difficulty: 171 digits. Divisors found: r1=81317872091067859211776561786730306649095464142918715845659 (pp59) r2=3751887414744125246302985151074553352323146938504677201795126577989619237545421 (pp79) Version: Msieve-1.40 Total time: 84.22 hours. Scaled time: 153.29 units (timescale=1.820). Factorization parameters were as follows: name: 22227_171 n: 305095500892250044395188955647056790908387517500077469449147119054695887540930792072824496609898271372962839988185876655738738257438177439 m: 10000000000000000000000000000000000 deg: 5 c5: 20 c0: 43 skew: 1.17 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 998127 x 998357 Total sieving time: 81.69 hours. Total relation processing time: 0.09 hours. Matrix solve time: 2.34 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 84.22 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393996) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393875) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393884) Total of 4 processors activated (19151.29 BogoMIPS).
By Erik Branger / GMP-ECM / Sep 25, 2009
4·10171+3 = 4(0)1703<172> = 439 · 36277 · 1268563 · 15218882404130261<17> · C143
C143 = P39 · P104
P39 = 756250231338276927304375103001690458827<39>
P104 = 17202983946086459938373724428120076924823810662429126159556894474473395321848053399384538121207658238541<104>
Input number is 13009760588936549424115996217884317573935345630505968615454955194796197691159254066522117811387603269907811985842646853086028926492340905051407 (143 digits) Run 277 out of 500: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3099713956 Step 1 took 46328ms Step 2 took 21563ms ********** Factor found in step 2: 756250231338276927304375103001690458827 Found probable prime factor of 39 digits: 756250231338276927304375103001690458827 Probable prime cofactor 17202983946086459938373724428120076924823810662429126159556894474473395321848053399384538121207658238541 has 104 digits
By Ignacio Santos / GGNFS, Msieve / Sep 25, 2009
(46·10172+53)/9 = 5(1)1717<173> = 3 · 11 · 160033 · C166
C166 = P71 · P96
P71 = 36033128261972737854237389767175430050431103081339670286348057189471141<71>
P96 = 268590017877231787185313607856659818367106537343327607800131824893760946397809960086471717273033<96>
Number: 51117_172 N=9678138564055843616934142013344427846436807088672641402390891558750687805320287370864439344065421187014858320151603411930969372247108713962425384444592982831971040653 ( 166 digits) SNFS difficulty: 174 digits. Divisors found: r1=36033128261972737854237389767175430050431103081339670286348057189471141 (pp71) r2=268590017877231787185313607856659818367106537343327607800131824893760946397809960086471717273033 (pp96) Version: Msieve-1.40 Total time: 73.83 hours. Scaled time: 128.39 units (timescale=1.739). Factorization parameters were as follows: n: 9678138564055843616934142013344427846436807088672641402390891558750687805320287370864439344065421187014858320151603411930969372247108713962425384444592982831971040653 m: 20000000000000000000000000000000000 deg: 5 c5: 575 c0: 212 skew: 0.82 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 6600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1123174 x 1123407 Total sieving time: 71.46 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.66 hours. Time per square root: 0.61 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 73.83 hours.
By Markus Tervooren / Msieve / Sep 25, 2009
(38·10170+61)/9 = 4(2)1699<171> = 32 · 11 · 13 · 47 · 2111 · 108275039 · 861487663 · C146
C146 = P63 · P84
P63 = 112571824006096729158420064343072159842458593951521181965941557<63>
P84 = 314897588409925172578173765266062287127679189995340781348626644393883516585549040599<84>
Another experiment, this time it was a really bad choice: rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 47 mfba: 47 rlambda: 2.6 alambda: 2.6 ~65 Hours sieve time, 10M rels. Msieve v. 1.42 Thu Sep 24 17:26:59 2009 random seeds: 9382ecfa 81315f41 factoring 35448595902426381689814754249814433581331280418318339807608728957850624199532445178670719626970890252637535566455445691961293138457991395054272643 (146 digits) searching for 15-digit factors commencing number field sieve (146-digit input) R0: -10000000000000000000000000000000000 R1: 1 A0: 61 A1: 0 A2: 0 A3: 0 A4: 0 A5: 38 skew 1.10, size 6.368856e-12, alpha 0.160832, combined = 2.502776e-10 commencing relation filtering estimated available RAM is 8010.2 MB commencing duplicate removal, pass 1 found 1023559 hash collisions in 9955173 relations added 220533 free relations commencing duplicate removal, pass 2 found 844550 duplicates and 9331156 unique relations memory use: 49.3 MB reading ideals above 100000 commencing singleton removal, initial pass memory use: 266.4 MB reading all ideals from disk memory use: 332.7 MB keeping 12217529 ideals with weight <= 200, target excess is 53180 commencing in-memory singleton removal begin with 9331156 relations and 12217529 unique ideals reduce to 2115084 relations and 2019675 ideals in 13 passes max relations containing the same ideal: 74 removing 120615 relations and 103755 ideals in 16860 cliques commencing in-memory singleton removal begin with 1994469 relations and 2019675 unique ideals reduce to 1991343 relations and 1912754 ideals in 6 passes max relations containing the same ideal: 71 removing 91079 relations and 74219 ideals in 16860 cliques commencing in-memory singleton removal begin with 1900264 relations and 1912754 unique ideals reduce to 1898231 relations and 1836483 ideals in 5 passes max relations containing the same ideal: 69 relations with 0 large ideals: 1229 relations with 1 large ideals: 460 relations with 2 large ideals: 6558 relations with 3 large ideals: 46287 relations with 4 large ideals: 173673 relations with 5 large ideals: 381617 relations with 6 large ideals: 540247 relations with 7+ large ideals: 748160 commencing 2-way merge reduce to 1231937 relation sets and 1170189 unique ideals commencing full merge memory use: 156.4 MB found 664544 cycles, need 656389 weight of 656389 cycles is about 46150723 (70.31/cycle) distribution of cycle lengths: 1 relations: 49537 2 relations: 73714 3 relations: 83423 4 relations: 78374 5 relations: 71572 6 relations: 61363 7 relations: 51337 8 relations: 42368 9 relations: 34711 10+ relations: 109990 heaviest cycle: 20 relations commencing cycle optimization start with 3854757 relations pruned 112168 relations memory use: 119.1 MB distribution of cycle lengths: 1 relations: 49537 2 relations: 75523 3 relations: 86761 4 relations: 80833 5 relations: 73657 6 relations: 62299 7 relations: 51926 8 relations: 42154 9 relations: 34237 10+ relations: 99462 heaviest cycle: 20 relations RelProcTime: 251 commencing linear algebra read 656389 cycles cycles contain 1863372 unique relations read 1863372 relations using 20 quadratic characters above 536545832 building initial matrix memory use: 241.4 MB read 656389 cycles matrix is 656212 x 656389 (196.5 MB) with weight 59521673 (90.68/col) sparse part has weight 44280835 (67.46/col) filtering completed in 2 passes matrix is 656066 x 656243 (196.4 MB) with weight 59515687 (90.69/col) sparse part has weight 44278419 (67.47/col) read 656243 cycles matrix is 656066 x 656243 (196.4 MB) with weight 59515687 (90.69/col) sparse part has weight 44278419 (67.47/col) saving the first 48 matrix rows for later matrix is 656018 x 656243 (186.1 MB) with weight 46692234 (71.15/col) sparse part has weight 42211934 (64.32/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 196.3 MB linear algebra completed 655925 of 656243 dimensions (100.0%, ETA 0h 0m) lanczos halted after 10376 iterations (dim = 656018) recovered 39 nontrivial dependencies BLanczosTime: 2244 commencing square root phase reading relations for dependency 1 read 327915 cycles cycles contain 1156352 unique relations read 1156352 relations multiplying 930682 relations multiply complete, coefficients have about 25.51 million bits initial square root is modulo 21184151 reading relations for dependency 2 read 328610 cycles cycles contain 1158712 unique relations read 1158712 relations multiplying 933210 relations multiply complete, coefficients have about 25.58 million bits initial square root is modulo 22136071 sqrtTime: 331 prp63 factor: 112571824006096729158420064343072159842458593951521181965941557 prp84 factor: 314897588409925172578173765266062287127679189995340781348626644393883516585549040599 elapsed time 00:47:07
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 25, 2009
(26·10173-71)/9 = 2(8)1721<174> = 3659 · 2994692089<10> · 1180877675714413<16> · C146
C146 = P33 · P113
P33 = 713468875576511513283306519138119<33>
P113 = 31292215261332474324598857424033910552657776703198753648313833959464824814897277997193127602654614246649390049073<113>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=927773744 Step 1 took 47554ms Step 2 took 15738ms ********** Factor found in step 2: 713468875576511513283306519138119 Found probable prime factor of 33 digits: 713468875576511513283306519138119 Probable prime cofactor 31292215261332474324598857424033910552657776703198753648313833959464824814897277997193127602654614246649390049073 has 113 digits
By Ignacio Santos / GGNFS, Msieve / Sep 24, 2009
(23·10172+31)/9 = 2(5)1719<173> = 379 · 31891 · C166
C166 = P39 · P128
P39 = 174631780230614695944104960370984977291<39>
P128 = 12107506134278770155177928819140151041059023958173485072036790346524085153258724473425765312615846580779575809523040588323053941<128>
Number: 25559_172 N=2114355350382189494207682149805919185606211556825492536091195492459147046437246425018096813408167907319825599513279075481759773545555408561894457245946806073653053831 ( 166 digits) SNFS difficulty: 174 digits. Divisors found: r1=174631780230614695944104960370984977291 (pp39) r2=12107506134278770155177928819140151041059023958173485072036790346524085153258724473425765312615846580779575809523040588323053941 (pp128) Version: Msieve-1.40 Total time: 91.32 hours. Scaled time: 158.81 units (timescale=1.739). Factorization parameters were as follows: n: 2114355350382189494207682149805919185606211556825492536091195492459147046437246425018096813408167907319825599513279075481759773545555408561894457245946806073653053831 m: 20000000000000000000000000000000000 deg: 5 c5: 575 c0: 248 skew: 0.85 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 7800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1172139 x 1172368 Total sieving time: 89.23 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.83 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 91.32 hours.
By Erik Branger / GGNFS, Msieve / Sep 24, 2009
(38·10172-11)/9 = 4(2)1711<173> = 59 · 67699 · C167
C167 = P46 · P60 · P61
P46 = 5140420555539630577906068364265885081730496753<46>
P60 = 373113006277293158634413308769938788385364188269480018332333<60>
P61 = 5511474241224288959853093152333391854645304737723708263721969<61>
Number: 42221_172 N=10570774828615054079666755767171340493030396068294883113518243446557737057484068242808138573066127512641881704739954905630937698106404251076042287438895705647761920781 ( 167 digits) SNFS difficulty: 174 digits. Divisors found: r1=5140420555539630577906068364265885081730496753 (pp46) r2=373113006277293158634413308769938788385364188269480018332333 (pp60) r3=5511474241224288959853093152333391854645304737723708263721969 (pp61) Version: Msieve-1.40 Total time: 144.64 hours. Scaled time: 140.44 units (timescale=0.971). Factorization parameters were as follows: n: 10570774828615054079666755767171340493030396068294883113518243446557737057484068242808138573066127512641881704739954905630937698106404251076042287438895705647761920781 m: 20000000000000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 7300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1149676 x 1149901 Total sieving time: 139.33 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.04 hours. Time per square root: 1.04 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 144.64 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 24, 2009
(79·10170-7)/9 = 8(7)170<171> = 1765641831386057<16> · 519984567881869875839623965217<30> · C126
C126 = P59 · P68
P59 = 15483071709542096611001643849713935813843215215290261622477<59>
P68 = 61749634635882785264612312275923906912881470874063040973717176318829<68>
Number: 87777_170 N=956074021105397536437342755056849754612201290610974264349641650804121960025424871623231611685371025112062981295261387784719433 ( 126 digits) SNFS difficulty: 171 digits. Divisors found: r1=15483071709542096611001643849713935813843215215290261622477 r2=61749634635882785264612312275923906912881470874063040973717176318829 Version: Total time: 38.52 hours. Scaled time: 91.67 units (timescale=2.380). Factorization parameters were as follows: n: 956074021105397536437342755056849754612201290610974264349641650804121960025424871623231611685371025112062981295261387784719433 m: 10000000000000000000000000000000000 deg: 5 c5: 79 c0: -7 skew: 0.62 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11273123 Max relations in full relation-set: Initial matrix: Pruned matrix : 973375 x 973623 Total sieving time: 34.70 hours. Total relation processing time: 1.63 hours. Matrix solve time: 2.06 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 38.52 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Lionel Debroux / GMP-ECM 6.2.3 / Sep 24, 2009
(55·10172+71)/9 = 6(1)1719<173> = 3 · 97 · 1289 · 4415852847060229<16> · C152
C152 = P28 · C124
P28 = 4051314161189975816333577239<28>
C124 = [9106757225969912881333194990833285699269760699586847310985480208600176868257330699000978309517694764014428821400787481756751<124>]
GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM] Input number is 36894334512091048654236822948499683065906696676088162506229580105617891866969334928288193930352386232758819724487918773536877070945133685323995868190489 (152 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=937539043 Step 1 took 6087ms Step 2 took 4888ms Run 2 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3259751403 Step 1 took 6043ms Step 2 took 4888ms Run 3 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2439804481 Step 1 took 6045ms Step 2 took 4879ms Run 4 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=806004781 Step 1 took 6057ms Step 2 took 4933ms Run 5 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3046784091 Step 1 took 6096ms Step 2 took 4901ms Run 6 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3621452165 Step 1 took 6024ms Step 2 took 4950ms Run 7 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1549145450 Step 1 took 6084ms Step 2 took 4925ms Run 8 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1183815268 Step 1 took 6092ms Step 2 took 4937ms Run 9 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2498803284 Step 1 took 6157ms Step 2 took 4941ms Run 10 out of 820: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=440176220 Step 1 took 6072ms Step 2 took 4917ms ********** Factor found in step 2: 4051314161189975816333577239 Found probable prime factor of 28 digits: 4051314161189975816333577239 Composite cofactor 9106757225969912881333194990833285699269760699586847310985480208600176868257330699000978309517694764014428821400787481756751 has 124 digits
3·10173+7 = 3(0)1727<174> = 283 · 1913 · 12781 · 123368533577<12> · C153
C153 = P36 · P118
P36 = 273075549184718167710054152780236687<36>
P118 = 1286968141075529714067699681620509401294955843542948675197022676011814934805266689072732719905213815274493968019250807<118>
GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM] Input number is 351439531907436124055536444128806791254168353017680566366500535357910840702470719997506193679475389903251705103144679714049115729736189648524865875756409 (153 digits) Run 228 out of 900: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4028931106 Step 1 took 6076ms ********** Factor found in step 1: 273075549184718167710054152780236687 Found probable prime factor of 36 digits: 273075549184718167710054152780236687 Probable prime cofactor 1286968141075529714067699681620509401294955843542948675197022676011814934805266689072732719905213815274493968019250807 has 118 digits
By Markus Tervooren / Msieve / Sep 24, 2009
(37·10170+53)/9 = 4(1)1697<171> = 32 · 401 · 529066550015453<15> · 224095050481431878583827<24> · C129
C129 = P52 · P78
P52 = 2060454176204106527686604895224268091652282863420069<52>
P78 = 466301490140428261860982955098960860463183987146647186020739663643778439019367<78>
Msieve v. 1.42 Wed Sep 23 23:30:02 2009 random seeds: 9265f727 ad073a50 factoring 960792852730043416587536301900355013291868929009077724099208649994807360505992935335860729053144258511065251226798984308147476323 (129 digits) searching for 15-digit factors commencing number field sieve (129-digit input) R0: -10000000000000000000000000000000000 R1: 1 A0: 53 A1: 0 A2: 0 A3: 0 A4: 0 A5: 37 skew 1.07, size 5.920174e-12, alpha 0.452227, combined = 2.402113e-10 commencing square root phase reading relations for dependency 1 read 352479 cycles cycles contain 1297241 unique relations read 1297241 relations multiplying 1044346 relations multiply complete, coefficients have about 28.31 million bits initial square root is modulo 134631661 reading relations for dependency 2 read 352550 cycles cycles contain 1297471 unique relations read 1297471 relations multiplying 1044696 relations multiply complete, coefficients have about 28.32 million bits initial square root is modulo 135591101 sqrtTime: 385 prp52 factor: 2060454176204106527686604895224268091652282863420069 prp78 factor: 466301490140428261860982955098960860463183987146647186020739663643778439019367 elapsed time 00:06:26 this was another experiment: lpbr: 32 lpba: 32 mfbr: 50 mfba: 50 rlambda: 2.7 alambda: 2.7 Sieve time: ~ 26 hours
By Jo Yeong Uk / GMP-ECM v6.2.3 / Sep 24, 2009
(55·10170+53)/9 = 6(1)1697<171> = 19 · 14543 · 1536751818053759<16> · 39450159861961322302501<23> · C128
C128 = P45 · P84
P45 = 138076070934145108899829431997603725655307579<45>
P84 = 264205376804078662541102594999473809307029747928977642336676775472227007205794914041<84>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 36480440348782502181098190984609803333422429452696004192197999151018411873622928140737009346361855906541450334801422615720816739 (128 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=8183252458 Step 1 took 50063ms Step 2 took 16700ms ********** Factor found in step 2: 138076070934145108899829431997603725655307579 Found probable prime factor of 45 digits: 138076070934145108899829431997603725655307579 Probable prime cofactor 264205376804078662541102594999473809307029747928977642336676775472227007205794914041 has 84 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM v6.2.3, YAFU v1.10 / Sep 23, 2009
(44·10170-17)/9 = 4(8)1697<171> = 523 · 26393 · 5248786129<10> · 67204076825777480647940943101<29> · C126
C126 = P58 · P68
P58 = 6818697425968909012852708610079174806710449887951263213393<58>
P68 = 14725288230184419653350401245759339451836336800397026644804321531889<68>
Number: 48887_170 N=100407284951808774048499368281072908226415208673026207174570944509767601913362756510328274963943649362315407074660910461389377 ( 126 digits) SNFS difficulty: 171 digits. Divisors found: r1=6818697425968909012852708610079174806710449887951263213393 r2=14725288230184419653350401245759339451836336800397026644804321531889 Version: Total time: 31.40 hours. Scaled time: 74.92 units (timescale=2.386). Factorization parameters were as follows: n: 100407284951808774048499368281072908226415208673026207174570944509767601913362756510328274963943649362315407074660910461389377 m: 10000000000000000000000000000000000 deg: 5 c5: 44 c0: -17 skew: 0.83 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10984366 Max relations in full relation-set: Initial matrix: Pruned matrix : 901958 x 902206 Total sieving time: 28.01 hours. Total relation processing time: 1.28 hours. Matrix solve time: 1.90 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 31.40 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
(53·10170-71)/9 = 5(8)1691<171> = 7 · 59 · 1427 · 568218567627765334438930578061<30> · C136
C136 = P43 · P45 · P49
P43 = 2263601622974746710068103777175357428919279<43>
P45 = 129968124481852563001973196053531945137907861<45>
P49 = 5977327695821253697952452498480093874447527049209<49>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1758506242568529843518862184298300192461949248965270914514846025080664578579799593627607383834257179355214779859822982674375843959144771 (136 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=5649517295 Step 1 took 47877ms Step 2 took 18142ms ********** Factor found in step 2: 2263601622974746710068103777175357428919279 Found probable prime factor of 43 digits: 2263601622974746710068103777175357428919279 Composite cofactor 776862070039321652585092816078249433530009012184886494488579907901648422652529493601054931949 has 93 digits 09/23/09 21:37:37 v1.10 @ 조영욱-PC, starting SIQS on c93: 776862070039321652585092816078249433530009012184886494488579907901648422652529493601054931949 09/23/09 21:37:37 v1.10 @ 조영욱-PC, random seeds: 2381196637, 590092736 09/23/09 21:37:38 v1.10 @ 조영욱-PC, ==== sieve params ==== 09/23/09 21:37:38 v1.10 @ 조영욱-PC, n = 93 digits, 311 bits 09/23/09 21:37:38 v1.10 @ 조영욱-PC, factor base: 77164 primes (max prime = 2082163) 09/23/09 21:37:38 v1.10 @ 조영욱-PC, single large prime cutoff: 249859560 (120 * pmax) 09/23/09 21:37:38 v1.10 @ 조영욱-PC, double large prime range from 43 to 51 bits 09/23/09 21:37:38 v1.10 @ 조영욱-PC, double large prime cutoff: 1305728091160594 09/23/09 21:37:38 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 09/23/09 21:37:38 v1.10 @ 조영욱-PC, buckets hold 1024 elements 09/23/09 21:37:38 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536 09/23/09 21:37:38 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 09/23/09 21:37:38 v1.10 @ 조영욱-PC, using multiplier of 5 09/23/09 21:37:38 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits 09/23/09 21:37:38 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 09/23/09 21:37:38 v1.10 @ 조영욱-PC, trial factoring cutoff at 98 bits 09/23/09 21:37:38 v1.10 @ 조영욱-PC, ==== sieving started ==== 09/23/09 22:51:21 v1.10 @ 조영욱-PC, sieve time = 2008.9570, relation time = 942.9800, poly_time = 1470.2500 09/23/09 22:51:21 v1.10 @ 조영욱-PC, 77251 relations found: 21724 full + 55527 from 955480 partial, using 610736 polys (298 A polys) 09/23/09 22:51:21 v1.10 @ 조영욱-PC, on average, sieving found 1.60 rels/poly and 220.91 rels/sec 09/23/09 22:51:21 v1.10 @ 조영욱-PC, trial division touched 36666660 sieve locations out of 880554278912 09/23/09 22:51:21 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 09/23/09 22:51:21 v1.10 @ 조영욱-PC, begin with 977204 relations 09/23/09 22:51:22 v1.10 @ 조영욱-PC, reduce to 183482 relations in 10 passes 09/23/09 22:51:23 v1.10 @ 조영욱-PC, recovered 183482 relations 09/23/09 22:51:23 v1.10 @ 조영욱-PC, recovered 158359 polynomials 09/23/09 22:51:24 v1.10 @ 조영욱-PC, attempting to build 77251 cycles 09/23/09 22:51:24 v1.10 @ 조영욱-PC, found 77251 cycles in 5 passes 09/23/09 22:51:24 v1.10 @ 조영욱-PC, distribution of cycle lengths: 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 1 : 21724 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 2 : 15983 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 3 : 14131 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 4 : 10108 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 5 : 6699 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 6 : 3793 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 7 : 2214 09/23/09 22:51:24 v1.10 @ 조영욱-PC, length 9+: 2599 09/23/09 22:51:24 v1.10 @ 조영욱-PC, largest cycle: 19 relations 09/23/09 22:51:24 v1.10 @ 조영욱-PC, matrix is 77164 x 77251 (20.1 MB) with weight 4645464 (60.13/col) 09/23/09 22:51:24 v1.10 @ 조영욱-PC, sparse part has weight 4645464 (60.13/col) 09/23/09 22:51:24 v1.10 @ 조영욱-PC, filtering completed in 3 passes 09/23/09 22:51:24 v1.10 @ 조영욱-PC, matrix is 71727 x 71791 (18.9 MB) with weight 4374381 (60.93/col) 09/23/09 22:51:24 v1.10 @ 조영욱-PC, sparse part has weight 4374381 (60.93/col) 09/23/09 22:51:25 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 09/23/09 22:51:25 v1.10 @ 조영욱-PC, matrix is 71679 x 71791 (13.6 MB) with weight 3579075 (49.85/col) 09/23/09 22:51:25 v1.10 @ 조영욱-PC, sparse part has weight 2838426 (39.54/col) 09/23/09 22:51:25 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 09/23/09 22:51:25 v1.10 @ 조영욱-PC, using block size 28716 for processor cache size 4096 kB 09/23/09 22:51:25 v1.10 @ 조영욱-PC, commencing Lanczos iteration 09/23/09 22:51:25 v1.10 @ 조영욱-PC, memory use: 11.5 MB 09/23/09 22:51:49 v1.10 @ 조영욱-PC, lanczos halted after 1135 iterations (dim = 71677) 09/23/09 22:51:50 v1.10 @ 조영욱-PC, recovered 16 nontrivial dependencies 09/23/09 22:51:51 v1.10 @ 조영욱-PC, prp45 = 129968124481852563001973196053531945137907861 09/23/09 22:51:52 v1.10 @ 조영욱-PC, prp49 = 5977327695821253697952452498480093874447527049209 09/23/09 22:51:52 v1.10 @ 조영욱-PC, Lanczos elapsed time = 28.7970 seconds. 09/23/09 22:51:52 v1.10 @ 조영욱-PC, Sqrt elapsed time = 2.0130 seconds. 09/23/09 22:51:52 v1.10 @ 조영욱-PC, SIQS elapsed time = 4454.3950 seconds. 09/23/09 22:51:52 v1.10 @ 조영욱-PC, 09/23/09 22:51:52 v1.10 @ 조영욱-PC,
By Ignacio Santos / GGNFS, Msieve / Sep 23, 2009
(19·10172+71)/9 = 2(1)1719<173> = 72 · 8513 · C167
C167 = P45 · P123
P45 = 110527258301512944407034947393828659078821691<45>
P123 = 457891920936034296955040759482830030956478893226740620438124139533279660951936241323594087842050389692669698370301114641357<123>
Number: 21119_172 N=50609538619473005538015354934017148109880233858686980802736537662952725629975550265526939856956134581950560873552600491232163800169035858989039838496971285479617274687 ( 167 digits) SNFS difficulty: 174 digits. Divisors found: r1=110527258301512944407034947393828659078821691 (pp45) r2=457891920936034296955040759482830030956478893226740620438124139533279660951936241323594087842050389692669698370301114641357 (pp123) Version: Msieve-1.40 Total time: 79.89 hours. Scaled time: 138.92 units (timescale=1.739). Factorization parameters were as follows: n: 50609538619473005538015354934017148109880233858686980802736537662952725629975550265526939856956134581950560873552600491232163800169035858989039838496971285479617274687 m: 20000000000000000000000000000000000 deg: 5 c5: 475 c0: 568 skew: 1.04 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 7000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1106971 x 1107201 Total sieving time: 78.02 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.61 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 79.89 hours.
By Markus Tervooren / Msieve / Sep 23, 2009
(34·10170-43)/9 = 3(7)1693<171> = 1039 · 4993 · 48383 · 444279782318951143<18> · C142
C142 = P62 · P81
P62 = 10046624647981434329731923157230013497017529691223640585456559<62>
P81 = 337201713860184384671484513359560681560564747081840826807931543797600519507180469<81>
this was an experiment, some parameters way off: rlim: 6100000 alim: 6100000 lpbr: 32 lpba: 32 mfbr: 60 mfba: 60 rlambda: 2.7 alambda: 2.7 gnfs-lasieve4I13e, r-side only. >100M relations needed, but not as slow as I expected! N=3387739049809311289031891114415217162097560958715790029603763531389843477916648874856656639848448031799156492074641358386383526373413172746171 ( 142 digits) SNFS difficulty: 171 digits. Divisors found: r1=10046624647981434329731923157230013497017529691223640585456559 (pp62) r2=337201713860184384671484513359560681560564747081840826807931543797600519507180469 (pp81) Version: Msieve-1.39 Total time: 42.85 hours. Scaled time: 90.89 units (timescale=2.121). Factorization parameters were as follows: n: 3387739049809311289031891114415217162097560958715790029603763531389843477916648874856656639848448031799156492074641358386383526373413172746171 m: 10000000000000000000000000000000000 deg: 5 c5: 34 c0: -43 skew: 1.05 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 32 lpba: 32 mfbr: 60 mfba: 60 rlambda: 2.7 alambda: 2.7 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 32/32 Max factor residue bits: 60/60 Sieved rational special-q in [3050000, 5050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1234878 x 1235103 Total sieving time: 38.84 hours. Total relation processing time: 1.19 hours. Matrix solve time: 2.49 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6100000,6100000,32,32,60,60,2.7,2.7,200000 total time: 42.85 hours. --------- CPU info (if available) ---------- [ 0.148007] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.240015] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335125] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432094] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 5503.93 BogoMIPS (lpj=11007873) [ 0.160010] Calibrating delay using timer specific routine.. 5499.97 BogoMIPS (lpj=10999957) [ 0.252015] Calibrating delay using timer specific routine.. 5500.01 BogoMIPS (lpj=11000021) [ 0.351657] Calibrating delay using timer specific routine.. 5499.99 BogoMIPS (lpj=10999983) [ 0.436823] Total of 4 processors activated (22003.91 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Sep 22, 2009
(38·10186+43)/9 = 4(2)1857<187> = 3 · 17 · C185
C185 = P73 · P113
P73 = 1891585429967514596086920515141982806978394946772213980599659632904031163<73>
P113 = 43766815768604711815967463936726026448836428954307420888133000133113089530668709178784976770389471795428755770579<113>
Number: 42227_186 N=82788671023965141612200435729847494553376906318082788671023965141612200435729847494553376906318082788671023965141612200435729847494553376906318082788671023965141612200435729847494553377 ( 185 digits) SNFS difficulty: 188 digits. Divisors found: r1=1891585429967514596086920515141982806978394946772213980599659632904031163 (pp73) r2=43766815768604711815967463936726026448836428954307420888133000133113089530668709178784976770389471795428755770579 (pp113) Version: Msieve-1.40 Total time: 292.57 hours. Scaled time: 508.79 units (timescale=1.739). Factorization parameters were as follows: n: 82788671023965141612200435729847494553376906318082788671023965141612200435729847494553376906318082788671023965141612200435729847494553376906318082788671023965141612200435729847494553377 m: 20000000000000000000000000000000000000 deg: 5 c5: 95 c0: 344 skew: 1.29 type: snfs lss: 1 rlim: 9700000 alim: 9700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9700000/9700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4850000, 9550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1953083 x 1953306 Total sieving time: 285.69 hours. Total relation processing time: 0.24 hours. Matrix solve time: 5.81 hours. Time per square root: 0.84 hours. Prototype def-par.txt line would be: snfs,188.000,5,0,0,0,0,0,0,0,0,9700000,9700000,28,28,54,54,2.5,2.5,100000 total time: 292.57 hours.
By Markus Tervooren / Msieve / Sep 22, 2009
(31·10170+41)/9 = 3(4)1699<171> = 853 · 2803 · 17789517266374707409659285068323<32> · C133
C133 = P65 · P69
P65 = 27780788152852831461500887890696440817757461017360421126755061577<65>
P69 = 291499845878488279711112644141316213438152182705016277066973021038941<69>
N=8098095464939533472257174858096288112060750390776624907535616984326680395854794231308671432066690891950563756090331388949682969869957 ( 133 digits) SNFS difficulty: 171 digits. Divisors found: r1=27780788152852831461500887890696440817757461017360421126755061577 (pp65) r2=291499845878488279711112644141316213438152182705016277066973021038941 (pp69) Version: Msieve-1.39 Total time: 38.71 hours. Scaled time: 82.30 units (timescale=2.126). Factorization parameters were as follows: n: 8098095464939533472257174858096288112060750390776624907535616984326680395854794231308671432066690891950563756090331388949682969869957 m: 10000000000000000000000000000000000 deg: 5 c5: 31 c0: 41 skew: 1.06 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 810989 x 811214 Total sieving time: 37.62 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.85 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,26,26,52,52,2.4,2.4,200000 total time: 38.71 hours. --------- CPU info (if available) ---------- [ 0.148007] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.240015] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335125] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432094] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 5503.93 BogoMIPS (lpj=11007873) [ 0.160010] Calibrating delay using timer specific routine.. 5499.97 BogoMIPS (lpj=10999957) [ 0.252015] Calibrating delay using timer specific routine.. 5500.01 BogoMIPS (lpj=11000021) [ 0.351657] Calibrating delay using timer specific routine.. 5499.99 BogoMIPS (lpj=10999983) [ 0.436823] Total of 4 processors activated (22003.91 BogoMIPS).
By Sinkiti Sibata / Msieve / Sep 22, 2009
(59·10179-23)/9 = 6(5)1783<180> = 19 · 2015473 · C173
C173 = P36 · P137
P36 = 265950273339045083658501704336465111<36>
P137 = 64369253958059454454071720059779934517007813788573707868537817779248209579620751914898588371608462553066047076092102225842982124009465229<137>
Number: 65553_179 N=17119020684776321555537049604042419389643485165322575462188242649049720405335583248502057400175008038613361297572790097713135891427433647887214135095297221351110699326125419 ( 173 digits) SNFS difficulty: 181 digits. Divisors found: r1=265950273339045083658501704336465111 (pp36) r2=64369253958059454454071720059779934517007813788573707868537817779248209579620751914898588371608462553066047076092102225842982124009465229 (pp137) Version: Msieve-1.40 Total time: 235.94 hours. Scaled time: 429.64 units (timescale=1.821). Factorization parameters were as follows: name: 65553_179 n: 17119020684776321555537049604042419389643485165322575462188242649049720405335583248502057400175008038613361297572790097713135891427433647887214135095297221351110699326125419 m: 1000000000000000000000000000000000000 deg: 5 c5: 59 c0: -230 skew: 1.31 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3750000, 6850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1536395 x 1536620 Total sieving time: 229.72 hours. Total relation processing time: 0.17 hours. Matrix solve time: 5.89 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 235.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393996) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393875) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891) Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393884) Total of 4 processors activated (19151.29 BogoMIPS).
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 21, 2009
(22·10170-31)/9 = 2(4)1691<171> = 643 · 797 · 10837 · 344349949 · 51523958402942910120527119<26> · C127
C127 = P62 · P66
P62 = 24512183185152555874872601627711724616592509609277977297743897<62>
P66 = 101207003405412029690244968621692294006581722262048299972092070569<66>
Number: 24441_170 N=2480804607093818215117690482806396339262667371876217980622632068551160814692874825909881008959568445704096870937243247013067393 ( 127 digits) SNFS difficulty: 171 digits. Divisors found: r1=24512183185152555874872601627711724616592509609277977297743897 r2=101207003405412029690244968621692294006581722262048299972092070569 Version: Total time: 37.73 hours. Scaled time: 89.92 units (timescale=2.383). Factorization parameters were as follows: n: 2480804607093818215117690482806396339262667371876217980622632068551160814692874825909881008959568445704096870937243247013067393 m: 10000000000000000000000000000000000 deg: 5 c5: 22 c0: -31 skew: 1.07 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11218005 Max relations in full relation-set: Initial matrix: Pruned matrix : 959758 x 960006 Total sieving time: 33.86 hours. Total relation processing time: 1.58 hours. Matrix solve time: 2.17 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 37.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Markus Tervooren / Msieve / Sep 21, 2009
(53·10178+1)/9 = 5(8)1779<179> = 29 · 83 · 56671 · 397302042061058419<18> · 764648480363550491427385880911<30> · C124
C124 = P57 · P67
P57 = 561805943477853761856674267872978066478843702421886731769<57>
P67 = 2529457794411425253963747749161488771720116899521120577840536881597<67>
Msieve v. 1.42 Sun Sep 20 17:41:27 2009 random seeds: ca005200 5206fa9f factoring 1421064422676721817294303535151760278742043022221943758499295816466638534361724872580455743508352819227160020715265251355093 (124 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (124-digit input) R0: -563417788087954445078359 R1: 93114086034739 A0: 9062705301363742144378237740 A1: -138345562111090607522292 A2: -102636921381222766097 A3: 2505116646396433 A4: 60558688503 A5: 25020 skew 42407.21, size 7.642535e-12, alpha -6.074372, combined = 1.859517e-10 commencing square root phase reading relations for dependency 1 read 347688 cycles cycles contain 1268747 unique relations read 1268747 relations multiplying 1013154 relations multiply complete, coefficients have about 49.40 million bits initial square root is modulo 12361093 reading relations for dependency 2 read 347667 cycles cycles contain 1268260 unique relations read 1268260 relations multiplying 1012028 relations multiply complete, coefficients have about 49.34 million bits initial square root is modulo 12139177 sqrtTime: 643 prp57 factor: 561805943477853761856674267872978066478843702421886731769 prp67 factor: 2529457794411425253963747749161488771720116899521120577840536881597 elapsed time 00:10:44 -> Computing time scale for this machine... sumName = g124-nn.txt -> Factorization summary written to g124-nn.txt. debian:/mnt/ewww/worker/nfs/nn# cat g124-nn.txt Number: nn N=1421064422676721817294303535151760278742043022221943758499295816466638534361724872580455743508352819227160020715265251355093 ( 124 digits) Divisors found: r1=561805943477853761856674267872978066478843702421886731769 (pp57) r2=2529457794411425253963747749161488771720116899521120577840536881597 (pp67) Version: Msieve-1.39 Total time: 46.33 hours. Scaled time: 98.54 units (timescale=2.127). Factorization parameters were as follows: name: nn n: 1421064422676721817294303535151760278742043022221943758499295816466638534361724872580455743508352819227160020715265251355093 skew: 42407.21 # norm 9.89e+16 c5: 25020 c4: 60558688503 c3: 2505116646396433 c2: -102636921381222766097 c1: -138345562111090607522292 c0: 9062705301363742144378237740 # alpha -6.07 Y1: 93114086034739 Y0: -563417788087954445078359 # Murphy_E 1.87e-10 # M 161784788761033858021168675376476101605306824352832905557000717915689308176872004727381341087251505583966762495087450514790 type: gnfs rlim: 6000000 alim: 6000000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 260000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [3000000, 7420001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 695948 x 696173 Total sieving time: 45.50 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.59 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,26,26,50,50,2.4,2.4,60000 total time: 46.33 hours. --------- CPU info (if available) ---------- [ 0.148007] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.240015] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335125] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432094] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 5503.93 BogoMIPS (lpj=11007873) [ 0.160010] Calibrating delay using timer specific routine.. 5499.97 BogoMIPS (lpj=10999957) [ 0.252015] Calibrating delay using timer specific routine.. 5500.01 BogoMIPS (lpj=11000021) [ 0.351657] Calibrating delay using timer specific routine.. 5499.99 BogoMIPS (lpj=10999983) [ 0.436823] Total of 4 processors activated (22003.91 BogoMIPS).
(10171+71)/9 = (1)1709<171> = 7 · 211 · 8893 · 1020013 · 8458713931<10> · 10347507427<11> · 45794704847<11> · C127
C127 = P58 · P70
P58 = 1147968296263409095588135283290648861826345355194536694219<58>
P70 = 1802344282551482866164093574575264853010705594176792033320430112532863<70>
N=2069034095320722195548923215079703378937455489202419208172765615328926241741952336155268048786153404925113396948730329019618997 ( 127 digits) SNFS difficulty: 171 digits. Divisors found: r1=1147968296263409095588135283290648861826345355194536694219 (pp58) r2=1802344282551482866164093574575264853010705594176792033320430112532863 (pp70) Version: Msieve-1.39 Total time: 24.46 hours. Scaled time: 52.05 units (timescale=2.128). Factorization parameters were as follows: n: 2069034095320722195548923215079703378937455489202419208172765615328926241741952336155268048786153404925113396948730329019618997 m: 10000000000000000000000000000000000 deg: 5 c5: 10 c0: 71 skew: 1.48 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 30 lpba: 30 mfbr: 59 mfba: 59 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 30/30 Max factor residue bits: 59/59 Sieved rational special-q in [2500000, 4500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 999891 x 1000139 Total sieving time: 23.06 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.16 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,30,30,59,59,2.4,2.4,200000 total time: 24.46 hours. --------- CPU info (if available) ---------- [ 0.148007] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.240015] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335125] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432094] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 5503.93 BogoMIPS (lpj=11007873) [ 0.160010] Calibrating delay using timer specific routine.. 5499.97 BogoMIPS (lpj=10999957) [ 0.252015] Calibrating delay using timer specific routine.. 5500.01 BogoMIPS (lpj=11000021) [ 0.351657] Calibrating delay using timer specific routine.. 5499.99 BogoMIPS (lpj=10999983) [ 0.436823] Total of 4 processors activated (22003.91 BogoMIPS).
By matsui / Msieve / Sep 21, 2009
(23·10198+31)/9 = 2(5)1979<199> = 3 · 17 · 613 · C194
C194 = P88 · P107
P88 = 1773544851690857091455303578767620287335292839195633314214919261703524198142442232843039<88>
P107 = 46090614675202519151121521301857710646255963027179329623754599707153708440227623256930972490373887356299687<107>
N=81743772368472493220598009006031268769969470478058905273184133178375573539185476619504064087117536882434684948839060728514715656064854798181734176360411846449654721413669691186244300148915828793 ( 194 digits) SNFS difficulty: 200 digits. Divisors found: r1=1773544851690857091455303578767620287335292839195633314214919261703524198142442232843039 (pp88) r2=46090614675202519151121521301857710646255963027179329623754599707153708440227623256930972490373887356299687 (pp107) Version: Msieve v. 1.42 Total time: 1259.43 hours. Scaled time: 2168.73 units (timescale=1.722). Factorization parameters were as follows: n: 81743772368472493220598009006031268769969470478058905273184133178375573539185476619504064087117536882434684948839060728514715656064854798181734176360411846449654721413669691186244300148915828793 m: 5000000000000000000000000000000000000000 deg: 5 c5: 184 c0: 775 skew: 1.33 type: snfs lss: 1 rlim: 15500000 alim: 15500000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15500000/15500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7750000, 17950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3488309 x 3488539 Total sieving time: 1245.21 hours. Total relation processing time: 0.27 hours. Matrix solve time: 13.11 hours. Time per square root: 0.84 hours. Prototype def-par.txt line would be: snfs,200.000,5,0,0,0,0,0,0,0,0,15500000,15500000,29,29,56,56,2.6,2.6,100000 total time: 1259.43 hours.
By Jo Yeong Uk / GMP-ECM / Sep 19, 2009
(29·10170+43)/9 = 3(2)1697<171> = 3 · 1954336561162450967604444406439339<34> · C137
C137 = P51 · P86
P51 = 903942870607759014353719475842760274151489835510297<51>
P86 = 60798643985188028202680269739785039692943127907673564694636146843446912085467238806923<86>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 54958500773030027645652315828411893842541871854764460247889669905548548420516193561916002544292592741336996889228227378146037689161386131 (137 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3500915563 Step 1 took 45093ms Step 2 took 18232ms ********** Factor found in step 2: 903942870607759014353719475842760274151489835510297 Found probable prime factor of 51 digits: 903942870607759014353719475842760274151489835510297 Probable prime cofactor 60798643985188028202680269739785039692943127907673564694636146843446912085467238806923 has 86 digits
By Ignacio Santos / GGNFS, Msieve / Sep 18, 2009
(34·10172+11)/9 = 3(7)1719<173> = 3 · 75 · 22906207 · C161
C161 = P62 · P100
P62 = 13399547216048116206746496990163592721856158829124504594553373<62>
P100 = 2441077953299866038839432759567807758029461670857114077392486299910968603071411404050302508894875309<100>
Number: 37779_172 N=32709339293295653405389161183476271106949633991618747095363256042686944231211075637390850182455576410290605734321924801278797776521913329995119050282353380367257 ( 161 digits) SNFS difficulty: 174 digits. Divisors found: r1=13399547216048116206746496990163592721856158829124504594553373 (pp62) r2=2441077953299866038839432759567807758029461670857114077392486299910968603071411404050302508894875309 (pp100) Version: Msieve-1.40 Total time: 85.38 hours. Scaled time: 148.47 units (timescale=1.739). Factorization parameters were as follows: n: 32709339293295653405389161183476271106949633991618747095363256042686944231211075637390850182455576410290605734321924801278797776521913329995119050282353380367257 m: 20000000000000000000000000000000000 deg: 5 c5: 425 c0: 44 skew: 0.64 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 7300001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1195146 x 1195392 Total sieving time: 82.40 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.91 hours. Time per square root: 0.97 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 85.38 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 18, 2009
(32·10170-23)/9 = 3(5)1693<171> = 149 · 33503 · 51263 · 667559 · 833873 · 4272601 · 2796767434453<13> · C129
C129 = P46 · P84
P46 = 1645559899404926371376615695449343668738907841<46>
P84 = 126935041708511926851398719627088041819405074396017925333247593624781393774875551543<84>
Number: 35553_170 N=208879214464819019629450168438377319652848948698329271863993602063397043954681950453722916336345741936562797730018813558322348663 ( 129 digits) SNFS difficulty: 171 digits. Divisors found: r1=1645559899404926371376615695449343668738907841 r2=126935041708511926851398719627088041819405074396017925333247593624781393774875551543 Version: Total time: 25.64 hours. Scaled time: 61.20 units (timescale=2.387). Factorization parameters were as follows: n: 208879214464819019629450168438377319652848948698329271863993602063397043954681950453722916336345741936562797730018813558322348663 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: -23 skew: 1.87 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10732993 Max relations in full relation-set: Initial matrix: Pruned matrix : 828076 x 828324 Total sieving time: 22.74 hours. Total relation processing time: 1.02 hours. Matrix solve time: 1.47 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 25.64 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 17, 2009
(53·10172-17)/9 = 5(8)1717<173> = 3 · 23 · 139 · 1447 · 3673 · 29181318710990417<17> · C146
C146 = P36 · P111
P36 = 208315392186507557875574457526219127<36>
P111 = 190043812887773452615147548555234527720338584588002284271867096892313001181562043797469305967347210061472949433<111>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2640349756 Step 1 took 47357ms Step 2 took 15663ms ********** Factor found in step 2: 208315392186507557875574457526219127 Found probable prime factor of 36 digits: 208315392186507557875574457526219127 Probable prime cofactor 190043812887773452615147548555234527720338584588002284271867096892313001181562043797469305967347210061472949433 has 111 digits
By Tyler Cadigan / GGNFS, Msieve / Sep 17, 2009
(8·10198+7)/3 = 2(6)1979<199> = 36527 · 223908898999444076156054297<27> · C168
C168 = P70 · P99
P70 = 2320931133956130818830015669886269704250399712699520140790309803080087<70>
P99 = 140482141451250686133341198476651965065015485607240103507079549953316466653678246806832754878676573<99>
Number: 26669_198 N=326049375859036824171261381255444031591741388878737437254646291435738645613348668941532143029811314115047415862021325774539435314337582793850998673813206148313689701851 ( 168 digits) SNFS difficulty: 200 digits. Divisors found: r1=2320931133956130818830015669886269704250399712699520140790309803080087 (pp70) r2=140482141451250686133341198476651965065015485607240103507079549953316466653678246806832754878676573 (pp99) Version: Msieve v. 1.42 Total time: 690.72 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 326049375859036824171261381255444031591741388878737437254646291435738645613348668941532143029811314115047415862021325774539435314337582793850998673813206148313689701851 m: 4000000000000000000000000000000000000000 deg: 5 c5: 125 c0: 112 skew: 0.98 type: snfs lss: 1 rlim: 15100000 alim: 15100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 15100000/15100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7550000, 16250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3134307 x 3134554 Total sieving time: 664.13 hours. Total relation processing time: 0.66 hours. Matrix solve time: 25.39 hours. Time per square root: 0.54 hours. Prototype def-par.txt line would be: snfs,200.000,5,0,0,0,0,0,0,0,0,15100000,15100000,29,29,56,56,2.6,2.6,100000 total time: 690.72 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Sep 17, 2009
5·10172-1 = 4(9)172<173> = 10889 · 2882359 · C163
C163 = P47 · P116
P47 = 23331915524945545696221472599200406173115587461<47>
P116 = 68278432084467642690581024494631409446426792252293530420303471343294308319297030303253720850691295975733917647872509<116>
Number: 49999_172 N=1593066609570530649370271023806535039809721860723856941429268203635476830520142259302322810459745823053514922077193405530808546778438857687622783273098732367009649 ( 163 digits) SNFS difficulty: 174 digits. Divisors found: r1=23331915524945545696221472599200406173115587461 (pp47) r2=68278432084467642690581024494631409446426792252293530420303471343294308319297030303253720850691295975733917647872509 (pp116) Version: Msieve-1.40 Total time: 56.01 hours. Scaled time: 97.40 units (timescale=1.739). Factorization parameters were as follows: n: 1593066609570530649370271023806535039809721860723856941429268203635476830520142259302322810459745823053514922077193405530808546778438857687622783273098732367009649 m: 50000000000000000000000000000000000 deg: 5 c5: 4 c0: -25 skew: 1.44 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1013275 x 1013505 Total sieving time: 54.26 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.33 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 56.01 hours.
By Erik Branger / GGNFS, Msieve / Sep 17, 2009
(59·10176-23)/9 = 6(5)1753<177> = 10607 · 170707 · 1907561 · 7383695113<10> · 13356533207<11> · 94204984191876091349<20> · C122
C122 = P54 · P68
P54 = 403844630858790500575868682495392203682876092519852009<54>
P68 = 50586131707898714276738487374243579850913014442871160843064241211167<68>
Number: 65553_176 N=20428937686150513716188331842654470818745885047506256942173091368357721595601970731854222314405131366557147229049758184503 ( 122 digits) Divisors found: r1=403844630858790500575868682495392203682876092519852009 (pp54) r2=50586131707898714276738487374243579850913014442871160843064241211167 (pp68) Version: Msieve-1.40 Total time: 78.97 hours. Scaled time: 82.21 units (timescale=1.041). Factorization parameters were as follows: name: 65553_176 n: 20428937686150513716188331842654470818745885047506256942173091368357721595601970731854222314405131366557147229049758184503 skew: 158770.76 # norm 3.94e+016 c5: 20760 c4: -474624674 c3: -1380158940384592 c2: 5554901797311219178 c1: 16747120367105975305015272 c0: 124551652241894432233486857885 # alpha -5.72 Y1: 24618278168627 Y0: -250382448565819244511008 # Murphy_E 2.24e-010 # M 18715881824280198266006146453563496886158383900731234471211620004399319029508825653052462610260773931023761550378367199990 type: gnfs rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2350000, 4750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 810844 x 811069 Polynomial selection time: 6.85 hours. Total sieving time: 69.05 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.98 hours. Time per square root: 0.89 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4700000,4700000,27,27,53,53,2.5,2.5,100000 total time: 78.97 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 16, 2009
(28·10170+71)/9 = 3(1)1699<171> = 11 · 29 · 331 · 19859450154315389409262513980231995152171<41> · C126
C126 = P49 · P77
P49 = 2420617356194089718965053622654500415943294600059<49>
P77 = 61291956131286495071168227013284416712975208459016724382733705642630335199739<77>
Number: 31119_170 N=148364372806478843118018056613754483141353836691388837731243793211133214062412958758919222671776635993740297014703909886184601 ( 126 digits) SNFS difficulty: 171 digits. Divisors found: r1=2420617356194089718965053622654500415943294600059 r2=61291956131286495071168227013284416712975208459016724382733705642630335199739 Version: Total time: 30.43 hours. Scaled time: 72.76 units (timescale=2.391). Factorization parameters were as follows: n: 148364372806478843118018056613754483141353836691388837731243793211133214062412958758919222671776635993740297014703909886184601 m: 10000000000000000000000000000000000 deg: 5 c5: 28 c0: 71 skew: 1.20 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10954934 Max relations in full relation-set: Initial matrix: Pruned matrix : 878849 x 879097 Total sieving time: 26.96 hours. Total relation processing time: 1.25 hours. Matrix solve time: 1.83 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 30.43 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Ignacio Santos / GGNFS, Msieve / Sep 16, 2009
(29·10171+7)/9 = 3(2)1703<172> = 11 · 1479791 · C165
C165 = P40 · P125
P40 = 9589733359425817076200622132279045714657<40>
P125 = 20642195637875465109091115889554275724787712865926398073936739639918145829101307921345461505744380337731802369225974101445539<125>
Number: 32223_171 N=197953152120328431037173014925278589539285813286668812888393896793055863492161591014739871571680928542809713866978034688204570302785523718750100043133991847019565123 ( 165 digits) SNFS difficulty: 173 digits. Divisors found: r1=9589733359425817076200622132279045714657 (pp40) r2=20642195637875465109091115889554275724787712865926398073936739639918145829101307921345461505744380337731802369225974101445539 (pp125) Version: Msieve-1.40 Total time: 55.68 hours. Scaled time: 96.82 units (timescale=1.739). Factorization parameters were as follows: n: 197953152120328431037173014925278589539285813286668812888393896793055863492161591014739871571680928542809713866978034688204570302785523718750100043133991847019565123 m: 20000000000000000000000000000000000 deg: 5 c5: 145 c0: 112 skew: 0.95 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 5550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1008999 x 1009224 Total sieving time: 54.12 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.32 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 55.68 hours.
By matsui / Msieve / Sep 16, 2009
(5·10192-23)/9 = (5)1913<192> = 163 · 1279 · C187
C187 = P60 · P128
P60 = 145799094413327602537748495764843958560973257709379649763033<60>
P128 = 18277404337185425598239891100735103652779933589824068526521803540526698706975024559967802397321441019434259076595377171175687133<128>
N=2664829000587861277529682197823047892839764365160452018954395715381339694813123536675775052190675976513263120418825844364392981266785091667452791221840085743537922915024465795054397154389 ( 187 digits) SNFS difficulty: 193 digits. Divisors found: r1=145799094413327602537748495764843958560973257709379649763033 (pp60) r2=18277404337185425598239891100735103652779933589824068526521803540526698706975024559967802397321441019434259076595377171175687133 (pp128) Version: Msieve v. 1.42 Total time: 792.35 hours. Scaled time: 1412.76 units (timescale=1.783). Factorization parameters were as follows: n: 2664829000587861277529682197823047892839764365160452018954395715381339694813123536675775052190675976513263120418825844364392981266785091667452791221840085743537922915024465795054397154389 m: 200000000000000000000000000000000000000 deg: 5 c5: 125 c0: -184 skew: 1.08 type: snfs lss: 1 rlim: 11800000 alim: 11800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11800000/11800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5900000, 12200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2317522 x 2317749 Total sieving time: 786.22 hours. Total relation processing time: 0.17 hours. Matrix solve time: 5.22 hours. Time per square root: 0.74 hours. Prototype def-par.txt line would be: snfs,193.000,5,0,0,0,0,0,0,0,0,11800000,11800000,28,28,55,55,2.5,2.5,100000 total time: 792.35 hours.
By Dmitry Domanov / GMP-ECM 6.2.3 / Sep 16, 2009
(16·10201-7)/9 = 1(7)201<202> = 22907 · 116828141 · 3234480311<10> · 124391079730784249328107521<27> · C154
C154 = P48 · P106
P48 = 444230759317260795175403240257992335842297058029<48>
P106 = 3716716325424141693210925501479496473096886450257293112197934420640713023480015000833716684844466642631629<106>
Run 250 out of 800: Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=315076985 Step 1 took 758047ms Step 2 took 166062ms ********** Factor found in step 2: 444230759317260795175403240257992335842297058029 Found probable prime factor of 48 digits: 444230759317260795175403240257992335842297058029 Probable prime cofactor 3716716325424141693210925501479496473096886450257293112197934420640713023480015000833716684844466642631629 has 106 digits
By Ignacio Santos / GGNFS, Msieve / Sep 15, 2009
(59·10184-41)/9 = 6(5)1831<185> = 4457 · C182
C182 = P82 · P100
P82 = 3925650796614450304608790541101120065188901574343160408611576754300302438605223543<82>
P100 = 3746754205773394619342272537105245022521421337297176218292005706321173734203160089060992570783164401<100>
Number: 65551_184 N=14708448632612868646074838581008650562161892653254555879640016952110288435170642933712262857427766559469498666267793483409368533891755789893550719218208560815695659761174681524692743 ( 182 digits) SNFS difficulty: 186 digits. Divisors found: r1=3925650796614450304608790541101120065188901574343160408611576754300302438605223543 (pp82) r2=3746754205773394619342272537105245022521421337297176218292005706321173734203160089060992570783164401 (pp100) Version: Msieve-1.40 Total time: 302.32 hours. Scaled time: 525.74 units (timescale=1.739). Factorization parameters were as follows: n: 14708448632612868646074838581008650562161892653254555879640016952110288435170642933712262857427766559469498666267793483409368533891755789893550719218208560815695659761174681524692743 m: 10000000000000000000000000000000000000 deg: 5 c5: 59 c0: -410 skew: 1.47 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4550000, 9550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2015554 x 2015780 Total sieving time: 295.54 hours. Total relation processing time: 0.24 hours. Matrix solve time: 6.26 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,186.000,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000 total time: 302.32 hours.
(4·10173+17)/3 = 1(3)1729<174> = 71 · 103 · 1193 · C167
C167 = P52 · P115
P52 = 3055312741028287927419953994566699688539650674426697<52>
P115 = 5002038710496443223237430195243628039136222337015568712568093688915681320808688259006916876185102925314392005660443<115>
Number: 13339_173 N=15282792603296490723134751400734804309762796922213680414723029758615550157418494861180090632309114959343759942172969347646738401802727649899647452719529005727876046771 ( 167 digits) SNFS difficulty: 173 digits. Divisors found: r1=3055312741028287927419953994566699688539650674426697 (pp52) r2=5002038710496443223237430195243628039136222337015568712568093688915681320808688259006916876185102925314392005660443 (pp115) Version: Msieve-1.40 Total time: 64.00 hours. Scaled time: 111.30 units (timescale=1.739). Factorization parameters were as follows: n: 15282792603296490723134751400734804309762796922213680414723029758615550157418494861180090632309114959343759942172969347646738401802727649899647452719529005727876046771 m: 20000000000000000000000000000000000 deg: 5 c5: 125 c0: 17 skew: 0.67 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1011480 x 1011706 Total sieving time: 62.32 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.33 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 64.00 hours.
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 15, 2009
(17·10172-53)/9 = 1(8)1713<173> = 462931566953<12> · C161
C161 = P34 · P127
P34 = 4243054134278387643902015996987107<34>
P127 = 9616367306177254454400989800479749240068989346224909729607233753965222432813638290499093357045250756981484447816404226835696073<127>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2577178989 Step 1 took 52114ms Step 2 took 17800ms ********** Factor found in step 2: 4243054134278387643902015996987107 Found probable prime factor of 34 digits: 4243054134278387643902015996987107 Probable prime cofactor 9616367306177254454400989800479749240068989346224909729607233753965222432813638290499093357045250756981484447816404226835696073 has 127 digits
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Sep 15, 2009
(28·10170-1)/9 = 3(1)170<171> = 19 · 194022611 · 5328187985291<13> · 523160083277781738962657179<27> · C122
C122 = P46 · P77
P46 = 2034416473796509875496633128017420031802765447<46>
P77 = 14881803754980492436345625472473603610295959695851442433011508052049006779313<77>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 30275786718939073262198283789978155876672082056701271284678851780538889561037058996711978385933115010226062811804230797911 (122 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=5560633114 Step 1 took 36482ms Step 2 took 16064ms ********** Factor found in step 2: 2034416473796509875496633128017420031802765447 Found probable prime factor of 46 digits: 2034416473796509875496633128017420031802765447 Probable prime cofactor 14881803754980492436345625472473603610295959695851442433011508052049006779313 has 77 digits
(25·10170-7)/9 = 2(7)170<171> = 19 · 70404865994208751<17> · 73366186660775416995914888233<29> · C124
C124 = P55 · P69
P55 = 2876888773808448545612389450797680965722057990005266781<55>
P69 = 983834854012949827795189415448811266443835744019552456282786436621921<69>
Number: 27777_170 N=2830383446791329213045810558076746303928335194452563864665352732692769492808311351008681355733769971965505177430248037706301 ( 124 digits) SNFS difficulty: 171 digits. Divisors found: r1=2876888773808448545612389450797680965722057990005266781 r2=983834854012949827795189415448811266443835744019552456282786436621921 Version: Total time: 28.60 hours. Scaled time: 68.21 units (timescale=2.385). Factorization parameters were as follows: n: 2830383446791329213045810558076746303928335194452563864665352732692769492808311351008681355733769971965505177430248037706301 m: 10000000000000000000000000000000000 deg: 5 c5: 25 c0: -7 skew: 0.78 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10897777 Max relations in full relation-set: Initial matrix: Pruned matrix : 858756 x 859004 Total sieving time: 25.55 hours. Total relation processing time: 1.16 hours. Matrix solve time: 1.69 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.4,2.4,100000 total time: 28.60 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672363) Calibrating delay using timer specific routine.. 5535.15 BogoMIPS (lpj=2767578)
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 14, 2009
(37·10172+17)/9 = 4(1)1713<173> = 1019 · 500107 · 1606379 · 113767669 · 55172481563<11> · C139
C139 = P38 · P102
P38 = 22736814924784767224815309943955870851<38>
P102 = 351886879859479926106674281094605843954692625172311480161859483512498327727310770210259206169473031847<102>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3910885405 Step 1 took 42500ms Step 2 took 14634ms ********** Factor found in step 2: 22736814924784767224815309943955870851 Found probable prime factor of 38 digits: 22736814924784767224815309943955870851 Probable prime cofactor 351886879859479926106674281094605843954692625172311480161859483512498327727310770210259206169473031847 has 102 digits
By Erik Branger / GGNFS, Msieve / Sep 14, 2009
(55·10175-1)/9 = 6(1)175<176> = 559821770843<12> · 493891397250154369<18> · 246041480448468935505424191257093<33> · C114
C114 = P51 · P64
P51 = 391017902359935460396295293287515147769285653999791<51>
P64 = 2297385954982518572904767806255584155891087077691780714089840591<64>
Number: 61111_175 N=898319037028441530467871708720637399015885456002350928697575599818325407407797676281432751591884328633936737316481 ( 114 digits) Divisors found: r1=391017902359935460396295293287515147769285653999791 (pp51) r2=2297385954982518572904767806255584155891087077691780714089840591 (pp64) Version: Msieve-1.40 Total time: 33.95 hours. Scaled time: 28.38 units (timescale=0.836). Factorization parameters were as follows: name: 61111_175 n: 898319037028441530467871708720637399015885456002350928697575599818325407407797676281432751591884328633936737316481 skew: 27326.58 # norm 1.34e+016 c5: 39960 c4: -13065988698 c3: -531998152742487 c2: 10936317674746143358 c1: 41491178267049779716272 c0: -290167518519014402796604480 # alpha -6.57 Y1: 207470951633 Y0: -7419280982151022683621 # Murphy_E 6.05e-010 # M 421724283038624203547494160550808401767561659534889227030843559691311517724997876398849781291780144316139807082033 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2850001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 487262 x 487489 Polynomial selection time: 2.40 hours. Total sieving time: 30.65 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.65 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 33.95 hours. --------- CPU info (if available) ----------
By matsui / Msieve / Sep 13, 2009
9·10175+1 = 9(0)1741<176> = 7 · 13 · 93455747615903<14> · 781769166175247748256859<24> · C137
C137 = P67 · P70
P67 = 1628016159426033701278393782246899502990135743608549066928747844161<67>
P70 = 8314915735262452439319787506005991721407656494214518451363732004308663<70>
N=13536817181273073003693400687887924526607703152525801239445965870724371117220030478103125284496228788782993959108776273823788324466266743 ( 137 digits) SNFS difficulty: 175 digits. Divisors found: r1=1628016159426033701278393782246899502990135743608549066928747844161 (pp67) r2=8314915735262452439319787506005991721407656494214518451363732004308663 (pp70) Version: Msieve v. 1.42 Total time: 107.83 hours. Scaled time: 194.42 units (timescale=1.803). Factorization parameters were as follows: n: 13536817181273073003693400687887924526607703152525801239445965870724371117220030478103125284496228788782993959108776273823788324466266743 m: 100000000000000000000000000000000000 deg: 5 c5: 9 c0: 1 skew: 0.64 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1032129 x 1032362 Total sieving time: 105.76 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.70 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,52,52,2.5,2.5,100000 total time: 107.83 hours.
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 13, 2009
(59·10190-23)/9 = 6(5)1893<191> = 32 · C190
C190 = P69 · P122
P69 = 595930134278907987018097882864219937198080120308454580288752400192693<69>
P122 = 12222826466222811769941835851841951524169028228224503246579993591785109785182270777425388414418679194209613457906566723669<122>
Sieving ~ 12 cpu-days Sun Sep 13 07:57:55 2009 Msieve v. 1.42 Sun Sep 13 07:57:55 2009 random seeds: 8c162888 c6fe34f8 Sun Sep 13 07:57:55 2009 factoring 7283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617 (190 digits) Sun Sep 13 07:57:57 2009 searching for 15-digit factors Sun Sep 13 07:57:58 2009 commencing number field sieve (190-digit input) Sun Sep 13 07:57:58 2009 R0: -100000000000000000000000000000000000000 Sun Sep 13 07:57:58 2009 R1: 1 Sun Sep 13 07:57:58 2009 A0: -23 Sun Sep 13 07:57:58 2009 A1: 0 Sun Sep 13 07:57:58 2009 A2: 0 Sun Sep 13 07:57:58 2009 A3: 0 Sun Sep 13 07:57:58 2009 A4: 0 Sun Sep 13 07:57:58 2009 A5: 59 Sun Sep 13 07:57:58 2009 skew 0.83, size 2.553821e-013, alpha 0.725916, combined = 3.581467e-011 Sun Sep 13 07:57:58 2009 Sun Sep 13 07:57:58 2009 commencing relation filtering Sun Sep 13 07:57:58 2009 estimated available RAM is 4096.0 MB Sun Sep 13 07:57:58 2009 commencing duplicate removal, pass 1 Sun Sep 13 08:00:18 2009 error -11 reading relation 17862868 Sun Sep 13 08:01:03 2009 found 4163747 hash collisions in 23615959 relations Sun Sep 13 08:01:54 2009 added 717815 free relations Sun Sep 13 08:01:54 2009 commencing duplicate removal, pass 2 Sun Sep 13 08:02:38 2009 found 3990250 duplicates and 20343523 unique relations Sun Sep 13 08:02:38 2009 memory use: 106.6 MB Sun Sep 13 08:02:38 2009 reading ideals above 17891328 Sun Sep 13 08:02:43 2009 commencing singleton removal, initial pass Sun Sep 13 08:05:59 2009 memory use: 298.4 MB Sun Sep 13 08:05:59 2009 reading all ideals from disk Sun Sep 13 08:05:59 2009 memory use: 344.9 MB Sun Sep 13 08:06:01 2009 commencing in-memory singleton removal Sun Sep 13 08:06:03 2009 begin with 20343523 relations and 19743339 unique ideals Sun Sep 13 08:06:21 2009 reduce to 9359078 relations and 6668121 ideals in 16 passes Sun Sep 13 08:06:21 2009 max relations containing the same ideal: 28 Sun Sep 13 08:06:23 2009 reading ideals above 100000 Sun Sep 13 08:06:23 2009 commencing singleton removal, initial pass Sun Sep 13 08:08:26 2009 memory use: 149.2 MB Sun Sep 13 08:08:26 2009 reading all ideals from disk Sun Sep 13 08:08:27 2009 memory use: 366.9 MB Sun Sep 13 08:08:29 2009 keeping 8915335 ideals with weight <= 200, target excess is 49957 Sun Sep 13 08:08:31 2009 commencing in-memory singleton removal Sun Sep 13 08:08:32 2009 begin with 9361029 relations and 8915335 unique ideals Sun Sep 13 08:08:56 2009 reduce to 9326998 relations and 8872064 ideals in 12 passes Sun Sep 13 08:08:56 2009 max relations containing the same ideal: 200 Sun Sep 13 08:09:05 2009 removing 1450945 relations and 1252453 ideals in 198492 cliques Sun Sep 13 08:09:06 2009 commencing in-memory singleton removal Sun Sep 13 08:09:07 2009 begin with 7876053 relations and 8872064 unique ideals Sun Sep 13 08:09:24 2009 reduce to 7710435 relations and 7449485 ideals in 10 passes Sun Sep 13 08:09:24 2009 max relations containing the same ideal: 184 Sun Sep 13 08:09:31 2009 removing 1087103 relations and 888611 ideals in 198492 cliques Sun Sep 13 08:09:32 2009 commencing in-memory singleton removal Sun Sep 13 08:09:33 2009 begin with 6623332 relations and 7449485 unique ideals Sun Sep 13 08:09:45 2009 reduce to 6509266 relations and 6443963 ideals in 9 passes Sun Sep 13 08:09:45 2009 max relations containing the same ideal: 163 Sun Sep 13 08:09:53 2009 relations with 0 large ideals: 1039 Sun Sep 13 08:09:53 2009 relations with 1 large ideals: 94 Sun Sep 13 08:09:53 2009 relations with 2 large ideals: 1531 Sun Sep 13 08:09:53 2009 relations with 3 large ideals: 18363 Sun Sep 13 08:09:53 2009 relations with 4 large ideals: 124425 Sun Sep 13 08:09:53 2009 relations with 5 large ideals: 496441 Sun Sep 13 08:09:53 2009 relations with 6 large ideals: 1286558 Sun Sep 13 08:09:53 2009 relations with 7+ large ideals: 4580815 Sun Sep 13 08:09:53 2009 commencing 2-way merge Sun Sep 13 08:10:03 2009 reduce to 4032036 relation sets and 3966734 unique ideals Sun Sep 13 08:10:03 2009 ignored 1 oversize relation sets Sun Sep 13 08:10:03 2009 commencing full merge Sun Sep 13 08:11:55 2009 memory use: 432.4 MB Sun Sep 13 08:11:56 2009 found 2083563 cycles, need 2070934 Sun Sep 13 08:11:56 2009 weight of 2070934 cycles is about 145206036 (70.12/cycle) Sun Sep 13 08:11:56 2009 distribution of cycle lengths: Sun Sep 13 08:11:56 2009 1 relations: 265751 Sun Sep 13 08:11:56 2009 2 relations: 255767 Sun Sep 13 08:11:56 2009 3 relations: 245138 Sun Sep 13 08:11:56 2009 4 relations: 217974 Sun Sep 13 08:11:56 2009 5 relations: 196631 Sun Sep 13 08:11:56 2009 6 relations: 167146 Sun Sep 13 08:11:56 2009 7 relations: 143957 Sun Sep 13 08:11:56 2009 8 relations: 121627 Sun Sep 13 08:11:56 2009 9 relations: 99995 Sun Sep 13 08:11:56 2009 10+ relations: 356948 Sun Sep 13 08:11:56 2009 heaviest cycle: 24 relations Sun Sep 13 08:11:57 2009 commencing cycle optimization Sun Sep 13 08:12:02 2009 start with 11830058 relations Sun Sep 13 08:12:31 2009 pruned 283532 relations Sun Sep 13 08:12:31 2009 memory use: 308.4 MB Sun Sep 13 08:12:31 2009 distribution of cycle lengths: Sun Sep 13 08:12:31 2009 1 relations: 265751 Sun Sep 13 08:12:31 2009 2 relations: 261074 Sun Sep 13 08:12:31 2009 3 relations: 253204 Sun Sep 13 08:12:31 2009 4 relations: 222854 Sun Sep 13 08:12:31 2009 5 relations: 200968 Sun Sep 13 08:12:31 2009 6 relations: 169433 Sun Sep 13 08:12:31 2009 7 relations: 145141 Sun Sep 13 08:12:31 2009 8 relations: 120987 Sun Sep 13 08:12:31 2009 9 relations: 98774 Sun Sep 13 08:12:31 2009 10+ relations: 332748 Sun Sep 13 08:12:31 2009 heaviest cycle: 24 relations Sun Sep 13 08:12:39 2009 RelProcTime: 881 Sun Sep 13 08:12:39 2009 Sun Sep 13 08:12:39 2009 commencing linear algebra Sun Sep 13 08:12:40 2009 read 2070934 cycles Sun Sep 13 08:12:45 2009 cycles contain 6402908 unique relations Sun Sep 13 08:18:40 2009 read 6402908 relations Sun Sep 13 08:18:51 2009 using 20 quadratic characters above 268435292 Sun Sep 13 08:19:24 2009 building initial matrix Sun Sep 13 08:20:47 2009 memory use: 706.9 MB Sun Sep 13 08:20:52 2009 read 2070934 cycles Sun Sep 13 08:24:47 2009 matrix is 2070756 x 2070934 (589.3 MB) with weight 184162812 (88.93/col) Sun Sep 13 08:24:47 2009 sparse part has weight 139977590 (67.59/col) Sun Sep 13 08:25:23 2009 filtering completed in 2 passes Sun Sep 13 08:25:24 2009 matrix is 2069505 x 2069683 (589.2 MB) with weight 184122195 (88.96/col) Sun Sep 13 08:25:24 2009 sparse part has weight 139964532 (67.63/col) Sun Sep 13 08:25:36 2009 read 2069683 cycles Sun Sep 13 08:35:19 2009 matrix is 2069505 x 2069683 (589.2 MB) with weight 184122195 (88.96/col) Sun Sep 13 08:35:19 2009 sparse part has weight 139964532 (67.63/col) Sun Sep 13 08:35:19 2009 saving the first 48 matrix rows for later Sun Sep 13 08:35:20 2009 matrix is 2069457 x 2069683 (558.5 MB) with weight 146281012 (70.68/col) Sun Sep 13 08:35:20 2009 sparse part has weight 133994588 (64.74/col) Sun Sep 13 08:35:20 2009 matrix includes 64 packed rows Sun Sep 13 08:35:20 2009 using block size 65536 for processor cache size 6144 kB Sun Sep 13 08:35:35 2009 commencing Lanczos iteration (8 threads) Sun Sep 13 08:35:35 2009 memory use: 694.2 MB Sun Sep 13 13:42:19 2009 lanczos halted after 32726 iterations (dim = 2069455) Sun Sep 13 13:42:24 2009 recovered 34 nontrivial dependencies Sun Sep 13 13:42:28 2009 BLanczosTime: 19789 Sun Sep 13 13:42:28 2009 Sun Sep 13 13:42:28 2009 commencing square root phase Sun Sep 13 13:42:28 2009 reading relations for dependency 1 Sun Sep 13 13:42:29 2009 read 1035770 cycles Sun Sep 13 13:42:31 2009 cycles contain 3948645 unique relations Sun Sep 13 13:46:04 2009 read 3948645 relations Sun Sep 13 13:46:27 2009 multiplying 3203982 relations Sun Sep 13 13:52:07 2009 multiply complete, coefficients have about 90.91 million bits Sun Sep 13 13:52:08 2009 initial square root is modulo 3350881 Sun Sep 13 13:59:12 2009 sqrtTime: 1004 Sun Sep 13 13:59:12 2009 prp69 factor: 595930134278907987018097882864219937198080120308454580288752400192693 Sun Sep 13 13:59:12 2009 prp122 factor: 12222826466222811769941835851841951524169028228224503246579993591785109785182270777425388414418679194209613457906566723669 Sun Sep 13 13:59:12 2009 elapsed time 06:01:17
By Erik Branger / GMP-ECM / Sep 13, 2009
(55·10175-1)/9 = 6(1)175<176> = 559821770843<12> · 493891397250154369<18> · C147
C147 = P33 · C114
P33 = 246041480448468935505424191257093<33>
C114 = [898319037028441530467871708720637399015885456002350928697575599818325407407797676281432751591884328633936737316481<114>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 221023745785520738530183158323401649838072496227609848123552585054296532467811331267623414997472764179348057363824316443974920322581617998777049733 (147 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=712893148 Step 1 took 66098ms Step 2 took 16302ms ********** Factor found in step 2: 246041480448468935505424191257093 Found probable prime factor of 33 digits: 246041480448468935505424191257093 Composite cofactor 898319037028441530467871708720637399015885456002350928697575599818325407407797676281432751591884328633936737316481 has 114 digits
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 12, 2009
(59·10169-23)/9 = 6(5)1683<170> = 3 · 7 · 89 · C167
C167 = P41 · P127
P41 = 28430964259781917943980748374208784514853<41>
P127 = 1233697291939774133711286527411120375881469802995317171773279409219618101136753281894577979510992906387685595566502805933883329<127>
N=35075203614529457226086439569585637001367338445990131383389810356102490933951608108911479697996551929136198799120147434754176327210035075203614529457226086439569585637 ( 167 digits) SNFS difficulty: 171 digits. Divisors found: r1=28430964259781917943980748374208784514853 (pp41) r2=1233697291939774133711286527411120375881469802995317171773279409219618101136753281894577979510992906387685595566502805933883329 (pp127) Version: Msieve-1.40 Total time: 71.59 hours. Scaled time: 131.66 units (timescale=1.839). Factorization parameters were as follows: n: 35075203614529457226086439569585637001367338445990131383389810356102490933951608108911479697996551929136198799120147434754176327210035075203614529457226086439569585637 m: 10000000000000000000000000000000000 deg: 5 c5: 59 c0: -230 skew: 1.31 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 6250001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1065258 x 1065492 Total sieving time: 67.56 hours. Total relation processing time: 0.12 hours. Matrix solve time: 3.78 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 71.59 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Sep 11, 2009
(59·10165-23)/9 = 6(5)1643<166> = 1741 · 38960227999134538231<20> · C143
C143 = P28 · P116
P28 = 2064990475929912749997390361<28>
P116 = 46802730236683154984816134421376388063144540153731467205541612475533926974676458033603066779475822373135228517421563<116>
Number: 65553_165 N=96647192186267666218374132506936329952557529182361162213091431954136502206263711389409088399037651233385794443350281121504327314015274509754243 ( 143 digits) SNFS difficulty: 166 digits. Divisors found: r1=2064990475929912749997390361 (pp28) r2=46802730236683154984816134421376388063144540153731467205541612475533926974676458033603066779475822373135228517421563 (pp116) Version: Msieve-1.40 Total time: 51.38 hours. Scaled time: 93.56 units (timescale=1.821). Factorization parameters were as follows: name: 65553_165 n: 96647192186267666218374132506936329952557529182361162213091431954136502206263711389409088399037651233385794443350281121504327314015274509754243 m: 1000000000000000000000000000000000 deg: 5 c5: 59 c0: -23 skew: 0.83 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 816412 x 816637 Total sieving time: 49.26 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.54 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 51.38 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393997) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393890) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393888) Total of 4 processors activated (19151.30 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Sep 11, 2009
(29·10171-11)/9 = 3(2)1701<172> = 77378189879<11> · C161
C161 = P58 · P104
P58 = 1373059027510165266686030191368009754437222748912948998947<58>
P104 = 30328275365755465480725921312582058358200443978085503922256042894999692403183763300297990866427565037417<104>
Number: 32221_171 N=41642512279764701242995617662091759439388865446300500712469273427447764117297156736480630877206853227818477826739783384151735931075439602326578252912586748599899 ( 161 digits) SNFS difficulty: 173 digits. Divisors found: r1=1373059027510165266686030191368009754437222748912948998947 (pp58) r2=30328275365755465480725921312582058358200443978085503922256042894999692403183763300297990866427565037417 (pp104) Version: Msieve-1.40 Total time: 72.57 hours. Scaled time: 126.57 units (timescale=1.744). Factorization parameters were as follows: n: 41642512279764701242995617662091759439388865446300500712469273427447764117297156736480630877206853227818477826739783384151735931075439602326578252912586748599899 m: 20000000000000000000000000000000000 deg: 5 c5: 145 c0: -176 skew: 1.04 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1050536 x 1050764 Total sieving time: 70.90 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.44 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 72.57 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 11, 2009
(19·10170+71)/9 = 2(1)1699<171> = 32 · 73 · 1143526333241<13> · 26806091100941<14> · C143
C143 = P46 · P97
P46 = 1472916625511933818304086346266260652139237503<46>
P97 = 7116851409399948800992630964973514929835328139534602203013552485803304887760559036954951326947469<97>
Number: 21119_170 N=10482528762203222779447796871500280565529891335012482902432438626124840006434825907390863943724652265498027597009542119289264411940490195729907 ( 143 digits) SNFS difficulty: 171 digits. Divisors found: r1=1472916625511933818304086346266260652139237503 r2=7116851409399948800992630964973514929835328139534602203013552485803304887760559036954951326947469 Version: Total time: 41.40 hours. Scaled time: 98.74 units (timescale=2.385). Factorization parameters were as follows: n: 10482528762203222779447796871500280565529891335012482902432438626124840006434825907390863943724652265498027597009542119289264411940490195729907 m: 10000000000000000000000000000000000 deg: 5 c5: 19 c0: 71 skew: 1.30 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11129718 Max relations in full relation-set: Initial matrix: Pruned matrix : 1061046 x 1061293 Total sieving time: 36.83 hours. Total relation processing time: 1.69 hours. Matrix solve time: 2.61 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 41.40 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.57 BogoMIPS (lpj=2672286) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618908)
By Ignacio Santos / GGNFS, Msieve / Sep 10, 2009
(52·10171-7)/9 = 5(7)171<172> = 1952178017533<13> · C160
C160 = P50 · P110
P50 = 39592814745574705902699945898782321093833965047403<50>
P110 = 74752382368221238007239043624856816631832755356506250342177409326733359592982167470607142927525246902943388623<110>
Number: 57777_171 N=2959657226895348486983068529357280561791280143455803222127889917932424116381080897985883660911699420346378168816946684119097523441838243885561586972205645896069 ( 160 digits) SNFS difficulty: 173 digits. Divisors found: r1=39592814745574705902699945898782321093833965047403 (pp50) r2=74752382368221238007239043624856816631832755356506250342177409326733359592982167470607142927525246902943388623 (pp110) Version: Msieve-1.40 Total time: 63.82 hours. Scaled time: 111.30 units (timescale=1.744). Factorization parameters were as follows: n: 2959657226895348486983068529357280561791280143455803222127889917932424116381080897985883660911699420346378168816946684119097523441838243885561586972205645896069 m: 20000000000000000000000000000000000 deg: 5 c5: 65 c0: -28 skew: 0.84 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 6000001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1032105 x 1032337 Total sieving time: 62.09 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.38 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 63.82 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 10, 2009
(19·10170-7)/3 = 6(3)1691<171> = 23 · 1693 · 1199754677923870469881793579521<31> · C137
C137 = P68 · P69
P68 = 19363256165470831739734671261834093462756927660295485797238711171749<68>
P69 = 700126811195158293901619994127610847780854332564369683876988029909301<69>
Number: 63331_170 N=13556734793486081777091329350501324438959824086504966141450657440300019933595539917931323461796454538355073091348758169494393299903537449 ( 137 digits) SNFS difficulty: 171 digits. Divisors found: r1=19363256165470831739734671261834093462756927660295485797238711171749 r2=700126811195158293901619994127610847780854332564369683876988029909301 Version: Total time: 27.91 hours. Scaled time: 66.52 units (timescale=2.383). Factorization parameters were as follows: n: 13556734793486081777091329350501324438959824086504966141450657440300019933595539917931323461796454538355073091348758169494393299903537449 m: 10000000000000000000000000000000000 deg: 5 c5: 19 c0: -7 skew: 0.82 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 4900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10788670 Max relations in full relation-set: Initial matrix: Pruned matrix : 868645 x 868893 Total sieving time: 24.93 hours. Total relation processing time: 1.13 hours. Matrix solve time: 1.61 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 27.91 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.57 BogoMIPS (lpj=2672286) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618908)
By Ignacio Santos / GGNFS, Msieve 1.42 / Sep 9, 2009
(4·10172-31)/9 = (4)1711<172> = 41 · 4556732659<10> · C161
C161 = P57 · P105
P57 = 154672668131208332773994942553144120407006879014809000343<57>
P105 = 153803599121423245988030142267402289768022067254300628720236883515007414392873119738585516383755757888173<105>
Number: 44441_172 N=23789213044293303229550735607486601307766306706298497379290758255801377010322518700127858457364260309316537501324589084283252677872502791566794880261178912643339 ( 161 digits) SNFS difficulty: 172 digits. Divisors found: r1=154672668131208332773994942553144120407006879014809000343 (pp57) r2=153803599121423245988030142267402289768022067254300628720236883515007414392873119738585516383755757888173 (pp105) Version: Msieve-1.40 Total time: 63.16 hours. Scaled time: 109.84 units (timescale=1.739). Factorization parameters were as follows: n: 23789213044293303229550735607486601307766306706298497379290758255801377010322518700127858457364260309316537501324589084283252677872502791566794880261178912643339 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: -62 skew: 1.20 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 998422 x 998655 Total sieving time: 61.66 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.28 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 63.16 hours.
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 9, 2009
(59·10166-23)/9 = 6(5)1653<167> = 3 · 337 · C164
C164 = P77 · P88
P77 = 13762016883863372331245726248307835934280238168059759413862859606014645511587<77>
P88 = 4711685133710953668512566356995788489413041337701567967488467192158358794694291911725929<88>
N=64842290361578195406088581162765139026266622705791845257720628640509946147928343774041103417958017364545554456533685020331904604901637542587097483239916474337839323 ( 164 digits) SNFS difficulty: 168 digits. Divisors found: r1=13762016883863372331245726248307835934280238168059759413862859606014645511587 (pp77) r2=4711685133710953668512566356995788489413041337701567967488467192158358794694291911725929 (pp88) Version: Msieve-1.40 Total time: 58.57 hours. Scaled time: 106.78 units (timescale=1.823). Factorization parameters were as follows: n: 64842290361578195406088581162765139026266622705791845257720628640509946147928343774041103417958017364545554456533685020331904604901637542587097483239916474337839323 m: 2000000000000000000000000000000000 deg: 5 c5: 295 c0: -368 skew: 1.05 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 5400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 945033 x 945257 Total sieving time: 55.42 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.67 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,168.000,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 58.57 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Sep 9, 2009
(10187+17)/9 = (1)1863<187> = 33 · 311 · 1231 · 283233089 · 2951213879<10> · 130396245425519<15> · 47490956088523379331353<23> · C125
C125 = P49 · P76
P49 = 2743641069602876421817939887754517698871698068469<49>
P76 = 7568804996257901058444820569101293068078524183161107631106691480771145301383<76>
Number: 11113_187 N=2076608423554862273326948827588460567685888236599784909184558742554793600727192235715606019606276692599332219017 8505974392627 ( 125 digits) Divisors found: r1=2743641069602876421817939887754517698871698068469 (pp49) r2=7568804996257901058444820569101293068078524183161107631106691480771145301383 (pp76) Version: Msieve-1.40 Total time: 93.26 hours. Scaled time: 97.64 units (timescale=1.047). Factorization parameters were as follows: n: 207660842355486227332694882758846056768588823659978490918455874255479360072719223571560601960627669259933221901785 05974392627 Y0: -1235968266724011336173423 Y1: 25826703503071 c0: -6752457784721708041933315518400 c1: 65470140297054341898845356 c2: 1163854576425161625392 c3: 447583726895349 c4: -11493947732 c5: 7200 skew: 315435.66 type: gnfs rlim: 6900000 alim: 6900000 lbpr: 27 lbpa: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5Factor base limits: 6900000/6900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3450000, 7050001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 997410 x 997635 Total sieving time: 90.31 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.34 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6900000,6900000,27,27,52,52,2.5,2.5,100000 total time: 93.26 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Sep 9, 2009
(59·10158-23)/9 = 6(5)1573<159> = 12487 · 2207698132336061<16> · C140
C140 = P48 · P93
P48 = 138950783711105562238509825389437166829461858261<48>
P93 = 171139673698799815993773112254601075308395029276065689096470124575931764320838076484006014039<93>
Number: 65553_158 N=23779991784511114479490852640978328737126836338072236250440978127472921436941578643368685604269870370029495705310629134612847124288594126179 ( 140 digits) SNFS difficulty: 161 digits. Divisors found: r1=138950783711105562238509825389437166829461858261 (pp48) r2=171139673698799815993773112254601075308395029276065689096470124575931764320838076484006014039 (pp93) Version: Msieve-1.40 Total time: 39.17 hours. Scaled time: 71.37 units (timescale=1.822). Factorization parameters were as follows: name: 65553_158 n: 23779991784511114479490852640978328737126836338072236250440978127472921436941578643368685604269870370029495705310629134612847124288594126179 m: 50000000000000000000000000000000 deg: 5 c5: 472 c0: -575 skew: 1.04 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3400001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705731 x 705958 Total sieving time: 37.90 hours. Total relation processing time: 0.07 hours. Matrix solve time: 1.13 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 39.17 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393997) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393890) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393888) Total of 4 processors activated (19151.30 BogoMIPS).
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 9, 2009
(7·10170-61)/9 = (7)1691<170> = 16033 · 27179 · 19782504017<11> · 34433491170137<14> · C138
C138 = P51 · P88
P51 = 102997828312150381163336333220697978781017456072607<51>
P88 = 2543998649635394006349204860850381213757448610270145010190730784237897849483369671738151<88>
Number: 77771_170 N=262026336141488722740887471511504618353946493011121522733691596871647376350077584500144346575937690543468618961950015644602813919747929657 ( 138 digits) SNFS difficulty: 170 digits. Divisors found: r1=102997828312150381163336333220697978781017456072607 r2=2543998649635394006349204860850381213757448610270145010190730784237897849483369671738151 Version: Total time: 31.20 hours. Scaled time: 74.57 units (timescale=2.390). Factorization parameters were as follows: n: 262026336141488722740887471511504618353946493011121522733691596871647376350077584500144346575937690543468618961950015644602813919747929657 m: 10000000000000000000000000000000000 deg: 5 c5: 7 c0: -61 skew: 1.54 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10872906 Max relations in full relation-set: Initial matrix: Pruned matrix : 911180 x 911428 Total sieving time: 27.40 hours. Total relation processing time: 1.24 hours. Matrix solve time: 1.88 hours. Time per square root: 0.68 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 31.20 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.57 BogoMIPS (lpj=2672286) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618908)
(16·10170-61)/9 = 1(7)1691<171> = 3 · 199 · 18773 · 38669 · 36501139 · 21671373617<11> · C141
C141 = P64 · P78
P64 = 2083352443623955517456574595370861273778187700398395438300935987<64>
P78 = 248914913845551113972421378475204343559532544725717959578969110953994879400519<78>
Number: 17771_170 N=518577494014575271846975043011137983452218308820037588072919544803916121046830631947861998124248547425682307209664821092279905057663153577253 ( 141 digits) SNFS difficulty: 171 digits. Divisors found: r1=2083352443623955517456574595370861273778187700398395438300935987 r2=248914913845551113972421378475204343559532544725717959578969110953994879400519 Version: Total time: 25.77 hours. Scaled time: 61.55 units (timescale=2.388). Factorization parameters were as follows: n: 518577494014575271846975043011137983452218308820037588072919544803916121046830631947861998124248547425682307209664821092279905057663153577253 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: -122 skew: 2.61 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10618324 Max relations in full relation-set: Initial matrix: Pruned matrix : 860509 x 860757 Total sieving time: 23.02 hours. Total relation processing time: 1.02 hours. Matrix solve time: 1.65 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 25.77 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.57 BogoMIPS (lpj=2672286) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618908)
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 8, 2009
5·10170-3 = 4(9)1697<171> = 7 · 5651 · 227097137 · 15754689472675987541294126496349<32> · C127
C127 = P61 · P67
P61 = 1282193342543925932322422945370800329162612510700818603591681<61>
P67 = 2755317386704286894836646040390450824249315418803775935856090488957<67>
Number: 49997_170 N=3532849609827764557824712935521280431199925581138817459746251706817133265070845561065976460386265718854344947085699143667566717 ( 127 digits) SNFS difficulty: 170 digits. Divisors found: r1=1282193342543925932322422945370800329162612510700818603591681 r2=2755317386704286894836646040390450824249315418803775935856090488957 Version: Total time: 27.21 hours. Scaled time: 65.04 units (timescale=2.390). Factorization parameters were as follows: n: 3532849609827764557824712935521280431199925581138817459746251706817133265070845561065976460386265718854344947085699143667566717 m: 10000000000000000000000000000000000 deg: 5 c5: 5 c0: -3 skew: 0.90 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2600000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10670849 Max relations in full relation-set: Initial matrix: Pruned matrix : 881121 x 881369 Total sieving time: 24.19 hours. Total relation processing time: 1.10 hours. Matrix solve time: 1.75 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 27.21 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.57 BogoMIPS (lpj=2672286) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618908)
6·10170+7 = 6(0)1697<171> = 7949 · 460073 · 2163987266008573<16> · C146
C146 = P53 · P94
P53 = 54259207804217377507164325108667689661711419580711023<53>
P94 = 1397281332661513419734474128891275205904136412680671506450765242423612261405435404496170098729<94>
Number: 60007_170 N=75815378189834846567408712131031443528261571612454128600975701196926299880446137951213378979847518018044496146504128402875774881726424065928589767 ( 146 digits) SNFS difficulty: 170 digits. Divisors found: r1=54259207804217377507164325108667689661711419580711023 r2=1397281332661513419734474128891275205904136412680671506450765242423612261405435404496170098729 Version: Total time: 35.86 hours. Scaled time: 85.45 units (timescale=2.383). Factorization parameters were as follows: n: 75815378189834846567408712131031443528261571612454128600975701196926299880446137951213378979847518018044496146504128402875774881726424065928589767 m: 10000000000000000000000000000000000 deg: 5 c5: 6 c0: 7 skew: 1.03 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11028490 Max relations in full relation-set: Initial matrix: Pruned matrix : 993787 x 994035 Total sieving time: 32.00 hours. Total relation processing time: 1.50 hours. Matrix solve time: 2.25 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 35.86 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.57 BogoMIPS (lpj=2672286) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618908)
By Ignacio Santos / GGNFS, Msieve / Sep 8, 2009
(53·10171-71)/9 = 5(8)1701<172> = 1129399 · C166
C166 = P61 · P106
P61 = 1012782147434752932667684249508918320121901242771161953907631<61>
P106 = 5148372050856343302191719932929532293542830496633217654226873938020652977210113515374231410045450654341849<106>
Number: 58881_171 N=5214179301459350405736935209690188223018515944222448301166274176698304929337540487364420270328633980452336941053506235518969725392787570104886659974808627322043749719 ( 166 digits) SNFS difficulty: 172 digits. Divisors found: r1=1012782147434752932667684249508918320121901242771161953907631 (pp61) r2=5148372050856343302191719932929532293542830496633217654226873938020652977210113515374231410045450654341849 (pp106) Version: Msieve-1.40 Total time: 103.07 hours. Scaled time: 179.23 units (timescale=1.739). Factorization parameters were as follows: n: 5214179301459350405736935209690188223018515944222448301166274176698304929337540487364420270328633980452336941053506235518969725392787570104886659974808627322043749719 m: 10000000000000000000000000000000000 deg: 5 c5: 530 c0: -71 skew: 0.67 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 7550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1151007 x 1151255 Total sieving time: 100.84 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.74 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 103.07 hours.
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 8, 2009
(32·10172+31)/9 = 3(5)1719<173> = 3 · 181 · 301183 · 34599996752173866857<20> · C145
C145 = P36 · P37 · P73
P36 = 380180911264424017571063306253381757<36>
P37 = 8546276063952874782271324462814821241<37>
P73 = 1933899502523280503850307241008143800862805194330635461115742340415465779<73>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3539868959 Step 1 took 47496ms Step 2 took 15500ms ********** Factor found in step 2: 380180911264424017571063306253381757 Found probable prime factor of 36 digits: 380180911264424017571063306253381757 Composite cofactor 16527639028505084337691953712714662144081862856051421639105985515388478037245990081581868705420160179637811739 has 110 digits -------------- Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=118001667 Step 1 took 30447ms Step 2 took 13004ms ********** Factor found in step 2: 8546276063952874782271324462814821241 Found probable prime factor of 37 digits: 8546276063952874782271324462814821241 Probable prime cofactor 1933899502523280503850307241008143800862805194330635461115742340415465779 has 73 digits
By Sinkiti Sibata / Msieve / Sep 7, 2009
(59·10177-41)/9 = 6(5)1761<178> = 47 · C177
C177 = P53 · P124
P53 = 39687847630220780350691478307685779181822692767363689<53>
P124 = 3514423526740805777583860968498743829622846093892057431067432159680018844965167259451240360217848717877904331681750827177897<124>
Number: 65551_177 N=139479905437352245862884160756501182033096926713947990543735224586288416075650118203309692671394799054373522458628841607565011820330969267139479905437352245862884160756501182033 ( 177 digits) SNFS difficulty: 179 digits. Divisors found: r1=39687847630220780350691478307685779181822692767363689 (pp53) r2=3514423526740805777583860968498743829622846093892057431067432159680018844965167259451240360217848717877904331681750827177897 (pp124) Version: Msieve-1.40 Total time: 141.35 hours. Scaled time: 471.97 units (timescale=3.339). Factorization parameters were as follows: name: 65551_177 n: 139479905437352245862884160756501182033096926713947990543735224586288416075650118203309692671394799054373522458628841607565011820330969267139479905437352245862884160756501182033 m: 200000000000000000000000000000000000 deg: 5 c5: 1475 c0: -328 skew: 0.74 type: snfs lss: 1 rlim: 6900000 alim: 6900000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6900000/6900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3450000, 9950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1535526 x 1535774 Total sieving time: 135.54 hours. Total relation processing time: 0.18 hours. Matrix solve time: 5.32 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,179.000,5,0,0,0,0,0,0,0,0,6900000,6900000,28,28,53,53,2.5,2.5,100000 total time: 141.35 hours. --------- CPU info (if available) ----------
(59·10154-23)/9 = 6(5)1533<155> = 32 · 149 · 193 · C150
C150 = P36 · P52 · P63
P36 = 288769991604994884130111881413557783<36>
P52 = 1875491618469598154603619066440565706645821058259017<52>
P63 = 467688000648417307991081251498306258138477804436279588786510971<63>
Number: 65553_154 N=253293132707999812820668032732341712184301235083073707872307633525192148599782683078344424567373182782764218008970011381018556083178030298151775820981 ( 150 digits) SNFS difficulty: 156 digits. Divisors found: r1=288769991604994884130111881413557783 (pp36) r2=1875491618469598154603619066440565706645821058259017 (pp52) r3=467688000648417307991081251498306258138477804436279588786510971 (pp63) Version: Msieve-1.40 Total time: 29.11 hours. Scaled time: 52.97 units (timescale=1.820). Factorization parameters were as follows: name: 65553_154 n: 253293132707999812820668032732341712184301235083073707872307633525192148599782683078344424567373182782764218008970011381018556083178030298151775820981 m: 10000000000000000000000000000000 deg: 5 c5: 59 c0: -230 skew: 1.31 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 514980 x 515210 Total sieving time: 28.24 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.59 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 29.11 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393997) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393890) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393888) Total of 4 processors activated (19151.30 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Sep 7, 2009
(59·10141-23)/9 = 6(5)1403<142> = 11166371 · C135
C135 = P68 · P68
P68 = 11269772850015485143716117717785059488909143582753326718169637309397<68>
P68 = 52093349964758237235431796266725582935721900063340311411451502216319<68>
Number: n N=587080221099187511820586612746034997006239140321914394171173029765494586876573916051647894876102142366177476599654046561372137425449643 ( 135 digits) SNFS difficulty: 143 digits. Divisors found: Mon Sep 07 05:05:39 2009 prp68 factor: 11269772850015485143716117717785059488909143582753326718169637309397 Mon Sep 07 05:05:39 2009 prp68 factor: 52093349964758237235431796266725582935721900063340311411451502216319 Mon Sep 07 05:05:39 2009 elapsed time 00:28:28 (Msieve 1.42 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.76 hours. Scaled time: 14.18 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_5_140_3 n: 587080221099187511820586612746034997006239140321914394171173029765494586876573916051647894876102142366177476599654046561372137425449643 m: 20000000000000000000000000000 deg: 5 c5: 295 c0: -368 skew: 1.05 type: snfs lss: 1 rlim: 1760000 alim: 1760000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 10000 Factor base limits: 1760000/1760000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [880000, 1861261) Primes: RFBsize:132292, AFBsize:132276, largePrimes:9375668 encountered Relations: rels:8453983, finalFF:287077 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1043937 hash collisions in 9489724 relations Msieve: matrix is 326807 x 327033 (87.3 MB) Total sieving time: 7.45 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1760000,1760000,28,28,56,56,2.4,2.4,100000 total time: 7.76 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / msieve 1.42 / Sep 7, 2009
(59·10161-23)/9 = 6(5)1603<162> = 19 · 39209 · 180021081371137571<18> · 340082579942596827767<21> · 6000615750606979819104103<25> · C94
C94 = P38 · P56
P38 = 50470778712824982105703199363588480917<38>
P56 = 47459871643003397735547411318564745587048731951584716349<56>
Sun Sep 06 18:55:07 2009 Msieve v. 1.42 Sun Sep 06 18:55:07 2009 random seeds: c648a480 f38ba1b4 Sun Sep 06 18:55:07 2009 factoring 2395336679433101895019383795965100530165054971110873423475461569832676195124708259167244412033 (94 digits) Sun Sep 06 18:55:08 2009 searching for 15-digit factors Sun Sep 06 18:55:08 2009 commencing quadratic sieve (94-digit input) Sun Sep 06 18:55:08 2009 using multiplier of 7 Sun Sep 06 18:55:08 2009 using 32kb Intel Core sieve core Sun Sep 06 18:55:08 2009 sieve interval: 36 blocks of size 32768 Sun Sep 06 18:55:08 2009 processing polynomials in batches of 6 Sun Sep 06 18:55:08 2009 using a sieve bound of 2025307 (75271 primes) Sun Sep 06 18:55:08 2009 using large prime bound of 271391138 (28 bits) Sun Sep 06 18:55:08 2009 using double large prime bound of 1515207662043732 (42-51 bits) Sun Sep 06 18:55:08 2009 using trial factoring cutoff of 51 bits Sun Sep 06 18:55:08 2009 polynomial 'A' values have 12 factors Sun Sep 06 20:53:33 2009 75497 relations (19243 full + 56254 combined from 1061192 partial), need 75367 Sun Sep 06 20:53:34 2009 begin with 1080435 relations Sun Sep 06 20:53:34 2009 reduce to 193426 relations in 10 passes Sun Sep 06 20:53:34 2009 attempting to read 193426 relations Sun Sep 06 20:53:36 2009 recovered 193426 relations Sun Sep 06 20:53:36 2009 recovered 174118 polynomials Sun Sep 06 20:53:36 2009 attempting to build 75497 cycles Sun Sep 06 20:53:36 2009 found 75497 cycles in 6 passes Sun Sep 06 20:53:36 2009 distribution of cycle lengths: Sun Sep 06 20:53:36 2009 length 1 : 19243 Sun Sep 06 20:53:36 2009 length 2 : 13536 Sun Sep 06 20:53:36 2009 length 3 : 12791 Sun Sep 06 20:53:36 2009 length 4 : 10134 Sun Sep 06 20:53:36 2009 length 5 : 7578 Sun Sep 06 20:53:36 2009 length 6 : 4890 Sun Sep 06 20:53:36 2009 length 7 : 3169 Sun Sep 06 20:53:36 2009 length 9+: 4156 Sun Sep 06 20:53:36 2009 largest cycle: 21 relations Sun Sep 06 20:53:37 2009 matrix is 75271 x 75497 (19.8 MB) with weight 4877005 (64.60/col) Sun Sep 06 20:53:37 2009 sparse part has weight 4877005 (64.60/col) Sun Sep 06 20:53:37 2009 filtering completed in 3 passes Sun Sep 06 20:53:37 2009 matrix is 71038 x 71101 (18.7 MB) with weight 4622979 (65.02/col) Sun Sep 06 20:53:37 2009 sparse part has weight 4622979 (65.02/col) Sun Sep 06 20:53:37 2009 saving the first 48 matrix rows for later Sun Sep 06 20:53:37 2009 matrix is 70990 x 71101 (11.8 MB) with weight 3654990 (51.41/col) Sun Sep 06 20:53:37 2009 sparse part has weight 2663763 (37.46/col) Sun Sep 06 20:53:37 2009 matrix includes 64 packed rows Sun Sep 06 20:53:37 2009 using block size 28440 for processor cache size 6144 kB Sun Sep 06 20:53:38 2009 commencing Lanczos iteration Sun Sep 06 20:53:38 2009 memory use: 11.8 MB Sun Sep 06 20:54:03 2009 lanczos halted after 1124 iterations (dim = 70985) Sun Sep 06 20:54:03 2009 recovered 16 nontrivial dependencies Sun Sep 06 20:54:03 2009 prp38 factor: 50470778712824982105703199363588480917 Sun Sep 06 20:54:03 2009 prp56 factor: 47459871643003397735547411318564745587048731951584716349 Sun Sep 06 20:54:03 2009 elapsed time 01:58:56
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 6, 2009
(59·10135-23)/9 = 6(5)1343<136> = 172 · C134
C134 = P64 · P70
P64 = 4033384965435623345569638585775206175700568128455161178295943361<64>
P70 = 5623956907561519679072678462943544587725062461900245913207560067776257<70>
Number: snfs134 N=22683583237216455209534794309880815071126489811610918877354863514033064206074586697424067666282199154171472510572856593617839292579777 ( 134 digits) SNFS difficulty: 136 digits. Divisors found: r1=4033384965435623345569638585775206175700568128455161178295943361 (pp64) r2=5623956907561519679072678462943544587725062461900245913207560067776257 (pp70) Version: Msieve-1.40 Total time: 3.25 hours. Scaled time: 5.95 units (timescale=1.834). Factorization parameters were as follows: n: 22683583237216455209534794309880815071126489811610918877354863514033064206074586697424067666282199154171472510572856593617839292579777 m: 1000000000000000000000000000 deg: 5 c5: 59 c0: -23 skew: 0.83 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 192581 x 192805 Total sieving time: 3.09 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.25 hours. --------- CPU info (if available) ----------
(59·10167-23)/9 = 6(5)1663<168> = 17 · 234187 · 7987796963<10> · 10020240696915019<17> · 46087452381739399<17> · 2023426230947608269258352112759<31> · C89
C89 = P44 · P45
P44 = 56774832039193096194261868776283784454786901<44>
P45 = 388567694701708852377210234670993803512837191<45>
Sun Sep 06 18:03:13 2009 Sun Sep 06 18:03:13 2009 Sun Sep 06 18:03:13 2009 Msieve v. 1.42 Sun Sep 06 18:03:13 2009 random seeds: b2e0af38 b093f247 Sun Sep 06 18:03:13 2009 factoring 22060865602545981243055564636242542421973027626548743656887041186534561695216883812435091 (89 digits) Sun Sep 06 18:03:13 2009 searching for 15-digit factors Sun Sep 06 18:03:14 2009 commencing quadratic sieve (89-digit input) Sun Sep 06 18:03:14 2009 using multiplier of 1 Sun Sep 06 18:03:14 2009 using 32kb Intel Core sieve core Sun Sep 06 18:03:14 2009 sieve interval: 30 blocks of size 32768 Sun Sep 06 18:03:14 2009 processing polynomials in batches of 7 Sun Sep 06 18:03:14 2009 using a sieve bound of 1545259 (58667 primes) Sun Sep 06 18:03:14 2009 using large prime bound of 123620720 (26 bits) Sun Sep 06 18:03:14 2009 using double large prime bound of 367929134797280 (42-49 bits) Sun Sep 06 18:03:14 2009 using trial factoring cutoff of 49 bits Sun Sep 06 18:03:14 2009 polynomial 'A' values have 11 factors Sun Sep 06 18:53:21 2009 58771 relations (15246 full + 43525 combined from 629283 partial), need 58763 Sun Sep 06 18:53:21 2009 begin with 644529 relations Sun Sep 06 18:53:22 2009 reduce to 144345 relations in 10 passes Sun Sep 06 18:53:22 2009 attempting to read 144345 relations Sun Sep 06 18:53:23 2009 recovered 144345 relations Sun Sep 06 18:53:23 2009 recovered 125300 polynomials Sun Sep 06 18:53:23 2009 attempting to build 58771 cycles Sun Sep 06 18:53:23 2009 found 58771 cycles in 5 passes Sun Sep 06 18:53:23 2009 distribution of cycle lengths: Sun Sep 06 18:53:23 2009 length 1 : 15246 Sun Sep 06 18:53:23 2009 length 2 : 11254 Sun Sep 06 18:53:23 2009 length 3 : 10180 Sun Sep 06 18:53:23 2009 length 4 : 7937 Sun Sep 06 18:53:23 2009 length 5 : 5742 Sun Sep 06 18:53:23 2009 length 6 : 3762 Sun Sep 06 18:53:23 2009 length 7 : 2086 Sun Sep 06 18:53:23 2009 length 9+: 2564 Sun Sep 06 18:53:23 2009 largest cycle: 19 relations Sun Sep 06 18:53:23 2009 matrix is 58667 x 58771 (14.5 MB) with weight 3563385 (60.63/col) Sun Sep 06 18:53:23 2009 sparse part has weight 3563385 (60.63/col) Sun Sep 06 18:53:24 2009 filtering completed in 3 passes Sun Sep 06 18:53:24 2009 matrix is 55220 x 55284 (13.8 MB) with weight 3387006 (61.27/col) Sun Sep 06 18:53:24 2009 sparse part has weight 3387006 (61.27/col) Sun Sep 06 18:53:24 2009 saving the first 48 matrix rows for later Sun Sep 06 18:53:24 2009 matrix is 55172 x 55284 (9.9 MB) with weight 2793695 (50.53/col) Sun Sep 06 18:53:24 2009 sparse part has weight 2261581 (40.91/col) Sun Sep 06 18:53:24 2009 matrix includes 64 packed rows Sun Sep 06 18:53:24 2009 using block size 22113 for processor cache size 6144 kB Sun Sep 06 18:53:24 2009 commencing Lanczos iteration Sun Sep 06 18:53:24 2009 memory use: 9.4 MB Sun Sep 06 18:53:39 2009 lanczos halted after 873 iterations (dim = 55172) Sun Sep 06 18:53:39 2009 recovered 18 nontrivial dependencies Sun Sep 06 18:53:40 2009 prp44 factor: 56774832039193096194261868776283784454786901 Sun Sep 06 18:53:40 2009 prp45 factor: 388567694701708852377210234670993803512837191 Sun Sep 06 18:53:40 2009 elapsed time 00:50:27
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Sep 6, 2009
(43·10169+11)/9 = 4(7)1689<170> = 73 · 2909 · 18427 · 135902677 · 3463763110428983<16> · C136
C136 = P56 · P80
P56 = 81252320210182399363922268950875546607594968965365595353<56>
P80 = 67939368147411435522154683506427206182683553203992873652333118479925931746389377<80>
Number: 47779_169 N=5520231295590940539197249599138046209630756826318725972965406383812669404715544425978782964608321656158441984145263113551359935759765081 ( 136 digits) SNFS difficulty: 171 digits. Divisors found: r1=81252320210182399363922268950875546607594968965365595353 r2=67939368147411435522154683506427206182683553203992873652333118479925931746389377 Version: Total time: 39.07 hours. Scaled time: 92.44 units (timescale=2.366). Factorization parameters were as follows: n: 5520231295590940539197249599138046209630756826318725972965406383812669404715544425978782964608321656158441984145263113551359935759765081 m: 10000000000000000000000000000000000 deg: 5 c5: 43 c0: 110 skew: 1.21 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3100000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11015701 Max relations in full relation-set: Initial matrix: Pruned matrix : 1045458 x 1045706 Total sieving time: 35.38 hours. Total relation processing time: 1.00 hours. Matrix solve time: 2.56 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.4,2.4,100000 total time: 39.07 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10151-23)/9 = 6(5)1503<152> = 3 · 7 · 17 · 6818551739<10> · 3398061299561541566987807<25> · C115
C115 = P38 · P78
P38 = 13740345644921944219850244595159735469<38>
P78 = 576793395614788307245751528168087790216527747222217724082610560048684629879117<78>
Number: 65553_151 N=7925340621455396556581145145490049625685767373956068033649201654737271721423010028135320022942647034809447167300873 ( 115 digits) SNFS difficulty: 152 digits. Divisors found: r1=13740345644921944219850244595159735469 r2=576793395614788307245751528168087790216527747222217724082610560048684629879117 Version: Total time: 10.65 hours. Scaled time: 25.38 units (timescale=2.384). Factorization parameters were as follows: n: 7925340621455396556581145145490049625685767373956068033649201654737271721423010028135320022942647034809447167300873 m: 1000000000000000000000000000000 deg: 5 c5: 590 c0: -23 skew: 0.52 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8204986 Max relations in full relation-set: Initial matrix: Pruned matrix : 419280 x 419528 Total sieving time: 9.78 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.35 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 10.65 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10156-23)/9 = 6(5)1553<157> = 3181 · 438937215039323846231549903527101748549<39> · C115
C115 = P34 · P82
P34 = 3545667648843745074148059792301669<34>
P82 = 1324175061514614755674758049165946651544932139925601108255858176964575458176417773<82>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 4695084677018045603842074288842484708119800217816928379866927797835782641849930394785264137027431830668104989163137 (115 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3686906529 Step 1 took 3448ms ********** Factor found in step 1: 3545667648843745074148059792301669 Found probable prime factor of 34 digits: 3545667648843745074148059792301669 Probable prime cofactor 1324175061514614755674758049165946651544932139925601108255858176964575458176417773 has 82 digits
(59·10172-23)/9 = 6(5)1713<173> = 33 · 2243 · 1558388347<10> · 9692197913461901<16> · 27647054178045035024590372529<29> · C115
C115 = P38 · P78
P38 = 14936440304226310362691079505554837839<38>
P78 = 173549164616500844104280220544007979602810463123114581040836784586235411904689<78>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 2592206737142709885718286033118701376329525131139133587872249673847964893917667097442560727671516946385417518727071 (115 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4356979258 Step 1 took 3432ms ********** Factor found in step 1: 14936440304226310362691079505554837839 Found probable prime factor of 38 digits: 14936440304226310362691079505554837839 Probable prime cofactor 173549164616500844104280220544007979602810463123114581040836784586235411904689 has 78 digits
(59·10160-23)/9 = 6(5)1593<161> = 3 · 647 · 653209 · C152
C152 = P50 · P50 · P52
P50 = 77920359733043141718152669423045508379211105199251<50>
P50 = 98172545308143954510401342127697808960301693255503<50>
P52 = 6759130118453366726339492334933329085640787085108329<52>
Number: 65553_160 N=51704912432402122505900093785358538558673042519303994659725248170064099055802914178971454527685216191262821502327487738146934275424390435545339674419237 ( 152 digits) SNFS difficulty: 161 digits. Divisors found: r1=77920359733043141718152669423045508379211105199251 r2=98172545308143954510401342127697808960301693255503 r3=6759130118453366726339492334933329085640787085108329 Version: Total time: 17.56 hours. Scaled time: 41.96 units (timescale=2.389). Factorization parameters were as follows: n: 51704912432402122505900093785358538558673042519303994659725248170064099055802914178971454527685216191262821502327487738146934275424390435545339674419237 m: 100000000000000000000000000000000 deg: 5 c5: 59 c0: -23 skew: 0.83 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9702530 Max relations in full relation-set: Initial matrix: Pruned matrix : 599904 x 600152 Total sieving time: 15.85 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.77 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 17.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10168-23)/9 = 6(5)1673<169> = 3037 · 70949 · 3479122711429<13> · 626993149292111216903692304785352393<36> · C113
C113 = P51 · P63
P51 = 110048503437674618577003803131929796931304105206341<51>
P63 = 126736511344598905102072768628781352839776284565818193000471953<63>
Number: 65553_168 N=13947163404384980904449611579937234571143384609283321436478575782877294124024028675585055821628876528177448253973 ( 113 digits) Divisors found: r1=110048503437674618577003803131929796931304105206341 r2=126736511344598905102072768628781352839776284565818193000471953 Version: Total time: 12.39 hours. Scaled time: 29.60 units (timescale=2.389). Factorization parameters were as follows: name: 65553_168 n: 13947163404384980904449611579937234571143384609283321436478575782877294124024028675585055821628876528177448253973 skew: 30341.71 # norm 2.74e+15 c5: 11520 c4: 3547307216 c3: 31970109244044 c2: -1494195806439033348 c1: -18910051566890323672779 c0: 197314988295368160487900042 # alpha -5.67 Y1: 1335513367129 Y0: -4136166820263797078415 # Murphy_E 7.24e-10 # M 10761249407017046921767924501253986810419556514280555902620125284141451123916896917737311249044919496952507380243 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8481116 Max relations in full relation-set: Initial matrix: Pruned matrix : 411853 x 412101 Polynomial selection time: 1.01 hours. Total sieving time: 10.25 hours. Total relation processing time: 0.62 hours. Matrix solve time: 0.35 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 12.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10164-23)/9 = 6(5)1633<165> = 29 · 773 · 58035983 · 29850219915001<14> · 75817706828629901061159433<26> · C114
C114 = P47 · P67
P47 = 27815983394117839176196626068399018951259031327<47>
P67 = 8004276222190184739443821823422506202968291528399513054947594684353<67>
Number: 65553_164 N=222646814478374450338234698285148075726867288214094116966184385653080985735321919403590210157704609540249103726431 ( 114 digits) Divisors found: r1=27815983394117839176196626068399018951259031327 r2=8004276222190184739443821823422506202968291528399513054947594684353 Version: Total time: 14.58 hours. Scaled time: 34.66 units (timescale=2.377). Factorization parameters were as follows: name: 65553_164 n: 222646814478374450338234698285148075726867288214094116966184385653080985735321919403590210157704609540249103726431 skew: 14589.88 # norm 4.00e+15 c5: 39480 c4: 8823160412 c3: -211860480826100 c2: -1714619343608612451 c1: 3854389669948840000634 c0: 19650474694996136084335000 # alpha -5.63 Y1: 2045091898741 Y0: -5626532258234618459367 # Murphy_E 6.59e-10 # M 67252567476305861782973305505120502252366792284866018311366103807602776466695151389546156372623498063127017024007 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9485177 Max relations in full relation-set: Initial matrix: Pruned matrix : 463525 x 463773 Polynomial selection time: 1.15 hours. Total sieving time: 12.23 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.43 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 14.58 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
By Sinkiti Sibata / Msieve / Sep 6, 2009
(59·10134-23)/9 = 6(5)1333<135> = 22453618057915517777<20> · 32779549948892930549<20> · C96
C96 = P39 · P58
P39 = 109549546925366048058099112355570359543<39>
P58 = 8130356687467199190018185491945775555626225108447828911227<58>
Sat Sep 05 21:27:27 2009 Msieve v. 1.42 Sat Sep 05 21:27:27 2009 random seeds: 5b72e100 56d12c6c Sat Sep 05 21:27:27 2009 factoring 890676891453651598342319703158395378192271201476401819686147034391191837296864223046734619289261 (96 digits) Sat Sep 05 21:27:28 2009 searching for 15-digit factors Sat Sep 05 21:27:28 2009 commencing quadratic sieve (96-digit input) Sat Sep 05 21:27:29 2009 using multiplier of 5 Sat Sep 05 21:27:29 2009 using 32kb Intel Core sieve core Sat Sep 05 21:27:29 2009 sieve interval: 36 blocks of size 32768 Sat Sep 05 21:27:29 2009 processing polynomials in batches of 6 Sat Sep 05 21:27:29 2009 using a sieve bound of 2297153 (84706 primes) Sat Sep 05 21:27:29 2009 using large prime bound of 344572950 (28 bits) Sat Sep 05 21:27:29 2009 using double large prime bound of 2328660176259750 (43-52 bits) Sat Sep 05 21:27:29 2009 using trial factoring cutoff of 52 bits Sat Sep 05 21:27:29 2009 polynomial 'A' values have 12 factors Sun Sep 06 03:34:37 2009 84927 relations (19358 full + 65569 combined from 1298983 partial), need 84802 Sun Sep 06 03:34:38 2009 begin with 1318341 relations Sun Sep 06 03:34:40 2009 reduce to 227125 relations in 11 passes Sun Sep 06 03:34:40 2009 attempting to read 227125 relations Sun Sep 06 03:34:44 2009 recovered 227125 relations Sun Sep 06 03:34:44 2009 recovered 215678 polynomials Sun Sep 06 03:34:44 2009 attempting to build 84927 cycles Sun Sep 06 03:34:44 2009 found 84927 cycles in 6 passes Sun Sep 06 03:34:44 2009 distribution of cycle lengths: Sun Sep 06 03:34:44 2009 length 1 : 19358 Sun Sep 06 03:34:44 2009 length 2 : 14177 Sun Sep 06 03:34:44 2009 length 3 : 14202 Sun Sep 06 03:34:44 2009 length 4 : 11758 Sun Sep 06 03:34:44 2009 length 5 : 8957 Sun Sep 06 03:34:44 2009 length 6 : 6366 Sun Sep 06 03:34:44 2009 length 7 : 4119 Sun Sep 06 03:34:44 2009 length 9+: 5990 Sun Sep 06 03:34:44 2009 largest cycle: 21 relations Sun Sep 06 03:34:44 2009 matrix is 84706 x 84927 (24.2 MB) with weight 5994457 (70.58/col) Sun Sep 06 03:34:44 2009 sparse part has weight 5994457 (70.58/col) Sun Sep 06 03:34:46 2009 filtering completed in 3 passes Sun Sep 06 03:34:46 2009 matrix is 81590 x 81654 (23.3 MB) with weight 5787567 (70.88/col) Sun Sep 06 03:34:46 2009 sparse part has weight 5787567 (70.88/col) Sun Sep 06 03:34:46 2009 saving the first 48 matrix rows for later Sun Sep 06 03:34:46 2009 matrix is 81542 x 81654 (17.3 MB) with weight 4878019 (59.74/col) Sun Sep 06 03:34:46 2009 sparse part has weight 4046406 (49.56/col) Sun Sep 06 03:34:46 2009 matrix includes 64 packed rows Sun Sep 06 03:34:46 2009 using block size 32661 for processor cache size 1024 kB Sun Sep 06 03:34:47 2009 commencing Lanczos iteration Sun Sep 06 03:34:47 2009 memory use: 15.8 MB Sun Sep 06 03:35:41 2009 lanczos halted after 1291 iterations (dim = 81541) Sun Sep 06 03:35:41 2009 recovered 17 nontrivial dependencies Sun Sep 06 03:35:42 2009 prp39 factor: 109549546925366048058099112355570359543 Sun Sep 06 03:35:42 2009 prp58 factor: 8130356687467199190018185491945775555626225108447828911227 Sun Sep 06 03:35:42 2009 elapsed time 06:08:15
(59·10144-23)/9 = 6(5)1433<145> = 163 · 3697 · 6737 · 35257 · 415536401498401<15> · C117
C117 = P56 · P61
P56 = 22668087948353567565904107786791717805911245941992313013<56>
P61 = 4862242115508238125345457419625722788001039034862505270628919<61>
Number: 65553_144 N=110217731900529447653474164119681216660909871112734753012110542294173220474143695570691679432969528601793942017822947 ( 117 digits) SNFS difficulty: 146 digits. Divisors found: r1=22668087948353567565904107786791717805911245941992313013 (pp56) r2=4862242115508238125345457419625722788001039034862505270628919 (pp61) Version: Msieve-1.40 Total time: 12.40 hours. Scaled time: 22.59 units (timescale=1.822). Factorization parameters were as follows: name: 65553_144 n: 110217731900529447653474164119681216660909871112734753012110542294173220474143695570691679432969528601793942017822947 m: 100000000000000000000000000000 deg: 5 c5: 59 c0: -230 skew: 1.31 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2580001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 352117 x 352343 Total sieving time: 12.03 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.28 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 12.40 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393997) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393890) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393888) Total of 4 processors activated (19151.30 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.2.1, Msieve / Sep 6, 2009
(59·10185-23)/9 = 6(5)1843<186> = 1048633 · 2362619143<10> · 1036894629011489<16> · 4697396739519487642802809<25> · C131
C131 = P39 · P39 · P54
P39 = 537864844057359624847291754331147978083<39>
P39 = 776657403616698039772996030898887190021<39>
P54 = 130046225239590461392743611635298754997217503927033609<54>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1118099787 Step 1 took 38152ms Step 2 took 13868ms ********** Factor found in step 2: 537864844057359624847291754331147978083 Found probable prime factor of 39 digits: 537864844057359624847291754331147978083 Composite cofactor 101001363644732632713992975105108019771451144136143646007278262873787714212299043412036415789 has 93 digits -------------------- Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2072657346 Step 1 took 23630ms Step 2 took 10801ms ********** Factor found in step 2: 776657403616698039772996030898887190021 Found probable prime factor of 39 digits: 776657403616698039772996030898887190021 Probable prime cofactor 130046225239590461392743611635298754997217503927033609 has 54 digits
(29·10191+43)/9 = 3(2)1907<192> = 3 · 17 · 83 · C188
C188 = P38 · C150
P38 = 89772704053724486006486540198851407887<38>
C150 = [847935685840806277833661045834924473041673739231006872680426030083019421217724220292086043060147725435599367453149401122050672500972766551928528604437<150>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3208370085 Step 1 took 70078ms Step 2 took 21614ms ********** Factor found in step 2: 89772704053724486006486540198851407887 Found probable prime factor of 38 digits: 89772704053724486006486540198851407887 Composite cofactor 847935685840806277833661045834924473041673739231006872680426030083019421217724220292086043060147725435599367453149401122050672500972766551928528604437 has 150 digits
(23·10199-41)/9 = 2(5)1981<200> = 3 · 7 · 431 · C196
C196 = P39 · P40 · P58 · P60
P39 = 822166237785966937833596339772273380167<39>
P40 = 8016571463986106513104624218307848381307<40>
P58 = 2765643382267819668781591954418791280834022267016280940169<58>
P60 = 154897452662266545680968239519414846256501968007596611529641<60>
Number: 25551_199 N=2823506303784726058507961060165236499343227881510944155955756883831129770804944818865932555027682637891454596791023705176837427417473821186118169876870572926257381013761524202359469180814888471501 ( 196 digits) SNFS difficulty: 201 digits. Divisors found: r1=822166237785966937833596339772273380167 r2=8016571463986106513104624218307848381307 r3=2765643382267819668781591954418791280834022267016280940169 r4=154897452662266545680968239519414846256501968007596611529641 Version: Total time: 904.98 hours. Scaled time: 1816.29 units (timescale=2.007). Factorization parameters were as follows: n: 2823506303784726058507961060165236499343227881510944155955756883831129770804944818865932555027682637891454596791023705176837427417473821186118169876870572926257381013761524202359469180814888471501 m: 10000000000000000000000000000000000000000 deg: 5 c5: 23 c0: -410 skew: 1.78 type: snfs lss: 1 rlim: 15900000 alim: 15900000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 15900000/15900000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7950000, 17150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3310669 x 3310916 Total sieving time: 904.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,15900000,15900000,29,29,56,56,2.6,2.6,100000 total time: 904.98 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Sep 6, 2009
(53·10169-71)/9 = 5(8)1681<170> = 32 · 55619 · 268408781245025917238865818507107<33> · C132
C132 = P62 · P71
P62 = 23558974883254664303215516645325268137706557468101857830919331<62>
P71 = 18604352743858630351683027420410354047658125089089380509126300180803083<71>
Number: 58881_169 N=438299479011775469486372343095698175154784520161586980563186912608598242291187115880197057529976739290204068936254644363207769097473 ( 132 digits) SNFS difficulty: 171 digits. Divisors found: r1=23558974883254664303215516645325268137706557468101857830919331 (pp62) r2=18604352743858630351683027420410354047658125089089380509126300180803083 (pp71) Version: Msieve-1.40 Total time: 143.39 hours. Scaled time: 139.52 units (timescale=0.973). Factorization parameters were as follows: n: 438299479011775469486372343095698175154784520161586980563186912608598242291187115880197057529976739290204068936254644363207769097473 m: 10000000000000000000000000000000000 deg: 5 c5: 53 c0: -710 skew: 1.68 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 1000 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 6750000) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1058580 x 1058805 Total sieving time: 139.51 hours. Total relation processing time: 0.66 hours. Matrix solve time: 2.90 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 143.39 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.42
(59·10117-23)/9 = 6(5)1163<118> = 433 · C116
C116 = P32 · P84
P32 = 97184768442645505553580695132117<32>
P84 = 155784197566923435384179951190141128237442649031951845773179362399075390459437211373<84>
N=15139851167564793430844239158326918142160636386964331537079804978188350012830382345393892738003592507056710289966641 ( 116 digits) SNFS difficulty: 119 digits. Divisors found: r1=97184768442645505553580695132117 (pp32) r2=155784197566923435384179951190141128237442649031951845773179362399075390459437211373 (pp84) Version: Msieve-1.40 Total time: 1.50 hours. Scaled time: 2.75 units (timescale=1.839). Factorization parameters were as follows: n: 15139851167564793430844239158326918142160636386964331537079804978188350012830382345393892738003592507056710289966641 m: 200000000000000000000000 deg: 5 c5: 1475 c0: -184 skew: 0.66 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 695001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 81222 x 81447 Total sieving time: 1.44 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 1.50 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Sep 5, 2009
(59·10156-23)/9 = 6(5)1553<157> = 3181 · C154
C154 = P39 · C115
P39 = 438937215039323846231549903527101748549<39>
C115 = [4695084677018045603842074288842484708119800217816928379866927797835782641849930394785264137027431830668104989163137<115>]
C154=P39*C115 C154=438937215039323846231549903527101748549<39>*4695084677018045603842074288842484708119800217816928379866927797835782641849930394785264137027431830668104989163137<115>
(59·10195-23)/9 = 6(5)1943<196> = 466619 · C191
C191 = P38 · P153
P38 = 15020558240790961519556181394535596901<38>
P153 = 935321699295305091769020291865845968537538790564424714932276783460783187423104867410069646498110493649355467142860211527355440858568679417266056052216087<153>
C191=P38*P153 C191=15020558240790961519556181394535596901<38>*935321699295305091769020291865845968537538790564424714932276783460783187423104867410069646498110493649355467142860211527355440858568679417266056052216087<153>
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Sep 5, 2009
(31·10169+23)/9 = 3(4)1687<170> = 37 · 1049 · 184039 · 4093623094878874617067367543<28> · C133
C133 = P56 · P77
P56 = 71089222420470519987060723122743432410918632642974202029<56>
P77 = 16569922963272521761078068102437369922025373749414100129260936324165493837143<77>
Number: 34447_169 N=1177942939026142270485845048200505220851691100165908162124674755917755546818795317147407818367893046192630450490921217649737706163147 ( 133 digits) SNFS difficulty: 171 digits. Divisors found: r1=71089222420470519987060723122743432410918632642974202029 r2=16569922963272521761078068102437369922025373749414100129260936324165493837143 Version: Total time: 48.87 hours. Scaled time: 114.70 units (timescale=2.347). Factorization parameters were as follows: n: 1177942939026142270485845048200505220851691100165908162124674755917755546818795317147407818367893046192630450490921217649737706163147 m: 10000000000000000000000000000000000 deg: 5 c5: 31 c0: 230 skew: 1.49 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3100000, 6800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11393121 Max relations in full relation-set: Initial matrix: Pruned matrix : 1104162 x 1104410 Total sieving time: 44.18 hours. Total relation processing time: 1.68 hours. Matrix solve time: 2.88 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.4,2.4,100000 total time: 48.87 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673785) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10126-23)/9 = 6(5)1253<127> = 75503 · C122
C122 = P60 · P63
P60 = 564188894543914208956794527643148388913774124253997606584441<60>
P63 = 153893671499699811407798392541980060364509504361334033629409511<63>
Number: 65553_126 N=86825100400719912527390375952684735117221243600327875124903057567984789419699290830239269374138187297929294936036390018351 ( 122 digits) SNFS difficulty: 127 digits. Divisors found: r1=564188894543914208956794527643148388913774124253997606584441 r2=153893671499699811407798392541980060364509504361334033629409511 Version: Total time: 1.57 hours. Scaled time: 3.74 units (timescale=2.384). Factorization parameters were as follows: n: 86825100400719912527390375952684735117221243600327875124903057567984789419699290830239269374138187297929294936036390018351 m: 10000000000000000000000000 deg: 5 c5: 590 c0: -23 skew: 0.52 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [450000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2850657 Max relations in full relation-set: Initial matrix: Pruned matrix : 135750 x 135997 Total sieving time: 1.38 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,900000,900000,26,26,47,47,2.3,2.3,50000 total time: 1.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10138-23)/9 = 6(5)1373<139> = 255913187 · 370691351 · 2710218850040774104583<22> · C101
C101 = P36 · P65
P36 = 314501601214746905872981699611119539<36>
P65 = 81073171272865284477958404680830239933166102622820941120013499337<65>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 25497642180873552505796492657762440287368611158736844024891567239903511874853673955958426951604245643 (101 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5471242219 Step 1 took 3495ms Step 2 took 3650ms ********** Factor found in step 2: 314501601214746905872981699611119539 Found probable prime factor of 36 digits: 314501601214746905872981699611119539 Probable prime cofactor 81073171272865284477958404680830239933166102622820941120013499337 has 65 digits
(59·10131-23)/9 = 6(5)1303<132> = 505717870849<12> · 31193260277616139170827<23> · C98
C98 = P46 · P53
P46 = 2213940512772066993915618104377958245498637731<46>
P53 = 18770441375137419556441967816076411508423217279309281<53>
Number: 65553_131 N=41556640603029760970119631553974196119945973651913576045110048478128044376147075110846618125081411 ( 98 digits) Divisors found: r1=2213940512772066993915618104377958245498637731 r2=18770441375137419556441967816076411508423217279309281 Version: Total time: 1.89 hours. Scaled time: 4.46 units (timescale=2.360). Factorization parameters were as follows: name: 65553_131 n: 41556640603029760970119631553974196119945973651913576045110048478128044376147075110846618125081411 skew: 2479.09 # norm 3.90e+13 c5: 167700 c4: -1099413860 c3: -4150612370357 c2: -3464623607138653 c1: 11184030524249065405 c0: 388113312493516493000 # alpha -5.68 Y1: 9825158849 Y0: -3011780600774398341 # Murphy_E 4.26e-09 # M 1878336600636826816372762955980462052612739052524793761595897644192885404135275630993910786474838 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3964484 Max relations in full relation-set: Initial matrix: Pruned matrix : 160389 x 160637 Polynomial selection time: 0.13 hours. Total sieving time: 1.52 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.06 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 1.89 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
(59·10136-23)/9 = 6(5)1353<137> = 32 · 29 · 283 · C132
C132 = P41 · P92
P41 = 26705301404713169736168719314021674245521<41>
P92 = 33234188241310821888516958762778464633803409872337761429587661457861788148008353259184887911<92>
Number: 65553_136 N=887529013925179799839643062907755649723888219481412284304124603056409238124034436125740296976233778150840820919209286862915878796631 ( 132 digits) SNFS difficulty: 137 digits. Divisors found: r1=26705301404713169736168719314021674245521 r2=33234188241310821888516958762778464633803409872337761429587661457861788148008353259184887911 Version: Total time: 3.36 hours. Scaled time: 7.86 units (timescale=2.341). Factorization parameters were as follows: n: 887529013925179799839643062907755649723888219481412284304124603056409238124034436125740296976233778150840820919209286862915878796631 m: 1000000000000000000000000000 deg: 5 c5: 590 c0: -23 skew: 0.52 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3853685 Max relations in full relation-set: Initial matrix: Pruned matrix : 245199 x 245447 Total sieving time: 2.80 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.12 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,50000 total time: 3.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)
By Sinkiti Sibata / Msieve / Sep 5, 2009
(59·10129-23)/9 = 6(5)1283<130> = 75653 · 9309641963847287<16> · C109
C109 = P34 · P76
P34 = 4614725795883954275429109017216659<34>
P76 = 2016993358196965486133176761640833276461425032272165651768369914842420187897<76>
Number: 65553_129 N=9307871280198141222073809578401823180095105964710473041921070433376439862681920643349744303784280882738576123 ( 109 digits) SNFS difficulty: 131 digits. Divisors found: r1=4614725795883954275429109017216659 (pp34) r2=2016993358196965486133176761640833276461425032272165651768369914842420187897 (pp76) Version: Msieve-1.40 Total time: 3.79 hours. Scaled time: 6.90 units (timescale=1.822). Factorization parameters were as follows: name: 65553_129 n: 9307871280198141222073809578401823180095105964710473041921070433376439862681920643349744303784280882738576123 m: 100000000000000000000000000 deg: 5 c5: 59 c0: -230 skew: 1.31 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167065 x 167290 Total sieving time: 3.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 3.79 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b Memory: 3109164k/3145344k available (2732k kernel code, 34856k reserved, 1420k data, 412k init, 2227840k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.99 BogoMIPS (lpj=2393997) Calibrating delay using timer specific routine.. 4787.75 BogoMIPS (lpj=2393879) Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393890) Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393888) Total of 4 processors activated (19151.30 BogoMIPS).
(59·10125-23)/9 = 6(5)1243<126> = 19 · 89 · 331711 · 723334286072127760440979<24> · C94
C94 = P41 · P53
P41 = 42222680564788862551510597914520769117009<41>
P53 = 38266713798433521128707810484637485291912398620879023<53>
Sat Sep 05 18:47:56 2009 Msieve v. 1.42 Sat Sep 05 18:47:56 2009 random seeds: 9a9a5890 65e26772 Sat Sep 05 18:47:56 2009 factoring 1615723232975456823692132683727246708644840647352559264005507007327656423428932420159120602207 (94 digits) Sat Sep 05 18:47:57 2009 searching for 15-digit factors Sat Sep 05 18:47:57 2009 commencing quadratic sieve (94-digit input) Sat Sep 05 18:47:57 2009 using multiplier of 7 Sat Sep 05 18:47:57 2009 using 32kb Intel Core sieve core Sat Sep 05 18:47:57 2009 sieve interval: 36 blocks of size 32768 Sat Sep 05 18:47:57 2009 processing polynomials in batches of 6 Sat Sep 05 18:47:57 2009 using a sieve bound of 1991597 (74030 primes) Sat Sep 05 18:47:57 2009 using large prime bound of 256916013 (27 bits) Sat Sep 05 18:47:57 2009 using double large prime bound of 1372853067158631 (42-51 bits) Sat Sep 05 18:47:57 2009 using trial factoring cutoff of 51 bits Sat Sep 05 18:47:57 2009 polynomial 'A' values have 12 factors Sat Sep 05 21:11:00 2009 74187 relations (18938 full + 55249 combined from 1020687 partial), need 74126 Sat Sep 05 21:11:02 2009 begin with 1039625 relations Sat Sep 05 21:11:03 2009 reduce to 189177 relations in 11 passes Sat Sep 05 21:11:03 2009 attempting to read 189177 relations Sat Sep 05 21:11:06 2009 recovered 189177 relations Sat Sep 05 21:11:06 2009 recovered 169082 polynomials Sat Sep 05 21:11:06 2009 attempting to build 74187 cycles Sat Sep 05 21:11:06 2009 found 74187 cycles in 5 passes Sat Sep 05 21:11:06 2009 distribution of cycle lengths: Sat Sep 05 21:11:06 2009 length 1 : 18938 Sat Sep 05 21:11:06 2009 length 2 : 13425 Sat Sep 05 21:11:06 2009 length 3 : 12855 Sat Sep 05 21:11:06 2009 length 4 : 9836 Sat Sep 05 21:11:06 2009 length 5 : 7375 Sat Sep 05 21:11:06 2009 length 6 : 4857 Sat Sep 05 21:11:06 2009 length 7 : 2939 Sat Sep 05 21:11:06 2009 length 9+: 3962 Sat Sep 05 21:11:06 2009 largest cycle: 20 relations Sat Sep 05 21:11:06 2009 matrix is 74030 x 74187 (19.0 MB) with weight 4672524 (62.98/col) Sat Sep 05 21:11:06 2009 sparse part has weight 4672524 (62.98/col) Sat Sep 05 21:11:07 2009 filtering completed in 3 passes Sat Sep 05 21:11:07 2009 matrix is 69864 x 69928 (18.0 MB) with weight 4441598 (63.52/col) Sat Sep 05 21:11:07 2009 sparse part has weight 4441598 (63.52/col) Sat Sep 05 21:11:07 2009 saving the first 48 matrix rows for later Sat Sep 05 21:11:08 2009 matrix is 69816 x 69928 (11.1 MB) with weight 3460622 (49.49/col) Sat Sep 05 21:11:08 2009 sparse part has weight 2491797 (35.63/col) Sat Sep 05 21:11:08 2009 matrix includes 64 packed rows Sat Sep 05 21:11:08 2009 using block size 27971 for processor cache size 1024 kB Sat Sep 05 21:11:08 2009 commencing Lanczos iteration Sat Sep 05 21:11:08 2009 memory use: 11.4 MB Sat Sep 05 21:11:40 2009 lanczos halted after 1106 iterations (dim = 69816) Sat Sep 05 21:11:40 2009 recovered 18 nontrivial dependencies Sat Sep 05 21:11:42 2009 prp41 factor: 42222680564788862551510597914520769117009 Sat Sep 05 21:11:42 2009 prp53 factor: 38266713798433521128707810484637485291912398620879023 Sat Sep 05 21:11:42 2009 elapsed time 02:23:46
By Serge Batalov / GMP-ECM 6.2.3 / Sep 5, 2009
(59·10148-23)/9 = 6(5)1473<149> = 3 · 67 · 313 · 16672259 · 19427300411<11> · 93935018478585253673833<23> · C104
C104 = P33 · P71
P33 = 685951288658961228928569473938697<33>
P71 = 49927681780334666208187600144807819546142020708870361608063723439122369<71>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2715254249 Step 1 took 4448ms Step 2 took 2821ms ********** Factor found in step 2: 685951288658961228928569473938697 Found probable prime factor of 33 digits: 685951288658961228928569473938697 Probable prime cofactor 49927681780334666208187600144807819546142020708870361608063723439122369 has 71 digits
(59·10142-23)/9 = 6(5)1413<143> = 3 · 43 · 61 · 109 · 1530962800903<13> · 46434594023085269<17> · C109
C109 = P28 · P81
P28 = 5122432882476929452340127769<28>
P81 = 209884753199464087080383859154803953570616666555689425626499446356382804153212171<81>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2627240755 Step 1 took 4221ms Step 2 took 2816ms ********** Factor found in step 2: 5122432882476929452340127769 Found probable prime factor of 28 digits: 5122432882476929452340127769 Probable prime cofactor has 81 digits
(59·10121-23)/9 = 6(5)1203<122> = 3 · 7 · 43 · 83 · 62659 · 252001 · 3890318671781<13> · C95
C95 = P38 · P57
P38 = 16254745280724313259542306996318654639<38>
P57 = 875976771301044758722134852221364087178881271056936925037<57>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2732121548 Step 1 took 3696ms Step 2 took 2568ms ********** Factor found in step 2: 16254745280724313259542306996318654639 Found probable prime factor of 38 digits: 16254745280724313259542306996318654639 Probable prime cofactor 875976771301044758722134852221364087178881271056936925037 has 57 digits
(59·10194-23)/9 = 6(5)1933<195> = 167 · 228285157736039<15> · C179
C179 = P29 · C150
P29 = 35873687474441774208125952619<29>
C150 = [479335213207741245003527583887158873557699863891692498384699765863943251282055477987014761294737828507118107156662030571583407504914367032971015241299<150>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=918327226 Step 1 took 8236ms Step 2 took 4457ms ********** Factor found in step 2: 35873687474441774208125952619 Found probable prime factor of 29 digits: 35873687474441774208125952619 Composite cofactor has 150 digits
(59·10140-23)/9 = 6(5)1393<141> = 1483 · 172801 · 197759 · 886399667667622120942040383<27> · C101
C101 = P31 · P70
P31 = 5689289916654150275926497293389<31>
P70 = 2565063923866998207044226037098494558613110402926733815660812190741327<70>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1172970948 Step 1 took 4696ms Step 2 took 2820ms ********** Factor found in step 2: 5689289916654150275926497293389 Found probable prime factor of 31 digits: 5689289916654150275926497293389 Probable prime cofactor 2565063923866998207044226037098494558613110402926733815660812190741327 has 70 digits
(59·10172-23)/9 = 6(5)1713<173> = 33 · 2243 · 1558388347<10> · 9692197913461901<16> · C143
C143 = P29 · C115
P29 = 27647054178045035024590372529<29>
C115 = [2592206737142709885718286033118701376329525131139133587872249673847964893917667097442560727671516946385417518727071<115>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3507598991 Step 1 took 6024ms Step 2 took 3584ms ********** Factor found in step 2: 27647054178045035024590372529 Found probable prime factor of 29 digits: 27647054178045035024590372529 Composite cofactor has 115 digits
(59·10191-23)/9 = 6(5)1903<192> = 47 · 77528047081<11> · C180
C180 = P28 · C152
P28 = 2455742348484227844082877051<28>
C152 = [73260520584241407194752819396743407478406879886808326799427220021755832921946863859759750649538346315894856165489947703114639788915596931404635410219029<152>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=383201064 Step 1 took 8308ms Step 2 took 4301ms ********** Factor found in step 2: 2455742348484227844082877051 Found probable prime factor of 28 digits: 2455742348484227844082877051 Composite cofactor has 152 digits
(59·10123-23)/9 = 6(5)1223<124> = 16423871 · C117
C117 = P38 · P80
P38 = 33690683433359402920174483777695242957<38>
P80 = 11847430126160377731229441236227256582416556719472932180179868318471140022894299<80>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=188559141 Step 1 took 5252ms Step 2 took 3056ms ********** Factor found in step 2: 33690683433359402920174483777695242957 Found probable prime factor of 38 digits: 33690683433359402920174483777695242957 Probable prime cofactor 11847430126160377731229441236227256582416556719472932180179868318471140022894299 has 80 digits
(59·10168-23)/9 = 6(5)1673<169> = 3037 · 70949 · 3479122711429<13> · C148
C148 = P36 · C113
P36 = 626993149292111216903692304785352393<36>
C113 = [13947163404384980904449611579937234571143384609283321436478575782877294124024028675585055821628876528177448253973<113>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=565118240 Step 1 took 8960ms Step 2 took 5169ms ********** Factor found in step 2: 626993149292111216903692304785352393 Found probable prime factor of 36 digits: 626993149292111216903692304785352393 Composite cofactor has 113 digits
Factorizations of 655...553 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 4, 2009
(16·10232-7)/9 = 1(7)232<233> = 19 · 104953 · 1986217 · 34068054807426322294331<23> · 13848896772790568546388233869<29> · 56772616833085221976414195028964401<35> · C135
C135 = P54 · P81
P54 = 991707038199261642635694918632181570921619177195911067<54>
P81 = 168973070893309583226946762274636602940726732619466985073885282922429123577148191<81>
Sieving ~14.5 cpu-days Thu Sep 03 23:17:11 2009 Msieve v. 1.42 Thu Sep 03 23:17:11 2009 random seeds: c59a8090 61a115f0 Thu Sep 03 23:17:11 2009 factoring 167571783671037912466408452319759362185008616848696629101669918550562953076710717850252795352341060164798120833972449628332765915929797 (135 digits) Thu Sep 03 23:17:13 2009 searching for 15-digit factors Thu Sep 03 23:17:14 2009 commencing number field sieve (135-digit input) Thu Sep 03 23:17:14 2009 R0: -88241649868393719374997646 Thu Sep 03 23:17:14 2009 R1: 726831347675741 Thu Sep 03 23:17:14 2009 A0: -170933990638688721822011537328945 Thu Sep 03 23:17:14 2009 A1: 3795778977486688813543737737 Thu Sep 03 23:17:14 2009 A2: -29194701397701178266901 Thu Sep 03 23:17:14 2009 A3: 19617994558279607 Thu Sep 03 23:17:14 2009 A4: 96670755294 Thu Sep 03 23:17:14 2009 A5: 31320 Thu Sep 03 23:17:14 2009 skew 568986.10, size 6.136336e-013, alpha -6.764677, combined = 4.549516e-011 Thu Sep 03 23:17:14 2009 Thu Sep 03 23:17:14 2009 commencing relation filtering Thu Sep 03 23:17:14 2009 estimated available RAM is 4094.1 MB Thu Sep 03 23:17:14 2009 commencing duplicate removal, pass 1 Thu Sep 03 23:21:44 2009 error -15 reading relation 18121325 Thu Sep 03 23:22:30 2009 found 3394543 hash collisions in 21168001 relations Thu Sep 03 23:24:05 2009 added 120075 free relations Thu Sep 03 23:24:05 2009 commencing duplicate removal, pass 2 Thu Sep 03 23:25:11 2009 found 3004998 duplicates and 18283077 unique relations Thu Sep 03 23:25:11 2009 memory use: 106.6 MB Thu Sep 03 23:25:11 2009 reading ideals above 17235968 Thu Sep 03 23:25:24 2009 commencing singleton removal, initial pass Thu Sep 03 23:30:40 2009 memory use: 298.4 MB Thu Sep 03 23:30:40 2009 reading all ideals from disk Thu Sep 03 23:30:41 2009 memory use: 296.1 MB Thu Sep 03 23:30:43 2009 commencing in-memory singleton removal Thu Sep 03 23:30:45 2009 begin with 18283077 relations and 17750433 unique ideals Thu Sep 03 23:31:03 2009 reduce to 7274205 relations and 4928931 ideals in 19 passes Thu Sep 03 23:31:03 2009 max relations containing the same ideal: 25 Thu Sep 03 23:31:05 2009 reading ideals above 100000 Thu Sep 03 23:31:05 2009 commencing singleton removal, initial pass Thu Sep 03 23:33:56 2009 memory use: 149.2 MB Thu Sep 03 23:33:56 2009 reading all ideals from disk Thu Sep 03 23:33:57 2009 memory use: 277.9 MB Thu Sep 03 23:33:59 2009 keeping 7146032 ideals with weight <= 200, target excess is 40579 Thu Sep 03 23:34:01 2009 commencing in-memory singleton removal Thu Sep 03 23:34:03 2009 begin with 7284313 relations and 7146032 unique ideals Thu Sep 03 23:34:31 2009 reduce to 7162150 relations and 6975502 ideals in 16 passes Thu Sep 03 23:34:31 2009 max relations containing the same ideal: 200 Thu Sep 03 23:34:40 2009 removing 731699 relations and 661911 ideals in 69788 cliques Thu Sep 03 23:34:41 2009 commencing in-memory singleton removal Thu Sep 03 23:34:42 2009 begin with 6430451 relations and 6975502 unique ideals Thu Sep 03 23:34:58 2009 reduce to 6377992 relations and 6260433 ideals in 10 passes Thu Sep 03 23:34:58 2009 max relations containing the same ideal: 191 Thu Sep 03 23:35:06 2009 removing 531862 relations and 462074 ideals in 69788 cliques Thu Sep 03 23:35:06 2009 commencing in-memory singleton removal Thu Sep 03 23:35:08 2009 begin with 5846130 relations and 6260433 unique ideals Thu Sep 03 23:35:20 2009 reduce to 5814049 relations and 5765944 ideals in 8 passes Thu Sep 03 23:35:20 2009 max relations containing the same ideal: 178 Thu Sep 03 23:35:29 2009 relations with 0 large ideals: 126 Thu Sep 03 23:35:29 2009 relations with 1 large ideals: 107 Thu Sep 03 23:35:29 2009 relations with 2 large ideals: 1356 Thu Sep 03 23:35:29 2009 relations with 3 large ideals: 17628 Thu Sep 03 23:35:29 2009 relations with 4 large ideals: 124254 Thu Sep 03 23:35:29 2009 relations with 5 large ideals: 498727 Thu Sep 03 23:35:29 2009 relations with 6 large ideals: 1196711 Thu Sep 03 23:35:29 2009 relations with 7+ large ideals: 3975140 Thu Sep 03 23:35:29 2009 commencing 2-way merge Thu Sep 03 23:35:40 2009 reduce to 3432549 relation sets and 3384445 unique ideals Thu Sep 03 23:35:40 2009 ignored 1 oversize relation sets Thu Sep 03 23:35:40 2009 commencing full merge Thu Sep 03 23:37:25 2009 memory use: 348.3 MB Thu Sep 03 23:37:26 2009 found 1791693 cycles, need 1786645 Thu Sep 03 23:37:26 2009 weight of 1786645 cycles is about 125238188 (70.10/cycle) Thu Sep 03 23:37:26 2009 distribution of cycle lengths: Thu Sep 03 23:37:26 2009 1 relations: 240311 Thu Sep 03 23:37:26 2009 2 relations: 234300 Thu Sep 03 23:37:26 2009 3 relations: 219512 Thu Sep 03 23:37:26 2009 4 relations: 187773 Thu Sep 03 23:37:26 2009 5 relations: 163477 Thu Sep 03 23:37:26 2009 6 relations: 134470 Thu Sep 03 23:37:26 2009 7 relations: 116196 Thu Sep 03 23:37:26 2009 8 relations: 95886 Thu Sep 03 23:37:26 2009 9 relations: 78945 Thu Sep 03 23:37:26 2009 10+ relations: 315775 Thu Sep 03 23:37:26 2009 heaviest cycle: 26 relations Thu Sep 03 23:37:28 2009 commencing cycle optimization Thu Sep 03 23:37:33 2009 start with 10207707 relations Thu Sep 03 23:38:04 2009 pruned 213384 relations Thu Sep 03 23:38:04 2009 memory use: 272.2 MB Thu Sep 03 23:38:04 2009 distribution of cycle lengths: Thu Sep 03 23:38:04 2009 1 relations: 240311 Thu Sep 03 23:38:04 2009 2 relations: 239131 Thu Sep 03 23:38:04 2009 3 relations: 226170 Thu Sep 03 23:38:04 2009 4 relations: 191236 Thu Sep 03 23:38:04 2009 5 relations: 165968 Thu Sep 03 23:38:04 2009 6 relations: 135445 Thu Sep 03 23:38:04 2009 7 relations: 116170 Thu Sep 03 23:38:04 2009 8 relations: 94947 Thu Sep 03 23:38:04 2009 9 relations: 77934 Thu Sep 03 23:38:04 2009 10+ relations: 299333 Thu Sep 03 23:38:04 2009 heaviest cycle: 26 relations Thu Sep 03 23:38:12 2009 RelProcTime: 1258 Thu Sep 03 23:38:12 2009 Thu Sep 03 23:38:12 2009 commencing linear algebra Thu Sep 03 23:38:13 2009 read 1786645 cycles Thu Sep 03 23:38:19 2009 cycles contain 5751378 unique relations Thu Sep 03 23:42:39 2009 read 5751378 relations Thu Sep 03 23:42:51 2009 using 20 quadratic characters above 268434582 Thu Sep 03 23:43:40 2009 building initial matrix Thu Sep 03 23:45:27 2009 memory use: 662.0 MB Thu Sep 03 23:45:33 2009 read 1786645 cycles Thu Sep 03 23:47:26 2009 matrix is 1786468 x 1786645 (509.3 MB) with weight 167615762 (93.82/col) Thu Sep 03 23:47:26 2009 sparse part has weight 120993610 (67.72/col) Thu Sep 03 23:47:56 2009 filtering completed in 2 passes Thu Sep 03 23:47:57 2009 matrix is 1785630 x 1785807 (509.2 MB) with weight 167585845 (93.84/col) Thu Sep 03 23:47:57 2009 sparse part has weight 120987158 (67.75/col) Thu Sep 03 23:48:16 2009 read 1785807 cycles Thu Sep 03 23:53:35 2009 matrix is 1785630 x 1785807 (509.2 MB) with weight 167585845 (93.84/col) Thu Sep 03 23:53:35 2009 sparse part has weight 120987158 (67.75/col) Thu Sep 03 23:53:36 2009 saving the first 48 matrix rows for later Thu Sep 03 23:53:37 2009 matrix is 1785582 x 1785807 (490.6 MB) with weight 133642017 (74.84/col) Thu Sep 03 23:53:37 2009 sparse part has weight 117896943 (66.02/col) Thu Sep 03 23:53:37 2009 matrix includes 64 packed rows Thu Sep 03 23:53:37 2009 using block size 65536 for processor cache size 4096 kB Thu Sep 03 23:53:57 2009 commencing Lanczos iteration (4 threads) Thu Sep 03 23:53:57 2009 memory use: 546.0 MB Fri Sep 04 05:07:20 2009 lanczos halted after 28239 iterations (dim = 1785582) Fri Sep 04 05:07:25 2009 recovered 30 nontrivial dependencies Fri Sep 04 05:07:35 2009 BLanczosTime: 19763 Fri Sep 04 05:07:35 2009 Fri Sep 04 05:07:35 2009 commencing square root phase Fri Sep 04 05:07:35 2009 reading relations for dependency 1 Fri Sep 04 05:07:36 2009 read 893981 cycles Fri Sep 04 05:07:39 2009 cycles contain 3510263 unique relations Fri Sep 04 05:11:33 2009 read 3510263 relations Fri Sep 04 05:12:04 2009 multiplying 2876640 relations Fri Sep 04 05:22:21 2009 multiply complete, coefficients have about 138.34 million bits Fri Sep 04 05:22:29 2009 initial square root is modulo 92221 Fri Sep 04 05:38:01 2009 reading relations for dependency 2 Fri Sep 04 05:38:02 2009 read 893689 cycles Fri Sep 04 05:38:05 2009 cycles contain 3510081 unique relations Fri Sep 04 05:42:07 2009 read 3510081 relations Fri Sep 04 05:42:38 2009 multiplying 2877082 relations Fri Sep 04 05:52:54 2009 multiply complete, coefficients have about 138.36 million bits Fri Sep 04 05:53:02 2009 initial square root is modulo 92431 Fri Sep 04 06:08:37 2009 sqrtTime: 3662 Fri Sep 04 06:08:37 2009 prp54 factor: 991707038199261642635694918632181570921619177195911067 Fri Sep 04 06:08:37 2009 prp81 factor: 168973070893309583226946762274636602940726732619466985073885282922429123577148191 Fri Sep 04 06:08:37 2009 elapsed time 06:51:26
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Sep 3, 2009
(46·10169+71)/9 = 5(1)1689<170> = 31 · 646102036844022206006504343271<30> · C139
C139 = P55 · P84
P55 = 7869899312705939875327158792352250969639308808703596351<55>
P84 = 324252506725723163935370179632867223784323136137681244398680972982897152912578221369<84>
Number: 51119_169 N=2551834579823946874729908717308735635277974678882990847240512167590000681701754074603221507742987070694414782032556889668754576709298624519 ( 139 digits) SNFS difficulty: 171 digits. Divisors found: r1=7869899312705939875327158792352250969639308808703596351 r2=324252506725723163935370179632867223784323136137681244398680972982897152912578221369 Version: Total time: 44.46 hours. Scaled time: 105.85 units (timescale=2.381). Factorization parameters were as follows: n: 2551834579823946874729908717308735635277974678882990847240512167590000681701754074603221507742987070694414782032556889668754576709298624519 m: 10000000000000000000000000000000000 deg: 5 c5: 23 c0: 355 skew: 1.73 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 6400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11235283 Max relations in full relation-set: Initial matrix: Pruned matrix : 1086131 x 1086379 Total sieving time: 40.21 hours. Total relation processing time: 1.45 hours. Matrix solve time: 2.67 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 44.46 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673801) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672349) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Wataru Sakai / GMP-ECM 6.2.1 / Sep 2, 2009
(19·10191+17)/9 = 2(1)1903<192> = 3 · 7 · 1627 · C187
C187 = P37 · P151
P37 = 5159821878045688607762327346221433523<37>
P151 = 1197483489481970933197735726304293294387797401694296550112736151012667802612072712189611721185927094362433494974127049810061666990228118386344080983493<151>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2833440132 Step 1 took 69753ms Step 2 took 21721ms ********** Factor found in step 2: 5159821878045688607762327346221433523 Found probable prime factor of 37 digits: 5159821878045688607762327346221433523 Probable prime cofactor 1197483489481970933197735726304293294387797401694296550112736151012667802612072712189611721185927094362433494974127049810061666990228118386344080983493 has 151 digits
By Robert Backstrom / GGNFS, Msieve / Sep 2, 2009
(59·10153-41)/9 = 6(5)1521<154> = 71 · 31547078069965587199548803369110194703<38> · C115
C115 = P41 · P74
P41 = 73342284603167236937378850206607287487629<41>
P74 = 39905943091587869748534627021584733575920194395623184525750449074965747363<74>
Number: n N=2926793035581032985985372497805728366509485826817219355709884856091272013245694366598974490036970962573306601872327 ( 115 digits) SNFS difficulty: 156 digits. Divisors found: Wed Sep 02 18:33:10 2009 prp41 factor: 73342284603167236937378850206607287487629 Wed Sep 02 18:33:10 2009 prp74 factor: 39905943091587869748534627021584733575920194395623184525750449074965747363 Wed Sep 02 18:33:10 2009 elapsed time 01:15:38 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.88 hours. Scaled time: 41.85 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_5_152_1 n: 2926793035581032985985372497805728366509485826817219355709884856091272013245694366598974490036970962573306601872327 m: 5000000000000000000000000000000 deg: 5 c5: 472 c0: -1025 skew: 1.17 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 26 lpba: 26 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 20000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 56/56 Sieved special-q in [1400000, 2727419) Primes: RFBsize:203362, AFBsize:203613, largePrimes:5498081 encountered Relations: rels:5530934, finalFF:406243 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 528977 hash collisions in 6054896 relations Msieve: matrix is 523627 x 523875 (139.9 MB) Total sieving time: 22.74 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,26,26,56,56,2.4,2.4,100000 total time: 22.88 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.42 / Sep 1, 2009
(59·10156-41)/9 = 6(5)1551<157> = 375149 · C152
C152 = P69 · P84
P69 = 122402430418751797731067365839873473441811272250720725639712914399843<69>
P84 = 142763000744037084102025742155044287189683532814771668495075908139458734730887232393<84>
N=17474538264944210315249555658033356227940246556849559923005407332967848922842805273519469745502601781040481396873123893587762610470921035523366863714299 ( 152 digits) SNFS difficulty: 157 digits. Divisors found: r1=122402430418751797731067365839873473441811272250720725639712914399843 (pp69) r2=142763000744037084102025742155044287189683532814771668495075908139458734730887232393 (pp84) Version: Msieve-1.40 Total time: 23.63 hours. Scaled time: 43.71 units (timescale=1.850). Factorization parameters were as follows: n: 17474538264944210315249555658033356227940246556849559923005407332967848922842805273519469745502601781040481396873123893587762610470921035523366863714299 m: 10000000000000000000000000000000 deg: 5 c5: 590 c0: -41 skew: 0.59 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 580838 x 581063 Total sieving time: 22.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.05 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 23.63 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1, Msieve / Sep 1, 2009
(52·10191+11)/9 = 5(7)1909<192> = 3 · 65309 · C187
C187 = P35 · C152
P35 = 30801606174199913457588213935842219<35>
C152 = [95739946791903685132248909040386648829197591890573936370776635152212693642358749880570399774978728195176825298861308146931074602792034098577412749483983<152>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3691768300 Step 1 took 69848ms Step 2 took 22050ms ********** Factor found in step 2: 30801606174199913457588213935842219 Found probable prime factor of 35 digits: 30801606174199913457588213935842219 Composite cofactor 95739946791903685132248909040386648829197591890573936370776635152212693642358749880570399774978728195176825298861308146931074602792034098577412749483983 has 152 digits
(59·10144-41)/9 = 6(5)1431<145> = 103 · 362969 · 2614458695951705504047<22> · 15499856740693157390708362031<29> · C88
C88 = P39 · P50
P39 = 138047683300448222085519702666913652443<39>
P50 = 31344702379181432031160906155447922850088032738243<50>
Fri Aug 28 16:00:29 2009 Msieve v. 1.42 Fri Aug 28 16:00:29 2009 random seeds: e5f7fef0 7bd40aad Fri Aug 28 16:00:29 2009 factoring 4327063547188044230148567591766663446607409468377257772873755338116673621132197696477649 (88 digits) Fri Aug 28 16:00:30 2009 searching for 15-digit factors Fri Aug 28 16:00:31 2009 commencing quadratic sieve (88-digit input) Fri Aug 28 16:00:31 2009 using multiplier of 5 Fri Aug 28 16:00:31 2009 using 64kb Pentium 3 sieve core Fri Aug 28 16:00:31 2009 sieve interval: 14 blocks of size 65536 Fri Aug 28 16:00:31 2009 processing polynomials in batches of 8 Fri Aug 28 16:00:31 2009 using a sieve bound of 1527497 (57966 primes) Fri Aug 28 16:00:31 2009 using large prime bound of 122199760 (26 bits) Fri Aug 28 16:00:31 2009 using double large prime bound of 360351695070240 (42-49 bits) Fri Aug 28 16:00:31 2009 using trial factoring cutoff of 49 bits Fri Aug 28 16:00:31 2009 polynomial 'A' values have 11 factors Fri Aug 28 17:52:14 2009 58122 relations (15513 full + 42609 combined from 620007 partial), need 58062 Fri Aug 28 17:52:15 2009 begin with 635520 relations Fri Aug 28 17:52:15 2009 reduce to 141666 relations in 9 passes Fri Aug 28 17:52:15 2009 attempting to read 141666 relations Fri Aug 28 17:52:19 2009 recovered 141666 relations Fri Aug 28 17:52:19 2009 recovered 121281 polynomials Fri Aug 28 17:52:20 2009 attempting to build 58122 cycles Fri Aug 28 17:52:20 2009 found 58122 cycles in 5 passes Fri Aug 28 17:52:20 2009 distribution of cycle lengths: Fri Aug 28 17:52:20 2009 length 1 : 15513 Fri Aug 28 17:52:20 2009 length 2 : 11293 Fri Aug 28 17:52:20 2009 length 3 : 10112 Fri Aug 28 17:52:20 2009 length 4 : 7777 Fri Aug 28 17:52:20 2009 length 5 : 5525 Fri Aug 28 17:52:20 2009 length 6 : 3418 Fri Aug 28 17:52:20 2009 length 7 : 2054 Fri Aug 28 17:52:20 2009 length 9+: 2430 Fri Aug 28 17:52:20 2009 largest cycle: 19 relations Fri Aug 28 17:52:20 2009 matrix is 57966 x 58122 (14.0 MB) with weight 3441484 (59.21/col) Fri Aug 28 17:52:20 2009 sparse part has weight 3441484 (59.21/col) Fri Aug 28 17:52:21 2009 filtering completed in 3 passes Fri Aug 28 17:52:21 2009 matrix is 54094 x 54158 (13.2 MB) with weight 3241096 (59.85/col) Fri Aug 28 17:52:21 2009 sparse part has weight 3241096 (59.85/col) Fri Aug 28 17:52:21 2009 saving the first 48 matrix rows for later Fri Aug 28 17:52:21 2009 matrix is 54046 x 54158 (9.3 MB) with weight 2653683 (49.00/col) Fri Aug 28 17:52:21 2009 sparse part has weight 2108341 (38.93/col) Fri Aug 28 17:52:21 2009 matrix includes 64 packed rows Fri Aug 28 17:52:21 2009 using block size 21663 for processor cache size 1024 kB Fri Aug 28 17:52:22 2009 commencing Lanczos iteration Fri Aug 28 17:52:22 2009 memory use: 9.0 MB Fri Aug 28 17:52:53 2009 lanczos halted after 856 iterations (dim = 54042) Fri Aug 28 17:52:54 2009 recovered 15 nontrivial dependencies Fri Aug 28 17:52:54 2009 prp39 factor: 138047683300448222085519702666913652443 Fri Aug 28 17:52:54 2009 prp50 factor: 31344702379181432031160906155447922850088032738243 Fri Aug 28 17:52:54 2009 elapsed time 01:52:25
(59·10121-41)/9 = 6(5)1201<122> = 61 · 127 · 373 · 21051403 · 2300728836789203473636063<25> · C84
C84 = P42 · P43
P42 = 365889507198266340309586761903526109721049<42>
P43 = 1280178939027176122266235863939883244142661<43>
Fri Aug 28 15:13:48 2009 Msieve v. 1.42 Fri Aug 28 15:13:48 2009 random seeds: 94be0cd0 f187796d Fri Aug 28 15:13:48 2009 factoring 468404041126252924160492585690317091352005873396330654608841861863525407541870571389 (84 digits) Fri Aug 28 15:13:49 2009 searching for 15-digit factors Fri Aug 28 15:13:50 2009 commencing quadratic sieve (84-digit input) Fri Aug 28 15:13:50 2009 using multiplier of 19 Fri Aug 28 15:13:50 2009 using 64kb Pentium 3 sieve core Fri Aug 28 15:13:50 2009 sieve interval: 6 blocks of size 65536 Fri Aug 28 15:13:50 2009 processing polynomials in batches of 17 Fri Aug 28 15:13:50 2009 using a sieve bound of 1399273 (53529 primes) Fri Aug 28 15:13:50 2009 using large prime bound of 120337478 (26 bits) Fri Aug 28 15:13:50 2009 using double large prime bound of 350527068529426 (41-49 bits) Fri Aug 28 15:13:50 2009 using trial factoring cutoff of 49 bits Fri Aug 28 15:13:50 2009 polynomial 'A' values have 11 factors Fri Aug 28 15:56:37 2009 53850 relations (16360 full + 37490 combined from 568032 partial), need 53625 Fri Aug 28 15:56:37 2009 begin with 584392 relations Fri Aug 28 15:56:38 2009 reduce to 124395 relations in 11 passes Fri Aug 28 15:56:38 2009 attempting to read 124395 relations Fri Aug 28 15:56:40 2009 recovered 124395 relations Fri Aug 28 15:56:40 2009 recovered 99407 polynomials Fri Aug 28 15:56:40 2009 attempting to build 53850 cycles Fri Aug 28 15:56:40 2009 found 53850 cycles in 5 passes Fri Aug 28 15:56:40 2009 distribution of cycle lengths: Fri Aug 28 15:56:40 2009 length 1 : 16360 Fri Aug 28 15:56:40 2009 length 2 : 11103 Fri Aug 28 15:56:40 2009 length 3 : 9605 Fri Aug 28 15:56:40 2009 length 4 : 6627 Fri Aug 28 15:56:40 2009 length 5 : 4469 Fri Aug 28 15:56:40 2009 length 6 : 2687 Fri Aug 28 15:56:40 2009 length 7 : 1450 Fri Aug 28 15:56:40 2009 length 9+: 1549 Fri Aug 28 15:56:40 2009 largest cycle: 20 relations Fri Aug 28 15:56:40 2009 matrix is 53529 x 53850 (11.4 MB) with weight 2778426 (51.60/col) Fri Aug 28 15:56:40 2009 sparse part has weight 2778426 (51.60/col) Fri Aug 28 15:56:41 2009 filtering completed in 3 passes Fri Aug 28 15:56:41 2009 matrix is 47789 x 47851 (10.2 MB) with weight 2489072 (52.02/col) Fri Aug 28 15:56:41 2009 sparse part has weight 2489072 (52.02/col) Fri Aug 28 15:56:41 2009 saving the first 48 matrix rows for later Fri Aug 28 15:56:41 2009 matrix is 47741 x 47851 (5.7 MB) with weight 1833801 (38.32/col) Fri Aug 28 15:56:41 2009 sparse part has weight 1197884 (25.03/col) Fri Aug 28 15:56:41 2009 matrix includes 64 packed rows Fri Aug 28 15:56:41 2009 using block size 19140 for processor cache size 1024 kB Fri Aug 28 15:56:42 2009 commencing Lanczos iteration Fri Aug 28 15:56:42 2009 memory use: 6.5 MB Fri Aug 28 15:57:00 2009 lanczos halted after 756 iterations (dim = 47737) Fri Aug 28 15:57:00 2009 recovered 16 nontrivial dependencies Fri Aug 28 15:57:00 2009 prp42 factor: 365889507198266340309586761903526109721049 Fri Aug 28 15:57:00 2009 prp43 factor: 1280178939027176122266235863939883244142661 Fri Aug 28 15:57:00 2009 elapsed time 00:43:12
(44·10186-71)/9 = 4(8)1851<187> = 33 · 17 · 41 · C183
C183 = P49 · P134
P49 = 2781358159338341230540981818870343356361601462647<49>
P134 = 93402114377596838227799236814397000522231663886462612272154867872283444096094978505488882758006792303268745560227245467020075767533917<134>
Number: 48881_186 N=259784732923581959131138152340129065778675215946059242727503527758589132732285928523773255161745517237307449327216583712678085386518353200961203511817253248785211163658477543381098299 ( 183 digits) SNFS difficulty: 188 digits. Divisors found: r1=2781358159338341230540981818870343356361601462647 r2=93402114377596838227799236814397000522231663886462612272154867872283444096094978505488882758006792303268745560227245467020075767533917 Version: Total time: 366.82 hours. Scaled time: 737.67 units (timescale=2.011). Factorization parameters were as follows: n: 259784732923581959131138152340129065778675215946059242727503527758589132732285928523773255161745517237307449327216583712678085386518353200961203511817253248785211163658477543381098299 m: 20000000000000000000000000000000000000 deg: 5 c5: 55 c0: -284 skew: 1.39 type: snfs lss: 1 rlim: 9600000 alim: 9600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4800000, 8400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1661836 x 1662084 Total sieving time: 366.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9600000,9600000,28,28,54,54,2.5,2.5,100000 total time: 366.82 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Sep 1, 2009
(59·10162-41)/9 = 6(5)1611<163> = 43 · 739 · 2161 · 80614627 · C148
C148 = P45 · P103
P45 = 121239891454093519261731817652882419678157587<45>
P103 = 9767478267692126100157672302286065670936776448217885428023920416603215607907947844277447345437813925767<103>
Number: 65551_162 N=1184208004955210770830172663043312929709173836438995308375769074655838736378823569880462727262595960362475989456294661603514048867308740826145844229 ( 148 digits) SNFS difficulty: 164 digits. Divisors found: r1=121239891454093519261731817652882419678157587 (pp45) r2=9767478267692126100157672302286065670936776448217885428023920416603215607907947844277447345437813925767 (pp103) Version: Msieve-1.40 Total time: 58.87 hours. Scaled time: 122.74 units (timescale=2.085). Factorization parameters were as follows: name: 65551_162 n: 1184208004955210770830172663043312929709173836438995308375769074655838736378823569880462727262595960362475989456294661603514048867308740826145844229 m: 200000000000000000000000000000000 deg: 5 c5: 1475 c0: -328 skew: 0.74 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1950000, 4250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 740219 x 740467 Total sieving time: 56.25 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.05 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,164.000,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 58.87 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Aug 31, 2009
(59·10154-41)/9 = 6(5)1531<155> = 3797 · 159093639765504071562915217735497341<36> · C117
C117 = P55 · P62
P55 = 2589791619531563881290259667937807775007827680200185973<55>
P62 = 41903593307858982204461105941512747941924740493989831900396931<62>
Number: 65551_154 N=108521574776952115645717588039054192051980803534687113921049522702179053232133262478345190473870479199937478718448863 ( 117 digits) SNFS difficulty: 156 digits. Divisors found: r1=2589791619531563881290259667937807775007827680200185973 (pp55) r2=41903593307858982204461105941512747941924740493989831900396931 (pp62) Version: Msieve v. 1.42 Total time: 46.92 hours. Scaled time: 18.02 units (timescale=0.384). Factorization parameters were as follows: n: 108521574776952115645717588039054192051980803534687113921049522702179053232133262478345190473870479199937478718448863 m: 10000000000000000000000000000000 deg: 5 c5: 59 c0: -410 skew: 1.47 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 551770 x 551994 Total sieving time: 45.21 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.05 hours. Time per square root: 0.55 hours. Prototype def-par.txt line would be: snfs ,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4, total time: 46.92 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Aug 31, 2009
(59·10167-41)/9 = 6(5)1661<168> = 32 · 13 · 31 · 6389 · 132096631 · C153
C153 = P47 · P106
P47 = 29066651586528410702821561866512390233285664069<47>
P106 = 7367876067116486925377923809061947616100280902108981773894021319523839837975817484936114364116391604057203<106>
Number: 65551_167 N=214159486575596141707211680720002581157646854390477143895630202872280827983759826601254749071627804247303991319745959188294916234845748005710716517739007 ( 153 digits) SNFS difficulty: 169 digits. Divisors found: r1=29066651586528410702821561866512390233285664069 (pp47) r2=7367876067116486925377923809061947616100280902108981773894021319523839837975817484936114364116391604057203 (pp106) Version: Msieve-1.40 Total time: 61.17 hours. Scaled time: 203.20 units (timescale=3.322). Factorization parameters were as follows: name: 65551_167 n: 214159486575596141707211680720002581157646854390477143895630202872280827983759826601254749071627804247303991319745959188294916234845748005710716517739007 m: 2000000000000000000000000000000000 deg: 5 c5: 1475 c0: -328 skew: 0.74 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 935564 x 935811 Total sieving time: 59.13 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.66 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 61.17 hours. --------- CPU info (if available) ----------
By Markus Tervooren / gnfs-lasieve4I14e, gnfs-lasieve4I15e, msieve 1.42 / Aug 31, 2009
8·10230-1 = 7(9)230<231> = 171847177 · C223
C223 = P70 · P74 · P80
P70 = 7194989070351007241001770794481202899232920377811344337193524816903113<70>
P74 = 28405869825449471447004672858393144480378760112284964510299428948566224457<74>
P80 = 22777672993897316831397692267111749997397458530603944165484429112280289213344407<80>
Sieving took ~191 CPU-days @ 2.66Ghz Core 2 + 120 CPU-days @2.00 Ghz P4 Sat Aug 22 14:08:04 2009 commencing relation filtering Sat Aug 22 14:08:04 2009 estimated available RAM is 8010.2 MB Sat Aug 22 14:08:04 2009 commencing duplicate removal, pass 1 -- some errors snipped Sat Aug 22 14:19:35 2009 found 17364933 hash collisions in 92302860 relations Sat Aug 22 14:19:55 2009 added 419490 free relations Sat Aug 22 14:19:55 2009 commencing duplicate removal, pass 2 Sat Aug 22 14:24:57 2009 found 17849103 duplicates and 74873247 unique relations Sat Aug 22 14:24:57 2009 memory use: 426.4 MB Sat Aug 22 14:24:57 2009 reading ideals above 53280768 Sat Aug 22 14:24:57 2009 commencing singleton removal, initial pass Sat Aug 22 14:38:55 2009 memory use: 1193.5 MB Sat Aug 22 14:38:55 2009 reading all ideals from disk Sat Aug 22 14:39:25 2009 memory use: 1323.7 MB Sat Aug 22 14:39:34 2009 commencing in-memory singleton removal Sat Aug 22 14:39:42 2009 begin with 74873247 relations and 74233171 unique ideals Sat Aug 22 14:41:11 2009 reduce to 32087832 relations and 25064968 ideals in 19 passes Sat Aug 22 14:41:11 2009 max relations containing the same ideal: 21 Sat Aug 22 14:41:16 2009 reading ideals above 720000 Sat Aug 22 14:41:16 2009 commencing singleton removal, initial pass Sat Aug 22 14:48:39 2009 memory use: 596.8 MB Sat Aug 22 14:48:39 2009 reading all ideals from disk Sat Aug 22 14:49:00 2009 memory use: 1198.3 MB Sat Aug 22 14:49:10 2009 keeping 31255991 ideals with weight <= 200, target excess is 177317 Sat Aug 22 14:49:19 2009 commencing in-memory singleton removal Sat Aug 22 14:49:28 2009 begin with 32087840 relations and 31255991 unique ideals Sat Aug 22 14:51:30 2009 reduce to 32043145 relations and 31211249 ideals in 14 passes Sat Aug 22 14:51:30 2009 max relations containing the same ideal: 200 Sat Aug 22 14:52:11 2009 removing 3404380 relations and 3091276 ideals in 313104 cliques Sat Aug 22 14:52:12 2009 commencing in-memory singleton removal Sat Aug 22 14:52:21 2009 begin with 28638765 relations and 31211249 unique ideals Sat Aug 22 14:54:01 2009 reduce to 28324631 relations and 27801343 ideals in 13 passes Sat Aug 22 14:54:01 2009 max relations containing the same ideal: 192 Sat Aug 22 14:54:36 2009 removing 2504006 relations and 2190902 ideals in 313104 cliques Sat Aug 22 14:54:38 2009 commencing in-memory singleton removal Sat Aug 22 14:54:45 2009 begin with 25820625 relations and 27801343 unique ideals Sat Aug 22 14:56:01 2009 reduce to 25626526 relations and 25413937 ideals in 11 passes Sat Aug 22 14:56:01 2009 max relations containing the same ideal: 182 Sat Aug 22 14:56:43 2009 relations with 0 large ideals: 6650 Sat Aug 22 14:56:43 2009 relations with 1 large ideals: 776 Sat Aug 22 14:56:43 2009 relations with 2 large ideals: 9374 Sat Aug 22 14:56:43 2009 relations with 3 large ideals: 93183 Sat Aug 22 14:56:43 2009 relations with 4 large ideals: 547174 Sat Aug 22 14:56:43 2009 relations with 5 large ideals: 1991731 Sat Aug 22 14:56:43 2009 relations with 6 large ideals: 4560537 Sat Aug 22 14:56:43 2009 relations with 7+ large ideals: 18417101 Sat Aug 22 14:56:43 2009 commencing 2-way merge Sat Aug 22 14:57:27 2009 reduce to 15063412 relation sets and 14850827 unique ideals Sat Aug 22 14:57:27 2009 ignored 4 oversize relation sets Sat Aug 22 14:57:27 2009 commencing full merge Sat Aug 22 15:04:59 2009 memory use: 1764.4 MB Sat Aug 22 15:05:01 2009 found 7950941 cycles, need 7925027 Sat Aug 22 15:05:06 2009 weight of 7925027 cycles is about 554942333 (70.02/cycle) Sat Aug 22 15:05:06 2009 distribution of cycle lengths: Sat Aug 22 15:05:06 2009 1 relations: 1169843 Sat Aug 22 15:05:06 2009 2 relations: 1106346 Sat Aug 22 15:05:06 2009 3 relations: 1021429 Sat Aug 22 15:05:06 2009 4 relations: 874258 Sat Aug 22 15:05:06 2009 5 relations: 743662 Sat Aug 22 15:05:06 2009 6 relations: 615047 Sat Aug 22 15:05:06 2009 7 relations: 500678 Sat Aug 22 15:05:06 2009 8 relations: 404363 Sat Aug 22 15:05:06 2009 9 relations: 328390 Sat Aug 22 15:05:06 2009 10+ relations: 1161011 Sat Aug 22 15:05:06 2009 heaviest cycle: 26 relations Sat Aug 22 15:05:09 2009 commencing cycle optimization Sat Aug 22 15:05:30 2009 start with 42060266 relations Sat Aug 22 15:06:59 2009 pruned 704586 relations Sat Aug 22 15:06:59 2009 memory use: 1471.4 MB Sat Aug 22 15:06:59 2009 distribution of cycle lengths: Sat Aug 22 15:06:59 2009 1 relations: 1169843 Sat Aug 22 15:06:59 2009 2 relations: 1125822 Sat Aug 22 15:06:59 2009 3 relations: 1048997 Sat Aug 22 15:06:59 2009 4 relations: 885549 Sat Aug 22 15:06:59 2009 5 relations: 751949 Sat Aug 22 15:06:59 2009 6 relations: 615186 Sat Aug 22 15:06:59 2009 7 relations: 497737 Sat Aug 22 15:06:59 2009 8 relations: 399716 Sat Aug 22 15:06:59 2009 9 relations: 322988 Sat Aug 22 15:06:59 2009 10+ relations: 1107240 Sat Aug 22 15:06:59 2009 heaviest cycle: 26 relations Sat Aug 22 15:07:18 2009 RelProcTime: 3554 Sat Aug 22 15:07:18 2009 elapsed time 00:59:16 Sat Aug 22 15:45:07 2009 commencing linear algebra Sat Aug 22 15:45:08 2009 read 7925027 cycles Sat Aug 22 15:45:25 2009 cycles contain 25287775 unique relations Sat Aug 22 15:50:50 2009 read 25287775 relations Sat Aug 22 15:51:38 2009 using 20 quadratic characters above 1073741312 Sat Aug 22 15:54:07 2009 building initial matrix Sat Aug 22 15:59:14 2009 memory use: 3135.0 MB Sat Aug 22 15:59:21 2009 read 7925027 cycles Sat Aug 22 15:59:29 2009 matrix is 7924849 x 7925027 (2395.5 MB) with weight 696021674 (87.83/col) Sat Aug 22 15:59:29 2009 sparse part has weight 540796398 (68.24/col) Sat Aug 22 16:01:56 2009 filtering completed in 2 passes Sat Aug 22 16:01:58 2009 matrix is 7915028 x 7915206 (2394.8 MB) with weight 695762853 (87.90/col) Sat Aug 22 16:01:58 2009 sparse part has weight 540725492 (68.31/col) Sat Aug 22 16:03:01 2009 read 7915206 cycles Sat Aug 22 16:03:05 2009 matrix is 7915028 x 7915206 (2394.8 MB) with weight 695762853 (87.90/col) Sat Aug 22 16:03:05 2009 sparse part has weight 540725492 (68.31/col) Sat Aug 22 16:03:05 2009 saving the first 48 matrix rows for later Sat Aug 22 16:03:09 2009 matrix is 7914980 x 7915206 (2286.5 MB) with weight 561446210 (70.93/col) Sat Aug 22 16:03:09 2009 sparse part has weight 520247528 (65.73/col) Sat Aug 22 16:03:09 2009 matrix includes 64 packed rows Sat Aug 22 16:03:09 2009 using block size 65536 for processor cache size 4096 kB Sat Aug 22 16:03:42 2009 commencing Lanczos iteration (4 threads) Sat Aug 22 16:03:42 2009 memory use: 2480.9 MB Sun Aug 30 13:18:16 2009 lanczos halted after 125170 iterations (dim = 7914978) Sun Aug 30 13:18:31 2009 recovered 38 nontrivial dependencies Sun Aug 30 13:18:31 2009 BLanczosTime: 682404 Sun Aug 30 13:18:31 2009 elapsed time 189:33:27 Sun Aug 30 15:39:04 2009 commencing square root phase Sun Aug 30 15:39:04 2009 reading relations for dependency 5 Sun Aug 30 15:39:16 2009 read 3957653 cycles Sun Aug 30 15:39:31 2009 cycles contain 15233059 unique relations Sun Aug 30 15:44:24 2009 read 15233059 relations Sun Aug 30 15:47:18 2009 multiplying 12643428 relations Sun Aug 30 16:39:02 2009 sqrtTime: 11943 Sun Aug 30 16:39:02 2009 prp70 factor: 7194989070351007241001770794481202899232920377811344337193524816903113 Sun Aug 30 16:39:02 2009 prp74 factor: 28405869825449471447004672858393144480378760112284964510299428948566224457 Sun Aug 30 16:39:02 2009 prp80 factor: 22777672993897316831397692267111749997397458530603944165484429112280289213344407 Sun Aug 30 16:39:02 2009 elapsed time 03:19:06
c223 is the largest number factored by SNFS in our tables so far. Congratulations!!!
By Robert Backstrom / GMP-ECM, GGNFS / Aug 31, 2009
(59·10170-41)/9 = 6(5)1691<171> = 3 · 7 · 214170980453<12> · 3324849806533<13> · C146
C146 = P36 · P46 · P65
P36 = 804107783923129451039657356402486843<36>
P46 = 2776050591687826340964640438188313241988097739<46>
P65 = 19638843448420433381809909722623979282848939454441955452939170147<65>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 43838688281452999209382287472067018505906351758921389540363873721972984740431326457383916438597688638236307286955968711139765929965483119754642619 (146 digits) Using B1=3242000, B2=5707206970, polynomial Dickson(6), sigma=2430415712 Step 1 took 38250ms Step 2 took 14281ms ********** Factor found in step 2: 804107783923129451039657356402486843 Found probable prime factor of 36 digits: 804107783923129451039657356402486843 Composite cofactor 54518422975052135935953956558967048083415118898869480584619417866224478054192616489161192182019931353786997633 has 110 digits Number: n N=54518422975052135935953956558967048083415118898869480584619417866224478054192616489161192182019931353786997633 ( 110 digits) Divisors found: r1=2776050591687826340964640438188313241988097739 (pp46) r2=19638843448420433381809909722623979282848939454441955452939170147 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.34 hours. Scaled time: 29.87 units (timescale=1.828). Factorization parameters were as follows: name: KA_6_5_169_1 n: 54518422975052135935953956558967048083415118898869480584619417866224478054192616489161192182019931353786997633 Y0: -1907280307381663206726 Y1: 332678452343 c0: 899049179931483930219743873 c1: -50751007675298549806423 c2: -1403077213923752919 c3: 75397464258793 c4: 482168956 c5: 2160 skew: 32525.21 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 20000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1600000, 2160001) Primes: RFBsize:230209, AFBsize:230958, largePrimes:16207647 encountered Relations: rels:14256599, finalFF:544460 Max relations in full relation-set: 48 Initial matrix: 461242 x 544460 with sparse part having weight 61863544. Pruned matrix : 397836 x 400206 with weight 37670194. Total sieving time: 13.78 hours. Total relation processing time: 0.51 hours. Matrix solve time: 1.82 hours. Total square root time: 0.22 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 16.34 hours. --------- CPU info (if available) ----------
Jo Yeong Uk also found P36.
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 43838688281452999209382287472067018505906351758921389540363873721972984740431326457383916438597688638236307286955968711139765929965483119754642619 (146 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5417305544 Step 1 took 4727ms Step 2 took 4493ms ********** Factor found in step 2: 804107783923129451039657356402486843 Found probable prime factor of 36 digits: 804107783923129451039657356402486843 Composite cofactor 54518422975052135935953956558967048083415118898869480584619417866224478054192616489161192182019931353786997633 has 110 digits
By Dmitry Domanov / GGNFS/msieve 1.42 / Aug 31, 2009
(16·10202-7)/9 = 1(7)202<203> = 23663522088959665379<20> · 41175088192813174267<20> · 1085821989830191408574448787<28> · C137
C137 = P46 · P92
P46 = 1081532647714971214037755172969779401345844853<46>
P92 = 15536932645254557221822951817675878742208962257314811273026340883379604360838433963316815599<92>
Sieving ~ 18.5 cpu-days Sun Aug 30 11:15:50 2009 Msieve v. 1.42 Sun Aug 30 11:15:50 2009 random seeds: bee3af00 d09e99d0 Sun Aug 30 11:15:50 2009 factoring 16803699901191332856731624940085075709418965141403433009136434244527057083294180228918835965492442107538029009528292583619187682264261947 (137 digits) Sun Aug 30 11:15:52 2009 searching for 15-digit factors Sun Aug 30 11:15:53 2009 commencing number field sieve (137-digit input) Sun Aug 30 11:15:53 2009 R0: -291093131217969603025891500 Sun Aug 30 11:15:53 2009 R1: 926622307161661 Sun Aug 30 11:15:53 2009 A0: -30036619351616900804396764665813653 Sun Aug 30 11:15:53 2009 A1: 42857501262580016590013505029 Sun Aug 30 11:15:53 2009 A2: 97333981214042173293399 Sun Aug 30 11:15:53 2009 A3: -72897361794663101 Sun Aug 30 11:15:53 2009 A4: -63509433778 Sun Aug 30 11:15:53 2009 A5: 8040 Sun Aug 30 11:15:53 2009 skew 1401827.32, size 3.338525e-013, alpha -6.680700, combined = 3.197034e-011 Sun Aug 30 11:15:53 2009 Sun Aug 30 11:15:53 2009 commencing relation filtering Sun Aug 30 11:15:53 2009 estimated available RAM is 4094.1 MB Sun Aug 30 11:15:53 2009 commencing duplicate removal, pass 1 Sun Aug 30 11:18:03 2009 error -6 reading relation 8603340 Sun Aug 30 11:21:44 2009 found 3672019 hash collisions in 23132690 relations Sun Aug 30 11:23:26 2009 added 121221 free relations Sun Aug 30 11:23:26 2009 commencing duplicate removal, pass 2 Sun Aug 30 11:24:44 2009 found 3326171 duplicates and 19927739 unique relations Sun Aug 30 11:24:44 2009 memory use: 106.6 MB Sun Aug 30 11:24:44 2009 reading ideals above 19595264 Sun Aug 30 11:24:59 2009 commencing singleton removal, initial pass Sun Aug 30 11:30:51 2009 memory use: 298.4 MB Sun Aug 30 11:30:51 2009 reading all ideals from disk Sun Aug 30 11:30:51 2009 memory use: 326.5 MB Sun Aug 30 11:30:53 2009 commencing in-memory singleton removal Sun Aug 30 11:30:56 2009 begin with 19927739 relations and 19184707 unique ideals Sun Aug 30 11:31:18 2009 reduce to 8405921 relations and 5821694 ideals in 19 passes Sun Aug 30 11:31:18 2009 max relations containing the same ideal: 28 Sun Aug 30 11:31:20 2009 reading ideals above 100000 Sun Aug 30 11:31:20 2009 commencing singleton removal, initial pass Sun Aug 30 11:34:58 2009 memory use: 149.2 MB Sun Aug 30 11:34:58 2009 reading all ideals from disk Sun Aug 30 11:34:59 2009 memory use: 326.5 MB Sun Aug 30 11:35:01 2009 keeping 8264605 ideals with weight <= 200, target excess is 44720 Sun Aug 30 11:35:04 2009 commencing in-memory singleton removal Sun Aug 30 11:35:06 2009 begin with 8407054 relations and 8264605 unique ideals Sun Aug 30 11:35:35 2009 reduce to 8284360 relations and 8136440 ideals in 13 passes Sun Aug 30 11:35:35 2009 max relations containing the same ideal: 200 Sun Aug 30 11:35:45 2009 removing 604136 relations and 556114 ideals in 48022 cliques Sun Aug 30 11:35:46 2009 commencing in-memory singleton removal Sun Aug 30 11:35:48 2009 begin with 7680224 relations and 8136440 unique ideals Sun Aug 30 11:36:08 2009 reduce to 7647797 relations and 7547616 ideals in 10 passes Sun Aug 30 11:36:08 2009 max relations containing the same ideal: 195 Sun Aug 30 11:36:18 2009 removing 436373 relations and 388351 ideals in 48022 cliques Sun Aug 30 11:36:18 2009 commencing in-memory singleton removal Sun Aug 30 11:36:20 2009 begin with 7211424 relations and 7547616 unique ideals Sun Aug 30 11:36:36 2009 reduce to 7192976 relations and 7140672 ideals in 8 passes Sun Aug 30 11:36:36 2009 max relations containing the same ideal: 186 Sun Aug 30 11:36:48 2009 relations with 0 large ideals: 129 Sun Aug 30 11:36:48 2009 relations with 1 large ideals: 111 Sun Aug 30 11:36:48 2009 relations with 2 large ideals: 1351 Sun Aug 30 11:36:48 2009 relations with 3 large ideals: 17575 Sun Aug 30 11:36:48 2009 relations with 4 large ideals: 127018 Sun Aug 30 11:36:48 2009 relations with 5 large ideals: 533702 Sun Aug 30 11:36:48 2009 relations with 6 large ideals: 1356073 Sun Aug 30 11:36:48 2009 relations with 7+ large ideals: 5157017 Sun Aug 30 11:36:48 2009 commencing 2-way merge Sun Aug 30 11:37:02 2009 reduce to 4228031 relation sets and 4175727 unique ideals Sun Aug 30 11:37:02 2009 commencing full merge Sun Aug 30 11:39:22 2009 memory use: 438.0 MB Sun Aug 30 11:39:23 2009 found 2185706 cycles, need 2181927 Sun Aug 30 11:39:24 2009 weight of 2181927 cycles is about 153056632 (70.15/cycle) Sun Aug 30 11:39:24 2009 distribution of cycle lengths: Sun Aug 30 11:39:24 2009 1 relations: 318590 Sun Aug 30 11:39:24 2009 2 relations: 287686 Sun Aug 30 11:39:24 2009 3 relations: 265305 Sun Aug 30 11:39:24 2009 4 relations: 224441 Sun Aug 30 11:39:24 2009 5 relations: 193393 Sun Aug 30 11:39:24 2009 6 relations: 158988 Sun Aug 30 11:39:24 2009 7 relations: 134476 Sun Aug 30 11:39:24 2009 8 relations: 111474 Sun Aug 30 11:39:24 2009 9 relations: 91852 Sun Aug 30 11:39:24 2009 10+ relations: 395722 Sun Aug 30 11:39:24 2009 heaviest cycle: 28 relations Sun Aug 30 11:39:25 2009 commencing cycle optimization Sun Aug 30 11:39:32 2009 start with 12568120 relations Sun Aug 30 11:40:11 2009 pruned 267617 relations Sun Aug 30 11:40:11 2009 memory use: 335.1 MB Sun Aug 30 11:40:11 2009 distribution of cycle lengths: Sun Aug 30 11:40:11 2009 1 relations: 318590 Sun Aug 30 11:40:11 2009 2 relations: 293890 Sun Aug 30 11:40:11 2009 3 relations: 273827 Sun Aug 30 11:40:11 2009 4 relations: 228287 Sun Aug 30 11:40:11 2009 5 relations: 196248 Sun Aug 30 11:40:11 2009 6 relations: 159693 Sun Aug 30 11:40:11 2009 7 relations: 134312 Sun Aug 30 11:40:11 2009 8 relations: 110397 Sun Aug 30 11:40:11 2009 9 relations: 90366 Sun Aug 30 11:40:11 2009 10+ relations: 376317 Sun Aug 30 11:40:11 2009 heaviest cycle: 28 relations Sun Aug 30 11:40:24 2009 RelProcTime: 1471 Sun Aug 30 11:40:24 2009 Sun Aug 30 11:40:24 2009 commencing linear algebra Sun Aug 30 11:40:26 2009 read 2181927 cycles Sun Aug 30 11:40:33 2009 cycles contain 7124612 unique relations Sun Aug 30 11:47:52 2009 read 7124612 relations Sun Aug 30 11:48:08 2009 using 20 quadratic characters above 268435034 Sun Aug 30 11:49:08 2009 building initial matrix Sun Aug 30 11:51:23 2009 memory use: 814.7 MB Sun Aug 30 11:51:31 2009 read 2181927 cycles Sun Aug 30 11:55:11 2009 matrix is 2181750 x 2181927 (629.4 MB) with weight 206833828 (94.79/col) Sun Aug 30 11:55:11 2009 sparse part has weight 147540980 (67.62/col) Sun Aug 30 11:55:51 2009 filtering completed in 2 passes Sun Aug 30 11:55:52 2009 matrix is 2180999 x 2181176 (629.4 MB) with weight 206805813 (94.81/col) Sun Aug 30 11:55:52 2009 sparse part has weight 147535633 (67.64/col) Sun Aug 30 11:56:09 2009 read 2181176 cycles Sun Aug 30 12:02:33 2009 matrix is 2180999 x 2181176 (629.4 MB) with weight 206805813 (94.81/col) Sun Aug 30 12:02:33 2009 sparse part has weight 147535633 (67.64/col) Sun Aug 30 12:02:33 2009 saving the first 48 matrix rows for later Sun Aug 30 12:02:35 2009 matrix is 2180951 x 2181176 (604.3 MB) with weight 164620917 (75.47/col) Sun Aug 30 12:02:35 2009 sparse part has weight 145323930 (66.63/col) Sun Aug 30 12:02:35 2009 matrix includes 64 packed rows Sun Aug 30 12:02:35 2009 using block size 65536 for processor cache size 4096 kB Sun Aug 30 12:02:59 2009 commencing Lanczos iteration (4 threads) Sun Aug 30 12:02:59 2009 memory use: 673.2 MB Sun Aug 30 20:35:43 2009 lanczos halted after 34495 iterations (dim = 2180951) Sun Aug 30 20:35:49 2009 recovered 28 nontrivial dependencies Sun Aug 30 20:35:52 2009 BLanczosTime: 32128 Sun Aug 30 20:35:52 2009 Sun Aug 30 20:35:52 2009 commencing square root phase Sun Aug 30 20:35:52 2009 reading relations for dependency 1 Sun Aug 30 20:35:54 2009 read 1092247 cycles Sun Aug 30 20:35:57 2009 cycles contain 4349405 unique relations Sun Aug 30 20:41:33 2009 read 4349405 relations Sun Aug 30 20:42:16 2009 multiplying 3565232 relations Sun Aug 30 21:00:27 2009 multiply complete, coefficients have about 168.77 million bits Sun Aug 30 21:00:37 2009 initial square root is modulo 1139683 Sun Aug 30 21:22:39 2009 reading relations for dependency 2 Sun Aug 30 21:22:40 2009 read 1091237 cycles Sun Aug 30 21:22:44 2009 cycles contain 4347764 unique relations Sun Aug 30 21:29:18 2009 read 4347764 relations Sun Aug 30 21:29:59 2009 multiplying 3563378 relations Sun Aug 30 21:48:03 2009 multiply complete, coefficients have about 168.68 million bits Sun Aug 30 21:48:13 2009 initial square root is modulo 1131341 Sun Aug 30 22:10:07 2009 reading relations for dependency 3 Sun Aug 30 22:10:08 2009 read 1090577 cycles Sun Aug 30 22:10:12 2009 cycles contain 4345517 unique relations Sun Aug 30 22:15:38 2009 read 4345517 relations Sun Aug 30 22:16:19 2009 multiplying 3563306 relations Sun Aug 30 22:34:24 2009 multiply complete, coefficients have about 168.68 million bits Sun Aug 30 22:34:35 2009 initial square root is modulo 1131191 Sun Aug 30 22:56:32 2009 reading relations for dependency 4 Sun Aug 30 22:56:33 2009 read 1090876 cycles Sun Aug 30 22:56:37 2009 cycles contain 4348230 unique relations Sun Aug 30 23:02:54 2009 read 4348230 relations Sun Aug 30 23:03:36 2009 multiplying 3564124 relations Sun Aug 30 23:21:43 2009 multiply complete, coefficients have about 168.72 million bits Sun Aug 30 23:21:53 2009 initial square root is modulo 1135019 Sun Aug 30 23:43:48 2009 sqrtTime: 11276 Sun Aug 30 23:43:48 2009 prp46 factor: 1081532647714971214037755172969779401345844853 Sun Aug 30 23:43:48 2009 prp92 factor: 15536932645254557221822951817675878742208962257314811273026340883379604360838433963316815599 Sun Aug 30 23:43:48 2009 elapsed time 12:27:58
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Aug 30, 2009
(43·10170-61)/9 = 4(7)1691<171> = 34 · 2297 · 86142190922609442826319581<26> · C140
C140 = P35 · P105
P35 = 61205871025572349031057520850672879<35>
P105 = 487047071018647562838374099050351413427398683541739940812874899307923729937987987488512016099910123356097<105>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 29810140212150119020193034504540165336135631922025659778353692043960704366721925412459175875355132428078825083113940577992345976016177193263 (140 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2242790170 Step 1 took 13962ms Step 2 took 10124ms ********** Factor found in step 2: 61205871025572349031057520850672879 Found probable prime factor of 35 digits: 61205871025572349031057520850672879 Probable prime cofactor 487047071018647562838374099050351413427398683541739940812874899307923729937987987488512016099910123356097 has 105 digits
(59·10165-41)/9 = 6(5)1641<166> = 15853671262377575120216579<26> · C141
C141 = P46 · P95
P46 = 6340161287912131268161125425786578533212741867<46>
P95 = 65219782716166814592146317374475128145739944922584322010120403135302390427100230848435276962207<95>
Number: 65551_165 N=413503941583081550029323061610568526119686926032409887198149321241700574934648467048889309789763186916268930747752107818183593351933005620469 ( 141 digits) SNFS difficulty: 166 digits. Divisors found: r1=6340161287912131268161125425786578533212741867 r2=65219782716166814592146317374475128145739944922584322010120403135302390427100230848435276962207 Version: Total time: 25.78 hours. Scaled time: 61.36 units (timescale=2.380). Factorization parameters were as follows: n: 413503941583081550029323061610568526119686926032409887198149321241700574934648467048889309789763186916268930747752107818183593351933005620469 m: 1000000000000000000000000000000000 deg: 5 c5: 59 c0: -41 skew: 0.93 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2300000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10023616 Max relations in full relation-set: Initial matrix: Pruned matrix : 759607 x 759855 Total sieving time: 23.19 hours. Total relation processing time: 1.02 hours. Matrix solve time: 1.18 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,51,51,2.4,2.4,100000 total time: 25.78 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Sinkiti Sibata / Msieve / Aug 30, 2009
(59·10151-41)/9 = 6(5)1501<152> = 786086982781<12> · 435721903752358018180169<24> · C117
C117 = P49 · P68
P49 = 4559565812653039995170667321098441921755424461139<49>
P68 = 41976479907500678916377186105933586601154615587003436570164974072481<68>
Number: 65551_151 N=191394522721757338189978481862379468868860410055039494993662461032118366979363583455183244670769264779036865753815859 ( 117 digits) SNFS difficulty: 152 digits. Divisors found: r1=4559565812653039995170667321098441921755424461139 (pp49) r2=41976479907500678916377186105933586601154615587003436570164974072481 (pp68) Version: Msieve-1.40 Total time: 22.57 hours. Scaled time: 47.06 units (timescale=2.085). Factorization parameters were as follows: name: 65551_151 n: 191394522721757338189978481862379468868860410055039494993662461032118366979363583455183244670769264779036865753815859 m: 1000000000000000000000000000000 deg: 5 c5: 590 c0: -41 skew: 0.59 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 467967 x 468215 Total sieving time: 21.24 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.76 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: snfs,152.000,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 22.57 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 29, 2009
(44·10169-53)/9 = 4(8)1683<170> = 17 · 43 · 1630423 · 21750516732549499949<20> · C142
C142 = P48 · P94
P48 = 489641797116893462699294028241035350517514338379<48>
P94 = 3851628881325874837178721243483272939017889163594114474066555739511475683749623855910191557521<94>
Number: 48883_169 N=1885918487279731334844061215429615053174211390022725930251012918160514773580971772193004553379869884756817593843749606903596980083631836398459 ( 142 digits) SNFS difficulty: 171 digits. Divisors found: r1=489641797116893462699294028241035350517514338379 r2=3851628881325874837178721243483272939017889163594114474066555739511475683749623855910191557521 Version: Total time: 33.52 hours. Scaled time: 78.24 units (timescale=2.334). Factorization parameters were as follows: n: 1885918487279731334844061215429615053174211390022725930251012918160514773580971772193004553379869884756817593843749606903596980083631836398459 m: 10000000000000000000000000000000000 deg: 5 c5: 22 c0: -265 skew: 1.64 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11061459 Max relations in full relation-set: Initial matrix: Pruned matrix : 921196 x 921444 Total sieving time: 30.41 hours. Total relation processing time: 0.79 hours. Matrix solve time: 1.88 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 33.52 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672349) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
(59·10159-41)/9 = 6(5)1581<160> = 1451 · 6917 · 37094443609<11> · 2598169745728791720663187707556303091<37> · C106
C106 = P48 · P58
P48 = 820889968246951339790540386495386854270140538021<48>
P58 = 8255872609163889121125670485890992574796509420461607010047<58>
Number: 65551_159 N=6777163003987420249369446581356217664161110220076196504409799447202003922532945122069823146006361732496987 ( 106 digits) Divisors found: r1=820889968246951339790540386495386854270140538021 r2=8255872609163889121125670485890992574796509420461607010047 Version: Total time: 5.41 hours. Scaled time: 12.69 units (timescale=2.348). Factorization parameters were as follows: name: 65551_159 n: 6777163003987420249369446581356217664161110220076196504409799447202003922532945122069823146006361732496987 skew: 12582.78 # norm 1.29e+15 c5: 262440 c4: -4659048357 c3: -146542938404236 c2: 790340887867501438 c1: 8313308791385384666564 c0: -14544187091187097192015545 # alpha -7.04 Y1: 86304481709 Y0: -120893981641063169426 # Murphy_E 1.67e-09 # M 233941627322368526897049390385975758084765376780110111644521819338376892631029209741812043543819236488285 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7132778 Max relations in full relation-set: Initial matrix: Pruned matrix : 299772 x 300020 Polynomial selection time: 0.38 hours. Total sieving time: 4.16 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.21 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 5.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672349) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
(59·10149-41)/9 = 6(5)1481<150> = 32 · 13 · 19851087923<11> · 26776182667895359173751<23> · C116
C116 = P54 · P62
P54 = 652082745253715773516074932609579615606989934537126869<54>
P62 = 16165455891393350287819085890362832406948198797702538297578619<62>
Number: 65551_149 N=10541214855937628876152464065866311686150262293869601020055860706093425225533958519391800940530932095752139904813911 ( 116 digits) SNFS difficulty: 151 digits. Divisors found: r1=652082745253715773516074932609579615606989934537126869 r2=16165455891393350287819085890362832406948198797702538297578619 Version: Total time: 10.94 hours. Scaled time: 26.12 units (timescale=2.387). Factorization parameters were as follows: n: 10541214855937628876152464065866311686150262293869601020055860706093425225533958519391800940530932095752139904813911 m: 1000000000000000000000000000000 deg: 5 c5: 59 c0: -410 skew: 1.47 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7377549 Max relations in full relation-set: Initial matrix: Pruned matrix : 392381 x 392629 Total sieving time: 10.17 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.31 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 10.94 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Erik Branger / GGNFS, Msieve / Aug 29, 2009
(59·10145-41)/9 = 6(5)1441<146> = 211 · 844447 · 37668119627<11> · C127
C127 = P42 · P42 · P44
P42 = 549690954084227334046373836255244354233007<42>
P42 = 721044887110064073265612393855556722934303<42>
P44 = 24643354074993241023553893354420056835203009<44>
Number: 65551_145 N=9767439025466310689382920239378941208099550425943607238692087452651281025110190773764650914274716357618807670061234159412815089 ( 127 digits) SNFS difficulty: 146 digits. Divisors found: r1=549690954084227334046373836255244354233007 (pp42) r2=721044887110064073265612393855556722934303 (pp42) r3=24643354074993241023553893354420056835203009 (pp44) Version: Msieve v. 1.41 Total time: 14.27 hours. Scaled time: 11.19 units (timescale=0.784). Factorization parameters were as follows: n: 9767439025466310689382920239378941208099550425943607238692087452651281025110190773764650914274716357618807670061234159412815089 m: 100000000000000000000000000000 deg: 5 c5: 59 c0: -41 skew: 0.93 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [980000, 2180001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 318356 x 318596 Total sieving time: 13.32 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.52 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 14.27 hours. --------- CPU info (if available) ----------
(49·10171-13)/9 = 5(4)1703<172> = 1309907 · 1509331 · 186135721123313863044793461731766127889<39> · C122
C122 = P41 · P81
P41 = 78118283689308132829443292403611291227803<41>
P81 = 189385269551937878693181478095539023949471844401877418236197269245497479472145737<81>
Number: 54443_171 N=14794452213434372946420738528169896579615815849117777730825714913852145946553387018597884831622546553977005766909682325811 ( 122 digits) Divisors found: r1=78118283689308132829443292403611291227803 (pp41) r2=189385269551937878693181478095539023949471844401877418236197269245497479472145737 (pp81) Version: Msieve v. 1.42 Total time: 94.54 hours. Scaled time: 84.14 units (timescale=0.890). Factorization parameters were as follows: name: 54443_171 n: 14794452213434372946420738528169896579615815849117777730825714913852145946553387018597884831622546553977005766909682325811 skew: 100801.55 # norm 2.51e+016 c5: 15540 c4: -3524203548 c3: -420650336721402 c2: 65567099398070687185 c1: 4319439315112807051384690 c0: -690078891322799688013927425 # alpha -5.18 Y1: 25679226421157 Y0: -248731969491594434266556 # Murphy_E 2.31e-010 # M 413839379239698306525414216049804652849438324257727581695754799129246235176693693402226716314260713159272150579379954349 type: gnfs rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2350000, 4750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : submatrix x not Polynomial selection time: 6.85 hours. Total sieving time: 82.76 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.47 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4700000,4700000,27,27,53,53,2.5,2.5,100000 total time: 94.54 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Aug 29, 2009
(59·10136-41)/9 = 6(5)1351<137> = 311 · C135
C135 = P38 · P44 · P54
P38 = 26179380007226157021127248101170405337<38>
P44 = 14297798976196798020082250427539153295127879<44>
P54 = 563145436761579883955917094967740928748812991722141367<54>
Number: n N=210789567702750982493747767059664165773490532332976062879599857091818506609503394069310468024294390853876384423008217220435869953554841 ( 135 digits) SNFS difficulty: 137 digits. Divisors found: Sat Aug 29 01:44:27 2009 prp38 factor: 26179380007226157021127248101170405337 Sat Aug 29 01:44:27 2009 prp44 factor: 14297798976196798020082250427539153295127879 Sat Aug 29 01:44:27 2009 prp54 factor: 563145436761579883955917094967740928748812991722141367 Sat Aug 29 01:44:27 2009 elapsed time 00:16:47 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.02 hours. Scaled time: 7.32 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_5_135_1 n: 210789567702750982493747767059664165773490532332976062879599857091818506609503394069310468024294390853876384423008217220435869953554841 m: 1000000000000000000000000000 deg: 5 c5: 590 c0: -41 skew: 0.59 type: snfs lss: 1 rlim: 1380000 alim: 1380000 lpbr: 26 lpba: 26 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 50000 Factor base limits: 1380000/1380000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 56/56 Sieved special-q in [690000, 1461797) Primes: RFBsize:105690, AFBsize:105947, largePrimes:3177187 encountered Relations: rels:3014745, finalFF:214239 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 323499 hash collisions in 3418073 relations Msieve: matrix is 225284 x 225532 (60.0 MB) Total sieving time: 3.96 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1380000,1380000,26,26,56,56,2.3,2.3,75000 total time: 4.02 hours. --------- CPU info (if available) ----------
(59·10158-41)/9 = 6(5)1571<159> = 33 · 7 · 449 · 1478429 · 8960605669<10> · 972619078189867<15> · C123
C123 = P48 · P76
P48 = 217923913046764811356626710395989581702567843659<48>
P76 = 2751159983487564578438662871520344645588319823419937844950095840125164584947<76>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 599543549019282937413245056494763681133772472976550903769136303031395960534601089463284130350567362781324328315687520801073 (123 digits) Using B1=2958000, B2=4281751120, polynomial Dickson(6), sigma=962280220 Step 1 took 25656ms Step 2 took 10953ms ********** Factor found in step 2: 217923913046764811356626710395989581702567843659 Found probable prime factor of 48 digits: 217923913046764811356626710395989581702567843659 Probable prime cofactor 2751159983487564578438662871520344645588319823419937844950095840125164584947 has 76 digits
By Sinkiti Sibata / Msieve / Aug 29, 2009
(59·10148-41)/9 = 6(5)1471<149> = 26728403302199<14> · 533273908107113<15> · C121
C121 = P47 · P74
P47 = 90745693245729358517082419197212783245968267481<47>
P74 = 50682745018821389408300370756291566831716285785457828913075299356070158233<74>
Number: 65551_148 N=4599240832329483446438911438293912091197844869217679103966516381860976339020948840206178483537950205688304180256538321073 ( 121 digits) SNFS difficulty: 151 digits. Divisors found: r1=90745693245729358517082419197212783245968267481 (pp47) r2=50682745018821389408300370756291566831716285785457828913075299356070158233 (pp74) Version: Msieve-1.40 Total time: 21.67 hours. Scaled time: 43.75 units (timescale=2.019). Factorization parameters were as follows: name: 65551_148 n: 4599240832329483446438911438293912091197844869217679103966516381860976339020948840206178483537950205688304180256538321073 m: 500000000000000000000000000000 deg: 5 c5: 472 c0: -1025 skew: 1.17 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 *1 These parameters were not fully adjusted. The approximate expressions which were Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 437631 x 437879 Total sieving time: 20.54 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.67 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 21.67 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Aug 29, 2009
(59·10153-41)/9 = 6(5)1521<154> = 71 · C152
C152 = P38 · C115
P38 = 31547078069965587199548803369110194703<38>
C115 = [2926793035581032985985372497805728366509485826817219355709884856091272013245694366598974490036970962573306601872327<115>]
C152=P38*C115 C152=31547078069965587199548803369110194703<38>*2926793035581032985985372497805728366509485826817219355709884856091272013245694366598974490036970962573306601872327<115>
(59·10154-41)/9 = 6(5)1531<155> = 3797 · C152
C152 = P36 · C117
P36 = 159093639765504071562915217735497341<36>
C117 = [108521574776952115645717588039054192051980803534687113921049522702179053232133262478345190473870479199937478718448863<117>]
C152=P36*C117 C152=159093639765504071562915217735497341<36>*108521574776952115645717588039054192051980803534687113921049522702179053232133262478345190473870479199937478718448863<117>
By Jo Yeong Uk / GGNFS, Msieve v1.39, YAFU 1.10, GMP-ECM / Aug 28, 2009
(59·10110-41)/9 = 6(5)1091<111> = 3 · 72 · 103 · 16665469 · C100
C100 = P36 · P65
P36 = 100569868188240422212672513519393283<36>
P65 = 25832683422264164337538558517870859590637727898173160332304112293<65>
Number: 65551_110 N=2597989566725650502849872479791838917651440564302408490731586236718833328085585735067306147261927919 ( 100 digits) SNFS difficulty: 111 digits. Divisors found: r1=100569868188240422212672513519393283 r2=25832683422264164337538558517870859590637727898173160332304112293 Version: Total time: 0.38 hours. Scaled time: 0.91 units (timescale=2.388). Factorization parameters were as follows: n: 2597989566725650502849872479791838917651440564302408490731586236718833328085585735067306147261927919 m: 10000000000000000000000 deg: 5 c5: 59 c0: -41 skew: 0.93 type: snfs lss: 1 rlim: 320000 alim: 320000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 320000/320000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [160000, 300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1042212 Max relations in full relation-set: Initial matrix: Pruned matrix : 40915 x 41147 Total sieving time: 0.34 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,320000,320000,25,25,44,44,2.2,2.2,20000 total time: 0.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673788) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342)
(59·10130-41)/9 = 6(5)1291<131> = 863 · 12380033 · 578081849930021<15> · 1286027650661759<16> · C91
C91 = P46 · P46
P46 = 1874536995577468817771844750195374139545485531<46>
P46 = 4402944871230901384323087592619302612598638441<46>
08/27/09 23:30:17 v1.10 @ 조영욱-PC, starting SIQS on c91: 8253483050610399201614656565498306273254000866702463502996230748570396254465732878865897171 08/27/09 23:30:17 v1.10 @ 조영욱-PC, random seeds: 131344719, 45773372 08/27/09 23:30:18 v1.10 @ 조영욱-PC, ==== sieve params ==== 08/27/09 23:30:18 v1.10 @ 조영욱-PC, n = 91 digits, 307 bits 08/27/09 23:30:18 v1.10 @ 조영욱-PC, factor base: 70662 primes (max prime = 1893187) 08/27/09 23:30:18 v1.10 @ 조영욱-PC, single large prime cutoff: 227182440 (120 * pmax) 08/27/09 23:30:18 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 08/27/09 23:30:18 v1.10 @ 조영욱-PC, double large prime cutoff: 1100207414487985 08/27/09 23:30:18 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 08/27/09 23:30:18 v1.10 @ 조영욱-PC, buckets hold 1024 elements 08/27/09 23:30:18 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536 08/27/09 23:30:18 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 08/27/09 23:30:18 v1.10 @ 조영욱-PC, using multiplier of 19 08/27/09 23:30:18 v1.10 @ 조영욱-PC, using small prime variation correction of 22 bits 08/27/09 23:30:18 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 08/27/09 23:30:18 v1.10 @ 조영욱-PC, trial factoring cutoff at 97 bits 08/27/09 23:30:18 v1.10 @ 조영욱-PC, ==== sieving started ==== 08/28/09 00:26:05 v1.10 @ 조영욱-PC, sieve time = 1542.6450, relation time = 702.4350, poly_time = 1100.0520 08/28/09 00:26:05 v1.10 @ 조영욱-PC, 70735 relations found: 20355 full + 50380 from 853952 partial, using 471953 polys (230 A polys) 08/28/09 00:26:05 v1.10 @ 조영욱-PC, on average, sieving found 1.85 rels/poly and 261.20 rels/sec 08/28/09 00:26:05 v1.10 @ 조영욱-PC, trial division touched 26612272 sieve locations out of 680458059776 08/28/09 00:26:05 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 08/28/09 00:26:05 v1.10 @ 조영욱-PC, begin with 874307 relations 08/28/09 00:26:06 v1.10 @ 조영욱-PC, reduce to 163723 relations in 9 passes 08/28/09 00:26:07 v1.10 @ 조영욱-PC, recovered 163723 relations 08/28/09 00:26:07 v1.10 @ 조영욱-PC, recovered 138447 polynomials 08/28/09 00:26:07 v1.10 @ 조영욱-PC, attempting to build 70735 cycles 08/28/09 00:26:07 v1.10 @ 조영욱-PC, found 70735 cycles in 4 passes 08/28/09 00:26:07 v1.10 @ 조영욱-PC, distribution of cycle lengths: 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 1 : 20355 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 2 : 15712 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 3 : 13220 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 4 : 8823 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 5 : 5767 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 6 : 3219 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 7 : 1799 08/28/09 00:26:07 v1.10 @ 조영욱-PC, length 9+: 1840 08/28/09 00:26:07 v1.10 @ 조영욱-PC, largest cycle: 19 relations 08/28/09 00:26:08 v1.10 @ 조영욱-PC, matrix is 70662 x 70735 (17.6 MB) with weight 4054145 (57.31/col) 08/28/09 00:26:08 v1.10 @ 조영욱-PC, sparse part has weight 4054145 (57.31/col) 08/28/09 00:26:08 v1.10 @ 조영욱-PC, filtering completed in 3 passes 08/28/09 00:26:08 v1.10 @ 조영욱-PC, matrix is 65082 x 65146 (16.4 MB) with weight 3786317 (58.12/col) 08/28/09 00:26:08 v1.10 @ 조영욱-PC, sparse part has weight 3786317 (58.12/col) 08/28/09 00:26:08 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 08/28/09 00:26:08 v1.10 @ 조영욱-PC, matrix is 65034 x 65146 (11.3 MB) with weight 3022515 (46.40/col) 08/28/09 00:26:08 v1.10 @ 조영욱-PC, sparse part has weight 2318790 (35.59/col) 08/28/09 00:26:08 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 08/28/09 00:26:08 v1.10 @ 조영욱-PC, using block size 26058 for processor cache size 4096 kB 08/28/09 00:26:09 v1.10 @ 조영욱-PC, commencing Lanczos iteration 08/28/09 00:26:09 v1.10 @ 조영욱-PC, memory use: 9.9 MB 08/28/09 00:26:30 v1.10 @ 조영욱-PC, lanczos halted after 1030 iterations (dim = 65030) 08/28/09 00:26:30 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies 08/28/09 00:26:31 v1.10 @ 조영욱-PC, prp46 = 4402944871230901384323087592619302612598638441 08/28/09 00:26:33 v1.10 @ 조영욱-PC, prp46 = 1874536995577468817771844750195374139545485531 08/28/09 00:26:33 v1.10 @ 조영욱-PC, Lanczos elapsed time = 25.0990 seconds. 08/28/09 00:26:33 v1.10 @ 조영욱-PC, Sqrt elapsed time = 3.2240 seconds. 08/28/09 00:26:33 v1.10 @ 조영욱-PC, SIQS elapsed time = 3375.6350 seconds. 08/28/09 00:26:33 v1.10 @ 조영욱-PC, 08/28/09 00:26:33 v1.10 @ 조영욱-PC,
(59·10128-41)/9 = 6(5)1271<129> = 3 · 7 · 11273 · 807217798013115349249<21> · C103
C103 = P35 · P69
P35 = 15687391337389820067594699621928049<35>
P69 = 218680088493350538687823046086955801253237178180069851711522664388347<69>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 3430520125890226509593731402569423321015647527360602456706265755347841481793027317214936054879428045003 (103 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6225541169 Step 1 took 3463ms Step 2 took 3682ms ********** Factor found in step 2: 15687391337389820067594699621928049 Found probable prime factor of 35 digits: 15687391337389820067594699621928049 Probable prime cofactor 218680088493350538687823046086955801253237178180069851711522664388347 has 69 digits
(59·10132-41)/9 = 6(5)1311<133> = 19 · 83 · 2161 · 2602723 · C120
C120 = P35 · P86
P35 = 64762468536958753275997370026592189<35>
P86 = 11412261060476583010801648653588374466659404427949117412495467433944876668021019371489<86>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 739086197864674243080103063204723838549459620630445797290182833000541981305222698078503131350548820404722187029296699421 (120 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3807268069 Step 1 took 4180ms Step 2 took 4041ms ********** Factor found in step 2: 64762468536958753275997370026592189 Found probable prime factor of 35 digits: 64762468536958753275997370026592189 Probable prime cofactor 11412261060476583010801648653588374466659404427949117412495467433944876668021019371489 has 86 digits
(59·10161-41)/9 = 6(5)1601<162> = 3 · 132 · 29 · 4703 · 8394739 · 3133872767<10> · 143369462659<12> · 6687547849938316622715871634891<31> · C96
C96 = P39 · P58
P39 = 356847838604780119196330765207415979007<39>
P58 = 1053254630446441697498609349401656856796194164343781800341<58>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 375851638375289155490915074834142837946749360995064073843851662872671638502051544695517521441387 (96 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5608720449 Step 1 took 2980ms Step 2 took 3260ms ********** Factor found in step 2: 356847838604780119196330765207415979007 Found probable prime factor of 39 digits: 356847838604780119196330765207415979007 Probable prime cofactor 1053254630446441697498609349401656856796194164343781800341 has 58 digits
(38·10169-11)/9 = 4(2)1681<170> = 172 · 83 · 211 · 2339 · 244251602108399660808017<24> · C137
C137 = P50 · P88
P50 = 12643456665765147374218786433570546868392699029511<50>
P88 = 1154912892544551407467844162921108648037743984077350799609066744377902172336659747050721<88>
Number: 42221_169 N=14602091109620515869366332015142728586054934512934342589581239347419963235977351626438610141371466520699267476440359057526064881192827431 ( 137 digits) SNFS difficulty: 171 digits. Divisors found: r1=12643456665765147374218786433570546868392699029511 r2=1154912892544551407467844162921108648037743984077350799609066744377902172336659747050721 Version: Total time: 39.39 hours. Scaled time: 94.03 units (timescale=2.387). Factorization parameters were as follows: n: 14602091109620515869366332015142728586054934512934342589581239347419963235977351626438610141371466520699267476440359057526064881192827431 m: 10000000000000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11130436 Max relations in full relation-set: Initial matrix: Pruned matrix : 1006398 x 1006645 Total sieving time: 35.52 hours. Total relation processing time: 1.32 hours. Matrix solve time: 2.29 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.4,2.4,100000 total time: 39.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673788) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342)
(59·10159-41)/9 = 6(5)1581<160> = 1451 · 6917 · 37094443609<11> · C143
C143 = P37 · C106
P37 = 2598169745728791720663187707556303091<37>
C106 = [6777163003987420249369446581356217664161110220076196504409799447202003922532945122069823146006361732496987<106>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 17608219878832569939402941493323999511486423867559456103886959410813000481338848062703009217991518592534765451863274229281547530390998016286817 (143 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6442492946 Step 1 took 4048ms Step 2 took 2450ms ********** Factor found in step 2: 2598169745728791720663187707556303091 Found probable prime factor of 37 digits: 2598169745728791720663187707556303091 Composite cofactor 6777163003987420249369446581356217664161110220076196504409799447202003922532945122069823146006361732496987 has 106 digits
By Robert Backstrom / GGNFS, GMP-ECM, Msieve / Aug 28, 2009
(59·10118-41)/9 = 6(5)1171<119> = 71 · C117
C117 = P48 · P70
P48 = 342040803041321313688302451689958483852221604999<48>
P70 = 2699437247460560632206497429854420932366137288553121858772250208311119<70>
Number: n N=923317683881064162754303599374021909233176838810641627543035993740219092331768388106416275430359937402190923317683881 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=342040803041321313688302451689958483852221604999 (pp48) r2=2699437247460560632206497429854420932366137288553121858772250208311119 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.60 hours. Scaled time: 2.91 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_5_117_1 n: 923317683881064162754303599374021909233176838810641627543035993740219092331768388106416275430359937402190923317683881 m: 500000000000000000000000 deg: 5 c5: 472 c0: -1025 skew: 1.17 type: snfs lss: 1 rlim: 740000 alim: 740000 mfbr: 56 mfba: 56 rlambda: 2.2 alambda: 2.2 qintsize: 50000 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 56/56 Sieved rational special-q in [370000, 720001) Primes: RFBsize:59531, AFBsize:59694, largePrimes:1359196 encountered Relations: rels:1337738, finalFF:155412 Max relations in full relation-set: 48 Initial matrix: 119292 x 155412 with sparse part having weight 7787649. Pruned matrix : 106776 x 107436 with weight 4030051. Total sieving time: 1.49 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Total square root time: 0.05 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,56,56,2.2,2.2,50000 total time: 1.60 hours. --------- CPU info (if available) ----------
(59·10119-41)/9 = 6(5)1181<120> = 3 · 13 · 547 · 556399 · 31606445333<11> · C100
C100 = P34 · P67
P34 = 1238586755744250042256057931648171<34>
P67 = 1410811987959398448543925216694404844029838755220880952470146831371<67>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1747413043131727277788190198313073799579267718733141705256364062479384714596122432332591695237572441 (100 digits) Using B1=726000, B2=696728352, polynomial Dickson(3), sigma=672678217 Step 1 took 5031ms Step 2 took 2625ms ********** Factor found in step 2: 1238586755744250042256057931648171 Found probable prime factor of 34 digits: 1238586755744250042256057931648171 Probable prime cofactor 1410811987959398448543925216694404844029838755220880952470146831371 has 67 digits
(16·10221-61)/9 = 1(7)2201<222> = 3 · 11 · C220
C220 = P74 · P147
P74 = 40547480142119922688518914038786161136818885750756170028782710211441154919<74>
P147 = 132861656712651410768724637841254958549779105856049539596201523367987125563433527252580925341831118918802493988686721629211532202122209163723587773<147>
Number: n N=5387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387 ( 220 digits) SNFS difficulty: 222 digits. Divisors found: Fri Aug 28 17:17:55 2009 prp74 factor: 40547480142119922688518914038786161136818885750756170028782710211441154919 Fri Aug 28 17:17:55 2009 prp147 factor: 132861656712651410768724637841254958549779105856049539596201523367987125563433527252580925341831118918802493988686721629211532202122209163723587773 Fri Aug 28 17:17:55 2009 elapsed time 67:04:23 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 174.43 hours. Scaled time: 351.30 units (timescale=2.014). Factorization parameters were as follows: name: KA_1_7_220_1 n: 5387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387205387 m: 10000000000000000000000000000000000000 deg: 6 c6: 8 c0: -305 skew: 1.83 type: snfs lss: 1 rlim: 36000000 alim: 36000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 36000000/36000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [18000000, 54149990) Primes: RFBsize:2204262, AFBsize:2201981, largePrimes:38297939 encountered Relations: rels:36171342, finalFF:1790359 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9529631 hash collisions in 52517034 relations Msieve: matrix is 5639739 x 5639987 (1521.0 MB) Total sieving time: 172.55 hours. Total relation processing time: 1.88 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,222,6,0,0,0,0,0,0,0,0,36000000,36000000,29,29,58,58,2.6,2.6,100000 total time: 174.43 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352028k/3407296k available (3120k kernel code, 53984k reserved, 1898k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.41 BogoMIPS (lpj=2830706) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830451) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22644.14 BogoMIPS).
c220 is the third largest number factored by SNFS in our tables so far. Congratulations!
By Serge Batalov / GMP-ECM 6.2.3, yafu, Msieve / Aug 28, 2009
(59·10142-41)/9 = 6(5)1411<143> = 131 · 1402671779<10> · 3596836632895354892741<22> · C110
C110 = P31 · P39 · P42
P31 = 1279201868994144050132194828067<31>
P39 = 137662433006997570220530848318162243587<39>
P42 = 563257402843915535764008602767320453683491<42>
Input number is 99188525553478613740693018714173592981572951837275851680687204631968974415083826327584353647304252763642664539 (110 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3055685713 Step 1 took 2305ms Step 2 took 1920ms ********** Factor found in step 2: 1279201868994144050132194828067 Found probable prime factor of 31 digits: 1279201868994144050132194828067 Composite cofactor has 80 digits starting SIQS on c80: 77539384484695965128406068996129563971417687858859427676654726298502214942522217 ==== sieve params ==== n = 80 digits, 266 bits ... Lanczos elapsed time = 4.8700 seconds. Sqrt elapsed time = 0.5300 seconds. SIQS elapsed time = 379.4000 seconds. ***factors found*** PRP39 = 137662433006997570220530848318162243587 PRP42 = 563257402843915535764008602767320453683491
(59·10147-41)/9 = 6(5)1461<148> = 3863 · 28901 · 8004709 · 77945136156599114050070531<26> · C107
C107 = P33 · P75
P33 = 266941962748313436907550064124241<33>
P75 = 352549827314674485749210699129788765635093418756045159371124172879548044443<75>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1124467645 Step 1 took 6828ms Step 2 took 4264ms ********** Factor found in step 2: 266941962748313436907550064124241 Found probable prime factor of 33 digits: 266941962748313436907550064124241 Probable prime cofactor has 75 digits
(59·10185-41)/9 = 6(5)1841<186> = 33 · 13 · C184
C184 = P31 · P153
P31 = 3314037138425310906358457868773<31>
P153 = 563566299183015474614878269645043450470219877270863059769326842164610494746548875667368937571772996793911384692710424597648306758405487025010001461232237<153>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3092775926 Step 1 took 8885ms Step 2 took 4720ms ********** Factor found in step 2: 3314037138425310906358457868773 Found probable prime factor of 31 digits: 3314037138425310906358457868773 Probable prime cofactor has 153 digits
(59·10176-41)/9 = 6(5)1751<177> = 32 · 7 · 241 · 47977 · 93149814203<11> · C157
C157 = P38 · P120
P38 = 38625847807622427747634970352985604971<38>
P120 = 250125980536769192609880404461832864559611828012339046983407808013266788748920882215142885060832727293121873895915028897<120>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1022211378 Step 1 took 7720ms Step 2 took 4092ms ********** Factor found in step 2: 38625847807622427747634970352985604971 Found probable prime factor of 38 digits: 38625847807622427747634970352985604971 Probable prime cofactor has 120 digits
(59·10140-41)/9 = 6(5)1391<141> = 32 · 7 · 2319241 · C133
C133 = P34 · P36 · P64
P34 = 1121072026810203394520355219374897<34>
P36 = 665636968570409833311374016398251961<36>
P64 = 6012458927193535206829524119375218118645993092105672468842645041<64>
SNFS difficulty: 141 digits. Divisors found: r1=1121072026810203394520355219374897 (pp34) r2=665636968570409833311374016398251961 (pp36) r3=6012458927193535206829524119375218118645993092105672468842645041 (pp64) Version: Msieve v. 1.43 Total time: 2.99 hours. Scaled time: 7.17 units (timescale=2.400). Factorization parameters were as follows: n: 4486659100532058682304100237524721368070693704956523410204305520201252181384187214255470781348572114315447299528442166629976061308697 m: 10000000000000000000000000000 deg: 5 c5: 59 c0: -41 skew: 0.93 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1605001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 251292 x 251517 Total sieving time: 2.84 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 2.99 hours.
By Erik Branger / GGNFS, Msieve / Aug 28, 2009
(59·10111-41)/9 = 6(5)1101<112> = C112
C112 = P34 · P79
P34 = 2453439594373098072663247600625437<34>
P79 = 2671985717761528403081198923694369774910242295609051984693196496700468164596523<79>
Number: 65551_111 N=6555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 ( 112 digits) SNFS difficulty: 112 digits. Divisors found: r1=2453439594373098072663247600625437 (pp34) r2=2671985717761528403081198923694369774910242295609051984693196496700468164596523 (pp79) Version: Msieve v. 1.41 Total time: 1.74 hours. Scaled time: 1.37 units (timescale=0.788). Factorization parameters were as follows: n: 6555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 m: 10000000000000000000000 deg: 5 c5: 590 c0: -41 skew: 0.59 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 53595 x 53823 Total sieving time: 1.69 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112.000,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 1.74 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / Aug 27, 2009
4·10243+9 = 4(0)2429<244> = 211 · 761 · C239
C239 = P42 · P198
P42 = 127566948277192337869764297638109721127023<42>
P198 = 195278627055004260165165796713698923970426519764143364350420080659555185314378363696270057757429282480559027603944657848259735353558435498871600913917817557530384015450970490735110900823076695659173<198>
Run 578 out of 1000: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3161935447 Step 1 took 57743ms Step 2 took 20450ms ********** Factor found in step 2: 127566948277192337869764297638109721127023 Found probable prime factor of 42 digits: 127566948277192337869764297638109721127023 Probable prime cofactor has 198 digits
4·10204+9 = 4(0)2039<205> = 133 · 3163073222102835073<19> · C183
C183 = P33 · C151
P33 = 104371341092297168434106963028253<33>
C151 = [5514922642801281170779376780759437194775023248270464884245911662908683979158794827643748726590188350303750194354785166138207825960686703194983314150313<151>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3928819928 Step 1 took 12684ms Step 2 took 6453ms ********** Factor found in step 2: 104371341092297168434106963028253 Found probable prime factor of 33 digits: 104371341092297168434106963028253 Composite cofactor has 151 digits
Factorizations of 655...551 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 27, 2009
(34·10169+11)/9 = 3(7)1689<170> = 33 · 13 · 6316473139<10> · 407799232266689<15> · 75988493960251357<17> · C126
C126 = P53 · P74
P53 = 18996040647697883281745471417581144798771086079754053<53>
P74 = 28946583100012908073644120379111826298817121794389208345765758626662639919<74>
Number: 37779_169 N=549870469179809804400773189900652481997984884146536985427414341642160967172160491609374388356461473305517418822641431219841707 ( 126 digits) SNFS difficulty: 171 digits. Divisors found: r1=18996040647697883281745471417581144798771086079754053 r2=28946583100012908073644120379111826298817121794389208345765758626662639919 Version: Total time: 35.34 hours. Scaled time: 84.18 units (timescale=2.382). Factorization parameters were as follows: n: 549870469179809804400773189900652481997984884146536985427414341642160967172160491609374388356461473305517418822641431219841707 m: 10000000000000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11191619 Max relations in full relation-set: Initial matrix: Pruned matrix : 933173 x 933421 Total sieving time: 32.04 hours. Total relation processing time: 1.13 hours. Matrix solve time: 1.94 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.4,2.4,100000 total time: 35.34 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672386) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672380)
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 26, 2009
(37·10187+71)/9 = 4(1)1869<188> = 7 · 1312 · 347 · 449 · 787 · 3793 · 54751 · 98240367022528967<17> · 11521275019116676381<20> · C131
C131 = P39 · P92
P39 = 469202909278931356117976919565489527769<39>
P92 = 25307073155146640842672255497156160022227569263192069413856806792430390779517568555111001253<92>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3909651050 Step 1 took 38287ms Step 2 took 14195ms ********** Factor found in step 2: 469202909278931356117976919565489527769 Found probable prime factor of 39 digits: 469202909278931356117976919565489527769 Probable prime cofactor 25307073155146640842672255497156160022227569263192069413856806792430390779517568555111001253 has 92 digits
(7·10205-43)/9 = (7)2043<205> = 34 · 17 · C202
C202 = P62 · P69 · P72
P62 = 62604108974342978505062826478040576438184094528258457506805873<62>
P69 = 662021298149734281561229659528509403900190047328271154405447199062439<69>
P72 = 136284601949026682390730569825694949184102512515689530468924678839170267<72>
Number: 77773_205 N=5648349874929395626563382554667957718066650528524166868393447914145081901073186476236585169047042685386911966432663600419591704994755103687565561203905430484951182118938110223513273622206084079722423949 ( 202 digits) SNFS difficulty: 205 digits. Divisors found: r1=62604108974342978505062826478040576438184094528258457506805873 r2=662021298149734281561229659528509403900190047328271154405447199062439 r3=136284601949026682390730569825694949184102512515689530468924678839170267 Version: Total time: 1118.63 hours. Scaled time: 2254.03 units (timescale=2.015). Factorization parameters were as follows: n: 5648349874929395626563382554667957718066650528524166868393447914145081901073186476236585169047042685386911966432663600419591704994755103687565561203905430484951182118938110223513273622206084079722423949 m: 100000000000000000000000000000000000000000 deg: 5 c5: 7 c0: -43 skew: 1.44 type: snfs lss: 1 rlim: 18900000 alim: 18900000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9450000, 21450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3577131 x 3577378 Total sieving time: 1118.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18900000,18900000,29,29,56,56,2.6,2.6,100000 total time: 1118.63 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Aug 26, 2009
(34·10162+11)/9 = 3(7)1619<163> = 47 · 459443 · 67124546794083294248340603185287579<35> · C121
C121 = P60 · P62
P60 = 106851167940478740045730236724328448611032403830368245522011<60>
P62 = 24391935925025616413012597364043838783569401954353983491549671<62>
Number: 37779_162 N=2606306841918308784669025209898688038053573715705451307168694698444179234703434235423308619590868129220762915004730308381 ( 121 digits) SNFS difficulty: 164 digits. Divisors found: r1=106851167940478740045730236724328448611032403830368245522011 (pp60) r2=24391935925025616413012597364043838783569401954353983491549671 (pp62) Version: Msieve v. 1.42 Total time: 59.21 hours. Scaled time: 23.39 units (timescale=0.395). Factorization parameters were as follows: n: 2606306841918308784669025209898688038053573715705451307168694698444179234703434235423308619590868129220762915004730308381 m: 200000000000000000000000000000000 deg: 5 c5: 425 c0: 44 skew: 0.64 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 4100001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 728523 x 728749 Total sieving time: 56.59 hours. Total relation processing time: 0.26 hours. Matrix solve time: 2.13 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,164.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 59.21 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 25, 2009
(32·10169-23)/9 = 3(5)1683<170> = 32 · 11 · 1823 · 2846155130424323406378163<25> · C140
C140 = P49 · P92
P49 = 3054037465657598396665128463543860241767984014899<49>
P92 = 22664841036145811481509986875433404714496667158274671465882815159605493593530416205438845997<92>
Number: 35559_169 N=69219273677563090593398149236428754097982185713146430612942470417139285929049376313365862167983876981615989343694701114817723025993414509303 ( 140 digits) SNFS difficulty: 171 digits. Divisors found: r1=3054037465657598396665128463543860241767984014899 r2=22664841036145811481509986875433404714496667158274671465882815159605493593530416205438845997 Version: Total time: 26.26 hours. Scaled time: 62.73 units (timescale=2.389). Factorization parameters were as follows: n: 69219273677563090593398149236428754097982185713146430612942470417139285929049376313365862167983876981615989343694701114817723025993414509303 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: -230 skew: 2.97 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 4800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10687531 Max relations in full relation-set: Initial matrix: Pruned matrix : 861414 x 861662 Total sieving time: 23.85 hours. Total relation processing time: 0.67 hours. Matrix solve time: 1.66 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 26.26 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.62 BogoMIPS (lpj=2673813) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672386) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 25, 2009
8·10198+3 = 8(0)1973<199> = 11 · 53 · C197
C197 = P43 · P155
P43 = 1350678383321052486001773788083398163612589<43>
P155 = 10159433288577617053454552915986316337776945515442442225397613087026136705762770406500515286186663991881893416281217389552885939501195077102302205387682969<155>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=184675988 Step 1 took 75436ms Step 2 took 22771ms ********** Factor found in step 2: 1350678383321052486001773788083398163612589 Found probable prime factor of 43 digits: 1350678383321052486001773788083398163612589 Probable prime cofactor 10159433288577617053454552915986316337776945515442442225397613087026136705762770406500515286186663991881893416281217389552885939501195077102302205387682969 has 155 digits
By Dmitry Domanov / ECMNET, GMP-ECM, GGNFS/msieve 1.42 / Aug 25, 2009
(16·10244-7)/9 = 1(7)244<245> = 357131 · 5718499 · 50074501 · 49725910634419<14> · C211
C211 = P50 · P162
P50 = 18626347316752091887613730912259192759279958920129<50>
P162 = 187689856289552606645258672395266771629129914562572777562468039096119103199366120307762823572047220965155854278003711101806936593196982626950879534048742843552783<162>
C211=P50*P162 C211=18626347316752091887613730912259192759279958920129<50>*187689856289552606645258672395266771629129914562572777562468039096119103199366120307762823572047220965155854278003711101806936593196982626950879534048742843552783<162> Method=ECM B1=11000000 Sigma=1786901496
(2·10205+1)/3 = (6)2047<205> = 7 · C204
C204 = P50 · P155
P50 = 48640687651801423804337056354992853346324870893769<50>
P155 = 19579923688551731244546269150496163178660313660002447546455753332835083003773596869975317881941326532491200104594142764296885809934157623594946146289883349<155>
sieving ~43 cpu-days Mon Aug 24 23:16:31 2009 Msieve v. 1.42 Mon Aug 24 23:16:31 2009 random seeds: ddd8b5c8 ded37060 Mon Aug 24 23:16:31 2009 factoring 952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952381 (204 digits) Mon Aug 24 23:16:33 2009 searching for 15-digit factors Mon Aug 24 23:16:35 2009 commencing number field sieve (204-digit input) Mon Aug 24 23:16:35 2009 R0: -100000000000000000000000000000000000000000 Mon Aug 24 23:16:35 2009 R1: 1 Mon Aug 24 23:16:35 2009 A0: 1 Mon Aug 24 23:16:35 2009 A1: 0 Mon Aug 24 23:16:35 2009 A2: 0 Mon Aug 24 23:16:35 2009 A3: 0 Mon Aug 24 23:16:35 2009 A4: 0 Mon Aug 24 23:16:35 2009 A5: 2 Mon Aug 24 23:16:35 2009 skew 0.87, size 5.998329e-014, alpha 1.449076, combined = 1.362059e-011 Mon Aug 24 23:16:35 2009 Mon Aug 24 23:16:35 2009 commencing relation filtering Mon Aug 24 23:16:35 2009 estimated available RAM is 4094.1 MB Mon Aug 24 23:16:35 2009 commencing duplicate removal, pass 1 Mon Aug 24 23:22:00 2009 error -11 reading relation 30239153 Mon Aug 24 23:24:55 2009 found 4896193 hash collisions in 46646507 relations Mon Aug 24 23:26:17 2009 added 731191 free relations Mon Aug 24 23:26:17 2009 commencing duplicate removal, pass 2 Mon Aug 24 23:29:41 2009 found 3615445 duplicates and 43762252 unique relations Mon Aug 24 23:29:41 2009 memory use: 197.2 MB Mon Aug 24 23:29:41 2009 reading ideals above 26935296 Mon Aug 24 23:29:41 2009 commencing singleton removal, initial pass Mon Aug 24 23:43:52 2009 memory use: 596.8 MB Mon Aug 24 23:43:52 2009 reading all ideals from disk Mon Aug 24 23:43:53 2009 memory use: 754.2 MB Mon Aug 24 23:43:59 2009 commencing in-memory singleton removal Mon Aug 24 23:44:05 2009 begin with 43762252 relations and 38545902 unique ideals Mon Aug 24 23:44:57 2009 reduce to 24714676 relations and 17302634 ideals in 13 passes Mon Aug 24 23:44:57 2009 max relations containing the same ideal: 60 Mon Aug 24 23:45:03 2009 reading ideals above 720000 Mon Aug 24 23:45:04 2009 commencing singleton removal, initial pass Tue Aug 25 00:02:10 2009 memory use: 532.8 MB Tue Aug 25 00:02:10 2009 reading all ideals from disk Tue Aug 25 00:02:12 2009 memory use: 850.5 MB Tue Aug 25 00:02:19 2009 keeping 20528578 ideals with weight <= 200, target excess is 132773 Tue Aug 25 00:02:26 2009 commencing in-memory singleton removal Tue Aug 25 00:02:33 2009 begin with 24714716 relations and 20528578 unique ideals Tue Aug 25 00:03:33 2009 reduce to 24711529 relations and 20525237 ideals in 8 passes Tue Aug 25 00:03:33 2009 max relations containing the same ideal: 200 Tue Aug 25 00:04:04 2009 removing 2497614 relations and 2097614 ideals in 400000 cliques Tue Aug 25 00:04:06 2009 commencing in-memory singleton removal Tue Aug 25 00:04:13 2009 begin with 22213915 relations and 20525237 unique ideals Tue Aug 25 00:05:13 2009 reduce to 22061876 relations and 18272637 ideals in 9 passes Tue Aug 25 00:05:13 2009 max relations containing the same ideal: 192 Tue Aug 25 00:05:41 2009 removing 1868490 relations and 1468490 ideals in 400000 cliques Tue Aug 25 00:05:43 2009 commencing in-memory singleton removal Tue Aug 25 00:05:49 2009 begin with 20193386 relations and 18272637 unique ideals Tue Aug 25 00:06:32 2009 reduce to 20096884 relations and 16706033 ideals in 7 passes Tue Aug 25 00:06:32 2009 max relations containing the same ideal: 183 Tue Aug 25 00:06:58 2009 removing 1673961 relations and 1273961 ideals in 400000 cliques Tue Aug 25 00:06:59 2009 commencing in-memory singleton removal Tue Aug 25 00:07:05 2009 begin with 18422923 relations and 16706033 unique ideals Tue Aug 25 00:07:49 2009 reduce to 18338178 relations and 15345854 ideals in 8 passes Tue Aug 25 00:07:49 2009 max relations containing the same ideal: 172 Tue Aug 25 00:08:12 2009 removing 1558416 relations and 1158416 ideals in 400000 cliques Tue Aug 25 00:08:13 2009 commencing in-memory singleton removal Tue Aug 25 00:08:19 2009 begin with 16779762 relations and 15345854 unique ideals Tue Aug 25 00:08:48 2009 reduce to 16693317 relations and 14099363 ideals in 6 passes Tue Aug 25 00:08:48 2009 max relations containing the same ideal: 164 Tue Aug 25 00:09:10 2009 removing 1492815 relations and 1092815 ideals in 400000 cliques Tue Aug 25 00:09:11 2009 commencing in-memory singleton removal Tue Aug 25 00:09:16 2009 begin with 15200502 relations and 14099363 unique ideals Tue Aug 25 00:09:47 2009 reduce to 15116492 relations and 12920846 ideals in 7 passes Tue Aug 25 00:09:47 2009 max relations containing the same ideal: 153 Tue Aug 25 00:10:06 2009 removing 1440970 relations and 1040970 ideals in 400000 cliques Tue Aug 25 00:10:07 2009 commencing in-memory singleton removal Tue Aug 25 00:10:12 2009 begin with 13675522 relations and 12920846 unique ideals Tue Aug 25 00:10:36 2009 reduce to 13585042 relations and 11787407 ideals in 6 passes Tue Aug 25 00:10:36 2009 max relations containing the same ideal: 143 Tue Aug 25 00:10:53 2009 removing 1414062 relations and 1014062 ideals in 400000 cliques Tue Aug 25 00:10:54 2009 commencing in-memory singleton removal Tue Aug 25 00:10:58 2009 begin with 12170980 relations and 11787407 unique ideals Tue Aug 25 00:11:23 2009 reduce to 12073653 relations and 10673537 ideals in 7 passes Tue Aug 25 00:11:23 2009 max relations containing the same ideal: 129 Tue Aug 25 00:11:39 2009 removing 1385748 relations and 985748 ideals in 400000 cliques Tue Aug 25 00:11:40 2009 commencing in-memory singleton removal Tue Aug 25 00:11:43 2009 begin with 10687905 relations and 10673537 unique ideals Tue Aug 25 00:12:02 2009 reduce to 10581657 relations and 9578472 ideals in 6 passes Tue Aug 25 00:12:02 2009 max relations containing the same ideal: 118 Tue Aug 25 00:12:16 2009 removing 1370298 relations and 970298 ideals in 400000 cliques Tue Aug 25 00:12:17 2009 commencing in-memory singleton removal Tue Aug 25 00:12:19 2009 begin with 9211359 relations and 9578472 unique ideals Tue Aug 25 00:12:38 2009 reduce to 9094789 relations and 8487968 ideals in 7 passes Tue Aug 25 00:12:38 2009 max relations containing the same ideal: 106 Tue Aug 25 00:12:50 2009 removing 1358293 relations and 958293 ideals in 400000 cliques Tue Aug 25 00:12:51 2009 commencing in-memory singleton removal Tue Aug 25 00:12:54 2009 begin with 7736496 relations and 8487968 unique ideals Tue Aug 25 00:13:09 2009 reduce to 7598810 relations and 7386845 ideals in 7 passes Tue Aug 25 00:13:09 2009 max relations containing the same ideal: 92 Tue Aug 25 00:13:20 2009 removing 293684 relations and 235736 ideals in 57948 cliques Tue Aug 25 00:13:20 2009 commencing in-memory singleton removal Tue Aug 25 00:13:22 2009 begin with 7305126 relations and 7386845 unique ideals Tue Aug 25 00:13:33 2009 reduce to 7298052 relations and 7143994 ideals in 5 passes Tue Aug 25 00:13:33 2009 max relations containing the same ideal: 89 Tue Aug 25 00:13:37 2009 relations with 0 large ideals: 2925 Tue Aug 25 00:13:37 2009 relations with 1 large ideals: 486 Tue Aug 25 00:13:37 2009 relations with 2 large ideals: 9057 Tue Aug 25 00:13:37 2009 relations with 3 large ideals: 78455 Tue Aug 25 00:13:37 2009 relations with 4 large ideals: 369097 Tue Aug 25 00:13:37 2009 relations with 5 large ideals: 1033882 Tue Aug 25 00:13:37 2009 relations with 6 large ideals: 1870884 Tue Aug 25 00:13:37 2009 relations with 7+ large ideals: 3933266 Tue Aug 25 00:13:37 2009 commencing 2-way merge Tue Aug 25 00:13:51 2009 reduce to 4877616 relation sets and 4723558 unique ideals Tue Aug 25 00:13:51 2009 commencing full merge Tue Aug 25 00:16:24 2009 memory use: 535.7 MB Tue Aug 25 00:16:25 2009 found 2596663 cycles, need 2575758 Tue Aug 25 00:16:26 2009 weight of 2575758 cycles is about 180583247 (70.11/cycle) Tue Aug 25 00:16:26 2009 distribution of cycle lengths: Tue Aug 25 00:16:26 2009 1 relations: 279212 Tue Aug 25 00:16:26 2009 2 relations: 299234 Tue Aug 25 00:16:26 2009 3 relations: 313601 Tue Aug 25 00:16:26 2009 4 relations: 299542 Tue Aug 25 00:16:26 2009 5 relations: 280947 Tue Aug 25 00:16:26 2009 6 relations: 247235 Tue Aug 25 00:16:26 2009 7 relations: 208707 Tue Aug 25 00:16:26 2009 8 relations: 169480 Tue Aug 25 00:16:26 2009 9 relations: 134175 Tue Aug 25 00:16:26 2009 10+ relations: 343625 Tue Aug 25 00:16:26 2009 heaviest cycle: 20 relations Tue Aug 25 00:16:28 2009 commencing cycle optimization Tue Aug 25 00:16:35 2009 start with 14016520 relations Tue Aug 25 00:17:18 2009 pruned 414403 relations Tue Aug 25 00:17:18 2009 memory use: 357.6 MB Tue Aug 25 00:17:18 2009 distribution of cycle lengths: Tue Aug 25 00:17:18 2009 1 relations: 279212 Tue Aug 25 00:17:18 2009 2 relations: 305935 Tue Aug 25 00:17:18 2009 3 relations: 325203 Tue Aug 25 00:17:18 2009 4 relations: 308910 Tue Aug 25 00:17:18 2009 5 relations: 290433 Tue Aug 25 00:17:18 2009 6 relations: 253052 Tue Aug 25 00:17:18 2009 7 relations: 211890 Tue Aug 25 00:17:18 2009 8 relations: 169290 Tue Aug 25 00:17:18 2009 9 relations: 131652 Tue Aug 25 00:17:18 2009 10+ relations: 300181 Tue Aug 25 00:17:18 2009 heaviest cycle: 20 relations Tue Aug 25 00:17:33 2009 RelProcTime: 3658 Tue Aug 25 00:17:33 2009 Tue Aug 25 00:17:33 2009 commencing linear algebra Tue Aug 25 00:17:35 2009 read 2575758 cycles Tue Aug 25 00:17:42 2009 cycles contain 7222300 unique relations Tue Aug 25 00:27:08 2009 read 7222300 relations Tue Aug 25 00:27:26 2009 using 20 quadratic characters above 536866442 Tue Aug 25 00:28:29 2009 building initial matrix Tue Aug 25 00:30:54 2009 memory use: 846.8 MB Tue Aug 25 00:31:01 2009 read 2575758 cycles Tue Aug 25 00:33:17 2009 matrix is 2575581 x 2575758 (730.1 MB) with weight 226524143 (87.94/col) Tue Aug 25 00:33:17 2009 sparse part has weight 173363652 (67.31/col) Tue Aug 25 00:34:04 2009 filtering completed in 2 passes Tue Aug 25 00:34:05 2009 matrix is 2575290 x 2575467 (730.1 MB) with weight 226516174 (87.95/col) Tue Aug 25 00:34:05 2009 sparse part has weight 173361396 (67.31/col) Tue Aug 25 00:34:30 2009 read 2575467 cycles Tue Aug 25 00:41:23 2009 matrix is 2575290 x 2575467 (730.1 MB) with weight 226516174 (87.95/col) Tue Aug 25 00:41:23 2009 sparse part has weight 173361396 (67.31/col) Tue Aug 25 00:41:24 2009 saving the first 48 matrix rows for later Tue Aug 25 00:41:26 2009 matrix is 2575242 x 2575467 (690.6 MB) with weight 178986811 (69.50/col) Tue Aug 25 00:41:26 2009 sparse part has weight 165592916 (64.30/col) Tue Aug 25 00:41:26 2009 matrix includes 64 packed rows Tue Aug 25 00:41:26 2009 using block size 65536 for processor cache size 4096 kB Tue Aug 25 00:41:52 2009 commencing Lanczos iteration (4 threads) Tue Aug 25 00:41:52 2009 memory use: 786.1 MB Tue Aug 25 14:23:24 2009 lanczos halted after 40727 iterations (dim = 2575240) Tue Aug 25 14:23:33 2009 recovered 35 nontrivial dependencies Tue Aug 25 14:23:38 2009 BLanczosTime: 50765 Tue Aug 25 14:23:38 2009 Tue Aug 25 14:23:38 2009 commencing square root phase Tue Aug 25 14:23:38 2009 reading relations for dependency 1 Tue Aug 25 14:23:42 2009 read 1285922 cycles Tue Aug 25 14:23:46 2009 cycles contain 4488674 unique relations Tue Aug 25 14:32:25 2009 read 4488674 relations Tue Aug 25 14:33:06 2009 multiplying 3608038 relations Tue Aug 25 14:41:39 2009 multiply complete, coefficients have about 90.10 million bits Tue Aug 25 14:41:41 2009 initial square root is modulo 2935241 Tue Aug 25 14:52:21 2009 sqrtTime: 1723 Tue Aug 25 14:52:21 2009 prp50 factor: 48640687651801423804337056354992853346324870893769 Tue Aug 25 14:52:21 2009 prp155 factor: 19579923688551731244546269150496163178660313660002447546455753332835083003773596869975317881941326532491200104594142764296885809934157623594946146289883349 Tue Aug 25 14:52:21 2009 elapsed time 15:35:50
By Wataru Sakai / GMP-ECM 6.2.1, Msieve v. 1.42 / Aug 24, 2009
(16·10200+17)/3 = 5(3)1999<201> = 7 · 11 · 53 · 1867 · 2162879 · 6576017627<10> · 49830784277<11> · 16059890440978574700941544301<29> · C139
C139 = P43 · P48 · P49
P43 = 5465589490197817703795797688544120931163749<43>
P48 = 298131801644473477455962103738371299534531237091<48>
P49 = 3774044422137398794264282715509644849768141470003<49>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1866420656 Step 1 took 42771ms Step 2 took 14797ms ********** Factor found in step 2: 5465589490197817703795797688544120931163749 Found probable prime factor of 43 digits: 5465589490197817703795797688544120931163749 Composite cofactor 1125162663058098504797405482943005184164299914993771206716128207364181036419506148377602857481273 has 97 digits ------------------------------- Sun Aug 23 13:25:48 2009 Msieve v. 1.42 Sun Aug 23 13:25:48 2009 random seeds: 5c7374a8 5ef10529 Sun Aug 23 13:25:48 2009 factoring 1125162663058098504797405482943005184164299914993771206716128207364181036419506148377602857481273 (97 digits) Sun Aug 23 13:25:49 2009 searching for 15-digit factors Sun Aug 23 13:25:50 2009 commencing quadratic sieve (97-digit input) Sun Aug 23 13:25:50 2009 using multiplier of 1 Sun Aug 23 13:25:50 2009 using 64kb Pentium 3 sieve core Sun Aug 23 13:25:50 2009 sieve interval: 18 blocks of size 65536 Sun Aug 23 13:25:50 2009 processing polynomials in batches of 6 Sun Aug 23 13:25:50 2009 using a sieve bound of 2334881 (85864 primes) Sun Aug 23 13:25:50 2009 using large prime bound of 350232150 (28 bits) Sun Aug 23 13:25:50 2009 using double large prime bound of 2397953724173250 (43-52 bits) Sun Aug 23 13:25:50 2009 using trial factoring cutoff of 52 bits Sun Aug 23 13:25:50 2009 polynomial 'A' values have 12 factors Sun Aug 23 22:43:02 2009 86190 relations (20613 full + 65577 combined from 1302314 partial), need 85960 Sun Aug 23 22:43:09 2009 begin with 1322927 relations Sun Aug 23 22:43:11 2009 reduce to 227316 relations in 13 passes Sun Aug 23 22:43:11 2009 attempting to read 227316 relations Sun Aug 23 22:43:23 2009 recovered 227316 relations Sun Aug 23 22:43:23 2009 recovered 213982 polynomials Sun Aug 23 22:43:24 2009 attempting to build 86190 cycles Sun Aug 23 22:43:24 2009 found 86190 cycles in 6 passes Sun Aug 23 22:43:24 2009 distribution of cycle lengths: Sun Aug 23 22:43:24 2009 length 1 : 20613 Sun Aug 23 22:43:24 2009 length 2 : 14554 Sun Aug 23 22:43:24 2009 length 3 : 14469 Sun Aug 23 22:43:24 2009 length 4 : 11952 Sun Aug 23 22:43:24 2009 length 5 : 8905 Sun Aug 23 22:43:24 2009 length 6 : 6215 Sun Aug 23 22:43:24 2009 length 7 : 3905 Sun Aug 23 22:43:24 2009 length 9+: 5577 Sun Aug 23 22:43:24 2009 largest cycle: 19 relations Sun Aug 23 22:43:24 2009 matrix is 85864 x 86190 (23.8 MB) with weight 5890275 (68.34/col) Sun Aug 23 22:43:24 2009 sparse part has weight 5890275 (68.34/col) Sun Aug 23 22:43:27 2009 filtering completed in 3 passes Sun Aug 23 22:43:27 2009 matrix is 82166 x 82230 (22.8 MB) with weight 5637674 (68.56/col) Sun Aug 23 22:43:27 2009 sparse part has weight 5637674 (68.56/col) Sun Aug 23 22:43:27 2009 saving the first 48 matrix rows for later Sun Aug 23 22:43:27 2009 matrix is 82118 x 82230 (16.2 MB) with weight 4678949 (56.90/col) Sun Aug 23 22:43:27 2009 sparse part has weight 3758275 (45.70/col) Sun Aug 23 22:43:27 2009 matrix includes 64 packed rows Sun Aug 23 22:43:27 2009 using block size 32892 for processor cache size 1024 kB Sun Aug 23 22:43:28 2009 commencing Lanczos iteration Sun Aug 23 22:43:28 2009 memory use: 15.2 MB Sun Aug 23 22:44:47 2009 lanczos halted after 1300 iterations (dim = 82116) Sun Aug 23 22:44:48 2009 recovered 15 nontrivial dependencies Sun Aug 23 22:44:48 2009 prp48 factor: 298131801644473477455962103738371299534531237091 Sun Aug 23 22:44:48 2009 prp49 factor: 3774044422137398794264282715509644849768141470003 Sun Aug 23 22:44:48 2009 elapsed time 09:19:00
By Dmitry Domanov / ECMNET / Aug 24, 2009
(16·10208-7)/9 = 1(7)208<209> = 613 · 155312749 · 122870845801218751<18> · C181
C181 = P44 · P137
P44 = 33196494245589085028001912695928770935280171<44>
P137 = 45779265693588795907442339030823949447819912433245685072037175910245588951267538385400947054816041565951371323741983261114872494043160301<137>
C181=P44*P137 C181=33196494245589085028001912695928770935280171<44>*45779265693588795907442339030823949447819912433245685072037175910245588951267538385400947054816041565951371323741983261114872494043160301<137>
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 23, 2009
(32·10169+13)/9 = 3(5)1687<170> = 31 · 372 · 197 · 647 · 6581 · 5064601914373430809<19> · C138
C138 = P64 · P74
P64 = 2662996647046263982196858217327530760359601577131613151314289971<64>
P74 = 74056638451825662200473333254579946422969866696922537212821981772723385623<74>
Number: 35557_169 N=197212579888729164471309556399936640756410330307724816872021002362065422823075007141756856489734111483154757167846859583742889531474486933 ( 138 digits) SNFS difficulty: 171 digits. Divisors found: r1=2662996647046263982196858217327530760359601577131613151314289971 r2=74056638451825662200473333254579946422969866696922537212821981772723385623 Version: Total time: 30.05 hours. Scaled time: 71.60 units (timescale=2.383). Factorization parameters were as follows: n: 197212579888729164471309556399936640756410330307724816872021002362065422823075007141756856489734111483154757167846859583742889531474486933 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: 130 skew: 2.65 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11119594 Max relations in full relation-set: Initial matrix: Pruned matrix : 850829 x 851077 Total sieving time: 27.63 hours. Total relation processing time: 0.71 hours. Matrix solve time: 1.48 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 30.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673801) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672380) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340)
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 23, 2009
(28·10195+53)/9 = 3(1)1947<196> = 3 · 59 · 395953 · 42767503850028819725441309<26> · 352426542677057137608275426464363<33> · C130
C130 = P38 · P92
P38 = 83818878880914915377013698879274119363<38>
P92 = 35137774993989565829855092330752915371536012111459064937383666423536942780985993383926108817<92>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3984559737 Step 1 took 38183ms Step 2 took 14303ms ********** Factor found in step 2: 83818878880914915377013698879274119363 Found probable prime factor of 38 digits: 83818878880914915377013698879274119363 Probable prime cofactor 35137774993989565829855092330752915371536012111459064937383666423536942780985993383926108817 has 92 digits
By Justin Card / gmp-ecm 6.2 / Aug 23, 2009
(64·10203+53)/9 = 7(1)2027<204> = 33 · 112 · 2069 · 7103 · 24324049 · 336174101 · 3482198767<10> · C168
C168 = P37 · P132
P37 = 3980843238588010489892024931548862143<37>
P132 = 130664397334782295209650590742356899679167397610942074331579761558024231657405938067573861191185006433921905590657151181446661170297<132>
Run 52 out of 4480: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=194726714 Step 1 took 63016ms Step 2 took 25201ms ********** Factor found in step 2: 3980843238588010489892024931548862143 Found probable prime factor of 37 digits: 3980843238588010489892024931548862143 Probable prime cofactor 130664397334782295209650590742356899679167397610942074331579761558024231657405938067573861191185006433921905590657151181446661170297 has 132 digits
By Wataru Sakai / GMP-ECM 6.2.1, Msieve v. 1.42 / Aug 22, 2009
(13·10172+23)/9 = 1(4)1717<173> = 149371 · 167722932457097<15> · 44064556377957406403542099<26> · C128
C128 = P36 · P41 · P52
P36 = 149913770606299879910229935179747037<36>
P41 = 50877483285356724843669322116346571593229<41>
P52 = 1715479597622848701658232150207211689815887239314303<52>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=789472094 Step 1 took 38413ms Step 2 took 14089ms ********** Factor found in step 2: 149913770606299879910229935179747037 Found probable prime factor of 36 digits: 149913770606299879910229935179747037 Composite cofactor 87279284554426964743980580315959098898746362920358811195503822260589842067230516396197654387 has 92 digits ------------------------------- Tue Aug 18 20:18:26 2009 Msieve v. 1.42 Tue Aug 18 20:18:26 2009 random seeds: 6d03c3f8 644abe73 Tue Aug 18 20:18:26 2009 factoring 87279284554426964743980580315959098898746362920358811195503822260589842067230516396197654387 (92 digits) Tue Aug 18 20:18:27 2009 searching for 15-digit factors Tue Aug 18 20:18:28 2009 commencing quadratic sieve (92-digit input) Tue Aug 18 20:18:28 2009 using multiplier of 3 Tue Aug 18 20:18:28 2009 using 64kb Pentium 3 sieve core Tue Aug 18 20:18:28 2009 sieve interval: 18 blocks of size 65536 Tue Aug 18 20:18:28 2009 processing polynomials in batches of 6 Tue Aug 18 20:18:28 2009 using a sieve bound of 1855349 (69378 primes) Tue Aug 18 20:18:28 2009 using large prime bound of 209654437 (27 bits) Tue Aug 18 20:18:28 2009 using double large prime bound of 952154221467417 (42-50 bits) Tue Aug 18 20:18:28 2009 using trial factoring cutoff of 50 bits Tue Aug 18 20:18:28 2009 polynomial 'A' values have 12 factors Tue Aug 18 23:33:35 2009 69929 relations (17625 full + 52304 combined from 894203 partial), need 69474 Tue Aug 18 23:33:39 2009 begin with 911828 relations Tue Aug 18 23:33:40 2009 reduce to 177278 relations in 11 passes Tue Aug 18 23:33:40 2009 attempting to read 177278 relations Tue Aug 18 23:33:47 2009 recovered 177278 relations Tue Aug 18 23:33:47 2009 recovered 158770 polynomials Tue Aug 18 23:33:47 2009 attempting to build 69929 cycles Tue Aug 18 23:33:47 2009 found 69929 cycles in 5 passes Tue Aug 18 23:33:47 2009 distribution of cycle lengths: Tue Aug 18 23:33:47 2009 length 1 : 17625 Tue Aug 18 23:33:47 2009 length 2 : 12725 Tue Aug 18 23:33:47 2009 length 3 : 11937 Tue Aug 18 23:33:47 2009 length 4 : 9581 Tue Aug 18 23:33:47 2009 length 5 : 7001 Tue Aug 18 23:33:47 2009 length 6 : 4657 Tue Aug 18 23:33:47 2009 length 7 : 2783 Tue Aug 18 23:33:47 2009 length 9+: 3620 Tue Aug 18 23:33:47 2009 largest cycle: 19 relations Tue Aug 18 23:33:47 2009 matrix is 69378 x 69929 (17.2 MB) with weight 4231188 (60.51/col) Tue Aug 18 23:33:47 2009 sparse part has weight 4231188 (60.51/col) Tue Aug 18 23:33:49 2009 filtering completed in 3 passes Tue Aug 18 23:33:49 2009 matrix is 65612 x 65676 (16.1 MB) with weight 3968846 (60.43/col) Tue Aug 18 23:33:49 2009 sparse part has weight 3968846 (60.43/col) Tue Aug 18 23:33:49 2009 saving the first 48 matrix rows for later Tue Aug 18 23:33:49 2009 matrix is 65564 x 65676 (9.3 MB) with weight 2999864 (45.68/col) Tue Aug 18 23:33:49 2009 sparse part has weight 2045539 (31.15/col) Tue Aug 18 23:33:49 2009 matrix includes 64 packed rows Tue Aug 18 23:33:49 2009 using block size 26270 for processor cache size 1024 kB Tue Aug 18 23:33:50 2009 commencing Lanczos iteration Tue Aug 18 23:33:50 2009 memory use: 10.1 MB Tue Aug 18 23:34:24 2009 lanczos halted after 1038 iterations (dim = 65562) Tue Aug 18 23:34:24 2009 recovered 16 nontrivial dependencies Tue Aug 18 23:34:25 2009 prp41 factor: 50877483285356724843669322116346571593229 Tue Aug 18 23:34:25 2009 prp52 factor: 1715479597622848701658232150207211689815887239314303 Tue Aug 18 23:34:25 2009 elapsed time 03:15:59
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 22, 2009
7·10169+9 = 7(0)1689<170> = 19 · 197 · 1218731 · 76893204345311<14> · 5094367215912347<16> · C131
C131 = P62 · P70
P62 = 14895146820296515742340476222921748580100430093472165449145387<62>
P70 = 2629949201635387234251242596490670534870085851462962353425228926560387<70>
Number: 70009_169 N=39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769 ( 131 digits) SNFS difficulty: 170 digits. Divisors found: r1=14895146820296515742340476222921748580100430093472165449145387 r2=2629949201635387234251242596490670534870085851462962353425228926560387 Version: Total time: 34.98 hours. Scaled time: 83.07 units (timescale=2.375). Factorization parameters were as follows: n: 39173479488280698301566650872036774199426866136397189452808421112916404369440174985140115774837583709302975448240597911414597984769 m: 10000000000000000000000000000000000 deg: 5 c5: 7 c0: 90 skew: 1.67 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11269680 Max relations in full relation-set: Initial matrix: Pruned matrix : 925303 x 925551 Total sieving time: 32.31 hours. Total relation processing time: 0.81 hours. Matrix solve time: 1.77 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 34.98 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673788) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
Factorizations of Phi_n(10) is available. It is the origin of Factorizations of 11...11 (Repunit) and Factorizations of 100...001.
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 21, 2009
(52·10199+11)/9 = 5(7)1989<200> = 4547 · 15254923091918551452759372589<29> · 1731348293684325255443601154609<31> · C138
C138 = P37 · P102
P37 = 1786826983403462415473402018217405391<37>
P102 = 269251983922852962675309422494691188138974240910425994172961541962117182925129658737872261636387448427<102>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1647347969 Step 1 took 42593ms Step 2 took 14619ms ********** Factor found in step 2: 1786826983403462415473402018217405391 Found probable prime factor of 37 digits: 1786826983403462415473402018217405391 Probable prime cofactor 269251983922852962675309422494691188138974240910425994172961541962117182925129658737872261636387448427 has 102 digits
(46·10171+53)/9 = 5(1)1707<172> = 7 · 43 · 1373 · 8081 · 21174365965009<14> · C149
C149 = P33 · P117
P33 = 605173586951071077503844970287679<33>
P117 = 119432576933846853692398300562496450873677590281019524438614039543969108708295893722582025789172845080826012999716619<117>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=43475544 Step 1 took 47342ms Step 2 took 16749ms ********** Factor found in step 2: 605173586951071077503844970287679 Found probable prime factor of 33 digits: 605173586951071077503844970287679 Probable prime cofactor 119432576933846853692398300562496450873677590281019524438614039543969108708295893722582025789172845080826012999716619 has 117 digits
By Serge Batalov and Bruce Dodson / Aug 20, 2009
c175 from 10241+1 was splitted into p62 and p114.
By Dmitry Domanov / ECMNET / Aug 20, 2009
(53·10196-71)/9 = 5(8)1951<197> = 32 · 4973 · 74797 · 122655881 · C180
C180 = P39 · P142
P39 = 112054989341662601618892514165224888241<39>
P142 = 1279878186755975199770625717338893764280326490898655144840134732459923961450639607812280526526379705342401644682052605125245400793894469473609<142>
C180=P39*P142 C180=112054989341662601618892514165224888241<39>*1279878186755975199770625717338893764280326490898655144840134732459923961450639607812280526526379705342401644682052605125245400793894469473609<142>
(53·10202-71)/9 = 5(8)2011<203> = 3 · 19 · 857 · 1259 · 1004317 · 71365367 · C182
C182 = P42 · C140
P42 = 779769064987480193874703347294131196204883<42>
C140 = [17132771907515894174556863898939580232543643866401830701290571585218041096109532000936311816177590847856617333605840706370680024403860034243<140>]
C182=P42*C140 C182=779769064987480193874703347294131196204883<42>*17132771907515894174556863898939580232543643866401830701290571585218041096109532000936311816177590847856617333605840706370680024403860034243<140>
(53·10190-71)/9 = 5(8)1891<191> = 3 · 61 · 173 · 39203873 · 211360399 · C171
C171 = P36 · C136
P36 = 168914326803248671710673803592753171<36>
C136 = [1328975843267167003533199181021679263944069843997313562305346088568990122619806818358213686861743331804899354370025982954624757057766927<136>]
C171=P36*C136 C171=168914326803248671710673803592753171<36>*1328975843267167003533199181021679263944069843997313562305346088568990122619806818358213686861743331804899354370025982954624757057766927<136>
By Wataru Sakai / Msieve / Aug 18, 2009
(19·10185-7)/3 = 6(3)1841<186> = 307 · 2129 · C180
C180 = P44 · P47 · P90
P44 = 92441972095372479843278989499675612962293661<44>
P47 = 46224877490952496513455145253411202856771657321<47>
P90 = 226763597697597739551036386348904373582419249675420678746058970902269764864275707817984317<90>
Number: 63331_185 N=968987800443592415171492990903244528151390573992673432241488079665077016680359994267672170007379607090746727498700791357036814906500327160881044507649648690922981279665689008975377 ( 180 digits) SNFS difficulty: 186 digits. Divisors found: r1=92441972095372479843278989499675612962293661 r2=46224877490952496513455145253411202856771657321 r3=226763597697597739551036386348904373582419249675420678746058970902269764864275707817984317 Version: Total time: 214.40 hours. Scaled time: 429.87 units (timescale=2.005). Factorization parameters were as follows: n: 968987800443592415171492990903244528151390573992673432241488079665077016680359994267672170007379607090746727498700791357036814906500327160881044507649648690922981279665689008975377 m: 10000000000000000000000000000000000000 deg: 5 c5: 19 c0: -7 skew: 0.82 type: snfs lss: 1 rlim: 8900000 alim: 8900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8900000/8900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4450000, 6650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1532242 x 1532490 Total sieving time: 214.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000 total time: 214.40 hours. --------- CPU info (if available) ----------
(4·10200-31)/9 = (4)1991<200> = 221047 · C195
C195 = P46 · P52 · P98
P46 = 6099950637964487344624524200296949847675258491<46>
P52 = 2617574360209393093008226658654893652993339169215851<52>
P98 = 12592370931196073272289411784959848587864333346912734305442667923493511107809613626421022457004183<98>
Number: 44441_200 N=201063323385725408824568731737795330605909351605968162628058487310139673664172978798375207283719952971288660078826875933373646529672171277802659364046761297119818158330329949940259060039016337903 ( 195 digits) SNFS difficulty: 200 digits. Divisors found: r1=6099950637964487344624524200296949847675258491 r2=2617574360209393093008226658654893652993339169215851 r3=12592370931196073272289411784959848587864333346912734305442667923493511107809613626421022457004183 Version: Total time: 732.85 hours. Scaled time: 1472.29 units (timescale=2.009). Factorization parameters were as follows: n: 201063323385725408824568731737795330605909351605968162628058487310139673664172978798375207283719952971288660078826875933373646529672171277802659364046761297119818158330329949940259060039016337903 m: 10000000000000000000000000000000000000000 deg: 5 c5: 4 c0: -31 skew: 1.51 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 15500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2968446 x 2968694 Total sieving time: 732.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: 732.85 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Aug 18, 2009
(53·10193-71)/9 = 5(8)1921<194> = 3 · 17 · 2131 · 122614102349<12> · 157528172059<12> · C167
C167 = P33 · P134
P33 = 386318917324635401637343670457937<33>
P134 = 72616464843759242682094782381797010874803934727294295921255817042629723671550851219691527308314086340987245476998440916635306218917703<134>
C167=P33*P134 C167=386318917324635401637343670457937<33>*72616464843759242682094782381797010874803934727294295921255817042629723671550851219691527308314086340987245476998440916635306218917703<134>
By Robert Backstrom / GGNFS, Msieve / Aug 18, 2009
10212+3 = 1(0)2113<213> = 19 · 313 · C209
C209 = P53 · P156
P53 = 72100344457846728686995566050906079023204339527194013<53>
P156 = 233219425899999887904779450574060410914770791909686397507236849819912243596530554293769515201797100091341545546091157355719851915551928373643299913434059373<156>
Number: n N=16815200941651252732470153018328569026399865478392466789978140238775853371447788801076172860265680174878089793173028417689591390617117874558600975281654615772658483268875063057003531192197746763073818732133849 ( 209 digits) SNFS difficulty: 213 digits. Divisors found: Tue Aug 18 04:27:28 2009 prp53 factor: 72100344457846728686995566050906079023204339527194013 Tue Aug 18 04:27:28 2009 prp156 factor: 233219425899999887904779450574060410914770791909686397507236849819912243596530554293769515201797100091341545546091157355719851915551928373643299913434059373 Tue Aug 18 04:27:28 2009 elapsed time 30:40:57 (Msieve 1.39 - dependency 9) ... Msieve: warning: no irreducible prime found, switching to small primes Msieve: Newton iteration failed several times (see at end, below) ... Version: GGNFS-0.77.1-20050930-k8 Total time: 65.90 hours. Scaled time: 132.86 units (timescale=2.016). Factorization parameters were as follows: name: KA_1_0_211_3 n: 16815200941651252732470153018328569026399865478392466789978140238775853371447788801076172860265680174878089793173028417689591390617117874558600975281654615772658483268875063057003531192197746763073818732133849 m: 200000000000000000000000000000000000 deg: 6 c6: 25 c0: 48 skew: 1.11 type: snfs lss: 1 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 25000000/25000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [12500000, 27749990) Primes: RFBsize:1565927, AFBsize:1566435, largePrimes:40192350 encountered Relations: rels:39845888, finalFF:1905146 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9102934 hash collisions in 52197256 relations Msieve: matrix is 3731532 x 3731780 (996.2 MB) Total sieving time: 64.23 hours. Total relation processing time: 1.67 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,213,6,0,0,0,0,0,0,0,0,25000000,25000000,29,29,58,58,2.6,2.6,100000 total time: 65.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352028k/3407296k available (3120k kernel code, 53984k reserved, 1898k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.97 BogoMIPS (lpj=2830989) Calibrating delay using timer specific routine.. 5660.88 BogoMIPS (lpj=2830443) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Total of 4 processors activated (22644.69 BogoMIPS). ... Msieve: warning: no irreducible prime found, switching to small primes Msieve: Newton iteration failed several times: ... Tue Aug 18 02:20:00 2009 reading relations for dependency 7 Tue Aug 18 02:20:10 2009 read 1866396 cycles Tue Aug 18 02:20:17 2009 cycles contain 6394091 unique relations Tue Aug 18 02:21:41 2009 read 6394091 relations Tue Aug 18 02:22:18 2009 multiplying 5186178 relations Tue Aug 18 02:32:05 2009 multiply complete, coefficients have about 148.72 million bits Tue Aug 18 02:32:07 2009 warning: no irreducible prime found, switching to small primes Tue Aug 18 02:56:28 2009 initial square root is modulo 53 Tue Aug 18 03:18:43 2009 Newton iteration failed to converge Tue Aug 18 03:18:43 2009 algebraic square root failed Tue Aug 18 03:18:43 2009 reading relations for dependency 8 Tue Aug 18 03:18:53 2009 read 1865384 cycles Tue Aug 18 03:19:00 2009 cycles contain 6392057 unique relations Tue Aug 18 03:20:24 2009 read 6392057 relations Tue Aug 18 03:21:01 2009 multiplying 5184576 relations Tue Aug 18 03:30:49 2009 multiply complete, coefficients have about 148.68 million bits Tue Aug 18 03:30:50 2009 warning: no irreducible prime found, switching to small primes Tue Aug 18 03:30:50 2009 initial square root is modulo 53 Tue Aug 18 03:53:06 2009 Newton iteration failed to converge Tue Aug 18 03:53:06 2009 algebraic square root failed Tue Aug 18 03:53:06 2009 reading relations for dependency 9 Tue Aug 18 03:53:16 2009 read 1866216 cycles Tue Aug 18 03:53:23 2009 cycles contain 6390913 unique relations Tue Aug 18 03:54:47 2009 read 6390913 relations Tue Aug 18 03:55:25 2009 multiplying 5183958 relations Tue Aug 18 04:05:12 2009 multiply complete, coefficients have about 148.66 million bits Tue Aug 18 04:05:13 2009 warning: no irreducible prime found, switching to small primes Tue Aug 18 04:05:13 2009 initial square root is modulo 53 Tue Aug 18 04:27:28 2009 prp53 factor: 72100344457846728686995566050906079023204339527194013 Tue Aug 18 04:27:28 2009 prp156 factor: 233219425899999887904779450574060410914770791909686397507236849819912243596530554293769515201797100091341545546091157355719851915551928373643299913434059373 Tue Aug 18 04:27:28 2009 elapsed time 30:40:57
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 17, 2009
9·10195-7 = 8(9)1943<196> = 17 · 439 · 119183 · 1271399 · 242885213 · 461827684596426570878380861037770727<36> · C137
C137 = P47 · P90
P47 = 90273726781308008410859820613528673953162767949<47>
P90 = 785941965246821725517634354985618196758423193048763238517231673375963788322474444838897417<90>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1202030130 Step 1 took 156685ms Step 2 took 47668ms ********** Factor found in step 2: 90273726781308008410859820613528673953162767949 Found probable prime factor of 47 digits: 90273726781308008410859820613528673953162767949 Probable prime cofactor 785941965246821725517634354985618196758423193048763238517231673375963788322474444838897417 has 90 digits
By Sinkiti Sibata / Msieve / Aug 17, 2009
(58·10180+41)/9 = 6(4)1799<181> = 11 · 1627 · C177
C177 = P34 · P144
P34 = 1280000823649561544625004925310473<34>
P144 = 281316364893573382047531009276426345002478941203207649965104069424638937150544933870763338855019543891400117696494924919567782620672341626777329<144>
Number: 64449_180 N=360085178769874528940294152340864080261744674774791554140048301080876372824744060146641584871455799544305997901572578892800158934147870841171394336729309071042322425235762666617 ( 177 digits) SNFS difficulty: 181 digits. Divisors found: r1=1280000823649561544625004925310473 (pp34) r2=281316364893573382047531009276426345002478941203207649965104069424638937150544933870763338855019543891400117696494924919567782620672341626777329 (pp144) Version: Msieve-1.40 Total time: 139.70 hours. Scaled time: 468.96 units (timescale=3.357). Factorization parameters were as follows: name: 64449_180 n: 360085178769874528940294152340864080261744674774791554140048301080876372824744060146641584871455799544305997901572578892800158934147870841171394336729309071042322425235762666617 m: 1000000000000000000000000000000000000 deg: 5 c5: 58 c0: 41 skew: 0.93 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3750000, 6050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1433571 x 1433819 Total sieving time: 134.91 hours. Total relation processing time: 0.17 hours. Matrix solve time: 4.50 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 139.70 hours. --------- CPU info (if available) ----------
By Justin Card / ggnfs, msieve / Aug 17, 2009
(8·10197+7)/3 = 2(6)1969<198> = 13 · 29 · 73 · 113786895756473091763216512239<30> · C164
C164 = P70 · P95
P70 = 2325412411440405653690878974819812220657268033511965719935728303192037<70>
P95 = 36619489557764519846267534525547256193377038956838686278299696905702216244880052542768324514023<95>
Number: 26669_197 N=85155415518237946102479936799298669533177788063631844025863034765370542187259018971925248551625065434263578805689864621162022682754722142419580647352642227668434851 ( 164 digits) SNFS difficulty: 197 digits. Divisors found: r1=2325412411440405653690878974819812220657268033511965719935728303192037 (pp70) r2=36619489557764519846267534525547256193377038956838686278299696905702216244880052542768324514023 (pp95) Version: Msieve-1.40 Total time: 342.90 hours. Scaled time: 684.42 units (timescale=1.996). Factorization parameters were as follows: n: 85155415518237946102479936799298669533177788063631844025863034765370542187259018971925248551625065434263578805689864621162022682754722142419580647352642227668434851 m: 2000000000000000000000000000000000000000 deg: 5 c5: 25 c0: 7 skew: 0.78 type: snfs lss: 1 rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6950000, 12650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2445649 x 2445874 Total sieving time: 297.25 hours. Total relation processing time: 0.41 hours. Matrix solve time: 43.74 hours. Time per square root: 1.50 hours. Prototype def-par.txt line would be: snfs,197.000,5,0,0,0,0,0,0,0,0,13900000,13900000,28,28,55,55,2.5,2.5,100000 total time: 342.90 hours. --------- CPU info (if available) ---------- [ 0.138978] CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.231791] CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.004000] Memory: 986784k/1014720k available (2225k kernel code, 27548k reserved, 1080k data, 392k init) [ 0.084027] Calibrating delay using timer specific routine.. 4004.64 BogoMIPS (lpj=8009297) [ 0.152009] Calibrating delay using timer specific routine.. 4000.15 BogoMIPS (lpj=8000305) [ 0.231806] Total of 2 processors activated (8004.80 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Aug 17, 2009
(5·10200+13)/9 = (5)1997<200> = 3 · 19 · C198
C198 = P89 · P110
P89 = 52593328804790143359951630636697845044104157190753524779891824241888335192056207024750447<89>
P110 = 18531986690048427358425949212844400767279971081177871933577024616257238836726538482785916221117286551415305283<110>
Number: 55557_200 N=974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711501 ( 198 digits) SNFS difficulty: 200 digits. Divisors found: r1=52593328804790143359951630636697845044104157190753524779891824241888335192056207024750447 (pp89) r2=18531986690048427358425949212844400767279971081177871933577024616257238836726538482785916221117286551415305283 (pp110) Version: Msieve-1.40 Total time: 509.70 hours. Scaled time: 888.93 units (timescale=1.744). Factorization parameters were as follows: n: 974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711500974658869395711501 m: 10000000000000000000000000000000000000000 deg: 5 c5: 5 c0: 13 skew: 1.21 type: snfs lss: 1 rlim: 15500000 alim: 15500000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15500000/15500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7750000, 15350001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3174393 x 3174619 Total sieving time: 490.48 hours. Total relation processing time: 0.41 hours. Matrix solve time: 18.45 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,200.000,5,0,0,0,0,0,0,0,0,15500000,15500000,29,29,56,56,2.6,2.6,100000 total time: 509.70 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Aug 17, 2009
(61·10171-7)/9 = 6(7)171<172> = 3 · 2803 · 3690984696370158400897064979949717<34> · C135
C135 = P35 · P101
P35 = 18349916058226002381325132005750817<35>
P101 = 11900539403604735254297165860871207760195905493929857397119064848185233384993512653727172540270521877<101>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 218373899103757824771934513730446408208901986048652105451130131357315856486078756863651890930918440628821417715447161662433665809123509 (135 digits) Using B1=50000, B2=12746592, polynomial x^2, sigma=5473602807 Step 1 took 202ms Step 2 took 234ms ********** Factor found in step 2: 18349916058226002381325132005750817 Found probable prime factor of 35 digits: 18349916058226002381325132005750817 Probable prime cofactor 11900539403604735254297165860871207760195905493929857397119064848185233384993512653727172540270521877 has 101 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Aug 16, 2009
(25·10169+11)/9 = 2(7)1689<170> = 29 · 467052151217671807<18> · 25562040522225893199206593<26> · C125
C125 = P51 · P75
P51 = 726341733161813647858156175202119648900783529862783<51>
P75 = 110458109920047163481828000865195622785385713219451478383234067978685288847<75>
Number: 27779_169 N=80230335001105177866805283220394479113117091317066824102441316262293178583056975568401818887106425370321835996839030630281201 ( 125 digits) SNFS difficulty: 170 digits. Divisors found: r1=726341733161813647858156175202119648900783529862783 r2=110458109920047163481828000865195622785385713219451478383234067978685288847 Version: Total time: 34.73 hours. Scaled time: 82.09 units (timescale=2.364). Factorization parameters were as follows: n: 80230335001105177866805283220394479113117091317066824102441316262293178583056975568401818887106425370321835996839030630281201 m: 10000000000000000000000000000000000 deg: 5 c5: 5 c0: 22 skew: 1.34 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11038674 Max relations in full relation-set: Initial matrix: Pruned matrix : 973380 x 973628 Total sieving time: 31.10 hours. Total relation processing time: 1.44 hours. Matrix solve time: 1.98 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 34.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673791) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672381) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Dmitry Domanov / ECMNET / Aug 16, 2009
(23·10205+31)/9 = 2(5)2049<206> = 40545719773789<14> · C192
C192 = P34 · C159
P34 = 4202462726885897525922861991796773<34>
C159 = [149981068011369458327294192549304395213719767345838336061005720263500366352537864270906566505780532829539650383016948492667426233305737362820224459405598540247<159>]
C192=P34*C159 C192=4202462726885897525922861991796773<34>*149981068011369458327294192549304395213719767345838336061005720263500366352537864270906566505780532829539650383016948492667426233305737362820224459405598540247<159>
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 15, 2009
(58·10168+41)/9 = 6(4)1679<169> = 112 · 17 · 336340635039131954550293537507006243<36> · C130
C130 = P61 · P70
P61 = 6468180746247313164919651472070638965886398620871300817741023<61>
P70 = 1440090234293645015127160651757741514630147400069989660127682788576013<70>
Number: 64449_168 N=9314763926316936870617423027014862687838866087875593973448170193850377580272582112388416930433089994630940974221974276541583881299 ( 130 digits) SNFS difficulty: 171 digits. Divisors found: r1=6468180746247313164919651472070638965886398620871300817741023 r2=1440090234293645015127160651757741514630147400069989660127682788576013 Version: Total time: 39.52 hours. Scaled time: 94.28 units (timescale=2.386). Factorization parameters were as follows: n: 9314763926316936870617423027014862687838866087875593973448170193850377580272582112388416930433089994630940974221974276541583881299 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: 2050 skew: 2.34 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3100000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11320930 Max relations in full relation-set: Initial matrix: Pruned matrix : 971090 x 971338 Total sieving time: 36.11 hours. Total relation processing time: 1.20 hours. Matrix solve time: 1.97 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.4,2.4,100000 total time: 39.52 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673791) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672381) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)
By Serge Batalov / GMP-ECM 6.2.3 / Aug 15, 2009
(73·10249-1)/9 = 8(1)249<250> = 17 · 5443 · 15809 · C241
C241 = P38 · C204
P38 = 32607769874736976738779806206337465479<38>
C204 = [170046461128108574995927236581628482215136764041055238483652624154293003769490480684917928338533050156473440999584084450662282572700445782394777642120172552258120330384289238781876693262128523142851830971<204>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3778736387 Step 1 took 5244ms Step 2 took 2780ms ********** Factor found in step 2: 32607769874736976738779806206337465479 Found probable prime factor of 38 digits: 32607769874736976738779806206337465479 Composite cofactor has 204 digits
By Serge Batalov / GMP-ECM 6.2.3 / Aug 14, 2009
(73·10216-1)/9 = 8(1)216<217> = 71 · 28808051 · C208
C208 = P34 · P175
P34 = 3620576061701876499733072865659927<34>
P175 = 1095293345497329293397673211340210417659625724719865891699257885248592552342275988711289537372777550314530400518083640878622741178698608241670961162797540046118753399114398333<175>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2394144579 Step 1 took 12049ms ********** Factor found in step 1: 3620576061701876499733072865659927 Found probable prime factor of 34 digits: 3620576061701876499733072865659927 Probable prime cofactor has 175 digits
(73·10242-1)/9 = 8(1)242<243> = 6661 · 5768443348883<13> · 2433133368010550753<19> · C208
C208 = P33 · C176
P33 = 146337898716429751088899432223507<33>
C176 = [59287011032147246415404357711918292857582091957106148141677454653007379683860195517172477070080575255441763542889691583392291227603304875315501329180227976487363263981212546307<176>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=380702607 Step 1 took 11965ms Step 2 took 5392ms ********** Factor found in step 2: 146337898716429751088899432223507 Found probable prime factor of 33 digits: 146337898716429751088899432223507 Composite cofactor has 176 digits
By Dmitry Domanov / ECMNET / Aug 14, 2009
(23·10194+31)/9 = 2(5)1939<195> = 7 · 19 · 37 · 1801 · C188
C188 = P39 · P45 · P104
P39 = 829120576370272477495488439345330306211<39>
P45 = 373665017540682988557616909862451034443569869<45>
P104 = 93071800242908434411113725305788079538407132412622804537132101554811430232078431135405103826930054200481<104>
C188=P39*P45*P104 C188=829120576370272477495488439345330306211<39>*373665017540682988557616909862451034443569869<45>*93071800242908434411113725305788079538407132412622804537132101554811430232078431135405103826930054200481<104>
By Andreas Tete / Msieve v. 1.42, GGNFS / Aug 13, 2009
(58·10163+41)/9 = 6(4)1629<164> = 3 · 53 · 337 · 41203 · 158613152738522987<18> · 1748203055833034139767<22> · C117
C117 = P41 · P76
P41 = 35354718772917701681492033166427827343819<41>
P76 = 2977495823399103642870676144152784725505450903763932457717703309648252436651<76>
Thu Aug 13 14:51:14 2009 Thu Aug 13 14:51:14 2009 Thu Aug 13 14:51:14 2009 Msieve v. 1.42 Thu Aug 13 14:51:14 2009 random seeds: 6239ca34 0a4dea92 Thu Aug 13 14:51:14 2009 factoring 105268527483812339334342341086979371310318838050297559395543654117627237975927554198893362237003523082233591893910169 (117 digits) Thu Aug 13 14:51:15 2009 searching for 15-digit factors Thu Aug 13 14:51:16 2009 commencing number field sieve (117-digit input) Thu Aug 13 14:51:16 2009 R0: -29317831392317037372404 Thu Aug 13 14:51:16 2009 R1: 1913949221161 Thu Aug 13 14:51:16 2009 A0: -728982585579479297678902795 Thu Aug 13 14:51:16 2009 A1: 1550972593082845957057335 Thu Aug 13 14:51:16 2009 A2: -9804057744669819423 Thu Aug 13 14:51:16 2009 A3: -515744502109505 Thu Aug 13 14:51:16 2009 A4: 525317832 Thu Aug 13 14:51:16 2009 A5: 4860 Thu Aug 13 14:51:16 2009 skew 119821.42, size 4.205158e-011, alpha -6.397800, combined = 4.770932e-010 Thu Aug 13 14:51:16 2009 Thu Aug 13 14:51:16 2009 commencing relation filtering Thu Aug 13 14:51:16 2009 estimated available RAM is 3069.5 MB Thu Aug 13 14:51:16 2009 commencing duplicate removal, pass 1 Thu Aug 13 14:51:23 2009 error -11 reading relation 454382 Thu Aug 13 14:53:02 2009 found 1086882 hash collisions in 9055892 relations Thu Aug 13 14:53:29 2009 added 59696 free relations Thu Aug 13 14:53:29 2009 commencing duplicate removal, pass 2 Thu Aug 13 14:54:05 2009 found 703872 duplicates and 8411715 unique relations Thu Aug 13 14:54:05 2009 memory use: 41.3 MB Thu Aug 13 14:54:05 2009 reading ideals above 100000 Thu Aug 13 14:54:05 2009 commencing singleton removal, initial pass Thu Aug 13 14:56:27 2009 memory use: 149.2 MB Thu Aug 13 14:56:27 2009 reading all ideals from disk Thu Aug 13 14:56:43 2009 memory use: 289.6 MB Thu Aug 13 14:56:45 2009 keeping 8758426 ideals with weight <= 200, target excess is 44355 Thu Aug 13 14:56:47 2009 commencing in-memory singleton removal Thu Aug 13 14:56:49 2009 begin with 8411715 relations and 8758426 unique ideals Thu Aug 13 14:57:02 2009 reduce to 3547796 relations and 3091338 ideals in 13 passes Thu Aug 13 14:57:02 2009 max relations containing the same ideal: 115 Thu Aug 13 14:57:07 2009 removing 928378 relations and 725875 ideals in 202503 cliques Thu Aug 13 14:57:07 2009 commencing in-memory singleton removal Thu Aug 13 14:57:08 2009 begin with 2619418 relations and 3091338 unique ideals Thu Aug 13 14:57:13 2009 reduce to 2479610 relations and 2216512 ideals in 8 passes Thu Aug 13 14:57:13 2009 max relations containing the same ideal: 89 Thu Aug 13 14:57:16 2009 removing 715041 relations and 512538 ideals in 202503 cliques Thu Aug 13 14:57:16 2009 commencing in-memory singleton removal Thu Aug 13 14:57:16 2009 begin with 1764569 relations and 2216512 unique ideals Thu Aug 13 14:57:19 2009 reduce to 1631712 relations and 1560558 ideals in 8 passes Thu Aug 13 14:57:19 2009 max relations containing the same ideal: 68 Thu Aug 13 14:57:21 2009 removing 118317 relations and 98615 ideals in 19702 cliques Thu Aug 13 14:57:21 2009 commencing in-memory singleton removal Thu Aug 13 14:57:22 2009 begin with 1513395 relations and 1560558 unique ideals Thu Aug 13 14:57:24 2009 reduce to 1507858 relations and 1456319 ideals in 6 passes Thu Aug 13 14:57:24 2009 max relations containing the same ideal: 67 Thu Aug 13 14:57:24 2009 relations with 0 large ideals: 175 Thu Aug 13 14:57:24 2009 relations with 1 large ideals: 1081 Thu Aug 13 14:57:24 2009 relations with 2 large ideals: 9840 Thu Aug 13 14:57:24 2009 relations with 3 large ideals: 54246 Thu Aug 13 14:57:24 2009 relations with 4 large ideals: 176982 Thu Aug 13 14:57:24 2009 relations with 5 large ideals: 349708 Thu Aug 13 14:57:24 2009 relations with 6 large ideals: 426938 Thu Aug 13 14:57:24 2009 relations with 7+ large ideals: 488888 Thu Aug 13 14:57:24 2009 commencing 2-way merge Thu Aug 13 14:57:27 2009 reduce to 954045 relation sets and 902506 unique ideals Thu Aug 13 14:57:27 2009 commencing full merge Thu Aug 13 14:57:53 2009 memory use: 95.9 MB Thu Aug 13 14:57:53 2009 found 477338 cycles, need 470706 Thu Aug 13 14:57:53 2009 weight of 470706 cycles is about 33244760 (70.63/cycle) Thu Aug 13 14:57:53 2009 distribution of cycle lengths: Thu Aug 13 14:57:53 2009 1 relations: 46902 Thu Aug 13 14:57:53 2009 2 relations: 48364 Thu Aug 13 14:57:53 2009 3 relations: 51540 Thu Aug 13 14:57:53 2009 4 relations: 50100 Thu Aug 13 14:57:53 2009 5 relations: 46810 Thu Aug 13 14:57:53 2009 6 relations: 42132 Thu Aug 13 14:57:53 2009 7 relations: 36419 Thu Aug 13 14:57:53 2009 8 relations: 30854 Thu Aug 13 14:57:53 2009 9 relations: 26007 Thu Aug 13 14:57:53 2009 10+ relations: 91578 Thu Aug 13 14:57:53 2009 heaviest cycle: 21 relations Thu Aug 13 14:57:53 2009 commencing cycle optimization Thu Aug 13 14:57:55 2009 start with 2871862 relations Thu Aug 13 14:58:05 2009 pruned 81938 relations Thu Aug 13 14:58:05 2009 memory use: 72.8 MB Thu Aug 13 14:58:05 2009 distribution of cycle lengths: Thu Aug 13 14:58:05 2009 1 relations: 46902 Thu Aug 13 14:58:05 2009 2 relations: 49463 Thu Aug 13 14:58:05 2009 3 relations: 53366 Thu Aug 13 14:58:05 2009 4 relations: 51651 Thu Aug 13 14:58:05 2009 5 relations: 48234 Thu Aug 13 14:58:05 2009 6 relations: 43133 Thu Aug 13 14:58:05 2009 7 relations: 37001 Thu Aug 13 14:58:05 2009 8 relations: 31076 Thu Aug 13 14:58:05 2009 9 relations: 26045 Thu Aug 13 14:58:05 2009 10+ relations: 83835 Thu Aug 13 14:58:05 2009 heaviest cycle: 21 relations Thu Aug 13 14:58:05 2009 RelProcTime: 409 Thu Aug 13 14:58:05 2009 Thu Aug 13 14:58:05 2009 commencing linear algebra Thu Aug 13 14:58:06 2009 read 470706 cycles Thu Aug 13 14:58:07 2009 cycles contain 1474652 unique relations Thu Aug 13 14:58:43 2009 read 1474652 relations Thu Aug 13 14:58:47 2009 using 20 quadratic characters above 134213298 Thu Aug 13 14:58:58 2009 building initial matrix Thu Aug 13 14:59:26 2009 memory use: 167.9 MB Thu Aug 13 14:59:28 2009 read 470706 cycles Thu Aug 13 14:59:28 2009 matrix is 470527 x 470706 (135.6 MB) with weight 45098600 (95.81/col) Thu Aug 13 14:59:28 2009 sparse part has weight 31768393 (67.49/col) Thu Aug 13 14:59:36 2009 filtering completed in 2 passes Thu Aug 13 14:59:36 2009 matrix is 470306 x 470485 (135.5 MB) with weight 45089323 (95.84/col) Thu Aug 13 14:59:36 2009 sparse part has weight 31765638 (67.52/col) Thu Aug 13 14:59:38 2009 read 470485 cycles Thu Aug 13 14:59:39 2009 matrix is 470306 x 470485 (135.5 MB) with weight 45089323 (95.84/col) Thu Aug 13 14:59:39 2009 sparse part has weight 31765638 (67.52/col) Thu Aug 13 14:59:39 2009 saving the first 48 matrix rows for later Thu Aug 13 14:59:40 2009 matrix is 470258 x 470485 (129.3 MB) with weight 35913518 (76.33/col) Thu Aug 13 14:59:40 2009 sparse part has weight 31066595 (66.03/col) Thu Aug 13 14:59:40 2009 matrix includes 64 packed rows Thu Aug 13 14:59:40 2009 using block size 65536 for processor cache size 3072 kB Thu Aug 13 14:59:44 2009 commencing Lanczos iteration Thu Aug 13 14:59:44 2009 memory use: 130.2 MB Thu Aug 13 15:39:12 2009 lanczos halted after 7439 iterations (dim = 470256) Thu Aug 13 15:39:14 2009 recovered 29 nontrivial dependencies Thu Aug 13 15:39:14 2009 BLanczosTime: 2469 Thu Aug 13 15:39:14 2009 Thu Aug 13 15:39:14 2009 commencing square root phase Thu Aug 13 15:39:14 2009 reading relations for dependency 1 Thu Aug 13 15:39:14 2009 read 235617 cycles Thu Aug 13 15:39:15 2009 cycles contain 924126 unique relations Thu Aug 13 15:39:48 2009 read 924126 relations Thu Aug 13 15:39:53 2009 multiplying 737592 relations Thu Aug 13 15:41:37 2009 multiply complete, coefficients have about 31.47 million bits Thu Aug 13 15:41:38 2009 initial square root is modulo 1088586883 Thu Aug 13 15:44:50 2009 sqrtTime: 336 Thu Aug 13 15:44:50 2009 prp41 factor: 35354718772917701681492033166427827343819 Thu Aug 13 15:44:50 2009 prp76 factor: 2977495823399103642870676144152784725505450903763932457717703309648252436651 Thu Aug 13 15:44:50 2009 elapsed time 00:53:36 Thu Aug 13 15:44:50 2009 total time ~ 41,11 hours
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 13, 2009
(58·10161+41)/9 = 6(4)1609<162> = 13 · 229 · C159
C159 = P40 · P119
P40 = 3654704663721431785734998256008161717483<40>
P119 = 59231722451106549788320435782143534486295223609948241326485620953755925134115062706023714637202558162648631578274012739<119>
Number: 64449_161 N=216474452282312544321277945732094203709924233941701190609487552718993767028701526518120404583286679356548352181539954465718657858395849662225208076736461015937 ( 159 digits) SNFS difficulty: 162 digits. Divisors found: r1=3654704663721431785734998256008161717483 r2=59231722451106549788320435782143534486295223609948241326485620953755925134115062706023714637202558162648631578274012739 Version: Total time: 18.03 hours. Scaled time: 42.94 units (timescale=2.381). Factorization parameters were as follows: n: 216474452282312544321277945732094203709924233941701190609487552718993767028701526518120404583286679356548352181539954465718657858395849662225208076736461015937 m: 100000000000000000000000000000000 deg: 5 c5: 580 c0: 41 skew: 0.59 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9614060 Max relations in full relation-set: Initial matrix: Pruned matrix : 672370 x 672618 Total sieving time: 16.52 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.92 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 18.03 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673798) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387)
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 13, 2009
(49·10171-13)/9 = 5(4)1703<172> = 1309907 · 1509331 · C160
C160 = P39 · C122
P39 = 186135721123313863044793461731766127889<39>
C122 = [14794452213434372946420738528169896579615815849117777730825714913852145946553387018597884831622546553977005766909682325811<122>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2313565796 Step 1 took 52141ms Step 2 took 17706ms ********** Factor found in step 2: 186135721123313863044793461731766127889 Found probable prime factor of 39 digits: 186135721123313863044793461731766127889 Composite cofactor 14794452213434372946420738528169896579615815849117777730825714913852145946553387018597884831622546553977005766909682325811 has 122 digits
By Dmitry Domanov / ECMNET / Aug 13, 2009
(16·10210-7)/9 = 1(7)210<211> = 2306753 · 707999891526611<15> · 34982088008588268790615606126668383363<38> · C152
C152 = P43 · P110
P43 = 1742276401997614863682400832116335307416429<43>
P110 = 17859956858070459648332660652295189478614882396823687035320140864284662019894144474128047165289895725299940797<110>
C152=P43*P110 C152=1742276401997614863682400832116335307416429<43>*17859956858070459648332660652295189478614882396823687035320140864284662019894144474128047165289895725299940797<110>
By Robert Backstrom / GGNFS, Msieve / Aug 13, 2009
(25·10215-1)/3 = 8(3)215<216> = 468653 · C211
C211 = P47 · P165
P47 = 10837959565633376609020155979327155879453500933<47>
P165 = 164066466998120886009170753099955422048842327500144372228690573743783715684021657284565055073307989853343982097643796221647012749477812858299698290812380055168396917<165>
Number: n N=1778145735401956956070553977747573008885749868950659300875772337600171840003869245120234658336409525455578718867335391714836634638705680606617973923848419477381630616540027127391339292255321812371484516973823561 ( 211 digits) SNFS difficulty: 216 digits. Divisors found: Thu Aug 13 17:10:17 2009 prp47 factor: 10837959565633376609020155979327155879453500933 Thu Aug 13 17:10:17 2009 prp165 factor: 164066466998120886009170753099955422048842327500144372228690573743783715684021657284565055073307989853343982097643796221647012749477812858299698290812380055168396917 Thu Aug 13 17:10:17 2009 elapsed time 69:23:21 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 148.72 hours. Scaled time: 299.67 units (timescale=2.015). Factorization parameters were as follows: name: KA_8_3_215 n: 1778145735401956956070553977747573008885749868950659300875772337600171840003869245120234658336409525455578718867335391714836634638705680606617973923848419477381630616540027127391339292255321812371484516973823561 m: 1000000000000000000000000000000000000 deg: 6 c6: 5 c0: -2 skew: 0.86 type: snfs lss: 1 rlim: 29000000 alim: 29000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 29000000/29000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [14500000, 41549990) Primes: RFBsize:1799676, AFBsize:1800322, largePrimes:38147337 encountered Relations: rels:34668211, finalFF:912109 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9105302 hash collisions in 49974295 relations Msieve: matrix is 5732590 x 5732838 (1550.1 MB) Total sieving time: 147.03 hours. Total relation processing time: 1.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,29000000,29000000,29,29,58,58,2.6,2.6,100000 total time: 148.72 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352028k/3407296k available (3120k kernel code, 53984k reserved, 1898k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5662.12 BogoMIPS (lpj=2831063) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830445) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830460) Total of 4 processors activated (22644.85 BogoMIPS).
By Serge Batalov, Bruce Dodson / Msieve / Aug 12, 2009
c253 from 10393+1 was splitted into p119 and p134. Congratulations!
By Robert Backstrom / GGNFS, Msieve / Aug 12, 2009
(58·10152+41)/9 = 6(4)1519<153> = 11 · 17 · 16007 · C147
C147 = P68 · P80
P68 = 11070022447903046623645328650347018977427326705944677000437857521689<68>
P80 = 19448469542909211426583031757749301794789777521107886109243313377103525520008349<80>
Number: n N=215294994417363674931136225643408162820625750446894872679180279899083069754724435213485959666858464810831238754316525438718302869648420675728581461 ( 147 digits) SNFS difficulty: 154 digits. Divisors found: Wed Aug 12 12:03:18 2009 prp68 factor: 11070022447903046623645328650347018977427326705944677000437857521689 Wed Aug 12 12:03:18 2009 prp80 factor: 19448469542909211426583031757749301794789777521107886109243313377103525520008349 Wed Aug 12 12:03:18 2009 elapsed time 01:52:28 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.90 hours. Scaled time: 18.76 units (timescale=0.943). Factorization parameters were as follows: name: KA_6_4_151_9 n: 215294994417363674931136225643408162820625750446894872679180279899083069754724435213485959666858464810831238754316525438718302869648420675728581461 m: 2000000000000000000000000000000 deg: 5 c5: 725 c0: 164 skew: 0.74 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [1300000, 2050001) Primes: RFBsize:189880, AFBsize:189046, largePrimes:27535725 encountered Relations: rels:24932402, finalFF:456925 Max relations in full relation-set: 28 Initial matrix: 378993 x 456925 with sparse part having weight 73195773. Pruned matrix : Msieve: found 2077426 hash collisions in 26024074 relations Msieve: matrix is 475387 x 475634 (127.1 MB) Total sieving time: 19.20 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,29,29,58,58,2.6,2.6,100000 total time: 19.90 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Aug 12, 2009
(58·10168+41)/9 = 6(4)1679<169> = 112 · 17 · C166
C166 = P36 · C130
P36 = 336340635039131954550293537507006243<36>
C130 = [9314763926316936870617423027014862687838866087875593973448170193850377580272582112388416930433089994630940974221974276541583881299<130>]
C166=P36*C130 C166=336340635039131954550293537507006243<36>*9314763926316936870617423027014862687838866087875593973448170193850377580272582112388416930433089994630940974221974276541583881299<130>
(16·10230-7)/9 = 1(7)230<231> = 32 · 140681 · 1402277 · C219
C219 = P43 · P176
P43 = 3944281709221934348316789231845083597207091<43>
P176 = 25386204870744998992688276663987897077304779888008176579483498199145614420279845835462036189475927778331120836559408570910727745551926370892296621414363814700980634305953356159<176>
C219=P43*P176 C219=3944281709221934348316789231845083597207091<43>*25386204870744998992688276663987897077304779888008176579483498199145614420279845835462036189475927778331120836559408570910727745551926370892296621414363814700980634305953356159<176>
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Aug 11, 2009
(58·10148+41)/9 = 6(4)1479<149> = 32 · 72 · 11 · 7655322337515029619053<22> · C124
C124 = P50 · P74
P50 = 37355104026158289925635199403391287893388509054633<50>
P74 = 46455889216811801389017392632315875552686098951001099958910251693636540751<74>
Number: 64449_148 N=1735364574321690008200642197598958580298118964657785245246879331636960268082291614275971412554302452221654247232075389849383 ( 124 digits) SNFS difficulty: 151 digits. Divisors found: r1=37355104026158289925635199403391287893388509054633 r2=46455889216811801389017392632315875552686098951001099958910251693636540751 Version: Total time: 7.25 hours. Scaled time: 17.32 units (timescale=2.388). Factorization parameters were as follows: n: 1735364574321690008200642197598958580298118964657785245246879331636960268082291614275971412554302452221654247232075389849383 m: 1000000000000000000000000000000 deg: 5 c5: 29 c0: 2050 skew: 2.34 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6663329 Max relations in full relation-set: Initial matrix: Pruned matrix : 391208 x 391456 Total sieving time: 6.67 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.31 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 7.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673788) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672383) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
(58·10175+41)/9 = 6(4)1749<176> = 32 · 113 · 180799 · 18369017 · 20724731513<11> · 194278867157<12> · 4211528010489493<16> · C124
C124 = P40 · P84
P40 = 2202184715456389693063837224368295327739<40>
P84 = 510945617062227781245498909898705264220997982507792737736799211040862361156935490637<84>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1125196628323871537050544410903193876581153579714044972724099733552508728126037056929993269101100025133827011425034680879743 (124 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2028390863 Step 1 took 3343ms Step 2 took 2092ms ********** Factor found in step 2: 2202184715456389693063837224368295327739 Found probable prime factor of 40 digits: 2202184715456389693063837224368295327739 Probable prime cofactor 510945617062227781245498909898705264220997982507792737736799211040862361156935490637 has 84 digits
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 11, 2009
(4·10172+11)/3 = 1(3)1717<173> = 89 · 44298394983828534317971<23> · C148
C148 = P36 · P113
P36 = 147668611851868658810324482778075801<36>
P113 = 22901954443464829237690488724952674774172113307515222316314785504936376877185871170914885048443823739100628195923<113>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1532346831 Step 1 took 46999ms Step 2 took 16538ms ********** Factor found in step 2: 147668611851868658810324482778075801 Found probable prime factor of 36 digits: 147668611851868658810324482778075801 Probable prime cofactor 22901954443464829237690488724952674774172113307515222316314785504936376877185871170914885048443823739100628195923 has 113 digits
By Robert Backstrom / GGNFS / Aug 11, 2009
(58·10189+41)/9 = 6(4)1889<190> = 53 · 71 · 1009 · 12964271 · 39384977 · 1248374028769795019<19> · 41054055524932111007<20> · 261420106563786798596455219<27> · C105
C105 = P43 · P62
P43 = 3339319253796127630188959796136480948753637<43>
P62 = 74299122286499570025192389670970928627261334898949097017828959<62>
Number: n N=248108489591460980312417272537903441658361226851702740557431060424235449229527746069508933855398695173883 ( 105 digits) Divisors found: r1=3339319253796127630188959796136480948753637 (pp43) r2=74299122286499570025192389670970928627261334898949097017828959 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.55 hours. Scaled time: 15.64 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_4_188_9 n: 248108489591460980312417272537903441658361226851702740557431060424235449229527746069508933855398695173883 Y0: -136270219024381679450 Y1: 45562200853 c0: -684169272975852034269820119 c1: 45234606651522858406119 c2: 188909143076621294 c3: -34709869262836 c4: 106646558 c5: 5280 skew: 46076.58 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1250000, 1950001) Primes: RFBsize:183072, AFBsize:183774, largePrimes:14525770 encountered Relations: rels:12546494, finalFF:474415 Max relations in full relation-set: 48 Initial matrix: 366932 x 474415 with sparse part having weight 52901740. Pruned matrix : 288929 x 290827 with weight 26572457. Total sieving time: 7.25 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.76 hours. Total square root time: 0.15 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 8.55 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Aug 11, 2009
(58·10166+41)/9 = 6(4)1659<167> = 33 · 7 · 11 · 215443 · 4093637 · C152
C152 = P72 · P80
P72 = 706604938908288596762603928693621117476374747431908877267657716973583417<72>
P80 = 49740782017038381446898408076325283314020354933960390731754594066785632705466473<80>
Number: 64449_166 N=35147082238399905566036355276072819135190316906897480108713199435188564513655611555102672917103076788399563036475073085609589123129960373650671362278241 ( 152 digits) SNFS difficulty: 168 digits. Divisors found: r1=706604938908288596762603928693621117476374747431908877267657716973583417 (pp72) r2=49740782017038381446898408076325283314020354933960390731754594066785632705466473 (pp80) Version: Msieve-1.40 Total time: 43.05 hours. Scaled time: 143.74 units (timescale=3.339). Factorization parameters were as follows: name: 64449_166 n: 35147082238399905566036355276072819135190316906897480108713199435188564513655611555102672917103076788399563036475073085609589123129960373650671362278241 m: 2000000000000000000000000000000000 deg: 5 c5: 145 c0: 328 skew: 1.18 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 842623 x 842871 Total sieving time: 41.52 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.36 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,168.000,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 43.05 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Aug 10, 2009
(64·1083461-1)/9 = 7(1)83461<83462>
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 10, 2009
(58·10146+41)/9 = 6(4)1459<147> = 112 · 139 · 30586547 · 8854610330194782473<19> · C117
C117 = P46 · P72
P46 = 1044143941895224076008252929168616516373419781<46>
P72 = 135495551116589058893468838756066885759317128660887029717156341753187261<72>
Number: 64449_146 N=141476858852141129982085096165096307405123624215597661573103210099884666813868205468677251665186249925639019054609841 ( 117 digits) SNFS difficulty: 147 digits. Divisors found: r1=1044143941895224076008252929168616516373419781 r2=135495551116589058893468838756066885759317128660887029717156341753187261 Version: Total time: 6.16 hours. Scaled time: 14.51 units (timescale=2.355). Factorization parameters were as follows: n: 141476858852141129982085096165096307405123624215597661573103210099884666813868205468677251665186249925639019054609841 m: 100000000000000000000000000000 deg: 5 c5: 580 c0: 41 skew: 0.59 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1500000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6811242 Max relations in full relation-set: Initial matrix: Pruned matrix : 372186 x 372434 Total sieving time: 5.31 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.28 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,49,49,2.3,2.3,75000 total time: 6.16 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 10, 2009
(58·10170+41)/9 = 6(4)1699<171> = 11 · 8442103296703<13> · 6243174303238469933530387<25> · C133
C133 = P52 · P81
P52 = 1268227929841860533189429196657056691419100472647721<52>
P81 = 876474658081602209257265498268798224770709796472774664205322953842768425268663639<81>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1249571775 Step 1 took 37981ms Step 2 took 13962ms ********** Factor found in step 2: 1268227929841860533189429196657056691419100472647721 Found probable prime factor of 52 digits: 1268227929841860533189429196657056691419100472647721 Probable prime cofactor 876474658081602209257265498268798224770709796472774664205322953842768425268663639 has 81 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 10, 2009
(58·10142+41)/9 = 6(4)1419<143> = 3 · 7 · 11 · 13229 · 126653 · 15815032747<11> · C122
C122 = P57 · P65
P57 = 522074508523921921621312471446082179548893172922272368021<57>
P65 = 20166402113362492556571937451567880430507687069249483258274948441<65>
Number: 64449_142 N=10528364472029503674546930418450190626108381180174211115822246930224941166469042970442458502269726972756776294182752205261 ( 122 digits) SNFS difficulty: 144 digits. Divisors found: r1=522074508523921921621312471446082179548893172922272368021 r2=20166402113362492556571937451567880430507687069249483258274948441 Version: Total time: 4.72 hours. Scaled time: 11.29 units (timescale=2.390). Factorization parameters were as follows: n: 10528364472029503674546930418450190626108381180174211115822246930224941166469042970442458502269726972756776294182752205261 m: 20000000000000000000000000000 deg: 5 c5: 725 c0: 164 skew: 0.74 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4703864 Max relations in full relation-set: Initial matrix: Pruned matrix : 321444 x 321692 Total sieving time: 4.07 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.21 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,2400000,2400000,26,26,49,49,2.3,2.3,50000 total time: 4.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Aug 9, 2009
(58·10141+41)/9 = 6(4)1409<142> = 13417 · 11465492388766613<17> · 85492832353215785749<20> · C102
C102 = P48 · P55
P48 = 297188596750020055603166795930122343745013718293<48>
P55 = 1648828582186947758223219615219991321258882551942718717<55>
Number: 64449_141 N=490013052621464118683651322907303005438915081644290634464703535904536125332452737523019513099576390081 ( 102 digits) Divisors found: r1=297188596750020055603166795930122343745013718293 r2=1648828582186947758223219615219991321258882551942718717 Version: Total time: 3.55 hours. Scaled time: 8.48 units (timescale=2.391). Factorization parameters were as follows: name: 64449_141 n: 490013052621464118683651322907303005438915081644290634464703535904536125332452737523019513099576390081 skew: 2999.04 # norm 2.87e+14 c5: 285840 c4: -580998390 c3: -39809786971105 c2: 13101624497222693 c1: 51794700540962006453 c0: -6871927561416625019595 # alpha -6.32 Y1: 42203408671 Y0: -17652952443475187786 # Murphy_E 2.92e-09 # M 43468290854972797452314451564270390388087360027321479264612436286247719101896379620470713861572886086 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1350001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4920370 Max relations in full relation-set: Initial matrix: Pruned matrix : 221588 x 221836 Polynomial selection time: 0.22 hours. Total sieving time: 2.86 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.11 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10200+41)/9 = 6(4)1999<201> = 11 · 17 · 107 · 2377 · 932774347987103381<18> · 13826677866082240683703<23> · 21474065269491482871681097<26> · 9617476601959055323120190872597<31> · C97
C97 = P48 · P50
P48 = 105112228249013874195504102675707517143167052699<48>
P50 = 48395817392296351722664742435602568363350373923061<50>
Number: 64449_200 N=5086992204036649549554802325517951171974055226822069754918148594115667379490630513181229558391639 ( 97 digits) Divisors found: r1=105112228249013874195504102675707517143167052699 r2=48395817392296351722664742435602568363350373923061 Version: Total time: 1.81 hours. Scaled time: 4.32 units (timescale=2.386). Factorization parameters were as follows: name: 64449_200 n: 5086992204036649549554802325517951171974055226822069754918148594115667379490630513181229558391639 skew: 4251.50 # norm 3.00e+13 c5: 88920 c4: -552671486 c3: -4344467514261 c2: 3144978948596562 c1: 41332925549711484436 c0: 1886464308075611431704 # alpha -5.85 Y1: 3492390701 Y0: -2246431410188375885 # Murphy_E 4.64e-09 # M 1588946694778192353638204469934463977067134430662642725994726068441844085253881674329972420828066 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3998077 Max relations in full relation-set: Initial matrix: Pruned matrix : 145180 x 145428 Polynomial selection time: 0.11 hours. Total sieving time: 1.49 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 1.81 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10149+41)/9 = 6(4)1489<150> = 13 · 421 · 673 · 100732103 · 10121236004206718958491<23> · C114
C114 = P34 · P81
P34 = 1696102823243283336102096639983899<34>
P81 = 101179223498410154287697137052894881945104457224269718891386984074813463313174703<81>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 171610366629216617736141540111186208266328445401431653663190700487849543363369209052931064897099041336492494106997 (114 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8045793004 Step 1 took 2679ms Step 2 took 1931ms ********** Factor found in step 2: 1696102823243283336102096639983899 Found probable prime factor of 34 digits: 1696102823243283336102096639983899 Probable prime cofactor 101179223498410154287697137052894881945104457224269718891386984074813463313174703 has 81 digits
(58·10139+41)/9 = 6(4)1389<140> = 33 · 31 · 354401 · 54080105661919<14> · C118
C118 = P48 · P71
P48 = 240281321672102092031822941423701958764184969789<48>
P71 = 16718893984341374478344248259057953266891108617477674510284921115332047<71>
Number: 64449_139 N=4017237943453302397946339277421751791024513472930215399935475761833309366097049405279496394556016946350294521398528083 ( 118 digits) SNFS difficulty: 141 digits. Divisors found: r1=240281321672102092031822941423701958764184969789 r2=16718893984341374478344248259057953266891108617477674510284921115332047 Version: Total time: 2.70 hours. Scaled time: 6.45 units (timescale=2.387). Factorization parameters were as follows: n: 4017237943453302397946339277421751791024513472930215399935475761833309366097049405279496394556016946350294521398528083 m: 10000000000000000000000000000 deg: 5 c5: 29 c0: 205 skew: 1.48 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [950000, 1550001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4087260 Max relations in full relation-set: Initial matrix: Pruned matrix : 225814 x 226062 Total sieving time: 2.35 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,48,48,2.3,2.3,50000 total time: 2.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10154+41)/9 = 6(4)1539<155> = 3 · 7 · 11 · 31 · 71 · 5855357 · C143
C143 = P38 · P106
P38 = 19602950039461147737333838041523754911<38>
P106 = 1104278583638193529919243527908672991914078598007534915906542790083954395182929626640133526640510031759077<106>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 21647117904706426189450950955016520273027057886377657995652670021137134050778094557363598017537468435215087853257755032275763510326739547577147 (143 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=127652953 Step 1 took 4052ms Step 2 took 2504ms ********** Factor found in step 2: 19602950039461147737333838041523754911 Found probable prime factor of 38 digits: 19602950039461147737333838041523754911 Probable prime cofactor 1104278583638193529919243527908672991914078598007534915906542790083954395182929626640133526640510031759077 has 106 digits
(58·10159+41)/9 = 6(4)1589<160> = 47 · C159
C159 = P32 · P127
P32 = 21092604873221414521443936704579<32>
P127 = 6500659357516210823212559424126325115688797215821254650858989687046391572429678404166908697240963504783993737251101929522190373<127>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 137115839243498817966903073286052009456264775413711583924349881796690307328605200945626477541371158392434988179669030732860520094562647754137115839243498817967 (159 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1988145448 Step 1 took 4787ms Step 2 took 2705ms ********** Factor found in step 2: 21092604873221414521443936704579 Found probable prime factor of 32 digits: 21092604873221414521443936704579 Probable prime cofactor 6500659357516210823212559424126325115688797215821254650858989687046391572429678404166908697240963504783993737251101929522190373 has 127 digits
(58·10140+41)/9 = 6(4)1399<141> = 11 · 19 · 127 · 2801 · 517961019025123<15> · C119
C119 = P44 · P75
P44 = 28571814345470798457850196642434401668480249<44>
P75 = 585716518304778674109618639218066670643040948267599228491642409925313514109<75>
Number: 64449_140 N=16734983620079684836530558211268541781736781482763673605856165874596688227525266870848902799120670143654113023649333141 ( 119 digits) SNFS difficulty: 141 digits. Divisors found: r1=28571814345470798457850196642434401668480249 r2=585716518304778674109618639218066670643040948267599228491642409925313514109 Version: Total time: 3.15 hours. Scaled time: 7.52 units (timescale=2.385). Factorization parameters were as follows: n: 16734983620079684836530558211268541781736781482763673605856165874596688227525266870848902799120670143654113023649333141 m: 10000000000000000000000000000 deg: 5 c5: 58 c0: 41 skew: 0.93 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [950000, 1650001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3952668 Max relations in full relation-set: Initial matrix: Pruned matrix : 274683 x 274930 Total sieving time: 2.65 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.17 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,48,48,2.3,2.3,50000 total time: 3.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(43·10200+11)/9 = 4(7)1999<201> = C201
C201 = P91 · P111
P91 = 2174373058099133778955027754091881176658176439236542612023908234704073354923429801680431157<91>
P111 = 219731281160859097400420474569740172057755221825684698747872340583961067609816288201669884937774558773451626247<111>
Number: 47779_200 N=477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 201 digits) SNFS difficulty: 201 digits. Divisors found: r1=2174373058099133778955027754091881176658176439236542612023908234704073354923429801680431157 r2=219731281160859097400420474569740172057755221825684698747872340583961067609816288201669884937774558773451626247 Version: Total time: 448.74 hours. Scaled time: 1069.34 units (timescale=2.383). Factorization parameters were as follows: n: 477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 m: 10000000000000000000000000000000000000000 deg: 5 c5: 43 c0: 11 skew: 0.76 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [10000000, 19500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 39359230 Max relations in full relation-set: Initial matrix: Pruned matrix : 3461402 x 3461650 Total sieving time: 402.68 hours. Total relation processing time: 11.76 hours. Matrix solve time: 33.25 hours. Time per square root: 1.06 hours. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000 total time: 448.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Wataru Sakai / Msieve / Aug 9, 2009
(55·10182+71)/9 = 6(1)1819<183> = 81629 · C178
C178 = P87 · P92
P87 = 268968386937796209285255055537985514655500461536626239747662232571641324962733344449049<87>
P92 = 27833925818601073393361973681889386756037781086677916726445315318676185387360456995972477139<92>
Number: 61119_182 N=7486446129575409610691189541843108590220523479536820383823287203213454913218477637985410958251492865416838514634641011296366623517513519841124001410174216407295337577467702790811 ( 178 digits) SNFS difficulty: 184 digits. Divisors found: r1=268968386937796209285255055537985514655500461536626239747662232571641324962733344449049 r2=27833925818601073393361973681889386756037781086677916726445315318676185387360456995972477139 Version: Total time: 310.69 hours. Scaled time: 624.49 units (timescale=2.010). Factorization parameters were as follows: n: 7486446129575409610691189541843108590220523479536820383823287203213454913218477637985410958251492865416838514634641011296366623517513519841124001410174216407295337577467702790811 m: 2000000000000000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 7800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1285146 x 1285394 Total sieving time: 310.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 310.69 hours. --------- CPU info (if available) ----------
(4·10199-7)/3 = 1(3)1981<200> = 11 · 313 · C196
C196 = P80 · P117
P80 = 14245284449048868649167658171982103265194892503790476016535809966373146771405253<80>
P117 = 271850783034045904709166657548054817831235558520384314653175768959548794237356697623685222130093654997355896460223789<117>
Number: 13331_199 N=3872591732016652144447671604221124987898150837447962048601026236808984412818278632975118598121793009971923709942879271952754380869396843837738406428502275147642559783134863007067479910930390163617 ( 196 digits) SNFS difficulty: 200 digits. Divisors found: r1=14245284449048868649167658171982103265194892503790476016535809966373146771405253 r2=271850783034045904709166657548054817831235558520384314653175768959548794237356697623685222130093654997355896460223789 Version: Total time: 513.72 hours. Scaled time: 1035.14 units (timescale=2.015). Factorization parameters were as follows: n: 3872591732016652144447671604221124987898150837447962048601026236808984412818278632975118598121793009971923709942879271952754380869396843837738406428502275147642559783134863007067479910930390163617 m: 10000000000000000000000000000000000000000 deg: 5 c5: 2 c0: -35 skew: 1.77 type: snfs lss: 1 rlim: 15300000 alim: 15300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15300000/15300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7650000, 12650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2913154 x 2913400 Total sieving time: 513.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15300000,15300000,29,29,56,56,2.6,2.6,100000 total time: 513.72 hours. --------- CPU info (if available) ----------
(37·10193-1)/9 = 4(1)193<194> = 541 · C191
C191 = P95 · P97
P95 = 16982086357914803637623741673240335869987959520338455554555164416476118201559316006982399568593<95>
P97 = 4474771923497334638554968073323091298281184099854318393507188833675114725959431699712597968081347<97>
Number: 41111_193 N=75990963236804271924419798726637913329225713698911480796878209077839392072294105565824604641610186896693366194290408708153624974327377284863421647155473403162867118504826453070445676730334771 ( 191 digits) SNFS difficulty: 196 digits. Divisors found: r1=16982086357914803637623741673240335869987959520338455554555164416476118201559316006982399568593 r2=4474771923497334638554968073323091298281184099854318393507188833675114725959431699712597968081347 Version: Total time: 650.69 hours. Scaled time: 1307.89 units (timescale=2.010). Factorization parameters were as follows: n: 75990963236804271924419798726637913329225713698911480796878209077839392072294105565824604641610186896693366194290408708153624974327377284863421647155473403162867118504826453070445676730334771 m: 1000000000000000000000000000000000000000 deg: 5 c5: 37 c0: -100 skew: 1.22 type: snfs lss: 1 rlim: 13200000 alim: 13200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13200000/13200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6600000, 13700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2320654 x 2320902 Total sieving time: 650.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13200000,13200000,28,28,55,55,2.5,2.5,100000 total time: 650.69 hours. --------- CPU info (if available) ----------
By matsui / Msieve / Aug 9, 2009
9·10196+7 = 9(0)1957<197> = 379 · 84347 · C190
C190 = P70 · P121
P70 = 2793581839990665879086071955488871732154051874807346381894557450536389<70>
P121 = 1007795141038902862381302247759455291325233747340278362348189347943401583915173253582538601189245685674010445568232328851<121>
N=2815358204437110888169498828388683223496303888263062566049476542013136899326513138510337041233079345271557408923240290854030465241384276593552961095221889797933295592935240223410560590059039 ( 190 digits) SNFS difficulty: 196 digits. Divisors found: r1=2793581839990665879086071955488871732154051874807346381894557450536389 (pp70) r2=1007795141038902862381302247759455291325233747340278362348189347943401583915173253582538601189245685674010445568232328851 (pp121) Version: Msieve v. 1.42 Total time: 502.44 hours. Scaled time: 1121.95 units (timescale=2.233). Factorization parameters were as follows: n: 2815358204437110888169498828388683223496303888263062566049476542013136899326513138510337041233079345271557408923240290854030465241384276593552961095221889797933295592935240223410560590059039 m: 1000000000000000000000000000000000000000 deg: 5 c5: 90 c0: 7 skew: 0.60 type: snfs lss: 1 rlim: 13400000 alim: 13400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 300000 Factor base limits: 13400000/13400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6700000, 14800001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2655010 x 2655235 Total sieving time: 488.23 hours. Total relation processing time: 0.20 hours. Matrix solve time: 13.50 hours. Time per square root: 0.51 hours. Prototype def-par.txt line would be: snfs,196.000,5,0,0,0,0,0,0,0,0,13400000,13400000,28,28,55,55,2.5,2.5,100000 total time: 502.44 hours.
By Sinkiti Sibata / Msieve / Aug 9, 2009
(58·10147+41)/9 = 6(4)1469<148> = 107 · 691 · 1870639 · 15308009 · C130
C130 = P57 · P74
P57 = 104226810757989487023155307155618642769595857629037983413<57>
P74 = 29203541189843452413587717044503298257109696168892743916901538636843884779<74>
Number: 64449_147 N=3043791961056964650204073474298058150487255812058742155043591009507435709246375658619967190325348574728898111100942827283085170727 ( 130 digits) SNFS difficulty: 149 digits. Divisors found: r1=104226810757989487023155307155618642769595857629037983413 (pp57) r2=29203541189843452413587717044503298257109696168892743916901538636843884779 (pp74) Version: Msieve-1.40 Total time: 10.41 hours. Scaled time: 34.93 units (timescale=3.357). Factorization parameters were as follows: name: 64449_147 n: 3043791961056964650204073474298058150487255812058742155043591009507435709246375658619967190325348574728898111100942827283085170727 m: 200000000000000000000000000000 deg: 5 c5: 725 c0: 164 skew: 0.74 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 368768 x 369016 Total sieving time: 10.10 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.24 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 10.41 hours. --------- CPU info (if available) ----------
Many small prime numbers up to 215 digits in the primesize.txt were proved by Robert Backstrom.
By Jo Yeong Uk / YAFU 1.10, Msieve, GGNFS, GMP-ECM / Aug 8, 2009
(58·10120+41)/9 = 6(4)1199<121> = 11 · 17 · 1432943 · 13858699 · 96751818844475480137<20> · C86
C86 = P40 · P46
P40 = 4171154534180201577214509051813439982857<40>
P46 = 4300085410829145193862369954805882431917303879<46>
08/08/09 14:59:52 v1.10 @ 조영욱-PC, starting SIQS on c86: 17936320758742123847911845494663667844121370803322423565926859018744477965975419602303 08/08/09 14:59:52 v1.10 @ 조영욱-PC, random seeds: 3513321531, 909715568 08/08/09 14:59:52 v1.10 @ 조영욱-PC, ==== sieve params ==== 08/08/09 14:59:52 v1.10 @ 조영욱-PC, n = 86 digits, 287 bits 08/08/09 14:59:52 v1.10 @ 조영욱-PC, factor base: 56921 primes (max prime = 1493971) 08/08/09 14:59:52 v1.10 @ 조영욱-PC, single large prime cutoff: 164336810 (110 * pmax) 08/08/09 14:59:52 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 08/08/09 14:59:52 v1.10 @ 조영욱-PC, double large prime cutoff: 614218275674814 08/08/09 14:59:52 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 08/08/09 14:59:52 v1.10 @ 조영욱-PC, buckets hold 1024 elements 08/08/09 14:59:52 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 08/08/09 14:59:52 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 08/08/09 14:59:52 v1.10 @ 조영욱-PC, using multiplier of 13 08/08/09 14:59:52 v1.10 @ 조영욱-PC, using small prime variation correction of 24 bits 08/08/09 14:59:52 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 08/08/09 14:59:52 v1.10 @ 조영욱-PC, trial factoring cutoff at 91 bits 08/08/09 14:59:52 v1.10 @ 조영욱-PC, ==== sieving started ==== 08/08/09 15:17:13 v1.10 @ 조영욱-PC, sieve time = 453.0300, relation time = 269.1360, poly_time = 318.0120 08/08/09 15:17:13 v1.10 @ 조영욱-PC, 57094 relations found: 20657 full + 36437 from 472011 partial, using 168286 polys (164 A polys) 08/08/09 15:17:13 v1.10 @ 조영욱-PC, on average, sieving found 2.93 rels/poly and 473.28 rels/sec 08/08/09 15:17:13 v1.10 @ 조영욱-PC, trial division touched 15023845 sieve locations out of 198518243328 08/08/09 15:17:13 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 08/08/09 15:17:13 v1.10 @ 조영욱-PC, begin with 492668 relations 08/08/09 15:17:13 v1.10 @ 조영욱-PC, reduce to 111147 relations in 8 passes 08/08/09 15:17:14 v1.10 @ 조영욱-PC, recovered 111147 relations 08/08/09 15:17:14 v1.10 @ 조영욱-PC, recovered 81457 polynomials 08/08/09 15:17:14 v1.10 @ 조영욱-PC, attempting to build 57094 cycles 08/08/09 15:17:14 v1.10 @ 조영욱-PC, found 57094 cycles in 4 passes 08/08/09 15:17:14 v1.10 @ 조영욱-PC, distribution of cycle lengths: 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 1 : 20657 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 2 : 16661 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 3 : 10075 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 4 : 5301 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 5 : 2549 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 6 : 1083 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 7 : 461 08/08/09 15:17:14 v1.10 @ 조영욱-PC, length 9+: 307 08/08/09 15:17:14 v1.10 @ 조영욱-PC, largest cycle: 14 relations 08/08/09 15:17:14 v1.10 @ 조영욱-PC, matrix is 56921 x 57094 (11.8 MB) with weight 2647073 (46.36/col) 08/08/09 15:17:14 v1.10 @ 조영욱-PC, sparse part has weight 2647073 (46.36/col) 08/08/09 15:17:14 v1.10 @ 조영욱-PC, filtering completed in 3 passes 08/08/09 15:17:14 v1.10 @ 조영욱-PC, matrix is 48448 x 48508 (10.3 MB) with weight 2307516 (47.57/col) 08/08/09 15:17:14 v1.10 @ 조영욱-PC, sparse part has weight 2307516 (47.57/col) 08/08/09 15:17:14 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 08/08/09 15:17:15 v1.10 @ 조영욱-PC, matrix is 48400 x 48508 (7.3 MB) with weight 1823058 (37.58/col) 08/08/09 15:17:15 v1.10 @ 조영욱-PC, sparse part has weight 1420269 (29.28/col) 08/08/09 15:17:15 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 08/08/09 15:17:15 v1.10 @ 조영욱-PC, using block size 19403 for processor cache size 4096 kB 08/08/09 15:17:15 v1.10 @ 조영욱-PC, commencing Lanczos iteration 08/08/09 15:17:15 v1.10 @ 조영욱-PC, memory use: 6.5 MB 08/08/09 15:17:24 v1.10 @ 조영욱-PC, lanczos halted after 766 iterations (dim = 48398) 08/08/09 15:17:24 v1.10 @ 조영욱-PC, recovered 17 nontrivial dependencies 08/08/09 15:17:25 v1.10 @ 조영욱-PC, prp40 = 4171154534180201577214509051813439982857 08/08/09 15:17:26 v1.10 @ 조영욱-PC, prp46 = 4300085410829145193862369954805882431917303879 08/08/09 15:17:26 v1.10 @ 조영욱-PC, Lanczos elapsed time = 10.8730 seconds. 08/08/09 15:17:26 v1.10 @ 조영욱-PC, Sqrt elapsed time = 2.5110 seconds. 08/08/09 15:17:26 v1.10 @ 조영욱-PC, SIQS elapsed time = 1054.3570 seconds. 08/08/09 15:17:26 v1.10 @ 조영욱-PC, 08/08/09 15:17:26 v1.10 @ 조영욱-PC,
(58·10124+41)/9 = 6(4)1239<125> = 3 · 7 · 112 · 31 · 53 · 3336601 · 4436867425279643<16> · C97
C97 = P48 · P49
P48 = 267492333084733470268984029104710701455232281551<48>
P49 = 3898083961532116929988497717471694102623444454411<49>
Number: 64449_124 N=1042707573430406393491906031296711719332378538641660681551632980630039511373360505714837935871461 ( 97 digits) SNFS difficulty: 126 digits. Divisors found: r1=267492333084733470268984029104710701455232281551 r2=3898083961532116929988497717471694102623444454411 Version: Total time: 0.79 hours. Scaled time: 1.89 units (timescale=2.388). Factorization parameters were as follows: n: 1042707573430406393491906031296711719332378538641660681551632980630039511373360505714837935871461 m: 10000000000000000000000000 deg: 5 c5: 29 c0: 205 skew: 1.48 type: snfs lss: 1 rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [400000, 600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2446613 Max relations in full relation-set: Initial matrix: Pruned matrix : 95442 x 95690 Total sieving time: 0.70 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,800000,800000,26,26,46,46,2.3,2.3,40000 total time: 0.79 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10135+41)/9 = 6(4)1349<136> = 1439 · 53697084205907<14> · C119
C119 = P52 · P68
P52 = 1128787256771068110891967257486158744224357811724497<52>
P68 = 73885954557658207227978625191186478807384791934220624008771044803029<68>
Number: 64449_135 N=83401523959050804924972610883019020772103327350516411471050111549524066031956548155738313342090261880249108256179101413 ( 119 digits) SNFS difficulty: 136 digits. Divisors found: r1=1128787256771068110891967257486158744224357811724497 r2=73885954557658207227978625191186478807384791934220624008771044803029 Version: Total time: 2.26 hours. Scaled time: 5.40 units (timescale=2.388). Factorization parameters were as follows: n: 83401523959050804924972610883019020772103327350516411471050111549524066031956548155738313342090261880249108256179101413 m: 1000000000000000000000000000 deg: 5 c5: 58 c0: 41 skew: 0.93 type: snfs lss: 1 rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [700000, 1250001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3548779 Max relations in full relation-set: Initial matrix: Pruned matrix : 194905 x 195153 Total sieving time: 1.95 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,26,26,48,48,2.3,2.3,50000 total time: 2.26 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10138+41)/9 = 6(4)1379<139> = 11 · 1907 · 33947487199<11> · C124
C124 = P36 · P89
P36 = 619682416402246260242658300172564813<36>
P89 = 14603780594971380709213275235955179207952396770027290460063940971518463105065496294225451<89>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 9049706047700098778472617130075705484325248766095900478012943598748454740374814077391893881246699892749334477158507931655663 (124 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3967165505 Step 1 took 4212ms Step 2 took 4149ms ********** Factor found in step 2: 619682416402246260242658300172564813 Found probable prime factor of 36 digits: 619682416402246260242658300172564813 Probable prime cofactor 14603780594971380709213275235955179207952396770027290460063940971518463105065496294225451 has 89 digits
(58·10137+41)/9 = 6(4)1369<138> = 132 · 53 · 89 · 2371780942173151<16> · C117
C117 = P35 · P83
P35 = 14884551379367473034365581346771321<35>
P83 = 22899319608705534678406447304938033748166187889155106711843604195847753505863147003<83>
Number: 64449_137 N=340846099268334589063925286498769963997410140964630221918445886354506313410431118519162224524675570357048474447500963 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=14884551379367473034365581346771321 r2=22899319608705534678406447304938033748166187889155106711843604195847753505863147003 Version: Total time: 3.14 hours. Scaled time: 7.51 units (timescale=2.389). Factorization parameters were as follows: n: 340846099268334589063925286498769963997410140964630221918445886354506313410431118519162224524675570357048474447500963 m: 2000000000000000000000000000 deg: 5 c5: 725 c0: 164 skew: 0.74 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [900000, 1600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3960377 Max relations in full relation-set: Initial matrix: Pruned matrix : 243100 x 243348 Total sieving time: 2.71 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.13 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,50000 total time: 3.14 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10144+41)/9 = 6(4)1439<145> = 11 · 199 · 6581 · 10586419 · 178413835756643<15> · 13295261417971829<17> · C101
C101 = P46 · P55
P46 = 3550330562770319439823346494483581255745491313<46>
P55 = 5017698363791318288256268260704825461570233445854479429<55>
Number: 64449_144 N=17814487855730942101864005469134517687896385849816384316995836597205299202233380008914073671456700277 ( 101 digits) Divisors found: r1=3550330562770319439823346494483581255745491313 r2=5017698363791318288256268260704825461570233445854479429 Version: Total time: 2.62 hours. Scaled time: 6.24 units (timescale=2.384). Factorization parameters were as follows: name: 64449_144 n: 17814487855730942101864005469134517687896385849816384316995836597205299202233380008914073671456700277 skew: 1770.95 # norm 5.81e+13 c5: 602640 c4: 1871645292 c3: 8704689514020 c2: -3695448870658363 c1: -15197534558257118770 c0: 5588911043113068396936 # alpha -5.76 Y1: 62518557167 Y0: -7836839010963824795 # Murphy_E 3.24e-09 # M 16121912846489293313346083522004164419855127380897457966767740960635640065692258082666037901042514449 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [600000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4181672 Max relations in full relation-set: Initial matrix: Pruned matrix : 208491 x 208739 Polynomial selection time: 0.19 hours. Total sieving time: 2.06 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.10 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,49,49,2.5,2.5,50000 total time: 2.62 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Sinkiti Sibata / Msieve / Aug 8, 2009
(58·10117+41)/9 = 6(4)1169<118> = 6981103 · 20052849473375479961204639<26> · C86
C86 = P37 · P50
P37 = 2158588796290758972254217158621260613<37>
P50 = 21326295670555186762106081990279592452723366079869<50>
at Aug 08 15:22:45 2009 Msieve v. 1.42 Sat Aug 08 15:22:45 2009 random seeds: ac5f2114 ee093235 Sat Aug 08 15:22:45 2009 factoring 46034702900844545055529893009178313512466417637783840356525323468254990122504821899697 (86 digits) Sat Aug 08 15:22:47 2009 searching for 15-digit factors Sat Aug 08 15:22:47 2009 commencing quadratic sieve (86-digit input) Sat Aug 08 15:22:48 2009 using multiplier of 1 Sat Aug 08 15:22:48 2009 using 32kb Intel Core sieve core Sat Aug 08 15:22:48 2009 sieve interval: 16 blocks of size 32768 Sat Aug 08 15:22:48 2009 processing polynomials in batches of 13 Sat Aug 08 15:22:48 2009 using a sieve bound of 1459427 (55667 primes) Sat Aug 08 15:22:48 2009 using large prime bound of 116754160 (26 bits) Sat Aug 08 15:22:48 2009 using double large prime bound of 331963366994880 (41-49 bits) Sat Aug 08 15:22:48 2009 using trial factoring cutoff of 49 bits Sat Aug 08 15:22:48 2009 polynomial 'A' values have 11 factors Sat Aug 08 15:56:44 2009 56109 relations (16197 full + 39912 combined from 581509 partial), need 55763 Sat Aug 08 15:56:46 2009 begin with 597706 relations Sat Aug 08 15:56:46 2009 reduce to 132368 relations in 10 passes Sat Aug 08 15:56:46 2009 attempting to read 132368 relations Sat Aug 08 15:56:48 2009 recovered 132368 relations Sat Aug 08 15:56:48 2009 recovered 108695 polynomials Sat Aug 08 15:56:48 2009 attempting to build 56109 cycles Sat Aug 08 15:56:48 2009 found 56109 cycles in 6 passes Sat Aug 08 15:56:48 2009 distribution of cycle lengths: Sat Aug 08 15:56:48 2009 length 1 : 16197 Sat Aug 08 15:56:48 2009 length 2 : 11144 Sat Aug 08 15:56:48 2009 length 3 : 10111 Sat Aug 08 15:56:48 2009 length 4 : 7157 Sat Aug 08 15:56:48 2009 length 5 : 4913 Sat Aug 08 15:56:48 2009 length 6 : 2935 Sat Aug 08 15:56:48 2009 length 7 : 1722 Sat Aug 08 15:56:48 2009 length 9+: 1930 Sat Aug 08 15:56:48 2009 largest cycle: 18 relations Sat Aug 08 15:56:48 2009 matrix is 55667 x 56109 (12.0 MB) with weight 2917724 (52.00/col) Sat Aug 08 15:56:48 2009 sparse part has weight 2917724 (52.00/col) Sat Aug 08 15:56:49 2009 filtering completed in 3 passes Sat Aug 08 15:56:49 2009 matrix is 50596 x 50660 (10.9 MB) with weight 2647779 (52.27/col) Sat Aug 08 15:56:49 2009 sparse part has weight 2647779 (52.27/col) Sat Aug 08 15:56:49 2009 saving the first 48 matrix rows for later Sat Aug 08 15:56:49 2009 matrix is 50548 x 50660 (6.1 MB) with weight 1968508 (38.86/col) Sat Aug 08 15:56:49 2009 sparse part has weight 1285742 (25.38/col) Sat Aug 08 15:56:49 2009 matrix includes 64 packed rows Sat Aug 08 15:56:49 2009 using block size 20264 for processor cache size 1024 kB Sat Aug 08 15:56:50 2009 commencing Lanczos iteration Sat Aug 08 15:56:50 2009 memory use: 7.0 MB Sat Aug 08 15:57:03 2009 lanczos halted after 801 iterations (dim = 50546) Sat Aug 08 15:57:04 2009 recovered 16 nontrivial dependencies Sat Aug 08 15:57:04 2009 prp37 factor: 2158588796290758972254217158621260613 Sat Aug 08 15:57:04 2009 prp50 factor: 21326295670555186762106081990279592452723366079869 Sat Aug 08 15:57:04 2009 elapsed time 00:34:19
(58·10128+41)/9 = 6(4)1279<129> = 11 · C128
C128 = P32 · P45 · P52
P32 = 39898048673574179603199844885073<32>
P45 = 649715236944848403995371739583303968875535713<45>
P52 = 2260050228906597591554901754728515026209895212840691<52>
Number: 64449_128 N=58585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585859 ( 128 digits) SNFS difficulty: 131 digits. Divisors found: r1=39898048673574179603199844885073 (pp32) r2=649715236944848403995371739583303968875535713 (pp45) r3=2260050228906597591554901754728515026209895212840691 (pp52) Version: Msieve-1.40 Total time: 2.46 hours. Scaled time: 8.09 units (timescale=3.287). Factorization parameters were as follows: name: 64449_128 n: 58585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585859 m: 50000000000000000000000000 deg: 5 c5: 464 c0: 1025 skew: 1.17 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 985001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147934 x 148182 Total sieving time: 2.37 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 2.46 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 8, 2009
(14·10171+13)/9 = 1(5)1707<172> = 3 · 9761352401<10> · 291815750197<12> · 5862396613066093442304343<25> · C125
C125 = P33 · P92
P33 = 335286451551713195473353730926391<33>
P92 = 92609246362301408513269952814555626164032637076591129306358448623522057405639132520561888379<92>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3294866312 Step 1 took 34035ms Step 2 took 13670ms ********** Factor found in step 2: 335286451551713195473353730926391 Found probable prime factor of 33 digits: 335286451551713195473353730926391 Probable prime cofactor 92609246362301408513269952814555626164032637076591129306358448623522057405639132520561888379 has 92 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve / Aug 8, 2009
(58·10200+41)/9 = 6(4)1999<201> = 11 · 17 · 107 · 2377 · 932774347987103381<18> · 13826677866082240683703<23> · 21474065269491482871681097<26> · C128
C128 = P31 · C97
P31 = 9617476601959055323120190872597<31>
C97 = [5086992204036649549554802325517951171974055226822069754918148594115667379490630513181229558391639<97>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1094701982 Step 1 took 2496ms Step 2 took 2004ms ********** Factor found in step 2: 9617476601959055323120190872597 Found probable prime factor of 31 digits: 9617476601959055323120190872597 Composite cofactor has 97 digits
(58·10192+41)/9 = 6(4)1919<193> = 11 · 139 · 24107297 · 440052311 · 10402068055283<14> · C161
C161 = P30 · P131
P30 = 389330198417547379466454031507<30>
P131 = 98104152943332266788674463871533087097832143310616650750836727883467574943205234124279264185234168457469978071068936557397216769703<131>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=131367667 Step 1 took 3576ms Step 2 took 2408ms ********** Factor found in step 2: 389330198417547379466454031507 Found probable prime factor of 30 digits: 389330198417547379466454031507 Probable prime cofactor 9810415294333226678867446387153308709783214331061665075083672788346757494320523412427926418523416845746997807106 8936557397216769703 has 131 digits
(58·10203+41)/9 = 6(4)2029<204> = 13 · 4562672679804431624287<22> · C182
C182 = P35 · P147
P35 = 51152262708347907152704942961133901<35>
P147 = 212401690156098939939913557892512052200649177854946363470388068645251151818923654748302693711054147745443858651608553980275034876545681804713872679<147>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2588790684 Step 1 took 4076ms Step 2 took 2652ms ********** Factor found in step 2: 51152262708347907152704942961133901 Found probable prime factor of 35 digits: 51152262708347907152704942961133901 Probable prime cofactor has 147 digits
(58·10104+41)/9 = 6(4)1039<105> = 11 · 17 · 19 · 109 · 842887 · C94
C94 = P36 · P58
P36 = 550869718097003447204551975703287171<36>
P58 = 3583814511051657908982940011891001026899175054919974150481<58>
SNFS difficulty: 105 digits. Divisors found: r1=550869718097003447204551975703287171 (pp36) r2=3583814511051657908982940011891001026899175054919974150481 (pp58) Version: Msieve v. 1.43 Total time: 0.32 hours. Scaled time: 0.76 units (timescale=2.400). Factorization parameters were as follows: n: 1974214889414977037467608582187196548946406411233375487631192692026183614045274001659910779251 m: 100000000000000000000000000 deg: 4 c4: 58 c0: 41 skew: 0.92 type: snfs lss: 1 rlim: 410000 alim: 410000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 410000/410000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [205000, 305001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38641 x 38889 Total sieving time: 0.30 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,410000,410000,25,25,44,44,2.2,2.2,20000 total time: 0.32 hours.
(58·10179+41)/9 = 6(4)1789<180> = 13 · 257 · 8101 · 115998234137<12> · 26557839579002128971173217971<29> · C133
C133 = P32 · P102
P32 = 12168445837390283378749132344323<32>
P102 = 635171702715363223405943616590905150867918196427406156053354992650488343086622847098876838786815913809<102>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4122123285 Step 1 took 2544ms Step 2 took 1992ms ********** Factor found in step 2: 12168445837390283378749132344323 Found probable prime factor of 32 digits: 12168445837390283378749132344323 Probable prime cofactor has 102 digits
(58·10112+41)/9 = 6(4)1119<113> = 35 · 7 · 11 · 181 · 19411741 · C99
C99 = P45 · P55
P45 = 108154283898859034137377190207499452312048313<45>
P55 = 9063620148804105342986892378964642781241934655305454783<55>
SNFS difficulty: 114 digits. Divisors found: r1=108154283898859034137377190207499452312048313 (pp45) r2=9063620148804105342986892378964642781241934655305454783 (pp55) Version: Msieve v. 1.43 Total time: 0.57 hours. Scaled time: 1.36 units (timescale=2.400). Factorization parameters were as follows: n: 980269346725178173569345476627308050099291195661372298815557195739472378690464284127582580732931079 m: 20000000000000000000000 deg: 5 c5: 725 c0: 164 skew: 0.74 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 480001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52644 x 52877 Total sieving time: 0.54 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 0.57 hours.
(58·10197+41)/9 = 6(4)1969<198> = 13 · 933299923 · 8436592305409<13> · 111772795484434550519<21> · C155
C155 = P34 · C122
P34 = 5087832120754440156018956894208167<34>
C122 = [11070951636149765536840257253607829444595086747622399008620240727882623901740891490497776510088174513384413377746808577543<122>]
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3097237382 Step 1 took 7492ms ********** Factor found in step 1: 5087832120754440156018956894208167 Found probable prime factor of 34 digits: 5087832120754440156018956894208167 Composite cofactor has 122 digits
Factorizations of 644...449 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 7, 2009
(52·10171-43)/9 = 5(7)1703<172> = 19 · 30158387489<11> · 570722929894025945844003120791<30> · C131
C131 = P37 · P94
P37 = 5740582896936804596177972515586571449<37>
P94 = 3077639887964649309299233949920934152559049053053399717566063157179476351969374735826702962817<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1753045546 Step 1 took 38331ms Step 2 took 13954ms ********** Factor found in step 2: 5740582896936804596177972515586571449 Found probable prime factor of 37 digits: 5740582896936804596177972515586571449 Probable prime cofactor 3077639887964649309299233949920934152559049053053399717566063157179476351969374735826702962817 has 94 digits
By Justin Card / ggnfs, msieve / Aug 7, 2009
(8·10187+7)/3 = 2(6)1869<188> = 109 · 334385738359<12> · 1156043727761581055051<22> · C153
C153 = P50 · P104
P50 = 50479019016684754981287962531941919871490137032437<50>
P104 = 12537453051487436307735149209875880318604212209305100871443655159262572184508170463967147425732527050177<104>
Number: 26669_187 N=632878331006826607892921413052373101493750270973351039252297873320440059704872140878402857753484859895707714576386291447104887955102355026445584175591349 ( 153 digits) SNFS difficulty: 187 digits. Divisors found: r1=50479019016684754981287962531941919871490137032437 (pp50) r2=12537453051487436307735149209875880318604212209305100871443655159262572184508170463967147425732527050177 (pp104) Version: Msieve-1.40 Total time: 154.81 hours. Scaled time: 313.18 units (timescale=2.023). Factorization parameters were as follows: n: 632878331006826607892921413052373101493750270973351039252297873320440059704872140878402857753484859895707714576386291447104887955102355026445584175591349 m: 20000000000000000000000000000000000000 deg: 5 c5: 25 c0: 7 skew: 0.78 type: snfs lss: 1 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4750000, 7550001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1798825 x 1799050 Total sieving time: 137.64 hours. Total relation processing time: 0.31 hours. Matrix solve time: 16.50 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,187.000,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,54,54,2.5,2.5,100000 total time: 154.81 hours. --------- CPU info (if available) ---------- [ 0.138978] CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.231791] CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.004000] Memory: 986784k/1014720k available (2225k kernel code, 27548k reserved, 1080k data, 392k init) [ 0.084027] Calibrating delay using timer specific routine.. 4004.64 BogoMIPS (lpj=8009297) [ 0.152009] Calibrating delay using timer specific routine.. 4000.15 BogoMIPS (lpj=8000305) [ 0.231806] Total of 2 processors activated (8004.80 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Aug 4, 2009
4·10213+9 = 4(0)2129<214> = 89 · 211 · C210
C210 = P40 · P57 · P114
P40 = 4912330291777329830182920462792184153201<40>
P57 = 209197765948292508715840081366263723462559353816430654219<57>
P114 = 207273092529491319737806399512561945738725389466995842008096844701461670330893312911176031446241487096666609893809<114>
Number: n N=213003887320943607220831780179988284786197348101602854252090100644336759145854411843016135044464561478246978007348634112572554449118696416209595825123808509505298471697108472229618190531977208584056659034027371 ( 210 digits) SNFS difficulty: 213 digits. Divisors found: Tue Aug 4 04:37:56 2009 prp40 factor: 4912330291777329830182920462792184153201 Tue Aug 4 04:37:56 2009 prp57 factor: 209197765948292508715840081366263723462559353816430654219 Tue Aug 4 04:37:56 2009 prp114 factor: 207273092529491319737806399512561945738725389466995842008096844701461670330893312911176031446241487096666609893809 Tue Aug 4 04:37:56 2009 elapsed time 44:31:12 (Msieve 1.39 - dependency 7) Version: GGNFS-0.77.1-20050930-k8 Total time: 120.93 hours. Scaled time: 184.54 units (timescale=1.526). Factorization parameters were as follows: name: KA_4_0_212_9 n: 213003887320943607220831780179988284786197348101602854252090100644336759145854411843016135044464561478246978007348634112572554449118696416209595825123808509505298471697108472229618190531977208584056659034027371 m: 200000000000000000000000000000000000 deg: 6 c6: 125 c0: 18 skew: 0.72 type: snfs lss: 1 rlim: 26000000 alim: 26000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 26000000/26000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [13000000, 37049990) Primes: RFBsize:1624527, AFBsize:1624093, largePrimes:39831436 encountered Relations: rels:39025275, finalFF:1913417 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7571502 hash collisions in 47357091 relations Msieve: matrix is 4518042 x 4518290 (1229.8 MB) Total sieving time: 119.25 hours. Total relation processing time: 1.68 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,213,6,0,0,0,0,0,0,0,0,26000000,26000000,29,29,58,58,2.6,2.6,100000 total time: 120.93 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352036k/3407296k available (3118k kernel code, 53976k reserved, 1895k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830492) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Total of 4 processors activated (22643.70 BogoMIPS).
(53·10185-71)/9 = 5(8)1841<186> = 23 · 233 · C183
C183 = P45 · P138
P45 = 215325522097885785506678338135721202120862759<45>
P138 = 510333519255213660531524689794452061284434462061881762456420580789577174717938354675826912683331869019878654674813170859867374521644491401<138>
Number: n N=109887831477680330078165495220916008376355456034500632373369824386805166801434761875142543177624349484771205241442225954261781841554187141050361800501751985237710186394642449876635359 ( 183 digits) SNFS difficulty: 186 digits. Divisors found: Tue Aug 04 22:42:53 2009 prp45 factor: 215325522097885785506678338135721202120862759 Tue Aug 04 22:42:53 2009 prp138 factor: 510333519255213660531524689794452061284434462061881762456420580789577174717938354675826912683331869019878654674813170859867374521644491401 Tue Aug 04 22:42:53 2009 elapsed time 03:07:10 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 125.56 hours. Scaled time: 333.98 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_8_184_1 n: 109887831477680330078165495220916008376355456034500632373369824386805166801434761875142543177624349484771205241442225954261781841554187141050361800501751985237710186394642449876635359 m: 10000000000000000000000000000000000000 deg: 5 c5: 53 c0: -71 skew: 1.06 type: snfs lss: 1 rlim: 9200000 alim: 9200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 9200000/9200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4600000, 6800333) Primes: RFBsize:614917, AFBsize:614931, largePrimes:21290734 encountered Relations: rels:21649629, finalFF:1102807 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2166378 hash collisions in 23132561 relations Msieve: matrix is 1494834 x 1495082 (404.5 MB) Total sieving time: 124.87 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9200000,9200000,28,28,56,56,2.5,2.5,100000 total time: 125.56 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Aug 4, 2009
(8·10173-71)/9 = (8)1721<173> = 32 · 13 · 17 · 43 · 73819349 · 689479898902332034363<21> · C140
C140 = P41 · P99
P41 = 33715138294680734832618454572413769091987<41>
P99 = 605658021115666294214978686237465472994827629075929272382467836621789553075490427237044226574344187<99>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 20419843941197353791040696092597137963865400866495972289330486942965055929496647996235911574909705507595684650681311127191200053805001729569 (140 digits) Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=5942098668 Step 1 took 996ms Step 2 took 562ms ********** Factor found in step 2: 33715138294680734832618454572413769091987 Found probable prime factor of 41 digits: 33715138294680734832618454572413769091987 Probable prime cofactor 605658021115666294214978686237465472994827629075929272382467836621789553075490427237044226574344187 has 99 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 3, 2009
(49·10168-13)/9 = 5(4)1673<169> = 23 · 1447 · 11261 · 12853 · 2308951277<10> · 5036853781320968279371<22> · C125
C125 = P46 · P80
P46 = 4436645900924865896891648618121442838385371837<46>
P80 = 21905181562068919290990994467028446773934788898829226150669261394310130185658329<80>
Number: 54443_168 N=97185533986368021681783378062396574919435537754075193262983788450856674826360508129284134177950827777893612589454003301080373 ( 125 digits) SNFS difficulty: 171 digits. Divisors found: r1=4436645900924865896891648618121442838385371837 r2=21905181562068919290990994467028446773934788898829226150669261394310130185658329 Version: Total time: 46.73 hours. Scaled time: 111.36 units (timescale=2.383). Factorization parameters were as follows: n: 97185533986368021681783378062396574919435537754075193262983788450856674826360508129284134177950827777893612589454003301080373 m: 10000000000000000000000000000000000 deg: 5 c5: 49 c0: -1300 skew: 1.93 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3100000, 6600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11417062 Max relations in full relation-set: Initial matrix: Pruned matrix : 1034547 x 1034795 Total sieving time: 42.04 hours. Total relation processing time: 2.01 hours. Matrix solve time: 2.54 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.4,2.4,100000 total time: 46.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Justin Card / ggnfs, msieve 1.42 / Aug 3, 2009
(56·10170-11)/9 = 6(2)1691<171> = 3 · 761 · 4228649 · 10979083 · 1343420723<10> · 12114269027672661198796230498491836711<38> · C108
C108 = P49 · P60
P49 = 1944800934677037047463766918371467712069304130887<49>
P60 = 185475900387806551829482684307834368733260784549539663636751<60>
Number: 62221_170 N=360713704434271200183541622591615185634374495249172894015298812631314181864019058110537097267991345727428137 ( 108 digits) Divisors found: r1=1944800934677037047463766918371467712069304130887 (pp49) r2=185475900387806551829482684307834368733260784549539663636751 (pp60) Version: Msieve-1.40 Total time: 8.69 hours. Scaled time: 17.57 units (timescale=2.021). Factorization parameters were as follows: n: 360713704434271200183541622591615185634374495249172894015298812631314181864019058110537097267991345727428137 skew: 33882.38 Y0: -844453122631185029679 Y1: 158724253097 c0: 3030270268952056684732360 c1: 1682226644659762561296 c2: -88344194390410036 c3: 2546804784059 c4: 57899656 c5: 840 type: gnfs Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 328483 x 328708 Total sieving time: 8.15 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.26 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 8.69 hours. --------- CPU info (if available) ---------- [ 0.138978] CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.231791] CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.004000] Memory: 986784k/1014720k available (2225k kernel code, 27548k reserved, 1080k data, 392k init) [ 0.084027] Calibrating delay using timer specific routine.. 4004.64 BogoMIPS (lpj=8009297) [ 0.152009] Calibrating delay using timer specific routine.. 4000.15 BogoMIPS (lpj=8000305) [ 0.231806] Total of 2 processors activated (8004.80 BogoMIPS).
By Serge Batalov / PFGW 3.2 / Aug 2, 2009
(4·10103703-1)/3 = 1(3)103703<103704> is PRP.
This is the largest unprovable near-repdigit PRP in our tables so far. Congratulations!
By Justin Card / ggnfs, msieve / Aug 2, 2009
(8·10182+7)/3 = 2(6)1819<183> = 146833703 · 769436999 · 22087156719475884876001<23> · C144
C144 = P49 · P95
P49 = 1313874628553225970702945084785841581827031259121<49>
P95 = 81334757462238608757273597406493936479682614546275200441982222523538919383871427624411039249037<95>
Number: 26669_182 N=106863674249165476277135950768201346179664064572388256062379170668048285931254966336140306142687056863527571470316756489216772473680220396716477 ( 144 digits) SNFS difficulty: 182 digits. Divisors found: r1=1313874628553225970702945084785841581827031259121 (pp49) r2=81334757462238608757273597406493936479682614546275200441982222523538919383871427624411039249037 (pp95) Version: Msieve-1.40 Total time: 108.67 hours. Scaled time: 219.84 units (timescale=2.023). Factorization parameters were as follows: n: 106863674249165476277135950768201346179664064572388256062379170668048285931254966336140306142687056863527571470316756489216772473680220396716477 m: 2000000000000000000000000000000000000 deg: 5 c5: 25 c0: 7 skew: 0.78 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3900000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1285649 x 1285897 Total sieving time: 100.57 hours. Total relation processing time: 0.37 hours. Matrix solve time: 7.27 hours. Time per square root: 0.46 hours. Prototype def-par.txt line would be: snfs,182.000,5,0,0,0,0,0,0,0,0,7800000,7800000,28,28,53,53,2.5,2.5,100000 total time: 108.67 hours. --------- CPU info (if available) ---------- [ 0.138978] CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.231791] CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.004000] Memory: 986784k/1014720k available (2225k kernel code, 27548k reserved, 1080k data, 392k init) [ 0.084027] Calibrating delay using timer specific routine.. 4004.64 BogoMIPS (lpj=8009297) [ 0.152009] Calibrating delay using timer specific routine.. 4000.15 BogoMIPS (lpj=8000305) [ 0.231806] Total of 2 processors activated (8004.80 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Aug 2, 2009
(13·10184+41)/9 = 1(4)1839<185> = 163 · 1579 · C179
C179 = P71 · P108
P71 = 92587192841326317904370509461876612279913187413506323373335331228760777<71>
P108 = 606150114546001300708435303470338784608990441248267320938295610733948093243853858789867890785546836431405881<108>
Number: n N=56121737546262659229241324766565949733054796832834497427681744850722653712042818295513757812253792858120362131987102361300521975329747586009800582198271191460171050421927539929537 ( 179 digits) SNFS difficulty: 185 digits. Divisors found: Sun Aug 02 08:53:24 2009 prp71 factor: 92587192841326317904370509461876612279913187413506323373335331228760777 Sun Aug 02 08:53:24 2009 prp108 factor: 606150114546001300708435303470338784608990441248267320938295610733948093243853858789867890785546836431405881 Sun Aug 02 08:53:24 2009 elapsed time 03:35:50 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 147.60 hours. Scaled time: 384.64 units (timescale=2.606). Factorization parameters were as follows: name: KA_1_4_183_9 n: 56121737546262659229241324766565949733054796832834497427681744850722653712042818295513757812253792858120362131987102361300521975329747586009800582198271191460171050421927539929537 m: 5000000000000000000000000000000000000 deg: 5 c5: 208 c0: 205 skew: 1.00 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4400000, 7035647) Primes: RFBsize:590006, AFBsize:590266, largePrimes:21302773 encountered Relations: rels:21438521, finalFF:1122149 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2374612 hash collisions in 23329475 relations Msieve: matrix is 1562449 x 1562697 (420.7 MB) Total sieving time: 146.75 hours. Total relation processing time: 0.84 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,56,56,2.5,2.5,100000 total time: 147.60 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Aug 1, 2009
(29·10168-11)/9 = 3(2)1671<169> = 47 · 1354711 · 33098700893973541<17> · 80197477465388443<17> · C128
C128 = P46 · P83
P46 = 1100732423272300277487241527837358243053560351<46>
P83 = 17320385646653016613128923249554916759743959254925800399695761532181811650257807901<83>
Number: 32221_168 N=19065110064851142634598305011711690781910600659166456675477203921277050640697856822512892845451487883248668975816575374668133251 ( 128 digits) SNFS difficulty: 171 digits. Divisors found: r1=1100732423272300277487241527837358243053560351 r2=17320385646653016613128923249554916759743959254925800399695761532181811650257807901 Version: Total time: 45.11 hours. Scaled time: 107.72 units (timescale=2.388). Factorization parameters were as follows: n: 19065110064851142634598305011711690781910600659166456675477203921277050640697856822512892845451487883248668975816575374668133251 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: -1100 skew: 2.07 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 6400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11391845 Max relations in full relation-set: Initial matrix: Pruned matrix : 1021901 x 1022149 Total sieving time: 40.54 hours. Total relation processing time: 1.96 hours. Matrix solve time: 2.48 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.4,2.4,100000 total time: 45.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Wataru Sakai / GMP-ECM 6.2.1 / Aug 1, 2009
(56·10170-11)/9 = 6(2)1691<171> = 3 · 761 · 4228649 · 10979083 · 1343420723<10> · C145
C145 = P38 · C108
P38 = 12114269027672661198796230498491836711<38>
C108 = [360713704434271200183541622591615185634374495249172894015298812631314181864019058110537097267991345727428137<108>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2365907108 Step 1 took 47029ms Step 2 took 15502ms ********** Factor found in step 2: 12114269027672661198796230498491836711 Found probable prime factor of 38 digits: 12114269027672661198796230498491836711 Composite cofactor 360713704434271200183541622591615185634374495249172894015298812631314181864019058110537097267991345727428137 has 108 digits
By Wataru Sakai / GMP-ECM 6.2.1 / Jul 31, 2009
(28·10171+53)/9 = 3(1)1707<172> = 32 · 23 · 70791068989559<14> · 7208176534331825153<19> · C137
C137 = P38 · P99
P38 = 57051566739178370843228849594143099081<38>
P99 = 516266227940538332202888300931167534392439128247533459514322573271390395942085268059433207374745613<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1536419490 Step 1 took 42867ms Step 2 took 14840ms ********** Factor found in step 2: 57051566739178370843228849594143099081 Found probable prime factor of 38 digits: 57051566739178370843228849594143099081 Probable prime cofactor 516266227940538332202888300931167534392439128247533459514322573271390395942085268059433207374745613 has 99 digits
By Justin Card / ggnfs, msieve / Jul 31, 2009
(8·10184+7)/3 = 2(6)1839<185> = 23 · 3331 · 9974131 · 44534953 · 560165357 · 10490142307214064479640205122143<32> · C126
C126 = P52 · P74
P52 = 1840576491455917515487089567659492600807511867287417<52>
P74 = 72450051758129853557618859992660448536058606321454023390500476783160491073<74>
Number: 26669_184 N=133349862070778274177903595909790086247733391434306851920325896211332328606192378743990711854039144978397117642580702153728441 ( 126 digits) Divisors found: r1=1840576491455917515487089567659492600807511867287417 (pp52) r2=72450051758129853557618859992660448536058606321454023390500476783160491073 (pp74) Version: Msieve-1.40 Total time: 62.14 hours. Scaled time: 124.59 units (timescale=2.005). Factorization parameters were as follows: # Murphy_E = 1.553772e-10, selected by Jeff Gilchrist n: 133349862070778274177903595909790086247733391434306851920325896211332328606192378743990711854039144978397117642580702153728441 Y0: -1383792360506376182622027 Y1: 36174105794699 c0: -25094862387985409537622023408320 c1: 497422368223576071131877836 c2: -3851721490457031123500 c3: 1380029445101797 c4: 29089581582 c5: 26280 skew: 376543.69 type: gnfs # selected mechanically rlim: 7200000 alim: 7200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [3600000, 6800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 971988 x 972236 Total sieving time: 57.96 hours. Total relation processing time: 0.24 hours. Matrix solve time: 3.70 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7200000,7200000,27,27,53,53,2.5,2.5,100000 total time: 62.14 hours. --------- CPU info (if available) ---------- [ 0.138880] CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.231790] CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.004000] Memory: 986784k/1014720k available (2225k kernel code, 27548k reserved, 1080k data, 392k init) [ 0.084029] Calibrating delay using timer specific routine.. 4004.53 BogoMIPS (lpj=8009076) [ 0.152009] Calibrating delay using timer specific routine.. 4000.15 BogoMIPS (lpj=8000316) [ 0.231806] Total of 2 processors activated (8004.69 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.2.1 / Jul 30, 2009
(28·10172+71)/9 = 3(1)1719<173> = 3 · 112 · 19 · 199 · 2063 · 1071859429<10> · 987784778531<12> · 3787644855281754211<19> · C124
C124 = P39 · P41 · P46
P39 = 145981945043538922447045171242551767513<39>
P41 = 12106747692684234696061311650272036055929<41>
P46 = 1550268564261924241434791929036957421411556307<46>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1284649349 Step 1 took 34253ms Step 2 took 4413ms ********** Factor found in step 2: 145981945043538922447045171242551767513 Found probable prime factor of 39 digits: 145981945043538922447045171242551767513 Composite cofactor 18768710363418952533350681677121336057034379650028828291507491066449182303657984694203 has 86 digits ----------------- Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3517402920 Step 1 took 20558ms Step 2 took 10567ms ********** Factor found in step 2: 12106747692684234696061311650272036055929 Found probable prime factor of 41 digits: 12106747692684234696061311650272036055929 Probable prime cofactor 1550268564261924241434791929036957421411556307 has 46 digits
By Robert Backstrom / GGNFS, Msieve / Jul 30, 2009
(55·10184+53)/9 = 6(1)1837<185> = 7 · 3701 · C181
C181 = P63 · P118
P63 = 299186033889093434494711100919736508233251687550293980333909521<63>
P118 = 7884274535829624751955048946137314807144323255787431031881040268248974228611948641297326772368968198018694299874423311<118>
Number: n N=2358864828467638518975995333736484776744166098394685263099205276995063539240788632844833871583398738221759026946814031385768754047597603393334276879264720388740923731466827927244031 ( 181 digits) SNFS difficulty: 186 digits. Divisors found: Thu Jul 30 08:47:27 2009 prp63 factor: 299186033889093434494711100919736508233251687550293980333909521 Thu Jul 30 08:47:27 2009 prp118 factor: 7884274535829624751955048946137314807144323255787431031881040268248974228611948641297326772368968198018694299874423311 Thu Jul 30 08:47:27 2009 elapsed time 02:59:55 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 197.17 hours. Scaled time: 513.83 units (timescale=2.606). Factorization parameters were as follows: name: KA_6_1_183_7 n: 2358864828467638518975995333736484776744166098394685263099205276995063539240788632844833871583398738221759026946814031385768754047597603393334276879264720388740923731466827927244031 m: 10000000000000000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4400000, 7801231) Primes: RFBsize:590006, AFBsize:590541, largePrimes:21231701 encountered Relations: rels:21472492, finalFF:1016701 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2220134 hash collisions in 23704512 relations Msieve: matrix is 1468917 x 1469164 (396.3 MB) Total sieving time: 196.53 hours. Total relation processing time: 0.65 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,56,56,2.5,2.5,100000 total time: 197.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jul 30, 2009
(38·10168+7)/9 = 4(2)1673<169> = 41 · 3109 · 352271 · 78050827122051106417692700691<29> · C130
C130 = P62 · P68
P62 = 44517847976265306807164707134605905018604880543571240978940213<62>
P68 = 27061255665644746692439217262915386433661197680520042446537611351019<68>
Number: 42223_168 N=1204708865770021054615557951951723014686056920324982297118240921405162844773742860832148665618930386587825784814043462037757627047 ( 130 digits) SNFS difficulty: 171 digits. Divisors found: r1=44517847976265306807164707134605905018604880543571240978940213 r2=27061255665644746692439217262915386433661197680520042446537611351019 Version: Total time: 39.74 hours. Scaled time: 95.03 units (timescale=2.391). Factorization parameters were as follows: n: 1204708865770021054615557951951723014686056920324982297118240921405162844773742860832148665618930386587825784814043462037757627047 m: 10000000000000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11347850 Max relations in full relation-set: Initial matrix: Pruned matrix : 962055 x 962303 Total sieving time: 35.98 hours. Total relation processing time: 1.72 hours. Matrix solve time: 1.93 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.4,2.4,100000 total time: 39.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Justin Card / GGNFS, Msieve / Jul 29, 2009
(25·10193-61)/9 = 2(7)1921<194> = 3 · 7 · 73883 · 26925317 · 19159973142181<14> · 284017799510891<15> · 80485311297327121853982640517<29> · C124
C124 = P54 · P71
P54 = 128613570680091058920064785055072809139946797083167593<54>
P71 = 11803993992833193782465781270323656372348977417985328398765195618890491<71>
Number: 27771_193 N=1518153815704622240936737904859078621016147552740776785285576396386699185397561525934124104891750356941221401004594467058163 ( 124 digits) Divisors found: r1=128613570680091058920064785055072809139946797083167593 (pp54) r2=11803993992833193782465781270323656372348977417985328398765195618890491 (pp71) Version: Msieve-1.40 Total time: 58.22 hours. Scaled time: 117.89 units (timescale=2.025). Factorization parameters were as follows: # Murphy_E = 1.861264e-10, selected by Jeff Gilchrist n: 1518153815704622240936737904859078621016147552740776785285576396386699185397561525934124104891750356941221401004594467058163 Y0: -609424693195493084629365 Y1: 14285840635807 c0: 449801078557326487786247371904 c1: 56040688801503068267930764 c2: 249106677690281349198 c3: -2249875713199399 c4: -3915672212 c5: 18060 skew: 221678.63 type: gnfs # selected mechanically rlim: 6400000 alim: 6400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3200000, 6300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 884389 x 884637 Total sieving time: 54.32 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.21 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6400000,6400000,27,27,52,52,2.5,2.5,100000 total time: 58.22 hours. --------- CPU info (if available) ---------- [ 0.138880] CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.231790] CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 3600+ stepping 01 [ 0.004000] Memory: 986784k/1014720k available (2225k kernel code, 27548k reserved, 1080k data, 392k init) [ 0.084029] Calibrating delay using timer specific routine.. 4004.53 BogoMIPS (lpj=8009076) [ 0.152009] Calibrating delay using timer specific routine.. 4000.15 BogoMIPS (lpj=8000316) [ 0.231806] Total of 2 processors activated (8004.69 BogoMIPS).
By matsui / Msieve / Jul 29, 2009
9·10188-7 = 8(9)1873<189> = 6689591 · C183
C183 = P61 · P122
P61 = 2889983980206166400633343347830421444067318005274107662508507<61>
P122 = 46552982294567003262611165131940242875979617104663519183548141215584144647077930746442394215984131576858766423362881560989<122>
N=134537373062119941263972640479814087288744558523832025007208960906578593519394533985710038177221895927568666006636280155244169636080890446067629545662806590118887686855594011651833423 ( 183 digits) SNFS difficulty: 190 digits. Divisors found: r1=2889983980206166400633343347830421444067318005274107662508507 (pp61) r2=46552982294567003262611165131940242875979617104663519183548141215584144647077930746442394215984131576858766423362881560989 (pp122) Version: Msieve v. 1.42 Total time: 288.28 hours. Scaled time: 646.03 units (timescale=2.241). Factorization parameters were as follows: n: 134537373062119941263972640479814087288744558523832025007208960906578593519394533985710038177221895927568666006636280155244169636080890446067629545662806590118887686855594011651833423 m: 50000000000000000000000000000000000000 deg: 5 c5: 72 c0: -175 skew: 1.19 type: snfs lss: 1 rlim: 10400000 alim: 10400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10400000/10400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5200000, 9700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2068834 x 2069058 Total sieving time: 279.68 hours. Total relation processing time: 0.16 hours. Matrix solve time: 7.81 hours. Time per square root: 0.62 hours. Prototype def-par.txt line would be: snfs,190.000,5,0,0,0,0,0,0,0,0,10400000,10400000,28,28,54,54,2.5,2.5,100000 total time: 288.28 hours.
By Andreas Tete / GMP-ECM / Jul 29, 2009
(31·10178-13)/9 = 3(4)1773<179> = 3 · 1353967 · C172
C172 = P37 · P135
P37 = 9537440536427082503420258687477304493<37>
P135 = 889115142825712264336270323676477942025280940056505408267252597985808653661232222615018940714817662000729558352000823164963884428325251<135>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2445707087 Step 1 took 18922ms Step 2 took 7161ms ********** Factor found in step 2: 9537440536427082503420258687477304493 Found probable prime factor of 37 digits: 9537440536427082503420258687477304493 Probable prime cofactor 889115142825712264336270323676477942025280940056505408267252597985808653661232222615018940714817662000729558352000823164963884428325251
By Jo Yeong Uk / GGNFS / Msieve v1.39 / Jul 28, 2009
(34·10168+11)/9 = 3(7)1679<169> = 112010779 · 1237487765219969<16> · 216088201207134256529<21> · C126
C126 = P56 · P70
P56 = 21007045637904397929220783078171057473056938111949250991<56>
P70 = 6003985612856955994763940375687682631208042011489199930435766202839511<70>
Number: 37779_168 N=126125999778607480690246033713828018537651058546696590725316441020016541300976869122526673281587490530406309722393433830705401 ( 126 digits) SNFS difficulty: 171 digits. Divisors found: r1=21007045637904397929220783078171057473056938111949250991 r2=6003985612856955994763940375687682631208042011489199930435766202839511 Version: Total time: 32.90 hours. Scaled time: 78.31 units (timescale=2.380). Factorization parameters were as follows: n: 126125999778607480690246033713828018537651058546696590725316441020016541300976869122526673281587490530406309722393433830705401 m: 10000000000000000000000000000000000 deg: 5 c5: 17 c0: 550 skew: 2.00 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2900000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10879636 Max relations in full relation-set: Initial matrix: Pruned matrix : 958587 x 958835 Total sieving time: 29.47 hours. Total relation processing time: 1.34 hours. Matrix solve time: 1.97 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.4,2.4,100000 total time: 32.90 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Robert Backstrom / GGNFS, Msieve / Jul 27, 2009
(31·10183-13)/9 = 3(4)1823<184> = 11 · 6271 · C179
C179 = P90 · P90
P90 = 100207618408818769953369343053477573985594867867454028216858231374779324945945217331537721<90>
P90 = 498297786397843298786484049159684239369074605709847311257469554644236411505194367194905543<90>
Number: n N=49933234433314165414308932089190421194886192494229489923956516206556072606144365034494200496432995237013734860968157093177026202062081507146090147206396608405857329473977536487503 ( 179 digits) SNFS difficulty: 185 digits. Divisors found: Mon Jul 27 21:53:00 2009 prp90 factor: 100207618408818769953369343053477573985594867867454028216858231374779324945945217331537721 Mon Jul 27 21:53:00 2009 prp90 factor: 498297786397843298786484049159684239369074605709847311257469554644236411505194367194905543 Mon Jul 27 21:53:00 2009 elapsed time 03:09:48 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 179.90 hours. Scaled time: 474.76 units (timescale=2.639). Factorization parameters were as follows: name: KA_3_4_182_3 n: 49933234433314165414308932089190421194886192494229489923956516206556072606144365034494200496432995237013734860968157093177026202062081507146090147206396608405857329473977536487503 m: 5000000000000000000000000000000000000 deg: 5 c5: 248 c0: -325 skew: 1.06 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4400000, 7600193) Primes: RFBsize:590006, AFBsize:590071, largePrimes:20924935 encountered Relations: rels:20804592, finalFF:1225824 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1977048 hash collisions in 22136093 relations Msieve: matrix is 1499067 x 1499315 (407.0 MB) Total sieving time: 179.24 hours. Total relation processing time: 0.66 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,56,56,2.5,2.5,100000 total time: 179.90 hours. --------- CPU info (if available) ----------
Two P90s are the second largest nice split so far in our tables. Congratulations!
(2·10209+1)/3 = (6)2087<209> = 409 · C207
C207 = P88 · P119
P88 = 2052187685408499669360164389950216452837367795140694640921654294506879070840299204220861<88>
P119 = 79427035920269184206421164842740391735969944599658873023811379866142644488461289389623308760621268628589866983939306783<119>
Number: n N=162999185004074979625101874490627546862265688671556642216788916055419722901385493072534637326813365933170334148329258353708231458842705786471067644661776691116544417277913610431947840260798696006519967400163 ( 207 digits) SNFS difficulty: 210 digits. Divisors found: Mon Jul 27 22:21:24 2009 prp88 factor: 2052187685408499669360164389950216452837367795140694640921654294506879070840299204220861 Mon Jul 27 22:21:24 2009 prp119 factor: 79427035920269184206421164842740391735969944599658873023811379866142644488461289389623308760621268628589866983939306783 Mon Jul 27 22:21:24 2009 elapsed time 20:52:07 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20050930-k8 Total time: 48.98 hours. Scaled time: 98.64 units (timescale=2.014). Factorization parameters were as follows: name: KA_6_208_7 n: 162999185004074979625101874490627546862265688671556642216788916055419722901385493072534637326813365933170334148329258353708231458842705786471067644661776691116544417277913610431947840260798696006519967400163 m: 1000000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 5 skew: 1.38 type: snfs lss: 1 rlim: 22000000 alim: 22000000 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 25000000/25000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [12500000, 23001929) Primes: RFBsize:1565927, AFBsize:1565758, largePrimes:40927685 encountered Relations: rels:42499863, finalFF:3067740 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 6259415 hash collisions in 46321697 relations Msieve: matrix is 3453945 x 3454193 (931.6 MB) Total sieving time: 47.74 hours. Total relation processing time: 1.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,210,5,0,0,0,0,0,0,0,0,25000000,25000000,29,29,58,58,2.6,2.6,100000 total time: 48.98 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352036k/3407296k available (3118k kernel code, 53976k reserved, 1895k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.51 BogoMIPS (lpj=2830757) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Total of 4 processors activated (22644.23 BogoMIPS).
By Justin Card / cado-nfs for sieving, msieve 1.43 for postprocessing / Jul 27, 2009
(10188+17)/9 = (1)1873<188> = 13 · 31 · 80423813 · 11725919509<11> · C167
C167 = P69 · P99
P69 = 101101428297969763167582651911552568964064074821357008687845402353373<69>
P99 = 289176891454586933473472026592329087156730099564830191435580236364586283574771523426365696790224631<99>
sieve over 6 days, Sat Jul 25 19:12:35 2009 Sat Jul 25 19:12:35 2009 Sat Jul 25 19:12:35 2009 Msieve v. 1.43 Sat Jul 25 19:12:35 2009 random seeds: d9fcc312 d1ea6900 Sat Jul 25 19:12:35 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:12:39 2009 Sat Jul 25 19:12:39 2009 Sat Jul 25 19:12:39 2009 Msieve v. 1.43 Sat Jul 25 19:12:39 2009 random seeds: ed3f30ae 2d551ca1 Sat Jul 25 19:12:39 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:12:41 2009 searching for 15-digit factors Sat Jul 25 19:12:41 2009 commencing number field sieve (167-digit input) Sat Jul 25 19:12:41 2009 R0: -20000000000000000000000000000000000000 Sat Jul 25 19:12:41 2009 R1: 1 Sat Jul 25 19:12:41 2009 A0: 68 Sat Jul 25 19:12:41 2009 A1: 0 Sat Jul 25 19:12:41 2009 A2: 0 Sat Jul 25 19:12:41 2009 A3: 0 Sat Jul 25 19:12:41 2009 A4: 0 Sat Jul 25 19:12:41 2009 A5: 125 Sat Jul 25 19:12:41 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sat Jul 25 19:12:41 2009 Sat Jul 25 19:12:41 2009 commencing relation filtering Sat Jul 25 19:12:41 2009 estimated available RAM is 972.2 MB Sat Jul 25 19:12:41 2009 commencing duplicate removal, pass 1 Sat Jul 25 19:15:39 2009 found 151952 hash collisions in 18139084 relations Sat Jul 25 19:17:00 2009 added 675602 free relations Sat Jul 25 19:17:00 2009 commencing duplicate removal, pass 2 Sat Jul 25 19:17:23 2009 found 0 duplicates and 18814686 unique relations Sat Jul 25 19:17:23 2009 memory use: 132.2 MB Sat Jul 25 19:17:23 2009 reading ideals above 10551296 Sat Jul 25 19:17:30 2009 commencing singleton removal, initial pass Sat Jul 25 19:21:37 2009 memory use: 298.4 MB Sat Jul 25 19:21:37 2009 reading all ideals from disk Sat Jul 25 19:21:41 2009 memory use: 369.4 MB Sat Jul 25 19:21:44 2009 commencing in-memory singleton removal Sat Jul 25 19:21:47 2009 begin with 18814686 relations and 19739995 unique ideals Sat Jul 25 19:22:13 2009 reduce to 7464939 relations and 5902802 ideals in 19 passes Sat Jul 25 19:22:13 2009 max relations containing the same ideal: 30 Sat Jul 25 19:22:14 2009 reading ideals above 100000 Sat Jul 25 19:22:14 2009 commencing singleton removal, initial pass Sat Jul 25 19:24:22 2009 memory use: 149.2 MB Sat Jul 25 19:24:22 2009 reading all ideals from disk Sat Jul 25 19:24:27 2009 memory use: 287.9 MB Sat Jul 25 19:24:29 2009 keeping 7293870 ideals with weight <= 200, target excess is 40024 Sat Jul 25 19:24:31 2009 commencing in-memory singleton removal Sat Jul 25 19:24:34 2009 begin with 7470460 relations and 7293870 unique ideals Sat Jul 25 19:24:51 2009 reduce to 7462644 relations and 7259412 ideals in 8 passes Sat Jul 25 19:24:51 2009 max relations containing the same ideal: 200 Sat Jul 25 19:25:02 2009 removing 783390 relations and 704988 ideals in 78402 cliques Sat Jul 25 19:25:02 2009 commencing in-memory singleton removal Sat Jul 25 19:25:04 2009 begin with 6679254 relations and 7259412 unique ideals Sat Jul 25 19:25:26 2009 reduce to 6620572 relations and 6494876 ideals in 11 passes Sat Jul 25 19:25:26 2009 max relations containing the same ideal: 190 Sat Jul 25 19:25:35 2009 removing 562841 relations and 484439 ideals in 78402 cliques Sat Jul 25 19:25:36 2009 commencing in-memory singleton removal Sat Jul 25 19:25:38 2009 begin with 6057731 relations and 6494876 unique ideals Sat Jul 25 19:25:52 2009 reduce to 6024322 relations and 5976634 ideals in 8 passes Sat Jul 25 19:25:52 2009 max relations containing the same ideal: 180 Sat Jul 25 19:26:03 2009 relations with 0 large ideals: 704 Sat Jul 25 19:26:03 2009 relations with 1 large ideals: 76 Sat Jul 25 19:26:03 2009 relations with 2 large ideals: 1129 Sat Jul 25 19:26:03 2009 relations with 3 large ideals: 14195 Sat Jul 25 19:26:03 2009 relations with 4 large ideals: 101657 Sat Jul 25 19:26:03 2009 relations with 5 large ideals: 427840 Sat Jul 25 19:26:03 2009 relations with 6 large ideals: 1150165 Sat Jul 25 19:26:03 2009 relations with 7+ large ideals: 4328556 Sat Jul 25 19:26:03 2009 commencing 2-way merge Sat Jul 25 19:26:15 2009 reduce to 3653878 relation sets and 3606190 unique ideals Sat Jul 25 19:26:15 2009 commencing full merge Sat Jul 25 19:28:47 2009 memory use: 449.3 MB Sat Jul 25 19:28:48 2009 found 1907384 cycles, need 1902390 Sat Jul 25 19:28:51 2009 weight of 1902390 cycles is about 133337095 (70.09/cycle) Sat Jul 25 19:28:51 2009 distribution of cycle lengths: Sat Jul 25 19:28:51 2009 1 relations: 218410 Sat Jul 25 19:28:51 2009 2 relations: 247296 Sat Jul 25 19:28:51 2009 3 relations: 242476 Sat Jul 25 19:28:51 2009 4 relations: 209739 Sat Jul 25 19:28:51 2009 5 relations: 179661 Sat Jul 25 19:28:51 2009 6 relations: 147072 Sat Jul 25 19:28:51 2009 7 relations: 124095 Sat Jul 25 19:28:51 2009 8 relations: 103425 Sat Jul 25 19:28:51 2009 9 relations: 85413 Sat Jul 25 19:28:51 2009 10+ relations: 344803 Sat Jul 25 19:28:51 2009 heaviest cycle: 27 relations Sat Jul 25 19:28:51 2009 commencing cycle optimization Sat Jul 25 19:28:57 2009 start with 11102912 relations Sat Jul 25 19:29:48 2009 pruned 252249 relations Sat Jul 25 19:29:48 2009 memory use: 362.4 MB Sat Jul 25 19:29:48 2009 distribution of cycle lengths: Sat Jul 25 19:29:48 2009 1 relations: 218410 Sat Jul 25 19:29:48 2009 2 relations: 252454 Sat Jul 25 19:29:48 2009 3 relations: 250838 Sat Jul 25 19:29:48 2009 4 relations: 213542 Sat Jul 25 19:29:48 2009 5 relations: 182810 Sat Jul 25 19:29:48 2009 6 relations: 147901 Sat Jul 25 19:29:48 2009 7 relations: 123902 Sat Jul 25 19:29:48 2009 8 relations: 102741 Sat Jul 25 19:29:48 2009 9 relations: 84252 Sat Jul 25 19:29:48 2009 10+ relations: 325540 Sat Jul 25 19:29:48 2009 heaviest cycle: 27 relations Sat Jul 25 19:29:54 2009 RelProcTime: 1033 Sat Jul 25 19:29:54 2009 elapsed time 00:17:15 Sat Jul 25 19:30:08 2009 Sat Jul 25 19:30:08 2009 Sat Jul 25 19:30:08 2009 Msieve v. 1.43 Sat Jul 25 19:30:08 2009 random seeds: f59dc650 7a49ec57 Sat Jul 25 19:30:08 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:30:10 2009 searching for 15-digit factors Sat Jul 25 19:30:10 2009 commencing number field sieve (167-digit input) Sat Jul 25 19:30:10 2009 R0: -20000000000000000000000000000000000000 Sat Jul 25 19:30:10 2009 R1: 1 Sat Jul 25 19:30:10 2009 A0: 68 Sat Jul 25 19:30:10 2009 A1: 0 Sat Jul 25 19:30:10 2009 A2: 0 Sat Jul 25 19:30:10 2009 A3: 0 Sat Jul 25 19:30:10 2009 A4: 0 Sat Jul 25 19:30:10 2009 A5: 125 Sat Jul 25 19:30:10 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sat Jul 25 19:30:10 2009 Sat Jul 25 19:30:10 2009 commencing linear algebra Sat Jul 25 19:30:11 2009 read 1902390 cycles Sat Jul 25 19:30:16 2009 cycles contain 5965208 unique relations Sat Jul 25 19:32:01 2009 read 5965208 relations Sat Jul 25 19:33:00 2009 using 20 quadratic characters above 268434500 Sat Jul 25 19:33:58 2009 building initial matrix Sat Jul 25 19:36:15 2009 memory use: 732.8 MB Sat Jul 25 19:36:20 2009 read 1902390 cycles Sat Jul 25 19:36:28 2009 matrix is 1902213 x 1902390 (570.9 MB) with weight 169455496 (89.08/col) Sat Jul 25 19:36:28 2009 sparse part has weight 128720555 (67.66/col) Sat Jul 25 19:37:31 2009 filtering completed in 2 passes Sat Jul 25 19:37:32 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:37:32 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:38:00 2009 read 1901778 cycles Sat Jul 25 19:38:09 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:38:09 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:38:09 2009 saving the first 48 matrix rows for later Sat Jul 25 19:38:11 2009 matrix is 1901554 x 1901778 (541.8 MB) with weight 134697483 (70.83/col) Sat Jul 25 19:38:11 2009 sparse part has weight 123006791 (64.68/col) Sat Jul 25 19:38:11 2009 matrix includes 64 packed rows Sat Jul 25 19:38:11 2009 using block size 10922 for processor cache size 256 kB Sat Jul 25 19:38:23 2009 commencing Lanczos iteration Sat Jul 25 19:38:23 2009 memory use: 538.2 MB Sat Jul 25 19:39:31 2009 lanczos halted after 23 iterations (dim = 1460) Sat Jul 25 19:39:31 2009 BLanczosTime: 561 Sat Jul 25 19:39:31 2009 elapsed time 00:09:23 Sat Jul 25 19:40:06 2009 Sat Jul 25 19:40:06 2009 Sat Jul 25 19:40:06 2009 Msieve v. 1.43 Sat Jul 25 19:40:06 2009 random seeds: eb58ec47 f7b10534 Sat Jul 25 19:40:06 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sat Jul 25 19:40:08 2009 searching for 15-digit factors Sat Jul 25 19:40:08 2009 commencing number field sieve (167-digit input) Sat Jul 25 19:40:08 2009 R0: -20000000000000000000000000000000000000 Sat Jul 25 19:40:08 2009 R1: 1 Sat Jul 25 19:40:08 2009 A0: 68 Sat Jul 25 19:40:08 2009 A1: 0 Sat Jul 25 19:40:08 2009 A2: 0 Sat Jul 25 19:40:08 2009 A3: 0 Sat Jul 25 19:40:08 2009 A4: 0 Sat Jul 25 19:40:08 2009 A5: 125 Sat Jul 25 19:40:08 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sat Jul 25 19:40:08 2009 Sat Jul 25 19:40:08 2009 commencing linear algebra Sat Jul 25 19:40:09 2009 read 1901778 cycles Sat Jul 25 19:40:14 2009 cycles contain 5965168 unique relations Sat Jul 25 19:41:38 2009 read 5965168 relations Sat Jul 25 19:42:42 2009 using 20 quadratic characters above 268434500 Sat Jul 25 19:43:41 2009 building initial matrix Sat Jul 25 19:46:58 2009 memory use: 732.8 MB Sat Jul 25 19:47:03 2009 read 1901778 cycles Sat Jul 25 19:47:11 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:47:11 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:47:41 2009 filtering completed in 1 passes Sat Jul 25 19:47:42 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:47:42 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:48:09 2009 read 1901778 cycles Sat Jul 25 19:48:17 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sat Jul 25 19:48:17 2009 sparse part has weight 128715828 (67.68/col) Sat Jul 25 19:48:18 2009 saving the first 48 matrix rows for later Sat Jul 25 19:48:19 2009 matrix is 1901554 x 1901778 (541.8 MB) with weight 134697483 (70.83/col) Sat Jul 25 19:48:19 2009 sparse part has weight 123006791 (64.68/col) Sat Jul 25 19:48:19 2009 matrix includes 64 packed rows Sat Jul 25 19:48:19 2009 using block size 10922 for processor cache size 256 kB Sat Jul 25 19:48:31 2009 commencing Lanczos iteration (2 threads) Sat Jul 25 19:48:31 2009 memory use: 552.7 MB Sun Jul 26 15:44:14 2009 Sun Jul 26 15:44:14 2009 Sun Jul 26 15:44:14 2009 Msieve v. 1.43 Sun Jul 26 15:44:14 2009 random seeds: eccd68a9 d80b29f0 Sun Jul 26 15:44:14 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sun Jul 26 15:44:17 2009 searching for 15-digit factors Sun Jul 26 15:44:18 2009 commencing number field sieve (167-digit input) Sun Jul 26 15:44:19 2009 R0: -20000000000000000000000000000000000000 Sun Jul 26 15:44:19 2009 R1: 1 Sun Jul 26 15:44:19 2009 A0: 68 Sun Jul 26 15:44:19 2009 A1: 0 Sun Jul 26 15:44:19 2009 A2: 0 Sun Jul 26 15:44:19 2009 A3: 0 Sun Jul 26 15:44:19 2009 A4: 0 Sun Jul 26 15:44:19 2009 A5: 125 Sun Jul 26 15:44:19 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sun Jul 26 15:44:19 2009 Sun Jul 26 15:44:19 2009 commencing linear algebra Sun Jul 26 15:44:20 2009 read 1901778 cycles Sun Jul 26 15:45:51 2009 matrix is 1901602 x 1901778 (570.8 MB) with weight 169437007 (89.09/col) Sun Jul 26 15:45:51 2009 sparse part has weight 128715828 (67.68/col) Sun Jul 26 15:45:56 2009 saving the first 48 matrix rows for later Sun Jul 26 15:47:30 2009 matrix is 1901554 x 1901778 (541.8 MB) with weight 134697483 (70.83/col) Sun Jul 26 15:47:30 2009 sparse part has weight 123006791 (64.68/col) Sun Jul 26 15:47:30 2009 matrix includes 64 packed rows Sun Jul 26 15:47:30 2009 using block size 10922 for processor cache size 256 kB Sun Jul 26 15:51:08 2009 commencing Lanczos iteration Sun Jul 26 15:51:08 2009 memory use: 538.2 MB Sun Jul 26 15:51:15 2009 restarting at iteration 23725 (dim = 1500119) Sun Jul 26 16:14:59 2009 lanczos halted after 23730 iterations (dim = 1500436) Sun Jul 26 16:17:00 2009 BLanczosTime: 1961 Sun Jul 26 16:17:00 2009 elapsed time 00:32:46 Sun Jul 26 17:40:20 2009 lanczos halted after 30075 iterations (dim = 1901553) Sun Jul 26 17:40:29 2009 recovered 38 nontrivial dependencies Sun Jul 26 17:40:29 2009 BLanczosTime: 79221 Sun Jul 26 17:40:29 2009 elapsed time 22:00:23 Sun Jul 26 17:40:40 2009 Sun Jul 26 17:40:40 2009 Sun Jul 26 17:40:40 2009 Msieve v. 1.43 Sun Jul 26 17:40:40 2009 random seeds: 40f05cc9 dbd37a0e Sun Jul 26 17:40:40 2009 factoring 29236196756825705984570046178024533820243975892239644578877837946904172992070299514980635998415019069671574087205586916757001765454390541489468221491344352348710530363 (167 digits) Sun Jul 26 17:40:42 2009 searching for 15-digit factors Sun Jul 26 17:40:43 2009 commencing number field sieve (167-digit input) Sun Jul 26 17:40:43 2009 R0: -20000000000000000000000000000000000000 Sun Jul 26 17:40:43 2009 R1: 1 Sun Jul 26 17:40:43 2009 A0: 68 Sun Jul 26 17:40:43 2009 A1: 0 Sun Jul 26 17:40:43 2009 A2: 0 Sun Jul 26 17:40:43 2009 A3: 0 Sun Jul 26 17:40:43 2009 A4: 0 Sun Jul 26 17:40:43 2009 A5: 125 Sun Jul 26 17:40:43 2009 skew 1.00, size 4.008652e-13, alpha 0.098689, combined = 4.774392e-11 Sun Jul 26 17:40:43 2009 Sun Jul 26 17:40:43 2009 commencing square root phase Sun Jul 26 17:40:43 2009 reading relations for dependency 1 Sun Jul 26 17:40:44 2009 read 952156 cycles Sun Jul 26 17:40:47 2009 cycles contain 3664144 unique relations Sun Jul 26 17:41:31 2009 read 3664144 relations Sun Jul 26 17:42:00 2009 multiplying 2983448 relations Sun Jul 26 17:50:53 2009 multiply complete, coefficients have about 87.65 million bits Sun Jul 26 17:50:55 2009 initial square root is modulo 1956611 Sun Jul 26 18:03:12 2009 sqrtTime: 1349 Sun Jul 26 18:03:12 2009 prp69 factor: 101101428297969763167582651911552568964064074821357008687845402353373 Sun Jul 26 18:03:12 2009 prp99 factor: 289176891454586933473472026592329087156730099564830191435580236364586283574771523426365696790224631 Sun Jul 26 18:03:12 2009 elapsed time 00:22:32
By Jo Yeong Uk / Msieve / Jul 27, 2009
(13·10168-1)/3 = 4(3)168<169> = 20947 · 771585846463<12> · 39603215950776900109<20> · C133
C133 = P46 · P88
P46 = 1938224840403052580372387224495153919668245331<46>
P88 = 3492861805147986371594013038659339678087070803636098353203209518029135382931515883660607<88>
Number: 43333_168 N=6769951514832874024854036768853409897637506303253507175204255793012536446458911961588877677283372873422176238901148203977372816375917 ( 133 digits) SNFS difficulty: 171 digits. Divisors found: r1=1938224840403052580372387224495153919668245331 r2=3492861805147986371594013038659339678087070803636098353203209518029135382931515883660607 Version: Total time: 34.46 hours. Scaled time: 82.46 units (timescale=2.393). Factorization parameters were as follows: n: 6769951514832874024854036768853409897637506303253507175204255793012536446458911961588877677283372873422176238901148203977372816375917 m: 10000000000000000000000000000000000 deg: 5 c5: 13 c0: -100 skew: 1.50 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11025872 Max relations in full relation-set: Initial matrix: Pruned matrix : 947012 x 947259 Total sieving time: 30.92 hours. Total relation processing time: 1.46 hours. Matrix solve time: 1.87 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 34.46 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673789) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Andreas Tete / Sys`s Databaseworkers / Jul 27, 2009
(58·10202+23)/9 = 6(4)2017<203> = 122203 · 287922001189726263337<21> · C178
C178 = P39 · C139
P39 = 900888654245586171146217023177567172781<39>
C139 = [2033094880569783215278126749021287699566111873184365711870097919375967568012016979486944089877439038338587424781953667086152516217685482617<139>]
Syd`s Databaseworkers hit this p39 factor p39 = 900888654245586171146217023177567172781
By Wataru Sakai / GMP-ECM / Jul 26, 2009
(17·10171+7)/3 = 5(6)1709<172> = 283 · 2808665746949<13> · C157
C157 = P30 · P128
P30 = 310692117837628822353435398753<30>
P128 = 22946208622966530086181294683282074760948833484150202522041144943775782218378532782991915144433011255535400598496135511752228619<128>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1603423327 Step 1 took 52394ms Step 2 took 17646ms ********** Factor found in step 2: 310692117837628822353435398753 Found probable prime factor of 30 digits: 310692117837628822353435398753 Probable prime cofactor 22946208622966530086181294683282074760948833484150202522041144943775782218378532782991915144433011255535400598496135511752228619 has 128 digits
By Andreas Tete / Syd`s Databaseworkers with ECM / Jul 26, 2009
(47·10169+43)/9 = 5(2)1687<170> = 3 · 8572033 · 2460206087289861850132545179847589<34> · C129
C129 = P34 · P96
P34 = 5947600359084872453635233580884281<34>
P96 = 138783230265768766152371928057610712541819675642385676028172380581542216339866361236637806555397<96>
Syd`s Database workers hit this p34 with B1=1e6 p34 = 5947600359084872453635233580884281
By Robert Backstrom / GGNFS, Msieve / Jul 25, 2009
(47·10182+43)/9 = 5(2)1817<183> = 31 · 401 · C179
C179 = P39 · P140
P39 = 724670646436597737957829265930693298467<39>
P140 = 57970708996105002215788203509108410471504630076942583716286001043883185692786443798047081444061638563025160902815892854666009628608598216351<140>
Number: n N=42009671162595303855057696261139266529017956899865032758605278917401835912012084484130176351236603830924480912414304739942259047721198795126878145138944752813307233707845082633917 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: Sat Jul 25 18:54:33 2009 prp39 factor: 724670646436597737957829265930693298467 Sat Jul 25 18:54:33 2009 prp140 factor: 57970708996105002215788203509108410471504630076942583716286001043883185692786443798047081444061638563025160902815892854666009628608598216351 Sat Jul 25 18:54:33 2009 elapsed time 03:09:32 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 216.75 hours. Scaled time: 576.57 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_2_181_7 n: 42009671162595303855057696261139266529017956899865032758605278917401835912012084484130176351236603830924480912414304739942259047721198795126878145138944752813307233707845082633917 m: 2000000000000000000000000000000000000 deg: 5 c5: 1175 c0: 344 skew: 0.78 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4200000, 7800409) Primes: RFBsize:564877, AFBsize:565056, largePrimes:21409291 encountered Relations: rels:21835602, finalFF:971958 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2386706 hash collisions in 23549779 relations Msieve: matrix is 1431432 x 1431680 (384.4 MB) Total sieving time: 216.03 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,56,56,2.5,2.5,100000 total time: 216.75 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM 6.2.3, YAFU 1.10, Msieve / Jul 25, 2009
(34·10170-61)/9 = 3(7)1691<171> = 7 · 1549 · 1104921407<10> · 10187536427529899<17> · 391353153935485813<18> · C124
C124 = P40 · P41 · P44
P40 = 6725886983982318771880439066030047436221<40>
P41 = 13026818417600827639174618332243277437991<41>
P44 = 90267127858585686761229484150679606606868203<44>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 7908926676514675413083853032827063880118980193445471625562601469958414706043143581401715516956542424923236530406833110566233 (124 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7372562557 Step 1 took 4180ms ********** Factor found in step 1: 90267127858585686761229484150679606606868203 Found probable prime factor of 44 digits: 90267127858585686761229484150679606606868203 Composite cofactor 87616908437642552977838315920860564586991837524724010046764766223080042854872011 has 80 digits 07/25/09 02:40:39 v1.10 @ 조영욱-PC, starting SIQS on c80: 87616908437642552977838315920860564586991837524724010046764766223080042854872011 07/25/09 02:40:39 v1.10 @ 조영욱-PC, random seeds: 4212545165, 4213289736 07/25/09 02:40:39 v1.10 @ 조영욱-PC, ==== sieve params ==== 07/25/09 02:40:39 v1.10 @ 조영욱-PC, n = 80 digits, 266 bits 07/25/09 02:40:39 v1.10 @ 조영욱-PC, factor base: 43638 primes (max prime = 1122259) 07/25/09 02:40:39 v1.10 @ 조영욱-PC, single large prime cutoff: 106614605 (95 * pmax) 07/25/09 02:40:39 v1.10 @ 조영욱-PC, using 13 large prime slices of factor base 07/25/09 02:40:39 v1.10 @ 조영욱-PC, buckets hold 1024 elements 07/25/09 02:40:39 v1.10 @ 조영욱-PC, sieve interval: 7 blocks of size 65536 07/25/09 02:40:39 v1.10 @ 조영욱-PC, polynomial A has ~ 10 factors 07/25/09 02:40:39 v1.10 @ 조영욱-PC, using multiplier of 1 07/25/09 02:40:39 v1.10 @ 조영욱-PC, using small prime variation correction of 18 bits 07/25/09 02:40:39 v1.10 @ 조영욱-PC, using SSE2 for trial division and x64 sieve scanning 07/25/09 02:40:39 v1.10 @ 조영욱-PC, trial factoring cutoff at 95 bits 07/25/09 02:40:39 v1.10 @ 조영욱-PC, ==== sieving started ==== 07/25/09 02:48:32 v1.10 @ 조영욱-PC, sieve time = 244.3230, relation time = 65.8900, poly_time = 162.9600 07/25/09 02:48:32 v1.10 @ 조영욱-PC, 43837 relations found: 21442 full + 22395 from 239791 partial, using 121730 polys (238 A polys) 07/25/09 02:48:32 v1.10 @ 조영욱-PC, on average, sieving found 2.15 rels/poly and 551.53 rels/sec 07/25/09 02:48:32 v1.10 @ 조영욱-PC, trial division touched 3557500 sieve locations out of 111687761920 07/25/09 02:48:32 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 07/25/09 02:48:33 v1.10 @ 조영욱-PC, begin with 261233 relations 07/25/09 02:48:33 v1.10 @ 조영욱-PC, reduce to 63321 relations in 2 passes 07/25/09 02:48:33 v1.10 @ 조영욱-PC, recovered 63321 relations 07/25/09 02:48:33 v1.10 @ 조영욱-PC, recovered 49420 polynomials 07/25/09 02:48:33 v1.10 @ 조영욱-PC, attempting to build 43837 cycles 07/25/09 02:48:33 v1.10 @ 조영욱-PC, found 43837 cycles in 1 passes 07/25/09 02:48:33 v1.10 @ 조영욱-PC, distribution of cycle lengths: 07/25/09 02:48:33 v1.10 @ 조영욱-PC, length 1 : 21442 07/25/09 02:48:33 v1.10 @ 조영욱-PC, length 2 : 22395 07/25/09 02:48:33 v1.10 @ 조영욱-PC, largest cycle: 2 relations 07/25/09 02:48:33 v1.10 @ 조영욱-PC, matrix is 43638 x 43837 (6.5 MB) with weight 1357350 (30.96/col) 07/25/09 02:48:33 v1.10 @ 조영욱-PC, sparse part has weight 1357350 (30.96/col) 07/25/09 02:48:33 v1.10 @ 조영욱-PC, filtering completed in 3 passes 07/25/09 02:48:33 v1.10 @ 조영욱-PC, matrix is 32275 x 32339 (5.2 MB) with weight 1109999 (34.32/col) 07/25/09 02:48:33 v1.10 @ 조영욱-PC, sparse part has weight 1109999 (34.32/col) 07/25/09 02:48:33 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 07/25/09 02:48:33 v1.10 @ 조영욱-PC, matrix is 32227 x 32339 (3.8 MB) with weight 864751 (26.74/col) 07/25/09 02:48:33 v1.10 @ 조영욱-PC, sparse part has weight 669894 (20.71/col) 07/25/09 02:48:33 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 07/25/09 02:48:33 v1.10 @ 조영욱-PC, using block size 12935 for processor cache size 4096 kB 07/25/09 02:48:33 v1.10 @ 조영욱-PC, commencing Lanczos iteration 07/25/09 02:48:33 v1.10 @ 조영욱-PC, memory use: 3.7 MB 07/25/09 02:48:37 v1.10 @ 조영욱-PC, lanczos halted after 511 iterations (dim = 32221) 07/25/09 02:48:37 v1.10 @ 조영욱-PC, recovered 14 nontrivial dependencies 07/25/09 02:48:37 v1.10 @ 조영욱-PC, prp41 = 13026818417600827639174618332243277437991 07/25/09 02:48:38 v1.10 @ 조영욱-PC, prp40 = 6725886983982318771880439066030047436221 07/25/09 02:48:38 v1.10 @ 조영욱-PC, Lanczos elapsed time = 4.1810 seconds. 07/25/09 02:48:38 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.0450 seconds. 07/25/09 02:48:38 v1.10 @ 조영욱-PC, SIQS elapsed time = 478.8780 seconds. 07/25/09 02:48:38 v1.10 @ 조영욱-PC, 07/25/09 02:48:38 v1.10 @ 조영욱-PC,
(37·10169+53)/9 = 4(1)1687<170> = 19 · 291511918341504324969778930777933<33> · C136
C136 = P40 · P97
P40 = 6256622275585770775151492306219379972061<40>
P97 = 1186340513227261878040769445245614823177468731961871849452046522629392283910274236941531315901911<97>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 7422484481487542405434963871001284300917097043855519001904556196162796366335291956314614258679614931018465138599301201369883800196508571 (136 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3546435855 Step 1 took 4851ms Step 2 took 4259ms ********** Factor found in step 2: 6256622275585770775151492306219379972061 Found probable prime factor of 40 digits: 6256622275585770775151492306219379972061 Probable prime cofactor 1186340513227261878040769445245614823177468731961871849452046522629392283910274236941531315901911 has 97 digits
By Wataru Sakai / Msieve / Jul 24, 2009
(22·10191-1)/3 = 7(3)191<192> = 1297 · C189
C189 = P80 · P110
P80 = 31599751978617979691934192792502734631798298443748846506515340551417632686335601<80>
P110 = 17892778104022385586692910064435301213675071970966671817147805915015452599464091933241233683195001902978482389<110>
Number: 73333_191 N=565407350295553842199948599331791313287072731945515291698792084297095862246209200719609354921613980981752762785916216910819840657928553071189925469031097404266255461320997172963248522230789 ( 189 digits) SNFS difficulty: 193 digits. Divisors found: r1=31599751978617979691934192792502734631798298443748846506515340551417632686335601 r2=17892778104022385586692910064435301213675071970966671817147805915015452599464091933241233683195001902978482389 Version: Total time: 483.64 hours. Scaled time: 971.64 units (timescale=2.009). Factorization parameters were as follows: n: 565407350295553842199948599331791313287072731945515291698792084297095862246209200719609354921613980981752762785916216910819840657928553071189925469031097404266255461320997172963248522230789 m: 200000000000000000000000000000000000000 deg: 5 c5: 55 c0: -8 skew: 0.68 type: snfs lss: 1 rlim: 11600000 alim: 11600000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11600000/11600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5800000, 10800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1830862 x 1831110 Total sieving time: 483.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11600000,11600000,28,28,55,55,2.5,2.5,100000 total time: 483.64 hours. --------- CPU info (if available) ----------
(67·10200+23)/9 = 7(4)1997<201> = 34 · 1153 · C196
C196 = P69 · P128
P69 = 196592506741212520044538167570720429219402274779774438764525711972609<69>
P128 = 40546279211618582655414497439811038556876425327404273148537996988167822927209105501508855259371162388034501678989737104551746031<128>
Number: 74447_200 N=7971094669241211273269350427167394177769687711546309085739235750478563109060041378309342717810161837016098042085000422349045907556716718002895767824616881826736955065630662302789764162672196464879 ( 196 digits) SNFS difficulty: 201 digits. Divisors found: r1=196592506741212520044538167570720429219402274779774438764525711972609 r2=40546279211618582655414497439811038556876425327404273148537996988167822927209105501508855259371162388034501678989737104551746031 Version: Total time: 699.71 hours. Scaled time: 1405.71 units (timescale=2.009). Factorization parameters were as follows: n: 7971094669241211273269350427167394177769687711546309085739235750478563109060041378309342717810161837016098042085000422349045907556716718002895767824616881826736955065630662302789764162672196464879 m: 10000000000000000000000000000000000000000 deg: 5 c5: 67 c0: 23 skew: 0.81 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8100000, 15200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2869202 x 2869450 Total sieving time: 699.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,29,29,56,56,2.6,2.6,100000 total time: 699.71 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jul 24, 2009
2·10212-1 = 1(9)212<213> = 23 · C211
C211 = P46 · P61 · P106
P46 = 2659264777745734405392508581327747941839503713<46>
P61 = 2624192453344997234656310661787467697906712795425020425430953<61>
P106 = 1246077046444953259325719448796658447093073224853980853958734916369485280891634235590281319558742952446417<106>
Number: n N=8695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913 ( 211 digits) SNFS difficulty: 213 digits. Divisors found: Fri Jul 24 20:24:31 2009 prp46 factor: 2659264777745734405392508581327747941839503713 Fri Jul 24 20:24:31 2009 prp61 factor: 2624192453344997234656310661787467697906712795425020425430953 Fri Jul 24 20:24:31 2009 prp106 factor: 1246077046444953259325719448796658447093073224853980853958734916369485280891634235590281319558742952446417 Fri Jul 24 20:24:31 2009 elapsed time 39:56:00 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 95.16 hours. Scaled time: 191.65 units (timescale=2.014). Factorization parameters were as follows: name: KA_1_9_212 n: 8695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913 m: 200000000000000000000000000000000000 deg: 6 c6: 25 c0: -8 skew: 0.83 type: snfs lss: 1 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 25000000/25000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [12500000, 30599990) Primes: RFBsize:1565927, AFBsize:1563644, largePrimes:38836401 encountered Relations: rels:36263602, finalFF:1107921 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8322646 hash collisions in 48064285 relations Msieve: matrix is 4525782 x 4526029 (1218.8 MB) Total sieving time: 94.03 hours. Total relation processing time: 1.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,213,6,0,0,0,0,0,0,0,0,25000000,25000000,29,29,58,58,2.6,2.6,100000 total time: 95.16 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352056k/3407296k available (3119k kernel code, 53956k reserved, 1894k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.68 BogoMIPS (lpj=2830844) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22644.41 BogoMIPS).
By Andreas Tete / Syd`s Databaseworkers / Jul 24, 2009
(58·10194+23)/9 = 6(4)1937<195> = 257 · 403464209177<12> · 3543970882437511879731257595620290877<37> · C145
C145 = P36 · P109
P36 = 277910928745730887156179766492458017<36>
P109 = 6310322790083620064791690811822998614035354857083272254295215385444318070690134698155017866341817570459038947<109>
Syd`s Databaseworkers hit this p36 factor p36 = 277910928745730887156179766492458017
By Andreas Tete / GGNFS, Msieve v 1.42, Syd`s Database workers / Jul 23, 2009
5·10193-3 = 4(9)1927<194> = 139 · 124367 · 416128249 · 5670353807<10> · 630601422409414751<18> · 1628951248743679743054506189<28> · C124
C124 = P44 · P80
P44 = 14620629278240550652432989762103729163476871<44>
P80 = 81617556881746859330571187100259479960634045948609207766222314981106404568681507<80>
Thu Jul 23 13:49:00 2009 Msieve v. 1.42 Thu Jul 23 13:49:00 2009 random seeds: 7f123710 3ac4bbe3 Thu Jul 23 13:49:00 2009 factoring 1193300041763731671870987439029906012365042862204137739005604691718275603021397760465734919821660412096935234987760359924597 (124 digits) Thu Jul 23 13:49:02 2009 searching for 15-digit factors Thu Jul 23 13:49:03 2009 commencing number field sieve (124-digit input) Thu Jul 23 13:49:03 2009 R0: -543336852106466897936255 Thu Jul 23 13:49:03 2009 R1: 18897792025541 Thu Jul 23 13:49:03 2009 A0: -56096130083591137671762443568 Thu Jul 23 13:49:03 2009 A1: 18511784021721927080713518 Thu Jul 23 13:49:03 2009 A2: -165566443634317392579 Thu Jul 23 13:49:03 2009 A3: -3652011178397938 Thu Jul 23 13:49:03 2009 A4: 5511588632 Thu Jul 23 13:49:03 2009 A5: 25200 Thu Jul 23 13:49:03 2009 skew 149034.11, size 7.586280e-012, alpha -6.213274, combined = 1.859200e-010 Thu Jul 23 13:49:03 2009 Thu Jul 23 13:49:03 2009 commencing relation filtering Thu Jul 23 13:49:03 2009 estimated available RAM is 3069.5 MB Thu Jul 23 13:49:03 2009 commencing duplicate removal, pass 1 Thu Jul 23 13:49:03 2009 error -15 reading relation 27880 Thu Jul 23 13:50:52 2009 found 1488308 hash collisions in 9178490 relations Thu Jul 23 13:51:22 2009 added 59182 free relations Thu Jul 23 13:51:22 2009 commencing duplicate removal, pass 2 Thu Jul 23 13:51:47 2009 found 1228693 duplicates and 8008978 unique relations Thu Jul 23 13:51:47 2009 memory use: 41.3 MB Thu Jul 23 13:51:47 2009 reading ideals above 100000 Thu Jul 23 13:51:47 2009 commencing singleton removal, initial pass Thu Jul 23 13:53:56 2009 memory use: 149.2 MB Thu Jul 23 13:53:56 2009 reading all ideals from disk Thu Jul 23 13:54:03 2009 memory use: 287.9 MB Thu Jul 23 13:54:05 2009 keeping 8633531 ideals with weight <= 200, target excess is 43827 Thu Jul 23 13:54:07 2009 commencing in-memory singleton removal Thu Jul 23 13:54:09 2009 begin with 8008978 relations and 8633531 unique ideals Thu Jul 23 13:54:21 2009 reduce to 3184608 relations and 3001298 ideals in 15 passes Thu Jul 23 13:54:21 2009 max relations containing the same ideal: 106 Thu Jul 23 13:54:24 2009 removing 456604 relations and 390369 ideals in 66235 cliques Thu Jul 23 13:54:24 2009 commencing in-memory singleton removal Thu Jul 23 13:54:25 2009 begin with 2728004 relations and 3001298 unique ideals Thu Jul 23 13:54:30 2009 reduce to 2687707 relations and 2569635 ideals in 9 passes Thu Jul 23 13:54:30 2009 max relations containing the same ideal: 98 Thu Jul 23 13:54:33 2009 removing 347400 relations and 281165 ideals in 66235 cliques Thu Jul 23 13:54:33 2009 commencing in-memory singleton removal Thu Jul 23 13:54:33 2009 begin with 2340307 relations and 2569635 unique ideals Thu Jul 23 13:54:37 2009 reduce to 2310136 relations and 2257591 ideals in 8 passes Thu Jul 23 13:54:37 2009 max relations containing the same ideal: 85 Thu Jul 23 13:54:40 2009 relations with 0 large ideals: 159 Thu Jul 23 13:54:40 2009 relations with 1 large ideals: 448 Thu Jul 23 13:54:40 2009 relations with 2 large ideals: 5181 Thu Jul 23 13:54:40 2009 relations with 3 large ideals: 37785 Thu Jul 23 13:54:40 2009 relations with 4 large ideals: 157995 Thu Jul 23 13:54:40 2009 relations with 5 large ideals: 402047 Thu Jul 23 13:54:40 2009 relations with 6 large ideals: 632608 Thu Jul 23 13:54:40 2009 relations with 7+ large ideals: 1073913 Thu Jul 23 13:54:40 2009 commencing 2-way merge Thu Jul 23 13:54:43 2009 reduce to 1431580 relation sets and 1379035 unique ideals Thu Jul 23 13:54:43 2009 commencing full merge Thu Jul 23 13:55:20 2009 memory use: 151.7 MB Thu Jul 23 13:55:20 2009 found 735016 cycles, need 727235 Thu Jul 23 13:55:20 2009 weight of 727235 cycles is about 51191425 (70.39/cycle) Thu Jul 23 13:55:20 2009 distribution of cycle lengths: Thu Jul 23 13:55:20 2009 1 relations: 83344 Thu Jul 23 13:55:20 2009 2 relations: 84619 Thu Jul 23 13:55:20 2009 3 relations: 84693 Thu Jul 23 13:55:20 2009 4 relations: 78225 Thu Jul 23 13:55:20 2009 5 relations: 70392 Thu Jul 23 13:55:20 2009 6 relations: 61090 Thu Jul 23 13:55:20 2009 7 relations: 52459 Thu Jul 23 13:55:20 2009 8 relations: 44423 Thu Jul 23 13:55:20 2009 9 relations: 36816 Thu Jul 23 13:55:20 2009 10+ relations: 131174 Thu Jul 23 13:55:20 2009 heaviest cycle: 22 relations Thu Jul 23 13:55:20 2009 commencing cycle optimization Thu Jul 23 13:55:22 2009 start with 4253137 relations Thu Jul 23 13:55:34 2009 pruned 113256 relations Thu Jul 23 13:55:34 2009 memory use: 109.9 MB Thu Jul 23 13:55:34 2009 distribution of cycle lengths: Thu Jul 23 13:55:34 2009 1 relations: 83344 Thu Jul 23 13:55:34 2009 2 relations: 86599 Thu Jul 23 13:55:34 2009 3 relations: 87818 Thu Jul 23 13:55:34 2009 4 relations: 80345 Thu Jul 23 13:55:34 2009 5 relations: 72065 Thu Jul 23 13:55:34 2009 6 relations: 62062 Thu Jul 23 13:55:34 2009 7 relations: 52824 Thu Jul 23 13:55:34 2009 8 relations: 44435 Thu Jul 23 13:55:34 2009 9 relations: 36553 Thu Jul 23 13:55:34 2009 10+ relations: 121190 Thu Jul 23 13:55:34 2009 heaviest cycle: 21 relations Thu Jul 23 13:55:35 2009 RelProcTime: 392 Thu Jul 23 13:55:35 2009 Thu Jul 23 13:55:35 2009 commencing linear algebra Thu Jul 23 13:55:36 2009 read 727235 cycles Thu Jul 23 13:55:38 2009 cycles contain 2259892 unique relations Thu Jul 23 13:56:23 2009 read 2259892 relations Thu Jul 23 13:56:27 2009 using 20 quadratic characters above 134214264 Thu Jul 23 13:56:42 2009 building initial matrix Thu Jul 23 13:57:21 2009 memory use: 265.6 MB Thu Jul 23 13:57:22 2009 read 727235 cycles Thu Jul 23 13:57:23 2009 matrix is 727058 x 727235 (209.7 MB) with weight 69362639 (95.38/col) Thu Jul 23 13:57:23 2009 sparse part has weight 49161753 (67.60/col) Thu Jul 23 13:57:35 2009 filtering completed in 2 passes Thu Jul 23 13:57:35 2009 matrix is 726657 x 726834 (209.7 MB) with weight 69345359 (95.41/col) Thu Jul 23 13:57:35 2009 sparse part has weight 49156190 (67.63/col) Thu Jul 23 13:57:38 2009 read 726834 cycles Thu Jul 23 13:57:40 2009 matrix is 726657 x 726834 (209.7 MB) with weight 69345359 (95.41/col) Thu Jul 23 13:57:40 2009 sparse part has weight 49156190 (67.63/col) Thu Jul 23 13:57:40 2009 saving the first 48 matrix rows for later Thu Jul 23 13:57:40 2009 matrix is 726609 x 726834 (200.2 MB) with weight 54862726 (75.48/col) Thu Jul 23 13:57:40 2009 sparse part has weight 48114957 (66.20/col) Thu Jul 23 13:57:40 2009 matrix includes 64 packed rows Thu Jul 23 13:57:40 2009 using block size 65536 for processor cache size 3072 kB Thu Jul 23 13:57:47 2009 commencing Lanczos iteration Thu Jul 23 13:57:47 2009 memory use: 202.6 MB Thu Jul 23 15:23:28 2009 lanczos halted after 11492 iterations (dim = 726608) Thu Jul 23 15:23:31 2009 recovered 31 nontrivial dependencies Thu Jul 23 15:23:31 2009 BLanczosTime: 5276 Thu Jul 23 15:23:31 2009 Thu Jul 23 15:23:31 2009 commencing square root phase Thu Jul 23 15:23:31 2009 reading relations for dependency 1 Thu Jul 23 15:23:32 2009 read 363673 cycles Thu Jul 23 15:23:32 2009 cycles contain 1398991 unique relations Thu Jul 23 15:23:58 2009 read 1398991 relations Thu Jul 23 15:24:07 2009 multiplying 1130618 relations Thu Jul 23 15:27:48 2009 multiply complete, coefficients have about 51.58 million bits Thu Jul 23 15:27:51 2009 initial square root is modulo 25424593 Thu Jul 23 15:33:23 2009 sqrtTime: 592 Thu Jul 23 15:33:23 2009 prp44 factor: 14620629278240550652432989762103729163476871 Thu Jul 23 15:33:23 2009 prp80 factor: 81617556881746859330571187100259479960634045948609207766222314981106404568681507 Thu Jul 23 15:33:23 2009 elapsed time 01:44:23 Thu Jul 23 15:33:23 2009 total time ~ 125 hours
(58·10194+23)/9 = 6(4)1937<195> = 257 · 403464209177<12> · C181
C181 = P37 · C145
P37 = 3543970882437511879731257595620290877<37>
C145 = [1753707667277490662296596455138203925886352047609268924626142234554596780596769030414778657310009459856568838766914928341099729251362501565388099<145>]
Syd`s Database workers hit this p37 factor p37 = 3543970882437511879731257595620290877
By Dmitry Domanov / GGNFS/msieve 1.42 / Jul 23, 2009
(56·10203+43)/9 = 6(2)2027<204> = 3 · C204
C204 = P60 · P144
P60 = 591752848190830505194723691088958573025065122850764427487837<60>
P144 = 350496677863934757609414005722989412369536157605989693540146711579200859237238102599130471318852834601704462309602498012951936078401332556541157<144>
Sieving time ~ 40 cpu-days Thu Jul 16 01:25:58 2009 Msieve v. 1.42 Thu Jul 16 01:25:58 2009 random seeds: c56a6980 fe74d888 Thu Jul 16 01:25:58 2009 factoring 207407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 (204 digits) Thu Jul 16 01:26:05 2009 Thu Jul 16 01:26:05 2009 Thu Jul 16 01:26:05 2009 Msieve v. 1.42 Thu Jul 16 01:26:05 2009 random seeds: f71ce5d8 4f84c420 Thu Jul 16 01:26:05 2009 factoring 207407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 (204 digits) Thu Jul 16 01:26:07 2009 searching for 15-digit factors Thu Jul 16 01:26:10 2009 commencing number field sieve (204-digit input) Thu Jul 16 01:26:10 2009 R0: -100000000000000000000000000000000000000000 Thu Jul 16 01:26:10 2009 R1: 1 Thu Jul 16 01:26:10 2009 A0: 1075 Thu Jul 16 01:26:10 2009 A1: 0 Thu Jul 16 01:26:10 2009 A2: 0 Thu Jul 16 01:26:10 2009 A3: 0 Thu Jul 16 01:26:10 2009 A4: 0 Thu Jul 16 01:26:10 2009 A5: 14 Thu Jul 16 01:26:10 2009 skew 2.38, size 3.186562e-014, alpha -0.612885, combined = 9.720684e-012 Thu Jul 16 01:26:10 2009 Thu Jul 16 01:26:10 2009 commencing relation filtering Thu Jul 16 01:26:10 2009 commencing duplicate removal, pass 1 Thu Jul 16 01:29:27 2009 error -11 reading relation 24287251 Thu Jul 16 01:31:01 2009 error -11 reading relation 34401760 Thu Jul 16 01:31:07 2009 error -9 reading relation 35087611 Thu Jul 16 01:31:12 2009 error -15 reading relation 35782753 Thu Jul 16 01:31:18 2009 error -9 reading relation 36477916 Thu Jul 16 01:31:24 2009 error -15 reading relation 37169656 Thu Jul 16 01:31:29 2009 error -9 reading relation 37870362 Thu Jul 16 01:31:35 2009 error -9 reading relation 38571298 Thu Jul 16 01:31:41 2009 found 5319528 hash collisions in 39277598 relations Thu Jul 16 01:32:30 2009 added 840 free relations Thu Jul 16 01:32:30 2009 commencing duplicate removal, pass 2 Thu Jul 16 01:33:43 2009 found 3699116 duplicates and 35579322 unique relations Thu Jul 16 01:33:43 2009 memory use: 165.2 MB Thu Jul 16 01:33:43 2009 reading rational ideals above 21168128 Thu Jul 16 01:33:43 2009 reading algebraic ideals above 21168128 Thu Jul 16 01:33:43 2009 commencing singleton removal, pass 1 Thu Jul 16 01:39:13 2009 relations with 0 large ideals: 581552 Thu Jul 16 01:39:13 2009 relations with 1 large ideals: 3668835 Thu Jul 16 01:39:13 2009 relations with 2 large ideals: 10320596 Thu Jul 16 01:39:13 2009 relations with 3 large ideals: 13424743 Thu Jul 16 01:39:13 2009 relations with 4 large ideals: 6899607 Thu Jul 16 01:39:13 2009 relations with 5 large ideals: 20129 Thu Jul 16 01:39:13 2009 relations with 6 large ideals: 663860 Thu Jul 16 01:39:13 2009 relations with 7+ large ideals: 0 Thu Jul 16 01:39:13 2009 35579322 relations and about 31817912 large ideals Thu Jul 16 01:39:13 2009 commencing singleton removal, pass 2 Thu Jul 16 01:44:30 2009 found 11545324 singletons Thu Jul 16 01:44:30 2009 current dataset: 24033998 relations and about 18608908 large ideals Thu Jul 16 01:44:30 2009 commencing singleton removal, pass 3 Thu Jul 16 01:48:14 2009 found 2658569 singletons Thu Jul 16 01:48:14 2009 current dataset: 21375429 relations and about 15826556 large ideals Thu Jul 16 01:48:14 2009 commencing singleton removal, pass 4 Thu Jul 16 01:51:35 2009 found 701176 singletons Thu Jul 16 01:51:35 2009 current dataset: 20674253 relations and about 15115803 large ideals Thu Jul 16 01:51:35 2009 commencing singleton removal, pass 5 Thu Jul 16 01:54:54 2009 found 185715 singletons Thu Jul 16 01:54:54 2009 current dataset: 20488538 relations and about 14929365 large ideals Thu Jul 16 01:54:54 2009 commencing singleton removal, final pass Thu Jul 16 01:58:25 2009 memory use: 351.4 MB Thu Jul 16 01:58:25 2009 commencing in-memory singleton removal Thu Jul 16 01:58:27 2009 begin with 20488538 relations and 18081880 unique ideals Thu Jul 16 01:59:05 2009 reduce to 13835158 relations and 11057496 ideals in 23 passes Thu Jul 16 01:59:05 2009 max relations containing the same ideal: 40 Thu Jul 16 01:59:10 2009 reading rational ideals above 720000 Thu Jul 16 01:59:10 2009 reading algebraic ideals above 720000 Thu Jul 16 01:59:10 2009 commencing singleton removal, final pass Thu Jul 16 02:02:23 2009 keeping 12338074 ideals with weight <= 20, new excess is 1437415 Thu Jul 16 02:02:42 2009 memory use: 360.9 MB Thu Jul 16 02:02:42 2009 commencing in-memory singleton removal Thu Jul 16 02:02:44 2009 begin with 13866106 relations and 12338074 unique ideals Thu Jul 16 02:03:09 2009 reduce to 13835805 relations and 12287758 ideals in 12 passes Thu Jul 16 02:03:09 2009 max relations containing the same ideal: 20 Thu Jul 16 02:03:11 2009 filtering wants 358062 more relations Thu Jul 16 02:03:11 2009 elapsed time 00:37:06 Thu Jul 16 20:16:09 2009 Thu Jul 16 20:16:09 2009 Thu Jul 16 20:16:09 2009 Msieve v. 1.42 Thu Jul 16 20:16:09 2009 random seeds: 641e9e94 e8e91ac0 Thu Jul 16 20:16:09 2009 factoring 207407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 (204 digits) Thu Jul 16 20:16:11 2009 searching for 15-digit factors Thu Jul 16 20:16:14 2009 commencing number field sieve (204-digit input) Thu Jul 16 20:16:14 2009 R0: -100000000000000000000000000000000000000000 Thu Jul 16 20:16:14 2009 R1: 1 Thu Jul 16 20:16:14 2009 A0: 1075 Thu Jul 16 20:16:14 2009 A1: 0 Thu Jul 16 20:16:14 2009 A2: 0 Thu Jul 16 20:16:14 2009 A3: 0 Thu Jul 16 20:16:14 2009 A4: 0 Thu Jul 16 20:16:14 2009 A5: 14 Thu Jul 16 20:16:14 2009 skew 2.38, size 3.186562e-014, alpha -0.612885, combined = 9.720684e-012 Thu Jul 16 20:16:14 2009 Thu Jul 16 20:16:14 2009 commencing relation filtering Thu Jul 16 20:16:14 2009 commencing duplicate removal, pass 1 Thu Jul 16 20:19:38 2009 error -11 reading relation 24287251 Thu Jul 16 20:22:02 2009 error -11 reading relation 34401760 Thu Jul 16 20:22:08 2009 error -9 reading relation 35087611 Thu Jul 16 20:22:14 2009 error -15 reading relation 35782753 Thu Jul 16 20:22:26 2009 error -9 reading relation 36477916 Thu Jul 16 20:22:37 2009 error -15 reading relation 37169656 Thu Jul 16 20:22:43 2009 error -9 reading relation 37870362 Thu Jul 16 20:22:54 2009 error -9 reading relation 38571298 Thu Jul 16 20:23:04 2009 error -11 reading relation 39277606 Thu Jul 16 20:23:47 2009 found 6511908 hash collisions in 44449153 relations Thu Jul 16 20:24:38 2009 added 390 free relations Thu Jul 16 20:24:38 2009 commencing duplicate removal, pass 2 Thu Jul 16 20:26:09 2009 found 4542027 duplicates and 39907516 unique relations Thu Jul 16 20:26:09 2009 memory use: 165.2 MB Thu Jul 16 20:26:09 2009 reading rational ideals above 22740992 Thu Jul 16 20:26:09 2009 reading algebraic ideals above 22740992 Thu Jul 16 20:26:09 2009 commencing singleton removal, pass 1 Thu Jul 16 20:33:34 2009 relations with 0 large ideals: 716732 Thu Jul 16 20:33:34 2009 relations with 1 large ideals: 4434970 Thu Jul 16 20:33:34 2009 relations with 2 large ideals: 11968351 Thu Jul 16 20:33:34 2009 relations with 3 large ideals: 14857882 Thu Jul 16 20:33:34 2009 relations with 4 large ideals: 7237102 Thu Jul 16 20:33:34 2009 relations with 5 large ideals: 32882 Thu Jul 16 20:33:34 2009 relations with 6 large ideals: 659597 Thu Jul 16 20:33:34 2009 relations with 7+ large ideals: 0 Thu Jul 16 20:33:34 2009 39907516 relations and about 32967969 large ideals Thu Jul 16 20:33:34 2009 commencing singleton removal, pass 2 Thu Jul 16 20:39:52 2009 found 11282742 singletons Thu Jul 16 20:39:52 2009 current dataset: 28624774 relations and about 20371358 large ideals Thu Jul 16 20:39:52 2009 commencing singleton removal, pass 3 Thu Jul 16 20:44:48 2009 found 2206322 singletons Thu Jul 16 20:44:48 2009 current dataset: 26418452 relations and about 18093846 large ideals Thu Jul 16 20:44:48 2009 commencing singleton removal, pass 4 Thu Jul 16 20:49:32 2009 found 472986 singletons Thu Jul 16 20:49:32 2009 current dataset: 25945466 relations and about 17617214 large ideals Thu Jul 16 20:49:32 2009 commencing singleton removal, final pass Thu Jul 16 20:55:53 2009 memory use: 532.8 MB Thu Jul 16 20:55:53 2009 commencing in-memory singleton removal Thu Jul 16 20:55:56 2009 begin with 25945466 relations and 21393353 unique ideals Thu Jul 16 20:56:37 2009 reduce to 19717751 relations and 14872914 ideals in 14 passes Thu Jul 16 20:56:37 2009 max relations containing the same ideal: 48 Thu Jul 16 20:56:43 2009 reading rational ideals above 720000 Thu Jul 16 20:56:43 2009 reading algebraic ideals above 720000 Thu Jul 16 20:56:43 2009 commencing singleton removal, final pass Thu Jul 16 21:03:01 2009 keeping 15815981 ideals with weight <= 20, new excess is 1924615 Thu Jul 16 21:03:40 2009 memory use: 499.5 MB Thu Jul 16 21:03:40 2009 commencing in-memory singleton removal Thu Jul 16 21:03:43 2009 begin with 19718141 relations and 15815981 unique ideals Thu Jul 16 21:04:11 2009 reduce to 19714577 relations and 15810571 ideals in 9 passes Thu Jul 16 21:04:11 2009 max relations containing the same ideal: 20 Thu Jul 16 21:04:26 2009 removing 2731961 relations and 2331961 ideals in 400000 cliques Thu Jul 16 21:04:27 2009 commencing in-memory singleton removal Thu Jul 16 21:04:29 2009 begin with 16982616 relations and 15810571 unique ideals Thu Jul 16 21:04:52 2009 reduce to 16727703 relations and 13217278 ideals in 9 passes Thu Jul 16 21:04:52 2009 max relations containing the same ideal: 20 Thu Jul 16 21:05:05 2009 removing 2046788 relations and 1646788 ideals in 400000 cliques Thu Jul 16 21:05:06 2009 commencing in-memory singleton removal Thu Jul 16 21:05:08 2009 begin with 14680915 relations and 13217278 unique ideals Thu Jul 16 21:05:28 2009 reduce to 14507203 relations and 11392654 ideals in 9 passes Thu Jul 16 21:05:28 2009 max relations containing the same ideal: 20 Thu Jul 16 21:05:40 2009 removing 1838879 relations and 1438879 ideals in 400000 cliques Thu Jul 16 21:05:41 2009 commencing in-memory singleton removal Thu Jul 16 21:05:42 2009 begin with 12668324 relations and 11392654 unique ideals Thu Jul 16 21:05:58 2009 reduce to 12506345 relations and 9787669 ideals in 8 passes Thu Jul 16 21:05:58 2009 max relations containing the same ideal: 20 Thu Jul 16 21:06:08 2009 removing 1726132 relations and 1326132 ideals in 400000 cliques Thu Jul 16 21:06:09 2009 commencing in-memory singleton removal Thu Jul 16 21:06:10 2009 begin with 10780213 relations and 9787669 unique ideals Thu Jul 16 21:06:25 2009 reduce to 10606310 relations and 8282583 ideals in 9 passes Thu Jul 16 21:06:25 2009 max relations containing the same ideal: 20 Thu Jul 16 21:06:34 2009 removing 526329 relations and 435156 ideals in 91173 cliques Thu Jul 16 21:06:34 2009 commencing in-memory singleton removal Thu Jul 16 21:06:36 2009 begin with 10079981 relations and 8282583 unique ideals Thu Jul 16 21:06:45 2009 reduce to 10062987 relations and 7830297 ideals in 6 passes Thu Jul 16 21:06:45 2009 max relations containing the same ideal: 19 Thu Jul 16 21:06:56 2009 relations with 0 large ideals: 271062 Thu Jul 16 21:06:56 2009 relations with 1 large ideals: 1391142 Thu Jul 16 21:06:56 2009 relations with 2 large ideals: 3031669 Thu Jul 16 21:06:56 2009 relations with 3 large ideals: 3193544 Thu Jul 16 21:06:56 2009 relations with 4 large ideals: 1672318 Thu Jul 16 21:06:56 2009 relations with 5 large ideals: 419717 Thu Jul 16 21:06:56 2009 relations with 6 large ideals: 81329 Thu Jul 16 21:06:56 2009 relations with 7+ large ideals: 2206 Thu Jul 16 21:06:56 2009 commencing 2-way merge Thu Jul 16 21:07:06 2009 reduce to 6429038 relation sets and 4196348 unique ideals Thu Jul 16 21:07:06 2009 commencing full merge Thu Jul 16 21:08:12 2009 memory use: 301.3 MB Thu Jul 16 21:08:13 2009 found 3209621 cycles, need 2904548 Thu Jul 16 21:08:14 2009 weight of 2904548 cycles is about 203674766 (70.12/cycle) Thu Jul 16 21:08:14 2009 distribution of cycle lengths: Thu Jul 16 21:08:14 2009 1 relations: 405554 Thu Jul 16 21:08:14 2009 2 relations: 321261 Thu Jul 16 21:08:14 2009 3 relations: 317273 Thu Jul 16 21:08:14 2009 4 relations: 298681 Thu Jul 16 21:08:14 2009 5 relations: 283233 Thu Jul 16 21:08:14 2009 6 relations: 258043 Thu Jul 16 21:08:14 2009 7 relations: 231041 Thu Jul 16 21:08:14 2009 8 relations: 201003 Thu Jul 16 21:08:14 2009 9 relations: 173146 Thu Jul 16 21:08:14 2009 10+ relations: 415313 Thu Jul 16 21:08:14 2009 heaviest cycle: 16 relations Thu Jul 16 21:08:15 2009 commencing cycle optimization Thu Jul 16 21:08:21 2009 start with 15578527 relations Thu Jul 16 21:08:55 2009 pruned 464052 relations Thu Jul 16 21:08:55 2009 memory use: 415.4 MB Thu Jul 16 21:08:55 2009 distribution of cycle lengths: Thu Jul 16 21:08:55 2009 1 relations: 405554 Thu Jul 16 21:08:55 2009 2 relations: 330438 Thu Jul 16 21:08:55 2009 3 relations: 331927 Thu Jul 16 21:08:55 2009 4 relations: 309381 Thu Jul 16 21:08:55 2009 5 relations: 294647 Thu Jul 16 21:08:55 2009 6 relations: 266318 Thu Jul 16 21:08:55 2009 7 relations: 236587 Thu Jul 16 21:08:55 2009 8 relations: 202715 Thu Jul 16 21:08:55 2009 9 relations: 171618 Thu Jul 16 21:08:55 2009 10+ relations: 355363 Thu Jul 16 21:08:55 2009 heaviest cycle: 16 relations Thu Jul 16 21:09:03 2009 RelProcTime: 2681 Thu Jul 16 21:09:03 2009 Thu Jul 16 21:09:03 2009 commencing linear algebra Thu Jul 16 21:09:08 2009 read 2904548 cycles Thu Jul 16 21:09:15 2009 cycles contain 8808029 unique relations Thu Jul 16 21:12:59 2009 read 8808029 relations Thu Jul 16 21:13:19 2009 using 20 quadratic characters above 536869788 Thu Jul 16 21:14:06 2009 building initial matrix Thu Jul 16 21:18:40 2009 memory use: 1022.6 MB Thu Jul 16 21:18:52 2009 read 2904548 cycles Thu Jul 16 21:20:09 2009 matrix is 2903959 x 2904548 (820.7 MB) with weight 259265005 (89.26/col) Thu Jul 16 21:20:09 2009 sparse part has weight 194797795 (67.07/col) Thu Jul 16 21:21:56 2009 filtering completed in 3 passes Thu Jul 16 21:21:57 2009 matrix is 2888026 x 2888226 (818.2 MB) with weight 258365301 (89.45/col) Thu Jul 16 21:21:57 2009 sparse part has weight 194268239 (67.26/col) Thu Jul 16 21:22:23 2009 read 2888226 cycles Thu Jul 16 21:40:33 2009 matrix is 2888026 x 2888226 (818.2 MB) with weight 258365301 (89.45/col) Thu Jul 16 21:40:33 2009 sparse part has weight 194268239 (67.26/col) Thu Jul 16 21:40:33 2009 saving the first 48 matrix rows for later Thu Jul 16 21:40:35 2009 matrix is 2887978 x 2888226 (778.5 MB) with weight 204903337 (70.94/col) Thu Jul 16 21:40:35 2009 sparse part has weight 186738649 (64.66/col) Thu Jul 16 21:40:35 2009 matrix includes 64 packed rows Thu Jul 16 21:40:35 2009 using block size 65536 for processor cache size 6144 kB Thu Jul 16 21:41:03 2009 commencing Lanczos iteration (4 threads) Thu Jul 16 21:41:03 2009 memory use: 859.7 MB Fri Jul 17 16:38:12 2009 lanczos halted after 45672 iterations (dim = 2887977) Fri Jul 17 16:38:34 2009 recovered 37 nontrivial dependencies Fri Jul 17 16:38:42 2009 BLanczosTime: 70179 Fri Jul 17 16:38:42 2009 Fri Jul 17 16:38:42 2009 commencing square root phase Fri Jul 17 16:38:42 2009 reading relations for dependency 1 Fri Jul 17 16:39:10 2009 read 1444749 cycles Fri Jul 17 16:39:13 2009 cycles contain 5349769 unique relations Fri Jul 17 16:45:39 2009 read 5349769 relations Fri Jul 17 16:46:16 2009 multiplying 4394854 relations Fri Jul 17 16:52:56 2009 multiply complete, coefficients have about 124.55 million bits Fri Jul 17 16:52:57 2009 initial square root is modulo 870936721 Fri Jul 17 17:05:43 2009 reading relations for dependency 2 Fri Jul 17 17:05:44 2009 read 1443452 cycles Fri Jul 17 17:05:48 2009 cycles contain 5351642 unique relations Fri Jul 17 17:11:20 2009 read 5351642 relations Fri Jul 17 17:11:57 2009 multiplying 4399136 relations Fri Jul 17 17:18:46 2009 multiply complete, coefficients have about 124.68 million bits Fri Jul 17 17:18:47 2009 initial square root is modulo 889146281 Fri Jul 17 17:31:55 2009 reading relations for dependency 3 Fri Jul 17 17:31:56 2009 read 1442841 cycles Fri Jul 17 17:32:00 2009 cycles contain 5342987 unique relations Fri Jul 17 17:36:56 2009 read 5342987 relations Fri Jul 17 17:37:31 2009 multiplying 4391770 relations Fri Jul 17 17:44:00 2009 multiply complete, coefficients have about 124.47 million bits Fri Jul 17 17:44:01 2009 initial square root is modulo 858842561 Fri Jul 17 17:57:08 2009 sqrtTime: 4706 Fri Jul 17 17:57:08 2009 prp60 factor: 591752848190830505194723691088958573025065122850764427487837 Fri Jul 17 17:57:08 2009 prp144 factor: 350496677863934757609414005722989412369536157605989693540146711579200859237238102599130471318852834601704462309602498012951936078401332556541157 Fri Jul 17 17:57:08 2009 elapsed time 21:40:59
By Robert Backstrom / GGNFS, Msieve / Jul 23, 2009
(43·10182-61)/9 = 4(7)1811<183> = 3 · 2089 · C179
C179 = P88 · P92
P88 = 2548035129424789240102727461554777927306120058219282754067737790435073236169501864294189<88>
P92 = 29919948397719090871041566799694898064009331023404415989596038975250131952057312120806299317<92>
Number: n N=76237079587965179157137031718171019272024537701895289257663599453929755509458716734925447227984327074800985763168625782316543446270588443877098735882843111182029324681311277768913 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: Thu Jul 23 08:02:02 2009 prp88 factor: 2548035129424789240102727461554777927306120058219282754067737790435073236169501864294189 Thu Jul 23 08:02:02 2009 prp92 factor: 29919948397719090871041566799694898064009331023404415989596038975250131952057312120806299317 Thu Jul 23 08:02:02 2009 elapsed time 03:04:57 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 225.40 hours. Scaled time: 571.17 units (timescale=2.534). Factorization parameters were as follows: name: KA_4_7_181_1 n: 76237079587965179157137031718171019272024537701895289257663599453929755509458716734925447227984327074800985763168625782316543446270588443877098735882843111182029324681311277768913 m: 2000000000000000000000000000000000000 deg: 5 c5: 1075 c0: -488 skew: 0.85 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4200000, 8000023) Primes: RFBsize:564877, AFBsize:563787, largePrimes:21426695 encountered Relations: rels:21796035, finalFF:1216407 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2437177 hash collisions in 23571532 relations Msieve: matrix is 1477220 x 1477468 (396.0 MB) Total sieving time: 224.66 hours. Total relation processing time: 0.74 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,56,56,2.5,2.5,100000 total time: 225.40 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.42 / Jul 22, 2009
2·10193+9 = 2(0)1929<194> = 41 · 200183 · 5328527 · 1518763338461<13> · 711262813661921<15> · 8504621858298220990261<22> · C131
C131 = P56 · P76
P56 = 13056246011809721884007205309537122134790655929126011321<56>
P76 = 3812573573319637471194915345352510153300362083742249817651638622768023693649<76>
Wed Jul 22 14:19:03 2009 Msieve v. 1.42 Wed Jul 22 14:19:03 2009 random seeds: a5bf0718 1df83478 Wed Jul 22 14:19:03 2009 factoring 49777898511385657017959200641343160463020017114075893159149402568741104300447500577409539628482154712527537552631680837117009800329 (131 digits) Wed Jul 22 14:19:04 2009 searching for 15-digit factors Wed Jul 22 14:19:06 2009 commencing number field sieve (131-digit input) Wed Jul 22 14:19:06 2009 R0: -17132883862694021714256889 Wed Jul 22 14:19:06 2009 R1: 279017036996591 Wed Jul 22 14:19:06 2009 A0: 2507317928392803584490096701088 Wed Jul 22 14:19:06 2009 A1: 179085986367648223641880884 Wed Jul 22 14:19:06 2009 A2: 1315353739759960626176 Wed Jul 22 14:19:06 2009 A3: -4013501703489901 Wed Jul 22 14:19:06 2009 A4: -16033052242 Wed Jul 22 14:19:06 2009 A5: 33720 Wed Jul 22 14:19:06 2009 skew 253679.99, size 1.756545e-012, alpha -6.062530, combined = 8.425983e-011 Wed Jul 22 14:19:06 2009 Wed Jul 22 14:19:06 2009 commencing relation filtering Wed Jul 22 14:19:06 2009 estimated available RAM is 3232.4 MB Wed Jul 22 14:19:06 2009 commencing duplicate removal, pass 1 Wed Jul 22 14:22:45 2009 found 3646224 hash collisions in 24883919 relations Wed Jul 22 14:23:33 2009 added 120024 free relations Wed Jul 22 14:23:33 2009 commencing duplicate removal, pass 2 Wed Jul 22 14:24:31 2009 found 3092029 duplicates and 21911914 unique relations Wed Jul 22 14:24:31 2009 memory use: 106.6 MB Wed Jul 22 14:24:31 2009 reading ideals above 11993088 Wed Jul 22 14:24:35 2009 commencing singleton removal, initial pass Wed Jul 22 14:28:26 2009 memory use: 298.4 MB Wed Jul 22 14:28:26 2009 reading all ideals from disk Wed Jul 22 14:28:26 2009 memory use: 370.8 MB Wed Jul 22 14:28:26 2009 commencing in-memory singleton removal Wed Jul 22 14:28:29 2009 begin with 21911914 relations and 19550344 unique ideals Wed Jul 22 14:28:57 2009 reduce to 11773877 relations and 8107541 ideals in 16 passes Wed Jul 22 14:28:57 2009 max relations containing the same ideal: 44 Wed Jul 22 14:28:59 2009 reading ideals above 720000 Wed Jul 22 14:28:59 2009 commencing singleton removal, initial pass Wed Jul 22 14:31:26 2009 memory use: 149.2 MB Wed Jul 22 14:31:26 2009 reading all ideals from disk Wed Jul 22 14:31:26 2009 memory use: 354.5 MB Wed Jul 22 14:31:26 2009 commencing in-memory singleton removal Wed Jul 22 14:31:29 2009 begin with 11774472 relations and 9569468 unique ideals Wed Jul 22 14:31:47 2009 reduce to 11771578 relations and 9563831 ideals in 7 passes Wed Jul 22 14:31:47 2009 max relations containing the same ideal: 191 Wed Jul 22 14:31:59 2009 removing 2015830 relations and 1615830 ideals in 400000 cliques Wed Jul 22 14:32:00 2009 commencing in-memory singleton removal Wed Jul 22 14:32:03 2009 begin with 9755748 relations and 9563831 unique ideals Wed Jul 22 14:32:20 2009 reduce to 9572181 relations and 7757315 ideals in 8 passes Wed Jul 22 14:32:20 2009 max relations containing the same ideal: 154 Wed Jul 22 14:32:30 2009 removing 1521692 relations and 1121692 ideals in 400000 cliques Wed Jul 22 14:32:30 2009 commencing in-memory singleton removal Wed Jul 22 14:32:32 2009 begin with 8050489 relations and 7757315 unique ideals Wed Jul 22 14:32:44 2009 reduce to 7907442 relations and 6487093 ideals in 7 passes Wed Jul 22 14:32:44 2009 max relations containing the same ideal: 131 Wed Jul 22 14:32:53 2009 removing 1369689 relations and 969689 ideals in 400000 cliques Wed Jul 22 14:32:53 2009 commencing in-memory singleton removal Wed Jul 22 14:32:55 2009 begin with 6537753 relations and 6487093 unique ideals Wed Jul 22 14:33:04 2009 reduce to 6397323 relations and 5370834 ideals in 7 passes Wed Jul 22 14:33:04 2009 max relations containing the same ideal: 111 Wed Jul 22 14:33:11 2009 removing 1286700 relations and 886700 ideals in 400000 cliques Wed Jul 22 14:33:12 2009 commencing in-memory singleton removal Wed Jul 22 14:33:13 2009 begin with 5110623 relations and 5370834 unique ideals Wed Jul 22 14:33:20 2009 reduce to 4952018 relations and 4316640 ideals in 7 passes Wed Jul 22 14:33:20 2009 max relations containing the same ideal: 89 Wed Jul 22 14:33:25 2009 removing 1214883 relations and 814883 ideals in 400000 cliques Wed Jul 22 14:33:26 2009 commencing in-memory singleton removal Wed Jul 22 14:33:26 2009 begin with 3737135 relations and 4316640 unique ideals Wed Jul 22 14:33:32 2009 reduce to 3544361 relations and 3295202 ideals in 8 passes Wed Jul 22 14:33:32 2009 max relations containing the same ideal: 72 Wed Jul 22 14:33:36 2009 removing 466668 relations and 352093 ideals in 114575 cliques Wed Jul 22 14:33:36 2009 commencing in-memory singleton removal Wed Jul 22 14:33:37 2009 begin with 3077693 relations and 3295202 unique ideals Wed Jul 22 14:33:40 2009 reduce to 3041291 relations and 2905657 ideals in 6 passes Wed Jul 22 14:33:40 2009 max relations containing the same ideal: 68 Wed Jul 22 14:33:44 2009 relations with 0 large ideals: 471 Wed Jul 22 14:33:44 2009 relations with 1 large ideals: 2091 Wed Jul 22 14:33:44 2009 relations with 2 large ideals: 28692 Wed Jul 22 14:33:44 2009 relations with 3 large ideals: 163521 Wed Jul 22 14:33:44 2009 relations with 4 large ideals: 481707 Wed Jul 22 14:33:44 2009 relations with 5 large ideals: 813905 Wed Jul 22 14:33:44 2009 relations with 6 large ideals: 827216 Wed Jul 22 14:33:44 2009 relations with 7+ large ideals: 723688 Wed Jul 22 14:33:44 2009 commencing 2-way merge Wed Jul 22 14:33:48 2009 reduce to 2028230 relation sets and 1892596 unique ideals Wed Jul 22 14:33:48 2009 commencing full merge Wed Jul 22 14:34:37 2009 memory use: 196.2 MB Wed Jul 22 14:34:38 2009 found 1047881 cycles, need 1028796 Wed Jul 22 14:34:38 2009 weight of 1028796 cycles is about 72288141 (70.26/cycle) Wed Jul 22 14:34:38 2009 distribution of cycle lengths: Wed Jul 22 14:34:38 2009 1 relations: 83203 Wed Jul 22 14:34:38 2009 2 relations: 111470 Wed Jul 22 14:34:38 2009 3 relations: 123757 Wed Jul 22 14:34:38 2009 4 relations: 122068 Wed Jul 22 14:34:38 2009 5 relations: 113877 Wed Jul 22 14:34:38 2009 6 relations: 101487 Wed Jul 22 14:34:38 2009 7 relations: 86569 Wed Jul 22 14:34:38 2009 8 relations: 71513 Wed Jul 22 14:34:38 2009 9 relations: 57361 Wed Jul 22 14:34:38 2009 10+ relations: 157491 Wed Jul 22 14:34:38 2009 heaviest cycle: 18 relations Wed Jul 22 14:34:39 2009 commencing cycle optimization Wed Jul 22 14:34:41 2009 start with 5912490 relations Wed Jul 22 14:34:56 2009 pruned 179772 relations Wed Jul 22 14:34:56 2009 memory use: 149.2 MB Wed Jul 22 14:34:56 2009 distribution of cycle lengths: Wed Jul 22 14:34:56 2009 1 relations: 83203 Wed Jul 22 14:34:56 2009 2 relations: 114003 Wed Jul 22 14:34:56 2009 3 relations: 128763 Wed Jul 22 14:34:56 2009 4 relations: 125973 Wed Jul 22 14:34:56 2009 5 relations: 117959 Wed Jul 22 14:34:56 2009 6 relations: 104371 Wed Jul 22 14:34:56 2009 7 relations: 88089 Wed Jul 22 14:34:56 2009 8 relations: 71735 Wed Jul 22 14:34:56 2009 9 relations: 56564 Wed Jul 22 14:34:56 2009 10+ relations: 138136 Wed Jul 22 14:34:56 2009 heaviest cycle: 18 relations Wed Jul 22 14:35:00 2009 RelProcTime: 954 Wed Jul 22 14:35:00 2009 Wed Jul 22 14:35:00 2009 commencing linear algebra Wed Jul 22 14:35:00 2009 read 1028796 cycles Wed Jul 22 14:35:02 2009 cycles contain 2962793 unique relations Wed Jul 22 14:36:51 2009 read 2962793 relations Wed Jul 22 14:36:57 2009 using 20 quadratic characters above 268433820 Wed Jul 22 14:37:12 2009 building initial matrix Wed Jul 22 14:37:56 2009 memory use: 347.5 MB Wed Jul 22 14:37:58 2009 read 1028796 cycles Wed Jul 22 14:38:49 2009 matrix is 1028619 x 1028796 (291.5 MB) with weight 97512281 (94.78/col) Wed Jul 22 14:38:49 2009 sparse part has weight 69225192 (67.29/col) Wed Jul 22 14:39:04 2009 filtering completed in 2 passes Wed Jul 22 14:39:04 2009 matrix is 1028282 x 1028459 (291.5 MB) with weight 97497904 (94.80/col) Wed Jul 22 14:39:04 2009 sparse part has weight 69220272 (67.30/col) Wed Jul 22 14:39:09 2009 read 1028459 cycles Wed Jul 22 14:42:03 2009 matrix is 1028282 x 1028459 (291.5 MB) with weight 97497904 (94.80/col) Wed Jul 22 14:42:03 2009 sparse part has weight 69220272 (67.30/col) Wed Jul 22 14:42:04 2009 saving the first 48 matrix rows for later Wed Jul 22 14:42:04 2009 matrix is 1028234 x 1028459 (282.0 MB) with weight 77197089 (75.06/col) Wed Jul 22 14:42:04 2009 sparse part has weight 67760950 (65.89/col) Wed Jul 22 14:42:04 2009 matrix includes 64 packed rows Wed Jul 22 14:42:04 2009 using block size 65536 for processor cache size 6144 kB Wed Jul 22 14:42:12 2009 commencing Lanczos iteration (4 threads) Wed Jul 22 14:42:12 2009 memory use: 312.2 MB Wed Jul 22 16:23:16 2009 lanczos halted after 16260 iterations (dim = 1028232) Wed Jul 22 16:23:19 2009 recovered 28 nontrivial dependencies Wed Jul 22 16:23:20 2009 BLanczosTime: 6500 Wed Jul 22 16:23:20 2009 Wed Jul 22 16:23:20 2009 commencing square root phase Wed Jul 22 16:23:20 2009 reading relations for dependency 1 Wed Jul 22 16:23:20 2009 read 514616 cycles Wed Jul 22 16:23:22 2009 cycles contain 1855521 unique relations Wed Jul 22 16:25:56 2009 read 1855521 relations Wed Jul 22 16:26:07 2009 multiplying 1482034 relations Wed Jul 22 16:29:41 2009 multiply complete, coefficients have about 68.61 million bits Wed Jul 22 16:29:44 2009 initial square root is modulo 84317 Wed Jul 22 16:37:05 2009 reading relations for dependency 2 Wed Jul 22 16:37:06 2009 read 513871 cycles Wed Jul 22 16:37:07 2009 cycles contain 1853804 unique relations Wed Jul 22 16:40:23 2009 read 1853804 relations Wed Jul 22 16:40:36 2009 multiplying 1480638 relations Wed Jul 22 16:44:27 2009 multiply complete, coefficients have about 68.54 million bits Wed Jul 22 16:44:29 2009 initial square root is modulo 83207 Wed Jul 22 16:52:48 2009 sqrtTime: 1768 Wed Jul 22 16:52:48 2009 prp56 factor: 13056246011809721884007205309537122134790655929126011321 Wed Jul 22 16:52:48 2009 prp76 factor: 3812573573319637471194915345352510153300362083742249817651638622768023693649 Wed Jul 22 16:52:48 2009 elapsed time 02:33:45
By Sinkiti Sibata / Msieve / Jul 22, 2009
(4·10170-13)/9 = (4)1693<170> = 43 · 49843993 · 2475812821<10> · 125520143958780691<18> · C134
C134 = P66 · P69
P66 = 134952326025103652801521248618834398257383508096149729562130206993<66>
P69 = 494452513887969866030765721406804005551992171945654486556735975996359<69>
Number: 44443_170 N=66727516858141401074243180482446319845168157241778593460594338756127146244380514569050496334811780938019385938969552861994164084338487 ( 134 digits) SNFS difficulty: 170 digits. Divisors found: r1=134952326025103652801521248618834398257383508096149729562130206993 (pp66) r2=494452513887969866030765721406804005551992171945654486556735975996359 (pp69) Version: Msieve-1.40 Total time: 62.21 hours. Scaled time: 159.50 units (timescale=2.564). Factorization parameters were as follows: name: 44443_170 n: 66727516858141401074243180482446319845168157241778593460594338756127146244380514569050496334811780938019385938969552861994164084338487 m: 10000000000000000000000000000000000 deg: 5 c5: 4 c0: -13 skew: 1.27 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 959702 x 959950 Total sieving time: 59.84 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.12 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 62.21 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Jul 21, 2009
(43·10168-61)/9 = 4(7)1671<169> = 22697 · 847871 · 280048951928996363825795273<27> · C132
C132 = P38 · P95
P38 = 16901046374539237625557269338688649493<38>
P95 = 52454187242637751875089575327021264362767456784230240263930131709150203218780655157553340044497<95>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 886530651126585105903250758298570538352456873152422573299364523119106894143736122032708526032962960174606258358367676475085456490021 (132 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2321597130 Step 1 took 9853ms Step 2 took 5141ms ********** Factor found in step 2: 16901046374539237625557269338688649493 Found probable prime factor of 38 digits: 16901046374539237625557269338688649493 Probable prime cofactor 52454187242637751875089575327021264362767456784230240263930131709150203218780655157553340044497 has 95 digits
(14·10170-11)/3 = 4(6)1693<171> = 17 · 11317 · 526732469 · 441078895079741<15> · C143
C143 = P35 · P108
P35 = 35579941592008772423172650690055857<35>
P108 = 293437047888738978141986455944132593215288834033455785264598594536814464364859742626924248414572744526052939<108>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 10440473024812813910784256169406112481945315164487396088488010879249685174451988965209380312566607654421939858109611857042610749685869649013723 (143 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=7299964278 Step 1 took 12030ms Step 2 took 5520ms ********** Factor found in step 2: 35579941592008772423172650690055857 Found probable prime factor of 35 digits: 35579941592008772423172650690055857 Probable prime cofactor 293437047888738978141986455944132593215288834033455785264598594536814464364859742626924248414572744526052939 has 108 digits
By Robert Backstrom / GGNFS, Msieve / Jul 20, 2009
(43·10182+11)/9 = 4(7)1819<183> = 97 · 353 · C179
C179 = P50 · P129
P50 = 14420577088818323505616863399192301373953570591687<50>
P129 = 967602241982232345120213379837347731892522485447083941533704978769489168236118988664746004583450464381451226448194873652427696437<129>
Number: n N=13953382721818223117834694599391892111146805811097157728389292887993276416511719218999964305300013953382721818223117834694599391892111146805811097157728389292887993276416511719219 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: Mon Jul 20 15:34:20 2009 prp50 factor: 14420577088818323505616863399192301373953570591687 Mon Jul 20 15:34:20 2009 prp129 factor: 967602241982232345120213379837347731892522485447083941533704978769489168236118988664746004583450464381451226448194873652427696437 Mon Jul 20 15:34:20 2009 elapsed time 02:54:11 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 193.09 hours. Scaled time: 501.06 units (timescale=2.595). Factorization parameters were as follows: name: KA_4_7_181_9 n: 13953382721818223117834694599391892111146805811097157728389292887993276416511719218999964305300013953382721818223117834694599391892111146805811097157728389292887993276416511719219 m: 2000000000000000000000000000000000000 deg: 5 c5: 1075 c0: 88 skew: 0.61 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4200000, 7800571) Primes: RFBsize:564877, AFBsize:565987, largePrimes:20079391 encountered Relations: rels:20295618, finalFF:975193 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2163898 hash collisions in 21874822 relations Msieve: matrix is 1411695 x 1411943 (380.5 MB) Total sieving time: 192.43 hours. Total relation processing time: 0.66 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,56,56,2.4,2.4,100000 total time: 193.09 hours. --------- CPU info (if available) ----------
By JPascoa / ggnfs, Msieve / Jul 20, 2009
(58·10163+23)/9 = 6(4)1627<164> = 89 · 1361722388871787<16> · 4310597647035065104719854951<28> · C120
C120 = P52 · P68
P52 = 1394721122046343598898954744537561461564601370683041<52>
P68 = 88446781495499968050670791016168541995795404733544043226877321557619<68>
Number: 64447_163 N=123358594328791495556126661691507931865080054364763831788218995633927970659697113723897937644655278724450733932067639379 ( 120 digits) SNFS difficulty: 166 digits. Divisors found: r1=1394721122046343598898954744537561461564601370683041 (pp52) r2=88446781495499968050670791016168541995795404733544043226877321557619 (pp68) Version: Msieve-1.40 Total time: 122.50 hours. Scaled time: 109.52 units (timescale=0.894). Factorization parameters were as follows: n: 123358594328791495556126661691507931865080054364763831788218995633927970659697113723897937644655278724450733932067639379 m: 500000000000000000000000000000000 deg: 5 c5: 464 c0: 575 skew: 1.04 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 783565 x 783813 Total sieving time: 116.92 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.71 hours. Time per square root: 0.65 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 122.50 hours. --------- CPU info (if available) ----------
Msieve version 1.42 now available
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Jul 19, 2009
(52·10169+11)/9 = 5(7)1689<170> = 4898850088247<13> · 439584041643524138030023<24> · C134
C134 = P37 · P97
P37 = 8664505744431290401102450208330703623<37>
P97 = 3096570505500625044991977990181851031592172948921210009806769010994433962313317765726822407471733<97>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 26830252932946670433282633304656708361984848210275832396303656863160017951525807757982726879368734099148688994835598198398948373188659 (134 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3033120199 Step 1 took 4243ms Step 2 took 4227ms ********** Factor found in step 2: 8664505744431290401102450208330703623 Found probable prime factor of 37 digits: 8664505744431290401102450208330703623 Probable prime cofactor 3096570505500625044991977990181851031592172948921210009806769010994433962313317765726822407471733 has 97 digits
(58·10167+23)/9 = 6(4)1667<168> = 383 · 81817 · 116411 · 2539015319297239760208862106037195769<37> · C119
C119 = P45 · P75
P45 = 374955885683995304806408659651797737916881109<45>
P75 = 185568237447150266710225357815093455211539272721334490104275510776087852567<75>
Number: 64447_167 N=69579902826814172117370151834844693730354578571165992862664790776297462544881688493563687017875009631281121822059456803 ( 119 digits) Divisors found: r1=374955885683995304806408659651797737916881109 r2=185568237447150266710225357815093455211539272721334490104275510776087852567 Version: Total time: 26.73 hours. Scaled time: 63.92 units (timescale=2.391). Factorization parameters were as follows: name: 64447_167 n: 69579902826814172117370151834844693730354578571165992862664790776297462544881688493563687017875009631281121822059456803 skew: 47349.17 # norm 2.24e+16 c5: 97680 c4: -13680015272 c3: -938576535914888 c2: 23575289591187172209 c1: 621356567553877682728762 c0: -9041730036885776114944853304 # alpha -5.82 Y1: 8824749378397 Y0: -58957282053378243449603 # Murphy_E 3.17e-10 # M 47344066638380041334839352664793755654023650330881408512311320265554362175946657539853017303858866715609793853414241683 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9815119 Max relations in full relation-set: Initial matrix: Pruned matrix : 649556 x 649804 Polynomial selection time: 2.28 hours. Total sieving time: 22.39 hours. Total relation processing time: 0.92 hours. Matrix solve time: 0.86 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 26.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5556.53 BogoMIPS (lpj=2778268) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Andreas Tete / Msieve v.1.42, GGNFS / Jul 19, 2009
(58·10176+23)/9 = 6(4)1757<177> = 8929 · 495108312917<12> · 11709965533731842879<20> · 584523038568799821949<21> · C122
C122 = P59 · P63
P59 = 45945311893089576120617083406295313405032488551893964974131<59>
P63 = 463536555085071903813929644352373972274237777973789300237822779<63>
Sat Jul 18 19:00:08 2009 Msieve v. 1.42 Sat Jul 18 19:00:08 2009 random seeds: 9b67fae0 8958af49 Sat Jul 18 19:00:08 2009 factoring 21297331597231925575431021475147344519208861186265435531663300064057696819420851677903908845421164785867653061776497530049 (122 digits) Sat Jul 18 19:00:09 2009 searching for 15-digit factors Sat Jul 18 19:00:11 2009 commencing number field sieve (122-digit input) Sat Jul 18 19:00:11 2009 R0: -267740348395822115091009 Sat Jul 18 19:00:11 2009 R1: 9996088625369 Sat Jul 18 19:00:11 2009 A0: -12649253990942022464562560360 Sat Jul 18 19:00:11 2009 A1: -29032392364374356043724 Sat Jul 18 19:00:11 2009 A2: 71278176830714457495 Sat Jul 18 19:00:11 2009 A3: 1599979649307247 Sat Jul 18 19:00:11 2009 A4: -14210029177 Sat Jul 18 19:00:11 2009 A5: 15480 Sat Jul 18 19:00:11 2009 skew 70537.14, size 1.157191e-011, alpha -5.675436, combined = 2.303915e-010 Sat Jul 18 19:00:12 2009 Sat Jul 18 19:00:12 2009 commencing relation filtering Sat Jul 18 19:00:12 2009 estimated available RAM is 3069.5 MB Sat Jul 18 19:00:13 2009 commencing duplicate removal, pass 1 Sat Jul 18 19:01:46 2009 found 1157953 hash collisions in 8680732 relations Sat Jul 18 19:02:09 2009 added 58990 free relations Sat Jul 18 19:02:09 2009 commencing duplicate removal, pass 2 Sat Jul 18 19:02:23 2009 found 1051971 duplicates and 7687750 unique relations Sat Jul 18 19:02:23 2009 memory use: 49.3 MB Sat Jul 18 19:02:24 2009 reading ideals above 100000 Sat Jul 18 19:02:24 2009 commencing singleton removal, initial pass Sat Jul 18 19:04:18 2009 memory use: 149.2 MB Sat Jul 18 19:04:18 2009 reading all ideals from disk Sat Jul 18 19:04:24 2009 memory use: 274.8 MB Sat Jul 18 19:04:26 2009 keeping 8454285 ideals with weight <= 200, target excess is 42010 Sat Jul 18 19:04:28 2009 commencing in-memory singleton removal Sat Jul 18 19:04:30 2009 begin with 7687750 relations and 8454285 unique ideals Sat Jul 18 19:04:42 2009 reduce to 2823891 relations and 2738944 ideals in 17 passes Sat Jul 18 19:04:42 2009 max relations containing the same ideal: 99 Sat Jul 18 19:04:44 2009 removing 194198 relations and 176090 ideals in 18108 cliques Sat Jul 18 19:04:44 2009 commencing in-memory singleton removal Sat Jul 18 19:04:45 2009 begin with 2629693 relations and 2738944 unique ideals Sat Jul 18 19:04:50 2009 reduce to 2620563 relations and 2553639 ideals in 9 passes Sat Jul 18 19:04:50 2009 max relations containing the same ideal: 92 Sat Jul 18 19:04:52 2009 removing 143450 relations and 125342 ideals in 18108 cliques Sat Jul 18 19:04:52 2009 commencing in-memory singleton removal Sat Jul 18 19:04:53 2009 begin with 2477113 relations and 2553639 unique ideals Sat Jul 18 19:04:56 2009 reduce to 2471536 relations and 2422684 ideals in 7 passes Sat Jul 18 19:04:56 2009 max relations containing the same ideal: 90 Sat Jul 18 19:04:59 2009 relations with 0 large ideals: 128 Sat Jul 18 19:04:59 2009 relations with 1 large ideals: 447 Sat Jul 18 19:04:59 2009 relations with 2 large ideals: 5310 Sat Jul 18 19:04:59 2009 relations with 3 large ideals: 38239 Sat Jul 18 19:04:59 2009 relations with 4 large ideals: 163031 Sat Jul 18 19:04:59 2009 relations with 5 large ideals: 422649 Sat Jul 18 19:04:59 2009 relations with 6 large ideals: 675623 Sat Jul 18 19:04:59 2009 relations with 7+ large ideals: 1166109 Sat Jul 18 19:04:59 2009 commencing 2-way merge Sat Jul 18 19:05:02 2009 reduce to 1466516 relation sets and 1417664 unique ideals Sat Jul 18 19:05:02 2009 commencing full merge Sat Jul 18 19:05:39 2009 memory use: 153.5 MB Sat Jul 18 19:05:40 2009 found 749622 cycles, need 743864 Sat Jul 18 19:05:40 2009 weight of 743864 cycles is about 52090418 (70.03/cycle) Sat Jul 18 19:05:40 2009 distribution of cycle lengths: Sat Jul 18 19:05:40 2009 1 relations: 94279 Sat Jul 18 19:05:40 2009 2 relations: 90634 Sat Jul 18 19:05:40 2009 3 relations: 87859 Sat Jul 18 19:05:40 2009 4 relations: 78025 Sat Jul 18 19:05:40 2009 5 relations: 69180 Sat Jul 18 19:05:40 2009 6 relations: 57697 Sat Jul 18 19:05:40 2009 7 relations: 49517 Sat Jul 18 19:05:40 2009 8 relations: 41441 Sat Jul 18 19:05:40 2009 9 relations: 34605 Sat Jul 18 19:05:40 2009 10+ relations: 140627 Sat Jul 18 19:05:40 2009 heaviest cycle: 24 relations Sat Jul 18 19:05:40 2009 commencing cycle optimization Sat Jul 18 19:05:42 2009 start with 4383951 relations Sat Jul 18 19:05:54 2009 pruned 102411 relations Sat Jul 18 19:05:54 2009 memory use: 115.6 MB Sat Jul 18 19:05:54 2009 distribution of cycle lengths: Sat Jul 18 19:05:54 2009 1 relations: 94279 Sat Jul 18 19:05:54 2009 2 relations: 92647 Sat Jul 18 19:05:54 2009 3 relations: 90891 Sat Jul 18 19:05:54 2009 4 relations: 79701 Sat Jul 18 19:05:54 2009 5 relations: 70495 Sat Jul 18 19:05:54 2009 6 relations: 58154 Sat Jul 18 19:05:54 2009 7 relations: 49857 Sat Jul 18 19:05:54 2009 8 relations: 41116 Sat Jul 18 19:05:54 2009 9 relations: 34380 Sat Jul 18 19:05:54 2009 10+ relations: 132344 Sat Jul 18 19:05:54 2009 heaviest cycle: 24 relations Sat Jul 18 19:05:55 2009 RelProcTime: 343 Sat Jul 18 19:05:55 2009 Sat Jul 18 19:05:55 2009 commencing linear algebra Sat Jul 18 19:05:55 2009 read 743864 cycles Sat Jul 18 19:05:57 2009 cycles contain 2425496 unique relations Sat Jul 18 19:06:36 2009 read 2425496 relations Sat Jul 18 19:06:41 2009 using 20 quadratic characters above 134216420 Sat Jul 18 19:06:56 2009 building initial matrix Sat Jul 18 19:07:34 2009 memory use: 284.7 MB Sat Jul 18 19:07:35 2009 read 743864 cycles Sat Jul 18 19:07:36 2009 matrix is 743687 x 743864 (213.6 MB) with weight 71084008 (95.56/col) Sat Jul 18 19:07:36 2009 sparse part has weight 50032887 (67.26/col) Sat Jul 18 19:07:46 2009 filtering completed in 2 passes Sat Jul 18 19:07:46 2009 matrix is 743088 x 743265 (213.5 MB) with weight 71058320 (95.60/col) Sat Jul 18 19:07:46 2009 sparse part has weight 50025604 (67.31/col) Sat Jul 18 19:07:49 2009 read 743265 cycles Sat Jul 18 19:07:51 2009 matrix is 743088 x 743265 (213.5 MB) with weight 71058320 (95.60/col) Sat Jul 18 19:07:51 2009 sparse part has weight 50025604 (67.31/col) Sat Jul 18 19:07:51 2009 saving the first 48 matrix rows for later Sat Jul 18 19:07:51 2009 matrix is 743040 x 743265 (203.9 MB) with weight 56099385 (75.48/col) Sat Jul 18 19:07:51 2009 sparse part has weight 48981570 (65.90/col) Sat Jul 18 19:07:51 2009 matrix includes 64 packed rows Sat Jul 18 19:07:51 2009 using block size 65536 for processor cache size 3072 kB Sat Jul 18 19:07:57 2009 commencing Lanczos iteration Sat Jul 18 19:07:57 2009 memory use: 207.0 MB Sat Jul 18 20:29:59 2009 lanczos halted after 11749 iterations (dim = 743039) Sat Jul 18 20:30:01 2009 recovered 33 nontrivial dependencies Sat Jul 18 20:30:02 2009 BLanczosTime: 5047 Sat Jul 18 20:30:02 2009 Sat Jul 18 20:30:02 2009 commencing square root phase Sat Jul 18 20:30:02 2009 reading relations for dependency 1 Sat Jul 18 20:30:02 2009 read 371133 cycles Sat Jul 18 20:30:03 2009 cycles contain 1485520 unique relations Sat Jul 18 20:30:39 2009 read 1485520 relations Sat Jul 18 20:30:48 2009 multiplying 1210228 relations Sat Jul 18 20:34:22 2009 multiply complete, coefficients have about 55.54 million bits Sat Jul 18 20:34:24 2009 initial square root is modulo 94007273 Sat Jul 18 20:40:15 2009 reading relations for dependency 2 Sat Jul 18 20:40:15 2009 read 371938 cycles Sat Jul 18 20:40:16 2009 cycles contain 1488775 unique relations Sat Jul 18 20:40:51 2009 read 1488775 relations Sat Jul 18 20:40:59 2009 multiplying 1213308 relations Sat Jul 18 20:44:33 2009 multiply complete, coefficients have about 55.67 million bits Sat Jul 18 20:44:36 2009 initial square root is modulo 98413577 Sat Jul 18 20:50:27 2009 reading relations for dependency 3 Sat Jul 18 20:50:28 2009 read 371787 cycles Sat Jul 18 20:50:28 2009 cycles contain 1488232 unique relations Sat Jul 18 20:51:02 2009 read 1488232 relations Sat Jul 18 20:51:10 2009 multiplying 1212158 relations Sat Jul 18 20:54:44 2009 multiply complete, coefficients have about 55.62 million bits Sat Jul 18 20:54:47 2009 initial square root is modulo 96742643 Sat Jul 18 21:00:38 2009 reading relations for dependency 4 Sat Jul 18 21:00:38 2009 read 372619 cycles Sat Jul 18 21:00:39 2009 cycles contain 1490002 unique relations Sat Jul 18 21:01:12 2009 read 1490002 relations Sat Jul 18 21:01:22 2009 multiplying 1214630 relations Sat Jul 18 21:04:56 2009 multiply complete, coefficients have about 55.74 million bits Sat Jul 18 21:04:58 2009 initial square root is modulo 100489853 Sat Jul 18 21:10:49 2009 reading relations for dependency 5 Sat Jul 18 21:10:49 2009 read 371616 cycles Sat Jul 18 21:10:50 2009 cycles contain 1487843 unique relations Sat Jul 18 21:11:23 2009 read 1487843 relations Sat Jul 18 21:11:32 2009 multiplying 1212846 relations Sat Jul 18 21:15:06 2009 multiply complete, coefficients have about 55.66 million bits Sat Jul 18 21:15:09 2009 initial square root is modulo 97915031 Sat Jul 18 21:21:01 2009 reading relations for dependency 6 Sat Jul 18 21:21:01 2009 read 371752 cycles Sat Jul 18 21:21:02 2009 cycles contain 1489453 unique relations Sat Jul 18 21:21:37 2009 read 1489453 relations Sat Jul 18 21:21:46 2009 multiplying 1214234 relations Sat Jul 18 21:25:21 2009 multiply complete, coefficients have about 55.72 million bits Sat Jul 18 21:25:23 2009 initial square root is modulo 99859171 Sat Jul 18 21:31:15 2009 sqrtTime: 3673 Sat Jul 18 21:31:15 2009 prp59 factor: 45945311893089576120617083406295313405032488551893964974131 Sat Jul 18 21:31:15 2009 prp63 factor: 463536555085071903813929644352373972274237777973789300237822779 Sat Jul 18 21:31:15 2009 elapsed time 02:31:07
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jul 18, 2009
(58·10161+23)/9 = 6(4)1607<162> = 41119327973436033475483754806134272837<38> · C125
C125 = P50 · P75
P50 = 26871790039300526486196912904597959855554874021199<50>
P75 = 583234060233196823479456446336892759281171709697223343472935319966425238269<75>
Number: 64447_161 N=15672543210355221701053940350577676484197328922241828151784149179051334607839580596202241048609582134533477776622521732064531 ( 125 digits) SNFS difficulty: 162 digits. Divisors found: r1=26871790039300526486196912904597959855554874021199 r2=583234060233196823479456446336892759281171709697223343472935319966425238269 Version: Total time: 20.09 hours. Scaled time: 47.97 units (timescale=2.388). Factorization parameters were as follows: n: 15672543210355221701053940350577676484197328922241828151784149179051334607839580596202241048609582134533477776622521732064531 m: 100000000000000000000000000000000 deg: 5 c5: 580 c0: 23 skew: 0.52 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9704756 Max relations in full relation-set: Initial matrix: Pruned matrix : 695279 x 695527 Total sieving time: 18.21 hours. Total relation processing time: 0.80 hours. Matrix solve time: 1.01 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 20.09 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5556.53 BogoMIPS (lpj=2778268) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10162+23)/9 = 6(4)1617<163> = 32 · 24247 · 1079831 · 2020506749<10> · C143
C143 = P42 · P101
P42 = 149341881640836290021255337570732276202949<42>
P101 = 90633185966835800545817749240634207154524406954605664798680122666388901649995696515931063037625341319<101>
Number: 64447_162 N=13535330531391096719446805778580505859562186778278308618604894946818978050168809172701900039808903911493436257192219298250447501692737439349731 ( 143 digits) SNFS difficulty: 164 digits. Divisors found: r1=149341881640836290021255337570732276202949 r2=90633185966835800545817749240634207154524406954605664798680122666388901649995696515931063037625341319 Version: Total time: 26.23 hours. Scaled time: 62.57 units (timescale=2.385). Factorization parameters were as follows: n: 13535330531391096719446805778580505859562186778278308618604894946818978050168809172701900039808903911493436257192219298250447501692737439349731 m: 200000000000000000000000000000000 deg: 5 c5: 725 c0: 92 skew: 0.66 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9867056 Max relations in full relation-set: Initial matrix: Pruned matrix : 798231 x 798479 Total sieving time: 23.63 hours. Total relation processing time: 1.06 hours. Matrix solve time: 1.34 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 26.23 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5556.53 BogoMIPS (lpj=2778268) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Robert Backstrom / GGNFS, Msieve / Jul 18, 2009
(58·10164+23)/9 = 6(4)1637<165> = 17 · 71 · 109 · 1811 · C157
C157 = P50 · P108
P50 = 11500057744747399273355108662919213155050608195831<50>
P108 = 235197794368519156880312362442167554274367596081043998198046134333506670922483690675068444570466640194016809<108>
Number: n N=2704788216675194980499542551060655021724236388702534810044917685756135276824583595510670303940880582146643295076682884124461339036642305529913813504377723279 ( 157 digits) SNFS difficulty: 166 digits. Divisors found: Sat Jul 18 06:33:52 2009 prp50 factor: 11500057744747399273355108662919213155050608195831 Sat Jul 18 06:33:52 2009 prp108 factor: 235197794368519156880312362442167554274367596081043998198046134333506670922483690675068444570466640194016809 Sat Jul 18 06:33:52 2009 elapsed time 00:48:58 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 33.45 hours. Scaled time: 88.29 units (timescale=2.639). Factorization parameters were as follows: name: KA_6_4_163_7 n: 2704788216675194980499542551060655021724236388702534810044917685756135276824583595510670303940880582146643295076682884124461339036642305529913813504377723279 m: 1000000000000000000000000000000000 deg: 5 c5: 29 c0: 115 skew: 1.32 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 20000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2100000, 3879990) Primes: RFBsize:296314, AFBsize:296441, largePrimes:15128491 encountered Relations: rels:14197589, finalFF:565554 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1497712 hash collisions in 16067174 relations Msieve: matrix is 728489 x 728737 (194.4 MB) Total sieving time: 33.16 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,56,56,2.4,2.4,100000 total time: 33.45 hours. --------- CPU info (if available) ----------
2·10220-1 = 1(9)220<221> = 7 · 8524543 · C213
C213 = P49 · P165
P49 = 1083123216870509849562557573497140850225905243919<49>
P165 = 309444654420209152261395329908853882478560572701303797798488365664928863916804072609327933421236573012248026757692102667702446776183075707594247676208587347163650521<165>
Number: n N=335166689539000171957270067984038222677408379210810144644368954106144709793491904157543359551021428027620617651543649570757886124469412277333476159031968885939943391351636931487956932957327699896304453756976431799 ( 213 digits) SNFS difficulty: 221 digits. Divisors found: Sat Jul 18 23:40:02 2009 prp49 factor: 1083123216870509849562557573497140850225905243919 Sat Jul 18 23:40:02 2009 prp165 factor: 309444654420209152261395329908853882478560572701303797798488365664928863916804072609327933421236573012248026757692102667702446776183075707594247676208587347163650521 Sat Jul 18 23:40:02 2009 elapsed time 66:40:35 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20050930-k8 Total time: 235.94 hours. Scaled time: 475.41 units (timescale=2.015). Factorization parameters were as follows: name: KA_1_9_220 n: 335166689539000171957270067984038222677408379210810144644368954106144709793491904157543359551021428027620617651543649570757886124469412277333476159031968885939943391351636931487956932957327699896304453756976431799 m: 5000000000000000000000000000000000000 deg: 6 c6: 32 c0: -25 skew: 0.96 type: snfs lss: 1 rlim: 35000000 alim: 35000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 35000000/35000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [17500000, 57299990) Primes: RFBsize:2146775, AFBsize:2145196, largePrimes:38632996 encountered Relations: rels:36859864, finalFF:1918519 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8934321 hash collisions in 51196493 relations Msieve: matrix is 5501339 x 5501587 (1489.6 MB) Total sieving time: 233.50 hours. Total relation processing time: 2.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,221,6,0,0,0,0,0,0,0,0,35000000,35000000,29,29,58,58,2.6,2.6,100000 total time: 235.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352056k/3407296k available (3119k kernel code, 53956k reserved, 1894k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.68 BogoMIPS (lpj=2830844) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22644.41 BogoMIPS).
By JPascoa / ggnfs, Msieve / Jul 18, 2009
(56·10175+61)/9 = 6(2)1749<176> = 3 · 31 · 2711 · C171
C171 = P48 · P53 · P70
P48 = 388515540492427348907583886855452752043478553029<48>
P53 = 70798724686624585386544472933176159270934345581903249<53>
P70 = 8972205695485573426892548531463913519652897767969898815437666920730963<70>
Number: 62229_175 N=246793121699417436022188464448789766194366330014406548479203492827795251612198102601596134514590982267473503893822547812862064239368174352289248589863765789801891228575823 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: r1=388515540492427348907583886855452752043478553029 (pp48) r2=70798724686624585386544472933176159270934345581903249 (pp53) r3=8972205695485573426892548531463913519652897767969898815437666920730963 (pp70) Version: Msieve-1.40 Total time: 190.37 hours. Scaled time: 170.00 units (timescale=0.893). Factorization parameters were as follows: n: 246793121699417436022188464448789766194366330014406548479203492827795251612198102601596134514590982267473503893822547812862064239368174352289248589863765789801891228575823 m: 100000000000000000000000000000000000 deg: 5 c5: 56 c0: 61 skew: 1.02 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 6400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1186087 x 1186335 Total sieving time: 175.31 hours. Total relation processing time: 0.43 hours. Matrix solve time: 12.30 hours. Time per square root: 2.33 hours. Prototype def-par.txt line would be: snfs,176.000,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000 total time: 190.37 hours. --------- CPU info (if available) ----------
By Andreas Tete / Syd`s Database workers / Jul 18, 2009
(58·10169+23)/9 = 6(4)1687<170> = 19 · 595027205653663<15> · C154
C154 = P44 · P111
P44 = 25375530110051932248409455637683310452044129<44>
P111 = 224636299692188654900752577911302035085906908095641797207881999549460700135118306963468485330593067442061655419<111>
Syd`s Database Workers found this p44 factor 25375530110051932248409455637683310452044129
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Jul 17, 2009
(58·10158+23)/9 = 6(4)1577<159> = 507258946185199073<18> · C142
C142 = P52 · P90
P52 = 1278645878079139367561302863672131908561906870215169<52>
P90 = 993586051553808199193408457585820294273094326234517367149202785954627596743988796894988031<90>
Number: 64447_158 N=1270444709336204120838955092427862236338311988888771908849602795998904887144640225487688999309661201835162015891793735455328916625770649642239 ( 142 digits) SNFS difficulty: 161 digits. Divisors found: r1=1278645878079139367561302863672131908561906870215169 r2=993586051553808199193408457585820294273094326234517367149202785954627596743988796894988031 Version: Total time: 19.20 hours. Scaled time: 45.85 units (timescale=2.388). Factorization parameters were as follows: n: 1270444709336204120838955092427862236338311988888771908849602795998904887144640225487688999309661201835162015891793735455328916625770649642239 m: 100000000000000000000000000000000 deg: 5 c5: 29 c0: 1150 skew: 2.09 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9559208 Max relations in full relation-set: Initial matrix: Pruned matrix : 662774 x 663022 Total sieving time: 17.47 hours. Total relation processing time: 0.77 hours. Matrix solve time: 0.88 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 19.20 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5556.53 BogoMIPS (lpj=2778268) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
(58·10167+23)/9 = 6(4)1667<168> = 383 · 81817 · 116411 · C156
C156 = P37 · C119
P37 = 2539015319297239760208862106037195769<37>
C119 = [69579902826814172117370151834844693730354578571165992862664790776297462544881688493563687017875009631281121822059456803<119>]
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 176664439192494500603903652629064270381455362741433055190135752367595572210582780887956047748456308226710844007728629140020317113769890466444789777509866507 (156 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4052174073 Step 1 took 5585ms Step 2 took 4930ms ********** Factor found in step 2: 2539015319297239760208862106037195769 Found probable prime factor of 37 digits: 2539015319297239760208862106037195769 Composite cofactor 69579902826814172117370151834844693730354578571165992862664790776297462544881688493563687017875009631281121822059456803 has 119 digits
By Robert Backstrom / GGNFS, Msieve / Jul 17, 2009
(25·10182-7)/9 = 2(7)182<183> = 17117 · C179
C179 = P56 · P124
P56 = 11668612365029158264973585406781904053320654630592190117<56>
P124 = 1390755018908550004808948472357508980894052680062194565556521981244963879863839918251881991075491489862525029001916349179393<124>
Number: n N=16228181210362667393689184890914165903942149779621299163274976793700869181385627024465605992742757362725815141542196516783185007757070618553355014183430377856971302084347594658981 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: Fri Jul 17 20:32:46 2009 prp56 factor: 11668612365029158264973585406781904053320654630592190117 Fri Jul 17 20:32:46 2009 prp124 factor: 1390755018908550004808948472357508980894052680062194565556521981244963879863839918251881991075491489862525029001916349179393 Fri Jul 17 20:32:46 2009 elapsed time 02:17:34 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 144.30 hours. Scaled time: 368.54 units (timescale=2.554). Factorization parameters were as follows: name: KA_2_7_182 n: 16228181210362667393689184890914165903942149779621299163274976793700869181385627024465605992742757362725815141542196516783185007757070618553355014183430377856971302084347594658981 m: 5000000000000000000000000000000000000 deg: 5 c5: 4 c0: -35 skew: 1.54 type: snfs lss: 1 rlim: 8200000 alim: 8200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8200000/8200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4100000, 6500519) Primes: RFBsize:552319, AFBsize:551943, largePrimes:21016285 encountered Relations: rels:21228277, finalFF:1081466 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1872658 hash collisions in 22409992 relations Msieve: matrix is 1283524 x 1283772 (345.3 MB) Total sieving time: 143.77 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8200000,8200000,28,28,56,56,2.5,2.5,100000 total time: 144.30 hours. --------- CPU info (if available) ----------
By Andreas Tete / Syd`s Databaseworkers / Jul 17, 2009
(58·10205+23)/9 = 6(4)2047<206> = 19 · 4673817737<10> · 5386475191<10> · C186
C186 = P44 · C142
P44 = 37279635067379744491429662807584297718778261<44>
C142 = [3613963770556477654016730027656282688127304025375501313679954016553439847689009024896441883490154237053247753961776552755718531951417094099999<142>]
Syd`s Databaseworkers found this factor with ecm and a B1 with 3000000 p44 = 37279635067379744491429662807584297718778261
(58·10201+23)/9 = 6(4)2007<202> = 3 · 7 · 59 · 1077279209<10> · 1781627747<10> · C181
C181 = P32 · P149
P32 = 30297092310814121029529794339259<32>
P149 = 89447453611115384235878445655526795835222280743403456616133385462314670368342358184437926433531052514215730265019173286277064719302589369837790759489<149>
Syd`s Databaseworkers found this p32 factor 30297092310814121029529794339259
By Jo Yeong Uk / GMP-ECM / Jul 17, 2009
(58·10166+23)/9 = 6(4)1657<167> = 67 · 269 · 24659821 · 359583120536779<15> · 37955506286865983<17> · C125
C125 = P38 · P87
P38 = 34290262392024774518344843759406959751<38>
P87 = 309830085865730714982413828543955085580794667849260732917353228988602413576841495364287<87>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 10624154941279472588706800909070323594739495600215523842393261989133431103918712360142396758107111721514498237754750891812537 (125 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5400989727 Step 1 took 4399ms Step 2 took 4274ms ********** Factor found in step 2: 34290262392024774518344843759406959751 Found probable prime factor of 38 digits: 34290262392024774518344843759406959751 Probable prime cofactor 309830085865730714982413828543955085580794667849260732917353228988602413576841495364287 has 87 digits
By Jo Yeong Uk / GGNFS/Msieve v1.39 / Jul 16, 2009
(58·10153+23)/9 = 6(4)1527<154> = 33 · 72 · 13386589 · 92319833 · 394377397 · C127
C127 = P45 · P83
P45 = 814705712881851172222015572110575961300237593<45>
P83 = 12267269943728648564005575671767203078380537568076048469810797003362184815778995757<83>
Number: 64447_153 N=9994214904619554942976947840573200293185186344913231726692244414931835344290389939721451670688386247341373699755831583038892901 ( 127 digits) SNFS difficulty: 156 digits. Divisors found: r1=814705712881851172222015572110575961300237593 r2=12267269943728648564005575671767203078380537568076048469810797003362184815778995757 Version: Total time: 12.80 hours. Scaled time: 30.18 units (timescale=2.358). Factorization parameters were as follows: n: 9994214904619554942976947840573200293185186344913231726692244414931835344290389939721451670688386247341373699755831583038892901 m: 10000000000000000000000000000000 deg: 5 c5: 29 c0: 1150 skew: 2.09 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8451961 Max relations in full relation-set: Initial matrix: Pruned matrix : 479129 x 479377 Total sieving time: 11.73 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.46 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 12.80 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673794) Calibrating delay using timer specific routine.. 5556.53 BogoMIPS (lpj=2778268) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
By Robert Backstrom / GGNFS, Msieve / Jul 16, 2009
(14·10183+1)/3 = 4(6)1827<184> = 13 · 223 · 647 · C178
C178 = P76 · P103
P76 = 2382309436848608429515710782337046103074905774875135063353620428270919969829<76>
P103 = 1044374150200446498197582320576516819989106942296904804562163907478690398558019374206562021089536289091<103>
Number: n N=2488022393623269691497663302682674602747238783861762632356126995060742401002033247443245987752887483274713748580716511351868744734056174925034996700704590170285584096134341835439 ( 178 digits) SNFS difficulty: 185 digits. Divisors found: Thu Jul 16 02:37:54 2009 prp76 factor: 2382309436848608429515710782337046103074905774875135063353620428270919969829 Thu Jul 16 02:37:54 2009 prp103 factor: 1044374150200446498197582320576516819989106942296904804562163907478690398558019374206562021089536289091 Thu Jul 16 02:37:54 2009 elapsed time 02:45:14 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 193.61 hours. Scaled time: 494.47 units (timescale=2.554). Factorization parameters were as follows: name: KA_4_6_182_7 n: 2488022393623269691497663302682674602747238783861762632356126995060742401002033247443245987752887483274713748580716511351868744734056174925034996700704590170285584096134341835439 m: 10000000000000000000000000000000000000 deg: 5 c5: 7 c0: 50 skew: 1.48 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4400000, 7649990) Primes: RFBsize:590006, AFBsize:591015, largePrimes:20956756 encountered Relations: rels:20817925, finalFF:1183054 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2257684 hash collisions in 23732928 relations Msieve: matrix is 1367636 x 1367884 (364.2 MB) Total sieving time: 193.00 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,56,56,2.5,2.5,100000 total time: 193.61 hours. --------- CPU info (if available) ----------
By JPascoa / ggnfs, Msieve / Jul 15, 2009
(58·10156+23)/9 = 6(4)1557<157> = 3 · 307 · 763897 · C148
C148 = P42 · P107
P42 = 120066543180694111133541404474922697213321<42>
P107 = 76290250756513641445476454090142648409983943145226476005174220199825080683439408569647411791219214819389111<107>
Number: 64447_156 N=9159906686722926709303097964633626498847435078929596419140294453156929171877364472475281345479703778592573903540222016425335256213162613039271547631 ( 148 digits) SNFS difficulty: 158 digits. Divisors found: r1=120066543180694111133541404474922697213321 (pp42) r2=76290250756513641445476454090142648409983943145226476005174220199825080683439408569647411791219214819389111 (pp107) Version: Msieve-1.40 Total time: 59.23 hours. Scaled time: 52.66 units (timescale=0.889). Factorization parameters were as follows: n: 9159906686722926709303097964633626498847435078929596419140294453156929171877364472475281345479703778592573903540222016425335256213162613039271547631 m: 20000000000000000000000000000000 deg: 5 c5: 145 c0: 184 skew: 1.05 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 604903 x 605151 Total sieving time: 56.56 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.34 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,158.000,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 59.23 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jul 15, 2009
(58·10145+23)/9 = 6(4)1447<146> = 318103 · 23255597 · 24166991 · 24837440522145492041<20> · C107
C107 = P42 · P65
P42 = 155862830136335532804447504661369172098147<42>
P65 = 93114699926353630931013362844178771981034759538690356442350389481<65>
Number: 64447_145 N=14513120657817110724068948596869268773609716183566522071117683501229380132163791152524290662673843408391707 ( 107 digits) Divisors found: r1=155862830136335532804447504661369172098147 r2=93114699926353630931013362844178771981034759538690356442350389481 Version: Total time: 6.15 hours. Scaled time: 14.67 units (timescale=2.385). Factorization parameters were as follows: name: 64447_145 n: 14513120657817110724068948596869268773609716183566522071117683501229380132163791152524290662673843408391707 skew: 39366.66 # norm 1.35e+15 c5: 10260 c4: -1732448568 c3: -40955835229705 c2: 2591026688417304464 c1: 35043786271468244640188 c0: -384519196336207960118558544 # alpha -6.76 Y1: 94483556057 Y0: -269232718404910182205 # Murphy_E 1.52e-09 # M 1883062411933760718032814856662790779215812496228563671416845431180490880688470056173105140057998316018953 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7242468 Max relations in full relation-set: Initial matrix: Pruned matrix : 327166 x 327414 Polynomial selection time: 0.43 hours. Total sieving time: 4.66 hours. Total relation processing time: 0.66 hours. Matrix solve time: 0.22 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 6.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10147+23)/9 = 6(4)1467<148> = 3 · 7 · 19448841488893<14> · 805559364860507<15> · C119
C119 = P51 · P69
P51 = 117743176838317603744085092073414896474908231317839<51>
P69 = 166356261680136035603069369279866858793166950948301687007455754691363<69>
Number: 64447_147 N=19587314737165695603470071257269254262295902571320784295305733164689395113045338701101302069147682911255882924201124557 ( 119 digits) SNFS difficulty: 149 digits. Divisors found: r1=117743176838317603744085092073414896474908231317839 r2=166356261680136035603069369279866858793166950948301687007455754691363 Version: Total time: 8.55 hours. Scaled time: 20.40 units (timescale=2.387). Factorization parameters were as follows: n: 19587314737165695603470071257269254262295902571320784295305733164689395113045338701101302069147682911255882924201124557 m: 200000000000000000000000000000 deg: 5 c5: 725 c0: 92 skew: 0.66 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1500000, 3225001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6995787 Max relations in full relation-set: Initial matrix: Pruned matrix : 442563 x 442811 Total sieving time: 7.39 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.38 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,49,49,2.3,2.3,75000 total time: 8.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM, YAFU 1.10 / Jul 14, 2009
(58·10128+23)/9 = 6(4)1277<129> = 131 · 41813 · 21245655914760583<17> · C106
C106 = P36 · P70
P36 = 760985107913167809574082276999951959<36>
P70 = 7277070100650168876742315488211887360553220961176794222662356452710017<70>
Number: 64447_128 N=5537741975834955696163581925148970165169810424088982787295926273785929205033292036428911457802364358073303 ( 106 digits) SNFS difficulty: 131 digits. Divisors found: r1=760985107913167809574082276999951959 r2=7277070100650168876742315488211887360553220961176794222662356452710017 Version: Total time: 1.72 hours. Scaled time: 4.09 units (timescale=2.378). Factorization parameters were as follows: n: 5537741975834955696163581925148970165169810424088982787295926273785929205033292036428911457802364358073303 m: 100000000000000000000000000 deg: 5 c5: 29 c0: 1150 skew: 2.09 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 1000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2901625 Max relations in full relation-set: Initial matrix: Pruned matrix : 158539 x 158787 Total sieving time: 1.53 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10171+23)/9 = 6(4)1707<172> = 32 · 7 · 163 · 229 · 43607 · 355636003 · 1269791928287<13> · 111929378928377<15> · 29987432328229516862586197167<29> · C98
C98 = P31 · P32 · P36
P31 = 5256085350367721968365243508879<31>
P32 = 14889514327152662463708208717849<32>
P36 = 529786685826043275442599790114501549<36>
Number: 64447_171 N=41461401722079143647924150625301340578093020537184821796736112311143710226687952818709906878188779 ( 98 digits) Divisors found: r1=5256085350367721968365243508879 r2=14889514327152662463708208717849 r3=529786685826043275442599790114501549 Version: Total time: 2.08 hours. Scaled time: 4.95 units (timescale=2.384). Factorization parameters were as follows: name: 64447_171 n: 41461401722079143647924150625301340578093020537184821796736112311143710226687952818709906878188779 skew: 7857.64 # norm 2.45e+13 c5: 11880 c4: 788898 c3: -613633019573 c2: -6822373166044091 c1: -68762375014291434697 c0: 108707619335330199856823 # alpha -5.99 Y1: 2407654091 Y0: -5111701737676163862 # Murphy_E 4.55e-09 # M 6269349845825020629740171875377268828302419233862240622567814041128462207806673633291997154454334 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4333827 Max relations in full relation-set: Initial matrix: Pruned matrix : 144083 x 144331 Polynomial selection time: 0.13 hours. Total sieving time: 1.71 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 2.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10129+23)/9 = 6(4)1287<130> = 3 · 7 · 71 · 421 · 1390317957013<13> · C112
C112 = P53 · P59
P53 = 75763157022055757160940379455506947440975308080533513<53>
P59 = 97466091234717045166053084915874283627086578275412208937333<59>
Number: 64447_129 N=7384338774541879783190749762116627536820641207265619697558830813010085523088627253291340919120199082377423340829 ( 112 digits) SNFS difficulty: 131 digits. Divisors found: r1=75763157022055757160940379455506947440975308080533513 r2=97466091234717045166053084915874283627086578275412208937333 Version: Total time: 1.47 hours. Scaled time: 3.50 units (timescale=2.386). Factorization parameters were as follows: n: 7384338774541879783190749762116627536820641207265619697558830813010085523088627253291340919120199082377423340829 m: 100000000000000000000000000 deg: 5 c5: 29 c0: 115 skew: 1.32 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2805388 Max relations in full relation-set: Initial matrix: Pruned matrix : 147296 x 147539 Total sieving time: 1.27 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.05 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.47 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10136+23)/9 = 6(4)1357<137> = 317 · 463 · 4231 · C129
C129 = P40 · P89
P40 = 6119790257462840180408171750175750836047<40>
P89 = 16957650012616993070182468852439375057528923539892416047822926309148813178064338505119101<89>
Number: 64447_136 N=103777261336678083054677475123544185985045862327150201617863921750804117975272515639465440328049771189487645987027446190059033747 ( 129 digits) SNFS difficulty: 137 digits. Divisors found: r1=6119790257462840180408171750175750836047 r2=16957650012616993070182468852439375057528923539892416047822926309148813178064338505119101 Version: Total time: 2.64 hours. Scaled time: 6.30 units (timescale=2.389). Factorization parameters were as follows: n: 103777261336678083054677475123544185985045862327150201617863921750804117975272515639465440328049771189487645987027446190059033747 m: 1000000000000000000000000000 deg: 5 c5: 580 c0: 23 skew: 0.52 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3620190 Max relations in full relation-set: Initial matrix: Pruned matrix : 246289 x 246537 Total sieving time: 2.28 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,50000 total time: 2.64 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10141+23)/9 = 6(4)1407<142> = 3 · 7 · 436439 · 103617691367<12> · 2579254893476128243<19> · C106
C106 = P50 · P56
P50 = 76186258682820596721818032631403693765457390966091<50>
P56 = 34533278839482980957953122866654334570356354654042530003<56>
Number: 64447_141 N=2630961314830825037808404552418118055910889450264586094583925505760367689427304261765390068171674023128273 ( 106 digits) SNFS difficulty: 142 digits. Divisors found: r1=76186258682820596721818032631403693765457390966091 r2=34533278839482980957953122866654334570356354654042530003 Version: Total time: 4.22 hours. Scaled time: 10.08 units (timescale=2.387). Factorization parameters were as follows: n: 2630961314830825037808404552418118055910889450264586094583925505760367689427304261765390068171674023128273 m: 10000000000000000000000000000 deg: 5 c5: 580 c0: 23 skew: 0.52 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [1100000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4380215 Max relations in full relation-set: Initial matrix: Pruned matrix : 298553 x 298801 Total sieving time: 3.66 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.17 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,48,48,2.3,2.3,50000 total time: 4.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10148+23)/9 = 6(4)1477<149> = 17 · 15737 · 1600057148951<13> · 281957788581047651<18> · C114
C114 = P30 · P84
P30 = 957229269729820319274362209397<30>
P84 = 557800703761628951235813012289882908409521924268072584602236892834526943369023125519<84>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 533943160316523918951469911012731137258971520498099742586223078317083887622231588054788137903703903967979292302043 (114 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6037326045 Step 1 took 3463ms Step 2 took 3806ms ********** Factor found in step 2: 957229269729820319274362209397 Found probable prime factor of 30 digits: 957229269729820319274362209397 Probable prime cofactor 557800703761628951235813012289882908409521924268072584602236892834526943369023125519 has 84 digits
(58·10149+23)/9 = 6(4)1487<150> = 51307 · 814665077 · 125452973878408950737<21> · C117
C117 = P36 · P38 · P44
P36 = 239805938435749179530628678236164969<36>
P38 = 41430417338281880250147847818250316533<38>
P44 = 12369996045565239429686508194506888049892077<44>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 122899128267307932285652056221776691270027659426723777828073895284388924281020552605381106797530820720034481264684729 (117 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5739799736 Step 1 took 4602ms Step 2 took 3994ms ********** Factor found in step 2: 239805938435749179530628678236164969 Found probable prime factor of 36 digits: 239805938435749179530628678236164969 Composite cofactor 512494098640664391257456959015229005123844681619807604130051122581206101738809041 has 81 digits 07/14/09 22:52:48 v1.10 @ 조영욱-PC, starting SIQS on c81: 512494098640664391257456959015229005123844681619807604130051122581206101738809041 07/14/09 22:52:48 v1.10 @ 조영욱-PC, random seeds: 703900670, 2446589440 07/14/09 22:52:48 v1.10 @ 조영욱-PC, ==== sieve params ==== 07/14/09 22:52:48 v1.10 @ 조영욱-PC, n = 81 digits, 274 bits 07/14/09 22:52:48 v1.10 @ 조영욱-PC, factor base: 45938 primes (max prime = 1188269) 07/14/09 22:52:48 v1.10 @ 조영욱-PC, single large prime cutoff: 112885555 (95 * pmax) 07/14/09 22:52:48 v1.10 @ 조영욱-PC, using 14 large prime slices of factor base 07/14/09 22:52:48 v1.10 @ 조영욱-PC, buckets hold 1024 elements 07/14/09 22:52:48 v1.10 @ 조영욱-PC, sieve interval: 7 blocks of size 65536 07/14/09 22:52:48 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 07/14/09 22:52:48 v1.10 @ 조영욱-PC, using multiplier of 41 07/14/09 22:52:48 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits 07/14/09 22:52:48 v1.10 @ 조영욱-PC, using SSE2 for trial division and x64 sieve scanning 07/14/09 22:52:48 v1.10 @ 조영욱-PC, trial factoring cutoff at 95 bits 07/14/09 22:52:48 v1.10 @ 조영욱-PC, ==== sieving started ==== 07/14/09 23:01:04 v1.10 @ 조영욱-PC, sieve time = 249.9540, relation time = 70.0050, poly_time = 175.6000 07/14/09 23:01:04 v1.10 @ 조영욱-PC, 46066 relations found: 23464 full + 22602 from 247296 partial, using 129790 polys (164 A polys) 07/14/09 23:01:04 v1.10 @ 조영욱-PC, on average, sieving found 2.09 rels/poly and 545.80 rels/sec 07/14/09 23:01:04 v1.10 @ 조영욱-PC, trial division touched 3687831 sieve locations out of 119082844160 07/14/09 23:01:04 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 07/14/09 23:01:04 v1.10 @ 조영욱-PC, begin with 270760 relations 07/14/09 23:01:04 v1.10 @ 조영욱-PC, reduce to 65824 relations in 2 passes 07/14/09 23:01:05 v1.10 @ 조영욱-PC, recovered 65824 relations 07/14/09 23:01:05 v1.10 @ 조영욱-PC, recovered 51617 polynomials 07/14/09 23:01:05 v1.10 @ 조영욱-PC, attempting to build 46066 cycles 07/14/09 23:01:05 v1.10 @ 조영욱-PC, found 46066 cycles in 1 passes 07/14/09 23:01:05 v1.10 @ 조영욱-PC, distribution of cycle lengths: 07/14/09 23:01:05 v1.10 @ 조영욱-PC, length 1 : 23464 07/14/09 23:01:05 v1.10 @ 조영욱-PC, length 2 : 22602 07/14/09 23:01:05 v1.10 @ 조영욱-PC, largest cycle: 2 relations 07/14/09 23:01:05 v1.10 @ 조영욱-PC, matrix is 45938 x 46066 (7.0 MB) with weight 1467122 (31.85/col) 07/14/09 23:01:05 v1.10 @ 조영욱-PC, sparse part has weight 1467122 (31.85/col) 07/14/09 23:01:05 v1.10 @ 조영욱-PC, filtering completed in 3 passes 07/14/09 23:01:05 v1.10 @ 조영욱-PC, matrix is 33395 x 33459 (5.5 MB) with weight 1182778 (35.35/col) 07/14/09 23:01:05 v1.10 @ 조영욱-PC, sparse part has weight 1182778 (35.35/col) 07/14/09 23:01:05 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 07/14/09 23:01:05 v1.10 @ 조영욱-PC, matrix is 33347 x 33459 (3.8 MB) with weight 882310 (26.37/col) 07/14/09 23:01:05 v1.10 @ 조영욱-PC, sparse part has weight 673096 (20.12/col) 07/14/09 23:01:05 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 07/14/09 23:01:05 v1.10 @ 조영욱-PC, using block size 13383 for processor cache size 4096 kB 07/14/09 23:01:05 v1.10 @ 조영욱-PC, commencing Lanczos iteration 07/14/09 23:01:05 v1.10 @ 조영욱-PC, memory use: 3.7 MB 07/14/09 23:01:08 v1.10 @ 조영욱-PC, lanczos halted after 529 iterations (dim = 33343) 07/14/09 23:01:08 v1.10 @ 조영욱-PC, recovered 16 nontrivial dependencies 07/14/09 23:01:08 v1.10 @ 조영욱-PC, prp44 = 12369996045565239429686508194506888049892077 07/14/09 23:01:10 v1.10 @ 조영욱-PC, prp38 = 41430417338281880250147847818250316533 07/14/09 23:01:10 v1.10 @ 조영욱-PC, Lanczos elapsed time = 4.2900 seconds. 07/14/09 23:01:10 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.2940 seconds. 07/14/09 23:01:10 v1.10 @ 조영욱-PC, SIQS elapsed time = 501.6600 seconds. 07/14/09 23:01:10 v1.10 @ 조영욱-PC, 07/14/09 23:01:10 v1.10 @ 조영욱-PC,
(58·10150+23)/9 = 6(4)1497<151> = 3 · 2003 · 92551 · 107201 · 3391945245606732612163<22> · C116
C116 = P46 · P71
P46 = 2399679341298100809951191715143165897321865029<46>
P71 = 13280098068807257841052877871669566506875479890479596261399064850887679<71>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 31867976986129581142577553204069184977118961756426749952446804034640512899999263466243557329301492399086906477077691 (116 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4284733017 Step 1 took 3806ms Step 2 took 3307ms ********** Factor found in step 2: 2399679341298100809951191715143165897321865029 Found probable prime factor of 46 digits: 2399679341298100809951191715143165897321865029 Probable prime cofactor 13280098068807257841052877871669566506875479890479596261399064850887679 has 71 digits
By JPascoa / Chris Monico ggnfs-0.77.1, Msieve / Jul 14, 2009
(58·10123+23)/9 = 6(4)1227<124> = 3 · 7 · 24391 · 13990433 · C111
C111 = P50 · P62
P50 = 50773799828332712760339199634604292107704204758339<50>
P62 = 17711924842507332373590758448378995774984298667244766404457271<62>
Number: 64447_123 N=899301726527940702964232341357666906090579560911871755134417338433041568548838314131597612984873335457006432869 ( 111 digits) SNFS difficulty: 126 digits. Divisors found: r1=50773799828332712760339199634604292107704204758339 (pp50) r2=17711924842507332373590758448378995774984298667244766404457271 (pp62) Version: Msieve-1.40 Total time: 1.92 hours. Scaled time: 2.28 units (timescale=1.188). Factorization parameters were as follows: n: 899301726527940702964232341357666906090579560911871755134417338433041568548838314131597612984873335457006432869 m: 5000000000000000000000000 deg: 5 c5: 464 c0: 575 skew: 1.04 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 795001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 121689 x 121919 Total sieving time: 1.84 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.92 hours. --------- CPU info (if available) ----------
(58·10142+23)/9 = 6(4)1417<143> = 1249 · 2347 · 24919 · 466183 · 15523710638280211453<20> · C108
C108 = P37 · P71
P37 = 5264538448831778063739858965185820207<37>
P71 = 23156188327031872626489300434370560937362355885611469744116956097040047<71>
Number: 64447_142 N=121906643776048900653845760483176682051303097738362726296929265059517001216762243933421499551133248620829729 ( 108 digits) Divisors found: r1=5264538448831778063739858965185820207 (pp37) r2=23156188327031872626489300434370560937362355885611469744116956097040047 (pp71) Version: Msieve-1.40 Total time: 10.92 hours. Scaled time: 13.02 units (timescale=1.192). Factorization parameters were as follows: name: 64447_142 n: 121906643776048900653845760483176682051303097738362726296929265059517001216762243933421499551133248620829729 skew: 10330.88 # norm 2.86e+014 c5: 64620 c4: 1239404382 c3: -30319770518560 c2: -91176158701992677 c1: 1056015459864830190240 c0: 2423349024698880698893011 # alpha -5.08 Y1: 331395755999 Y0: -285187278252824020054 # Murphy_E 1.38e-009 # M 121691403354176194190776471266168161078137481667477963639797578008571176758933027729971584524949945150524271 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 324103 x 324347 Polynomial selection time: 1.12 hours. Total sieving time: 9.47 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 10.92 hours. --------- CPU info (if available) ----------
(58·10146+23)/9 = 6(4)1457<147> = 225240727286207539<18> · C130
C130 = P40 · P90
P40 = 7984979862480793926125756973956199182887<40>
P90 = 358314792650653686950640911375423315769676174740273424441797231618837823936703464982949779<90>
Number: 64447_146 N=2861136403744450867384364181988944676233621211196267931286517974372854120293817015912673374579164624145954637643177163066757231973 ( 130 digits) SNFS difficulty: 148 digits. Divisors found: r1=7984979862480793926125756973956199182887 (pp40) r2=358314792650653686950640911375423315769676174740273424441797231618837823936703464982949779 (pp90) Version: Msieve-1.40 Total time: 22.89 hours. Scaled time: 20.49 units (timescale=0.895). Factorization parameters were as follows: n: 2861136403744450867384364181988944676233621211196267931286517974372854120293817015912673374579164624145954637643177163066757231973 m: 200000000000000000000000000000 deg: 5 c5: 145 c0: 184 skew: 1.05 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 344816 x 345049 Total sieving time: 21.95 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.69 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 22.89 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS / Jul 14, 2009
(58·10120+23)/9 = 6(4)1197<121> = 3 · 16481 · 670037 · C111
C111 = P52 · P59
P52 = 3592422000876207144080797101689943790151669878642591<52>
P59 = 54149510756258711112608068985210572030309207474345155051487<59>
Number: n N=194527893777466619665691553316121652261080764904403871430472308721459150022852335874986627652427044538276082817 ( 111 digits) SNFS difficulty: 121 digits. Divisors found: r1=3592422000876207144080797101689943790151669878642591 (pp52) r2=54149510756258711112608068985210572030309207474345155051487 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.72 hours. Scaled time: 3.13 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_4_119_7 n: 194527893777466619665691553316121652261080764904403871430472308721459150022852335874986627652427044538276082817 m: 1000000000000000000000000 deg: 5 c5: 58 c0: 23 skew: 0.83 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [280000, 540001) Primes: RFBsize:46072, AFBsize:45556, largePrimes:3217734 encountered Relations: rels:2682895, finalFF:110424 Max relations in full relation-set: 48 Initial matrix: 91694 x 110424 with sparse part having weight 10891784. Pruned matrix : 88456 x 88978 with weight 6502223. Total sieving time: 1.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,560000,560000,28,28,56,56,2.3,2.3,50000 total time: 1.72 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jul 14, 2009
(58·10139+23)/9 = 6(4)1387<140> = C140
C140 = P67 · P74
P67 = 1938058158904057175420875818268265892536340598520596225753765591909<67>
P74 = 33252069422357691954035197580335551879441443411363876229822358630860524083<74>
Number: 64447_139 N=64444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 ( 140 digits) SNFS difficulty: 141 digits. Divisors found: r1=1938058158904057175420875818268265892536340598520596225753765591909 (pp67) r2=33252069422357691954035197580335551879441443411363876229822358630860524083 (pp74) Version: Msieve-1.40 Total time: 6.74 hours. Scaled time: 17.36 units (timescale=2.575). Factorization parameters were as follows: name: 64447_139 n: 64444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 m: 10000000000000000000000000000 deg: 5 c5: 29 c0: 115 skew: 1.32 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240937 x 241174 Total sieving time: 6.55 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 6.74 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Jul 14, 2009
(58·10179+23)/9 = 6(4)1787<180> = C180
C180 = P39 · P141
P39 = 672685683356861337041796175253604246571<39>
P141 = 958017184531880621373920860801042598243408868260257248390356768611005235992717460853265486439899270704857151033067923579387134911377797556957<141>
C180=P39*P141 C180=672685683356861337041796175253604246571<39>*958017184531880621373920860801042598243408868260257248390356768611005235992717460853265486439899270704857151033067923579387134911377797556957<141>
(58·10184+23)/9 = 6(4)1837<185> = C185
C185 = P36 · C150
P36 = 176588117670435309434329024092440363<36>
C150 = [364942133675814393150109614547698249357635271656814604537174727470973783441581875210983228248347867250016918641191589005044762359987857325025874363869<150>]
C185=P36*C150 C185=176588117670435309434329024092440363<36>*364942133675814393150109614547698249357635271656814604537174727470973783441581875210983228248347867250016918641191589005044762359987857325025874363869<150>
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Jul 13, 2009
(58·10161+23)/9 = 6(4)1607<162> = C162
C162 = P38 · C125
P38 = 41119327973436033475483754806134272837<38>
C125 = [15672543210355221701053940350577676484197328922241828151784149179051334607839580596202241048609582134533477776622521732064531<125>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 644444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 (162 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1512772174 Step 1 took 4876ms Step 2 took 2675ms ********** Factor found in step 2: 41119327973436033475483754806134272837 Found probable prime factor of 38 digits: 41119327973436033475483754806134272837 Composite cofactor 15672543210355221701053940350577676484197328922241828151784149179051334607839580596202241048609582134533477776622521732064531 has 125 digits
(58·10106+23)/9 = 6(4)1057<107> = 492161744461753<15> · C93
C93 = P35 · P58
P35 = 78129326361730982026375097231768957<35>
P58 = 1675959621960563483941991874954435017512192924461523251107<58>
Number: 64447_106 N=130941596273240143468946640593072846211856885990677267608981904319231734474929512919318485399 ( 93 digits) SNFS difficulty: 107 digits. Divisors found: r1=78129326361730982026375097231768957 (pp35) r2=1675959621960563483941991874954435017512192924461523251107 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.43 hours. Scaled time: 1.01 units (timescale=2.378). Factorization parameters were as follows: n: 130941596273240143468946640593072846211856885990677267608981904319231734474929512919318485399 m: 1000000000000000000000 deg: 5 c5: 580 c0: 23 skew: 0.52 type: snfs lss: 1 rlim: 280000 alim: 280000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 280000/280000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [140000, 260001) Primes: RFBsize:24432, AFBsize:24500, largePrimes:879266 encountered Relations: rels:775786, finalFF:56964 Max relations in full relation-set: 28 Initial matrix: 48999 x 56964 with sparse part having weight 2637228. Pruned matrix : 46847 x 47155 with weight 1733764. Total sieving time: 0.41 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,280000,280000,25,25,44,44,2.2,2.2,20000 total time: 0.43 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(58·10175+23)/9 = 6(4)1747<176> = 1613 · 35656160338682906683<20> · 1247169141570102577601527931<28> · 1096361019585145532582908854881<31> · C96
C96 = P47 · P50
P47 = 14983018931158829173921366367260641067839096419<47>
P50 = 54693821851703361473715645811927745590131721657777<50>
Number: 64447_175 N=819478568221499914100326001606299190096919170281909322951110135326279607201011575509404424200563 ( 96 digits) Divisors found: r1=14983018931158829173921366367260641067839096419 r2=54693821851703361473715645811927745590131721657777 Version: Total time: 1.73 hours. Scaled time: 4.14 units (timescale=2.389). Factorization parameters were as follows: name: 64447_175 n: 819478568221499914100326001606299190096919170281909322951110135326279607201011575509404424200563 skew: 1272.92 # norm 1.92e+13 c5: 558540 c4: 521847935 c3: -5408470572471 c2: 351181997744970 c1: 2401135397826069759 c0: 347351341918533091555 # alpha -5.04 Y1: 1132506419 Y0: -1079683784185786326 # Murphy_E 5.04e-09 # M 584362212936005472064082310212869558798949791281506276000328577915598457378327795135603722194649 type: gnfs rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 40000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [400000, 760001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3757091 Max relations in full relation-set: Initial matrix: Pruned matrix : 133248 x 133496 Polynomial selection time: 0.10 hours. Total sieving time: 1.42 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,95,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,26,26,48,48,2.5,2.5,40000 total time: 1.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672356) Calibrating delay using timer specific routine.. 5344.52 BogoMIPS (lpj=2672263) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
By Dmitry Domanov / GGNFS/msieve 1.41, ECMNET / Jul 13, 2009
(58·10135+23)/9 = 6(4)1347<136> = 32 · 7 · C135
C135 = P35 · P48 · P53
P35 = 23082255542566823599333086556290313<35>
P48 = 186979259626794060686307795753842713194685315639<48>
P53 = 23701359305376003078608706474526261487024092056393967<53>
N=102292768959435626102292768959435626102292768959435626102292768959435626102292768959435626102292768959435626102292768959435626102292769 ( 135 digits) SNFS difficulty: 136 digits. Divisors found: r1=23082255542566823599333086556290313 (pp35) r2=186979259626794060686307795753842713194685315639 (pp48) r3=23701359305376003078608706474526261487024092056393967 (pp53) Version: Msieve v. 1.41 Total time: 3.57 hours. Scaled time: 7.10 units (timescale=1.988). Factorization parameters were as follows: n: 102292768959435626102292768959435626102292768959435626102292768959435626102292768959435626102292768959435626102292768959435626102292769 m: 1000000000000000000000000000 deg: 5 c5: 58 c0: 23 skew: 0.83 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1340001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 221572 x 221820 Total sieving time: 3.39 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.57 hours. --------- CPU info (if available) ----------
(58·10187+23)/9 = 6(4)1867<188> = 19 · C187
C187 = P39 · P149
P39 = 191379776483330109719074784422593962641<39>
P149 = 17722942976644742493298788382265098427947056575301551556533727688497872316694355856538018670950859864388326426079285337993714319660444511908472818293<149>
C187=P39*P149 C187=191379776483330109719074784422593962641<39>*17722942976644742493298788382265098427947056575301551556533727688497872316694355856538018670950859864388326426079285337993714319660444511908472818293<149>
(58·10154+23)/9 = 6(4)1537<155> = 2221 · 64282310843<11> · C141
C141 = P48 · P93
P48 = 826950947036232072542160696882965155619752449697<48>
P93 = 545840424644446244851714823114328414970104900490414450438285896386706980952189028867721389217<93>
N=451383256090383890332880823304054936956210199597621515127139018576080529748946023299415520701134993942877093671512974234181514772719750717249 ( 141 digits) SNFS difficulty: 156 digits. Divisors found: r1=826950947036232072542160696882965155619752449697 (pp48) r2=545840424644446244851714823114328414970104900490414450438285896386706980952189028867721389217 (pp93) Version: Msieve v. 1.41 Total time: 19.28 hours. Scaled time: 38.21 units (timescale=1.982). Factorization parameters were as follows: n: 451383256090383890332880823304054936956210199597621515127139018576080529748946023299415520701134993942877093671512974234181514772719750717249 m: 10000000000000000000000000000000 deg: 5 c5: 29 c0: 115 skew: 1.32 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 531694 x 531942 Total sieving time: 18.65 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.41 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 19.28 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jul 13, 2009
(14·10182+1)/3 = 4(6)1817<183> = 71 · 359 · C179
C179 = P80 · P99
P80 = 99337268011377573858694433257182813159834985248138871718472604050896795517134809<80>
P99 = 184306975295123807994275531879649282427027278526009180015853910534954578635427995339599927648804467<99>
Number: n N=18308551401258059032000732342056050322361280029293682242012894451201171747289680515778048046869891587220631121921874795663488825244876874991826539553009795074999673061582120391803 ( 179 digits) SNFS difficulty: 185 digits. Divisors found: Mon Jul 13 22:15:46 2009 prp80 factor: 99337268011377573858694433257182813159834985248138871718472604050896795517134809 Mon Jul 13 22:15:46 2009 prp99 factor: 184306975295123807994275531879649282427027278526009180015853910534954578635427995339599927648804467 Mon Jul 13 22:15:46 2009 elapsed time 02:40:38 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 150.06 hours. Scaled time: 397.50 units (timescale=2.649). Factorization parameters were as follows: name: KA_4_6_181_7 n: 18308551401258059032000732342056050322361280029293682242012894451201171747289680515778048046869891587220631121921874795663488825244876874991826539553009795074999673061582120391803 m: 5000000000000000000000000000000000000 deg: 5 c5: 56 c0: 125 skew: 1.17 type: snfs lss: 1 rlim: 8600000 alim: 8600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8600000/8600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4300000, 6900977) Primes: RFBsize:577439, AFBsize:576914, largePrimes:20806339 encountered Relations: rels:20705108, finalFF:1024227 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1805413 hash collisions in 21853565 relations Msieve: matrix is 1379817 x 1380065 (373.7 MB) Total sieving time: 149.50 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8600000,8600000,28,28,56,56,2.5,2.5,100000 total time: 150.06 hours. --------- CPU info (if available) ----------
(58·10111+23)/9 = 6(4)1107<112> = 3 · 72 · 32789 · 48039247 · 577672633 · C89
C89 = P38 · P51
P38 = 50196008649124066760669118985278755117<38>
P51 = 959826657005513846552635296036664574714149430138227<51>
Number: n N=48179467176708612066383883797455042200586297273188553625101637577681136825893259793557559 ( 89 digits) SNFS difficulty: 112 digits. Divisors found: r1=50196008649124066760669118985278755117 (pp38) r2=959826657005513846552635296036664574714149430138227 (pp51) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.65 hours. Scaled time: 1.18 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_4_110_7 n: 48179467176708612066383883797455042200586297273188553625101637577681136825893259793557559 m: 10000000000000000000000 deg: 5 c5: 580 c0: 23 skew: 0.52 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 10000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [250000, 360001) Primes: RFBsize:41538, AFBsize:41462, largePrimes:2818335 encountered Relations: rels:2338662, finalFF:106501 Max relations in full relation-set: 48 Initial matrix: 83067 x 106501 with sparse part having weight 7902956. Pruned matrix : 75721 x 76200 with weight 3818881. Total sieving time: 0.57 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.3,2.3,50000 total time: 0.65 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jul 13, 2009
3·10169-1 = 2(9)169<170> = 29 · 257 · 1187 · 893281 · 162352619114966156197<21> · C137
C137 = P55 · P83
P55 = 2228251805235709353313536175233325312147783871786905403<55>
P83 = 10493678433883386533453073734793889071910451026636427224419520005990497132630462879<83>
Number: 29999_169 N=23382557913863687360210358549889939699253493723541318867971867107182684122332981322256389039762608813026488643802138025103343450876035237 ( 137 digits) SNFS difficulty: 170 digits. Divisors found: r1=2228251805235709353313536175233325312147783871786905403 (pp55) r2=10493678433883386533453073734793889071910451026636427224419520005990497132630462879 (pp83) Version: Msieve-1.40 Total time: 59.94 hours. Scaled time: 154.35 units (timescale=2.575). Factorization parameters were as follows: name: 29999_169 n: 23382557913863687360210358549889939699253493723541318867971867107182684122332981322256389039762608813026488643802138025103343450876035237 m: 10000000000000000000000000000000000 deg: 5 c5: 3 c0: -10 skew: 1.27 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 871097 x 871345 Total sieving time: 57.67 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.72 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 59.94 hours. --------- CPU info (if available) ----------
(58·10114+23)/9 = 6(4)1137<115> = 3 · C115
C115 = P37 · P78
P37 = 4335063118793507391728654777432128393<37>
P78 = 495528689959651579368664634248240159079415334936580114911985607106035232953293<78>
Number: 64447_114 N=2148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: r1=4335063118793507391728654777432128393 (pp37) r2=495528689959651579368664634248240159079415334936580114911985607106035232953293 (pp78) Version: Msieve-1.40 Total time: 1.16 hours. Scaled time: 2.98 units (timescale=2.564). Factorization parameters were as follows: name: 64447_114 n: 2148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 m: 100000000000000000000000 deg: 5 c5: 29 c0: 115 skew: 1.32 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63265 x 63492 Total sieving time: 1.13 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.16 hours. --------- CPU info (if available) ----------
(58·10125+23)/9 = 6(4)1247<126> = C126
C126 = P45 · P81
P45 = 974736791340018918589686620786549510151975781<45>
P81 = 661147142664528713748930535458851545304856790693588371526999971594298072964481587<81>
Number: 64447_125 N=644444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 ( 126 digits) SNFS difficulty: 126 digits. Divisors found: r1=974736791340018918589686620786549510151975781 (pp45) r2=661147142664528713748930535458851545304856790693588371526999971594298072964481587 (pp81) Version: Msieve-1.40 Total time: 2.33 hours. Scaled time: 5.98 units (timescale=2.564). Factorization parameters were as follows: name: 64447_125 n: 644444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 m: 10000000000000000000000000 deg: 5 c5: 58 c0: 23 skew: 0.83 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 805001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 131857 x 132089 Total sieving time: 2.24 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 2.33 hours. --------- CPU info (if available) ----------
(58·10132+23)/9 = 6(4)1317<133> = 3 · 17 · 83 · 107 · 113 · 9377839 · 54324469205731<14> · 131229719259439253<18> · C88
C88 = P40 · P48
P40 = 4760339406616587863684474719485370271377<40>
P48 = 395645847713421982074206853379199386478310056581<48>
Mon Jul 13 17:31:00 2009 Msieve v. 1.41 Mon Jul 13 17:31:00 2009 random seeds: 9c99e448 049c84d4 Mon Jul 13 17:31:00 2009 factoring 1883408519934428084391724377309822647511270420467472934806096807678123332226068194782037 (88 digits) Mon Jul 13 17:31:01 2009 searching for 15-digit factors Mon Jul 13 17:31:02 2009 commencing quadratic sieve (88-digit input) Mon Jul 13 17:31:02 2009 using multiplier of 1 Mon Jul 13 17:31:02 2009 using 32kb Intel Core sieve core Mon Jul 13 17:31:02 2009 sieve interval: 24 blocks of size 32768 Mon Jul 13 17:31:02 2009 processing polynomials in batches of 9 Mon Jul 13 17:31:02 2009 using a sieve bound of 1507487 (57333 primes) Mon Jul 13 17:31:02 2009 using large prime bound of 120598960 (26 bits) Mon Jul 13 17:31:02 2009 using double large prime bound of 351899202753840 (42-49 bits) Mon Jul 13 17:31:02 2009 using trial factoring cutoff of 49 bits Mon Jul 13 17:31:02 2009 polynomial 'A' values have 11 factors Mon Jul 13 18:26:51 2009 57588 relations (15601 full + 41987 combined from 609488 partial), need 57429 Mon Jul 13 18:26:52 2009 begin with 625089 relations Mon Jul 13 18:26:53 2009 reduce to 139946 relations in 10 passes Mon Jul 13 18:26:53 2009 attempting to read 139946 relations Mon Jul 13 18:26:54 2009 recovered 139946 relations Mon Jul 13 18:26:54 2009 recovered 119557 polynomials Mon Jul 13 18:26:55 2009 attempting to build 57588 cycles Mon Jul 13 18:26:55 2009 found 57588 cycles in 6 passes Mon Jul 13 18:26:55 2009 distribution of cycle lengths: Mon Jul 13 18:26:55 2009 length 1 : 15601 Mon Jul 13 18:26:55 2009 length 2 : 10874 Mon Jul 13 18:26:55 2009 length 3 : 10150 Mon Jul 13 18:26:55 2009 length 4 : 7660 Mon Jul 13 18:26:55 2009 length 5 : 5469 Mon Jul 13 18:26:55 2009 length 6 : 3342 Mon Jul 13 18:26:55 2009 length 7 : 2101 Mon Jul 13 18:26:55 2009 length 9+: 2391 Mon Jul 13 18:26:55 2009 largest cycle: 17 relations Mon Jul 13 18:26:55 2009 matrix is 57333 x 57588 (13.4 MB) with weight 3275321 (56.88/col) Mon Jul 13 18:26:55 2009 sparse part has weight 3275321 (56.88/col) Mon Jul 13 18:26:56 2009 filtering completed in 4 passes Mon Jul 13 18:26:56 2009 matrix is 53263 x 53327 (12.5 MB) with weight 3057108 (57.33/col) Mon Jul 13 18:26:56 2009 sparse part has weight 3057108 (57.33/col) Mon Jul 13 18:26:56 2009 saving the first 48 matrix rows for later Mon Jul 13 18:26:56 2009 matrix is 53215 x 53327 (8.0 MB) with weight 2418609 (45.35/col) Mon Jul 13 18:26:56 2009 sparse part has weight 1776241 (33.31/col) Mon Jul 13 18:26:56 2009 matrix includes 64 packed rows Mon Jul 13 18:26:56 2009 using block size 21330 for processor cache size 1024 kB Mon Jul 13 18:26:56 2009 commencing Lanczos iteration Mon Jul 13 18:26:56 2009 memory use: 7.9 MB Mon Jul 13 18:27:14 2009 lanczos halted after 843 iterations (dim = 53212) Mon Jul 13 18:27:14 2009 recovered 14 nontrivial dependencies Mon Jul 13 18:27:15 2009 prp40 factor: 4760339406616587863684474719485370271377 Mon Jul 13 18:27:15 2009 prp48 factor: 395645847713421982074206853379199386478310056581 Mon Jul 13 18:27:15 2009 elapsed time 00:56:15
By Serge Batalov / GMP-ECM 6.2.3 / Jul 13, 2009
(58·10171+23)/9 = 6(4)1707<172> = 32 · 7 · 163 · 229 · 43607 · 355636003 · 1269791928287<13> · 111929378928377<15> · C127
C127 = P29 · C98
P29 = 29987432328229516862586197167<29>
C98 = [41461401722079143647924150625301340578093020537184821796736112311143710226687952818709906878188779<98>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3348063929 Step 1 took 2525ms Step 2 took 2580ms ********** Factor found in step 2: 29987432328229516862586197167 Found probable prime factor of 29 digits: 29987432328229516862586197167 Composite cofactor has 98 digits
(58·10170+23)/9 = 6(4)1697<171> = 1153 · 2213 · 123493 · 466866407317<12> · C148
C148 = P32 · P117
P32 = 19446241608838036363980356232313<32>
P117 = 225270393946095807438626231453873038111507697639127097761464724268163034474733434977524246262956615989308890849723891<117>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3684692784 Step 1 took 3013ms Step 2 took 2936ms ********** Factor found in step 2: 19446241608838036363980356232313 Found probable prime factor of 32 digits: 19446241608838036363980356232313 Probable prime cofactor has 117 digits
Factorizations of 644...447 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / ECMNET / Jul 12, 2009
2·10195+9 = 2(0)1949<196> = 7 · 263 · 5309 · 376787 · 398925029 · C175
C175 = P45 · C130
P45 = 208929543907045046083316767984164355764039923<45>
C130 = [6515930300278598936340223067286726695961677601878157142390817149184366337340674057734940096025365308355623172051113615953328308609<130>]
C175=P45*C130 C175=208929543907045046083316767984164355764039923<45>6515930300278598936340223067286726695961677601878157142390817149184366337340674057734940096025365308355623172051113615953328308609<130> B1: 3000000 sigma: 4163169800 (found in step 2)
By Wataru Sakai / Msieve / Jul 12, 2009
(49·10184-13)/9 = 5(4)1833<185> = 107 · C183
C183 = P60 · P124
P60 = 108429772521892036019932427297734099076545943820349377756029<60>
P124 = 4692683307900570769148796885419169826114104309020076727251929872520649206197793144002184678282254116463836283410737873023781<124>
Number: 54443_184 N=508826583592938733125649013499480789200415368639667705088265835929387331256490134994807892004153686396677050882658359293873312564901349948078920041536863966770508826583592938733125649 ( 183 digits) SNFS difficulty: 186 digits. Divisors found: r1=108429772521892036019932427297734099076545943820349377756029 r2=4692683307900570769148796885419169826114104309020076727251929872520649206197793144002184678282254116463836283410737873023781 Version: Total time: 345.65 hours. Scaled time: 693.38 units (timescale=2.006). Factorization parameters were as follows: n: 508826583592938733125649013499480789200415368639667705088265835929387331256490134994807892004153686396677050882658359293873312564901349948078920041536863966770508826583592938733125649 m: 10000000000000000000000000000000000000 deg: 5 c5: 49 c0: -130 skew: 1.22 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1552391 x 1552639 Total sieving time: 345.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 345.65 hours. --------- CPU info (if available) ----------
(53·10181-71)/9 = 5(8)1801<182> = 3 · 2879 · C178
C178 = P53 · P126
P53 = 24081340990091404175861057053153272486112035432620191<53>
P126 = 283132532303703333726830050085836989037702953632307132314359052811450789821802506909621984361284526068569973287653670838199643<126>
Number: 58881_181 N=6818211055793549715050236064477120399315605984588270104074202719565692820295112757773403831062740406262462532000566040163122483372570208277050930750131861628909214876564650791813 ( 178 digits) SNFS difficulty: 182 digits. Divisors found: r1=24081340990091404175861057053153272486112035432620191 r2=283132532303703333726830050085836989037702953632307132314359052811450789821802506909621984361284526068569973287653670838199643 Version: Total time: 303.42 hours. Scaled time: 610.18 units (timescale=2.011). Factorization parameters were as follows: n: 6818211055793549715050236064477120399315605984588270104074202719565692820295112757773403831062740406262462532000566040163122483372570208277050930750131861628909214876564650791813 m: 1000000000000000000000000000000000000 deg: 5 c5: 530 c0: -71 skew: 0.67 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3900000, 7500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1382118 x 1382366 Total sieving time: 303.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7800000,7800000,28,28,53,53,2.5,2.5,100000 total time: 303.42 hours. --------- CPU info (if available) ----------
7·10194+3 = 7(0)1933<195> = 37 · 89 · C192
C192 = P48 · P144
P48 = 711549423651204178804703845878926067199337895119<48>
P144 = 298745407724036587596846553046331517575087722040410770709987309288456174674024401314163963624147750872498764458224098031975479126729720370314609<144>
Number: 70003_194 N=212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471 ( 192 digits) SNFS difficulty: 195 digits. Divisors found: r1=711549423651204178804703845878926067199337895119 r2=298745407724036587596846553046331517575087722040410770709987309288456174674024401314163963624147750872498764458224098031975479126729720370314609 Version: Total time: 644.03 hours. Scaled time: 1297.07 units (timescale=2.014). Factorization parameters were as follows: n: 212572122684482235044032796841785605830549650774369875493470999088976617066504706954145156392347403583358639538414819313695718190100212572122684482235044032796841785605830549650774369875493471 m: 1000000000000000000000000000000000000000 deg: 5 c5: 7 c0: 30 skew: 1.34 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 13550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2257343 x 2257591 Total sieving time: 644.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 644.03 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jul 12, 2009
(47·10181+43)/9 = 5(2)1807<182> = 3 · 19 · 53 · 67 · C177
C177 = P67 · P110
P67 = 3094835724684298386572815120341122852673816403442738454046575319003<67>
P110 = 83366624838085431210186778249034161471498200759267403583313199233944387222928835815581162767824210168479063087<110>
Number: n N=258006008795260155143953629183883078264201446700075700060878439096583725969073313779771560381914766891571053482449827437896032361638788293992906481604994996330276236603586942261 ( 177 digits) SNFS difficulty: 182 digits. Divisors found: Sun Jul 12 05:10:16 2009 prp67 factor: 3094835724684298386572815120341122852673816403442738454046575319003 Sun Jul 12 05:10:16 2009 prp110 factor: 83366624838085431210186778249034161471498200759267403583313199233944387222928835815581162767824210168479063087 Sun Jul 12 05:10:16 2009 elapsed time 02:20:56 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 173.15 hours. Scaled time: 449.34 units (timescale=2.595). Factorization parameters were as follows: name: KA_5_2_180_7 n: 258006008795260155143953629183883078264201446700075700060878439096583725969073313779771560381914766891571053482449827437896032361638788293992906481604994996330276236603586942261 m: 1000000000000000000000000000000000000 deg: 5 c5: 470 c0: 43 skew: 0.62 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3900000, 6919261) Primes: RFBsize:527154, AFBsize:526275, largePrimes:21057951 encountered Relations: rels:21147738, finalFF:896232 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2222770 hash collisions in 23551262 relations Msieve: matrix is 1239049 x 1239297 (334.1 MB) Total sieving time: 172.51 hours. Total relation processing time: 0.64 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7800000,7800000,28,28,56,56,2.5,2.5,100000 total time: 173.15 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Jul 11, 2009
(16·10203-7)/9 = 1(7)203<204> = 32 · 31 · 181 · 433 · 1262321 · 131918527086451153<18> · 16900507086168024103951<23> · C151
C151 = P43 · P109
P43 = 1984302645679619731376987460864431244810793<43>
P109 = 1455873198199023485232568455687174282481878946320103856260317493093157285145974619345505379447385520317097309<109>
C151=P43*P109 C151=1984302645679619731376987460864431244810793<43>*1455873198199023485232568455687174282481878946320103856260317493093157285145974619345505379447385520317097309<109>
(16·10229-7)/9 = 1(7)229<230> = 37517 · 90221661740474669<17> · 332893959945287358687593<24> · C185
C185 = P40 · P145
P40 = 7535122564049591986328629082758999170461<40>
P145 = 2093834309762269347842472452170929506605387419506516970926981601603119887876945670672882976345795440384666710964898063989946892665696919631391413<145>
C185=P40*P145 C185=7535122564049591986328629082758999170461<40>*2093834309762269347842472452170929506605387419506516970926981601603119887876945670672882976345795440384666710964898063989946892665696919631391413<145>
2·10189+9 = 2(0)1889<190> = 7 · 601769500435849<15> · 262389630418130593543987483<27> · C148
C148 = P30 · P118
P30 = 231192776199581655479023863569<30>
P118 = 7826739065615167308219291506990415678354983695078282263339825293001255086110103549843948541000279804194903492659561669<118>
С148=P30*P118 C148=231192776199581655479023863569<30>*7826739065615167308219291506990415678354983695078282263339825293001255086110103549843948541000279804194903492659561669<118>
2·10179+9 = 2(0)1789<180> = 71174055487<11> · C169
C169 = P34 · P136
P34 = 1456349062809436989167539279826921<34>
P136 = 1929491201087555608892709636519787278782502149025926069860554864817462889929790905160468424725930351070637487831883300700726830778091167<136>
C169=P34*P136 C169=1456349062809436989167539279826921<34>*1929491201087555608892709636519787278782502149025926069860554864817462889929790905160468424725930351070637487831883300700726830778091167<136>
2·10178+9 = 2(0)1779<179> = 11 · 41 · 2011 · 2559497 · C166
C166 = P40 · P127
P40 = 3607936990392616468032632672857678386811<40>
P127 = 2387964213017067719981893822914230918809066561665386940290151207986766746538763247553089857459596549258060136674347450493027907<127>
C166=P40*P127 C166=3607936990392616468032632672857678386811<40>*2387964213017067719981893822914230918809066561665386940290151207986766746538763247553089857459596549258060136674347450493027907<127>
By Dmitry Domanov / ECMNET / Jul 10, 2009
(2·10198+61)/9 = (2)1979<198> = 7 · 29 · 2083 · C192
C192 = P37 · P155
P37 = 5689948804110787089471594196039551347<37>
P155 = 92362104428415880975825131451967519518894020450568859764644147577928065166772145782496981113824330367418104744872686986693051596921000832713247614731925143<155>
C192=P37*P155 C192=5689948804110787089471594196039551347<37>*92362104428415880975825131451967519518894020450568859764644147577928065166772145782496981113824330367418104744872686986693051596921000832713247614731925143<155>
(2·10197+43)/9 = (2)1967<197> = 3 · 157 · C194
C194 = P40 · C154
P40 = 4830297726724849664432111078077719825109<40>
C154 = [9767708238695844640979066239202354443960649371290018537019416802234300736463213550385464206052611393709860351340957430875026878358838457653530043363189393<154>]
C194=P40*C154 C194=4830297726724849664432111078077719825109<40>*9767708238695844640979066239202354443960649371290018537019416802234300736463213550385464206052611393709860351340957430875026878358838457653530043363189393<154>
By Robert Backstrom / GGNFS, Msieve / Jul 10, 2009
(89·10181+1)/9 = 9(8)1809<182> = 35 · 11 · C179
C179 = P44 · P55 · P81
P44 = 40086795901480525822645927616850833828200151<44>
P55 = 4401347710531047444920804384243769376286461546304783503<55>
P81 = 209682175547011199524064175561135108760786096939706109059852576036837707179292081<81>
Number: n N=36995469094234526333291765390530822629588061686827118925884357983123415222180654279419711518476950575716007814773246872012304111069543168308600407365839464604896703662135760901193 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: Fri Jul 10 06:11:59 2009 prp44 factor: 40086795901480525822645927616850833828200151 Fri Jul 10 06:11:59 2009 prp55 factor: 4401347710531047444920804384243769376286461546304783503 Fri Jul 10 06:11:59 2009 prp81 factor: 209682175547011199524064175561135108760786096939706109059852576036837707179292081 Fri Jul 10 06:11:59 2009 elapsed time 02:39:51 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 141.03 hours. Scaled time: 375.14 units (timescale=2.660). Factorization parameters were as follows: name: KA_9_8_180_9 n: 36995469094234526333291765390530822629588061686827118925884357983123415222180654279419711518476950575716007814773246872012304111069543168308600407365839464604896703662135760901193 m: 2000000000000000000000000000000000000 deg: 5 c5: 445 c0: 16 skew: 0.51 type: snfs lss: 1 rlim: 8200000 alim: 8200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8200000/8200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4100000, 6500029) Primes: RFBsize:552319, AFBsize:551788, largePrimes:20639948 encountered Relations: rels:20319258, finalFF:1160014 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1760100 hash collisions in 21647752 relations Msieve: matrix is 1348819 x 1349067 (365.5 MB) Total sieving time: 140.52 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8200000,8200000,28,28,56,56,2.5,2.5,100000 total time: 141.03 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.42beta, ECMNET / Jul 9, 2009
(10222+17)/9 = (1)2213<222> = C222
C222 = P51 · P51 · P120
P51 = 551004498127928469834445340613015226657914601778213<51>
P51 = 676677276408056094567102599764052489094573413056051<51>
P120 = 298003080664845879339921984943623072483939555335465806206783935206506443967104530715870831039336178009293998396643169751<120>
Sieving took about 150 cpu-days on various cpu's. Using siever 14e for sieving on rational side in 5M-43M for 57.7M relations. Postprocessing took 6 days on Xeon E5430 x 1 thread. Factors found in 6th dependency: C222=P51 ・ P51 ・ P120. I'm very surprised that this split is similar to Serge Batalov's С222=P55 ・ P55 ・ P114 Postprocessing log below. ================================= Wed Jul 01 14:11:35 2009 Msieve v. 1.42 Wed Jul 01 14:11:35 2009 random seeds: f8ebc210 61bba000 Wed Jul 01 14:11:35 2009 factoring 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 (222 digits) Wed Jul 01 14:11:37 2009 searching for 15-digit factors Wed Jul 01 14:11:41 2009 commencing number field sieve (222-digit input) Wed Jul 01 14:11:41 2009 R0: -10000000000000000000000000000000000000 Wed Jul 01 14:11:41 2009 R1: 1 Wed Jul 01 14:11:41 2009 A0: 17 Wed Jul 01 14:11:41 2009 A1: 0 Wed Jul 01 14:11:41 2009 A2: 0 Wed Jul 01 14:11:41 2009 A3: 0 Wed Jul 01 14:11:41 2009 A4: 0 Wed Jul 01 14:11:41 2009 A5: 0 Wed Jul 01 14:11:41 2009 A6: 1 Wed Jul 01 14:11:41 2009 skew 1.60, size 6.533884e-011, alpha 1.099275, combined = 2.482264e-012 Wed Jul 01 14:11:41 2009 Wed Jul 01 14:11:41 2009 commencing relation filtering Wed Jul 01 14:11:41 2009 commencing duplicate removal, pass 1 ... <errors skipped> ... Wed Jul 01 14:20:30 2009 found 12936357 hash collisions in 57701157 relations Wed Jul 01 14:20:56 2009 added 9 free relations Wed Jul 01 14:20:56 2009 commencing duplicate removal, pass 2 Wed Jul 01 14:23:12 2009 found 11910252 duplicates and 45790914 unique relations Wed Jul 01 14:23:12 2009 memory use: 298.4 MB Wed Jul 01 14:23:12 2009 reading rational ideals above 42926080 Wed Jul 01 14:23:12 2009 reading algebraic ideals above 42926080 Wed Jul 01 14:23:12 2009 commencing singleton removal, pass 1 Wed Jul 01 14:30:55 2009 relations with 0 large ideals: 1510351 Wed Jul 01 14:30:55 2009 relations with 1 large ideals: 6811639 Wed Jul 01 14:30:55 2009 relations with 2 large ideals: 14796919 Wed Jul 01 14:30:55 2009 relations with 3 large ideals: 15230713 Wed Jul 01 14:30:55 2009 relations with 4 large ideals: 6426946 Wed Jul 01 14:30:55 2009 relations with 5 large ideals: 11119 Wed Jul 01 14:30:55 2009 relations with 6 large ideals: 0 Wed Jul 01 14:30:55 2009 relations with 7+ large ideals: 1003227 Wed Jul 01 14:30:55 2009 45790914 relations and about 35545167 large ideals Wed Jul 01 14:30:55 2009 commencing singleton removal, pass 2 Wed Jul 01 14:38:32 2009 found 10279629 singletons Wed Jul 01 14:38:32 2009 current dataset: 35511285 relations and about 24146004 large ideals Wed Jul 01 14:38:32 2009 commencing singleton removal, pass 3 Wed Jul 01 14:44:37 2009 found 2264708 singletons Wed Jul 01 14:44:37 2009 current dataset: 33246577 relations and about 21818327 large ideals Wed Jul 01 14:44:37 2009 commencing singleton removal, pass 4 Wed Jul 01 14:50:24 2009 found 493843 singletons Wed Jul 01 14:50:24 2009 current dataset: 32752734 relations and about 21321359 large ideals Wed Jul 01 14:50:24 2009 commencing singleton removal, final pass Wed Jul 01 14:56:34 2009 memory use: 542.2 MB Wed Jul 01 14:56:34 2009 commencing in-memory singleton removal Wed Jul 01 14:56:38 2009 begin with 32752734 relations and 26008754 unique ideals Wed Jul 01 14:57:39 2009 reduce to 25669667 relations and 18602735 ideals in 15 passes Wed Jul 01 14:57:39 2009 max relations containing the same ideal: 29 Wed Jul 01 14:57:47 2009 reading rational ideals above 720000 Wed Jul 01 14:57:47 2009 reading algebraic ideals above 720000 Wed Jul 01 14:57:47 2009 commencing singleton removal, final pass Wed Jul 01 15:04:42 2009 keeping 21666592 ideals with weight <= 20, new excess is 2133916 Wed Jul 01 15:05:28 2009 memory use: 695.6 MB Wed Jul 01 15:05:28 2009 commencing in-memory singleton removal Wed Jul 01 15:05:34 2009 begin with 25669677 relations and 21666592 unique ideals Wed Jul 01 15:06:28 2009 reduce to 25657866 relations and 21654721 ideals in 10 passes Wed Jul 01 15:06:28 2009 max relations containing the same ideal: 20 Wed Jul 01 15:06:56 2009 removing 3005017 relations and 2605017 ideals in 400000 cliques Wed Jul 01 15:06:58 2009 commencing in-memory singleton removal Wed Jul 01 15:07:03 2009 begin with 22652849 relations and 21654721 unique ideals Wed Jul 01 15:07:46 2009 reduce to 22377318 relations and 18768304 ideals in 9 passes Wed Jul 01 15:07:46 2009 max relations containing the same ideal: 20 Wed Jul 01 15:08:10 2009 removing 2232892 relations and 1832892 ideals in 400000 cliques Wed Jul 01 15:08:12 2009 commencing in-memory singleton removal Wed Jul 01 15:08:16 2009 begin with 20144426 relations and 18768304 unique ideals Wed Jul 01 15:08:54 2009 reduce to 19976966 relations and 16764856 ideals in 9 passes Wed Jul 01 15:08:54 2009 max relations containing the same ideal: 20 Wed Jul 01 15:09:16 2009 removing 1985426 relations and 1585426 ideals in 400000 cliques Wed Jul 01 15:09:17 2009 commencing in-memory singleton removal Wed Jul 01 15:09:21 2009 begin with 17991540 relations and 16764856 unique ideals Wed Jul 01 15:09:51 2009 reduce to 17842569 relations and 15027706 ideals in 8 passes Wed Jul 01 15:09:51 2009 max relations containing the same ideal: 20 Wed Jul 01 15:10:10 2009 removing 1626832 relations and 1287312 ideals in 339520 cliques Wed Jul 01 15:10:11 2009 commencing in-memory singleton removal Wed Jul 01 15:10:15 2009 begin with 16215737 relations and 15027706 unique ideals Wed Jul 01 15:10:41 2009 reduce to 16105168 relations and 13627906 ideals in 8 passes Wed Jul 01 15:10:41 2009 max relations containing the same ideal: 20 Wed Jul 01 15:11:00 2009 relations with 0 large ideals: 188734 Wed Jul 01 15:11:00 2009 relations with 1 large ideals: 934969 Wed Jul 01 15:11:00 2009 relations with 2 large ideals: 2781036 Wed Jul 01 15:11:00 2009 relations with 3 large ideals: 4487783 Wed Jul 01 15:11:00 2009 relations with 4 large ideals: 4224982 Wed Jul 01 15:11:00 2009 relations with 5 large ideals: 2362319 Wed Jul 01 15:11:00 2009 relations with 6 large ideals: 790965 Wed Jul 01 15:11:00 2009 relations with 7+ large ideals: 334380 Wed Jul 01 15:11:00 2009 commencing 2-way merge Wed Jul 01 15:11:25 2009 reduce to 10513011 relation sets and 8035749 unique ideals Wed Jul 01 15:11:25 2009 commencing full merge Wed Jul 01 15:14:22 2009 memory use: 668.7 MB Wed Jul 01 15:14:24 2009 found 5321363 cycles, need 4983949 Wed Jul 01 15:14:25 2009 weight of 4983949 cycles is about 348959609 (70.02/cycle) Wed Jul 01 15:14:25 2009 distribution of cycle lengths: Wed Jul 01 15:14:25 2009 1 relations: 646624 Wed Jul 01 15:14:25 2009 2 relations: 592897 Wed Jul 01 15:14:25 2009 3 relations: 585016 Wed Jul 01 15:14:25 2009 4 relations: 540378 Wed Jul 01 15:14:25 2009 5 relations: 485992 Wed Jul 01 15:14:25 2009 6 relations: 431904 Wed Jul 01 15:14:25 2009 7 relations: 374722 Wed Jul 01 15:14:25 2009 8 relations: 322521 Wed Jul 01 15:14:25 2009 9 relations: 271731 Wed Jul 01 15:14:25 2009 10+ relations: 732164 Wed Jul 01 15:14:25 2009 heaviest cycle: 17 relations Wed Jul 01 15:14:27 2009 commencing cycle optimization Wed Jul 01 15:14:40 2009 start with 26812971 relations Wed Jul 01 15:15:54 2009 pruned 764649 relations Wed Jul 01 15:15:54 2009 memory use: 702.9 MB Wed Jul 01 15:15:54 2009 distribution of cycle lengths: Wed Jul 01 15:15:54 2009 1 relations: 646624 Wed Jul 01 15:15:54 2009 2 relations: 608083 Wed Jul 01 15:15:54 2009 3 relations: 609511 Wed Jul 01 15:15:54 2009 4 relations: 558036 Wed Jul 01 15:15:54 2009 5 relations: 502517 Wed Jul 01 15:15:54 2009 6 relations: 441832 Wed Jul 01 15:15:54 2009 7 relations: 381306 Wed Jul 01 15:15:54 2009 8 relations: 323543 Wed Jul 01 15:15:54 2009 9 relations: 269057 Wed Jul 01 15:15:54 2009 10+ relations: 643440 Wed Jul 01 15:15:54 2009 heaviest cycle: 17 relations Wed Jul 01 15:16:18 2009 RelProcTime: 3714 Wed Jul 01 15:16:18 2009 Wed Jul 01 15:16:18 2009 commencing linear algebra Wed Jul 01 15:16:34 2009 read 4983949 cycles Wed Jul 01 15:16:48 2009 cycles contain 14619558 unique relations Wed Jul 01 15:24:04 2009 read 14619558 relations Wed Jul 01 15:24:44 2009 using 20 quadratic characters above 536870730 Wed Jul 01 15:26:02 2009 building initial matrix Wed Jul 01 15:30:16 2009 memory use: 1620.3 MB Wed Jul 01 15:30:38 2009 read 4983949 cycles Wed Jul 01 15:34:16 2009 matrix is 4983422 x 4983949 (1411.7 MB) with weight 433789956 (87.04/col) Wed Jul 01 15:34:16 2009 sparse part has weight 335172179 (67.25/col) Wed Jul 01 15:37:37 2009 filtering completed in 3 passes Wed Jul 01 15:37:39 2009 matrix is 4960805 x 4961005 (1408.5 MB) with weight 432669651 (87.21/col) Wed Jul 01 15:37:39 2009 sparse part has weight 334512750 (67.43/col) Wed Jul 01 15:38:37 2009 read 4961005 cycles Wed Jul 01 16:11:38 2009 matrix is 4960805 x 4961005 (1408.5 MB) with weight 432669651 (87.21/col) Wed Jul 01 16:11:38 2009 sparse part has weight 334512750 (67.43/col) Wed Jul 01 16:11:39 2009 saving the first 48 matrix rows for later Wed Jul 01 16:11:42 2009 matrix is 4960757 x 4961005 (1336.0 MB) with weight 344782488 (69.50/col) Wed Jul 01 16:11:42 2009 sparse part has weight 320465925 (64.60/col) Wed Jul 01 16:11:42 2009 matrix includes 64 packed rows Wed Jul 01 16:11:42 2009 using block size 65536 for processor cache size 6144 kB Wed Jul 01 16:12:22 2009 commencing Lanczos iteration Wed Jul 01 16:12:22 2009 memory use: 1379.2 MB Tue Jul 07 06:20:38 2009 lanczos halted after 78450 iterations (dim = 4960755) Tue Jul 07 06:21:31 2009 recovered 34 nontrivial dependencies Tue Jul 07 06:21:51 2009 BLanczosTime: 486333 Tue Jul 07 06:21:51 2009 Tue Jul 07 06:21:51 2009 commencing square root phase Tue Jul 07 06:21:51 2009 reading relations for dependency 1 Tue Jul 07 06:22:29 2009 read 2480662 cycles Tue Jul 07 06:22:37 2009 cycles contain 8947738 unique relations Tue Jul 07 06:37:31 2009 read 8947738 relations Tue Jul 07 06:38:47 2009 multiplying 7302868 relations Tue Jul 07 07:01:05 2009 multiply complete, coefficients have about 177.09 million bits Tue Jul 07 07:01:07 2009 initial square root is modulo 2265643 Tue Jul 07 07:30:25 2009 reading relations for dependency 2 Tue Jul 07 07:30:27 2009 read 2481818 cycles Tue Jul 07 07:30:35 2009 cycles contain 8947960 unique relations Tue Jul 07 07:44:37 2009 read 8947960 relations Tue Jul 07 07:45:54 2009 multiplying 7304400 relations Tue Jul 07 08:07:55 2009 multiply complete, coefficients have about 177.13 million bits Tue Jul 07 08:07:57 2009 initial square root is modulo 2273239 Tue Jul 07 08:37:11 2009 reading relations for dependency 3 Tue Jul 07 08:37:13 2009 read 2482950 cycles Tue Jul 07 08:37:21 2009 cycles contain 8953002 unique relations Tue Jul 07 08:51:19 2009 read 8953002 relations Tue Jul 07 08:52:29 2009 multiplying 7306608 relations Tue Jul 07 09:15:24 2009 multiply complete, coefficients have about 177.18 million bits Tue Jul 07 09:15:26 2009 initial square root is modulo 2282737 Tue Jul 07 09:40:26 2009 reading relations for dependency 4 Tue Jul 07 09:40:29 2009 read 2481076 cycles Tue Jul 07 09:40:36 2009 cycles contain 8944839 unique relations Tue Jul 07 09:52:26 2009 read 8944839 relations Tue Jul 07 09:53:35 2009 multiplying 7300174 relations Tue Jul 07 10:13:57 2009 multiply complete, coefficients have about 177.03 million bits Tue Jul 07 10:13:59 2009 initial square root is modulo 2254477 Tue Jul 07 10:39:07 2009 reading relations for dependency 5 Tue Jul 07 10:39:09 2009 read 2482085 cycles Tue Jul 07 10:39:16 2009 cycles contain 8950605 unique relations Tue Jul 07 10:51:17 2009 read 8950605 relations Tue Jul 07 10:52:27 2009 multiplying 7305078 relations Tue Jul 07 11:14:34 2009 multiply complete, coefficients have about 177.14 million bits Tue Jul 07 11:14:36 2009 initial square root is modulo 2276503 Tue Jul 07 11:43:26 2009 reading relations for dependency 6 Tue Jul 07 11:43:28 2009 read 2478711 cycles Tue Jul 07 11:43:35 2009 cycles contain 8941063 unique relations Tue Jul 07 11:57:15 2009 read 8941063 relations Tue Jul 07 11:58:30 2009 multiplying 7295494 relations Tue Jul 07 12:20:25 2009 multiply complete, coefficients have about 176.91 million bits Tue Jul 07 12:20:27 2009 initial square root is modulo 2233243 Tue Jul 07 12:48:44 2009 sqrtTime: 23213 Tue Jul 07 12:48:44 2009 prp51 factor: 551004498127928469834445340613015226657914601778213 Tue Jul 07 12:48:44 2009 prp51 factor: 676677276408056094567102599764052489094573413056051 Tue Jul 07 12:48:44 2009 prp120 factor: 298003080664845879339921984943623072483939555335465806206783935206506443967104530715870831039336178009293998396643169751 Tue Jul 07 12:48:44 2009 elapsed time 142:37:09
c222 is the second largest number factored by SNFS in our tables so far. Congratulations!
8·10198+3 = 8(0)1973<199> = 11 · 53 · C197
C197 = P43 · P155
P43 = 1350678383321052486001773788083398163612589<43>
P155 = 10159433288577617053454552915986316337776945515442442225397613087026136705762770406500515286186663991881893416281217389552885939501195077102302205387682969<155>
C197=P43*P155 C197=1350678383321052486001773788083398163612589<43>*10159433288577617053454552915986316337776945515442442225397613087026136705762770406500515286186663991881893416281217389552885939501195077102302205387682969<155>
By Robert Backstrom / GGNFS, Msieve / Jul 8, 2009
(56·10180+61)/9 = 6(2)1799<181> = 13 · 7789 · C176
C176 = P41 · P136
P41 = 26838646500920498855907522727441822854563<41>
P136 = 2289601238125406496463685953870925367871067431406768811372523359546903375516654651574265382783432990689047815439704473437274675097675119<136>
Number: n N=61449798258117682947571251589739200472285592326675906082761905075424140772709266739309106750370070436831253367394078653547134738558541357360204452257347365833692704921360717997 ( 176 digits) SNFS difficulty: 181 digits. Divisors found: Wed Jul 08 12:08:03 2009 prp41 factor: 26838646500920498855907522727441822854563 Wed Jul 08 12:08:03 2009 prp136 factor: 2289601238125406496463685953870925367871067431406768811372523359546903375516654651574265382783432990689047815439704473437274675097675119 Wed Jul 08 12:08:03 2009 elapsed time 02:00:02 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 131.47 hours. Scaled time: 349.70 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_179_9 n: 61449798258117682947571251589739200472285592326675906082761905075424140772709266739309106750370070436831253367394078653547134738558541357360204452257347365833692704921360717997 m: 1000000000000000000000000000000000000 deg: 5 c5: 56 c0: 61 skew: 1.02 type: snfs lss: 1 rlim: 7600000 alim: 7600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 7600000/7600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3800000, 6049990) Primes: RFBsize:514565, AFBsize:514353, largePrimes:20842136 encountered Relations: rels:20918964, finalFF:999667 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1886231 hash collisions in 22789853 relations Msieve: matrix is 1141759 x 1142007 (307.6 MB) Total sieving time: 130.96 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7600000,7600000,28,28,56,56,2.5,2.5,100000 total time: 131.47 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Jul 8, 2009
(16·10213-7)/9 = 1(7)213<214> = C214
C214 = P37 · C177
P37 = 8468548142759467301501936286449486551<37>
C177 = [209927102947128172255527477476720550184027075544562096491537855794730425872278030664899902187563513228333907561760924717146946260073314975849230630876994684540632973031211495927<177>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 (214 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=623747480 Step 1 took 23282ms Step 2 took 8537ms ********** Factor found in step 2: 8468548142759467301501936286449486551 Found probable prime factor of 37 digits: 8468548142759467301501936286449486551 Composite cofactor 209927102947128172255527477476720550184027075544562096491537855794730425872278030664899902187563513228333907561760924717146946260073314975849230630876994684540632973031211495927 has 177 digits
By Dmitry Domanov / ECMNET, GMP-ECM 6.2.3 / Jul 8, 2009
(16·10222-7)/9 = 1(7)222<223> = 199 · 12149 · 98448869 · 54361144210102643223435316458471837889181<41> · C168
C168 = P37 · P131
P37 = 2235567584419681037453681562092795977<37>
P131 = 61460592182154974496730933652470829014663740816329411758327108206469005324682537072299516656101839833858534462709909285629495029859<131>
C168=P37*P131 C168=2235567584419681037453681562092795977<37>*61460592182154974496730933652470829014663740816329411758327108206469005324682537072299516656101839833858534462709909285629495029859<131>
(4·10239-1)/3 = 1(3)239<240> = 4667580867677873203<19> · 24503401321619517515329<23> · C199
C199 = P46 · C153
P46 = 7376676687266393712046503536607829252598737391<46>
C153 = [158037358971372761393703399726706499974585107747002750603566153342837853221986516569540101910758293615058417151095031685002002369382801730594252944626649<153>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4266053392 Step 1 took 358031ms Step 2 took 112531ms ********** Factor found in step 2: 7376676687266393712046503536607829252598737391 Found probable prime factor of 46 digits: 7376676687266393712046503536607829252598737391 Composite cofactor 158037358971372761393703399726706499974585107747002750603566153342837853221986516569540101910758293615058417151095031685002002369382801730594252944626649 has 153 digits
By Dmitry Domanov / GGNFS/msieve 1.41 / Jul 8, 2009
(44·10171-71)/9 = 4(8)1701<172> = 3 · 41 · 5153 · C166
C166 = P70 · P97
P70 = 5271981044836967768271841973392602581073085695664717820937384152442373<70>
P97 = 1463090104635461951610590987260210884486775026240659609393710273204440955431228652088681530430663<97>
N=7713383298526691198731639299056810996339473712351458206347378177190789308759896577554300027119554460956343828267831808274742298493558711381149648225895545713979683299 ( 166 digits) SNFS difficulty: 173 digits. Divisors found: r1=5271981044836967768271841973392602581073085695664717820937384152442373 (pp70) r2=1463090104635461951610590987260210884486775026240659609393710273204440955431228652088681530430663 (pp97) Version: Msieve v. 1.41 Total time: 78.11 hours. Scaled time: 154.35 units (timescale=1.976). Factorization parameters were as follows: n: 7713383298526691198731639299056810996339473712351458206347378177190789308759896577554300027119554460956343828267831808274742298493558711381149648225895545713979683299 m: 20000000000000000000000000000000000 deg: 5 c5: 55 c0: -284 skew: 1.39 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 865106 x 865354 Total sieving time: 76.66 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.19 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 78.11 hours. --------- CPU info (if available) ----------
(58·10177-13)/9 = 6(4)1763<178> = 43 · 1549 · C173
C173 = P42 · P132
P42 = 320496404483144759257844472217374390250391<42>
P132 = 301885635787849997076654250208736448301418211103547828735709980133081356860492761093044763198026788449829497936680286375958621773939<132>
N=96753260835114093780600303938691795823929083196127200511124122756533764385791950462330452421583984332644383389800538148309403582873338304449148654712634474521363286808360149 ( 173 digits) SNFS difficulty: 179 digits. Divisors found: r1=320496404483144759257844472217374390250391 (pp42) r2=301885635787849997076654250208736448301418211103547828735709980133081356860492761093044763198026788449829497936680286375958621773939 (pp132) Version: Msieve v. 1.41 Total time: 124.28 hours. Scaled time: 246.33 units (timescale=1.982). Factorization parameters were as follows: n: 96753260835114093780600303938691795823929083196127200511124122756533764385791950462330452421583984332644383389800538148309403582873338304449148654712634474521363286808360149 m: 200000000000000000000000000000000000 deg: 5 c5: 725 c0: -52 skew: 0.59 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 9100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1433017 x 1433265 Total sieving time: 119.07 hours. Total relation processing time: 0.31 hours. Matrix solve time: 4.49 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,179.000,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 124.28 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Jul 7, 2009
(16·10210-7)/9 = 1(7)210<211> = 2306753 · 707999891526611<15> · C190
C190 = P38 · C152
P38 = 34982088008588268790615606126668383363<38>
C152 = [31116981374511626666850275119962721699651581221812870177327853705301792800990178959233683888734687635721087961901222646746337176618805370691748725153913<152>]
C190=P38*C152 C190=34982088008588268790615606126668383363<38>*31116981374511626666850275119962721699651581221812870177327853705301792800990178959233683888734687635721087961901222646746337176618805370691748725153913<152>
(16·10222-7)/9 = 1(7)222<223> = 199 · 12149 · 98448869 · C208
C208 = P41 · C168
P41 = 54361144210102643223435316458471837889181<41>
C168 = [137399307601663329338762819303363451250324761459293058906011655115908353350470871508735481361435253702571547696510840260773732323164290945411600641942028811070410077243<168>]
C208=P41*C168 C208=54361144210102643223435316458471837889181<41>*137399307601663329338762819303363451250324761459293058906011655115908353350470871508735481361435253702571547696510840260773732323164290945411600641942028811070410077243<168>
By Jo Yeong Uk / GMP-ECM / Jul 7, 2009
(44·10169-71)/9 = 4(8)1681<170> = 19 · 1171 · 22455238546372133233<20> · 74729759475524672408129<23> · C124
C124 = P40 · P84
P40 = 3267030704112780993938561807475804129877<40>
P84 = 400806907449015252453908806551676977356384665542185400498682627662013210514398914421<84>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1309448473056422545730772508368357667208736293707271039656288264706133216883595462837863086408288211165694921802757292256217 (124 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1407767135 Step 1 took 9999ms Step 2 took 4851ms ********** Factor found in step 2: 3267030704112780993938561807475804129877 Found probable prime factor of 40 digits: 3267030704112780993938561807475804129877 Probable prime cofactor 400806907449015252453908806551676977356384665542185400498682627662013210514398914421 has 84 digits
By Tyler Cadigan / GGNFS and Msieve / Jul 7, 2009
6·10177+1 = 6(0)1761<178> = 1711983023<10> · C169
C169 = P72 · P98
P72 = 130909460131276140628552263669024355006100394847355624263188932213877563<72>
P98 = 26771996829082488321535109586807695003489696065663320871538381541557110996579284791617298469559549<98>
Number: 60001_177 N=3504707651531425262270255585355766696758884857236110570939931569636832783008269352446726920609188774648263553487352543682321317037966912128660752496258837024694023499087 ( 169 digits) SNFS difficulty: 178 digits. Divisors found: r1=130909460131276140628552263669024355006100394847355624263188932213877563 (pp72) r2=26771996829082488321535109586807695003489696065663320871538381541557110996579284791617298469559549 (pp98) Version: Msieve v. 1.41 Total time: 97.06 hours. Scaled time: 242.85 units (timescale=2.502). Factorization parameters were as follows: n: 3504707651531425262270255585355766696758884857236110570939931569636832783008269352446726920609188774648263553487352543682321317037966912128660752496258837024694023499087 m: 200000000000000000000000000000000000 deg: 5 c5: 75 c0: 4 skew: 0.56 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 7300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1080232 x 1080480 Total sieving time: 93.75 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.27 hours. Time per square root: 0.77 hours. Prototype def-par.txt line would be: snfs,178.000,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 97.06 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / Jul 7, 2009
(16·10204-7)/9 = 1(7)204<205> = 709 · 2971 · 7477 · 120847 · 374635434906319<15> · C175
C175 = P38 · P137
P38 = 92895077195030726821601908997157473833<38>
P137 = 26838842347296090104640832675754230252174815008475997450915157004722749871051392000924279403189951850376102607159797256027317218632935411<137>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3235440799 Step 1 took 13861ms Step 2 took 12025ms ********** Factor found in step 2: 92895077195030726821601908997157473833 Found probable prime factor of 38 digits: 92895077195030726821601908997157473833 Probable prime cofactor has 137 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Jul 6, 2009
(8·10180+7)/3 = 2(6)1799<181> = 31053624792761<14> · C167
C167 = P71 · P97
P71 = 18555315928842020306493901187909913884372345209699756189928787759669539<71>
P97 = 4627943814599199983007985544839411028986120597910669643331539446594085228777254658333014535246311<97>
Number: n N=85872959580818437049970776116010943591051241377859585751193600043739729134078369036913847819945516023470865699406926030247953668830042774115289314260254925621328820629 ( 167 digits) SNFS difficulty: 180 digits. Divisors found: Mon Jul 06 14:14:43 2009 prp71 factor: 18555315928842020306493901187909913884372345209699756189928787759669539 Mon Jul 06 14:14:43 2009 prp97 factor: 4627943814599199983007985544839411028986120597910669643331539446594085228777254658333014535246311 Mon Jul 06 14:14:43 2009 elapsed time 01:38:07 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 131.74 hours. Scaled time: 344.63 units (timescale=2.616). Factorization parameters were as follows: name: KA_2_6_179_9 n: 85872959580818437049970776116010943591051241377859585751193600043739729134078369036913847819945516023470865699406926030247953668830042774115289314260254925621328820629 m: 1000000000000000000000000000000000000 deg: 5 c5: 8 c0: 7 skew: 0.97 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3600000, 5849990) Primes: RFBsize:489319, AFBsize:488218, largePrimes:20564182 encountered Relations: rels:20278778, finalFF:1064369 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2117894 hash collisions in 24343356 relations Msieve: matrix is 1015493 x 1015741 (270.0 MB) Total sieving time: 131.24 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,56,56,2.5,2.5,100000 total time: 131.74 hours. --------- CPU info (if available) ----------
(53·10180+1)/9 = 5(8)1799<181> = 3 · 67 · 7753 · C175
C175 = P36 · P40 · P99
P36 = 467712874948997340147347573908507417<36>
P40 = 9277642778843380347719533680822774228073<40>
P99 = 870864419203635722315194328196734611935239863623475289867757749407372405846045984600645870268689193<99>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 3778918440744098987128647289085906010312739725138584703779495973562401387162529214426313478967146011775822864837998122947040169261321978325122028762988160505924452860737515113 (175 digits) Using B1=746000, B2=696728352, polynomial Dickson(3), sigma=338678068 Step 1 took 11500ms Step 2 took 4765ms ********** Factor found in step 2: 467712874948997340147347573908507417 Found probable prime factor of 36 digits: 467712874948997340147347573908507417 Composite cofactor 8079568990176245407164908138855960352414027399430389385104249725327392997027699414008883250333152166638569639697780145903076291872132315089 has 139 digits GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 8079568990176245407164908138855960352414027399430389385104249725327392997027699414008883250333152166638569639697780145903076291872132315089 (139 digits) Using B1=2958000, B2=4281751120, polynomial Dickson(6), sigma=314658206 Step 1 took 31781ms Step 2 took 12547ms ********** Factor found in step 2: 9277642778843380347719533680822774228073 Found probable prime factor of 40 digits: 9277642778843380347719533680822774228073 Probable prime cofactor 870864419203635722315194328196734611935239863623475289867757749407372405846045984600645870268689193 has 99 digits
By Dmitry Domanov / ECMNET / Jul 6, 2009
(16·10232-7)/9 = 1(7)232<233> = 19 · 104953 · 1986217 · 34068054807426322294331<23> · 13848896772790568546388233869<29> · C169
C169 = P35 · C135
P35 = 56772616833085221976414195028964401<35>
C135 = [167571783671037912466408452319759362185008616848696629101669918550562953076710717850252795352341060164798120833972449628332765915929797<135>]
C169=P35*C135 C169=56772616833085221976414195028964401<35>*167571783671037912466408452319759362185008616848696629101669918550562953076710717850252795352341060164798120833972449628332765915929797<135>
(16·10242-7)/9 = 1(7)242<243> = 3 · 1377031 · 60563440146936004113491<23> · C213
C213 = P39 · C175
P39 = 199420903525207265891662998119875755307<39>
C175 = [3563126863272287848309474508421502859292999903007398926700694144385671714094680930698204166079585664849282637049457051242987232608454018562371651837455217182196840947072062397<175>]
C213=P39*C175 C213=199420903525207265891662998119875755307<39>*3563126863272287848309474508421502859292999903007398926700694144385671714094680930698204166079585664849282637049457051242987232608454018562371651837455217182196840947072062397<175>
By Serge Batalov / PFGW / Jul 6, 2009
(2·1084239+1)/3 = (6)842387<84239> is PRP.
This is the largest unprovable near-repdigit PRP in our tables so far. Congratulations!
By Wataru Sakai / GMP-ECM 6.2.1 / Jul 5, 2009
(2·10171-17)/3 = (6)1701<171> = 19 · 87468884265379<14> · 13595175907013101<17> · C140
C140 = P48 · P93
P48 = 138014820965046102634644206118683890867588471483<48>
P93 = 213791776249621319224967337487968765723499969651474502298025592355774144477612711702325518067<93>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1868644906 Step 1 took 42626ms Step 2 took 14881ms ********** Factor found in step 2: 138014820965046102634644206118683890867588471483 Found probable prime factor of 48 digits: 138014820965046102634644206118683890867588471483 Probable prime cofactor 213791776249621319224967337487968765723499969651474502298025592355774144477612711702325518067 has 93 digits
By Robert Backstrom / GGNFS, Msieve / Jul 5, 2009
(49·10189+23)/9 = 5(4)1887<190> = 13 · C189
C189 = P59 · P130
P59 = 53523756078031042692936382182191372168741504118891852257677<59>
P130 = 7824626847802964571499691889298350464401845544687833939953026301943157931919076380865693694386248286843653044176844425312737763847<130>
Number: n N=418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803419 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: Sun Jul 05 02:18:18 2009 prp59 factor: 53523756078031042692936382182191372168741504118891852257677 Sun Jul 05 02:18:18 2009 prp130 factor: 7824626847802964571499691889298350464401845544687833939953026301943157931919076380865693694386248286843653044176844425312737763847 Sun Jul 05 02:18:18 2009 elapsed time 06:28:34 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 339.86 hours. Scaled time: 878.55 units (timescale=2.585). Factorization parameters were as follows: name: KA_5_4_188_7 n: 418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803419 m: 100000000000000000000000000000000000000 deg: 5 c5: 49 c0: 230 skew: 1.36 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [5500000, 11549990) Primes: RFBsize:726517, AFBsize:725473, largePrimes:21473915 encountered Relations: rels:21946074, finalFF:1409691 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2757639 hash collisions in 24407207 relations Msieve: matrix is 1838300 x 1838548 (495.2 MB) Total sieving time: 338.97 hours. Total relation processing time: 0.89 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,56,56,2.5,2.5,100000 total time: 339.86 hours. --------- CPU info (if available) ----------
2·10216-1 = 1(9)216<217> = 71 · 1801 · C212
C212 = P87 · P125
P87 = 361107090626796555790432520736349127614104388447835771607771886723658185918374320268583<87>
P125 = 43313364268944003504537958096108351815974418622703052728674628970748248006983423154634967569396860724808442556827278605720343<125>
Number: n N=15640762956417014021943990427853070672787418570277858153920748254099834989950809800502068490900986150104402092734083568596476136105919246740856018956604703177420994596116398557921655418351307176764082551946883969 ( 212 digits) SNFS difficulty: 216 digits. Divisors found: Sun Jul 5 17:47:36 2009 prp87 factor: 361107090626796555790432520736349127614104388447835771607771886723658185918374320268583 Sun Jul 5 17:47:36 2009 prp125 factor: 43313364268944003504537958096108351815974418622703052728674628970748248006983423154634967569396860724808442556827278605720343 Sun Jul 5 17:47:36 2009 elapsed time 48:29:06 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 137.94 hours. Scaled time: 277.95 units (timescale=2.015). Factorization parameters were as follows: name: KA_1_9_216 n: 15640762956417014021943990427853070672787418570277858153920748254099834989950809800502068490900986150104402092734083568596476136105919246740856018956604703177420994596116398557921655418351307176764082551946883969 m: 1000000000000000000000000000000000000 deg: 6 c6: 2 c0: -1 skew: 0.89 type: snfs lss: 1 rlim: 28000000 alim: 28000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 28000000/28000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [14000000, 39599990) Primes: RFBsize:1741430, AFBsize:1740559, largePrimes:38050311 encountered Relations: rels:34729186, finalFF:1144510 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8345464 hash collisions in 49109482 relations Msieve: matrix is 4939937 x 4940185 (1333.9 MB) Total sieving time: 136.84 hours. Total relation processing time: 1.10 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,28000000,28000000,29,29,58,58,2.6,2.6,100000 total time: 137.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352056k/3407296k available (3119k kernel code, 53956k reserved, 1894k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.68 BogoMIPS (lpj=2830844) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22644.41 BogoMIPS).
By Dmitry Domanov / GGNFS/msieve 1.41 / Jul 5, 2009
(19·10169+11)/3 = 6(3)1687<170> = 419 · 17359 · 435144769 · 1092261451<10> · 46604867967947<14> · 6863100712193171991021877484483863219321<40> · C92
C92 = P46 · P47
P46 = 1460642205399019519450717523391965728267997741<46>
P47 = 39213693243907045538796060396726173069533192289<47>
N=57277175381621018844894128396734834310011455677358063497176811475656530660931802849970619149 ( 92 digits) Divisors found: r1=1460642205399019519450717523391965728267997741 (pp46) r2=39213693243907045538796060396726173069533192289 (pp47) Version: Msieve v. 1.41 Total time: 3.16 hours. Scaled time: 6.26 units (timescale=1.982). Factorization parameters were as follows: name: 0028 n: 57277175381621018844894128396734834310011455677358063497176811475656530660931802849970619149 m: 1144412806986536595868 deg: 4 c4: 33392640 c3: 219871128503 c2: -93123226998648841 c1: -905220131677318023 c0: 65367225897505650092961 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.225 # E(F1,F2) = 1.050945e-004 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1246725776. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 40000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [350000, 1030001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 111083 x 111313 Polynomial selection time: 0.17 hours. Total sieving time: 2.91 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 3.16 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve / Jul 5, 2009
6·10180+1 = 6(0)1791<181> = 7 · 53 · 5189 · 1530654942827<13> · C163
C163 = P80 · P83
P80 = 77961257465282390200811842235367085099161175733216672157092688181205275825630537<80>
P83 = 26117856802019915612096483598867398142659189050194588384216401897862531400938257621<83>
Number: 60001_180 N=2036180958583651599919324369895283334276379392748411313706838298632139875636431258517052429423184385967502888554627103436454845173306061562588430970166718470572477 ( 163 digits) SNFS difficulty: 180 digits. Divisors found: r1=77961257465282390200811842235367085099161175733216672157092688181205275825630537 (pp80) r2=26117856802019915612096483598867398142659189050194588384216401897862531400938257621 (pp83) Version: Msieve v. 1.41 Total time: 143.05 hours. Scaled time: 363.92 units (timescale=2.544). Factorization parameters were as follows: n: 2036180958583651599919324369895283334276379392748411313706838298632139875636431258517052429423184385967502888554627103436454845173306061562588430970166718470572477 m: 1000000000000000000000000000000000000 deg: 5 c5: 6 c0: 1 skew: 0.70 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3600000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 948967 x 949215 Total sieving time: 141.12 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.53 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000 total time: 143.05 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jul 5, 2009
(58·10169-13)/9 = 6(4)1683<170> = 3 · 7 · 179 · 147853 · 236891 · 338197 · 4258508879<10> · C141
C141 = P66 · P75
P66 = 408116836703356135186758597068735340933347535194023264090041406897<66>
P75 = 832765330571507511987519992376332246212140238340768446412802228965601239809<75>
Number: 64443_169 N=339865552429068321970877680355397427709972520150182950223233553657884687447900712560490043251329534766131338706168982613469177225889843562673 ( 141 digits) SNFS difficulty: 171 digits. Divisors found: r1=408116836703356135186758597068735340933347535194023264090041406897 (pp66) r2=832765330571507511987519992376332246212140238340768446412802228965601239809 (pp75) Version: Msieve-1.40 Total time: 83.78 hours. Scaled time: 172.42 units (timescale=2.058). Factorization parameters were as follows: name: 64443_169 n: 339865552429068321970877680355397427709972520150182950223233553657884687447900712560490043251329534766131338706168982613469177225889843562673 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: -65 skew: 1.18 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 976748 x 976996 Total sieving time: 79.62 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.71 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 83.78 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Jul 4, 2009
(52·10201+11)/9 = 5(7)2009<202> = 61 · 9439 · C197
C197 = P36 · P161
P36 = 327574010996440651174881028085255183<36>
P161 = 30633426295854463882304563603886870527666531320541302771617844658424271598181095302778430382149016907140565796158720390106944926598693879577187939072797793406847<161>
C197=P36*P161 C197=327574010996440651174881028085255183<36>*30633426295854463882304563603886870527666531320541302771617844658424271598181095302778430382149016907140565796158720390106944926598693879577187939072797793406847<161>
By Sinkiti Sibata / GGNFS / Jul 4, 2009
(58·10164-13)/9 = 6(4)1633<165> = 634425495437<12> · 34223943495856159696154680142313760883<38> · C116
C116 = P40 · P77
P40 = 1039702390453237753079616431433676773883<40>
P77 = 28547347651007753290977819563148421178571364515389527937841544853464340338951<77>
Number: 64443_164 N=29680745593852382710885424670845104038289735607516074357223266600260200692718744499668077307158865998260008404416733 ( 116 digits) Divisors found: r1=1039702390453237753079616431433676773883 (pp40) r2=28547347651007753290977819563148421178571364515389527937841544853464340338951 (pp77) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 68.52 hours. Scaled time: 32.48 units (timescale=0.474). Factorization parameters were as follows: name: 64443_164 n: 29680745593852382710885424670845104038289735607516074357223266600260200692718744499668077307158865998260008404416733 skew: 37882.17 # norm 2.16e+15 c5: 28080 c4: -1783304174 c3: -106987684895637 c2: 3254798532959727963 c1: 69333921661141863276279 c0: 311328355938046670337322130 # alpha -5.10 Y1: 1694242071773 Y0: -16025667352605280542669 # Murphy_E 5.09e-10 # M 725564486423152580698825252463775544412007927936381050353624717871811877831131875924797212721560785860023394686973 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3630001) Primes: RFBsize:315948, AFBsize:315817, largePrimes:7563902 encountered Relations: rels:7629959, finalFF:773927 Max relations in full relation-set: 28 Initial matrix: 631846 x 773927 with sparse part having weight 60032329. Pruned matrix : 507204 x 510427 with weight 34236305. Total sieving time: 56.96 hours. Total relation processing time: 0.79 hours. Matrix solve time: 10.35 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 68.52 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Jul 4, 2009
(19·10169+11)/3 = 6(3)1687<170> = 419 · 17359 · 435144769 · 1092261451<10> · 46604867967947<14> · C132
C132 = P40 · C92
P40 = 6863100712193171991021877484483863219321<40>
C92 = [57277175381621018844894128396734834310011455677358063497176811475656530660931802849970619149<92>]
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 393099023154016432157135307697657905002456098719696585711733263469545952679141551813013727666722143370112848288521607667698749377829 (132 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4273467981 Step 1 took 4228ms Step 2 took 1341ms ********** Factor found in step 2: 6863100712193171991021877484483863219321 Found probable prime factor of 40 digits: 6863100712193171991021877484483863219321 Composite cofactor 57277175381621018844894128396734834310011455677358063497176811475656530660931802849970619149 has 92 digits
By Tyler Cadigan / PRIMO 3.0.7 / Jun 30, 2009
(102576+53)/9 = (1)25757<2576> is prime.
By Dmitry Domanov / GGNFS/msieve 1.41 / Jul 4, 2009
(16·10239-7)/9 = 1(7)239<240> = 35 · 15217 · 3990316637461614359759<22> · 13273181924432571534347<23> · 17417511129931705819879<23> · 72157436681702848816201<23> · 155862880557226828959411237263<30> · C115
C115 = P52 · P64
P52 = 1242805601725594914246288145126368484394847860891111<52>
P64 = 3728607415830210175214413350865767470697342530579606832265121657<64>
N=4633934183029379848911059683421025765683695811198960419440580945122087499442227338278163891999244250812708844890927 ( 115 digits) Divisors found: r1=1242805601725594914246288145126368484394847860891111 (pp52) r2=3728607415830210175214413350865767470697342530579606832265121657 (pp64) Version: Msieve v. 1.41 Total time: 33.30 hours. Scaled time: 65.56 units (timescale=1.969). Factorization parameters were as follows: name: 0024 n: 4633934183029379848911059683421025765683695811198960419440580945122087499442227338278163891999244250812708844890927 skew: 52277.85 # norm 1.53e+016 c5: 49140 c4: 2023517382 c3: -770576692952680 c2: -6669643093844814455 c1: 675255332437029036418800 c0: -3360776601203873812598149827 # alpha -6.82 Y1: 530957486939 Y0: -9883317554939838314860 # Murphy_E 5.71e-010 # M 453967889756118697662348222666525420739985869353770678696114680314130139019054861861552037690994500371427353763936 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 527177 x 527424 Polynomial selection time: 2.72 hours. Total sieving time: 29.25 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 33.30 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / Msieve / Jul 2, 2009
(19·10170+11)/3 = 6(3)1697<171> = 72 · 13 · 2423 · 5407 · 225212486252296836198773323<27> · 362095319198698267549534353999723137<36> · C99
C99 = P32 · P68
P32 = 41530639745908770097077908377763<32>
P68 = 22407795549198754888680238994593224139411080039444874423497865033157<68>
Number: 63337_170 N=930610084453751447220883859937900406192855431428364710420148846824731721127839963619056184076487791 ( 99 digits) Divisors found: r1=41530639745908770097077908377763 r2=22407795549198754888680238994593224139411080039444874423497865033157 Version: Total time: 2.38 hours. Scaled time: 5.69 units (timescale=2.391). Factorization parameters were as follows: name: 63337_170 n: 930610084453751447220883859937900406192855431428364710420148846824731721127839963619056184076487791 skew: 5805.56 # norm 3.75e+13 c5: 45540 c4: -576098332 c3: -4840732325267 c2: 15563382954064314 c1: 66030856022033971056 c0: -120065763798487403936640 # alpha -5.08 Y1: 10461064597 Y0: -7279080541546534673 # Murphy_E 3.46e-09 # M 887173262205881371076995863496444461793338535162077103711482507558309594394743821872645967092394012 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 1000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4147948 Max relations in full relation-set: Initial matrix: Pruned matrix : 183967 x 184215 Polynomial selection time: 0.14 hours. Total sieving time: 1.96 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 2.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
By Jo Yeong Uk / GMP-ECM / Jul 3, 2009
(16·10225-7)/9 = 1(7)225<226> = 17 · 5705120952499567<16> · 7113174568135224977<19> · 1430577548090886473232512029<28> · 23372859706894522584303715363<29> · C134
C134 = P32 · P103
P32 = 41233351031948151692868641186159<32>
P103 = 1869081935791828972707833126568044399578183366750010335624802395418611310169927142305210058932642675863<103>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 77068511565977660174709421461132555031362999146292468101240450879997543709927873527529777203465840908885241587100820037642140078980217 (134 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5175414927 Step 1 took 4227ms Step 2 took 5835ms ********** Factor found in step 2: 41233351031948151692868641186159 Found probable prime factor of 32 digits: 41233351031948151692868641186159 Probable prime cofactor 1869081935791828972707833126568044399578183366750010335624802395418611310169927142305210058932642675863 has 103 digits
By Dmitry Domanov / ECMNET / Jul 3, 2009
(16·10226-7)/9 = 1(7)226<227> = 131 · 6181811 · 132752221159<12> · C207
C207 = P38 · P170
P38 = 12500755410149652578208142530844687751<38>
P170 = 13228554790752363275540751728437998199424055178673431699716124390155931820330522849342635457892494755615875231329856621245128124011040693202135088807739033447001924553033<170>
C207=P38*P170 C207=12500755410149652578208142530844687751<38>*13228554790752363275540751728437998199424055178673431699716124390155931820330522849342635457892494755615875231329856621245128124011040693202135088807739033447001924553033<170>
By Sinkiti Sibata / Msieve / Jul 3, 2009
(58·10163-13)/9 = 6(4)1623<164> = 32 · 7 · 17 · 94951763 · 1450443787417<13> · C141
C141 = P62 · P80
P62 = 15200010854050980264951294490005750472092205391836031200627031<62>
P80 = 28744064597297114282228101355955883403740289127783595364008637430740971151148233<80>
Number: 64443_163 N=436910093868458656181692890758665810048223451661281827184511045317685332128359134867190394080416164666242215892704309860218883494745227686223 ( 141 digits) SNFS difficulty: 166 digits. Divisors found: r1=15200010854050980264951294490005750472092205391836031200627031 (pp62) r2=28744064597297114282228101355955883403740289127783595364008637430740971151148233 (pp80) Version: Msieve-1.40 Total time: 50.73 hours. Scaled time: 130.08 units (timescale=2.564). Factorization parameters were as follows: name: 64443_163 n: 436910093868458656181692890758665810048223451661281827184511045317685332128359134867190394080416164666242215892704309860218883494745227686223 m: 500000000000000000000000000000000 deg: 5 c5: 464 c0: -325 skew: 0.93 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 751768 x 752016 Total sieving time: 49.14 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.27 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 50.73 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Jul 2, 2009
(4·10227-1)/3 = 1(3)227<228> = 495976721 · C219
C219 = P34 · P185
P34 = 7182449182846041226834457037788413<34>
P185 = 37428711930030411787026467533746685794015580944665280706076447106637077636188492634909171909470494931514913929830815389062003443743128089759181928735384732113688639097074216322185271721<185>
C219=P34*P185 C219=7182449182846041226834457037788413<34>*37428711930030411787026467533746685794015580944665280706076447106637077636188492634909171909470494931514913929830815389062003443743128089759181928735384732113688639097074216322185271721<185>
By Jo Yeong Uk / GMP-ECM, GGNFS, MSieve v1.39 / Jul 2, 2009
(17·10169-11)/3 = 5(6)1683<170> = 47 · 131 · 149 · 33340437841741841839489<23> · C142
C142 = P36 · P106
P36 = 588740553020417727859616696880760387<36>
P106 = 3146856900197104709044954193359079359458730289636307786252071116222364226809318587050803371596885848515837<106>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 1852682271698160903203411897901451415112616705715726434096600854560620468380525285725615537888596666176564066317954738261417293548183971748919 (142 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3541219365 Step 1 took 4157ms Step 2 took 2373ms ********** Factor found in step 2: 588740553020417727859616696880760387 Found probable prime factor of 36 digits: 588740553020417727859616696880760387 Probable prime cofactor 3146856900197104709044954193359079359458730289636307786252071116222364226809318587050803371596885848515837 has 106 digits
(19·10170+11)/3 = 6(3)1697<171> = 72 · 13 · 2423 · 5407 · 225212486252296836198773323<27> · C135
C135 = P36 · C99
P36 = 362095319198698267549534353999723137<36>
C99 = [930610084453751447220883859937900406192855431428364710420148846824731721127839963619056184076487791<99>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 336969555579808682573243870523617049873844489586121451739694245328141713281148910920472473599665329157656373568688539063780045360720367 (135 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6088997955 Step 1 took 3440ms Step 2 took 2148ms ********** Factor found in step 2: 362095319198698267549534353999723137 Found probable prime factor of 36 digits: 362095319198698267549534353999723137 Composite cofactor 930610084453751447220883859937900406192855431428364710420148846824731721127839963619056184076487791 has 99 digits GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 336969555579808682573243870523617049873844489586121451739694245328141713281148910920472473599665329157656373568688539063780045360720367 (135 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6088997955 Step 1 took 3440ms Step 2 took 2148ms ********** Factor found in step 2: 362095319198698267549534353999723137 Found probable prime factor of 36 digits: 362095319198698267549534353999723137 Composite cofactor 930610084453751447220883859937900406192855431428364710420148846824731721127839963619056184076487791 has 99 digits
By Tyler Cadigan / GGNFS, Msieve / Jul 2, 2009
6·10181+1 = 6(0)1801<182> = 23 · 61 · 22921 · 1872699346433998020537767237<28> · C147
C147 = P52 · P96
P52 = 3221817407318169274057683443449767963151785037276817<52>
P96 = 309236703947623304730799733324982576204663378968922310111028745418217199315661984343512735564463<96>
Number: 60001_181 N=996304195760147997067562108673821534929496595129015951823604834209205894024502191944842412261659576950028689198887149061532283496510397260878954271 ( 147 digits) SNFS difficulty: 182 digits. Divisors found: r1=3221817407318169274057683443449767963151785037276817 (pp52) r2=309236703947623304730799733324982576204663378968922310111028745418217199315661984343512735564463 (pp96) Version: Msieve v. 1.41 Total time: 223.86 hours. Scaled time: 573.97 units (timescale=2.564). Factorization parameters were as follows: n: 996304195760147997067562108673821534929496595129015951823604834209205894024502191944842412261659576950028689198887149061532283496510397260878954271 m: 2000000000000000000000000000000000000 deg: 5 c5: 15 c0: 8 skew: 0.88 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3900000, 6900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 851034 x 851282 Total sieving time: 221.71 hours. Total relation processing time: 0.83 hours. Matrix solve time: 1.22 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,182.000,5,0,0,0,0,0,0,0,0,7800000,7800000,28,28,53,53,2.5,2.5,100000 total time: 223.86 hours. --------- CPU info (if available) ----------
Factorizations of 177...77 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / ECMNET / Jul 1, 2009
(53·10203+1)/9 = 5(8)2029<204> = 7 · 281 · C201
C201 = P40 · C161
P40 = 6991094456219571760445366554492296155281<40>
C161 = [42823664738654024146753494596611162996197643707455475080552632365269730895208935483894078392027330205442062850153313457655994824376155448514431058020416853642407<161>]
C201=P40*C161 C201=6991094456219571760445366554492296155281<40>*42823664738654024146753494596611162996197643707455475080552632365269730895208935483894078392027330205442062850153313457655994824376155448514431058020416853642407<161>
(4·10231-1)/3 = 1(3)231<232> = 2917 · 51824844853<11> · 23692560197239551081270833387477<32> · C186
C186 = P37 · C150
P37 = 1862546921637290351531952691671776489<37>
C150 = [199868835314352006303616101691173511035981142016504847269115886853153738185472417870991193724827260514112019164316369241384478739018564658717340450161<150>]
C186=P37*C150 C186=1862546921637290351531952691671776489<37>*1998688353143520063036161016911735110359811420165048472691158868531537381854724178709911937248272605 14112019164316369241384478739018564658717340450161<150>
By Sinkiti Sibata / Msieve / Jul 1, 2009
(58·10149-13)/9 = 6(4)1483<150> = 17680101259<11> · 612631184541141230147<21> · C119
C119 = P52 · P68
P52 = 5449278379117159731544956271485792375419509366641329<52>
P68 = 10918491534763876929867522805580453713263965653671863520590735670379<68>
Number: 64443_149 N=59497899852962528961232804765393480978112046870788785804578711096597251999116268207960584747284901586476215186462493691 ( 119 digits) SNFS difficulty: 151 digits. Divisors found: r1=5449278379117159731544956271485792375419509366641329 (pp52) r2=10918491534763876929867522805580453713263965653671863520590735670379 (pp68) Version: Msieve-1.40 Total time: 16.99 hours. Scaled time: 43.57 units (timescale=2.564). Factorization parameters were as follows: name: 64443_149 n: 59497899852962528961232804765393480978112046870788785804578711096597251999116268207960584747284901586476215186462493691 m: 1000000000000000000000000000000 deg: 5 c5: 29 c0: -65 skew: 1.18 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 379906 x 380154 Total sieving time: 16.47 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.32 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 16.99 hours. --------- CPU info (if available) ----------
(58·10147-13)/9 = 6(4)1463<148> = 17 · 3963777162971<13> · 334646085665334337<18> · C117
C117 = P52 · P66
P52 = 1724643839436206727262081314038604977199883913024927<52>
P66 = 165707498267325136214000770286795308021181237711990781533096525551<66>
Number: 64443_147 N=285786416035128196683289121621064667771773532733338769241158392752477998247710329546637739266886534072113858155409777 ( 117 digits) SNFS difficulty: 149 digits. Divisors found: r1=1724643839436206727262081314038604977199883913024927 (pp52) r2=165707498267325136214000770286795308021181237711990781533096525551 (pp66) Version: Msieve-1.40 Total time: 14.66 hours. Scaled time: 30.67 units (timescale=2.092). Factorization parameters were as follows: name: 64443_147 n: 285786416035128196683289121621064667771773532733338769241158392752477998247710329546637739266886534072113858155409777 m: 200000000000000000000000000000 deg: 5 c5: 725 c0: -52 skew: 0.59 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 397682 x 397930 Total sieving time: 13.68 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.54 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 14.66 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jun 30, 2009
(58·10143-13)/9 = 6(4)1423<144> = 113 · 223 · 77023 · C135
C135 = P64 · P72
P64 = 1652337627292589379706191532069268484497360291057948743864303033<64>
P72 = 200947660644812862508216274233245205166132877847788787856034118266055523<72>
Number: 64443_143 N=332033380799846526477379417918328852033073705607452776566870643319489211252896617924602015943659826695384126147432305894890078475301259 ( 135 digits) SNFS difficulty: 146 digits. Divisors found: r1=1652337627292589379706191532069268484497360291057948743864303033 (pp64) r2=200947660644812862508216274233245205166132877847788787856034118266055523 (pp72) Version: Msieve-1.40 Total time: 10.20 hours. Scaled time: 26.14 units (timescale=2.564). Factorization parameters were as follows: name: 64443_143 n: 332033380799846526477379417918328852033073705607452776566870643319489211252896617924602015943659826695384126147432305894890078475301259 m: 50000000000000000000000000000 deg: 5 c5: 464 c0: -325 skew: 0.93 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2255001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 341670 x 341918 Total sieving time: 9.82 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.25 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 10.20 hours. --------- CPU info (if available) ----------
(58·10155-13)/9 = 6(4)1543<156> = 227 · 42416069 · 2974192430852304989290612183<28> · C119
C119 = P38 · P81
P38 = 23571159999526622109100196347300471721<38>
P81 = 954726968014034137402089586947817032218884506562192209056620458034761171420831227<81>
Number: 64443_155 N=22504022118921734259662990204779762049959337208129694385777166920187136905382202309246021844159118798649720943027231667 ( 119 digits) SNFS difficulty: 156 digits. Divisors found: r1=23571159999526622109100196347300471721 (pp38) r2=954726968014034137402089586947817032218884506562192209056620458034761171420831227 (pp81) Version: Msieve-1.40 Total time: 25.30 hours. Scaled time: 51.56 units (timescale=2.038). Factorization parameters were as follows: name: 64443_155 n: 22504022118921734259662990204779762049959337208129694385777166920187136905382202309246021844159118798649720943027231667 m: 10000000000000000000000000000000 deg: 5 c5: 58 c0: -13 skew: 0.74 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 527291 x 527539 Total sieving time: 24.05 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.99 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 25.30 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 30, 2009
(58·10161-13)/9 = 6(4)1603<162> = 653319345451<12> · C150
C150 = P52 · P99
P52 = 1575237244329951942400489897260475329452903303322367<52>
P99 = 626201342405418301153045845166292234087621760837772895460574802045257424597728085044658561255896879<99>
Number: 64443_161 N=986415677006427804635947990417506924988037544295951487502593886272837369809392052611588638503606484328606433676386764357014430239213162142871046192593 ( 150 digits) SNFS difficulty: 162 digits. Divisors found: r1=1575237244329951942400489897260475329452903303322367 r2=626201342405418301153045845166292234087621760837772895460574802045257424597728085044658561255896879 Version: Total time: 20.20 hours. Scaled time: 48.26 units (timescale=2.389). Factorization parameters were as follows: n: 986415677006427804635947990417506924988037544295951487502593886272837369809392052611588638503606484328606433676386764357014430239213162142871046192593 m: 100000000000000000000000000000000 deg: 5 c5: 580 c0: -13 skew: 0.47 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9541464 Max relations in full relation-set: Initial matrix: Pruned matrix : 736941 x 737189 Total sieving time: 18.04 hours. Total relation processing time: 0.78 hours. Matrix solve time: 1.11 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 20.20 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673802) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
By Andreas Tete / Msieve v. 1.42, GGNFS / Jun 30, 2009
(58·10171-13)/9 = 6(4)1703<172> = 267800740964923<15> · 136821051590356663<18> · 23486273512771613646940357632313<32> · C109
C109 = P49 · P61
P49 = 1680685663562710108755241113940108250558188502759<49>
P61 = 4455743436763288668170528477507378349835514471314046357878921<61>
Mon Jun 29 21:25:16 2009 Msieve v. 1.42 Mon Jun 29 21:25:16 2009 random seeds: bbef2658 2c483f2b Mon Jun 29 21:25:16 2009 factoring 7488704114681698263211093624793715429841463355073981832582681151912872857638281873870764124988601995996443039 (109 digits) Mon Jun 29 21:25:17 2009 searching for 15-digit factors Mon Jun 29 21:25:18 2009 commencing number field sieve (109-digit input) Mon Jun 29 21:25:18 2009 R0: -1200755848565647964360 Mon Jun 29 21:25:18 2009 R1: 277561682419 Mon Jun 29 21:25:18 2009 A0: 765270029707707158906661 Mon Jun 29 21:25:18 2009 A1: 4592249298769793133290 Mon Jun 29 21:25:18 2009 A2: -476743582276620277 Mon Jun 29 21:25:18 2009 A3: -11323319301534 Mon Jun 29 21:25:18 2009 A4: 354533780 Mon Jun 29 21:25:18 2009 A5: 3000 Mon Jun 29 21:25:18 2009 skew 32429.05, size 2.389419e-010, alpha -5.307571, combined = 1.238732e-009 Mon Jun 29 21:25:19 2009 Mon Jun 29 21:25:19 2009 commencing relation filtering Mon Jun 29 21:25:19 2009 commencing duplicate removal, pass 1 Mon Jun 29 21:26:31 2009 found 490481 hash collisions in 5342536 relations Mon Jun 29 21:26:45 2009 added 36477 free relations Mon Jun 29 21:26:45 2009 commencing duplicate removal, pass 2 Mon Jun 29 21:26:54 2009 found 476302 duplicates and 4902710 unique relations Mon Jun 29 21:26:54 2009 memory use: 41.3 MB Mon Jun 29 21:26:54 2009 reading rational ideals above 3080192 Mon Jun 29 21:26:54 2009 reading algebraic ideals above 3080192 Mon Jun 29 21:26:54 2009 commencing singleton removal, pass 1 Mon Jun 29 21:27:49 2009 relations with 0 large ideals: 119050 Mon Jun 29 21:27:49 2009 relations with 1 large ideals: 753244 Mon Jun 29 21:27:49 2009 relations with 2 large ideals: 1732248 Mon Jun 29 21:27:49 2009 relations with 3 large ideals: 1672371 Mon Jun 29 21:27:49 2009 relations with 4 large ideals: 570809 Mon Jun 29 21:27:49 2009 relations with 5 large ideals: 20278 Mon Jun 29 21:27:49 2009 relations with 6 large ideals: 34710 Mon Jun 29 21:27:49 2009 relations with 7+ large ideals: 0 Mon Jun 29 21:27:49 2009 4902710 relations and about 4779680 large ideals Mon Jun 29 21:27:49 2009 commencing singleton removal, pass 2 Mon Jun 29 21:28:47 2009 found 2126072 singletons Mon Jun 29 21:28:47 2009 current dataset: 2776638 relations and about 2200364 large ideals Mon Jun 29 21:28:47 2009 commencing singleton removal, pass 3 Mon Jun 29 21:29:34 2009 found 500480 singletons Mon Jun 29 21:29:34 2009 current dataset: 2276158 relations and about 1665007 large ideals Mon Jun 29 21:29:34 2009 commencing singleton removal, pass 4 Mon Jun 29 21:30:18 2009 found 148691 singletons Mon Jun 29 21:30:18 2009 current dataset: 2127467 relations and about 1512452 large ideals Mon Jun 29 21:30:18 2009 commencing singleton removal, final pass Mon Jun 29 21:31:04 2009 memory use: 33.3 MB Mon Jun 29 21:31:04 2009 commencing in-memory singleton removal Mon Jun 29 21:31:04 2009 begin with 2127467 relations and 1560650 unique ideals Mon Jun 29 21:31:06 2009 reduce to 1935741 relations and 1366206 ideals in 15 passes Mon Jun 29 21:31:06 2009 max relations containing the same ideal: 46 Mon Jun 29 21:31:07 2009 reading rational ideals above 720000 Mon Jun 29 21:31:07 2009 reading algebraic ideals above 720000 Mon Jun 29 21:31:07 2009 commencing singleton removal, final pass Mon Jun 29 21:31:52 2009 keeping 1670936 ideals with weight <= 20, new excess is 200601 Mon Jun 29 21:31:54 2009 memory use: 47.7 MB Mon Jun 29 21:31:54 2009 commencing in-memory singleton removal Mon Jun 29 21:31:54 2009 begin with 1946275 relations and 1670936 unique ideals Mon Jun 29 21:31:56 2009 reduce to 1927241 relations and 1600494 ideals in 10 passes Mon Jun 29 21:31:56 2009 max relations containing the same ideal: 20 Mon Jun 29 21:31:58 2009 removing 322019 relations and 274994 ideals in 47025 cliques Mon Jun 29 21:31:58 2009 commencing in-memory singleton removal Mon Jun 29 21:31:58 2009 begin with 1605222 relations and 1600494 unique ideals Mon Jun 29 21:31:59 2009 reduce to 1571407 relations and 1290716 ideals in 7 passes Mon Jun 29 21:31:59 2009 max relations containing the same ideal: 20 Mon Jun 29 21:32:00 2009 removing 241602 relations and 194577 ideals in 47025 cliques Mon Jun 29 21:32:00 2009 commencing in-memory singleton removal Mon Jun 29 21:32:00 2009 begin with 1329805 relations and 1290716 unique ideals Mon Jun 29 21:32:01 2009 reduce to 1304264 relations and 1069911 ideals in 8 passes Mon Jun 29 21:32:01 2009 max relations containing the same ideal: 20 Mon Jun 29 21:32:02 2009 relations with 0 large ideals: 17810 Mon Jun 29 21:32:02 2009 relations with 1 large ideals: 117111 Mon Jun 29 21:32:02 2009 relations with 2 large ideals: 310411 Mon Jun 29 21:32:02 2009 relations with 3 large ideals: 412635 Mon Jun 29 21:32:02 2009 relations with 4 large ideals: 296443 Mon Jun 29 21:32:02 2009 relations with 5 large ideals: 118042 Mon Jun 29 21:32:02 2009 relations with 6 large ideals: 27975 Mon Jun 29 21:32:02 2009 relations with 7+ large ideals: 3837 Mon Jun 29 21:32:02 2009 commencing 2-way merge Mon Jun 29 21:32:03 2009 reduce to 804300 relation sets and 569947 unique ideals Mon Jun 29 21:32:03 2009 commencing full merge Mon Jun 29 21:32:12 2009 memory use: 43.1 MB Mon Jun 29 21:32:12 2009 found 376706 cycles, need 346147 Mon Jun 29 21:32:12 2009 weight of 346147 cycles is about 24613171 (71.11/cycle) Mon Jun 29 21:32:12 2009 distribution of cycle lengths: Mon Jun 29 21:32:12 2009 1 relations: 36446 Mon Jun 29 21:32:12 2009 2 relations: 33802 Mon Jun 29 21:32:13 2009 3 relations: 34003 Mon Jun 29 21:32:13 2009 4 relations: 31923 Mon Jun 29 21:32:13 2009 5 relations: 30349 Mon Jun 29 21:32:13 2009 6 relations: 27713 Mon Jun 29 21:32:13 2009 7 relations: 25349 Mon Jun 29 21:32:13 2009 8 relations: 23008 Mon Jun 29 21:32:13 2009 9 relations: 20155 Mon Jun 29 21:32:13 2009 10+ relations: 83399 Mon Jun 29 21:32:13 2009 heaviest cycle: 18 relations Mon Jun 29 21:32:13 2009 commencing cycle optimization Mon Jun 29 21:32:13 2009 start with 2229788 relations Mon Jun 29 21:32:20 2009 pruned 77903 relations Mon Jun 29 21:32:20 2009 memory use: 56.0 MB Mon Jun 29 21:32:20 2009 distribution of cycle lengths: Mon Jun 29 21:32:20 2009 1 relations: 36446 Mon Jun 29 21:32:20 2009 2 relations: 34796 Mon Jun 29 21:32:20 2009 3 relations: 35589 Mon Jun 29 21:32:20 2009 4 relations: 33220 Mon Jun 29 21:32:20 2009 5 relations: 31692 Mon Jun 29 21:32:20 2009 6 relations: 28752 Mon Jun 29 21:32:20 2009 7 relations: 26007 Mon Jun 29 21:32:20 2009 8 relations: 23590 Mon Jun 29 21:32:20 2009 9 relations: 20541 Mon Jun 29 21:32:20 2009 10+ relations: 75514 Mon Jun 29 21:32:20 2009 heaviest cycle: 18 relations Mon Jun 29 21:32:21 2009 RelProcTime: 298 Mon Jun 29 21:32:21 2009 Mon Jun 29 21:32:21 2009 commencing linear algebra Mon Jun 29 21:32:21 2009 read 346147 cycles Mon Jun 29 21:32:21 2009 cycles contain 1137287 unique relations Mon Jun 29 21:32:57 2009 read 1137287 relations Mon Jun 29 21:32:58 2009 using 20 quadratic characters above 118112012 Mon Jun 29 21:33:06 2009 building initial matrix Mon Jun 29 21:33:22 2009 memory use: 126.8 MB Mon Jun 29 21:33:22 2009 read 346147 cycles Mon Jun 29 21:33:23 2009 matrix is 345913 x 346147 (97.7 MB) with weight 32532069 (93.98/col) Mon Jun 29 21:33:23 2009 sparse part has weight 23181247 (66.97/col) Mon Jun 29 21:33:28 2009 filtering completed in 3 passes Mon Jun 29 21:33:28 2009 matrix is 344348 x 344548 (97.4 MB) with weight 32420368 (94.10/col) Mon Jun 29 21:33:28 2009 sparse part has weight 23116687 (67.09/col) Mon Jun 29 21:33:29 2009 read 344548 cycles Mon Jun 29 21:33:30 2009 matrix is 344348 x 344548 (97.4 MB) with weight 32420368 (94.10/col) Mon Jun 29 21:33:30 2009 sparse part has weight 23116687 (67.09/col) Mon Jun 29 21:33:30 2009 saving the first 48 matrix rows for later Mon Jun 29 21:33:30 2009 matrix is 344300 x 344548 (93.4 MB) with weight 25498522 (74.01/col) Mon Jun 29 21:33:30 2009 sparse part has weight 22429237 (65.10/col) Mon Jun 29 21:33:30 2009 matrix includes 64 packed rows Mon Jun 29 21:33:30 2009 using block size 65536 for processor cache size 3072 kB Mon Jun 29 21:33:33 2009 commencing Lanczos iteration Mon Jun 29 21:33:33 2009 memory use: 91.0 MB Mon Jun 29 21:50:21 2009 lanczos halted after 5445 iterations (dim = 344300) Mon Jun 29 21:50:21 2009 recovered 30 nontrivial dependencies Mon Jun 29 21:50:22 2009 BLanczosTime: 1081 Mon Jun 29 21:50:22 2009 Mon Jun 29 21:50:22 2009 commencing square root phase Mon Jun 29 21:50:22 2009 reading relations for dependency 1 Mon Jun 29 21:50:22 2009 read 172326 cycles Mon Jun 29 21:50:22 2009 cycles contain 703698 unique relations Mon Jun 29 21:50:56 2009 read 703698 relations Mon Jun 29 21:50:59 2009 multiplying 567642 relations Mon Jun 29 21:52:27 2009 multiply complete, coefficients have about 22.77 million bits Mon Jun 29 21:52:28 2009 initial square root is modulo 3467819 Mon Jun 29 21:54:35 2009 sqrtTime: 253 Mon Jun 29 21:54:35 2009 prp49 factor: 1680685663562710108755241113940108250558188502759 Mon Jun 29 21:54:35 2009 prp61 factor: 4455743436763288668170528477507378349835514471314046357878921 Mon Jun 29 21:54:35 2009 elapsed time 00:29:19 total time ~ 11 hours
By Sinkiti Sibata / Msieve, GGNFS / Jun 29, 2009
(58·10133-13)/9 = 6(4)1323<134> = 3 · 7 · 1489 · 68003251 · 16251891980953498210510658603<29> · C94
C94 = P46 · P48
P46 = 3332366710852869308417885511991106085178367213<46>
P48 = 559609530053519556611176759097123548994837054123<48>
Sun Jun 28 20:57:37 2009 Msieve v. 1.41 Sun Jun 28 20:57:37 2009 random seeds: a9bdadcc 57a2d679 Sun Jun 28 20:57:37 2009 factoring 1864824169026366881665848988133902606847100055810034881259952154184029473528657675188049669199 (94 digits) Sun Jun 28 20:57:38 2009 searching for 15-digit factors Sun Jun 28 20:57:39 2009 commencing quadratic sieve (94-digit input) Sun Jun 28 20:57:39 2009 using multiplier of 19 Sun Jun 28 20:57:39 2009 using 32kb Intel Core sieve core Sun Jun 28 20:57:39 2009 sieve interval: 36 blocks of size 32768 Sun Jun 28 20:57:39 2009 processing polynomials in batches of 6 Sun Jun 28 20:57:39 2009 using a sieve bound of 1986839 (74118 primes) Sun Jun 28 20:57:39 2009 using large prime bound of 256302231 (27 bits) Sun Jun 28 20:57:39 2009 using double large prime bound of 1366955142352932 (42-51 bits) Sun Jun 28 20:57:39 2009 using trial factoring cutoff of 51 bits Sun Jun 28 20:57:39 2009 polynomial 'A' values have 12 factors Sun Jun 28 23:52:08 2009 74244 relations (18184 full + 56060 combined from 1032634 partial), need 74214 Sun Jun 28 23:52:10 2009 begin with 1050818 relations Sun Jun 28 23:52:11 2009 reduce to 192288 relations in 11 passes Sun Jun 28 23:52:11 2009 attempting to read 192288 relations Sun Jun 28 23:52:13 2009 recovered 192288 relations Sun Jun 28 23:52:13 2009 recovered 175552 polynomials Sun Jun 28 23:52:14 2009 attempting to build 74244 cycles Sun Jun 28 23:52:14 2009 found 74244 cycles in 6 passes Sun Jun 28 23:52:14 2009 distribution of cycle lengths: Sun Jun 28 23:52:14 2009 length 1 : 18184 Sun Jun 28 23:52:14 2009 length 2 : 13292 Sun Jun 28 23:52:14 2009 length 3 : 12515 Sun Jun 28 23:52:14 2009 length 4 : 9850 Sun Jun 28 23:52:14 2009 length 5 : 7471 Sun Jun 28 23:52:14 2009 length 6 : 5174 Sun Jun 28 23:52:14 2009 length 7 : 3312 Sun Jun 28 23:52:14 2009 length 9+: 4446 Sun Jun 28 23:52:14 2009 largest cycle: 19 relations Sun Jun 28 23:52:14 2009 matrix is 74118 x 74244 (19.4 MB) with weight 4794826 (64.58/col) Sun Jun 28 23:52:14 2009 sparse part has weight 4794826 (64.58/col) Sun Jun 28 23:52:15 2009 filtering completed in 3 passes Sun Jun 28 23:52:15 2009 matrix is 70508 x 70572 (18.6 MB) with weight 4594906 (65.11/col) Sun Jun 28 23:52:15 2009 sparse part has weight 4594906 (65.11/col) Sun Jun 28 23:52:15 2009 saving the first 48 matrix rows for later Sun Jun 28 23:52:15 2009 matrix is 70460 x 70572 (12.0 MB) with weight 3588469 (50.85/col) Sun Jun 28 23:52:15 2009 sparse part has weight 2713229 (38.45/col) Sun Jun 28 23:52:15 2009 matrix includes 64 packed rows Sun Jun 28 23:52:15 2009 using block size 28228 for processor cache size 1024 kB Sun Jun 28 23:52:16 2009 commencing Lanczos iteration Sun Jun 28 23:52:16 2009 memory use: 11.4 MB Sun Jun 28 23:52:49 2009 lanczos halted after 1116 iterations (dim = 70458) Sun Jun 28 23:52:49 2009 recovered 16 nontrivial dependencies Sun Jun 28 23:52:50 2009 prp46 factor: 3332366710852869308417885511991106085178367213 Sun Jun 28 23:52:50 2009 prp48 factor: 559609530053519556611176759097123548994837054123 Sun Jun 28 23:52:50 2009 elapsed time 02:55:13
(58·10117-13)/9 = 6(4)1163<118> = C118
C118 = P45 · P73
P45 = 675790396195456442895915104432949740666991523<45>
P73 = 9536158668020699116745173193884730385667768369512984877372857570707904041<73>
Number: 64443_117 N=6444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 118 digits) SNFS difficulty: 119 digits. Divisors found: r1=675790396195456442895915104432949740666991523 (pp45) r2=9536158668020699116745173193884730385667768369512984877372857570707904041 (pp73) Version: Msieve-1.40 Total time: 1.62 hours. Scaled time: 3.37 units (timescale=2.085). Factorization parameters were as follows: name: 64443_117 n: 6444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 200000000000000000000000 deg: 5 c5: 725 c0: -52 skew: 0.59 type: snfs lss: 1 rlim: 680000 alim: 680000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 680000/680000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [340000, 590001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80828 x 81054 Total sieving time: 1.56 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000 total time: 1.62 hours. --------- CPU info (if available) ----------
(58·10144-13)/9 = 6(4)1433<145> = 970493 · C139
C139 = P37 · P103
P37 = 2093179992515501466190084387420835861<37>
P103 = 3172389486725938777025473977276200607103207453371670538718534881764544597885610351738781046647527068891<103>
Number: 64443_144 N=6640382202081256067219902095578684693701494440912448049027086691449031002227161292708390935786702680436071609423709851018445722374550300151 ( 139 digits) SNFS difficulty: 146 digits. Divisors found: r1=2093179992515501466190084387420835861 (pp37) r2=3172389486725938777025473977276200607103207453371670538718534881764544597885610351738781046647527068891 (pp103) Version: Msieve-1.40 Total time: 10.37 hours. Scaled time: 26.59 units (timescale=2.564). Factorization parameters were as follows: name: 64443_144 n: 6640382202081256067219902095578684693701494440912448049027086691449031002227161292708390935786702680436071609423709851018445722374550300151 m: 100000000000000000000000000000 deg: 5 c5: 29 c0: -65 skew: 1.18 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 342546 x 342794 Total sieving time: 9.86 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.26 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 10.37 hours. --------- CPU info (if available) ----------
(58·10136-13)/9 = 6(4)1353<137> = 32 · 58871741 · C129
C129 = P48 · P81
P48 = 235727953664055447319411949797137297749012365291<48>
P81 = 515970662989061743281594639447232372573905136516236978628437287176925324434133117<81>
Number: 64443_136 N=121628708537097515549276754481585550988894550055186814114440641854985974122295683886102397195294323420136221674852351099324442047 ( 129 digits) SNFS difficulty: 138 digits. Divisors found: r1=235727953664055447319411949797137297749012365291 (pp48) r2=515970662989061743281594639447232372573905136516236978628437287176925324434133117 (pp81) Version: Msieve-1.40 Total time: 5.51 hours. Scaled time: 14.12 units (timescale=2.564). Factorization parameters were as follows: name: 64443_136 n: 121628708537097515549276754481585550988894550055186814114440641854985974122295683886102397195294323420136221674852351099324442047 m: 2000000000000000000000000000 deg: 5 c5: 145 c0: -104 skew: 0.94 type: snfs lss: 1 rlim: 1430000 alim: 1430000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1430000/1430000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [715000, 1465001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 223069 x 223300 Total sieving time: 5.25 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1430000,1430000,26,26,48,48,2.3,2.3,75000 total time: 5.51 hours. --------- CPU info (if available) ----------
(58·10139-13)/9 = 6(4)1383<140> = 3 · 7 · 19 · 1231 · 1060570349<10> · 1193524663<10> · 83228320831<11> · C106
C106 = P53 · P53
P53 = 32502218758975974264690934359203256203943891833157149<53>
P53 = 38317707245925041958237144145989843140569750883793499<53>
Number: 64443_139 N=1245410503249454513950936539400601771642350901839495372749797874484849665147960918528578908546230931574351 ( 106 digits) SNFS difficulty: 141 digits. Divisors found: r1=32502218758975974264690934359203256203943891833157149 (pp53) r2=38317707245925041958237144145989843140569750883793499 (pp53) Version: Msieve-1.40 Total time: 7.24 hours. Scaled time: 15.19 units (timescale=2.099). Factorization parameters were as follows: name: 64443_139 n: 1245410503249454513950936539400601771642350901839495372749797874484849665147960918528578908546230931574351 m: 10000000000000000000000000000 deg: 5 c5: 29 c0: -65 skew: 1.18 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 237619 x 237853 Total sieving time: 6.89 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.19 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 7.24 hours. --------- CPU info (if available) ----------
(58·10162-13)/9 = 6(4)1613<163> = 498670553 · 868251372853531<15> · 2403433417659585403<19> · 1519135220149328937011<22> · C100
C100 = P40 · P61
P40 = 3978007396055070106886225840980948818901<40>
P61 = 1024783602569126724040280540933691019026235418901075033484997<61>
Number: 64443_162 N=4076596750375945652022220384779745370572439383193580743868681381671398185956334119178766833053528297 ( 100 digits) Divisors found: r1=3978007396055070106886225840980948818901 (pp40) r2=1024783602569126724040280540933691019026235418901075033484997 (pp61) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 7.99 hours. Scaled time: 3.78 units (timescale=0.473). Factorization parameters were as follows: name: 64443_162 n: 4076596750375945652022220384779745370572439383193580743868681381671398185956334119178766833053528297 skew: 2809.15 # norm 1.60e+14 c5: 875880 c4: 4607514726 c3: -15446799894661 c2: 2133887816628030 c1: 514909499414304834 c0: -27061090266943223903321 # alpha -6.39 Y1: 32280451331 Y0: -5414619025710030114 # Murphy_E 3.38e-09 # M 3423235280954909331517329139689087262865239008060333048147151500659748101870819046725204686439576175 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: RFBsize:135072, AFBsize:134813, largePrimes:3983622 encountered Relations: rels:4123288, finalFF:497538 Max relations in full relation-set: 28 Initial matrix: 269969 x 497538 with sparse part having weight 35933016. Pruned matrix : 142475 x 143888 with weight 12612276. Total sieving time: 7.22 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.37 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 7.99 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.41, ECMNET / Jun 29, 2009
(58·10167-13)/9 = 6(4)1663<168> = 907 · 9309593 · 616323772949751279227<21> · 253974892032742945956761<24> · 284996068419181591076316632267<30> · C85
C85 = P39 · P46
P39 = 173896095349135933269424744970466539597<39>
P46 = 9838278194508804532101741831512619052600114781<46>
Number: 0011 N=1710838162983627990454857587732199143565178607498223962752146552456866980922081483257 ( 85 digits) Divisors found: r1=173896095349135933269424744970466539597 (pp39) r2=9838278194508804532101741831512619052600114781 (pp46) Version: Msieve v. 1.41 Total time: 1.39 hours. Scaled time: 2.76 units (timescale=1.976). Factorization parameters were as follows: name: 0011 n: 1710838162983627990454857587732199143565178607498223962752146552456866980922081483257 m: 25598906778006399254 deg: 4 c4: 3984036 c3: -6341237708 c2: -5106462467755171 c1: 19869950659843206 c0: 4617545228137607483265 skew: 1379.250 type: gnfs # adj. I(F,S) = 47.861 # E(F1,F2) = 1.101643e-003 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=12, maxS1=56.00000000, seed=1246215921. # maxskew=1500.0 # These parameters should be manually set: rlim: 550000 alim: 550000 lpbr: 24 lpba: 24 mfbr: 40 mfba: 40 rlambda: 1.9 alambda: 1.9 qintsize: 10000 type: gnfs Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 24/24 Max factor residue bits: 40/40 Sieved algebraic special-q in [275000, 605001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46853 x 47079 Polynomial selection time: 0.14 hours. Total sieving time: 1.23 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,84,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,550000,550000,24,24,40,40,1.9,1.9,10000 total time: 1.39 hours. --------- CPU info (if available) ----------
6·10213+1 = 6(0)2121<214> = 887 · C211
C211 = P33 · C178
P33 = 710379914267074902446340727571899<33>
C178 = [9522192505057989196554921686963471449090843139265281936834912784663455668678513277670521436604345942154664018593294330166634222414359055518446450597428054285995444333986164085477<178>]
C211=P133*C178 C211=710379914267074902446340727571899<33>*9522192505057989196554921686963471449090843139265281936834912784663455668678513277670521436604345942154664018593294330166634222414359055518446450597428054285995444333986164085477<178>
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 29, 2009
(58·10135-13)/9 = 6(4)1343<136> = 43 · 1605169 · C128
C128 = P41 · P88
P41 = 16684801071616165742858411059235412368987<41>
P88 = 5595968120588461964689090820225357668914533447115863619998466725214360596278094821062067<88>
Number: 64443_135 N=93367614895124271192721682764265688990546260157529228132197460921479794983326821827576953455389178168321310635080190055832916129 ( 128 digits) SNFS difficulty: 136 digits. Divisors found: r1=16684801071616165742858411059235412368987 r2=5595968120588461964689090820225357668914533447115863619998466725214360596278094821062067 Version: Total time: 2.32 hours. Scaled time: 5.53 units (timescale=2.389). Factorization parameters were as follows: n: 93367614895124271192721682764265688990546260157529228132197460921479794983326821827576953455389178168321310635080190055832916129 m: 1000000000000000000000000000 deg: 5 c5: 58 c0: -13 skew: 0.74 type: snfs lss: 1 rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [700000, 1300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3643747 Max relations in full relation-set: Initial matrix: Pruned matrix : 195461 x 195709 Total sieving time: 2.04 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,26,26,48,48,2.3,2.3,50000 total time: 2.32 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673809) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672376) Calibrating delay using timer specific routine.. 5430.28 BogoMIPS (lpj=2715140)
By Robert Backstrom / GGNFS / Jun 29, 2009
(58·10145-13)/9 = 6(4)1443<146> = 32 · 7 · 701 · 745210479281<12> · 8730110436289447812154290169607<31> · C99
C99 = P44 · P55
P44 = 81209611999697626708180466005454678658771007<44>
P55 = 2761981658215742112136342325393296828876923189500830369<55>
Number: n N=224299458813981879732712982352694968415152384821436552669343237460916892743989333004630031522311583 ( 99 digits) Divisors found: r1=81209611999697626708180466005454678658771007 (pp44) r2=2761981658215742112136342325393296828876923189500830369 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.02 hours. Scaled time: 7.33 units (timescale=1.823). Factorization parameters were as follows: n: 224299458813981879732712982352694968415152384821436552669343237460916892743989333004630031522311583 Y0: -14418171140978802868 Y1: 6052927273 c0: 10863423250545833835634935 c1: -878321344639862200188 c2: -38824411212279790 c3: 973149801761 c4: -49670352 c5: 360 skew: 22477.80 type: gnfs name: KA_6_4_144_3 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [900000, 1300001) Primes: RFBsize:135072, AFBsize:134465, largePrimes:10029840 encountered Relations: rels:8639337, finalFF:328863 Max relations in full relation-set: 48 Initial matrix: 269621 x 328863 with sparse part having weight 31872885. Pruned matrix : 227953 x 229365 with weight 16672392. Total sieving time: 3.22 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.37 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,28,28,56,56,2.5,2.5,100000 total time: 4.02 hours. --------- CPU info (if available) ----------
(58·10130-13)/9 = 6(4)1293<131> = 3 · 23 · 233 · 191051625186109<15> · C113
C113 = P37 · P76
P37 = 9787483305184856962017021595435426277<37>
P76 = 2143673808252724180424039293341153908233557786918513112730116683447368346263<76>
Number: n N=20981171610035582164419150272767266755882901911373431794670668008723701373071536696140282554060983673945944952851 ( 113 digits) SNFS difficulty: 131 digits. Divisors found: r1=9787483305184856962017021595435426277 (pp37) r2=2143673808252724180424039293341153908233557786918513112730116683447368346263 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.47 hours. Scaled time: 4.50 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_4_129_3 n: 20981171610035582164419150272767266755882901911373431794670668008723701373071536696140282554060983673945944952851 m: 100000000000000000000000000 deg: 5 c5: 58 c0: -13 skew: 0.74 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 20000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [600000, 980001) Primes: RFBsize:92938, AFBsize:92609, largePrimes:4750730 encountered Relations: rels:4127468, finalFF:213711 Max relations in full relation-set: 48 Initial matrix: 185613 x 213711 with sparse part having weight 18258528. Pruned matrix : 174221 x 175213 with weight 11392735. Total sieving time: 2.07 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.17 hours. Total square root time: 0.16 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,56,56,2.3,2.3,50000 total time: 2.47 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 28, 2009
(58·10128-13)/9 = 6(4)1273<129> = 61 · 154046456857541<15> · C113
C113 = P56 · P58
P56 = 14261505825626082595820373781089104840019592878166331551<56>
P58 = 4808820337208844827360136163259599581637949123534929470293<58>
Number: 64443_128 N=68581019253493123466471220014200095653837774179925416620219999548337191520566357504095160518146710794723443114443 ( 113 digits) SNFS difficulty: 131 digits. Divisors found: r1=14261505825626082595820373781089104840019592878166331551 r2=4808820337208844827360136163259599581637949123534929470293 Version: Total time: 1.58 hours. Scaled time: 3.78 units (timescale=2.390). Factorization parameters were as follows: n: 68581019253493123466471220014200095653837774179925416620219999548337191520566357504095160518146710794723443114443 m: 100000000000000000000000000 deg: 5 c5: 29 c0: -650 skew: 1.86 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2835190 Max relations in full relation-set: Initial matrix: Pruned matrix : 156420 x 156668 Total sieving time: 1.38 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.58 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673809) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672376) Calibrating delay using timer specific routine.. 5430.28 BogoMIPS (lpj=2715140)
By Sinkiti Sibata / Msieve / Jun 28, 2009
(58·10114-13)/9 = 6(4)1133<115> = 43 · 47 · 89 · 563 · 16090520573459<14> · C94
C94 = P38 · P57
P38 = 11253044703352173797806298790102967343<38>
P57 = 351463824057779343280271448782487763478579276272297536337<57>
Sun Jun 28 16:54:01 2009 Msieve v. 1.41 Sun Jun 28 16:54:01 2009 random seeds: ffdefb00 e3939988 Sun Jun 28 16:54:01 2009 factoring 3955038123733294154552830225937839027981089639074561881089832913509377721150125554052066842591 (94 digits) Sun Jun 28 16:54:01 2009 searching for 15-digit factors Sun Jun 28 16:54:03 2009 commencing quadratic sieve (94-digit input) Sun Jun 28 16:54:03 2009 using multiplier of 5 Sun Jun 28 16:54:03 2009 using 32kb Intel Core sieve core Sun Jun 28 16:54:03 2009 sieve interval: 36 blocks of size 32768 Sun Jun 28 16:54:03 2009 processing polynomials in batches of 6 Sun Jun 28 16:54:03 2009 using a sieve bound of 2025307 (75235 primes) Sun Jun 28 16:54:03 2009 using large prime bound of 271391138 (28 bits) Sun Jun 28 16:54:03 2009 using double large prime bound of 1515207662043732 (42-51 bits) Sun Jun 28 16:54:03 2009 using trial factoring cutoff of 51 bits Sun Jun 28 16:54:03 2009 polynomial 'A' values have 12 factors Sun Jun 28 20:42:43 2009 75336 relations (18180 full + 57156 combined from 1080234 partial), need 75331 Sun Jun 28 20:42:44 2009 begin with 1098414 relations Sun Jun 28 20:42:45 2009 reduce to 197110 relations in 9 passes Sun Jun 28 20:42:45 2009 attempting to read 197110 relations Sun Jun 28 20:42:48 2009 recovered 197110 relations Sun Jun 28 20:42:48 2009 recovered 183003 polynomials Sun Jun 28 20:42:48 2009 attempting to build 75336 cycles Sun Jun 28 20:42:49 2009 found 75336 cycles in 6 passes Sun Jun 28 20:42:49 2009 distribution of cycle lengths: Sun Jun 28 20:42:49 2009 length 1 : 18180 Sun Jun 28 20:42:49 2009 length 2 : 13127 Sun Jun 28 20:42:49 2009 length 3 : 12543 Sun Jun 28 20:42:49 2009 length 4 : 10283 Sun Jun 28 20:42:49 2009 length 5 : 7819 Sun Jun 28 20:42:49 2009 length 6 : 5228 Sun Jun 28 20:42:49 2009 length 7 : 3525 Sun Jun 28 20:42:49 2009 length 9+: 4631 Sun Jun 28 20:42:49 2009 largest cycle: 23 relations Sun Jun 28 20:42:49 2009 matrix is 75235 x 75336 (20.1 MB) with weight 4962914 (65.88/col) Sun Jun 28 20:42:49 2009 sparse part has weight 4962914 (65.88/col) Sun Jun 28 20:42:50 2009 filtering completed in 3 passes Sun Jun 28 20:42:50 2009 matrix is 72005 x 72069 (19.3 MB) with weight 4777877 (66.30/col) Sun Jun 28 20:42:50 2009 sparse part has weight 4777877 (66.30/col) Sun Jun 28 20:42:50 2009 saving the first 48 matrix rows for later Sun Jun 28 20:42:50 2009 matrix is 71957 x 72069 (12.2 MB) with weight 3788035 (52.56/col) Sun Jun 28 20:42:50 2009 sparse part has weight 2761797 (38.32/col) Sun Jun 28 20:42:50 2009 matrix includes 64 packed rows Sun Jun 28 20:42:50 2009 using block size 28827 for processor cache size 1024 kB Sun Jun 28 20:42:51 2009 commencing Lanczos iteration Sun Jun 28 20:42:51 2009 memory use: 11.7 MB Sun Jun 28 20:43:28 2009 lanczos halted after 1139 iterations (dim = 71951) Sun Jun 28 20:43:28 2009 recovered 13 nontrivial dependencies Sun Jun 28 20:43:29 2009 prp38 factor: 11253044703352173797806298790102967343 Sun Jun 28 20:43:29 2009 prp57 factor: 351463824057779343280271448782487763478579276272297536337 Sun Jun 28 20:43:29 2009 elapsed time 03:49:28
(55·10168+53)/9 = 6(1)1677<169> = 32 · 23 · 8597 · 60736241 · 48550887541806695475431280614507<32> · C124
C124 = P60 · P64
P60 = 409276563277414763663135352084046268821974277482384997407629<60>
P64 = 2845384416537614405451040024545314866333284940268230907212204201<64>
Number: 61117_168 N=1164549155203626829526840703770057776331666897044154747749189812937458891968038623377040295732783853980802775338775983249429 ( 124 digits) SNFS difficulty: 170 digits. Divisors found: r1=409276563277414763663135352084046268821974277482384997407629 (pp60) r2=2845384416537614405451040024545314866333284940268230907212204201 (pp64) Version: Msieve-1.40 Total time: 80.05 hours. Scaled time: 204.46 units (timescale=2.554). Factorization parameters were as follows: name: 61117_168 n: 1164549155203626829526840703770057776331666897044154747749189812937458891968038623377040295732783853980802775338775983249429 m: 5000000000000000000000000000000000 deg: 5 c5: 88 c0: 265 skew: 1.25 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1020457 x 1020705 Total sieving time: 77.37 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.40 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 80.05 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jun 28, 2009
(19·10185+11)/3 = 6(3)1847<186> = 23 · C185
C185 = P78 · P108
P78 = 273631349641806731525848462476809281476079559226376744837229076093340563539867<78>
P108 = 100632591697200952849656764311882330854240620551378358640057703218893173694556069027234501070088318306649757<108>
Number: n N=27536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362319 ( 185 digits) SNFS difficulty: 186 digits. Divisors found: Sun Jun 28 17:31:53 2009 prp78 factor: 273631349641806731525848462476809281476079559226376744837229076093340563539867 Sun Jun 28 17:31:53 2009 prp108 factor: 100632591697200952849656764311882330854240620551378358640057703218893173694556069027234501070088318306649757 Sun Jun 28 17:31:53 2009 elapsed time 03:29:19 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 190.82 hours. Scaled time: 503.58 units (timescale=2.639). Factorization parameters were as follows: name: KA_6_3_184_7 n: 27536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362319 m: 10000000000000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [4500000, 8500027) Primes: RFBsize:602489, AFBsize:603121, largePrimes:21076591 encountered Relations: rels:21063612, finalFF:1223628 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2072055 hash collisions in 22483145 relations Msieve: matrix is 1553384 x 1553632 (420.8 MB) Total sieving time: 190.28 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,56,56,2.5,2.5,100000 total time: 190.82 hours. --------- CPU info (if available) ----------
(58·10101-13)/9 = 6(4)1003<102> = 1069 · C99
C99 = P42 · P58
P42 = 378980653168484429716330805966707908641167<42>
P58 = 1590709002596225501218237944810237612242622890947590032041<58>
Number: n N=602847936804905934933998544849807712296019124831098638395177216505560752520528011641201538301631847 ( 99 digits) SNFS difficulty: 103 digits. Divisors found: r1=378980653168484429716330805966707908641167 (pp42) r2=1590709002596225501218237944810237612242622890947590032041 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.35 hours. Scaled time: 0.64 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_4_100_3 n: 602847936804905934933998544849807712296019124831098638395177216505560752520528011641201538301631847 m: 20000000000000000000000000 deg: 4 c4: 145 c0: -52 skew: 0.77 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 qintsize: 10000 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [200000, 260001) Primes: RFBsize:33860, AFBsize:33714, largePrimes:1034002 encountered Relations: rels:968213, finalFF:100967 Max relations in full relation-set: 48 Initial matrix: 67641 x 100967 with sparse part having weight 4053842. Pruned matrix : 52459 x 52861 with weight 1539494. Total sieving time: 0.31 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Total square root time: 0.02 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,400000,400000,25,25,43,43,2.2,2.2,10000 total time: 0.35 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET, GGNFS/msieve 1.41 / Jun 28, 2009
(2·10172-17)/3 = (6)1711<172> = 17310897119749<14> · C159
C159 = P34 · C126
P34 = 1198926844780485953297393643793523<34>
C126 = [321215490763403568953802801349834582946542687658223456641360521873909777640871296136079965295434494691834967162688081300105243<126>]
C159=P34*C126 C159=1198926844780485953297393643793523<34>*321215490763403568953802801349834582946542687658223456641360521873909777640871296136079965295434494691834967162688081300105243<126>
(56·10202+43)/9 = 6(2)2017<203> = 11 · C202
C202 = P60 · P143
P60 = 430270091015054667643764166187119702272619904315042374067203<60>
P143 = 13146546261724103154134734048449804194958643080538462991695579386437701046476401588101268264567193940577012483460643381470898174364294389389619<143>
Total sieving time: ~28 CPU-days Total postprocessing time: 32:20 hours prp60 factor: 430270091015054667643764166187119702272619904315042374067203 prp143 factor: 13146546261724103154134734048449804194958643080538462991695579386437701046476401588101268264567193940577012483460643381470898174364294389389619
By Wataru Sakai / Msieve / Jun 28, 2009
(47·10191+7)/9 = 5(2)1903<192> = 13 · 19 · C190
C190 = P90 · P101
P90 = 157199391414811481308413123039831010800549348549055356443631902777496014250523799578529659<90>
P101 = 13449543220035923396736531400707244067808735111856700550761352132101359599419084915660120869479028651<101>
Number: 52223_191 N=2114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260009 ( 190 digits) SNFS difficulty: 193 digits. Divisors found: r1=157199391414811481308413123039831010800549348549055356443631902777496014250523799578529659 r2=13449543220035923396736531400707244067808735111856700550761352132101359599419084915660120869479028651 Version: Total time: 619.85 hours. Scaled time: 1242.18 units (timescale=2.004). Factorization parameters were as follows: n: 2114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260008996851102114260009 m: 200000000000000000000000000000000000000 deg: 5 c5: 235 c0: 112 skew: 0.86 type: snfs lss: 1 rlim: 11900000 alim: 11900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11900000/11900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5950000, 12350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2061084 x 2061332 Total sieving time: 619.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11900000,11900000,28,28,55,55,2.5,2.5,100000 total time: 619.85 hours. --------- CPU info (if available) ----------
(53·10191-17)/9 = 5(8)1907<192> = 13 · 3077325253235247465155976615079042868201<40> · C152
C152 = P38 · P42 · P73
P38 = 30955878554994429517866299495278628197<38>
P42 = 260830264234883533140803293326399923032711<42>
P73 = 1823120991418613541878724349970952485904020949548098505262099347038089097<73>
Number: 58887_191 N=45299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299 ( 191 digits) SNFS difficulty: 193 digits. Divisors found: r1=30955878554994429517866299495278628197 r2=3077325253235247465155976615079042868201 r3=260830264234883533140803293326399923032711 r4=1823120991418613541878724349970952485904020949548098505262099347038089097 Version: Total time: 627.02 hours. Scaled time: 1254.04 units (timescale=2.000). Factorization parameters were as follows: n: 45299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299 m: 200000000000000000000000000000000000000 deg: 5 c5: 265 c0: -272 skew: 1.01 type: snfs lss: 1 rlim: 11900000 alim: 11900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 11900000/11900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5950000, 13050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2074170 x 2074418 Total sieving time: 627.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11900000,11900000,28,28,55,55,2.5,2.5,100000 total time: 627.02 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3, Msieve / Jun 28, 2009
(58·10119-13)/9 = 6(4)1183<120> = 877 · 2153 · 16433 · 124229663974013057<18> · C93
C93 = P32 · P61
P32 = 31626202427768372681682563838197<32>
P61 = 5286310259872520471610188001300077202533865033368128652932579<61>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1236900711 Step 1 took 5784ms Step 2 took 4948ms ********** Factor found in step 2: 31626202427768372681682563838197 Found probable prime factor of 32 digits: 31626202427768372681682563838197 Probable prime cofactor 5286310259872520471610188001300077202533865033368128652932579 has 61 digits
(58·10167-13)/9 = 6(4)1663<168> = 907 · 9309593 · 616323772949751279227<21> · 253974892032742945956761<24> · C114
C114 = P30 · C85
P30 = 284996068419181591076316632267<30>
C85 = [1710838162983627990454857587732199143565178607498223962752146552456866980922081483257<85>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=578427496 Step 1 took 2408ms ********** Factor found in step 1: 284996068419181591076316632267 Found probable prime factor of 30 digits: 284996068419181591076316632267 Composite cofactor 1710838162983627990454857587732199143565178607498223962752146552456866980922081483257 has 85 digits
(58·10174-13)/9 = 6(4)1733<175> = 23 · 2003 · 109917710069<12> · 2561799797279<13> · C147
C147 = P29 · P119
P29 = 28060415355482968596031509529<29>
P119 = 17703932477233971993285289597402034285856075678888714104981748648524578359619999237243122567152169494477870888624600693<119>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=380138816 Step 1 took 3284ms Step 2 took 3172ms ********** Factor found in step 2: 28060415355482968596031509529 Found probable prime factor of 29 digits: 28060415355482968596031509529 Probable prime cofactor has 119 digits
(58·10173-13)/9 = 6(4)1723<174> = 3636439 · C168
C168 = P28 · P34 · C106
P28 = 5201072681589129941159853013<28>
P34 = 4151220228381396271312783062791689<34>
C106 = [8208059208418425479971505016759308076623141385702515597077892607382839099391926518651326516913860567839841<106>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=619016146 Step 1 took 3924ms Step 2 took 3676ms ********** Factor found in step 2: 4151220228381396271312783062791689 Found probable prime factor of 34 digits: 4151220228381396271312783062791689 Composite cofactor Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4219703845 Step 1 took 3853ms Step 2 took 3548ms ********** Factor found in step 2: 5201072681589129941159853013 Found probable prime factor of 28 digits: 5201072681589129941159853013
(58·10155-13)/9 = 6(4)1543<156> = 227 · 42416069 · C146
C146 = P28 · C119
P28 = 2974192430852304989290612183<28>
C119 = [22504022118921734259662990204779762049959337208129694385777166920187136905382202309246021844159118798649720943027231667<119>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=697347838 Step 1 took 9721ms Step 2 took 9808ms ********** Factor found in step 2: 2974192430852304989290612183 Found probable prime factor of 28 digits: 2974192430852304989290612183 Composite cofactor has 119 digits
(58·10112-13)/9 = 6(4)1113<113> = 3 · 31 · C111
C111 = P45 · P67
P45 = 652436120450225810366755666771025792484664531<45>
P67 = 1062097872590924024217052162548785136776202179702201158841319923821<67>
SNFS difficulty: 114 digits. Divisors found: r1=652436120450225810366755666771025792484664531 (pp45) r2=1062097872590924024217052162548785136776202179702201158841319923821 (pp67) Version: Msieve v. 1.42 Total time: 0.71 hours. Scaled time: 1.91 units (timescale=2.699). Factorization parameters were as follows: n: 692951015531660692951015531660692951015531660692951015531660692951015531660692951015531660692951015531660692951 m: 20000000000000000000000 deg: 5 c5: 725 c0: -52 skew: 0.59 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 530001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 57409 x 57635 Total sieving time: 0.67 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,114.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 0.71 hours.
(58·10116-13)/9 = 6(4)1153<117> = C117
C117 = P56 · P62
P56 = 36666873968480742387982057101824145634673636068789484339<56>
P62 = 17575658208507661253565689505378100610551179018660768260310137<62>
SNFS difficulty: 118 digits. Divisors found: r1=36666873968480742387982057101824145634673636068789484339 (pp56) r2=17575658208507661253565689505378100610551179018660768260310137 (pp62) Version: Msieve v. 1.42 Total time: 0.72 hours. Scaled time: 1.97 units (timescale=2.739). Factorization parameters were as follows: n: 644444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 200000000000000000000000 deg: 5 c5: 145 c0: -104 skew: 0.94 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 70823 x 71049 Total sieving time: 0.67 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,118.000,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 0.72 hours.
(58·10122-13)/9 = 6(4)1213<123> = 63694693 · C116
C116 = P32 · P84
P32 = 20739698165441745472143977056603<32>
P84 = 487842692297273949867459723857663010869242116718559328343030013911282591596902649517<84>
SNFS difficulty: 124 digits. Divisors found: r1=20739698165441745472143977056603 (pp32) r2=487842692297273949867459723857663010869242116718559328343030013911282591596902649517 (pp84) Version: Msieve v. 1.42 Total time: 1.07 hours. Scaled time: 2.92 units (timescale=2.738). Factorization parameters were as follows: n: 10117710190461934473009304628321930124452353423611672709442911428185146358181590488935152642064613521952989779610751 m: 2000000000000000000000000 deg: 5 c5: 725 c0: -52 skew: 0.59 type: snfs lss: 1 rlim: 830000 alim: 830000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 830000/830000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [415000, 765001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 105540 x 105788 Total sieving time: 0.97 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124.000,5,0,0,0,0,0,0,0,0,830000,830000,25,25,46,46,2.2,2.2,50000 total time: 1.07 hours.
(58·10150-13)/9 = 6(4)1493<151> = 91520629 · 44412318343<11> · 5279210260962477050762476446083<31> · C102
C102 = P37 · P65
P37 = 9080338989895340087399783131537142371<37>
P65 = 33074403639492669396853934308598204613343777969269022112121857233<65>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1156783142 Step 1 took 6716ms Step 2 took 7148ms ********** Factor found in step 2: 9080338989895340087399783131537142371 Found probable prime factor of 37 digits: 9080338989895340087399783131537142371 Probable prime cofactor has 65 digits
(58·10141-13)/9 = 6(4)1403<142> = 439 · 3083 · 5531 · 297691 · 120686142884170765021<21> · C107
C107 = P29 · P78
P29 = 44671237448007050301716904523<29>
P78 = 536404836594779201210885696729897207146989810269196135430698329060421809691473<78>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=288397723 Step 1 took 6948ms Step 2 took 264ms ********** Factor found in step 2: 44671237448007050301716904523 Found probable prime factor of 29 digits: 44671237448007050301716904523 Probable prime cofactor has 78 digits
(58·10190-13)/9 = 6(4)1893<191> = 32 · 5092 · 3547 · 1265377 · 12500658557<11> · 189748339830808583554936738487<30> · C136
C136 = P31 · P105
P31 = 8859562242390101042337256758079<31>
P105 = 293023967158645378132168017909583983083045335220259236533576678613996132987368553614771402092617621838013<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=60059875 Step 1 took 9684ms Step 2 took 9073ms ********** Factor found in step 2: 8859562242390101042337256758079 Found probable prime factor of 31 digits: 8859562242390101042337256758079 Probable prime cofactor has 105 digits
(58·10164-13)/9 = 6(4)1633<165> = 634425495437<12> · C154
C154 = P38 · C116
P38 = 34223943495856159696154680142313760883<38>
C116 = [29680745593852382710885424670845104038289735607516074357223266600260200692718744499668077307158865998260008404416733<116>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1920900515 Step 1 took 9293ms Step 2 took 9241ms ********** Factor found in step 2: 34223943495856159696154680142313760883 Found probable prime factor of 38 digits: 34223943495856159696154680142313760883 Composite cofactor has 116 digits
(58·10172-13)/9 = 6(4)1713<173> = 32 · 31 · 41865383430599<14> · C157
C157 = P34 · P123
P34 = 6908239763065591955895879222911977<34>
P123 = 798654247269250625821363125778243854007703628918987098880286209849549880972564009269875503432979327263787634758461031670979<123>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=526144718 Step 1 took 11613ms Step 2 took 10593ms ********** Factor found in step 2: 6908239763065591955895879222911977 Found probable prime factor of 34 digits: 6908239763065591955895879222911977 Probable prime cofactor has 123 digits
(58·10183-13)/9 = 6(4)1823<184> = 25919 · 5252563412071<13> · C167
C167 = P39 · P128
P39 = 961420063382696913845039546496705687743<39>
P128 = 49235999353202946808007492839763276913494801029546625572470190315605759777492573030933345460372056027724551909999157757321602349<128>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1633217857 Step 1 took 10608ms Step 2 took 10413ms ********** Factor found in step 2: 961420063382696913845039546496705687743 Found probable prime factor of 39 digits: 961420063382696913845039546496705687743 Probable prime cofactor has 128 digits
(58·10196-13)/9 = 6(4)1953<197> = 3 · 23 · 257 · 24169 · C189
C189 = P30 · C160
P30 = 103847259321610372073924050253<30>
C160 = [1447936609718760749360067535781392847535511656388177962890118978787031768606123874361301183998193725780863669969923596746060603885509742425909266190788773872803<160>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2549112822 Step 1 took 12280ms Step 2 took 11289ms ********** Factor found in step 2: 103847259321610372073924050253 Found probable prime factor of 30 digits: 103847259321610372073924050253 Composite cofactor has 160 digits
(58·10198-13)/9 = 6(4)1973<199> = 43 · 1117 · 19237 · 24821 · 2784569 · 59237954935041703<17> · C163
C163 = P32 · P132
P32 = 11886551500859734818658620538271<32>
P132 = 143315551274420434222213373947337563362940576038866710475231323622530913839047854154795199333394648781320634451598336144835705100237<132>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=581503178 Step 1 took 10729ms Step 2 took 9936ms ********** Factor found in step 2: 11886551500859734818658620538271 Found probable prime factor of 32 digits: 11886551500859734818658620538271 Probable prime cofactor has 132 digits
Factorizations of 644...443 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Andreas Tete / Msieve v. 1.42, GGNFS / Jun 27, 2009
(47·10184+7)/9 = 5(2)1833<185> = 37663 · 135409 · 1588687 · 1021756909<10> · 15578211305893<14> · 1203431099965687585292929<25> · C123
C123 = P56 · P67
P56 = 58503555637351580708422043524842421283873937516824943479<56>
P67 = 5751563245817234489103450552093888364306272232411751491982339846761<67>
Fri Jun 26 23:31:17 2009 Msieve v. 1.42 Fri Jun 26 23:31:17 2009 random seeds: a6acf584 39c875ea Fri Jun 26 23:31:17 2009 factoring 336486900353415024147237600989002997396746148444863813675164649764209038471473839837535695797853611852188481025423346221519 (123 digits) Fri Jun 26 23:31:18 2009 searching for 15-digit factors Fri Jun 26 23:31:20 2009 commencing number field sieve (123-digit input) Fri Jun 26 23:31:20 2009 R0: -487824567839495206772299 Fri Jun 26 23:31:20 2009 R1: 14668679888561 Fri Jun 26 23:31:20 2009 A0: -50331570058330244910862222320 Fri Jun 26 23:31:20 2009 A1: 768380589069646930261796 Fri Jun 26 23:31:20 2009 A2: -8962274101419223348 Fri Jun 26 23:31:20 2009 A3: -707850425755693 Fri Jun 26 23:31:20 2009 A4: 2360485890 Fri Jun 26 23:31:20 2009 A5: 12180 Fri Jun 26 23:31:20 2009 skew 126238.69, size 9.298006e-012, alpha -5.586956, combined = 2.122476e-010 Fri Jun 26 23:31:20 2009 Fri Jun 26 23:31:20 2009 commencing relation filtering Fri Jun 26 23:31:20 2009 commencing duplicate removal, pass 1 Fri Jun 26 23:31:20 2009 error -15 reading relation 69 Fri Jun 26 23:31:20 2009 error -15 reading relation 27248 Fri Jun 26 23:33:01 2009 found 1043150 hash collisions in 8851963 relations Fri Jun 26 23:33:26 2009 added 58672 free relations Fri Jun 26 23:33:26 2009 commencing duplicate removal, pass 2 Fri Jun 26 23:34:11 2009 found 999794 duplicates and 7910840 unique relations Fri Jun 26 23:34:11 2009 memory use: 50.6 MB Fri Jun 26 23:34:11 2009 reading rational ideals above 6094848 Fri Jun 26 23:34:11 2009 reading algebraic ideals above 6094848 Fri Jun 26 23:34:11 2009 commencing singleton removal, pass 1 Fri Jun 26 23:35:56 2009 relations with 0 large ideals: 212256 Fri Jun 26 23:35:56 2009 relations with 1 large ideals: 1376046 Fri Jun 26 23:35:56 2009 relations with 2 large ideals: 2997314 Fri Jun 26 23:35:56 2009 relations with 3 large ideals: 2528754 Fri Jun 26 23:35:56 2009 relations with 4 large ideals: 716094 Fri Jun 26 23:35:56 2009 relations with 5 large ideals: 25114 Fri Jun 26 23:35:56 2009 relations with 6 large ideals: 55262 Fri Jun 26 23:35:56 2009 relations with 7+ large ideals: 0 Fri Jun 26 23:35:56 2009 7910840 relations and about 7542439 large ideals Fri Jun 26 23:35:56 2009 commencing singleton removal, pass 2 Fri Jun 26 23:37:42 2009 found 3526496 singletons Fri Jun 26 23:37:42 2009 current dataset: 4384344 relations and about 3347379 large ideals Fri Jun 26 23:37:42 2009 commencing singleton removal, pass 3 Fri Jun 26 23:38:55 2009 found 708171 singletons Fri Jun 26 23:38:55 2009 current dataset: 3676173 relations and about 2596928 large ideals Fri Jun 26 23:38:55 2009 commencing singleton removal, pass 4 Fri Jun 26 23:40:04 2009 found 188233 singletons Fri Jun 26 23:40:04 2009 current dataset: 3487940 relations and about 2404927 large ideals Fri Jun 26 23:40:04 2009 commencing singleton removal, final pass Fri Jun 26 23:41:13 2009 memory use: 53.4 MB Fri Jun 26 23:41:13 2009 commencing in-memory singleton removal Fri Jun 26 23:41:13 2009 begin with 3487940 relations and 2532650 unique ideals Fri Jun 26 23:41:17 2009 reduce to 3111783 relations and 2149870 ideals in 14 passes Fri Jun 26 23:41:17 2009 max relations containing the same ideal: 37 Fri Jun 26 23:41:18 2009 reading rational ideals above 720000 Fri Jun 26 23:41:18 2009 reading algebraic ideals above 720000 Fri Jun 26 23:41:18 2009 commencing singleton removal, final pass Fri Jun 26 23:42:25 2009 keeping 2757965 ideals with weight <= 20, new excess is 296631 Fri Jun 26 23:42:30 2009 memory use: 91.6 MB Fri Jun 26 23:42:30 2009 commencing in-memory singleton removal Fri Jun 26 23:42:30 2009 begin with 3123556 relations and 2757965 unique ideals Fri Jun 26 23:42:35 2009 reduce to 3089558 relations and 2666631 ideals in 13 passes Fri Jun 26 23:42:35 2009 max relations containing the same ideal: 20 Fri Jun 26 23:42:38 2009 removing 321434 relations and 282016 ideals in 39418 cliques Fri Jun 26 23:42:38 2009 commencing in-memory singleton removal Fri Jun 26 23:42:38 2009 begin with 2768124 relations and 2666631 unique ideals Fri Jun 26 23:42:41 2009 reduce to 2746885 relations and 2363049 ideals in 7 passes Fri Jun 26 23:42:41 2009 max relations containing the same ideal: 20 Fri Jun 26 23:42:43 2009 removing 240115 relations and 200697 ideals in 39418 cliques Fri Jun 26 23:42:43 2009 commencing in-memory singleton removal Fri Jun 26 23:42:43 2009 begin with 2506770 relations and 2363049 unique ideals Fri Jun 26 23:42:45 2009 reduce to 2492837 relations and 2148206 ideals in 7 passes Fri Jun 26 23:42:45 2009 max relations containing the same ideal: 20 Fri Jun 26 23:42:47 2009 relations with 0 large ideals: 13137 Fri Jun 26 23:42:47 2009 relations with 1 large ideals: 106816 Fri Jun 26 23:42:47 2009 relations with 2 large ideals: 367021 Fri Jun 26 23:42:47 2009 relations with 3 large ideals: 664916 Fri Jun 26 23:42:47 2009 relations with 4 large ideals: 697372 Fri Jun 26 23:42:47 2009 relations with 5 large ideals: 436442 Fri Jun 26 23:42:47 2009 relations with 6 large ideals: 165605 Fri Jun 26 23:42:47 2009 relations with 7+ large ideals: 41528 Fri Jun 26 23:42:47 2009 commencing 2-way merge Fri Jun 26 23:42:50 2009 reduce to 1533730 relation sets and 1189099 unique ideals Fri Jun 26 23:42:50 2009 commencing full merge Fri Jun 26 23:43:13 2009 memory use: 103.6 MB Fri Jun 26 23:43:14 2009 found 759285 cycles, need 713299 Fri Jun 26 23:43:14 2009 weight of 713299 cycles is about 50132409 (70.28/cycle) Fri Jun 26 23:43:14 2009 distribution of cycle lengths: Fri Jun 26 23:43:14 2009 1 relations: 81341 Fri Jun 26 23:43:14 2009 2 relations: 80416 Fri Jun 26 23:43:14 2009 3 relations: 79712 Fri Jun 26 23:43:14 2009 4 relations: 73116 Fri Jun 26 23:43:14 2009 5 relations: 67623 Fri Jun 26 23:43:14 2009 6 relations: 59640 Fri Jun 26 23:43:14 2009 7 relations: 52283 Fri Jun 26 23:43:14 2009 8 relations: 44735 Fri Jun 26 23:43:14 2009 9 relations: 38808 Fri Jun 26 23:43:14 2009 10+ relations: 135625 Fri Jun 26 23:43:14 2009 heaviest cycle: 18 relations Fri Jun 26 23:43:14 2009 commencing cycle optimization Fri Jun 26 23:43:16 2009 start with 4176779 relations Fri Jun 26 23:43:27 2009 pruned 122566 relations Fri Jun 26 23:43:27 2009 memory use: 108.8 MB Fri Jun 26 23:43:27 2009 distribution of cycle lengths: Fri Jun 26 23:43:27 2009 1 relations: 81341 Fri Jun 26 23:43:27 2009 2 relations: 82483 Fri Jun 26 23:43:27 2009 3 relations: 83177 Fri Jun 26 23:43:27 2009 4 relations: 75664 Fri Jun 26 23:43:27 2009 5 relations: 69884 Fri Jun 26 23:43:27 2009 6 relations: 60818 Fri Jun 26 23:43:27 2009 7 relations: 53164 Fri Jun 26 23:43:27 2009 8 relations: 44844 Fri Jun 26 23:43:27 2009 9 relations: 38867 Fri Jun 26 23:43:27 2009 10+ relations: 123057 Fri Jun 26 23:43:27 2009 heaviest cycle: 18 relations Fri Jun 26 23:43:28 2009 RelProcTime: 517 Fri Jun 26 23:43:28 2009 Fri Jun 26 23:43:28 2009 commencing linear algebra Fri Jun 26 23:43:28 2009 read 713299 cycles Fri Jun 26 23:43:30 2009 cycles contain 2252275 unique relations Fri Jun 26 23:44:06 2009 read 2252275 relations Fri Jun 26 23:44:10 2009 using 20 quadratic characters above 134214012 Fri Jun 26 23:44:24 2009 building initial matrix Fri Jun 26 23:45:01 2009 memory use: 262.0 MB Fri Jun 26 23:45:02 2009 read 713299 cycles Fri Jun 26 23:45:04 2009 matrix is 713058 x 713299 (201.5 MB) with weight 67363351 (94.44/col) Fri Jun 26 23:45:04 2009 sparse part has weight 47840390 (67.07/col) Fri Jun 26 23:45:19 2009 filtering completed in 3 passes Fri Jun 26 23:45:19 2009 matrix is 709979 x 710179 (201.1 MB) with weight 67172917 (94.59/col) Fri Jun 26 23:45:19 2009 sparse part has weight 47741684 (67.22/col) Fri Jun 26 23:45:21 2009 read 710179 cycles Fri Jun 26 23:45:22 2009 matrix is 709979 x 710179 (201.1 MB) with weight 67172917 (94.59/col) Fri Jun 26 23:45:22 2009 sparse part has weight 47741684 (67.22/col) Fri Jun 26 23:45:22 2009 saving the first 48 matrix rows for later Fri Jun 26 23:45:23 2009 matrix is 709931 x 710179 (194.0 MB) with weight 53262504 (75.00/col) Fri Jun 26 23:45:23 2009 sparse part has weight 46602145 (65.62/col) Fri Jun 26 23:45:23 2009 matrix includes 64 packed rows Fri Jun 26 23:45:23 2009 using block size 65536 for processor cache size 3072 kB Fri Jun 26 23:45:29 2009 commencing Lanczos iteration Fri Jun 26 23:45:29 2009 memory use: 191.5 MB Sat Jun 27 01:00:51 2009 lanczos halted after 11229 iterations (dim = 709931) Sat Jun 27 01:00:53 2009 recovered 32 nontrivial dependencies Sat Jun 27 01:00:53 2009 BLanczosTime: 4645 Sat Jun 27 01:00:53 2009 Sat Jun 27 01:00:53 2009 commencing square root phase Sat Jun 27 01:00:53 2009 reading relations for dependency 1 Sat Jun 27 01:00:54 2009 read 354935 cycles Sat Jun 27 01:00:55 2009 cycles contain 1379817 unique relations Sat Jun 27 01:01:45 2009 read 1379817 relations Sat Jun 27 01:01:53 2009 multiplying 1124500 relations Sat Jun 27 01:05:21 2009 multiply complete, coefficients have about 49.76 million bits Sat Jun 27 01:05:22 2009 initial square root is modulo 13925531 Sat Jun 27 01:09:52 2009 sqrtTime: 539 Sat Jun 27 01:09:52 2009 prp56 factor: 58503555637351580708422043524842421283873937516824943479 Sat Jun 27 01:09:52 2009 prp67 factor: 5751563245817234489103450552093888364306272232411751491982339846761 Sat Jun 27 01:09:52 2009 elapsed time 01:38:35 total time ~ 56 hours 40 minutes
By Robert Backstrom / GGNFS, Msieve / Jun 27, 2009
4·10217-9 = 3(9)2161<218> = C218
C218 = P54 · P165
P54 = 153138923096637815337324392839746144304740150626975813<54>
P165 = 261200739767238216403031051949070797540409290687764527939818984072695012732362463527871657040814436595996243277659214477992470411020857002428756477130421386528676107<165>
Number: n N=39999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 218 digits) SNFS difficulty: 217 digits. Divisors found: Sat Jun 27 16:32:05 2009 prp54 factor: 153138923096637815337324392839746144304740150626975813 Sat Jun 27 16:32:05 2009 prp165 factor: 261200739767238216403031051949070797540409290687764527939818984072695012732362463527871657040814436595996243277659214477992470411020857002428756477130421386528676107 Sat Jun 27 16:32:05 2009 elapsed time 62:55:06 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 201.57 hours. Scaled time: 406.36 units (timescale=2.016). Factorization parameters were as follows: name: KA_3_9_216_1 n: 39999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 1000000000000000000000000000000000000 deg: 6 c6: 40 c0: -9 skew: 0.78 type: snfs lss: 1 rlim: 30000000 alim: 30000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 30000000/30000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [15000000, 51099990) Primes: RFBsize:1857859, AFBsize:1857909, largePrimes:38359729 encountered Relations: rels:35364571, finalFF:1138388 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9231841 hash collisions in 50553036 relations Msieve: matrix is 5454062 x 5454310 (1490.4 MB) Total sieving time: 200.07 hours. Total relation processing time: 1.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,217,6,0,0,0,0,0,0,0,0,30000000,30000000,29,29,58,58,2.6,2.6,100000 total time: 201.57 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3352056k/3407296k available (3119k kernel code, 53956k reserved, 1894k data, 424k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5661.68 BogoMIPS (lpj=2830844) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22644.41 BogoMIPS).
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Jun 27, 2009
(14·10169-17)/3 = 4(6)1681<170> = 215880244364499579382801212799<30> · C141
C141 = P39 · P47 · P56
P39 = 164987940471911919931720360662845119279<39>
P47 = 32526795988018253979416672362657704392943753593<47>
P56 = 40281013844684900168945533327602460233451320127931079037<56>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 216169232177971192501955249216876153564299586479509590522860815653381675214844760678296009204006289701356974365633658790823919329922476632539 (141 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5538504349 Step 1 took 4012ms Step 2 took 2371ms ********** Factor found in step 2: 164987940471911919931720360662845119279 Found probable prime factor of 39 digits: 164987940471911919931720360662845119279 Composite cofactor 1310212319516604554737041668268993579654865949023704998524458434780684269585853050111262206001535729941 has 103 digits Number: 46661_169 N=1310212319516604554737041668268993579654865949023704998524458434780684269585853050111262206001535729941 ( 103 digits) Divisors found: r1=32526795988018253979416672362657704392943753593 r2=40281013844684900168945533327602460233451320127931079037 Version: Total time: 3.63 hours. Scaled time: 8.68 units (timescale=2.390). Factorization parameters were as follows: name: 46661_169 n: 1310212319516604554737041668268993579654865949023704998524458434780684269585853050111262206001535729941 skew: 7580.79 # norm 2.17e+13 c5: 11640 c4: 80574174 c3: -2644906284335 c2: -10484031778600973 c1: 62593522390370734919 c0: -62150029590737475022585 # alpha -4.06 Y1: 57271184329 Y0: -40764009580135475262 # Murphy_E 2.53e-09 # M 1010454591132022271215501380240311892732052755553949690211722162287652266129439944490048921978649313790 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4804835 Max relations in full relation-set: Initial matrix: Pruned matrix : 257647 x 257895 Polynomial selection time: 0.25 hours. Total sieving time: 2.93 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.13 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.63 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672386) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5237.73 BogoMIPS (lpj=2618866)
By Dmitry Domanov / GGNFS/Msieve 1.41 / Jun 27, 2009
(16·10184-7)/9 = 1(7)184<185> = 4639 · 2208469987<10> · 122889553861<12> · 2043810257434261739<19> · C142
C142 = P61 · P82
P61 = 3963965902151640309444352830053938422744024270549330775181009<61>
P82 = 1742914757078340982220330559551431495030549136659252945881611664525081678798945299<82>
N=6908854667415452929349067257832242713851174690747514804546818467887473298594120925395357875176704646282864437854825702195352929879995014626691 ( 142 digits) SNFS difficulty: 185 digits. Divisors found: r1=3963965902151640309444352830053938422744024270549330775181009 (pp61) r2=1742914757078340982220330559551431495030549136659252945881611664525081678798945299 (pp82) Version: Msieve v. 1.41 Total time: 203.60 hours. Scaled time: 404.75 units (timescale=1.988). Factorization parameters were as follows: n: 6908854667415452929349067257832242713851174690747514804546818467887473298594120925395357875176704646282864437854825702195352929879995014626691 m: 10000000000000000000000000000000000000 deg: 5 c5: 8 c0: -35 skew: 1.34 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4400000, 7400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1652077 x 1652325 Total sieving time: 198.57 hours. Total relation processing time: 0.33 hours. Matrix solve time: 4.38 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,54,54,2.5,2.5,100000 total time: 203.60 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / PRIMO 3.0.7 / Jun 27, 2009
(102952+17)/9 = (1)29513<2952> is prime.
By Dmitry Domanov / ECMNET / Jun 26, 2009
(8·10174+7)/3 = 2(6)1739<175> = 9291193902637<13> · 35960739752300141123644395023<29> · C133
C133 = P42 · P92
P42 = 147246485091491533084862542850273174082841<42>
P92 = 54203041264768699675736191181175423376382598279706791561135352844935913636053459860335938759<92>
C133=P42*P92 C133=147246485091491533084862542850273174082841<42>*54203041264768699675736191181175423376382598279706791561135352844935913636053459860335938759<92>
By Robert Backstrom / GGNFS, Msieve / Jun 26, 2009
(35·10167-17)/9 = 3(8)1667<168> = 3 · 219943721724751<15> · 25906357094181540237749<23> · C131
C131 = P57 · P74
P57 = 996244817379145944395119476840665614982629783547816089009<57>
P74 = 22836013332760580540298944200610015633803921232860776910122536509987443319<74>
Number: n N=22750259932363806506452932866536434963285158584917848593353721346670116012441195229750928624948194947776451081125903243713646380871 ( 131 digits) SNFS difficulty: 169 digits. Divisors found: Fri Jun 26 01:01:57 2009 prp57 factor: 996244817379145944395119476840665614982629783547816089009 Fri Jun 26 01:01:57 2009 prp74 factor: 22836013332760580540298944200610015633803921232860776910122536509987443319 Fri Jun 26 01:01:57 2009 elapsed time 01:14:28 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 49.98 hours. Scaled time: 132.95 units (timescale=2.660). Factorization parameters were as follows: name: KA_3_8_166_7 n: 22750259932363806506452932866536434963285158584917848593353721346670116012441195229750928624948194947776451081125903243713646380871 m: 5000000000000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 5202913) Primes: RFBsize:335439, AFBsize:335322, largePrimes:16921186 encountered Relations: rels:16583215, finalFF:748495 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2030599 hash collisions in 18840257 relations Msieve: matrix is 793962 x 794210 (211.7 MB) Total sieving time: 49.54 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 49.98 hours. --------- CPU info (if available) ----------
(85·10168+41)/9 = 9(4)1679<169> = 7 · 30130007026272762236778552242458213<35> · C134
C134 = P39 · P95
P39 = 646081469853325946280782791194467559557<39>
P95 = 69309355117636896116388768379746577518566014665395648129726751071650431763506721291831801078927<95>
Number: n N=44779490028988984693345170298727232692672656093119287564674642677206820719270872412399590798774417897156369411429035099199813230155339 ( 134 digits) SNFS difficulty: 170 digits. Divisors found: Fri Jun 26 12:38:16 2009 prp39 factor: 646081469853325946280782791194467559557 Fri Jun 26 12:38:16 2009 prp95 factor: 69309355117636896116388768379746577518566014665395648129726751071650431763506721291831801078927 Fri Jun 26 12:38:16 2009 elapsed time 01:40:25 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 45.19 hours. Scaled time: 120.22 units (timescale=2.660). Factorization parameters were as follows: name: KA_9_4_167_9 n: 44779490028988984693345170298727232692672656093119287564674642677206820719270872412399590798774417897156369411429035099199813230155339 m: 5000000000000000000000000000000000 deg: 5 c5: 136 c0: 205 skew: 1.09 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4983701) Primes: RFBsize:348513, AFBsize:348092, largePrimes:16608879 encountered Relations: rels:15751124, finalFF:670651 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1838346 hash collisions in 18598297 relations Msieve: matrix is 800495 x 800743 (213.7 MB) Total sieving time: 44.69 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 45.19 hours. --------- CPU info (if available) ----------
(32·10168+31)/9 = 3(5)1679<169> = 7 · 61 · 39983209801<11> · 111470331997295376701<21> · C136
C136 = P61 · P76
P61 = 1073104304815526983816771184467768044461214238015586531509631<61>
P76 = 1741007758140672565912344588362661612431195406392316590249384001939025425007<76>
Number: n N=1868282919977985573733322020556574078433082808304869247090505648965219877477967805693204420862322587884350227847740147854847247088742417 ( 136 digits) SNFS difficulty: 170 digits. Divisors found: Fri Jun 26 12:41:03 2009 prp61 factor: 1073104304815526983816771184467768044461214238015586531509631 Fri Jun 26 12:41:03 2009 prp76 factor: 1741007758140672565912344588362661612431195406392316590249384001939025425007 Fri Jun 26 12:41:03 2009 elapsed time 01:41:17 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 45.35 hours. Scaled time: 120.14 units (timescale=2.649). Factorization parameters were as follows: name: KA_3_5_167_9 n: 1868282919977985573733322020556574078433082808304869247090505648965219877477967805693204420862322587884350227847740147854847247088742417 m: 4000000000000000000000000000000000 deg: 5 c5: 125 c0: 124 skew: 1.00 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 4894117) Primes: RFBsize:335439, AFBsize:335383, largePrimes:15896129 encountered Relations: rels:14761745, finalFF:507282 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1791801 hash collisions in 17666333 relations Msieve: matrix is 827896 x 828144 (222.0 MB) Total sieving time: 44.92 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 45.35 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM / Jun 25, 2009
(55·10192+17)/9 = 6(1)1913<193> = 83 · C191
C191 = P37 · P155
P37 = 1554680079421055663241309632741999791<37>
P155 = 47358839729650484514213082265957188539646153312865411770034607331778178504222288115743334089402845551750039467061001611721179865193092780024997006733901821<155>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 73627844712182061579651941097724230254350736278447121820615796519410977242302543507362784471218206157965194109772423025435073627844712182061579651941097724230254350736278447121820615796519411 = 1554680079421055663241309632741999791* 47358839729650484514213082265957188539646153312865411770034607331778178504222288115743334089402845551750039467061001611721179865193092780024997006733901821
(53·10191-17)/9 = 5(8)1907<192> = 13 · C191
C191 = P40 · C152
P40 = 3077325253235247465155976615079042868201<40>
C152 = [14720298171771570716723886854991671208898715252902464943556125290604128965082355315462245187807878703850020843469774087345493414370248002017144961313499<152>]
45299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299 = 3077325253235247465155976615079042868201* 14720298171771570716723886854991671208898715252902464943556125290604128965082355315462245187807878703850020843469774087345493414370248002017144961313499
By Jo Yeong Uk / GMP-ECM / Jun 25, 2009
(4·10170-7)/3 = 1(3)1691<171> = 31 · 109789 · 9312411211130847248950201<25> · C139
C139 = P40 · P100
P40 = 1502800256281439263857988805655344280607<40>
P100 = 2799334573149479855515889170258387660810275368454048558247681468213445701259426026270237351262891687<100>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 4206840713946531714695528183547906105304724835861710639562086194419321364323506470619518559763137831380386962778321740712084950551575614009 (139 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4784109703 Step 1 took 4633ms Step 2 took 4431ms ********** Factor found in step 2: 1502800256281439263857988805655344280607 Found probable prime factor of 40 digits: 1502800256281439263857988805655344280607 Probable prime cofactor 2799334573149479855515889170258387660810275368454048558247681468213445701259426026270237351262891687 has 100 digits
By Serge Batalov / PFGW / Jun 23, 2009
(14·102817-17)/3 = 4(6)28161<2818> is prime.
(22·103520-13)/9 = 2(4)35193<3521> is prime.
By Robert Backstrom / GMP-ECM / Jun 24, 2009
(22·10168-31)/9 = 2(4)1671<169> = 8873219 · 11099060621790018608384460043<29> · C134
C134 = P42 · P92
P42 = 371200625538831365829940284569021747043127<42>
P92 = 66865800468067413875508513185834603191397073474295317096215322040316133061063996555098731599<92>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 24820626960901307166243457286366035083079281210552737892128741525214711320317507910090012420833207935695272455422603107378826450670073 (134 digits) Using B1=5878000, B2=11417264050, polynomial Dickson(12), sigma=4081711366 Step 1 took 72790ms ********** Factor found in step 1: 371200625538831365829940284569021747043127 Found probable prime factor of 42 digits: 371200625538831365829940284569021747043127 Probable prime cofactor 66865800468067413875508513185834603191397073474295317096215322040316133061063996555098731599 has 92 digits
By Andreas Tete / Syd`s Database workers / Jun 24, 2009
6·10205+1 = 6(0)2041<206> = 31 · 47 · 107 · 321588220688443027059385703<27> · C175
C175 = P32 · P143
P32 = 52608200965763511019049070037321<32>
P143 = 22748582359849985239621437062492301500654660877058842699222608390850103339364205134046046593760422318845790606886535630528076929599435895212973<143>
This factor is from Syd`s Database 52608200965763511019049070037321
By Jo Yeong Uk / GMP-ECM / Jun 24, 2009
(22·10167-13)/9 = 2(4)1663<168> = 3 · 103 · 180519949 · 99146963869<11> · 20757436223520443<17> · C130
C130 = P42 · P89
P42 = 167490769827406767572595332518138087825351<42>
P89 = 12713129747157146466674781904758060906332193817674471949615764473430324022539144529420019<89>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 2129331888267055615375292847991745991122250793026866418237055157471572765868882564504408062284213491426581138168217340664995101669 (130 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1892633111 Step 1 took 9996ms Step 2 took 5101ms ********** Factor found in step 2: 167490769827406767572595332518138087825351 Found probable prime factor of 42 digits: 167490769827406767572595332518138087825351 Probable prime cofactor 12713129747157146466674781904758060906332193817674471949615764473430324022539144529420019 has 89 digits
(68·10167+13)/9 = 7(5)1667<168> = 11 · 6133 · 3692624693<10> · 3515568961760680937252533<25> · C129
C129 = P40 · P90
P40 = 1277051303251277396745439863477632923199<40>
P90 = 675556407842777457227772829257886093211284966360659547830383521551498877804611413980290869<90>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 862720191055370426409187832685236228895646134693978735857012571110151934022354543430530334015543289916386083309198010532757969931 (129 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1210827030 Step 1 took 10042ms Step 2 took 5075ms ********** Factor found in step 2: 1277051303251277396745439863477632923199 Found probable prime factor of 40 digits: 1277051303251277396745439863477632923199 Probable prime cofactor 675556407842777457227772829257886093211284966360659547830383521551498877804611413980290869 has 90 digits
By Dmitry Domanov / ECMNET / Jun 24, 2009
10217-9 = (9)2161<217> = 277 · 1597 · 209837 · 26201554231<11> · 28091934741523<14> · 6880830160720697642858093533<28> · C155
C155 = P32 · P123
P32 = 63325093119323060926195351466951<32>
P123 = 335898346710792594131217225602531441026219994792367522422800950405251569979293410168943832776047737138867077267300064073493<123>
C155=P32*P123 C155=63325093119323060926195351466951<32>*335898346710792594131217225602531441026219994792367522422800950405251569979293410168943832776047737138867077267300064073493<123>
By Tyler Cadigan / GGNFS, Msieve / Jun 24, 2009
6·10185+1 = 6(0)1841<186> = 19 · 167 · 3149035144740077<16> · 30217523095511560432976100709<29> · C139
C139 = P66 · P74
P66 = 123251687544331276107061304469530687861827519667502885428574726923<66>
P74 = 16123225707827282939353513239821935387962162632669892472730626095154698983<74>
Number: 60001_185 N=1987214777147857751405440882712878768498289240274665943254488411740605391914998115487412671203360049610514137987060572328808885079490819309 ( 139 digits) SNFS difficulty: 185 digits. Divisors found: r1=123251687544331276107061304469530687861827519667502885428574726923 (pp66) r2=16123225707827282939353513239821935387962162632669892472730626095154698983 (pp74) Version: Msieve v. 1.41 Total time: 216.99 hours. Scaled time: 550.28 units (timescale=2.536). Factorization parameters were as follows: n: 1987214777147857751405440882712878768498289240274665943254488411740605391914998115487412671203360049610514137987060572328808885079490819309 m: 10000000000000000000000000000000000000 deg: 5 c5: 6 c0: 1 skew: 0.70 type: snfs lss: 1 rlim: 8700000 alim: 8700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 8700000/8700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4350000, 7350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1090015 x 1090262 Total sieving time: 213.24 hours. Total relation processing time: 0.47 hours. Matrix solve time: 2.48 hours. Time per square root: 0.79 hours. Prototype def-par.txt line would be: snfs,185.000,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000 total time: 216.99 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM 6.2.3, Msieve v1.39/YAFU 1.10 / Jun 23, 2009
(4·10172-7)/3 = 1(3)1711<173> = 1979 · 13289227921<11> · 162833506738538029<18> · 11712824240851604859171398762414514649183<41> · C102
C102 = P43 · P59
P43 = 5134015334759491232232164584639017885994807<43>
P59 = 51776254296606631877254403452223499612447702177657692377141<59>
Number: 13331_172 N=265820083535185443400012989979500246927574859540043887531215591340458372270487885471414380147411506787 ( 102 digits) Divisors found: r1=5134015334759491232232164584639017885994807 r2=51776254296606631877254403452223499612447702177657692377141 Version: Total time: 3.25 hours. Scaled time: 7.75 units (timescale=2.385). Factorization parameters were as follows: name: 13331_172 n: 265820083535185443400012989979500246927574859540043887531215591340458372270487885471414380147411506787 skew: 12643.51 # norm 3.65e+14 c5: 38880 c4: -845394138 c3: -33007101816765 c2: 73320781261222582 c1: 1557463663881869440290 c0: -4414460967845638019542375 # alpha -6.49 Y1: 12393727643 Y0: -23279481991745479608 # Murphy_E 2.72e-09 # M 141911435455571799952981958314235858806500151888383279234915351745234001551558863634711718448352602713 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4792695 Max relations in full relation-set: Initial matrix: Pruned matrix : 216449 x 216697 Polynomial selection time: 0.22 hours. Total sieving time: 2.65 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673796) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672351) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343)
(89·10194+1)/9 = 9(8)1939<195> = 19 · 787 · 1478629721<10> · 1769297203<10> · 2283368889277607<16> · 38346165072677325477768700865603<32> · C126
C126 = P34 · P43 · P49
P34 = 9097052437296664414776212359460597<34>
P43 = 3374615834793386611677694152332672045296747<43>
P49 = 9404503802431255949573827788376837390651779708209<49>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 288709400214039153514611082816280322399269582988374671238906295467466961967639668368802541858848488578358621719840471080565431 (126 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6364061278 Step 1 took 4180ms ********** Factor found in step 1: 9097052437296664414776212359460597 Found probable prime factor of 34 digits: 9097052437296664414776212359460597 Composite cofactor 31736587450059131430259469757449683794651893754830576115125492366442558497351134990476896123 has 92 digits 06/23/09 22:31:38 v1.10 @ 조영욱-PC, starting SIQS on c92: 31736587450059131430259469757449683794651893754830576115125492366442558497351134990476896123 06/23/09 22:31:38 v1.10 @ 조영욱-PC, random seeds: 552356298, 3598319296 06/23/09 22:31:38 v1.10 @ 조영욱-PC, ==== sieve params ==== 06/23/09 22:31:38 v1.10 @ 조영욱-PC, n = 92 digits, 306 bits 06/23/09 22:31:38 v1.10 @ 조영욱-PC, factor base: 71746 primes (max prime = 1914439) 06/23/09 22:31:38 v1.10 @ 조영욱-PC, single large prime cutoff: 229732680 (120 * pmax) 06/23/09 22:31:38 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 06/23/09 22:31:38 v1.10 @ 조영욱-PC, double large prime cutoff: 1122537872193945 06/23/09 22:31:38 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base 06/23/09 22:31:38 v1.10 @ 조영욱-PC, buckets hold 1024 elements 06/23/09 22:31:38 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536 06/23/09 22:31:38 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 06/23/09 22:31:38 v1.10 @ 조영욱-PC, using multiplier of 3 06/23/09 22:31:38 v1.10 @ 조영욱-PC, using small prime variation correction of 17 bits 06/23/09 22:31:38 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 06/23/09 22:31:38 v1.10 @ 조영욱-PC, trial factoring cutoff at 100 bits 06/23/09 22:31:38 v1.10 @ 조영욱-PC, ==== sieving started ==== 06/23/09 23:55:14 v1.10 @ 조영욱-PC, sieve time = 2424.8690, relation time = 833.1370, poly_time = 1757.1540 06/23/09 23:55:14 v1.10 @ 조영욱-PC, 71833 relations found: 19062 full + 52771 from 910631 partial, using 753626 polys (368 A polys) 06/23/09 23:55:14 v1.10 @ 조영욱-PC, on average, sieving found 1.23 rels/poly and 185.33 rels/sec 06/23/09 23:55:14 v1.10 @ 조영욱-PC, trial division touched 29908181 sieve locations out of 1086571937792 06/23/09 23:55:14 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 06/23/09 23:55:15 v1.10 @ 조영욱-PC, begin with 929693 relations 06/23/09 23:55:15 v1.10 @ 조영욱-PC, reduce to 175623 relations in 10 passes 06/23/09 23:55:17 v1.10 @ 조영욱-PC, recovered 175623 relations 06/23/09 23:55:17 v1.10 @ 조영욱-PC, recovered 156791 polynomials 06/23/09 23:55:17 v1.10 @ 조영욱-PC, attempting to build 71833 cycles 06/23/09 23:55:17 v1.10 @ 조영욱-PC, found 71833 cycles in 5 passes 06/23/09 23:55:17 v1.10 @ 조영욱-PC, distribution of cycle lengths: 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 1 : 19062 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 2 : 14133 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 3 : 12724 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 4 : 9637 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 5 : 6676 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 6 : 4215 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 7 : 2381 06/23/09 23:55:17 v1.10 @ 조영욱-PC, length 9+: 3005 06/23/09 23:55:17 v1.10 @ 조영욱-PC, largest cycle: 21 relations 06/23/09 23:55:17 v1.10 @ 조영욱-PC, matrix is 71746 x 71833 (18.7 MB) with weight 4332676 (60.32/col) 06/23/09 23:55:17 v1.10 @ 조영욱-PC, sparse part has weight 4332676 (60.32/col) 06/23/09 23:55:18 v1.10 @ 조영욱-PC, filtering completed in 3 passes 06/23/09 23:55:18 v1.10 @ 조영욱-PC, matrix is 67865 x 67929 (17.9 MB) with weight 4138642 (60.93/col) 06/23/09 23:55:18 v1.10 @ 조영욱-PC, sparse part has weight 4138642 (60.93/col) 06/23/09 23:55:18 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 06/23/09 23:55:18 v1.10 @ 조영욱-PC, matrix is 67817 x 67929 (12.2 MB) with weight 3300446 (48.59/col) 06/23/09 23:55:18 v1.10 @ 조영욱-PC, sparse part has weight 2517689 (37.06/col) 06/23/09 23:55:18 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 06/23/09 23:55:18 v1.10 @ 조영욱-PC, using block size 27171 for processor cache size 4096 kB 06/23/09 23:55:18 v1.10 @ 조영욱-PC, commencing Lanczos iteration 06/23/09 23:55:18 v1.10 @ 조영욱-PC, memory use: 10.7 MB 06/23/09 23:55:39 v1.10 @ 조영욱-PC, lanczos halted after 1074 iterations (dim = 67814) 06/23/09 23:55:39 v1.10 @ 조영욱-PC, recovered 16 nontrivial dependencies 06/23/09 23:55:40 v1.10 @ 조영욱-PC, prp49 = 9404503802431255949573827788376837390651779708209 06/23/09 23:55:44 v1.10 @ 조영욱-PC, prp43 = 3374615834793386611677694152332672045296747 06/23/09 23:55:44 v1.10 @ 조영욱-PC, Lanczos elapsed time = 24.9760 seconds. 06/23/09 23:55:44 v1.10 @ 조영욱-PC, Sqrt elapsed time = 4.9760 seconds. 06/23/09 23:55:44 v1.10 @ 조영욱-PC, SIQS elapsed time = 5046.4850 seconds. 06/23/09 23:55:44 v1.10 @ 조영욱-PC, 06/23/09 23:55:44 v1.10 @ 조영욱-PC,
By Robert Backstrom / GGNFS, Msieve / Jun 23, 2009
5·10169+9 = 5(0)1689<170> = 601 · 240050495558407698763546267<27> · C141
C141 = P47 · P94
P47 = 41281411513583644762377184791184555905650687227<47>
P94 = 8395341891024184763633786646465985958174272838380095043933734588514621669155826987694109067001<94>
Number: n N=346571563400596869585973019313910592991068897473874180601102588897696004361669211747830725681790090285548632257724403837334518143947437896227 ( 141 digits) SNFS difficulty: 170 digits. Divisors found: Tue Jun 23 03:22:08 2009 prp47 factor: 41281411513583644762377184791184555905650687227 Tue Jun 23 03:22:08 2009 prp94 factor: 8395341891024184763633786646465985958174272838380095043933734588514621669155826987694109067001 Tue Jun 23 03:22:08 2009 elapsed time 01:53:33 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 34.53 hours. Scaled time: 92.22 units (timescale=2.671). Factorization parameters were as follows: name: KA_5_0_168_9 n: 346571563400596869585973019313910592991068897473874180601102588897696004361669211747830725681790090285548632257724403837334518143947437896227 m: 10000000000000000000000000000000000 deg: 5 c5: 1 c0: 18 skew: 1.78 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 4312493) Primes: RFBsize:335439, AFBsize:335377, largePrimes:15839972 encountered Relations: rels:14929612, finalFF:644433 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1396892 hash collisions in 16096513 relations Msieve: matrix is 859768 x 860016 (230.2 MB) Total sieving time: 34.09 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 34.53 hours. --------- CPU info (if available) ----------
(47·10167+61)/9 = 5(2)1669<168> = 73 · 83 · 4889 · 2368801 · 17554369602202312039753<23> · C132
C132 = P64 · P68
P64 = 5079837261726309477074870937453617318273958408771046998347443561<64>
P68 = 83458532416670736671267228864304174336696566851849644029351322951463<68>
Number: n N=423955762779197108748010664666559127694051691975812539877069526095525968365910818624458358288204930884391825958098258024391334879743 ( 132 digits) SNFS difficulty: 169 digits. Divisors found: Tue Jun 23 03:49:36 2009 prp64 factor: 5079837261726309477074870937453617318273958408771046998347443561 Tue Jun 23 03:49:36 2009 prp68 factor: 83458532416670736671267228864304174336696566851849644029351322951463 Tue Jun 23 03:49:36 2009 elapsed time 02:21:21 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 74.52 hours. Scaled time: 198.22 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_2_166_9 n: 423955762779197108748010664666559127694051691975812539877069526095525968365910818624458358288204930884391825958098258024391334879743 m: 2000000000000000000000000000000000 deg: 5 c5: 1175 c0: 488 skew: 0.84 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 6868387) Primes: RFBsize:335439, AFBsize:335523, largePrimes:18006057 encountered Relations: rels:18460657, finalFF:659503 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2776050 hash collisions in 21096983 relations Msieve: matrix is 847467 x 847715 (222.3 MB) Total sieving time: 73.33 hours. Total relation processing time: 1.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 74.52 hours. --------- CPU info (if available) ----------
(23·10171-41)/9 = 2(5)1701<172> = 562003853 · C163
C163 = P43 · P120
P43 = 9819478707452999260663842216145669618164917<43>
P120 = 463081680659769326936886310127931535214424803461949022560762005197836495742479612235092546488980256930797094956201310351<120>
Number: n N=4547220703050154276354321641199772264827436255237836519878015063280278890820265525040013481109631388159816682885901060816313577045094663355547413934821467417155867 ( 163 digits) SNFS difficulty: 172 digits. Divisors found: Tue Jun 23 13:07:13 2009 prp43 factor: 9819478707452999260663842216145669618164917 Tue Jun 23 13:07:13 2009 prp120 factor: 463081680659769326936886310127931535214424803461949022560762005197836495742479612235092546488980256930797094956201310351 Tue Jun 23 13:07:13 2009 elapsed time 01:27:20 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 83.31 hours. Scaled time: 113.38 units (timescale=1.361). Factorization parameters were as follows: name: KA_2_5_170_1 n: 4547220703050154276354321641199772264827436255237836519878015063280278890820265525040013481109631388159816682885901060816313577045094663355547413934821467417155867 m: 10000000000000000000000000000000000 deg: 5 c5: 230 c0: -41 skew: 0.71 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2600000, 7388737) Primes: RFBsize:361407, AFBsize:360913, largePrimes:18867095 encountered Relations: rels:19622703, finalFF:765979 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2982267 hash collisions in 22477415 relations Msieve: matrix is 899270 x 899518 (235.4 MB) Total sieving time: 81.95 hours. Total relation processing time: 1.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,56,56,2.4,2.4,100000 total time: 83.31 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECMNET / Jun 23, 2009
(2·10234+1)/3 = (6)2337<234> = 11393 · 25339 · C226
C226 = P39 · P187
P39 = 729812897211517853487632354670094565923<39>
P187 = 3164241616437046679403827475768447797264211271061761553933740453597778289635577612191476954130503242628832673837317052776146482706548181034700795185780339672202760023332942933779133885627<187>
C226=P39*P187 C226=729812897211517853487632354670094565923<39>*3164241616437046679403827475768447797264211271061761553933740453597778289635577612191476954130503242628832673837317052776146482706548181034700795185780339672202760023332942933779133885627<187>
By Serge Batalov / Msieve-1.42 / Jun 23, 2009
(49·10167-13)/9 = 5(4)1663<168> = 3 · 59 · 1105171 · 403536238013<12> · 374925660096668543699<21> · C128
C128 = P60 · P69
P60 = 154366586188854324678105391045950947662796027385267558778367<60>
P69 = 119170789977225348190653974594475835745955100338192207667847653826801<69>
SNFS difficulty: 169 digits. Divisors found: r1=154366586188854324678105391045950947662796027385267558778367 (pp60) r2=119170789977225348190653974594475835745955100338192207667847653826801 (pp69) Version: Msieve-1.42 Total time: 28.81 hours. Scaled time: 82.02 units (timescale=2.847). Factorization parameters were as follows: n: 18395988022213213815357754832451835276664855589756973035375079343242696253657629170109553860881160095980243731307550988163613967 m: 2000000000000000000000000000000000 deg: 5 c5: 1225 c0: -104 skew: 0.61 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 914075 x 914323 Total sieving time: 27.23 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.28 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 28.81 hours.
By Serge Batalov / PFGW / Jun 22, 2009
(16·103010-7)/9 = 1(7)3010<3011> is prime.
(16·1017839-7)/9 = 1(7)17839<17840> is PRP.
(52·109015-43)/9 = 5(7)90143<9016> is prime.
By Dmitry Domanov / ECMNET / Jun 22, 2009
(89·10185+1)/9 = 9(8)1849<186> = 11 · 1987 · 616943 · C176
C176 = P29 · P148
P29 = 40940401384167441808899155767<29>
P148 = 1791264866192661432732845062852095165264741708650930105086935795122598812517413884118459537265905771919543758665292146582186543306950429077800614017<148>
[2009-06-21 02:52:13 GMT] a: Factor found! / (probable) 40940401384167441808899155767 B1: 11000000 sigma: 2019692168 (found in step 2) [2009-06-21 02:52:13 GMT] a: Co-factor: / (Probable) 1791264866192661432732845062852095165264741708650930105086935795122598812517413884118459537265905771919543758665292146582186543306950429077800614017
(89·10194+1)/9 = 9(8)1939<195> = 19 · 787 · 1478629721<10> · 1769297203<10> · 2283368889277607<16> · C158
C158 = P32 · C126
P32 = 38346165072677325477768700865603<32>
C126 = [288709400214039153514611082816280322399269582988374671238906295467466961967639668368802541858848488578358621719840471080565431<126>]
[2009-06-21 00:32:28 GMT] a: Factor found! / (probable) 38346165072677325477768700865603 B1: 11000000 sigma: 2792758941 (found in step 2) [2009-06-21 00:32:28 GMT] a: Co-factor: / (Composite) 288709400214039153514611082816280322399269582988374671238906295467466961967639668368802541858848488578358621719840471080565431
(46·10184+71)/9 = 5(1)1839<185> = 31 · C184
C184 = P36 · C149
P36 = 109950766165990238619142052692775317<36>
C149 = [14995307238006754970142095290739002827809014572111810162500899017717459167125063659570942091364689704175545066490272917015118441624190530505317102797<149>]
C184=P36*C149 C184=109950766165990238619142052692775317<36>*14995307238006754970142095290739002827809014572111810162500899017717459167125063659570942091364689704175545066490272917015118441624190530505317102797<149>
(89·10199+1)/9 = 9(8)1989<200> = 32 · 11 · 29 · 173 · 421 · 3013553 · C186
C186 = P35 · P151
P35 = 75505703827954394348190142512190813<35>
P151 = 2078392237191109696799707468604509557501015179027375428569828921512009119409343165258187588687754438966150764624796567341773480588321102772113091935307<151>
C186=P35*P151 C186=75505703827954394348190142512190813<35>*2078392237191109696799707468604509557501015179027375428569828921512009119409343165258187588687754438 966150764624796567341773480588321102772113091935307<151>
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Jun 22, 2009
(34·10167-43)/9 = 3(7)1663<168> = 11 · 79 · 2212123 · 688065433235990265046158859<27> · C132
C132 = P53 · P80
P53 = 11607192724957470109727382625443317990290621072844033<53>
P80 = 24606532827049850789319866486334883175438181692662700048777546004311547846632257<80>
Number: n N=285612768816560198153005074423318240175774326559723692726855192453231155131923257812510152266159767651064662586228076782756067772481 ( 132 digits) SNFS difficulty: 169 digits. Divisors found: Mon Jun 22 05:13:22 2009 prp53 factor: 11607192724957470109727382625443317990290621072844033 Mon Jun 22 05:13:22 2009 prp80 factor: 24606532827049850789319866486334883175438181692662700048777546004311547846632257 Mon Jun 22 05:13:22 2009 elapsed time 01:22:41 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 39.08 hours. Scaled time: 100.64 units (timescale=2.575). Factorization parameters were as follows: name: KA_3_7_166_3 n: 285612768816560198153005074423318240175774326559723692726855192453231155131923257812510152266159767651064662586228076782756067772481 m: 2000000000000000000000000000000000 deg: 5 c5: 425 c0: -172 skew: 0.83 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2300000, 4535147) Primes: RFBsize:322441, AFBsize:321656, largePrimes:15842237 encountered Relations: rels:14942542, finalFF:595563 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1561562 hash collisions in 16410559 relations Msieve: matrix is 845581 x 845829 (229.1 MB) Total sieving time: 38.59 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,56,56,2.4,2.4,100000 total time: 39.08 hours. --------- CPU info (if available) ----------
(19·10169+71)/9 = 2(1)1689<170> = 17 · 29 · 157 · 401 · 1202690777<10> · 11917016737<11> · C143
C143 = P34 · P109
P34 = 5953901394817602332266795990080373<34>
P109 = 7970709470626566079289325522510715490264808474915393724092566519897218412184343046077211774275868043748116947<109>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 47456818234849384485919149010234197237043999182472042017612061274694520497973354897231898436283664885858051334911013044250936917790809933381231 (143 digits) Using B1=1792000, B2=2140281790, polynomial Dickson(6), sigma=4224226140 Step 1 took 24913ms Step 2 took 8362ms ********** Factor found in step 2: 5953901394817602332266795990080373 Found probable prime factor of 34 digits: 5953901394817602332266795990080373 Probable prime cofactor 7970709470626566079289325522510715490264808474915393724092566519897218412184343046077211774275868043748116947 has 109 digits
By Wataru Sakai / GMP-ECM 6.2.1 / Jun 22, 2009
(4·10172-7)/3 = 1(3)1711<173> = 1979 · 13289227921<11> · 162833506738538029<18> · C142
C142 = P41 · C102
P41 = 11712824240851604859171398762414514649183<41>
C102 = [265820083535185443400012989979500246927574859540043887531215591340458372270487885471414380147411506787<102>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4085455744 Step 1 took 42653ms Step 2 took 14897ms ********** Factor found in step 2: 11712824240851604859171398762414514649183 Found probable prime factor of 41 digits: 11712824240851604859171398762414514649183 Composite cofactor 265820083535185443400012989979500246927574859540043887531215591340458372270487885471414380147411506787 has 102 digits
By Jo Yeong Uk / GMP-ECM / Jun 21, 2009
(13·10167-7)/3 = 4(3)1661<168> = 5959318178397209<16> · 10739075572896235220891<23> · C130
C130 = P39 · P92
P39 = 278840979899609144669916444484675755961<39>
P92 = 24282982392014604316378653148216272453420429843296842734094382957632012796139059509470390809<92>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 6771090605074307069591549228648573420714999216153608492489545679884278552852674684314455216639986692541470079887690700098181362449 (130 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3881612235 Step 1 took 4274ms Step 2 took 5819ms ********** Factor found in step 2: 278840979899609144669916444484675755961 Found probable prime factor of 39 digits: 278840979899609144669916444484675755961 Probable prime cofactor 24282982392014604316378653148216272453420429843296842734094382957632012796139059509470390809 has 92 digits
(41·10167+13)/9 = 4(5)1667<168> = 430279 · 338623573 · 18003240719<11> · 7832365170209<13> · C131
C131 = P35 · P96
P35 = 38994801836476403223875236485088157<35>
P96 = 568622021797804765367548597934605439349622589855711387016954054617774589676260150974346419105693<96>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 22173303059861962649674962465807468961083598829975529901522059915208172285205905279352766464136854475819255274008388042078205577801 (131 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3093000109 Step 1 took 4196ms ********** Factor found in step 1: 38994801836476403223875236485088157 Found probable prime factor of 35 digits: 38994801836476403223875236485088157 Probable prime cofactor 568622021797804765367548597934605439349622589855711387016954054617774589676260150974346419105693 has 96 digits
By Serge Batalov / PFGW / Jun 20, 2009
(2·1039606+1)/3 = (6)396057<39606> is PRP.
By Robert Backstrom / GGNFS, Msieve / Jun 20, 2009
9·10168+1 = 9(0)1671<169> = 193 · 183122333 · 1365503329<10> · 70195540469<11> · C139
C139 = P54 · P85
P54 = 803534758897924386932162437579226018617463265776195233<54>
P85 = 3306259477416131198963892436083070510480940866548861316188259476731788862020584275713<85>
Number: n N=2656694412039548462553232526428776317534088841928298827414634961259564708940735214813108191929447902768879073075808499186281445628188276129 ( 139 digits) SNFS difficulty: 170 digits. Divisors found: Sat Jun 20 12:49:06 2009 prp54 factor: 803534758897924386932162437579226018617463265776195233 Sat Jun 20 12:49:06 2009 prp85 factor: 3306259477416131198963892436083070510480940866548861316188259476731788862020584275713 Sat Jun 20 12:49:06 2009 elapsed time 01:55:16 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 43.37 hours. Scaled time: 112.12 units (timescale=2.585). Factorization parameters were as follows: name: KA_9_0_167_1 n: 2656694412039548462553232526428776317534088841928298827414634961259564708940735214813108191929447902768879073075808499186281445628188276129 m: 5000000000000000000000000000000000 deg: 5 c5: 72 c0: 25 skew: 0.81 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 4868657) Primes: RFBsize:335439, AFBsize:335327, largePrimes:16134981 encountered Relations: rels:15152762, finalFF:557837 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1660784 hash collisions in 16908306 relations Msieve: matrix is 905009 x 905257 (241.5 MB) Total sieving time: 42.92 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 43.37 hours. --------- CPU info (if available) ----------
By Andreas Tete / Syd`s Database / Jun 20, 2009
2·10176-9 = 1(9)1751<177> = 977 · 30422398200031601<17> · C157
C157 = P27 · C131
P27 = 671851302766021349481441049<27>
C131 = [10015412055048508505562981822117361493985212600568876345607115690865494900174994593465034317095895575473501050630145079867266172367<131>]
this faktor is from the database http://factordb.com/search.php 671851302766021349481441049
By Dmitry Domanov / ECMNET / Jun 20, 2009
(2·10248+1)/3 = (6)2477<248> = 163 · 44179 · C241
C241 = P35 · C207
P35 = 41158940460267795191725127905610171<35>
C207 = [224926729683557925143732786282199759731260062609772664415477620172801666485846605924960352715932697003118406528404722564383235862597511428194310219734798101447346433956246920912393774411884500256114875326201<207>]
C241=P35*C207 C241=41158940460267795191725127905610171<35>*224926729683557925143732786282199759731260062609772664415477620172801666485846605924960352715932697003118406528404722564383235862597511428194310219734798101447346433956246920912393774411884500256114875326201<207>
By Jo Yeong Uk / GMP-ECM / Jun 20, 2009
(2·10245+1)/3 = (6)2447<245> = 23 · 153669121 · 869061193254415949<18> · 38056099737006898261987<23> · 39366916868321772201193201<26> · 143367365426738090002045861251553483338881<42> · C129
C129 = P43 · P86
P43 = 6214754527728988809452793868940752428182767<43>
P86 = 16259754221608044527762712435800332789719768404154926526062152292523869431586832367349<86>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 101050381168499134820535981759329661173475719716918113615492884413715003106991408503990025473220959006588553102747390264655274683 (129 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=69261048 Step 1 took 10110ms Step 2 took 5103ms ********** Factor found in step 2: 6214754527728988809452793868940752428182767 Found probable prime factor of 43 digits: 6214754527728988809452793868940752428182767 Probable prime cofactor 16259754221608044527762712435800332789719768404154926526062152292523869431586832367349 has 86 digits
By Wataru Sakai / GMP-ECM 6.2.1 / Jun 20, 2009
(19·10202+11)/3 = 6(3)2017<203> = 54127212709<11> · 2197913408641<13> · 64728150351148599673<20> · 82174869021302388567870545099<29> · C132
C132 = P40 · P92
P40 = 2453756815506768300255949590474181892893<40>
P92 = 40788935163953970485133759532334003772942726766052495834782985563446394535091642055266233843<92>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=463793176 Step 1 took 38271ms ********** Factor found in step 1: 2453756815506768300255949590474181892893 Found probable prime factor of 40 digits: 2453756815506768300255949590474181892893 Probable prime cofactor 40788935163953970485133759532334003772942726766052495834782985563446394535091642055266233843 has 92 digits
By Dmitry Domanov / ECMNET, ggnfs/msieve 1.41, GMP-ECM 6.2.3 / Jun 18, 2009
(13·10177-31)/9 = 1(4)1761<178> = 11 · 29 · 348544794317<12> · 1148063635439185721<19> · C146
C146 = P44 · P102
P44 = 25033842181419094771095940168167426214644379<44>
P102 = 452020454928961964652287587071087355520379293916864910615544580991786263169013953137748282195897806913<102>
C146=P44*P102 C146=25033842181419094771095940168167426214644379<44>*452020454928961964652287587071087355520379293916864910615544580991786263169013953137748282195897806913<102>
(52·10187-61)/9 = 5(7)1861<188> = 3 · C188
C188 = P45 · P143
P45 = 997793808332543677053158286151927821814822559<45>
P143 = 19301842824064261453747979950422179754811960550020042043615918104333792084576947186435597860092240404685797062886895860454794938508264046395623<143>
N=19259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257 ( 188 digits) SNFS difficulty: 189 digits. Divisors found: r1=997793808332543677053158286151927821814822559 (pp45) r2=19301842824064261453747979950422179754811960550020042043615918104333792084576947186435597860092240404685797062886895860454794938508264046395623 (pp143) Version: Msieve v. 1.41 Total time: 282.71 hours. Scaled time: 562.03 units (timescale=1.988). Factorization parameters were as follows: n: 19259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257 m: 20000000000000000000000000000000000000 deg: 5 c5: 325 c0: -122 skew: 0.82 type: snfs lss: 1 rlim: 9900000 alim: 9900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9900000/9900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4950000, 9550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1870949 x 1871196 Total sieving time: 276.07 hours. Total relation processing time: 0.35 hours. Matrix solve time: 5.54 hours. Time per square root: 0.76 hours. Prototype def-par.txt line would be: snfs,189.000,5,0,0,0,0,0,0,0,0,9900000,9900000,28,28,54,54,2.5,2.5,100000 total time: 282.71 hours. --------- CPU info (if available) ----------
(56·10182-11)/9 = 6(2)1811<183> = 32 · 17 · C181
C181 = P64 · P118
P64 = 2554359733901468190141458804443443258365734902731179951456506049<64>
P118 = 1592106176735574063902134000268509870312626111202742168378927583346294201956929891804436477420044365348350553606283093<118>
N=4066811909949164851125635439360929557007988380537400145243282498184458968772694262890341321713870733478576615831517792302106027596223674655047204066811909949164851125635439360929557 ( 181 digits) SNFS difficulty: 183 digits. Divisors found: r1=2554359733901468190141458804443443258365734902731179951456506049 (pp64) r2=1592106176735574063902134000268509870312626111202742168378927583346294201956929891804436477420044365348350553606283093 (pp118) Version: Msieve v. 1.41 Total time: 150.33 hours. Scaled time: 296.00 units (timescale=1.969). Factorization parameters were as follows: n: 4066811909949164851125635439360929557007988380537400145243282498184458968772694262890341321713870733478576615831517792302106027596223674655047204066811909949164851125635439360929557 m: 2000000000000000000000000000000000000 deg: 5 c5: 175 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 8100000 alim: 8100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8100000/8100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4050000, 6450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1499532 x 1499780 Total sieving time: 146.32 hours. Total relation processing time: 0.29 hours. Matrix solve time: 3.54 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,183.000,5,0,0,0,0,0,0,0,0,8100000,8100000,28,28,53,53,2.5,2.5,100000 total time: 150.33 hours. --------- CPU info (if available) ----------
(2·10207+1)/3 = (6)2067<207> = 11870767 · C200
C200 = P32 · C169
P32 = 12351258440178597743332350167861<32>
C169 = [4546935055405781507044615238355866287232446105157119558592794940265286537341198984719464906928858883530666741572376981390043297745552656048588332199211361207357791391441<169>]
GMP-ECM 6.2.3 [powered by GMP 4.3.0] [ECM] Input number is 56160369980024598803654950574521988904901146376360235751124309546861349958824620739895464772130281612524840784649102005512084153169434347979929743938758689027142615693380778737099857714894637108677701 (200 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=572703295 Step 1 took 224907ms Step 2 took 55328ms ********** Factor found in step 2: 12351258440178597743332350167861 Found probable prime factor of 32 digits: 12351258440178597743332350167861 Composite cofactor 4546935055405781507044615238355866287232446105157119558592794940265286537341198984719464906928858883530666741572376981390043297745552656048588332199211361207357791391441 has 169 digits
By Dmitry Domanov / ECMNET, ggnfs/msieve 1.41, GMP-ECM 6.2.3 / Jun 19, 2009
(16·10171-61)/9 = 1(7)1701<172> = 7 · 11 · 6869 · 478273 · C160
C160 = P58 · P103
P58 = 1326288982702582673029121665373066080254716222864506558111<58>
P103 = 5298820469813085006548338151874038728594716331197631203696580068921274591131231214539222639337102417189<103>
N=7027767210432017693197162292111583596851847704497755291936070419810200093347522268321872666523258643695391096428782659743696661732069745996297465301960793769979 ( 160 digits) SNFS difficulty: 172 digits. Divisors found: r1=1326288982702582673029121665373066080254716222864506558111 (pp58) r2=5298820469813085006548338151874038728594716331197631203696580068921274591131231214539222639337102417189 (pp103) Version: Msieve v. 1.41 Total time: 43.23 hours. Scaled time: 85.93 units (timescale=1.988). Factorization parameters were as follows: n: 7027767210432017693197162292111583596851847704497755291936070419810200093347522268321872666523258643695391096428782659743696661732069745996297465301960793769979 m: 20000000000000000000000000000000000 deg: 5 c5: 5 c0: -61 skew: 1.65 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2600000, 4800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 870887 x 871135 Total sieving time: 41.66 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.04 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 43.23 hours. --------- CPU info (if available) ----------
(2·10232+1)/3 = (6)2317<232> = 491 · 54681433 · C222
C222 = P34 · C188
P34 = 7430349296958259255009925644985843<34>
C188 = [33417821221541330852542188413689425137725811211108368838101480074258853205202674229068504165866529215131936272245109112256704331846203516632198560835389525811428095563532128787664936663923<188>]
C222=P34*C188 C222=7430349296958259255009925644985843<34>*33417821221541330852542188413689425137725811211108368838101480074258853205202674229068504165866529215131936272245109112256704331846203516632198560835389525811428095563532128787664936663923<188>
By Robert Backstrom / GGNFS, Msieve / Jun 18, 2009
(58·10162-31)/9 = 6(4)1611<163> = 3 · 47 · 641 · 2767 · 130829 · 494051 · 271311440270983020815509571<27> · C118
C118 = P53 · P65
P53 = 24954118155618919079580333638817425652891937701291029<53>
P65 = 58886134193713359403521657026257990804220556027035516543340997003<65>
Number: n N=1469451550397554580732676837059180360646094335779406648161528362300117656219537283085352644318514476025995697119786087 ( 118 digits) Divisors found: Thu Jun 18 14:54:49 2009 prp53 factor: 24954118155618919079580333638817425652891937701291029 Thu Jun 18 14:54:49 2009 prp65 factor: 58886134193713359403521657026257990804220556027035516543340997003 Thu Jun 18 14:54:49 2009 elapsed time 00:47:19 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 26.24 hours. Scaled time: 69.80 units (timescale=2.660). Factorization parameters were as follows: n: 1469451550397554580732676837059180360646094335779406648161528362300117656219537283085352644318514476025995697119786087 Y0: -46893879102853055658803 Y1: 3141268982191 c0: -3760144619058917366194126238400 c1: 68800418075202982299435180 c2: 44964992749753915636 c3: -1417804088061757 c4: -118330278 c5: 6480 skew: 268641.15 type: gnfs name: KA_6_4_161_1 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 3700000) Primes: RFBsize:315948, AFBsize:316236, largePrimes:14559686 encountered Relations: rels:13791475, finalFF:805925 Max relations in full relation-set: 28 Initial matrix: 632261 x 805925 with sparse part having weight 75126954. Pruned matrix : 490038 x 493263 with weight 46026915. Msieve: found 1187436 hash collisions in 14695534 relations Msieve: matrix is 563385 x 563633 (154.8 MB) Total sieving time: 25.17 hours. Total relation processing time: 0.67 hours. Matrix solve time: 0.41 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000 total time: 26.24 hours. --------- CPU info (if available) ----------
(13·10171-31)/9 = 1(4)1701<172> = 11 · 845599 · 14030443675276817<17> · 256462931804549017510633552397<30> · C119
C119 = P57 · P63
P57 = 116063407036321876724157657256907246256483937762664427391<57>
P63 = 371836804863893294145143569503109186718694143977647172218587591<63>
Number: n N=43156646434003437590709513779974321417811490608715284910791365906651077456606782151395693253101947622545235176793105081 ( 119 digits) Divisors found: Thu Jun 18 22:22:17 2009 prp57 factor: 116063407036321876724157657256907246256483937762664427391 Thu Jun 18 22:22:17 2009 prp63 factor: 371836804863893294145143569503109186718694143977647172218587591 Thu Jun 18 22:22:17 2009 elapsed time 00:45:54 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 33.10 hours. Scaled time: 88.40 units (timescale=2.671). Factorization parameters were as follows: n: 43156646434003437590709513779974321417811490608715284910791365906651077456606782151395693253101947622545235176793105081 Y0: -82873704940012508645811 Y1: 5558225810587 c0: 390332349543191292661504637720 c1: 11283470990773849387345742 c2: 27771274009983295117 c3: -848230578916907 c4: -1954794837 c5: 11040 skew: 148251.93 type: gnfs name: KA_1_4_170_1 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 4100000) Primes: RFBsize:315948, AFBsize:315748, largePrimes:14766964 encountered Relations: rels:14062877, finalFF:788445 Max relations in full relation-set: 28 Initial matrix: 631777 x 788445 with sparse part having weight 79095519. Pruned matrix : 509527 x 512749 with weight 52748937. Msieve: found 1396489 hash collisions in 15182031 relations Msieve: matrix is 605319 x 605567 (165.1 MB) Total sieving time: 31.45 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.80 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000 total time: 33.10 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jun 19, 2009
(14·10171-41)/9 = 1(5)1701<172> = 3 · 11 · 144264311 · C162
C162 = P58 · P104
P58 = 8422572196437277344165892625074975797910517101552896422569<58>
P104 = 38794301624236914293793808123357843854869719962248434313381337905654704362886863912964954781426002751633<104>
Number: n N=326747806240499343230759596100293564963118613154761041676746005032714834420399700505602789363046603661020070633672157059323827132394838374455190425704435922805177 ( 162 digits) SNFS difficulty: 172 digits. Divisors found: Fri Jun 19 11:40:48 2009 prp58 factor: 8422572196437277344165892625074975797910517101552896422569 Fri Jun 19 11:40:48 2009 prp104 factor: 38794301624236914293793808123357843854869719962248434313381337905654704362886863912964954781426002751633 Fri Jun 19 11:40:48 2009 elapsed time 01:16:46 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 55.33 hours. Scaled time: 143.58 units (timescale=2.595). Factorization parameters were as follows: name: KA_1_5_170_1 n: 326747806240499343230759596100293564963118613154761041676746005032714834420399700505602789363046603661020070633672157059323827132394838374455190425704435922805177 m: 10000000000000000000000000000000000 deg: 5 c5: 140 c0: -41 skew: 0.78 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2600000, 5682731) Primes: RFBsize:361407, AFBsize:361488, largePrimes:17700805 encountered Relations: rels:17570935, finalFF:657599 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2124084 hash collisions in 19715067 relations Msieve: matrix is 839295 x 839543 (222.4 MB) Total sieving time: 54.53 hours. Total relation processing time: 0.80 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,56,56,2.4,2.4,100000 total time: 55.33 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS/Msieve v1.39, GMP-ECM 6.2.3, YAFU 1.10, Msieve 1.38 / Jun 18, 2009
(2·10189+1)/3 = (6)1887<189> = 258925710247<12> · 697907276489069<15> · 103472810660886766470523<24> · C140
C140 = P55 · P85
P55 = 4746350295580571237653643884883727173586562822307651507<55>
P85 = 7511900121266661845814589063433511839761657945042526497565623384799661040038440081329<85>
Number: 66667_189 N=35654109360945749376081662769339983989787406080664915477018647301233533367134903422592365407581183879146350856255226267556261179388069412803 ( 140 digits) SNFS difficulty: 190 digits. Divisors found: r1=4746350295580571237653643884883727173586562822307651507 r2=7511900121266661845814589063433511839761657945042526497565623384799661040038440081329 Version: Total time: 121.93 hours. Scaled time: 291.79 units (timescale=2.393). Factorization parameters were as follows: n: 35654109360945749376081662769339983989787406080664915477018647301233533367134903422592365407581183879146350856255226267556261179388069412803 m: 100000000000000000000000000000000000000 deg: 5 c5: 1 c0: 5 skew: 1.38 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20417084 Max relations in full relation-set: Initial matrix: Pruned matrix : 1659788 x 1660036 Total sieving time: 112.16 hours. Total relation processing time: 3.42 hours. Matrix solve time: 6.18 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 121.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672386) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672306) Calibrating delay using timer specific routine.. 5237.81 BogoMIPS (lpj=2618905)
(2·10229+1)/3 = (6)2287<229> = 72 · 23321 · 23767 · 322159063 · 78124519400027<14> · 1738216785948389<16> · 13256504103154300738627<23> · C159
C159 = P34 · P37 · P41 · P49
P34 = 1237470824271985512472690448473327<34>
P37 = 3750161593708449394591669208868139007<37>
P41 = 18395753866925715147248317212109801384969<41>
P49 = 4957901829527390747060609927610231043240041489103<49>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 423253407774740648022246108235966296444851118790323740603674354528601384880202632965018613844937841027261734318817645520742415810378445164456463254205170583223 (159 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=704297402 Step 1 took 5585ms Step 2 took 4914ms ********** Factor found in step 2: 1237470824271985512472690448473327 Found probable prime factor of 34 digits: 1237470824271985512472690448473327 Composite cofactor 342031019619185111284341039676048075550210964995684373883223922629868991470538634305390046991088073329628622395980813626622649 has 126 digits GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 342031019619185111284341039676048075550210964995684373883223922629868991470538634305390046991088073329628622395980813626622649 (126 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4528562233 Step 1 took 4165ms Step 2 took 4103ms ********** Factor found in step 2: 3750161593708449394591669208868139007 Found probable prime factor of 37 digits: 3750161593708449394591669208868139007 Composite cofactor 91204341752366576110296493038317865627250705073055612416739775293441219621456530521492807 has 89 digits 06/18/09 22:22:38 v1.10 @ 조영욱-PC, starting SIQS on c89: 91204341752366576110296493038317865627250705073055612416739775293441219621456530521492807 06/18/09 22:22:38 v1.10 @ 조영욱-PC, random seeds: 1827674413, 2265870248 06/18/09 22:22:38 v1.10 @ 조영욱-PC, ==== sieve params ==== 06/18/09 22:22:38 v1.10 @ 조영욱-PC, n = 89 digits, 302 bits 06/18/09 22:22:38 v1.10 @ 조영욱-PC, factor base: 64055 primes (max prime = 1699001) 06/18/09 22:22:38 v1.10 @ 조영욱-PC, single large prime cutoff: 186890110 (110 * pmax) 06/18/09 22:22:38 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 06/18/09 22:22:38 v1.10 @ 조영욱-PC, double large prime cutoff: 774203936799977 06/18/09 22:22:38 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 06/18/09 22:22:38 v1.10 @ 조영욱-PC, buckets hold 1024 elements 06/18/09 22:22:38 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 06/18/09 22:22:38 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors 06/18/09 22:22:38 v1.10 @ 조영욱-PC, using multiplier of 55 06/18/09 22:22:38 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits 06/18/09 22:22:38 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 06/18/09 22:22:38 v1.10 @ 조영욱-PC, trial factoring cutoff at 101 bits 06/18/09 22:22:38 v1.10 @ 조영욱-PC, ==== sieving started ==== 06/18/09 23:09:51 v1.10 @ 조영욱-PC, sieve time = 1414.9750, relation time = 346.6610, poly_time = 1070.8390 06/18/09 23:09:51 v1.10 @ 조영욱-PC, 64149 relations found: 22732 full + 41417 from 529677 partial, using 563791 polys (276 A polys) 06/18/09 23:09:51 v1.10 @ 조영욱-PC, on average, sieving found 0.98 rels/poly and 194.96 rels/sec 06/18/09 23:09:51 v1.10 @ 조영욱-PC, trial division touched 12214549 sieve locations out of 665074925568 06/18/09 23:09:51 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 06/18/09 23:09:52 v1.10 @ 조영욱-PC, begin with 552409 relations 06/18/09 23:09:52 v1.10 @ 조영욱-PC, reduce to 123820 relations in 8 passes 06/18/09 23:09:53 v1.10 @ 조영욱-PC, recovered 123820 relations 06/18/09 23:09:53 v1.10 @ 조영욱-PC, recovered 111157 polynomials 06/18/09 23:09:53 v1.10 @ 조영욱-PC, attempting to build 64149 cycles 06/18/09 23:09:53 v1.10 @ 조영욱-PC, found 64149 cycles in 4 passes 06/18/09 23:09:53 v1.10 @ 조영욱-PC, distribution of cycle lengths: 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 1 : 22732 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 2 : 19952 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 3 : 11344 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 4 : 5697 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 5 : 2597 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 6 : 1045 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 7 : 482 06/18/09 23:09:53 v1.10 @ 조영욱-PC, length 9+: 300 06/18/09 23:09:53 v1.10 @ 조영욱-PC, largest cycle: 16 relations 06/18/09 23:09:53 v1.10 @ 조영욱-PC, matrix is 64055 x 64149 (13.5 MB) with weight 3021778 (47.11/col) 06/18/09 23:09:53 v1.10 @ 조영욱-PC, sparse part has weight 3021778 (47.11/col) 06/18/09 23:09:54 v1.10 @ 조영욱-PC, filtering completed in 3 passes 06/18/09 23:09:54 v1.10 @ 조영욱-PC, matrix is 56373 x 56437 (12.1 MB) with weight 2721078 (48.21/col) 06/18/09 23:09:54 v1.10 @ 조영욱-PC, sparse part has weight 2721078 (48.21/col) 06/18/09 23:09:54 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 06/18/09 23:09:54 v1.10 @ 조영욱-PC, matrix is 56325 x 56437 (8.0 MB) with weight 2068248 (36.65/col) 06/18/09 23:09:54 v1.10 @ 조영욱-PC, sparse part has weight 1535318 (27.20/col) 06/18/09 23:09:54 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 06/18/09 23:09:54 v1.10 @ 조영욱-PC, using block size 22574 for processor cache size 4096 kB 06/18/09 23:09:54 v1.10 @ 조영욱-PC, commencing Lanczos iteration 06/18/09 23:09:54 v1.10 @ 조영욱-PC, memory use: 7.4 MB 06/18/09 23:10:06 v1.10 @ 조영욱-PC, lanczos halted after 892 iterations (dim = 56323) 06/18/09 23:10:06 v1.10 @ 조영욱-PC, recovered 18 nontrivial dependencies 06/18/09 23:10:06 v1.10 @ 조영욱-PC, prp49 = 4957901829527390747060609927610231043240041489103 06/18/09 23:10:07 v1.10 @ 조영욱-PC, prp41 = 18395753866925715147248317212109801384969 06/18/09 23:10:07 v1.10 @ 조영욱-PC, Lanczos elapsed time = 14.3360 seconds. 06/18/09 23:10:07 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.9360 seconds. 06/18/09 23:10:07 v1.10 @ 조영욱-PC, SIQS elapsed time = 2848.7480 seconds. 06/18/09 23:10:07 v1.10 @ 조영욱-PC, 06/18/09 23:10:07 v1.10 @ 조영욱-PC,
By Jo Yeong Uk / GMP-ECM 6.2.3, YAFU 1.10, Msieve 1.38 / Jun 19, 2009
(2·10245+1)/3 = (6)2447<245> = 23 · 153669121 · 869061193254415949<18> · 38056099737006898261987<23> · 39366916868321772201193201<26> · C170
C170 = P42 · C129
P42 = 143367365426738090002045861251553483338881<42>
C129 = [101050381168499134820535981759329661173475719716918113615492884413715003106991408503990025473220959006588553102747390264655274683<129>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 14487326923495388617824015611778517505155899148341968548636740762719170987406338312232633735870766518958322657602899284502551991614008890281311729164701564107015028849723 (170 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3765053233 Step 1 took 4782ms Step 2 took 2800ms ********** Factor found in step 2: 143367365426738090002045861251553483338881 Found probable prime factor of 42 digits: 143367365426738090002045861251553483338881 Composite cofactor 101050381168499134820535981759329661173475719716918113615492884413715003106991408503990025473220959006588553102747390264655274683 has 129 digits
(2·10213+1)/3 = (6)2127<213> = 642623 · 68623043 · 1464084467605343<16> · 4409891276148706861866704821<28> · 118009803355233384577031249267259421<36> · C122
C122 = P34 · P42 · P47
P34 = 7115150503396792667994916837952063<34>
P42 = 166507482518017499178086786863171180756723<42>
P47 = 16747599071352727268207577662937259514746886269<47>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 19841312675353812400480170290920785443960159561950228060042177768467208735513015756609844426709640725339681886570157222681 (122 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2561369874 Step 1 took 4197ms Step 2 took 4383ms ********** Factor found in step 2: 7115150503396792667994916837952063 Found probable prime factor of 34 digits: 7115150503396792667994916837952063 Composite cofactor 2788600559592030339441370842570956136373448758960749300573053163294910487916335438136487 has 88 digits 06/19/09 10:49:18 v1.10 @ 조영욱-PC, starting SIQS on c88: 2788600559592030339441370842570956136373448758960749300573053163294910487916335438136487 06/19/09 10:49:18 v1.10 @ 조영욱-PC, random seeds: 3105731754, 2216531008 06/19/09 10:49:18 v1.10 @ 조영욱-PC, ==== sieve params ==== 06/19/09 10:49:18 v1.10 @ 조영욱-PC, n = 88 digits, 294 bits 06/19/09 10:49:18 v1.10 @ 조영욱-PC, factor base: 61083 primes (max prime = 1621237) 06/19/09 10:49:18 v1.10 @ 조영욱-PC, single large prime cutoff: 178336070 (110 * pmax) 06/19/09 10:49:18 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits 06/19/09 10:49:18 v1.10 @ 조영욱-PC, double large prime cutoff: 711591161729305 06/19/09 10:49:18 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base 06/19/09 10:49:18 v1.10 @ 조영욱-PC, buckets hold 1024 elements 06/19/09 10:49:18 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536 06/19/09 10:49:18 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors 06/19/09 10:49:18 v1.10 @ 조영욱-PC, using multiplier of 7 06/19/09 10:49:18 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits 06/19/09 10:49:18 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning 06/19/09 10:49:18 v1.10 @ 조영욱-PC, trial factoring cutoff at 97 bits 06/19/09 10:49:18 v1.10 @ 조영욱-PC, ==== sieving started ==== 06/19/09 11:14:09 v1.10 @ 조영욱-PC, sieve time = 705.0230, relation time = 283.2280, poly_time = 502.4320 06/19/09 11:14:09 v1.10 @ 조영욱-PC, 61155 relations found: 22477 full + 38678 from 495499 partial, using 270969 polys (264 A polys) 06/19/09 11:14:09 v1.10 @ 조영욱-PC, on average, sieving found 1.91 rels/poly and 347.31 rels/sec 06/19/09 11:14:09 v1.10 @ 조영욱-PC, trial division touched 11124401 sieve locations out of 319648038912 06/19/09 11:14:09 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ==== 06/19/09 11:14:09 v1.10 @ 조영욱-PC, begin with 517976 relations 06/19/09 11:14:09 v1.10 @ 조영욱-PC, reduce to 116716 relations in 7 passes 06/19/09 11:14:10 v1.10 @ 조영욱-PC, failed to read relation 31420 06/19/09 11:14:10 v1.10 @ 조영욱-PC, failed to read relation 63878 06/19/09 11:14:10 v1.10 @ 조영욱-PC, recovered 116714 relations 06/19/09 11:14:10 v1.10 @ 조영욱-PC, recovered 95103 polynomials 06/19/09 11:14:10 v1.10 @ 조영욱-PC, attempting to build 61153 cycles 06/19/09 11:14:10 v1.10 @ 조영욱-PC, found 61153 cycles in 4 passes 06/19/09 11:14:10 v1.10 @ 조영욱-PC, distribution of cycle lengths: 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 1 : 22477 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 2 : 18718 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 3 : 10834 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 4 : 5187 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 5 : 2310 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 6 : 994 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 7 : 410 06/19/09 11:14:10 v1.10 @ 조영욱-PC, length 9+: 223 06/19/09 11:14:10 v1.10 @ 조영욱-PC, largest cycle: 13 relations 06/19/09 11:14:11 v1.10 @ 조영욱-PC, matrix is 61083 x 61153 (12.3 MB) with weight 2744311 (44.88/col) 06/19/09 11:14:11 v1.10 @ 조영욱-PC, sparse part has weight 2744311 (44.88/col) 06/19/09 11:14:11 v1.10 @ 조영욱-PC, filtering completed in 4 passes 06/19/09 11:14:11 v1.10 @ 조영욱-PC, matrix is 52042 x 52106 (10.8 MB) with weight 2412409 (46.30/col) 06/19/09 11:14:11 v1.10 @ 조영욱-PC, sparse part has weight 2412409 (46.30/col) 06/19/09 11:14:11 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later 06/19/09 11:14:11 v1.10 @ 조영욱-PC, matrix is 51994 x 52106 (7.5 MB) with weight 1883866 (36.15/col) 06/19/09 11:14:11 v1.10 @ 조영욱-PC, sparse part has weight 1455034 (27.92/col) 06/19/09 11:14:11 v1.10 @ 조영욱-PC, matrix includes 64 packed rows 06/19/09 11:14:11 v1.10 @ 조영욱-PC, using block size 20842 for processor cache size 4096 kB 06/19/09 11:14:11 v1.10 @ 조영욱-PC, commencing Lanczos iteration 06/19/09 11:14:11 v1.10 @ 조영욱-PC, memory use: 6.9 MB 06/19/09 11:14:21 v1.10 @ 조영욱-PC, lanczos halted after 824 iterations (dim = 51989) 06/19/09 11:14:21 v1.10 @ 조영욱-PC, recovered 14 nontrivial dependencies 06/19/09 11:14:22 v1.10 @ 조영욱-PC, prp42 = 166507482518017499178086786863171180756723 06/19/09 11:14:22 v1.10 @ 조영욱-PC, prp47 = 16747599071352727268207577662937259514746886269 06/19/09 11:14:22 v1.10 @ 조영욱-PC, Lanczos elapsed time = 12.3240 seconds. 06/19/09 11:14:22 v1.10 @ 조영욱-PC, Sqrt elapsed time = 0.5620 seconds. 06/19/09 11:14:22 v1.10 @ 조영욱-PC, SIQS elapsed time = 1504.2710 seconds. 06/19/09 11:14:22 v1.10 @ 조영욱-PC, 06/19/09 11:14:22 v1.10 @ 조영욱-PC,
By Serge Batalov / PFGW / Jun 17, 2009
(2·1055544+1)/3 = (6)555437<55544> is PRP.
By Andreas Tete / Msieve 1.42/GGNFS / Jun 17, 2009
(68·10170+13)/9 = 7(5)1697<171> = 139 · 29473 · 290911573 · 32154519786569<14> · 23839585429968260174265553579269018490660487<44> · C99
C99 = P49 · P51
P49 = 3094951329199020842510313392944073185116931701059<49>
P51 = 267221692159180547256882648639110381886247612020911<51>
Tue Jun 16 22:04:28 2009 Msieve v. 1.42 Tue Jun 16 22:04:28 2009 random seeds: ea0da198 42de2300 Tue Jun 16 22:04:28 2009 factoring 827038131338867400594187976741748355884015349016991665314607084014181746469763768683616779908844749 (99 digits) Tue Jun 16 22:04:28 2009 searching for 15-digit factors Tue Jun 16 22:04:30 2009 commencing quadratic sieve (99-digit input) Tue Jun 16 22:04:30 2009 using multiplier of 5 Tue Jun 16 22:04:30 2009 using 32kb Intel Core sieve core Tue Jun 16 22:04:30 2009 sieve interval: 36 blocks of size 32768 Tue Jun 16 22:04:30 2009 processing polynomials in batches of 6 Tue Jun 16 22:04:30 2009 using a sieve bound of 2642771 (96471 primes) Tue Jun 16 22:04:30 2009 using large prime bound of 396415650 (28 bits) Tue Jun 16 22:04:30 2009 using double large prime bound of 2996893989271350 (43-52 bits) Tue Jun 16 22:04:30 2009 using trial factoring cutoff of 52 bits Tue Jun 16 22:04:30 2009 polynomial 'A' values have 13 factors Tue Jun 16 22:04:42 2009 restarting with 20829 full and 1327127 partial relations Tue Jun 16 22:45:30 2009 96657 relations (22826 full + 73831 combined from 1456926 partial), need 96567 Tue Jun 16 22:45:42 2009 begin with 1479752 relations Tue Jun 16 22:45:43 2009 reduce to 256034 relations in 11 passes Tue Jun 16 22:45:43 2009 attempting to read 256034 relations Tue Jun 16 22:45:47 2009 recovered 256034 relations Tue Jun 16 22:45:47 2009 recovered 247013 polynomials Tue Jun 16 22:45:47 2009 attempting to build 96657 cycles Tue Jun 16 22:45:47 2009 found 96655 cycles in 5 passes Tue Jun 16 22:45:47 2009 distribution of cycle lengths: Tue Jun 16 22:45:47 2009 length 1 : 22826 Tue Jun 16 22:45:47 2009 length 2 : 16496 Tue Jun 16 22:45:47 2009 length 3 : 16148 Tue Jun 16 22:45:47 2009 length 4 : 13213 Tue Jun 16 22:45:47 2009 length 5 : 10056 Tue Jun 16 22:45:47 2009 length 6 : 7061 Tue Jun 16 22:45:47 2009 length 7 : 4484 Tue Jun 16 22:45:47 2009 length 9+: 6371 Tue Jun 16 22:45:47 2009 largest cycle: 19 relations Tue Jun 16 22:45:47 2009 matrix is 96471 x 96655 (25.0 MB) with weight 6159330 (63.72/col) Tue Jun 16 22:45:47 2009 sparse part has weight 6159330 (63.72/col) Tue Jun 16 22:45:48 2009 filtering completed in 3 passes Tue Jun 16 22:45:48 2009 matrix is 92701 x 92765 (24.1 MB) with weight 5939028 (64.02/col) Tue Jun 16 22:45:48 2009 sparse part has weight 5939028 (64.02/col) Tue Jun 16 22:45:48 2009 saving the first 48 matrix rows for later Tue Jun 16 22:45:48 2009 matrix is 92653 x 92765 (13.4 MB) with weight 4416948 (47.61/col) Tue Jun 16 22:45:48 2009 sparse part has weight 2953275 (31.84/col) Tue Jun 16 22:45:48 2009 matrix includes 64 packed rows Tue Jun 16 22:45:48 2009 using block size 37106 for processor cache size 2048 kB Tue Jun 16 22:45:49 2009 commencing Lanczos iteration Tue Jun 16 22:45:49 2009 memory use: 14.2 MB Tue Jun 16 22:46:25 2009 lanczos halted after 1466 iterations (dim = 92652) Tue Jun 16 22:46:25 2009 recovered 17 nontrivial dependencies Tue Jun 16 22:46:26 2009 prp49 factor: 3094951329199020842510313392944073185116931701059 Tue Jun 16 22:46:26 2009 prp51 factor: 267221692159180547256882648639110381886247612020911 Tue Jun 16 22:46:26 2009 elapsed time 00:41:58 Tue Jun 16 22:46:26 2009 total time 07:44:45
(17·10170+7)/3 = 5(6)1699<171> = 559631 · 104675792068314853<18> · 322875512531802497<18> · 162573751231188186196793586329<30> · C102
C102 = P39 · P64
P39 = 102486391641802624865794677615608882159<39>
P64 = 1798158246875135173916969236304899898630006002386192375498498449<64>
Wed Jun 17 10:43:02 2009 Msieve v. 1.42 Wed Jun 17 10:43:02 2009 random seeds: 433ed298 64d9e482 Wed Jun 17 10:43:02 2009 factoring 184286750323182314380444905316628685751186302523555068558316595554862239297139529533915383571885271391 (102 digits) Wed Jun 17 10:43:03 2009 searching for 15-digit factors Wed Jun 17 10:43:04 2009 commencing number field sieve (102-digit input) Wed Jun 17 10:43:04 2009 R0: -48886729453583034047 Wed Jun 17 10:43:04 2009 R1: 27538271657 Wed Jun 17 10:43:04 2009 A0: 1655221487135049353428650 Wed Jun 17 10:43:04 2009 A1: 139986539947248807243 Wed Jun 17 10:43:04 2009 A2: -493487056659667 Wed Jun 17 10:43:04 2009 A3: -286852384879 Wed Jun 17 10:43:04 2009 A4: -12793664 Wed Jun 17 10:43:04 2009 A5: 660 Wed Jun 17 10:43:04 2009 skew 23388.86, size 1.238991e-009, alpha -4.826938, combined = 2.969698e-009 Wed Jun 17 10:43:04 2009 Wed Jun 17 10:43:04 2009 commencing relation filtering Wed Jun 17 10:43:04 2009 commencing duplicate removal, pass 1 Wed Jun 17 10:43:38 2009 found 226641 hash collisions in 3981204 relations Wed Jun 17 10:43:49 2009 added 30399 free relations Wed Jun 17 10:43:49 2009 commencing duplicate removal, pass 2 Wed Jun 17 10:43:54 2009 found 206333 duplicates and 3805269 unique relations Wed Jun 17 10:43:54 2009 memory use: 36.7 MB Wed Jun 17 10:43:54 2009 reading rational ideals above 2162688 Wed Jun 17 10:43:54 2009 reading algebraic ideals above 2162688 Wed Jun 17 10:43:54 2009 commencing singleton removal, pass 1 Wed Jun 17 10:44:30 2009 relations with 0 large ideals: 87613 Wed Jun 17 10:44:30 2009 relations with 1 large ideals: 607266 Wed Jun 17 10:44:30 2009 relations with 2 large ideals: 1422964 Wed Jun 17 10:44:30 2009 relations with 3 large ideals: 1293039 Wed Jun 17 10:44:30 2009 relations with 4 large ideals: 365325 Wed Jun 17 10:44:30 2009 relations with 5 large ideals: 0 Wed Jun 17 10:44:30 2009 relations with 6 large ideals: 29062 Wed Jun 17 10:44:30 2009 relations with 7+ large ideals: 0 Wed Jun 17 10:44:30 2009 3805269 relations and about 3828438 large ideals Wed Jun 17 10:44:30 2009 commencing singleton removal, pass 2 Wed Jun 17 10:45:06 2009 found 1847305 singletons Wed Jun 17 10:45:06 2009 current dataset: 1957964 relations and about 1579102 large ideals Wed Jun 17 10:45:06 2009 commencing singleton removal, pass 3 Wed Jun 17 10:45:31 2009 found 388897 singletons Wed Jun 17 10:45:31 2009 current dataset: 1569067 relations and about 1160524 large ideals Wed Jun 17 10:45:31 2009 commencing singleton removal, final pass Wed Jun 17 10:45:50 2009 memory use: 24.2 MB Wed Jun 17 10:45:50 2009 commencing in-memory singleton removal Wed Jun 17 10:45:50 2009 begin with 1569067 relations and 1190472 unique ideals Wed Jun 17 10:45:51 2009 reduce to 1319249 relations and 933729 ideals in 13 passes Wed Jun 17 10:45:51 2009 max relations containing the same ideal: 16 Wed Jun 17 10:45:51 2009 reading rational ideals above 100000 Wed Jun 17 10:45:51 2009 reading algebraic ideals above 100000 Wed Jun 17 10:45:51 2009 commencing singleton removal, final pass Wed Jun 17 10:46:09 2009 keeping 1233284 ideals with weight <= 25, new excess is 99584 Wed Jun 17 10:46:11 2009 memory use: 34.3 MB Wed Jun 17 10:46:11 2009 commencing in-memory singleton removal Wed Jun 17 10:46:11 2009 begin with 1332898 relations and 1233284 unique ideals Wed Jun 17 10:46:12 2009 reduce to 1310030 relations and 1144254 ideals in 12 passes Wed Jun 17 10:46:12 2009 max relations containing the same ideal: 25 Wed Jun 17 10:46:13 2009 removing 196021 relations and 170892 ideals in 25129 cliques Wed Jun 17 10:46:13 2009 commencing in-memory singleton removal Wed Jun 17 10:46:13 2009 begin with 1114009 relations and 1144254 unique ideals Wed Jun 17 10:46:14 2009 reduce to 1095209 relations and 954131 ideals in 9 passes Wed Jun 17 10:46:14 2009 max relations containing the same ideal: 25 Wed Jun 17 10:46:15 2009 removing 146412 relations and 121283 ideals in 25129 cliques Wed Jun 17 10:46:15 2009 commencing in-memory singleton removal Wed Jun 17 10:46:15 2009 begin with 948797 relations and 954131 unique ideals Wed Jun 17 10:46:15 2009 reduce to 934995 relations and 818721 ideals in 7 passes Wed Jun 17 10:46:15 2009 max relations containing the same ideal: 25 Wed Jun 17 10:46:16 2009 relations with 0 large ideals: 4286 Wed Jun 17 10:46:16 2009 relations with 1 large ideals: 38985 Wed Jun 17 10:46:16 2009 relations with 2 large ideals: 142845 Wed Jun 17 10:46:16 2009 relations with 3 large ideals: 264588 Wed Jun 17 10:46:16 2009 relations with 4 large ideals: 270213 Wed Jun 17 10:46:16 2009 relations with 5 large ideals: 154225 Wed Jun 17 10:46:16 2009 relations with 6 large ideals: 50521 Wed Jun 17 10:46:16 2009 relations with 7+ large ideals: 9332 Wed Jun 17 10:46:16 2009 commencing 2-way merge Wed Jun 17 10:46:16 2009 reduce to 557916 relation sets and 441642 unique ideals Wed Jun 17 10:46:16 2009 commencing full merge Wed Jun 17 10:46:24 2009 memory use: 36.4 MB Wed Jun 17 10:46:24 2009 found 262675 cycles, need 247842 Wed Jun 17 10:46:24 2009 weight of 247842 cycles is about 17409653 (70.24/cycle) Wed Jun 17 10:46:24 2009 distribution of cycle lengths: Wed Jun 17 10:46:24 2009 1 relations: 23301 Wed Jun 17 10:46:24 2009 2 relations: 24561 Wed Jun 17 10:46:24 2009 3 relations: 24959 Wed Jun 17 10:46:24 2009 4 relations: 23784 Wed Jun 17 10:46:24 2009 5 relations: 22348 Wed Jun 17 10:46:24 2009 6 relations: 19801 Wed Jun 17 10:46:24 2009 7 relations: 18209 Wed Jun 17 10:46:24 2009 8 relations: 16045 Wed Jun 17 10:46:24 2009 9 relations: 14195 Wed Jun 17 10:46:24 2009 10+ relations: 60639 Wed Jun 17 10:46:24 2009 heaviest cycle: 19 relations Wed Jun 17 10:46:24 2009 commencing cycle optimization Wed Jun 17 10:46:25 2009 start with 1626188 relations Wed Jun 17 10:46:29 2009 pruned 47838 relations Wed Jun 17 10:46:29 2009 memory use: 41.4 MB Wed Jun 17 10:46:29 2009 distribution of cycle lengths: Wed Jun 17 10:46:29 2009 1 relations: 23301 Wed Jun 17 10:46:29 2009 2 relations: 25154 Wed Jun 17 10:46:29 2009 3 relations: 26000 Wed Jun 17 10:46:29 2009 4 relations: 24495 Wed Jun 17 10:46:29 2009 5 relations: 23048 Wed Jun 17 10:46:29 2009 6 relations: 20446 Wed Jun 17 10:46:29 2009 7 relations: 18605 Wed Jun 17 10:46:29 2009 8 relations: 16292 Wed Jun 17 10:46:29 2009 9 relations: 14364 Wed Jun 17 10:46:29 2009 10+ relations: 56137 Wed Jun 17 10:46:29 2009 heaviest cycle: 19 relations Wed Jun 17 10:46:29 2009 RelProcTime: 193 Wed Jun 17 10:46:29 2009 Wed Jun 17 10:46:29 2009 commencing linear algebra Wed Jun 17 10:46:29 2009 read 247842 cycles Wed Jun 17 10:46:30 2009 cycles contain 843980 unique relations Wed Jun 17 10:46:43 2009 read 843980 relations Wed Jun 17 10:46:44 2009 using 20 quadratic characters above 67106562 Wed Jun 17 10:46:49 2009 building initial matrix Wed Jun 17 10:47:00 2009 memory use: 91.7 MB Wed Jun 17 10:47:01 2009 read 247842 cycles Wed Jun 17 10:47:01 2009 matrix is 247647 x 247842 (70.5 MB) with weight 23537024 (94.97/col) Wed Jun 17 10:47:01 2009 sparse part has weight 16510401 (66.62/col) Wed Jun 17 10:47:04 2009 filtering completed in 2 passes Wed Jun 17 10:47:04 2009 matrix is 246637 x 246832 (70.4 MB) with weight 23478090 (95.12/col) Wed Jun 17 10:47:04 2009 sparse part has weight 16482270 (66.78/col) Wed Jun 17 10:47:05 2009 read 246832 cycles Wed Jun 17 10:47:06 2009 matrix is 246637 x 246832 (70.4 MB) with weight 23478090 (95.12/col) Wed Jun 17 10:47:06 2009 sparse part has weight 16482270 (66.78/col) Wed Jun 17 10:47:06 2009 saving the first 48 matrix rows for later Wed Jun 17 10:47:06 2009 matrix is 246589 x 246832 (67.2 MB) with weight 18694202 (75.74/col) Wed Jun 17 10:47:06 2009 sparse part has weight 16146110 (65.41/col) Wed Jun 17 10:47:06 2009 matrix includes 64 packed rows Wed Jun 17 10:47:06 2009 using block size 65536 for processor cache size 3072 kB Wed Jun 17 10:47:08 2009 commencing Lanczos iteration Wed Jun 17 10:47:08 2009 memory use: 65.0 MB Wed Jun 17 10:55:12 2009 lanczos halted after 3903 iterations (dim = 246589) Wed Jun 17 10:55:13 2009 recovered 36 nontrivial dependencies Wed Jun 17 10:55:13 2009 BLanczosTime: 524 Wed Jun 17 10:55:13 2009 Wed Jun 17 10:55:13 2009 commencing square root phase Wed Jun 17 10:55:13 2009 reading relations for dependency 1 Wed Jun 17 10:55:13 2009 read 123117 cycles Wed Jun 17 10:55:14 2009 cycles contain 520801 unique relations Wed Jun 17 10:55:20 2009 read 520801 relations Wed Jun 17 10:55:22 2009 multiplying 420376 relations Wed Jun 17 10:56:05 2009 multiply complete, coefficients have about 15.35 million bits Wed Jun 17 10:56:06 2009 initial square root is modulo 656468557 Wed Jun 17 10:57:29 2009 reading relations for dependency 2 Wed Jun 17 10:57:30 2009 read 123574 cycles Wed Jun 17 10:57:30 2009 cycles contain 523003 unique relations Wed Jun 17 10:57:43 2009 read 523003 relations Wed Jun 17 10:57:45 2009 multiplying 421782 relations Wed Jun 17 10:58:28 2009 multiply complete, coefficients have about 15.40 million bits Wed Jun 17 10:58:29 2009 initial square root is modulo 703063901 Wed Jun 17 10:59:51 2009 sqrtTime: 278 Wed Jun 17 10:59:51 2009 prp39 factor: 102486391641802624865794677615608882159 Wed Jun 17 10:59:51 2009 prp64 factor: 1798158246875135173916969236304899898630006002386192375498498449 Wed Jun 17 10:59:51 2009 elapsed time 00:16:49 total time 4,5 hours
By Robert Backstrom / GGNFS, Msieve / Jun 17, 2009
(58·10152-31)/9 = 6(4)1511<153> = 43 · 59 · 1387660273<10> · 6622312771<10> · 2204947328723<13> · C119
C119 = P50 · P69
P50 = 29094058807903755108349233484470242778633421481941<50>
P69 = 430893200761032977032832794015273047754856060570037729587831660047397<69>
Number: n N=12536432122867372519200253053164652442871301443065502726646145676657703651611969289789345370155994930176926330039557577 ( 119 digits) SNFS difficulty: 154 digits. Divisors found: Wed Jun 17 16:40:36 2009 prp50 factor: 29094058807903755108349233484470242778633421481941 Wed Jun 17 16:40:36 2009 prp69 factor: 430893200761032977032832794015273047754856060570037729587831660047397 Wed Jun 17 16:40:36 2009 elapsed time 00:30:16 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 15.52 hours. Scaled time: 41.27 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_4_151_1 n: 12536432122867372519200253053164652442871301443065502726646145676657703651611969289789345370155994930176926330039557577 m: 2000000000000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1300000, 2305363) Primes: RFBsize:189880, AFBsize:190566, largePrimes:11573313 encountered Relations: rels:10680437, finalFF:303015 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 939344 hash collisions in 11511210 relations Msieve: matrix is 472487 x 472735 (126.7 MB) Total sieving time: 15.33 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,28,28,56,56,2.4,2.4,100000 total time: 15.52 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / Jun 17, 2009
(2·10213+1)/3 = (6)2127<213> = 642623 · 68623043 · 1464084467605343<16> · 4409891276148706861866704821<28> · C157
C157 = P36 · C122
P36 = 118009803355233384577031249267259421<36>
C122 = [19841312675353812400480170290920785443960159561950228060042177768467208735513015756609844426709640725339681886570157222681<122>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2629839573 Step 1 took 3869ms Step 2 took 3416ms ********** Factor found in step 2: 118009803355233384577031249267259421 Found probable prime factor of 36 digits: 118009803355233384577031249267259421 Composite cofactor has 122 digits
Factorizations of 66...667 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Andreas Tete / Msieve 1.42/GGNFS / Jun 17, 2009
2·10207-1 = 1(9)207<208> = 59 · 3094811768747411<16> · 617154916981980493532291<24> · 1381098786990645604063367397059<31> · C137
C137 = P47 · P91
P47 = 10018631606052288287701622273517610992315312691<47>
P91 = 1282674318787362762030604322874622092382640612854027342323747789696130963429438316715523069<91>
Tue Jun 16 08:41:15 2009 Msieve v. 1.42 Tue Jun 16 08:41:15 2009 random seeds: e7048544 5712ebb3 Tue Jun 16 08:41:15 2009 factoring 12850641470474661004875505196236329003404849262692486716060856559801450057354066892544499120803880203791248408541006698806056308358968679 (137 digits) Tue Jun 16 08:41:16 2009 searching for 15-digit factors Tue Jun 16 08:41:19 2009 commencing number field sieve (137-digit input) Tue Jun 16 08:41:19 2009 R0: -184938694941958480622306328 Tue Jun 16 08:41:19 2009 R1: 1210976711056969 Tue Jun 16 08:41:19 2009 A0: -389193885300554948797063324008702305 Tue Jun 16 08:41:19 2009 A1: 317170412277137560002579632698 Tue Jun 16 08:41:19 2009 A2: 342990442362395307028433 Tue Jun 16 08:41:19 2009 A3: -98772152073117598 Tue Jun 16 08:41:19 2009 A4: -12135218028 Tue Jun 16 08:41:19 2009 A5: 59400 Tue Jun 16 08:41:19 2009 skew 1751330.93, size 3.148758e-013, alpha -8.406469, combined = 3.071070e-011 Tue Jun 16 08:41:19 2009 Tue Jun 16 08:41:19 2009 commencing relation filtering Tue Jun 16 08:41:19 2009 commencing duplicate removal, pass 1 Tue Jun 16 08:42:58 2009 error -5 reading relation 7150400 Tue Jun 16 08:45:52 2009 found 4303051 hash collisions in 21013118 relations Tue Jun 16 08:46:53 2009 added 117519 free relations Tue Jun 16 08:46:53 2009 commencing duplicate removal, pass 2 Tue Jun 16 08:48:02 2009 found 4382890 duplicates and 16747746 unique relations Tue Jun 16 08:48:02 2009 memory use: 106.6 MB Tue Jun 16 08:48:02 2009 reading rational ideals above 15663104 Tue Jun 16 08:48:02 2009 reading algebraic ideals above 15663104 Tue Jun 16 08:48:02 2009 commencing singleton removal, pass 1 Tue Jun 16 08:51:52 2009 relations with 0 large ideals: 487570 Tue Jun 16 08:51:52 2009 relations with 1 large ideals: 2808823 Tue Jun 16 08:51:52 2009 relations with 2 large ideals: 5803004 Tue Jun 16 08:51:52 2009 relations with 3 large ideals: 5237520 Tue Jun 16 08:51:52 2009 relations with 4 large ideals: 2029946 Tue Jun 16 08:51:52 2009 relations with 5 large ideals: 271692 Tue Jun 16 08:51:52 2009 relations with 6 large ideals: 109191 Tue Jun 16 08:51:52 2009 relations with 7+ large ideals: 0 Tue Jun 16 08:51:52 2009 16747746 relations and about 15351641 large ideals Tue Jun 16 08:51:52 2009 commencing singleton removal, pass 2 Tue Jun 16 08:56:10 2009 found 6725926 singletons Tue Jun 16 08:56:10 2009 current dataset: 10021820 relations and about 7447053 large ideals Tue Jun 16 08:56:10 2009 commencing singleton removal, pass 3 Tue Jun 16 08:58:55 2009 found 1478173 singletons Tue Jun 16 08:58:55 2009 current dataset: 8543647 relations and about 5886766 large ideals Tue Jun 16 08:58:55 2009 commencing singleton removal, pass 4 Tue Jun 16 09:01:34 2009 found 397854 singletons Tue Jun 16 09:01:34 2009 current dataset: 8145793 relations and about 5481664 large ideals Tue Jun 16 09:01:34 2009 commencing singleton removal, final pass Tue Jun 16 09:04:43 2009 memory use: 133.2 MB Tue Jun 16 09:04:43 2009 commencing in-memory singleton removal Tue Jun 16 09:04:44 2009 begin with 8145793 relations and 6066424 unique ideals Tue Jun 16 09:04:53 2009 reduce to 6656410 relations and 4531042 ideals in 14 passes Tue Jun 16 09:04:53 2009 max relations containing the same ideal: 24 Tue Jun 16 09:04:55 2009 reading rational ideals above 720000 Tue Jun 16 09:04:55 2009 reading algebraic ideals above 720000 Tue Jun 16 09:04:55 2009 commencing singleton removal, final pass Tue Jun 16 09:07:42 2009 keeping 6066245 ideals with weight <= 20, new excess is 496511 Tue Jun 16 09:07:53 2009 memory use: 182.1 MB Tue Jun 16 09:07:53 2009 commencing in-memory singleton removal Tue Jun 16 09:07:54 2009 begin with 6660230 relations and 6066245 unique ideals Tue Jun 16 09:08:06 2009 reduce to 6551115 relations and 5938488 ideals in 12 passes Tue Jun 16 09:08:06 2009 max relations containing the same ideal: 20 Tue Jun 16 09:08:11 2009 removing 247011 relations and 228674 ideals in 18337 cliques Tue Jun 16 09:08:11 2009 commencing in-memory singleton removal Tue Jun 16 09:08:12 2009 begin with 6304104 relations and 5938488 unique ideals Tue Jun 16 09:08:20 2009 reduce to 6298481 relations and 5704165 ideals in 8 passes Tue Jun 16 09:08:20 2009 max relations containing the same ideal: 20 Tue Jun 16 09:08:25 2009 removing 179348 relations and 161011 ideals in 18337 cliques Tue Jun 16 09:08:25 2009 commencing in-memory singleton removal Tue Jun 16 09:08:26 2009 begin with 6119133 relations and 5704165 unique ideals Tue Jun 16 09:08:31 2009 reduce to 6115696 relations and 5539705 ideals in 6 passes Tue Jun 16 09:08:31 2009 max relations containing the same ideal: 20 Tue Jun 16 09:08:33 2009 relations with 0 large ideals: 8428 Tue Jun 16 09:08:33 2009 relations with 1 large ideals: 98147 Tue Jun 16 09:08:33 2009 relations with 2 large ideals: 511881 Tue Jun 16 09:08:33 2009 relations with 3 large ideals: 1359789 Tue Jun 16 09:08:33 2009 relations with 4 large ideals: 1976358 Tue Jun 16 09:08:33 2009 relations with 5 large ideals: 1508005 Tue Jun 16 09:08:33 2009 relations with 6 large ideals: 549511 Tue Jun 16 09:08:33 2009 relations with 7+ large ideals: 103577 Tue Jun 16 09:08:33 2009 commencing 2-way merge Tue Jun 16 09:08:40 2009 reduce to 3654554 relation sets and 3078563 unique ideals Tue Jun 16 09:08:40 2009 commencing full merge Tue Jun 16 09:09:49 2009 memory use: 277.3 MB Tue Jun 16 09:09:50 2009 found 1863902 cycles, need 1788763 Tue Jun 16 09:09:50 2009 weight of 1788763 cycles is about 125390665 (70.10/cycle) Tue Jun 16 09:09:50 2009 distribution of cycle lengths: Tue Jun 16 09:09:50 2009 1 relations: 214445 Tue Jun 16 09:09:50 2009 2 relations: 230761 Tue Jun 16 09:09:50 2009 3 relations: 226678 Tue Jun 16 09:09:50 2009 4 relations: 200070 Tue Jun 16 09:09:50 2009 5 relations: 173029 Tue Jun 16 09:09:50 2009 6 relations: 144276 Tue Jun 16 09:09:50 2009 7 relations: 120117 Tue Jun 16 09:09:50 2009 8 relations: 100783 Tue Jun 16 09:09:50 2009 9 relations: 82547 Tue Jun 16 09:09:50 2009 10+ relations: 296057 Tue Jun 16 09:09:50 2009 heaviest cycle: 19 relations Tue Jun 16 09:09:51 2009 commencing cycle optimization Tue Jun 16 09:09:55 2009 start with 9955039 relations Tue Jun 16 09:10:24 2009 pruned 243613 relations Tue Jun 16 09:10:24 2009 memory use: 266.1 MB Tue Jun 16 09:10:24 2009 distribution of cycle lengths: Tue Jun 16 09:10:24 2009 1 relations: 214445 Tue Jun 16 09:10:24 2009 2 relations: 236371 Tue Jun 16 09:10:24 2009 3 relations: 235532 Tue Jun 16 09:10:24 2009 4 relations: 204943 Tue Jun 16 09:10:24 2009 5 relations: 176486 Tue Jun 16 09:10:24 2009 6 relations: 145380 Tue Jun 16 09:10:24 2009 7 relations: 120359 Tue Jun 16 09:10:24 2009 8 relations: 99668 Tue Jun 16 09:10:24 2009 9 relations: 80917 Tue Jun 16 09:10:24 2009 10+ relations: 274662 Tue Jun 16 09:10:24 2009 heaviest cycle: 19 relations Tue Jun 16 09:10:27 2009 RelProcTime: 1388 Tue Jun 16 09:10:27 2009 Tue Jun 16 09:10:27 2009 commencing linear algebra Tue Jun 16 09:10:28 2009 read 1788763 cycles Tue Jun 16 09:10:33 2009 cycles contain 5592553 unique relations Tue Jun 16 09:12:10 2009 read 5592553 relations Tue Jun 16 09:12:22 2009 using 20 quadratic characters above 268435034 Tue Jun 16 09:13:00 2009 building initial matrix Tue Jun 16 09:14:39 2009 memory use: 666.8 MB Tue Jun 16 09:15:01 2009 read 1788763 cycles Tue Jun 16 09:15:04 2009 matrix is 1788464 x 1788763 (515.1 MB) with weight 170626373 (95.39/col) Tue Jun 16 09:15:04 2009 sparse part has weight 120728082 (67.49/col) Tue Jun 16 09:15:46 2009 filtering completed in 3 passes Tue Jun 16 09:15:47 2009 matrix is 1778355 x 1778555 (513.7 MB) with weight 170014583 (95.59/col) Tue Jun 16 09:15:47 2009 sparse part has weight 120432214 (67.71/col) Tue Jun 16 09:16:17 2009 read 1778555 cycles Tue Jun 16 09:16:20 2009 matrix is 1778355 x 1778555 (513.7 MB) with weight 170014583 (95.59/col) Tue Jun 16 09:16:20 2009 sparse part has weight 120432214 (67.71/col) Tue Jun 16 09:16:20 2009 saving the first 48 matrix rows for later Tue Jun 16 09:16:21 2009 matrix is 1778307 x 1778555 (491.3 MB) with weight 135611324 (76.25/col) Tue Jun 16 09:16:21 2009 sparse part has weight 118111865 (66.41/col) Tue Jun 16 09:16:21 2009 matrix includes 64 packed rows Tue Jun 16 09:16:21 2009 using block size 65536 for processor cache size 3072 kB Tue Jun 16 09:16:37 2009 commencing Lanczos iteration Tue Jun 16 09:16:37 2009 memory use: 489.2 MB Tue Jun 16 18:00:35 2009 lanczos halted after 28124 iterations (dim = 1778306) Tue Jun 16 18:00:41 2009 recovered 30 nontrivial dependencies Tue Jun 16 18:00:41 2009 BLanczosTime: 31814 Tue Jun 16 18:00:41 2009 Tue Jun 16 18:00:41 2009 commencing square root phase Tue Jun 16 18:00:41 2009 reading relations for dependency 1 Tue Jun 16 18:00:43 2009 read 889064 cycles Tue Jun 16 18:00:46 2009 cycles contain 3390342 unique relations Tue Jun 16 18:01:49 2009 read 3390342 relations Tue Jun 16 18:02:12 2009 multiplying 2790492 relations Tue Jun 16 18:10:35 2009 multiply complete, coefficients have about 135.95 million bits Tue Jun 16 18:10:41 2009 initial square root is modulo 75679 Tue Jun 16 18:24:12 2009 sqrtTime: 1411 Tue Jun 16 18:24:12 2009 prp47 factor: 10018631606052288287701622273517610992315312691 Tue Jun 16 18:24:12 2009 prp91 factor: 1282674318787362762030604322874622092382640612854027342323747789696130963429438316715523069 Tue Jun 16 18:24:12 2009 elapsed time 09:42:57 total time 358,5 hours
By Markus Tervooren / lasieve/msieve / Jun 17, 2009
(52·10204+11)/9 = 5(7)2039<205> = 7 · C204
C204 = P52 · P153
P52 = 3489796835931103361689260396347023065416395122343361<52>
P153 = 236517156786464756205308903707715975525031761922301258980101045633547768238421296759011363918993807438685658380715328301003618543542563650318286959170677<153>
Msieve v. 1.41 Mon Jun 15 11:30:04 2009 random seeds: 15203ffb 1cd35f9e factoring 825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825397 (204 digits) searching for 15-digit factors commencing number field sieve (204-digit input) R0: -100000000000000000000000000000000000000000 R1: 1 A0: 55 A1: 0 A2: 0 A3: 0 A4: 0 A5: 26 skew 1.16, size 2.311556e-14, alpha 1.167854, combined = 8.053847e-12 commencing relation filtering commencing duplicate removal, pass 1 error -11 reading relation 4747171 error -11 reading relation 36981095 error -11 reading relation 37269830 error -9 reading relation 37529624 error -15 reading relation 37808078 found 6615974 hash collisions in 41847181 relations added 36 free relations commencing duplicate removal, pass 2 found 5189566 duplicates and 36657651 unique relations memory use: 165.2 MB reading rational ideals above 27066368 reading algebraic ideals above 27066368 commencing singleton removal, pass 1 relations with 0 large ideals: 854492 relations with 1 large ideals: 4838519 relations with 2 large ideals: 11747822 relations with 3 large ideals: 12974157 relations with 4 large ideals: 5544950 relations with 5 large ideals: 51281 relations with 6 large ideals: 646430 relations with 7+ large ideals: 0 36657651 relations and about 31746105 large ideals commencing singleton removal, pass 2 found 11657926 singletons current dataset: 24999725 relations and about 18520428 large ideals commencing singleton removal, pass 3 found 2458512 singletons current dataset: 22541213 relations and about 15954383 large ideals commencing singleton removal, pass 4 found 610781 singletons current dataset: 21930432 relations and about 15335945 large ideals commencing singleton removal, pass 5 found 151119 singletons current dataset: 21779313 relations and about 15184347 large ideals commencing singleton removal, final pass memory use: 360.3 MB commencing in-memory singleton removal begin with 21779313 relations and 18395015 unique ideals reduce to 15354339 relations and 11633580 ideals in 18 passes max relations containing the same ideal: 46 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 13441317 ideals with weight <= 20, new excess is 1564387 memory use: 489.2 MB commencing in-memory singleton removal begin with 15354376 relations and 13441317 unique ideals reduce to 15313044 relations and 13399791 ideals in 13 passes max relations containing the same ideal: 20 removing 728555 relations and 679273 ideals in 49282 cliques commencing in-memory singleton removal begin with 14584489 relations and 13399791 unique ideals reduce to 14556496 relations and 12692371 ideals in 8 passes max relations containing the same ideal: 20 removing 524992 relations and 475710 ideals in 49282 cliques commencing in-memory singleton removal begin with 14031504 relations and 12692371 unique ideals reduce to 14016019 relations and 12201099 ideals in 8 passes max relations containing the same ideal: 20 relations with 0 large ideals: 121410 relations with 1 large ideals: 784824 relations with 2 large ideals: 2483536 relations with 3 large ideals: 4142115 relations with 4 large ideals: 3815762 relations with 5 large ideals: 1924327 relations with 6 large ideals: 648133 relations with 7+ large ideals: 95912 commencing 2-way merge reduce to 8245211 relation sets and 6430293 unique ideals ignored 2 oversize relation sets commencing full merge memory use: 604.6 MB found 4064935 cycles, need 3832493 weight of 3832493 cycles is about 268453437 (70.05/cycle) distribution of cycle lengths: 1 relations: 555724 2 relations: 487158 3 relations: 462672 4 relations: 405356 5 relations: 357807 6 relations: 296266 7 relations: 254182 8 relations: 213886 9 relations: 178724 10+ relations: 620718 heaviest cycle: 20 relations commencing cycle optimization start with 20801266 relations pruned 493110 relations memory use: 717.1 MB distribution of cycle lengths: 1 relations: 555724 2 relations: 498808 3 relations: 479788 4 relations: 414965 5 relations: 364985 6 relations: 299239 7 relations: 255275 8 relations: 212681 9 relations: 175573 10+ relations: 575455 heaviest cycle: 20 relations RelProcTime: 1843 commencing linear algebra read 3832493 cycles cycles contain 12267129 unique relations read 12267129 relations using 20 quadratic characters above 536870840 building initial matrix memory use: 1538.9 MB read 3832493 cycles matrix is 3830980 x 3832493 (1149.3 MB) with weight 338758144 (88.39/col) sparse part has weight 259136904 (67.62/col) filtering completed in 3 passes matrix is 3777859 x 3778059 (1139.2 MB) with weight 335479132 (88.80/col) sparse part has weight 257071186 (68.04/col) read 3778059 cycles matrix is 3777859 x 3778059 (1139.2 MB) with weight 335479132 (88.80/col) sparse part has weight 257071186 (68.04/col) saving the first 48 matrix rows for later matrix is 3777811 x 3778059 (1080.2 MB) with weight 265630651 (70.31/col) sparse part has weight 245398470 (64.95/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 1135.5 MB linear algebra completed 3777680 of 3778059 dimensions (100.0%, ETA 0h 0m) lanczos halted after 59744 iterations (dim = 3777811) recovered 37 nontrivial dependencies BLanczosTime: 95960 commencing square root phase reading relations for dependency 1 read 1889489 cycles cycles contain 7358025 unique relations read 7358025 relations multiplying 6101724 relations multiply complete, coefficients have about 175.74 million bits initial square root is modulo 2028101 reading relations for dependency 2 read 1888830 cycles cycles contain 7354128 unique relations read 7354128 relations multiplying 6099464 relations multiply complete, coefficients have about 175.68 million bits initial square root is modulo 2017991 reading relations for dependency 3 read 1888847 cycles cycles contain 7355319 unique relations read 7355319 relations multiplying 6101654 relations multiply complete, coefficients have about 175.74 million bits initial square root is modulo 2027561 sqrtTime: 4290 prp52 factor: 3489796835931103361689260396347023065416395122343361 prp153 factor: 236517156786464756205308903707715975525031761922301258980101045633547768238421296759011363918993807438685658380715328301003618543542563650318286959170677 elapsed time 28:21:58 Sieving CPU time 551:45:01
By Wataru Sakai / Msieve, GMP-ECM 6.2.1 / Jun 16, 2009
(32·10190+31)/9 = 3(5)1899<191> = 3 · 229 · C188
C188 = P86 · P102
P86 = 52311355555847030303143653332060151795995423261951000945838450963825453383089608706687<86>
P102 = 989360933782077602757730767136340057134054664376326080972807007427391485597216486100369325941804525111<102>
Number: 35559_190 N=51754811580139091056121623807213326863981885815946951318130357431667475335597606339964418567038654374898916383632540837781012453501536470968785379265728610706776645641274462235160925117257 ( 188 digits) SNFS difficulty: 191 digits. Divisors found: r1=52311355555847030303143653332060151795995423261951000945838450963825453383089608706687 r2=989360933782077602757730767136340057134054664376326080972807007427391485597216486100369325941804525111 Version: Total time: 386.28 hours. Scaled time: 721.57 units (timescale=1.868). Factorization parameters were as follows: n: 51754811580139091056121623807213326863981885815946951318130357431667475335597606339964418567038654374898916383632540837781012453501536470968785379265728610706776645641274462235160925117257 m: 200000000000000000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5450000, 9050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1769931 x 1770179 Total sieving time: 386.28 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,54,54,2.5,2.5,100000 total time: 386.28 hours. --------- CPU info (if available) ----------
(17·10170+7)/3 = 5(6)1699<171> = 559631 · 104675792068314853<18> · 322875512531802497<18> · C131
C131 = P30 · C102
P30 = 162573751231188186196793586329<30>
C102 = [184286750323182314380444905316628685751186302523555068558316595554862239297139529533915383571885271391<102>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3231751289 Step 1 took 38311ms Step 2 took 14187ms ********** Factor found in step 2: 162573751231188186196793586329 Found probable prime factor of 30 digits: 162573751231188186196793586329 Composite cofactor 184286750323182314380444905316628685751186302523555068558316595554862239297139529533915383571885271391 has 102 digits
By Robert Backstrom / GGNFS, Msieve / Jun 16, 2009
(7·10207-43)/9 = (7)2063<207> = 29 · C206
C206 = P58 · P148
P58 = 3525612691841796717716571447742461396593977021280549090597<58>
P148 = 7607166673102896895035924993239057602596719975676720837964603242247454297832536031682543083611128181134404747535699168691579388841629444804314983421<148>
Number: n N=26819923371647509578544061302681992337164750957854406130268199233716475095785440613026819923371647509578544061302681992337164750957854406130268199233716475095785440613026819923371647509578544061302681992337 ( 206 digits) SNFS difficulty: 208 digits. Divisors found: Tue Jun 16 14:27:57 2009 prp58 factor: 3525612691841796717716571447742461396593977021280549090597 Tue Jun 16 14:27:57 2009 prp148 factor: 7607166673102896895035924993239057602596719975676720837964603242247454297832536031682543083611128181134404747535699168691579388841629444804314983421 Tue Jun 16 14:27:57 2009 elapsed time 34:01:05 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20050930-k8 Total time: 109.38 hours. Scaled time: 161.56 units (timescale=1.477). Factorization parameters were as follows: name: KA_7_206_3 n: 26819923371647509578544061302681992337164750957854406130268199233716475095785440613026819923371647509578544061302681992337164750957854406130268199233716475095785440613026819923371647509578544061302681992337 m: 200000000000000000000000000000000000000000 deg: 5 c5: 175 c0: -344 skew: 1.14 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [10500000, 31534423) Primes: RFBsize:1329943, AFBsize:1329867, largePrimes:40241582 encountered Relations: rels:40602379, finalFF:1267324 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7729398 hash collisions in 46531126 relations Msieve: matrix is 4107666 x 4107914 (1109.4 MB) Total sieving time: 108.14 hours. Total relation processing time: 1.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.6,2.6,100000 total time: 109.38 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2748k kernel code, 36964k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / Msieve / Jun 16, 2009
(58·10169-31)/9 = 6(4)1681<170> = 4759 · 990345030902428049<18> · 1040962582350012886277401<25> · C125
C125 = P44 · P81
P44 = 36034728933765103515768049208221872190779947<44>
P81 = 364524626825221980305319507663534157249009284349617294059232336100323699966871333<81>
Number: 64441_169 N=13135546117328753501423666515409815427710732848545414983081187338314684998812020480051106583513231610413546102918990665559351 ( 125 digits) SNFS difficulty: 171 digits. Divisors found: r1=36034728933765103515768049208221872190779947 (pp44) r2=364524626825221980305319507663534157249009284349617294059232336100323699966871333 (pp81) Version: Msieve-1.40 Total time: 93.24 hours. Scaled time: 193.10 units (timescale=2.071). Factorization parameters were as follows: name: 64441_169 n: 13135546117328753501423666515409815427710732848545414983081187338314684998812020480051106583513231610413546102918990665559351 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: -155 skew: 1.40 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 984133 x 984381 Total sieving time: 88.91 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.87 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 93.24 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jun 15, 2009
(58·10171-31)/9 = 6(4)1701<172> = 3 · 131 · 1072439 · C164
C164 = P45 · P120
P45 = 152397504383392681380161331359317911517374557<45>
P120 = 100332695395700957993833618354525485896082262537839241810909027600644295331161884483270160049035739884288720424176670819<120>
Number: 64441_171 N=15290452386363939446525848048541105999225523296178280103094019270493344440033228019525273934498184829930241610767876967583025349943732440179203332172996263714952183 ( 164 digits) SNFS difficulty: 173 digits. Divisors found: r1=152397504383392681380161331359317911517374557 (pp45) r2=100332695395700957993833618354525485896082262537839241810909027600644295331161884483270160049035739884288720424176670819 (pp120) Version: Msieve-1.40 Total time: 101.26 hours. Scaled time: 257.59 units (timescale=2.544). Factorization parameters were as follows: name: 64441_171 n: 15290452386363939446525848048541105999225523296178280103094019270493344440033228019525273934498184829930241610767876967583025349943732440179203332172996263714952183 m: 20000000000000000000000000000000000 deg: 5 c5: 145 c0: -248 skew: 1.11 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1067207 x 1067455 Total sieving time: 101.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 101.26 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Jun 15, 2009
(68·10170+13)/9 = 7(5)1697<171> = 139 · 29473 · 290911573 · 32154519786569<14> · C143
C143 = P44 · C99
P44 = 23839585429968260174265553579269018490660487<44>
C99 = [827038131338867400594187976741748355884015349016991665314607084014181746469763768683616779908844749<99>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1694953640 Step 1 took 42454ms Step 2 took 14836ms ********** Factor found in step 2: 23839585429968260174265553579269018490660487 Found probable prime factor of 44 digits: 23839585429968260174265553579269018490660487 Composite cofactor 827038131338867400594187976741748355884015349016991665314607084014181746469763768683616779908844749 has 99 digits
(58·10189-31)/9 = 6(4)1881<190> = 3 · 1298969585567877829600303<25> · 104526430293899563124851798413289<33> · C134
C134 = P35 · P99
P35 = 27851355416234957710219931262472333<35>
P99 = 568058146616729197426787256156526078124017948322299569993098655486669818175582047103675908213848777<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=98376821 Step 1 took 38188ms Step 2 took 14478ms ********** Factor found in step 2: 27851355416234957710219931262472333 Found probable prime factor of 35 digits: 27851355416234957710219931262472333 Probable prime cofactor 568058146616729197426787256156526078124017948322299569993098655486669818175582047103675908213848777 has 99 digits
(32·10205+13)/9 = 3(5)2047<206> = 37 · 967379807683<12> · 1184417920426891<16> · 795593320256493401773149644687597<33> · C145
C145 = P51 · P94
P51 = 523543438969426161642554706724547076253559125346249<51>
P94 = 2013538358755604989175086781461802433222124306874954367100349986369529759283778641199459395229<94>
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3446144840 Step 1 took 1563441ms Step 2 took 378657ms ********** Factor found in step 2: 523543438969426161642554706724547076253559125346249 Found probable prime factor of 51 digits: 523543438969426161642554706724547076253559125346249 Probable prime cofactor 2013538358755604989175086781461802433222124306874954367100349986369529759283778641199459395229 has 94 digits
(17·10169+7)/3 = 5(6)1689<170> = 23 · 12541 · 14323 · 87332633531070045486751<23> · C138
C138 = P37 · P101
P37 = 2324768203435506363366226453197815069<37>
P101 = 67558104709023990501069888186016245427948179198146067231684361193242776832285202310303887339358758159<101>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2047747038 Step 1 took 42655ms Step 2 took 14967ms ********** Factor found in step 2: 2324768203435506363366226453197815069 Found probable prime factor of 37 digits: 2324768203435506363366226453197815069 Probable prime cofactor 67558104709023990501069888186016245427948179198146067231684361193242776832285202310303887339358758159 has 101 digits
(52·10169-61)/9 = 5(7)1681<170> = 3 · 89 · 278903 · 3279377 · 32360346197<11> · 4451979143044721<16> · C130
C130 = P47 · P83
P47 = 53078376861500775441655726585136757521797989163<47>
P83 = 30940058238615665313403938893991266571394807926612012937315069117082296436341232033<83>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=616297871 Step 1 took 38399ms Step 2 took 6654ms ********** Factor found in step 2: 53078376861500775441655726585136757521797989163 Found probable prime factor of 47 digits: 53078376861500775441655726585136757521797989163 Probable prime cofactor 30940058238615665313403938893991266571394807926612012937315069117082296436341232033 has 83 digits
By Robert Backstrom / GMP-ECM / Jun 15, 2009
(11·10171-17)/3 = 3(6)1701<172> = 7 · 83 · 89 · 37879493 · 83385999899891719865878511313987222461<38> · C122
C122 = P43 · P79
P43 = 4418221078669137442616872879018688733164741<43>
P79 = 5081132846877830440997852063020506750789351211654669138222845010685572422958853<79>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 22449568247593753184083167533291975290884854540034547605076554357224725377782546501707146485392713868517979960233913402073 (122 digits) Using B1=7962000, B2=23420528050, polynomial Dickson(12), sigma=3300305035 Step 1 took 88764ms Step 2 took 30982ms ********** Factor found in step 2: 4418221078669137442616872879018688733164741 Found probable prime factor of 43 digits: 4418221078669137442616872879018688733164741 Probable prime cofactor 5081132846877830440997852063020506750789351211654669138222845010685572422958853 has 79 digits
By Andreas Tete / Msieve v. 1.42 / Jun 15, 2009
(16·10199-7)/9 = 1(7)199<200> = 264007 · 6353173 · 23291472982858333436228811919662999043691<41> · 1502739138045835488243594532007091714625588183<46> · C102
C102 = P42 · P60
P42 = 452241368214969009042683359968470074470559<42>
P60 = 669607810762702090792985421889647833991658340054391761378041<60>
Sun Jun 14 14:08:47 2009 Msieve v. 1.42 Sun Jun 14 14:08:47 2009 random seeds: c7bcd9dc 96bf054c Sun Jun 14 14:08:47 2009 factoring 302824352506754444443578645843911185284478634106196572443295670733987494299384968724155242087323594919 (102 digits) Sun Jun 14 14:08:48 2009 searching for 15-digit factors Sun Jun 14 14:08:49 2009 commencing quadratic sieve (102-digit input) Sun Jun 14 14:08:49 2009 using multiplier of 1 Sun Jun 14 14:08:49 2009 using 32kb Intel Core sieve core Sun Jun 14 14:08:49 2009 sieve interval: 36 blocks of size 32768 Sun Jun 14 14:08:49 2009 processing polynomials in batches of 6 Sun Jun 14 14:08:49 2009 using a sieve bound of 3198347 (114987 primes) Sun Jun 14 14:08:49 2009 using large prime bound of 479752050 (28 bits) Sun Jun 14 14:08:49 2009 using double large prime bound of 4225034777495250 (44-52 bits) Sun Jun 14 14:08:49 2009 using trial factoring cutoff of 52 bits Sun Jun 14 14:08:49 2009 polynomial 'A' values have 13 factors Sun Jun 14 14:08:59 2009 restarting with 17685 full and 1114340 partial relations Sun Jun 14 18:09:23 2009 115177 relations (27268 full + 87909 combined from 1713973 partial), need 115083 Sun Jun 14 18:09:39 2009 begin with 1741241 relations Sun Jun 14 18:09:40 2009 reduce to 304006 relations in 15 passes Sun Jun 14 18:09:40 2009 attempting to read 304006 relations Sun Jun 14 18:09:48 2009 recovered 304006 relations Sun Jun 14 18:09:48 2009 recovered 294904 polynomials Sun Jun 14 18:09:48 2009 attempting to build 115177 cycles Sun Jun 14 18:09:48 2009 found 115177 cycles in 6 passes Sun Jun 14 18:09:48 2009 distribution of cycle lengths: Sun Jun 14 18:09:48 2009 length 1 : 27268 Sun Jun 14 18:09:48 2009 length 2 : 19448 Sun Jun 14 18:09:48 2009 length 3 : 19360 Sun Jun 14 18:09:48 2009 length 4 : 15827 Sun Jun 14 18:09:49 2009 length 5 : 12078 Sun Jun 14 18:09:49 2009 length 6 : 8314 Sun Jun 14 18:09:49 2009 length 7 : 5356 Sun Jun 14 18:09:49 2009 length 9+: 7526 Sun Jun 14 18:09:49 2009 largest cycle: 20 relations Sun Jun 14 18:09:49 2009 matrix is 114987 x 115177 (32.8 MB) with weight 8128071 (70.57/col) Sun Jun 14 18:09:49 2009 sparse part has weight 8128071 (70.57/col) Sun Jun 14 18:09:50 2009 filtering completed in 3 passes Sun Jun 14 18:09:50 2009 matrix is 110432 x 110496 (31.6 MB) with weight 7844676 (71.00/col) Sun Jun 14 18:09:50 2009 sparse part has weight 7844676 (71.00/col) Sun Jun 14 18:09:50 2009 saving the first 48 matrix rows for later Sun Jun 14 18:09:50 2009 matrix is 110384 x 110496 (20.4 MB) with weight 6291124 (56.94/col) Sun Jun 14 18:09:50 2009 sparse part has weight 4671682 (42.28/col) Sun Jun 14 18:09:50 2009 matrix includes 64 packed rows Sun Jun 14 18:09:50 2009 using block size 44198 for processor cache size 2048 kB Sun Jun 14 18:09:51 2009 commencing Lanczos iteration Sun Jun 14 18:09:51 2009 memory use: 19.2 MB Sun Jun 14 18:10:58 2009 lanczos halted after 1747 iterations (dim = 110382) Sun Jun 14 18:10:58 2009 recovered 17 nontrivial dependencies Sun Jun 14 18:10:59 2009 prp42 factor: 452241368214969009042683359968470074470559 Sun Jun 14 18:10:59 2009 prp60 factor: 669607810762702090792985421889647833991658340054391761378041 Sun Jun 14 18:10:59 2009 elapsed time 04:02:12 total time 11:33:01
By Justin Card / ggnfs, msieve 1.41 / Jun 14, 2009
(56·10173+61)/9 = 6(2)1729<174> = 37 · 1456321 · 223735397 · 47438213027<11> · 6724817532511251616845931<25> · C123
C123 = P58 · P66
P58 = 1076573811006174078255496603425369798195157247908414024513<58>
P66 = 150279363077127682942036206681415950498349083088117034520490825661<66>
Sieving with ggnfs over 2 days. post processing: Fri Jun 12 19:58:59 2009 Fri Jun 12 19:58:59 2009 Fri Jun 12 19:58:59 2009 Msieve v. 1.41 Fri Jun 12 19:58:59 2009 random seeds: d4231cb1 94d197db Fri Jun 12 19:58:59 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Fri Jun 12 19:59:01 2009 searching for 15-digit factors Fri Jun 12 19:59:01 2009 commencing number field sieve (123-digit input) Fri Jun 12 19:59:01 2009 R0: -403531707038578195679824 Fri Jun 12 19:59:01 2009 R1: 18400543438849 Fri Jun 12 19:59:01 2009 A0: 288596986503835432574359753965 Fri Jun 12 19:59:01 2009 A1: -7558628649210801901609443 Fri Jun 12 19:59:01 2009 A2: -90495200746547881266 Fri Jun 12 19:59:01 2009 A3: 367691967788437 Fri Jun 12 19:59:01 2009 A4: 2322968419 Fri Jun 12 19:59:01 2009 A5: 15120 Fri Jun 12 19:59:01 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Fri Jun 12 19:59:02 2009 generating factor base Fri Jun 12 19:59:07 2009 factor base complete: Fri Jun 12 19:59:07 2009 424490 rational roots (max prime = 6181811) Fri Jun 12 19:59:07 2009 425953 algebraic roots (max prime = 6181753) Fri Jun 12 19:59:07 2009 a range: [-28363636, 28363636] Fri Jun 12 19:59:07 2009 b range: [1, 4294967295] Fri Jun 12 19:59:07 2009 number of hash buckets: 95 Fri Jun 12 19:59:07 2009 sieve block size: 65536 Fri Jun 12 19:59:07 2009 Fri Jun 12 19:59:07 2009 maximum RFB prime: 6181811 Fri Jun 12 19:59:07 2009 RFB entries: 424490 Fri Jun 12 19:59:07 2009 medium RFB entries: 6542 Fri Jun 12 19:59:07 2009 resieved RFB entries: 6374 Fri Jun 12 19:59:07 2009 small RFB prime powers: 25 Fri Jun 12 19:59:07 2009 projective RFB roots: 5 Fri Jun 12 19:59:07 2009 RFB trial factoring cutoff: 59 or 88 bits Fri Jun 12 19:59:07 2009 single large prime RFB range: 23 - 27 bits Fri Jun 12 19:59:07 2009 double large prime RFB range: 46 - 52 bits Fri Jun 12 19:59:07 2009 triple large prime RFB range: 71 - 79 bits Fri Jun 12 19:59:07 2009 Fri Jun 12 19:59:07 2009 maximum AFB prime: 6181753 Fri Jun 12 19:59:07 2009 AFB entries: 425953 Fri Jun 12 19:59:07 2009 medium AFB entries: 6520 Fri Jun 12 19:59:07 2009 resieved AFB entries: 6275 Fri Jun 12 19:59:07 2009 small AFB prime powers: 131 Fri Jun 12 19:59:07 2009 projective AFB roots: 4 Fri Jun 12 19:59:07 2009 AFB trial factoring cutoff: 59 or 88 bits Fri Jun 12 19:59:07 2009 single large prime AFB range: 23 - 27 bits Fri Jun 12 19:59:07 2009 double large prime AFB range: 46 - 52 bits Fri Jun 12 19:59:07 2009 triple large prime AFB range: 71 - 79 bits Fri Jun 12 19:59:07 2009 Fri Jun 12 19:59:08 2009 multiplying 1639202 primes from 6181753 to 33554432 Fri Jun 12 19:59:40 2009 Fri Jun 12 19:59:40 2009 Fri Jun 12 19:59:40 2009 Msieve v. 1.41 Fri Jun 12 19:59:40 2009 random seeds: 2353b878 c382ae6b Fri Jun 12 19:59:40 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Fri Jun 12 19:59:42 2009 searching for 15-digit factors Fri Jun 12 19:59:43 2009 commencing number field sieve (123-digit input) Fri Jun 12 19:59:43 2009 R0: -403531707038578195679824 Fri Jun 12 19:59:43 2009 R1: 18400543438849 Fri Jun 12 19:59:43 2009 A0: 288596986503835432574359753965 Fri Jun 12 19:59:43 2009 A1: -7558628649210801901609443 Fri Jun 12 19:59:43 2009 A2: -90495200746547881266 Fri Jun 12 19:59:43 2009 A3: 367691967788437 Fri Jun 12 19:59:43 2009 A4: 2322968419 Fri Jun 12 19:59:43 2009 A5: 15120 Fri Jun 12 19:59:43 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Fri Jun 12 19:59:43 2009 Fri Jun 12 19:59:43 2009 commencing relation filtering Fri Jun 12 19:59:43 2009 commencing duplicate removal, pass 1 Fri Jun 12 19:59:43 2009 found 0 hash collisions in 0 relations Fri Jun 12 19:59:43 2009 reading rational ideals above 327680 Fri Jun 12 19:59:43 2009 reading algebraic ideals above 327680 Fri Jun 12 19:59:43 2009 commencing singleton removal, pass 1 Fri Jun 12 19:59:43 2009 relations with 0 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 1 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 2 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 3 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 4 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 5 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 6 large ideals: 0 Fri Jun 12 19:59:43 2009 relations with 7+ large ideals: 0 Fri Jun 12 19:59:43 2009 0 relations and about 0 large ideals Fri Jun 12 19:59:43 2009 commencing singleton removal, pass 2 Fri Jun 12 19:59:43 2009 found 0 singletons Fri Jun 12 19:59:43 2009 current dataset: 0 relations and about 0 large ideals Fri Jun 12 19:59:43 2009 commencing singleton removal, final pass Fri Jun 12 19:59:43 2009 memory use: 0.1 MB Fri Jun 12 19:59:43 2009 commencing in-memory singleton removal Fri Jun 12 19:59:43 2009 begin with 0 relations and 0 unique ideals Fri Jun 12 19:59:43 2009 reduce to 0 relations and 0 ideals in 1 passes Fri Jun 12 19:59:43 2009 max relations containing the same ideal: 0 Fri Jun 12 19:59:44 2009 reading rational ideals above 100000 Fri Jun 12 19:59:44 2009 reading algebraic ideals above 100000 Fri Jun 12 19:59:44 2009 commencing singleton removal, final pass Fri Jun 12 19:59:44 2009 keeping 0 ideals with weight <= 25, new excess is 19224 Fri Jun 12 20:00:21 2009 Fri Jun 12 20:00:21 2009 Fri Jun 12 20:00:21 2009 Msieve v. 1.41 Fri Jun 12 20:00:21 2009 random seeds: bf533eb4 9b4b30df Fri Jun 12 20:00:21 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Fri Jun 12 20:00:22 2009 searching for 15-digit factors Fri Jun 12 20:00:23 2009 commencing number field sieve (123-digit input) Fri Jun 12 20:00:23 2009 R0: -403531707038578195679824 Fri Jun 12 20:00:23 2009 R1: 18400543438849 Fri Jun 12 20:00:23 2009 A0: 288596986503835432574359753965 Fri Jun 12 20:00:23 2009 A1: -7558628649210801901609443 Fri Jun 12 20:00:23 2009 A2: -90495200746547881266 Fri Jun 12 20:00:23 2009 A3: 367691967788437 Fri Jun 12 20:00:23 2009 A4: 2322968419 Fri Jun 12 20:00:23 2009 A5: 15120 Fri Jun 12 20:00:23 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Fri Jun 12 20:00:23 2009 Fri Jun 12 20:00:23 2009 commencing relation filtering Fri Jun 12 20:00:23 2009 commencing duplicate removal, pass 1 Fri Jun 12 20:01:23 2009 found 245218 hash collisions in 4342759 relations Fri Jun 12 20:01:48 2009 added 32761 free relations Fri Jun 12 20:01:48 2009 commencing duplicate removal, pass 2 Fri Jun 12 20:01:52 2009 found 221724 duplicates and 4153796 unique relations Fri Jun 12 20:01:52 2009 memory use: 36.7 MB Fri Jun 12 20:01:52 2009 reading rational ideals above 7929856 Fri Jun 12 20:01:52 2009 reading algebraic ideals above 7929856 Fri Jun 12 20:01:52 2009 commencing singleton removal, pass 1 Fri Jun 12 20:02:51 2009 relations with 0 large ideals: 225807 Fri Jun 12 20:02:51 2009 relations with 1 large ideals: 904826 Fri Jun 12 20:02:51 2009 relations with 2 large ideals: 1503333 Fri Jun 12 20:02:51 2009 relations with 3 large ideals: 1135579 Fri Jun 12 20:02:51 2009 relations with 4 large ideals: 345538 Fri Jun 12 20:02:51 2009 relations with 5 large ideals: 10406 Fri Jun 12 20:02:51 2009 relations with 6 large ideals: 28307 Fri Jun 12 20:02:51 2009 relations with 7+ large ideals: 0 Fri Jun 12 20:02:51 2009 4153796 relations and about 4466316 large ideals Fri Jun 12 20:02:51 2009 commencing singleton removal, pass 2 Fri Jun 12 20:03:49 2009 found 2073269 singletons Fri Jun 12 20:03:49 2009 current dataset: 2080527 relations and about 1761280 large ideals Fri Jun 12 20:03:49 2009 commencing singleton removal, pass 3 Fri Jun 12 20:04:20 2009 found 669977 singletons Fri Jun 12 20:04:20 2009 current dataset: 1410550 relations and about 987820 large ideals Fri Jun 12 20:04:20 2009 commencing singleton removal, pass 4 Fri Jun 12 20:04:42 2009 found 251716 singletons Fri Jun 12 20:04:42 2009 current dataset: 1158834 relations and about 716140 large ideals Fri Jun 12 20:04:42 2009 commencing singleton removal, final pass Fri Jun 12 20:04:59 2009 memory use: 16.6 MB Fri Jun 12 20:04:59 2009 commencing in-memory singleton removal Fri Jun 12 20:04:59 2009 begin with 1158834 relations and 737995 unique ideals Fri Jun 12 20:05:01 2009 reduce to 901584 relations and 471390 ideals in 19 passes Fri Jun 12 20:05:01 2009 max relations containing the same ideal: 19 Fri Jun 12 20:05:01 2009 reading rational ideals above 720000 Fri Jun 12 20:05:01 2009 reading algebraic ideals above 720000 Fri Jun 12 20:05:01 2009 commencing singleton removal, final pass Fri Jun 12 20:05:18 2009 keeping 1394025 ideals with weight <= 20, new excess is 116433 Fri Jun 12 20:05:19 2009 memory use: 34.6 MB Fri Jun 12 20:05:19 2009 commencing in-memory singleton removal Fri Jun 12 20:05:19 2009 begin with 913236 relations and 1394025 unique ideals Fri Jun 12 20:05:19 2009 reduce to 525 relations and 19 ideals in 8 passes Fri Jun 12 20:05:19 2009 max relations containing the same ideal: 2 Fri Jun 12 20:05:19 2009 filtering wants 403668 more relations Fri Jun 12 20:05:19 2009 elapsed time 00:04:58 Fri Jun 12 22:19:23 2009 Fri Jun 12 22:19:23 2009 Fri Jun 12 22:19:23 2009 Msieve v. 1.41 Fri Jun 12 22:19:23 2009 random seeds: bfd03f0f 5f41b48a Fri Jun 12 22:19:23 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Fri Jun 12 22:19:25 2009 searching for 15-digit factors Fri Jun 12 22:19:26 2009 commencing number field sieve (123-digit input) Fri Jun 12 22:19:26 2009 R0: -403531707038578195679824 Fri Jun 12 22:19:26 2009 R1: 18400543438849 Fri Jun 12 22:19:26 2009 A0: 288596986503835432574359753965 Fri Jun 12 22:19:26 2009 A1: -7558628649210801901609443 Fri Jun 12 22:19:26 2009 A2: -90495200746547881266 Fri Jun 12 22:19:26 2009 A3: 367691967788437 Fri Jun 12 22:19:26 2009 A4: 2322968419 Fri Jun 12 22:19:26 2009 A5: 15120 Fri Jun 12 22:19:26 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Fri Jun 12 22:19:26 2009 Fri Jun 12 22:19:26 2009 commencing relation filtering Fri Jun 12 22:19:26 2009 commencing duplicate removal, pass 1 Fri Jun 12 22:20:40 2009 error -15 reading relation 4853261 Fri Jun 12 22:20:44 2009 found 332870 hash collisions in 5121689 relations Fri Jun 12 22:21:10 2009 added 32874 free relations Fri Jun 12 22:21:10 2009 commencing duplicate removal, pass 2 Fri Jun 12 22:21:15 2009 found 302652 duplicates and 4851911 unique relations Fri Jun 12 22:21:15 2009 memory use: 40.3 MB Fri Jun 12 22:21:15 2009 reading rational ideals above 8192000 Fri Jun 12 22:21:15 2009 reading algebraic ideals above 8192000 Fri Jun 12 22:21:15 2009 commencing singleton removal, pass 1 Fri Jun 12 22:22:24 2009 relations with 0 large ideals: 264315 Fri Jun 12 22:22:24 2009 relations with 1 large ideals: 1052504 Fri Jun 12 22:22:24 2009 relations with 2 large ideals: 1735144 Fri Jun 12 22:22:24 2009 relations with 3 large ideals: 1319991 Fri Jun 12 22:22:24 2009 relations with 4 large ideals: 424942 Fri Jun 12 22:22:24 2009 relations with 5 large ideals: 26723 Fri Jun 12 22:22:24 2009 relations with 6 large ideals: 28292 Fri Jun 12 22:22:24 2009 relations with 7+ large ideals: 0 Fri Jun 12 22:22:24 2009 4851911 relations and about 4759380 large ideals Fri Jun 12 22:22:24 2009 commencing singleton removal, pass 2 Fri Jun 12 22:23:33 2009 found 2063490 singletons Fri Jun 12 22:23:33 2009 current dataset: 2788421 relations and about 2200671 large ideals Fri Jun 12 22:23:33 2009 commencing singleton removal, pass 3 Fri Jun 12 22:24:15 2009 found 656390 singletons Fri Jun 12 22:24:15 2009 current dataset: 2132031 relations and about 1474736 large ideals Fri Jun 12 22:24:15 2009 commencing singleton removal, pass 4 Fri Jun 12 22:24:46 2009 found 242361 singletons Fri Jun 12 22:24:46 2009 current dataset: 1889670 relations and about 1220553 large ideals Fri Jun 12 22:24:46 2009 commencing singleton removal, final pass Fri Jun 12 22:25:15 2009 memory use: 26.0 MB Fri Jun 12 22:25:15 2009 commencing in-memory singleton removal Fri Jun 12 22:25:15 2009 begin with 1889670 relations and 1258949 unique ideals Fri Jun 12 22:25:18 2009 reduce to 1593421 relations and 955497 ideals in 16 passes Fri Jun 12 22:25:18 2009 max relations containing the same ideal: 27 Fri Jun 12 22:25:19 2009 reading rational ideals above 720000 Fri Jun 12 22:25:19 2009 reading algebraic ideals above 720000 Fri Jun 12 22:25:19 2009 commencing singleton removal, final pass Fri Jun 12 22:25:48 2009 keeping 1913424 ideals with weight <= 20, new excess is 125729 Fri Jun 12 22:25:49 2009 memory use: 64.8 MB Fri Jun 12 22:25:49 2009 commencing in-memory singleton removal Fri Jun 12 22:25:49 2009 begin with 1596892 relations and 1913424 unique ideals Fri Jun 12 22:26:08 2009 reduce to 1013701 relations and 1301558 ideals in 73 passes Fri Jun 12 22:26:08 2009 max relations containing the same ideal: 20 Fri Jun 12 22:26:08 2009 filtering wants 1000000 more relations Fri Jun 12 22:26:08 2009 elapsed time 00:06:45 Fri Jun 12 23:46:27 2009 Fri Jun 12 23:46:27 2009 Fri Jun 12 23:46:27 2009 Msieve v. 1.41 Fri Jun 12 23:46:27 2009 random seeds: deb8b6cc 2e1ca6cf Fri Jun 12 23:46:27 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Fri Jun 12 23:46:28 2009 searching for 15-digit factors Fri Jun 12 23:46:29 2009 commencing number field sieve (123-digit input) Fri Jun 12 23:46:29 2009 R0: -403531707038578195679824 Fri Jun 12 23:46:29 2009 R1: 18400543438849 Fri Jun 12 23:46:29 2009 A0: 288596986503835432574359753965 Fri Jun 12 23:46:29 2009 A1: -7558628649210801901609443 Fri Jun 12 23:46:29 2009 A2: -90495200746547881266 Fri Jun 12 23:46:29 2009 A3: 367691967788437 Fri Jun 12 23:46:29 2009 A4: 2322968419 Fri Jun 12 23:46:29 2009 A5: 15120 Fri Jun 12 23:46:29 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Fri Jun 12 23:46:29 2009 Fri Jun 12 23:46:29 2009 commencing relation filtering Fri Jun 12 23:46:29 2009 commencing duplicate removal, pass 1 Fri Jun 12 23:47:47 2009 error -15 reading relation 5041416 Fri Jun 12 23:47:53 2009 found 378687 hash collisions in 5493173 relations Fri Jun 12 23:48:20 2009 added 32906 free relations Fri Jun 12 23:48:20 2009 commencing duplicate removal, pass 2 Fri Jun 12 23:48:25 2009 found 345149 duplicates and 5180930 unique relations Fri Jun 12 23:48:25 2009 memory use: 40.3 MB Fri Jun 12 23:48:25 2009 reading rational ideals above 9109504 Fri Jun 12 23:48:25 2009 reading algebraic ideals above 9109504 Fri Jun 12 23:48:25 2009 commencing singleton removal, pass 1 Fri Jun 12 23:49:39 2009 relations with 0 large ideals: 345545 Fri Jun 12 23:49:39 2009 relations with 1 large ideals: 1266516 Fri Jun 12 23:49:39 2009 relations with 2 large ideals: 1888794 Fri Jun 12 23:49:39 2009 relations with 3 large ideals: 1282726 Fri Jun 12 23:49:39 2009 relations with 4 large ideals: 355464 Fri Jun 12 23:49:39 2009 relations with 5 large ideals: 13999 Fri Jun 12 23:49:39 2009 relations with 6 large ideals: 27886 Fri Jun 12 23:49:39 2009 relations with 7+ large ideals: 0 Fri Jun 12 23:49:39 2009 5180930 relations and about 4783311 large ideals Fri Jun 12 23:49:39 2009 commencing singleton removal, pass 2 Fri Jun 12 23:50:52 2009 found 2032546 singletons Fri Jun 12 23:50:52 2009 current dataset: 3148384 relations and about 2315356 large ideals Fri Jun 12 23:50:52 2009 commencing singleton removal, pass 3 Fri Jun 12 23:51:37 2009 found 618234 singletons Fri Jun 12 23:51:37 2009 current dataset: 2530150 relations and about 1643805 large ideals Fri Jun 12 23:51:37 2009 commencing singleton removal, pass 4 Fri Jun 12 23:52:14 2009 found 211011 singletons Fri Jun 12 23:52:14 2009 current dataset: 2319139 relations and about 1425302 large ideals Fri Jun 12 23:52:14 2009 commencing singleton removal, final pass Fri Jun 12 23:52:48 2009 memory use: 33.3 MB Fri Jun 12 23:52:48 2009 commencing in-memory singleton removal Fri Jun 12 23:52:48 2009 begin with 2319138 relations and 1470374 unique ideals Fri Jun 12 23:52:51 2009 reduce to 2065653 relations and 1212121 ideals in 14 passes Fri Jun 12 23:52:51 2009 max relations containing the same ideal: 32 Fri Jun 12 23:52:52 2009 reading rational ideals above 720000 Fri Jun 12 23:52:52 2009 reading algebraic ideals above 720000 Fri Jun 12 23:52:52 2009 commencing singleton removal, final pass Fri Jun 12 23:53:27 2009 keeping 2244398 ideals with weight <= 20, new excess is 151810 Fri Jun 12 23:53:29 2009 memory use: 66.1 MB Fri Jun 12 23:53:29 2009 commencing in-memory singleton removal Fri Jun 12 23:53:30 2009 begin with 2065846 relations and 2244398 unique ideals Fri Jun 12 23:53:40 2009 reduce to 1751486 relations and 1923897 ideals in 24 passes Fri Jun 12 23:53:40 2009 max relations containing the same ideal: 20 Fri Jun 12 23:53:40 2009 filtering wants 1000000 more relations Fri Jun 12 23:53:40 2009 elapsed time 00:07:13 Sat Jun 13 01:02:32 2009 Sat Jun 13 01:02:32 2009 Sat Jun 13 01:02:32 2009 Msieve v. 1.41 Sat Jun 13 01:02:32 2009 random seeds: 82748a4d d51598b3 Sat Jun 13 01:02:32 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Sat Jun 13 01:02:33 2009 searching for 15-digit factors Sat Jun 13 01:02:34 2009 commencing number field sieve (123-digit input) Sat Jun 13 01:02:34 2009 R0: -403531707038578195679824 Sat Jun 13 01:02:34 2009 R1: 18400543438849 Sat Jun 13 01:02:34 2009 A0: 288596986503835432574359753965 Sat Jun 13 01:02:34 2009 A1: -7558628649210801901609443 Sat Jun 13 01:02:34 2009 A2: -90495200746547881266 Sat Jun 13 01:02:34 2009 A3: 367691967788437 Sat Jun 13 01:02:34 2009 A4: 2322968419 Sat Jun 13 01:02:34 2009 A5: 15120 Sat Jun 13 01:02:34 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Sat Jun 13 01:02:34 2009 Sat Jun 13 01:02:34 2009 commencing relation filtering Sat Jun 13 01:02:34 2009 commencing duplicate removal, pass 1 Sat Jun 13 01:03:48 2009 error -15 reading relation 5182393 Sat Jun 13 01:03:55 2009 found 414465 hash collisions in 5772298 relations Sat Jun 13 01:04:22 2009 added 32928 free relations Sat Jun 13 01:04:22 2009 commencing duplicate removal, pass 2 Sat Jun 13 01:04:27 2009 found 378446 duplicates and 5426780 unique relations Sat Jun 13 01:04:27 2009 memory use: 40.3 MB Sat Jun 13 01:04:27 2009 reading rational ideals above 9240576 Sat Jun 13 01:04:27 2009 reading algebraic ideals above 9240576 Sat Jun 13 01:04:27 2009 commencing singleton removal, pass 1 Sat Jun 13 01:05:43 2009 relations with 0 large ideals: 377155 Sat Jun 13 01:05:43 2009 relations with 1 large ideals: 1362769 Sat Jun 13 01:05:43 2009 relations with 2 large ideals: 1994385 Sat Jun 13 01:05:43 2009 relations with 3 large ideals: 1314888 Sat Jun 13 01:05:43 2009 relations with 4 large ideals: 342912 Sat Jun 13 01:05:43 2009 relations with 5 large ideals: 6832 Sat Jun 13 01:05:43 2009 relations with 6 large ideals: 27839 Sat Jun 13 01:05:43 2009 relations with 7+ large ideals: 0 Sat Jun 13 01:05:43 2009 5426780 relations and about 4859513 large ideals Sat Jun 13 01:05:43 2009 commencing singleton removal, pass 2 Sat Jun 13 01:06:59 2009 found 2010559 singletons Sat Jun 13 01:06:59 2009 current dataset: 3416221 relations and about 2450810 large ideals Sat Jun 13 01:06:59 2009 commencing singleton removal, pass 3 Sat Jun 13 01:07:49 2009 found 597342 singletons Sat Jun 13 01:07:49 2009 current dataset: 2818879 relations and about 1808301 large ideals Sat Jun 13 01:07:49 2009 commencing singleton removal, pass 4 Sat Jun 13 01:08:29 2009 found 196450 singletons Sat Jun 13 01:08:29 2009 current dataset: 2622429 relations and about 1605872 large ideals Sat Jun 13 01:08:29 2009 commencing singleton removal, final pass Sat Jun 13 01:09:08 2009 memory use: 35.7 MB Sat Jun 13 01:09:08 2009 commencing in-memory singleton removal Sat Jun 13 01:09:08 2009 begin with 2622429 relations and 1656743 unique ideals Sat Jun 13 01:09:11 2009 reduce to 2379143 relations and 1409509 ideals in 13 passes Sat Jun 13 01:09:11 2009 max relations containing the same ideal: 34 Sat Jun 13 01:09:12 2009 reading rational ideals above 720000 Sat Jun 13 01:09:12 2009 reading algebraic ideals above 720000 Sat Jun 13 01:09:12 2009 commencing singleton removal, final pass Sat Jun 13 01:09:54 2009 keeping 2439301 ideals with weight <= 20, new excess is 178904 Sat Jun 13 01:09:56 2009 memory use: 89.9 MB Sat Jun 13 01:09:56 2009 commencing in-memory singleton removal Sat Jun 13 01:09:56 2009 begin with 2379242 relations and 2439301 unique ideals Sat Jun 13 01:10:04 2009 reduce to 2157977 relations and 2214963 ideals in 16 passes Sat Jun 13 01:10:04 2009 max relations containing the same ideal: 20 Sat Jun 13 01:10:05 2009 filtering wants 1000000 more relations Sat Jun 13 01:10:05 2009 elapsed time 00:07:33 Sat Jun 13 09:20:57 2009 Sat Jun 13 09:20:57 2009 Sat Jun 13 09:20:57 2009 Msieve v. 1.41 Sat Jun 13 09:20:57 2009 random seeds: d4f72b0d 5f6e8dac Sat Jun 13 09:20:57 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Sat Jun 13 09:20:59 2009 searching for 15-digit factors Sat Jun 13 09:21:00 2009 commencing number field sieve (123-digit input) Sat Jun 13 09:21:00 2009 R0: -403531707038578195679824 Sat Jun 13 09:21:00 2009 R1: 18400543438849 Sat Jun 13 09:21:00 2009 A0: 288596986503835432574359753965 Sat Jun 13 09:21:00 2009 A1: -7558628649210801901609443 Sat Jun 13 09:21:00 2009 A2: -90495200746547881266 Sat Jun 13 09:21:00 2009 A3: 367691967788437 Sat Jun 13 09:21:00 2009 A4: 2322968419 Sat Jun 13 09:21:00 2009 A5: 15120 Sat Jun 13 09:21:00 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Sat Jun 13 09:21:00 2009 Sat Jun 13 09:21:00 2009 commencing relation filtering Sat Jun 13 09:21:00 2009 commencing duplicate removal, pass 1 Sat Jun 13 09:22:35 2009 error -15 reading relation 6135277 Sat Jun 13 09:22:57 2009 found 693492 hash collisions in 7649825 relations Sat Jun 13 09:23:25 2009 added 32973 free relations Sat Jun 13 09:23:25 2009 commencing duplicate removal, pass 2 Sat Jun 13 09:23:32 2009 found 641368 duplicates and 7041430 unique relations Sat Jun 13 09:23:32 2009 memory use: 48.6 MB Sat Jun 13 09:23:32 2009 reading rational ideals above 9633792 Sat Jun 13 09:23:32 2009 reading algebraic ideals above 9633792 Sat Jun 13 09:23:32 2009 commencing singleton removal, pass 1 Sat Jun 13 09:25:14 2009 relations with 0 large ideals: 506739 Sat Jun 13 09:25:14 2009 relations with 1 large ideals: 1797606 Sat Jun 13 09:25:14 2009 relations with 2 large ideals: 2579855 Sat Jun 13 09:25:14 2009 relations with 3 large ideals: 1674934 Sat Jun 13 09:25:14 2009 relations with 4 large ideals: 440116 Sat Jun 13 09:25:14 2009 relations with 5 large ideals: 14500 Sat Jun 13 09:25:14 2009 relations with 6 large ideals: 27680 Sat Jun 13 09:25:14 2009 relations with 7+ large ideals: 0 Sat Jun 13 09:25:14 2009 7041430 relations and about 5295063 large ideals Sat Jun 13 09:25:14 2009 commencing singleton removal, pass 2 Sat Jun 13 09:27:01 2009 found 1790083 singletons Sat Jun 13 09:27:01 2009 current dataset: 5251347 relations and about 3286858 large ideals Sat Jun 13 09:27:01 2009 commencing singleton removal, pass 3 Sat Jun 13 09:28:24 2009 found 425197 singletons Sat Jun 13 09:28:24 2009 current dataset: 4826150 relations and about 2847189 large ideals Sat Jun 13 09:28:24 2009 commencing singleton removal, final pass Sat Jun 13 09:29:36 2009 memory use: 69.3 MB Sat Jun 13 09:29:37 2009 commencing in-memory singleton removal Sat Jun 13 09:29:37 2009 begin with 4826149 relations and 2931993 unique ideals Sat Jun 13 09:29:43 2009 reduce to 4568128 relations and 2670795 ideals in 11 passes Sat Jun 13 09:29:43 2009 max relations containing the same ideal: 42 Sat Jun 13 09:29:44 2009 reading rational ideals above 720000 Sat Jun 13 09:29:44 2009 reading algebraic ideals above 720000 Sat Jun 13 09:29:44 2009 commencing singleton removal, final pass Sat Jun 13 09:31:07 2009 keeping 3506550 ideals with weight <= 20, new excess is 444702 Sat Jun 13 09:31:12 2009 memory use: 127.2 MB Sat Jun 13 09:31:12 2009 commencing in-memory singleton removal Sat Jun 13 09:31:13 2009 begin with 4568195 relations and 3506550 unique ideals Sat Jun 13 09:31:21 2009 reduce to 4532733 relations and 3470763 ideals in 9 passes Sat Jun 13 09:31:21 2009 max relations containing the same ideal: 20 Sat Jun 13 09:31:26 2009 removing 1083262 relations and 810204 ideals in 273058 cliques Sat Jun 13 09:31:27 2009 commencing in-memory singleton removal Sat Jun 13 09:31:27 2009 begin with 3449471 relations and 3470763 unique ideals Sat Jun 13 09:31:32 2009 reduce to 3299683 relations and 2500727 ideals in 7 passes Sat Jun 13 09:31:32 2009 max relations containing the same ideal: 20 Sat Jun 13 09:31:36 2009 removing 833905 relations and 560847 ideals in 273058 cliques Sat Jun 13 09:31:36 2009 commencing in-memory singleton removal Sat Jun 13 09:31:37 2009 begin with 2465778 relations and 2500727 unique ideals Sat Jun 13 09:31:40 2009 reduce to 2332272 relations and 1795523 ideals in 8 passes Sat Jun 13 09:31:40 2009 max relations containing the same ideal: 19 Sat Jun 13 09:31:43 2009 removing 106458 relations and 85564 ideals in 20894 cliques Sat Jun 13 09:31:43 2009 commencing in-memory singleton removal Sat Jun 13 09:31:43 2009 begin with 2225814 relations and 1795523 unique ideals Sat Jun 13 09:31:45 2009 reduce to 2223285 relations and 1707413 ideals in 5 passes Sat Jun 13 09:31:45 2009 max relations containing the same ideal: 18 Sat Jun 13 09:31:46 2009 relations with 0 large ideals: 35555 Sat Jun 13 09:31:46 2009 relations with 1 large ideals: 212163 Sat Jun 13 09:31:46 2009 relations with 2 large ideals: 514722 Sat Jun 13 09:31:46 2009 relations with 3 large ideals: 659685 Sat Jun 13 09:31:46 2009 relations with 4 large ideals: 493889 Sat Jun 13 09:31:46 2009 relations with 5 large ideals: 226498 Sat Jun 13 09:31:46 2009 relations with 6 large ideals: 67432 Sat Jun 13 09:31:46 2009 relations with 7+ large ideals: 13341 Sat Jun 13 09:31:46 2009 commencing 2-way merge Sat Jun 13 09:31:49 2009 reduce to 1578507 relation sets and 1062635 unique ideals Sat Jun 13 09:31:49 2009 commencing full merge Sat Jun 13 09:32:19 2009 memory use: 104.7 MB Sat Jun 13 09:32:19 2009 found 793018 cycles, need 722835 Sat Jun 13 09:32:20 2009 weight of 722835 cycles is about 51025720 (70.59/cycle) Sat Jun 13 09:32:20 2009 distribution of cycle lengths: Sat Jun 13 09:32:20 2009 1 relations: 70009 Sat Jun 13 09:32:20 2009 2 relations: 75914 Sat Jun 13 09:32:20 2009 3 relations: 81835 Sat Jun 13 09:32:20 2009 4 relations: 78723 Sat Jun 13 09:32:20 2009 5 relations: 74097 Sat Jun 13 09:32:20 2009 6 relations: 67368 Sat Jun 13 09:32:20 2009 7 relations: 59972 Sat Jun 13 09:32:20 2009 8 relations: 52597 Sat Jun 13 09:32:20 2009 9 relations: 44793 Sat Jun 13 09:32:20 2009 10+ relations: 117527 Sat Jun 13 09:32:20 2009 heaviest cycle: 15 relations Sat Jun 13 09:32:20 2009 commencing cycle optimization Sat Jun 13 09:32:22 2009 start with 4135027 relations Sat Jun 13 09:32:36 2009 pruned 184148 relations Sat Jun 13 09:32:36 2009 memory use: 126.0 MB Sat Jun 13 09:32:36 2009 distribution of cycle lengths: Sat Jun 13 09:32:36 2009 1 relations: 70009 Sat Jun 13 09:32:36 2009 2 relations: 78957 Sat Jun 13 09:32:36 2009 3 relations: 87287 Sat Jun 13 09:32:36 2009 4 relations: 83219 Sat Jun 13 09:32:36 2009 5 relations: 78985 Sat Jun 13 09:32:36 2009 6 relations: 70517 Sat Jun 13 09:32:36 2009 7 relations: 62392 Sat Jun 13 09:32:36 2009 8 relations: 53131 Sat Jun 13 09:32:36 2009 9 relations: 43708 Sat Jun 13 09:32:36 2009 10+ relations: 94630 Sat Jun 13 09:32:36 2009 heaviest cycle: 15 relations Sat Jun 13 09:32:37 2009 RelProcTime: 578 Sat Jun 13 09:32:37 2009 elapsed time 00:11:40 Sat Jun 13 10:08:45 2009 Sat Jun 13 10:08:45 2009 Sat Jun 13 10:08:45 2009 Msieve v. 1.41 Sat Jun 13 10:08:45 2009 random seeds: b95777f6 913f57c4 Sat Jun 13 10:08:45 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Sat Jun 13 10:08:46 2009 searching for 15-digit factors Sat Jun 13 10:08:47 2009 commencing number field sieve (123-digit input) Sat Jun 13 10:08:47 2009 R0: -403531707038578195679824 Sat Jun 13 10:08:47 2009 R1: 18400543438849 Sat Jun 13 10:08:47 2009 A0: 288596986503835432574359753965 Sat Jun 13 10:08:47 2009 A1: -7558628649210801901609443 Sat Jun 13 10:08:47 2009 A2: -90495200746547881266 Sat Jun 13 10:08:47 2009 A3: 367691967788437 Sat Jun 13 10:08:47 2009 A4: 2322968419 Sat Jun 13 10:08:47 2009 A5: 15120 Sat Jun 13 10:08:47 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Sat Jun 13 10:08:47 2009 Sat Jun 13 10:08:47 2009 commencing linear algebra Sat Jun 13 10:08:48 2009 read 722835 cycles Sat Jun 13 10:08:50 2009 cycles contain 1990579 unique relations Sat Jun 13 10:09:22 2009 read 1990579 relations Sat Jun 13 10:09:27 2009 using 20 quadratic characters above 67108668 Sat Jun 13 10:09:48 2009 building initial matrix Sat Jun 13 10:10:31 2009 memory use: 267.2 MB Sat Jun 13 10:10:32 2009 read 722835 cycles Sat Jun 13 10:10:33 2009 matrix is 722618 x 722835 (213.2 MB) with weight 67963204 (94.02/col) Sat Jun 13 10:10:33 2009 sparse part has weight 47938517 (66.32/col) Sat Jun 13 10:11:07 2009 filtering completed in 3 passes Sat Jun 13 10:11:07 2009 matrix is 721430 x 721630 (213.0 MB) with weight 67890760 (94.08/col) Sat Jun 13 10:11:07 2009 sparse part has weight 47901032 (66.38/col) Sat Jun 13 10:11:15 2009 read 721630 cycles Sat Jun 13 10:11:16 2009 matrix is 721430 x 721630 (213.0 MB) with weight 67890760 (94.08/col) Sat Jun 13 10:11:16 2009 sparse part has weight 47901032 (66.38/col) Sat Jun 13 10:11:16 2009 saving the first 48 matrix rows for later Sat Jun 13 10:11:16 2009 matrix is 721382 x 721630 (205.5 MB) with weight 53354728 (73.94/col) Sat Jun 13 10:11:16 2009 sparse part has weight 46662784 (64.66/col) Sat Jun 13 10:11:16 2009 matrix includes 64 packed rows Sat Jun 13 10:11:16 2009 using block size 10922 for processor cache size 256 kB Sat Jun 13 10:11:22 2009 commencing Lanczos iteration Sat Jun 13 10:11:22 2009 memory use: 192.6 MB Sat Jun 13 12:59:06 2009 lanczos halted after 11408 iterations (dim = 721381) Sat Jun 13 12:59:08 2009 recovered 32 nontrivial dependencies Sat Jun 13 12:59:08 2009 BLanczosTime: 10221 Sat Jun 13 12:59:08 2009 elapsed time 02:50:23 Sat Jun 13 17:14:02 2009 Sat Jun 13 17:14:02 2009 Sat Jun 13 17:14:02 2009 Msieve v. 1.41 Sat Jun 13 17:14:02 2009 random seeds: 705341fb cc3403da Sat Jun 13 17:14:02 2009 factoring 161786826623523873106331984288573086057036069356281984589662923023302881395583523319398596356535562638667735369803263428093 (123 digits) Sat Jun 13 17:14:03 2009 searching for 15-digit factors Sat Jun 13 17:14:04 2009 commencing number field sieve (123-digit input) Sat Jun 13 17:14:04 2009 R0: -403531707038578195679824 Sat Jun 13 17:14:04 2009 R1: 18400543438849 Sat Jun 13 17:14:04 2009 A0: 288596986503835432574359753965 Sat Jun 13 17:14:04 2009 A1: -7558628649210801901609443 Sat Jun 13 17:14:04 2009 A2: -90495200746547881266 Sat Jun 13 17:14:04 2009 A3: 367691967788437 Sat Jun 13 17:14:04 2009 A4: 2322968419 Sat Jun 13 17:14:04 2009 A5: 15120 Sat Jun 13 17:14:04 2009 skew 1.00, size 1.029077e-11, alpha -6.403071, combined = 5.274824e-12 Sat Jun 13 17:14:04 2009 Sat Jun 13 17:14:04 2009 commencing square root phase Sat Jun 13 17:14:04 2009 reading relations for dependency 1 Sat Jun 13 17:14:05 2009 read 360628 cycles Sat Jun 13 17:14:05 2009 cycles contain 1248013 unique relations Sat Jun 13 17:14:23 2009 read 1248013 relations Sat Jun 13 17:14:33 2009 multiplying 994200 relations Sat Jun 13 17:18:41 2009 multiply complete, coefficients have about 44.73 million bits Sat Jun 13 17:18:43 2009 initial square root is modulo 2645257 Sat Jun 13 17:24:35 2009 reading relations for dependency 2 Sat Jun 13 17:24:35 2009 read 360316 cycles Sat Jun 13 17:24:36 2009 cycles contain 1248281 unique relations Sat Jun 13 17:24:54 2009 read 1248281 relations Sat Jun 13 17:25:03 2009 multiplying 995182 relations Sat Jun 13 17:29:11 2009 multiply complete, coefficients have about 44.78 million bits Sat Jun 13 17:29:13 2009 initial square root is modulo 2683463 Sat Jun 13 17:35:12 2009 sqrtTime: 1268 Sat Jun 13 17:35:12 2009 prp58 factor: 1076573811006174078255496603425369798195157247908414024513 Sat Jun 13 17:35:12 2009 prp66 factor: 150279363077127682942036206681415950498349083088117034520490825661 Sat Jun 13 17:35:12 2009 elapsed time 00:21:10
By Dmitry Domanov
3·10170+1 = 3(0)1691<171> = 7 · 43 · 199 · 57529 · 1526651229058273<16> · C146
C146 = P42 · P105
P42 = 261968755177133227477927295381326837835413<42>
P105 = 217683509057887059702713392168572709659690627314116574373411276814837715368246493032016769217598949465919<105>
C146=P42*P105 261968755177133227477927295381326837835413<42>*217683509057887059702713392168572709659690627314116574373411276814837715368246493032016769217598949465919<105>
By Dmitry Domanov / GMP-ECM 6.2.3/GGNFS/msieve 1.41 / Jun 13, 2009
(16·10198-7)/9 = 1(7)198<199> = 1549 · 838171 · 125956137380071<15> · 419305834596410850871<21> · C155
C155 = P43 · P51 · P62
P43 = 2304592382652143961731264096224704807494453<43>
P51 = 970232895675790774671967182467598265874128054928869<51>
P62 = 11595061808911655986014839901941482182826165063259278842132599<62>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=359511029 Step 1 took 596172ms ********** Factor found in step 1: 2304592382652143961731264096224704807494453 Found probable prime factor of 43 digits: 2304592382652143961731264096224704807494453 Composite cofactor 11249910394400128588769006741704920966079711840343348528218384849373111775151335952807607620202060052645211100531 has 113 digits Number: 113 N=11249910394400128588769006741704920966079711840343348528218384849373111775151335952807607620202060052645211100531 ( 113 digits) Divisors found: r1=970232895675790774671967182467598265874128054928869 (pp51) r2=11595061808911655986014839901941482182826165063259278842132599 (pp62) Version: Msieve v. 1.41 Total time: 22.41 hours. Scaled time: 43.85 units (timescale=1.957). Factorization parameters were as follows: name: 113 n: 11249910394400128588769006741704920966079711840343348528218384849373111775151335952807607620202060052645211100531 skew: 59745.59 # norm 3.15e+015 c5: 5160 c4: -1695445366 c3: -45700015886565 c2: 3212891314605306753 c1: 22427336187626592335133 c0: 681835847596764281493583285 # alpha -6.11 Y1: 71639820263 Y0: -4652649231129391287936 # Murphy_E 7.55e-010 # M 1907449802102492470588219400247055954751799605254586842573274650345131418013743453796202936420222481907727438553 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 364394 x 364642 Polynomial selection time: 2.11 hours. Total sieving time: 19.77 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.31 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.41 hours. --------- CPU info (if available) ----------
(16·10190-7)/9 = 1(7)190<191> = 6067 · 376882183 · C178
C178 = P58 · P59 · P62
P58 = 6945950415193564269695115861239077510702586733059382852791<58>
P59 = 64441391317514719880046737523653294644667708778777048133109<59>
P62 = 17370058629430105732971321653115633962410075240228083185104703<62>
N=7774954774392157161927067104500558023545269774120869069685490738315009061192661033202790969577883277483294279822564047287532151045058863141496220336288440400519147292742336300957 ( 178 digits) SNFS difficulty: 191 digits. Divisors found: r1=6945950415193564269695115861239077510702586733059382852791 (pp58) r2=64441391317514719880046737523653294644667708778777048133109 (pp59) r3=17370058629430105732971321653115633962410075240228083185104703 (pp62) Version: Msieve v. 1.41 Total time: 237.40 hours. Scaled time: 467.44 units (timescale=1.969). Factorization parameters were as follows: n: 7774954774392157161927067104500558023545269774120869069685490738315009061192661033202790969577883277483294279822564047287532151045058863141496220336288440400519147292742336300957 m: 200000000000000000000000000000000000000 deg: 5 c5: 1 c0: -14 skew: 1.70 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5450000, 9050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1830662 x 1830910 Total sieving time: 230.22 hours. Total relation processing time: 0.35 hours. Matrix solve time: 6.34 hours. Time per square root: 0.49 hours. Prototype def-par.txt line would be: snfs,191.000,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,54,54,2.5,2.5,100000 total time: 237.40 hours. --------- CPU info (if available) ----------
(13·10185-31)/9 = 1(4)1841<186> = 32 · 11 · 432 · 145650497 · 616424391175458370238527<24> · C148
C148 = P29 · P120
P29 = 65179480030846277956271414089<29>
P120 = 134842271464926635129442045399461515806781710308343035529982485877975632051921808466844841500311919558453436567204757101<120>
C148=P29*P120 C148=65179480030846277956271414089<29>*134842271464926635129442045399461515806781710308343035529982485877975632051921808466844841500311919558453436567204757101<120>
(13·10184-31)/9 = 1(4)1831<185> = 7 · 34283 · 55249 · C175
C175 = P28 · C147
P28 = 8073813069587996438988098243<28>
C147 = [134933837651912564103374368384507680483444062389797150170691343744949834607546660900113391183180100724265992335560088217959448485874274082253775023<147>]
C175=P28*C147 C175=8073813069587996438988098243<28>*134933837651912564103374368384507680483444062389797150170691343744949834607546660900113391183180100724265992335560088217959448485874274082253775023<147>
By Justin Card / GGNFS, msieve / Jun 12, 2009
(65·10166+43)/9 = 7(2)1657<167> = 12263 · 603213984515802900576681227024393<33> · C130
C130 = P57 · P74
P57 = 450631373675458452337775455499947328084685648775502985779<57>
P74 = 21666127415793961010964729859371091707932535791390299034807201472008220607<74>
Sieving performed over 2.5 days manually Postprocessing log: Thu Jun 11 22:15:03 2009 Thu Jun 11 22:15:03 2009 Thu Jun 11 22:15:03 2009 Msieve v. 1.41 Thu Jun 11 22:15:03 2009 random seeds: 891788b7 6f9284bd Thu Jun 11 22:15:03 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 22:15:04 2009 searching for 15-digit factors Thu Jun 11 22:15:05 2009 commencing number field sieve (130-digit input) Thu Jun 11 22:15:05 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 22:15:05 2009 R1: 1 Thu Jun 11 22:15:05 2009 A0: 43 Thu Jun 11 22:15:05 2009 A1: 0 Thu Jun 11 22:15:05 2009 A2: 0 Thu Jun 11 22:15:05 2009 A3: 0 Thu Jun 11 22:15:05 2009 A4: 0 Thu Jun 11 22:15:05 2009 A5: 650 Thu Jun 11 22:15:05 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 22:15:05 2009 Thu Jun 11 22:15:05 2009 commencing relation filtering Thu Jun 11 22:15:05 2009 commencing duplicate removal, pass 1 Thu Jun 11 22:17:35 2009 found 2090217 hash collisions in 13684980 relations Thu Jun 11 22:18:13 2009 added 357929 free relations Thu Jun 11 22:18:13 2009 commencing duplicate removal, pass 2 Thu Jun 11 22:18:27 2009 found 2030428 duplicates and 12012481 unique relations Thu Jun 11 22:18:27 2009 memory use: 69.3 MB Thu Jun 11 22:18:27 2009 reading rational ideals above 6094848 Thu Jun 11 22:18:27 2009 reading algebraic ideals above 6094848 Thu Jun 11 22:18:27 2009 commencing singleton removal, pass 1 Thu Jun 11 22:20:57 2009 relations with 0 large ideals: 299061 Thu Jun 11 22:20:57 2009 relations with 1 large ideals: 1856276 Thu Jun 11 22:20:57 2009 relations with 2 large ideals: 4373394 Thu Jun 11 22:20:57 2009 relations with 3 large ideals: 4053181 Thu Jun 11 22:20:57 2009 relations with 4 large ideals: 1048259 Thu Jun 11 22:20:57 2009 relations with 5 large ideals: 39190 Thu Jun 11 22:20:57 2009 relations with 6 large ideals: 343119 Thu Jun 11 22:20:57 2009 relations with 7+ large ideals: 1 Thu Jun 11 22:20:57 2009 12012481 relations and about 9765690 large ideals Thu Jun 11 22:20:57 2009 commencing singleton removal, pass 2 Thu Jun 11 22:23:39 2009 found 3384675 singletons Thu Jun 11 22:23:39 2009 current dataset: 8627806 relations and about 5627344 large ideals Thu Jun 11 22:23:39 2009 commencing singleton removal, pass 3 Thu Jun 11 22:25:22 2009 found 877593 singletons Thu Jun 11 22:25:22 2009 current dataset: 7750213 relations and about 4725529 large ideals Thu Jun 11 22:25:22 2009 commencing singleton removal, pass 4 Thu Jun 11 22:26:57 2009 found 139102 singletons Thu Jun 11 22:26:57 2009 current dataset: 7611111 relations and about 4585593 large ideals Thu Jun 11 22:26:57 2009 commencing singleton removal, final pass Thu Jun 11 22:28:37 2009 memory use: 123.1 MB Thu Jun 11 22:28:37 2009 commencing in-memory singleton removal Thu Jun 11 22:28:38 2009 begin with 7611111 relations and 4846475 unique ideals Thu Jun 11 22:28:45 2009 reduce to 7238441 relations and 4470046 ideals in 8 passes Thu Jun 11 22:28:45 2009 max relations containing the same ideal: 31 Thu Jun 11 22:28:46 2009 reading rational ideals above 720000 Thu Jun 11 22:28:46 2009 reading algebraic ideals above 720000 Thu Jun 11 22:28:46 2009 commencing singleton removal, final pass Thu Jun 11 22:30:40 2009 keeping 4652011 ideals with weight <= 20, new excess is 661449 Thu Jun 11 22:30:45 2009 memory use: 177.4 MB Thu Jun 11 22:30:45 2009 commencing in-memory singleton removal Thu Jun 11 22:30:46 2009 begin with 7239473 relations and 4652011 unique ideals Thu Jun 11 22:30:50 2009 reduce to 7238347 relations and 4645988 ideals in 4 passes Thu Jun 11 22:30:50 2009 max relations containing the same ideal: 20 Thu Jun 11 22:30:55 2009 removing 1370225 relations and 970225 ideals in 400000 cliques Thu Jun 11 22:30:56 2009 commencing in-memory singleton removal Thu Jun 11 22:30:56 2009 begin with 5868122 relations and 4645988 unique ideals Thu Jun 11 22:31:02 2009 reduce to 5763246 relations and 3565026 ideals in 7 passes Thu Jun 11 22:31:02 2009 max relations containing the same ideal: 20 Thu Jun 11 22:31:06 2009 removing 1048359 relations and 648359 ideals in 400000 cliques Thu Jun 11 22:31:06 2009 commencing in-memory singleton removal Thu Jun 11 22:31:07 2009 begin with 4714887 relations and 3565026 unique ideals Thu Jun 11 22:31:10 2009 reduce to 4612574 relations and 2807796 ideals in 6 passes Thu Jun 11 22:31:10 2009 max relations containing the same ideal: 20 Thu Jun 11 22:31:13 2009 removing 958972 relations and 558972 ideals in 400000 cliques Thu Jun 11 22:31:14 2009 commencing in-memory singleton removal Thu Jun 11 22:31:14 2009 begin with 3653602 relations and 2807796 unique ideals Thu Jun 11 22:31:17 2009 reduce to 3546460 relations and 2133022 ideals in 6 passes Thu Jun 11 22:31:17 2009 max relations containing the same ideal: 19 Thu Jun 11 22:31:19 2009 removing 927820 relations and 527820 ideals in 400000 cliques Thu Jun 11 22:31:20 2009 commencing in-memory singleton removal Thu Jun 11 22:31:20 2009 begin with 2618640 relations and 2133022 unique ideals Thu Jun 11 22:31:22 2009 reduce to 2502532 relations and 1476617 ideals in 7 passes Thu Jun 11 22:31:22 2009 max relations containing the same ideal: 16 Thu Jun 11 22:31:24 2009 removing 617081 relations and 358447 ideals in 258634 cliques Thu Jun 11 22:31:24 2009 commencing in-memory singleton removal Thu Jun 11 22:31:24 2009 begin with 1885451 relations and 1476617 unique ideals Thu Jun 11 22:31:25 2009 reduce to 1796412 relations and 1019287 ideals in 7 passes Thu Jun 11 22:31:25 2009 max relations containing the same ideal: 14 Thu Jun 11 22:31:26 2009 removing 44809 relations and 34965 ideals in 9844 cliques Thu Jun 11 22:31:27 2009 commencing in-memory singleton removal Thu Jun 11 22:31:27 2009 begin with 1751603 relations and 1019287 unique ideals Thu Jun 11 22:31:27 2009 reduce to 1750837 relations and 983553 ideals in 4 passes Thu Jun 11 22:31:27 2009 max relations containing the same ideal: 14 Thu Jun 11 22:31:28 2009 relations with 0 large ideals: 174112 Thu Jun 11 22:31:28 2009 relations with 1 large ideals: 583484 Thu Jun 11 22:31:28 2009 relations with 2 large ideals: 636673 Thu Jun 11 22:31:28 2009 relations with 3 large ideals: 282529 Thu Jun 11 22:31:28 2009 relations with 4 large ideals: 64640 Thu Jun 11 22:31:28 2009 relations with 5 large ideals: 7757 Thu Jun 11 22:31:28 2009 relations with 6 large ideals: 1629 Thu Jun 11 22:31:28 2009 relations with 7+ large ideals: 13 Thu Jun 11 22:31:28 2009 commencing 2-way merge Thu Jun 11 22:31:29 2009 reduce to 1298618 relation sets and 531334 unique ideals Thu Jun 11 22:31:29 2009 commencing full merge Thu Jun 11 22:31:35 2009 memory use: 52.1 MB Thu Jun 11 22:31:35 2009 found 764728 cycles, need 661649 Thu Jun 11 22:31:35 2009 weight of 661649 cycles is about 32721827 (49.45/cycle) Thu Jun 11 22:31:35 2009 distribution of cycle lengths: Thu Jun 11 22:31:35 2009 1 relations: 174112 Thu Jun 11 22:31:35 2009 2 relations: 97968 Thu Jun 11 22:31:35 2009 3 relations: 80875 Thu Jun 11 22:31:35 2009 4 relations: 65935 Thu Jun 11 22:31:35 2009 5 relations: 56261 Thu Jun 11 22:31:35 2009 6 relations: 46805 Thu Jun 11 22:31:35 2009 7 relations: 40424 Thu Jun 11 22:31:35 2009 8 relations: 33366 Thu Jun 11 22:31:35 2009 9 relations: 27756 Thu Jun 11 22:31:35 2009 10+ relations: 38147 Thu Jun 11 22:31:35 2009 heaviest cycle: 14 relations Thu Jun 11 22:31:35 2009 matrix can improve, retrying Thu Jun 11 22:31:36 2009 reading rational ideals above 720000 Thu Jun 11 22:31:36 2009 reading algebraic ideals above 720000 Thu Jun 11 22:31:36 2009 commencing singleton removal, final pass Thu Jun 11 22:33:29 2009 keeping 4741281 ideals with weight <= 25, new excess is 572179 Thu Jun 11 22:33:34 2009 memory use: 177.4 MB Thu Jun 11 22:33:34 2009 commencing in-memory singleton removal Thu Jun 11 22:33:35 2009 begin with 7239473 relations and 4741281 unique ideals Thu Jun 11 22:33:40 2009 reduce to 7238347 relations and 4735258 ideals in 4 passes Thu Jun 11 22:33:40 2009 max relations containing the same ideal: 25 Thu Jun 11 22:33:45 2009 removing 1370225 relations and 970225 ideals in 400000 cliques Thu Jun 11 22:33:46 2009 commencing in-memory singleton removal Thu Jun 11 22:33:47 2009 begin with 5868122 relations and 4735258 unique ideals Thu Jun 11 22:33:52 2009 reduce to 5763246 relations and 3654296 ideals in 7 passes Thu Jun 11 22:33:52 2009 max relations containing the same ideal: 25 Thu Jun 11 22:33:57 2009 removing 1048359 relations and 648359 ideals in 400000 cliques Thu Jun 11 22:33:57 2009 commencing in-memory singleton removal Thu Jun 11 22:33:58 2009 begin with 4714887 relations and 3654296 unique ideals Thu Jun 11 22:34:02 2009 reduce to 4612548 relations and 2897043 ideals in 6 passes Thu Jun 11 22:34:02 2009 max relations containing the same ideal: 24 Thu Jun 11 22:34:05 2009 removing 958960 relations and 558960 ideals in 400000 cliques Thu Jun 11 22:34:05 2009 commencing in-memory singleton removal Thu Jun 11 22:34:06 2009 begin with 3653588 relations and 2897043 unique ideals Thu Jun 11 22:34:09 2009 reduce to 3546576 relations and 2222376 ideals in 6 passes Thu Jun 11 22:34:09 2009 max relations containing the same ideal: 23 Thu Jun 11 22:34:12 2009 removing 927863 relations and 527863 ideals in 400000 cliques Thu Jun 11 22:34:12 2009 commencing in-memory singleton removal Thu Jun 11 22:34:13 2009 begin with 2618713 relations and 2222376 unique ideals Thu Jun 11 22:34:15 2009 reduce to 2502567 relations and 1565849 ideals in 7 passes Thu Jun 11 22:34:15 2009 max relations containing the same ideal: 19 Thu Jun 11 22:34:17 2009 removing 645878 relations and 372888 ideals in 272990 cliques Thu Jun 11 22:34:17 2009 commencing in-memory singleton removal Thu Jun 11 22:34:18 2009 begin with 1856689 relations and 1565849 unique ideals Thu Jun 11 22:34:19 2009 reduce to 1761413 relations and 1086714 ideals in 7 passes Thu Jun 11 22:34:19 2009 max relations containing the same ideal: 17 Thu Jun 11 22:34:20 2009 removing 49978 relations and 39007 ideals in 10971 cliques Thu Jun 11 22:34:21 2009 commencing in-memory singleton removal Thu Jun 11 22:34:21 2009 begin with 1711435 relations and 1086714 unique ideals Thu Jun 11 22:34:22 2009 reduce to 1710437 relations and 1046700 ideals in 5 passes Thu Jun 11 22:34:22 2009 max relations containing the same ideal: 16 Thu Jun 11 22:34:22 2009 relations with 0 large ideals: 113635 Thu Jun 11 22:34:22 2009 relations with 1 large ideals: 443963 Thu Jun 11 22:34:22 2009 relations with 2 large ideals: 615026 Thu Jun 11 22:34:22 2009 relations with 3 large ideals: 381062 Thu Jun 11 22:34:22 2009 relations with 4 large ideals: 128224 Thu Jun 11 22:34:22 2009 relations with 5 large ideals: 24417 Thu Jun 11 22:34:22 2009 relations with 6 large ideals: 3945 Thu Jun 11 22:34:22 2009 relations with 7+ large ideals: 165 Thu Jun 11 22:34:22 2009 commencing 2-way merge Thu Jun 11 22:34:23 2009 reduce to 1266153 relation sets and 602416 unique ideals Thu Jun 11 22:34:23 2009 commencing full merge Thu Jun 11 22:34:38 2009 memory use: 58.1 MB Thu Jun 11 22:34:38 2009 found 666737 cycles, need 584616 Thu Jun 11 22:34:39 2009 weight of 584616 cycles is about 41139292 (70.37/cycle) Thu Jun 11 22:34:39 2009 distribution of cycle lengths: Thu Jun 11 22:34:39 2009 1 relations: 113778 Thu Jun 11 22:34:39 2009 2 relations: 61154 Thu Jun 11 22:34:39 2009 3 relations: 53353 Thu Jun 11 22:34:39 2009 4 relations: 47482 Thu Jun 11 22:34:39 2009 5 relations: 44643 Thu Jun 11 22:34:39 2009 6 relations: 40899 Thu Jun 11 22:34:39 2009 7 relations: 38087 Thu Jun 11 22:34:39 2009 8 relations: 34576 Thu Jun 11 22:34:39 2009 9 relations: 31157 Thu Jun 11 22:34:39 2009 10+ relations: 119487 Thu Jun 11 22:34:39 2009 heaviest cycle: 18 relations Thu Jun 11 22:34:39 2009 matrix can improve, retrying Thu Jun 11 22:34:40 2009 reading rational ideals above 720000 Thu Jun 11 22:34:40 2009 reading algebraic ideals above 720000 Thu Jun 11 22:34:40 2009 commencing singleton removal, final pass Thu Jun 11 22:37:12 2009 keeping 4838805 ideals with weight <= 30, new excess is 474655 Thu Jun 11 22:37:20 2009 memory use: 177.4 MB Thu Jun 11 22:37:20 2009 commencing in-memory singleton removal Thu Jun 11 22:37:22 2009 begin with 7239473 relations and 4838805 unique ideals Thu Jun 11 22:37:29 2009 reduce to 7238347 relations and 4832782 ideals in 4 passes Thu Jun 11 22:37:29 2009 max relations containing the same ideal: 30 Thu Jun 11 22:37:39 2009 removing 1370225 relations and 970225 ideals in 400000 cliques Thu Jun 11 22:37:40 2009 commencing in-memory singleton removal Thu Jun 11 22:37:42 2009 begin with 5868122 relations and 4832782 unique ideals Thu Jun 11 22:37:53 2009 reduce to 5763246 relations and 3751820 ideals in 7 passes Thu Jun 11 22:37:53 2009 max relations containing the same ideal: 30 Thu Jun 11 22:38:01 2009 removing 1048359 relations and 648359 ideals in 400000 cliques Thu Jun 11 22:38:02 2009 commencing in-memory singleton removal Thu Jun 11 22:38:03 2009 begin with 4714887 relations and 3751820 unique ideals Thu Jun 11 22:38:11 2009 reduce to 4612549 relations and 2994568 ideals in 6 passes Thu Jun 11 22:38:11 2009 max relations containing the same ideal: 28 Thu Jun 11 22:38:17 2009 removing 958958 relations and 558958 ideals in 400000 cliques Thu Jun 11 22:38:18 2009 commencing in-memory singleton removal Thu Jun 11 22:38:19 2009 begin with 3653591 relations and 2994568 unique ideals Thu Jun 11 22:38:25 2009 reduce to 3546538 relations and 2319864 ideals in 6 passes Thu Jun 11 22:38:25 2009 max relations containing the same ideal: 26 Thu Jun 11 22:38:30 2009 removing 927846 relations and 527846 ideals in 400000 cliques Thu Jun 11 22:38:31 2009 commencing in-memory singleton removal Thu Jun 11 22:38:31 2009 begin with 2618692 relations and 2319864 unique ideals Thu Jun 11 22:38:36 2009 reduce to 2502397 relations and 1663234 ideals in 7 passes Thu Jun 11 22:38:36 2009 max relations containing the same ideal: 21 Thu Jun 11 22:38:39 2009 removing 676969 relations and 388406 ideals in 288563 cliques Thu Jun 11 22:38:40 2009 commencing in-memory singleton removal Thu Jun 11 22:38:41 2009 begin with 1825428 relations and 1663234 unique ideals Thu Jun 11 22:38:44 2009 reduce to 1723810 relations and 1160990 ideals in 7 passes Thu Jun 11 22:38:44 2009 max relations containing the same ideal: 18 Thu Jun 11 22:38:46 2009 removing 55463 relations and 43243 ideals in 12220 cliques Thu Jun 11 22:38:47 2009 commencing in-memory singleton removal Thu Jun 11 22:38:47 2009 begin with 1668347 relations and 1160990 unique ideals Thu Jun 11 22:38:49 2009 reduce to 1667063 relations and 1116452 ideals in 5 passes Thu Jun 11 22:38:49 2009 max relations containing the same ideal: 18 Thu Jun 11 22:38:49 2009 relations with 0 large ideals: 65458 Thu Jun 11 22:38:49 2009 relations with 1 large ideals: 297828 Thu Jun 11 22:38:49 2009 relations with 2 large ideals: 530856 Thu Jun 11 22:38:49 2009 relations with 3 large ideals: 462549 Thu Jun 11 22:38:49 2009 relations with 4 large ideals: 229066 Thu Jun 11 22:38:49 2009 relations with 5 large ideals: 67346 Thu Jun 11 22:38:49 2009 relations with 6 large ideals: 12804 Thu Jun 11 22:38:49 2009 relations with 7+ large ideals: 1156 Thu Jun 11 22:38:49 2009 commencing 2-way merge Thu Jun 11 22:38:52 2009 reduce to 1233370 relation sets and 682759 unique ideals Thu Jun 11 22:38:52 2009 commencing full merge Thu Jun 11 22:39:14 2009 memory use: 65.7 MB Thu Jun 11 22:39:14 2009 found 634387 cycles, need 560959 Thu Jun 11 22:39:15 2009 weight of 560959 cycles is about 39428217 (70.29/cycle) Thu Jun 11 22:39:15 2009 distribution of cycle lengths: Thu Jun 11 22:39:15 2009 1 relations: 72319 Thu Jun 11 22:39:15 2009 2 relations: 52148 Thu Jun 11 22:39:15 2009 3 relations: 55635 Thu Jun 11 22:39:15 2009 4 relations: 54694 Thu Jun 11 22:39:15 2009 5 relations: 54247 Thu Jun 11 22:39:15 2009 6 relations: 49707 Thu Jun 11 22:39:15 2009 7 relations: 45747 Thu Jun 11 22:39:15 2009 8 relations: 40721 Thu Jun 11 22:39:15 2009 9 relations: 35481 Thu Jun 11 22:39:15 2009 10+ relations: 100260 Thu Jun 11 22:39:15 2009 heaviest cycle: 16 relations Thu Jun 11 22:39:15 2009 commencing cycle optimization Thu Jun 11 22:39:17 2009 start with 3244833 relations Thu Jun 11 22:39:31 2009 pruned 210947 relations Thu Jun 11 22:39:31 2009 memory use: 93.5 MB Thu Jun 11 22:39:31 2009 distribution of cycle lengths: Thu Jun 11 22:39:31 2009 1 relations: 72319 Thu Jun 11 22:39:31 2009 2 relations: 54853 Thu Jun 11 22:39:31 2009 3 relations: 60718 Thu Jun 11 22:39:31 2009 4 relations: 60060 Thu Jun 11 22:39:31 2009 5 relations: 60069 Thu Jun 11 22:39:31 2009 6 relations: 54268 Thu Jun 11 22:39:31 2009 7 relations: 49024 Thu Jun 11 22:39:31 2009 8 relations: 42072 Thu Jun 11 22:39:31 2009 9 relations: 35161 Thu Jun 11 22:39:31 2009 10+ relations: 72415 Thu Jun 11 22:39:31 2009 heaviest cycle: 16 relations Thu Jun 11 22:39:34 2009 RelProcTime: 1326 Thu Jun 11 22:39:34 2009 elapsed time 00:24:31 Thu Jun 11 22:39:45 2009 Thu Jun 11 22:39:45 2009 Thu Jun 11 22:39:45 2009 Msieve v. 1.41 Thu Jun 11 22:39:45 2009 random seeds: 2f7019d3 c696b041 Thu Jun 11 22:39:45 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 22:39:47 2009 searching for 15-digit factors Thu Jun 11 22:39:48 2009 commencing number field sieve (130-digit input) Thu Jun 11 22:39:48 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 22:39:48 2009 R1: 1 Thu Jun 11 22:39:48 2009 A0: 43 Thu Jun 11 22:39:48 2009 A1: 0 Thu Jun 11 22:39:48 2009 A2: 0 Thu Jun 11 22:39:48 2009 A3: 0 Thu Jun 11 22:39:48 2009 A4: 0 Thu Jun 11 22:39:48 2009 A5: 650 Thu Jun 11 22:39:48 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 22:39:48 2009 Thu Jun 11 22:39:48 2009 commencing linear algebra Thu Jun 11 22:39:48 2009 read 560959 cycles Thu Jun 11 22:39:51 2009 cycles contain 1460370 unique relations Thu Jun 11 22:40:18 2009 Thu Jun 11 22:40:18 2009 Thu Jun 11 22:40:18 2009 Msieve v. 1.41 Thu Jun 11 22:40:18 2009 random seeds: 896479b4 8c2297c6 Thu Jun 11 22:40:18 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 22:40:19 2009 searching for 15-digit factors Thu Jun 11 22:40:20 2009 commencing number field sieve (130-digit input) Thu Jun 11 22:40:20 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 22:40:20 2009 R1: 1 Thu Jun 11 22:40:20 2009 A0: 43 Thu Jun 11 22:40:20 2009 A1: 0 Thu Jun 11 22:40:20 2009 A2: 0 Thu Jun 11 22:40:20 2009 A3: 0 Thu Jun 11 22:40:20 2009 A4: 0 Thu Jun 11 22:40:20 2009 A5: 650 Thu Jun 11 22:40:20 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 22:40:20 2009 Thu Jun 11 22:40:20 2009 commencing linear algebra Thu Jun 11 22:40:20 2009 read 560959 cycles Thu Jun 11 22:40:21 2009 cycles contain 1460370 unique relations Thu Jun 11 22:40:43 2009 read 1460370 relations Thu Jun 11 22:40:46 2009 using 20 quadratic characters above 134210724 Thu Jun 11 22:41:00 2009 building initial matrix Thu Jun 11 22:41:26 2009 memory use: 185.1 MB Thu Jun 11 22:41:27 2009 read 560959 cycles Thu Jun 11 22:41:27 2009 matrix is 560744 x 560959 (161.1 MB) with weight 48786446 (86.97/col) Thu Jun 11 22:41:27 2009 sparse part has weight 36056943 (64.28/col) Thu Jun 11 22:41:43 2009 filtering completed in 2 passes Thu Jun 11 22:41:43 2009 matrix is 559754 x 559954 (160.9 MB) with weight 48736748 (87.04/col) Thu Jun 11 22:41:43 2009 sparse part has weight 36028515 (64.34/col) Thu Jun 11 22:41:47 2009 read 559954 cycles Thu Jun 11 22:41:48 2009 matrix is 559754 x 559954 (160.9 MB) with weight 48736748 (87.04/col) Thu Jun 11 22:41:48 2009 sparse part has weight 36028515 (64.34/col) Thu Jun 11 22:41:48 2009 saving the first 48 matrix rows for later Thu Jun 11 22:41:48 2009 matrix is 559706 x 559954 (153.0 MB) with weight 38273617 (68.35/col) Thu Jun 11 22:41:48 2009 sparse part has weight 34501380 (61.61/col) Thu Jun 11 22:41:48 2009 matrix includes 64 packed rows Thu Jun 11 22:41:48 2009 using block size 10922 for processor cache size 256 kB Thu Jun 11 22:41:52 2009 commencing Lanczos iteration (2 threads) Thu Jun 11 22:41:52 2009 memory use: 149.8 MB Thu Jun 11 23:37:37 2009 lanczos halted after 8855 iterations (dim = 559706) Thu Jun 11 23:37:38 2009 recovered 39 nontrivial dependencies Thu Jun 11 23:37:38 2009 BLanczosTime: 3438 Thu Jun 11 23:37:38 2009 elapsed time 00:57:20 Thu Jun 11 23:42:07 2009 Thu Jun 11 23:42:07 2009 Thu Jun 11 23:42:07 2009 Msieve v. 1.41 Thu Jun 11 23:42:07 2009 random seeds: f3d8e841 ee630f48 Thu Jun 11 23:42:07 2009 factoring 9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853 (130 digits) Thu Jun 11 23:42:09 2009 searching for 15-digit factors Thu Jun 11 23:42:09 2009 commencing number field sieve (130-digit input) Thu Jun 11 23:42:09 2009 R0: -1000000000000000000000000000000000 Thu Jun 11 23:42:09 2009 R1: 1 Thu Jun 11 23:42:09 2009 A0: 43 Thu Jun 11 23:42:09 2009 A1: 0 Thu Jun 11 23:42:09 2009 A2: 0 Thu Jun 11 23:42:09 2009 A3: 0 Thu Jun 11 23:42:09 2009 A4: 0 Thu Jun 11 23:42:09 2009 A5: 650 Thu Jun 11 23:42:09 2009 skew 1.00, size 9.555107e-12, alpha -0.317313, combined = 3.222005e-10 Thu Jun 11 23:42:10 2009 Thu Jun 11 23:42:10 2009 commencing square root phase Thu Jun 11 23:42:10 2009 reading relations for dependency 1 Thu Jun 11 23:42:10 2009 read 279367 cycles Thu Jun 11 23:42:10 2009 cycles contain 921779 unique relations Thu Jun 11 23:42:27 2009 read 921779 relations Thu Jun 11 23:42:33 2009 multiplying 729442 relations Thu Jun 11 23:44:19 2009 multiply complete, coefficients have about 22.36 million bits Thu Jun 11 23:44:20 2009 initial square root is modulo 2636251 Thu Jun 11 23:47:12 2009 reading relations for dependency 2 Thu Jun 11 23:47:12 2009 read 279179 cycles Thu Jun 11 23:47:13 2009 cycles contain 921197 unique relations Thu Jun 11 23:47:29 2009 read 921197 relations Thu Jun 11 23:47:35 2009 multiplying 728430 relations Thu Jun 11 23:49:22 2009 multiply complete, coefficients have about 22.33 million bits Thu Jun 11 23:49:22 2009 initial square root is modulo 2586791 Thu Jun 11 23:52:15 2009 sqrtTime: 605 Thu Jun 11 23:52:15 2009 prp57 factor: 450631373675458452337775455499947328084685648775502985779 Thu Jun 11 23:52:15 2009 prp74 factor: 21666127415793961010964729859371091707932535791390299034807201472008220607 Thu Jun 11 23:52:15 2009 elapsed time 00:10:08
By Dmitry Domanov / ECM / Jun 12, 2009
(13·10171-31)/9 = 1(4)1701<172> = 11 · 845599 · 14030443675276817<17> · C149
C149 = P30 · C119
P30 = 256462931804549017510633552397<30>
C119 = [43156646434003437590709513779974321417811490608715284910791365906651077456606782151395693253101947622545235176793105081<119>]
C149=P30*C119 C140=256462931804549017510633552397<30>*43156646434003437590709513779974321417811490608715284910791365906651077456606782151395693253101947622545235176793105081<119>
(19·10205+11)/3 = 6(3)2047<206> = 47 · 1049 · 28439 · 301073 · 226406454334346351603<21> · 1677465659365970615668154819<28> · C144
C144 = P33 · P111
P33 = 720739136192652754793757399275881<33>
P111 = 548090560221826880156372241250752203241766441099323845908077403370902283241257961429117324365891642207569996921<111>
C144=P33*P111 C144=720739136192652754793757399275881<33>*548090560221826880156372241250752203241766441099323845908077403370902283241257961429117324365891642207569996921<111>
(31·10170-13)/9 = 3(4)1693<171> = 72 · 4629920455654758013498867<25> · C145
C145 = P42 · P103
P42 = 232031625289267285997872846548274872654251<42>
P103 = 6543383771920925262771313657337423017658900689973818172304650431186996923388887223462560916516787337371<103>
C145=P42*P103 C145=232031625289267285997872846548274872654251<42>*6543383771920925262771313657337423017658900689973818172304650431186996923388887223462560916516787337371<103>
By Sinkiti Sibata / Msieve / Jun 12, 2009
(19·10163+11)/3 = 6(3)1627<164> = 23 · 212240551 · 507368374445072909<18> · C137
C137 = P50 · P87
P50 = 78154045810066885489839026558465998531596120691381<50>
P87 = 327190953676735888663357517665468214766548405810117447443857596565381215359865497358761<87>
Number: 63337_163 N=25571296782291088901074669831696584997219804892506777450351526895074193322549230921193042451835425230969964312171558082984763036717538941 ( 137 digits) SNFS difficulty: 165 digits. Divisors found: r1=78154045810066885489839026558465998531596120691381 (pp50) r2=327190953676735888663357517665468214766548405810117447443857596565381215359865497358761 (pp87) Version: Msieve-1.40 Total time: 52.38 hours. Scaled time: 109.58 units (timescale=2.092). Factorization parameters were as follows: name: 63337_163 n: 25571296782291088901074669831696584997219804892506777450351526895074193322549230921193042451835425230969964312171558082984763036717538941 m: 500000000000000000000000000000000 deg: 5 c5: 152 c0: 275 skew: 1.13 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 737427 x 737675 Total sieving time: 49.68 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.06 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: snfs,165.000,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 52.38 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM / Jun 12, 2009
(58·10173-31)/9 = 6(4)1721<174> = 7 · 43 · 10141 · 39563 · 48491 · 212579 · 154774691 · 34627365762419<14> · 80771274582319<14> · C118
C118 = P37 · P81
P37 = 3252686432044830575611644891450269629<37>
P81 = 367662177813584306398113689094894372531220364516609385149063751165849999660842617<81>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1195889777350299605771289107018392405410588807124263934343162265572375663837663946874692414404316491260057477983979093 (118 digits) Using B1=4518000, B2=8562077170, polynomial Dickson(6), sigma=2004421685 Step 1 took 50653ms Step 2 took 14851ms ********** Factor found in step 2: 3252686432044830575611644891450269629 Found probable prime factor of 37 digits: 3252686432044830575611644891450269629 Probable prime cofactor 367662177813584306398113689094894372531220364516609385149063751165849999660842617 has 81 digits
By Robert Backstrom / GGNFS / Jun 11, 2009
(58·10147-31)/9 = 6(4)1461<148> = 3 · 19 · 4099 · 9319 · C139
C139 = P52 · P88
P52 = 1676223678292203960049128169722890860607910437181707<52>
P88 = 1765758994698086055170520278368619003216331480155940049496103700209244596464918718463639<88>
Number: n N=2959807037070370077701588675503483600950004631059528994363964170551323205253630464699789086748024196236570518498067476640101738676115451773 ( 139 digits) SNFS difficulty: 149 digits. Divisors found: r1=1676223678292203960049128169722890860607910437181707 (pp52) r2=1765758994698086055170520278368619003216331480155940049496103700209244596464918718463639 (pp88) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 12.28 hours. Scaled time: 32.52 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_4_146_1 n: 2959807037070370077701588675503483600950004631059528994363964170551323205253630464699789086748024196236570518498067476640101738676115451773 m: 200000000000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1100000, 3200001) Primes: RFBsize:162662, AFBsize:163211, largePrimes:8173952 encountered Relations: rels:7706656, finalFF:392959 Max relations in full relation-set: 28 Initial matrix: 325940 x 392959 with sparse part having weight 44229416. Pruned matrix : 301299 x 302992 with weight 32110514. Total sieving time: 11.27 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.42 hours. Total square root time: 0.44 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,56,56,2.3,2.3,100000 total time: 12.28 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.41 / Jun 11, 2009
(26·10203+1)/9 = 2(8)2029<204> = 61 · 9819918737<10> · 37287396313<11> · 100744959165252560987<21> · 5394637429152624442511<22> · C140
C140 = P49 · P92
P49 = 1591392095289804421962004160362504930638566818651<49>
P92 = 14954375035445075432517592802281751545607225577975759746369031858970547474844079393319097347<92>
N=23798274221406481862937388696721507629375257074001696626340245646231006728544866514463627094525111474872935700567490601892062846556764218897 ( 140 digits) Divisors found: r1=1591392095289804421962004160362504930638566818651 (pp49) r2=14954375035445075432517592802281751545607225577975759746369031858970547474844079393319097347 (pp92) Version: Msieve v. 1.41 Total time: 484.30 hours. Scaled time: 959.88 units (timescale=1.982). Factorization parameters were as follows: n: 23798274221406481862937388696721507629375257074001696626340245646231006728544866514463627094525111474872935700567490601892062846556764218897 Y0: -734848807318907386147773470 Y1: 3828307784904209 c0: -575676726393303313640246491759215387 c1: 241313731949091829399125074778 c2: 679634942601726569804696 c3: -345838423607777188 c4: -106656386559 c5: 111060 skew: 1624324.30 type: gnfs # size 1.397696e-013, alpha -7.351016, combined = 1.920798e-011 rlim: 12000000 alim: 12000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [6000000, 13400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2138724 x 2138969 Total sieving time: 470.62 hours. Total relation processing time: 0.42 hours. Matrix solve time: 10.64 hours. Time per square root: 2.62 hours. Prototype def-par.txt line would be: gnfs,139,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,12000000,12000000,28,28,55,55,2.6,2.6,100000 total time: 484.30 hours. --------- CPU info (if available) ----------
(55·10170+71)/9 = 6(1)1699<171> = 5867 · 1686669207321401057<19> · C149
C149 = P41 · P109
P41 = 15417904565595260846145189831758985988853<41>
P109 = 4005427012872325335566780151439560381843187368300758259621127417374298478093358344498755291601015884297338617<109>
C149=P41*P109 C149=15417904565595260846145189831758985988853<41>*4005427012872325335566780151439560381843187368300758259621127417374298478093358344498755291601015884297338617<109>
By Wataru Sakai / Msieve / Jun 11, 2009
8·10170+9 = 8(0)1699<171> = 113 · 452926193 · 3182006963<10> · 3558984497657<13> · C139
C139 = P52 · P87
P52 = 3739349584888004768232061820906349177229967138340283<52>
P87 = 369114253681640613419529242815258516418059888685901830643751071825955380199942725832817<87>
Number: 80009_170 N=1380247231280688513519537236207908295619969438829829240186899926792486920831167751357193427318708350016115652627084598605877702542314467211 ( 139 digits) SNFS difficulty: 170 digits. Divisors found: r1=3739349584888004768232061820906349177229967138340283 r2=369114253681640613419529242815258516418059888685901830643751071825955380199942725832817 Version: Total time: 70.90 hours. Scaled time: 129.39 units (timescale=1.825). Factorization parameters were as follows: n: 1380247231280688513519537236207908295619969438829829240186899926792486920831167751357193427318708350016115652627084598605877702542314467211 m: 10000000000000000000000000000000000 deg: 5 c5: 8 c0: 9 skew: 1.02 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 617808 x 618056 Total sieving time: 70.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 70.90 hours. --------- CPU info (if available) ----------
By matsui / GGNFS / Jun 11, 2009
(46·10202+17)/9 = 5(1)2013<203> = 1933 · C200
C200 = P41 · P76 · P84
P41 = 25095474208856818167520252174989158442949<41>
P76 = 3297726093382206271419702874019435673426517286346071139459697077025086546391<76>
P84 = 319501926354791297344734539988594417282060450051494131411273826097979565702137229279<84>
N=26441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340461 ( 200 digits) SNFS difficulty: 204 digits. Divisors found: r1=25095474208856818167520252174989158442949 (pp41) r2=3297726093382206271419702874019435673426517286346071139459697077025086546391 (pp76) r3=319501926354791297344734539988594417282060450051494131411273826097979565702137229279 (pp84) Version: GGNFS-0.77.1-20060722-nocona Total time: 1246.67 hours. Scaled time: 2805.00 units (timescale=2.250). Factorization parameters were as follows: n: 26441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340460999022820026441340461 m: 20000000000000000000000000000000000000000 deg: 5 c5: 575 c0: 68 skew: 0.65 type: snfs lss: 1 rlim: 17800000 alim: 17800000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17800000/17800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8900000, 25100001) Primes: RFBsize:1139344, AFBsize:1139550, largePrimes:39498154 encountered Relations: rels:43640536, finalFF:2563810 Max relations in full relation-set: 32 Initial matrix: 2278961 x 2563810 with sparse part having weight 390927558. Pruned matrix : 2046135 x 2057593 with weight 354661269. Total sieving time: 1150.15 hours. Total relation processing time: 5.81 hours. Matrix solve time: 90.28 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,17800000,17800000,29,29,56,56,2.6,2.6,100000 total time: 1246.67 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 11, 2009
(58·10153-31)/9 = 6(4)1521<154> = 3 · 367 · 112967 · 2319381799539473<16> · 165136459534555368901<21> · C111
C111 = P50 · P61
P50 = 17078280205792035788335884856822731960474470615281<50>
P61 = 7921131453941733646557818615716638624170555497980778464200671<61>
Number: 64441_153 N=135279302517329798555025774871892764507712533727343188426012269005859259034731526227526481196165806601223053551 ( 111 digits) Divisors found: r1=17078280205792035788335884856822731960474470615281 r2=7921131453941733646557818615716638624170555497980778464200671 Version: Total time: 10.01 hours. Scaled time: 23.92 units (timescale=2.390). Factorization parameters were as follows: name: 64441_153 n: 135279302517329798555025774871892764507712533727343188426012269005859259034731526227526481196165806601223053551 skew: 23605.40 # norm 1.03e+15 c5: 22800 c4: 2606101498 c3: -45023322297711 c2: -1636176262836888459 c1: 13673763986598234398219 c0: -27225391059235964049208347 # alpha -5.58 Y1: 181355987777 Y0: -1427769303683968481770 # Murphy_E 9.32e-10 # M 81165317231035287838596792647390099905123823365903785899096838405611340060018680107531939427877027642720548542 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8141639 Max relations in full relation-set: Initial matrix: Pruned matrix : 387419 x 387667 Polynomial selection time: 0.76 hours. Total sieving time: 8.27 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.31 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 10.01 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339)
2·10171-9 = 1(9)1701<172> = 112 · 541 · 77524813986331865479<20> · 334794278410722364007416315208828631701999789<45> · C103
C103 = P40 · P63
P40 = 5034377696798900669436721889289682064351<40>
P63 = 233820618672097095012926459422107581471500507709899340258393951<63>
Number: 19991_171 N=1177141307694526201464716642183051523982966901517506432181852284630204945543901005711357960481491140801 ( 103 digits) Divisors found: r1=5034377696798900669436721889289682064351 r2=233820618672097095012926459422107581471500507709899340258393951 Version: Total time: 3.55 hours. Scaled time: 8.41 units (timescale=2.373). Factorization parameters were as follows: name: 19991_171 n: 1177141307694526201464716642183051523982966901517506432181852284630204945543901005711357960481491140801 skew: 5404.07 # norm 2.21e+13 c5: 43680 c4: -5969942 c3: -1865578457695 c2: -7134246430272257 c1: 9256714106389184315 c0: 106135789530131846696475 # alpha -5.04 Y1: 78574733761 Y0: -30627336107087582486 # Murphy_E 2.77e-09 # M 912930077984427313258403547379730171018387886625134225735594264395813050211885657140230567293533718485 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1350001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4960858 Max relations in full relation-set: Initial matrix: Pruned matrix : 221323 x 221571 Polynomial selection time: 0.28 hours. Total sieving time: 2.84 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339)
By Sinkiti Sibata / GGNFS / Jun 11, 2009
(58·10159-31)/9 = 6(4)1581<160> = 32 · 199 · 1093443781<10> · C148
C148 = P42 · P107
P42 = 209900031606919638060250968011950579085083<42>
P107 = 15677648943826422381981429129925161545478792495477603112103677976852749787973098495048186703923564765299937<107>
Number: 64441_159 N=3290739008831356339219803947719937682395452958069035022616313113583137251250683536978098961627564466067632336829533503848993054608278016739537539771 ( 148 digits) SNFS difficulty: 161 digits. Divisors found: r1=209900031606919638060250968011950579085083 (pp42) r2=15677648943826422381981429129925161545478792495477603112103677976852749787973098495048186703923564765299937 (pp107) Version: GGNFS-0.77.1-20060513-nocona Total time: 63.25 hours. Scaled time: 162.17 units (timescale=2.564). Factorization parameters were as follows: name: 64441_159 n: 3290739008831356339219803947719937682395452958069035022616313113583137251250683536978098961627564466067632336829533503848993054608278016739537539771 m: 100000000000000000000000000000000 deg: 5 c5: 29 c0: -155 skew: 1.40 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1200000, 3700001) Primes: RFBsize:176302, AFBsize:176834, largePrimes:9998293 encountered Relations: rels:11718185, finalFF:504709 Max relations in full relation-set: 28 Initial matrix: 353201 x 504709 with sparse part having weight 72785254. Pruned matrix : 312059 x 313889 with weight 49222426. Total sieving time: 61.84 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.08 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,51,51,2.4,2.4,100000 total time: 63.25 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM 6.2.3 / Jun 10, 2009
(58·10142-31)/9 = 6(4)1411<143> = 13 · 23 · 16921 · 9524591 · C130
C130 = P37 · P93
P37 = 1527327053387300561922655200517536151<37>
P93 = 875608341824785328181448860447816700700338797768291942567678323978198356949700451593224781019<93>
Number: 64441_142 N=1337340308640589620461913848808391038150893661277969899138772830138477829834862994727105090713233954169870052955561019646391117869 ( 130 digits) SNFS difficulty: 144 digits. Divisors found: r1=1527327053387300561922655200517536151 r2=875608341824785328181448860447816700700338797768291942567678323978198356949700451593224781019 Version: Total time: 5.36 hours. Scaled time: 12.80 units (timescale=2.390). Factorization parameters were as follows: n: 1337340308640589620461913848808391038150893661277969899138772830138477829834862994727105090713233954169870052955561019646391117869 m: 20000000000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4659016 Max relations in full relation-set: Initial matrix: Pruned matrix : 353852 x 354100 Total sieving time: 4.60 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.26 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,2400000,2400000,26,26,49,49,2.3,2.3,50000 total time: 5.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672378) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339)
(58·10157-31)/9 = 6(4)1561<158> = 2648031729249449<16> · 361382784217781834150297587<27> · C116
C116 = P35 · P37 · P46
P35 = 37727530996966089900393367642062277<35>
P37 = 1174640614178015563795193560615453921<37>
P46 = 1519607549694666831724736274979975973591058671<46>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 67343369134565438844901431185162974421508417199500632120324380433626581713504247852334181996419224033954426575162507 (116 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3241163861 Step 1 took 4758ms Step 2 took 4056ms ********** Factor found in step 2: 37727530996966089900393367642062277 Found probable prime factor of 35 digits: 37727530996966089900393367642062277 Composite cofactor 1784992745482892754448907629357284460115231211814851591365797111193768269607998991 has 82 digits Wed Jun 10 20:58:37 2009 Wed Jun 10 20:58:37 2009 Wed Jun 10 20:58:37 2009 Msieve v. 1.39 Wed Jun 10 20:58:37 2009 random seeds: 09b54ec4 e4f52600 Wed Jun 10 20:58:37 2009 factoring 1784992745482892754448907629357284460115231211814851591365797111193768269607998991 (82 digits) Wed Jun 10 20:58:38 2009 searching for 15-digit factors Wed Jun 10 20:58:39 2009 commencing quadratic sieve (82-digit input) Wed Jun 10 20:58:39 2009 using multiplier of 2 Wed Jun 10 20:58:39 2009 using VC8 32kb sieve core Wed Jun 10 20:58:39 2009 sieve interval: 12 blocks of size 32768 Wed Jun 10 20:58:39 2009 processing polynomials in batches of 17 Wed Jun 10 20:58:39 2009 using a sieve bound of 1334353 (51039 primes) Wed Jun 10 20:58:39 2009 using large prime bound of 126763535 (26 bits) Wed Jun 10 20:58:39 2009 using trial factoring cutoff of 27 bits Wed Jun 10 20:58:39 2009 polynomial 'A' values have 10 factors Wed Jun 10 21:12:23 2009 51267 relations (26158 full + 25109 combined from 276608 partial), need 51135 Wed Jun 10 21:12:26 2009 begin with 302766 relations Wed Jun 10 21:12:26 2009 reduce to 73151 relations in 2 passes Wed Jun 10 21:12:26 2009 attempting to read 73151 relations Wed Jun 10 21:12:26 2009 recovered 73151 relations Wed Jun 10 21:12:26 2009 recovered 63902 polynomials Wed Jun 10 21:12:26 2009 attempting to build 51267 cycles Wed Jun 10 21:12:26 2009 found 51267 cycles in 1 passes Wed Jun 10 21:12:26 2009 distribution of cycle lengths: Wed Jun 10 21:12:26 2009 length 1 : 26158 Wed Jun 10 21:12:26 2009 length 2 : 25109 Wed Jun 10 21:12:26 2009 largest cycle: 2 relations Wed Jun 10 21:12:26 2009 matrix is 51039 x 51267 (7.7 MB) with weight 1598396 (31.18/col) Wed Jun 10 21:12:26 2009 sparse part has weight 1598396 (31.18/col) Wed Jun 10 21:12:27 2009 filtering completed in 4 passes Wed Jun 10 21:12:27 2009 matrix is 36342 x 36406 (6.0 MB) with weight 1273006 (34.97/col) Wed Jun 10 21:12:27 2009 sparse part has weight 1273006 (34.97/col) Wed Jun 10 21:12:27 2009 saving the first 48 matrix rows for later Wed Jun 10 21:12:27 2009 matrix is 36294 x 36406 (4.5 MB) with weight 1009038 (27.72/col) Wed Jun 10 21:12:27 2009 sparse part has weight 825277 (22.67/col) Wed Jun 10 21:12:27 2009 matrix includes 64 packed rows Wed Jun 10 21:12:27 2009 using block size 14562 for processor cache size 4096 kB Wed Jun 10 21:12:27 2009 commencing Lanczos iteration Wed Jun 10 21:12:27 2009 memory use: 4.3 MB Wed Jun 10 21:12:31 2009 lanczos halted after 576 iterations (dim = 36292) Wed Jun 10 21:12:31 2009 recovered 17 nontrivial dependencies Wed Jun 10 21:12:31 2009 prp37 factor: 1174640614178015563795193560615453921 Wed Jun 10 21:12:31 2009 prp46 factor: 1519607549694666831724736274979975973591058671 Wed Jun 10 21:12:31 2009 elapsed time 00:13:54
(58·10195-31)/9 = 6(4)1941<196> = 33 · 121205741 · 843725777 · 3449383496233<13> · 131039417139088721513<21> · 43268274902688917839656473<26> · C120
C120 = P34 · P86
P34 = 3808947365887241518949456612924387<34>
P86 = 31331358494823262828693743658366323430037124627429151340540267581059886550031789827861<86>
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 119339495408525915193752433668177694063200767597864676491438032551608032555488259949937499272744109343579204370538946207 (120 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2513972108 Step 1 took 4243ms Step 2 took 4087ms ********** Factor found in step 2: 3808947365887241518949456612924387 Found probable prime factor of 34 digits: 3808947365887241518949456612924387 Probable prime cofactor 31331358494823262828693743658366323430037124627429151340540267581059886550031789827861 has 86 digits
By Sinkiti Sibata / Msieve / Jun 10, 2009
(58·10139-31)/9 = 6(4)1381<140> = 107 · 80387 · C133
C133 = P62 · P72
P62 = 30526319028262238359498114223427853590308640702586934246165653<62>
P72 = 245437798286995703352529829459865094652787031237088609961669260962599733<72>
Number: 64441_139 N=7492312532103105949786185547559062061162821631251861694339200059483794392807555650992115878275808584900967323428573672574393851570649 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=30526319028262238359498114223427853590308640702586934246165653 (pp62) r2=245437798286995703352529829459865094652787031237088609961669260962599733 (pp72) Version: Msieve-1.40 Total time: 7.19 hours. Scaled time: 18.43 units (timescale=2.564). Factorization parameters were as follows: name: 64441_139 n: 7492312532103105949786185547559062061162821631251861694339200059483794392807555650992115878275808584900967323428573672574393851570649 m: 10000000000000000000000000000 deg: 5 c5: 29 c0: -155 skew: 1.40 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 254885 x 255133 Total sieving time: 7.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 7.19 hours. --------- CPU info (if available) ----------
(58·10136-31)/9 = 6(4)1351<137> = 13 · 47939 · 4176817 · 5558906216847676501769<22> · C103
C103 = P39 · P64
P39 = 633355274586104563509265411646604936091<39>
P64 = 7031872289102237803989792955009556850261052778421728047172153941<64>
Number: 64441_136 N=4453673404518767477016279696608870096235646732603416366253344277217826059089646595306167583295118784631 ( 103 digits) SNFS difficulty: 138 digits. Divisors found: r1=633355274586104563509265411646604936091 (pp39) r2=7031872289102237803989792955009556850261052778421728047172153941 (pp64) Version: Msieve-1.40 Total time: 6.33 hours. Scaled time: 13.23 units (timescale=2.092). Factorization parameters were as follows: name: 64441_136 n: 4453673404518767477016279696608870096235646732603416366253344277217826059089646595306167583295118784631 m: 2000000000000000000000000000 deg: 5 c5: 145 c0: -248 skew: 1.11 type: snfs lss: 1 rlim: 1430000 alim: 1430000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1430000/1430000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [715000, 1540001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 221217 x 221449 Total sieving time: 6.01 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1430000,1430000,26,26,48,48,2.3,2.3,75000 total time: 6.33 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Jun 10, 2009
(58·10143-31)/9 = 6(4)1421<144> = 7 · 26683 · C139
C139 = P48 · P92
P48 = 342602696066354823193997798573370772650604826459<48>
P92 = 10070754559295277760249566975349829558487644575316533280632068011095277845540303297091747479<92>
Number: n N=3450267663437097158942528653580634242478862649008434714689633551830456226513641347055880654051774240658549019677828282557885675975845746861 ( 139 digits) SNFS difficulty: 146 digits. Divisors found: r1=342602696066354823193997798573370772650604826459 (pp48) r2=10070754559295277760249566975349829558487644575316533280632068011095277845540303297091747479 (pp92) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 9.29 hours. Scaled time: 24.72 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_4_142_1 n: 3450267663437097158942528653580634242478862649008434714689633551830456226513641347055880654051774240658549019677828282557885675975845746861 m: 50000000000000000000000000000 deg: 5 c5: 464 c0: -775 skew: 1.11 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [960000, 2560001) Primes: RFBsize:143414, AFBsize:143328, largePrimes:7362448 encountered Relations: rels:6792022, finalFF:324534 Max relations in full relation-set: 28 Initial matrix: 286809 x 324534 with sparse part having weight 33806415. Pruned matrix : 273676 x 275174 with weight 26500476. Total sieving time: 8.45 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.31 hours. Total square root time: 0.36 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1920000,1920000,28,28,56,56,2.3,2.3,100000 total time: 9.29 hours. --------- CPU info (if available) ----------
(64·10211-1)/9 = 7(1)211<212> = 71 · 236879 · C205
C205 = P51 · P73 · P82
P51 = 643057363391772539930509437073292784585159499609363<51>
P73 = 1745172861926735098113731730696839166480106417061262769272337987121179921<73>
P82 = 3767596531307051231311670269449565300807368866581972286491213685667330975891607973<82>
Number: n N=4228171113635725656993542677616599234274247410151050025665989637373613111151661914697823742490214806353627808142322565179091025263513992977047419355250018661759926941431327488296372808576073462781830975279 ( 205 digits) SNFS difficulty: 212 digits. Divisors found: Wed Jun 10 10:00:33 2009 prp51 factor: 643057363391772539930509437073292784585159499609363 Wed Jun 10 10:00:33 2009 prp73 factor: 1745172861926735098113731730696839166480106417061262769272337987121179921 Wed Jun 10 10:00:33 2009 prp82 factor: 3767596531307051231311670269449565300807368866581972286491213685667330975891607973 Wed Jun 10 10:00:33 2009 elapsed time 31:29:32 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 113.30 hours. Scaled time: 173.69 units (timescale=1.533). Factorization parameters were as follows: name: KA_7_1_211 n: 4228171113635725656993542677616599234274247410151050025665989637373613111151661914697823742490214806353627808142322565179091025263513992977047419355250018661759926941431327488296372808576073462781830975279 m: 200000000000000000000000000000000000 deg: 6 c6: 10 c0: -1 skew: 0.68 type: snfs lss: 1 rlim: 25000000 alim: 25000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 25000000/25000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [12500000, 33599990) Primes: RFBsize:1565927, AFBsize:1564806, largePrimes:38685477 encountered Relations: rels:38036155, finalFF:2004157 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7242530 hash collisions in 46516704 relations Msieve: matrix is 4096749 x 4096997 (1112.1 MB) Total sieving time: 112.10 hours. Total relation processing time: 1.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,212,6,0,0,0,0,0,0,0,0,25000000,25000000,29,29,57,57,2.6,2.6,100000 total time: 113.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2748k kernel code, 36964k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.71 BogoMIPS).
(58·10166-31)/9 = 6(4)1651<167> = 13 · 3673 · 29669 · 237791 · C153
C153 = P39 · P114
P39 = 278920477089003851435716097376075149113<39>
P114 = 685871066084268679784539153202401450105862248666859370968796776773667518547705937015346850643694246601536809957367<114>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 191303484973767908831484385073305410609307331952420749269253261812451372451202115512906550164548598382034855111281939724339195680624834936274137697865471 (153 digits) Using B1=2144000, B2=2854157680, polynomial Dickson(6), sigma=333789588 Step 1 took 32822ms Step 2 took 10920ms ********** Factor found in step 2: 278920477089003851435716097376075149113 Found probable prime factor of 39 digits: 278920477089003851435716097376075149113 Probable prime cofactor 685871066084268679784539153202401450105862248666859370968796776773667518547705937015346850643694246601536809957367 has 114 digits
(32·10168-23)/9 = 3(5)1673<169> = 99787 · 35110973901895945362440267<26> · C139
C139 = P59 · P80
P59 = 25148140795056499081497427625137336246538170970339484970739<59>
P80 = 40353828462554322758429865388999567026694081322219443685122757666884960343307763<80>
Number: n N=1014823759795874448307906099141215069716476101479601314893226854770980254415688256799200840659055310493204808095612598493667121316526546857 ( 139 digits) SNFS difficulty: 170 digits. Divisors found: Wed Jun 10 22:39:16 2009 prp59 factor: 25148140795056499081497427625137336246538170970339484970739 Wed Jun 10 22:39:16 2009 prp80 factor: 40353828462554322758429865388999567026694081322219443685122757666884960343307763 Wed Jun 10 22:39:16 2009 elapsed time 01:42:21 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 40.62 hours. Scaled time: 63.49 units (timescale=1.563). Factorization parameters were as follows: name: KA_3_5_167_3 n: 1014823759795874448307906099141215069716476101479601314893226854770980254415688256799200840659055310493204808095612598493667121316526546857 m: 4000000000000000000000000000000000 deg: 5 c5: 125 c0: -92 skew: 0.94 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 4648807) Primes: RFBsize:335439, AFBsize:335677, largePrimes:16462283 encountered Relations: rels:15982118, finalFF:631639 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1679083 hash collisions in 17631665 relations Msieve: matrix is 762700 x 762948 (205.3 MB) Total sieving time: 40.05 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 40.62 hours. --------- CPU info (if available) ----------
(46·10168+53)/9 = 5(1)1677<169> = 11 · 2383919 · 404892423714526201213<21> · C141
C141 = P57 · P85
P57 = 130013906438737421609827744440291958180593859853561963893<57>
P85 = 3702556412970577933431326070205991960265739985195153009374566172308595834356085499657<85>
Number: n N=481383823060103954194458622525066612872526569817422802914373422723167098834287235699476136882982546717677639945688012941180066526049097884701 ( 141 digits) SNFS difficulty: 171 digits. Divisors found: Wed Jun 10 23:32:14 2009 prp57 factor: 130013906438737421609827744440291958180593859853561963893 Wed Jun 10 23:32:14 2009 prp85 factor: 3702556412970577933431326070205991960265739985195153009374566172308595834356085499657 Wed Jun 10 23:32:14 2009 elapsed time 02:34:18 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 52.58 hours. Scaled time: 139.85 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_1_167_7 n: 481383823060103954194458622525066612872526569817422802914373422723167098834287235699476136882982546717677639945688012941180066526049097884701 m: 5000000000000000000000000000000000 deg: 5 c5: 368 c0: 1325 skew: 1.29 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5496571) Primes: RFBsize:348513, AFBsize:348491, largePrimes:16732815 encountered Relations: rels:16217712, finalFF:697188 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1947970 hash collisions in 18297886 relations Msieve: matrix is 856679 x 856927 (229.3 MB) Total sieving time: 51.90 hours. Total relation processing time: 0.67 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 52.58 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ggnfs/msieve 1.41 / Jun 10, 2009
(58·10161-31)/9 = 6(4)1601<162> = 7 · 67 · C160
C160 = P58 · P102
P58 = 4093134095623509822924789862483442313088777192093517929121<58>
P102 = 335704117919347485954227762146677853991802972588438738421183653051486156771646723097088789614286700309<102>
N=1374081971096896470030798389007344231224828239753612887941246150201374081971096896470030798389007344231224828239753612887941246150201374081971096896470030798389 ( 160 digits) SNFS difficulty: 163 digits. Divisors found: r1=4093134095623509822924789862483442313088777192093517929121 (pp58) r2=335704117919347485954227762146677853991802972588438738421183653051486156771646723097088789614286700309 (pp102) Version: Msieve v. 1.41 Total time: 34.54 hours. Scaled time: 68.66 units (timescale=1.988). Factorization parameters were as follows: n: 1374081971096896470030798389007344231224828239753612887941246150201374081971096896470030798389007344231224828239753612887941246150201374081971096896470030798389 m: 200000000000000000000000000000000 deg: 5 c5: 145 c0: -248 skew: 1.11 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 703581 x 703829 Total sieving time: 33.57 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.76 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,163.000,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 34.54 hours. --------- CPU info (if available) ----------
(58·10121-31)/9 = 6(4)1201<122> = 61 · C121
C121 = P51 · P70
P51 = 464920469417375193572200232662861103514882907303691<51>
P70 = 2272359192297716094864344333471243185707117555901008894066572651550791<70>
N=1056466302367941712204007285974499089253187613843351548269581056466302367941712204007285974499089253187613843351548269581 ( 121 digits) SNFS difficulty: 123 digits. Divisors found: r1=464920469417375193572200232662861103514882907303691 (pp51) r2=2272359192297716094864344333471243185707117555901008894066572651550791 (pp70) Version: Msieve v. 1.41 Total time: 2.40 hours. Scaled time: 4.75 units (timescale=1.982). Factorization parameters were as follows: n: 1056466302367941712204007285974499089253187613843351548269581056466302367941712204007285974499089253187613843351548269581 m: 2000000000000000000000000 deg: 5 c5: 145 c0: -248 skew: 1.11 type: snfs lss: 1 rlim: 810000 alim: 810000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 810000/810000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [405000, 955001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 89180 x 89409 Total sieving time: 2.31 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,123.000,5,0,0,0,0,0,0,0,0,810000,810000,25,25,46,46,2.2,2.2,50000 total time: 2.40 hours. --------- CPU info (if available) ----------
2·10171+9 = 2(0)1709<172> = 72 · 3181 · 55360013450292649181<20> · C147
C147 = P36 · C111
P36 = 332698364302461530229511915253909389<36>
C111 = [696664039882704701975721828063080480151348232344868154988400858011494357876797914528601178091872120507409021829<111>]
C147=P36*C111 C147=332698364302461530229511915253909389<36>*6966640398827047019757218280630804801513482323448681549884008580114943578767979145286011780918721205 07409021829<111>
2·10171-9 = 1(9)1701<172> = 112 · 541 · 77524813986331865479<20> · C147
C147 = P45 · C103
P45 = 334794278410722364007416315208828631701999789<45>
C103 = [1177141307694526201464716642183051523982966901517506432181852284630204945543901005711357960481491140801<103>]
C147=P45*C103 C147=334794278410722364007416315208828631701999789<45>*1177141307694526201464716642183051523982966901517506432181852284630204945543901005711357960481491140801<103>
(19·10171+11)/3 = 6(3)1707<172> = 17 · C171
C171 = P38 · P134
P38 = 25310355343227723063527451248702974397<38>
P134 = 14719233078943155176128039350114423645313440687246188053637990114166597188559130734521853858080446251446814489501657905107267542908413<134>
N=372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901961 ( 171 digits) SNFS difficulty: 172 digits. Divisors found: r1=25310355343227723063527451248702974397 (pp38) r2=14719233078943155176128039350114423645313440687246188053637990114166597188559130734521853858080446251446814489501657905107267542908413 (pp134) Version: Msieve v. 1.41 Total time: 60.02 hours. Scaled time: 118.95 units (timescale=1.982). Factorization parameters were as follows: n: 372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901961 m: 10000000000000000000000000000000000 deg: 5 c5: 190 c0: 11 skew: 0.57 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2600000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 968092 x 968339 Total sieving time: 58.28 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.44 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 60.02 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Jun 9, 2009
(19·10168-7)/3 = 6(3)1671<169> = 2194638858649<13> · 40919237740408367<17> · C140
C140 = P33 · P43 · P65
P33 = 241612742823526534650909688816909<33>
P43 = 6233028353893749389383907598437941819707581<43>
P65 = 46829854524857710207917680811999264463722603395805706199658829933<65>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 70524781078454483013796349470455628281280408219714768823579374956912502233135840477646284348677885337018782934159342461747464081084903832357 (140 digits) Using B1=1046000, B2=1045563762, polynomial Dickson(6), sigma=4279458543 Step 1 took 14398ms Step 2 took 6069ms ********** Factor found in step 2: 241612742823526534650909688816909 Found probable prime factor of 33 digits: 241612742823526534650909688816909 Composite cofactor 291891811062157604903137230387297274730508932417381545453883499198383081542958422133134293492730462669822073 has 108 digits Number: n N=291891811062157604903137230387297274730508932417381545453883499198383081542958422133134293492730462669822073 ( 108 digits) Divisors found: r1=6233028353893749389383907598437941819707581 (pp43) r2=46829854524857710207917680811999264463722603395805706199658829933 (pp65) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 10.60 hours. Scaled time: 27.41 units (timescale=2.585). Factorization parameters were as follows: n: 291891811062157604903137230387297274730508932417381545453883499198383081542958422133134293492730462669822073 name: KA_6_3_167_1 Y0: -561705156206669121855 Y1: 197076323297 c0: 203638276723910946303732994 c1: 11325872543009262796133 c2: -569264334750724044 c3: -25179488545454 c4: 320512286 c5: 5220 skew: 30973.96 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1250000, 2400001) Primes: RFBsize:183072, AFBsize:183947, largePrimes:15902600 encountered Relations: rels:14110942, finalFF:413269 Max relations in full relation-set: 28 Initial matrix: 367098 x 413269 with sparse part having weight 38019278. Pruned matrix : 336788 x 338687 with weight 28286917. Total sieving time: 9.14 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.52 hours. Total square root time: 0.42 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 10.60 hours. --------- CPU info (if available) ----------
(52·10168+11)/9 = 5(7)1679<169> = 7 · 3631 · 18695220169<11> · 4918399219037<13> · C142
C142 = P65 · P78
P65 = 22052280975865092692525800150982807244061830250598730578589972079<65>
P78 = 112105950947613006602391329605195305461345950480308802909553359992427651958801<78>
Number: n N=2472191929363311566113899520147805286457413223560785065597047238434828374391621498727947661965678444475466010146628383966893721000200248317279 ( 142 digits) SNFS difficulty: 171 digits. Divisors found: Tue Jun 09 23:43:23 2009 prp65 factor: 22052280975865092692525800150982807244061830250598730578589972079 Tue Jun 09 23:43:23 2009 prp78 factor: 112105950947613006602391329605195305461345950480308802909553359992427651958801 Tue Jun 09 23:43:23 2009 elapsed time 01:16:52 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 47.54 hours. Scaled time: 125.47 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_7_167_9 n: 2472191929363311566113899520147805286457413223560785065597047238434828374391621498727947661965678444475466010146628383966893721000200248317279 m: 10000000000000000000000000000000000 deg: 5 c5: 13 c0: 275 skew: 1.84 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5174293) Primes: RFBsize:348513, AFBsize:348622, largePrimes:16908539 encountered Relations: rels:16337061, finalFF:749922 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1847517 hash collisions in 18248277 relations Msieve: matrix is 844859 x 845107 (224.0 MB) Total sieving time: 47.00 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 47.54 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Jun 9, 2009
(58·10126-31)/9 = 6(4)1251<127> = 3 · 7411 · 17231 · 149711 · 151643837421842767195511<24> · C90
C90 = P33 · P58
P33 = 230317917783472779280908801355139<33>
P58 = 3217145707328322487608679926740369461372781503408846476493<58>
Tue Jun 09 05:40:41 2009 Msieve v. 1.39 Tue Jun 09 05:40:41 2009 random seeds: dba3cd58 e3fe0ec0 Tue Jun 09 05:40:41 2009 factoring 740966300517896959122455501051949913568949425089984203468076083503353610890837643708247527 (90 digits) Tue Jun 09 05:40:42 2009 searching for 15-digit factors Tue Jun 09 05:40:44 2009 commencing quadratic sieve (90-digit input) Tue Jun 09 05:40:44 2009 using multiplier of 23 Tue Jun 09 05:40:44 2009 using 64kb Pentium 4 sieve core Tue Jun 09 05:40:44 2009 sieve interval: 18 blocks of size 65536 Tue Jun 09 05:40:44 2009 processing polynomials in batches of 6 Tue Jun 09 05:40:44 2009 using a sieve bound of 1611319 (61176 primes) Tue Jun 09 05:40:44 2009 using large prime bound of 135350796 (27 bits) Tue Jun 09 05:40:44 2009 using double large prime bound of 433141090259052 (42-49 bits) Tue Jun 09 05:40:44 2009 using trial factoring cutoff of 49 bits Tue Jun 09 05:40:44 2009 polynomial 'A' values have 12 factors Tue Jun 09 07:58:27 2009 61458 relations (16936 full + 44522 combined from 659490 partial), need 61272 Tue Jun 09 07:58:28 2009 begin with 676426 relations Tue Jun 09 07:58:28 2009 reduce to 148302 relations in 10 passes Tue Jun 09 07:58:28 2009 attempting to read 148302 relations Tue Jun 09 07:58:30 2009 recovered 148302 relations Tue Jun 09 07:58:30 2009 recovered 127865 polynomials Tue Jun 09 07:58:31 2009 attempting to build 61458 cycles Tue Jun 09 07:58:31 2009 found 61458 cycles in 5 passes Tue Jun 09 07:58:31 2009 distribution of cycle lengths: Tue Jun 09 07:58:31 2009 length 1 : 16936 Tue Jun 09 07:58:31 2009 length 2 : 11789 Tue Jun 09 07:58:31 2009 length 3 : 10877 Tue Jun 09 07:58:31 2009 length 4 : 8015 Tue Jun 09 07:58:31 2009 length 5 : 5699 Tue Jun 09 07:58:31 2009 length 6 : 3616 Tue Jun 09 07:58:31 2009 length 7 : 2045 Tue Jun 09 07:58:31 2009 length 9+: 2481 Tue Jun 09 07:58:31 2009 largest cycle: 17 relations Tue Jun 09 07:58:31 2009 matrix is 61176 x 61458 (14.8 MB) with weight 3643194 (59.28/col) Tue Jun 09 07:58:31 2009 sparse part has weight 3643194 (59.28/col) Tue Jun 09 07:58:33 2009 filtering completed in 3 passes Tue Jun 09 07:58:33 2009 matrix is 57138 x 57201 (13.9 MB) with weight 3410202 (59.62/col) Tue Jun 09 07:58:33 2009 sparse part has weight 3410202 (59.62/col) Tue Jun 09 07:58:33 2009 saving the first 48 matrix rows for later Tue Jun 09 07:58:33 2009 matrix is 57090 x 57201 (8.7 MB) with weight 2676739 (46.80/col) Tue Jun 09 07:58:33 2009 sparse part has weight 1950038 (34.09/col) Tue Jun 09 07:58:33 2009 matrix includes 64 packed rows Tue Jun 09 07:58:33 2009 using block size 21845 for processor cache size 512 kB Tue Jun 09 07:58:33 2009 commencing Lanczos iteration Tue Jun 09 07:58:33 2009 memory use: 8.6 MB Tue Jun 09 07:59:05 2009 lanczos halted after 905 iterations (dim = 57090) Tue Jun 09 07:59:05 2009 recovered 18 nontrivial dependencies Tue Jun 09 07:59:06 2009 prp33 factor: 230317917783472779280908801355139 Tue Jun 09 07:59:06 2009 prp58 factor: 3217145707328322487608679926740369461372781503408846476493 Tue Jun 09 07:59:06 2009 elapsed time 02:18:25
(58·10124-31)/9 = 6(4)1231<125> = 13 · 35495845603181599<17> · C108
C108 = P44 · P65
P44 = 10365682454341659712247078164498849241329819<44>
P65 = 13473074299298846240802412667099780125728616836040931580302460697<65>
Number: 64441_124 N=139657609870283601668911375940815747186350774436336032162631242504400623898265616657709917390014558261623843 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=10365682454341659712247078164498849241329819 (pp44) r2=13473074299298846240802412667099780125728616836040931580302460697 (pp65) Version: Msieve-1.40 Total time: 2.53 hours. Scaled time: 5.12 units (timescale=2.026). Factorization parameters were as follows: name: 64441_124 n: 139657609870283601668911375940815747186350774436336032162631242504400623898265616657709917390014558261623843 m: 10000000000000000000000000 deg: 5 c5: 29 c0: -155 skew: 1.40 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 118575 x 118811 Total sieving time: 2.43 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.53 hours. --------- CPU info (if available) ----------
(58·10127-31)/9 = 6(4)1261<128> = 125311 · 609769384018041241<18> · C105
C105 = P37 · P69
P37 = 4563387659778388937693511871883853581<37>
P69 = 184817592939026058870817741062463000395240787066825512930841487415611<69>
Number: 64441_127 N=843394322927897026365377549418668488290321211203191730227702468445885249759060112943616393213835217652991 ( 105 digits) SNFS difficulty: 129 digits. Divisors found: r1=4563387659778388937693511871883853581 (pp37) r2=184817592939026058870817741062463000395240787066825512930841487415611 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.20 hours. Scaled time: 2.46 units (timescale=0.473). Factorization parameters were as follows: name: 64441_127 n: 843394322927897026365377549418668488290321211203191730227702468445885249759060112943616393213835217652991 m: 20000000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78647, largePrimes:2613755 encountered Relations: rels:2478315, finalFF:176856 Max relations in full relation-set: 28 Initial matrix: 157212 x 176856 with sparse part having weight 13708487. Pruned matrix : 151509 x 152359 with weight 9984418. Total sieving time: 4.70 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.34 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 5.20 hours. --------- CPU info (if available) ----------
(58·10132-31)/9 = 6(4)1311<133> = 32 · 1129 · 1621 · 16858112517613651<17> · C110
C110 = P44 · P66
P44 = 34466753311020998457630093985809224389075193<44>
P66 = 673374543227464904583619694013355768942795706554365875033955504127<66>
Number: 64441_132 N=23209034267342478453008918977902204295017917623204003350478450858683155607960876824016810806416786769624821511 ( 110 digits) SNFS difficulty: 134 digits. Divisors found: r1=34466753311020998457630093985809224389075193 (pp44) r2=673374543227464904583619694013355768942795706554365875033955504127 (pp66) Version: Msieve-1.40 Total time: 4.57 hours. Scaled time: 9.65 units (timescale=2.112). Factorization parameters were as follows: name: 64441_132 n: 23209034267342478453008918977902204295017917623204003350478450858683155607960876824016810806416786769624821511 m: 200000000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 1210000 alim: 1210000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1210000/1210000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [605000, 1205001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 205047 x 205295 Total sieving time: 4.22 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,134.000,5,0,0,0,0,0,0,0,0,1210000,1210000,26,26,47,47,2.3,2.3,75000 total time: 4.57 hours. --------- CPU info (if available) ----------
(19·10162+11)/3 = 6(3)1617<163> = 29 · 29308250296927268355754842857<29> · C133
C133 = P49 · P85
P49 = 1291194527858043387638211121856667727905724778137<49>
P85 = 5771022661503775565834617477507816177513092462939509440235021835776577960538998268717<85>
Number: 63337_162 N=7451512880678436435055571220951791531103776927461414651478143238821216572496591422500580442134129208413266665885995744128931932640229 ( 133 digits) SNFS difficulty: 164 digits. Divisors found: r1=1291194527858043387638211121856667727905724778137 (pp49) r2=5771022661503775565834617477507816177513092462939509440235021835776577960538998268717 (pp85) Version: Msieve-1.40 Total time: 44.28 hours. Scaled time: 113.54 units (timescale=2.564). Factorization parameters were as follows: name: 63337_162 n: 7451512880678436435055571220951791531103776927461414651478143238821216572496591422500580442134129208413266665885995744128931932640229 m: 200000000000000000000000000000000 deg: 5 c5: 475 c0: 88 skew: 0.71 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 718107 x 718355 Total sieving time: 44.28 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 44.28 hours. --------- CPU info (if available) ----------
(58·10134-31)/9 = 6(4)1331<135> = 197 · 1217 · 2011 · C127
C127 = P48 · P79
P48 = 271751257225613675644169237643916573741484702123<48>
P79 = 4918640111763998771075163673454473204834564360412556035749135411931945947164253<79>
Number: 64441_134 N=1336646634212199628172054116219545703948108311669051107140593065931122376318243861956011152390469522275355700445792232258809119 ( 127 digits) SNFS difficulty: 136 digits. Divisors found: r1=271751257225613675644169237643916573741484702123 (pp48) r2=4918640111763998771075163673454473204834564360412556035749135411931945947164253 (pp79) Version: Msieve-1.40 Total time: 5.11 hours. Scaled time: 10.66 units (timescale=2.085). Factorization parameters were as follows: name: 64441_134 n: 1336646634212199628172054116219545703948108311669051107140593065931122376318243861956011152390469522275355700445792232258809119 m: 1000000000000000000000000000 deg: 5 c5: 29 c0: -155 skew: 1.40 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1335001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 204143 x 204372 Total sieving time: 4.89 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 5.11 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Jun 9, 2009
8·10197-3 = 7(9)1967<198> = 11 · 23873 · C193
C193 = P54 · P140
P54 = 140821602104944344191203976546352435011228207631215297<54>
P140 = 21633212827108175193600382697413167083794938983381715227587944143322409584255496805513095712742862874312277348366992788638949071288208626967<140>
Number: 79997_197 N=3046423688990605590949075220008910789290297521353526045018526064058674120249959063681679188737371621801731130261268911627056811993770063556014211566509141175081777435901341568832039237937114199 ( 193 digits) SNFS difficulty: 197 digits. Divisors found: r1=140821602104944344191203976546352435011228207631215297 r2=21633212827108175193600382697413167083794938983381715227587944143322409584255496805513095712742862874312277348366992788638949071288208626967 Version: Total time: 576.63 hours. Scaled time: 1145.20 units (timescale=1.986). Factorization parameters were as follows: n: 3046423688990605590949075220008910789290297521353526045018526064058674120249959063681679188737371621801731130261268911627056811993770063556014211566509141175081777435901341568832039237937114199 m: 2000000000000000000000000000000000000000 deg: 5 c5: 25 c0: -3 skew: 0.65 type: snfs lss: 1 rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6950000, 12650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1981883 x 1982131 Total sieving time: 576.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13900000,13900000,28,28,55,55,2.5,2.5,100000 total time: 576.63 hours. --------- CPU info (if available) ----------
(19·10205-7)/3 = 6(3)2041<206> = C206
C206 = P50 · P157
P50 = 14447627005804904645234614420982884085254814760187<50>
P157 = 4383649529980713498048347690027570917080963555852230233404851224727836970133139701807922977479993415798243544960995282024391148278612096474108353621266360713<157>
Number: 63331_205 N=63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 206 digits) SNFS difficulty: 206 digits. Divisors found: r1=14447627005804904645234614420982884085254814760187 r2=4383649529980713498048347690027570917080963555852230233404851224727836970133139701807922977479993415798243544960995282024391148278612096474108353621266360713 Version: Total time: 968.77 hours. Scaled time: 1886.19 units (timescale=1.947). Factorization parameters were as follows: n: 63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 100000000000000000000000000000000000000000 deg: 5 c5: 19 c0: -7 skew: 0.82 type: snfs lss: 1 rlim: 19200000 alim: 19200000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 19200000/19200000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9600000, 18800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3340362 x 3340609 Total sieving time: 968.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19200000,19200000,29,29,56,56,2.6,2.6,100000 total time: 968.77 hours. --------- CPU info (if available) ----------
5·10183-1 = 4(9)183<184> = 23 · 11633 · C179
C179 = P78 · P101
P78 = 945200151001218657635011445058228730913844677283075507271374283027271720740913<78>
P101 = 19770909942771694388069711525503787363511760112454424254375327438641837630246346547998813862502042297<101>
Number: 49999_183 N=18687467063339300864482226350076057990947790954518442661244809556023157509184890061631266374893014251062382502550839254145814568001823896785381915764373465291767423259916504397161 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: r1=945200151001218657635011445058228730913844677283075507271374283027271720740913 r2=19770909942771694388069711525503787363511760112454424254375327438641837630246346547998813862502042297 Version: Total time: 197.96 hours. Scaled time: 379.48 units (timescale=1.917). Factorization parameters were as follows: n: 18687467063339300864482226350076057990947790954518442661244809556023157509184890061631266374893014251062382502550839254145814568001823896785381915764373465291767423259916504397161 m: 5000000000000000000000000000000000000 deg: 5 c5: 8 c0: -5 skew: 0.91 type: snfs lss: 1 rlim: 8300000 alim: 8300000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8300000/8300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4150000, 6050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1592809 x 1593055 Total sieving time: 197.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8300000,8300000,28,28,54,54,2.5,2.5,100000 total time: 197.96 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3, Msieve / Jun 9, 2009
(58·10175-31)/9 = 6(4)1741<176> = 55714679 · 5235442620557<13> · 6232928151786767<16> · 232729247283047481153469816271<30> · C111
C111 = P30 · P81
P30 = 454908773934063966445433989859<30>
P81 = 334807400088451839410571141352346615537487208329487130708430760155293207884291769<81>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3320324933 Step 1 took 5604ms Step 2 took 6120ms ********** Factor found in step 2: 454908773934063966445433989859 Found probable prime factor of 30 digits: 454908773934063966445433989859 Probable prime cofactor has 81 digits
(58·10178-31)/9 = 6(4)1771<179> = 13 · 2985950646001<13> · 103729544616818033<18> · C149
C149 = P32 · P118
P32 = 15760309062369653259657044097511<32>
P118 = 1015528943204105616882829519823718893580572556570303575730382698748439447747013081058056037752739634733914242599226139<118>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1343471373 Step 1 took 8065ms Step 2 took 7684ms ********** Factor found in step 2: 15760309062369653259657044097511 Found probable prime factor of 32 digits: 15760309062369653259657044097511 Probable prime cofactor has 118 digits
(58·10164-31)/9 = 6(4)1631<165> = 232 · 383 · 1106512672418801<16> · C145
C145 = P34 · P112
P34 = 2153842407797207605842854513620151<34>
P112 = 1334629507037536053292771611266454391010528184018975178657665649995918628661229565400499790650495782091540687313<112>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3471677956 Step 1 took 9761ms Step 2 took 9648ms ********** Factor found in step 2: 2153842407797207605842854513620151 Found probable prime factor of 34 digits: 2153842407797207605842854513620151 Probable prime cofactor has 112 digits
(58·10110-31)/9 = 6(4)1091<111> = 43 · 89 · 709 · 63516017 · C97
C97 = P44 · P53
P44 = 64029904137894160699939453653382583511076709<44>
P53 = 58400246311501793633262292351880538367399994103824779<53>
SNFS difficulty: 111 digits. Divisors found: r1=64029904137894160699939453653382583511076709 (pp44) r2=58400246311501793633262292351880538367399994103824779 (pp53) Version: Msieve v. 1.42 Total time: 0.44 hours. Scaled time: 1.20 units (timescale=2.739). Factorization parameters were as follows: n: 3739362172954866891959870454158433811546691347795804580424247967542367672806713155626329363972311 m: 10000000000000000000000 deg: 5 c5: 58 c0: -31 skew: 0.88 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 49264 x 49504 Total sieving time: 0.41 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.44 hours.
(58·10117-31)/9 = 6(4)1161<118> = 3 · 151 · C116
C116 = P57 · P59
P57 = 335590386834784504387239992197852758626517636211067047607<57>
P59 = 42391401048926704326708187457225970435707174842995360025571<59>
SNFS difficulty: 119 digits. Divisors found: r1=335590386834784504387239992197852758626517636211067047607 (pp57) r2=42391401048926704326708187457225970435707174842995360025571 (pp59) Version: Msieve v. 1.42 Total time: 0.87 hours. Scaled time: 2.38 units (timescale=2.736). Factorization parameters were as follows: n: 14226146676477802305616875153298994358597007603630120186411577140053961246014226146676477802305616875153298994358597 m: 200000000000000000000000 deg: 5 c5: 725 c0: -124 skew: 0.70 type: snfs lss: 1 rlim: 680000 alim: 680000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 680000/680000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [340000, 640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76358 x 76584 Total sieving time: 0.82 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119.000,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000 total time: 0.87 hours.
By Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 / Jun 9, 2009
(58·10204-31)/9 = 6(4)2031<205> = 32 · 227 · 4337 · 8581 · 522523 · 92090216387547454209696971<26> · C163
C163 = P33 · C130
P33 = 225681106744058840576374317838111<33>
C130 = [7805049924632190975500473119323412038681495890816226485855611592217951151934608322814868752014324502254708615145997800942003863817<130>]
[2009-06-08 19:49:16 GMT] a: Factor found! / (probable) 225681106744058840576374317838111 B1: 3000000 sigma: 2193550413 (found in step 2) [2009-06-08 19:49:16 GMT] a: Co-factor: / (Composite) 7805049924632190975500473119323412038681495890816226485855611592217951151934608322814868752014324502254708615145997800942003863817
Factorizations of 644...441 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Sinkiti Sibata / GGNFS / Jun 8, 2009
(19·10167+11)/3 = 6(3)1667<168> = 43 · 293 · 377329 · 453317541319<12> · 59752351280420531883007677311069<32> · C115
C115 = P33 · P83
P33 = 451635143998643094798214056395897<33>
P83 = 10890074034432660056461130378390738916429422879842755660108083810782993459835053541<83>
Number: 63337_167 N=4918340154696878584797715035296828294757600408247419664161466612691457251945246728276473762673861793707090487721277 ( 115 digits) Divisors found: r1=451635143998643094798214056395897 (pp33) r2=10890074034432660056461130378390738916429422879842755660108083810782993459835053541 (pp83) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 56.94 hours. Scaled time: 26.88 units (timescale=0.472). Factorization parameters were as follows: name: 63337_167 n: 4918340154696878584797715035296828294757600408247419664161466612691457251945246728276473762673861793707090487721277 skew: 41061.75 # norm 3.68e+15 c5: 19440 c4: 21217646 c3: -194470098863967 c2: 312840910399259543 c1: 91867653659978829575663 c0: 671399258331606106211358267 # alpha -5.86 Y1: 124570391 Y0: -12039943812266001523120 # Murphy_E 6.16e-10 # M 954209243953220357002622527516688316195460346728018691553675653695772336926992012472982582020705135658684704564758 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: RFBsize:250150, AFBsize:250374, largePrimes:7767187 encountered Relations: rels:7848397, finalFF:722910 Max relations in full relation-set: 28 Initial matrix: 500605 x 722910 with sparse part having weight 66809160. Pruned matrix : 337685 x 340252 with weight 39640429. Total sieving time: 50.55 hours. Total relation processing time: 0.60 hours. Matrix solve time: 5.44 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 56.94 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 8, 2009
(2·10187+1)/3 = (6)1867<187> = 73 · 509 · 6807883 · C175
C175 = P48 · P127
P48 = 832957047027425833335054553975046273267520991369<48>
P127 = 6733830004153306475052063018140541113462683578069214987182885775529843283897925895868514070483631862407825839272911409226010683<127>
Number: 66667_187 N=5608991155444216796145843881216219198330238812809990245289610633020319055475951327318681109826779298887702399873401084096868614468301634210121695696972944460387689897144795027 ( 175 digits) SNFS difficulty: 187 digits. Divisors found: r1=832957047027425833335054553975046273267520991369 r2=6733830004153306475052063018140541113462683578069214987182885775529843283897925895868514070483631862407825839272911409226010683 Version: Total time: 114.35 hours. Scaled time: 272.96 units (timescale=2.387). Factorization parameters were as follows: n: 5608991155444216796145843881216219198330238812809990245289610633020319055475951327318681109826779298887702399873401084096868614468301634210121695696972944460387689897144795027 m: 20000000000000000000000000000000000000 deg: 5 c5: 25 c0: 4 skew: 0.69 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 7200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20006057 Max relations in full relation-set: Initial matrix: Pruned matrix : 1668637 x 1668883 Total sieving time: 103.50 hours. Total relation processing time: 3.18 hours. Matrix solve time: 6.64 hours. Time per square root: 1.03 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 114.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Jun 8, 2009
(19·10165+11)/3 = 6(3)1647<166> = 13127 · 13229 · 1605041 · C152
C152 = P67 · P85
P67 = 2791700755882992873339918737978119310151779702113163525509754308843<67>
P85 = 8139258648311733962685908037081497873764129440073504717377547968433533826435397148353<85>
Number: n N=22722374520819054559718952394116308190104376321680853380543504496639755831541448161475981772137990356697581047755307729999750673967210420073896650785579 ( 152 digits) SNFS difficulty: 166 digits. Divisors found: Mon Jun 08 04:39:24 2009 prp67 factor: 2791700755882992873339918737978119310151779702113163525509754308843 Mon Jun 08 04:39:24 2009 prp85 factor: 8139258648311733962685908037081497873764129440073504717377547968433533826435397148353 Mon Jun 08 04:39:24 2009 elapsed time 01:42:10 (Msieve 1.39 - dependency 6) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 33.04 hours. Scaled time: 54.02 units (timescale=1.635). Factorization parameters were as follows: name: KA_6_3_164_7 n: 22722374520819054559718952394116308190104376321680853380543504496639755831541448161475981772137990356697581047755307729999750673967210420073896650785579 m: 1000000000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2100000, 4000907) Primes: RFBsize:296314, AFBsize:296017, largePrimes:15395159 encountered Relations: rels:14739602, finalFF:489099 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1463873 hash collisions in 15897279 relations Msieve: matrix is 737574 x 737822 (197.4 MB) Total sieving time: 32.56 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,56,56,2.4,2.4,100000 total time: 33.04 hours. --------- CPU info (if available) ----------
(56·10169+61)/9 = 6(2)1689<170> = 33 · 212332831 · C161
C161 = P39 · P39 · P42 · P42
P39 = 424274908169666727454295410341629377361<39>
P39 = 744256981543256710605164151127424339141<39>
P42 = 142246468831973644407334999953831883982951<42>
P42 = 241631107074584670119388266251172464439467<42>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 10853369863331184124031483771365186333201545340097971388628670188884701563828629413905976457174413200556159317183157365669906297429153018284425120160496591494417 (161 digits) Using B1=3094000, B2=5707048630, polynomial Dickson(6), sigma=3228879520 Step 1 took 52338ms Step 2 took 16848ms ********** Factor found in step 2: 424274908169666727454295410341629377361 Found probable prime factor of 39 digits: 424274908169666727454295410341629377361 Composite cofactor 25580984532299850721733509754897028278292393878345135113886787454119781358631871189418843479083638795833911078559833986497 has 122 digits Number: n N=25580984532299850721733509754897028278292393878345135113886787454119781358631871189418843479083638795833911078559833986497 ( 122 digits) SNFS difficulty: 171 digits. Divisors found: Mon Jun 08 05:04:28 2009 prp39 factor: 744256981543256710605164151127424339141 Mon Jun 08 05:04:28 2009 prp42 factor: 142246468831973644407334999953831883982951 Mon Jun 08 05:04:28 2009 prp42 factor: 241631107074584670119388266251172464439467 Mon Jun 08 05:04:28 2009 elapsed time 01:46:24 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 57.37 hours. Scaled time: 151.98 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_2_168_9 # n: 10853369863331184124031483771365186333201545340097971388628670188884701563828629413905976457174413200556159317183157365669906297429153018284425120160496591494417 n: 25580984532299850721733509754897028278292393878345135113886787454119781358631871189418843479083638795833911078559833986497 m: 10000000000000000000000000000000000 deg: 5 c5: 28 c0: 305 skew: 1.61 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5711327) Primes: RFBsize:348513, AFBsize:348667, largePrimes:17581904 encountered Relations: rels:17491753, finalFF:578623 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2140410 hash collisions in 19295644 relations Msieve: matrix is 855294 x 855542 (227.4 MB) Total sieving time: 56.51 hours. Total relation processing time: 0.86 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 57.37 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Jun 7, 2009
(23·1081214+1)/3 = 7(6)812137<81215> is PRP.
By Robert Backstrom / GGNFS, Msieve / Jun 7, 2009
(89·10168+1)/9 = 9(8)1679<169> = 31 · 15467 · 14156321914008218389<20> · C145
C145 = P46 · P100
P46 = 1197741581225809551137206782460379046419207957<46>
P100 = 1216371290130096965390512251725852109764456594341931436026498758415155508058087929946270416461522909<100>
Number: n N=1456898472398100290050596745119217016354672758605044647270127522188882139954015967734324164186163472619789554745096128190882591606939001790586913 ( 145 digits) SNFS difficulty: 171 digits. Divisors found: Sun Jun 07 06:14:32 2009 prp46 factor: 1197741581225809551137206782460379046419207957 Sun Jun 07 06:14:32 2009 prp100 factor: 1216371290130096965390512251725852109764456594341931436026498758415155508058087929946270416461522909 Sun Jun 07 06:14:32 2009 elapsed time 01:18:27 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 37.15 hours. Scaled time: 96.40 units (timescale=2.595). Factorization parameters were as follows: name: KA_9_8_167_9 n: 1456898472398100290050596745119217016354672758605044647270127522188882139954015967734324164186163472619789554745096128190882591606939001790586913 m: 10000000000000000000000000000000000 deg: 5 c5: 89 c0: 100 skew: 1.02 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2600000, 4572629) Primes: RFBsize:361407, AFBsize:361067, largePrimes:16319409 encountered Relations: rels:15511318, finalFF:797908 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1476171 hash collisions in 17185281 relations Msieve: matrix is 795559 x 795807 (216.5 MB) Total sieving time: 36.66 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,56,56,2.4,2.4,100000 total time: 37.15 hours. --------- CPU info (if available) ----------
(56·10171-11)/9 = 6(2)1701<172> = 18289 · C168
C168 = P52 · P117
P52 = 1688756690963537752408473787951585430593702236955631<52>
P117 = 201459835463477766709930841456375992587398927045022191791163930369390792616322549362470313523356697387941237086565619<117>
Number: n N=340216645099361486260715305496321407524863153929806015759321024781137417148133972454602341419553951677085801422834612183401072897491509772115600755766975899295873050589 ( 168 digits) SNFS difficulty: 173 digits. Divisors found: Sun Jun 07 20:39:56 2009 prp52 factor: 1688756690963537752408473787951585430593702236955631 Sun Jun 07 20:39:56 2009 prp117 factor: 201459835463477766709930841456375992587398927045022191791163930369390792616322549362470313523356697387941237086565619 Sun Jun 07 20:39:56 2009 elapsed time 01:43:30 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 62.43 hours. Scaled time: 166.07 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_170_1 n: 340216645099361486260715305496321407524863153929806015759321024781137417148133972454602341419553951677085801422834612183401072897491509772115600755766975899295873050589 m: 20000000000000000000000000000000000 deg: 5 c5: 35 c0: -22 skew: 0.91 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2700000, 6139019) Primes: RFBsize:374362, AFBsize:374788, largePrimes:18470689 encountered Relations: rels:18863544, finalFF:793404 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2353896 hash collisions in 20946880 relations Msieve: matrix is 847908 x 848156 (224.6 MB) Total sieving time: 61.47 hours. Total relation processing time: 0.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,56,56,2.4,2.4,100000 total time: 62.43 hours. --------- CPU info (if available) ----------
(19·10158+11)/3 = 6(3)1577<159> = 7 · 13 · 109 · 139 · 12507541 · 14102089 · C139
C139 = P48 · P91
P48 = 890298629966988697335260273638928061736248977777<48>
P91 = 2925220203141326850950535511175349840756501552381707616474921977213766925742775925795078409<91>
Number: n N=2604319539208479662296566196626281659401273439107427083867761096506661355606572402680653377381481359641859195173125630014326233603813516793 ( 139 digits) SNFS difficulty: 160 digits. Divisors found: Sun Jun 07 20:45:45 2009 prp48 factor: 890298629966988697335260273638928061736248977777 Sun Jun 07 20:45:45 2009 prp91 factor: 2925220203141326850950535511175349840756501552381707616474921977213766925742775925795078409 Sun Jun 07 20:45:45 2009 elapsed time 01:45:45 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.03 hours. Scaled time: 43.80 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_3_157_7 n: 2604319539208479662296566196626281659401273439107427083867761096506661355606572402680653377381481359641859195173125630014326233603813516793 m: 50000000000000000000000000000000 deg: 5 c5: 152 c0: 275 skew: 1.13 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1700000, 3000000) Primes: RFBsize:243539, AFBsize:243160, largePrimes:13719071 encountered Relations: rels:13002746, finalFF:619676 Max relations in full relation-set: 28 Initial matrix: 486766 x 619676 with sparse part having weight 94340976. Pruned matrix : 439537 x 442034 with weight 58453176. Msieve: found 1164952 hash collisions in 13921564 relations Msieve: matrix is 561281 x 561529 (150.0 MB) Total sieving time: 23.75 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,28,28,56,56,2.4,2.4,100000 total time: 24.03 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jun 7, 2009
(19·10160+11)/3 = 6(3)1597<161> = 71 · 78858923431<11> · 2376673566823<13> · 19232519182912433163629<23> · C114
C114 = P49 · P65
P49 = 5145544189689853686084609914300609465992312536511<49>
P65 = 48093471998115581878663595761747484801061854861862293238174882901<65>
Number: 63337_160 N=247467085401915310220618172014915005673608575042370220062176194352664913172346163743395659359667859872701712098411 ( 114 digits) SNFS difficulty: 161 digits. Divisors found: r1=5145544189689853686084609914300609465992312536511 (pp49) r2=48093471998115581878663595761747484801061854861862293238174882901 (pp65) Version: Msieve-1.40 Total time: 29.14 hours. Scaled time: 75.04 units (timescale=2.575). Factorization parameters were as follows: name: 63337_160 n: 247467085401915310220618172014915005673608575042370220062176194352664913172346163743395659359667859872701712098411 m: 100000000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 640283 x 640531 Total sieving time: 29.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 29.14 hours. --------- CPU info (if available) ----------
(19·10155+11)/3 = 6(3)1547<156> = 17 · 2819 · 90377489523395579<17> · C135
C135 = P47 · P88
P47 = 34157108083670710906043469808823415090877040147<47>
P88 = 4281017286969461896442622204066901741881371785859940186877570995394406015230096372670563<88>
Number: 63337_155 N=146227170179078662500471844618178651924786228401446376604148500459079741163926619676302325596862400065732441170848197134506827356092761 ( 135 digits) SNFS difficulty: 156 digits. Divisors found: r1=34157108083670710906043469808823415090877040147 (pp47) r2=4281017286969461896442622204066901741881371785859940186877570995394406015230096372670563 (pp88) Version: Msieve-1.40 Total time: 23.07 hours. Scaled time: 47.79 units (timescale=2.071). Factorization parameters were as follows: name: 63337_155 n: 146227170179078662500471844618178651924786228401446376604148500459079741163926619676302325596862400065732441170848197134506827356092761 m: 10000000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 513105 x 513353 Total sieving time: 21.77 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.94 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.07 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Jun 6, 2009
(19·10141+11)/3 = 6(3)1407<142> = 23 · 3424151153<10> · 254758733191<12> · C120
C120 = P46 · P74
P46 = 5050129058517986723316852587290974346406186227<46>
P74 = 62505757846387088561289339012886665141712282005484871401793013435241437139<74>
Number: 63337_141 N=315662144024728088954673401382175903113016566302661569618687283007998859457218463561321830356053124278841664279548084553 ( 120 digits) SNFS difficulty: 142 digits. Divisors found: r1=5050129058517986723316852587290974346406186227 (pp46) r2=62505757846387088561289339012886665141712282005484871401793013435241437139 (pp74) Version: Msieve-1.40 Total time: 6.59 hours. Scaled time: 13.82 units (timescale=2.098). Factorization parameters were as follows: name: 63337_141 n: 315662144024728088954673401382175903113016566302661569618687283007998859457218463561321830356053124278841664279548084553 m: 10000000000000000000000000000 deg: 5 c5: 190 c0: 11 skew: 0.57 type: snfs lss: 1 rlim: 1650000 alim: 1650000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1650000/1650000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [825000, 1625001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 277291 x 277539 Total sieving time: 6.17 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.26 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1650000,1650000,26,26,48,48,2.3,2.3,100000 total time: 6.59 hours. --------- CPU info (if available) ----------
(19·10145+11)/3 = 6(3)1447<146> = 133183 · 818689 · 1404005417<10> · 121490964551680697<18> · C109
C109 = P39 · P70
P39 = 512414144904096443350797214360954687769<39>
P70 = 6645546857480804860225968131089235254175762793540245993870446512951071<70>
Number: 63337_145 N=3405272210396131896853192046880242928373403317362054445048532704581653759643181140672663734035062647579150599 ( 109 digits) SNFS difficulty: 146 digits. Divisors found: r1=512414144904096443350797214360954687769 (pp39) r2=6645546857480804860225968131089235254175762793540245993870446512951071 (pp70) Version: Msieve-1.40 Total time: 9.27 hours. Scaled time: 23.67 units (timescale=2.554). Factorization parameters were as follows: name: 63337_145 n: 3405272210396131896853192046880242928373403317362054445048532704581653759643181140672663734035062647579150599 m: 100000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [960000, 2160001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 296008 x 296256 Total sieving time: 9.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 9.27 hours. --------- CPU info (if available) ----------
(19·10144+11)/3 = 6(3)1437<145> = 1439 · 58897 · 2161819295110817870598641<25> · C113
C113 = P41 · P73
P41 = 16608864835497717889409845648017981835361<41>
P73 = 2081225022557446636993986742266210526066920283027389665865883672099304039<73>
Number: 63337_144 N=34566785091912320142172687249517564182023491309663939642348715633880788938470418987969605576911440066471980323079 ( 113 digits) SNFS difficulty: 146 digits. Divisors found: r1=16608864835497717889409845648017981835361 (pp41) r2=2081225022557446636993986742266210526066920283027389665865883672099304039 (pp73) Version: Msieve-1.40 Total time: 11.32 hours. Scaled time: 23.76 units (timescale=2.099). Factorization parameters were as follows: name: 63337_144 n: 34566785091912320142172687249517564182023491309663939642348715633880788938470418987969605576911440066471980323079 m: 100000000000000000000000000000 deg: 5 c5: 19 c0: 110 skew: 1.42 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [960000, 2360001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 338620 x 338848 Total sieving time: 10.80 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.39 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 11.32 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS / Msieve v1.39 / Jun 6, 2009
(19·10166+11)/3 = 6(3)1657<167> = 67 · 3911 · 14202604430369<14> · 86380538071123<14> · 8368840124326806116601083<25> · C110
C110 = P49 · P61
P49 = 6262082223742718300440148144843541334567401119143<49>
P61 = 3759255070882753743580420042857440550706597169458132984067267<61>
Number: 63337_166 N=23540764353889564672128696226443881624693799593278057392043683758795636761529340169115771824957267483793392181 ( 110 digits) Divisors found: r1=6262082223742718300440148144843541334567401119143 r2=3759255070882753743580420042857440550706597169458132984067267 Version: Total time: 8.56 hours. Scaled time: 20.44 units (timescale=2.389). Factorization parameters were as follows: name: 63337_166 n: 23540764353889564672128696226443881624693799593278057392043683758795636761529340169115771824957267483793392181 skew: 29345.35 # norm 1.91e+15 c5: 40080 c4: 1978609108 c3: -130421089236824 c2: -1597893340708739207 c1: 37398680496777286640604 c0: 277920807332288752590379839 # alpha -6.54 Y1: 138689822447 Y0: -899037708825546047086 # Murphy_E 1.11e-09 # M 19367926142172829006431938429769541855506380602628362297909528725610931992982566228734831217917220084588038212 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1650001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7917419 Max relations in full relation-set: Initial matrix: Pruned matrix : 364689 x 364937 Polynomial selection time: 0.66 hours. Total sieving time: 7.02 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.28 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 8.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Dmitry Domanov / GGNFS / Jun 6, 2009
(56·10178+43)/9 = 6(2)1777<179> = 11 · C178
C178 = P59 · P120
P59 = 11344343380024260457115967605538423116332562634899263825067<59>
P120 = 498624333474077167029242363855886817081848222640868644668813635343289283688929391503016030544074083603519829915383917771<120>
[06/05 12:08:29] GGNFS-0.77.1-VC8(Sat 01/17/2009) : procrels [06/05 12:18:07] There were 328787/9999999 duplicates. [06/05 12:18:07] RelProcTime: 538.1 [06/05 12:19:22] GGNFS-0.77.1-VC8(Sat 01/17/2009) : procrels [06/05 12:32:10] There were 821816/9694483 duplicates. [06/05 12:32:10] RelProcTime: 702.5 [06/05 12:33:33] largePrimes: 17825819 , relations: 18543879 [06/05 12:33:50] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matbuild [06/05 12:36:44] largePrimes: 17825819 , relations: 18543879 [06/05 12:47:26] reduceRelSets dropped relation-set weight from 38957706 to 29025895. [06/05 12:51:32] reduceRelSets dropped relation-set weight from 29025895 to 28948873. [06/05 12:51:32] After removing heavy rel-sets, weight is 26752953. [06/05 12:59:09] Heap stats for matbuild run. [06/05 12:59:09] Max heap usage: 0 MB [06/05 12:59:09] malloc/realloc errors: 0 [06/05 12:59:09] total malloc's : 991 [06/05 12:59:09] total realloc's: 569 [06/05 12:59:09] rels:18543879, initialFF:0, finalFF:1674782 [06/05 12:59:09] depinf file written. Run matprune. [06/05 13:03:14] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matprune [06/05 13:03:25] Pruning matrix with wt=0.700 [06/05 13:03:25] Initial matrix is 992017 x 1674782 with sparse part having weight 266215805. [06/05 13:03:26] (total weight is 401811151) [06/05 13:56:36] Matrix pruned to 813338 x 818362 with weight 93403634. [06/05 13:56:40] Matrix is pruned. Run matsolve. [06/05 13:56:40] Heap stats for matprune run: [06/05 13:56:40] Max heap usage: 0 MB [06/05 13:56:40] malloc/realloc errors: 0 [06/05 13:56:40] total malloc's : 16 [06/05 13:56:40] total realloc's: 0 [06/05 13:56:55] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matsolve (seed=2116475424) [06/05 22:37:42] BLanczosTime: 31246.1 [06/05 22:37:42] Heap stats for matsolve run: [06/05 22:37:42] Max heap usage: 0 MB [06/05 22:37:42] malloc/realloc errors: 0 [06/05 22:37:42] total malloc's : 14 [06/05 22:37:42] total realloc's: 0 [06/05 22:42:59] GGNFS-0.77.1-VC8(Sat 01/17/2009) : sqrt [06/05 22:43:01] bmultiplier=1 [06/05 23:07:38] From dependence 0, sqrt obtained: [06/05 23:07:38] r1=1 [06/05 23:07:38] r2=5656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565657 [06/05 23:07:38] sqrtTime: 1478.7 [06/05 23:12:12] GGNFS-0.77.1-VC8(Sat 01/17/2009) : sqrt [06/05 23:12:13] bmultiplier=1 [06/05 23:36:49] From dependence 1, sqrt obtained: [06/05 23:36:49] r1=498624333474077167029242363855886817081848222640868644668813635343289283688929391503016030544074083603519829915383917771 (pp120) [06/05 23:36:49] r2=11344343380024260457115967605538423116332562634899263825067 (pp59) [06/05 23:36:49] (pp=probable prime, c=composite) [06/05 23:36:49] sqrtTime: 1477.0
By Sinkiti Sibata / Msieve, GGNFS / Jun 5, 2009
(19·10127+11)/3 = 6(3)1267<128> = 3457 · 29392248791<11> · C114
C114 = P41 · P73
P41 = 64869638554838628758245001081530634426441<41>
P73 = 9608568122148198650049870148335148191834916510556873243141924230269946711<73>
Number: 63337_127 N=623304341113298190003715456304851113044797613882178039296795487508371893944858702136693299304697768174591119385551 ( 114 digits) SNFS difficulty: 129 digits. Divisors found: r1=64869638554838628758245001081530634426441 (pp41) r2=9608568122148198650049870148335148191834916510556873243141924230269946711 (pp73) Version: Msieve-1.40 Total time: 3.08 hours. Scaled time: 5.95 units (timescale=1.934). Factorization parameters were as follows: name: 63337_127 n: 623304341113298190003715456304851113044797613882178039296795487508371893944858702136693299304697768174591119385551 m: 20000000000000000000000000 deg: 5 c5: 475 c0: 88 skew: 0.71 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 150689 x 150919 Total sieving time: 2.90 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 3.08 hours. --------- CPU info (if available) ----------
(55·10199+53)/9 = 6(1)1987<200> = 67 · 127 · 149 · 15271 · 32537 · 64951 · 3491419 · 76893119 · 2984002608911<13> · 73272202678356361<17> · C137
C137 = P49 · P88
P49 = 4646275918046474726914070102202746441538122559419<49>
P88 = 5476355976757986022100975097151083556451371821389834131152133448924920125725709745151429<88>
Number: 61117_199 N=25444660893460510317172439394273556297338846060840182666903667766609275787693643836357738825942267824554292636529889428645386199205259751 ( 137 digits) Divisors found: r1=4646275918046474726914070102202746441538122559419 (pp49) r2=5476355976757986022100975097151083556451371821389834131152133448924920125725709745151429 (pp88) Version: Msieve-1.40 Total time: 455.10 hours. Scaled time: 1153.23 units (timescale=2.534). Factorization parameters were as follows: name: 61117_199 # Murphy_E = 3.193184e-11, selected by Jeff Gilchrist n: 25444660893460510317172439394273556297338846060840182666903667766609275787693643836357738825942267824554292636529889428645386199205259751 Y0: -195340899491540177501362945 Y1: 1646830578424513 c0: -17264089700630042706198979052928 c1: 4053148267436222996637322534 c2: -5446174057260405430633 c3: -42244614185732804 c4: 45385993146 c5: 89460 skew: 431663.49 type: gnfs # selected mechanically rlim: 14600000 alim: 14600000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 14600000/14600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [7300000, 13000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2006714 x 2006962 Total sieving time: 455.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,136,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,14600000,14600000,28,28,55,55,2.6,2.6,100000 total time: 455.10 hours. --------- CPU info (if available) ----------
(19·10121+11)/3 = 6(3)1207<122> = 337972093300564182992672797<27> · C96
C96 = P35 · P61
P35 = 62733293684483999236989225276611999<35>
P61 = 2987125124779044111070216291606218084493743214162216434936179<61>
Fri Jun 05 06:31:30 2009 Msieve v. 1.39 Fri Jun 05 06:31:30 2009 random seeds: 2323b060 822852cc Fri Jun 05 06:31:30 2009 factoring 187392197725064686109742995863136748941619341863639505659853720451164022359704784009624910611821 (96 digits) Fri Jun 05 06:31:31 2009 searching for 15-digit factors Fri Jun 05 06:31:33 2009 commencing quadratic sieve (96-digit input) Fri Jun 05 06:31:33 2009 using multiplier of 61 Fri Jun 05 06:31:33 2009 using 64kb Pentium 4 sieve core Fri Jun 05 06:31:33 2009 sieve interval: 18 blocks of size 65536 Fri Jun 05 06:31:33 2009 processing polynomials in batches of 6 Fri Jun 05 06:31:33 2009 using a sieve bound of 2231297 (82353 primes) Fri Jun 05 06:31:33 2009 using large prime bound of 334694550 (28 bits) Fri Jun 05 06:31:33 2009 using double large prime bound of 2209873982808450 (43-51 bits) Fri Jun 05 06:31:33 2009 using trial factoring cutoff of 51 bits Fri Jun 05 06:31:33 2009 polynomial 'A' values have 13 factors Fri Jun 05 13:06:47 2009 82566 relations (20793 full + 61773 combined from 1213021 partial), need 82449 Fri Jun 05 13:06:51 2009 begin with 1233814 relations Fri Jun 05 13:06:53 2009 reduce to 211552 relations in 11 passes Fri Jun 05 13:06:53 2009 attempting to read 211552 relations Fri Jun 05 13:06:56 2009 recovered 211552 relations Fri Jun 05 13:06:56 2009 recovered 195515 polynomials Fri Jun 05 13:06:56 2009 attempting to build 82566 cycles Fri Jun 05 13:06:57 2009 found 82566 cycles in 7 passes Fri Jun 05 13:06:57 2009 distribution of cycle lengths: Fri Jun 05 13:06:57 2009 length 1 : 20793 Fri Jun 05 13:06:57 2009 length 2 : 15102 Fri Jun 05 13:06:57 2009 length 3 : 14124 Fri Jun 05 13:06:57 2009 length 4 : 11079 Fri Jun 05 13:06:57 2009 length 5 : 8138 Fri Jun 05 13:06:57 2009 length 6 : 5400 Fri Jun 05 13:06:57 2009 length 7 : 3467 Fri Jun 05 13:06:57 2009 length 9+: 4463 Fri Jun 05 13:06:57 2009 largest cycle: 22 relations Fri Jun 05 13:06:57 2009 matrix is 82353 x 82566 (22.0 MB) with weight 5433208 (65.80/col) Fri Jun 05 13:06:57 2009 sparse part has weight 5433208 (65.80/col) Fri Jun 05 13:06:59 2009 filtering completed in 3 passes Fri Jun 05 13:06:59 2009 matrix is 77904 x 77968 (20.9 MB) with weight 5161906 (66.21/col) Fri Jun 05 13:06:59 2009 sparse part has weight 5161906 (66.21/col) Fri Jun 05 13:07:00 2009 saving the first 48 matrix rows for later Fri Jun 05 13:07:00 2009 matrix is 77856 x 77968 (13.2 MB) with weight 4086517 (52.41/col) Fri Jun 05 13:07:00 2009 sparse part has weight 2989211 (38.34/col) Fri Jun 05 13:07:00 2009 matrix includes 64 packed rows Fri Jun 05 13:07:00 2009 using block size 21845 for processor cache size 512 kB Fri Jun 05 13:07:01 2009 commencing Lanczos iteration Fri Jun 05 13:07:01 2009 memory use: 12.6 MB Fri Jun 05 13:08:06 2009 lanczos halted after 1233 iterations (dim = 77852) Fri Jun 05 13:08:06 2009 recovered 15 nontrivial dependencies Fri Jun 05 13:08:08 2009 prp35 factor: 62733293684483999236989225276611999 Fri Jun 05 13:08:08 2009 prp61 factor: 2987125124779044111070216291606218084493743214162216434936179 Fri Jun 05 13:08:08 2009 elapsed time 06:36:38
(19·10129+11)/3 = 6(3)1287<130> = 62851 · 139720167823<12> · 58002654641443<14> · C101
C101 = P35 · P66
P35 = 17449273243471122496481234616760253<35>
P66 = 712583630602248633508269573326866172600331656507196538198864101611<66>
Number: 63337_129 N=12434066479203327235310154754897020409422523293225327204362332170782668264539997328386255596218067583 ( 101 digits) SNFS difficulty: 131 digits. Divisors found: r1=17449273243471122496481234616760253 (pp35) r2=712583630602248633508269573326866172600331656507196538198864101611 (pp66) Version: Msieve-1.40 Total time: 3.35 hours. Scaled time: 7.01 units (timescale=2.092). Factorization parameters were as follows: name: 63337_129 n: 12434066479203327235310154754897020409422523293225327204362332170782668264539997328386255596218067583 m: 100000000000000000000000000 deg: 5 c5: 19 c0: 110 skew: 1.42 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 990001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 176273 x 176521 Total sieving time: 3.17 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 3.35 hours. --------- CPU info (if available) ----------
(19·10138+11)/3 = 6(3)1377<139> = 9539 · 1061453 · C129
C129 = P30 · P100
P30 = 205884879028525378989717723409<30>
P100 = 3038115476624172547568021652027874523576378588114643432322765099118331016365199930349650938900052879<100>
Number: 63337_138 N=625502037379458488816395300931864859727403089208807473972117605577143483778134905225062631923110042485477446199442955993596144511 ( 129 digits) SNFS difficulty: 140 digits. Divisors found: r1=205884879028525378989717723409 (pp30) r2=3038115476624172547568021652027874523576378588114643432322765099118331016365199930349650938900052879 (pp100) Version: GGNFS-0.77.1-20060513-nocona Total time: 9.07 hours. Scaled time: 23.25 units (timescale=2.564). Factorization parameters were as follows: name: 63337_138 n: 625502037379458488816395300931864859727403089208807473972117605577143483778134905225062631923110042485477446199442955993596144511 m: 5000000000000000000000000000 deg: 5 c5: 152 c0: 275 skew: 1.13 type: snfs lss: 1 rlim: 1550000 alim: 1550000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1550000/1550000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [775000, 1675001) Primes: RFBsize:117663, AFBsize:117528, largePrimes:3737414 encountered Relations: rels:3888763, finalFF:406792 Max relations in full relation-set: 28 Initial matrix: 235258 x 406792 with sparse part having weight 39309693. Pruned matrix : 190098 x 191338 with weight 15984031. Total sieving time: 8.74 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1550000,1550000,26,26,48,48,2.3,2.3,100000 total time: 9.07 hours. --------- CPU info (if available) ----------
(19·10135+11)/3 = 6(3)1347<136> = 157 · 1193 · 7127 · 182309 · C122
C122 = P38 · P84
P38 = 65553528374184830411681549262167408477<38>
P84 = 396991593279050907298492993278089931927123423048089785475114566024909213674236773267<84>
Number: 63337_135 N=26024199674331107471002085266667364048678991074073173613246618562363142575922389775938957979867675799494856731304022784359 ( 122 digits) SNFS difficulty: 136 digits. Divisors found: r1=65553528374184830411681549262167408477 (pp38) r2=396991593279050907298492993278089931927123423048089785475114566024909213674236773267 (pp84) Version: Msieve-1.40 Total time: 4.12 hours. Scaled time: 8.62 units (timescale=2.092). Factorization parameters were as follows: name: 63337_135 n: 26024199674331107471002085266667364048678991074073173613246618562363142575922389775938957979867675799494856731304022784359 m: 1000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [655000, 1180001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 203473 x 203721 Total sieving time: 3.90 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000 total time: 4.12 hours. --------- CPU info (if available) ----------
(19·10140+11)/3 = 6(3)1397<141> = 7 · 13 · 3407 · 171823361 · 221764604227301363<18> · C110
C110 = P43 · P68
P43 = 1710045167050240022231811529388514487003039<43>
P68 = 31349946151692462001498077827253531605274742451697616985120067166313<68>
Number: 63337_140 N=53609823903986965507620058340145593869320117918452590610271899609036796485551947681698832409120418760549425207 ( 110 digits) SNFS difficulty: 141 digits. Divisors found: r1=1710045167050240022231811529388514487003039 (pp43) r2=31349946151692462001498077827253531605274742451697616985120067166313 (pp68) Version: Msieve-1.40 Total time: 5.90 hours. Scaled time: 15.13 units (timescale=2.564). Factorization parameters were as follows: name: 63337_140 n: 53609823903986965507620058340145593869320117918452590610271899609036796485551947681698832409120418760549425207 m: 10000000000000000000000000000 deg: 5 c5: 19 c0: 11 skew: 0.90 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1590001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 223122 x 223370 Total sieving time: 5.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 5.90 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Jun 5, 2009
(19·10149+11)/3 = 6(3)1487<150> = 472669 · 2502376448875356964523<22> · 108515729007503118966010501<27> · C97
C97 = P33 · P65
P33 = 412263120561519252622656422088931<33>
P65 = 11968932109377920243791744162779339493133905057285675419912761321<65>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 4934349301201108471565949482849373763257646188675193487984795052436076161688151809042115239037851 (97 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3312505575 Step 1 took 3051ms Step 2 took 1822ms ********** Factor found in step 2: 412263120561519252622656422088931 Found probable prime factor of 33 digits: 412263120561519252622656422088931 Probable prime cofactor 11968932109377920243791744162779339493133905057285675419912761321 has 65 digits
(19·10108+11)/3 = 6(3)1077<109> = 8161 · C105
C105 = P41 · P64
P41 = 91472206780727469444733176114899308261069<41>
P64 = 8483983432303508769598845872763266181025177265418747924732236893<64>
Number: 63337_108 N=776048686843932524608912306498386635624719192909365682310174406731201241677898950292039374259690397418617 ( 105 digits) SNFS difficulty: 111 digits. Divisors found: r1=91472206780727469444733176114899308261069 r2=8483983432303508769598845872763266181025177265418747924732236893 Version: Total time: 0.39 hours. Scaled time: 0.89 units (timescale=2.299). Factorization parameters were as follows: n: 776048686843932524608912306498386635624719192909365682310174406731201241677898950292039374259690397418617 m: 10000000000000000000000 deg: 5 c5: 19 c0: 1100 skew: 2.25 type: snfs lss: 1 rlim: 360000 alim: 360000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [180000, 320001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1030824 Max relations in full relation-set: Initial matrix: Pruned matrix : 46772 x 47014 Total sieving time: 0.34 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(19·10116+11)/3 = 6(3)1157<117> = 7 · 13 · 31 · C114
C114 = P40 · P74
P40 = 2432404320102848256993656968416427973341<40>
P74 = 92298255789188300181247940446582418073169321267278450482509633620109979017<74>
Number: 63337_116 N=224506676119579345385796998700224506676119579345385796998700224506676119579345385796998700224506676119579345385797 ( 114 digits) SNFS difficulty: 117 digits. Divisors found: r1=2432404320102848256993656968416427973341 r2=92298255789188300181247940446582418073169321267278450482509633620109979017 Version: Total time: 0.50 hours. Scaled time: 1.20 units (timescale=2.385). Factorization parameters were as follows: n: 224506676119579345385796998700224506676119579345385796998700224506676119579345385796998700224506676119579345385797 m: 100000000000000000000000 deg: 5 c5: 190 c0: 11 skew: 0.57 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [250000, 425001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1180696 Max relations in full relation-set: Initial matrix: Pruned matrix : 61967 x 62215 Total sieving time: 0.45 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,500000,500000,25,25,45,45,2.2,2.2,25000 total time: 0.50 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Dmitry Domanov / ECMNET/GMP-ECM 6.2.3, ggnfs/msieve 1.41 / Jun 5, 2009
(19·10181+11)/3 = 6(3)1807<182> = C182
C182 = P32 · P151
P32 = 11159287224414433102572369164279<32>
P151 = 5675392348963995343600513340549846572758077864937588438849066954047336838627831641100426017661512177938167043255580512712225275971080992889921645619503<151>
[2009-06-05 02:29:53 GMT] a: Factor found! new2 / (probable) 11159287224414433102572369164279 B1: 11000000 sigma: 2433365336 (found in step 2) [2009-06-05 02:29:53 GMT] a: Co-factor: new2 / (Probable) 5675392348963995343600513340549846572758077864937588438849066954047336838627831641100426017661512177938167043255580512712225275971080992889921645619503
(19·10148+11)/3 = 6(3)1477<149> = C149
C149 = P38 · P112
P38 = 14440446545037476137898408596542568433<38>
P112 = 4385829284143440551081787553942088343816297920166421201719640736203533717033343955624721785579707213468219251689<112>
Number: 149 N=63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 ( 149 digits) SNFS difficulty: 150 digits. Divisors found: r1=14440446545037476137898408596542568433 (pp38) r2=4385829284143440551081787553942088343816297920166421201719640736203533717033343955624721785579707213468219251689 (pp112) Version: Msieve v. 1.41 Total time: 12.22 hours. Scaled time: 24.23 units (timescale=1.982). Factorization parameters were as follows: n: 63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 m: 500000000000000000000000000000 deg: 5 c5: 152 c0: 275 skew: 1.13 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 386066 x 386314 Total sieving time: 11.85 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 12.22 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jun 5, 2009
(19·10114+11)/3 = 6(3)1137<115> = 37380337049761321074077<23> · C93
C93 = P40 · P54
P40 = 1256600447385245073338384160128201847119<40>
P54 = 134831672979018180497816847883716523804858773842922499<54>
Number: n N=169429540587135304979822222408703249896601171683279232545042066240429357482811986336963430381 ( 93 digits) SNFS difficulty: 116 digits. Divisors found: r1=1256600447385245073338384160128201847119 (pp40) r2=134831672979018180497816847883716523804858773842922499 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.38 hours. Scaled time: 2.52 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_3_113_7 n: 169429540587135304979822222408703249896601171683279232545042066240429357482811986336963430381 m: 100000000000000000000000 deg: 5 c5: 19 c0: 110 skew: 1.42 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 10000 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [305000, 425001) Primes: RFBsize:49861, AFBsize:50010, largePrimes:5545888 encountered Relations: rels:4848782, finalFF:124010 Max relations in full relation-set: 48 Initial matrix: 99936 x 124010 with sparse part having weight 16116609. Pruned matrix : 94670 x 95233 with weight 9564276. Total sieving time: 1.21 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.06 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,28,28,56,56,2.6,2.6,50000 total time: 1.38 hours. --------- CPU info (if available) ----------
(56·10169+43)/9 = 6(2)1687<170> = 179 · 135743941 · C160
C160 = P74 · P87
P74 = 19333098532550373816686399052437320026075307008972428010009612629104605191<74>
P87 = 132455674486371148046277269230562934350373310994141895370938879096275193417660466241323<87>
Number: n N=2560778606040432031409473120026286862842617515944645726231703028047780271030618289067540422150066760117190517505152551127225133147724890763191178312489644507693 ( 160 digits) SNFS difficulty: 171 digits. Divisors found: Fri Jun 05 16:15:56 2009 prp74 factor: 19333098532550373816686399052437320026075307008972428010009612629104605191 Fri Jun 05 16:15:56 2009 prp87 factor: 132455674486371148046277269230562934350373310994141895370938879096275193417660466241323 Fri Jun 05 16:15:56 2009 elapsed time 01:29:54 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 43.15 hours. Scaled time: 112.46 units (timescale=2.606). Factorization parameters were as follows: name: KA_6_2_168_7 n: 2560778606040432031409473120026286862842617515944645726231703028047780271030618289067540422150066760117190517505152551127225133147724890763191178312489644507693 m: 10000000000000000000000000000000000 deg: 5 c5: 28 c0: 215 skew: 1.50 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4900589) Primes: RFBsize:348513, AFBsize:347706, largePrimes:16552047 encountered Relations: rels:15738848, finalFF:690603 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1615751 hash collisions in 17010335 relations Msieve: matrix is 911803 x 912051 (244.8 MB) Total sieving time: 42.67 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 43.15 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3, Msieve / Jun 5, 2009
(19·10159+11)/3 = 6(3)1587<160> = 47 · 2777 · 55488371 · 83963507 · 12461087964323018107<20> · 47012464426731479399<20> · C101
C101 = P30 · P71
P30 = 279929909870966847008523066101<30>
P71 = 63510828694745285306996073091706073394019137483384890813990419744277463<71>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3996634525 Step 1 took 4696ms Step 2 took 4261ms ********** Factor found in step 2: 279929909870966847008523066101 Found probable prime factor of 30 digits: 279929909870966847008523066101 Probable prime cofactor has 71 digits
(19·10176+11)/3 = 6(3)1757<177> = 7 · 13 · 31 · 329711 · C168
C168 = P33 · P136
P33 = 380411345154635513542806482329393<33>
P136 = 1789956030815979787160246186972967745910411150766357772414416278341751433525261220762485364988957571956424883773305352022454824614214139<136>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1431286068 Step 1 took 7581ms Step 2 took 6112ms ********** Factor found in step 2: 380411345154635513542806482329393 Found probable prime factor of 33 digits: 380411345154635513542806482329393 Probable prime cofactor has 136 digits
(19·10123+11)/3 = 6(3)1227<124> = 17 · 2221 · C120
C120 = P31 · P89
P31 = 2123006000891924143214151384847<31>
P89 = 79010287948575789367851766818808637179491229043894459004745091157379088266646782235367203<89>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1215604976 Step 1 took 5396ms Step 2 took 4761ms ********** Factor found in step 2: 2123006000891924143214151384847 Found probable prime factor of 31 digits: 2123006000891924143214151384847 Probable prime cofactor has 89 digits
(19·10119+11)/3 = 6(3)1187<120> = 23 · C119
C119 = P54 · P65
P54 = 886378704567425127996664373012529164481079650712500457<54>
P65 = 31065989900441411912454637184703297301511811585122769130099098167<65>
SNFS difficulty: 121 digits. Divisors found: r1=886378704567425127996664373012529164481079650712500457 (pp54) r2=31065989900441411912454637184703297301511811585122769130099098167 (pp65) Version: Msieve v. 1.41 Total time: 0.88 hours. Scaled time: 2.39 units (timescale=2.734). Factorization parameters were as follows: n: 27536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362319 m: 1000000000000000000000000 deg: 5 c5: 19 c0: 110 skew: 1.42 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 670001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83360 x 83587 Total sieving time: 0.82 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 0.88 hours.
By Robert Backstrom / GGNFS, Msieve / Jun 4, 2009
(56·10173-11)/9 = 6(2)1721<174> = 32 · C173
C173 = P48 · P125
P48 = 738564409141079321357570371709279096815335359017<48>
P125 = 93608359153858981426105610055260809112478522633363061217130806551642027574933883449218513789486636057611681994106049642990557<125>
Number: n N=69135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469 ( 173 digits) SNFS difficulty: 176 digits. Divisors found: Thu Jun 04 06:39:25 2009 prp48 factor: 738564409141079321357570371709279096815335359017 Thu Jun 04 06:39:25 2009 prp125 factor: 93608359153858981426105610055260809112478522633363061217130806551642027574933883449218513789486636057611681994106049642990557 Thu Jun 04 06:39:25 2009 elapsed time 01:57:21 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 77.32 hours. Scaled time: 206.51 units (timescale=2.671). Factorization parameters were as follows: name: KA_6_2_172_1 n: 69135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469 m: 100000000000000000000000000000000000 deg: 5 c5: 14 c0: -275 skew: 1.81 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3000000, 6930323) Primes: RFBsize:412849, AFBsize:413097, largePrimes:20590929 encountered Relations: rels:20331002, finalFF:783769 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2478742 hash collisions in 22397806 relations Msieve: matrix is 1058956 x 1059204 (283.3 MB) Total sieving time: 76.03 hours. Total relation processing time: 1.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.5,2.5,100000 total time: 77.32 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 4, 2009
(2·10186+1)/3 = (6)1857<186> = 251 · 6985625296223599274700793<25> · C159
C159 = P52 · P107
P52 = 4206917503932403168642670324369591892367492856212867<52>
P107 = 90378626505701927771029832024922188717613437390639233047108160799437912965230133400154778880592650723086707<107>
Number: 66667_186 N=380215425828206486972276085410708135299591961689712370600918694125902131065848858643968804230144200389046038423936391956686137469192075622992358872536490058969 ( 159 digits) SNFS difficulty: 186 digits. Divisors found: r1=4206917503932403168642670324369591892367492856212867 r2=90378626505701927771029832024922188717613437390639233047108160799437912965230133400154778880592650723086707 Version: Total time: 98.62 hours. Scaled time: 235.31 units (timescale=2.386). Factorization parameters were as follows: n: 380215425828206486972276085410708135299591961689712370600918694125902131065848858643968804230144200389046038423936391956686137469192075622992358872536490058969 m: 10000000000000000000000000000000000000 deg: 5 c5: 20 c0: 1 skew: 0.55 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3900000, 6500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 19636934 Max relations in full relation-set: Initial matrix: Pruned matrix : 1626273 x 1626520 Total sieving time: 89.24 hours. Total relation processing time: 2.68 hours. Matrix solve time: 6.01 hours. Time per square root: 0.68 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7800000,7800000,28,28,54,54,2.5,2.5,100000 total time: 98.62 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Factorizations of 633...337 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 3, 2009
(56·10164+61)/9 = 6(2)1639<165> = 37 · 107143243 · 827738769862247647289<21> · C135
C135 = P67 · P68
P67 = 6359269268231973633385412363501308099138996129477289618088897243227<67>
P68 = 29817998891046624165279119258269213521683566428481920044352290969873<68>
Number: 62229_164 N=189620683988007866952443937748701417479265735985124731986169809683284375738554208691520381887964237839718019582607285916537475810300171 ( 135 digits) SNFS difficulty: 166 digits. Divisors found: r1=6359269268231973633385412363501308099138996129477289618088897243227 r2=29817998891046624165279119258269213521683566428481920044352290969873 Version: Total time: 25.86 hours. Scaled time: 61.83 units (timescale=2.391). Factorization parameters were as follows: n: 189620683988007866952443937748701417479265735985124731986169809683284375738554208691520381887964237839718019582607285916537475810300171 m: 1000000000000000000000000000000000 deg: 5 c5: 28 c0: 305 skew: 1.61 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 4500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9806459 Max relations in full relation-set: Initial matrix: Pruned matrix : 818905 x 819153 Total sieving time: 23.34 hours. Total relation processing time: 1.00 hours. Matrix solve time: 1.43 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 25.86 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Robert Backstrom / GGNFS, Msieve / Jun 3, 2009
(19·10166-7)/3 = 6(3)1651<167> = 1251201797773<13> · C155
C155 = P40 · P115
P40 = 5222677376389994113737654403622761109617<40>
P115 = 9691963898668385579244490463221708208315417143422065550154610103602175046798755781909933417277472713444234030147791<115>
Number: n N=50618000586363942762203374279640780451317566357735062091510191730164175208514686857624038716426133302249351141792345827911123123457306830339243153661406047 ( 155 digits) SNFS difficulty: 168 digits. Divisors found: Wed Jun 03 10:22:45 2009 prp40 factor: 5222677376389994113737654403622761109617 Wed Jun 03 10:22:45 2009 prp115 factor: 9691963898668385579244490463221708208315417143422065550154610103602175046798755781909933417277472713444234030147791 Wed Jun 03 10:22:45 2009 elapsed time 01:10:24 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 34.34 hours. Scaled time: 90.96 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_3_165_1 n: 50618000586363942762203374279640780451317566357735062091510191730164175208514686857624038716426133302249351141792345827911123123457306830339243153661406047 m: 2000000000000000000000000000000000 deg: 5 c5: 95 c0: -112 skew: 1.03 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2300000, 4218517) Primes: RFBsize:322441, AFBsize:321861, largePrimes:15963971 encountered Relations: rels:15425943, finalFF:635132 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1491550 hash collisions in 16716161 relations Msieve: matrix is 728875 x 729123 (196.3 MB) Total sieving time: 33.78 hours. Total relation processing time: 0.55 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,56,56,2.4,2.4,100000 total time: 34.34 hours. --------- CPU info (if available) ----------
(56·10168+61)/9 = 6(2)1679<169> = 13 · 331 · C166
C166 = P53 · P113
P53 = 96209819631831239463458686211657549363576689560960517<53>
P113 = 15029854316755953449386612574288835256536189192545473764862710443914088338103651872711772544550625231249480134879<113>
Number: n N=1446019572907790430449040720944044206884086038164588013530611717922896170630309603119270792986805071397216412322152503421385596612182714901748134376533168073953572443 ( 166 digits) SNFS difficulty: 170 digits. Divisors found: Wed Jun 03 17:30:16 2009 prp53 factor: 96209819631831239463458686211657549363576689560960517 Wed Jun 03 17:30:16 2009 prp113 factor: 15029854316755953449386612574288835256536189192545473764862710443914088338103651872711772544550625231249480134879 Wed Jun 03 17:30:16 2009 elapsed time 01:53:45 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 63.55 hours. Scaled time: 167.40 units (timescale=2.634). Factorization parameters were as follows: name: KA_6_2_167_9 n: 1446019572907790430449040720944044206884086038164588013530611717922896170630309603119270792986805071397216412322152503421385596612182714901748134376533168073953572443 m: 4000000000000000000000000000000000 deg: 5 c5: 875 c0: 976 skew: 1.02 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 6236533) Primes: RFBsize:348513, AFBsize:348732, largePrimes:17394588 encountered Relations: rels:17199344, finalFF:648711 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2276774 hash collisions in 19262903 relations Msieve: matrix is 898230 x 898478 (237.4 MB) Total sieving time: 62.63 hours. Total relation processing time: 0.92 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 63.55 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / ECM / Jun 3, 2009
(16·10199-7)/9 = 1(7)199<200> = 264007 · 6353173 · 23291472982858333436228811919662999043691<41> · C147
C147 = P46 · C102
P46 = 1502739138045835488243594532007091714625588183<46>
C102 = [302824352506754444443578645843911185284478634106196572443295670733987494299384968724155242087323594919<102>]
[2009-06-02 23:45:23 GMT] a: Factor found! test61 / (probable) 1502739138045835488243594532007091714625588183 B1: 11000000 sigma: 540716867 (found in step 2) [2009-06-02 23:45:23 GMT] a: Co-factor: test61 / (Composite) 302824352506754444443578645843911185284478634106196572443295670733987494299384968724155242087323594919
By Dmitry Domanov / ggnfs, msieve / Jun 2, 2009
(19·10169-7)/3 = 6(3)1681<170> = C170
C170 = P42 · P129
P42 = 454291383041177479146316118799864631194049<42>
P129 = 139411258275160216175498607426380186850484941194923576476093434398091509434652722681972425582202165365944458263133700328849433619<129>
Sieving in [2400000;5700000] took about 20hours on Xeon E5310 @ 4 cores Mon Jun 01 23:57:37 2009 Msieve v. 1.41 Mon Jun 01 23:57:37 2009 random seeds: d61aa0a0 238188c0 Mon Jun 01 23:57:37 2009 factoring 63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 (170 digits) Mon Jun 01 23:57:39 2009 searching for 15-digit factors Mon Jun 01 23:57:41 2009 commencing number field sieve (170-digit input) Mon Jun 01 23:57:41 2009 R0: -10000000000000000000000000000000000 Mon Jun 01 23:57:41 2009 R1: 1 Mon Jun 01 23:57:41 2009 A0: -70 Mon Jun 01 23:57:41 2009 A1: 0 Mon Jun 01 23:57:41 2009 A2: 0 Mon Jun 01 23:57:41 2009 A3: 0 Mon Jun 01 23:57:41 2009 A4: 0 Mon Jun 01 23:57:41 2009 A5: 19 Mon Jun 01 23:57:41 2009 skew 1.30, size 4.593843e-012, alpha 1.501780, combined = 2.087721e-010 Mon Jun 01 23:57:41 2009 Mon Jun 01 23:57:41 2009 commencing relation filtering Mon Jun 01 23:57:41 2009 commencing duplicate removal, pass 1 Mon Jun 01 23:59:18 2009 found 1777090 hash collisions in 12098448 relations Mon Jun 01 23:59:39 2009 added 2707 free relations Mon Jun 01 23:59:39 2009 commencing duplicate removal, pass 2 Tue Jun 02 00:00:03 2009 found 1797917 duplicates and 10303238 unique relations Tue Jun 02 00:00:03 2009 memory use: 69.3 MB Tue Jun 02 00:00:03 2009 reading rational ideals above 5701632 Tue Jun 02 00:00:03 2009 reading algebraic ideals above 5701632 Tue Jun 02 00:00:03 2009 commencing singleton removal, pass 1 Tue Jun 02 00:01:33 2009 relations with 0 large ideals: 174319 Tue Jun 02 00:01:33 2009 relations with 1 large ideals: 1092040 Tue Jun 02 00:01:33 2009 relations with 2 large ideals: 3004490 Tue Jun 02 00:01:33 2009 relations with 3 large ideals: 3791203 Tue Jun 02 00:01:33 2009 relations with 4 large ideals: 1864703 Tue Jun 02 00:01:33 2009 relations with 5 large ideals: 22017 Tue Jun 02 00:01:33 2009 relations with 6 large ideals: 354460 Tue Jun 02 00:01:33 2009 relations with 7+ large ideals: 6 Tue Jun 02 00:01:33 2009 10303238 relations and about 10061091 large ideals Tue Jun 02 00:01:33 2009 commencing singleton removal, pass 2 Tue Jun 02 00:03:06 2009 found 3638251 singletons Tue Jun 02 00:03:06 2009 current dataset: 6664987 relations and about 5540314 large ideals Tue Jun 02 00:03:06 2009 commencing singleton removal, pass 3 Tue Jun 02 00:04:14 2009 found 1113381 singletons Tue Jun 02 00:04:14 2009 current dataset: 5551606 relations and about 4351780 large ideals Tue Jun 02 00:04:14 2009 commencing singleton removal, pass 4 Tue Jun 02 00:05:12 2009 found 330238 singletons Tue Jun 02 00:05:12 2009 current dataset: 5221368 relations and about 4013429 large ideals Tue Jun 02 00:05:12 2009 commencing singleton removal, final pass Tue Jun 02 00:06:12 2009 memory use: 88.2 MB Tue Jun 02 00:06:12 2009 commencing in-memory singleton removal Tue Jun 02 00:06:12 2009 begin with 5221368 relations and 4249847 unique ideals Tue Jun 02 00:06:20 2009 reduce to 4512893 relations and 3525902 ideals in 14 passes Tue Jun 02 00:06:20 2009 max relations containing the same ideal: 17 Tue Jun 02 00:06:21 2009 reading rational ideals above 720000 Tue Jun 02 00:06:21 2009 reading algebraic ideals above 720000 Tue Jun 02 00:06:21 2009 commencing singleton removal, final pass Tue Jun 02 00:07:23 2009 keeping 3861899 ideals with weight <= 20, new excess is 468053 Tue Jun 02 00:07:29 2009 memory use: 128.6 MB Tue Jun 02 00:07:29 2009 commencing in-memory singleton removal Tue Jun 02 00:07:30 2009 begin with 4515600 relations and 3861899 unique ideals Tue Jun 02 00:07:34 2009 reduce to 4511494 relations and 3844466 ideals in 8 passes Tue Jun 02 00:07:34 2009 max relations containing the same ideal: 20 Tue Jun 02 00:07:38 2009 removing 543410 relations and 481367 ideals in 62043 cliques Tue Jun 02 00:07:38 2009 commencing in-memory singleton removal Tue Jun 02 00:07:39 2009 begin with 3968084 relations and 3844466 unique ideals Tue Jun 02 00:07:44 2009 reduce to 3918567 relations and 3312614 ideals in 10 passes Tue Jun 02 00:07:44 2009 max relations containing the same ideal: 20 Tue Jun 02 00:07:47 2009 removing 403681 relations and 341638 ideals in 62043 cliques Tue Jun 02 00:07:47 2009 commencing in-memory singleton removal Tue Jun 02 00:07:48 2009 begin with 3514886 relations and 3312614 unique ideals Tue Jun 02 00:07:51 2009 reduce to 3483225 relations and 2938714 ideals in 7 passes Tue Jun 02 00:07:51 2009 max relations containing the same ideal: 20 Tue Jun 02 00:07:54 2009 relations with 0 large ideals: 41806 Tue Jun 02 00:07:54 2009 relations with 1 large ideals: 262264 Tue Jun 02 00:07:54 2009 relations with 2 large ideals: 761751 Tue Jun 02 00:07:54 2009 relations with 3 large ideals: 1115630 Tue Jun 02 00:07:54 2009 relations with 4 large ideals: 857838 Tue Jun 02 00:07:54 2009 relations with 5 large ideals: 342096 Tue Jun 02 00:07:54 2009 relations with 6 large ideals: 93408 Tue Jun 02 00:07:54 2009 relations with 7+ large ideals: 8432 Tue Jun 02 00:07:54 2009 commencing 2-way merge Tue Jun 02 00:07:57 2009 reduce to 2116068 relation sets and 1571558 unique ideals Tue Jun 02 00:07:57 2009 ignored 1 oversize relation sets Tue Jun 02 00:07:57 2009 commencing full merge Tue Jun 02 00:08:27 2009 memory use: 117.7 MB Tue Jun 02 00:08:28 2009 found 1009501 cycles, need 937758 Tue Jun 02 00:08:28 2009 weight of 937758 cycles is about 65932017 (70.31/cycle) Tue Jun 02 00:08:28 2009 distribution of cycle lengths: Tue Jun 02 00:08:28 2009 1 relations: 117955 Tue Jun 02 00:08:28 2009 2 relations: 103087 Tue Jun 02 00:08:28 2009 3 relations: 101087 Tue Jun 02 00:08:28 2009 4 relations: 92485 Tue Jun 02 00:08:28 2009 5 relations: 84611 Tue Jun 02 00:08:28 2009 6 relations: 75708 Tue Jun 02 00:08:28 2009 7 relations: 66535 Tue Jun 02 00:08:28 2009 8 relations: 57923 Tue Jun 02 00:08:28 2009 9 relations: 50477 Tue Jun 02 00:08:28 2009 10+ relations: 187890 Tue Jun 02 00:08:28 2009 heaviest cycle: 18 relations Tue Jun 02 00:08:28 2009 commencing cycle optimization Tue Jun 02 00:08:30 2009 start with 5543854 relations Tue Jun 02 00:08:44 2009 pruned 157739 relations Tue Jun 02 00:08:44 2009 memory use: 145.8 MB Tue Jun 02 00:08:44 2009 distribution of cycle lengths: Tue Jun 02 00:08:44 2009 1 relations: 117955 Tue Jun 02 00:08:44 2009 2 relations: 105792 Tue Jun 02 00:08:44 2009 3 relations: 105257 Tue Jun 02 00:08:44 2009 4 relations: 95447 Tue Jun 02 00:08:44 2009 5 relations: 87378 Tue Jun 02 00:08:44 2009 6 relations: 77385 Tue Jun 02 00:08:44 2009 7 relations: 67623 Tue Jun 02 00:08:44 2009 8 relations: 58211 Tue Jun 02 00:08:44 2009 9 relations: 50641 Tue Jun 02 00:08:44 2009 10+ relations: 172069 Tue Jun 02 00:08:44 2009 heaviest cycle: 18 relations Tue Jun 02 00:08:47 2009 RelProcTime: 612 Tue Jun 02 00:08:47 2009 elapsed time 00:11:10 Tue Jun 02 00:18:36 2009 Tue Jun 02 00:18:36 2009 Tue Jun 02 00:18:36 2009 Msieve v. 1.41 Tue Jun 02 00:18:36 2009 random seeds: 08740858 38647e30 Tue Jun 02 00:18:36 2009 factoring 63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 (170 digits) Tue Jun 02 00:18:37 2009 searching for 15-digit factors Tue Jun 02 00:18:40 2009 commencing number field sieve (170-digit input) Tue Jun 02 00:18:40 2009 R0: -10000000000000000000000000000000000 Tue Jun 02 00:18:40 2009 R1: 1 Tue Jun 02 00:18:40 2009 A0: -70 Tue Jun 02 00:18:40 2009 A1: 0 Tue Jun 02 00:18:40 2009 A2: 0 Tue Jun 02 00:18:40 2009 A3: 0 Tue Jun 02 00:18:40 2009 A4: 0 Tue Jun 02 00:18:40 2009 A5: 19 Tue Jun 02 00:18:40 2009 skew 1.30, size 4.593843e-012, alpha 1.501780, combined = 2.087721e-010 Tue Jun 02 00:18:40 2009 Tue Jun 02 00:18:40 2009 commencing linear algebra Tue Jun 02 00:18:40 2009 read 937758 cycles Tue Jun 02 00:18:42 2009 cycles contain 3063344 unique relations Tue Jun 02 00:19:16 2009 read 3063344 relations Tue Jun 02 00:19:21 2009 using 20 quadratic characters above 134217402 Tue Jun 02 00:19:37 2009 building initial matrix Tue Jun 02 00:20:17 2009 memory use: 335.2 MB Tue Jun 02 00:20:18 2009 read 937758 cycles Tue Jun 02 00:20:22 2009 matrix is 937406 x 937758 (265.7 MB) with weight 82805041 (88.30/col) Tue Jun 02 00:20:22 2009 sparse part has weight 63082269 (67.27/col) Tue Jun 02 00:20:44 2009 filtering completed in 3 passes Tue Jun 02 00:20:44 2009 matrix is 929761 x 929961 (264.4 MB) with weight 82352811 (88.56/col) Tue Jun 02 00:20:44 2009 sparse part has weight 62803128 (67.53/col) Tue Jun 02 00:20:49 2009 read 929961 cycles Tue Jun 02 00:23:59 2009 matrix is 929761 x 929961 (264.4 MB) with weight 82352811 (88.56/col) Tue Jun 02 00:23:59 2009 sparse part has weight 62803128 (67.53/col) Tue Jun 02 00:24:00 2009 saving the first 48 matrix rows for later Tue Jun 02 00:24:00 2009 matrix is 929713 x 929961 (249.3 MB) with weight 64976976 (69.87/col) Tue Jun 02 00:24:00 2009 sparse part has weight 59762482 (64.26/col) Tue Jun 02 00:24:00 2009 matrix includes 64 packed rows Tue Jun 02 00:24:00 2009 using block size 65536 for processor cache size 6144 kB Tue Jun 02 00:24:07 2009 commencing Lanczos iteration (4 threads) Tue Jun 02 00:24:07 2009 memory use: 272.7 MB Tue Jun 02 01:46:04 2009 lanczos halted after 14705 iterations (dim = 929711) Tue Jun 02 01:46:06 2009 recovered 35 nontrivial dependencies Tue Jun 02 01:46:06 2009 BLanczosTime: 5246 Tue Jun 02 01:46:06 2009 elapsed time 01:27:30 Tue Jun 02 11:13:35 2009 Tue Jun 02 11:13:35 2009 Tue Jun 02 11:13:35 2009 Msieve v. 1.41 Tue Jun 02 11:13:35 2009 random seeds: 81a95a80 200be138 Tue Jun 02 11:13:35 2009 factoring 63333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 (170 digits) Tue Jun 02 11:13:37 2009 searching for 15-digit factors Tue Jun 02 11:13:39 2009 commencing number field sieve (170-digit input) Tue Jun 02 11:13:39 2009 R0: -10000000000000000000000000000000000 Tue Jun 02 11:13:39 2009 R1: 1 Tue Jun 02 11:13:39 2009 A0: -70 Tue Jun 02 11:13:39 2009 A1: 0 Tue Jun 02 11:13:39 2009 A2: 0 Tue Jun 02 11:13:39 2009 A3: 0 Tue Jun 02 11:13:39 2009 A4: 0 Tue Jun 02 11:13:39 2009 A5: 19 Tue Jun 02 11:13:39 2009 skew 1.30, size 4.593843e-012, alpha 1.501780, combined = 2.087721e-010 Tue Jun 02 11:13:39 2009 Tue Jun 02 11:13:39 2009 commencing square root phase Tue Jun 02 11:13:39 2009 reading relations for dependency 1 Tue Jun 02 11:13:40 2009 read 465397 cycles Tue Jun 02 11:13:40 2009 cycles contain 1871002 unique relations Tue Jun 02 11:14:08 2009 read 1871002 relations Tue Jun 02 11:14:18 2009 multiplying 1528186 relations Tue Jun 02 11:16:21 2009 multiply complete, coefficients have about 40.14 million bits Tue Jun 02 11:16:22 2009 initial square root is modulo 579011 Tue Jun 02 11:20:27 2009 sqrtTime: 408 Tue Jun 02 11:20:27 2009 prp42 factor: 454291383041177479146316118799864631194049 Tue Jun 02 11:20:27 2009 prp129 factor: 139411258275160216175498607426380186850484941194923576476093434398091509434652722681972425582202165365944458263133700328849433619 Tue Jun 02 11:20:27 2009 elapsed time 00:06:52
By Robert Backstrom / GGNFS, Msieve / Jun 2, 2009
(19·10163-7)/3 = 6(3)1621<164> = 1528115427195860226452144519734181<34> · C131
C131 = P42 · P90
P42 = 375054753555520893395695609169760004067579<42>
P90 = 110504893874187591596413409495017682935672393337348376387307423814825042765064498801134869<90>
Number: n N=41445385738662417611442928814986924314473384202452265032125295618316543566091246353416032258371712530792430821849165330461369312151 ( 131 digits) SNFS difficulty: 165 digits. Divisors found: Tue Jun 02 12:58:47 2009 prp42 factor: 375054753555520893395695609169760004067579 Tue Jun 02 12:58:47 2009 prp90 factor: 110504893874187591596413409495017682935672393337348376387307423814825042765064498801134869 Tue Jun 02 12:58:47 2009 elapsed time 01:07:01 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 39.96 hours. Scaled time: 105.85 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_3_162_1 n: 41445385738662417611442928814986924314473384202452265032125295618316543566091246353416032258371712530792430821849165330461369312151 m: 500000000000000000000000000000000 deg: 5 c5: 152 c0: -175 skew: 1.03 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2000000, 4425397) Primes: RFBsize:283146, AFBsize:283092, largePrimes:15709237 encountered Relations: rels:15287211, finalFF:613633 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1801663 hash collisions in 16935383 relations Msieve: matrix is 712265 x 712513 (188.5 MB) Total sieving time: 39.44 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.4,2.4,100000 total time: 39.96 hours. --------- CPU info (if available) ----------
(53·10203-17)/9 = 5(8)2027<204> = 13 · C203
C203 = P42 · P59 · P102
P42 = 987350730914620921690289987203621855954963<42>
P59 = 92566848900864095239779213632802017565483126475597474270379<59>
P102 = 495636265293798401196317143432651643488247579932991797044874163185512392872923768166698869239772113987<102>
Number: n N=45299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299 ( 203 digits) SNFS difficulty: 206 digits. Divisors found: Tue Jun 2 14:05:48 2009 prp42 factor: 987350730914620921690289987203621855954963 Tue Jun 2 14:05:48 2009 prp59 factor: 92566848900864095239779213632802017565483126475597474270379 Tue Jun 2 14:05:48 2009 prp102 factor: 495636265293798401196317143432651643488247579932991797044874163185512392872923768166698869239772113987 Tue Jun 2 14:05:48 2009 elapsed time 19:30:16 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 99.56 hours. Scaled time: 200.62 units (timescale=2.015). Factorization parameters were as follows: name: KA_5_8_202_7 n: 45299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299 m: 50000000000000000000000000000000000000000 deg: 5 c5: 424 c0: -425 skew: 1.00 type: snfs lss: 1 rlim: 19000000 alim: 19000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 19000000/19000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [9500000, 29099990) Primes: RFBsize:1211050, AFBsize:1212352, largePrimes:35419729 encountered Relations: rels:33177779, finalFF:834914 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7395621 hash collisions in 44885691 relations Msieve: matrix is 3359630 x 3359878 (905.5 MB) Total sieving time: 98.57 hours. Total relation processing time: 0.99 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19000000,19000000,29,29,56,56,2.6,2.6,100000 total time: 99.56 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2748k kernel code, 36964k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.71 BogoMIPS).
By Dmitry Domanov / GGNFS/msieve / Jun 1, 2009
(16·10178-7)/9 = 1(7)178<179> = 19 · 67247 · 6779280532223<13> · 17847077925229148671<20> · C141
C141 = P63 · P78
P63 = 351285801553477998259072973907150185197704089795714956495320427<63>
P78 = 327370570697273242447130450554318941139597272631318183807575568975566864956879<78>
Number: 577 N=115000633332411167647364546083294741615775101260141430479997902227306590463854471282709871778389721057965754878001756662197647499816642867333 ( 141 digits) SNFS difficulty: 180 digits. Divisors found: r1=351285801553477998259072973907150185197704089795714956495320427 (pp63) r2=327370570697273242447130450554318941139597272631318183807575568975566864956879 (pp78) Version: Msieve v. 1.41 Total time: 106.90 hours. Scaled time: 211.87 units (timescale=1.982). Factorization parameters were as follows: n: 115000633332411167647364546083294741615775101260141430479997902227306590463854471282709871778389721057965754878001756662197647499816642867333 m: 400000000000000000000000000000000000 deg: 5 c5: 125 c0: -56 skew: 0.85 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3500000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1198873 x 1199121 Total sieving time: 104.20 hours. Total relation processing time: 0.29 hours. Matrix solve time: 1.98 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000 total time: 106.90 hours. --------- CPU info (if available) ----------
(16·10180-7)/9 = 1(7)180<181> = 1038694808570917<16> · C166
C166 = P60 · P107
P60 = 137718772401945611066139183172563078616174576033116838801957<60>
P107 = 12427860489216359333700314673797681425104380541244459983868501418546968585363216500853083110304729687523033<107>
Number: 677 N=1711549690157520228330742557808063317961315632644673179819320806670356053994984550359977522136522021367570978466533605186365590753577246918825184595149011146562975581 ( 166 digits) SNFS difficulty: 181 digits. Divisors found: r1=137718772401945611066139183172563078616174576033116838801957 (pp60) r2=12427860489216359333700314673797681425104380541244459983868501418546968585363216500853083110304729687523033 (pp107) Version: Msieve v. 1.41 Total time: 101.21 hours. Scaled time: 201.21 units (timescale=1.988). Factorization parameters were as follows: n: 1711549690157520228330742557808063317961315632644673179819320806670356053994984550359977522136522021367570978466533605186365590753577246918825184595149011146562975581 m: 2000000000000000000000000000000000000 deg: 5 c5: 1 c0: -14 skew: 1.70 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1390191 x 1390439 Total sieving time: 98.04 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.77 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,181.000,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 101.21 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / Jun 1, 2009
(7·10227-43)/9 = (7)2263<227> = 3559 · C224
C224 = P28 · C196
P28 = 8458505971912909206817868981<28>
C196 = [2583651199824609680034453819884625327726724648528050962698862538834572380539968219106118313227233933547355672372029262918293850733930449356683602772128068063946794992912419603436233160706908852287<196>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3642532168 Step 1 took 16621ms Step 2 took 13553ms ********** Factor found in step 2: 8458505971912909206817868981 Found probable prime factor of 28 digits: 8458505971912909206817868981 Composite cofactor has 196 digits
(7·10215-43)/9 = (7)2143<215> = 2081 · 1504051683081685150327<22> · 4344239786129705012158373<25> · C166
C166 = P34 · C133
P34 = 3024223307536720085994159843093307<34>
C133 = [1891442074356078127435530811303209306810261564412542247972987797125896592894268399142579972662858268228984818353299092343914997992589<133>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3496836667 Step 1 took 3564ms Step 2 took 3300ms ********** Factor found in step 2: 3024223307536720085994159843093307 Found probable prime factor of 34 digits: 3024223307536720085994159843093307 Composite cofactor has 133 digits
(7·10245-43)/9 = (7)2443<245> = 532 · C242
C242 = P30 · C213
P30 = 147803791508418175555074273469<30>
C213 = [187334694537922847786332374691014861222601208364833920555120484053811064039560744117770151237267789426518709898544015747455022079756915518534598493789954675170924442769261275475794400002491732103243135770913504313<213>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=624630945 Step 1 took 6221ms Step 2 took 4776ms ********** Factor found in step 2: 147803791508418175555074273469 Found probable prime factor of 30 digits: 147803791508418175555074273469 Composite cofactor has 213 digits
(7·10234-43)/9 = (7)2333<234> = 73 · C233
C233 = P32 · P201
P32 = 70162570395366838677237918643007<32>
P201 = 151854329830089387276948123171475465368043900564395635574907640527902177725953130967084760080446859468423858471494840344280032942052563119440955147796605889957623924505089000655025798808544614240070843<201>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=762880277 Step 1 took 18957ms Step 2 took 8053ms ********** Factor found in step 2: 70162570395366838677237918643007 Found probable prime factor of 32 digits: 70162570395366838677237918643007 Probable prime cofactor has 201 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jun 1, 2009
(7·10221-43)/9 = (7)2203<221> = 17 · 281 · 1933050226305217<16> · 7065680627293703578348517<25> · 21626847603702295660286951<26> · 94971446179866949702602973<26> · 17941218631370458475790313427<29> · C98
C98 = P35 · P63
P35 = 83917164802182940110279805322856967<35>
P63 = 385490904422208015412208301554642767311267505646360635649004263<63>
Number: 77773_221 N=32349303756140982366638500632066141116319673464587062506666215628176801423560827981638307922250321 ( 98 digits) Divisors found: r1=83917164802182940110279805322856967 r2=385490904422208015412208301554642767311267505646360635649004263 Version: Total time: 2.25 hours. Scaled time: 5.38 units (timescale=2.390). Factorization parameters were as follows: name: 77773_221 n: 32349303756140982366638500632066141116319673464587062506666215628176801423560827981638307922250321 skew: 2071.43 # norm 3.18e+13 c5: 786480 c4: -909597786 c3: -6090742551109 c2: 5271076042794314 c1: 5464881154623239836 c0: -8918248740224616729200 # alpha -5.76 Y1: 861948791 Y0: -2102981693400790119 # Murphy_E 4.30e-09 # M 13704586428295265528822636952842921510667563363553767895424173946931554241498540878006403524405789 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4218915 Max relations in full relation-set: Initial matrix: Pruned matrix : 163307 x 163555 Polynomial selection time: 0.13 hours. Total sieving time: 1.82 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.06 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 2.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Robert Backstrom / GGNFS, Msieve / Jun 1, 2009
(56·10162+43)/9 = 6(2)1617<163> = 11 · 47 · 10296567877<11> · 123990940208683<15> · C136
C136 = P50 · P87
P50 = 23983976853277442191852487114470582321131826167551<50>
P87 = 393053201540223607796745824158765838141928859295078242639142682262167967738704645960991<87>
Number: n N=9426978887847316499591259177339751369402284659743241181896586427524629168471443390568790396652331861718178838223408061486266734976003041 ( 136 digits) SNFS difficulty: 163 digits. Divisors found: Mon Jun 01 03:05:09 2009 prp50 factor: 23983976853277442191852487114470582321131826167551 Mon Jun 01 03:05:09 2009 prp87 factor: 393053201540223607796745824158765838141928859295078242639142682262167967738704645960991 Mon Jun 01 03:05:09 2009 elapsed time 00:56:26 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 24.18 hours. Scaled time: 63.81 units (timescale=2.639). Factorization parameters were as follows: name: KA_6_2_161_7 n: 9426978887847316499591259177339751369402284659743241181896586427524629168471443390568790396652331861718178838223408061486266734976003041 m: 200000000000000000000000000000000 deg: 5 c5: 175 c0: 43 skew: 0.76 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1900000, 3302917) Primes: RFBsize:269987, AFBsize:270282, largePrimes:14135902 encountered Relations: rels:13111233, finalFF:534265 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1138162 hash collisions in 14020541 relations Msieve: matrix is 699147 x 699395 (188.5 MB) Total sieving time: 23.90 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,28,28,56,56,2.4,2.4,100000 total time: 24.18 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / May 31, 2009
(19·10155-7)/3 = 6(3)1541<156> = 164235667 · 1740417311<10> · 111425777511793<15> · 250229323067441<15> · C110
C110 = P49 · P62
P49 = 5281247843943756323575345174974322075624622245631<49>
P62 = 15047039119267587349572218682986674068056537222113859655843521<62>
Number: 63331_155 N=79467142906369303749636744937281745129764539117988920683892994469122391287838213736204396907027827898561906751 ( 110 digits) SNFS difficulty: 156 digits. Divisors found: r1=5281247843943756323575345174974322075624622245631 (pp49) r2=15047039119267587349572218682986674068056537222113859655843521 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 36.68 hours. Scaled time: 17.31 units (timescale=0.472). Factorization parameters were as follows: name: 63331_155 n: 79467142906369303749636744937281745129764539117988920683892994469122391287838213736204396907027827898561906751 m: 10000000000000000000000000000000 deg: 5 c5: 19 c0: -7 skew: 0.82 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2200001) Primes: RFBsize:203362, AFBsize:203482, largePrimes:7899338 encountered Relations: rels:7979074, finalFF:587339 Max relations in full relation-set: 28 Initial matrix: 406909 x 587339 with sparse part having weight 60082132. Pruned matrix : 326722 x 328820 with weight 32423960. Total sieving time: 32.08 hours. Total relation processing time: 0.32 hours. Matrix solve time: 4.14 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 36.68 hours. --------- CPU info (if available) ----------
(56·10162+61)/9 = 6(2)1619<163> = 13 · 17 · 333169659657218214943445880431<30> · C131
C131 = P44 · P88
P44 = 58777162300699886134806717903601862679409189<44>
P88 = 1437736120496800403800748865253742711720255061341109233283383300163142470662643993317611<88>
Number: 62229_162 N=84506049300019045541148664177605664932560143115156293509081093839740279885169035460356133555067936173292757082359105087321508927479 ( 131 digits) SNFS difficulty: 163 digits. Divisors found: r1=58777162300699886134806717903601862679409189 (pp44) r2=1437736120496800403800748865253742711720255061341109233283383300163142470662643993317611 (pp88) Version: Msieve-1.40 Total time: 40.03 hours. Scaled time: 83.47 units (timescale=2.085). Factorization parameters were as follows: name: 62229_162 n: 84506049300019045541148664177605664932560143115156293509081093839740279885169035460356133555067936173292757082359105087321508927479 m: 200000000000000000000000000000000 deg: 5 c5: 175 c0: 61 skew: 0.81 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 732299 x 732547 Total sieving time: 37.56 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.01 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,163.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 40.03 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 31, 2009
(2·10183+1)/3 = (6)1827<183> = 83 · 127 · 166561 · 45500165622286770651251939807357753869<38> · C136
C136 = P58 · P79
P58 = 1768102116358568726804059735346898250979675156958250450963<58>
P79 = 4719905315980089354175144342714435067318349425166521859528612903312864663830561<79>
Number: 66667_183 N=8345274578196455040772840047280934924400950145019956077371379711181517748470254840649874990874138242711129166964755686037538473271280243 ( 136 digits) SNFS difficulty: 185 digits. Divisors found: r1=1768102116358568726804059735346898250979675156958250450963 r2=4719905315980089354175144342714435067318349425166521859528612903312864663830561 Version: Total time: 84.74 hours. Scaled time: 202.26 units (timescale=2.387). Factorization parameters were as follows: n: 8345274578196455040772840047280934924400950145019956077371379711181517748470254840649874990874138242711129166964755686037538473271280243 m: 10000000000000000000000000000000000000 deg: 5 c5: 1 c0: 50 skew: 2.19 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3400000, 5700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 19866084 Max relations in full relation-set: Initial matrix: Pruned matrix : 1321278 x 1321526 Total sieving time: 78.16 hours. Total relation processing time: 2.42 hours. Matrix solve time: 4.00 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,54,54,2.5,2.5,100000 total time: 84.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Robert Backstrom / GGNFS, Msieve / May 30, 2009
(19·10160-7)/3 = 6(3)1591<161> = 205559 · 166690938181<12> · 4739551742255273<16> · C129
C129 = P60 · P70
P60 = 192953010834035420920565005161094023397748898317016682693703<60>
P70 = 2021133639555239274004216421272326134198633923821597116449982793956831<70>
Number: n N=389983821050135524992495811598954671852428778933960144116705863669289820317650361573801619260957749190958138592224628970977535193 ( 129 digits) SNFS difficulty: 161 digits. Divisors found: Sat May 30 17:51:49 2009 prp60 factor: 192953010834035420920565005161094023397748898317016682693703 Sat May 30 17:51:49 2009 prp70 factor: 2021133639555239274004216421272326134198633923821597116449982793956831 Sat May 30 17:51:49 2009 elapsed time 01:13:25 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.86 hours. Scaled time: 36.20 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_3_159_1 n: 389983821050135524992495811598954671852428778933960144116705863669289820317650361573801619260957749190958138592224628970977535193 m: 100000000000000000000000000000000 deg: 5 c5: 19 c0: -7 skew: 0.82 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1700000, 2802749) Primes: RFBsize:243539, AFBsize:243539, largePrimes:9127528 encountered Relations: rels:8394159, finalFF:515146 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 677135 hash collisions in 8972024 relations Msieve: matrix is 526245 x 526493 (141.7 MB) Total sieving time: 19.72 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,28,28,56,56,2.3,2.3,100000 total time: 19.86 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 31, 2009
(19·10164-7)/3 = 6(3)1631<165> = 521 · C163
C163 = P31 · P133
P31 = 1030395146901575232482318153521<31>
P133 = 1179752261192165436937509834268451367995427496483506345869434991137876794024756627575257376550528314299971500543436800664584942621291<133>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1215611004478566858605246321177223288547664747280870121561100447856685860524632117722328854766474728087012156110044785668586052463211772232885476647472808701215611 (163 digits) Using B1=910000, B2=871204962, polynomial Dickson(3), sigma=3339709975 Step 1 took 11609ms Step 2 took 5078ms ********** Factor found in step 2: 1030395146901575232482318153521 Found probable prime factor of 31 digits: 1030395146901575232482318153521 Probable prime cofactor 1179752261192165436937509834268451367995427496483506345869434991137876794024756627575257376550528314299971500543436800664584942621291 has 133 digits
(56·10163+61)/9 = 6(2)1629<164> = 3 · 547 · 36583739 · 8911817542531<13> · C141
C141 = P41 · P100
P41 = 42597891454673060505110716648489489874029<41>
P100 = 2730199970499644357975731595205926704022982681290973431824354119749840881511693404859673560174062129<100>
Number: n N=116300761992895442277851487983159703948805793485901191608307239656827728210759065722462137843313433918613770797238045307858287214837429547741 ( 141 digits) SNFS difficulty: 165 digits. Divisors found: Sun May 31 01:41:53 2009 prp41 factor: 42597891454673060505110716648489489874029 Sun May 31 01:41:53 2009 prp100 factor: 2730199970499644357975731595205926704022982681290973431824354119749840881511693404859673560174062129 Sun May 31 01:41:53 2009 elapsed time 01:13:17 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 45.29 hours. Scaled time: 82.02 units (timescale=1.811). Factorization parameters were as follows: name: KA_6_2_162_9 n: 116300761992895442277851487983159703948805793485901191608307239656827728210759065722462137843313433918613770797238045307858287214837429547741 m: 400000000000000000000000000000000 deg: 5 c5: 875 c0: 976 skew: 1.02 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2000000, 4800193) Primes: RFBsize:283146, AFBsize:283248, largePrimes:16000975 encountered Relations: rels:15979828, finalFF:489412 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2015568 hash collisions in 17683124 relations Msieve: matrix is 693919 x 694167 (182.0 MB) Total sieving time: 44.58 hours. Total relation processing time: 0.71 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.4,2.4,100000 total time: 45.29 hours. --------- CPU info (if available) ----------
(56·10175-11)/9 = 6(2)1741<176> = 47 · C175
C175 = P54 · P121
P54 = 192125247010041170809174670779335744201118561259127269<54>
P121 = 6890698068894240356891730438060670874910112730143005165653589033348984895253689710744878953349272012244501560105878095047<121>
Number: n N=1323877068557919621749408983451536643026004728132387706855791962174940898345153664302600472813238770685579196217494089834515366430260047281323877068557919621749408983451536643 ( 175 digits) SNFS difficulty: 177 digits. Divisors found: Sun May 31 02:43:55 2009 prp54 factor: 192125247010041170809174670779335744201118561259127269 Sun May 31 02:43:55 2009 prp121 factor: 6890698068894240356891730438060670874910112730143005165653589033348984895253689710744878953349272012244501560105878095047 Sun May 31 02:43:55 2009 elapsed time 02:23:38 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 42.54 hours. Scaled time: 113.16 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_174_1 n: 1323877068557919621749408983451536643026004728132387706855791962174940898345153664302600472813238770685579196217494089834515366430260047281323877068557919621749408983451536643 m: 200000000000000000000000000000000000 deg: 5 c5: 7 c0: -44 skew: 1.44 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3200000, 7810333) Primes: RFBsize:438410, AFBsize:438596, largePrimes:21022405 encountered Relations: rels:21220839, finalFF:870178 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2947888 hash collisions in 24544932 relations Msieve: matrix is 1052560 x 1052808 (277.6 MB) Total sieving time: 41.68 hours. Total relation processing time: 0.86 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,56,56,2.5,2.5,100000 total time: 42.54 hours. --------- CPU info (if available) ----------
Factorizations of 77...773 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 30, 2009
(19·10183-7)/3 = 6(3)1821<184> = 13 · 2372462713<10> · 8468765729<10> · 69592743691<11> · 129057352081045693<18> · 261750565597678834213<21> · C116
C116 = P47 · P69
P47 = 20918814650880279245782585898866372921751427107<47>
P69 = 493058067701339029668726835528369070385382676527854413996834196777607<69>
Number: 63331_183 N=10314190330365491502414101471530176218118047462207183441475087326449818983417302428137450255427811591623312950392949 ( 116 digits) Divisors found: r1=20918814650880279245782585898866372921751427107 r2=493058067701339029668726835528369070385382676527854413996834196777607 Version: Total time: 16.07 hours. Scaled time: 38.20 units (timescale=2.377). Factorization parameters were as follows: name: 63331_183 n: 10314190330365491502414101471530176218118047462207183441475087326449818983417302428137450255427811591623312950392949 skew: 41613.59 # norm 9.10e+15 c5: 28500 c4: 3554644580 c3: 158727902980021 c2: -3174603706020844408 c1: 21891353313746581626744 c0: -727582156817515135345185867 # alpha -6.13 Y1: 362105387977 Y0: -12933550196069224996114 # Murphy_E 5.18e-10 # M 2313767235390905646823578484813923700899760471601142099600885784234612345003558293700337149488837071365532915777600 type: gnfs rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1650000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8690691 Max relations in full relation-set: Initial matrix: Pruned matrix : 505767 x 506015 Polynomial selection time: 1.53 hours. Total sieving time: 13.18 hours. Total relation processing time: 0.65 hours. Matrix solve time: 0.53 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3300000,3300000,27,27,52,52,2.4,2.4,75000 total time: 16.07 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Serge Batalov / GMP-ECM 6.2.3 / May 30, 2009
(73·10241-1)/9 = 8(1)241<242> = 3 · 1553 · 3142163203150529<16> · C223
C223 = P40 · C183
P40 = 9738217033362438978257872010279769567827<40>
C183 = [568957009763349750886082427078689969120509026254399618771016802246504288678284189495990001284085372062009919964865734459369038780656037994148639766044103725733477699960823359523909263<183>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1553818478 Step 1 took 16365ms Step 2 took 7596ms ********** Factor found in step 2: 9738217033362438978257872010279769567827 Found probable prime factor of 40 digits: 9738217033362438978257872010279769567827 Composite cofactor has 183 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 30, 2009
(56·10165+43)/9 = 6(2)1647<166> = 132 · 97 · C162
C162 = P54 · P109
P54 = 309696278400778819235156054633314885731808278757399009<54>
P109 = 1225606603322051740069831254149400184276453879353393307568364058398997457686804434974933893594153486691097371<109>
Number: n N=379565803832259026549272385909975124883927421595938645898994828415922785470763266163741976588923456488880755335949626195462833052047960850498519015568975917905339 ( 162 digits) SNFS difficulty: 166 digits. Divisors found: Sat May 30 01:58:34 2009 prp54 factor: 309696278400778819235156054633314885731808278757399009 Sat May 30 01:58:34 2009 prp109 factor: 1225606603322051740069831254149400184276453879353393307568364058398997457686804434974933893594153486691097371 Sat May 30 01:58:34 2009 elapsed time 00:54:25 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 28.06 hours. Scaled time: 74.05 units (timescale=2.639). Factorization parameters were as follows: name: KA_6_2_164_7 n: 379565803832259026549272385909975124883927421595938645898994828415922785470763266163741976588923456488880755335949626195462833052047960850498519015568975917905339 m: 1000000000000000000000000000000000 deg: 5 c5: 56 c0: 43 skew: 0.95 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2100000, 3676151) Primes: RFBsize:296314, AFBsize:296021, largePrimes:14911125 encountered Relations: rels:14135788, finalFF:539450 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1346121 hash collisions in 15874367 relations Msieve: matrix is 638603 x 638851 (171.0 MB) Total sieving time: 27.68 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,56,56,2.4,2.4,100000 total time: 28.06 hours. --------- CPU info (if available) ----------
(19·10165-7)/3 = 6(3)1641<166> = 13 · 994133839 · C156
C156 = P37 · P120
P37 = 1585869221747468828672050826992090487<37>
P120 = 309013011562915854221734443449651727484814802076522487369928457645392098079175692205271336122167806548220047231911529559<120>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 490054224157122952020527174892280454289193034077464070194656644395229342441867615754187379077013278470130800453699763035113001004263659492519477035103205233 (156 digits) Using B1=1216000, B2=1426326730, polynomial Dickson(6), sigma=900906112 Step 1 took 20670ms Step 2 took 7519ms ********** Factor found in step 2: 1585869221747468828672050826992090487 Found probable prime factor of 37 digits: 1585869221747468828672050826992090487 Probable prime cofactor 309013011562915854221734443449651727484814802076522487369928457645392098079175692205271336122167806548220047231911529559 has 120 digits
By Sinkiti Sibata / Msieve / May 30, 2009
(19·10143-7)/3 = 6(3)1421<144> = 17 · 686946041 · 5004379399496219<16> · C119
C119 = P49 · P70
P49 = 6064675005431407597682140703583328855985936884427<49>
P70 = 1786911481999335182645866206956164102877404014783178509521822170053571<70>
Number: 63331_143 N=10837037401799762698529461554216170185290795964322502951936154198933444977066459208793255063177504764001758971425638817 ( 119 digits) SNFS difficulty: 145 digits. Divisors found: r1=6064675005431407597682140703583328855985936884427 (pp49) r2=1786911481999335182645866206956164102877404014783178509521822170053571 (pp70) Version: Msieve-1.40 Total time: 11.21 hours. Scaled time: 23.45 units (timescale=2.092). Factorization parameters were as follows: name: 63331_143 n: 10837037401799762698529461554216170185290795964322502951936154198933444977066459208793255063177504764001758971425638817 m: 50000000000000000000000000000 deg: 5 c5: 152 c0: -175 skew: 1.03 type: snfs lss: 1 rlim: 1880000 alim: 1880000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1880000/1880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [940000, 2340001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 324522 x 324752 Total sieving time: 10.66 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.35 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,145.000,5,0,0,0,0,0,0,0,0,1880000,1880000,26,26,49,49,2.3,2.3,100000 total time: 11.21 hours. --------- CPU info (if available) ----------
By Andreas Tete / GMP-ECM 6.2.3, Msieve v. 1.41 / May 29, 2009
(19·10156-7)/3 = 6(3)1551<157> = 312 · 592451 · 43888913 · 2128275991521061911960831276960508639<37> · C105
C105 = P32 · P73
P32 = 42922832558351566227042018293831<32>
P73 = 2774504138001681732261294798409783710382595552789039859654944907699312713<73>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1091934915 Step 1 took 8814ms Step 2 took 4103ms ********** Factor found in step 2: 42922832558351566227042018293831 Found probable prime factor of 32 digits: 42922832558351566227042018293831 Probable prime cofactor 2774504138001681732261294798409783710382595552789039859654944907699312713 has 73 digits
(19·10134-7)/3 = 6(3)1331<135> = 3255290605655383<16> · 1564191755329938983<19> · C102
C102 = P44 · P58
P44 = 43633958034178706867946687302128801578332407<44>
P58 = 2850545511538911509758997306144163361132986931822475337797<58>
Fri May 29 01:46:11 2009 Msieve v. 1.41 Fri May 29 01:46:11 2009 random seeds: 7a0386d4 e2e4a5c6 Fri May 29 01:46:11 2009 factoring 124380583225005339635170276374626881553544663883508895938724024594535921167555826580114650203277087379 (102 digits) Fri May 29 01:46:12 2009 searching for 15-digit factors Fri May 29 01:46:13 2009 commencing number field sieve (102-digit input) Fri May 29 01:46:13 2009 R0: -41927590673415626285 Fri May 29 01:46:13 2009 R1: 31763566207 Fri May 29 01:46:13 2009 A0: 36772747658165768275752 Fri May 29 01:46:13 2009 A1: -174000147123189357426 Fri May 29 01:46:13 2009 A2: -11206915547828719 Fri May 29 01:46:13 2009 A3: 150414980036 Fri May 29 01:46:13 2009 A4: -53039818 Fri May 29 01:46:13 2009 A5: 960 Fri May 29 01:46:13 2009 skew 18483.41, size 1.224183e-009, alpha -4.909780, combined = 2.906612e-009 Fri May 29 01:46:14 2009 Fri May 29 01:46:14 2009 commencing relation filtering Fri May 29 01:46:14 2009 commencing duplicate removal, pass 1 Fri May 29 01:47:30 2009 found 392433 hash collisions in 4779022 relations Fri May 29 01:47:43 2009 added 30939 free relations Fri May 29 01:47:43 2009 commencing duplicate removal, pass 2 Fri May 29 01:48:03 2009 found 376855 duplicates and 4433105 unique relations Fri May 29 01:48:03 2009 memory use: 40.3 MB Fri May 29 01:48:03 2009 reading rational ideals above 2031616 Fri May 29 01:48:03 2009 reading algebraic ideals above 2031616 Fri May 29 01:48:03 2009 commencing singleton removal, pass 1 Fri May 29 01:48:49 2009 relations with 0 large ideals: 80551 Fri May 29 01:48:49 2009 relations with 1 large ideals: 590268 Fri May 29 01:48:49 2009 relations with 2 large ideals: 1517218 Fri May 29 01:48:49 2009 relations with 3 large ideals: 1590960 Fri May 29 01:48:49 2009 relations with 4 large ideals: 586066 Fri May 29 01:48:49 2009 relations with 5 large ideals: 38047 Fri May 29 01:48:49 2009 relations with 6 large ideals: 29992 Fri May 29 01:48:49 2009 relations with 7+ large ideals: 3 Fri May 29 01:48:49 2009 4433105 relations and about 4216507 large ideals Fri May 29 01:48:49 2009 commencing singleton removal, pass 2 Fri May 29 01:49:36 2009 found 1920217 singletons Fri May 29 01:49:36 2009 current dataset: 2512888 relations and about 1933737 large ideals Fri May 29 01:49:36 2009 commencing singleton removal, pass 3 Fri May 29 01:50:12 2009 found 390516 singletons Fri May 29 01:50:12 2009 current dataset: 2122372 relations and about 1520986 large ideals Fri May 29 01:50:12 2009 commencing singleton removal, final pass Fri May 29 01:50:53 2009 memory use: 34.5 MB Fri May 29 01:50:53 2009 commencing in-memory singleton removal Fri May 29 01:50:53 2009 begin with 2122372 relations and 1562809 unique ideals Fri May 29 01:50:55 2009 reduce to 1898971 relations and 1334953 ideals in 10 passes Fri May 29 01:50:55 2009 max relations containing the same ideal: 67 Fri May 29 01:50:55 2009 reading rational ideals above 100000 Fri May 29 01:50:55 2009 reading algebraic ideals above 100000 Fri May 29 01:50:55 2009 commencing singleton removal, final pass Fri May 29 01:51:43 2009 keeping 1538216 ideals with weight <= 25, new excess is 126334 Fri May 29 01:51:46 2009 memory use: 47.3 MB Fri May 29 01:51:46 2009 commencing in-memory singleton removal Fri May 29 01:51:46 2009 begin with 1903679 relations and 1538216 unique ideals Fri May 29 01:51:48 2009 reduce to 1897608 relations and 1509334 ideals in 8 passes Fri May 29 01:51:48 2009 max relations containing the same ideal: 25 Fri May 29 01:51:49 2009 removing 522496 relations and 401633 ideals in 120863 cliques Fri May 29 01:51:49 2009 commencing in-memory singleton removal Fri May 29 01:51:49 2009 begin with 1375112 relations and 1509334 unique ideals Fri May 29 01:51:51 2009 reduce to 1297128 relations and 1024266 ideals in 8 passes Fri May 29 01:51:51 2009 max relations containing the same ideal: 25 Fri May 29 01:51:51 2009 removing 397287 relations and 276424 ideals in 120863 cliques Fri May 29 01:51:51 2009 commencing in-memory singleton removal Fri May 29 01:51:52 2009 begin with 899841 relations and 1024266 unique ideals Fri May 29 01:51:52 2009 reduce to 824971 relations and 666110 ideals in 8 passes Fri May 29 01:51:52 2009 max relations containing the same ideal: 21 Fri May 29 01:51:53 2009 removing 67837 relations and 55524 ideals in 12313 cliques Fri May 29 01:51:53 2009 commencing in-memory singleton removal Fri May 29 01:51:53 2009 begin with 757134 relations and 666110 unique ideals Fri May 29 01:51:53 2009 reduce to 753786 relations and 607197 ideals in 6 passes Fri May 29 01:51:53 2009 max relations containing the same ideal: 21 Fri May 29 01:51:53 2009 relations with 0 large ideals: 11066 Fri May 29 01:51:53 2009 relations with 1 large ideals: 73648 Fri May 29 01:51:53 2009 relations with 2 large ideals: 190050 Fri May 29 01:51:53 2009 relations with 3 large ideals: 242532 Fri May 29 01:51:53 2009 relations with 4 large ideals: 162951 Fri May 29 01:51:53 2009 relations with 5 large ideals: 59782 Fri May 29 01:51:53 2009 relations with 6 large ideals: 12446 Fri May 29 01:51:53 2009 relations with 7+ large ideals: 1311 Fri May 29 01:51:53 2009 commencing 2-way merge Fri May 29 01:51:53 2009 reduce to 487336 relation sets and 340747 unique ideals Fri May 29 01:51:53 2009 commencing full merge Fri May 29 01:51:59 2009 memory use: 25.5 MB Fri May 29 01:51:59 2009 found 230072 cycles, need 210947 Fri May 29 01:51:59 2009 weight of 210947 cycles is about 14775600 (70.04/cycle) Fri May 29 01:51:59 2009 distribution of cycle lengths: Fri May 29 01:51:59 2009 1 relations: 18697 Fri May 29 01:51:59 2009 2 relations: 18637 Fri May 29 01:51:59 2009 3 relations: 19991 Fri May 29 01:51:59 2009 4 relations: 19889 Fri May 29 01:51:59 2009 5 relations: 19620 Fri May 29 01:51:59 2009 6 relations: 18220 Fri May 29 01:51:59 2009 7 relations: 16848 Fri May 29 01:51:59 2009 8 relations: 15336 Fri May 29 01:51:59 2009 9 relations: 13673 Fri May 29 01:51:59 2009 10+ relations: 50036 Fri May 29 01:51:59 2009 heaviest cycle: 18 relations Fri May 29 01:51:59 2009 commencing cycle optimization Fri May 29 01:51:59 2009 start with 1374954 relations Fri May 29 01:52:03 2009 pruned 52307 relations Fri May 29 01:52:03 2009 memory use: 33.9 MB Fri May 29 01:52:03 2009 distribution of cycle lengths: Fri May 29 01:52:03 2009 1 relations: 18697 Fri May 29 01:52:03 2009 2 relations: 19181 Fri May 29 01:52:03 2009 3 relations: 21002 Fri May 29 01:52:03 2009 4 relations: 20738 Fri May 29 01:52:03 2009 5 relations: 20663 Fri May 29 01:52:03 2009 6 relations: 19137 Fri May 29 01:52:03 2009 7 relations: 17544 Fri May 29 01:52:03 2009 8 relations: 15854 Fri May 29 01:52:03 2009 9 relations: 13910 Fri May 29 01:52:03 2009 10+ relations: 44221 Fri May 29 01:52:03 2009 heaviest cycle: 18 relations Fri May 29 01:52:03 2009 RelProcTime: 249 Fri May 29 01:52:03 2009 Fri May 29 01:52:03 2009 commencing linear algebra Fri May 29 01:52:03 2009 read 210947 cycles Fri May 29 01:52:04 2009 cycles contain 673540 unique relations Fri May 29 01:52:25 2009 read 673540 relations Fri May 29 01:52:26 2009 using 20 quadratic characters above 67108290 Fri May 29 01:52:30 2009 building initial matrix Fri May 29 01:52:40 2009 memory use: 75.2 MB Fri May 29 01:52:40 2009 read 210947 cycles Fri May 29 01:52:40 2009 matrix is 210749 x 210947 (58.5 MB) with weight 19798822 (93.86/col) Fri May 29 01:52:40 2009 sparse part has weight 13848264 (65.65/col) Fri May 29 01:52:43 2009 filtering completed in 2 passes Fri May 29 01:52:43 2009 matrix is 210230 x 210428 (58.4 MB) with weight 19766738 (93.94/col) Fri May 29 01:52:43 2009 sparse part has weight 13831777 (65.73/col) Fri May 29 01:52:44 2009 read 210428 cycles Fri May 29 01:52:45 2009 matrix is 210230 x 210428 (58.4 MB) with weight 19766738 (93.94/col) Fri May 29 01:52:45 2009 sparse part has weight 13831777 (65.73/col) Fri May 29 01:52:45 2009 saving the first 48 matrix rows for later Fri May 29 01:52:45 2009 matrix is 210182 x 210428 (55.9 MB) with weight 15466001 (73.50/col) Fri May 29 01:52:45 2009 sparse part has weight 13378511 (63.58/col) Fri May 29 01:52:45 2009 matrix includes 64 packed rows Fri May 29 01:52:45 2009 using block size 65536 for processor cache size 3072 kB Fri May 29 01:52:47 2009 commencing Lanczos iteration Fri May 29 01:52:47 2009 memory use: 53.9 MB Fri May 29 01:58:49 2009 lanczos halted after 3325 iterations (dim = 210182) Fri May 29 01:58:50 2009 recovered 32 nontrivial dependencies Fri May 29 01:58:50 2009 BLanczosTime: 407 Fri May 29 01:58:50 2009 Fri May 29 01:58:50 2009 commencing square root phase Fri May 29 01:58:50 2009 reading relations for dependency 1 Fri May 29 01:58:50 2009 read 105203 cycles Fri May 29 01:58:50 2009 cycles contain 423488 unique relations Fri May 29 01:58:56 2009 read 423488 relations Fri May 29 01:58:58 2009 multiplying 336942 relations Fri May 29 01:59:40 2009 multiply complete, coefficients have about 12.53 million bits Fri May 29 01:59:40 2009 initial square root is modulo 15873877 Fri May 29 02:00:39 2009 sqrtTime: 109 Fri May 29 02:00:39 2009 prp44 factor: 43633958034178706867946687302128801578332407 Fri May 29 02:00:39 2009 prp58 factor: 2850545511538911509758997306144163361132986931822475337797 Fri May 29 02:00:39 2009 elapsed time 00:14:28 total time ~ 6 hours
By Sinkiti Sibata / Msieve, GGNFS / May 29, 2009
(19·10124-7)/3 = 6(3)1231<125> = 51753967471<11> · C115
C115 = P42 · P73
P42 = 334097884150240049775907767539422981255259<42>
P73 = 3662814902318079871210119531219746089941789043300847960174770283548307879<73>
Number: 63331_124 N=1223738708898438673158498521971862166326037441608479951609106141089519589487113261963145490831491374404224819885661 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=334097884150240049775907767539422981255259 (pp42) r2=3662814902318079871210119531219746089941789043300847960174770283548307879 (pp73) Version: Msieve-1.40 Total time: 2.21 hours. Scaled time: 4.28 units (timescale=1.939). Factorization parameters were as follows: name: 63331_124 n: 1223738708898438673158498521971862166326037441608479951609106141089519589487113261963145490831491374404224819885661 m: 10000000000000000000000000 deg: 5 c5: 19 c0: -70 skew: 1.30 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 129222 x 129450 Total sieving time: 2.10 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 2.21 hours. --------- CPU info (if available) ----------
(19·10141-7)/3 = 6(3)1401<142> = 13 · 31 · 121823874281<12> · 1054160869936423<16> · C114
C114 = P47 · P67
P47 = 32436080587219098362111053786648781396373526097<47>
P67 = 3772763927878618428978561857091666143636833194970166981744931256207<67>
Number: 63331_141 N=122373674801224129713801839644924727291412501484302854678154146032811270477033116336772352870157465546636307734079 ( 114 digits) SNFS difficulty: 143 digits. Divisors found: r1=32436080587219098362111053786648781396373526097 (pp47) r2=3772763927878618428978561857091666143636833194970166981744931256207 (pp67) Version: Msieve-1.40 Total time: 6.64 hours. Scaled time: 13.90 units (timescale=2.092). Factorization parameters were as follows: name: 63331_141 n: 122373674801224129713801839644924727291412501484302854678154146032811270477033116336772352870157465546636307734079 m: 20000000000000000000000000000 deg: 5 c5: 95 c0: -112 skew: 1.03 type: snfs lss: 1 rlim: 1720000 alim: 1720000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1720000/1720000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [860000, 1660001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 224336 x 224584 Total sieving time: 6.38 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.17 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1720000,1720000,26,26,48,48,2.3,2.3,100000 total time: 6.64 hours. --------- CPU info (if available) ----------
(19·10146-7)/3 = 6(3)1451<147> = C147
C147 = P47 · P100
P47 = 77171271388291014287393251838556984620187665647<47>
P100 = 8206853689719400760471490320870429786719891558871093340652371961062720153762369224195693688837201373<100>
Number: 63331_146 N=633333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 147 digits) SNFS difficulty: 148 digits. Divisors found: r1=77171271388291014287393251838556984620187665647 (pp47) r2=8206853689719400760471490320870429786719891558871093340652371961062720153762369224195693688837201373 (pp100) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 17.57 hours. Scaled time: 7.56 units (timescale=0.430). Factorization parameters were as follows: name: 63331_146 n: 633333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 200000000000000000000000000000 deg: 5 c5: 95 c0: -112 skew: 1.03 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2250001) Primes: RFBsize:155805, AFBsize:155117, largePrimes:4100927 encountered Relations: rels:4170193, finalFF:377449 Max relations in full relation-set: 28 Initial matrix: 310989 x 377449 with sparse part having weight 32749524. Pruned matrix : 283655 x 285273 with weight 21193066. Total sieving time: 14.85 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.41 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 17.57 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 29, 2009
(56·10186+61)/9 = 6(2)1859<187> = 13 · 84061 · 1822669 · 443936293 · 203796075559<12> · 439766607999421<15> · 386006825772686319809<21> · C120
C120 = P51 · P69
P51 = 250673953247691140295576769478106793315213729261069<51>
P69 = 811440899328768309046496122133133937558453179540215891652660246798611<69>
Number: 62229_186 N=203407098061604120287021780643889425783415179229077710477149813168419812392713855634930663385611053845841843301885575159 ( 120 digits) Divisors found: r1=250673953247691140295576769478106793315213729261069 r2=811440899328768309046496122133133937558453179540215891652660246798611 Version: Total time: 28.47 hours. Scaled time: 68.07 units (timescale=2.391). Factorization parameters were as follows: name: 62229_186 n: 203407098061604120287021780643889425783415179229077710477149813168419812392713855634930663385611053845841843301885575159 skew: 50983.71 # norm 1.83e+16 c5: 29940 c4: 8871972664 c3: 133501584474317 c2: -18333168317553189533 c1: 397303272440526758105387 c0: -2454440886303536665977967575 # alpha -5.21 Y1: 9371863989197 Y0: -92559341351746858589674 # Murphy_E 2.93e-10 # M 22682978338461827122610808507135925082005800740391586673361601427470149998450196025368237394910875482716387709003550593 type: gnfs rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2400000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10199974 Max relations in full relation-set: Initial matrix: Pruned matrix : 733110 x 733358 Polynomial selection time: 2.61 hours. Total sieving time: 23.59 hours. Total relation processing time: 0.98 hours. Matrix solve time: 1.13 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4800000,4800000,27,27,53,53,2.4,2.4,100000 total time: 28.47 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Wataru Sakai / GMP-ECM 6.2.1 / May 29, 2009
(49·10168-31)/9 = 5(4)1671<169> = 15301755193<11> · 13943954834566879<17> · 2810066056947827497<19> · C124
C124 = P46 · P79
P46 = 2738071186438710195874120880465381105300462749<46>
P79 = 3316386124839130067412276341415290040498997690391963192414696202873340504719251<79>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=408812994 Step 1 took 34039ms Step 2 took 13682ms ********** Factor found in step 2: 2738071186438710195874120880465381105300462749 Found probable prime factor of 46 digits: 2738071186438710195874120880465381105300462749 Probable prime cofactor 3316386124839130067412276341415290040498997690391963192414696202873340504719251 has 79 digits
By matsui / Msieve / May 29, 2009
9·10171-1 = 8(9)171<172> = 136963579157<12> · 429373702687757<15> · C147
C147 = P47 · P100
P47 = 42679129855580064934964485511968838445123658843<47>
P100 = 3585802901069120875169780945172816193378262142753545298800676974244410697305766876766285241909080157<100>
N=153038947651244726688666449207685636156794373899467047177951914194053059387772278586968400747355401308035645995849761200170389692110687828408878351 ( 147 digits) SNFS difficulty: 173 digits. Divisors found: r1=42679129855580064934964485511968838445123658843 (pp47) r2=3585802901069120875169780945172816193378262142753545298800676974244410697305766876766285241909080157 (pp100) Version: Msieve v. 1.41 Total time: 78.73 hours. Scaled time: 174.07 units (timescale=2.211). Factorization parameters were as follows: n: 153038947651244726688666449207685636156794373899467047177951914194053059387772278586968400747355401308035645995849761200170389692110687828408878351 m: 30000000000000000000000000000000000 deg: 5 c5: 10 c0: -27 skew: 1.22 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 300000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 945937 x 946185 Total sieving time: 76.03 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.28 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,173.000,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 78.73 hours.
9·10249-1 = 8(9)249<250> = 1239961 · 17567289930891241<17> · 2211131180516999698877<22> · 132852679081112049264025722783994751<36> · 173971508153106043979381596158458837<36> · C136
C136 = P59 · P78
P59 = 12401770836281816440614430558156356059434053950562553627081<59>
P78 = 651903118776272291480393446015384353260696868728533727242356292283467348358521<78>
N=8084753086520734729835410115388355154353484488692121661133313572891265091227154991684283911329904836521257457036748584838069340122707201 ( 136 digits) Divisors found: r1=12401770836281816440614430558156356059434053950562553627081 (pp59) r2=651903118776272291480393446015384353260696868728533727242356292283467348358521 (pp78) Version: Msieve v. 1.41 Total time: 226.30 hours. Scaled time: 501.03 units (timescale=2.214). Factorization parameters were as follows: n: 8084753086520734729835410115388355154353484488692121661133313572891265091227154991684283911329904836521257457036748584838069340122707201 m: c5: 720360 c4: -1815557350383 c3: -23809703162461182 c2: 28998780185371742771312 c1: 325033929753928457456535728 c0: -26134567168271472059124246564480 Y1: 1303012087128367 Y0: -102335477824812549114012973 skew: 136467.92 type: gnfs rlim: 9800000 alim: 9800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 9800000/9800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [4900000, 9600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1702773 x 1703021 Total sieving time: 220.58 hours. Total relation processing time: 0.26 hours. Matrix solve time: 5.01 hours. Time per square root: 0.44 hours. Prototype def-par.txt line would be: gnfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,9800000,9800000,28,28,55,55,2.5,2.5,100000 total time: 226.30 hours.
By Robert Backstrom / GGNFS / May 29, 2009
(19·10133-7)/3 = 6(3)1321<134> = 825593 · C128
C128 = P63 · P66
P63 = 276917410651474473427328257365491996984371079112664023186244621<63>
P66 = 277023162052734203341720293109298019669320818393106271797699685527<66>
Number: n N=76712536726126957633280966933262919299622614694326784908948275158986732364898119694974803969187400248467868953992261723795300267 ( 128 digits) SNFS difficulty: 135 digits. Divisors found: r1=276917410651474473427328257365491996984371079112664023186244621 (pp63) r2=277023162052734203341720293109298019669320818393106271797699685527 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.98 hours. Scaled time: 7.28 units (timescale=1.829). Factorization parameters were as follows: name: KA_6_3_132_1 n: 76712536726126957633280966933262919299622614694326784908948275158986732364898119694974803969187400248467868953992261723795300267 m: 500000000000000000000000000 deg: 5 c5: 152 c0: -175 skew: 1.03 type: snfs lss: 1 rlim: 1280000 alim: 1280000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1280000/1280000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [640000, 1340001) Primes: RFBsize:98610, AFBsize:98660, largePrimes:5291294 encountered Relations: rels:4679338, finalFF:255913 Max relations in full relation-set: 48 Initial matrix: 197337 x 255913 with sparse part having weight 27792419. Pruned matrix : 182759 x 183809 with weight 14545692. Total sieving time: 3.54 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.25 hours. Total square root time: 0.12 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1280000,1280000,28,28,56,56,2.3,2.3,75000 total time: 3.98 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / May 29, 2009
(19·10176-7)/3 = 6(3)1751<177> = 3499 · 17881 · 20441 · 79357 · C160
C160 = P37 · P124
P37 = 3163772207346213559008453427361628107<37>
P124 = 1972440967760531199381211837488119430417008472869108795319192731868746765494186479794291931702613136217821449591778270468311<124>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2707555263 Step 1 took 11868ms Step 2 took 11053ms ********** Factor found in step 2: 3163772207346213559008453427361628107 Found probable prime factor of 37 digits: 3163772207346213559008453427361628107 Probable prime cofactor has 124 digits
By Sinkiti Sibata / Msieve, GGNFS / May 28, 2009
(56·10161+61)/9 = 6(2)1609<162> = 37 · C161
C161 = P68 · P94
P68 = 13048995793706679358357176909020251049647095744876594597880337395921<68>
P94 = 1288744136535571334391285850180075374337949769163721716371914833115868776095281688468705962977<94>
Number: 62229_161 N=16816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816817 ( 161 digits) SNFS difficulty: 163 digits. Divisors found: r1=13048995793706679358357176909020251049647095744876594597880337395921 (pp68) r2=1288744136535571334391285850180075374337949769163721716371914833115868776095281688468705962977 (pp94) Version: Msieve-1.40 Total time: 45.84 hours. Scaled time: 95.57 units (timescale=2.085). Factorization parameters were as follows: name: 62229_161 n: 16816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816817 m: 200000000000000000000000000000000 deg: 5 c5: 35 c0: 122 skew: 1.28 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 660498 x 660746 Total sieving time: 43.92 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.59 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,163.000,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 45.84 hours. --------- CPU info (if available) ----------
(19·10158-7)/3 = 6(3)1571<159> = 12748061 · 244988506811<12> · 3945162826217<13> · 183252155785867837<18> · 555494520034835752099<21> · C90
C90 = P28 · P62
P28 = 5576034521395138710161741431<28>
P62 = 90557254071447654817328327205076133848394476380414258694325861<62>
Thu May 28 17:28:03 2009 Msieve v. 1.41 Thu May 28 17:28:03 2009 random seeds: f671fa40 5246c742 Thu May 28 17:28:03 2009 factoring 504950374865142600275495635504678889561884596942536208080854606867393688609203766338447091 (90 digits) Thu May 28 17:28:04 2009 searching for 15-digit factors Thu May 28 17:28:06 2009 commencing quadratic sieve (90-digit input) Thu May 28 17:28:06 2009 using multiplier of 3 Thu May 28 17:28:06 2009 using 32kb Intel Core sieve core Thu May 28 17:28:06 2009 sieve interval: 36 blocks of size 32768 Thu May 28 17:28:06 2009 processing polynomials in batches of 6 Thu May 28 17:28:06 2009 using a sieve bound of 1584931 (59873 primes) Thu May 28 17:28:06 2009 using large prime bound of 126794480 (26 bits) Thu May 28 17:28:06 2009 using double large prime bound of 385106280791040 (42-49 bits) Thu May 28 17:28:06 2009 using trial factoring cutoff of 49 bits Thu May 28 17:28:06 2009 polynomial 'A' values have 12 factors Thu May 28 18:45:55 2009 60302 relations (15971 full + 44331 combined from 641278 partial), need 59969 Thu May 28 18:45:56 2009 begin with 657249 relations Thu May 28 18:45:56 2009 reduce to 147005 relations in 11 passes Thu May 28 18:45:56 2009 attempting to read 147005 relations Thu May 28 18:45:58 2009 recovered 147005 relations Thu May 28 18:45:58 2009 recovered 126900 polynomials Thu May 28 18:45:58 2009 attempting to build 60302 cycles Thu May 28 18:45:58 2009 found 60302 cycles in 6 passes Thu May 28 18:45:58 2009 distribution of cycle lengths: Thu May 28 18:45:58 2009 length 1 : 15971 Thu May 28 18:45:58 2009 length 2 : 11649 Thu May 28 18:45:58 2009 length 3 : 10712 Thu May 28 18:45:58 2009 length 4 : 8110 Thu May 28 18:45:58 2009 length 5 : 5770 Thu May 28 18:45:58 2009 length 6 : 3416 Thu May 28 18:45:58 2009 length 7 : 2145 Thu May 28 18:45:58 2009 length 9+: 2529 Thu May 28 18:45:58 2009 largest cycle: 20 relations Thu May 28 18:45:59 2009 matrix is 59873 x 60302 (14.8 MB) with weight 3649006 (60.51/col) Thu May 28 18:45:59 2009 sparse part has weight 3649006 (60.51/col) Thu May 28 18:46:00 2009 filtering completed in 3 passes Thu May 28 18:46:00 2009 matrix is 55912 x 55976 (13.8 MB) with weight 3395133 (60.65/col) Thu May 28 18:46:00 2009 sparse part has weight 3395133 (60.65/col) Thu May 28 18:46:00 2009 saving the first 48 matrix rows for later Thu May 28 18:46:00 2009 matrix is 55864 x 55976 (9.1 MB) with weight 2710920 (48.43/col) Thu May 28 18:46:00 2009 sparse part has weight 2037212 (36.39/col) Thu May 28 18:46:00 2009 matrix includes 64 packed rows Thu May 28 18:46:00 2009 using block size 22390 for processor cache size 1024 kB Thu May 28 18:46:00 2009 commencing Lanczos iteration Thu May 28 18:46:00 2009 memory use: 8.6 MB Thu May 28 18:46:19 2009 lanczos halted after 884 iterations (dim = 55861) Thu May 28 18:46:19 2009 recovered 16 nontrivial dependencies Thu May 28 18:46:20 2009 prp28 factor: 5576034521395138710161741431 Thu May 28 18:46:20 2009 prp62 factor: 90557254071447654817328327205076133848394476380414258694325861 Thu May 28 18:46:20 2009 elapsed time 01:18:17
(19·10107-7)/3 = 6(3)1061<108> = 5063453251223820049<19> · C90
C90 = P41 · P49
P41 = 27699069066082335842545359049149492434657<41>
P49 = 4515650990127709404839488960748228699356811540867<49>
Thu May 28 17:24:09 2009 Msieve v. 1.39 Thu May 28 17:24:09 2009 random seeds: 7f5bdf80 2937e844 Thu May 28 17:24:09 2009 factoring 125079328653870506893939709139555539629227686655558726451828266925280542002683923482627619 (90 digits) Thu May 28 17:24:10 2009 searching for 15-digit factors Thu May 28 17:24:12 2009 commencing quadratic sieve (90-digit input) Thu May 28 17:24:13 2009 using multiplier of 19 Thu May 28 17:24:13 2009 using 64kb Pentium 4 sieve core Thu May 28 17:24:13 2009 sieve interval: 17 blocks of size 65536 Thu May 28 17:24:13 2009 processing polynomials in batches of 6 Thu May 28 17:24:13 2009 using a sieve bound of 1565693 (59275 primes) Thu May 28 17:24:13 2009 using large prime bound of 125255440 (26 bits) Thu May 28 17:24:13 2009 using double large prime bound of 376733166741360 (42-49 bits) Thu May 28 17:24:13 2009 using trial factoring cutoff of 49 bits Thu May 28 17:24:13 2009 polynomial 'A' values have 12 factors Thu May 28 20:01:23 2009 59872 relations (15512 full + 44360 combined from 636070 partial), need 59371 Thu May 28 20:01:23 2009 begin with 651582 relations Thu May 28 20:01:24 2009 reduce to 147624 relations in 9 passes Thu May 28 20:01:24 2009 attempting to read 147624 relations Thu May 28 20:01:26 2009 recovered 147624 relations Thu May 28 20:01:26 2009 recovered 129772 polynomials Thu May 28 20:01:26 2009 attempting to build 59872 cycles Thu May 28 20:01:26 2009 found 59872 cycles in 5 passes Thu May 28 20:01:26 2009 distribution of cycle lengths: Thu May 28 20:01:26 2009 length 1 : 15512 Thu May 28 20:01:26 2009 length 2 : 11355 Thu May 28 20:01:26 2009 length 3 : 10603 Thu May 28 20:01:26 2009 length 4 : 8064 Thu May 28 20:01:26 2009 length 5 : 5649 Thu May 28 20:01:26 2009 length 6 : 3749 Thu May 28 20:01:26 2009 length 7 : 2267 Thu May 28 20:01:26 2009 length 9+: 2673 Thu May 28 20:01:26 2009 largest cycle: 17 relations Thu May 28 20:01:27 2009 matrix is 59275 x 59872 (14.6 MB) with weight 3590614 (59.97/col) Thu May 28 20:01:27 2009 sparse part has weight 3590614 (59.97/col) Thu May 28 20:01:28 2009 filtering completed in 3 passes Thu May 28 20:01:28 2009 matrix is 55768 x 55831 (13.6 MB) with weight 3342235 (59.86/col) Thu May 28 20:01:28 2009 sparse part has weight 3342235 (59.86/col) Thu May 28 20:01:28 2009 saving the first 48 matrix rows for later Thu May 28 20:01:28 2009 matrix is 55720 x 55831 (8.6 MB) with weight 2634322 (47.18/col) Thu May 28 20:01:28 2009 sparse part has weight 1910383 (34.22/col) Thu May 28 20:01:28 2009 matrix includes 64 packed rows Thu May 28 20:01:28 2009 using block size 21845 for processor cache size 512 kB Thu May 28 20:01:29 2009 commencing Lanczos iteration Thu May 28 20:01:29 2009 memory use: 8.4 MB Thu May 28 20:01:58 2009 lanczos halted after 883 iterations (dim = 55718) Thu May 28 20:01:59 2009 recovered 16 nontrivial dependencies Thu May 28 20:01:59 2009 prp41 factor: 27699069066082335842545359049149492434657 Thu May 28 20:01:59 2009 prp49 factor: 4515650990127709404839488960748228699356811540867 Thu May 28 20:01:59 2009 elapsed time 02:37:50
(19·10113-7)/3 = 6(3)1121<114> = 8559317557642312663<19> · C95
C95 = P36 · P60
P36 = 364273749615784181999930257926974317<36>
P60 = 203125913174411006540302087331278541353649937784127457423961<60>
Thu May 28 18:56:30 2009 Msieve v. 1.41 Thu May 28 18:56:31 2009 random seeds: 06c371f0 c3b8ef42 Thu May 28 18:56:31 2009 factoring 73993438036172912506392899516636791785351321648353676280690625853787679718172923974499827409637 (95 digits) Thu May 28 18:56:31 2009 searching for 15-digit factors Thu May 28 18:56:33 2009 commencing quadratic sieve (95-digit input) Thu May 28 18:56:33 2009 using multiplier of 7 Thu May 28 18:56:33 2009 using 32kb Intel Core sieve core Thu May 28 18:56:33 2009 sieve interval: 36 blocks of size 32768 Thu May 28 18:56:33 2009 processing polynomials in batches of 6 Thu May 28 18:56:33 2009 using a sieve bound of 2189221 (81176 primes) Thu May 28 18:56:33 2009 using large prime bound of 328383150 (28 bits) Thu May 28 18:56:33 2009 using double large prime bound of 2135430964341600 (43-51 bits) Thu May 28 18:56:33 2009 using trial factoring cutoff of 51 bits Thu May 28 18:56:33 2009 polynomial 'A' values have 12 factors Thu May 28 22:25:59 2009 81333 relations (20466 full + 60867 combined from 1206902 partial), need 81272 Thu May 28 22:26:01 2009 begin with 1227368 relations Thu May 28 22:26:02 2009 reduce to 209918 relations in 11 passes Thu May 28 22:26:02 2009 attempting to read 209918 relations Thu May 28 22:26:05 2009 recovered 209918 relations Thu May 28 22:26:05 2009 recovered 192815 polynomials Thu May 28 22:26:05 2009 attempting to build 81333 cycles Thu May 28 22:26:06 2009 found 81333 cycles in 6 passes Thu May 28 22:26:06 2009 distribution of cycle lengths: Thu May 28 22:26:06 2009 length 1 : 20466 Thu May 28 22:26:06 2009 length 2 : 14388 Thu May 28 22:26:06 2009 length 3 : 13712 Thu May 28 22:26:06 2009 length 4 : 11051 Thu May 28 22:26:06 2009 length 5 : 8178 Thu May 28 22:26:06 2009 length 6 : 5546 Thu May 28 22:26:06 2009 length 7 : 3416 Thu May 28 22:26:06 2009 length 9+: 4576 Thu May 28 22:26:06 2009 largest cycle: 19 relations Thu May 28 22:26:06 2009 matrix is 81176 x 81333 (22.4 MB) with weight 5559794 (68.36/col) Thu May 28 22:26:06 2009 sparse part has weight 5559794 (68.36/col) Thu May 28 22:26:07 2009 filtering completed in 4 passes Thu May 28 22:26:07 2009 matrix is 77022 x 77086 (21.4 MB) with weight 5309405 (68.88/col) Thu May 28 22:26:07 2009 sparse part has weight 5309405 (68.88/col) Thu May 28 22:26:07 2009 saving the first 48 matrix rows for later Thu May 28 22:26:08 2009 matrix is 76974 x 77086 (15.4 MB) with weight 4400031 (57.08/col) Thu May 28 22:26:08 2009 sparse part has weight 3582618 (46.48/col) Thu May 28 22:26:08 2009 matrix includes 64 packed rows Thu May 28 22:26:08 2009 using block size 30834 for processor cache size 1024 kB Thu May 28 22:26:09 2009 commencing Lanczos iteration Thu May 28 22:26:09 2009 memory use: 13.7 MB Thu May 28 22:26:53 2009 lanczos halted after 1219 iterations (dim = 76972) Thu May 28 22:26:53 2009 recovered 17 nontrivial dependencies Thu May 28 22:26:55 2009 prp36 factor: 364273749615784181999930257926974317 Thu May 28 22:26:55 2009 prp60 factor: 203125913174411006540302087331278541353649937784127457423961 Thu May 28 22:26:55 2009 elapsed time 03:30:24
(19·10119-7)/3 = 6(3)1181<120> = 2213 · 5749978691<10> · C107
C107 = P52 · P55
P52 = 7142565667777428842404199142177757024839466055246647<52>
P55 = 6968358010744748481904859785034423037844326555299193931<55>
Number: 63331_119 N=49771954688327260109155339961234952205510402352405246631726248886182137604135641201297364629821392490499357 ( 107 digits) SNFS difficulty: 121 digits. Divisors found: r1=7142565667777428842404199142177757024839466055246647 (pp52) r2=6968358010744748481904859785034423037844326555299193931 (pp55) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.02 hours. Scaled time: 1.43 units (timescale=0.473). Factorization parameters were as follows: name: 63331_119 n: 49771954688327260109155339961234952205510402352405246631726248886182137604135641201297364629821392490499357 m: 1000000000000000000000000 deg: 5 c5: 19 c0: -70 skew: 1.30 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 670001) Primes: RFBsize:59531, AFBsize:59488, largePrimes:1388071 encountered Relations: rels:1389636, finalFF:174888 Max relations in full relation-set: 28 Initial matrix: 119084 x 174888 with sparse part having weight 8851867. Pruned matrix : 98634 x 99293 with weight 3731877. Total sieving time: 2.86 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 3.02 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1, Msieve / May 28, 2009
(32·10169+31)/9 = 3(5)1689<170> = 3 · 13 · 17 · 3229 · 319549142894958130531092345559<30> · C134
C134 = P47 · P88
P47 = 36503865295478130758755327213624903058483920561<47>
P88 = 1423801300523414982742214232334802997389942436426180599813692010039144526423143680899283<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1504946988 Step 1 took 38186ms Step 2 took 14458ms ********** Factor found in step 2: 36503865295478130758755327213624903058483920561 Found probable prime factor of 47 digits: 36503865295478130758755327213624903058483920561 Probable prime cofactor 1423801300523414982742214232334802997389942436426180599813692010039144526423143680899283 has 88 digits
(52·10200+11)/9 = 5(7)1999<201> = 3 · C201
C201 = P37 · P41 · P123
P37 = 8075439109054338741026365424340286769<37>
P41 = 46072334646769181132736381886218495737461<41>
P123 = 517646417427145438243223197026762870951002843055646221049761620790442362955715502310129467442320445073950466702993889063677<123>
Number: 57779_200 N=192592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 ( 201 digits) SNFS difficulty: 201 digits. Divisors found: r1=8075439109054338741026365424340286769 r2=46072334646769181132736381886218495737461 r3=517646417427145438243223197026762870951002843055646221049761620790442362955715502310129467442320445073950466702993889063677 Version: Total time: 724.79 hours. Scaled time: 1437.98 units (timescale=1.984). Factorization parameters were as follows: n: 192592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 m: 10000000000000000000000000000000000000000 deg: 5 c5: 52 c0: 11 skew: 0.73 type: snfs lss: 1 rlim: 16100000 alim: 16100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16100000/16100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8050000, 15150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2550504 x 2550752 Total sieving time: 724.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16100000,16100000,29,29,56,56,2.6,2.6,100000 total time: 724.79 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / May 28, 2009
(56·10158+61)/9 = 6(2)1579<159> = 37 · 113 · 223 · 557 · 3527 · 45653899 · C139
C139 = P45 · P95
P45 = 124878684080187282583724105767405939123035029<45>
P95 = 59584547392283647789639726101806207148068690320073897315957313077500509015687698972674356372107<95>
Number: n N=7440839869861936630058067963126918327949604224644175519468827650795213963955279495313110552543506489514537808067602830238665387271519536103 ( 139 digits) SNFS difficulty: 160 digits. Divisors found: Thu May 28 06:18:05 2009 prp45 factor: 124878684080187282583724105767405939123035029 Thu May 28 06:18:05 2009 prp95 factor: 59584547392283647789639726101806207148068690320073897315957313077500509015687698972674356372107 Thu May 28 06:18:05 2009 elapsed time 01:01:35 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 26.13 hours. Scaled time: 69.22 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_2_157_9 n: 7440839869861936630058067963126918327949604224644175519468827650795213963955279495313110552543506489514537808067602830238665387271519536103 m: 40000000000000000000000000000000 deg: 5 c5: 875 c0: 976 skew: 1.02 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1700000, 3337129) Primes: RFBsize:243539, AFBsize:243630, largePrimes:13449259 encountered Relations: rels:12430495, finalFF:445077 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1223572 hash collisions in 13440933 relations Msieve: matrix is 683080 x 683328 (182.1 MB) Total sieving time: 25.77 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,28,28,56,56,2.4,2.4,100000 total time: 26.13 hours. --------- CPU info (if available) ----------
(56·10200+61)/9 = 6(2)1999<201> = 37 · C200
C200 = P60 · P67 · P73
P60 = 481076100939208673226663917864223084277575369417353564944939<60>
P67 = 8545755976691122629091211724599067284274966594431886983135257852967<67>
P73 = 4090529449389188605462156151123695237619192394785337828054066652466473909<73>
Number: n N=16816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816817 ( 200 digits) SNFS difficulty: 201 digits. Divisors found: Thu May 28 09:36:48 2009 prp60 factor: 481076100939208673226663917864223084277575369417353564944939 Thu May 28 09:36:48 2009 prp67 factor: 8545755976691122629091211724599067284274966594431886983135257852967 Thu May 28 09:36:48 2009 prp73 factor: 4090529449389188605462156151123695237619192394785337828054066652466473909 Thu May 28 09:36:48 2009 elapsed time 14:35:01 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 41.52 hours. Scaled time: 83.69 units (timescale=2.016). Factorization parameters were as follows: name: KA_6_2_199_9 n: 16816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816816817 m: 10000000000000000000000000000000000000000 deg: 5 c5: 56 c0: 61 skew: 1.02 type: snfs lss: 1 rlim: 16000000 alim: 16000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [8000000, 15599990) Primes: RFBsize:1031130, AFBsize:1029484, largePrimes:35216489 encountered Relations: rels:33331588, finalFF:1260378 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4741784 hash collisions in 38635157 relations Msieve: matrix is 2987116 x 2987364 (816.9 MB) Total sieving time: 40.75 hours. Total relation processing time: 0.76 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.6,2.6,100000 total time: 41.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830488) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.70 BogoMIPS).
(56·10155+61)/9 = 6(2)1549<156> = 23 · 37 · 251 · 27017372954252618111623<23> · C129
C129 = P48 · P81
P48 = 177021412931799064494121309758465332060558628233<48>
P81 = 609078564125640040336170484954565150827351856308547897231649778954045702279685131<81>
Number: n N=107819948007992181599739919757114454654783869201061103982701027821480434645578678954568874887411940205225700015025344436526903523 ( 129 digits) SNFS difficulty: 156 digits. Divisors found: r1=177021412931799064494121309758465332060558628233 (pp48) r2=609078564125640040336170484954565150827351856308547897231649778954045702279685131 (pp81) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 16.46 hours. Scaled time: 43.60 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_2_154_9 n: 107819948007992181599739919757114454654783869201061103982701027821480434645578678954568874887411940205225700015025344436526903523 m: 10000000000000000000000000000000 deg: 5 c5: 56 c0: 61 skew: 1.02 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1500000, 2400001) Primes: RFBsize:216816, AFBsize:216332, largePrimes:13126010 encountered Relations: rels:12952716, finalFF:813070 Max relations in full relation-set: 28 Initial matrix: 433214 x 813070 with sparse part having weight 92819045. Pruned matrix : 311917 x 314147 with weight 40066358. Total sieving time: 15.57 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.49 hours. Total square root time: 0.13 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.4,2.4,100000 total time: 16.46 hours. --------- CPU info (if available) ----------
(56·10156-11)/9 = 6(2)1551<157> = 23 · 17083343429<11> · 77944473401<11> · 479005799717307893<18> · C117
C117 = P42 · P76
P42 = 132044681737646078708528335633309997093929<42>
P76 = 3212164637458965643862477012178193071661944450676327587119744724091254536579<76>
Number: n N=424149257242190418021587942433779094384856789451403605718656098432866063576129536769017395811084206441250327629328891 ( 117 digits) SNFS difficulty: 158 digits. Divisors found: Thu May 28 21:55:08 2009 prp42 factor: 132044681737646078708528335633309997093929 Thu May 28 21:55:08 2009 prp76 factor: 3212164637458965643862477012178193071661944450676327587119744724091254536579 Thu May 28 21:55:08 2009 elapsed time 00:36:31 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 16.38 hours. Scaled time: 43.74 units (timescale=2.671). Factorization parameters were as follows: name: KA_6_2_155_1 n: 424149257242190418021587942433779094384856789451403605718656098432866063576129536769017395811084206441250327629328891 m: 20000000000000000000000000000000 deg: 5 c5: 35 c0: -22 skew: 0.91 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1500000, 2487227) Primes: RFBsize:216816, AFBsize:216457, largePrimes:11828670 encountered Relations: rels:10501634, finalFF:290618 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 926649 hash collisions in 12226691 relations Msieve: matrix is 545545 x 545793 (146.4 MB) Total sieving time: 16.21 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.4,2.4,100000 total time: 16.38 hours. --------- CPU info (if available) ----------
(19·10126-7)/3 = 6(3)1251<127> = 23 · 31 · 149 · 2208204383867<13> · 550564080566484469<18> · C92
C92 = P39 · P54
P39 = 274896745903554277016688501088576610443<39>
P54 = 178377390878943326425099144634565645197695200985423067<54>
Number: n N=49035364295387863925479124276192463882986180905219291115366358148835194378188975727205288681 ( 92 digits) SNFS difficulty: 127 digits. Divisors found: r1=274896745903554277016688501088576610443 (pp39) r2=178377390878943326425099144634565645197695200985423067 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.66 hours. Scaled time: 3.02 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_3_125_1 n: 49035364295387863925479124276192463882986180905219291115366358148835194378188975727205288681 m: 10000000000000000000000000 deg: 5 c5: 190 c0: -7 skew: 0.52 type: snfs lss: 1 rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [350000, 550001) Primes: RFBsize:56543, AFBsize:56408, largePrimes:6577217 encountered Relations: rels:5810183, finalFF:200349 Max relations in full relation-set: 48 Initial matrix: 113018 x 200349 with sparse part having weight 28695026. Pruned matrix : 99364 x 99993 with weight 9200613. Total sieving time: 1.49 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.06 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,700000,700000,28,28,56,56,2.5,2.5,50000 total time: 1.66 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve, GMP-ECM 6.2.3 / May 28, 2009
(19·10127-7)/3 = 6(3)1261<128> = 17 · C127
C127 = P35 · P39 · P54
P35 = 12436519676849010829556240379784957<35>
P39 = 804710243827567182357245316678847272239<39>
P54 = 372258851965716799664238973288980795787307673603607441<54>
SNFS difficulty: 129 digits. Divisors found: r1=12436519676849010829556240379784957 (pp35) r2=804710243827567182357245316678847272239 (pp39) r3=372258851965716799664238973288980795787307673603607441 (pp54) Version: Msieve v. 1.41 Total time: 1.53 hours. Scaled time: 4.15 units (timescale=2.712). Factorization parameters were as follows: n: 3725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843 m: 20000000000000000000000000 deg: 5 c5: 475 c0: -56 skew: 0.65 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135989 x 136232 Total sieving time: 1.39 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.53 hours.
(19·10173-7)/3 = 6(3)1721<174> = 29 · C173
C173 = P33 · C141
P33 = 122569446876810816963640019353373<33>
C141 = [178177196815774311635530949428564880269645047657883031777408413802169831219687056745323086331601289126990624176890263158591874451664925011643<141>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=156145018 Step 1 took 11573ms Step 2 took 11276ms ********** Factor found in step 2: 122569446876810816963640019353373 Found probable prime factor of 33 digits: 122569446876810816963640019353373 Composite cofactor has 141 digits
(19·10110-7)/3 = 6(3)1091<111> = 233 · 4483 · 17387 · C101
C101 = P36 · P66
P36 = 188300054736491233677602258486606213<36>
P66 = 185196419489526548303620514212561505070907195886173707296562972959<66>
SNFS difficulty: 111 digits. Divisors found: r1=188300054736491233677602258486606213 (pp36) r2=185196419489526548303620514212561505070907195886173707296562972959 (pp66) Version: Msieve v. 1.41 Total time: 0.46 hours. Scaled time: 1.19 units (timescale=2.575). Factorization parameters were as follows: n: 34872495926880040942521501477836754590113782610902400474116000214661062511721881330962317609600394267 m: 10000000000000000000000 deg: 5 c5: 19 c0: -7 skew: 0.82 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 42818 x 43051 Total sieving time: 0.43 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.46 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 28, 2009
(56·10158-11)/9 = 6(2)1571<159> = 3 · 59 · 203211241393631956722915124219<30> · C128
C128 = P37 · P42 · P49
P37 = 2537899873573280171017705810844700679<37>
P42 = 939154026293509730665590837625768055750239<42>
P49 = 7257937322928077535349031612424282545111610115807<49>
Number: 62221_158 N=17299140354921275130942878961573349031729110752907845125819804596310155375128869475259027043222450254192642083192090196656125767 ( 128 digits) SNFS difficulty: 161 digits. Divisors found: r1=2537899873573280171017705810844700679 r2=939154026293509730665590837625768055750239 r3=7257937322928077535349031612424282545111610115807 Version: Total time: 14.96 hours. Scaled time: 35.76 units (timescale=2.391). Factorization parameters were as follows: n: 17299140354921275130942878961573349031729110752907845125819804596310155375128869475259027043222450254192642083192090196656125767 m: 100000000000000000000000000000000 deg: 5 c5: 14 c0: -275 skew: 1.81 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1600000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9222390 Max relations in full relation-set: Initial matrix: Pruned matrix : 594313 x 594561 Total sieving time: 13.51 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.73 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,51,51,2.4,2.4,100000 total time: 14.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Factorizations of 633...331 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Serge Batalov / PFGW / Mar 27, 2009
(23·1095326+1)/3 = 7(6)953257<95327> is PRP.
By Robert Backstrom / GGNFS, Msieve / May 27, 2009
(56·10147+61)/9 = 6(2)1469<148> = 47 · 257 · 521941369984393<15> · C129
C129 = P54 · P76
P54 = 465797699955877232314532201968922695556111616869606659<54>
P76 = 2118826887558452953755045283330372730886493555641871631624937415827575885473<76>
Number: n N=986944690829397494891842036788406549333195416034921768446440979831502668989069508880958440112596340641488280029932940203142164707 ( 129 digits) SNFS difficulty: 148 digits. Divisors found: r1=465797699955877232314532201968922695556111616869606659 (pp54) r2=2118826887558452953755045283330372730886493555641871631624937415827575885473 (pp76) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 8.43 hours. Scaled time: 21.11 units (timescale=2.504). Factorization parameters were as follows: name: KA_6_2_146_9 n: 986944690829397494891842036788406549333195416034921768446440979831502668989069508880958440112596340641488280029932940203142164707 m: 200000000000000000000000000000 deg: 5 c5: 175 c0: 61 skew: 0.81 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1050000, 2550001) Primes: RFBsize:155805, AFBsize:155723, largePrimes:7753568 encountered Relations: rels:7266143, finalFF:435765 Max relations in full relation-set: 28 Initial matrix: 311594 x 435765 with sparse part having weight 44152462. Pruned matrix : 268454 x 270075 with weight 24701362. Total sieving time: 7.95 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.27 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,28,28,56,56,2.3,2.3,100000 total time: 8.43 hours. --------- CPU info (if available) ----------
(56·10157+61)/9 = 6(2)1569<158> = 3 · 622385760966490075969<21> · C137
C137 = P47 · P91
P47 = 14069154013962149347549891861752751330227218953<47>
P91 = 2368626755962424844786981424733173785115155651413561625293563213425932855103394297861451599<91>
Number: n N=33324574631226893870084125839523117530322491594485773868792919061646457590097800036857175718446511341481511144550053544984125841384955847 ( 137 digits) SNFS difficulty: 158 digits. Divisors found: Wed May 27 21:27:35 2009 prp47 factor: 14069154013962149347549891861752751330227218953 Wed May 27 21:27:35 2009 prp91 factor: 2368626755962424844786981424733173785115155651413561625293563213425932855103394297861451599 Wed May 27 21:27:35 2009 elapsed time 00:35:53 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 18.00 hours. Scaled time: 47.68 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_2_156_9 n: 33324574631226893870084125839523117530322491594485773868792919061646457590097800036857175718446511341481511144550053544984125841384955847 m: 20000000000000000000000000000000 deg: 5 c5: 175 c0: 61 skew: 0.81 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1500000, 2631523) Primes: RFBsize:216816, AFBsize:216897, largePrimes:12484526 encountered Relations: rels:11502437, finalFF:462209 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1021111 hash collisions in 12654905 relations Msieve: matrix is 530829 x 531077 (142.1 MB) Total sieving time: 17.74 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.4,2.4,100000 total time: 18.00 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / May 27, 2009
(73·10227-1)/9 = 8(1)227<228> = 7 · 25247 · 3015815141<10> · 639055693476556840009<21> · C193
C193 = P35 · C158
P35 = 36279878564912877449080351436751977<35>
C158 = [65639200136356610405763222555366392184764170615078420676661341059916251862205399722171206761383798033819165310154860533682523793910413983567476004394037283043<158>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1381633969 Step 1 took 12653ms ********** Factor found in step 1: 36279878564912877449080351436751977 Found probable prime factor of 35 digits: 36279878564912877449080351436751977 Composite cofactor has 158 digits
By Jo Yeong Uk / GMP-ECM 6.2.3, GGNFS, Msieve v1.39 / May 27, 2009
(56·10161+43)/9 = 6(2)1607<162> = 33 · 241 · 523 · 21067 · 35373733327<11> · C141
C141 = P38 · P44 · P60
P38 = 23731097486702355179310475185816769673<38>
P44 = 68151158133676074312874348411451777745055799<44>
P60 = 151700972667842036388110214409589568929986947480698193739649<60>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 245346252744473392713773264651954391624666663016908687743450233882316596771088286439921866261057056653436602715231332271824612453355358691823 (141 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2122690916 Step 1 took 4181ms Step 2 took 2446ms ********** Factor found in step 2: 23731097486702355179310475185816769673 Found probable prime factor of 38 digits: 23731097486702355179310475185816769673 Composite cofactor 10338596977318574636609620997004061760631577234451161306507242896988534078032307853523486220823983674551 has 104 digits Number: 62227_161 N=10338596977318574636609620997004061760631577234451161306507242896988534078032307853523486220823983674551 ( 104 digits) Divisors found: r1=68151158133676074312874348411451777745055799 r2=151700972667842036388110214409589568929986947480698193739649 Version: Total time: 3.99 hours. Scaled time: 9.53 units (timescale=2.387). Factorization parameters were as follows: name: 62227_161 n: 10338596977318574636609620997004061760631577234451161306507242896988534078032307853523486220823983674551 skew: 21347.68 # norm 3.13e+14 c5: 1800 c4: 223241370 c3: -14927947804901 c2: -49922189142606074 c1: 798958580446369787614 c0: -26568840382120456200144 # alpha -5.80 Y1: 51897908579 Y0: -89501759710446812431 # Murphy_E 2.37e-09 # M 1694559806196192336452944050483858266788892742415679960275701010130132314731881164627205298510258439261 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4950704 Max relations in full relation-set: Initial matrix: Pruned matrix : 243927 x 244175 Polynomial selection time: 0.29 hours. Total sieving time: 3.21 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(2·10180+1)/3 = (6)1797<180> = 43 · 659 · 7471369 · 51785777 · C161
C161 = P43 · P119
P43 = 1425608464044510496227793232639877013972121<43>
P119 = 42652444118965609051628435266578532444132686084908100215479465855804466932393039505383096680112378775502273023323954667<119>
Number: 66667_180 N=60805685348182876641979890690791410598648830455271886745185368187421994147748888627596878591817404759980073838738634174475982237199577653112470341374075805838707 ( 161 digits) SNFS difficulty: 180 digits. Divisors found: r1=1425608464044510496227793232639877013972121 r2=42652444118965609051628435266578532444132686084908100215479465855804466932393039505383096680112378775502273023323954667 Version: Total time: 60.71 hours. Scaled time: 144.91 units (timescale=2.387). Factorization parameters were as follows: n: 60805685348182876641979890690791410598648830455271886745185368187421994147748888627596878591817404759980073838738634174475982237199577653112470341374075805838707 m: 1000000000000000000000000000000000000 deg: 5 c5: 2 c0: 1 skew: 0.87 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [2600000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17440824 Max relations in full relation-set: Initial matrix: Pruned matrix : 1137720 x 1137968 Total sieving time: 55.66 hours. Total relation processing time: 1.55 hours. Matrix solve time: 2.86 hours. Time per square root: 0.64 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,53,53,2.5,2.5,100000 total time: 60.71 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10159+61)/9 = 6(2)1589<160> = 136879 · 1401744473<10> · 1017640607768771362296572005537507<34> · C113
C113 = P54 · P60
P54 = 193908127945844596110201403564697754328536812293850033<54>
P60 = 164342314587529651585996443231840529788907444242118587893377<60>
Number: 62229_159 N=31867310563954942460860793410742458897721802139714768023254519185323949327123209616553915892182082536506231931441 ( 113 digits) Divisors found: r1=193908127945844596110201403564697754328536812293850033 r2=164342314587529651585996443231840529788907444242118587893377 Version: Total time: 12.13 hours. Scaled time: 28.98 units (timescale=2.389). Factorization parameters were as follows: name: 62229_159 n: 31867310563954942460860793410742458897721802139714768023254519185323949327123209616553915892182082536506231931441 skew: 27061.66 # norm 9.39e+14 c5: 23940 c4: 884131582 c3: -60546641862666 c2: -320075720127746262 c1: 16417652371480033255285 c0: 116175128751983383521569019 # alpha -4.98 Y1: 1292890423231 Y0: -4215443468428684833628 # Murphy_E 7.52e-10 # M 15723322497422548827044109855298921437946360103556637207250493316262810669984092035138974002790496204291964433993 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8284318 Max relations in full relation-set: Initial matrix: Pruned matrix : 452570 x 452818 Polynomial selection time: 1.01 hours. Total sieving time: 10.02 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.43 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 12.13 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10165+61)/9 = 6(2)1649<166> = 42701 · 1376939 · 133455793 · C147
C147 = P35 · P113
P35 = 57659426044021677634098200461896179<35>
P113 = 13752606780688174685773011147018886593941074896390490689917340604450663623768311804047072834136008067972436430313<113>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 792967413583600859697370064059829457020793249634680186515285950164270324042605059768528085343798618048347992595494171085194377886539401081974474027 (147 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5746488418 Step 1 took 4059ms Step 2 took 2476ms ********** Factor found in step 2: 57659426044021677634098200461896179 Found probable prime factor of 35 digits: 57659426044021677634098200461896179 Probable prime cofactor 13752606780688174685773011147018886593941074896390490689917340604450663623768311804047072834136008067972436430313 has 113 digits
By Andreas Tete / GGNFS / Msieve v. 1.41 / May 27, 2009
(56·10170+61)/9 = 6(2)1699<171> = 37 · 67 · 60348354518122561506923<23> · 50323262668560143510940878296447111<35> · C110
C110 = P54 · P57
P54 = 311370498917197796572412633772014554924884165146521673<54>
P57 = 265434460235786313700762170596984220117945146644969782479<57>
Tue May 26 20:45:04 2009 Msieve v. 1.41 Tue May 26 20:45:04 2009 random seeds: 359fae64 86e64e80 Tue May 26 20:45:04 2009 factoring 82648460313433883981241425769067111639470813131991163858925087068467532014766035327819208292972854598269167367 (110 digits) Tue May 26 20:45:05 2009 searching for 15-digit factors Tue May 26 20:45:07 2009 commencing number field sieve (110-digit input) Tue May 26 20:45:07 2009 R0: -2247903484810375378741 Tue May 26 20:45:07 2009 R1: 231928949747 Tue May 26 20:45:07 2009 A0: -930670227212751277904443904 Tue May 26 20:45:07 2009 A1: 60489629810981899875608 Tue May 26 20:45:07 2009 A2: 3167107438421659766 Tue May 26 20:45:07 2009 A3: -20947784407893 Tue May 26 20:45:07 2009 A4: -515063582 Tue May 26 20:45:07 2009 A5: 1440 Tue May 26 20:45:07 2009 skew 76520.28, size 1.840075e-010, alpha -6.218085, combined = 1.066739e-009 Tue May 26 20:45:07 2009 Tue May 26 20:45:07 2009 commencing relation filtering Tue May 26 20:45:07 2009 commencing duplicate removal, pass 1 Tue May 26 20:46:08 2009 found 565242 hash collisions in 5755946 relations Tue May 26 20:46:25 2009 added 43793 free relations Tue May 26 20:46:25 2009 commencing duplicate removal, pass 2 Tue May 26 20:46:33 2009 found 554761 duplicates and 5244977 unique relations Tue May 26 20:46:33 2009 memory use: 41.3 MB Tue May 26 20:46:33 2009 reading rational ideals above 3080192 Tue May 26 20:46:33 2009 reading algebraic ideals above 3080192 Tue May 26 20:46:33 2009 commencing singleton removal, pass 1 Tue May 26 20:47:24 2009 relations with 0 large ideals: 110843 Tue May 26 20:47:24 2009 relations with 1 large ideals: 727001 Tue May 26 20:47:24 2009 relations with 2 large ideals: 1746135 Tue May 26 20:47:24 2009 relations with 3 large ideals: 1813514 Tue May 26 20:47:24 2009 relations with 4 large ideals: 731433 Tue May 26 20:47:24 2009 relations with 5 large ideals: 72669 Tue May 26 20:47:24 2009 relations with 6 large ideals: 43366 Tue May 26 20:47:24 2009 relations with 7+ large ideals: 16 Tue May 26 20:47:24 2009 5244977 relations and about 5339068 large ideals Tue May 26 20:47:24 2009 commencing singleton removal, pass 2 Tue May 26 20:48:16 2009 found 2357815 singletons Tue May 26 20:48:16 2009 current dataset: 2887162 relations and about 2364014 large ideals Tue May 26 20:48:16 2009 commencing singleton removal, pass 3 Tue May 26 20:48:47 2009 found 586582 singletons Tue May 26 20:48:47 2009 current dataset: 2300580 relations and about 1730089 large ideals Tue May 26 20:48:47 2009 commencing singleton removal, pass 4 Tue May 26 20:49:13 2009 found 178268 singletons Tue May 26 20:49:13 2009 current dataset: 2122312 relations and about 1546296 large ideals Tue May 26 20:49:13 2009 commencing singleton removal, final pass Tue May 26 20:49:38 2009 memory use: 33.4 MB Tue May 26 20:49:38 2009 commencing in-memory singleton removal Tue May 26 20:49:38 2009 begin with 2122312 relations and 1598652 unique ideals Tue May 26 20:49:40 2009 reduce to 1891073 relations and 1363286 ideals in 13 passes Tue May 26 20:49:40 2009 max relations containing the same ideal: 38 Tue May 26 20:49:41 2009 reading rational ideals above 720000 Tue May 26 20:49:41 2009 reading algebraic ideals above 720000 Tue May 26 20:49:41 2009 commencing singleton removal, final pass Tue May 26 20:50:17 2009 keeping 1720791 ideals with weight <= 20, new excess is 192649 Tue May 26 20:50:19 2009 memory use: 47.9 MB Tue May 26 20:50:19 2009 commencing in-memory singleton removal Tue May 26 20:50:20 2009 begin with 1909274 relations and 1720791 unique ideals Tue May 26 20:50:22 2009 reduce to 1881367 relations and 1603481 ideals in 12 passes Tue May 26 20:50:22 2009 max relations containing the same ideal: 20 Tue May 26 20:50:23 2009 removing 233093 relations and 205886 ideals in 27207 cliques Tue May 26 20:50:23 2009 commencing in-memory singleton removal Tue May 26 20:50:23 2009 begin with 1648274 relations and 1603481 unique ideals Tue May 26 20:50:25 2009 reduce to 1629103 relations and 1378053 ideals in 8 passes Tue May 26 20:50:25 2009 max relations containing the same ideal: 20 Tue May 26 20:50:26 2009 removing 173083 relations and 145876 ideals in 27207 cliques Tue May 26 20:50:26 2009 commencing in-memory singleton removal Tue May 26 20:50:26 2009 begin with 1456020 relations and 1378053 unique ideals Tue May 26 20:50:27 2009 reduce to 1443057 relations and 1219015 ideals in 7 passes Tue May 26 20:50:27 2009 max relations containing the same ideal: 20 Tue May 26 20:50:28 2009 relations with 0 large ideals: 14707 Tue May 26 20:50:28 2009 relations with 1 large ideals: 104047 Tue May 26 20:50:28 2009 relations with 2 large ideals: 298920 Tue May 26 20:50:28 2009 relations with 3 large ideals: 443932 Tue May 26 20:50:28 2009 relations with 4 large ideals: 362506 Tue May 26 20:50:28 2009 relations with 5 large ideals: 166027 Tue May 26 20:50:28 2009 relations with 6 large ideals: 45752 Tue May 26 20:50:28 2009 relations with 7+ large ideals: 7166 Tue May 26 20:50:28 2009 commencing 2-way merge Tue May 26 20:50:29 2009 reduce to 869629 relation sets and 645587 unique ideals Tue May 26 20:50:29 2009 commencing full merge Tue May 26 20:50:40 2009 memory use: 50.0 MB Tue May 26 20:50:40 2009 found 408007 cycles, need 379787 Tue May 26 20:50:40 2009 weight of 379787 cycles is about 26862121 (70.73/cycle) Tue May 26 20:50:40 2009 distribution of cycle lengths: Tue May 26 20:50:40 2009 1 relations: 41647 Tue May 26 20:50:40 2009 2 relations: 38819 Tue May 26 20:50:40 2009 3 relations: 38644 Tue May 26 20:50:40 2009 4 relations: 36329 Tue May 26 20:50:40 2009 5 relations: 33244 Tue May 26 20:50:40 2009 6 relations: 29893 Tue May 26 20:50:40 2009 7 relations: 26931 Tue May 26 20:50:40 2009 8 relations: 23810 Tue May 26 20:50:40 2009 9 relations: 20729 Tue May 26 20:50:40 2009 10+ relations: 89741 Tue May 26 20:50:40 2009 heaviest cycle: 20 relations Tue May 26 20:50:40 2009 commencing cycle optimization Tue May 26 20:50:41 2009 start with 2422138 relations Tue May 26 20:50:47 2009 pruned 76207 relations Tue May 26 20:50:47 2009 memory use: 61.9 MB Tue May 26 20:50:47 2009 distribution of cycle lengths: Tue May 26 20:50:47 2009 1 relations: 41647 Tue May 26 20:50:47 2009 2 relations: 39915 Tue May 26 20:50:47 2009 3 relations: 40326 Tue May 26 20:50:47 2009 4 relations: 37675 Tue May 26 20:50:47 2009 5 relations: 34547 Tue May 26 20:50:47 2009 6 relations: 30630 Tue May 26 20:50:47 2009 7 relations: 27402 Tue May 26 20:50:47 2009 8 relations: 24036 Tue May 26 20:50:47 2009 9 relations: 20893 Tue May 26 20:50:47 2009 10+ relations: 82716 Tue May 26 20:50:47 2009 heaviest cycle: 19 relations Tue May 26 20:50:48 2009 RelProcTime: 320 Tue May 26 20:50:48 2009 Tue May 26 20:50:48 2009 commencing linear algebra Tue May 26 20:50:48 2009 read 379787 cycles Tue May 26 20:50:49 2009 cycles contain 1272344 unique relations Tue May 26 20:51:05 2009 read 1272344 relations Tue May 26 20:51:07 2009 using 20 quadratic characters above 134156108 Tue May 26 20:51:15 2009 building initial matrix Tue May 26 20:51:32 2009 memory use: 140.2 MB Tue May 26 20:51:33 2009 read 379787 cycles Tue May 26 20:51:33 2009 matrix is 379562 x 379787 (107.2 MB) with weight 35505175 (93.49/col) Tue May 26 20:51:33 2009 sparse part has weight 25441017 (66.99/col) Tue May 26 20:51:39 2009 filtering completed in 3 passes Tue May 26 20:51:40 2009 matrix is 377431 x 377631 (106.8 MB) with weight 35365680 (93.65/col) Tue May 26 20:51:40 2009 sparse part has weight 25363858 (67.17/col) Tue May 26 20:51:41 2009 read 377631 cycles Tue May 26 20:51:43 2009 matrix is 377431 x 377631 (106.8 MB) with weight 35365680 (93.65/col) Tue May 26 20:51:43 2009 sparse part has weight 25363858 (67.17/col) Tue May 26 20:51:43 2009 saving the first 48 matrix rows for later Tue May 26 20:51:43 2009 matrix is 377383 x 377631 (102.1 MB) with weight 28015668 (74.19/col) Tue May 26 20:51:43 2009 sparse part has weight 24504348 (64.89/col) Tue May 26 20:51:43 2009 matrix includes 64 packed rows Tue May 26 20:51:43 2009 using block size 65536 for processor cache size 3072 kB Tue May 26 20:51:47 2009 commencing Lanczos iteration Tue May 26 20:51:47 2009 memory use: 99.5 MB Tue May 26 21:12:00 2009 lanczos halted after 5969 iterations (dim = 377383) Tue May 26 21:12:01 2009 recovered 29 nontrivial dependencies Tue May 26 21:12:01 2009 BLanczosTime: 1273 Tue May 26 21:12:01 2009 Tue May 26 21:12:01 2009 commencing square root phase Tue May 26 21:12:01 2009 reading relations for dependency 1 Tue May 26 21:12:02 2009 read 188904 cycles Tue May 26 21:12:02 2009 cycles contain 784422 unique relations Tue May 26 21:12:34 2009 read 784422 relations Tue May 26 21:12:38 2009 multiplying 635546 relations Tue May 26 21:14:11 2009 multiply complete, coefficients have about 25.40 million bits Tue May 26 21:14:12 2009 initial square root is modulo 19765799 Tue May 26 21:16:27 2009 sqrtTime: 266 Tue May 26 21:16:27 2009 prp54 factor: 311370498917197796572412633772014554924884165146521673 Tue May 26 21:16:27 2009 prp57 factor: 265434460235786313700762170596984220117945146644969782479 Tue May 26 21:16:27 2009 elapsed time 00:31:23 total time ~ 29 hours
By Erik Branger / GGNFS, Msieve / May 27, 2009
(28·10167+17)/9 = 3(1)1663<168> = 112 · 23 · 9297531860777<13> · 5625355375946149097<19> · C133
C133 = P59 · P74
P59 = 54444563831060370474725702212332871377604421032494991959961<59>
P74 = 39258179248712943472377998594789236506615356188918297471633268441459167679<74>
Number: 31113_167 N=2137394445997761510395890241674344962098210020617491226246533753230837511777526481868931497067228733273481388043 052545928179953300519 ( 133 digits) SNFS difficulty: 168 digits. Divisors found: r1=54444563831060370474725702212332871377604421032494991959961 (pp59) r2=39258179248712943472377998594789236506615356188918297471633268441459167679 (pp74) Version: Msieve v. 1.41 Total time: 82.07 hours. Scaled time: 64.51 units (timescale=0.786). Factorization parameters were as follows: n: 213739444599776151039589024167434496209821002061749122624653375323083751177752648186893149706722873327348138804305 2545928179953300519 m: 2000000000000000000000000000000000 deg: 5 c5: 175 c0: 34 skew: 0.72 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 797429 x 797677 Total sieving time: 76.93 hours. Total relation processing time: 0.26 hours. Matrix solve time: 3.93 hours. Time per square root: 0.95 hours. Prototype def-par.txt line would be: snfs,168.000,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 82.07 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / May 27, 2009
(56·10153+43)/9 = 6(2)1527<154> = 13 · 123289 · 213417229 · 137435871258200903<18> · C123
C123 = P36 · P87
P36 = 207855748749177702475903581228065689<36>
P87 = 636775313135541920644661803313139569186068666649278705384340856517311504776930805506077<87>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 132357409496780157389212183926742930693742441984686316735685449045612894064896546327354637730958479189188077024805444692053 (123 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=6068088808 Step 1 took 9885ms Step 2 took 4900ms ********** Factor found in step 2: 207855748749177702475903581228065689 Found probable prime factor of 36 digits: 207855748749177702475903581228065689 Probable prime cofactor 636775313135541920644661803313139569186068666649278705384340856517311504776930805506077 has 87 digits
By Wataru Sakai / GMP-ECM 6.2.1 / May 27, 2009
(56·10168-11)/9 = 6(2)1671<169> = 33409 · 682183 · 251073507463<12> · 21345376764104279543479<23> · C125
C125 = P37 · P89
P37 = 2010311494190430198841667490889357457<37>
P89 = 25340377371216548369200872625377112559349060405814187929776061184010278109483909816007387<89>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1641621734 Step 1 took 11410ms Step 2 took 5745ms ********** Factor found in step 2: 2010311494190430198841667490889357457 Found probable prime factor of 37 digits: 2010311494190430198841667490889357457 Probable prime cofactor 25340377371216548369200872625377112559349060405814187929776061184010278109483909816007387 has 89 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / May 26, 2009
(56·10148+61)/9 = 6(2)1479<149> = 3 · 877 · 1543 · 588079 · 22446283 · 9580622869530879653<19> · C111
C111 = P51 · P60
P51 = 289514970278927942159258952609383815151082133561159<51>
P60 = 418614114873860963119831279688454686719068277729444773205067<60>
Number: 62229_148 N=121195053026045584142394732863532381780659248901094604117009289059680767354936395953884054694505268254893192653 ( 111 digits) SNFS difficulty: 151 digits. Divisors found: r1=289514970278927942159258952609383815151082133561159 r2=418614114873860963119831279688454686719068277729444773205067 Version: Total time: 9.08 hours. Scaled time: 21.71 units (timescale=2.391). Factorization parameters were as follows: n: 121195053026045584142394732863532381780659248901094604117009289059680767354936395953884054694505268254893192653 m: 1000000000000000000000000000000 deg: 5 c5: 14 c0: 1525 skew: 2.56 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7197933 Max relations in full relation-set: Initial matrix: Pruned matrix : 374222 x 374470 Total sieving time: 8.38 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.28 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 9.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(64·10333-1)/9 = 7(1)333<334> = 13 · 4999 · 228777281 · 1541677987<10> · 1103253089147723<16> · 897821565552123255197697079<27> · 3426549570671671064841267094850481127005282543233354557266456990784769879505493<79> · C191
C191 = P46 · C146
P46 = 1138685703753966317205547366328393186964066889<46>
C146 = [80274634692979035236916096891593763332243932346695290164007809815885473899897686446683991310308022576677193511877133845257360068833629111661478111<146>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 91407578898967392587495646040927113707134826897259567335187608469947492579148685035563607122524857909977897193250344414103264830313965448959782212407733030637049190216830852599866469613366679 (191 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3772275269 Step 1 took 17355ms Step 2 took 7332ms ********** Factor found in step 2: 1138685703753966317205547366328393186964066889 Found probable prime factor of 46 digits: 1138685703753966317205547366328393186964066889 Composite cofactor 80274634692979035236916096891593763332243932346695290164007809815885473899897686446683991310308022576677193511877133845257360068833629111661478111 has 146 digits
(56·10160+43)/9 = 6(2)1597<161> = 11 · 29 · 89 · 313 · 92791 · 544139 · 6514435771<10> · 2061956422574897<16> · C119
C119 = P38 · P81
P38 = 23586179971590229479094783927097020021<38>
P81 = 437714449894873609652732767202131105370021782154533893534171532886167160496086903<81>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 10324011791386102959321469009102640141118795635457083329933205374182497205761640135034992221084890050320448802746884963 (119 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3294267125 Step 1 took 3303ms Step 2 took 2127ms ********** Factor found in step 2: 23586179971590229479094783927097020021 Found probable prime factor of 38 digits: 23586179971590229479094783927097020021 Probable prime cofactor 437714449894873609652732767202131105370021782154533893534171532886167160496086903 has 81 digits
(56·10150+61)/9 = 6(2)1499<151> = 13 · 313 · 2117793157<10> · 11389628087237<14> · C125
C125 = P56 · P70
P56 = 45880006269511777788728871269771814767906863056900086357<56>
P70 = 1381787550307658684570025101538845151921121612343299356704173071667957<70>
Number: 62229_150 N=63396421471248701503774582755485442858010065898672575389777263502026078279011714548384334671616138564383032169071703329762649 ( 125 digits) SNFS difficulty: 152 digits. Divisors found: r1=45880006269511777788728871269771814767906863056900086357 r2=1381787550307658684570025101538845151921121612343299356704173071667957 Version: Total time: 6.36 hours. Scaled time: 15.22 units (timescale=2.392). Factorization parameters were as follows: n: 63396421471248701503774582755485442858010065898672575389777263502026078279011714548384334671616138564383032169071703329762649 m: 2000000000000000000000000000000 deg: 5 c5: 7 c0: 244 skew: 2.03 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6678090 Max relations in full relation-set: Initial matrix: Pruned matrix : 359761 x 360009 Total sieving time: 5.85 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.27 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 6.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10151+43)/9 = 6(2)1507<152> = 17 · 23 · 4971942883<10> · 456814079039621<15> · C125
C125 = P62 · P63
P62 = 93975190122255146831769552633703935437239278355207260903635149<62>
P63 = 745572594250544127634375047849152507123131772168599590838274471<63>
Number: 62227_151 N=70065326294637878981668261731991506218824553413226891366512464715316805317115533774559626960853188454863060360342646504981179 ( 125 digits) SNFS difficulty: 153 digits. Divisors found: r1=93975190122255146831769552633703935437239278355207260903635149 r2=745572594250544127634375047849152507123131772168599590838274471 Version: Total time: 6.94 hours. Scaled time: 16.60 units (timescale=2.391). Factorization parameters were as follows: n: 70065326294637878981668261731991506218824553413226891366512464715316805317115533774559626960853188454863060360342646504981179 m: 2000000000000000000000000000000 deg: 5 c5: 35 c0: 86 skew: 1.20 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8198304 Max relations in full relation-set: Initial matrix: Pruned matrix : 316651 x 316899 Total sieving time: 6.34 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.21 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 6.94 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Wataru Sakai / GMP-ECM 6.2.1 / May 26, 2009
(34·10193-43)/9 = 3(7)1923<194> = 33 · 11 · 192 · 79 · 661 · 33889871 · 206690543 · 93566161264769<14> · 219952497998232711504934775239<30> · C125
C125 = P41 · P84
P41 = 69424502729465583786896074169319913973389<41>
P84 = 674206903768606413668523156780015154564362553296911583362292946823897682656330305733<84>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2671172606 Step 1 took 34040ms Step 2 took 13572ms ********** Factor found in step 2: 69424502729465583786896074169319913973389 Found probable prime factor of 41 digits: 69424502729465583786896074169319913973389 Probable prime cofactor 674206903768606413668523156780015154564362553296911583362292946823897682656330305733 has 84 digits
By Robert Backstrom / GGNFS, Msieve / May 26, 2009
(56·10158+43)/9 = 6(2)1577<159> = 3 · 11 · 151 · C156
C156 = P51 · P105
P51 = 131335550907515946628289499737357777353323247025711<51>
P105 = 950763126802695634262216390025909375472382868521848823716068506070698983337343456509688484625876526536779<105>
Number: n N=124868999041184471648047806988204339197716681160389769661292840100787120654670323544495729926193502352442749793743171226614935224206747385555332575200124869 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: Tue May 26 11:51:07 2009 prp51 factor: 131335550907515946628289499737357777353323247025711 Tue May 26 11:51:07 2009 prp105 factor: 950763126802695634262216390025909375472382868521848823716068506070698983337343456509688484625876526536779 Tue May 26 11:51:07 2009 elapsed time 01:00:34 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 17.56 hours. Scaled time: 46.71 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_157_7 n: 124868999041184471648047806988204339197716681160389769661292840100787120654670323544495729926193502352442749793743171226614935224206747385555332575200124869 m: 100000000000000000000000000000000 deg: 5 c5: 14 c0: 1075 skew: 2.38 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1700000, 2719897) Primes: RFBsize:243539, AFBsize:243744, largePrimes:12847464 encountered Relations: rels:11612917, finalFF:421044 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 910588 hash collisions in 12545435 relations Msieve: matrix is 635285 x 635533 (172.0 MB) Total sieving time: 17.32 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,28,28,56,56,2.4,2.4,100000 total time: 17.56 hours. --------- CPU info (if available) ----------
(56·10157+43)/9 = 6(2)1567<158> = 273028069792489029181<21> · C138
C138 = P63 · P75
P63 = 320942228218226583907804711929443473075863562997620056114681199<63>
P75 = 710086662304528289565255283855826775901561463458072754281346535801862830433<75>
Number: n N=227896795628058710335314314166424003855735536627830620672743604025471001519443133269242576088187366592345094853326988207142020075590129167 ( 138 digits) SNFS difficulty: 158 digits. Divisors found: Tue May 26 12:02:33 2009 prp63 factor: 320942228218226583907804711929443473075863562997620056114681199 Tue May 26 12:02:33 2009 prp75 factor: 710086662304528289565255283855826775901561463458072754281346535801862830433 Tue May 26 12:02:33 2009 elapsed time 01:12:33 (Msieve 1.39 - dependency 8) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 17.54 hours. Scaled time: 46.45 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_2_156_7 n: 227896795628058710335314314166424003855735536627830620672743604025471001519443133269242576088187366592345094853326988207142020075590129167 m: 20000000000000000000000000000000 deg: 5 c5: 175 c0: 43 skew: 0.76 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1500000, 2549171) Primes: RFBsize:216816, AFBsize:217001, largePrimes:12428958 encountered Relations: rels:11393794, finalFF:436268 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1006927 hash collisions in 12751827 relations Msieve: matrix is 518804 x 519052 (138.8 MB) Total sieving time: 17.27 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.4,2.4,100000 total time: 17.54 hours. --------- CPU info (if available) ----------
(29·10169-11)/9 = 3(2)1681<170> = 739 · 20375213 · 761841315115219<15> · C145
C145 = P38 · P107
P38 = 30185337815716905249692358934686648943<38>
P107 = 93056846468806542487059667457037413274973699346875535788608105484856824239552996076515719745447019284007559<107>
Number: n N=2808952346726228286607349592413192856250276838617066864027465513158652213003638652734864016020646324259579957110275941513825532651046513191360137 ( 145 digits) SNFS difficulty: 171 digits. Divisors found: Tue May 26 23:55:05 2009 prp38 factor: 30185337815716905249692358934686648943 Tue May 26 23:55:05 2009 prp107 factor: 93056846468806542487059667457037413274973699346875535788608105484856824239552996076515719745447019284007559 Tue May 26 23:55:05 2009 elapsed time 01:59:15 (Msieve 1.39 - dependency 8) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 65.82 hours. Scaled time: 166.07 units (timescale=2.523). Factorization parameters were as follows: name: KA_3_2_168_1 n: 2808952346726228286607349592413192856250276838617066864027465513158652213003638652734864016020646324259579957110275941513825532651046513191360137 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: -110 skew: 1.31 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 6278801) Primes: RFBsize:348513, AFBsize:349112, largePrimes:17921984 encountered Relations: rels:17899366, finalFF:670524 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2434863 hash collisions in 20268295 relations Msieve: matrix is 879292 x 879540 (232.6 MB) Total sieving time: 64.98 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 65.82 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GGNFS/msieve 1.41 / May 26, 2009
(16·10197-7)/9 = 1(7)197<198> = 3 · C197
C197 = P52 · P146
P52 = 2492719882705008579729261285974409303651590046350993<52>
P146 = 23772931595889256247702401807095568187613434909292752523159600299070459234751820679071565671109595402287192339846210282361233657325888516506821963<146>
Number: big197 N=59259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 ( 197 digits) SNFS difficulty: 198 digits. Divisors found: r1=2492719882705008579729261285974409303651590046350993 (pp52) r2=23772931595889256247702401807095568187613434909292752523159600299070459234751820679071565671109595402287192339846210282361233657325888516506821963 (pp146) Version: Msieve v. 1.41 Total time: 619.58 hours. Scaled time: 1231.72 units (timescale=1.988). Factorization parameters were as follows: n: 59259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 m: 2000000000000000000000000000000000000000 deg: 5 c5: 50 c0: -7 skew: 0.67 type: snfs lss: 1 rlim: 14100000 alim: 14100000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14100000/14100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7050000, 15550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2584336 x 2584584 Total sieving time: 607.29 hours. Total relation processing time: 0.42 hours. Matrix solve time: 11.22 hours. Time per square root: 0.65 hours. Prototype def-par.txt line would be: snfs,198.000,5,0,0,0,0,0,0,0,0,14100000,14100000,28,28,55,55,2.5,2.5,100000 total time: 619.58 hours. --------- CPU info (if available) ----------
(16·10189-7)/9 = 1(7)189<190> = 97 · 565257584232221<15> · 2894757784480057<16> · 313874266742039388275321127723139<33> · C125
C125 = P49 · P76
P49 = 9641915714367601914559833623585613291763136575081<49>
P76 = 3701076555786604628832541036576489067616431031951291380827268989656764182967<76>
Number: 477 N=35685468203316383629285285631630576483658593506329090236596327342634932358233727998968557498199790458256613246731307616845327 ( 125 digits) Divisors found: r1=9641915714367601914559833623585613291763136575081 (pp49) r2=3701076555786604628832541036576489067616431031951291380827268989656764182967 (pp76) Version: Msieve v. 1.41 Total time: 65.61 hours. Scaled time: 130.43 units (timescale=1.988). Factorization parameters were as follows: # Murphy_E = 1.630694e-10, selected by Jeff Gilchrist n: 35685468203316383629285285631630576483658593506329090236596327342634932358233727998968557498199790458256613246731307616845327 Y0: -1168519198374191872033102 Y1: 20511124710263 c0: -352577385070769488032860696085 c1: 39647842142184592470391721 c2: 173482975072407524037 c3: -2569127795806573 c4: -3778907800 c5: 16380 skew: 207212.3 type: gnfs # selected mechanically rlim: 7000000 alim: 7000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3500000, 6900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 915481 x 915729 Total sieving time: 64.15 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.15 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7000000,7000000,27,27,52,52,2.5,2.5,100000 total time: 65.61 hours. --------- CPU info (if available) ----------
By Andreas Tete / GGNFS, Msieve v. 1.41 / May 26, 2009
(56·10167+43)/9 = 6(2)1667<168> = 3 · 17 · 107 · 272993143283568505766291<24> · 202190630619170096698842510247<30> · C112
C112 = P50 · P63
P50 = 12913859117422035067458198332956795125072403023589<50>
P63 = 159964183537285427027730694363434784194223930354711288637274587<63>
Tue May 26 06:09:29 2009 Msieve v. 1.41 Tue May 26 06:09:29 2009 random seeds: 1d19d524 4eadf5fa Tue May 26 06:09:29 2009 factoring 2065754930033945216243352113649333727221810688018550046454028316144656706557916899127021556696477554587231232743 (112 digits) Tue May 26 06:09:31 2009 searching for 15-digit factors Tue May 26 06:09:34 2009 commencing number field sieve (112-digit input) Tue May 26 06:09:34 2009 R0: -3625033447227194025530 Tue May 26 06:09:34 2009 R1: 336182944457 Tue May 26 06:09:34 2009 A0: -23268323678036412887177004591 Tue May 26 06:09:34 2009 A1: -262632231566139633823819 Tue May 26 06:09:34 2009 A2: -1655649079234538915 Tue May 26 06:09:34 2009 A3: 84999748352463 Tue May 26 06:09:34 2009 A4: 390639850 Tue May 26 06:09:34 2009 A5: 3300 Tue May 26 06:09:34 2009 skew 116347.62, size 1.254584e-010, alpha -7.586029, combined = 8.633661e-010 Tue May 26 06:09:34 2009 Tue May 26 06:09:34 2009 commencing relation filtering Tue May 26 06:09:34 2009 commencing duplicate removal, pass 1 Tue May 26 06:11:31 2009 found 435423 hash collisions in 8143655 relations Tue May 26 06:11:58 2009 added 58787 free relations Tue May 26 06:11:58 2009 commencing duplicate removal, pass 2 Tue May 26 06:12:53 2009 found 339672 duplicates and 7862769 unique relations Tue May 26 06:12:53 2009 memory use: 41.3 MB Tue May 26 06:12:53 2009 reading rational ideals above 3604480 Tue May 26 06:12:53 2009 reading algebraic ideals above 3604480 Tue May 26 06:12:53 2009 commencing singleton removal, pass 1 Tue May 26 06:14:40 2009 relations with 0 large ideals: 138250 Tue May 26 06:14:40 2009 relations with 1 large ideals: 1038561 Tue May 26 06:14:40 2009 relations with 2 large ideals: 2734154 Tue May 26 06:14:40 2009 relations with 3 large ideals: 2897588 Tue May 26 06:14:40 2009 relations with 4 large ideals: 997490 Tue May 26 06:14:40 2009 relations with 5 large ideals: 0 Tue May 26 06:14:40 2009 relations with 6 large ideals: 56726 Tue May 26 06:14:40 2009 relations with 7+ large ideals: 0 Tue May 26 06:14:40 2009 7862769 relations and about 7636607 large ideals Tue May 26 06:14:40 2009 commencing singleton removal, pass 2 Tue May 26 06:16:31 2009 found 3528605 singletons Tue May 26 06:16:31 2009 current dataset: 4334164 relations and about 3416603 large ideals Tue May 26 06:16:31 2009 commencing singleton removal, pass 3 Tue May 26 06:17:39 2009 found 719044 singletons Tue May 26 06:17:39 2009 current dataset: 3615120 relations and about 2653573 large ideals Tue May 26 06:17:39 2009 commencing singleton removal, pass 4 Tue May 26 06:18:28 2009 found 189682 singletons Tue May 26 06:18:28 2009 current dataset: 3425438 relations and about 2460057 large ideals Tue May 26 06:18:28 2009 commencing singleton removal, final pass Tue May 26 06:19:21 2009 memory use: 66.6 MB Tue May 26 06:19:21 2009 commencing in-memory singleton removal Tue May 26 06:19:21 2009 begin with 3425438 relations and 2588466 unique ideals Tue May 26 06:19:27 2009 reduce to 3051772 relations and 2208065 ideals in 15 passes Tue May 26 06:19:27 2009 max relations containing the same ideal: 19 Tue May 26 06:19:28 2009 reading rational ideals above 720000 Tue May 26 06:19:28 2009 reading algebraic ideals above 720000 Tue May 26 06:19:28 2009 commencing singleton removal, final pass Tue May 26 06:20:24 2009 keeping 2576865 ideals with weight <= 20, new excess is 231323 Tue May 26 06:20:28 2009 memory use: 90.6 MB Tue May 26 06:20:28 2009 commencing in-memory singleton removal Tue May 26 06:20:29 2009 begin with 3066465 relations and 2576865 unique ideals Tue May 26 06:20:32 2009 reduce to 3048947 relations and 2487838 ideals in 8 passes Tue May 26 06:20:32 2009 max relations containing the same ideal: 20 Tue May 26 06:20:36 2009 removing 749279 relations and 602892 ideals in 146387 cliques Tue May 26 06:20:36 2009 commencing in-memory singleton removal Tue May 26 06:20:36 2009 begin with 2299668 relations and 2487838 unique ideals Tue May 26 06:20:40 2009 reduce to 2192609 relations and 1771961 ideals in 9 passes Tue May 26 06:20:40 2009 max relations containing the same ideal: 20 Tue May 26 06:20:42 2009 removing 568468 relations and 422081 ideals in 146387 cliques Tue May 26 06:20:42 2009 commencing in-memory singleton removal Tue May 26 06:20:42 2009 begin with 1624141 relations and 1771961 unique ideals Tue May 26 06:20:44 2009 reduce to 1525450 relations and 1244801 ideals in 10 passes Tue May 26 06:20:44 2009 max relations containing the same ideal: 19 Tue May 26 06:20:45 2009 removing 81649 relations and 69335 ideals in 12314 cliques Tue May 26 06:20:45 2009 commencing in-memory singleton removal Tue May 26 06:20:46 2009 begin with 1443801 relations and 1244801 unique ideals Tue May 26 06:20:47 2009 reduce to 1441089 relations and 1172727 ideals in 5 passes Tue May 26 06:20:47 2009 max relations containing the same ideal: 18 Tue May 26 06:20:47 2009 relations with 0 large ideals: 25242 Tue May 26 06:20:47 2009 relations with 1 large ideals: 159541 Tue May 26 06:20:47 2009 relations with 2 large ideals: 390608 Tue May 26 06:20:47 2009 relations with 3 large ideals: 466073 Tue May 26 06:20:47 2009 relations with 4 large ideals: 287778 Tue May 26 06:20:47 2009 relations with 5 large ideals: 92935 Tue May 26 06:20:47 2009 relations with 6 large ideals: 17392 Tue May 26 06:20:47 2009 relations with 7+ large ideals: 1520 Tue May 26 06:20:47 2009 commencing 2-way merge Tue May 26 06:20:50 2009 reduce to 897524 relation sets and 629162 unique ideals Tue May 26 06:20:50 2009 commencing full merge Tue May 26 06:21:03 2009 memory use: 45.4 MB Tue May 26 06:21:03 2009 found 429073 cycles, need 393362 Tue May 26 06:21:03 2009 weight of 393362 cycles is about 27680407 (70.37/cycle) Tue May 26 06:21:03 2009 distribution of cycle lengths: Tue May 26 06:21:03 2009 1 relations: 39720 Tue May 26 06:21:03 2009 2 relations: 37268 Tue May 26 06:21:03 2009 3 relations: 39791 Tue May 26 06:21:03 2009 4 relations: 38591 Tue May 26 06:21:03 2009 5 relations: 36964 Tue May 26 06:21:03 2009 6 relations: 34142 Tue May 26 06:21:03 2009 7 relations: 31447 Tue May 26 06:21:03 2009 8 relations: 28300 Tue May 26 06:21:03 2009 9 relations: 24566 Tue May 26 06:21:03 2009 10+ relations: 82573 Tue May 26 06:21:03 2009 heaviest cycle: 17 relations Tue May 26 06:21:03 2009 commencing cycle optimization Tue May 26 06:21:04 2009 start with 2426704 relations Tue May 26 06:21:12 2009 pruned 76457 relations Tue May 26 06:21:12 2009 memory use: 62.3 MB Tue May 26 06:21:12 2009 distribution of cycle lengths: Tue May 26 06:21:12 2009 1 relations: 39720 Tue May 26 06:21:12 2009 2 relations: 38302 Tue May 26 06:21:12 2009 3 relations: 41621 Tue May 26 06:21:12 2009 4 relations: 39935 Tue May 26 06:21:12 2009 5 relations: 38536 Tue May 26 06:21:12 2009 6 relations: 35428 Tue May 26 06:21:12 2009 7 relations: 32474 Tue May 26 06:21:12 2009 8 relations: 28730 Tue May 26 06:21:12 2009 9 relations: 24690 Tue May 26 06:21:12 2009 10+ relations: 73926 Tue May 26 06:21:12 2009 heaviest cycle: 17 relations Tue May 26 06:21:13 2009 RelProcTime: 530 Tue May 26 06:21:13 2009 Tue May 26 06:21:13 2009 commencing linear algebra Tue May 26 06:21:13 2009 read 393362 cycles Tue May 26 06:21:14 2009 cycles contain 1279167 unique relations Tue May 26 06:21:37 2009 read 1279167 relations Tue May 26 06:21:40 2009 using 20 quadratic characters above 134216012 Tue May 26 06:21:50 2009 building initial matrix Tue May 26 06:22:17 2009 memory use: 144.5 MB Tue May 26 06:22:19 2009 read 393362 cycles Tue May 26 06:22:20 2009 matrix is 393137 x 393362 (112.2 MB) with weight 37544918 (95.45/col) Tue May 26 06:22:20 2009 sparse part has weight 26262120 (66.76/col) Tue May 26 06:22:29 2009 filtering completed in 3 passes Tue May 26 06:22:30 2009 matrix is 391430 x 391630 (111.9 MB) with weight 37438270 (95.60/col) Tue May 26 06:22:30 2009 sparse part has weight 26207109 (66.92/col) Tue May 26 06:22:31 2009 read 391630 cycles Tue May 26 06:22:32 2009 matrix is 391430 x 391630 (111.9 MB) with weight 37438270 (95.60/col) Tue May 26 06:22:32 2009 sparse part has weight 26207109 (66.92/col) Tue May 26 06:22:32 2009 saving the first 48 matrix rows for later Tue May 26 06:22:32 2009 matrix is 391382 x 391630 (107.1 MB) with weight 29862902 (76.25/col) Tue May 26 06:22:32 2009 sparse part has weight 25728315 (65.70/col) Tue May 26 06:22:32 2009 matrix includes 64 packed rows Tue May 26 06:22:32 2009 using block size 65536 for processor cache size 3072 kB Tue May 26 06:22:36 2009 commencing Lanczos iteration Tue May 26 06:22:36 2009 memory use: 104.1 MB Tue May 26 06:51:48 2009 lanczos halted after 6191 iterations (dim = 391380) Tue May 26 06:51:49 2009 recovered 28 nontrivial dependencies Tue May 26 06:51:49 2009 BLanczosTime: 1836 Tue May 26 06:51:49 2009 Tue May 26 06:51:49 2009 commencing square root phase Tue May 26 06:51:49 2009 reading relations for dependency 1 Tue May 26 06:51:49 2009 read 195890 cycles Tue May 26 06:51:50 2009 cycles contain 791224 unique relations Tue May 26 06:52:40 2009 read 791224 relations Tue May 26 06:52:45 2009 multiplying 638908 relations Tue May 26 06:54:36 2009 multiply complete, coefficients have about 26.49 million bits Tue May 26 06:54:37 2009 initial square root is modulo 40454321 Tue May 26 06:57:24 2009 reading relations for dependency 2 Tue May 26 06:57:25 2009 read 195289 cycles Tue May 26 06:57:25 2009 cycles contain 789633 unique relations Tue May 26 06:58:16 2009 read 789633 relations Tue May 26 06:58:22 2009 multiplying 638022 relations Tue May 26 07:00:12 2009 multiply complete, coefficients have about 26.45 million bits Tue May 26 07:00:13 2009 initial square root is modulo 39556393 Tue May 26 07:02:57 2009 sqrtTime: 668 Tue May 26 07:02:57 2009 prp50 factor: 12913859117422035067458198332956795125072403023589 Tue May 26 07:02:57 2009 prp63 factor: 159964183537285427027730694363434784194223930354711288637274587 Tue May 26 07:02:57 2009 elapsed time 00:53:28
By Sinkiti Sibata / Msieve / May 26, 2009
(56·10142+61)/9 = 6(2)1419<143> = 34 · 19 · 131 · 42419329483<11> · 87525447502071318703<20> · C107
C107 = P38 · P70
P38 = 44872549100086381398779792036441672819<38>
P70 = 1852493621640036569971842416827656964494493099561502515079759713220051<70>
Number: 62229_142 N=83126110994639384502124993651960889801899443839353934431248268695470043758248670095884805167694367492493769 ( 107 digits) SNFS difficulty: 143 digits. Divisors found: r1=44872549100086381398779792036441672819 (pp38) r2=1852493621640036569971842416827656964494493099561502515079759713220051 (pp70) Version: Msieve-1.40 Total time: 6.74 hours. Scaled time: 17.29 units (timescale=2.564). Factorization parameters were as follows: name: 62229_142 n: 83126110994639384502124993651960889801899443839353934431248268695470043758248670095884805167694367492493769 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: 61 skew: 0.81 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 1770001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 282609 x 282857 Total sieving time: 6.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 6.74 hours. --------- CPU info (if available) ----------
(56·10149+43)/9 = 6(2)1487<150> = 3 · 503 · 521 · 8099537 · 1053083254675877<16> · C122
C122 = P39 · P84
P39 = 150749794589437620706289474468020105961<39>
P84 = 615515402049415406036097417507594704876193733951431676017316119220986881163077938187<84>
Number: 62227_149 N=92788820425584484372450631418906503883926540579412767808945265882752439664813153845210701883662809020035395189181148232707 ( 122 digits) SNFS difficulty: 151 digits. Divisors found: r1=150749794589437620706289474468020105961 (pp39) r2=615515402049415406036097417507594704876193733951431676017316119220986881163077938187 (pp84) Version: Msieve-1.40 Total time: 15.19 hours. Scaled time: 31.57 units (timescale=2.078). Factorization parameters were as follows: name: 62227_149 n: 92788820425584484372450631418906503883926540579412767808945265882752439664813153845210701883662809020035395189181148232707 m: 1000000000000000000000000000000 deg: 5 c5: 28 c0: 215 skew: 1.50 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 370302 x 370550 Total sieving time: 14.54 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.47 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 15.19 hours. --------- CPU info (if available) ----------
Factorizations of 811...11 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Erik Branger / GGNFS, Msieve / May 25, 2009
(56·10114+61)/9 = 6(2)1139<115> = 13 · 17 · 53 · 16391888269<11> · C101
C101 = P43 · P58
P43 = 6330526609647274115237024207116463641404217<43>
P58 = 5119276068573292810156043341228585529455167728488587180721<58>
Number: 62229_114 N=32407713374233713689381067581298315293249215778887709800371510988289185758861020536966163909590500457 ( 101 digits) SNFS difficulty: 116 digits. Divisors found: r1=6330526609647274115237024207116463641404217 (pp43) r2=5119276068573292810156043341228585529455167728488587180721 (pp58) Version: Msieve v. 1.41 Total time: 1.42 hours. Scaled time: 1.24 units (timescale=0.873). Factorization parameters were as follows: n: 32407713374233713689381067581298315293249215778887709800371510988289185758861020536966163909590500457 m: 100000000000000000000000 deg: 5 c5: 28 c0: 305 skew: 1.61 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 59031 x 59258 Total sieving time: 1.38 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116.000,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.42 hours. --------- CPU info (if available) ----------
(56·10152+61)/9 = 6(2)1519<153> = 37 · 11186507 · C145
C145 = P32 · P45 · P68
P32 = 28942433849206367671246614943001<32>
P45 = 595936129032331976442960402461375031323194639<45>
P68 = 87159459781777493595426241904554628150888105525357079878608434976229<68>
Number: 62229_152 N=1503312590500038735667605340685597105228362778194910781070160400991731987189282303834147407838462606496989347686173782112398161179071967399369331 ( 145 digits) SNFS difficulty: 153 digits. Divisors found: r1=28942433849206367671246614943001 (pp32) r2=595936129032331976442960402461375031323194639 (pp45) r3=87159459781777493595426241904554628150888105525357079878608434976229 (pp68) Version: Msieve v. 1.41 Total time: 23.52 hours. Scaled time: 21.85 units (timescale=0.929). Factorization parameters were as follows: n: 1503312590500038735667605340685597105228362778194910781070160400991731987189282303834147407838462606496989347686173782112398161179071967399369331 m: 2000000000000000000000000000000 deg: 5 c5: 175 c0: 61 skew: 0.81 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 417187 x 417435 Total sieving time: 22.71 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.56 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,153.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 23.52 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / May 25, 2009
(2·10176+1)/3 = (6)1757<176> = 891423615315154872538304147<27> · C149
C149 = P46 · P104
P46 = 1103614510810071915219795913454294436119696473<46>
P104 = 67765274784633510325405809275250340559244879028941434970319872358880286167373422167498357591651212673457<104>
Number: 66667_176 N=74786740581353412957536483508702404864499831989498538968548097789732163315742538650870690452878548195480134264825891327689726788458624388437703617161 ( 149 digits) SNFS difficulty: 176 digits. Divisors found: r1=1103614510810071915219795913454294436119696473 r2=67765274784633510325405809275250340559244879028941434970319872358880286167373422167498357591651212673457 Version: Total time: 41.82 hours. Scaled time: 99.56 units (timescale=2.381). Factorization parameters were as follows: n: 74786740581353412957536483508702404864499831989498538968548097789732163315742538650870690452878548195480134264825891327689726788458624388437703617161 m: 100000000000000000000000000000000000 deg: 5 c5: 20 c0: 1 skew: 0.55 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 6200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17375629 Max relations in full relation-set: Initial matrix: Pruned matrix : 1270401 x 1270648 Total sieving time: 35.56 hours. Total relation processing time: 2.43 hours. Matrix solve time: 3.67 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 41.82 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(2·10183+1)/3 = (6)1827<183> = 83 · 127 · 166561 · C174
C174 = P38 · C136
P38 = 45500165622286770651251939807357753869<38>
C136 = [8345274578196455040772840047280934924400950145019956077371379711181517748470254840649874990874138242711129166964755686037538473271280243<136>]
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 379711375471398074234106639718109884265998516506006882170335172843003391956211271054661861198218055599683554842890969670141327812629146543076795651919267864113486694516510167 (174 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=249765663 Step 1 took 18603ms Step 2 took 7278ms ********** Factor found in step 2: 45500165622286770651251939807357753869 Found probable prime factor of 38 digits: 45500165622286770651251939807357753869 Composite cofactor 8345274578196455040772840047280934924400950145019956077371379711181517748470254840649874990874138242711129166964755686037538473271280243 has 136 digits
By Andreas Tete / Msieve 1.41, GGNFS / May 25, 2009
(56·10130+61)/9 = 6(2)1299<131> = 3 · 17 · 31 · 383 · 389 · 22362407201<11> · 93495249169104112307<20> · C93
C93 = P35 · P58
P35 = 46247980690072474031252763921167863<35>
P58 = 2731897511788387797568503987411292236154621175780104218527<58>
Sun May 24 20:20:45 2009 Msieve v. 1.41 Sun May 24 20:20:45 2009 random seeds: 092395d0 b3c8db31 Sun May 24 20:20:45 2009 factoring 126344743372446397853828500971974809042236413069841939570637101725244189122830500998801597801 (93 digits) Sun May 24 20:20:46 2009 searching for 15-digit factors Sun May 24 20:20:48 2009 commencing quadratic sieve (93-digit input) Sun May 24 20:20:48 2009 using multiplier of 1 Sun May 24 20:20:48 2009 using 32kb Intel Core sieve core Sun May 24 20:20:48 2009 sieve interval: 36 blocks of size 32768 Sun May 24 20:20:48 2009 processing polynomials in batches of 6 Sun May 24 20:20:48 2009 using a sieve bound of 1855093 (69412 primes) Sun May 24 20:20:48 2009 using large prime bound of 209625509 (27 bits) Sun May 24 20:20:48 2009 using double large prime bound of 951917611763851 (42-50 bits) Sun May 24 20:20:48 2009 using trial factoring cutoff of 50 bits Sun May 24 20:20:48 2009 polynomial 'A' values have 12 factors Sun May 24 21:50:51 2009 69988 relations (18807 full + 51181 combined from 878512 partial), need 69508 Sun May 24 21:50:52 2009 begin with 897319 relations Sun May 24 21:50:53 2009 reduce to 173296 relations in 11 passes Sun May 24 21:50:53 2009 attempting to read 173296 relations Sun May 24 21:50:55 2009 recovered 173296 relations Sun May 24 21:50:55 2009 recovered 149101 polynomials Sun May 24 21:50:55 2009 attempting to build 69988 cycles Sun May 24 21:50:55 2009 found 69988 cycles in 6 passes Sun May 24 21:50:55 2009 distribution of cycle lengths: Sun May 24 21:50:55 2009 length 1 : 18807 Sun May 24 21:50:55 2009 length 2 : 13230 Sun May 24 21:50:55 2009 length 3 : 12138 Sun May 24 21:50:55 2009 length 4 : 9193 Sun May 24 21:50:55 2009 length 5 : 6597 Sun May 24 21:50:55 2009 length 6 : 4296 Sun May 24 21:50:55 2009 length 7 : 2591 Sun May 24 21:50:55 2009 length 9+: 3136 Sun May 24 21:50:55 2009 largest cycle: 18 relations Sun May 24 21:50:55 2009 matrix is 69412 x 69988 (16.8 MB) with weight 4113021 (58.77/col) Sun May 24 21:50:55 2009 sparse part has weight 4113021 (58.77/col) Sun May 24 21:50:56 2009 filtering completed in 3 passes Sun May 24 21:50:56 2009 matrix is 64767 x 64831 (15.5 MB) with weight 3813493 (58.82/col) Sun May 24 21:50:56 2009 sparse part has weight 3813493 (58.82/col) Sun May 24 21:50:56 2009 saving the first 48 matrix rows for later Sun May 24 21:50:56 2009 matrix is 64719 x 64831 (9.1 MB) with weight 2880785 (44.44/col) Sun May 24 21:50:56 2009 sparse part has weight 1985361 (30.62/col) Sun May 24 21:50:56 2009 matrix includes 64 packed rows Sun May 24 21:50:56 2009 using block size 25932 for processor cache size 3072 kB Sun May 24 21:50:57 2009 commencing Lanczos iteration Sun May 24 21:50:57 2009 memory use: 9.3 MB Sun May 24 21:51:18 2009 lanczos halted after 1025 iterations (dim = 64716) Sun May 24 21:51:18 2009 recovered 14 nontrivial dependencies Sun May 24 21:51:19 2009 prp35 factor: 46247980690072474031252763921167863 Sun May 24 21:51:19 2009 prp58 factor: 2731897511788387797568503987411292236154621175780104218527 Sun May 24 21:51:19 2009 elapsed time 01:30:34
(56·10143+61)/9 = 6(2)1429<144> = 372 · 373 · 17957 · 1184131106238803<16> · 215044693802791697848307401<27> · C93
C93 = P45 · P48
P45 = 317892978543602332825062735108706473864059569<45>
P48 = 838281725573898180269529020619937933152992089583<48>
Sun May 24 20:21:04 2009 Msieve v. 1.41 Sun May 24 20:21:04 2009 random seeds: 122f2e58 cfce9184 Sun May 24 20:21:04 2009 factoring 266483874601357153181251525441014367612362300577944076002637810002542212287393126744496369727 (93 digits) Sun May 24 20:21:05 2009 searching for 15-digit factors Sun May 24 20:21:06 2009 commencing quadratic sieve (93-digit input) Sun May 24 20:21:06 2009 using multiplier of 23 Sun May 24 20:21:06 2009 using 32kb Intel Core sieve core Sun May 24 20:21:06 2009 sieve interval: 36 blocks of size 32768 Sun May 24 20:21:06 2009 processing polynomials in batches of 6 Sun May 24 20:21:06 2009 using a sieve bound of 1923137 (71682 primes) Sun May 24 20:21:06 2009 using large prime bound of 232699577 (27 bits) Sun May 24 20:21:06 2009 using double large prime bound of 1148767303677169 (42-51 bits) Sun May 24 20:21:06 2009 using trial factoring cutoff of 51 bits Sun May 24 20:21:06 2009 polynomial 'A' values have 12 factors Sun May 24 22:15:21 2009 72189 relations (18540 full + 53649 combined from 955622 partial), need 71778 Sun May 24 22:15:22 2009 begin with 974162 relations Sun May 24 22:15:22 2009 reduce to 182692 relations in 10 passes Sun May 24 22:15:22 2009 attempting to read 182692 relations Sun May 24 22:15:24 2009 recovered 182692 relations Sun May 24 22:15:24 2009 recovered 161726 polynomials Sun May 24 22:15:24 2009 attempting to build 72189 cycles Sun May 24 22:15:24 2009 found 72189 cycles in 5 passes Sun May 24 22:15:24 2009 distribution of cycle lengths: Sun May 24 22:15:24 2009 length 1 : 18540 Sun May 24 22:15:24 2009 length 2 : 13035 Sun May 24 22:15:24 2009 length 3 : 12364 Sun May 24 22:15:24 2009 length 4 : 9765 Sun May 24 22:15:24 2009 length 5 : 7042 Sun May 24 22:15:24 2009 length 6 : 4696 Sun May 24 22:15:24 2009 length 7 : 2920 Sun May 24 22:15:24 2009 length 9+: 3827 Sun May 24 22:15:24 2009 largest cycle: 22 relations Sun May 24 22:15:25 2009 matrix is 71682 x 72189 (18.5 MB) with weight 4572493 (63.34/col) Sun May 24 22:15:25 2009 sparse part has weight 4572493 (63.34/col) Sun May 24 22:15:25 2009 filtering completed in 4 passes Sun May 24 22:15:25 2009 matrix is 67624 x 67688 (17.4 MB) with weight 4291973 (63.41/col) Sun May 24 22:15:25 2009 sparse part has weight 4291973 (63.41/col) Sun May 24 22:15:25 2009 saving the first 48 matrix rows for later Sun May 24 22:15:25 2009 matrix is 67576 x 67688 (11.0 MB) with weight 3377687 (49.90/col) Sun May 24 22:15:25 2009 sparse part has weight 2467530 (36.45/col) Sun May 24 22:15:25 2009 matrix includes 64 packed rows Sun May 24 22:15:25 2009 using block size 27075 for processor cache size 3072 kB Sun May 24 22:15:26 2009 commencing Lanczos iteration Sun May 24 22:15:26 2009 memory use: 10.6 MB Sun May 24 22:15:48 2009 lanczos halted after 1069 iterations (dim = 67576) Sun May 24 22:15:48 2009 recovered 18 nontrivial dependencies Sun May 24 22:15:49 2009 prp45 factor: 317892978543602332825062735108706473864059569 Sun May 24 22:15:49 2009 prp48 factor: 838281725573898180269529020619937933152992089583 Sun May 24 22:15:49 2009 elapsed time 01:54:45
(56·10140+61)/9 = 6(2)1399<141> = 37 · 53 · 89 · 963758813 · 54907861729789<14> · 460872462819125911<18> · C96
C96 = P39 · P57
P39 = 978943390360530542658966408125707944647<39>
P57 = 149326430979469122412950225463477963912388764701360493229<57>
Sun May 24 22:39:56 2009 Msieve v. 1.41 Sun May 24 22:39:56 2009 random seeds: 06f87b70 c674ec23 Sun May 24 22:39:56 2009 factoring 146182122613479262289613169053058939851336705039243163791190781853654247444845783800423750295163 (96 digits) Sun May 24 22:39:56 2009 searching for 15-digit factors Sun May 24 22:39:58 2009 commencing quadratic sieve (96-digit input) Sun May 24 22:39:58 2009 using multiplier of 43 Sun May 24 22:39:58 2009 using 32kb Intel Core sieve core Sun May 24 22:39:58 2009 sieve interval: 36 blocks of size 32768 Sun May 24 22:39:58 2009 processing polynomials in batches of 6 Sun May 24 22:39:58 2009 using a sieve bound of 2231351 (82021 primes) Sun May 24 22:39:58 2009 using large prime bound of 334702650 (28 bits) Sun May 24 22:39:58 2009 using double large prime bound of 2209970306285550 (43-51 bits) Sun May 24 22:39:58 2009 using trial factoring cutoff of 51 bits Sun May 24 22:39:58 2009 polynomial 'A' values have 13 factors Mon May 25 02:48:05 2009 82159 relations (19904 full + 62255 combined from 1225582 partial), need 82117 Mon May 25 02:48:11 2009 begin with 1245486 relations Mon May 25 02:48:11 2009 reduce to 213522 relations in 10 passes Mon May 25 02:48:11 2009 attempting to read 213522 relations Mon May 25 02:48:14 2009 recovered 213522 relations Mon May 25 02:48:14 2009 recovered 200363 polynomials Mon May 25 02:48:15 2009 attempting to build 82159 cycles Mon May 25 02:48:15 2009 found 82159 cycles in 5 passes Mon May 25 02:48:15 2009 distribution of cycle lengths: Mon May 25 02:48:15 2009 length 1 : 19904 Mon May 25 02:48:15 2009 length 2 : 14671 Mon May 25 02:48:15 2009 length 3 : 13906 Mon May 25 02:48:15 2009 length 4 : 11285 Mon May 25 02:48:15 2009 length 5 : 8474 Mon May 25 02:48:15 2009 length 6 : 5479 Mon May 25 02:48:15 2009 length 7 : 3542 Mon May 25 02:48:15 2009 length 9+: 4898 Mon May 25 02:48:15 2009 largest cycle: 19 relations Mon May 25 02:48:15 2009 matrix is 82021 x 82159 (22.0 MB) with weight 5431070 (66.10/col) Mon May 25 02:48:15 2009 sparse part has weight 5431070 (66.10/col) Mon May 25 02:48:16 2009 filtering completed in 3 passes Mon May 25 02:48:16 2009 matrix is 78309 x 78373 (21.1 MB) with weight 5212730 (66.51/col) Mon May 25 02:48:16 2009 sparse part has weight 5212730 (66.51/col) Mon May 25 02:48:16 2009 saving the first 48 matrix rows for later Mon May 25 02:48:16 2009 matrix is 78261 x 78373 (13.2 MB) with weight 4124874 (52.63/col) Mon May 25 02:48:16 2009 sparse part has weight 2986916 (38.11/col) Mon May 25 02:48:16 2009 matrix includes 64 packed rows Mon May 25 02:48:16 2009 using block size 31349 for processor cache size 3072 kB Mon May 25 02:48:17 2009 commencing Lanczos iteration Mon May 25 02:48:17 2009 memory use: 12.7 MB Mon May 25 02:48:51 2009 lanczos halted after 1240 iterations (dim = 78257) Mon May 25 02:48:51 2009 recovered 15 nontrivial dependencies Mon May 25 02:48:51 2009 prp39 factor: 978943390360530542658966408125707944647 Mon May 25 02:48:51 2009 prp57 factor: 149326430979469122412950225463477963912388764701360493229 Mon May 25 02:48:51 2009 elapsed time 04:08:55
(56·10149+61)/9 = 6(2)1489<150> = 37 · 367 · 1051 · 341777 · 77367889 · 31670079807843380454722401<26> · C104
C104 = P36 · P68
P36 = 832195583129323149983272972560380221<36>
P68 = 62560018490695800182384977161797681356057234677991482841691500909777<68>
Mon May 25 05:33:46 2009 Msieve v. 1.41 Mon May 25 05:33:46 2009 random seeds: 018af4c8 d7d4be39 Mon May 25 05:33:46 2009 factoring 52062171068445830162659955825043517121841057140092515963953339641548995481118465125414925940886536320717 (104 digits) Mon May 25 05:33:47 2009 searching for 15-digit factors Mon May 25 05:33:48 2009 commencing number field sieve (104-digit input) Mon May 25 05:33:49 2009 R0: -129310016354264376017 Mon May 25 05:33:49 2009 R1: 37729512247 Mon May 25 05:33:49 2009 A0: -12303180889884472428281196 Mon May 25 05:33:49 2009 A1: 6672523770448843233576 Mon May 25 05:33:49 2009 A2: 8027043772154227 Mon May 25 05:33:49 2009 A3: -9727220638494 Mon May 25 05:33:49 2009 A4: -11933922 Mon May 25 05:33:49 2009 A5: 1440 Mon May 25 05:33:49 2009 skew 42751.50, size 6.886428e-010, alpha -5.640437, combined = 2.142178e-009 Mon May 25 05:33:49 2009 Mon May 25 05:33:49 2009 commencing relation filtering Mon May 25 05:33:49 2009 commencing duplicate removal, pass 1 Mon May 25 05:34:50 2009 found 252836 hash collisions in 4403292 relations Mon May 25 05:35:03 2009 added 31659 free relations Mon May 25 05:35:03 2009 commencing duplicate removal, pass 2 Mon May 25 05:35:24 2009 found 229075 duplicates and 4205875 unique relations Mon May 25 05:35:24 2009 memory use: 36.7 MB Mon May 25 05:35:24 2009 reading rational ideals above 2686976 Mon May 25 05:35:24 2009 reading algebraic ideals above 2686976 Mon May 25 05:35:24 2009 commencing singleton removal, pass 1 Mon May 25 05:36:10 2009 relations with 0 large ideals: 105708 Mon May 25 05:36:10 2009 relations with 1 large ideals: 667887 Mon May 25 05:36:10 2009 relations with 2 large ideals: 1524536 Mon May 25 05:36:10 2009 relations with 3 large ideals: 1433892 Mon May 25 05:36:10 2009 relations with 4 large ideals: 443789 Mon May 25 05:36:10 2009 relations with 5 large ideals: 0 Mon May 25 05:36:10 2009 relations with 6 large ideals: 30063 Mon May 25 05:36:10 2009 relations with 7+ large ideals: 0 Mon May 25 05:36:10 2009 4205875 relations and about 4232833 large ideals Mon May 25 05:36:10 2009 commencing singleton removal, pass 2 Mon May 25 05:36:57 2009 found 1957334 singletons Mon May 25 05:36:57 2009 current dataset: 2248541 relations and about 1850202 large ideals Mon May 25 05:36:57 2009 commencing singleton removal, pass 3 Mon May 25 05:37:22 2009 found 469164 singletons Mon May 25 05:37:22 2009 current dataset: 1779377 relations and about 1341428 large ideals Mon May 25 05:37:22 2009 commencing singleton removal, final pass Mon May 25 05:37:42 2009 memory use: 33.3 MB Mon May 25 05:37:42 2009 commencing in-memory singleton removal Mon May 25 05:37:42 2009 begin with 1779377 relations and 1378143 unique ideals Mon May 25 05:37:44 2009 reduce to 1436060 relations and 1023327 ideals in 17 passes Mon May 25 05:37:44 2009 max relations containing the same ideal: 15 Mon May 25 05:37:44 2009 reading rational ideals above 100000 Mon May 25 05:37:44 2009 reading algebraic ideals above 100000 Mon May 25 05:37:44 2009 commencing singleton removal, final pass Mon May 25 05:38:06 2009 keeping 1311028 ideals with weight <= 25, new excess is 105073 Mon May 25 05:38:08 2009 memory use: 46.3 MB Mon May 25 05:38:08 2009 commencing in-memory singleton removal Mon May 25 05:38:08 2009 begin with 1436466 relations and 1311028 unique ideals Mon May 25 05:38:10 2009 reduce to 1418531 relations and 1291094 ideals in 14 passes Mon May 25 05:38:10 2009 max relations containing the same ideal: 25 Mon May 25 05:38:11 2009 relations with 0 large ideals: 3714 Mon May 25 05:38:11 2009 relations with 1 large ideals: 36679 Mon May 25 05:38:11 2009 relations with 2 large ideals: 154974 Mon May 25 05:38:11 2009 relations with 3 large ideals: 345255 Mon May 25 05:38:11 2009 relations with 4 large ideals: 428854 Mon May 25 05:38:11 2009 relations with 5 large ideals: 297777 Mon May 25 05:38:11 2009 relations with 6 large ideals: 120870 Mon May 25 05:38:11 2009 relations with 7+ large ideals: 30408 Mon May 25 05:38:11 2009 commencing 2-way merge Mon May 25 05:38:13 2009 reduce to 793834 relation sets and 666539 unique ideals Mon May 25 05:38:13 2009 ignored 142 oversize relation sets Mon May 25 05:38:13 2009 commencing full merge Mon May 25 05:38:26 2009 memory use: 51.8 MB Mon May 25 05:38:26 2009 found 348548 cycles, need 336739 Mon May 25 05:38:26 2009 weight of 336739 cycles is about 23875670 (70.90/cycle) Mon May 25 05:38:26 2009 distribution of cycle lengths: Mon May 25 05:38:26 2009 1 relations: 37628 Mon May 25 05:38:26 2009 2 relations: 36630 Mon May 25 05:38:26 2009 3 relations: 35577 Mon May 25 05:38:26 2009 4 relations: 32071 Mon May 25 05:38:26 2009 5 relations: 28916 Mon May 25 05:38:26 2009 6 relations: 25285 Mon May 25 05:38:26 2009 7 relations: 21939 Mon May 25 05:38:26 2009 8 relations: 18742 Mon May 25 05:38:26 2009 9 relations: 16541 Mon May 25 05:38:26 2009 10+ relations: 83410 Mon May 25 05:38:26 2009 heaviest cycle: 23 relations Mon May 25 05:38:26 2009 commencing cycle optimization Mon May 25 05:38:27 2009 start with 2248490 relations Mon May 25 05:38:33 2009 pruned 62276 relations Mon May 25 05:38:33 2009 memory use: 57.9 MB Mon May 25 05:38:33 2009 distribution of cycle lengths: Mon May 25 05:38:33 2009 1 relations: 37628 Mon May 25 05:38:33 2009 2 relations: 37508 Mon May 25 05:38:33 2009 3 relations: 36957 Mon May 25 05:38:33 2009 4 relations: 32991 Mon May 25 05:38:33 2009 5 relations: 29754 Mon May 25 05:38:33 2009 6 relations: 25609 Mon May 25 05:38:33 2009 7 relations: 22241 Mon May 25 05:38:33 2009 8 relations: 18838 Mon May 25 05:38:33 2009 9 relations: 16417 Mon May 25 05:38:33 2009 10+ relations: 78796 Mon May 25 05:38:33 2009 heaviest cycle: 23 relations Mon May 25 05:38:34 2009 RelProcTime: 240 Mon May 25 05:38:34 2009 Mon May 25 05:38:34 2009 commencing linear algebra Mon May 25 05:38:34 2009 read 336739 cycles Mon May 25 05:38:35 2009 cycles contain 1199734 unique relations Mon May 25 05:38:48 2009 read 1199734 relations Mon May 25 05:38:49 2009 using 20 quadratic characters above 67107320 Mon May 25 05:38:57 2009 building initial matrix Mon May 25 05:39:13 2009 memory use: 131.8 MB Mon May 25 05:39:13 2009 read 336739 cycles Mon May 25 05:39:14 2009 matrix is 336429 x 336739 (95.4 MB) with weight 32260771 (95.80/col) Mon May 25 05:39:14 2009 sparse part has weight 22649350 (67.26/col) Mon May 25 05:39:19 2009 filtering completed in 3 passes Mon May 25 05:39:19 2009 matrix is 333871 x 334071 (94.9 MB) with weight 32048592 (95.93/col) Mon May 25 05:39:19 2009 sparse part has weight 22527086 (67.43/col) Mon May 25 05:39:20 2009 read 334071 cycles Mon May 25 05:39:21 2009 matrix is 333871 x 334071 (94.9 MB) with weight 32048592 (95.93/col) Mon May 25 05:39:21 2009 sparse part has weight 22527086 (67.43/col) Mon May 25 05:39:21 2009 saving the first 48 matrix rows for later Mon May 25 05:39:21 2009 matrix is 333823 x 334071 (91.6 MB) with weight 25399168 (76.03/col) Mon May 25 05:39:21 2009 sparse part has weight 22011721 (65.89/col) Mon May 25 05:39:21 2009 matrix includes 64 packed rows Mon May 25 05:39:21 2009 using block size 65536 for processor cache size 3072 kB Mon May 25 05:39:24 2009 commencing Lanczos iteration Mon May 25 05:39:24 2009 memory use: 89.0 MB Mon May 25 05:55:18 2009 lanczos halted after 5279 iterations (dim = 333823) Mon May 25 05:55:19 2009 recovered 30 nontrivial dependencies Mon May 25 05:55:19 2009 BLanczosTime: 1005 Mon May 25 05:55:19 2009 Mon May 25 05:55:19 2009 commencing square root phase Mon May 25 05:55:19 2009 reading relations for dependency 1 Mon May 25 05:55:20 2009 read 167116 cycles Mon May 25 05:55:20 2009 cycles contain 736925 unique relations Mon May 25 05:55:42 2009 read 736925 relations Mon May 25 05:55:46 2009 multiplying 597656 relations Mon May 25 05:57:16 2009 multiply complete, coefficients have about 22.86 million bits Mon May 25 05:57:17 2009 initial square root is modulo 3683189 Mon May 25 05:59:23 2009 reading relations for dependency 2 Mon May 25 05:59:23 2009 read 166895 cycles Mon May 25 05:59:24 2009 cycles contain 736574 unique relations Mon May 25 05:59:43 2009 read 736574 relations Mon May 25 05:59:47 2009 multiplying 597616 relations Mon May 25 06:01:16 2009 multiply complete, coefficients have about 22.86 million bits Mon May 25 06:01:17 2009 initial square root is modulo 3677743 Mon May 25 06:03:23 2009 reading relations for dependency 3 Mon May 25 06:03:23 2009 read 167360 cycles Mon May 25 06:03:23 2009 cycles contain 737677 unique relations Mon May 25 06:03:32 2009 read 737677 relations Mon May 25 06:03:36 2009 multiplying 598594 relations Mon May 25 06:05:05 2009 multiply complete, coefficients have about 22.89 million bits Mon May 25 06:05:06 2009 initial square root is modulo 3763663 Mon May 25 06:07:13 2009 reading relations for dependency 4 Mon May 25 06:07:13 2009 read 167048 cycles Mon May 25 06:07:13 2009 cycles contain 736390 unique relations Mon May 25 06:07:30 2009 read 736390 relations Mon May 25 06:07:34 2009 multiplying 598082 relations Mon May 25 06:09:02 2009 multiply complete, coefficients have about 22.88 million bits Mon May 25 06:09:03 2009 initial square root is modulo 3720209 Mon May 25 06:11:10 2009 sqrtTime: 951 Mon May 25 06:11:10 2009 prp36 factor: 832195583129323149983272972560380221 Mon May 25 06:11:10 2009 prp68 factor: 62560018490695800182384977161797681356057234677991482841691500909777 Mon May 25 06:11:10 2009 elapsed time 00:37:24 total time 6.5 hours
By Sinkiti Sibata / GGNFS, Msieve / May 25, 2009
(56·10138+43)/9 = 6(2)1377<139> = 11 · 941 · 2081 · 73319904863013559<17> · C115
C115 = P54 · P62
P54 = 252582742401819496101004032224677833111279988837135163<54>
P62 = 15597879529518414507388705585990268985508739535035277037248401<62>
Number: 62227_138 N=3939755187218963168564073683454277537648892061874153338956209989139586816829311362788017536263011469626285242624363 ( 115 digits) SNFS difficulty: 141 digits. Divisors found: r1=252582742401819496101004032224677833111279988837135163 (pp54) r2=15597879529518414507388705585990268985508739535035277037248401 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.47 hours. Scaled time: 4.48 units (timescale=0.473). Factorization parameters were as follows: name: 62227_138 n: 3939755187218963168564073683454277537648892061874153338956209989139586816829311362788017536263011469626285242624363 m: 10000000000000000000000000000 deg: 5 c5: 14 c0: 1075 skew: 2.38 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1490001) Primes: RFBsize:119758, AFBsize:119798, largePrimes:3500496 encountered Relations: rels:3503621, finalFF:331649 Max relations in full relation-set: 28 Initial matrix: 239623 x 331649 with sparse part having weight 26600511. Pruned matrix : 205538 x 206800 with weight 12852082. Total sieving time: 8.47 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.79 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 9.47 hours. --------- CPU info (if available) ----------
(56·10139+43)/9 = 6(2)1387<140> = 36314261237<11> · C130
C130 = P53 · P78
P53 = 16917846419888696768298044123057919511670201250983773<53>
P78 = 101279891163629551253563290479520952949599673934425934851975389746050526567827<78>
Number: 62227_139 N=1713437644129327058688367892522417892364908148116768536706504340616505826625808007270359281141562335294994678738154229856960871271 ( 130 digits) SNFS difficulty: 141 digits. Divisors found: r1=16917846419888696768298044123057919511670201250983773 (pp53) r2=101279891163629551253563290479520952949599673934425934851975389746050526567827 (pp78) Version: Msieve-1.40 Total time: 5.80 hours. Scaled time: 11.89 units (timescale=2.051). Factorization parameters were as follows: name: 62227_139 n: 1713437644129327058688367892522417892364908148116768536706504340616505826625808007270359281141562335294994678738154229856960871271 m: 10000000000000000000000000000 deg: 5 c5: 28 c0: 215 skew: 1.50 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [795000, 1495001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 237030 x 237272 Total sieving time: 5.51 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 5.80 hours. --------- CPU info (if available) ----------
(56·10133+61)/9 = 6(2)1329<134> = 32 · 23 · 57791 · 11594399 · C120
C120 = P40 · P81
P40 = 2050093115527204261907231651787933907889<40>
P81 = 218823083595232013815530432131300867020797233718074161750759354297345178113504747<81>
Number: 62229_133 N=448607697197019060625892563531944678283091071139362032611439778047028539705459320296028668163660435906071845109662249083 ( 120 digits) SNFS difficulty: 135 digits. Divisors found: r1=2050093115527204261907231651787933907889 (pp40) r2=218823083595232013815530432131300867020797233718074161750759354297345178113504747 (pp81) Version: Msieve-1.40 Total time: 5.02 hours. Scaled time: 12.86 units (timescale=2.564). Factorization parameters were as follows: name: 62229_133 n: 448607697197019060625892563531944678283091071139362032611439778047028539705459320296028668163660435906071845109662249083 m: 400000000000000000000000000 deg: 5 c5: 875 c0: 976 skew: 1.02 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1395001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 205047 x 205295 Total sieving time: 5.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135.000,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 5.02 hours. --------- CPU info (if available) ----------
(56·10144+43)/9 = 6(2)1437<145> = 11 · 1129 · 7321697527<10> · 74149919989<11> · 286114807428707<15> · C106
C106 = P40 · P67
P40 = 1032081249274106458614747291742945237133<40>
P67 = 3125231534392205434001538433222177150023095481011878101744560218381<67>
Number: 62227_144 N=3225492866286339988432275090241219659458968821377202212036109173924177050533883647824390348308870310341673 ( 106 digits) SNFS difficulty: 146 digits. Divisors found: r1=1032081249274106458614747291742945237133 (pp40) r2=3125231534392205434001538433222177150023095481011878101744560218381 (pp67) Version: Msieve-1.40 Total time: 8.53 hours. Scaled time: 17.22 units (timescale=2.019). Factorization parameters were as follows: name: 62227_144 n: 3225492866286339988432275090241219659458968821377202212036109173924177050533883647824390348308870310341673 m: 100000000000000000000000000000 deg: 5 c5: 28 c0: 215 skew: 1.50 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 1965001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 295553 x 295788 Total sieving time: 8.07 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.29 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 8.53 hours. --------- CPU info (if available) ----------
(56·10131+61)/9 = 6(2)1309<132> = 37 · 283 · 643883 · C122
C122 = P57 · P66
P57 = 159686308718439159016667656009306239856813271212893922903<57>
P66 = 577939951522268816742636674750823088926876138623548752575547561151<66>
Number: 62229_131 N=92289097519504779862952719554869071871120983603499068731655019677004049875514370065206669198915030245941280087690671941353 ( 122 digits) SNFS difficulty: 133 digits. Divisors found: r1=159686308718439159016667656009306239856813271212893922903 (pp57) r2=577939951522268816742636674750823088926876138623548752575547561151 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.12 hours. Scaled time: 2.90 units (timescale=0.474). Factorization parameters were as follows: name: 62229_131 n: 92289097519504779862952719554869071871120983603499068731655019677004049875514370065206669198915030245941280087690671941353 m: 200000000000000000000000000 deg: 5 c5: 35 c0: 122 skew: 1.28 type: snfs lss: 1 rlim: 1160000 alim: 1160000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1160000/1160000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [580000, 1080001) Primes: RFBsize:90030, AFBsize:89794, largePrimes:2889130 encountered Relations: rels:2764091, finalFF:201528 Max relations in full relation-set: 28 Initial matrix: 179890 x 201528 with sparse part having weight 15605433. Pruned matrix : 172692 x 173655 with weight 11444066. Total sieving time: 5.44 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.50 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1160000,1160000,26,26,47,47,2.3,2.3,50000 total time: 6.12 hours. --------- CPU info (if available) ----------
(56·10135+61)/9 = 6(2)1349<136> = 149 · 2769863903<10> · 121665866875249877<18> · C108
C108 = P45 · P63
P45 = 209015100514626233074544372015842670379194321<45>
P63 = 592863072551192271076213234179270899072477314898132518913979571<63>
Number: 62229_135 N=123917334700697597414242200320681797444203769876573619477198778577783375289171534465147893407700710833216291 ( 108 digits) SNFS difficulty: 136 digits. Divisors found: r1=209015100514626233074544372015842670379194321 (pp45) r2=592863072551192271076213234179270899072477314898132518913979571 (pp63) Version: Msieve-1.40 Total time: 3.83 hours. Scaled time: 9.81 units (timescale=2.564). Factorization parameters were as follows: name: 62229_135 n: 123917334700697597414242200320681797444203769876573619477198778577783375289171534465147893407700710833216291 m: 1000000000000000000000000000 deg: 5 c5: 56 c0: 61 skew: 1.02 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1190001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 171604 x 171852 Total sieving time: 3.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.83 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / May 25, 2009
(56·10160-11)/9 = 6(2)1591<161> = 269 · 373 · 1230295747861<13> · C144
C144 = P63 · P81
P63 = 775846871621927753324108755276601243288486937913721807341743493<63>
P81 = 649679060495355895325070925859546682086034606213142987112835244431188959754868821<81>
Number: n N=504051466643595019894954236222448362647569780846853338415788166117574360723140988666841004315521289230578075817789845038183606421744841645331753 ( 144 digits) SNFS difficulty: 162 digits. Divisors found: Mon May 25 02:47:00 2009 prp63 factor: 775846871621927753324108755276601243288486937913721807341743493 Mon May 25 02:47:00 2009 prp81 factor: 649679060495355895325070925859546682086034606213142987112835244431188959754868821 Mon May 25 02:47:00 2009 elapsed time 01:07:14 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 24.56 hours. Scaled time: 65.32 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_159_1 n: 504051466643595019894954236222448362647569780846853338415788166117574360723140988666841004315521289230578075817789845038183606421744841645331753 m: 200000000000000000000000000000000 deg: 5 c5: 7 c0: -44 skew: 1.44 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1800000, 3276551) Primes: RFBsize:256726, AFBsize:256192, largePrimes:13666778 encountered Relations: rels:12674729, finalFF:493008 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1249037 hash collisions in 14356305 relations Msieve: matrix is 624633 x 624881 (166.0 MB) Total sieving time: 24.22 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,56,56,2.4,2.4,100000 total time: 24.56 hours. --------- CPU info (if available) ----------
(56·10162-11)/9 = 6(2)1611<163> = 197 · 252142207 · 111065768926160413<18> · C136
C136 = P49 · P87
P49 = 1823252523842627786390503818226391271537327698861<49>
P87 = 618595406100207642323032126026402169934936034070394900447336655500101739827442920178543<87>
Number: n N=1127855635409658852402902632598064353581145150105534602459045513277510690669157474826168615022942292427479973569208316215515613457739523 ( 136 digits) SNFS difficulty: 163 digits. Divisors found: Mon May 25 02:50:27 2009 prp49 factor: 1823252523842627786390503818226391271537327698861 Mon May 25 02:50:27 2009 prp87 factor: 618595406100207642323032126026402169934936034070394900447336655500101739827442920178543 Mon May 25 02:50:27 2009 elapsed time 01:11:34 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 23.92 hours. Scaled time: 62.84 units (timescale=2.627). Factorization parameters were as follows: name: KA_6_2_161_1 n: 1127855635409658852402902632598064353581145150105534602459045513277510690669157474826168615022942292427479973569208316215515613457739523 m: 200000000000000000000000000000000 deg: 5 c5: 175 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1900000, 3274757) Primes: RFBsize:269987, AFBsize:270713, largePrimes:13952484 encountered Relations: rels:12951526, finalFF:549074 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1202406 hash collisions in 14619892 relations Msieve: matrix is 621423 x 621671 (167.0 MB) Total sieving time: 23.56 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,28,28,56,56,2.4,2.4,100000 total time: 23.92 hours. --------- CPU info (if available) ----------
(56·10167-11)/9 = 6(2)1661<168> = 3 · 209567 · C162
C162 = P50 · P113
P50 = 19443110822937189264550767307016668556003239123591<50>
P113 = 50902090040427650194639698198812141669545651810512442623714907082500172503194814420162690721388875673540845020231<113>
Number: n N=989694977775162155336514849224388417104827608389715019098462102370160413650085210970273981148784910827598846227733409398461625195796129196903173722043105104369521 ( 162 digits) SNFS difficulty: 168 digits. Divisors found: Mon May 25 13:47:58 2009 prp50 factor: 19443110822937189264550767307016668556003239123591 Mon May 25 13:47:58 2009 prp113 factor: 50902090040427650194639698198812141669545651810512442623714907082500172503194814420162690721388875673540845020231 Mon May 25 13:47:58 2009 elapsed time 01:17:42 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 34.31 hours. Scaled time: 91.25 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_166_1 n: 989694977775162155336514849224388417104827608389715019098462102370160413650085210970273981148784910827598846227733409398461625195796129196903173722043105104369521 m: 2000000000000000000000000000000000 deg: 5 c5: 175 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 4166023) Primes: RFBsize:315948, AFBsize:316727, largePrimes:15604488 encountered Relations: rels:14708231, finalFF:619987 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1424982 hash collisions in 15945458 relations Msieve: matrix is 805558 x 805806 (218.3 MB) Total sieving time: 33.73 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 34.31 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / May 25, 2009
(10203-7)/3 = (3)2021<203> = 61 · 137458709 · 74987928326523863886652073<26> · 10610358077968123193638709904195047<35> · C133
C133 = P46 · P88
P46 = 4587999570650147356774231952309279185249023649<46>
P88 = 1089010042319197941814674558968741326938785715705358274243860464565699180298897115436301<88>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=4169885631 Step 1 took 583777ms Step 2 took 152715ms ********** Factor found in step 2: 4587999570650147356774231952309279185249023649 Found probable prime factor of 46 digits: 4587999570650147356774231952309279185249023649 Probable prime cofactor 1089010042319197941814674558968741326938785715705358274243860464565699180298897115436301 has 88 digits
(56·10199+61)/9 = 6(2)1989<200> = 3 · 23 · 579433 · 312051449 · 81427551415291<14> · 4489531305364324771<19> · 39767223830636299661<20> · C132
C132 = P37 · P96
P37 = 1209584055008769471318521911851364117<37>
P96 = 283617674035040392384807441800220868385912808582004760099992553834346079760320670717642984524689<96>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1028574052 Step 1 took 41086ms Step 2 took 15269ms ********** Factor found in step 2: 1209584055008769471318521911851364117 Found probable prime factor of 37 digits: 1209584055008769471318521911851364117 Probable prime cofactor 283617674035040392384807441800220868385912808582004760099992553834346079760320670717642984524689 has 96 digits
By Serge Batalov / GMP-ECM 6.2.3, Msieve / May 25, 2009
(56·10159+61)/9 = 6(2)1589<160> = 136879 · 1401744473<10> · C146
C146 = P34 · C113
P34 = 1017640607768771362296572005537507<34>
C113 = [31867310563954942460860793410742458897721802139714768023254519185323949327123209616553915892182082536506231931441<113>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2708368817 Step 1 took 9001ms Step 2 took 5336ms ********** Factor found in step 2: 1017640607768771362296572005537507 Found probable prime factor of 34 digits: 1017640607768771362296572005537507 Composite cofactor has 113 digits
(56·10170+61)/9 = 6(2)1699<171> = 37 · 67 · 60348354518122561506923<23> · C145
C145 = P35 · C110
P35 = 50323262668560143510940878296447111<35>
C110 = [82648460313433883981241425769067111639470813131991163858925087068467532014766035327819208292972854598269167367<110>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3826816614 Step 1 took 9036ms Step 2 took 4981ms ********** Factor found in step 2: 50323262668560143510940878296447111 Found probable prime factor of 35 digits: 50323262668560143510940878296447111 Composite cofactor has 110 digits
(56·10195+61)/9 = 6(2)1949<196> = 43 · 3182601396073271461249<22> · C173
C173 = P32 · C142
P32 = 16693093986305324656984769853199<32>
C142 = [2723691869854779319603026289539237147981460259414140512173402438206782609228973001831820347551262311828517281485882982830362108368597411785553<142>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3990195945 Step 1 took 10597ms Step 2 took 6004ms ********** Factor found in step 2: 16693093986305324656984769853199 Found probable prime factor of 32 digits: 16693093986305324656984769853199 Composite cofactor has 142 digits
(56·10191+61)/9 = 6(2)1909<192> = 37 · 975849195904534229<18> · C173
C173 = P30 · P143
P30 = 635681258779264596324193416307<30>
P143 = 27109510583283492081643976278683612870546015190877688257375898962423467107326967638290646508596450189747001674490682798108581473816237145499039<143>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3303208364 Step 1 took 10609ms Step 2 took 5792ms ********** Factor found in step 2: 635681258779264596324193416307 Found probable prime factor of 30 digits: 635681258779264596324193416307 Probable prime cofactor has 143 digits
(56·10107+61)/9 = 6(2)1069<108> = 37 · 379 · 112927 · 55560881 · C91
C91 = P37 · P55
P37 = 2295077568936423863494133074142261789<37>
P55 = 3081344817769656577369011100621445436455662919402022161<55>
SNFS difficulty: 108 digits. Divisors found: r1=2295077568936423863494133074142261789 (pp37) r2=3081344817769656577369011100621445436455662919402022161 (pp55) Version: Msieve v. 1.41 Total time: 0.43 hours. Scaled time: 1.27 units (timescale=2.952). Factorization parameters were as follows: n: 7071925373421631420796761079039365887080635651240836510936657912643231821326147396841506029 m: 2000000000000000000000 deg: 5 c5: 175 c0: 61 skew: 0.81 type: snfs lss: 1 rlim: 450000 alim: 450000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 375001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 40775 x 41003 Total sieving time: 0.40 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,108.000,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.2,2.2,50000 total time: 0.43 hours.
(56·10109+61)/9 = 6(2)1089<110> = 3 · 59 · 2377 · 71947 · C100
C100 = P40 · P60
P40 = 2824281279310317588227094570203151997417<40>
P60 = 727817397218189875999836925903135109554540687624630777625599<60>
SNFS difficulty: 111 digits. Divisors found: r1=2824281279310317588227094570203151997417 (pp40) r2=727817397218189875999836925903135109554540687624630777625599 (pp60) Version: Msieve v. 1.41 Total time: 0.41 hours. Scaled time: 1.22 units (timescale=2.953). Factorization parameters were as follows: n: 2055561049719694884428140807935064724630352561769741255986414432336507158381803421499204389441077783 m: 10000000000000000000000 deg: 5 c5: 28 c0: 305 skew: 1.61 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 48123 x 48349 Total sieving time: 0.38 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.41 hours.
Factorizations of 622...229 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM 6.2.1, Msieve v. 1.41 / May 24, 2009
(56·10155+43)/9 = 6(2)1547<156> = 3 · 59 · 2789452241<10> · 2996112633712301879539<22> · C123
C123 = P30 · P35 · P59
P30 = 389870705611988238369726947353<30>
P35 = 92761963956040897493510077601053423<35>
P59 = 11630667659548072946415545987059571680567690307767207819271<59>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2813365054 Step 1 took 11317ms Step 2 took 5645ms ********** Factor found in step 2: 389870705611988238369726947353 Found probable prime factor of 30 digits: 389870705611988238369726947353 Composite cofactor 1078883574219688887059781833004601860775772060817862175000544130711681997737837040792199914633 has 94 digits ---------------------- Sun May 24 19:37:17 2009 Msieve v. 1.41 Sun May 24 19:37:17 2009 random seeds: f1b7c9b4 8e4f20a1 Sun May 24 19:37:17 2009 factoring 1078883574219688887059781833004601860775772060817862175000544130711681997737837040792199914633 (94 digits) Sun May 24 19:37:18 2009 searching for 15-digit factors Sun May 24 19:37:19 2009 commencing quadratic sieve (94-digit input) Sun May 24 19:37:19 2009 using multiplier of 2 Sun May 24 19:37:19 2009 using 32kb Intel Core sieve core Sun May 24 19:37:19 2009 sieve interval: 36 blocks of size 32768 Sun May 24 19:37:19 2009 processing polynomials in batches of 6 Sun May 24 19:37:19 2009 using a sieve bound of 1980947 (74118 primes) Sun May 24 19:37:19 2009 using large prime bound of 255542163 (27 bits) Sun May 24 19:37:19 2009 using double large prime bound of 1359667019806545 (42-51 bits) Sun May 24 19:37:19 2009 using trial factoring cutoff of 51 bits Sun May 24 19:37:19 2009 polynomial 'A' values have 12 factors Sun May 24 22:08:52 2009 74293 relations (17920 full + 56373 combined from 1039979 partial), need 74214 Sun May 24 22:08:53 2009 begin with 1057899 relations Sun May 24 22:08:54 2009 reduce to 194343 relations in 11 passes Sun May 24 22:08:54 2009 attempting to read 194343 relations Sun May 24 22:08:55 2009 recovered 194343 relations Sun May 24 22:08:55 2009 recovered 178893 polynomials Sun May 24 22:08:55 2009 attempting to build 74293 cycles Sun May 24 22:08:55 2009 found 74293 cycles in 5 passes Sun May 24 22:08:55 2009 distribution of cycle lengths: Sun May 24 22:08:55 2009 length 1 : 17920 Sun May 24 22:08:55 2009 length 2 : 12771 Sun May 24 22:08:55 2009 length 3 : 12586 Sun May 24 22:08:55 2009 length 4 : 10058 Sun May 24 22:08:55 2009 length 5 : 7860 Sun May 24 22:08:55 2009 length 6 : 5167 Sun May 24 22:08:55 2009 length 7 : 3339 Sun May 24 22:08:55 2009 length 9+: 4592 Sun May 24 22:08:55 2009 largest cycle: 20 relations Sun May 24 22:08:55 2009 matrix is 74118 x 74293 (19.0 MB) with weight 4686053 (63.08/col) Sun May 24 22:08:55 2009 sparse part has weight 4686053 (63.08/col) Sun May 24 22:08:56 2009 filtering completed in 3 passes Sun May 24 22:08:56 2009 matrix is 70817 x 70881 (18.2 MB) with weight 4498517 (63.47/col) Sun May 24 22:08:56 2009 sparse part has weight 4498517 (63.47/col) Sun May 24 22:08:56 2009 saving the first 48 matrix rows for later Sun May 24 22:08:56 2009 matrix is 70769 x 70881 (10.7 MB) with weight 3460039 (48.81/col) Sun May 24 22:08:56 2009 sparse part has weight 2390791 (33.73/col) Sun May 24 22:08:56 2009 matrix includes 64 packed rows Sun May 24 22:08:56 2009 using block size 28352 for processor cache size 6144 kB Sun May 24 22:08:56 2009 commencing Lanczos iteration Sun May 24 22:08:56 2009 memory use: 10.9 MB Sun May 24 22:09:14 2009 lanczos halted after 1121 iterations (dim = 70765) Sun May 24 22:09:15 2009 recovered 14 nontrivial dependencies Sun May 24 22:09:15 2009 prp35 factor: 92761963956040897493510077601053423 Sun May 24 22:09:15 2009 prp59 factor: 11630667659548072946415545987059571680567690307767207819271 Sun May 24 22:09:15 2009 elapsed time 02:31:58
By Sinkiti Sibata / GMP-ECM 6.2, Msieve / May 24, 2009
(56·10171+43)/9 = 6(2)1707<172> = 13 · 31 · 866555766780581<15> · 104333591897662925186183537264500679<36> · C120
C120 = P30 · P90
P30 = 913359407733730867454204942251<30>
P90 = 186972652452924239112747207858060766215361741312914837100521197879242145306970573282591041<90>
Run 38 out of 2318: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3857517126 Step 1 took 44672ms Step 2 took 20984ms ********** Factor found in step 2: 913359407733730867454204942251 Found probable prime factor of 30 digits: 913359407733730867454204942251 Probable prime cofactor 18697265245292423911274720785806076621536174131291483710 0521197879242145306970573282591041 has 90 digits
(56·10121+43)/9 = 6(2)1207<122> = 220771 · C117
C117 = P49 · P68
P49 = 9837523052183919446566376509856910961364164092149<49>
P68 = 28649545041019888937504172137615515915556659334640337227186636743213<68>
Number: 62227_121 N=281840559775614651481499935327657265774138008262961268564359550041546318231208909785353249395175191588669808182334737 ( 117 digits) SNFS difficulty: 123 digits. Divisors found: r1=9837523052183919446566376509856910961364164092149 (pp49) r2=28649545041019888937504172137615515915556659334640337227186636743213 (pp68) Version: Msieve-1.40 Total time: 1.43 hours. Scaled time: 2.99 units (timescale=2.092). Factorization parameters were as follows: name: 62227_121 n: 281840559775614651481499935327657265774138008262961268564359550041546318231208909785353249395175191588669808182334737 m: 2000000000000000000000000 deg: 5 c5: 35 c0: 86 skew: 1.20 type: snfs lss: 1 rlim: 790000 alim: 790000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 790000/790000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [395000, 595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 77044 x 77272 Total sieving time: 1.38 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,123.000,5,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.2,2.2,50000 total time: 1.43 hours. --------- CPU info (if available) ----------
(56·10131+43)/9 = 6(2)1307<132> = 3 · 241 · 4974095003<10> · 12592035475039<14> · C107
C107 = P36 · P71
P36 = 446751495478926418011405201098840477<36>
P71 = 30756094804548521464938261943862495082201487416789170131157756023139761<71>
Number: 62227_131 N=13740331349023691081262371544782048819022677210235262837555319619113317592126935803456752792873718014905997 ( 107 digits) SNFS difficulty: 133 digits. Divisors found: r1=446751495478926418011405201098840477 (pp36) r2=30756094804548521464938261943862495082201487416789170131157756023139761 (pp71) Version: Msieve-1.40 Total time: 2.54 hours. Scaled time: 5.13 units (timescale=2.019). Factorization parameters were as follows: name: 62227_131 n: 13740331349023691081262371544782048819022677210235262837555319619113317592126935803456752792873718014905997 m: 200000000000000000000000000 deg: 5 c5: 35 c0: 86 skew: 1.20 type: snfs lss: 1 rlim: 1160000 alim: 1160000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1160000/1160000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [580000, 880001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159075 x 159311 Total sieving time: 2.39 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,133.000,5,0,0,0,0,0,0,0,0,1160000,1160000,26,26,47,47,2.3,2.3,50000 total time: 2.54 hours. --------- CPU info (if available) ----------
(56·10137+43)/9 = 6(2)1367<138> = 3 · 1019 · 1093 · 185831 · 1994119 · 24351891709373<14> · C107
C107 = P38 · P70
P38 = 18820540090523760177462888274940089121<38>
P70 = 1096467833377187138957925392191314902327577642797243965784912605287971<70>
Number: 62227_137 N=20636116816045076827182019814547604895449093412286731348595867767639030081888155139050751735319042609263491 ( 107 digits) SNFS difficulty: 138 digits. Divisors found: r1=18820540090523760177462888274940089121 (pp38) r2=1096467833377187138957925392191314902327577642797243965784912605287971 (pp70) Version: Msieve-1.40 Total time: 4.85 hours. Scaled time: 9.91 units (timescale=2.045). Factorization parameters were as follows: name: 62227_137 n: 20636116816045076827182019814547604895449093412286731348595867767639030081888155139050751735319042609263491 m: 2000000000000000000000000000 deg: 5 c5: 175 c0: 43 skew: 0.76 type: snfs lss: 1 rlim: 1440000 alim: 1440000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1440000/1440000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [720000, 1320001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 218250 x 218491 Total sieving time: 4.59 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1440000,1440000,26,26,48,48,2.3,2.3,75000 total time: 4.85 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 24, 2009
2·10190-1 = 1(9)190<191> = 7 · 23 · 151 · 1043761 · C180
C180 = P80 · P101
P80 = 27676127635110233402503730692785558639486036666823955434117813714327581673274833<80>
P101 = 28478740748702695477340652489819896975660217520497038645376481346236576555545798008200801855853755193<101>
Number: 19999_190 N=788181263848310569191168289698477608629667806002138500262250231716631429766774029824489209769354914397516489610270580329936650268653863597002338747131096998004045747905232989957769 ( 180 digits) SNFS difficulty: 190 digits. Divisors found: r1=27676127635110233402503730692785558639486036666823955434117813714327581673274833 r2=28478740748702695477340652489819896975660217520497038645376481346236576555545798008200801855853755193 Version: Total time: 128.90 hours. Scaled time: 308.07 units (timescale=2.390). Factorization parameters were as follows: n: 788181263848310569191168289698477608629667806002138500262250231716631429766774029824489209769354914397516489610270580329936650268653863597002338747131096998004045747905232989957769 m: 100000000000000000000000000000000000000 deg: 5 c5: 2 c0: -1 skew: 0.87 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20445526 Max relations in full relation-set: Initial matrix: Pruned matrix : 1710578 x 1710826 Total sieving time: 118.17 hours. Total relation processing time: 3.65 hours. Matrix solve time: 6.91 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 128.90 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10130+43)/9 = 6(2)1297<131> = 112 · C129
C129 = P56 · P73
P56 = 72233322432718414569232836843550578144966505331853321253<56>
P73 = 7119058409433545234707650257417296676583573298236685291355068311287769679<73>
Number: 62227_130 N=514233241505968778696051423324150596877869605142332415059687786960514233241505968778696051423324150596877869605142332415059687787 ( 129 digits) SNFS difficulty: 132 digits. Divisors found: r1=72233322432718414569232836843550578144966505331853321253 r2=7119058409433545234707650257417296676583573298236685291355068311287769679 Version: Total time: 1.19 hours. Scaled time: 2.84 units (timescale=2.389). Factorization parameters were as follows: n: 514233241505968778696051423324150596877869605142332415059687786960514233241505968778696051423324150596877869605142332415059687787 m: 200000000000000000000000000 deg: 5 c5: 7 c0: 172 skew: 1.90 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2835911 Max relations in full relation-set: Initial matrix: Pruned matrix : 148128 x 148376 Total sieving time: 1.03 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 1.19 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10134+43)/9 = 6(2)1337<135> = 34 · 11 · C132
C132 = P54 · P79
P54 = 192604255731103436303710965316098343362792567691761203<54>
P79 = 3625784053583637817608793557180079376482560388589629390866850398023592021991699<79>
Number: 62227_134 N=698341439082179822920563661304402045142785883526624267365008105748846489587230327971068711809452550193290934031674772415513156253897 ( 132 digits) SNFS difficulty: 136 digits. Divisors found: r1=192604255731103436303710965316098343362792567691761203 r2=3625784053583637817608793557180079376482560388589629390866850398023592021991699 Version: Total time: 1.86 hours. Scaled time: 4.44 units (timescale=2.390). Factorization parameters were as follows: n: 698341439082179822920563661304402045142785883526624267365008105748846489587230327971068711809452550193290934031674772415513156253897 m: 1000000000000000000000000000 deg: 5 c5: 28 c0: 215 skew: 1.50 type: snfs lss: 1 rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [700000, 1150001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3274434 Max relations in full relation-set: Initial matrix: Pruned matrix : 203984 x 204232 Total sieving time: 1.59 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,26,26,48,48,2.3,2.3,50000 total time: 1.86 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Serge Batalov / GMP-ECM 6.2.3, Msieve / May 24, 2009
(56·10199+43)/9 = 6(2)1987<200> = 17 · 67 · 302390323 · 54155250493414958844529123<26> · 5291829120047019899159557464003015689<37> · C126
C126 = P34 · P93
P34 = 2008749061218436992848565483649771<34>
P93 = 313820880783536836636772081534716495375043694090733253911265097187774233741468386340143215843<93>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1829143434 Step 1 took 7572ms Step 2 took 4445ms ********** Factor found in step 2: 2008749061218436992848565483649771 Found probable prime factor of 34 digits: 2008749061218436992848565483649771 Probable prime cofactor has 93 digits
(56·10182+43)/9 = 6(2)1817<183> = 3 · 11 · 19 · 763846635731399196931<21> · C160
C160 = P35 · C125
P35 = 77070395583281942176460981358816319<35>
C125 = [16857152605764005065047232676396102366871417751924711712204360137910738853018733972405664108283513247694184519411936056181109<125>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2792916294 Step 1 took 10817ms Step 2 took 5524ms ********** Factor found in step 2: 77070395583281942176460981358816319 Found probable prime factor of 35 digits: 77070395583281942176460981358816319 Composite cofactor has 125 digits
(56·10167+43)/9 = 6(2)1667<168> = 3 · 17 · 107 · 272993143283568505766291<24> · C141
C141 = P30 · C112
P30 = 202190630619170096698842510247<30>
C112 = [2065754930033945216243352113649333727221810688018550046454028316144656706557916899127021556696477554587231232743<112>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2717518823 Step 1 took 9233ms Step 2 took 4972ms ********** Factor found in step 2: 202190630619170096698842510247 Found probable prime factor of 30 digits: 202190630619170096698842510247 Composite cofactor has 112 digits
(56·10186+43)/9 = 6(2)1857<187> = 11 · 31 · 20226806889120479159903<23> · C162
C162 = P35 · P128
P35 = 58045262016572887128888099753888857<35>
P128 = 15541646783249331782258374772285235272347816600047608549641982111352344802341765058279612308967565859193730460809532798442526657<128>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3456060348 Step 1 took 10489ms ********** Factor found in step 1: 58045262016572887128888099753888857 Found probable prime factor of 35 digits: 58045262016572887128888099753888857 Probable prime cofactor has 128 digits
(56·10105+43)/9 = 6(2)1047<106> = 13 · 173 · 191 · C101
C101 = P48 · P53
P48 = 232285334117970032187985184744148944279078916011<48>
P53 = 62359253040006800401370106387797632463343215746998223<53>
SNFS difficulty: 106 digits. Divisors found: r1=232285334117970032187985184744148944279078916011 (pp48) r2=62359253040006800401370106387797632463343215746998223 (pp53) Version: Msieve v. 1.41 Total time: 0.30 hours. Scaled time: 0.90 units (timescale=2.943). Factorization parameters were as follows: n: 14485139927745018081851904446705160926024649052219188102733785631827577171522939159049681701983248453 m: 200000000000000000000000000 deg: 4 c4: 35 c0: 43 skew: 1.05 type: snfs lss: 1 rlim: 420000 alim: 420000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 420000/420000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [210000, 310001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 33412 x 33639 Total sieving time: 0.28 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,106.000,4,0,0,0,0,0,0,0,0,420000,420000,25,25,44,44,2.2,2.2,20000 total time: 0.30 hours.
(56·10111+43)/9 = 6(2)1107<112> = 13 · 31 · 71 · 5303 · C104
C104 = P47 · P58
P47 = 13897540214212527692645902486242042976664910799<47>
P58 = 2950683011130204299615480832638819572472845820061038977007<58>
SNFS difficulty: 113 digits. Divisors found: r1=13897540214212527692645902486242042976664910799 (pp47) r2=2950683011130204299615480832638819572472845820061038977007 (pp58) Version: Msieve v. 1.41 Total time: 0.48 hours. Scaled time: 1.42 units (timescale=2.951). Factorization parameters were as follows: n: 41007235806575725696026815732831110100780693485242177944644714630722910606662210835069365507803866998593 m: 20000000000000000000000 deg: 5 c5: 35 c0: 86 skew: 1.20 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [270000, 420001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 43248 x 43476 Total sieving time: 0.45 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113.000,5,0,0,0,0,0,0,0,0,540000,540000,25,25,45,45,2.2,2.2,50000 total time: 0.48 hours.
(56·10113+43)/9 = 6(2)1127<114> = 3 · 5023929737<10> · C104
C104 = P36 · P69
P36 = 408348128880194658464406352398206191<36>
P69 = 101099762660918448367538763269301577394107046179160743691761007449127<69>
Msieve v. 1.39 Sun May 24 00:22:17 2009 random seeds: 7fbe7db1 de138fc7 factoring 41283898912817818217708765580892400009973986506692143136437221913998955158438237411083324513343488945257 (104 digits) searching for 15-digit factors commencing number field sieve (104-digit input) R0: -100000000000000000000000 R1: 1 A0: 1075 A1: 0 A2: 0 A3: 0 A4: 0 A5: 14 skew 2.38, size 2.597755e-08, alpha -0.612885, combined = 3.186562e-08 commencing square root phase reading relations for dependency 1 read 28696 cycles cycles contain 110948 unique relations read 110948 relations multiplying 85764 relations multiply complete, coefficients have about 1.99 million bits initial square root is modulo 1536515521 Newton iteration failed to converge algebraic square root failed reading relations for dependency 2 read 28880 cycles cycles contain 111389 unique relations read 111389 relations multiplying 86004 relations multiply complete, coefficients have about 2.00 million bits initial square root is modulo 1639707491 reading relations for dependency 3 read 28924 cycles cycles contain 111395 unique relations read 111395 relations multiplying 86186 relations multiply complete, coefficients have about 2.00 million bits initial square root is modulo 1708967971 prp36 factor: 408348128880194658464406352398206191 prp69 factor: 101099762660918448367538763269301577394107046179160743691761007449127 elapsed time 00:30:37
By Robert Backstrom / GGNFS, Msieve / May 24, 2009
(56·10190-11)/9 = 6(2)1891<191> = C191
C191 = P84 · P108
P84 = 158796307404671877627661739735355205593268234205073217528273831685616486751940901041<84>
P108 = 391836707283481889552854182532334698780981401663807885131994302605274535384646414268878461059412149522861981<108>
Number: n N=62222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 191 digits) SNFS difficulty: 192 digits. Divisors found: Sun May 24 06:45:23 2009 prp84 factor: 158796307404671877627661739735355205593268234205073217528273831685616486751940901041 Sun May 24 06:45:23 2009 prp108 factor: 391836707283481889552854182532334698780981401663807885131994302605274535384646414268878461059412149522861981 Sun May 24 06:45:23 2009 elapsed time 03:57:52 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 28.54 hours. Scaled time: 57.54 units (timescale=2.016). Factorization parameters were as follows: name: KA_6_2_189_1 n: 62222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 200000000000000000000000000000000000000 deg: 5 c5: 7 c0: -44 skew: 1.44 type: snfs lss: 1 rlim: 11200000 alim: 11200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11200000/11200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [5600000, 11699990) Primes: RFBsize:738873, AFBsize:739548, largePrimes:20146869 encountered Relations: rels:19495272, finalFF:919837 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3303101 hash collisions in 27644196 relations Msieve: matrix is 1604566 x 1604814 (423.0 MB) Total sieving time: 28.19 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11200000,11200000,28,28,55,55,2.5,2.5,100000 total time: 28.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830488) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.70 BogoMIPS).
(56·10142+43)/9 = 6(2)1417<143> = 11 · C142
C142 = P47 · P95
P47 = 68896062191871030491723833548784337537918021729<47>
P95 = 82102887692078698167555009410022945808543510134623548922165046341705571318356455365072720933433<95>
Number: n N=5656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565657 ( 142 digits) SNFS difficulty: 143 digits. Divisors found: Sun May 24 15:38:08 2009 prp47 factor: 68896062191871030491723833548784337537918021729 Sun May 24 15:38:08 2009 prp95 factor: 82102887692078698167555009410022945808543510134623548922165046341705571318356455365072720933433 Sun May 24 15:38:08 2009 elapsed time 00:23:38 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.91 hours. Scaled time: 8.95 units (timescale=1.823). Factorization parameters were as follows: name: KA_6_2_141_7 n: 5656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565656565657 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: 43 skew: 0.76 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [900000, 1748963) Primes: RFBsize:135072, AFBsize:135383, largePrimes:5996260 encountered Relations: rels:5238251, finalFF:247066 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 462130 hash collisions in 5983346 relations Msieve: matrix is 270478 x 270726 (72.3 MB) Total sieving time: 4.82 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,56,56,2.3,2.3,100000 total time: 4.91 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3 / May 24, 2009
(16·10188-7)/9 = 1(7)188<189> = 3 · 31 · 2069 · 65398169 · 14567926460916274090418321<26> · C150
C150 = P39 · P112
P39 = 121896753428115558413310315910630311743<39>
P112 = 7955703066426815166859690188164155329317259808964297303908057957751323028198357087524600604449363008467485722583<112>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2616785286 Step 1 took 143375ms Step 2 took 39250ms ********** Factor found in step 2: 121896753428115558413310315910630311743 Found probable prime factor of 39 digits: 121896753428115558413310315910630311743 Probable prime cofactor 7955703066426815166859690188164155329317259808964297303908057957751323028198357087524600604449363008467485722583 has 112 digits
Factorizations of 622...227 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GMP-ECM 6.2.3 / May 23, 2009
(73·10199-1)/9 = 8(1)199<200> = 32 · 4386230489<10> · 261738156131<12> · C178
C178 = P37 · C142
P37 = 2356059256180297974755710952450611393<37>
C142 = [3331909097163411490195797154179506593226135680655488427797409658939627839025957996970418820375433315961414173071731590938360326732797877361517<142>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1302500274 Step 1 took 296422ms ********** Factor found in step 1: 2356059256180297974755710952450611393 Found probable prime factor of 37 digits: 2356059256180297974755710952450611393 Composite cofactor 3331909097163411490195797154179506593226135680655488427797409658939627839025957996970418820375433315961414173071731590938360326732797877361517 has 142 digits
By Sinkiti Sibata / Msieve, GMP-ECM 6.2 / May 23, 2009
(56·10143-11)/9 = 6(2)1421<144> = 3 · 247812371 · 8791047040390906987<19> · C116
C116 = P53 · P64
P53 = 52096666235637883534522642520955700372141756844560643<53>
P64 = 1827472048686128722686279854270138033017141595244865854768896437<64>
Number: 62221_143 N=95205201375358632669691236626623247521905406835492682061039667657362165007206580925633300445028642999687163233128991 ( 116 digits) SNFS difficulty: 146 digits. Divisors found: r1=52096666235637883534522642520955700372141756844560643 (pp53) r2=1827472048686128722686279854270138033017141595244865854768896437 (pp64) Version: Msieve-1.40 Total time: 9.23 hours. Scaled time: 19.31 units (timescale=2.092). Factorization parameters were as follows: name: 62221_143 n: 95205201375358632669691236626623247521905406835492682061039667657362165007206580925633300445028642999687163233128991 m: 100000000000000000000000000000 deg: 5 c5: 14 c0: -275 skew: 1.81 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2055001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 321846 x 322094 Total sieving time: 8.71 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.35 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 9.23 hours. --------- CPU info (if available) ----------
8·10193-9 = 7(9)1921<194> = 19 · 281 · 4418326058451689<16> · 28635389649731171<17> · 4005799549560803338611269<25> · C134
C134 = P50 · P84
P50 = 47530447988775454504196992466925654385332702204589<50>
P84 = 622025352119764712028843316628216948512092949996598055244945354900245093351541822511<84>
Number: 79991_193 N=29565143646628214552910727018766282005163877039936094266740542090166082984748527095016519714301140410272311793378686931866644647702979 ( 134 digits) Divisors found: r1=47530447988775454504196992466925654385332702204589 (pp50) r2=622025352119764712028843316628216948512092949996598055244945354900245093351541822511 (pp84) Version: Msieve-1.40 Total time: 379.04 hours. Scaled time: 745.57 units (timescale=1.967). Factorization parameters were as follows: name: 79991_193 # Murphy_E = 4.630559e-11, selected by Jeff Gilchrist n: 29565143646628214552910727018766282005163877039936094266740542090166082984748527095016519714301140410272311793378686931866644647702979 Y0: -57543593694049710599247587 Y1: 721718734872989 c0: -90368218213303982886078566019840 c1: 1320429414049798041363608796 c2: 8903540005306081349992 c3: -27320914772887363 c4: -61896802964 c5: 46860 skew: 386466.26 type: gnfs # selected mechanically rlim: 12100000 alim: 12100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 12100000/12100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved algebraic special-q in [6050000, 14950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1834899 x 1835147 Total sieving time: 379.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,133,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,12100000,12100000,28,28,54,54,2.6,2.6,100000 total time: 379.04 hours. --------- CPU info (if available) ----------
(56·10186-11)/9 = 6(2)1851<187> = 599 · 37158634009449941<17> · 187078422967358237181929<24> · 291087023629052324337893<24> · C121
C121 = P37 · P40 · P45
P37 = 8669942536444244537787894218627299087<37>
P40 = 2294619415855590800799109639269294659123<40>
P45 = 258039104434055048772680144104698258424326727<45>
Run 785 out of 2318: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2397597109 Step 1 took 27125ms Step 2 took 15062ms ********** Factor found in step 2: 2294619415855590800799109639269294659123 Found probable prime factor of 40 digits: 22946194158555908007991096392692946591 23 Probable prime cofactor 258039104434055048772680144104698258424326727msieve has 45 dig its
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 23, 2009
(56·10154-11)/9 = 6(2)1531<155> = 1319 · 99588740355980248700009<23> · C129
C129 = P36 · P94
P36 = 159529283600937361262720079033676357<36>
P94 = 2969272580593994736122638271517181885182905451818307218893722397054616314597839349595890387543<94>
Number: 62221_154 N=473685927598066523811321219743107411021072297995390038378143177362996029747199699549590394307377922267919784079276586320766420851 ( 129 digits) SNFS difficulty: 156 digits. Divisors found: r1=159529283600937361262720079033676357 r2=2969272580593994736122638271517181885182905451818307218893722397054616314597839349595890387543 Version: Total time: 12.57 hours. Scaled time: 30.06 units (timescale=2.391). Factorization parameters were as follows: n: 473685927598066523811321219743107411021072297995390038378143177362996029747199699549590394307377922267919784079276586320766420851 m: 10000000000000000000000000000000 deg: 5 c5: 28 c0: -55 skew: 1.14 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8477784 Max relations in full relation-set: Initial matrix: Pruned matrix : 465979 x 466227 Total sieving time: 11.54 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.45 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 12.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Robert Backstrom / GGNFS, Msieve / May 23, 2009
5·10171+9 = 5(0)1709<172> = 67 · 40378193 · 44404164907<11> · C152
C152 = P59 · P94
P59 = 30861275933615391341234232012900752504190775857799782307643<59>
P94 = 1348685652951649280820481874144969335193186551718062790432538324525777278141762353767694766939<94>
Number: n N=41622160083449093835715177170359909547044068164867790126481396040503116696826064618716663968196854901778090190322063002576843971520433247969928483414777 ( 152 digits) SNFS difficulty: 171 digits. Divisors found: Sat May 23 11:46:27 2009 prp59 factor: 30861275933615391341234232012900752504190775857799782307643 Sat May 23 11:46:27 2009 prp94 factor: 1348685652951649280820481874144969335193186551718062790432538324525777278141762353767694766939 Sat May 23 11:46:27 2009 elapsed time 01:19:08 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 45.61 hours. Scaled time: 60.89 units (timescale=1.335). Factorization parameters were as follows: name: KA_5_0_170_9 n: 41622160083449093835715177170359909547044068164867790126481396040503116696826064618716663968196854901778090190322063002576843971520433247969928483414777 m: 10000000000000000000000000000000000 deg: 5 c5: 50 c0: 9 skew: 0.71 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2550000, 5039821) Primes: RFBsize:354971, AFBsize:354121, largePrimes:16733383 encountered Relations: rels:16062335, finalFF:753335 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1755175 hash collisions in 18017048 relations Msieve: matrix is 843918 x 844166 (226.5 MB) Total sieving time: 45.09 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,28,28,56,56,2.4,2.4,100000 total time: 45.61 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / May 23, 2009
9·10198+1 = 9(0)1971<199> = 206641 · C194
C194 = P73 · P122
P73 = 1971332907858188412423521352631276953751910015856265250493673622099401969<73>
P122 = 22093577408287644837009510470494689478804802552229642889751303060701247374764381532930283372837715454765095820414492639969<122>
Number: 90001_198 N=43553796197269660909500050812762230147937727750059281555935172594015708402495148591034693018326469577673356207141854714214507285582241665497166583591833179281943080027680857138709162266926698961 ( 194 digits) SNFS difficulty: 200 digits. Divisors found: r1=1971332907858188412423521352631276953751910015856265250493673622099401969 r2=22093577408287644837009510470494689478804802552229642889751303060701247374764381532930283372837715454765095820414492639969 Version: Total time: 761.36 hours. Scaled time: 1506.74 units (timescale=1.979). Factorization parameters were as follows: n: 43553796197269660909500050812762230147937727750059281555935172594015708402495148591034693018326469577673356207141854714214507285582241665497166583591833179281943080027680857138709162266926698961 m: 5000000000000000000000000000000000000000 deg: 5 c5: 72 c0: 25 skew: 0.81 type: snfs lss: 1 rlim: 15300000 alim: 15300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15300000/15300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7650000, 15450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3112132 x 3112378 Total sieving time: 761.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15300000,15300000,29,29,56,56,2.6,2.6,100000 total time: 761.36 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / May 22, 2009
(56·10147-11)/9 = 6(2)1461<148> = 940357975339<12> · 4396150383764093<16> · C121
C121 = P40 · P82
P40 = 1008215810246207129612047042208358145051<40>
P82 = 1492884680420177799347131923818531569599984632006412804870158351516771646036609673<82>
Number: 62221_147 N=1505149937673979552320836226405694346794312067193454584388061053324185341450817482913564538855807343552377213503203678323 ( 121 digits) SNFS difficulty: 148 digits. Divisors found: r1=1008215810246207129612047042208358145051 r2=1492884680420177799347131923818531569599984632006412804870158351516771646036609673 Version: Total time: 5.64 hours. Scaled time: 13.43 units (timescale=2.380). Factorization parameters were as follows: n: 1505149937673979552320836226405694346794312067193454584388061053324185341450817482913564538855807343552377213503203678323 m: 200000000000000000000000000000 deg: 5 c5: 175 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1500000, 2625001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4957651 Max relations in full relation-set: Initial matrix: Pruned matrix : 378093 x 378341 Total sieving time: 4.93 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.29 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,3000000,3000000,26,26,49,49,2.3,2.3,75000 total time: 5.64 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10189-11)/9 = 6(2)1881<190> = 277 · 25277866982933<14> · 40398247348837599795974405003<29> · 54162299091422434499021060679582624167<38> · C108
C108 = P48 · P61
P48 = 228498442360438340292379803269188129395888720953<48>
P61 = 1777388907317542637562195901082903456247197584230926518332977<61>
Number: 62221_189 N=406130596790779999759153981712709459914372909456044656520865406171812435177580766081922259159004770290767081 ( 108 digits) Divisors found: r1=228498442360438340292379803269188129395888720953 r2=1777388907317542637562195901082903456247197584230926518332977 Version: Total time: 6.46 hours. Scaled time: 15.42 units (timescale=2.389). Factorization parameters were as follows: name: 62221_189 n: 406130596790779999759153981712709459914372909456044656520865406171812435177580766081922259159004770290767081 skew: 14032.91 # norm 1.60e+15 c5: 105840 c4: -4277112308 c3: 61395728235004 c2: 1309518592510891537 c1: -4824049825893490081356 c0: -32284824656823243472412025 # alpha -6.61 Y1: 100307285683 Y0: -328703438188208320058 # Murphy_E 1.28e-09 # M 141094203117980261816754148973220116699568804394140714353111345509640429615565396644228123557747415940163645 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7208996 Max relations in full relation-set: Initial matrix: Pruned matrix : 348141 x 348389 Polynomial selection time: 0.50 hours. Total sieving time: 4.80 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.25 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,27,27,50,50,2.6,2.6,50000 total time: 6.46 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10153-11)/9 = 6(2)1521<154> = 161038333187<12> · C143
C143 = P64 · P80
P64 = 3363325659726554254219949158081482055226599127679686333139708977<64>
P80 = 11488076797017378618898480601030100376760617008747621903303917850030785920234079<80>
Number: 62221_153 N=38638143472317795247537705888526995749935352454153330768119348134235245226490461527992257076379883719605964665915331039200805176564213777627183 ( 143 digits) SNFS difficulty: 156 digits. Divisors found: r1=3363325659726554254219949158081482055226599127679686333139708977 r2=11488076797017378618898480601030100376760617008747621903303917850030785920234079 Version: Total time: 10.66 hours. Scaled time: 25.48 units (timescale=2.390). Factorization parameters were as follows: n: 38638143472317795247537705888526995749935352454153330768119348134235245226490461527992257076379883719605964665915331039200805176564213777627183 m: 10000000000000000000000000000000 deg: 5 c5: 14 c0: -275 skew: 1.81 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8440039 Max relations in full relation-set: Initial matrix: Pruned matrix : 421469 x 421717 Total sieving time: 9.84 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.36 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 10.66 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(2·10195+1)/3 = (6)1947<195> = 643 · 2267 · 591132392867<12> · C177
C177 = P38 · P140
P38 = 20445535278979404077682352742063245387<38>
P140 = 37841034812644230659598583398507678171373442415633054522576738535458043251909493707277588574988992770463156691080518508056734230085009425083<140>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 773680212255005402213215670718471636322872901200645179715616504990970707569170676906984764825388611905986628614026077579135645235380535252670977400250192112030102091574021842121 (177 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2093518856 Step 1 took 17167ms Step 2 took 7023ms ********** Factor found in step 2: 20445535278979404077682352742063245387 Found probable prime factor of 38 digits: 20445535278979404077682352742063245387 Probable prime cofactor 37841034812644230659598583398507678171373442415633054522576738535458043251909493707277588574988992770463156691080518508056734230085009425083 has 140 digits
(2·10172+1)/3 = (6)1717<172> = 19 · 367894099 · C162
C162 = P38 · P125
P38 = 31923954769587137972250253982544737507<38>
P125 = 29875530881591454506940299770383247214954619398774924636746552858006558949858905691700278509265508508706937584865642995542001<125>
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 953745096581329347038200775768507611618084673281090437797093323267618218445186838896418777162493147199015389346805459313594862392389699576171077293841543738531507 (162 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3322220783 Step 1 took 14428ms Step 2 took 6321ms ********** Factor found in step 2: 31923954769587137972250253982544737507 Found probable prime factor of 38 digits: 31923954769587137972250253982544737507 Probable prime cofactor 29875530881591454506940299770383247214954619398774924636746552858006558949858905691700278509265508508706937584865642995542001 has 125 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(32·10169-41)/9 = 3(5)1681<170> = 1613 · 13159 · 116981 · 81326373781<11> · C147
C147 = P45 · P46 · P57
P45 = 140850378091982090577354915876165350338613087<45>
P46 = 9786966886270901249855494260133478437860029027<46>
P57 = 127731302497147884438978142065758231658906688736325985177<57>
Number: n N=176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773 ( 147 digits) SNFS difficulty: 171 digits. Divisors found: Fri May 22 13:03:18 2009 prp45 factor: 140850378091982090577354915876165350338613087 Fri May 22 13:03:18 2009 prp46 factor: 9786966886270901249855494260133478437860029027 Fri May 22 13:03:18 2009 prp57 factor: 127731302497147884438978142065758231658906688736325985177 Fri May 22 13:03:18 2009 elapsed time 01:14:43 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 49.74 hours. Scaled time: 132.30 units (timescale=2.660). Factorization parameters were as follows: name: KA_3_5_168_1 n: 176077343280428722210294933173471602076330384241286510651480244704067065779074311519434584743655131635262384425494570149205597165806500457976278773 m: 10000000000000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5261749) Primes: RFBsize:348513, AFBsize:348852, largePrimes:17302361 encountered Relations: rels:17224239, finalFF:733473 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1992447 hash collisions in 19178345 relations Msieve: matrix is 783206 x 783454 (206.8 MB) Total sieving time: 49.02 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 49.74 hours. --------- CPU info (if available) ----------
(56·10163-11)/9 = 6(2)1621<164> = 71 · 1212709 · 131517167 · C148
C148 = P34 · P115
P34 = 4653012427420569338623962801251087<34>
P115 = 1180902142478392291997557302605730893103002830157279589768710079332801129714037937532741668108603105238106040542191<115>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 5494752344519535146687404917043008612140116501569138078950789948018034611445897276112464677546840828744848284725055003614238674816203386438608111617 (148 digits) Using B1=804000, B2=696806892, polynomial Dickson(3), sigma=562029734 Step 1 took 12495ms Step 2 took 4322ms ********** Factor found in step 2: 4653012427420569338623962801251087 Found probable prime factor of 34 digits: 4653012427420569338623962801251087 Probable prime cofactor 1180902142478392291997557302605730893103002830157279589768710079332801129714037937532741668108603105238106040542191 has 115 digits
(56·10141-11)/9 = 6(2)1401<142> = 19 · 179 · C139
C139 = P54 · P85
P54 = 297263336609650968924047699599162922866765769099232391<54>
P85 = 6154567475724947698759561455579847624574161601456877967507516611787461722048501183731<85>
Number: n N=1829527263223234996242935084452285275572544022999771309092097095625469633114443464340553431997125028586363487863046816295860694566957430821 ( 139 digits) SNFS difficulty: 143 digits. Divisors found: r1=297263336609650968924047699599162922866765769099232391 (pp54) r2=6154567475724947698759561455579847624574161601456877967507516611787461722048501183731 (pp85) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 4.94 hours. Scaled time: 13.14 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_140_1 n: 1829527263223234996242935084452285275572544022999771309092097095625469633114443464340553431997125028586363487863046816295860694566957430821 m: 20000000000000000000000000000 deg: 5 c5: 35 c0: -22 skew: 0.91 type: snfs lss: 1 rlim: 1700000 alim: 1700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1700000/1700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [850000, 1750001) Primes: RFBsize:128141, AFBsize:127925, largePrimes:6368334 encountered Relations: rels:5761128, finalFF:316228 Max relations in full relation-set: 28 Initial matrix: 256132 x 316228 with sparse part having weight 27527715. Pruned matrix : 235172 x 236516 with weight 17145775. Total sieving time: 4.61 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.16 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1700000,1700000,28,28,56,56,2.3,2.3,100000 total time: 4.94 hours. --------- CPU info (if available) ----------
(56·10146-11)/9 = 6(2)1451<147> = 32 · 1303 · C143
C143 = P63 · P81
P63 = 390636623576473629943499655770771098579496801221468572377451887<63>
P81 = 135826851857318304777560953992990975187323813555012363701612426250045999154804429<81>
Number: n N=53058942800564698748377438579536302739167922079152572884985266668561628909543977336251575187364391764494092455207829983987569047686724842007523 ( 143 digits) SNFS difficulty: 148 digits. Divisors found: Fri May 22 20:41:04 2009 prp63 factor: 390636623576473629943499655770771098579496801221468572377451887 Fri May 22 20:41:04 2009 prp81 factor: 135826851857318304777560953992990975187323813555012363701612426250045999154804429 Fri May 22 20:41:04 2009 elapsed time 00:17:27 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 6.71 hours. Scaled time: 17.84 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_2_145_1 n: 53058942800564698748377438579536302739167922079152572884985266668561628909543977336251575187364391764494092455207829983987569047686724842007523 m: 200000000000000000000000000000 deg: 5 c5: 35 c0: -22 skew: 0.91 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1050000, 2275187) Primes: RFBsize:155805, AFBsize:155618, largePrimes:6972249 encountered Relations: rels:6204110, finalFF:309632 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 625424 hash collisions in 6918126 relations Msieve: matrix is 340345 x 340593 (90.9 MB) Total sieving time: 6.58 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,28,28,56,56,2.3,2.3,100000 total time: 6.71 hours. --------- CPU info (if available) ----------
(5·10197-11)/3 = 1(6)1963<198> = 7 · C197
C197 = P78 · P119
P78 = 770224136745202272960858853390184251348929602406163327279097423136818113201277<78>
P119 = 30912461287097049773379532118577710425262942254107754948474511204970390341027073730433138066136695072775834272781147317<119>
Number: n N=23809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809 ( 197 digits) SNFS difficulty: 198 digits. Divisors found: Fri May 22 20:51:57 2009 prp78 factor: 770224136745202272960858853390184251348929602406163327279097423136818113201277 Fri May 22 20:51:57 2009 prp119 factor: 30912461287097049773379532118577710425262942254107754948474511204970390341027073730433138066136695072775834272781147317 Fri May 22 20:51:57 2009 elapsed time 07:26:51 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.89 hours. Scaled time: 23.98 units (timescale=2.016). Factorization parameters were as follows: name: KA_1_6_196_3 n: 23809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809 m: 2000000000000000000000000000000000000000 deg: 5 c5: 125 c0: -88 skew: 0.93 type: snfs lss: 1 rlim: 14300000 alim: 14300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 14300000/14300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [7150000, 10150057) Primes: RFBsize:928293, AFBsize:926118, largePrimes:36842353 encountered Relations: rels:37172595, finalFF:2021767 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7310015 hash collisions in 43187116 relations Msieve: matrix is 2219007 x 2219255 (603.4 MB) Total sieving time: 11.02 hours. Total relation processing time: 0.87 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14300000,14300000,29,29,56,56,2.5,2.5,100000 total time: 11.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830488) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.70 BogoMIPS).
By Sinkiti Sibata / Msieve, GGNFS, GMP-ECM 6.2
(56·10140-11)/9 = 6(2)1391<141> = 3 · 137029 · C136
C136 = P36 · P100
P36 = 299406853214567406564359036434117307<36>
P100 = 5055336135400232322529243029621372499820771506159438962856581567533302079098571471572820157443691769<100>
Number: 62221_140 N=1513602284242075819041278907438625454519900221175133784873329057406880349469144541720419819216424314615208513580391066178746158896346083 ( 136 digits) SNFS difficulty: 142 digits. Divisors found: r1=299406853214567406564359036434117307 (pp36) r2=5055336135400232322529243029621372499820771506159438962856581567533302079098571471572820157443691769 (pp100) Version: Msieve-1.40 Total time: 7.25 hours. Scaled time: 15.22 units (timescale=2.099). Factorization parameters were as follows: name: 62221_140 n: 1513602284242075819041278907438625454519900221175133784873329057406880349469144541720419819216424314615208513580391066178746158896346083 m: 20000000000000000000000000000 deg: 5 c5: 7 c0: -44 skew: 1.44 type: snfs lss: 1 rlim: 1650000 alim: 1650000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1650000/1650000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [825000, 1725001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 260220 x 260457 Total sieving time: 6.88 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.23 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,142.000,5,0,0,0,0,0,0,0,0,1650000,1650000,26,26,48,48,2.3,2.3,100000 total time: 7.25 hours. --------- CPU info (if available) ----------
(56·10144-11)/9 = 6(2)1431<145> = 467 · 1181321 · 34029929 · 2347379653<10> · 16006457832853967<17> · C103
C103 = P41 · P63
P41 = 51446154457445281300092961754341423886897<41>
P63 = 171462117056719624665955830711633870545040915759347599025265181<63>
Number: 62221_144 N=8821066557700560914707538403741916445191036516315719696291370434325710113707949441060998120603176233357 ( 103 digits) SNFS difficulty: 146 digits. Divisors found: r1=51446154457445281300092961754341423886897 (pp41) r2=171462117056719624665955830711633870545040915759347599025265181 (pp63) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 21.11 hours. Scaled time: 10.01 units (timescale=0.474). Factorization parameters were as follows: name: 62221_144 n: 8821066557700560914707538403741916445191036516315719696291370434325710113707949441060998120603176233357 m: 100000000000000000000000000000 deg: 5 c5: 28 c0: -55 skew: 1.14 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2565001) Primes: RFBsize:144125, AFBsize:144353, largePrimes:4136963 encountered Relations: rels:4269862, finalFF:339786 Max relations in full relation-set: 28 Initial matrix: 288544 x 339786 with sparse part having weight 35413273. Pruned matrix : 270492 x 271998 with weight 25939742. Total sieving time: 18.45 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.34 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 21.11 hours. --------- CPU info (if available) ----------
(56·10142-11)/9 = 6(2)1411<143> = 23911 · 42257 · C134
C134 = P55 · P80
P55 = 1143941411907996700520971946060340262736488878322319963<55>
P80 = 53832597353146372166288374957906854282217567080482754146364408192442359473749921<80>
Number: 62221_142 N=61581337422832947042565963830758116002701376652326624198705025783356556057053843625770686217875640758640672397218969955090412007972923 ( 134 digits) SNFS difficulty: 143 digits. Divisors found: r1=1143941411907996700520971946060340262736488878322319963 (pp55) r2=53832597353146372166288374957906854282217567080482754146364408192442359473749921 (pp80) Version: Msieve-1.40 Total time: 6.74 hours. Scaled time: 13.92 units (timescale=2.065). Factorization parameters were as follows: name: 62221_142 n: 61581337422832947042565963830758116002701376652326624198705025783356556057053843625770686217875640758640672397218969955090412007972923 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 1670001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 274221 x 274469 Total sieving time: 6.37 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.25 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,143.000,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 6.74 hours. --------- CPU info (if available) ----------
(56·10174-11)/9 = 6(2)1731<175> = 659 · 8501 · 2621693 · 15087703 · 1862887311324908123884845247211972663<37> · C119
C119 = P30 · P89
P30 = 452022591052245072685099765541<30>
P89 = 33345589605560820714725890779712247472160401068383290810785202245000234921008604498692867<89>
Run 8 out of 2318: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=432356704 Step 1 took 44297ms Step 2 took 20875ms ********** Factor found in step 2: 452022591052245072685099765541 Found probable prime factor of 30 digits: 452022591052245072685099765541 Probable prime cofactor 33345589605560820714725890779712247472160401068383290810 785202245000234921008604498692867 has 89 digits
By Dmitry Domanov / GMP-ECM 6.2.3, GGNFS/msieve / May 22, 2009
(16·10176-7)/9 = 1(7)176<177> = 32 · 59 · 615711081072019872468826193588606901197<39> · C135
C135 = P43 · P93
P43 = 1772012938854214576783047007942566638416973<43>
P93 = 306859161300820429718744093592872285344754892092073690101163543698285825481837814744085179507<93>
N=543758404231006280078915314898360251643955593507494702574785941537600961230214196342616452411330988575208199411251642709824917020572311 ( 135 digits) SNFS difficulty: 177 digits. Divisors found: r1=1772012938854214576783047007942566638416973 (pp43) r2=306859161300820429718744093592872285344754892092073690101163543698285825481837814744085179507 (pp93) Version: Msieve v. 1.41 Total time: 83.47 hours. Scaled time: 165.45 units (timescale=1.982). Factorization parameters were as follows: n: 543758404231006280078915314898360251643955593507494702574785941537600961230214196342616452411330988575208199411251642709824917020572311 m: 200000000000000000000000000000000000 deg: 5 c5: 5 c0: -7 skew: 1.07 type: snfs lss: 1 rlim: 6300000 alim: 6300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6300000/6300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3150000, 6350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1161103 x 1161351 Total sieving time: 81.17 hours. Total relation processing time: 0.25 hours. Matrix solve time: 1.94 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,177.000,5,0,0,0,0,0,0,0,0,6300000,6300000,28,28,53,53,2.5,2.5,100000 total time: 83.47 hours. --------- CPU info (if available) ----------
(7·10188-43)/9 = (7)1873<188> = 19 · 227 · 30181 · 1971583899979817205738323467<28> · C153
C153 = P49 · P104
P49 = 4805550249913806107164545818458971893599632427019<49>
P104 = 63064369942282470443928890836206937269530197886183657029723257323673694166847341225815396360621173715417<104>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3499185670 Step 1 took 524485ms Step 2 took 113000ms ********** Factor found in step 2: 4805550249913806107164545818458971893599632427019 Found probable prime factor of 49 digits: 4805550249913806107164545818458971893599632427019 Probable prime cofactor 63064369942282470443928890836206937269530197886183657029723257323673694166847341225815396360621173715417 has 104 digits
(73·10192-1)/9 = 8(1)192<193> = 73256271947274662782040893968743123700881<41> · C153
C153 = P47 · P48 · P59
P47 = 12514183981701174831234244754445618634782464551<47>
P48 = 267288759821310351191537888363735659318239313283<48>
P59 = 33101853000094382825599338798034443619214831850089105550107<59>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1770093265 Step 1 took 881297ms Step 2 took 194656ms ********** Factor found in step 2: 267288759821310351191537888363735659318239313283 Found probable prime factor of 48 digits: 267288759821310351191537888363735659318239313283 Composite cofactor 414242678578408103235078719600045420705685685982987391903794714703925355295201997258318971178094081756957 has 105 digits N=414242678578408103235078719600045420705685685982987391903794714703925355295201997258318971178094081756957 ( 105 digits) Divisors found: r1=12514183981701174831234244754445618634782464551 (pp47) r2=33101853000094382825599338798034443619214831850089105550107 (pp59) Version: Msieve v. 1.41 Total time: 8.29 hours. Scaled time: 16.43 units (timescale=1.982). Factorization parameters were as follows: n: 414242678578408103235078719600045420705685685982987391903794714703925355295201997258318971178094081756957 skew: 10245.06 # norm 9.53e+014 c5: 189000 c4: -4228453038 c3: -104481482087957 c2: 329571606307239790 c1: 3722167535783309214524 c0: 192804791565346169927120 # alpha -6.85 Y1: 26624677783 Y0: -73817495856612743163 # Murphy_E 1.91e-009 # M 380244343347328658347174459880259612066021441439257999459704883260043181974659152092827411667820947949767 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 256054 x 256302 Polynomial selection time: 0.74 hours. Total sieving time: 7.33 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 8.29 hours. --------- CPU info (if available) ----------
(73·10190-1)/9 = 8(1)190<191> = 33 · 766373 · 576849289308102433339<21> · 352770971508535022385843411436127<33> · C131
C131 = P38 · P46 · P47
P38 = 53018587549308860488727446119008638117<38>
P46 = 9830729640749698698057713596885562332720579109<46>
P47 = 36957899619439052588389493711338143513746251349<47>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1641020606 Step 1 took 111219ms Step 2 took 32437ms ********** Factor found in step 2: 53018587549308860488727446119008638117 Found probable prime factor of 38 digits: 53018587549308860488727446119008638117 Composite cofactor 363323119248671503681840442228888007882580930456529372102126201532931588055727988917152468041 has 93 digits N=363323119248671503681840442228888007882580930456529372102126201532931588055727988917152468041 ( 93 digits) Divisors found: r1=9830729640749698698057713596885562332720579109 (pp46) r2=36957899619439052588389493711338143513746251349 (pp47) Version: Msieve v. 1.41 Total time: 3.56 hours. Scaled time: 7.03 units (timescale=1.976). Factorization parameters were as follows: n: 363323119248671503681840442228888007882580930456529372102126201532931588055727988917152468041 m: 2201437169476072225733 deg: 4 c4: 15469200 c3: 64470243577 c2: -206162652068209327 c1: -157308994180603347 c0: 292072553235282416374746 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.372 # E(F1,F2) = 6.310444e-005 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1242934815. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 171992 x 172240 Polynomial selection time: 0.17 hours. Total sieving time: 3.23 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,92,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 3.56 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3/GGNFS/Msieve / May 22, 2009
(73·10173-1)/9 = 8(1)173<174> = 7 · 4943 · 1059933049229<13> · 64098166474883233335412841<26> · C132
C132 = P37 · P45 · P51
P37 = 5651544344073065353949288742526199989<37>
P45 = 460594228426107287120213438958014196056247359<45>
P51 = 132550700853026894371155963466907255560307901107449<51>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1247506212 Step 1 took 184500ms Step 2 took 57109ms ********** Factor found in step 2: 5651544344073065353949288742526199989 Found probable prime factor of 37 digits: 5651544344073065353949288742526199989 Composite cofactor 61052087786739683422486377745002538362377897736805318143684633775842372114767648010131181477191 has 95 digits N=61052087786739683422486377745002538362377897736805318143684633775842372114767648010131181477191 ( 95 digits) Divisors found: r1=460594228426107287120213438958014196056247359 (pp45) r2=132550700853026894371155963466907255560307901107449 (pp51) Version: Msieve v. 1.41 Total time: 4.57 hours. Scaled time: 8.99 units (timescale=1.969). Factorization parameters were as follows: n: 61052087786739683422486377745002538362377897736805318143684633775842372114767648010131181477191 m: 5723651533996740584386 deg: 4 c4: 56886312 c3: -96342723053 c2: -224961695606516291 c1: 242685027110432538 c0: 144224341387033435142535 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.139 # E(F1,F2) = 3.669255e-005 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1242912454. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168434 x 168662 Polynomial selection time: 0.17 hours. Total sieving time: 4.19 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 4.57 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3/GGNFS/Msieve / May 21, 2009
(16·10174-7)/9 = 1(7)174<175> = 2306250299<10> · 74898255015998655946498827377<29> · C137
C137 = P54 · P83
P54 = 478201468652324457339234840573843334174654778416210183<54>
P83 = 21522287485721472882131698140452420826474012890115270934342109978718916791569225653<83>
N=10291989484429551876179833835177150162938324601375571356928446368849810743540128602817703724734336895923865775996568943437420300203424499 ( 137 digits) SNFS difficulty: 175 digits. Divisors found: r1=478201468652324457339234840573843334174654778416210183 (pp54) r2=21522287485721472882131698140452420826474012890115270934342109978718916791569225653 (pp83) Version: Msieve v. 1.41 Total time: 84.67 hours. Scaled time: 168.32 units (timescale=1.988). Factorization parameters were as follows: n: 10291989484429551876179833835177150162938324601375571356928446368849810743540128602817703724734336895923865775996568943437420300203424499 m: 100000000000000000000000000000000000 deg: 5 c5: 8 c0: -35 skew: 1.34 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 6500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1127939 x 1128187 Total sieving time: 82.45 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.77 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,175.000,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,52,52,2.5,2.5,100000 total time: 84.67 hours. --------- CPU info (if available) ----------
(73·10181-1)/9 = 8(1)181<182> = 32 · 71 · 401 · 7607 · 72912676783<11> · 923219843886583<15> · C147
C147 = P35 · P46 · P68
P35 = 20361161670231525367845505082480057<35>
P46 = 1251616944363009719621705935812728955500311537<46>
P68 = 24257137178864474300374832376502570787961784406903986047306381280607<68>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=767694175 Step 1 took 135641ms Step 2 took 38156ms ********** Factor found in step 2: 20361161670231525367845505082480057 Found probable prime factor of 35 digits: 20361161670231525367845505082480057 Composite cofactor 30360643914804711280126537478375872549443004895718960937443150897826484577690408044401934796318699204093516462959 has 113 digits N=30360643914804711280126537478375872549443004895718960937443150897826484577690408044401934796318699204093516462959 ( 113 digits) Divisors found: r1=1251616944363009719621705935812728955500311537 (pp46) r2=24257137178864474300374832376502570787961784406903986047306381280607 (pp68) Version: Msieve v. 1.41 Total time: 17.82 hours. Scaled time: 35.43 units (timescale=1.988). Factorization parameters were as follows: name: 007 n: 30360643914804711280126537478375872549443004895718960937443150897826484577690408044401934796318699204093516462959 skew: 56060.73 # norm 4.56e+015 c5: 5400 c4: 925749786 c3: 139144709401328 c2: -2731545790006531265 c1: -191386617501901718109034 c0: -51794230834906778574463800 # alpha -6.75 Y1: 2605339957 Y0: -5623198788990427023859 # Murphy_E 7.80e-010 # M 26026941765268532581501352771223314519362970659436966324429862456488236216574342368172363669966953696988389310169 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 409831 x 410079 Total sieving time: 17.43 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.22 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 17.82 hours. --------- CPU info (if available) ----------
(16·10199-7)/9 = 1(7)199<200> = 264007 · 6353173 · C188
C188 = P41 · C147
P41 = 23291472982858333436228811919662999043691<41>
C147 = [455066006465288415070009733577160112444400511082951782000226631417419627374631140800240793491446540584054470178200734178991550975951296244405242177<147>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4270917581 Step 1 took 211781ms Step 2 took 52875ms ********** Factor found in step 2: 23291472982858333436228811919662999043691 Found probable prime factor of 41 digits: 23291472982858333436228811919662999043691 Composite cofactor 455066006465288415070009733577160112444400511082951782000226631417419627374631140800240793491446540584054470178200734178991550975951296244405242177 has 147 digits
By matsui / Msieve / May 21, 2009
10178-3 = (9)1777<178> = 13 · 887 · 10847 · C170
C170 = P41 · P48 · P82
P41 = 52170205801655912072668661692945628873867<41>
P48 = 791376560196615965346312862807404223815327503783<48>
P82 = 1936500685368344801593175804002836251063019833454008113128462336831727700966974861<82>
N=79950905666669947318829189023504982624389597821120354119830593305197383715345289932645119668396902871410393219581156873135110146803694310686357178256548496856214460373321 ( 170 digits) SNFS difficulty: 179 digits. Divisors found: r1=52170205801655912072668661692945628873867 (pp41) r2=791376560196615965346312862807404223815327503783 (pp48) r3=1936500685368344801593175804002836251063019833454008113128462336831727700966974861 (pp82) Version: Msieve v. 1.41 Total time: 99.44 hours. Scaled time: 220.85 units (timescale=2.221). Factorization parameters were as follows: n: 79950905666669947318829189023504982624389597821120354119830593305197383715345289932645119668396902871410393219581156873135110146803694310686357178256548496856214460373321 m: 500000000000000000000000000000000000 deg: 5 c5: 8 c0: -75 skew: 1.56 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 200000 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 7800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1275737 x 1275985 Total sieving time: 96.45 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.61 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,179.000,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 99.44 hours.
By Sinkiti Sibata / GGNFS, Msieve / May 21, 2009
(56·10126-11)/9 = 6(2)1251<127> = 1217 · 2621 · 196681 · 1314917 · C109
C109 = P50 · P59
P50 = 85460947370226636743108095203141443911505920048757<50>
P59 = 88259094526073219007075664062010607115306266951250511756577<59>
Number: 62221_126 N=7542705832236601216063235731698454018477684470697798773233660065331465340664513913820697047502655637555424789 ( 109 digits) SNFS difficulty: 128 digits. Divisors found: r1=85460947370226636743108095203141443911505920048757 (pp50) r2=88259094526073219007075664062010607115306266951250511756577 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.70 hours. Scaled time: 1.75 units (timescale=0.474). Factorization parameters were as follows: name: 62221_126 n: 7542705832236601216063235731698454018477684470697798773233660065331465340664513913820697047502655637555424789 m: 20000000000000000000000000 deg: 5 c5: 35 c0: -22 skew: 0.91 type: snfs lss: 1 rlim: 950000 alim: 950000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 950000/950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [475000, 775001) Primes: RFBsize:74907, AFBsize:74524, largePrimes:2496810 encountered Relations: rels:2361847, finalFF:177094 Max relations in full relation-set: 28 Initial matrix: 149497 x 177094 with sparse part having weight 12725097. Pruned matrix : 138823 x 139634 with weight 7970789. Total sieving time: 3.31 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.26 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,950000,950000,26,26,47,47,2.3,2.3,50000 total time: 3.70 hours. --------- CPU info (if available) ----------
(17·10179-11)/3 = 5(6)1783<180> = 31 · 10007 · 53192437 · 105051320748779<15> · 374955728135539<15> · 2878942959482939<16> · C123
C123 = P51 · P72
P51 = 354049920548723132634303957269119976363078994390569<51>
P72 = 855328836537558036336720562807522226820031225278213794850985182331674257<72>
Number: 56663_179 N=302829106619154218377716355436978651473579332240491193108600419858021141565254322328800457872695512634703127245357140882233 ( 123 digits) Divisors found: r1=354049920548723132634303957269119976363078994390569 (pp51) r2=855328836537558036336720562807522226820031225278213794850985182331674257 (pp72) Version: Msieve-1.40 Total time: 75.65 hours. Scaled time: 151.75 units (timescale=2.006). Factorization parameters were as follows: name: 56663_179 # Murphy_E = 2.026034e-10, selected by Jeff Gilchrist n: 302829106619154218377716355436978651473579332240491193108600419858021141565254322328800457872695512634703127245357140882233 Y0: -433157679004605500978739 Y1: 18225977925839 c0: -18544938211182598116809527360 c1: -2140927006093851150814424 c2: -40473423879282093450 c3: 833121153677281 c4: -12735684640 c5: 19860 skew: 75263.93 type: gnfs # selected mechanically rlim: 6100000 alim: 6100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3050000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 824469 x 824717 Total sieving time: 72.48 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.63 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6100000,6100000,27,27,52,52,2.5,2.5,100000 total time: 75.65 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 21, 2009
(56·10105-11)/9 = 6(2)1041<106> = 19 · 275616891313033<15> · C91
C91 = P35 · P56
P35 = 24330702448592325739955334584339839<35>
P56 = 48835027773320238922833025911088665344601596148840538457<56>
Number: 62221_105 N=1188190529821396970209289612592845440044925234583594455283508212115333084445779916636688423 ( 91 digits) SNFS difficulty: 107 digits. Divisors found: r1=24330702448592325739955334584339839 (pp35) r2=48835027773320238922833025911088665344601596148840538457 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.42 hours. Scaled time: 1.00 units (timescale=2.384). Factorization parameters were as follows: n: 1188190529821396970209289612592845440044925234583594455283508212115333084445779916636688423 m: 2000000000000000000000 deg: 5 c5: 7 c0: -44 skew: 1.44 type: snfs lss: 1 rlim: 240000 alim: 240000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 240000/240000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [120000, 240001) Primes: RFBsize:21221, AFBsize:21035, largePrimes:895240 encountered Relations: rels:798669, finalFF:63832 Max relations in full relation-set: 28 Initial matrix: 42322 x 63832 with sparse part having weight 3116321. Pruned matrix : 38783 x 39058 with weight 1292696. Total sieving time: 0.40 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,240000,240000,25,25,44,44,2.2,2.2,20000 total time: 0.42 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
(56·10125-11)/9 = 6(2)1241<126> = 3 · C126
C126 = P52 · P74
P52 = 3806506880294352571346546015603433909291622425036793<52>
P74 = 54487595564616145799918267616624286940343098904288600520561248151699639399<74>
Number: 62221_125 N=207407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 ( 126 digits) SNFS difficulty: 127 digits. Divisors found: r1=3806506880294352571346546015603433909291622425036793 r2=54487595564616145799918267616624286940343098904288600520561248151699639399 Version: Total time: 1.09 hours. Scaled time: 2.60 units (timescale=2.378). Factorization parameters were as follows: n: 207407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 m: 20000000000000000000000000 deg: 5 c5: 7 c0: -44 skew: 1.44 type: snfs lss: 1 rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [400000, 720001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2509555 Max relations in full relation-set: Initial matrix: Pruned matrix : 117486 x 117729 Total sieving time: 0.96 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,26,26,46,46,2.3,2.3,40000 total time: 1.09 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Serge Batalov / GMP-ECM 6.2.3, Msieve / May 21, 2009
(56·10137-11)/9 = 6(2)1361<138> = 34 · 23789 · 31963 · 36405263 · 49736621128429<14> · C106
C106 = P34 · P73
P34 = 1042522064367890213390144229142147<34>
P73 = 5351937971935949863412995979448075596857523038286721401050467570506870027<73>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2962973428 Step 1 took 7013ms Step 2 took 4220ms ********** Factor found in step 2: 1042522064367890213390144229142147 Found probable prime factor of 34 digits: 1042522064367890213390144229142147 Probable prime cofactor has 73 digits
(56·10198-11)/9 = 6(2)1971<199> = 17 · 71 · 1877691063628923919<19> · 39317325018936102524429<23> · 100727673887609352544951<24> · C132
C132 = P29 · P103
P29 = 71349951368303820813792160667<29>
P103 = 9716003423286518136366458101254813472031564320708621201225088809711249287119537530935122345120997784109<103>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3031718808 Step 1 took 8297ms Step 2 took 4920ms ********** Factor found in step 2: 71349951368303820813792160667 Found probable prime factor of 29 digits: 71349951368303820813792160667 Probable prime cofactor has 103 digits
(56·10189-11)/9 = 6(2)1881<190> = 277 · 25277866982933<14> · 40398247348837599795974405003<29> · C146
C146 = P38 · C108
P38 = 54162299091422434499021060679582624167<38>
C108 = [406130596790779999759153981712709459914372909456044656520865406171812435177580766081922259159004770290767081<108>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=715898463 Step 1 took 9785ms Step 2 took 5252ms ********** Factor found in step 2: 54162299091422434499021060679582624167 Found probable prime factor of 38 digits: 54162299091422434499021060679582624167 Composite cofactor has 108 digits
(56·10183-11)/9 = 6(2)1821<184> = 4093565809<10> · 49145698624699<14> · 485601426753367817<18> · C143
C143 = P28 · P115
P28 = 9736459749091473825931494539<28>
P115 = 6541497819942903558698373382749994533024229717901469902742645607369605026183770257812764739195205897479634921596237<115>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2783513680 Step 1 took 9212ms Step 2 took 4944ms ********** Factor found in step 2: 9736459749091473825931494539 Found probable prime factor of 28 digits: 9736459749091473825931494539 Probable prime cofactor has 115 digits
(56·10158-11)/9 = 6(2)1571<159> = 3 · 59 · C157
C157 = P30 · C128
P30 = 203211241393631956722915124219<30>
C128 = [17299140354921275130942878961573349031729110752907845125819804596310155375128869475259027043222450254192642083192090196656125767<128>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4165293997 Step 1 took 10729ms Step 2 took 5564ms ********** Factor found in step 2: 203211241393631956722915124219 Found probable prime factor of 30 digits: 203211241393631956722915124219 Composite cofactor has 128 digits
(56·10169-11)/9 = 6(2)1681<170> = C170
C170 = P35 · P135
P35 = 90825936474910356580445455028314087<35>
P135 = 685071078121065245380977100774338379718781727188337319868089778466636278967013267581132544372714137499174702411896983346835604803519083<135>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=123382992 Step 1 took 3481ms Step 2 took 2488ms ********** Factor found in step 2: 90825936474910356580445455028314087 Found probable prime factor of 35 digits: 90825936474910356580445455028314087 Probable prime cofactor has 135 digits
(56·10136-11)/9 = 6(2)1351<137> = C137
C137 = P50 · P88
P50 = 47116193896513763084644758936281326373029576202347<50>
P88 = 1320612237034413540645554150519798422265330249675924859416078913978284141978929267347943<88>
SNFS difficulty: 138 digits. Divisors found: r1=47116193896513763084644758936281326373029576202347 (pp50) r2=1320612237034413540645554150519798422265330249675924859416078913978284141978929267347943 (pp88) Version: Msieve v. 1.41 Total time: 2.29 hours. Scaled time: 6.24 units (timescale=2.723). Factorization parameters were as follows: n: 62222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 2000000000000000000000000000 deg: 5 c5: 35 c0: -22 skew: 0.91 type: snfs lss: 1 rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [700000, 1300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 222824 x 223072 Total sieving time: 2.05 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.18 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1400000,1400000,26,26,48,48,2.3,2.3,75000 total time: 2.29 hours.
By Robert Backstrom / GGNFS, Msieve / May 21, 2009
(52·10170-7)/9 = 5(7)170<171> = 20852144987<11> · 79044397577<11> · C150
C150 = P68 · P83
P68 = 22440932013872133921645504836737591772839461986141299394467185251929<68>
P83 = 15620614489398361590137207913320714870296064367180578091040472815622493531339189187<83>
Number: n N=350541147771494609491011242354777867405296059250495473592326054158821399535045616100799756842524277369580042636792251617397763429972324635079187691723 ( 150 digits) SNFS difficulty: 171 digits. Divisors found: Thu May 21 12:16:22 2009 prp68 factor: 22440932013872133921645504836737591772839461986141299394467185251929 Thu May 21 12:16:22 2009 prp83 factor: 15620614489398361590137207913320714870296064367180578091040472815622493531339189187 Thu May 21 12:16:22 2009 elapsed time 01:12:26 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 61.66 hours. Scaled time: 164.02 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_7_170 n: 350541147771494609491011242354777867405296059250495473592326054158821399535045616100799756842524277369580042636792251617397763429972324635079187691723 m: 10000000000000000000000000000000000 deg: 5 c5: 52 c0: -7 skew: 0.67 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2550000, 6067799) Primes: RFBsize:354971, AFBsize:354331, largePrimes:18240831 encountered Relations: rels:18861558, finalFF:753290 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2437626 hash collisions in 20937000 relations Msieve: matrix is 812926 x 813174 (214.4 MB) Total sieving time: 60.69 hours. Total relation processing time: 0.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,28,28,56,56,2.4,2.4,100000 total time: 61.66 hours. --------- CPU info (if available) ----------
(13·10170+41)/9 = 1(4)1699<171> = 83 · 37643 · 1922390207061151<16> · C149
C149 = P49 · P101
P49 = 1575121672855345298238023360609906942627058819383<49>
P101 = 15268025271988546201862798038998621247627449241812295699219585367782233836956990474049954794008106537<101>
Number: n N=24048997507612287288102100750520634911112589018110209838926532782366722172082602334303006601667608485021999452619553254832970652887124101622504606671 ( 149 digits) SNFS difficulty: 171 digits. Divisors found: Thu May 21 14:11:46 2009 prp49 factor: 1575121672855345298238023360609906942627058819383 Thu May 21 14:11:46 2009 prp101 factor: 15268025271988546201862798038998621247627449241812295699219585367782233836956990474049954794008106537 Thu May 21 14:11:46 2009 elapsed time 01:23:14 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 41.94 hours. Scaled time: 111.09 units (timescale=2.649). Factorization parameters were as follows: name: KA_1_4_169_9 n: 24048997507612287288102100750520634911112589018110209838926532782366722172082602334303006601667608485021999452619553254832970652887124101622504606671 m: 10000000000000000000000000000000000 deg: 5 c5: 13 c0: 41 skew: 1.26 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4812883) Primes: RFBsize:348513, AFBsize:347692, largePrimes:16399716 encountered Relations: rels:15549600, finalFF:675814 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1579804 hash collisions in 16873984 relations Msieve: matrix is 902266 x 902514 (242.4 MB) Total sieving time: 41.36 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 41.94 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3, GGNFS/Msieve / May 20, 2009
(73·10173-1)/9 = 8(1)173<174> = 7 · 4943 · 1059933049229<13> · C158
C158 = P26 · C132
P26 = 64098166474883233335412841<26>
C132 = [345038581425000928450184633893862071554589588600861750152497688160450839810744310320911058217737288283002897503366245665576907950899<132>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=460137404 Step 1 took 41172ms Step 2 took 11828ms ********** Factor found in step 2: 64098166474883233335412841 Found probable prime factor of 26 digits: 64098166474883233335412841 Composite cofactor 345038581425000928450184633893862071554589588600861750152497688160450839810744310320911058217737288283002897503366245665576907950899 has 132 digits
(16·10171-7)/9 = 1(7)171<172> = 2159081 · 6112989193<10> · 1204075884061927058546730881<28> · C129
C129 = P56 · P73
P56 = 28439831557188093353879668494862682918380292611871233807<56>
P73 = 3933453600796913095720722985325855260149941585902703532789048980867241007<73>
N=111866757844679185887968729281774448067931340871359537390276493296195096332957079943344641551979112580133063024428735821115123649 ( 129 digits) SNFS difficulty: 172 digits. Divisors found: r1=28439831557188093353879668494862682918380292611871233807 (pp56) r2=3933453600796913095720722985325855260149941585902703532789048980867241007 (pp73) Version: Msieve v. 1.41 Total time: 55.00 hours. Scaled time: 109.34 units (timescale=1.988). Factorization parameters were as follows: n: 111866757844679185887968729281774448067931340871359537390276493296195096332957079943344641551979112580133063024428735821115123649 m: 20000000000000000000000000000000000 deg: 5 c5: 5 c0: -7 skew: 1.07 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2600000, 5000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 961428 x 961676 Total sieving time: 53.49 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.27 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,172.000,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 55.00 hours. --------- CPU info (if available) ----------
(73·10190-1)/9 = 8(1)190<191> = 33 · 766373 · 576849289308102433339<21> · C163
C163 = P33 · C131
P33 = 352770971508535022385843411436127<33>
C131 = [19262878606573673376074258194783601287435893348319362805902003690630345538687715610774754588966646448026626420304138049204776918797<131>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3579367891 Step 1 took 40735ms Step 2 took 12609ms ********** Factor found in step 2: 352770971508535022385843411436127 Found probable prime factor of 33 digits: 352770971508535022385843411436127 Composite cofactor 19262878606573673376074258194783601287435893348319362805902003690630345538687715610774754588966646448026626420304138049204776918797 has 131 digits
(73·10179-1)/9 = 8(1)179<180> = 7 · 29 · 67 · 21269 · C172
C172 = P41 · P131
P41 = 47141841003406331455972300887242733651907<41>
P131 = 59477937477999248614204295322005295328835826506670111421059365117724762292797146126309564949352193967528628063664436708337272494617<131>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2284984890 Step 1 took 165109ms ********** Factor found in step 1: 47141841003406331455972300887242733651907 Found probable prime factor of 41 digits: 47141841003406331455972300887242733651907 Probable prime cofactor 59477937477999248614204295322005295328835826506670111421059365117724762292797146126309564949352193967528628063664436708337272494617 has 131 digits
By Robert Backstrom / GGNFS / May 20, 2009
4·10170+7 = 4(0)1697<171> = 11 · 23 · 37 · 2381 · 2531 · 23039 · 1367480531<10> · C147
C147 = P47 · P101
P47 = 22070578087533539660066827927884256765089556891<47>
P101 = 10197359262644066179879009668764560198414918046657958570180948390548824665266349600950111435706326543<101>
Number: n N=225061613892819300304785905266740211732831812868396480313631702593877904934930918137401620751717308464609538424488999385361130786232218389221857813 ( 147 digits) SNFS difficulty: 170 digits. Divisors found: r1=22070578087533539660066827927884256765089556891 (pp47) r2=10197359262644066179879009668764560198414918046657958570180948390548824665266349600950111435706326543 (pp101) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 37.67 hours. Scaled time: 98.95 units (timescale=2.627). Factorization parameters were as follows: name: KA_4_0_169_7 n: 225061613892819300304785905266740211732831812868396480313631702593877904934930918137401620751717308464609538424488999385361130786232218389221857813 m: 10000000000000000000000000000000000 deg: 5 c5: 4 c0: 7 skew: 1.12 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [2450000, 4250001) Primes: RFBsize:341992, AFBsize:341158, largePrimes:16380774 encountered Relations: rels:16086164, finalFF:804371 Max relations in full relation-set: 28 Initial matrix: 683214 x 804371 with sparse part having weight 83408290. Pruned matrix : 597975 x 601455 with weight 63746608. Total sieving time: 33.20 hours. Total relation processing time: 0.48 hours. Matrix solve time: 3.16 hours. Total square root time: 0.82 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,28,28,56,56,2.4,2.4,100000 total time: 37.67 hours. --------- CPU info (if available) ----------
Factorizations of 622...221 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Dmitry Domanov / GGNFS/Msieve, GMP-ECM 6.2.3 / May 19, 2009
(7·10180-43)/9 = (7)1793<180> = 53 · 197 · 422057 · 741131 · 1131199217758037948475947876693<31> · C135
C135 = P64 · P71
P64 = 2741369082874657399663051277237026829017586667572935865244850717<64>
P71 = 76796378648023087638003648915673883503681198485916992643055270266992439<71>
Number: 777 N=210527218102425973724818558615766578439790005099467290507542270053221747074507541204557915603489023170770125680574714982426615122728763 ( 135 digits) SNFS difficulty: 180 digits. Divisors found: r1=2741369082874657399663051277237026829017586667572935865244850717 (pp64) r2=76796378648023087638003648915673883503681198485916992643055270266992439 (pp71) Version: Msieve v. 1.41 Total time: 158.15 hours. Scaled time: 313.46 units (timescale=1.982). Factorization parameters were as follows: n: 210527218102425973724818558615766578439790005099467290507542270053221747074507541204557915603489023170770125680574714982426615122728763 m: 1000000000000000000000000000000000000 deg: 5 c5: 7 c0: -43 skew: 1.44 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3600000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1283421 x 1283669 Total sieving time: 155.28 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.33 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000 total time: 158.15 hours. --------- CPU info (if available) ----------
(7·10200-43)/9 = (7)1993<200> = 991073183 · C191
C191 = P40 · C152
P40 = 3937154377208831195317050869489643571199<40>
C152 = [19932756512603613805537617547909718330804698132888310510455011242343011729605214247504057026096081092532311130097139778827231495420334733940846765405069<152>]
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1296127361 Step 1 took 829141ms Step 2 took 159953ms ********** Factor found in step 2: 3937154377208831195317050869489643571199 Found probable prime factor of 40 digits: 3937154377208831195317050869489643571199 Composite cofactor 19932756512603613805537617547909718330804698132888310510455011242343011729605214247504057026096081092532311130097139778827231495420334733940846765405069 has 152 digits
By matsui / Msieve / May 19, 2009
8·10180-9 = 7(9)1791<181> = 826115977894170609050375729157582021497<39> · C142
C142 = P67 · P75
P67 = 9990207070327391855783197701498143287718371662893791939986474480751<67>
P75 = 969336296313865853470535064289775123620533028668230038800912477861614266753<75>
N=9683870320959750397301131599191235511655411576027658067144718311274518875633720728729028560156827649352670707054841461900759820696819277771503 ( 142 digits) SNFS difficulty: 180 digits. Divisors found: r1=9990207070327391855783197701498143287718371662893791939986474480751 (pp67) r2=969336296313865853470535064289775123620533028668230038800912477861614266753 (pp75) Version: Msieve v. 1.41 Total time: 110.65 hours. Scaled time: 244.98 units (timescale=2.214). Factorization parameters were as follows: n: 9683870320959750397301131599191235511655411576027658067144718311274518875633720728729028560156827649352670707054841461900759820696819277771503 m: 1000000000000000000000000000000000000 deg: 5 c5: 8 c0: -9 skew: 1.02 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 200000 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3600000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1294696 x 1294944 Total sieving time: 106.54 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.78 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000 total time: 110.65 hours.
By Robert Backstrom / GGNFS, Msieve / May 19, 2009
(82·10198-1)/9 = 9(1)198<199> = 32 · 347 · C196
C196 = P87 · P109
P87 = 436939136360240984927360625309074935876631115857657607436178934760710293610292472591579<87>
P109 = 6676954438986529421607213490324435297594479058174569446376089299972729546356176059887751621704278177785185383<109>
Number: n N=2917422706087451524531255559113388123954886683032696481303589853061514925107624435194079766606183513003878037499555270928950083609065357384281495712811755078805991390045184473618671505318959689757 ( 196 digits) SNFS difficulty: 201 digits. Divisors found: Tue May 19 05:13:09 2009 prp87 factor: 436939136360240984927360625309074935876631115857657607436178934760710293610292472591579 Tue May 19 05:13:09 2009 prp109 factor: 6676954438986529421607213490324435297594479058174569446376089299972729546356176059887751621704278177785185383 Tue May 19 05:13:09 2009 elapsed time 13:39:46 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 40.20 hours. Scaled time: 81.00 units (timescale=2.015). Factorization parameters were as follows: name: KA_9_1_198 n: 2917422706087451524531255559113388123954886683032696481303589853061514925107624435194079766606183513003878037499555270928950083609065357384281495712811755078805991390045184473618671505318959689757 m: 10000000000000000000000000000000000000000 deg: 5 c5: 41 c0: -50 skew: 1.04 type: snfs lss: 1 rlim: 16000000 alim: 16000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [8000000, 17000141) Primes: RFBsize:1031130, AFBsize:1031439, largePrimes:36170229 encountered Relations: rels:35462145, finalFF:1658980 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4758809 hash collisions in 38486645 relations Msieve: matrix is 2854694 x 2854942 (777.1 MB) Total sieving time: 39.37 hours. Total relation processing time: 0.82 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.6,2.6,100000 total time: 40.20 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830488) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.70 BogoMIPS).
(55·10166+71)/9 = 6(1)1659<167> = 32 · 285643157 · C158
C158 = P46 · P112
P46 = 4368395824318766408050439945935647525108707809<46>
P112 = 5441665761123586513039701393455608632083915097455189199613841488885076266307031749893027851414099021773762658907<112>
Number: n N=23771349988230677119949782157008310396142707023750348259839893370139875105742944357634737445469850540792487658964375109431112528945069238224822787510794304763 ( 158 digits) SNFS difficulty: 167 digits. Divisors found: Tue May 19 17:51:37 2009 prp46 factor: 4368395824318766408050439945935647525108707809 Tue May 19 17:51:37 2009 prp112 factor: 5441665761123586513039701393455608632083915097455189199613841488885076266307031749893027851414099021773762658907 Tue May 19 17:51:37 2009 elapsed time 00:59:13 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 46.95 hours. Scaled time: 124.89 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_165_9 n: 23771349988230677119949782157008310396142707023750348259839893370139875105742944357634737445469850540792487658964375109431112528945069238224822787510794304763 m: 1000000000000000000000000000000000 deg: 5 c5: 550 c0: 71 skew: 0.66 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2200000, 4930207) Primes: RFBsize:309335, AFBsize:308675, largePrimes:16930723 encountered Relations: rels:17097659, finalFF:662576 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2077248 hash collisions in 18962584 relations Msieve: matrix is 711056 x 711304 (188.0 MB) Total sieving time: 46.23 hours. Total relation processing time: 0.73 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4400000,4400000,28,28,56,56,2.4,2.4,100000 total time: 46.95 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 19, 2009
2·10181-1 = 1(9)181<182> = 19 · 71 · 7349 · 808897818779368181<18> · 797129087967153857493783971<27> · C130
C130 = P46 · P84
P46 = 5050517525163785428349019657192204840675990331<46>
P84 = 619486140631122497714177220241924734371086778583423922913708782283498388270677109979<84>
Number: 19999_181 N=3128725609853561538026773920634567520995491992088880828324972714133336327873248318256123375586149260625874239143237635528827613049 ( 130 digits) SNFS difficulty: 181 digits. Divisors found: r1=5050517525163785428349019657192204840675990331 r2=619486140631122497714177220241924734371086778583423922913708782283498388270677109979 Version: Total time: 68.24 hours. Scaled time: 162.76 units (timescale=2.385). Factorization parameters were as follows: n: 3128725609853561538026773920634567520995491992088880828324972714133336327873248318256123375586149260625874239143237635528827613049 m: 1000000000000000000000000000000000000 deg: 5 c5: 20 c0: -1 skew: 0.55 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [2900000, 4800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17839570 Max relations in full relation-set: Initial matrix: Pruned matrix : 1166869 x 1167117 Total sieving time: 62.68 hours. Total relation processing time: 1.76 hours. Matrix solve time: 3.07 hours. Time per square root: 0.73 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,53,53,2.5,2.5,100000 total time: 68.24 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Robert Backstrom / GGNFS, Msieve / May 18, 2009
(55·10167+53)/9 = 6(1)1667<168> = 13 · C167
C167 = P51 · P117
P51 = 413253709863765149819165994687158966560294819480339<51>
P117 = 113752268610108864645974297516771880453518903037560549478996788182332828844323184288710023807427966999107247784733531<117>
Number: n N=47008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547009 ( 167 digits) SNFS difficulty: 170 digits. Divisors found: Mon May 18 20:45:42 2009 prp51 factor: 413253709863765149819165994687158966560294819480339 Mon May 18 20:45:42 2009 prp117 factor: 113752268610108864645974297516771880453518903037560549478996788182332828844323184288710023807427966999107247784733531 Mon May 18 20:45:42 2009 elapsed time 01:47:01 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 46.69 hours. Scaled time: 123.67 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_1_166_7 n: 47008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547009 m: 5000000000000000000000000000000000 deg: 5 c5: 44 c0: 1325 skew: 1.98 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2400000, 5036893) Primes: RFBsize:335439, AFBsize:335533, largePrimes:16351362 encountered Relations: rels:15644308, finalFF:647400 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1750957 hash collisions in 17268406 relations Msieve: matrix is 861002 x 861250 (230.9 MB) Total sieving time: 46.06 hours. Total relation processing time: 0.63 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,56,56,2.4,2.4,100000 total time: 46.69 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3, GGNFS, Msieve 1.41 / May 18, 2009
2·10232-1 = 1(9)232<233> = 7 · 173137 · 42049591 · C219
C219 = P38 · P182
P38 = 34613759961280378907193267864768175303<38>
P182 = 11337871068816284810015281720676567521820709766247790016536458359116649482490012289408508986811315047442941807203647099955100565546682002698657209705791404051679009408588287240060857<182>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1689352593 Step 1 took 410609ms Step 2 took 104703ms ********** Factor found in step 2: 34613759961280378907193267864768175303 Found probable prime factor of 38 digits: 34613759961280378907193267864768175303 Probable prime cofactor 11337871068816284810015281720676567521820709766247790016536458359116649482490012289408508986811315047442941807203647099955100565546682002698657209705791404051679009408588287240060857 has 182 digits
(7·10179-43)/9 = (7)1783<179> = 29 · 74139184723<11> · 5678444893385647<16> · 64191352839380917<17> · C134
C134 = P53 · P82
P53 = 59768195256934827918992906434416007822747135583378717<53>
P82 = 1660479967082549350076027500591027695979166379603958880084664687018341548117976293<82>
Number: 2 N=99243890892818525257757099486749168779709129287517878619947908485429606390314043914415323816305774703347821779218335872529329446756081 ( 134 digits) SNFS difficulty: 180 digits. Divisors found: r1=59768195256934827918992906434416007822747135583378717 (pp53) r2=1660479967082549350076027500591027695979166379603958880084664687018341548117976293 (pp82) Version: Msieve v. 1.41 Total time: 142.93 hours. Scaled time: 284.15 units (timescale=1.988). Factorization parameters were as follows: n: 99243890892818525257757099486749168779709129287517878619947908485429606390314043914415323816305774703347821779218335872529329446756081 m: 500000000000000000000000000000000000 deg: 5 c5: 112 c0: -215 skew: 1.14 type: snfs lss: 1 rlim: 7100000 alim: 7100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7100000/7100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3550000, 5650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1233288 x 1233536 Total sieving time: 140.43 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.09 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,180.000,5,0,0,0,0,0,0,0,0,7100000,7100000,28,28,53,53,2.5,2.5,100000 total time: 142.93 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / May 18, 2009
2·10245-1 = 1(9)245<246> = 240139 · C240
C240 = P35 · P206
P35 = 11646344158366741257794536820925991<35>
P206 = 71511794816116647592466076649315262164366978239860741017711346458660357589133354997489778453665412237637499789509689866120922247059753039227205632490112635124358150084519402014002012700683540453240769740251<206>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4173179287 Step 1 took 6145ms Step 2 took 3728ms ********** Factor found in step 2: 11646344158366741257794536820925991 Found probable prime factor of 35 digits: 11646344158366741257794536820925991 Probable prime cofactor has 206 digits
By Erik Branger / GGNFS, Msieve / May 18, 2009
(53·10179-17)/9 = 5(8)1787<180> = 13 · 8609 · 2466439 · 1905016558247958781387<22> · 8442905563306619451552613<25> · C123
C123 = P49 · P75
P49 = 1267882575806183686123062369811279771630970712791<49>
P75 = 104615780893553633888163173944050869226186736163185458497293997297646226469<75>
Number: 58887_179 N=132640525749294118102139295123428335192313886562409838069300157486717226157984219970666790975658435729365925900696341064979 ( 123 digits) Divisors found: r1=1267882575806183686123062369811279771630970712791 (pp49) r2=104615780893553633888163173944050869226186736163185458497293997297646226469 (pp75) Version: Msieve v. 1.41 Total time: 103.57 hours. Scaled time: 81.20 units (timescale=0.784). Factorization parameters were as follows: # Murphy_E = 2.204181e-10, selected by Jeff Gilchrist n: 132640525749294118102139295123428335192313886562409838069300157486717226157984219970666790975658435729365925900696341064979 Y0: -360317732448563326023454 Y1: 19879181277307 c0: 171606085697399885470075292375 c1: -919211884570549739620675 c2: 6162561620072014696 c3: -1776083482988118 c4: -4172818468 c5: 21840 skew: 146902.99 type: gnfs # selected mechanically rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 812357 x 812605 Total sieving time: 97.10 hours. Total relation processing time: 0.27 hours. Matrix solve time: 4.27 hours. Time per square root: 1.93 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,27,27,52,52,2.5,2.5,100000 total time: 103.57 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / Msieve v. 1.41, GMP-ECM 6.2.3 / May 17, 2009
2·10177-3 = 1(9)1767<178> = 17 · 66090659226826860491<20> · 314129679887073807583524645188651<33> · C124
C124 = P57 · P68
P57 = 129436443535881527128893364288064480493161761142268211249<57>
P68 = 43779968748061432046513482796553162771143586000974553425324771322949<68>
Number: 1 N=5666723452861111419953301719983874645151689206796263127100108210064996380732130563446722510620008860655369666194925533653301 ( 124 digits) Divisors found: r1=129436443535881527128893364288064480493161761142268211249 (pp57) r2=43779968748061432046513482796553162771143586000974553425324771322949 (pp68) Version: Msieve v. 1.41 Total time: 64.89 hours. Scaled time: 129.00 units (timescale=1.988). Factorization parameters were as follows: n: 5666723452861111419953301719983874645151689206796263127100108210064996380732130563446722510620008860655369666194925533653301 Y0: -790479467134143134043274 Y1: 32457700167143 c0: -16608921037930062398718064421235 c1: 204502172404307051875471623 c2: -475301048895667076195 c3: -3826111044588199 c4: 6563015646 c5: 18360 skew: 335696.21 type: gnfs # selected mechanically rlim: 6600000 alim: 6600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3300000, 6200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 853192 x 853440 Total sieving time: 63.48 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.94 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6600000,6600000,27,27,52,52,2.5,2.5,100000 total time: 64.89 hours. --------- CPU info (if available) ----------
(8·10173-17)/9 = (8)1727<173> = 3 · 19 · 238591 · 266183 · 6010441682603<13> · 812262305277809501754934760781703<33> · C115
C115 = P49 · P67
P49 = 2611259137894710237293454858163599958892111103623<49>
P67 = 1926129971804758511475517763482213919232130440459976838959776938821<67>
N=5029624489648056247300436114909387948363823244892596172024214674079949553164223403365426542863909717715506862448483 ( 115 digits) Divisors found: r1=2611259137894710237293454858163599958892111103623 (pp49) r2=1926129971804758511475517763482213919232130440459976838959776938821 (pp67) Version: Msieve v. 1.41 Total time: 22.88 hours. Scaled time: 45.48 units (timescale=1.988). Factorization parameters were as follows: name: 0 n: 5029624489648056247300436114909387948363823244892596172024214674079949553164223403365426542863909717715506862448483 skew: 36469.77 # norm 1.93e+016 c5: 170100 c4: -10736202576 c3: -1186048453213825 c2: 14042271287297154850 c1: 548613656918148741678540 c0: 1532467212163374559964486256 # alpha -7.17 Y1: 2806801040923 Y0: -7837331434948602045395 # Murphy_E 5.77e-010 # M 4373931990339949704516262703984833457081464005125254720617819565817044248881822484578247306882686022685927858970917 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 453024 x 453272 Total sieving time: 22.44 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.26 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.88 hours. --------- CPU info (if available) ----------
2·10206-1 = 1(9)206<207> = 11887 · C203
C203 = P32 · C171
P32 = 25251681423007905250365508795903<32>
C171 = [666296345653486704742396440597318758413330523030411841134328740685319859888372657484412271028953068923412326473632165793283237236740121087632239829994708821140851105993359<171>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1034025118 Step 1 took 365484ms Step 2 took 91844ms ********** Factor found in step 2: 25251681423007905250365508795903 Found probable prime factor of 32 digits: 25251681423007905250365508795903 Composite cofactor 666296345653486704742396440597318758413330523030411841134328740685319859888372657484412271028953068923412326473632165793283237236740121087632239829994708821140851105993359 has 171 digits
By Robert Backstrom / GGNFS, Msieve / May 17, 2009
(55·10156+71)/9 = 6(1)1559<157> = 7 · 19 · 89 · 18371 · 171079 · C144
C144 = P55 · P89
P55 = 4370158092582282757313947484456642816270989901770322191<55>
P89 = 37588230741138358916968159138254050527582219668790482732985280376540552048714496247601473<89>
Number: n N=164266510759235935151091684199368678071275955875794973838775544060115590128095146270263568553806905435199397302142613446385652138637818176187343 ( 144 digits) SNFS difficulty: 157 digits. Divisors found: Sun May 17 13:36:38 2009 prp55 factor: 4370158092582282757313947484456642816270989901770322191 Sun May 17 13:36:38 2009 prp89 factor: 37588230741138358916968159138254050527582219668790482732985280376540552048714496247601473 Sun May 17 13:36:38 2009 elapsed time 00:38:11 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 18.14 hours. Scaled time: 48.25 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_155_9 n: 164266510759235935151091684199368678071275955875794973838775544060115590128095146270263568553806905435199397302142613446385652138637818176187343 m: 10000000000000000000000000000000 deg: 5 c5: 550 c0: 71 skew: 0.66 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1500000, 2621263) Primes: RFBsize:216816, AFBsize:216593, largePrimes:12448399 encountered Relations: rels:11358348, finalFF:405451 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 973747 hash collisions in 12361528 relations Msieve: matrix is 559501 x 559749 (151.1 MB) Total sieving time: 17.86 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.4,2.4,100000 total time: 18.14 hours. --------- CPU info (if available) ----------
(55·10157+71)/9 = 6(1)1569<158> = 32 · 1471403 · 802664521 · C142
C142 = P58 · P85
P58 = 1686182319884758962774964750881255991601351889743917277737<58>
P85 = 3409631426198123185000501403935973337864779640058934109973986572635032460917715202261<85>
Number: n N=5749260228178730669619786717761222950011415158355549533147526451268751883270957466810123899031638901689018728723513873259203959052863467363357 ( 142 digits) SNFS difficulty: 159 digits. Divisors found: Sun May 17 18:57:23 2009 prp58 factor: 1686182319884758962774964750881255991601351889743917277737 Sun May 17 18:57:23 2009 prp85 factor: 3409631426198123185000501403935973337864779640058934109973986572635032460917715202261 Sun May 17 18:57:23 2009 elapsed time 00:42:44 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 23.25 hours. Scaled time: 61.08 units (timescale=2.627). Factorization parameters were as follows: name: KA_6_1_156_9 n: 5749260228178730669619786717761222950011415158355549533147526451268751883270957466810123899031638901689018728723513873259203959052863467363357 m: 20000000000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1600000, 3000103) Primes: RFBsize:230209, AFBsize:230864, largePrimes:13258094 encountered Relations: rels:12352354, finalFF:499172 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1168747 hash collisions in 13306719 relations Msieve: matrix is 600048 x 600296 (161.2 MB) Total sieving time: 22.97 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,56,56,2.4,2.4,100000 total time: 23.25 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3 / May 17, 2009
2·10247-1 = 1(9)247<248> = 5711 · 5137651 · C237
C237 = P33 · P205
P33 = 109424217918630909136935706451429<33>
P205 = 6229307717727602487152483306982713621811871446270813768407187294030930000936284989180582851699942671495245102701667423676129508232560794431964653471639690945651238874214201094168491986383412060065017416271<205>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1912754877 Step 1 took 18573ms Step 2 took 14897ms ********** Factor found in step 2: 109424217918630909136935706451429 Found probable prime factor of 33 digits: 109424217918630909136935706451429 Probable prime cofactor has 205 digits Done!
2·10240-1 = 1(9)240<241> = 30977 · C236
C236 = P29 · C208
P29 = 12900409695855239366375680297<29>
C208 = [5004804723284328509504727413794179674007575588977579484001085955783285781518184216385475235750566319669217329827167346224955993379403688987397077202076056166105889455325049497934984058409692206566091055812071<208>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3362628703 Step 1 took 18557ms Step 2 took 14457ms ********** Factor found in step 2: 12900409695855239366375680297 Found probable prime factor of 29 digits: 12900409695855239366375680297 Composite cofactor has 208 digits
2·10205-1 = 1(9)205<206> = 4871 · 2292880818603421<16> · C187
C187 = P31 · C157
P31 = 1129082288029883803778855245661<31>
C157 = [1586005869640370385835630004795171489748136970111735468000037034576203712150943132322655517008937091427800298435286635359428161072876813941823046361696157249<157>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3975420477 Step 1 took 12357ms Step 2 took 11288ms ********** Factor found in step 2: 1129082288029883803778855245661 Found probable prime factor of 31 digits: 1129082288029883803778855245661 Composite cofactor has 157 digits
By matsui / Msieve / May 17, 2009
7·10170-3 = 6(9)1697<171> = 1429327603703<13> · 28390070271134877038117841913<29> · C131
C131 = P53 · P79
P53 = 10977412137489495157200178568512469140915422117788701<53>
P79 = 1571447302297785507555396244163363334714959786940690062024588758974391266160223<79>
N=17250424689668834463131362979763025513450745051057365655701643284974919725337463089471895545976264413296899763464783165863925040323 ( 131 digits) SNFS difficulty: 170 digits. Divisors found: r1=10977412137489495157200178568512469140915422117788701 (pp53) r2=1571447302297785507555396244163363334714959786940690062024588758974391266160223 (pp79) Version: Msieve v. 1.41 Total time: 43.50 hours. Scaled time: 95.83 units (timescale=2.203). Factorization parameters were as follows: n: 17250424689668834463131362979763025513450745051057365655701643284974919725337463089471895545976264413296899763464783165863925040323 m: 10000000000000000000000000000000000 deg: 5 c5: 7 c0: -3 skew: 0.84 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 925874 x 926122 Total sieving time: 41.19 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.10 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 43.50 hours.
By Markus Tervooren / ggnfs/msieve / May 17, 2009
(55·10160+71)/9 = 6(1)1599<161> = 3 · 149 · 21107 · 1084075229719<13> · C142
C142 = P38 · P104
P38 = 88539989319060976418882479999944058891<38>
P104 = 67481893525870289348177804373535358169251913889732089510397032622620280152860264580806539879951990357159<104>
Msieve v. 1.41 Sat May 16 23:48:25 2009 random seeds: 1adbc9bd 4cfcd870 factoring 5974846132010565473273718653317702536894929614781964497842106328436804159921963100290714032559044192138130940159247390971510433112663219450669 (142 digits) searching for 15-digit factors commencing number field sieve (142-digit input) R0: -100000000000000000000000000000000 R1: 1 A0: 71 A1: 0 A2: 0 A3: 0 A4: 0 A5: 55 skew 1.05, size 1.984130e-11, alpha 1.074395, combined = 4.937228e-10 commencing square root phase reading relations for dependency 1 read 278577 cycles cycles contain 1059584 unique relations read 1059584 relations multiplying 848856 relations multiply complete, coefficients have about 23.21 million bits initial square root is modulo 4621231 sqrtTime: 135 prp38 factor: 88539989319060976418882479999944058891 prp104 factor: 67481893525870289348177804373535358169251913889732089510397032622620280152860264580806539879951990357159 elapsed time 00:02:16 Total sieving time: 18:12:01
Factorizations of 199...99 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Serge Batalov / PFGW / Mar 16, 2009
(16·1056082-61)/9 = 1(7)560811<56083> is PRP.
By Robert Backstrom / GGNFS, Msieve / May 16, 2009
(55·10173+53)/9 = 6(1)1727<174> = 13 · 29 · 107 · C170
C170 = P77 · P94
P77 = 12576082971806871968069729416319272329315487489596105277919238868516031336329<77>
P94 = 1204618859405030553363698323853833563350237788260488026770597375925396803921048656034405570407<94>
Number: n N=15149386725281021123753962941845636012571236548033196437966015793924269592977295200949728825977617469721884804063340963115374974865790205783760408317288755574285706415903 ( 170 digits) SNFS difficulty: 175 digits. Divisors found: Sat May 16 20:13:23 2009 prp77 factor: 12576082971806871968069729416319272329315487489596105277919238868516031336329 Sat May 16 20:13:23 2009 prp94 factor: 1204618859405030553363698323853833563350237788260488026770597375925396803921048656034405570407 Sat May 16 20:13:23 2009 elapsed time 01:57:04 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 92.51 hours. Scaled time: 246.07 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_172_7 n: 15149386725281021123753962941845636012571236548033196437966015793924269592977295200949728825977617469721884804063340963115374974865790205783760408317288755574285706415903 m: 50000000000000000000000000000000000 deg: 5 c5: 88 c0: 265 skew: 1.25 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2950000, 7750001) Primes: RFBsize:406429, AFBsize:406189, largePrimes:21211462 encountered Relations: rels:21323565, finalFF:723633 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2986877 hash collisions in 24112465 relations Msieve: matrix is 1043634 x 1043882 (273.1 MB) Total sieving time: 90.86 hours. Total relation processing time: 1.64 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,56,56,2.5,2.5,100000 total time: 92.51 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS / May 16, 2009
(55·10143+71)/9 = 6(1)1429<144> = 17 · 29 · 991 · 4457 · 6493441453<10> · 2838678287817353<16> · C110
C110 = P41 · P69
P41 = 27019354239685156397295913693344519066703<41>
P69 = 563496083463933782315403603663316451548918552533691438676317697210167<69>
Number: 61119_143 N=15225300291787219991255509950617093567241683938470837984337757123021294767004829225327161644868299881682769401 ( 110 digits) SNFS difficulty: 145 digits. Divisors found: r1=27019354239685156397295913693344519066703 (pp41) r2=563496083463933782315403603663316451548918552533691438676317697210167 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 17.08 hours. Scaled time: 8.08 units (timescale=0.473). Factorization parameters were as follows: name: 61119_143 n: 15225300291787219991255509950617093567241683938470837984337757123021294767004829225327161644868299881682769401 m: 50000000000000000000000000000 deg: 5 c5: 88 c0: 355 skew: 1.32 type: snfs lss: 1 rlim: 1860000 alim: 1860000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1860000/1860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [930000, 2230001) Primes: RFBsize:139249, AFBsize:139185, largePrimes:3996264 encountered Relations: rels:4113629, finalFF:376850 Max relations in full relation-set: 28 Initial matrix: 278500 x 376850 with sparse part having weight 36482233. Pruned matrix : 244485 x 245941 with weight 20666563. Total sieving time: 15.21 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.59 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1860000,1860000,26,26,49,49,2.3,2.3,100000 total time: 17.08 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 16, 2009
(53·10198-17)/9 = 5(8)1977<199> = C199
C199 = P52 · P148
P52 = 3105261215890219980188797697842256974579853865273347<52>
P148 = 1896423031580824744009636372699045793880183375458593621015135886801884722666025272281158636589101925037831403331081551847068185738937524060810693821<148>
Number: 58887_198 N=5888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 199 digits) SNFS difficulty: 199 digits. Divisors found: r1=3105261215890219980188797697842256974579853865273347 r2=1896423031580824744009636372699045793880183375458593621015135886801884722666025272281158636589101925037831403331081551847068185738937524060810693821 Version: Total time: 495.00 hours. Scaled time: 1183.05 units (timescale=2.390). Factorization parameters were as follows: n: 5888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 1000000000000000000000000000000000 deg: 6 c6: 53 c0: -17 skew: 0.83 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 29 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 55/55 Sieved rational special-q in [10000000, 20700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 35575862 Max relations in full relation-set: Initial matrix: Pruned matrix : 3176756 x 3177003 Total sieving time: 445.27 hours. Total relation processing time: 22.31 hours. Matrix solve time: 26.88 hours. Time per square root: 0.54 hours. Prototype def-par.txt line would be: snfs,199,6,0,0,0,0,0,0,0,0,20000000,20000000,29,29,55,55,2.6,2.6,100000 total time: 495.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Dmitry Domanov / Msieve / May 16, 2009
(55·10162+71)/9 = 6(1)1619<163> = 7 · C162
C162 = P41 · P58 · P64
P41 = 27343748654766962023770897524061237446659<41>
P58 = 5056764184952869943581882885968674046825445552654199267029<58>
P64 = 6313808207126857150929194815143949309287693135354451798881427847<64>
N=873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873017 ( 162 digits) SNFS difficulty: 164 digits. Divisors found: r1=27343748654766962023770897524061237446659 (pp41) r2=5056764184952869943581882885968674046825445552654199267029 (pp58) r3=6313808207126857150929194815143949309287693135354451798881427847 (pp64) Version: Msieve v. 1.41 Total time: 41.38 hours. Scaled time: 36.42 units (timescale=0.880). Factorization parameters were as follows: n: 873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873017 m: 200000000000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1950000, 4050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 712923 x 713171 Total sieving time: 39.93 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.91 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,164.000,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 41.38 hours. --------- CPU info (if available) ----------
By matsui / GGNFS / May 16, 2009
8·10178+3 = 8(0)1773<179> = 7 · 11 · 73 · 120504276263123<15> · C162
C162 = P46 · P116
P46 = 1521121596498992083430684328800554217699357191<46>
P116 = 77644377170813478936009808463885244242858683928639274087657213019286395263296774458233906745544656020639399572401451<116>
N=118106538961237693228597702847944467131004093955164231095291492466633604287488596160101615398988803382502945819721906856579471463533012033849514923850146895684141 ( 162 digits) SNFS difficulty: 180 digits. Divisors found: r1=1521121596498992083430684328800554217699357191 (pp46) r2=77644377170813478936009808463885244242858683928639274087657213019286395263296774458233906745544656020639399572401451 (pp116) Version: GGNFS-0.77.1-20060722-nocona Total time: 118.65 hours. Scaled time: 259.61 units (timescale=2.188). Factorization parameters were as follows: n: 118106538961237693228597702847944467131004093955164231095291492466633604287488596160101615398988803382502945819721906856579471463533012033849514923850146895684141 m: 1000000000000000000000000000000000000 deg: 5 c5: 2 c0: 75 skew: 2.06 type: snfs lss: 1 rlim: 7100000 alim: 7100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7100000/7100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3550000, 5250001) Primes: RFBsize:483015, AFBsize:482366, largePrimes:17442103 encountered Relations: rels:17732404, finalFF:1229549 Max relations in full relation-set: 32 Initial matrix: 965446 x 1229548 with sparse part having weight 148799596. Pruned matrix : 762190 x 767081 with weight 115818416. Total sieving time: 108.34 hours. Total relation processing time: 0.28 hours. Matrix solve time: 9.76 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7100000,7100000,28,28,53,53,2.5,2.5,100000 total time: 118.65 hours.
By Serge Batalov / PFGW / Mar 15, 2009
(5·1066394-17)/3 = 1(6)663931<66395> is PRP.
By Dmitry Domanov / GMP-ECM 6.2.3, Msieve v. 1.41, GGNFS-0.77.1-VC8 / May 15, 2009
(55·10192+71)/9 = 6(1)1919<193> = 72 · 19 · 28211 · C186
C186 = P33 · P153
P33 = 287860258795288440499702779905657<33>
P153 = 808295771108102506695396656539593972616330973723038986708273430564327994343724988972906260199977808554283757311321321457279161095184020165058222553689087<153>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=989525659 Step 1 took 91250ms ********** Factor found in step 1: 287860258795288440499702779905657 Found probable prime factor of 33 digits: 287860258795288440499702779905657 Probable prime cofactor 808295771108102506695396656539593972616330973723038986708273430564327994343724988972906260199977808554283757311321321457279161095184020165058222553689087 has 153 digits
(49·10170-13)/9 = 5(4)1693<171> = 33 · 17 · 53 · 5027117 · C160
C160 = P61 · P100
P61 = 2692212159653272355339435109096075286883559301953867086090461<61>
P100 = 1653623901550726337767533156447700441142090917636728902297814526133953699616039119659459695609726357<100>
Number: 6 N=4451906375248151182830922835284818657113863806841579312202067690879499966017767766632869279766525410733659197053565189224887023373656337781407513933537157980577 ( 160 digits) SNFS difficulty: 171 digits. Divisors found: r1=2692212159653272355339435109096075286883559301953867086090461 (pp61) r2=1653623901550726337767533156447700441142090917636728902297814526133953699616039119659459695609726357 (pp100) Version: Msieve v. 1.41 Total time: 79.84 hours. Scaled time: 156.25 units (timescale=1.957). Factorization parameters were as follows: n: 4451906375248151182830922835284818657113863806841579312202067690879499966017767766632869279766525410733659197053565189224887023373656337781407513933537157980577 m: 10000000000000000000000000000000000 deg: 5 c5: 49 c0: -13 skew: 0.77 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 4950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 756235 x 756483 Total sieving time: 77.49 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.08 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 79.84 hours. --------- CPU info (if available) ----------
(55·10165+71)/9 = 6(1)1649<166> = 809 · 3691 · 108263 · C155
C155 = P35 · P120
P35 = 24335341153262737407629933896579409<35>
P120 = 776801609907481825359557101187910185903023150073711522354469400696299227987950943173477493221818097747365114068869669603<120>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3179055233 Step 1 took 68563ms Step 2 took 22078ms ********** Factor found in step 2: 24335341153262737407629933896579409 Found probable prime factor of 35 digits: 24335341153262737407629933896579409 Probable prime cofactor 776801609907481825359557101187910185903023150073711522354469400696299227987950943173477493221818097747365114068869669603 has 120 digits
(55·10197+71)/9 = 6(1)1969<198> = 18642536789<11> · C188
C188 = P35 · P153
P35 = 57547309236684489528941761046601613<35>
P153 = 569626452891159171398342923688370533308071766262310180490302207470807685125526248239176720252301776078743824072951071192362669399076391681375266653470367<153>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=389729675 Step 1 took 332672ms ********** Factor found in step 1: 57547309236684489528941761046601613 Found probable prime factor of 35 digits: 57547309236684489528941761046601613 Probable prime cofactor 569626452891159171398342923688370533308071766262310180490302207470807685125526248239176720252301776078743824072951071192362669399076391681375266653470367 has 153 digits
5·10168-9 = 4(9)1671<169> = 31 · 29150029 · 97690322401972470211<20> · C140
C140 = P63 · P78
P63 = 285672459115302906984888083354597717349768178359030194770540009<63>
P78 = 198266528819518056600744503449893297480133294347181748253063893651091266424791<78>
Number: 1 N=56639286848126797554729386539227574885723785334536125536236873465330483256275559559736715759646622674484365026756974688483306430233854963119 ( 140 digits) SNFS difficulty: 169 digits. Divisors found: r1=285672459115302906984888083354597717349768178359030194770540009 (pp63) r2=198266528819518056600744503449893297480133294347181748253063893651091266424791 (pp78) Version: GGNFS-0.77.1-VC8 Total time: 52.63 hours. Scaled time: 50.58 units (timescale=0.961). Factorization parameters were as follows: n: 56639286848126797554729386539227574885723785334536125536236873465330483256275559559736715759646622674484365026756974688483306430233854963119 m: 5000000000000000000000000000000000 deg: 5 c5: 8 c0: -45 skew: 1.41 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 4450001) Primes: RFBsize:328964, AFBsize:327919, largePrimes:9912007 encountered Relations: rels:10182561, finalFF:745248 Max relations in full relation-set: 32 Initial matrix: 656948 x 745248 with sparse part having weight 81981595. Pruned matrix : 605955 x 609303 with weight 63712113. Total sieving time: 47.58 hours. Total relation processing time: 0.39 hours. Matrix solve time: 4.17 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 52.63 hours. --------- CPU info (if available) ----------
(55·10159+71)/9 = 6(1)1589<160> = 17 · 368130319157<12> · 123677208423467<15> · C133
C133 = P36 · P48 · P50
P36 = 140978348475664396838504814127042339<36>
P48 = 882572282190700517976402060539018250089665494407<48>
P50 = 63456672439732865549259372993901595965810017344261<50>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2455922270 Step 1 took 49813ms Step 2 took 16422ms ********** Factor found in step 2: 140978348475664396838504814127042339 Found probable prime factor of 36 digits: 140978348475664396838504814127042339 Composite cofactor 56005100215362762921524962760356855338997610012921755070987428408384155357213923636656407689048227 has 98 digits Number: 0 N=56005100215362762921524962760356855338997610012921755070987428408384155357213923636656407689048227 ( 98 digits) Divisors found: r1=882572282190700517976402060539018250089665494407 (pp48) r2=63456672439732865549259372993901595965810017344261 (pp50) Version: Msieve v. 1.41 Total time: 4.15 hours. Scaled time: 8.17 units (timescale=1.969). Factorization parameters were as follows: name: 0 n: 56005100215362762921524962760356855338997610012921755070987428408384155357213923636656407689048227 skew: 1563.26 # norm 4.73e+012 c5: 54720 c4: 420073014 c3: -981929555154 c2: -902696291016996 c1: 539606548664109961 c0: 133625764604402100645 # alpha -3.85 Y1: 6255630337 Y0: -3999587985258256558 # Murphy_E 4.32e-009 # M 7500094444286231710467509873971966573554565601358545473228276408641175903590409269742379495665611 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159857 x 160093 Polynomial selection time: 0.29 hours. Total sieving time: 3.70 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.15 hours. --------- CPU info (if available) ----------
(55·10188+71)/9 = 6(1)1879<189> = 21379 · 39133 · 3151970057<10> · C171
C171 = P35 · C136
P35 = 23808035090930888675002054458419521<35>
C136 = [9733835730442108411910371839197331283579776706732797283991862852256898234576047790599455636483601588124994915389202362114965362983239361<136>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=751087292 Step 1 took 75563ms Step 2 took 22469ms ********** Factor found in step 2: 23808035090930888675002054458419521 Found probable prime factor of 35 digits: 23808035090930888675002054458419521 Composite cofactor 9733835730442108411910371839197331283579776706732797283991862852256898234576047790599455636483601588124994915389202362114965362983239361 has 136 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 15, 2009
(55·10183+71)/9 = 6(1)1829<184> = 211 · 2897 · 14843 · 78504742266311<14> · 18923252562065045071433<23> · 1456022502472854275881544383<28> · C111
C111 = P53 · P59
P53 = 26506006175993381272829828763617837641121116742352467<53>
P59 = 11747987680181600226218167193411018631966399612495045430693<59>
Number: n N=311392234006387651672448081841093655775367230411377420724646687474507875782489096294534955481137814140026069631 ( 111 digits) Divisors found: r1=26506006175993381272829828763617837641121116742352467 (pp53) r2=11747987680181600226218167193411018631966399612495045430693 (pp59) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 15.22 hours. Scaled time: 40.16 units (timescale=2.639). Factorization parameters were as follows: name: KA_6_1_182_9 n: 311392234006387651672448081841093655775367230411377420724646687474507875782489096294534955481137814140026069631 Y0: -2584568069450941420360 Y1: 384958070083 c0: -4059072098339572523025137763 c1: 105158492379506668504759 c2: -2883980861159280569 c3: -33217032757935 c4: 172810416 c5: 2700 skew: 87047.99 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1600000, 2250001) Primes: RFBsize:230209, AFBsize:230270, largePrimes:16995536 encountered Relations: rels:15559641, finalFF:665605 Max relations in full relation-set: 28 Initial matrix: 460562 x 665605 with sparse part having weight 65940252. Pruned matrix : 307315 x 309681 with weight 37286889. Total sieving time: 13.61 hours. Total relation processing time: 0.63 hours. Matrix solve time: 0.50 hours. Total square root time: 0.48 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 15.22 hours. --------- CPU info (if available) ----------
(55·10164+53)/9 = 6(1)1637<165> = 151 · 2449623037<10> · 13672234223<11> · 4175286873883<13> · C131
C131 = P49 · P82
P49 = 4997494605967408149532708505482310328253201826819<49>
P82 = 5791163563277687995964939570082543825557369323515164525575236980824238068315661321<82>
Number: n N=28941308669755240703099761874611761902648796448592435335238186323844236163242374178690923009820090062849191275519712456825298767899 ( 131 digits) SNFS difficulty: 166 digits. Divisors found: r1=4997494605967408149532708505482310328253201826819 (pp49) r2=5791163563277687995964939570082543825557369323515164525575236980824238068315661321 (pp82) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 38.21 hours. Scaled time: 101.65 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_163_7 n: 28941308669755240703099761874611761902648796448592435335238186323844236163242374178690923009820090062849191275519712456825298767899 m: 1000000000000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [2050000, 4150001) Primes: RFBsize:289774, AFBsize:289728, largePrimes:16159564 encountered Relations: rels:16219905, finalFF:774173 Max relations in full relation-set: 28 Initial matrix: 579567 x 774173 with sparse part having weight 90821724. Pruned matrix : 504359 x 507320 with weight 60248084. Total sieving time: 35.33 hours. Total relation processing time: 0.60 hours. Matrix solve time: 2.09 hours. Total square root time: 0.20 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,28,28,56,56,2.4,2.4,100000 total time: 38.21 hours. --------- CPU info (if available) ----------
(16·10169-7)/9 = 1(7)169<170> = 224494463 · 786434162050807<15> · C147
C147 = P67 · P80
P67 = 3487303178927087329591975815409665587670114255927538052409984233861<67>
P80 = 28874851741200275794024069838665289918909310930811410451426125078495030526283477<80>
Number: n N=100695362268136064504090189001146777329779870588394993991707548409930165374487468529253744023227795557950486006149084859840889633580942941548214697 ( 147 digits) SNFS difficulty: 170 digits. Divisors found: Fri May 15 18:14:48 2009 prp67 factor: 3487303178927087329591975815409665587670114255927538052409984233861 Fri May 15 18:14:48 2009 prp80 factor: 28874851741200275794024069838665289918909310930811410451426125078495030526283477 Fri May 15 18:14:48 2009 elapsed time 01:16:27 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 44.07 hours. Scaled time: 115.29 units (timescale=2.616). Factorization parameters were as follows: name: KA_1_7_169 n: 100695362268136064504090189001146777329779870588394993991707548409930165374487468529253744023227795557950486006149084859840889633580942941548214697 m: 10000000000000000000000000000000000 deg: 5 c5: 8 c0: -35 skew: 1.34 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2450000, 4945807) Primes: RFBsize:341992, AFBsize:342818, largePrimes:16487133 encountered Relations: rels:15756849, finalFF:691854 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1756427 hash collisions in 17765435 relations Msieve: matrix is 838205 x 838453 (222.9 MB) Total sieving time: 43.41 hours. Total relation processing time: 0.67 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,28,28,56,56,2.4,2.4,100000 total time: 44.07 hours. --------- CPU info (if available) ----------
(55·10155+71)/9 = 6(1)1549<156> = 23 · 58111 · 58519711 · 8773380623124748443600727<25> · C117
C117 = P36 · P82
P36 = 143979646441272912798751233599595527<36>
P82 = 6185342438048729794328561855111197190980660408468874396459980926568055950707673417<82>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 890563417348457120832571640459891732891698128325691856818376277007924756340699090705920238580843477520126626410005759 (117 digits) Using B1=2812000, B2=4281592780, polynomial Dickson(6), sigma=962927361 Step 1 took 31293ms Step 2 took 11045ms ********** Factor found in step 2: 143979646441272912798751233599595527 Found probable prime factor of 36 digits: 143979646441272912798751233599595527 Probable prime cofactor 6185342438048729794328561855111197190980660408468874396459980926568055950707673417 has 82 digits
(22·10198-1)/3 = 7(3)198<199> = 7 · 947 · C196
C196 = P91 · P105
P91 = 2882509691785175067582718426919249615849023053552230314201221226189350602539682348570293787<91>
P105 = 383780258372884261144561599255815402930959690519198066403669312732520597025168652619394376800947167879971<105>
Number: n N=1106250314275657464675416100970483230250917684919796852215014833811032332679639965806808467843314728214411424548700155880726102479006386081359682204455171720219238698647357570272037009101423040177 ( 196 digits) SNFS difficulty: 201 digits. Divisors found: Sat May 16 00:29:16 2009 prp91 factor: 2882509691785175067582718426919249615849023053552230314201221226189350602539682348570293787 Sat May 16 00:29:16 2009 prp105 factor: 383780258372884261144561599255815402930959690519198066403669312732520597025168652619394376800947167879971 Sat May 16 00:29:16 2009 elapsed time 13:18:45 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 48.70 hours. Scaled time: 98.07 units (timescale=2.014). Factorization parameters were as follows: name: KA_7_3_198 n: 1106250314275657464675416100970483230250917684919796852215014833811032332679639965806808467843314728214411424548700155880726102479006386081359682204455171720219238698647357570272037009101423040177 m: 10000000000000000000000000000000000000000 deg: 5 c5: 11 c0: -50 skew: 1.35 type: snfs lss: 1 rlim: 15700000 alim: 15700000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 15700000/15700000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [7850000, 18449990) Primes: RFBsize:1013012, AFBsize:1013131, largePrimes:1338580 encountered Relations: rels:492627, finalFF:2135 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4991232 hash collisions in 39498402 relations Msieve: matrix is 2901304 x 2901551 (788.9 MB) Total sieving time: 48.29 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,15700000,15700000,29,29,56,56,2.6,2.6,100000 total time: 48.70 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.95 BogoMIPS (lpj=2830476) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Total of 4 processors activated (22643.65 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve / May 15, 2009
(55·10147+71)/9 = 6(1)1469<148> = 198049777 · 1191274607893<13> · 3445375456503515469833<22> · C106
C106 = P35 · P72
P35 = 38467029705765547003621767930288053<35>
P72 = 195437873678482374142781791356471424100324561115046333227355307258309471<72>
Number: 61119_147 N=7517914492421835984058082848772797746445706638101076514609535759322165343395314387564217846404742848049963 ( 106 digits) SNFS difficulty: 149 digits. Divisors found: r1=38467029705765547003621767930288053 (pp35) r2=195437873678482374142781791356471424100324561115046333227355307258309471 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 30.08 hours. Scaled time: 14.26 units (timescale=0.474). Factorization parameters were as follows: name: 61119_147 n: 7517914492421835984058082848772797746445706638101076514609535759322165343395314387564217846404742848049963 m: 200000000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 3300001) Primes: RFBsize:162662, AFBsize:163732, largePrimes:4529351 encountered Relations: rels:4808079, finalFF:401513 Max relations in full relation-set: 28 Initial matrix: 326461 x 401513 with sparse part having weight 45599410. Pruned matrix : 298915 x 300611 with weight 32209704. Total sieving time: 26.26 hours. Total relation processing time: 0.31 hours. Matrix solve time: 3.41 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 30.08 hours. --------- CPU info (if available) ----------
(55·10130+71)/9 = 6(1)1299<131> = 32 · 1031 · 931529 · 190631621 · 8946032747<10> · C103
C103 = P50 · P53
P50 = 57792086304242895797761529441075115537051264545837<50>
P53 = 71734624341105295983203643470137196510267861291590811<53>
Number: 61119_130 N=4145693600923600439019225896942391349240772136386757922097820672747695605767505311568861222153157503807 ( 103 digits) SNFS difficulty: 131 digits. Divisors found: r1=57792086304242895797761529441075115537051264545837 (pp50) r2=71734624341105295983203643470137196510267861291590811 (pp53) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 4.08 hours. Scaled time: 8.50 units (timescale=2.085). Factorization parameters were as follows: name: 61119_130 n: 4145693600923600439019225896942391349240772136386757922097820672747695605767505311568861222153157503807 m: 100000000000000000000000000 deg: 5 c5: 55 c0: 71 skew: 1.05 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1050001) Primes: RFBsize:85714, AFBsize:85671, largePrimes:2883022 encountered Relations: rels:2799303, finalFF:196462 Max relations in full relation-set: 0 Initial matrix: 171451 x 196462 with sparse part having weight 12761126. Pruned matrix : 162923 x 163844 with weight 9315655. Total sieving time: 3.59 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.36 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 4.08 hours. --------- CPU info (if available) ----------
(2·10200+61)/9 = (2)1999<200> = 83 · 2467 · 184979095439<12> · 5333768258713<13> · 1512398390473675457<19> · 26701944159591873857<20> · C133
C133 = P43 · P91
P43 = 1497861280087620589909136478546959010780631<43>
P91 = 1818455870333425172805446104788266873468151731202279729908506761054955089871521334546301933<91>
Number: 22229_200 N=2723794637720472432204933599865783189450593732942352213812665665109521854121902291932603177585967974672262187391031649342980554259723 ( 133 digits) Divisors found: r1=1497861280087620589909136478546959010780631 (pp43) r2=1818455870333425172805446104788266873468151731202279729908506761054955089871521334546301933 (pp91) Version: Msieve-1.40 Total time: 227.95 hours. Scaled time: 577.64 units (timescale=2.534). Factorization parameters were as follows: name: 22229_200 # Murphy_E = 5.494297e-11, selected by Jeff Gilchrist n: 2723794637720472432204933599865783189450593732942352213812665665109521854121902291932603177585967974672262187391031649342980554259723 Y0: -34083099048428297234644474 Y1: 489835657370593 c0: -9259140913743911300061266453723475 c1: 62185006038906236125531442825 c2: 5782097466008962033351 c3: -160600625715381517 c4: 100331183196 c5: 59220 skew: 932771.02 type: gnfs # selected mechanically rlim: 11400000 alim: 11400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved algebraic special-q in [5700000, 12700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1656585 x 1656833 Total sieving time: 227.95 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,132,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,11400000,11400000,28,28,54,54,2.6,2.6,100000 total time: 227.95 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / May 14, 2009
2·10197-3 = 1(9)1967<198> = 7 · 229 · C195
C195 = P71 · P124
P71 = 45003138917615480291651707486311828111477830485732830843961796036510537<71>
P124 = 2772385807556537886278044630282889688258769602192237958344592362510261040148261536809278151720138041797820440202530552797127<124>
Number: 19997_197 N=124766063630692451653150343106674984404242046163443543356207111665626949469744229569557080474111041796631316281971303805364940736119775421085464753587024329382407985028072364316905801621958827199 ( 195 digits) SNFS difficulty: 197 digits. Divisors found: r1=45003138917615480291651707486311828111477830485732830843961796036510537 r2=2772385807556537886278044630282889688258769602192237958344592362510261040148261536809278151720138041797820440202530552797127 Version: Total time: 744.51 hours. Scaled time: 1495.72 units (timescale=2.009). Factorization parameters were as follows: n: 124766063630692451653150343106674984404242046163443543356207111665626949469744229569557080474111041796631316281971303805364940736119775421085464753587024329382407985028072364316905801621958827199 m: 2000000000000000000000000000000000000000 deg: 5 c5: 25 c0: -12 skew: 0.86 type: snfs lss: 1 rlim: 13900000 alim: 13900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6950000, 14750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2364522 x 2364770 Total sieving time: 744.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13900000,13900000,28,28,55,55,2.5,2.5,100000 total time: 744.51 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / May 14, 2009
(55·10149+71)/9 = 6(1)1489<150> = 1451 · 16735128726520447<17> · C131
C131 = P56 · P76
P56 = 23212997212751433550558533812477592022876236828704855219<56>
P76 = 1084157780944424495342154432830333239216149136776625618872855134155864499233<76>
Number: 61119_149 N=25166551547245705068022667865324015802313222330807856045784508390828702589330659816586726877460696078270591924272438604665201547027 ( 131 digits) SNFS difficulty: 151 digits. Divisors found: r1=23212997212751433550558533812477592022876236828704855219 (pp56) r2=1084157780944424495342154432830333239216149136776625618872855134155864499233 (pp76) Version: Msieve v. 1.41 Total time: 19.18 hours. Scaled time: 13.08 units (timescale=0.682). Factorization parameters were as follows: n: 25166551547245705068022667865324015802313222330807856045784508390828702589330659816586726877460696078270591924272438604665201547027 m: 1000000000000000000000000000000 deg: 5 c5: 11 c0: 142 skew: 1.67 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 429819 x 430067 Total sieving time: 18.45 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.52 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 19.18 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 14, 2009
(53·10166-71)/9 = 5(8)1651<167> = 3 · 19 · 29 · 83 · 240857467 · 11060457607<11> · 20894699998037<14> · C130
C130 = P43 · P88
P43 = 5424508418994216438894842882597473125698917<43>
P88 = 1421519024674072529801317548921990745200160059101495179565493543560830040916204609073619<88>
Number: 58881_166 N=7711041917104953726782529594857675992009409630005014615924347870515549294274391649540185622317721217959229856759607475749281570623 ( 130 digits) SNFS difficulty: 167 digits. Divisors found: r1=5424508418994216438894842882597473125698917 r2=1421519024674072529801317548921990745200160059101495179565493543560830040916204609073619 Version: Total time: 38.60 hours. Scaled time: 92.10 units (timescale=2.386). Factorization parameters were as follows: n: 7711041917104953726782529594857675992009409630005014615924347870515549294274391649540185622317721217959229856759607475749281570623 m: 1000000000000000000000000000000000 deg: 5 c5: 530 c0: -71 skew: 0.67 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2700000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10253930 Max relations in full relation-set: Initial matrix: Pruned matrix : 927795 x 928043 Total sieving time: 35.06 hours. Total relation processing time: 1.54 hours. Matrix solve time: 1.86 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,51,51,2.4,2.4,100000 total time: 38.60 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Ignacio Santos / GGNFS, Msieve / May 14, 2009
(55·10138+71)/9 = 6(1)1379<139> = 7 · 19 · 1093 · 12097 · 61109474407<11> · C119
C119 = P48 · P72
P48 = 289391643646385040320441989989840975406837712761<48>
P72 = 196506156640222333226584793107921238684003927617477930888307670421176329<72>
Number: 61119_138 N=56867239656747940880840066906923991757368581244680647382966913848232606251219165722336772704148144736484366229434434369 ( 119 digits) SNFS difficulty: 140 digits. Divisors found: r1=289391643646385040320441989989840975406837712761 (pp48) r2=196506156640222333226584793107921238684003927617477930888307670421176329 (pp72) Version: Msieve-1.40 Total time: 4.20 hours. Scaled time: 5.04 units (timescale=1.199). Factorization parameters were as follows: n: 56867239656747940880840066906923991757368581244680647382966913848232606251219165722336772704148144736484366229434434369 m: 5000000000000000000000000000 deg: 5 c5: 88 c0: 355 skew: 1.32 type: snfs lss: 1 rlim: 1530000 alim: 1530000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1530000/1530000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [765000, 1515001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 255878 x 256126 Total sieving time: 4.04 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140.000,5,0,0,0,0,0,0,0,0,1530000,1530000,26,26,48,48,2.3,2.3,75000 total time: 4.20 hours. --------- CPU info (if available) ----------
(55·10145+71)/9 = 6(1)1449<146> = 3 · 59167396759<11> · C135
C135 = P37 · P45 · P54
P37 = 1570742754374861168243498981181423131<37>
P45 = 281156538114519295288982577419736057441054869<45>
P54 = 779584528197470392113982771350216223141302084755533973<54>
Number: 61119_145 N=344283701602467697819545543720316890177993480146959973341192007240028560242683202522108961092181053589124501883180281265657472736105347 ( 135 digits) SNFS difficulty: 146 digits. Divisors found: r1=1570742754374861168243498981181423131 (pp37) r2=281156538114519295288982577419736057441054869 (pp45) r3=779584528197470392113982771350216223141302084755533973 (pp54) Version: Msieve-1.40 Total time: 8.17 hours. Scaled time: 9.79 units (timescale=1.199). Factorization parameters were as follows: n: 344283701602467697819545543720316890177993480146959973341192007240028560242683202522108961092181053589124501883180281265657472736105347 m: 100000000000000000000000000000 deg: 5 c5: 55 c0: 71 skew: 1.05 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 2375001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 360259 x 360506 Total sieving time: 7.81 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 8.17 hours. --------- CPU info (if available) ----------
(47·10170-11)/9 = 5(2)1691<171> = 9095447 · C164
C164 = P52 · P112
P52 = 8325089385253334517465388703578602396233093909125411<52>
P112 = 6896716845965064599580999289660546133794620672918628965695890490643567789344672084630394151336043454230418416713<112>
Number: 52221_170 N=57415784207441615813079029785146592819706631485205974178313855517185930743395263830598124778498761217807351548771844003073430280251451327485303605443715105175394043 ( 164 digits) SNFS difficulty: 171 digits. Divisors found: r1=8325089385253334517465388703578602396233093909125411 (pp52) r2=6896716845965064599580999289660546133794620672918628965695890490643567789344672084630394151336043454230418416713 (pp112) Version: Msieve-1.40 Total time: 52.56 hours. Scaled time: 91.40 units (timescale=1.739). Factorization parameters were as follows: n: 57415784207441615813079029785146592819706631485205974178313855517185930743395263830598124778498761217807351548771844003073430280251451327485303605443715105175394043 m: 10000000000000000000000000000000000 deg: 5 c5: 47 c0: -11 skew: 0.75 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 973380 x 973628 Total sieving time: 51.04 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.23 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 52.56 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / May 14, 2009
(55·10120+71)/9 = 6(1)1199<121> = 7 · 192 · 113 · 5351 · 101641 · 94005377 · C99
C99 = P35 · P65
P35 = 10612628407459289169056826061471913<35>
P65 = 39441821288257056813672440441195723701568061228860695191005265959<65>
Wed May 13 18:40:18 2009 Msieve v. 1.41 Wed May 13 18:40:18 2009 random seeds: 299d5308 80c0a959 Wed May 13 18:40:18 2009 factoring 418581393045689377984564463862677455714402642533209998362505773916333663494054907215380225573509567 (99 digits) Wed May 13 18:40:19 2009 searching for 15-digit factors Wed May 13 18:40:20 2009 commencing quadratic sieve (99-digit input) Wed May 13 18:40:20 2009 using multiplier of 43 Wed May 13 18:40:20 2009 using 32kb Intel Core sieve core Wed May 13 18:40:20 2009 sieve interval: 36 blocks of size 32768 Wed May 13 18:40:20 2009 processing polynomials in batches of 6 Wed May 13 18:40:20 2009 using a sieve bound of 2605661 (95294 primes) Wed May 13 18:40:20 2009 using large prime bound of 390849150 (28 bits) Wed May 13 18:40:20 2009 using double large prime bound of 2921571209356950 (43-52 bits) Wed May 13 18:40:20 2009 using trial factoring cutoff of 52 bits Wed May 13 18:40:20 2009 polynomial 'A' values have 13 factors Thu May 14 02:36:01 2009 95402 relations (23456 full + 71946 combined from 1419148 partial), need 95390 Thu May 14 02:36:03 2009 begin with 1442604 relations Thu May 14 02:36:04 2009 reduce to 248255 relations in 11 passes Thu May 14 02:36:04 2009 attempting to read 248255 relations Thu May 14 02:36:08 2009 recovered 248255 relations Thu May 14 02:36:08 2009 recovered 237014 polynomials Thu May 14 02:36:09 2009 attempting to build 95402 cycles Thu May 14 02:36:09 2009 found 95402 cycles in 6 passes Thu May 14 02:36:09 2009 distribution of cycle lengths: Thu May 14 02:36:09 2009 length 1 : 23456 Thu May 14 02:36:09 2009 length 2 : 16740 Thu May 14 02:36:09 2009 length 3 : 15775 Thu May 14 02:36:09 2009 length 4 : 13018 Thu May 14 02:36:09 2009 length 5 : 9827 Thu May 14 02:36:09 2009 length 6 : 6604 Thu May 14 02:36:09 2009 length 7 : 4044 Thu May 14 02:36:09 2009 length 9+: 5938 Thu May 14 02:36:09 2009 largest cycle: 21 relations Thu May 14 02:36:09 2009 matrix is 95294 x 95402 (25.9 MB) with weight 6407269 (67.16/col) Thu May 14 02:36:09 2009 sparse part has weight 6407269 (67.16/col) Thu May 14 02:36:11 2009 filtering completed in 3 passes Thu May 14 02:36:11 2009 matrix is 90901 x 90965 (24.9 MB) with weight 6155977 (67.67/col) Thu May 14 02:36:11 2009 sparse part has weight 6155977 (67.67/col) Thu May 14 02:36:11 2009 saving the first 48 matrix rows for later Thu May 14 02:36:11 2009 matrix is 90853 x 90965 (14.9 MB) with weight 4832527 (53.13/col) Thu May 14 02:36:11 2009 sparse part has weight 3372544 (37.08/col) Thu May 14 02:36:11 2009 matrix includes 64 packed rows Thu May 14 02:36:11 2009 using block size 36386 for processor cache size 1024 kB Thu May 14 02:36:12 2009 commencing Lanczos iteration Thu May 14 02:36:12 2009 memory use: 14.7 MB Thu May 14 02:37:08 2009 lanczos halted after 1438 iterations (dim = 90847) Thu May 14 02:37:08 2009 recovered 15 nontrivial dependencies Thu May 14 02:37:10 2009 prp35 factor: 10612628407459289169056826061471913 Thu May 14 02:37:10 2009 prp65 factor: 39441821288257056813672440441195723701568061228860695191005265959 Thu May 14 02:37:10 2009 elapsed time 07:56:52
By Dmitry Domanov / GGNFS-0.77.1-VC8, Msieve / May 13, 2009
(55·10108+71)/9 = 6(1)1079<109> = 73 · 397 · 166507538969<12> · C93
C93 = P39 · P54
P39 = 795809090623752224301704775278817744859<39>
P54 = 338682498969665965499901130193421539222442974752330159<54>
Number: 2 N=269526611515229771672836695269380413385510175130506157107543076549664233927981393987792902581 ( 93 digits) SNFS difficulty: 110 digits. Divisors found: r1=795809090623752224301704775278817744859 (pp39) r2=338682498969665965499901130193421539222442974752330159 (pp54) Version: GGNFS-0.77.1-VC8 Total time: 0.71 hours. Scaled time: 1.40 units (timescale=1.963). Factorization parameters were as follows: n: 269526611515229771672836695269380413385510175130506157107543076549664233927981393987792902581 m: 5000000000000000000000 deg: 5 c5: 88 c0: 355 skew: 1.32 type: snfs lss: 1 rlim: 490000 alim: 490000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 490000/490000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [245000, 395001) Primes: RFBsize:40766, AFBsize:40609, largePrimes:1258579 encountered Relations: rels:1276691, finalFF:183902 Max relations in full relation-set: 32 Initial matrix: 81441 x 183902 with sparse part having weight 8158930. Pruned matrix : 54054 x 54525 with weight 1896575. Total sieving time: 0.66 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,490000,490000,25,25,44,44,2.2,2.2,50000 total time: 0.71 hours. --------- CPU info (if available) ----------
(55·10125+71)/9 = 6(1)1249<126> = 1926187 · 2077388651851<13> · C108
C108 = P47 · P62
P47 = 13802361609306560051417136173839078839962476523<47>
P62 = 11064978550966575301700323020187377468908938943339427779145269<62>
Number: 3 N=152722835159661589179909953116879454214067758007163553303317915183692361104914415723369724182544041419019687 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=13802361609306560051417136173839078839962476523 (pp47) r2=11064978550966575301700323020187377468908938943339427779145269 (pp62) Version: GGNFS-0.77.1-VC8 Total time: 1.93 hours. Scaled time: 3.81 units (timescale=1.976). Factorization parameters were as follows: n: 152722835159661589179909953116879454214067758007163553303317915183692361104914415723369724182544041419019687 m: 10000000000000000000000000 deg: 5 c5: 55 c0: 71 skew: 1.05 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 805001) Primes: RFBsize:72026, AFBsize:71959, largePrimes:2514719 encountered Relations: rels:2404279, finalFF:195014 Max relations in full relation-set: 32 Initial matrix: 144051 x 195014 with sparse part having weight 16220392. Pruned matrix : 128954 x 129738 with weight 7826179. Total sieving time: 1.75 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.05 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 1.93 hours. --------- CPU info (if available) ----------
(55·10127+71)/9 = 6(1)1269<128> = 3 · 17 · 269 · 164411016323<12> · C113
C113 = P54 · P60
P54 = 147564695883632722993402372598585997374827274660357417<54>
P60 = 183604931912357354495039990669131942492925879496484038120011<60>
Number: 4 N=27093605940382105687802024807602056821259075656855857209595838697644304254924346891285469235754267974673999971587 ( 113 digits) SNFS difficulty: 129 digits. Divisors found: r1=147564695883632722993402372598585997374827274660357417 (pp54) r2=183604931912357354495039990669131942492925879496484038120011 (pp60) Version: Msieve v. 1.41 Total time: 2.05 hours. Scaled time: 2.75 units (timescale=1.339). Factorization parameters were as follows: n: 27093605940382105687802024807602056821259075656855857209595838697644304254924346891285469235754267974673999971587 m: 20000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 905001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 150245 x 150479 Total sieving time: 1.95 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,129.000,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 2.05 hours. --------- CPU info (if available) ----------
(55·10134+71)/9 = 6(1)1339<135> = 5425331 · C129
C129 = P56 · P73
P56 = 49822004090217615607527790375081111028061432525658809403<56>
P73 = 2260855195620981138777563605147208165708944206584407558122279483171277583<73>
Number: 5 N=112640336803618269762916052700030857308265820299463961021200570271401157111171854972740116890768712749712618660706805006203512949 ( 129 digits) SNFS difficulty: 136 digits. Divisors found: r1=49822004090217615607527790375081111028061432525658809403 (pp56) r2=2260855195620981138777563605147208165708944206584407558122279483171277583 (pp73) Version: Msieve v. 1.41 Total time: 3.38 hours. Scaled time: 6.61 units (timescale=1.957). Factorization parameters were as follows: n: 112640336803618269762916052700030857308265820299463961021200570271401157111171854972740116890768712749712618660706805006203512949 m: 1000000000000000000000000000 deg: 5 c5: 11 c0: 142 skew: 1.67 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 196615 x 196847 Total sieving time: 3.22 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 3.38 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve / May 13, 2009
6·10192+1 = 6(0)1911<193> = 7 · 99079 · 687912079 · C179
C179 = P70 · P109
P70 = 2915419952598811618594940160413805922953111384734672751972710929408139<70>
P109 = 4313576840393877505883357285400035595676725490320331778252232358628296531245916896568438767438261380374823357<109>
Number: 60001_192 N=12575887987552449949026242858572851364527613573509060923551620410457482729565243389228910414519077788326664190901048863112517318053854082566295455325857182378946464323168683102623 ( 179 digits) SNFS difficulty: 193 digits. Divisors found: r1=2915419952598811618594940160413805922953111384734672751972710929408139 (pp70) r2=4313576840393877505883357285400035595676725490320331778252232358628296531245916896568438767438261380374823357 (pp109) Version: Msieve-1.40 Total time: 386.28 hours. Scaled time: 982.69 units (timescale=2.544). Factorization parameters were as follows: n: 12575887987552449949026242858572851364527613573509060923551620410457482729565243389228910414519077788326664190901048863112517318053854082566295455325857182378946464323168683102623 m: 200000000000000000000000000000000000000 deg: 5 c5: 75 c0: 4 skew: 0.56 type: snfs lss: 1 rlim: 11700000 alim: 11700000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 11700000/11700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5850000, 10850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1767676 x 1767924 Total sieving time: 378.49 hours. Total relation processing time: 0.41 hours. Matrix solve time: 7.10 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,193.000,5,0,0,0,0,0,0,0,0,11700000,11700000,28,28,55,55,2.5,2.5,100000 total time: 386.28 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / May 13, 2009
(55·10139+71)/9 = 6(1)1389<140> = 32 · 759229 · 105356774741<12> · 48705511430143<14> · 1883619831516079<16> · C93
C93 = P44 · P50
P44 = 86804442778701194714084453798411031294437723<44>
P50 = 10659310159320433870594507542608353345250244368549<50>
Wed May 13 14:06:03 2009 Msieve v. 1.41 Wed May 13 14:06:03 2009 random seeds: 34888b00 964c2405 Wed May 13 14:06:03 2009 factoring 925275478785158917225656192117079539340868018513415131273758526283118667747065881088140373927 (93 digits) Wed May 13 14:06:04 2009 searching for 15-digit factors Wed May 13 14:06:06 2009 commencing quadratic sieve (93-digit input) Wed May 13 14:06:06 2009 using multiplier of 15 Wed May 13 14:06:06 2009 using 32kb Intel Core sieve core Wed May 13 14:06:06 2009 sieve interval: 36 blocks of size 32768 Wed May 13 14:06:06 2009 processing polynomials in batches of 6 Wed May 13 14:06:06 2009 using a sieve bound of 1956901 (72864 primes) Wed May 13 14:06:06 2009 using large prime bound of 244612625 (27 bits) Wed May 13 14:06:06 2009 using double large prime bound of 1256787622996125 (42-51 bits) Wed May 13 14:06:06 2009 using trial factoring cutoff of 51 bits Wed May 13 14:06:06 2009 polynomial 'A' values have 12 factors Wed May 13 17:07:46 2009 73280 relations (18342 full + 54938 combined from 1001546 partial), need 72960 Wed May 13 17:07:48 2009 begin with 1019888 relations Wed May 13 17:07:49 2009 reduce to 189126 relations in 12 passes Wed May 13 17:07:49 2009 attempting to read 189126 relations Wed May 13 17:07:52 2009 recovered 189126 relations Wed May 13 17:07:52 2009 recovered 173044 polynomials Wed May 13 17:07:52 2009 attempting to build 73280 cycles Wed May 13 17:07:52 2009 found 73280 cycles in 6 passes Wed May 13 17:07:52 2009 distribution of cycle lengths: Wed May 13 17:07:52 2009 length 1 : 18342 Wed May 13 17:07:52 2009 length 2 : 12923 Wed May 13 17:07:52 2009 length 3 : 12297 Wed May 13 17:07:52 2009 length 4 : 9931 Wed May 13 17:07:52 2009 length 5 : 7447 Wed May 13 17:07:52 2009 length 6 : 4947 Wed May 13 17:07:52 2009 length 7 : 3129 Wed May 13 17:07:52 2009 length 9+: 4264 Wed May 13 17:07:52 2009 largest cycle: 18 relations Wed May 13 17:07:53 2009 matrix is 72864 x 73280 (19.4 MB) with weight 4798388 (65.48/col) Wed May 13 17:07:53 2009 sparse part has weight 4798388 (65.48/col) Wed May 13 17:07:54 2009 filtering completed in 3 passes Wed May 13 17:07:54 2009 matrix is 69225 x 69289 (18.4 MB) with weight 4546351 (65.61/col) Wed May 13 17:07:54 2009 sparse part has weight 4546351 (65.61/col) Wed May 13 17:07:54 2009 saving the first 48 matrix rows for later Wed May 13 17:07:54 2009 matrix is 69177 x 69289 (11.9 MB) with weight 3640733 (52.54/col) Wed May 13 17:07:54 2009 sparse part has weight 2716755 (39.21/col) Wed May 13 17:07:54 2009 matrix includes 64 packed rows Wed May 13 17:07:54 2009 using block size 27715 for processor cache size 1024 kB Wed May 13 17:07:55 2009 commencing Lanczos iteration Wed May 13 17:07:55 2009 memory use: 11.3 MB Wed May 13 17:08:29 2009 lanczos halted after 1096 iterations (dim = 69175) Wed May 13 17:08:29 2009 recovered 18 nontrivial dependencies Wed May 13 17:08:29 2009 prp44 factor: 86804442778701194714084453798411031294437723 Wed May 13 17:08:29 2009 prp50 factor: 10659310159320433870594507542608353345250244368549 Wed May 13 17:08:29 2009 elapsed time 03:02:26
(55·10122+71)/9 = 6(1)1219<123> = 2139290106271226863<19> · C105
C105 = P43 · P62
P43 = 5373828558294265105721640099799107187217633<43>
P62 = 53157762248322536159642656786976043318598797786328241167792961<62>
Number: 61119_122 N=285660700865052406937603796147704614656446087367273326746205050617928636405919093004427741173180992481313 ( 105 digits) SNFS difficulty: 124 digits. Divisors found: r1=5373828558294265105721640099799107187217633 (pp43) r2=53157762248322536159642656786976043318598797786328241167792961 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.07 hours. Scaled time: 1.92 units (timescale=0.473). Factorization parameters were as follows: name: 61119_122 n: 285660700865052406937603796147704614656446087367273326746205050617928636405919093004427741173180992481313 m: 2000000000000000000000000 deg: 5 c5: 1375 c0: 568 skew: 0.84 type: snfs lss: 1 rlim: 840000 alim: 840000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 840000/840000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [420000, 820001) Primes: RFBsize:66890, AFBsize:67446, largePrimes:1430103 encountered Relations: rels:1423767, finalFF:171226 Max relations in full relation-set: 28 Initial matrix: 134403 x 171226 with sparse part having weight 8895848. Pruned matrix : 120784 x 121520 with weight 4851384. Total sieving time: 3.84 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000 total time: 4.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / May 13, 2009
(38·10196-11)/9 = 4(2)1951<197> = 41 · C196
C196 = P51 · P145
P51 = 838649704654846390758515578850272712034860490204961<51>
P145 = 1227938545005281377336927487713597735223128756351156783641718045398180364148362046277704501731373166079193454606684278099220646885720543931030821<145>
Number: n N=1029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981 ( 196 digits) SNFS difficulty: 198 digits. Divisors found: Wed May 13 08:29:26 2009 prp51 factor: 838649704654846390758515578850272712034860490204961 Wed May 13 08:29:26 2009 prp145 factor: 1227938545005281377336927487713597735223128756351156783641718045398180364148362046277704501731373166079193454606684278099220646885720543931030821 Wed May 13 08:29:26 2009 elapsed time 07:26:30 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 45.69 hours. Scaled time: 92.01 units (timescale=2.014). Factorization parameters were as follows: name: KA_4_2_195_1 n: 1029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981029810298102981 m: 2000000000000000000000000000000000000000 deg: 5 c5: 95 c0: -88 skew: 0.98 type: snfs lss: 1 rlim: 14200000 alim: 14200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 14200000/14200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [7100000, 17600069) Primes: RFBsize:922193, AFBsize:921099, largePrimes:21624209 encountered Relations: rels:22687579, finalFF:1832439 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3063498 hash collisions in 25110169 relations Msieve: matrix is 2255039 x 2255287 (612.2 MB) Total sieving time: 45.26 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14200000,14200000,28,28,56,56,2.5,2.5,100000 total time: 45.69 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.95 BogoMIPS (lpj=2830476) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Total of 4 processors activated (22643.65 BogoMIPS).
(55·10171+53)/9 = 6(1)1707<172> = 3 · 10037 · C168
C168 = P46 · P123
P46 = 1564288375667914117144174724299318185064610611<46>
P123 = 129741281454502009424231502334110360678149501887013003964661212991492932260928953098054019152165699509735690212465942370977<123>
Number: n N=202952778423536618216303381193288536120059483614330680187011760190997014749131915615924782010265720537714161306868291026904158317927372425728508223277576670024612636947 ( 168 digits) SNFS difficulty: 172 digits. Divisors found: Wed May 13 18:27:32 2009 prp46 factor: 1564288375667914117144174724299318185064610611 Wed May 13 18:27:32 2009 prp123 factor: 129741281454502009424231502334110360678149501887013003964661212991492932260928953098054019152165699509735690212465942370977 Wed May 13 18:27:32 2009 elapsed time 01:53:42 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 62.51 hours. Scaled time: 166.95 units (timescale=2.671). Factorization parameters were as follows: name: KA_6_1_170_7 n: 202952778423536618216303381193288536120059483614330680187011760190997014749131915615924782010265720537714161306868291026904158317927372425728508223277576670024612636947 m: 10000000000000000000000000000000000 deg: 5 c5: 550 c0: 53 skew: 0.63 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2650000, 6195757) Primes: RFBsize:367900, AFBsize:368503, largePrimes:17829043 encountered Relations: rels:17580473, finalFF:723415 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2219364 hash collisions in 19608042 relations Msieve: matrix is 928670 x 928918 (249.1 MB) Total sieving time: 61.63 hours. Total relation processing time: 0.87 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,28,28,56,56,2.4,2.4,100000 total time: 62.51 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3, Msieve / May 13, 2009
(55·10136+71)/9 = 6(1)1359<137> = 3 · 317 · 14615383 · 75201397 · C119
C119 = P34 · P86
P34 = 1350876569924994979685157442302889<34>
P86 = 43280063054364300687962637464433987423404953530263290263897966741530468685681866670571<86>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3080153974 Step 1 took 7820ms Step 2 took 8057ms ********** Factor found in step 2: 1350876569924994979685157442302889 Found probable prime factor of 34 digits: 1350876569924994979685157442302889 Probable prime cofactor 43280063054364300687962637464433987423404953530263290263897966741530468685681866670571 has 86 digits
(55·10146+71)/9 = 6(1)1459<147> = 31 · 639127301537443<15> · C131
C131 = P37 · P95
P37 = 1202940587193747624789004146323185267<37>
P95 = 25640526478973531362019019068776774655905775461468850331552024081456281866972753004198890605529<95>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=129212221 Step 1 took 7868ms Step 2 took 4637ms ********** Factor found in step 2: 1202940587193747624789004146323185267 Found probable prime factor of 37 digits: 1202940587193747624789004146323185267 Probable prime cofactor has 95 digits
(55·10111+71)/9 = 6(1)1109<112> = 17 · 23 · C110
C110 = P52 · P58
P52 = 8496004963601417069043767504345188776275945693950363<52>
P58 = 1839622298813323932133290065541136712345074736938839826043<58>
SNFS difficulty: 112 digits. Divisors found: r1=8496004963601417069043767504345188776275945693950363 (pp52) r2=1839622298813323932133290065541136712345074736938839826043 (pp58) Version: Msieve v. 1.41 Total time: 0.58 hours. Scaled time: 1.58 units (timescale=2.726). Factorization parameters were as follows: n: 15629440181869849389030974708724069337880079568059107701051435066780335322534811025859619210002841716396703609 m: 10000000000000000000000 deg: 5 c5: 550 c0: 71 skew: 0.66 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52949 x 53178 Total sieving time: 0.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,112.000,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 0.58 hours.
(55·10203+71)/9 = 6(1)2029<204> = 1493 · 50741 · 148669 · C191
C191 = P31 · C161
P31 = 1538483614307183777646719386573<31>
C161 = [35268586554235955747475441610403345347488406143285663324380184048565519635843557694050030383279827772428163249553044073162469530126538634244471616142594370633599<161>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3878632275 Step 1 took 12345ms Step 2 took 6401ms ********** Factor found in step 2: 1538483614307183777646719386573 Found probable prime factor of 31 digits: 1538483614307183777646719386573 Composite cofactor has 161 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 13, 2009
2·10176-1 = 1(9)176<177> = 257 · 156577 · 16506330678736007<17> · 6963592316914968855505993<25> · C128
C128 = P58 · P71
P58 = 2638173759595778891884183100234637053647717064980325343311<58>
P71 = 16390100988022968074152500639629002445679211540543545306742330563674831<71>
Number: 19999_176 N=43239934343727043867038071858195868131316110066819744096987416719312710840761544224861895751661857201711227598866960845844905441 ( 128 digits) SNFS difficulty: 176 digits. Divisors found: r1=2638173759595778891884183100234637053647717064980325343311 r2=16390100988022968074152500639629002445679211540543545306742330563674831 Version: Total time: 43.15 hours. Scaled time: 103.12 units (timescale=2.390). Factorization parameters were as follows: n: 43239934343727043867038071858195868131316110066819744096987416719312710840761544224861895751661857201711227598866960845844905441 m: 100000000000000000000000000000000000 deg: 5 c5: 20 c0: -1 skew: 0.55 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 6300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17790087 Max relations in full relation-set: Initial matrix: Pruned matrix : 1183787 x 1184034 Total sieving time: 37.04 hours. Total relation processing time: 2.59 hours. Matrix solve time: 3.21 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 43.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Markus Tervooren / msieve 1.41, ggnfs / May 13, 2009
(53·10165-17)/9 = 5(8)1647<166> = 7 · 639157301 · 683426917 · 6327944358701217101<19> · C129
C129 = P48 · P82
P48 = 105286041996195116463905211753052493939462823619<48>
P82 = 2890693427093959193600294796557751916681459460044103037225919482688402201684641967<82>
N=304349669563139773775039543739558410678652128462622576347732269179402880997642153306106637637619365345888591599963791904886218573 ( 129 digits) SNFS difficulty: 166 digits. Divisors found: r1=105286041996195116463905211753052493939462823619 (pp48) r2=2890693427093959193600294796557751916681459460044103037225919482688402201684641967 (pp82) Version: Msieve-1.39 Total time: 23.99 hours. Scaled time: 55.15 units (timescale=2.299). Factorization parameters were as follows: n: 304349669563139773775039543739558410678652128462622576347732269179402880997642153306106637637619365345888591599963791904886218573 m: 1000000000000000000000000000000000 deg: 5 c5: 53 c0: -17 skew: 0.80 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 26 lpba: 26 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 688361 x 688609 Total sieving time: 23.27 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.55 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,26,26,51,51,2.4,2.4,200000 total time: 23.99 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.331180] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.428163] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 6004.15 BogoMIPS (lpj=12008301) [ 0.156009] Calibrating delay using timer specific routine.. 5999.99 BogoMIPS (lpj=11999993) [ 0.248015] Calibrating delay using timer specific routine.. 6000.00 BogoMIPS (lpj=12000012) [ 0.347710] Calibrating delay using timer specific routine.. 6000.00 BogoMIPS (lpj=12000008) [ 0.435711] Total of 4 processors activated (24004.15 BogoMIPS).
By Erik Branger / GMP-ECM, Msieve / May 13, 2009
(10245-7)/3 = (3)2441<245> = 97 · 66751 · 3258371 · 1403863703183<13> · 2249810655289<13> · 81791825300240873<17> · 145142221366577384926667<24> · 31324445949473317700096188175894333<35> · C133
C133 = P39 · P45 · P50
P39 = 489315672447162785103946339787661019447<39>
P45 = 222569895610081321713872192753638833118459541<45>
P50 = 12351940072441846049300946746600885270935752027829<50>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1345211973340636127176790697467331273618032323820765030845459707299234006881987792073875316307596244915355092769177331580459819511583 (133 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3233337030 Step 1 took 61137ms Step 2 took 34851ms ********** Factor found in step 2: 489315672447162785103946339787661019447 Found probable prime factor of 39 digits: 489315672447162785103946339787661019447 Composite cofactor 2749170012505361993924940218503304494061357616514900432821055688206426386787140909263442566489 has 94 digits Tue May 12 16:49:26 2009 Msieve v. 1.41 Tue May 12 16:49:26 2009 random seeds: f1649488 eee56b85 Tue May 12 16:49:26 2009 factoring 2749170012505361993924940218503304494061357616514900432821055688206426386787140909263442566489 (94 digits) Tue May 12 16:49:27 2009 searching for 15-digit factors Tue May 12 16:49:28 2009 commencing quadratic sieve (94-digit input) Tue May 12 16:49:28 2009 using multiplier of 1 Tue May 12 16:49:28 2009 using 32kb Intel Core sieve core Tue May 12 16:49:28 2009 sieve interval: 36 blocks of size 32768 Tue May 12 16:49:28 2009 processing polynomials in batches of 6 Tue May 12 16:49:28 2009 using a sieve bound of 2018827 (75294 primes) Tue May 12 16:49:28 2009 using large prime bound of 270522818 (28 bits) Tue May 12 16:49:28 2009 using double large prime bound of 1506492608811942 (42-51 bits) Tue May 12 16:49:28 2009 using trial factoring cutoff of 51 bits Tue May 12 16:49:28 2009 polynomial 'A' values have 12 factors Tue May 12 19:42:45 2009 75640 relations (18903 full + 56737 combined from 1060241 partial), need 75390 Tue May 12 19:42:48 2009 begin with 1079144 relations Tue May 12 19:42:49 2009 reduce to 194509 relations in 11 passes Tue May 12 19:42:49 2009 attempting to read 194509 relations Tue May 12 19:42:52 2009 recovered 194509 relations Tue May 12 19:42:52 2009 recovered 174919 polynomials Tue May 12 19:42:53 2009 attempting to build 75640 cycles Tue May 12 19:42:53 2009 found 75640 cycles in 6 passes Tue May 12 19:42:53 2009 distribution of cycle lengths: Tue May 12 19:42:53 2009 length 1 : 18903 Tue May 12 19:42:53 2009 length 2 : 13565 Tue May 12 19:42:53 2009 length 3 : 12840 Tue May 12 19:42:53 2009 length 4 : 10239 Tue May 12 19:42:53 2009 length 5 : 7608 Tue May 12 19:42:53 2009 length 6 : 5067 Tue May 12 19:42:53 2009 length 7 : 3115 Tue May 12 19:42:53 2009 length 9+: 4303 Tue May 12 19:42:53 2009 largest cycle: 20 relations Tue May 12 19:42:53 2009 matrix is 75294 x 75640 (18.9 MB) with weight 4642777 (61.38/col) Tue May 12 19:42:53 2009 sparse part has weight 4642777 (61.38/col) Tue May 12 19:42:54 2009 filtering completed in 3 passes Tue May 12 19:42:54 2009 matrix is 71370 x 71434 (17.9 MB) with weight 4398060 (61.57/col) Tue May 12 19:42:54 2009 sparse part has weight 4398060 (61.57/col) Tue May 12 19:42:54 2009 saving the first 48 matrix rows for later Tue May 12 19:42:54 2009 matrix is 71322 x 71434 (10.5 MB) with weight 3349481 (46.89/col) Tue May 12 19:42:54 2009 sparse part has weight 2318382 (32.45/col) Tue May 12 19:42:54 2009 matrix includes 64 packed rows Tue May 12 19:42:54 2009 using block size 28573 for processor cache size 2048 kB Tue May 12 19:42:55 2009 commencing Lanczos iteration Tue May 12 19:42:55 2009 memory use: 10.7 MB Tue May 12 19:43:22 2009 lanczos halted after 1130 iterations (dim = 71320) Tue May 12 19:43:22 2009 recovered 15 nontrivial dependencies Tue May 12 19:43:22 2009 prp45 factor: 222569895610081321713872192753638833118459541 Tue May 12 19:43:22 2009 prp50 factor: 12351940072441846049300946746600885270935752027829 Tue May 12 19:43:22 2009 elapsed time 02:53:56
Factorizations of 611...119 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 11, 2009
(55·10158+53)/9 = 6(1)1577<159> = 17 · 4817497834280673583<19> · C139
C139 = P56 · P84
P56 = 17845553710717112864759785999618398828238960930529700031<56>
P84 = 418138062769178038646403383540644184918563093786817713598293397086549042213175848237<84>
Number: n N=7461905257642570205274359759519501514193898474760211147148201732868313154587524623931779179230011032717598088072376762527591935829590195347 ( 139 digits) SNFS difficulty: 160 digits. Divisors found: Mon May 11 01:35:01 2009 prp56 factor: 17845553710717112864759785999618398828238960930529700031 Mon May 11 01:35:01 2009 prp84 factor: 418138062769178038646403383540644184918563093786817713598293397086549042213175848237 Mon May 11 01:35:01 2009 elapsed time 00:43:35 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 26.47 hours. Scaled time: 68.98 units (timescale=2.606). Factorization parameters were as follows: name: KA_6_1_157_7 n: 7461905257642570205274359759519501514193898474760211147148201732868313154587524623931779179230011032717598088072376762527591935829590195347 m: 50000000000000000000000000000000 deg: 5 c5: 88 c0: 265 skew: 1.25 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1650000, 3231931) Primes: RFBsize:236900, AFBsize:236768, largePrimes:13344150 encountered Relations: rels:12314752, finalFF:423174 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1315446 hash collisions in 14066940 relations Msieve: matrix is 609139 x 609387 (163.0 MB) Total sieving time: 26.17 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,28,28,56,56,2.4,2.4,100000 total time: 26.47 hours. --------- CPU info (if available) ----------
(55·10152+53)/9 = 6(1)1517<153> = 19 · 59 · 227 · 659 · 12695518245859<14> · C132
C132 = P55 · P77
P55 = 7068361314994357655785488053712469413994760160307524653<55>
P77 = 40610105745920779918481121272161456452030286435210027784502911521712533819907<77>
Number: n N=287046900452296523635214596698421367210854311194270084376888166052944430800517935676949223976641000358837008264491447433837664667271 ( 132 digits) SNFS difficulty: 155 digits. Divisors found: Mon May 11 14:21:24 2009 prp55 factor: 7068361314994357655785488053712469413994760160307524653 Mon May 11 14:21:24 2009 prp77 factor: 40610105745920779918481121272161456452030286435210027784502911521712533819907 Mon May 11 14:21:24 2009 elapsed time 00:25:14 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 14.91 hours. Scaled time: 38.08 units (timescale=2.554). Factorization parameters were as follows: name: KA_6_1_151_7 n: 287046900452296523635214596698421367210854311194270084376888166052944430800517935676949223976641000358837008264491447433837664667271 m: 5000000000000000000000000000000 deg: 5 c5: 44 c0: 1325 skew: 1.98 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1350000, 2250257) Primes: RFBsize:196645, AFBsize:196816, largePrimes:11996756 encountered Relations: rels:11284515, finalFF:436714 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 914717 hash collisions in 12009197 relations Msieve: matrix is 430294 x 430542 (115.0 MB) Total sieving time: 14.70 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2700000,2700000,28,28,56,56,2.4,2.4,100000 total time: 14.91 hours. --------- CPU info (if available) ----------
(55·10169+53)/9 = 6(1)1687<170> = 21385781 · 1709871325461113<16> · C148
C148 = P38 · P110
P38 = 31499273936242556516634609465971955509<38>
P110 = 53055583145099933520947588688085961040800233395621622150497267775458366053416556199130127742788741791063315421<110>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1671212347334596219507410428017889758975124908091594236923391998388037186811384996722745868763892908306829644401101534483453918223449576156245604289 (148 digits) Using B1=1798000, B2=2140281790, polynomial Dickson(6), sigma=2177163353 Step 1 took 27627ms Step 2 took 8830ms ********** Factor found in step 2: 31499273936242556516634609465971955509 Found probable prime factor of 38 digits: 31499273936242556516634609465971955509 Probable prime cofactor 53055583145099933520947588688085961040800233395621622150497267775458366053416556199130127742788741791063315421 has 110 digits
By Robert Backstrom / GGNFS, Msieve / May 12, 2009
(55·10161+53)/9 = 6(1)1607<162> = 13 · 97 · 113 · 76625767327269088745587943<26> · C131
C131 = P59 · P73
P59 = 25937588457776918008836386172560311496435019969223053253357<59>
P73 = 2157854800973617411073781544796855937311836707863709108700798479647760419<73>
Number: n N=55969549779291807578331999389155335060385717795888554665336739968324394289490377698401886225152663948359880548781879323856843476583 ( 131 digits) SNFS difficulty: 162 digits. Divisors found: r1=25937588457776918008836386172560311496435019969223053253357 (pp59) r2=2157854800973617411073781544796855937311836707863709108700798479647760419 (pp73) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 30.09 hours. Scaled time: 79.41 units (timescale=2.639). Factorization parameters were as follows: name: KA_6_1_160_7 n: 55969549779291807578331999389155335060385717795888554665336739968324394289490377698401886225152663948359880548781879323856843476583 m: 100000000000000000000000000000000 deg: 5 c5: 550 c0: 53 skew: 0.63 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1800000, 3500001) Primes: RFBsize:256726, AFBsize:256777, largePrimes:14804714 encountered Relations: rels:14493415, finalFF:613981 Max relations in full relation-set: 28 Initial matrix: 513570 x 613981 with sparse part having weight 68840197. Pruned matrix : 472743 x 475374 with weight 50744989. Total sieving time: 27.82 hours. Total relation processing time: 0.47 hours. Matrix solve time: 1.59 hours. Total square root time: 0.20 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,56,56,2.4,2.4,100000 total time: 30.09 hours. --------- CPU info (if available) ----------
By Markus Tervooren / msieve 1.41, lattice siever (64bit/asm) / May 12, 2009
4·10212+9 = 4(0)2119<213> = 1057477 · 1719841 · 2162154127181111154546903829<28> · 77175797637606010161708971689<29> · C145
C145 = P52 · P93
P52 = 1746066645189561080367807342423137376428492594383633<52>
P93 = 754870008751017698161582119509494539523940082054318759700337322475860229316028590649214989769<93>
N=1318053343734104086960715457060197971758523491913154564415959276396377517554642471068781120825155195038852382956221675167363777490332564956050777 ( 145 digits) Divisors found: r1=1746066645189561080367807342423137376428492594383633 (pp52) r2=754870008751017698161582119509494539523940082054318759700337322475860229316028590649214989769 (pp93) Version: Msieve-1.39 Total time: 669.60 hours. Scaled time: 1536.06 units (timescale=2.294). Factorization parameters were as follows: name: k2 n: 1318053343734104086960715457060197971758523491913154564415959276396377517554642471068781120825155195038852382956221675167363777490332564956050777 skew: 605055.65 # norm 5.12e+19 c5: 208980 c4: -133514539821 c3: 487140766392643324 c2: 51625269952217739580169 c1: -93618180336738951476232970236 c0: -5793741626299058757465782496791055 # alpha -5.97 Y1: 75003706647780877 Y0: -5753953870187591385948231242 # Murphy_E 1.08e-11 # M 800290932745809964278718692174746748367343098838672689905478792809784630966191593908087431020740065478694759215807174794065578110867414729744866 type: gnfs rlim: 22000000 alim: 22000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 22000000/22000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [11000000, 34000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2408276 x 2408524 Total sieving time: 657.69 hours. Total relation processing time: 0.47 hours. Matrix solve time: 10.99 hours. Time per square root: 0.44 hours. Prototype def-par.txt line would be: gnfs,144,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,22000000,22000000,28,28,52,52,2.6,2.6,200000 total time: 669.60 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.331180] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.428163] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8197992k/10485760k available (2226k kernel code, 189844k reserved, 1082k data, 392k init) [ 0.083917] Calibrating delay using timer specific routine.. 6004.15 BogoMIPS (lpj=12008301) [ 0.156009] Calibrating delay using timer specific routine.. 5999.99 BogoMIPS (lpj=11999993) [ 0.248015] Calibrating delay using timer specific routine.. 6000.00 BogoMIPS (lpj=12000012) [ 0.347710] Calibrating delay using timer specific routine.. 6000.00 BogoMIPS (lpj=12000008) [ 0.435711] Total of 4 processors activated (24004.15 BogoMIPS).
By Dmitry Domanov / GMP-ECM 6.2.3 / May 11, 2009
10245-9 = (9)2441<245> = 40974399286914864833693<23> · C223
C223 = P34 · C189
P34 = 5715411392874728022457273897097329<34>
C189 = [427011831602112740817913621551742021102073286561629462464731021857158629869115131922752233372580108125425120862025257386114216115947550294412616236983597923505019820154999571664743031506003<189>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1951669128 Step 1 took 441703ms Step 2 took 107218ms ********** Factor found in step 2: 5715411392874728022457273897097329 Found probable prime factor of 34 digits: 5715411392874728022457273897097329 Composite cofactor 427011831602112740817913621551742021102073286561629462464731021857158629869115131922752233372580108125425120862025257386114216115947550294412616236983597923505019820154999571664743031506003 has 189 digits
By Dmitry Domanov / GGNFS, msieve / May 12, 2009
7·10187-9 = 6(9)1861<188> = 461 · 923371 · 473554153625182489683337<24> · 4690476648547345168326374837406127<34> · C122
C122 = P51 · P72
P51 = 132247220045280786396912011749138627359993288829687<51>
P72 = 559819090026885770857005522645932550743849730325918357433966783937734297<72>
Tue May 05 13:21:24 2009 Msieve v. 1.41 Tue May 05 13:21:24 2009 random seeds: 796211e0 c7c337b8 Tue May 05 13:21:24 2009 factoring 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039 (122 digits) Tue May 05 13:21:24 2009 searching for 15-digit factors Tue May 05 13:21:26 2009 commencing number field sieve (122-digit input) Tue May 05 13:21:26 2009 R0: -338415587465557897385425 Tue May 05 13:21:26 2009 R1: 25169084109103 Tue May 05 13:21:26 2009 A0: -19554326764852222388358345552 Tue May 05 13:21:26 2009 A1: 2374031057583121590915716 Tue May 05 13:21:26 2009 A2: 89638104094787780664 Tue May 05 13:21:26 2009 A3: -53426264244359 Tue May 05 13:21:26 2009 A4: -7014396274 Tue May 05 13:21:26 2009 A5: 16680 Tue May 05 13:21:26 2009 skew 105853.63, size 1.087434e-011, alpha -5.584116, combined = 2.285903e-010 Tue May 05 13:21:26 2009 Tue May 05 13:21:26 2009 commencing relation filtering Tue May 05 13:21:26 2009 commencing duplicate removal, pass 1 Tue May 05 13:23:26 2009 found 3680062 hash collisions in 14352905 relations Tue May 05 13:23:49 2009 added 62650 free relations Tue May 05 13:23:49 2009 commencing duplicate removal, pass 2 Tue May 05 13:24:22 2009 found 4221914 duplicates and 10193640 unique relations Tue May 05 13:24:22 2009 memory use: 106.6 MB Tue May 05 13:24:22 2009 reading rational ideals above 7929856 Tue May 05 13:24:22 2009 reading algebraic ideals above 7929856 Tue May 05 13:24:22 2009 commencing singleton removal, pass 1 Tue May 05 13:25:56 2009 relations with 0 large ideals: 319804 Tue May 05 13:25:56 2009 relations with 1 large ideals: 1789543 Tue May 05 13:25:56 2009 relations with 2 large ideals: 3700610 Tue May 05 13:25:56 2009 relations with 3 large ideals: 3267043 Tue May 05 13:25:56 2009 relations with 4 large ideals: 1046919 Tue May 05 13:25:56 2009 relations with 5 large ideals: 11575 Tue May 05 13:25:56 2009 relations with 6 large ideals: 58146 Tue May 05 13:25:56 2009 relations with 7+ large ideals: 0 Tue May 05 13:25:56 2009 10193640 relations and about 9206532 large ideals Tue May 05 13:25:56 2009 commencing singleton removal, pass 2 Tue May 05 13:27:29 2009 found 3746144 singletons Tue May 05 13:27:29 2009 current dataset: 6447496 relations and about 4826112 large ideals Tue May 05 13:27:29 2009 commencing singleton removal, pass 3 Tue May 05 13:28:35 2009 found 907584 singletons Tue May 05 13:28:35 2009 current dataset: 5539912 relations and about 3868151 large ideals Tue May 05 13:28:35 2009 commencing singleton removal, pass 4 Tue May 05 13:29:33 2009 found 254745 singletons Tue May 05 13:29:33 2009 current dataset: 5285167 relations and about 3608888 large ideals Tue May 05 13:29:33 2009 commencing singleton removal, final pass Tue May 05 13:30:30 2009 memory use: 81.1 MB Tue May 05 13:30:30 2009 commencing in-memory singleton removal Tue May 05 13:30:30 2009 begin with 5285167 relations and 3822070 unique ideals Tue May 05 13:30:35 2009 reduce to 4716125 relations and 3242297 ideals in 13 passes Tue May 05 13:30:35 2009 max relations containing the same ideal: 33 Tue May 05 13:30:36 2009 reading rational ideals above 720000 Tue May 05 13:30:36 2009 reading algebraic ideals above 720000 Tue May 05 13:30:36 2009 commencing singleton removal, final pass Tue May 05 13:31:36 2009 keeping 3940660 ideals with weight <= 20, new excess is 380477 Tue May 05 13:31:40 2009 memory use: 128.6 MB Tue May 05 13:31:40 2009 commencing in-memory singleton removal Tue May 05 13:31:41 2009 begin with 4717910 relations and 3940660 unique ideals Tue May 05 13:31:48 2009 reduce to 4695435 relations and 3909770 ideals in 13 passes Tue May 05 13:31:48 2009 max relations containing the same ideal: 20 Tue May 05 13:31:51 2009 removing 982639 relations and 810483 ideals in 172156 cliques Tue May 05 13:31:51 2009 commencing in-memory singleton removal Tue May 05 13:31:51 2009 begin with 3712796 relations and 3909770 unique ideals Tue May 05 13:31:55 2009 reduce to 3585555 relations and 2966547 ideals in 9 passes Tue May 05 13:31:55 2009 max relations containing the same ideal: 20 Tue May 05 13:31:57 2009 removing 740278 relations and 568122 ideals in 172156 cliques Tue May 05 13:31:58 2009 commencing in-memory singleton removal Tue May 05 13:31:58 2009 begin with 2845277 relations and 2966547 unique ideals Tue May 05 13:32:00 2009 reduce to 2743763 relations and 2292206 ideals in 8 passes Tue May 05 13:32:00 2009 max relations containing the same ideal: 19 Tue May 05 13:32:01 2009 removing 74922 relations and 64719 ideals in 10203 cliques Tue May 05 13:32:02 2009 commencing in-memory singleton removal Tue May 05 13:32:02 2009 begin with 2668841 relations and 2292206 unique ideals Tue May 05 13:32:03 2009 reduce to 2667656 relations and 2226298 ideals in 5 passes Tue May 05 13:32:03 2009 max relations containing the same ideal: 19 Tue May 05 13:32:03 2009 relations with 0 large ideals: 28132 Tue May 05 13:32:03 2009 relations with 1 large ideals: 191693 Tue May 05 13:32:03 2009 relations with 2 large ideals: 536697 Tue May 05 13:32:03 2009 relations with 3 large ideals: 801502 Tue May 05 13:32:03 2009 relations with 4 large ideals: 682034 Tue May 05 13:32:03 2009 relations with 5 large ideals: 329226 Tue May 05 13:32:03 2009 relations with 6 large ideals: 86297 Tue May 05 13:32:03 2009 relations with 7+ large ideals: 12075 Tue May 05 13:32:03 2009 commencing 2-way merge Tue May 05 13:32:05 2009 reduce to 1695103 relation sets and 1253745 unique ideals Tue May 05 13:32:05 2009 commencing full merge Tue May 05 13:32:27 2009 memory use: 100.0 MB Tue May 05 13:32:27 2009 found 827118 cycles, need 767945 Tue May 05 13:32:27 2009 weight of 767945 cycles is about 53824455 (70.09/cycle) Tue May 05 13:32:27 2009 distribution of cycle lengths: Tue May 05 13:32:27 2009 1 relations: 74022 Tue May 05 13:32:27 2009 2 relations: 78780 Tue May 05 13:32:27 2009 3 relations: 82503 Tue May 05 13:32:27 2009 4 relations: 78536 Tue May 05 13:32:27 2009 5 relations: 74402 Tue May 05 13:32:27 2009 6 relations: 67129 Tue May 05 13:32:27 2009 7 relations: 60620 Tue May 05 13:32:27 2009 8 relations: 53361 Tue May 05 13:32:27 2009 9 relations: 45757 Tue May 05 13:32:27 2009 10+ relations: 152835 Tue May 05 13:32:27 2009 heaviest cycle: 17 relations Tue May 05 13:32:27 2009 commencing cycle optimization Tue May 05 13:32:29 2009 start with 4650542 relations Tue May 05 13:32:39 2009 pruned 148029 relations Tue May 05 13:32:39 2009 memory use: 118.4 MB Tue May 05 13:32:39 2009 distribution of cycle lengths: Tue May 05 13:32:39 2009 1 relations: 74022 Tue May 05 13:32:39 2009 2 relations: 80948 Tue May 05 13:32:39 2009 3 relations: 86351 Tue May 05 13:32:39 2009 4 relations: 81424 Tue May 05 13:32:39 2009 5 relations: 77632 Tue May 05 13:32:39 2009 6 relations: 69023 Tue May 05 13:32:39 2009 7 relations: 62318 Tue May 05 13:32:39 2009 8 relations: 53892 Tue May 05 13:32:39 2009 9 relations: 45856 Tue May 05 13:32:39 2009 10+ relations: 136479 Tue May 05 13:32:39 2009 heaviest cycle: 17 relations Tue May 05 13:32:41 2009 RelProcTime: 643 Tue May 05 13:32:41 2009 Tue May 05 13:32:41 2009 commencing linear algebra Tue May 05 13:32:41 2009 read 767945 cycles Tue May 05 13:32:43 2009 cycles contain 2401694 unique relations Tue May 05 13:33:28 2009 read 2401694 relations Tue May 05 13:33:32 2009 using 20 quadratic characters above 134216802 Tue May 05 13:33:44 2009 building initial matrix Tue May 05 13:34:13 2009 memory use: 275.5 MB Tue May 05 13:34:15 2009 read 767945 cycles Tue May 05 13:34:29 2009 matrix is 767716 x 767945 (216.1 MB) with weight 72678072 (94.64/col) Tue May 05 13:34:29 2009 sparse part has weight 51274069 (66.77/col) Tue May 05 13:34:42 2009 filtering completed in 3 passes Tue May 05 13:34:42 2009 matrix is 765071 x 765271 (215.7 MB) with weight 72511181 (94.75/col) Tue May 05 13:34:42 2009 sparse part has weight 51186251 (66.89/col) Tue May 05 13:34:46 2009 read 765271 cycles Tue May 05 13:36:32 2009 matrix is 765071 x 765271 (215.7 MB) with weight 72511181 (94.75/col) Tue May 05 13:36:32 2009 sparse part has weight 51186251 (66.89/col) Tue May 05 13:36:32 2009 saving the first 48 matrix rows for later Tue May 05 13:36:33 2009 matrix is 765023 x 765271 (208.1 MB) with weight 57393419 (75.00/col) Tue May 05 13:36:33 2009 sparse part has weight 49962643 (65.29/col) Tue May 05 13:36:33 2009 matrix includes 64 packed rows Tue May 05 13:36:33 2009 using block size 65536 for processor cache size 6144 kB Tue May 05 13:36:38 2009 commencing Lanczos iteration (4 threads) Tue May 05 13:36:38 2009 memory use: 223.6 MB Tue May 05 14:19:37 2009 lanczos halted after 12100 iterations (dim = 765022) Tue May 05 14:19:38 2009 recovered 31 nontrivial dependencies Tue May 05 14:19:38 2009 BLanczosTime: 2817 Tue May 05 14:19:38 2009 Tue May 05 14:19:38 2009 commencing square root phase Tue May 05 14:19:38 2009 reading relations for dependency 1 Tue May 05 14:19:39 2009 read 382671 cycles Tue May 05 14:19:39 2009 cycles contain 1485452 unique relations Tue May 05 14:20:40 2009 read 1485452 relations Tue May 05 14:20:47 2009 multiplying 1199326 relations Tue May 05 14:23:36 2009 multiply complete, coefficients have about 52.81 million bits Tue May 05 14:23:38 2009 initial square root is modulo 38250617 Tue May 05 14:27:55 2009 reading relations for dependency 2 Tue May 05 14:27:55 2009 read 382694 cycles Tue May 05 14:27:56 2009 cycles contain 1487123 unique relations Tue May 05 14:28:56 2009 read 1487123 relations Tue May 05 14:29:03 2009 multiplying 1199644 relations Tue May 05 14:31:51 2009 multiply complete, coefficients have about 52.83 million bits Tue May 05 14:31:53 2009 initial square root is modulo 38414923 Tue May 05 14:36:09 2009 sqrtTime: 991 Tue May 05 14:36:09 2009 prp51 factor: 132247220045280786396912011749138627359993288829687 Tue May 05 14:36:09 2009 prp72 factor: 559819090026885770857005522645932550743849730325918357433966783937734297 Tue May 05 14:36:09 2009 elapsed time 01:14:45
2·10170-1 = 1(9)170<171> = 372939703851234256631<21> · 1476778544474435499113<22> · C129
C129 = P54 · P75
P54 = 435805161629542059835776832137316524513544223593929263<54>
P75 = 833265940121934456634651862380154649875027665246097890955759336287836945791<75>
Wed May 06 23:55:15 2009 Msieve v. 1.41 Wed May 06 23:55:15 2009 random seeds: f3d57740 5a083f78 Wed May 06 23:55:15 2009 factoring 363141597715231961840469669719391341355478061523847951174507517995879853212559878525994104711390336716937987367736368470819582033 (129 digits) Wed May 06 23:55:16 2009 searching for 15-digit factors Wed May 06 23:55:18 2009 commencing number field sieve (129-digit input) Wed May 06 23:55:18 2009 R0: -10000000000000000000000000000000000 Wed May 06 23:55:18 2009 R1: 1 Wed May 06 23:55:18 2009 A0: -1 Wed May 06 23:55:18 2009 A1: 0 Wed May 06 23:55:18 2009 A2: 0 Wed May 06 23:55:18 2009 A3: 0 Wed May 06 23:55:18 2009 A4: 0 Wed May 06 23:55:18 2009 A5: 2 Wed May 06 23:55:18 2009 skew 0.87, size 1.292301e-011, alpha 1.449076, combined = 3.697836e-010 Wed May 06 23:55:18 2009 Wed May 06 23:55:18 2009 commencing relation filtering Wed May 06 23:55:18 2009 commencing duplicate removal, pass 1 Wed May 06 23:56:41 2009 found 1638964 hash collisions in 11577617 relations Wed May 06 23:57:02 2009 added 368119 free relations Wed May 06 23:57:02 2009 commencing duplicate removal, pass 2 Wed May 06 23:57:21 2009 found 1606009 duplicates and 10339726 unique relations Wed May 06 23:57:21 2009 memory use: 65.3 MB Wed May 06 23:57:21 2009 reading rational ideals above 8323072 Wed May 06 23:57:21 2009 reading algebraic ideals above 8323072 Wed May 06 23:57:21 2009 commencing singleton removal, pass 1 Wed May 06 23:58:46 2009 relations with 0 large ideals: 322046 Wed May 06 23:58:46 2009 relations with 1 large ideals: 1627628 Wed May 06 23:58:46 2009 relations with 2 large ideals: 3355941 Wed May 06 23:58:46 2009 relations with 3 large ideals: 3166722 Wed May 06 23:58:46 2009 relations with 4 large ideals: 1327236 Wed May 06 23:58:46 2009 relations with 5 large ideals: 200079 Wed May 06 23:58:46 2009 relations with 6 large ideals: 340074 Wed May 06 23:58:46 2009 relations with 7+ large ideals: 0 Wed May 06 23:58:46 2009 10339726 relations and about 9650898 large ideals Wed May 06 23:58:46 2009 commencing singleton removal, pass 2 Thu May 07 00:00:11 2009 found 3518074 singletons Thu May 07 00:00:11 2009 current dataset: 6821652 relations and about 5201006 large ideals Thu May 07 00:00:11 2009 commencing singleton removal, pass 3 Thu May 07 00:01:08 2009 found 1186005 singletons Thu May 07 00:01:08 2009 current dataset: 5635647 relations and about 3937334 large ideals Thu May 07 00:01:08 2009 commencing singleton removal, pass 4 Thu May 07 00:01:56 2009 found 344484 singletons Thu May 07 00:01:56 2009 current dataset: 5291163 relations and about 3584584 large ideals Thu May 07 00:01:56 2009 commencing singleton removal, final pass Thu May 07 00:02:45 2009 memory use: 83.8 MB Thu May 07 00:02:45 2009 commencing in-memory singleton removal Thu May 07 00:02:45 2009 begin with 5291163 relations and 3793818 unique ideals Thu May 07 00:02:50 2009 reduce to 4676325 relations and 3166223 ideals in 14 passes Thu May 07 00:02:50 2009 max relations containing the same ideal: 30 Thu May 07 00:02:51 2009 reading rational ideals above 720000 Thu May 07 00:02:51 2009 reading algebraic ideals above 720000 Thu May 07 00:02:51 2009 commencing singleton removal, final pass Thu May 07 00:03:45 2009 keeping 3960255 ideals with weight <= 20, new excess is 329215 Thu May 07 00:03:49 2009 memory use: 128.4 MB Thu May 07 00:03:49 2009 commencing in-memory singleton removal Thu May 07 00:03:50 2009 begin with 4677019 relations and 3960255 unique ideals Thu May 07 00:03:55 2009 reduce to 4662695 relations and 3942575 ideals in 10 passes Thu May 07 00:03:55 2009 max relations containing the same ideal: 20 Thu May 07 00:03:58 2009 removing 962657 relations and 793542 ideals in 169115 cliques Thu May 07 00:03:58 2009 commencing in-memory singleton removal Thu May 07 00:03:58 2009 begin with 3700038 relations and 3942575 unique ideals Thu May 07 00:04:02 2009 reduce to 3580213 relations and 3023676 ideals in 8 passes Thu May 07 00:04:02 2009 max relations containing the same ideal: 20 Thu May 07 00:04:04 2009 removing 706590 relations and 537475 ideals in 169115 cliques Thu May 07 00:04:04 2009 commencing in-memory singleton removal Thu May 07 00:04:04 2009 begin with 2873623 relations and 3023676 unique ideals Thu May 07 00:04:06 2009 reduce to 2790515 relations and 2399228 ideals in 7 passes Thu May 07 00:04:06 2009 max relations containing the same ideal: 20 Thu May 07 00:04:08 2009 removing 62997 relations and 53600 ideals in 9397 cliques Thu May 07 00:04:08 2009 commencing in-memory singleton removal Thu May 07 00:04:08 2009 begin with 2727518 relations and 2399228 unique ideals Thu May 07 00:04:09 2009 reduce to 2726829 relations and 2344936 ideals in 5 passes Thu May 07 00:04:09 2009 max relations containing the same ideal: 20 Thu May 07 00:04:10 2009 relations with 0 large ideals: 9379 Thu May 07 00:04:10 2009 relations with 1 large ideals: 72170 Thu May 07 00:04:10 2009 relations with 2 large ideals: 332378 Thu May 07 00:04:10 2009 relations with 3 large ideals: 740524 Thu May 07 00:04:10 2009 relations with 4 large ideals: 848156 Thu May 07 00:04:10 2009 relations with 5 large ideals: 512541 Thu May 07 00:04:10 2009 relations with 6 large ideals: 180606 Thu May 07 00:04:10 2009 relations with 7+ large ideals: 31075 Thu May 07 00:04:10 2009 commencing 2-way merge Thu May 07 00:04:12 2009 reduce to 1798033 relation sets and 1416140 unique ideals Thu May 07 00:04:12 2009 commencing full merge Thu May 07 00:04:41 2009 memory use: 127.7 MB Thu May 07 00:04:41 2009 found 900031 cycles, need 848340 Thu May 07 00:04:41 2009 weight of 848340 cycles is about 59797514 (70.49/cycle) Thu May 07 00:04:41 2009 distribution of cycle lengths: Thu May 07 00:04:41 2009 1 relations: 56751 Thu May 07 00:04:41 2009 2 relations: 83118 Thu May 07 00:04:41 2009 3 relations: 96995 Thu May 07 00:04:41 2009 4 relations: 95528 Thu May 07 00:04:41 2009 5 relations: 90120 Thu May 07 00:04:41 2009 6 relations: 80315 Thu May 07 00:04:41 2009 7 relations: 70905 Thu May 07 00:04:41 2009 8 relations: 60666 Thu May 07 00:04:41 2009 9 relations: 51810 Thu May 07 00:04:41 2009 10+ relations: 162132 Thu May 07 00:04:41 2009 heaviest cycle: 18 relations Thu May 07 00:04:41 2009 commencing cycle optimization Thu May 07 00:04:43 2009 start with 5196529 relations Thu May 07 00:04:56 2009 pruned 170872 relations Thu May 07 00:04:56 2009 memory use: 128.9 MB Thu May 07 00:04:56 2009 distribution of cycle lengths: Thu May 07 00:04:56 2009 1 relations: 56751 Thu May 07 00:04:56 2009 2 relations: 85525 Thu May 07 00:04:56 2009 3 relations: 101683 Thu May 07 00:04:56 2009 4 relations: 99412 Thu May 07 00:04:56 2009 5 relations: 93679 Thu May 07 00:04:56 2009 6 relations: 82681 Thu May 07 00:04:56 2009 7 relations: 72480 Thu May 07 00:04:56 2009 8 relations: 61297 Thu May 07 00:04:56 2009 9 relations: 51549 Thu May 07 00:04:56 2009 10+ relations: 143283 Thu May 07 00:04:56 2009 heaviest cycle: 18 relations Thu May 07 00:04:58 2009 RelProcTime: 568 Thu May 07 00:04:58 2009 Thu May 07 00:04:58 2009 commencing linear algebra Thu May 07 00:04:58 2009 read 848340 cycles Thu May 07 00:05:00 2009 cycles contain 2518833 unique relations Thu May 07 00:05:56 2009 read 2518833 relations Thu May 07 00:05:59 2009 using 20 quadratic characters above 134214764 Thu May 07 00:06:12 2009 building initial matrix Thu May 07 00:06:44 2009 memory use: 275.6 MB Thu May 07 00:06:45 2009 read 848340 cycles Thu May 07 00:07:10 2009 matrix is 848136 x 848340 (240.4 MB) with weight 75103459 (88.53/col) Thu May 07 00:07:10 2009 sparse part has weight 57080382 (67.28/col) Thu May 07 00:07:20 2009 filtering completed in 2 passes Thu May 07 00:07:21 2009 matrix is 846914 x 847114 (240.2 MB) with weight 75044918 (88.59/col) Thu May 07 00:07:21 2009 sparse part has weight 57048622 (67.34/col) Thu May 07 00:07:24 2009 read 847114 cycles Thu May 07 00:09:39 2009 matrix is 846914 x 847114 (240.2 MB) with weight 75044918 (88.59/col) Thu May 07 00:09:39 2009 sparse part has weight 57048622 (67.34/col) Thu May 07 00:09:39 2009 saving the first 48 matrix rows for later Thu May 07 00:09:40 2009 matrix is 846866 x 847114 (225.9 MB) with weight 59153206 (69.83/col) Thu May 07 00:09:40 2009 sparse part has weight 54143775 (63.92/col) Thu May 07 00:09:40 2009 matrix includes 64 packed rows Thu May 07 00:09:40 2009 using block size 65536 for processor cache size 6144 kB Thu May 07 00:09:46 2009 commencing Lanczos iteration (4 threads) Thu May 07 00:09:46 2009 memory use: 246.5 MB Thu May 07 01:02:50 2009 lanczos halted after 13391 iterations (dim = 846865) Thu May 07 01:02:52 2009 recovered 38 nontrivial dependencies Thu May 07 01:02:52 2009 BLanczosTime: 3474 Thu May 07 01:02:52 2009 Thu May 07 01:02:52 2009 commencing square root phase Thu May 07 01:02:52 2009 reading relations for dependency 1 Thu May 07 01:02:52 2009 read 424122 cycles Thu May 07 01:02:53 2009 cycles contain 1575740 unique relations Thu May 07 01:03:43 2009 read 1575740 relations Thu May 07 01:03:50 2009 multiplying 1259664 relations Thu May 07 01:05:05 2009 multiply complete, coefficients have about 27.90 million bits Thu May 07 01:05:05 2009 initial square root is modulo 102741601 Thu May 07 01:07:13 2009 reading relations for dependency 2 Thu May 07 01:07:14 2009 read 423170 cycles Thu May 07 01:07:14 2009 cycles contain 1572373 unique relations Thu May 07 01:08:03 2009 read 1572373 relations Thu May 07 01:08:10 2009 multiplying 1257552 relations Thu May 07 01:09:26 2009 multiply complete, coefficients have about 27.85 million bits Thu May 07 01:09:26 2009 initial square root is modulo 99755471 Thu May 07 01:11:35 2009 sqrtTime: 523 Thu May 07 01:11:35 2009 prp54 factor: 435805161629542059835776832137316524513544223593929263 Thu May 07 01:11:35 2009 prp75 factor: 833265940121934456634651862380154649875027665246097890955759336287836945791 Thu May 07 01:11:35 2009 elapsed time 01:16:20
(55·10150+53)/9 = 6(1)1497<151> = 33 · 1622648257064700037<19> · C132
C132 = P38 · P94
P38 = 90377613606019928854624782853071442817<38>
P94 = 1543373924611406170236513127510391203460553114247136700047193975005970719034929975233597849099<94>
[05/09 03:44:07] GGNFS-0.77.1-VC8(Sat 01/17/2009) : makefb [05/09 03:44:08] name: [05/09 03:44:08] n=139486452208136198228535102355156871796087194235955116983831305936858728587122893524901274783831730324992445526989165162831773471883 (132 digits) [05/09 03:44:08] c0: 53 [05/09 03:44:08] c1: 0 [05/09 03:44:08] c2: 0 [05/09 03:44:08] c3: 0 [05/09 03:44:08] c4: 0 [05/09 03:44:08] c5: 55 [05/09 03:44:08] RFBsize: 176302 (upto 2399993) [05/09 03:44:08] AFBsize: 175779 (upto 2399993) [05/09 03:44:08] maxNumLargeRatPrimes: 3 [05/09 03:44:08] maxLargeRatPrime: 134217728 [05/09 03:44:08] maxNumLargeAlgPrimes: 3 [05/09 03:44:08] maxLargeAlgPrime: 134217728 [05/09 03:45:18] GGNFS-0.77.1-VC8(Sat 01/17/2009) : procrels [05/09 03:53:30] There were 1093778/8178163 duplicates. [05/09 03:53:31] RelProcTime: 486.6 [05/09 03:54:06] largePrimes: 7039805 , relations: 7084385 [05/09 03:55:56] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matbuild [05/09 03:58:53] largePrimes: 7039805 , relations: 7084385 [05/09 04:12:40] reduceRelSets dropped relation-set weight from 14596713 to 11211708. [05/09 04:19:45] reduceRelSets dropped relation-set weight from 11211708 to 11098389. [05/09 04:19:45] After removing heavy rel-sets, weight is 9758161. [05/09 04:28:56] Heap stats for matbuild run. [05/09 04:28:56] Max heap usage: 0 MB [05/09 04:28:56] malloc/realloc errors: 0 [05/09 04:28:56] total malloc's : 598 [05/09 04:28:56] total realloc's: 318 [05/09 04:28:56] rels:7084385, initialFF:0, finalFF:508034 [05/09 04:28:56] depinf file written. Run matprune. [05/09 04:39:15] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matprune [05/09 04:39:19] Pruning matrix with wt=0.700 [05/09 04:39:19] Initial matrix is 352147 x 508032 with sparse part having weight 83261174. [05/09 04:39:19] (total weight is 128934569) [05/09 04:44:09] Matrix pruned to 331118 x 332942 with weight 39049575. [05/09 04:44:11] Matrix is pruned. Run matsolve. [05/09 04:44:11] Heap stats for matprune run: [05/09 04:44:11] Max heap usage: 0 MB [05/09 04:44:11] malloc/realloc errors: 0 [05/09 04:44:11] total malloc's : 18 [05/09 04:44:11] total realloc's: 0 [05/09 04:44:24] GGNFS-0.77.1-VC8(Sat 01/17/2009) : matsolve (seed=1373339240) [05/09 05:38:46] BLanczosTime: 3262.1 [05/09 05:38:46] Heap stats for matsolve run: [05/09 05:38:46] Max heap usage: 0 MB [05/09 05:38:46] malloc/realloc errors: 0 [05/09 05:38:46] total malloc's : 16 [05/09 05:38:46] total realloc's: 0 [05/09 05:42:19] GGNFS-0.77.1-VC8(Sat 01/17/2009) : sqrt [05/09 05:42:19] bmultiplier=1 [05/09 05:51:08] From dependence 0, sqrt obtained: [05/09 05:51:08] r1=90377613606019928854624782853071442817 (pp38) [05/09 05:51:08] r2=1543373924611406170236513127510391203460553114247136700047193975005970719034929975233597849099 (pp94) [05/09 05:51:08] (pp=probable prime, c=composite) [05/09 05:51:08] sqrtTime: 529.1
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 12, 2009
2·10175-1 = 1(9)175<176> = 28907629 · 2056488191<10> · 132225919007591<15> · C145
C145 = P66 · P80
P66 = 252597480480496167240007038032606644816424127704209356727130090671<66>
P80 = 10072695254702194408495084787330701009705144691937916451329143381917222375956381<80>
Number: 19999_175 N=2544337442985623921716959902522957528934609642218505078688226925961732275234116485121754486032016850727010696319789948443649436146269366871021651 ( 145 digits) SNFS difficulty: 175 digits. Divisors found: r1=252597480480496167240007038032606644816424127704209356727130090671 r2=10072695254702194408495084787330701009705144691937916451329143381917222375956381 Version: Total time: 38.52 hours. Scaled time: 91.90 units (timescale=2.386). Factorization parameters were as follows: n: 2544337442985623921716959902522957528934609642218505078688226925961732275234116485121754486032016850727010696319789948443649436146269366871021651 m: 100000000000000000000000000000000000 deg: 5 c5: 2 c0: -1 skew: 0.87 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3200000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 15610896 Max relations in full relation-set: Initial matrix: Pruned matrix : 1126166 x 1126414 Total sieving time: 33.37 hours. Total relation processing time: 2.06 hours. Matrix solve time: 2.96 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,52,52,2.5,2.5,100000 total time: 38.52 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Ignacio Santos / GGNFS, Msieve / May 10, 2009
(55·10154+53)/9 = 6(1)1537<155> = 7 · 6067 · 2306561 · 74778749 · 2448272317<10> · C127
C127 = P46 · P81
P46 = 7278517545065402090054562438600913836277499509<46>
P81 = 468168672925009595606107004497002477134020078039196140371123604319737203741838429<81>
Number: 61117_154 N=3407573899934668020619771206672862792568146534282880109137450143289303958145920235977066012463975368877788939109996770804831361 ( 127 digits) SNFS difficulty: 156 digits. Divisors found: r1=7278517545065402090054562438600913836277499509 (pp46) r2=468168672925009595606107004497002477134020078039196140371123604319737203741838429 (pp81) Version: Msieve-1.40 Total time: 16.01 hours. Scaled time: 27.84 units (timescale=1.739). Factorization parameters were as follows: n: 3407573899934668020619771206672862792568146534282880109137450143289303958145920235977066012463975368877788939109996770804831361 m: 10000000000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 513580 x 513828 Total sieving time: 15.52 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.32 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 16.01 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / May 10, 2009
(37·10170+71)/9 = 4(1)1699<171> = 107 · 18401 · 79979 · 1170822842191<13> · 1196912817460672877848632763<28> · C121
C121 = P48 · P73
P48 = 721930026682008860612700977009297988939291840349<48>
P73 = 2580531899054483124131152820897988408963237137415384582028726150021967719<73>
Number: n N=1862963462738177997469441912533125084737017632225748137647767328895230043809231081922385833611314256025924897557779693931 ( 121 digits) SNFS difficulty: 171 digits. Divisors found: Sun May 10 04:20:09 2009 prp48 factor: 721930026682008860612700977009297988939291840349 Sun May 10 04:20:09 2009 prp73 factor: 2580531899054483124131152820897988408963237137415384582028726150021967719 Sun May 10 04:20:09 2009 elapsed time 01:41:26 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 57.52 hours. Scaled time: 152.36 units (timescale=2.649). Factorization parameters were as follows: name: KA_4_1_169_9 n: 1862963462738177997469441912533125084737017632225748137647767328895230043809231081922385833611314256025924897557779693931 m: 10000000000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2550000, 5792069) Primes: RFBsize:354971, AFBsize:354642, largePrimes:17447566 encountered Relations: rels:17068184, finalFF:682228 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2051048 hash collisions in 18743090 relations Msieve: matrix is 923424 x 923672 (246.2 MB) Total sieving time: 56.83 hours. Total relation processing time: 0.68 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,28,28,56,56,2.4,2.4,100000 total time: 57.52 hours. --------- CPU info (if available) ----------
(55·10155+53)/9 = 6(1)1547<156> = 13 · 5373931 · C148
C148 = P58 · P91
P58 = 4574519951664141163904776330845147834730931008411393678889<58>
P91 = 1912225986241622695547172120836614414703594235215141036385313882156078530401611682475064651<91>
Number: n N=8747515926152942519546407836004408792559589434353922398149240659872076613378278769963181244234164340507350866062207908614198534928815983783008852739 ( 148 digits) SNFS difficulty: 156 digits. Divisors found: Sun May 10 17:40:49 2009 prp58 factor: 4574519951664141163904776330845147834730931008411393678889 Sun May 10 17:40:49 2009 prp91 factor: 1912225986241622695547172120836614414703594235215141036385313882156078530401611682475064651 Sun May 10 17:40:49 2009 elapsed time 00:41:16 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 18.85 hours. Scaled time: 50.14 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_154_7 n: 8747515926152942519546407836004408792559589434353922398149240659872076613378278769963181244234164340507350866062207908614198534928815983783008852739 m: 10000000000000000000000000000000 deg: 5 c5: 55 c0: 53 skew: 0.99 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1450000, 2565383) Primes: RFBsize:210109, AFBsize:209530, largePrimes:12305001 encountered Relations: rels:11297272, finalFF:410773 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1007232 hash collisions in 12272639 relations Msieve: matrix is 549105 x 549353 (147.2 MB) Total sieving time: 18.59 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,28,28,56,56,2.4,2.4,100000 total time: 18.85 hours. --------- CPU info (if available) ----------
By matsui / GGNFS / May 10, 2009
7·10167+9 = 7(0)1669<168> = 178069 · 501731 · 865342599239164691599085917<27> · C130
C130 = P49 · P82
P49 = 6790719988452911272645568689691193108538390322657<49>
P82 = 1333321487905646787354335377158150700210766538153045388940264597308992314691236899<82>
N=9054212878954652228888100592451098523536681789916597423465588315561167609163922756593556020840808722859548049818240407383034120643 ( 130 digits) SNFS difficulty: 168 digits. Divisors found: r1=6790719988452911272645568689691193108538390322657 (pp49) r2=1333321487905646787354335377158150700210766538153045388940264597308992314691236899 (pp82) Version: GGNFS-0.77.1-20060722-nocona
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 10, 2009
2·10174-1 = 1(9)174<175> = 31 · 433 · 432861613054879<15> · C156
C156 = P69 · P87
P69 = 619180306815359879947719443746703720133427088087349543290858026082921<69>
P87 = 555922429864657334982749661703084805904449869206638420241546962493043429452142780416407<87>
Number: 19999_174 N=344216220689138912934454927280358723898655801619893389728782160047005078582797351260752955072440170199771132657212043868893991972544665947669729527490884847 ( 156 digits) SNFS difficulty: 175 digits. Divisors found: r1=619180306815359879947719443746703720133427088087349543290858026082921 r2=555922429864657334982749661703084805904449869206638420241546962493043429452142780416407 Version: Total time: 34.42 hours. Scaled time: 81.94 units (timescale=2.381). Factorization parameters were as follows: n: 344216220689138912934454927280358723898655801619893389728782160047005078582797351260752955072440170199771132657212043868893991972544665947669729527490884847 m: 100000000000000000000000000000000000 deg: 5 c5: 1 c0: -5 skew: 1.38 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3200000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 15451820 Max relations in full relation-set: Initial matrix: Pruned matrix : 1063716 x 1063964 Total sieving time: 29.79 hours. Total relation processing time: 1.82 hours. Matrix solve time: 2.58 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,52,52,2.5,2.5,100000 total time: 34.42 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Andreas Tete / GMP-ECM 6.2.3 / May 10, 2009
(41·10169+31)/9 = 4(5)1689<170> = 72 · 19 · 5591 · 24897386467<11> · 1730391568858800137586311395687<31> · C123
C123 = P41 · P82
P41 = 20857207550458330418500632087634039101377<41>
P82 = 9739751135380665829409170258234123961386776664737312926522131440681813665950217263<82>
Input number is 203144010920446719675150985051929266983700872415625718248971422027715628531026178691027602422423959557424751697250432471151 (123 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3267817554 ********** Factor found in step 2: 20857207550458330418500632087634039101377 Found probable prime factor of 41 digits: 20857207550458330418500632087634039101377 Probable prime cofactor 9739751135380665829409170258234123961386776664737312926522131440681813665950217263 has 82 digits
By Erik Branger / GMP-ECM, GGNFS, Msieve / May 9, 2009
(52·10197+11)/9 = 5(7)1969<198> = 33 · 172 · 311 · 335154602779<12> · 331678609200563659<18> · 854252101696507156593065623<27> · C136
C136 = P33 · P45 · P59
P33 = 124983585212975494444207599696457<33>
P45 = 632394553174014976691291963192884507171937573<45>
P59 = 31721157876312680245539261007036254938393070660760364592661<59>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 2507206647322814436500135705744273279758691833540728488771499003385289025126313519686362630082299794459178069117751368048682483007039121 (136 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1013880214 Step 1 took 43353ms Step 2 took 14523ms ********** Factor found in step 2: 124983585212975494444207599696457 Found probable prime factor of 33 digits: 124983585212975494444207599696457 Composite cofactor 20060287461353143260577074732985834740382233133179282303851165223232505606725814342567316225784265951753 has 104 digits Number: 57779_197 N=20060287461353143260577074732985834740382233133179282303851165223232505606725814342567316225784265951753 ( 104 digits) Divisors found: r1=632394553174014976691291963192884507171937573 (pp45) r2=31721157876312680245539261007036254938393070660760364592661 (pp59) Version: Msieve v. 1.41 Total time: 9.76 hours. Scaled time: 8.73 units (timescale=0.895). Factorization parameters were as follows: name: 57779_197 n: 20060287461353143260577074732985834740382233133179282303851165223232505606725814342567316225784265951753 skew: 9162.82 # norm 1.56e+014 c5: 37800 c4: -971408292 c3: 5500669569536 c2: 114106733298595240 c1: -205004754396022467272 c0: -1438295962118762891247067 # alpha -5.92 Y1: 136309959109 Y0: -55587167437977075996 # Murphy_E 2.26e-009 # M 5905042831134496601099371153764024483475550021478620361667233147008724041134572060710188437332295219513 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 299270 x 299518 Polynomial selection time: 0.64 hours. Total sieving time: 8.52 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.33 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 9.76 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / May 9, 2009
5·10168+9 = 5(0)1679<169> = 7 · 23 · 65990746049957014371607<23> · C144
C144 = P66 · P78
P66 = 657641273061186958218573106478356106521035023165800368518412163301<66>
P78 = 715602795845022032566832013234571359667906810279528894626944306683762500542867<78>
Number: n N=470609933665664958580762326468921066700739717896012857757398341392913611302788239153743792964744616831365739935156375436723459571584868354723967 ( 144 digits) SNFS difficulty: 169 digits. Divisors found: Sat May 09 01:47:51 2009 prp66 factor: 657641273061186958218573106478356106521035023165800368518412163301 Sat May 09 01:47:51 2009 prp78 factor: 715602795845022032566832013234571359667906810279528894626944306683762500542867 Sat May 09 01:47:51 2009 elapsed time 01:14:58 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 32.75 hours. Scaled time: 86.75 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_0_167_9 n: 470609933665664958580762326468921066700739717896012857757398341392913611302788239153743792964744616831365739935156375436723459571584868354723967 m: 5000000000000000000000000000000000 deg: 5 c5: 8 c0: 45 skew: 1.41 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2350000, 4171283) Primes: RFBsize:328964, AFBsize:327919, largePrimes:15583929 encountered Relations: rels:14730311, finalFF:685939 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1364602 hash collisions in 15945930 relations Msieve: matrix is 794020 x 794268 (213.9 MB) Total sieving time: 32.26 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,28,28,56,56,2.4,2.4,100000 total time: 32.75 hours. --------- CPU info (if available) ----------
(41·10168-23)/9 = 4(5)1673<169> = 109 · 152429 · 79004407 · 133656977 · C146
C146 = P43 · P50 · P53
P43 = 6007797507796559084764857897605363260004329<43>
P50 = 56423297165889284989630934090458748431402470802993<50>
P53 = 76600313933033143492732603924738124493658370144085431<53>
Number: n N=25965954814608141429080010895967929274799794171251472540569017121325201896645274787113262664165955396361635456063874183933768769701000624020781407 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: Sat May 09 23:13:11 2009 prp43 factor: 6007797507796559084764857897605363260004329 Sat May 09 23:13:12 2009 prp50 factor: 56423297165889284989630934090458748431402470802993 Sat May 09 23:13:12 2009 prp53 factor: 76600313933033143492732603924738124493658370144085431 Sat May 09 23:13:12 2009 elapsed time 01:36:25 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 66.59 hours. Scaled time: 174.53 units (timescale=2.621). Factorization parameters were as follows: name: KA_4_5_167_3 n: 25965954814608141429080010895967929274799794171251472540569017121325201896645274787113262664165955396361635456063874183933768769701000624020781407 m: 5000000000000000000000000000000000 deg: 5 c5: 328 c0: -575 skew: 1.12 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 6359039) Primes: RFBsize:348513, AFBsize:348447, largePrimes:17695033 encountered Relations: rels:17682863, finalFF:683070 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2408078 hash collisions in 19947869 relations Msieve: matrix is 875534 x 875782 (231.8 MB) Total sieving time: 65.68 hours. Total relation processing time: 0.91 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 66.59 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS / May 9, 2009
(55·10147+53)/9 = 6(1)1467<148> = 3 · C148
C148 = P43 · P46 · P60
P43 = 1934253706957006579243393144221742149992149<43>
P46 = 1140583220880797403978091503281085123359628851<46>
P60 = 923333322179040387392850591047434036029068313871256542661761<60>
Number: 61117_147 N=2037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037039 ( 148 digits) SNFS difficulty: 150 digits. Divisors found: r1=1934253706957006579243393144221742149992149 (pp43) r2=1140583220880797403978091503281085123359628851 (pp46) r3=923333322179040387392850591047434036029068313871256542661761 (pp60) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 29.48 hours. Scaled time: 13.94 units (timescale=0.473). Factorization parameters were as follows: name: 61117_147 n: 2037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037039 m: 500000000000000000000000000000 deg: 5 c5: 44 c0: 1325 skew: 1.98 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1800001) Primes: RFBsize:162662, AFBsize:162806, largePrimes:6688861 encountered Relations: rels:6491098, finalFF:368269 Max relations in full relation-set: 28 Initial matrix: 325535 x 368269 with sparse part having weight 35663558. Pruned matrix : 306604 x 308295 with weight 26923864. Total sieving time: 25.88 hours. Total relation processing time: 0.27 hours. Matrix solve time: 3.21 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 29.48 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / May 9, 2009
(47·10169+7)/9 = 5(2)1683<170> = 3910201 · C164
C164 = P39 · P125
P39 = 794713181149411111682301022055428586693<39>
P125 = 16805283750075034191479848530740623199369945040294683927031175977873033235337781607162824731136170054236085541647539786898011<125>
Number: 52223_169 N=13355380509140635538229932993782729384556502906684905001615574806057852837289495405024504423742468027148021859291177671485998346944881406920570636195485148262767623 ( 164 digits) SNFS difficulty: 171 digits. Divisors found: r1=794713181149411111682301022055428586693 (pp39) r2=16805283750075034191479848530740623199369945040294683927031175977873033235337781607162824731136170054236085541647539786898011 (pp125) Version: Msieve-1.40 Total time: 77.13 hours. Scaled time: 134.12 units (timescale=1.739). Factorization parameters were as follows: n: 13355380509140635538229932993782729384556502906684905001615574806057852837289495405024504423742468027148021859291177671485998346944881406920570636195485148262767623 m: 10000000000000000000000000000000000 deg: 5 c5: 47 c0: 70 skew: 1.08 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 6750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1039031 x 1039279 Total sieving time: 75.17 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.40 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 77.13 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / May 9, 2009
(55·10149+53)/9 = 6(1)1487<150> = 133 · C147
C147 = P34 · P113
P34 = 9098865678589426948210548308231663<34>
P113 = 30570523042816547814440813700618361961725138008742239062105098207703222902446606516081094383000429754808066107447<113>
Number: 61117_149 N=278157082890810701461589035553532594952713295908562180751529863955899458858038739695544429272239923127497091994133414251757447023719213068325494361 ( 147 digits) SNFS difficulty: 151 digits. Divisors found: r1=9098865678589426948210548308231663 (pp34) r2=30570523042816547814440813700618361961725138008742239062105098207703222902446606516081094383000429754808066107447 (pp113) Version: Msieve v. 1.41 Total time: 28.51 hours. Scaled time: 22.52 units (timescale=0.790). Factorization parameters were as follows: n: 278157082890810701461589035553532594952713295908562180751529863955899458858038739695544429272239923127497091994133414251757447023719213068325494361 m: 1000000000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 349166 x 349414 Total sieving time: 27.59 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.63 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 28.51 hours. --------- CPU info (if available) ----------
(17·10195+7)/3 = 5(6)1949<196> = 29 · 43 · 617 · 2801 · 7549 · 1762637 · 39762250686874433<17> · 700499502160290798232849<24> · 335892581501510072078226020862078769<36> · C101
C101 = P49 · P53
P49 = 1817044992552857656312895051970666530297885113571<49>
P53 = 11624271617724242080352063449012326368972889922281089<53>
Number: 56669_195 N=21121824535060140072018908089763071056280643107380669147641248739488560912123500709369953560150558819 ( 101 digits) Divisors found: r1=1817044992552857656312895051970666530297885113571 (pp49) r2=11624271617724242080352063449012326368972889922281089 (pp53) Version: Msieve v. 1.41 Total time: 6.71 hours. Scaled time: 5.91 units (timescale=0.881). Factorization parameters were as follows: name: 56669_195 n: 21121824535060140072018908089763071056280643107380669147641248739488560912123500709369953560150558819 skew: 2574.59 # norm 1.43e+014 c5: 239400 c4: 1890051466 c3: -14769154005126 c2: -13446007784640866 c1: -22632029745018180231 c0: 93555121878115727758 # alpha -6.36 Y1: 56816630959 Y0: -9752533754254193499 # Murphy_E 3.38e-009 # M 7779123482036425925845383173131339324755063127238206233705787903788991635177672816341387515450557856 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 193882 x 194130 Polynomial selection time: 0.43 hours. Total sieving time: 5.98 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 6.71 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 9, 2009
2·10168-1 = 1(9)168<169> = 23 · 1777 · 18839 · 135391 · 364756495659471337<18> · C137
C137 = P51 · P86
P51 = 636103204077055081116683110150349594823972754883063<51>
P86 = 82686854649109369630282597434781951218127495551479593262504037019953021599941887782351<86>
Number: 19999_168 N=52597373177352208060513564077435320881813363520162130791000724022083971317654521522294775353936789042386457644556411844586189315400221113 ( 137 digits) SNFS difficulty: 170 digits. Divisors found: r1=636103204077055081116683110150349594823972754883063 r2=82686854649109369630282597434781951218127495551479593262504037019953021599941887782351 Version: Total time: 24.35 hours. Scaled time: 58.04 units (timescale=2.384). Factorization parameters were as follows: n: 52597373177352208060513564077435320881813363520162130791000724022083971317654521522294775353936789042386457644556411844586189315400221113 m: 10000000000000000000000000000000000 deg: 5 c5: 1 c0: -50 skew: 2.19 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2400000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10775156 Max relations in full relation-set: Initial matrix: Pruned matrix : 762793 x 763040 Total sieving time: 21.95 hours. Total relation processing time: 1.02 hours. Matrix solve time: 1.30 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000 total time: 24.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Wataru Sakai / Msieve / May 8, 2009
4·10203+1 = 4(0)2021<204> = 7 · 641 · C200
C200 = P73 · P128
P73 = 3996493212534098134156111341457064136963014957402517508990780184800320983<73>
P128 = 22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681<128>
Number: 40001_203 N=89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423 ( 200 digits) SNFS difficulty: 205 digits. Divisors found: r1=3996493212534098134156111341457064136963014957402517508990780184800320983 r2=22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681 Version: Total time: 858.79 hours. Scaled time: 1670.35 units (timescale=1.945). Factorization parameters were as follows: n: 89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423 m: 100000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 25 skew: 1.90 type: snfs lss: 1 rlim: 18300000 alim: 18300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 18300000/18300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9150000, 17650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2921104 x 2921352 Total sieving time: 858.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18300000,18300000,29,29,56,56,2.6,2.6,100000 total time: 858.79 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / May 8, 2009
(47·10170+61)/9 = 5(2)1699<171> = 18902371219<11> · C161
C161 = P35 · P127
P35 = 10510633214327225798229348673064411<35>
P127 = 2628513304830956602240823352104911960288107310430910800133860524644986354367963340687139457780089343410802616392394992059130581<127>
Number: 52229_170 N=27627339246057276483234757819207456028441582910075966920529994180420725881958578321909646664114761200120848299705705944861235677662427047598986328119589672852791 ( 161 digits) SNFS difficulty: 171 digits. Divisors found: r1=10510633214327225798229348673064411 (pp35) r2=2628513304830956602240823352104911960288107310430910800133860524644986354367963340687139457780089343410802616392394992059130581 (pp127) Version: Msieve-1.40 Total time: 61.03 hours. Scaled time: 106.12 units (timescale=1.739). Factorization parameters were as follows: n: 27627339246057276483234757819207456028441582910075966920529994180420725881958578321909646664114761200120848299705705944861235677662427047598986328119589672852791 m: 10000000000000000000000000000000000 deg: 5 c5: 47 c0: 61 skew: 1.05 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 966761 x 967009 Total sieving time: 59.53 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.21 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 61.03 hours. --------- CPU info (if available) ----------
(55·10165+53)/9 = 6(1)1647<166> = 3 · 47 · C164
C164 = P30 · P57 · P78
P30 = 434392873792766435314567746253<30>
P57 = 601015833271961930438381726821925015839283136961619049463<57>
P78 = 166009316724078941748218206828287356577245780644970974597600113903444595211683<78>
Number: 61117_165 N=43341213553979511426319936958234830575256107171000788022064617809298660362490149724192277383766745468873128447596532702915681639085894405043341213553979511426319937 ( 164 digits) SNFS difficulty: 166 digits. Divisors found: r1=434392873792766435314567746253 (pp30) r2=601015833271961930438381726821925015839283136961619049463 (pp57) r3=166009316724078941748218206828287356577245780644970974597600113903444595211683 (pp78) Version: Msieve-1.40 Total time: 45.17 hours. Scaled time: 78.55 units (timescale=1.739). Factorization parameters were as follows: n: 43341213553979511426319936958234830575256107171000788022064617809298660362490149724192277383766745468873128447596532702915681639085894405043341213553979511426319937 m: 1000000000000000000000000000000000 deg: 5 c5: 55 c0: 53 skew: 0.99 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 798827 x 799075 Total sieving time: 43.98 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.81 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 45.17 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3 / May 8, 2009
(55·10201+53)/9 = 6(1)2007<202> = 3 · 29 · 183770345533477853<18> · 9930904669574722752815513<25> · C158
C158 = P34 · C125
P34 = 3182926213879566929452257852809267<34>
C125 = [12092333369161073721453095497369483934473764519498218736238482790936465340160389049119166372609930051353777385455408331203957<125>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4133403303 Step 1 took 68140ms Step 2 took 22047ms ********** Factor found in step 2: 3182926213879566929452257852809267 Found probable prime factor of 34 digits: 3182926213879566929452257852809267 Composite cofactor 12092333369161073721453095497369483934473764519498218736238482790936465340160389049119166372609930051353777385455408331203957 has 125 digits
(8·10180-17)/9 = (8)1797<180> = 3658268353<10> · C171
C171 = P29 · C142
P29 = 61758845631466767465271797833<29>
C142 = [3934347785535229374215233762925850576083625703317757636353808208491422978557394268988530803249245868900196615196404588103179803195501264851263<142>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1165875092 Step 1 took 45750ms Step 2 took 13265ms ********** Factor found in step 2: 61758845631466767465271797833 Found probable prime factor of 29 digits: 61758845631466767465271797833 Composite cofactor 3934347785535229374215233762925850576083625703317757636353808208491422978557394268988530803249245868900196615196404588103179803195501264851263 has 142 digits
(55·10200+53)/9 = 6(1)1997<201> = 9884441051<10> · C191
C191 = P35 · P157
P35 = 23074832604403156003968083678423161<35>
P157 = 2679350349088988305490403091431348358892120669855456232877078195575641044743881337125955286009460700529432362124348914568981407995940754578885914624269755247<157>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2828504491 Step 1 took 89687ms Step 2 took 26641ms ********** Factor found in step 2: 23074832604403156003968083678423161 Found probable prime factor of 35 digits: 23074832604403156003968083678423161 Probable prime cofactor 2679350349088988305490403091431348358892120669855456232877078195575641044743881337125955286009460700529432362124348914568981407995940754578885914624269755247 has 157 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 8, 2009
(55·10172+17)/9 = 6(1)1713<173> = 32 · 13 · C171
C171 = P45 · P127
P45 = 493749677347938526775502150247920833506391063<45>
P127 = 1057858289223318308788894162344464041259794820007724457791366870178514553961234787544201200451027293578968082744471755879288003<127>
Number: n N=522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317189 ( 171 digits) SNFS difficulty: 175 digits. Divisors found: Fri May 08 02:39:21 2009 prp45 factor: 493749677347938526775502150247920833506391063 Fri May 08 02:39:21 2009 prp127 factor: 1057858289223318308788894162344464041259794820007724457791366870178514553961234787544201200451027293578968082744471755879288003 Fri May 08 02:39:21 2009 elapsed time 02:22:25 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 91.95 hours. Scaled time: 238.60 units (timescale=2.595). Factorization parameters were as follows: name: KA_6_1_171_3 n: 522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317188983855650522317189 m: 50000000000000000000000000000000000 deg: 5 c5: 44 c0: 425 skew: 1.57 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2900000, 7700001) Primes: RFBsize:399993, AFBsize:400815, largePrimes:21169931 encountered Relations: rels:21218933, finalFF:661920 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2987853 hash collisions in 24011991 relations Msieve: matrix is 1038429 x 1038677 (273.8 MB) Total sieving time: 90.52 hours. Total relation processing time: 1.43 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,56,56,2.5,2.5,100000 total time: 91.95 hours. --------- CPU info (if available) ----------
(55·10157+53)/9 = 6(1)1567<158> = 127 · 523 · 2203 · C150
C150 = P32 · P119
P32 = 13817558341465076358377329712261<32>
P119 = 30225184887059178490293947945272519104526393199396084242282172451085350402214128357155116143842990858452098996661902719<119>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 417638255558508713627723912352227521132881097469078988057677364814564851991010690402606900421091516458151313767659912418053384947164739954461043537659 (150 digits) Using B1=918000, B2=871204962, polynomial Dickson(3), sigma=3934766055 Step 1 took 14071ms Step 2 took 4945ms ********** Factor found in step 2: 13817558341465076358377329712261 Found probable prime factor of 32 digits: 13817558341465076358377329712261 Probable prime cofactor 30225184887059178490293947945272519104526393199396084242282172451085350402214128357155116143842990858452098996661902719 has 119 digits
By Erik Branger / GMP-ECM / May 8, 2009
(17·10195+7)/3 = 5(6)1949<196> = 29 · 43 · 617 · 2801 · 7549 · 1762637 · 39762250686874433<17> · 700499502160290798232849<24> · C136
C136 = P36 · C101
P36 = 335892581501510072078226020862078769<36>
C101 = [21121824535060140072018908089763071056280643107380669147641248739488560912123500709369953560150558819<101>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 7094664169103283184013610577645367109734157140915973908954192728000319531155523620156101021461377924560117765256610115908031581345613811 (136 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2576663519 Step 1 took 42728ms Step 2 took 33806ms ********** Factor found in step 2: 335892581501510072078226020862078769 Found probable prime factor of 36 digits: 335892581501510072078226020862078769 Composite cofactor 21121824535060140072018908089763071056280643107380669147641248739488560912123500709369953560150558819 has 101 digits
By Sinkiti Sibata / GGNFS, Msieve / May 8, 2009
(55·10139+53)/9 = 6(1)1387<140> = C140
C140 = P68 · P73
P68 = 55222676755743811812143735433434316389037947984568052041039337458107<68>
P73 = 1106630730368477338439401197886469885070910057830214075394122282080081431<73>
Number: 61117_139 N=61111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 140 digits) SNFS difficulty: 141 digits. Divisors found: r1=55222676755743811812143735433434316389037947984568052041039337458107 (pp68) r2=1106630730368477338439401197886469885070910057830214075394122282080081431 (pp73) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 11.75 hours. Scaled time: 5.56 units (timescale=0.473). Factorization parameters were as follows: name: 61117_139 n: 61111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 10000000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1685001) Primes: RFBsize:119057, AFBsize:119101, largePrimes:3673934 encountered Relations: rels:3742209, finalFF:354161 Max relations in full relation-set: 28 Initial matrix: 238223 x 354161 with sparse part having weight 31935230. Pruned matrix : 203926 x 205181 with weight 15076212. Total sieving time: 10.62 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.90 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 11.75 hours. --------- CPU info (if available) ----------
(55·10138+53)/9 = 6(1)1377<139> = 3 · 3163 · 206807 · 2533301 · 54546379 · 600759729280698289<18> · C98
C98 = P42 · P56
P42 = 626966962998021396827054558842257997237883<42>
P56 = 59832384146594063198278007871246052814557417692463599223<56>
Thu May 07 23:48:15 2009 Msieve v. 1.41 Thu May 07 23:48:15 2009 random seeds: 3841bec4 032f2dc8 Thu May 07 23:48:15 2009 factoring 37512928177321042052137087899746731284548448675174485642387833241165805143299523703911054704964909 (98 digits) Thu May 07 23:48:17 2009 searching for 15-digit factors Thu May 07 23:48:18 2009 commencing quadratic sieve (98-digit input) Thu May 07 23:48:18 2009 using multiplier of 29 Thu May 07 23:48:18 2009 using 32kb Intel Core sieve core Thu May 07 23:48:18 2009 sieve interval: 36 blocks of size 32768 Thu May 07 23:48:18 2009 processing polynomials in batches of 6 Thu May 07 23:48:18 2009 using a sieve bound of 2503477 (91765 primes) Thu May 07 23:48:18 2009 using large prime bound of 375521550 (28 bits) Thu May 07 23:48:18 2009 using double large prime bound of 2718583754966400 (43-52 bits) Thu May 07 23:48:18 2009 using trial factoring cutoff of 52 bits Thu May 07 23:48:18 2009 polynomial 'A' values have 13 factors Fri May 08 07:31:56 2009 92187 relations (22218 full + 69969 combined from 1379844 partial), need 91861 Fri May 08 07:31:58 2009 begin with 1402062 relations Fri May 08 07:31:59 2009 reduce to 241624 relations in 10 passes Fri May 08 07:31:59 2009 attempting to read 241624 relations Fri May 08 07:32:03 2009 recovered 241624 relations Fri May 08 07:32:03 2009 recovered 230814 polynomials Fri May 08 07:32:04 2009 attempting to build 92187 cycles Fri May 08 07:32:04 2009 found 92187 cycles in 5 passes Fri May 08 07:32:04 2009 distribution of cycle lengths: Fri May 08 07:32:04 2009 length 1 : 22218 Fri May 08 07:32:04 2009 length 2 : 16175 Fri May 08 07:32:04 2009 length 3 : 15495 Fri May 08 07:32:04 2009 length 4 : 12495 Fri May 08 07:32:04 2009 length 5 : 9228 Fri May 08 07:32:04 2009 length 6 : 6453 Fri May 08 07:32:04 2009 length 7 : 4259 Fri May 08 07:32:04 2009 length 9+: 5864 Fri May 08 07:32:04 2009 largest cycle: 21 relations Fri May 08 07:32:04 2009 matrix is 91765 x 92187 (25.0 MB) with weight 6174509 (66.98/col) Fri May 08 07:32:04 2009 sparse part has weight 6174509 (66.98/col) Fri May 08 07:32:06 2009 filtering completed in 3 passes Fri May 08 07:32:06 2009 matrix is 87829 x 87893 (23.9 MB) with weight 5903463 (67.17/col) Fri May 08 07:32:06 2009 sparse part has weight 5903463 (67.17/col) Fri May 08 07:32:06 2009 saving the first 48 matrix rows for later Fri May 08 07:32:06 2009 matrix is 87781 x 87893 (14.6 MB) with weight 4663415 (53.06/col) Fri May 08 07:32:06 2009 sparse part has weight 3295555 (37.50/col) Fri May 08 07:32:06 2009 matrix includes 64 packed rows Fri May 08 07:32:06 2009 using block size 35157 for processor cache size 1024 kB Fri May 08 07:32:07 2009 commencing Lanczos iteration Fri May 08 07:32:07 2009 memory use: 14.3 MB Fri May 08 07:33:25 2009 lanczos halted after 1390 iterations (dim = 87779) Fri May 08 07:33:26 2009 recovered 16 nontrivial dependencies Fri May 08 07:33:26 2009 prp42 factor: 626966962998021396827054558842257997237883 Fri May 08 07:33:26 2009 prp56 factor: 59832384146594063198278007871246052814557417692463599223 Fri May 08 07:33:26 2009 elapsed time 07:45:11
(55·10116+53)/9 = 6(1)1157<117> = 19 · 197 · 1669 · 41309713547<11> · C100
C100 = P35 · P66
P35 = 17998416975481605047372358908971633<35>
P66 = 131570196632693976742949748125889936861091146498905961587342674901<66>
Number: 61117_116 N=2368055260541331981772641117518230248090145004742647628081803500179870429023326186569929893350083333 ( 100 digits) SNFS difficulty: 117 digits. Divisors found: r1=17998416975481605047372358908971633 (pp35) r2=131570196632693976742949748125889936861091146498905961587342674901 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.07 hours. Scaled time: 0.98 units (timescale=0.473). Factorization parameters were as follows: name: 61117_116 n: 2368055260541331981772641117518230248090145004742647628081803500179870429023326186569929893350083333 m: 100000000000000000000000 deg: 5 c5: 550 c0: 53 skew: 0.63 type: snfs lss: 1 rlim: 640000 alim: 640000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 640000/640000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [320000, 520001) Primes: RFBsize:52074, AFBsize:52142, largePrimes:1221081 encountered Relations: rels:1173572, finalFF:126322 Max relations in full relation-set: 28 Initial matrix: 104283 x 126322 with sparse part having weight 5808007. Pruned matrix : 93513 x 94098 with weight 3332777. Total sieving time: 1.93 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,50000 total time: 2.07 hours. --------- CPU info (if available) ----------
(55·10159+53)/9 = 6(1)1587<160> = 32 · 3257 · 1594625783<10> · 7249010305101463<16> · 202207490515382002924235133783767<33> · C98
C98 = P45 · P54
P45 = 177339214346923928023382818463973318947220121<45>
P54 = 502944882564508401354967688113709310226342169790528803<54>
Fri May 08 08:00:46 2009 Msieve v. 1.41 Fri May 08 08:00:46 2009 random seeds: c6c87428 b8cc5b0b Fri May 08 08:00:46 2009 factoring 89191850333795838431224741678938543992837614421268237563958056735200519236760235158865591431645163 (98 digits) Fri May 08 08:00:48 2009 searching for 15-digit factors Fri May 08 08:00:49 2009 commencing quadratic sieve (98-digit input) Fri May 08 08:00:50 2009 using multiplier of 2 Fri May 08 08:00:50 2009 using 32kb Intel Core sieve core Fri May 08 08:00:50 2009 sieve interval: 36 blocks of size 32768 Fri May 08 08:00:50 2009 processing polynomials in batches of 6 Fri May 08 08:00:50 2009 using a sieve bound of 2534047 (92941 primes) Fri May 08 08:00:50 2009 using large prime bound of 380107050 (28 bits) Fri May 08 08:00:50 2009 using double large prime bound of 2778629288667150 (43-52 bits) Fri May 08 08:00:50 2009 using trial factoring cutoff of 52 bits Fri May 08 08:00:50 2009 polynomial 'A' values have 13 factors Fri May 08 15:14:00 2009 93166 relations (22156 full + 71010 combined from 1397542 partial), need 93037 Fri May 08 15:14:01 2009 begin with 1419698 relations Fri May 08 15:14:03 2009 reduce to 244999 relations in 12 passes Fri May 08 15:14:03 2009 attempting to read 244999 relations Fri May 08 15:14:07 2009 recovered 244999 relations Fri May 08 15:14:07 2009 recovered 233319 polynomials Fri May 08 15:14:07 2009 attempting to build 93166 cycles Fri May 08 15:14:07 2009 found 93166 cycles in 5 passes Fri May 08 15:14:07 2009 distribution of cycle lengths: Fri May 08 15:14:07 2009 length 1 : 22156 Fri May 08 15:14:07 2009 length 2 : 15953 Fri May 08 15:14:07 2009 length 3 : 15490 Fri May 08 15:14:07 2009 length 4 : 12846 Fri May 08 15:14:07 2009 length 5 : 9851 Fri May 08 15:14:07 2009 length 6 : 6586 Fri May 08 15:14:07 2009 length 7 : 4342 Fri May 08 15:14:07 2009 length 9+: 5942 Fri May 08 15:14:07 2009 largest cycle: 21 relations Fri May 08 15:14:08 2009 matrix is 92941 x 93166 (25.1 MB) with weight 6214628 (66.70/col) Fri May 08 15:14:08 2009 sparse part has weight 6214628 (66.70/col) Fri May 08 15:14:10 2009 filtering completed in 3 passes Fri May 08 15:14:10 2009 matrix is 89101 x 89165 (24.2 MB) with weight 5980570 (67.07/col) Fri May 08 15:14:10 2009 sparse part has weight 5980570 (67.07/col) Fri May 08 15:14:10 2009 saving the first 48 matrix rows for later Fri May 08 15:14:10 2009 matrix is 89053 x 89165 (14.4 MB) with weight 4603797 (51.63/col) Fri May 08 15:14:10 2009 sparse part has weight 3252535 (36.48/col) Fri May 08 15:14:10 2009 matrix includes 64 packed rows Fri May 08 15:14:10 2009 using block size 35666 for processor cache size 1024 kB Fri May 08 15:14:10 2009 commencing Lanczos iteration Fri May 08 15:14:10 2009 memory use: 14.3 MB Fri May 08 15:15:05 2009 lanczos halted after 1410 iterations (dim = 89052) Fri May 08 15:15:06 2009 recovered 17 nontrivial dependencies Fri May 08 15:15:06 2009 prp45 factor: 177339214346923928023382818463973318947220121 Fri May 08 15:15:06 2009 prp54 factor: 502944882564508401354967688113709310226342169790528803 Fri May 08 15:15:06 2009 elapsed time 07:14:20
By Jo Yeong Uk / GGNFS, Msieve v1.39 / May 8, 2009
(8·10199+1)/9 = (8)1989<199> = 33 · 141442169327<12> · C187
C187 = P45 · P70 · P73
P45 = 278473795189238042105936853934504027567029947<45>
P70 = 1121240111371370740629796346623166506341482028979326158193334831378901<70>
P73 = 7454557093327744248147966603565393081246214460774357627670416990333845203<73>
Number: 88889_199 N=2327581007576077147015288016795181679544665102324936432988127419120440012555007949741851791245503580514745708551006880414182023517427243632126415766287037827987344845272029386659222209141 ( 187 digits) SNFS difficulty: 200 digits. Divisors found: r1=278473795189238042105936853934504027567029947 r2=1121240111371370740629796346623166506341482028979326158193334831378901 r3=7454557093327744248147966603565393081246214460774357627670416990333845203 Version: Total time: 290.34 hours. Scaled time: 691.87 units (timescale=2.383). Factorization parameters were as follows: n: 2327581007576077147015288016795181679544665102324936432988127419120440012555007949741851791245503580514745708551006880414182023517427243632126415766287037827987344845272029386659222209141 m: 10000000000000000000000000000000000000000 deg: 5 c5: 4 c0: 5 skew: 1.05 type: snfs lss: 1 rlim: 17000000 alim: 17000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17000000/17000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [8500000, 14600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 36830304 Max relations in full relation-set: Initial matrix: Pruned matrix : 3039811 x 3040058 Total sieving time: 247.85 hours. Total relation processing time: 11.88 hours. Matrix solve time: 25.60 hours. Time per square root: 5.01 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,17000000,17000000,29,29,56,56,2.6,2.6,100000 total time: 290.34 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672305) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
By Sinkiti Sibata / Msieve / May 7, 2009
(55·10120+53)/9 = 6(1)1197<121> = 3 · 107 · 443 · 590634444379578817<18> · C98
C98 = P30 · P69
P30 = 680042510639859177559807028099<30>
P69 = 106993301551788122124887302268157248361593191920096227220300069639133<69>
Thu May 07 15:09:38 2009 Msieve v. 1.41 Thu May 07 15:09:38 2009 random seeds: 88acf240 678bbede Thu May 07 15:09:38 2009 factoring 72759993408925535493330467370978862283625781683526187157727925722177408230466738121226784120998167 (98 digits) Thu May 07 15:09:39 2009 searching for 15-digit factors Thu May 07 15:09:41 2009 commencing quadratic sieve (98-digit input) Thu May 07 15:09:41 2009 using multiplier of 3 Thu May 07 15:09:41 2009 using 32kb Intel Core sieve core Thu May 07 15:09:41 2009 sieve interval: 36 blocks of size 32768 Thu May 07 15:09:41 2009 processing polynomials in batches of 6 Thu May 07 15:09:41 2009 using a sieve bound of 2537681 (92941 primes) Thu May 07 15:09:41 2009 using large prime bound of 380652150 (28 bits) Thu May 07 15:09:41 2009 using double large prime bound of 2785806185644350 (43-52 bits) Thu May 07 15:09:41 2009 using trial factoring cutoff of 52 bits Thu May 07 15:09:41 2009 polynomial 'A' values have 13 factors Thu May 07 23:39:27 2009 93118 relations (21874 full + 71244 combined from 1408120 partial), need 93037 Thu May 07 23:39:29 2009 begin with 1429994 relations Thu May 07 23:39:31 2009 reduce to 246943 relations in 12 passes Thu May 07 23:39:31 2009 attempting to read 246943 relations Thu May 07 23:39:35 2009 recovered 246943 relations Thu May 07 23:39:35 2009 recovered 236821 polynomials Thu May 07 23:39:35 2009 attempting to build 93118 cycles Thu May 07 23:39:35 2009 found 93118 cycles in 6 passes Thu May 07 23:39:35 2009 distribution of cycle lengths: Thu May 07 23:39:35 2009 length 1 : 21874 Thu May 07 23:39:35 2009 length 2 : 15710 Thu May 07 23:39:35 2009 length 3 : 15751 Thu May 07 23:39:35 2009 length 4 : 12687 Thu May 07 23:39:35 2009 length 5 : 9741 Thu May 07 23:39:35 2009 length 6 : 6695 Thu May 07 23:39:35 2009 length 7 : 4566 Thu May 07 23:39:35 2009 length 9+: 6094 Thu May 07 23:39:35 2009 largest cycle: 20 relations Thu May 07 23:39:36 2009 matrix is 92941 x 93118 (25.5 MB) with weight 6322870 (67.90/col) Thu May 07 23:39:36 2009 sparse part has weight 6322870 (67.90/col) Thu May 07 23:39:37 2009 filtering completed in 3 passes Thu May 07 23:39:37 2009 matrix is 89226 x 89290 (24.6 MB) with weight 6097753 (68.29/col) Thu May 07 23:39:37 2009 sparse part has weight 6097753 (68.29/col) Thu May 07 23:39:37 2009 saving the first 48 matrix rows for later Thu May 07 23:39:37 2009 matrix is 89178 x 89290 (15.2 MB) with weight 4825176 (54.04/col) Thu May 07 23:39:37 2009 sparse part has weight 3447920 (38.61/col) Thu May 07 23:39:37 2009 matrix includes 64 packed rows Thu May 07 23:39:38 2009 using block size 35716 for processor cache size 1024 kB Thu May 07 23:39:38 2009 commencing Lanczos iteration Thu May 07 23:39:38 2009 memory use: 14.8 MB Thu May 07 23:40:33 2009 lanczos halted after 1411 iterations (dim = 89178) Thu May 07 23:40:33 2009 recovered 18 nontrivial dependencies Thu May 07 23:40:34 2009 prp30 factor: 680042510639859177559807028099 Thu May 07 23:40:34 2009 prp69 factor: 106993301551788122124887302268157248361593191920096227220300069639133 Thu May 07 23:40:34 2009 elapsed time 08:30:56
By Andreas Tete / GMP-ECM 6.2.3 / May 7, 2009
(55·10156+53)/9 = 6(1)1557<157> = 3 · 25903 · 76037963429<11> · 13692005771750295853<20> · C122
C122 = P37 · P86
P37 = 4836686945562780478646372773363953343<37>
P86 = 15617205724583581065383112857335668159768622684480608510969886639257988319179734009343<86>
Using B1=3000000, B2=5706890290 , polynomial Dickson(6) , sigma=4078726757 ********** Factor found in step 2: 4836686945562780478646372773363953343 Found probable prime factor of 37 digits: 4836686945562780478646372773363953343 Probable prime cofactor 15617205724583581065383112857335668159768622684480608510969886639257988319179734009343 has 86 digits
By Erik Branger / GGNFS, Msieve / May 7, 2009
(55·10134+53)/9 = 6(1)1337<135> = 19 · 229 · 1201 · 36263 · 31930240690605613<17> · C108
C108 = P45 · P63
P45 = 945452696870843572549900286629024050147201761<45>
P63 = 106827327092084961430164948683844062392323374336348354303704313<63>
Number: 61117_134 N=101000184498715458216033484984919119474059656317034752219990764224088721060222146196857219028684853696895193 ( 108 digits) SNFS difficulty: 136 digits. Divisors found: r1=945452696870843572549900286629024050147201761 (pp45) r2=106827327092084961430164948683844062392323374336348354303704313 (pp63) Version: Msieve v. 1.41 Total time: 4.41 hours. Scaled time: 4.17 units (timescale=0.946). Factorization parameters were as follows: n: 101000184498715458216033484984919119474059656317034752219990764224088721060222146196857219028684853696895193 m: 1000000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1175001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 192081 x 192316 Total sieving time: 4.22 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 4.41 hours. --------- CPU info (if available) ----------
(55·10123+53)/9 = 6(1)1227<124> = 33 · 5879 · C119
C119 = P40 · P80
P40 = 1835681480017495887981204792297553833979<40>
P80 = 20972762040377847630780707795788880682323092070234749979411237951180413489474931<80>
Number: 61117_123 N=38499310862335564193400938123207594584056945380677685869422937329421803349720040011283798020015441723593147682656480449 ( 119 digits) SNFS difficulty: 125 digits. Divisors found: r1=1835681480017495887981204792297553833979 (pp40) r2=20972762040377847630780707795788880682323092070234749979411237951180413489474931 (pp80) Version: Msieve v. 1.41 Total time: 6.79 hours. Scaled time: 5.28 units (timescale=0.777). Factorization parameters were as follows: n: 38499310862335564193400938123207594584056945380677685869422937329421803349720040011283798020015441723593147682656480449 m: 5000000000000000000000000 deg: 5 c5: 88 c0: 265 skew: 1.25 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [430000, 780001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 119980 x 120217 Total sieving time: 6.64 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125.000,5,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,50000 total time: 6.79 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3
(8·10173-17)/9 = (8)1727<173> = 3 · 19 · 238591 · 266183 · 6010441682603<13> · C148
C148 = P33 · C115
P33 = 812262305277809501754934760781703<33>
C115 = [5029624489648056247300436114909387948363823244892596172024214674079949553164223403365426542863909717715506862448483<115>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3181479570 Step 1 took 61625ms Step 2 took 19516ms ********** Factor found in step 2: 812262305277809501754934760781703 Found probable prime factor of 33 digits: 812262305277809501754934760781703 Composite cofactor 5029624489648056247300436114909387948363823244892596172024214674079949553164223403365426542863909717715506862448483 has 115 digits
By Ignacio Santos / GGNFS, Msieve / May 7, 2009
2·10191+3 = 2(0)1903<192> = 2221 · 283112539 · 5806007837521<13> · 2980061483271130133454822323000539259581<40> · C128
C128 = P63 · P66
P63 = 182806214988875869300773608643861228898368769920609146878022777<63>
P66 = 100560756952935629434227230943212354457451323996998349267619421881<66>
Number: 20003_191 N=18383131354982444551956076518958438866176346336034655261991448351404481492241607264551622466419738184569706208252244605090183537 ( 128 digits) Divisors found: r1=182806214988875869300773608643861228898368769920609146878022777 (pp63) r2=100560756952935629434227230943212354457451323996998349267619421881 (pp66) Version: Msieve-1.40 Total time: 93.02 hours. Scaled time: 161.39 units (timescale=1.735). Factorization parameters were as follows: # Murphy_E = 1.111965e-10, selected by Jeff Gilchrist n: 18383131354982444551956076518958438866176346336034655261991448351404481492241607264551622466419738184569706208252244605090183537 Y0: -3310983359586160356951906 Y1: 106136767483589 c0: 1100376690755724515179049294969755 c1: 9384585766997979918145923803 c2: 12785932205895746598243 c3: -47932562596126499 c4: -24806057326 c5: 46200 skew: 654762.88 type: gnfs # selected mechanically rlim: 8300000 alim: 8300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8300000/8300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [4150000, 8350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1229067 x 1229315 Total sieving time: 89.81 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.09 hours. Time per square root: 0.83 hours. Prototype def-par.txt line would be: gnfs,127,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8300000,8300000,28,28,53,53,2.5,2.5,100000 total time: 93.02 hours. --------- CPU info (if available) ----------
(55·10110+53)/9 = 6(1)1097<111> = 17 · 953 · 25471 · C103
C103 = P35 · P68
P35 = 56266204953522059398999379228885593<35>
P68 = 26319930513343521868798396749101678517827230791954269804012507624339<68>
Number: 61117_110 N=1480922604626245669870149709177536326917729699905447588314159170033824910432676717318422872494853248027 ( 103 digits) SNFS difficulty: 111 digits. Divisors found: r1=56266204953522059398999379228885593 (pp35) r2=26319930513343521868798396749101678517827230791954269804012507624339 (pp68) Version: Msieve-1.40 Total time: 0.78 hours. Scaled time: 0.94 units (timescale=1.198). Factorization parameters were as follows: n: 1480922604626245669870149709177536326917729699905447588314159170033824910432676717318422872494853248027 m: 10000000000000000000000 deg: 5 c5: 55 c0: 53 skew: 0.99 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 55362 x 55588 Total sieving time: 0.76 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.78 hours. --------- CPU info (if available) ----------
(55·10113+53)/9 = 6(1)1127<114> = 13 · 4255561 · C107
C107 = P52 · P55
P52 = 3415409239210053907032628591575013137983727665864557<52>
P55 = 3234277344906079783535156666366066863128489133806494717<55>
Number: 61117_113 N=11046380725959987072681732680731637625922539239490870544919588042222167311667849904759210018845587458045369 ( 107 digits) SNFS difficulty: 115 digits. Divisors found: r1=3415409239210053907032628591575013137983727665864557 (pp52) r2=3234277344906079783535156666366066863128489133806494717 (pp55) Version: Msieve-1.40 Total time: 0.99 hours. Scaled time: 1.18 units (timescale=1.198). Factorization parameters were as follows: n: 11046380725959987072681732680731637625922539239490870544919588042222167311667849904759210018845587458045369 m: 50000000000000000000000 deg: 5 c5: 88 c0: 265 skew: 1.25 type: snfs lss: 1 rlim: 590000 alim: 590000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 590000/590000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [295000, 495001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 69333 x 69581 Total sieving time: 0.96 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,590000,590000,25,25,45,45,2.2,2.2,50000 total time: 0.99 hours. --------- CPU info (if available) ----------
(55·10119+53)/9 = 6(1)1187<120> = 13 · 47 · 199 · 182050237 · C107
C107 = P53 · P55
P53 = 22563214542059659537989039551101003220252654467441801<53>
P55 = 1223583668904998755960382454300969162560941781733059269<55>
Number: 61117_119 N=27607980831663979583355016734159768783013700914780195183979590633553478110498617963490229246000051941103469 ( 107 digits) SNFS difficulty: 121 digits. Divisors found: r1=22563214542059659537989039551101003220252654467441801 (pp53) r2=1223583668904998755960382454300969162560941781733059269 (pp55) Version: Msieve-1.40 Total time: 1.33 hours. Scaled time: 1.60 units (timescale=1.203). Factorization parameters were as follows: n: 27607980831663979583355016734159768783013700914780195183979590633553478110498617963490229246000051941103469 m: 1000000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 615001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73911 x 74139 Total sieving time: 1.29 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.33 hours. --------- CPU info (if available) ----------
(55·10128+53)/9 = 6(1)1277<129> = 773231 · 179130185803892047<18> · C106
C106 = P29 · P78
P29 = 28387544830117222306493512799<29>
P78 = 155422651376388126156321417359485103331166545348719964250814055488446526704019<78>
Number: 61117_128 N=4412067483562898136417947180989349016200511211292870274945580118260308530454298344442350244203342661239181 ( 106 digits) SNFS difficulty: 130 digits. Divisors found: r1=28387544830117222306493512799 (pp29) r2=155422651376388126156321417359485103331166545348719964250814055488446526704019 (pp78) Version: Msieve-1.40 Total time: 2.97 hours. Scaled time: 3.57 units (timescale=1.200). Factorization parameters were as follows: n: 4412067483562898136417947180989349016200511211292870274945580118260308530454298344442350244203342661239181 m: 50000000000000000000000000 deg: 5 c5: 88 c0: 265 skew: 1.25 type: snfs lss: 1 rlim: 1040000 alim: 1040000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1040000/1040000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [520000, 1020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 153557 x 153791 Total sieving time: 2.86 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,130.000,5,0,0,0,0,0,0,0,0,1040000,1040000,26,26,47,47,2.3,2.3,50000 total time: 2.97 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.3, Msieve / May 7, 2009
(55·10125+53)/9 = 6(1)1247<126> = 13 · 27327743 · 35592483890950561<17> · C101
C101 = P32 · P69
P32 = 49438205682481110643925421520349<32>
P69 = 977579455083906759296235116370906001403373620855265425236407586719467<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=951753314 Step 1 took 7056ms Step 2 took 7421ms ********** Factor found in step 2: 49438205682481110643925421520349 Found probable prime factor of 32 digits: 49438205682481110643925421520349 Probable prime cofactor has 69 digits
(55·10161+53)/9 = 6(1)1607<162> = 13 · 97 · 113 · C157
C157 = P26 · C131
P26 = 76625767327269088745587943<26>
C131 = [55969549779291807578331999389155335060385717795888554665336739968324394289490377698401886225152663948359880548781879323856843476583<131>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=544097540 Step 1 took 8980ms Step 2 took 7861ms ********** Factor found in step 2: 76625767327269088745587943 Found probable prime factor of 26 digits: 76625767327269088745587943 Composite cofactor has 131 digits
(55·10103+53)/9 = 6(1)1027<104> = 1667 · C101
C101 = P37 · P64
P37 = 7805333240474970433386479163342277351<37>
P64 = 4696703352729105271957469089746813401400588494288776527114451001<64>
SNFS difficulty: 104 digits. Divisors found: r1=7805333240474970433386479163342277351 (pp37) r2=4696703352729105271957469089746813401400588494288776527114451001 (pp64) Version: Msieve v. 1.41 Total time: 0.37 hours. Scaled time: 1.00 units (timescale=2.718). Factorization parameters were as follows: n: 36659334799706725321602346197427181230420582550156635339598746917283210024661734319802706125441578351 m: 50000000000000000000000000 deg: 4 c4: 88 c0: 53 skew: 0.88 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [195000, 315001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 35868 x 36095 Total sieving time: 0.35 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,104.000,4,0,0,0,0,0,0,0,0,390000,390000,25,25,44,44,2.2,2.2,10000 total time: 0.37 hours.
(55·10109+53)/9 = 6(1)1087<110> = C110
C110 = P43 · P68
P43 = 2001279481780336558695312744101134869291031<43>
P68 = 30536020414673275723489592051637855902564714744776865441185463166907<68>
SNFS difficulty: 111 digits. Divisors found: r1=2001279481780336558695312744101134869291031 (pp43) r2=30536020414673275723489592051637855902564714744776865441185463166907 (pp68) Version: Msieve v. 1.41 Total time: 0.43 hours. Scaled time: 1.17 units (timescale=2.728). Factorization parameters were as follows: n: 61111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 10000000000000000000000 deg: 5 c5: 11 c0: 106 skew: 1.57 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 47091 x 47322 Total sieving time: 0.40 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111.000,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.43 hours.
(55·10112+53)/9 = 6(1)1117<113> = 7 · 1567 · C109
C109 = P39 · P70
P39 = 570070518907964516234430912852482459059<39>
P70 = 9772924899942846008737812129553836846959336000821691794249026431285527<70>
SNFS difficulty: 115 digits. Divisors found: r1=570070518907964516234430912852482459059 (pp39) r2=9772924899942846008737812129553836846959336000821691794249026431285527 (pp70) Version: Msieve v. 1.36 Total time: 0.40 hours. Scaled time: 1.10 units (timescale=2.718). Factorization parameters were as follows: n: 5571256368958985423567427396399955429949048328116611460580828800356560407613375067108315353369597147516739093 m: 50000000000000000000000 deg: 5 c5: 44 c0: 1325 skew: 1.98 type: snfs lss: 1 rlim: 580000 alim: 580000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 580000/580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [290000, 290000) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63814 x 64046 Total sieving time: 0.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115.000,5,0,0,0,0,0,0,0,0,580000,580000,25,25,45,45,2.2,2.2,50000 total time: 0.40 hours.
By matsui / GGNFS / May 7, 2009
9·10181+7 = 9(0)1807<182> = 79 · 257 · 244637 · C173
C173 = P52 · P121
P52 = 8512657957698933206364996840866746830424447731789547<52>
P121 = 2128604465477319399779522456754361848962080507428346805103942531536208640072972366805607636173490224009642228179113256471<121>
N=18120081741838987135702528960878175958142624061743400579806899044392007938948997541016521900397586625693782117566794488427863577386037399597852690665766112563271351607908637 ( 173 digits) SNFS difficulty: 181 digits. Divisors found: r1=8512657957698933206364996840866746830424447731789547 (pp52) r2=2128604465477319399779522456754361848962080507428346805103942531536208640072972366805607636173490224009642228179113256471 (pp121) Version: GGNFS-0.77.1-20060722-nocona
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 7, 2009
(14·10167-11)/3 = 4(6)1663<168> = 19011604170792844575925477496114081<35> · C134
C134 = P47 · P87
P47 = 93578664829015994605866131061111227599540334869<47>
P87 = 262307780677246760482479379009707031071807635692941044199126071101861313229393119295467<87>
Number: n N=24546411890039112735283532246090593965242266454661597228757806133149530566680832089355587701794240785601818656426814464057750533738823 ( 134 digits) SNFS difficulty: 168 digits. Divisors found: Thu May 07 01:23:09 2009 prp47 factor: 93578664829015994605866131061111227599540334869 Thu May 07 01:23:09 2009 prp87 factor: 262307780677246760482479379009707031071807635692941044199126071101861313229393119295467 Thu May 07 01:23:09 2009 elapsed time 01:28:44 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 54.29 hours. Scaled time: 142.63 units (timescale=2.627). Factorization parameters were as follows: name: KA_4_6_166_3 n: 24546411890039112735283532246090593965242266454661597228757806133149530566680832089355587701794240785601818656426814464057750533738823 m: 2000000000000000000000000000000000 deg: 5 c5: 175 c0: -44 skew: 0.76 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 5450801) Primes: RFBsize:315948, AFBsize:315477, largePrimes:17159269 encountered Relations: rels:17269830, finalFF:509829 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2218141 hash collisions in 19121788 relations Msieve: matrix is 780536 x 780784 (206.2 MB) Total sieving time: 53.44 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 54.29 hours. --------- CPU info (if available) ----------
(49·10197+23)/9 = 5(4)1967<198> = 71 · C196
C196 = P39 · P158
P39 = 471125349006422505303273967001963468167<39>
P158 = 16276414818403346757892574329473798763642640177996620325409012137632722283621382376422821727629443629996696237888324842707436215660648855822906485305396297871<158>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 7668231611893583724569640062597809076682316118935837245696400625978090766823161189358372456964006259780907668231611893583724569640062597809076682316118935837245696400625978090766823161189358372457 (196 digits) Using B1=3454000, B2=5707365310, polynomial Dickson(6), sigma=884789642 Step 1 took 62282ms Step 2 took 19812ms ********** Factor found in step 2: 471125349006422505303273967001963468167 Found probable prime factor of 39 digits: 471125349006422505303273967001963468167 Probable prime cofactor 16276414818403346757892574329473798763642640177996620325409012137632722283621382376422821727629443629996696237888324842707436215660648855822906485305396297871 has 158 digits
Factorizations of 611...117 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve / May 6, 2009
8·10196+3 = 8(0)1953<197> = 72 · 11 · C195
C195 = P55 · P140
P55 = 3621665081282620076674432630274353389234788872072180469<55>
P140 = 40981979900057019772289486633568158426513623345700595433142245023700808306621864377405722307822200045704430796237062488553288170254983146933<140>
Number: n N=148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851577 ( 195 digits) SNFS difficulty: 197 digits. Divisors found: Wed May 6 22:18:43 2009 prp55 factor: 3621665081282620076674432630274353389234788872072180469 Wed May 6 22:18:43 2009 prp140 factor: 40981979900057019772289486633568158426513623345700595433142245023700808306621864377405722307822200045704430796237062488553288170254983146933 Wed May 6 22:18:43 2009 elapsed time 03:51:22 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 38.35 hours. Scaled time: 77.31 units (timescale=2.016). Factorization parameters were as follows: name: KA_8_0_195_3 n: 148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851577 m: 2000000000000000000000000000000000000000 deg: 5 c5: 5 c0: 6 skew: 1.04 type: snfs lss: 1 rlim: 13500000 alim: 13500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 13500000/13500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [6750000, 17349990) Primes: RFBsize:879640, AFBsize:878569, largePrimes:22008942 encountered Relations: rels:24644624, finalFF:2697963 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2853378 hash collisions in 26648513 relations Msieve: matrix is 1672355 x 1672603 (447.0 MB) Total sieving time: 37.86 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13500000,13500000,28,28,56,56,2.4,2.4,100000 total time: 38.35 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830453) Total of 4 processors activated (22643.70 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / May 6, 2009
(44·10170-53)/9 = 4(8)1693<171> = 32 · 7 · 9437 · 15530941453<11> · C155
C155 = P37 · P54 · P65
P37 = 2292642669168448055304163075564111519<37>
P54 = 309383401453904318103572359005677794938603540643389041<54>
P65 = 74645649139320830256619174883931685521648798111908759101775184539<65>
Number: 48883_170 N=52946576002580636960528842851208189219741647489968588151776737420461266890367768097054339727229323615058818228881279646734337015730796232832869667532043381 ( 155 digits) SNFS difficulty: 171 digits. Divisors found: r1=2292642669168448055304163075564111519 (pp37) r2=309383401453904318103572359005677794938603540643389041 (pp54) r3=74645649139320830256619174883931685521648798111908759101775184539 (pp65) Version: Msieve-1.40 Total time: 56.02 hours. Scaled time: 97.42 units (timescale=1.739). Factorization parameters were as follows: n: 52946576002580636960528842851208189219741647489968588151776737420461266890367768097054339727229323615058818228881279646734337015730796232832869667532043381 m: 10000000000000000000000000000000000 deg: 5 c5: 44 c0: -53 skew: 1.04 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 948199 x 948447 Total sieving time: 54.23 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.15 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 56.02 hours. --------- CPU info (if available) ----------
(73·10191-1)/9 = 8(1)191<192> = 72 · 2957 · 28391329 · 81902647 · 1197538717<10> · 4210320749<10> · 281150019363827276479091879<27> · C127
C127 = P43 · P84
P43 = 8296219599240900750125751408687469456539629<43>
P84 = 204703931305234648694421978445780610066516435471243580233881603596753881664430161943<84>
Number: 81111_191 N=1698268766936150674397664693080209666761726866084951569803456920236110045824863664598013300791554963893047144133640896867139147 ( 127 digits) Divisors found: r1=8296219599240900750125751408687469456539629 (pp43) r2=204703931305234648694421978445780610066516435471243580233881603596753881664430161943 (pp84) Version: Msieve-1.40 Total time: 82.49 hours. Scaled time: 98.90 units (timescale=1.199). Factorization parameters were as follows: # Murphy_E = 1.198987e-10, selected by Jeff Gilchrist n: 1698268766936150674397664693080209666761726866084951569803456920236110045824863664598013300791554963893047144133640896867139147 Y0: -2261958667367251197875751 Y1: 60001258322377 c0: 2341962305287791279333259678400 c1: 122080630732525840746583134 c2: -86882576737734041865 c3: -5644408174244182 c4: 9837347148 c5: 28680 skew: 232490.02 type: gnfs # selected mechanically rlim: 7700000 alim: 7700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [3850000, 7750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1177977 x 1178225 Total sieving time: 80.03 hours. Total relation processing time: 0.29 hours. Matrix solve time: 1.90 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,126,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7700000,7700000,28,28,53,53,2.5,2.5,100000 total time: 82.49 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / May 6, 2009
(31·10170+23)/9 = 3(4)1697<171> = 17 · 67 · 88327 · 9440546194507<13> · C150
C150 = P73 · P78
P73 = 1552639791119087352981288123002496139672359803957855921458315665885581003<73>
P78 = 233579189183869137992954603034611668015422286381180706109516775369226985993419<78>
Number: 34447_170 N=362664343504208366336153695212934878904723612806464270452574090561920145914063070976459250001943725687749819858052981635954436582224244199353949419257 ( 150 digits) SNFS difficulty: 171 digits. Divisors found: r1=1552639791119087352981288123002496139672359803957855921458315665885581003 r2=233579189183869137992954603034611668015422286381180706109516775369226985993419 Version: Total time: 117.52 hours. Scaled time: 92.25 units (timescale=0.785). Factorization parameters were as follows: n: 362664343504208366336153695212934878904723612806464270452574090561920145914063070976459250001943725687749819858052981635954436582224244199353949419257 m: 10000000000000000000000000000000000 deg: 5 c5: 31 c0: 23 skew: 0.94 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 942515 x 942763 Total sieving time: 117.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 117.52 hours. --------- CPU info (if available) ----------
By Dmitry Domanov / GMP-ECM 6.2.3 / May 6, 2009
(10200+11)/3 = (3)1997<200> = 37 · 53 · 89 · 191 · 7901 · 10433 · 2293803373<10> · C175
C175 = P35 · P141
P35 = 24305944786595346457197985558606247<35>
P141 = 217579419882633107192464536745298503242371606246427979750790355132326139358855442920849549924732845182258526980489528858407285267069566255721<141>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2283099834 Step 1 took 80313ms Step 2 took 24562ms ********** Factor found in step 2: 24305944786595346457197985558606247 Found probable prime factor of 35 digits: 24305944786595346457197985558606247 Probable prime cofactor 217579419882633107192464536745298503242371606246427979750790355132326139358855442920849549924732845182258526980489528858407285267069566255721 has 141 digits
By Robert Backstrom / GGNFS, Msieve / May 5, 2009
(47·10195+7)/9 = 5(2)1943<196> = 32 · C195
C195 = P44 · P151
P44 = 88041672141117563537626490623780021076406241<44>
P151 = 6590593970661965054169564166971283042690684645871625375519446864980216578639928402046295639701137885292568800820435274199357754149064405001068545418167<151>
Number: n N=580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: Tue May 5 01:08:55 2009 prp44 factor: 88041672141117563537626490623780021076406241 Tue May 5 01:08:55 2009 prp151 factor: 6590593970661965054169564166971283042690684645871625375519446864980216578639928402046295639701137885292568800820435274199357754149064405001068545418167 Tue May 5 01:08:55 2009 elapsed time 04:52:50 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 50.12 hours. Scaled time: 82.75 units (timescale=1.651). Factorization parameters were as follows: name: KA_5_2_194_3 n: 580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 m: 1000000000000000000000000000000000000000 deg: 5 c5: 47 c0: 7 skew: 0.68 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [6500000, 17049990) Primes: RFBsize:849252, AFBsize:848943, largePrimes:22498256 encountered Relations: rels:25266265, finalFF:1943483 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3587386 hash collisions in 28065747 relations Msieve: matrix is 1867365 x 1867613 (493.1 MB) Total sieving time: 49.56 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,56,56,2.5,2.5,100000 total time: 50.12 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830453) Total of 4 processors activated (22643.70 BogoMIPS).
(55·10168+17)/9 = 6(1)1673<169> = 109 · 663028897 · 185562242057<12> · C147
C147 = P62 · P85
P62 = 96341799290463865188662743214896995784016161192590672095139619<62>
P85 = 4729953389395374818079029796745396474394029557670207973418519714975101293655196577207<85>
Number: n N=455692220094378475899028019297894009795617089865204368694899943284127257853245517194919666672096984551704299608853985767015618988158532829578064133 ( 147 digits) SNFS difficulty: 170 digits. Divisors found: Tue May 05 13:44:14 2009 prp62 factor: 96341799290463865188662743214896995784016161192590672095139619 Tue May 05 13:44:14 2009 prp85 factor: 4729953389395374818079029796745396474394029557670207973418519714975101293655196577207 Tue May 05 13:44:14 2009 elapsed time 01:23:46 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 54.51 hours. Scaled time: 144.41 units (timescale=2.649). Factorization parameters were as follows: name: KA_6_1_167_3 n: 455692220094378475899028019297894009795617089865204368694899943284127257853245517194919666672096984551704299608853985767015618988158532829578064133 m: 5000000000000000000000000000000000 deg: 5 c5: 88 c0: 85 skew: 0.99 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2450000, 5522809) Primes: RFBsize:341992, AFBsize:342599, largePrimes:17230416 encountered Relations: rels:16855884, finalFF:673202 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2033482 hash collisions in 18633936 relations Msieve: matrix is 876911 x 877159 (232.8 MB) Total sieving time: 53.25 hours. Total relation processing time: 1.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,28,28,56,56,2.4,2.4,100000 total time: 54.51 hours. --------- CPU info (if available) ----------
(53·10163+1)/9 = 5(8)1629<164> = 71 · 125441 · 543667994926069758106471<24> · C134
C134 = P48 · P86
P48 = 141981755621425466912511299686577381546348961449<48>
P86 = 85658249428232845412735044023039818341069505361385323720612300437103972695570075959681<86>
Number: n N=12161908637278463586191770932142068551815467037940016086673733871817193261682243790326920124709539972049718217444606619034756347337769 ( 134 digits) SNFS difficulty: 166 digits. Divisors found: Tue May 05 14:56:16 2009 prp48 factor: 141981755621425466912511299686577381546348961449 Tue May 05 14:56:16 2009 prp86 factor: 85658249428232845412735044023039818341069505361385323720612300437103972695570075959681 Tue May 05 14:56:16 2009 elapsed time 01:04:16 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 34.15 hours. Scaled time: 90.84 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_8_162_9 n: 12161908637278463586191770932142068551815467037940016086673733871817193261682243790326920124709539972049718217444606619034756347337769 m: 1000000000000000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2100000, 4096021) Primes: RFBsize:296314, AFBsize:295946, largePrimes:14876015 encountered Relations: rels:13777731, finalFF:487605 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1469947 hash collisions in 15637895 relations Msieve: matrix is 764135 x 764383 (205.4 MB) Total sieving time: 33.65 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,56,56,2.4,2.4,100000 total time: 34.15 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / May 5, 2009
(4·10203-1)/3 = 1(3)203<204> = 1296951005067479<16> · 3007224097573595988541199<25> · 22202898588664747899239883251976133<35> · C130
C130 = P46 · P84
P46 = 1726411804572458190640150953379052709293364521<46>
P84 = 891857156466058895139365384393907771800510613597214769971080414959609408393708727761<84>
Number: 13333_203 N=1539712722915429936027828705221199253961258103511550016874758536693107690174955859182188496690238915491251386488264294882125167481 ( 130 digits) Divisors found: r1=1726411804572458190640150953379052709293364521 (pp46) r2=891857156466058895139365384393907771800510613597214769971080414959609408393708727761 (pp84) Version: Msieve-1.40 Total time: 195.64 hours. Scaled time: 384.83 units (timescale=1.967). Factorization parameters were as follows: name: 13333_203 # Murphy_E = 8.524581e-11, selected by Jeff Gilchrist n: 1539712722915429936027828705221199253961258103511550016874758536693107690174955859182188496690238915491251386488264294882125167481 Y0: -7873691196556497306899818 Y1: 169828156742951 c0: -842825461261952705427719662183065 c1: 14038004824796602827276678198 c2: -2692645004606180414079 c3: -56623236251566918 c4: 3837349864 c5: 50880 skew: 687088.58 type: gnfs # selected mechanically rlim: 9300000 alim: 9300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9300000/9300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [4650000, 9750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1307656 x 1307904 Total sieving time: 195.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,129,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,9300000,9300000,28,28,53,53,2.5,2.5,100000 total time: 195.64 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve v1.41 / May 5, 2009
(28·10193+17)/9 = 3(1)1923<194> = 32 · 11 · 227 · 17366063534386433<17> · 424822017456266239<18> · 5924630108759666362363<22> · C134
C134 = P50 · P84
P50 = 99382683945977500334658873808598740778689620049967<50>
P84 = 318694159844854605120879425181906886865805348896942492740283709980063920024563256003<84>
Mon May 04 17:39:46 2009 Mon May 04 17:39:46 2009 Mon May 04 17:39:46 2009 Msieve v. 1.41 Mon May 04 17:39:46 2009 random seeds: 6c343098 f895ee55 Mon May 04 17:39:46 2009 factoring 31672680963290019103108312432868979250603919225165327006653437736262170957787856296821147332483321273817020069534642594806141072701901 (134 digits) Mon May 04 17:39:48 2009 searching for 15-digit factors Mon May 04 17:39:50 2009 commencing number field sieve (134-digit input) Mon May 04 17:39:50 2009 R0: -56411713256521487888728554 Mon May 04 17:39:50 2009 R1: 614927434103333 Mon May 04 17:39:50 2009 A0: 4820545946029657007435914785021859 Mon May 04 17:39:50 2009 A1: -3560072597077147464000211347 Mon May 04 17:39:50 2009 A2: -133972022385765948615479 Mon May 04 17:39:50 2009 A3: -316325078052222669 Mon May 04 17:39:50 2009 A4: 177495376228 Mon May 04 17:39:50 2009 A5: 55440 Mon May 04 17:39:50 2009 skew 909388.56, size 5.929278e-013, alpha -7.937906, combined = 4.367942e-011 Mon May 04 17:39:50 2009 Mon May 04 17:39:50 2009 commencing relation filtering Mon May 04 17:39:50 2009 commencing duplicate removal, pass 1 Mon May 04 17:43:08 2009 found 4390910 hash collisions in 17620569 relations Mon May 04 17:43:51 2009 added 107571 free relations Mon May 04 17:43:51 2009 commencing duplicate removal, pass 2 Mon May 04 17:45:09 2009 found 4773785 duplicates and 12954354 unique relations Mon May 04 17:45:09 2009 memory use: 106.6 MB Mon May 04 17:45:09 2009 reading rational ideals above 11862016 Mon May 04 17:45:09 2009 reading algebraic ideals above 11862016 Mon May 04 17:45:09 2009 commencing singleton removal, pass 1 Mon May 04 17:47:47 2009 relations with 0 large ideals: 378556 Mon May 04 17:47:47 2009 relations with 1 large ideals: 2514711 Mon May 04 17:47:47 2009 relations with 2 large ideals: 5111991 Mon May 04 17:47:47 2009 relations with 3 large ideals: 3647510 Mon May 04 17:47:47 2009 relations with 4 large ideals: 1077514 Mon May 04 17:47:47 2009 relations with 5 large ideals: 122319 Mon May 04 17:47:47 2009 relations with 6 large ideals: 101751 Mon May 04 17:47:47 2009 relations with 7+ large ideals: 2 Mon May 04 17:47:47 2009 12954354 relations and about 12248867 large ideals Mon May 04 17:47:47 2009 commencing singleton removal, pass 2 Mon May 04 17:50:41 2009 found 6014564 singletons Mon May 04 17:50:41 2009 current dataset: 6939790 relations and about 5014552 large ideals Mon May 04 17:50:41 2009 commencing singleton removal, pass 3 Mon May 04 17:52:47 2009 found 1113533 singletons Mon May 04 17:52:47 2009 current dataset: 5826257 relations and about 3839423 large ideals Mon May 04 17:52:47 2009 commencing singleton removal, pass 4 Mon May 04 17:54:34 2009 found 260096 singletons Mon May 04 17:54:34 2009 current dataset: 5566161 relations and about 3575226 large ideals Mon May 04 17:54:35 2009 commencing singleton removal, final pass Mon May 04 17:56:32 2009 memory use: 84.4 MB Mon May 04 17:56:32 2009 commencing in-memory singleton removal Mon May 04 17:56:32 2009 begin with 5566161 relations and 3905421 unique ideals Mon May 04 17:56:37 2009 reduce to 4752218 relations and 3071387 ideals in 12 passes Mon May 04 17:56:37 2009 max relations containing the same ideal: 22 Mon May 04 17:56:39 2009 reading rational ideals above 720000 Mon May 04 17:56:39 2009 reading algebraic ideals above 720000 Mon May 04 17:56:39 2009 commencing singleton removal, final pass Mon May 04 17:58:43 2009 keeping 4547511 ideals with weight <= 20, new excess is 360797 Mon May 04 17:58:49 2009 memory use: 130.8 MB Mon May 04 17:58:49 2009 commencing in-memory singleton removal Mon May 04 17:58:50 2009 begin with 4801193 relations and 4547511 unique ideals Mon May 04 17:58:58 2009 reduce to 4673110 relations and 4180471 ideals in 12 passes Mon May 04 17:58:58 2009 max relations containing the same ideal: 20 Mon May 04 17:59:01 2009 removing 323163 relations and 286106 ideals in 37057 cliques Mon May 04 17:59:01 2009 commencing in-memory singleton removal Mon May 04 17:59:02 2009 begin with 4349947 relations and 4180471 unique ideals Mon May 04 17:59:06 2009 reduce to 4337433 relations and 3881733 ideals in 7 passes Mon May 04 17:59:06 2009 max relations containing the same ideal: 20 Mon May 04 17:59:09 2009 removing 240023 relations and 202966 ideals in 37057 cliques Mon May 04 17:59:10 2009 commencing in-memory singleton removal Mon May 04 17:59:10 2009 begin with 4097410 relations and 3881733 unique ideals Mon May 04 17:59:14 2009 reduce to 4089606 relations and 3670897 ideals in 7 passes Mon May 04 17:59:14 2009 max relations containing the same ideal: 20 Mon May 04 17:59:18 2009 relations with 0 large ideals: 7573 Mon May 04 17:59:18 2009 relations with 1 large ideals: 79833 Mon May 04 17:59:18 2009 relations with 2 large ideals: 375915 Mon May 04 17:59:18 2009 relations with 3 large ideals: 925180 Mon May 04 17:59:18 2009 relations with 4 large ideals: 1267395 Mon May 04 17:59:18 2009 relations with 5 large ideals: 955897 Mon May 04 17:59:18 2009 relations with 6 large ideals: 387327 Mon May 04 17:59:18 2009 relations with 7+ large ideals: 90486 Mon May 04 17:59:18 2009 commencing 2-way merge Mon May 04 17:59:22 2009 reduce to 2551084 relation sets and 2132375 unique ideals Mon May 04 17:59:22 2009 commencing full merge Mon May 04 18:00:04 2009 memory use: 193.4 MB Mon May 04 18:00:05 2009 found 1311357 cycles, need 1254575 Mon May 04 18:00:05 2009 weight of 1254575 cycles is about 87944184 (70.10/cycle) Mon May 04 18:00:05 2009 distribution of cycle lengths: Mon May 04 18:00:05 2009 1 relations: 117849 Mon May 04 18:00:05 2009 2 relations: 150312 Mon May 04 18:00:05 2009 3 relations: 158711 Mon May 04 18:00:05 2009 4 relations: 146449 Mon May 04 18:00:05 2009 5 relations: 130443 Mon May 04 18:00:05 2009 6 relations: 111940 Mon May 04 18:00:05 2009 7 relations: 94429 Mon May 04 18:00:05 2009 8 relations: 78994 Mon May 04 18:00:05 2009 9 relations: 65647 Mon May 04 18:00:05 2009 10+ relations: 199801 Mon May 04 18:00:05 2009 heaviest cycle: 17 relations Mon May 04 18:00:05 2009 commencing cycle optimization Mon May 04 18:00:08 2009 start with 7055729 relations Mon May 04 18:00:27 2009 pruned 186556 relations Mon May 04 18:00:27 2009 memory use: 185.4 MB Mon May 04 18:00:27 2009 distribution of cycle lengths: Mon May 04 18:00:27 2009 1 relations: 117849 Mon May 04 18:00:27 2009 2 relations: 154178 Mon May 04 18:00:27 2009 3 relations: 165233 Mon May 04 18:00:27 2009 4 relations: 150588 Mon May 04 18:00:27 2009 5 relations: 133901 Mon May 04 18:00:27 2009 6 relations: 113637 Mon May 04 18:00:27 2009 7 relations: 95275 Mon May 04 18:00:27 2009 8 relations: 78523 Mon May 04 18:00:27 2009 9 relations: 64337 Mon May 04 18:00:27 2009 10+ relations: 181054 Mon May 04 18:00:27 2009 heaviest cycle: 17 relations Mon May 04 18:00:29 2009 RelProcTime: 845 Mon May 04 18:00:29 2009 Mon May 04 18:00:29 2009 commencing linear algebra Mon May 04 18:00:30 2009 read 1254575 cycles Mon May 04 18:00:33 2009 cycles contain 3807029 unique relations Mon May 04 18:01:54 2009 read 3807029 relations Mon May 04 18:02:01 2009 using 20 quadratic characters above 268433534 Mon May 04 18:02:26 2009 building initial matrix Mon May 04 18:03:30 2009 memory use: 443.3 MB Mon May 04 18:03:37 2009 read 1254575 cycles Mon May 04 18:03:53 2009 matrix is 1254364 x 1254575 (361.8 MB) with weight 120703793 (96.21/col) Mon May 04 18:03:53 2009 sparse part has weight 84812850 (67.60/col) Mon May 04 18:04:14 2009 filtering completed in 2 passes Mon May 04 18:04:14 2009 matrix is 1250862 x 1251062 (361.4 MB) with weight 120513377 (96.33/col) Mon May 04 18:04:14 2009 sparse part has weight 84728033 (67.72/col) Mon May 04 18:04:19 2009 read 1251062 cycles Mon May 04 18:04:22 2009 matrix is 1250862 x 1251062 (361.4 MB) with weight 120513377 (96.33/col) Mon May 04 18:04:22 2009 sparse part has weight 84728033 (67.72/col) Mon May 04 18:04:22 2009 saving the first 48 matrix rows for later Mon May 04 18:04:23 2009 matrix is 1250814 x 1251062 (349.0 MB) with weight 96938267 (77.48/col) Mon May 04 18:04:23 2009 sparse part has weight 83977886 (67.13/col) Mon May 04 18:04:23 2009 matrix includes 64 packed rows Mon May 04 18:04:23 2009 using block size 65536 for processor cache size 3072 kB Mon May 04 18:04:34 2009 commencing Lanczos iteration Mon May 04 18:04:34 2009 memory use: 344.1 MB Mon May 04 22:18:31 2009 lanczos halted after 19783 iterations (dim = 1250813) Mon May 04 22:18:35 2009 recovered 30 nontrivial dependencies Mon May 04 22:18:36 2009 BLanczosTime: 15487 Mon May 04 22:18:36 2009 Mon May 04 22:18:36 2009 commencing square root phase Mon May 04 22:18:36 2009 reading relations for dependency 1 Mon May 04 22:18:37 2009 read 626185 cycles Mon May 04 22:18:38 2009 cycles contain 2333553 unique relations Mon May 04 22:19:51 2009 read 2333553 relations Mon May 04 22:20:07 2009 multiplying 1903340 relations Mon May 04 22:27:41 2009 multiply complete, coefficients have about 93.37 million bits Mon May 04 22:27:45 2009 initial square root is modulo 5035379 Mon May 04 22:37:34 2009 sqrtTime: 1138 Mon May 04 22:37:34 2009 prp50 factor: 99382683945977500334658873808598740778689620049967 Mon May 04 22:37:34 2009 prp84 factor: 318694159844854605120879425181906886865805348896942492740283709980063920024563256003 Mon May 04 22:37:34 2009 elapsed time 04:57:48 polynomial selection 44:35:57 sieving time 425,55 hours total time ~ 475,1 hours
The graphs of successful SNFS/GNFS in the last 90 days are available. Jeff Gilchrist's efforts of polynomial selections can be perceived in the graph.
By Ignacio Santos / GGNFS, Msieve / May 4, 2009
(49·10181+23)/9 = 5(4)1807<182> = 3 · 19 · 25343 · 4898143973671943075533<22> · 165703440094533134905772423687<30> · C125
C125 = P57 · P68
P57 = 573071120607499390267914716161347198804297974326389017377<57>
P68 = 81030607905776436620401921258086197513441643061834954467157233238891<68>
Number: 54447_181 N=46436301276070201899460398906248605364338025400814138874003744066901307471773211792610214257185020149990475282233636591208907 ( 125 digits) Divisors found: r1=573071120607499390267914716161347198804297974326389017377 (pp57) r2=81030607905776436620401921258086197513441643061834954467157233238891 (pp68) Version: Msieve-1.39 Total time: 57.71 hours. Scaled time: 100.37 units (timescale=1.739). Factorization parameters were as follows: # Murphy_E = 1.659559e-10, selected by Jeff Gilchrist n: 46436301276070201899460398906248605364338025400814138874003744066901307471773211792610214257185020149990475282233636591208907 Y0: -1170658117194019606887157 Y1: 41250645704533 c0: -35661712940272039086308650299876 c1: 1117646923046976003357556634 c2: -3036075700561948116834 c3: -7710223859788701 c4: 18358949432 c5: 21120 skew: 438909.1 type: gnfs # selected mechanically rlim: 7000000 alim: 7000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3500000, 6300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 887735 x 887983 Total sieving time: 57.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,7000000,7000000,27,27,52,52,2.5,2.5,100000 total time: 57.71 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 4, 2009
(53·10168-71)/9 = 5(8)1671<169> = 593 · 17404799 · 2547335314631<13> · C147
C147 = P45 · P103
P45 = 169017775524223519035278966544358165435527479<45>
P103 = 1325229688509753839571072379572594850333978022743803818791211312741515576887190505144667080147934159967<103>
Number: n N=223987374010578230602619365407550244395618807812115773382000910093930361470571571495008898858070692217063327571950687456345105693573292303410233193 ( 147 digits) SNFS difficulty: 171 digits. Divisors found: Mon May 04 02:27:53 2009 prp45 factor: 169017775524223519035278966544358165435527479 Mon May 04 02:27:53 2009 prp103 factor: 1325229688509753839571072379572594850333978022743803818791211312741515576887190505144667080147934159967 Mon May 04 02:27:53 2009 elapsed time 01:38:50 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 77.13 hours. Scaled time: 200.15 units (timescale=2.595). Factorization parameters were as follows: name: KA_5_8_167_1 n: 223987374010578230602619365407550244395618807812115773382000910093930361470571571495008898858070692217063327571950687456345105693573292303410233193 m: 5000000000000000000000000000000000 deg: 5 c5: 424 c0: -1775 skew: 1.33 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 7100131) Primes: RFBsize:348513, AFBsize:349532, largePrimes:18200592 encountered Relations: rels:18635149, finalFF:670254 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2751633 hash collisions in 21005685 relations Msieve: matrix is 899202 x 899450 (237.1 MB) Total sieving time: 76.26 hours. Total relation processing time: 0.87 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 77.13 hours. --------- CPU info (if available) ----------
(46·10166+53)/9 = 5(1)1657<167> = 3 · 11 · 2929337 · 16036699817919812260473949319<29> · C131
C131 = P31 · P101
P31 = 1630468449953094566378736443083<31>
P101 = 20221093893458760666893128729053370437177862662501618757770239518723565275843344695057556709203292201<101>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 32969855616823691466101238160783310004651583931458204036145062340110338667916054195949780242413798330360782553087497224960254295683 (131 digits) Using B1=460000, B2=347971482, polynomial Dickson(3), sigma=2688550002 Step 1 took 5725ms Step 2 took 2293ms ********** Factor found in step 2: 1630468449953094566378736443083 Found probable prime factor of 31 digits: 1630468449953094566378736443083 Probable prime cofactor 20221093893458760666893128729053370437177862662501618757770239518723565275843344695057556709203292201 has 101 digits
(55·10157+17)/9 = 6(1)1563<158> = 3 · 7 · 233 · 91073945081747118493<20> · C135
C135 = P50 · P86
P50 = 12124727791377638326845253721179147109990591753399<50>
P86 = 11310422223706317727474682057533510318275643666078995018519442259981719412163525709063<86>
Number: n N=137135790667987258497062069606788365533877730492617388925132440398292490112752801128294151957777779325427769881630714049121531915355137 ( 135 digits) SNFS difficulty: 160 digits. Divisors found: Mon May 04 12:12:16 2009 prp50 factor: 12124727791377638326845253721179147109990591753399 Mon May 04 12:12:16 2009 prp86 factor: 11310422223706317727474682057533510318275643666078995018519442259981719412163525709063 Mon May 04 12:12:16 2009 elapsed time 02:17:24 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 39.62 hours. Scaled time: 52.02 units (timescale=1.313). Factorization parameters were as follows: name: KA_6_1_156_3 n: 137135790667987258497062069606788365533877730492617388925132440398292490112752801128294151957777779325427769881630714049121531915355137 m: 50000000000000000000000000000000 deg: 5 c5: 44 c0: 425 skew: 1.57 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1650000, 3210121) Primes: RFBsize:236900, AFBsize:237488, largePrimes:13811646 encountered Relations: rels:13142029, finalFF:416258 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1330848 hash collisions in 14317622 relations Msieve: matrix is 578036 x 578284 (153.5 MB) Total sieving time: 39.12 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,28,28,56,56,2.4,2.4,100000 total time: 39.62 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / May 4, 2009
(55·10198+17)/9 = 6(1)1973<199> = 263 · 1283 · 5147 · 13457053507<11> · 21070739383<11> · 26850591611<11> · 1699893553753500635791<22> · 24196957677695274336113<23> · C116
C116 = P45 · P71
P45 = 746799927063051765367184540694213571283990251<45>
P71 = 15045728972784379234711971257195171910039681620386470902747042503219717<71>
Number: 61113_198 N=11236149299485819172193467158358845712816422607187364966823244656600967795679114846372943980099447926176442738978967 ( 116 digits) Divisors found: r1=746799927063051765367184540694213571283990251 (pp45) r2=15045728972784379234711971257195171910039681620386470902747042503219717 (pp71) Version: Msieve-1.40 Total time: 24.09 hours. Scaled time: 61.77 units (timescale=2.564). Factorization parameters were as follows: name: 61113_198 # Murphy_E = 6.103973e-10, selected by Jeff Gilchrist n: 11236149299485819172193467158358845712816422607187364966823244656600967795679114846372943980099447926176442738978967 Y0: -15107092040465287704648 Y1: 2323038215251 c0: -686769523076129772705030731 c1: 114042434326443914589151 c2: 9623962751739062717 c3: -19077419576851 c4: -3224939526 c5: 14280 skew: 51529.25 type: gnfs # selected mechanically rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1950000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 510153 x 510401 Total sieving time: 24.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3900000,3900000,27,27,51,51,2.5,2.5,100000 total time: 24.09 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / May 3, 2009
(55·10200+17)/9 = 6(1)1993<201> = 61 · 1057641511<10> · 151120135181<12> · 41111111601181<14> · 85073303235678488039<20> · 10002437630258266227332161<26> · C121
C121 = P40 · P81
P40 = 7969824024706850311637866653194343659977<40>
P81 = 224813519012018880758200954355240402897525050961812494056620389047570537939602381<81>
Number: 61113_200 N=1791724184900878326582352306606968086033777211959517288152525947796636786189303669848348229317960681422557856295643605237 ( 121 digits) Divisors found: r1=7969824024706850311637866653194343659977 (pp40) r2=224813519012018880758200954355240402897525050961812494056620389047570537939602381 (pp81) Version: Msieve-1.40 Total time: 50.53 hours. Scaled time: 130.10 units (timescale=2.575). Factorization parameters were as follows: name: 61113_200 # Murphy_E = 2.721748e-10, selected by Jeff Gilchrist n: 1791724184900878326582352306606968086033777211959517288152525947796636786189303669848348229317960681422557856295643605237 Y0: -176569456505448007089270 Y1: 7053922909259 c0: 692473754981649357842549234393 c1: 21424563729501290145330269 c2: 167347493654071875953 c3: -1379857106816429 c4: -4358776066 c5: 10440 skew: 217623.68 type: gnfs # selected mechanically rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2650000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 748338 x 748586 Total sieving time: 50.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5300000,5300000,27,27,52,52,2.5,2.5,100000 total time: 50.53 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / May 2, 2009
(55·10185+17)/9 = 6(1)1843<186> = C186
C186 = P43 · C144
P43 = 1096040361315018452438210082225829075210151<43>
C144 = [557562597765930815412243176953401553071377242201602332140988914411667452895150577949126139543829258917591831711208244743857512136813261667131663<144>]
GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM] Input number is 611111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 (186 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2707379689 Step 1 took 29921ms Step 2 took 19500ms ********** Factor found in step 2: 1096040361315018452438210082225829075210151 Found probable prime factor of 43 digits: 1096040361315018452438210082225829075210151 Composite cofactor 557562597765930815412243176953401553071377242201602332140988914411667452895150577949126139543829258917591831711208244743857512136813261667131663 has 144 digits
By Ignacio Santos / GGNFS, Msieve / May 1, 2009
(55·10131+17)/9 = 6(1)1303<132> = 181 · C130
C130 = P64 · P67
P64 = 2959810039062819990859007912121336939581988177042521633010731909<64>
P67 = 1140716612457302757427878310231801315808493275159253651509479151297<67>
Number: 61113_131 N=3376304481276856967464702271332105586249232658072437077961939840392879066912216083486801718845917740945365254757519950890116635973 ( 130 digits) SNFS difficulty: 133 digits. Divisors found: r1=2959810039062819990859007912121336939581988177042521633010731909 (pp64) r2=1140716612457302757427878310231801315808493275159253651509479151297 (pp67) Version: Msieve-1.39 Total time: 2.67 hours. Scaled time: 6.87 units (timescale=2.577). Factorization parameters were as follows: n: 3376304481276856967464702271332105586249232658072437077961939840392879066912216083486801718845917740945365254757519950890116635973 m: 200000000000000000000000000 deg: 5 c5: 275 c0: 272 skew: 1.00 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 152852 x 153094 Total sieving time: 2.67 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 2.67 hours. --------- CPU info (if available) ----------
(55·10146+17)/9 = 6(1)1453<147> = 29077 · 27684913 · 8904218509<10> · C125
C125 = P60 · P66
P60 = 160965543312759353198552642730359050359052328137190922370513<60>
P66 = 529661848281448338885793967808712449857065677368809581586525810489<66>
Number: 61113_146 N=85257307180663645777655545117027633679803372464365020456848138665445440598020230260861824971246596997401711612151618479710857 ( 125 digits) SNFS difficulty: 148 digits. Divisors found: r1=160965543312759353198552642730359050359052328137190922370513 (pp60) r2=529661848281448338885793967808712449857065677368809581586525810489 (pp66) Version: Msieve-1.39 Total time: 7.58 hours. Scaled time: 13.18 units (timescale=1.739). Factorization parameters were as follows: n: 85257307180663645777655545117027633679803372464365020456848138665445440598020230260861824971246596997401711612151618479710857 m: 200000000000000000000000000000 deg: 5 c5: 275 c0: 272 skew: 1.00 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 331424 x 331672 Total sieving time: 7.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 7.58 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / May 2, 2009
(55·10179+17)/9 = 6(1)1783<180> = C180
C180 = P44 · P44 · P93
P44 = 12377994530432761028221676774712257063726401<44>
P44 = 73269204460209175829580074342407808171006969<44>
P93 = 673827013176111083910624677558147698900308166031355405696528671720862868315586604941485397777<93>
Number: 61113_179 N=611111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 180 digits) SNFS difficulty: 181 digits. Divisors found: r1=12377994530432761028221676774712257063726401 (pp44) r2=73269204460209175829580074342407808171006969 (pp44) r3=673827013176111083910624677558147698900308166031355405696528671720862868315586604941485397777 (pp93) Version: Msieve-1.39 Total time: 137.25 hours. Scaled time: 238.68 units (timescale=1.739). Factorization parameters were as follows: n: 611111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 m: 1000000000000000000000000000000000000 deg: 5 c5: 11 c0: 34 skew: 1.25 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 5950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1290361 x 1290609 Total sieving time: 137.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 137.25 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 1, 2009
(55·10144+17)/9 = 6(1)1433<145> = 113 · 54559 · C138
C138 = P68 · P71
P68 = 62047967175543760816542807092147978147061016750701197820446736461993<68>
P71 = 15975254194946695413822386088009888763248723626869235808879754858431023<71>
Number: n N=991232047909020325177097572719621562742925067741248714124225850023383164010173789470927731740455872665105602348016057166190487802051608839 ( 138 digits) SNFS difficulty: 146 digits. Divisors found: r1=62047967175543760816542807092147978147061016750701197820446736461993 (pp68) r2=15975254194946695413822386088009888763248723626869235808879754858431023 (pp71) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 6.15 hours. Scaled time: 16.36 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_143_3 n: 991232047909020325177097572719621562742925067741248714124225850023383164010173789470927731740455872665105602348016057166190487802051608839 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: 34 skew: 1.25 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [950000, 2050001) Primes: RFBsize:142029, AFBsize:142593, largePrimes:6880110 encountered Relations: rels:6253829, finalFF:326860 Max relations in full relation-set: 28 Initial matrix: 284687 x 326860 with sparse part having weight 29127953. Pruned matrix : 268932 x 270419 with weight 21137673. Total sieving time: 5.74 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,28,28,56,56,2.3,2.3,100000 total time: 6.15 hours. --------- CPU info (if available) ----------
(55·10145+17)/9 = 6(1)1443<146> = 32 · 7 · 15313 · 27269897 · C133
C133 = P39 · P95
P39 = 107016565731908504231459299776275005741<39>
P95 = 21706251995039129583953685992479342156376606649272283107467957832369820404585460036933394617451<95>
Number: n N=2322928543420475118824821236796569054213102688127694063920166482940863388996539736729948247430475893861048264045178605545393523786191 ( 133 digits) SNFS difficulty: 146 digits. Divisors found: Fri May 01 18:04:23 2009 prp39 factor: 107016565731908504231459299776275005741 Fri May 01 18:04:23 2009 prp95 factor: 21706251995039129583953685992479342156376606649272283107467957832369820404585460036933394617451 Fri May 01 18:04:23 2009 elapsed time 00:17:55 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 6.00 hours. Scaled time: 15.95 units (timescale=2.660). Factorization parameters were as follows: name: KA_6_1_144_3 n: 2322928543420475118824821236796569054213102688127694063920166482940863388996539736729948247430475893861048264045178605545393523786191 m: 100000000000000000000000000000 deg: 5 c5: 55 c0: 17 skew: 0.79 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1000000, 1999567) Primes: RFBsize:148933, AFBsize:148321, largePrimes:9515026 encountered Relations: rels:8485513, finalFF:307147 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 859106 hash collisions in 9671035 relations Msieve: matrix is 341182 x 341430 (91.2 MB) Total sieving time: 5.80 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.4,2.4,100000 total time: 6.00 hours. --------- CPU info (if available) ----------
(55·10193+17)/9 = 6(1)1923<194> = 3 · 7 · 18665929 · 2338111244797<13> · 11951408653733<14> · 471202058198062313251681<24> · 350428336880383894300155304441<30> · C107
C107 = P48 · P59
P48 = 384765495832116367237778956105135383415129352909<48>
P59 = 87814148208409307707864677216212472091320723207070971272713<59>
Number: n N=33787854276483560442085336393221876130796021891636512609086462515490869394140277080699950221758475858872117 ( 107 digits) Divisors found: Fri May 01 18:47:23 2009 prp48 factor: 384765495832116367237778956105135383415129352909 Fri May 01 18:47:23 2009 prp59 factor: 87814148208409307707864677216212472091320723207070971272713 Fri May 01 18:47:23 2009 elapsed time 00:46:39 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 13.43 hours. Scaled time: 17.72 units (timescale=1.319). Factorization parameters were as follows: name: KA_6_1_192_3_Jeff_Gilchrist # Murphy_E = 1.564195e-09, selected by Jeff Gilchrist n: 33787854276483560442085336393221876130796021891636512609086462515490869394140277080699950221758475858872117 Y0: -394413411388729801681 Y1: 148581631799 c0: -25649377604197306364870640 c1: 10507065941092396630478 c2: -10142164446033363 c3: -19061095063357 c4: -22053853 c5: 3540 skew: 38283.63 type: gnfs # selected mechanically rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [1150000, 2153159) Primes: RFBsize:169511, AFBsize:170117, largePrimes:4322460 encountered Relations: rels:4223392, finalFF:359082 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 401952 hash collisions in 4637187 relations Msieve: matrix is 329174 x 329422 (90.2 MB) Total sieving time: 13.26 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.5,2.5,150000 total time: 13.43 hours. --------- CPU info (if available) ----------
4·10219-9 = 3(9)2181<220> = 13 · 839 · C216
C216 = P77 · P139
P77 = 82467488022247679727947415497469791627336296247529111727738703553530989716089<77>
P139 = 4447048973020707963671116712924416171932599147193348095813779150964307930192515153073852957342284283845468243469970491789991587228466841917<139>
Number: n N=366736957916934079031814431099294031356009901897863757220133858989639680938846612267351242321444943614192720271385348858531218483542679013477583203447327404419180342899055652333363894746493077839919317869258274502613 ( 216 digits) SNFS difficulty: 219 digits. Divisors found: Fri May 1 20:07:25 2009 prp77 factor: 82467488022247679727947415497469791627336296247529111727738703553530989716089 Fri May 1 20:07:25 2009 prp139 factor: 4447048973020707963671116712924416171932599147193348095813779150964307930192515153073852957342284283845468243469970491789991587228466841917 Fri May 1 20:07:25 2009 elapsed time 69:52:28 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20050930-k8 Total time: 250.14 hours. Scaled time: 503.78 units (timescale=2.014). Factorization parameters were as follows: name: KA_3_9_218_1 n: 366736957916934079031814431099294031356009901897863757220133858989639680938846612267351242321444943614192720271385348858531218483542679013477583203447327404419180342899055652333363894746493077839919317869258274502613 m: 2000000000000000000000000000000000000 deg: 6 c6: 125 c0: -18 skew: 0.72 type: snfs lss: 1 rlim: 32000000 alim: 32000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 32000000/32000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [16000000, 59599990) Primes: RFBsize:1973815, AFBsize:1973593, largePrimes:37417691 encountered Relations: rels:33415433, finalFF:949809 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10597697 hash collisions in 53759234 relations Msieve: matrix is 5611290 x 5611538 (1524.9 MB) Total sieving time: 248.31 hours. Total relation processing time: 1.83 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,219,6,0,0,0,0,0,0,0,0,32000000,32000000,29,29,58,58,2.6,2.6,100000 total time: 250.14 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830453) Total of 4 processors activated (22643.70 BogoMIPS).
(55·10163+17)/9 = 6(1)1623<164> = 32 · 72 · 2143 · 236254343371<12> · C147
C147 = P39 · P108
P39 = 988927876452064515740826404730390842363<39>
P108 = 276767441399096380316151693006323720191422239464515146167317202352562731456327706585980600161679177720537687<108>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 273703038093879591074250157422546137883823419528662340911505327987668867536699780839613305549266028283942751636145364283724805214548251413217634381 (147 digits) Using B1=2428000, B2=3567796060, polynomial Dickson(6), sigma=1970218074 Step 1 took 37377ms Step 2 took 12590ms ********** Factor found in step 2: 988927876452064515740826404730390842363 Found probable prime factor of 39 digits: 988927876452064515740826404730390842363 Probable prime cofactor 276767441399096380316151693006323720191422239464515146167317202352562731456327706585980600161679177720537687 has 108 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / May 2, 2009
(55·10164+17)/9 = 6(1)1633<165> = 23 · 16298621366653<14> · C151
C151 = P39 · P45 · P67
P39 = 282451979306041155940265917052798974301<39>
P45 = 644722799675175966492607182499443099118039843<45>
P67 = 8952077269999371031550399889027325040511664465137117896843843554189<67>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1630202193882551104644598265925382882273090792872901616189458196053098853630152192869885169100062147087738877976546460977103393162871641515066409748427 (151 digits) Using B1=2830000, B2=4281592780, polynomial Dickson(6), sigma=2000062157 Step 1 took 43743ms Step 2 took 9375ms ********** Factor found in step 2: 282451979306041155940265917052798974301 Found probable prime factor of 39 digits: 282451979306041155940265917052798974301 Composite cofactor 5771608320422500642589016843134140631258908662565308929895490414334452685237669024313423499189266080364031552327 has 112 digits GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 5771608320422500642589016843134140631258908662565308929895490414334452685237669024313423499189266080364031552327 (112 digits) Using B1=4640000, B2=8562235510, polynomial Dickson(6), sigma=1859142445 Step 1 took 45879ms ********** Factor found in step 1: 644722799675175966492607182499443099118039843 Found probable prime factor of 45 digits: 644722799675175966492607182499443099118039843 Probable prime cofactor 8952077269999371031550399889027325040511664465137117896843843554189 has 67 digits
(26·10195-17)/9 = 2(8)1947<196> = 23 · C195
C195 = P74 · P121
P74 = 16387913092815080088799706325752575559733136683692971560249525931029829007<74>
P121 = 7664420968242000729840063963573618783981209238122361233171156686202207659037578930162203115556226303477752467991137793167<121>
Number: n N=125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647342995169 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: Sat May 2 15:22:30 2009 prp74 factor: 16387913092815080088799706325752575559733136683692971560249525931029829007 Sat May 2 15:22:30 2009 prp121 factor: 7664420968242000729840063963573618783981209238122361233171156686202207659037578930162203115556226303477752467991137793167 Sat May 2 15:22:30 2009 elapsed time 06:44:20 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 10.92 hours. Scaled time: 15.98 units (timescale=1.464). Factorization parameters were as follows: name: KA_2_8_194_7 n: 125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647342995169 m: 1000000000000000000000000000000000000000 deg: 5 c5: 26 c0: -17 skew: 0.92 type: snfs lss: 1 rlim: 13100000 alim: 13100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 13100000/13100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [6550000, 8109131) Primes: RFBsize:855281, AFBsize:853884, largePrimes:21946999 encountered Relations: rels:23351118, finalFF:1445023 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3003984 hash collisions in 25646907 relations Msieve: matrix is 2161958 x 2162206 (577.1 MB) Total sieving time: 10.47 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13100000,13100000,28,28,56,56,2.5,2.5,100000 total time: 10.92 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830496) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830453) Total of 4 processors activated (22643.70 BogoMIPS).
By Sinkiti Sibata / Msieve, GGNFS / May 1, 2009
(55·10165+17)/9 = 6(1)1643<166> = 4673 · 30557 · 91757 · 3130253801<10> · 5878154375683<13> · 57335812309613<14> · 56460022325299969<17> · C100
C100 = P34 · P67
P34 = 5465358655311332029004825867899211<34>
P67 = 1432742875035547153933750660830179143999140191987535372145307749229<67>
Number: 61113_165 N=7830453672911169816739466041188016318913244857508424008110812471942050633932960185035002833034958319 ( 100 digits) Divisors found: r1=5465358655311332029004825867899211 (pp34) r2=1432742875035547153933750660830179143999140191987535372145307749229 (pp67) Version: Msieve-1.40 Total time: 4.52 hours. Scaled time: 11.59 units (timescale=2.564). Factorization parameters were as follows: name: 61113_165 # Murphy_E = 3.280698e-09, selected by Jeff Gilchrist n: 7830453672911169816739466041188016318913244857508424008110812471942050633932960185035002833034958319 Y0: -23554394723977259197 Y1: 6482663053 c0: 626424900598470617370720 c1: 408296215573260026130 c2: -14200135718664369 c3: -3571120408384 c4: 30953858 c5: 1080 skew: 22078.27 type: gnfs # selected mechanically rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.4 alambda: 2.4 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 206809 x 207057 Total sieving time: 4.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,47,47,2.4,2.4,100000 total time: 4.52 hours. --------- CPU info (if available) ----------
6·10221+1 = 6(0)2201<222> = 19 · 13547461 · 16726782991<11> · 3349384721392093940733381409<28> · 3849322964951777452392095093<28> · 694683008640191018051495572579<30> · C119
C119 = P49 · P70
P49 = 2106663983424484976725368044339228518607232620507<49>
P70 = 7385773499148755352472981597178105724655405297506528416547206510108989<70>
Number: 60001_221 N=15559343020387713952218299826631328238166893662896524746348459508722856699246398061388342322531961826952273576646437423 ( 119 digits) Divisors found: r1=2106663983424484976725368044339228518607232620507 (pp49) r2=7385773499148755352472981597178105724655405297506528416547206510108989 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 88.83 hours. Scaled time: 39.53 units (timescale=0.445). Factorization parameters were as follows: name: 60001_221 n: 15559343020387713952218299826631328238166893662896524746348459508722856699246398061388342322531961826952273576646437423 skew: 47990.39 # norm 2.62e+16 c5: 16560 c4: -4985358464 c3: 805612048914044 c2: 8728007815337305705 c1: -411350596078124939640396 c0: -4656088059625115819178313041 # alpha -6.23 Y1: 4091161783709 Y0: -62314325905034135682686 # Murphy_E 3.66e-10 # M 11870999316973983964274864036355129279554903974482653755267250922085510449071424316612954275416595953497035109209784499 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4110001) Primes: RFBsize:315948, AFBsize:315821, largePrimes:7697648 encountered Relations: rels:7814114, finalFF:784249 Max relations in full relation-set: 28 Initial matrix: 631851 x 784249 with sparse part having weight 67572986. Pruned matrix : 504602 x 507825 with weight 41609053. Total sieving time: 75.34 hours. Total relation processing time: 0.91 hours. Matrix solve time: 12.09 hours. Time per square root: 0.49 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 88.83 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve v1.41 / May 1, 2009
(55·10119+17)/9 = 6(1)1183<120> = 1619798646167707926668253111679<31> · C90
C90 = P37 · P54
P37 = 3053270289500435018012281274941085711<37>
P54 = 123564551359888218602782071126087431100945294762281177<54>
Thu Apr 30 18:48:20 2009 Msieve v. 1.41 Thu Apr 30 18:48:20 2009 random seeds: f3b53190 42af96b3 Thu Apr 30 18:48:20 2009 factoring 377275973502597272706476705893861400303860757026705314272481031102839141493245455438961847 (90 digits) Thu Apr 30 18:48:21 2009 searching for 15-digit factors Thu Apr 30 18:48:22 2009 searching for 20-digit factors Thu Apr 30 18:48:39 2009 searching for 25-digit factors Thu Apr 30 18:51:51 2009 commencing quadratic sieve (90-digit input) Thu Apr 30 18:51:51 2009 using multiplier of 1 Thu Apr 30 18:51:51 2009 using 32kb Intel Core sieve core Thu Apr 30 18:51:51 2009 sieve interval: 36 blocks of size 32768 Thu Apr 30 18:51:51 2009 processing polynomials in batches of 6 Thu Apr 30 18:51:51 2009 using a sieve bound of 1584943 (59903 primes) Thu Apr 30 18:51:51 2009 using large prime bound of 126795440 (26 bits) Thu Apr 30 18:51:51 2009 using double large prime bound of 385111478867040 (42-49 bits) Thu Apr 30 18:51:51 2009 using trial factoring cutoff of 49 bits Thu Apr 30 18:51:51 2009 polynomial 'A' values have 11 factors Thu Apr 30 20:33:03 2009 60071 relations (15333 full + 44738 combined from 648878 partial), need 59999 Thu Apr 30 20:33:04 2009 begin with 664211 relations Thu Apr 30 20:33:05 2009 reduce to 149145 relations in 10 passes Thu Apr 30 20:33:05 2009 attempting to read 149145 relations Thu Apr 30 20:33:08 2009 recovered 149145 relations Thu Apr 30 20:33:08 2009 recovered 131153 polynomials Thu Apr 30 20:33:08 2009 attempting to build 60071 cycles Thu Apr 30 20:33:08 2009 found 60071 cycles in 6 passes Thu Apr 30 20:33:08 2009 distribution of cycle lengths: Thu Apr 30 20:33:08 2009 length 1 : 15333 Thu Apr 30 20:33:08 2009 length 2 : 11124 Thu Apr 30 20:33:08 2009 length 3 : 10506 Thu Apr 30 20:33:08 2009 length 4 : 8198 Thu Apr 30 20:33:08 2009 length 5 : 5846 Thu Apr 30 20:33:08 2009 length 6 : 3861 Thu Apr 30 20:33:08 2009 length 7 : 2355 Thu Apr 30 20:33:08 2009 length 9+: 2848 Thu Apr 30 20:33:08 2009 largest cycle: 19 relations Thu Apr 30 20:33:08 2009 matrix is 59903 x 60071 (15.2 MB) with weight 3744595 (62.34/col) Thu Apr 30 20:33:08 2009 sparse part has weight 3744595 (62.34/col) Thu Apr 30 20:33:10 2009 filtering completed in 3 passes Thu Apr 30 20:33:10 2009 matrix is 56440 x 56503 (14.4 MB) with weight 3555074 (62.92/col) Thu Apr 30 20:33:10 2009 sparse part has weight 3555074 (62.92/col) Thu Apr 30 20:33:10 2009 saving the first 48 matrix rows for later Thu Apr 30 20:33:10 2009 matrix is 56392 x 56503 (10.8 MB) with weight 2995473 (53.01/col) Thu Apr 30 20:33:10 2009 sparse part has weight 2504930 (44.33/col) Thu Apr 30 20:33:10 2009 matrix includes 64 packed rows Thu Apr 30 20:33:10 2009 using block size 22601 for processor cache size 3072 kB Thu Apr 30 20:33:11 2009 commencing Lanczos iteration Thu Apr 30 20:33:11 2009 memory use: 9.6 MB Thu Apr 30 20:33:34 2009 lanczos halted after 893 iterations (dim = 56391) Thu Apr 30 20:33:34 2009 recovered 17 nontrivial dependencies Thu Apr 30 20:33:34 2009 prp37 factor: 3053270289500435018012281274941085711 Thu Apr 30 20:33:34 2009 prp54 factor: 123564551359888218602782071126087431100945294762281177 Thu Apr 30 20:33:34 2009 elapsed time 01:45:14
By Ignacio Santos / GGNFS, Msieve / Apr 30, 2009
(53·10163-17)/9 = 5(8)1627<164> = 3 · 19 · 34765350967304163312833<23> · C140
C140 = P53 · P87
P53 = 62622882318570911412650973707031773485945464667516361<53>
P87 = 474546564403968967469298671548430514892021736391287023805749850667560421046179684788407<87>
Number: 58887_163 N=29717473657351880511406397184182422265767672183342114852866813048791098856416018648200989323953206454366254829764036411860857577932495626927 ( 140 digits) SNFS difficulty: 166 digits. Divisors found: r1=62622882318570911412650973707031773485945464667516361 (pp53) r2=474546564403968967469298671548430514892021736391287023805749850667560421046179684788407 (pp87) Version: Msieve-1.39 Total time: 50.02 hours. Scaled time: 128.54 units (timescale=2.570). Factorization parameters were as follows: n: 29717473657351880511406397184182422265767672183342114852866813048791098856416018648200989323953206454366254829764036411860857577932495626927 m: 500000000000000000000000000000000 deg: 5 c5: 424 c0: -425 skew: 1.00 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 766824 x 767072 Total sieving time: 50.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 50.02 hours. --------- CPU info (if available) ----------
(55·10154+17)/9 = 6(1)1533<155> = 33 · 13 · C153
C153 = P58 · P96
P58 = 1232654391467284570396223070468890151373701148611847251467<58>
P96 = 141244562033352471422960766465762608824220881553425132457487800547462661060496451035078688975589<96>
Number: 61113_154 N=174105729661285216840772396327951883507439062994618550174105729661285216840772396327951883507439062994618550174105729661285216840772396327951883507439063 ( 153 digits) SNFS difficulty: 156 digits. Divisors found: r1=1232654391467284570396223070468890151373701148611847251467 (pp58) r2=141244562033352471422960766465762608824220881553425132457487800547462661060496451035078688975589 (pp96) Version: Msieve-1.39 Total time: 17.35 hours. Scaled time: 44.60 units (timescale=2.571). Factorization parameters were as follows: n: 174105729661285216840772396327951883507439062994618550174105729661285216840772396327951883507439062994618550174105729661285216840772396327951883507439063 m: 10000000000000000000000000000000 deg: 5 c5: 11 c0: 34 skew: 1.25 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 445869 x 446117 Total sieving time: 17.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 17.35 hours. --------- CPU info (if available) ----------
(55·10127+17)/9 = 6(1)1263<128> = 33 · 7 · 191599 · C121
C121 = P40 · P81
P40 = 4682653728534234711143308235969476153633<40>
P81 = 360390300507760405496205851150786683695433826066308510126793078082183441435140851<81>
Number: 61113_127 N=1687582984400237563818213450460429248882679688106067622082261453494543901533963532663363502192978802402071254669070361683 ( 121 digits) SNFS difficulty: 130 digits. Divisors found: r1=4682653728534234711143308235969476153633 (pp40) r2=360390300507760405496205851150786683695433826066308510126793078082183441435140851 (pp81) Version: Msieve-1.39 Total time: 2.48 hours. Scaled time: 6.39 units (timescale=2.571). Factorization parameters were as follows: n: 1687582984400237563818213450460429248882679688106067622082261453494543901533963532663363502192978802402071254669070361683 m: 50000000000000000000000000 deg: 5 c5: 44 c0: 425 skew: 1.57 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 965001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 155761 x 155992 Total sieving time: 2.48 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,50000 total time: 2.48 hours. --------- CPU info (if available) ----------
(55·10158+17)/9 = 6(1)1573<159> = 331 · C157
C157 = P51 · P106
P51 = 473827959932100290692183934041550493799062394539511<51>
P106 = 3896471482034884541768779423085832074586818741605048169360830630153978031461284856168107994452562187584093<106>
Number: 61113_158 N=1846257133266196710305471634776770728432359852299429338704263175562269217858341725411211816045652903658945955018462571332661967103054716347767707284323598523 ( 157 digits) SNFS difficulty: 160 digits. Divisors found: r1=473827959932100290692183934041550493799062394539511 (pp51) r2=3896471482034884541768779423085832074586818741605048169360830630153978031461284856168107994452562187584093 (pp106) Version: Msieve-1.39 Total time: 28.19 hours. Scaled time: 49.02 units (timescale=1.739). Factorization parameters were as follows: n: 1846257133266196710305471634776770728432359852299429338704263175562269217858341725411211816045652903658945955018462571332661967103054716347767707284323598523 m: 50000000000000000000000000000000 deg: 5 c5: 88 c0: 85 skew: 0.99 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 608868 x 609116 Total sieving time: 28.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 28.19 hours. --------- CPU info (if available) ----------
(55·10138+17)/9 = 6(1)1373<139> = 59 · 1657 · 37137218441<11> · 15147010896290711<17> · C108
C108 = P43 · P65
P43 = 1187288381940462130868009909981206026936967<43>
P65 = 93595104147558747071446841923837021201891200362881632886909849003<65>
Number: 61113_118 N=111124379760904060998273023772063612247139489669364432832383286955350483631183018958061606008642952568793901 ( 108 digits) SNFS difficulty: 140 digits. Divisors found: r1=1187288381940462130868009909981206026936967 (pp43) r2=93595104147558747071446841923837021201891200362881632886909849003 (pp65) Version: Msieve-1.39 Total time: 5.36 hours. Scaled time: 13.78 units (timescale=2.571). Factorization parameters were as follows: n: 111124379760904060998273023772063612247139489669364432832383286955350483631183018958061606008642952568793901 m: 5000000000000000000000000000 deg: 5 c5: 88 c0: 85 skew: 0.99 type: snfs lss: 1 rlim: 1530000 alim: 1530000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1530000/1530000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [765000, 1665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 239127 x 239362 Total sieving time: 5.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1530000,1530000,26,26,48,48,2.3,2.3,75000 total time: 5.36 hours. --------- CPU info (if available) ----------
(55·10140+17)/9 = 6(1)1393<141> = 61 · 89 · 30738941020813527919<20> · C118
C118 = P44 · P75
P44 = 10615121701713873642054896444448927095209397<44>
P75 = 344974075185369880980187433999848289501839524696372984170815766498887686079<75>
Number: 61113_140 N=3661941792028893320771674453906461398736845292068741409358102612764247173984037287722223413240085681776284995306884363 ( 118 digits) SNFS difficulty: 141 digits. Divisors found: r1=10615121701713873642054896444448927095209397 (pp44) r2=344974075185369880980187433999848289501839524696372984170815766498887686079 (pp75) Version: Msieve-1.39 Total time: 4.88 hours. Scaled time: 12.50 units (timescale=2.560). Factorization parameters were as follows: n: 3661941792028893320771674453906461398736845292068741409358102612764247173984037287722223413240085681776284995306884363 m: 10000000000000000000000000000 deg: 5 c5: 55 c0: 17 skew: 0.79 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1605001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 248771 x 249007 Total sieving time: 4.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 4.88 hours. --------- CPU info (if available) ----------
(55·10143+17)/9 = 6(1)1423<144> = 10273 · 397115083203972041<18> · C123
C123 = P53 · P70
P53 = 60340823343326933516766372625551502784610350942842391<53>
P70 = 2482534413113388832724548281270442360749001612536624017335879644836551<70>
Number: 61113_143 N=149798170465404801889673648353571477390630741370430580041195733866328662659834965071847732868899781815670187328774549033441 ( 123 digits) SNFS difficulty: 145 digits. Divisors found: r1=60340823343326933516766372625551502784610350942842391 (pp53) r2=2482534413113388832724548281270442360749001612536624017335879644836551 (pp70) Version: Msieve-1.39 Total time: 8.00 hours. Scaled time: 20.60 units (timescale=2.576). Factorization parameters were as follows: n: 149798170465404801889673648353571477390630741370430580041195733866328662659834965071847732868899781815670187328774549033441 m: 50000000000000000000000000000 deg: 5 c5: 88 c0: 85 skew: 0.99 type: snfs lss: 1 rlim: 1860000 alim: 1860000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1860000/1860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [930000, 2230001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 318333 x 318562 Total sieving time: 8.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1860000,1860000,26,26,49,49,2.3,2.3,100000 total time: 8.00 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 30, 2009
(53·10167+1)/9 = 5(8)1669<168> = 7 · 31 · 5801 · 2171422861<10> · C153
C153 = P42 · P112
P42 = 135266161385821144300657096869448610669383<42>
P112 = 1592711769493037551738175961976900809985538358919210031942464262455167074834538118938696628704611091433213992059<112>
Number: n N=215440007253341983299390084531258679074808434912488229449321198057364616718462923193195079761680811761040513937707338780162671744395500109087669636429597 ( 153 digits) SNFS difficulty: 170 digits. Divisors found: Thu Apr 30 12:02:04 2009 prp42 factor: 135266161385821144300657096869448610669383 Thu Apr 30 12:02:04 2009 prp112 factor: 1592711769493037551738175961976900809985538358919210031942464262455167074834538118938696628704611091433213992059 Thu Apr 30 12:02:04 2009 elapsed time 01:21:52 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 43.70 hours. Scaled time: 116.72 units (timescale=2.671). Factorization parameters were as follows: name: KA_5_8_166_9 n: 215440007253341983299390084531258679074808434912488229449321198057364616718462923193195079761680811761040513937707338780162671744395500109087669636429597 m: 5000000000000000000000000000000000 deg: 5 c5: 212 c0: 125 skew: 0.90 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2450000, 4902193) Primes: RFBsize:341992, AFBsize:341903, largePrimes:16344668 encountered Relations: rels:15617764, finalFF:725294 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1679045 hash collisions in 17282749 relations Msieve: matrix is 834325 x 834573 (223.6 MB) Total sieving time: 43.13 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,28,28,56,56,2.4,2.4,100000 total time: 43.70 hours. --------- CPU info (if available) ----------
(55·10102+17)/9 = 6(1)1013<103> = 411583 · C98
C98 = P35 · P63
P35 = 32358778405965305440492935854465363<35>
P63 = 458849891881505688703834082750529184484557904436360837193089997<63>
Number: n N=14847821972994781395517091597833513801860405097176295209255754273405634127529832648848740378273911 ( 98 digits) SNFS difficulty: 103 digits. Divisors found: r1=32358778405965305440492935854465363 (pp35) r2=458849891881505688703834082750529184484557904436360837193089997 (pp63) Version: GGNFS-0.77.1-VC8(Wed Total time: 0.79 hours. Scaled time: 0.98 units (timescale=1.243). Factorization parameters were as follows: name: KA_6_1_101_3 n: 14847821972994781395517091597833513801860405097176295209255754273405634127529832648848740378273911 m: 100000000000000000000 deg: 5 c5:5500 c0: 17 skew: 0.18 type: snfs rlim: 400000 alim: 400000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 10000 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [200000, 260001) Primes: RFBsize:33860, AFBsize:33824, largePrimes:1890853 encountered Relations: rels:1727952, finalFF:90219 Max relations in full relation-set: 28 Initial matrix: 67751 x 90219 with sparse part having weight 7022083. Pruned matrix : 61776 x 62178 with weight 3504147. Total sieving time: 0.68 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,400000,400000,26,26,52,52,2.4,2.4,20000 total time: 0.79 hours. --------- CPU info (if available) ----------
(55·10139+17)/9 = 6(1)1383<140> = 3 · 7 · 43 · 383833 · 144778732945720361<18> · C115
C115 = P32 · P40 · P43
P32 = 81763899605527921358782677567481<32>
P40 = 4069370006867177330397707858452514611997<40>
P43 = 3660130512500783146450462819085092132451731<43>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1217826297265224073102082739938273395751150789544672150731742120357286571820237935321180590087550810674361752653167 (115 digits) Using B1=1372000, B2=1426564240, polynomial Dickson(6), sigma=3773204362 Step 1 took 13509ms Step 2 took 5117ms ********** Factor found in step 2: 81763899605527921358782677567481 Found probable prime factor of 32 digits: 81763899605527921358782677567481 Composite cofactor 14894425328790077194413442180434380837484123126965525964547625497245590385796016807 has 83 digits Thu Apr 30 19:21:58 2009 Thu Apr 30 19:21:58 2009 Thu Apr 30 19:21:58 2009 Msieve v. 1.39 Thu Apr 30 19:21:58 2009 random seeds: 891a2560 10e6359e Thu Apr 30 19:21:58 2009 factoring 14894425328790077194413442180434380837484123126965525964547625497245590385796016807 (83 digits) Thu Apr 30 19:21:58 2009 searching for 15-digit factors Thu Apr 30 19:21:59 2009 commencing quadratic sieve (83-digit input) Thu Apr 30 19:21:59 2009 using multiplier of 3 Thu Apr 30 19:21:59 2009 using 32kb Intel Core sieve core Thu Apr 30 19:21:59 2009 sieve interval: 12 blocks of size 32768 Thu Apr 30 19:21:59 2009 processing polynomials in batches of 17 Thu Apr 30 19:21:59 2009 using a sieve bound of 1355089 (52059 primes) Thu Apr 30 19:21:59 2009 using large prime bound of 124668188 (26 bits) Thu Apr 30 19:21:59 2009 using trial factoring cutoff of 27 bits Thu Apr 30 19:21:59 2009 polynomial 'A' values have 11 factors Thu Apr 30 19:39:42 2009 52241 relations (26351 full + 25890 combined from 281262 partial), need 52155 Thu Apr 30 19:39:42 2009 begin with 307613 relations Thu Apr 30 19:39:42 2009 reduce to 74928 relations in 2 passes Thu Apr 30 19:39:42 2009 attempting to read 74928 relations Thu Apr 30 19:39:43 2009 recovered 74928 relations Thu Apr 30 19:39:43 2009 recovered 68440 polynomials Thu Apr 30 19:39:43 2009 attempting to build 52241 cycles Thu Apr 30 19:39:43 2009 found 52241 cycles in 1 passes Thu Apr 30 19:39:43 2009 distribution of cycle lengths: Thu Apr 30 19:39:43 2009 length 1 : 26351 Thu Apr 30 19:39:43 2009 length 2 : 25890 Thu Apr 30 19:39:43 2009 largest cycle: 2 relations Thu Apr 30 19:39:43 2009 matrix is 52059 x 52241 (7.1 MB) with weight 1660494 (31.79/col) Thu Apr 30 19:39:43 2009 sparse part has weight 1660494 (31.79/col) Thu Apr 30 19:39:43 2009 filtering completed in 3 passes Thu Apr 30 19:39:43 2009 matrix is 38003 x 38067 (5.7 MB) with weight 1338402 (35.16/col) Thu Apr 30 19:39:43 2009 sparse part has weight 1338402 (35.16/col) Thu Apr 30 19:39:43 2009 saving the first 48 matrix rows for later Thu Apr 30 19:39:43 2009 matrix is 37955 x 38067 (3.6 MB) with weight 1010804 (26.55/col) Thu Apr 30 19:39:43 2009 sparse part has weight 719314 (18.90/col) Thu Apr 30 19:39:43 2009 matrix includes 64 packed rows Thu Apr 30 19:39:43 2009 using block size 15226 for processor cache size 6144 kB Thu Apr 30 19:39:44 2009 commencing Lanczos iteration Thu Apr 30 19:39:44 2009 memory use: 4.2 MB Thu Apr 30 19:39:47 2009 lanczos halted after 602 iterations (dim = 37953) Thu Apr 30 19:39:47 2009 recovered 17 nontrivial dependencies Thu Apr 30 19:39:47 2009 prp40 factor: 4069370006867177330397707858452514611997 Thu Apr 30 19:39:47 2009 prp43 factor: 3660130512500783146450462819085092132451731 Thu Apr 30 19:39:47 2009 elapsed time 00:17:49
By Sinkiti Sibata / Msieve / Apr 30, 2009
(55·10120+17)/9 = 6(1)1193<121> = 232 · 29 · 14885411 · 4444147626799<13> · C97
C97 = P38 · P59
P38 = 98307462555318089826526950770199792763<38>
P59 = 61253472778706241794870926147499037925858616278305839202899<59>
Thu Apr 30 07:44:49 2009 Msieve v. 1.41 Thu Apr 30 07:44:49 2009 random seeds: bf780874 d93eee60 Thu Apr 30 07:44:49 2009 factoring 6021673481575859773124401532919227792673004029510249607602079740999815999962637314855610908819937 (97 digits) Thu Apr 30 07:44:51 2009 searching for 15-digit factors Thu Apr 30 07:44:52 2009 commencing quadratic sieve (97-digit input) Thu Apr 30 07:44:53 2009 using multiplier of 17 Thu Apr 30 07:44:53 2009 using 32kb Intel Core sieve core Thu Apr 30 07:44:53 2009 sieve interval: 36 blocks of size 32768 Thu Apr 30 07:44:53 2009 processing polynomials in batches of 6 Thu Apr 30 07:44:53 2009 using a sieve bound of 2404033 (88123 primes) Thu Apr 30 07:44:53 2009 using large prime bound of 360604950 (28 bits) Thu Apr 30 07:44:53 2009 using double large prime bound of 2527301234494800 (43-52 bits) Thu Apr 30 07:44:53 2009 using trial factoring cutoff of 52 bits Thu Apr 30 07:44:53 2009 polynomial 'A' values have 13 factors Thu Apr 30 13:48:31 2009 88458 relations (21528 full + 66930 combined from 1321428 partial), need 88219 Thu Apr 30 13:48:35 2009 begin with 1342956 relations Thu Apr 30 13:48:36 2009 reduce to 231324 relations in 11 passes Thu Apr 30 13:48:36 2009 attempting to read 231324 relations Thu Apr 30 13:48:40 2009 recovered 231324 relations Thu Apr 30 13:48:40 2009 recovered 218564 polynomials Thu Apr 30 13:48:41 2009 attempting to build 88458 cycles Thu Apr 30 13:48:41 2009 found 88458 cycles in 6 passes Thu Apr 30 13:48:41 2009 distribution of cycle lengths: Thu Apr 30 13:48:41 2009 length 1 : 21528 Thu Apr 30 13:48:41 2009 length 2 : 15366 Thu Apr 30 13:48:41 2009 length 3 : 14830 Thu Apr 30 13:48:41 2009 length 4 : 12274 Thu Apr 30 13:48:41 2009 length 5 : 8982 Thu Apr 30 13:48:41 2009 length 6 : 6220 Thu Apr 30 13:48:41 2009 length 7 : 3944 Thu Apr 30 13:48:41 2009 length 9+: 5314 Thu Apr 30 13:48:41 2009 largest cycle: 22 relations Thu Apr 30 13:48:41 2009 matrix is 88123 x 88458 (23.7 MB) with weight 5867152 (66.33/col) Thu Apr 30 13:48:41 2009 sparse part has weight 5867152 (66.33/col) Thu Apr 30 13:48:43 2009 filtering completed in 3 passes Thu Apr 30 13:48:43 2009 matrix is 84104 x 84167 (22.7 MB) with weight 5602479 (66.56/col) Thu Apr 30 13:48:43 2009 sparse part has weight 5602479 (66.56/col) Thu Apr 30 13:48:43 2009 saving the first 48 matrix rows for later Thu Apr 30 13:48:43 2009 matrix is 84056 x 84167 (13.7 MB) with weight 4362940 (51.84/col) Thu Apr 30 13:48:43 2009 sparse part has weight 3088177 (36.69/col) Thu Apr 30 13:48:43 2009 matrix includes 64 packed rows Thu Apr 30 13:48:43 2009 using block size 33666 for processor cache size 1024 kB Thu Apr 30 13:48:44 2009 commencing Lanczos iteration Thu Apr 30 13:48:44 2009 memory use: 13.5 MB Thu Apr 30 13:49:34 2009 lanczos halted after 1331 iterations (dim = 84054) Thu Apr 30 13:49:34 2009 recovered 17 nontrivial dependencies Thu Apr 30 13:49:35 2009 prp38 factor: 98307462555318089826526950770199792763 Thu Apr 30 13:49:35 2009 prp59 factor: 61253472778706241794870926147499037925858616278305839202899 Thu Apr 30 13:49:35 2009 elapsed time 06:04:46
(55·10135+17)/9 = 6(1)1343<136> = 19 · 3638454243911<13> · 342126911555309500721535304267<30> · C93
C93 = P47 · P47
P47 = 13042718211587829831766097413915690329339148483<47>
P47 = 19810448732557328228341823177874542870780022037<47>
Thu Apr 30 14:57:37 2009 Msieve v. 1.41 Thu Apr 30 14:57:37 2009 random seeds: 9171f740 959a443a Thu Apr 30 14:57:37 2009 factoring 258382100463852506230968335487805430257100969220134618900431126539928243525631289673555119871 (93 digits) Thu Apr 30 14:57:37 2009 searching for 15-digit factors Thu Apr 30 14:57:39 2009 commencing quadratic sieve (93-digit input) Thu Apr 30 14:57:39 2009 using multiplier of 1 Thu Apr 30 14:57:39 2009 using 32kb Intel Core sieve core Thu Apr 30 14:57:39 2009 sieve interval: 36 blocks of size 32768 Thu Apr 30 14:57:39 2009 processing polynomials in batches of 6 Thu Apr 30 14:57:39 2009 using a sieve bound of 1889131 (70449 primes) Thu Apr 30 14:57:39 2009 using large prime bound of 221028327 (27 bits) Thu Apr 30 14:57:39 2009 using double large prime bound of 1047143580966873 (42-50 bits) Thu Apr 30 14:57:39 2009 using trial factoring cutoff of 50 bits Thu Apr 30 14:57:39 2009 polynomial 'A' values have 12 factors Thu Apr 30 16:54:56 2009 70670 relations (18405 full + 52265 combined from 916226 partial), need 70545 Thu Apr 30 16:54:57 2009 begin with 934631 relations Thu Apr 30 16:54:58 2009 reduce to 177805 relations in 13 passes Thu Apr 30 16:54:58 2009 attempting to read 177805 relations Thu Apr 30 16:55:00 2009 recovered 177805 relations Thu Apr 30 16:55:00 2009 recovered 156794 polynomials Thu Apr 30 16:55:01 2009 attempting to build 70670 cycles Thu Apr 30 16:55:01 2009 found 70670 cycles in 6 passes Thu Apr 30 16:55:01 2009 distribution of cycle lengths: Thu Apr 30 16:55:01 2009 length 1 : 18405 Thu Apr 30 16:55:01 2009 length 2 : 13040 Thu Apr 30 16:55:01 2009 length 3 : 12090 Thu Apr 30 16:55:01 2009 length 4 : 9445 Thu Apr 30 16:55:01 2009 length 5 : 6860 Thu Apr 30 16:55:01 2009 length 6 : 4372 Thu Apr 30 16:55:01 2009 length 7 : 2799 Thu Apr 30 16:55:01 2009 length 9+: 3659 Thu Apr 30 16:55:01 2009 largest cycle: 18 relations Thu Apr 30 16:55:01 2009 matrix is 70449 x 70670 (17.6 MB) with weight 4333606 (61.32/col) Thu Apr 30 16:55:01 2009 sparse part has weight 4333606 (61.32/col) Thu Apr 30 16:55:02 2009 filtering completed in 3 passes Thu Apr 30 16:55:02 2009 matrix is 66349 x 66413 (16.7 MB) with weight 4101622 (61.76/col) Thu Apr 30 16:55:02 2009 sparse part has weight 4101622 (61.76/col) Thu Apr 30 16:55:02 2009 saving the first 48 matrix rows for later Thu Apr 30 16:55:02 2009 matrix is 66301 x 66413 (10.0 MB) with weight 3166149 (47.67/col) Thu Apr 30 16:55:02 2009 sparse part has weight 2210961 (33.29/col) Thu Apr 30 16:55:02 2009 matrix includes 64 packed rows Thu Apr 30 16:55:02 2009 using block size 26565 for processor cache size 1024 kB Thu Apr 30 16:55:03 2009 commencing Lanczos iteration Thu Apr 30 16:55:03 2009 memory use: 10.0 MB Thu Apr 30 16:55:30 2009 lanczos halted after 1050 iterations (dim = 66297) Thu Apr 30 16:55:30 2009 recovered 15 nontrivial dependencies Thu Apr 30 16:55:31 2009 prp47 factor: 13042718211587829831766097413915690329339148483 Thu Apr 30 16:55:31 2009 prp47 factor: 19810448732557328228341823177874542870780022037 Thu Apr 30 16:55:31 2009 elapsed time 01:57:54
(55·10150+17)/9 = 6(1)1493<151> = 19690979640099324919<20> · 860104955775585341543623128989<30> · C102
C102 = P43 · P59
P43 = 8420887143370657565490007495995287668142801<43>
P59 = 42849283068676424463551912087229682013357069256594047052443<59>
Number: 61113_150 N=360828976895667299737562769774660717483559074368529041201510988550692299042274113620704153686059912843 ( 102 digits) Divisors found: r1=8420887143370657565490007495995287668142801 (pp43) r2=42849283068676424463551912087229682013357069256594047052443 (pp59) Version: Msieve-1.40 Total time: 4.78 hours. Scaled time: 12.22 units (timescale=2.554). Factorization parameters were as follows: name: 61113_150 # Murphy_E = 3.043745e-09, selected by Jeff Gilchrist n: 360828976895667299737562769774660717483559074368529041201510988550692299042274113620704153686059912843 Y0: -44113535318694843826 Y1: 24303255677 c0: 465157296557827797222705 c1: 268644217472380387089 c2: 16241102223304477 c3: -1397388248401 c4: -105304494 c5: 2160 skew: 16337.53 type: gnfs # selected mechanically rlim: 1670000 alim: 1670000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1670000/1670000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [835000, 1435001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220727 x 220975 Total sieving time: 4.78 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1670000,1670000,26,26,48,48,2.4,2.4,100000 total time: 4.78 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2 / Apr 30, 2009
(55·10151+17)/9 = 6(1)1503<152> = 3 · 7 · 83 · 1429 · 2417 · C143
C143 = P31 · P112
P31 = 3308092725448856055133083186613<31>
P112 = 3068571445944642173555566328749439194505144924727462058149060519333716290496346376102747785291468715529594477999<112>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1070043456 Step 1 took 7665ms Step 2 took 8164ms ********** Factor found in step 2: 3308092725448856055133083186613 Found probable prime factor of 31 digits: 3308092725448856055133083186613 Probable prime cofactor has 112 digits
(55·10119+17)/9 = 6(1)1183<120> = C120
C120 = P31 · C90
P31 = 1619798646167707926668253111679<31>
C90 = [377275973502597272706476705893861400303860757026705314272481031102839141493245455438961847<90>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=905747387 Step 1 took 6385ms Step 2 took 7264ms ********** Factor found in step 2: 1619798646167707926668253111679 Found probable prime factor of 31 digits: 1619798646167707926668253111679 Composite cofactor has 90 digits
By Markus Tervooren / Ggnfs (64bit/asm). msieve 1.41 for postprocessing / Apr 30, 2009
(5·10190+31)/9 = (5)1899<190> = 32 · 19 · 1289 · C185
C185 = P63 · P122
P63 = 596490706585371570344324760800537294958709584946084830273397247<63>
P122 = 42254676923334035495094749677381553294665771130138374934168106601251727561083274480199497819607561303592623938582818320563<122>
Msieve v. 1.41 Wed Apr 29 14:52:14 2009 random seeds: edf8ec04 782fc9ce factoring 25204522094536113291302272288484910808757664065055896068649052738446121049254172986700581871597074460711443004258051962650930979432605880416640832031519767150543081837570969633087690061 (185 digits) searching for 15-digit factors commencing number field sieve (185-digit input) R0: -100000000000000000000000000000000000000 R1: 1 A0: 31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 5 skew 1.44, size 3.598405e-13, alpha 1.058678, combined = 4.358459e-11 commencing relation filtering commencing duplicate removal, pass 1 found 2765388 hash collisions in 21909200 relations added 2008 free relations commencing duplicate removal, pass 2 found 2395885 duplicates and 19515323 unique relations memory use: 98.6 MB reading rational ideals above 10551296 reading algebraic ideals above 10551296 commencing singleton removal, pass 1 relations with 0 large ideals: 276562 relations with 1 large ideals: 1803867 relations with 2 large ideals: 5315527 relations with 3 large ideals: 7329666 relations with 4 large ideals: 4050810 relations with 5 large ideals: 56111 relations with 6 large ideals: 682780 relations with 7+ large ideals: 0 19515323 relations and about 18790045 large ideals commencing singleton removal, pass 2 found 6777251 singletons current dataset: 12738072 relations and about 10470759 large ideals commencing singleton removal, pass 3 found 1852958 singletons current dataset: 10885114 relations and about 8502586 large ideals commencing singleton removal, pass 4 found 526086 singletons current dataset: 10359028 relations and about 7965610 large ideals commencing singleton removal, pass 5 found 160949 singletons current dataset: 10198079 relations and about 7803602 large ideals commencing singleton removal, final pass memory use: 176.4 MB commencing in-memory singleton removal begin with 10198079 relations and 8686922 unique ideals reduce to 8126643 relations and 6547174 ideals in 20 passes max relations containing the same ideal: 52 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 7164674 ideals with weight <= 20, new excess is 791838 memory use: 250.5 MB commencing in-memory singleton removal begin with 8128654 relations and 7164674 unique ideals reduce to 8125274 relations and 7151386 ideals in 9 passes max relations containing the same ideal: 20 removing 402438 relations and 374760 ideals in 27678 cliques commencing in-memory singleton removal begin with 7722836 relations and 7151386 unique ideals reduce to 7706040 relations and 6759735 ideals in 8 passes max relations containing the same ideal: 20 removing 289505 relations and 261827 ideals in 27678 cliques commencing in-memory singleton removal begin with 7416535 relations and 6759735 unique ideals reduce to 7407787 relations and 6489121 ideals in 8 passes max relations containing the same ideal: 20 relations with 0 large ideals: 63990 relations with 1 large ideals: 431150 relations with 2 large ideals: 1396533 relations with 3 large ideals: 2324416 relations with 4 large ideals: 2038853 relations with 5 large ideals: 878401 relations with 6 large ideals: 252051 relations with 7+ large ideals: 22393 commencing 2-way merge reduce to 4358946 relation sets and 3440280 unique ideals commencing full merge memory use: 311.5 MB found 2107420 cycles, need 1990480 weight of 1990480 cycles is about 139461325 (70.06/cycle) distribution of cycle lengths: 1 relations: 259851 2 relations: 243805 3 relations: 238556 4 relations: 210119 5 relations: 188648 6 relations: 157800 7 relations: 135361 8 relations: 114188 9 relations: 95544 10+ relations: 346608 heaviest cycle: 20 relations commencing cycle optimization start with 11200236 relations pruned 262711 relations memory use: 383.6 MB distribution of cycle lengths: 1 relations: 259851 2 relations: 249376 3 relations: 247493 4 relations: 215226 5 relations: 192636 6 relations: 159411 7 relations: 136102 8 relations: 113416 9 relations: 94468 10+ relations: 322501 heaviest cycle: 20 relations RelProcTime: 875 commencing linear algebra read 1990480 cycles cycles contain 6522097 unique relations read 6522097 relations using 20 quadratic characters above 268435034 building initial matrix memory use: 797.2 MB read 1990480 cycles matrix is 1989699 x 1990480 (596.7 MB) with weight 176041428 (88.44/col) sparse part has weight 134521867 (67.58/col) filtering completed in 3 passes matrix is 1962834 x 1963034 (591.7 MB) with weight 174425357 (88.85/col) sparse part has weight 133519598 (68.02/col) read 1963034 cycles matrix is 1962834 x 1963034 (591.7 MB) with weight 174425357 (88.85/col) sparse part has weight 133519598 (68.02/col) saving the first 48 matrix rows for later matrix is 1962786 x 1963034 (560.2 MB) with weight 138173302 (70.39/col) sparse part has weight 127216851 (64.81/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 585.2 MB linear algebra completed 1962681 of 1963034 dimensions (100.0%, ETA 0h 0m) lanczos halted after 31043 iterations (dim = 1962785) recovered 35 nontrivial dependencies BLanczosTime: 18268 commencing square root phase reading relations for dependency 1 read 981558 cycles cycles contain 3931062 unique relations read 3931062 relations multiplying 3243788 relations multiply complete, coefficients have about 84.11 million bits initial square root is modulo 1090381 reading relations for dependency 2 read 982286 cycles cycles contain 3935792 unique relations read 3935792 relations multiplying 3247420 relations multiply complete, coefficients have about 84.21 million bits initial square root is modulo 1107721 sqrtTime: 1133 prp63 factor: 596490706585371570344324760800537294958709584946084830273397247 prp122 factor: 42254676923334035495094749677381553294665771130138374934168106601251727561083274480199497819607561303592623938582818320563 elapsed time 05:38:12 Sieving took ~ 151hours on one core (Q6700@3.3Ghz)
(55·10105+17)/9 = 6(1)1043<106> = 683 · 1445241877<10> · C94
C94 = P38 · P56
P38 = 81029967971957752955713055836047647693<38>
P56 = 76403503205391551231527775810749279533656827067863897451<56>
Number: k1 N=6190973417678248911826496973321001897506450037367806314609001941975686201499624743187528730543 ( 94 digits) SNFS difficulty: 107 digits. Divisors found: r1=81029967971957752955713055836047647693 (pp38) r2=76403503205391551231527775810749279533656827067863897451 (pp56) Version: Msieve-1.39 Total time: 0.20 hours. Scaled time: 0.50 units (timescale=2.472). Factorization parameters were as follows: n: 6190973417678248911826496973321001897506450037367806314609001941975686201499624743187528730543 m: 200000000000000000000000000 deg: 4 c4: 275 c0: 136 skew: 0.84 type: snfs lss: 1 rlim: 440000 alim: 440000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 440000/440000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [220000, 300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38956 x 39183 Total sieving time: 0.19 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,4,0,0,0,0,0,0,0,0,440000,440000,25,25,44,44,2.2,2.2,40000 total time: 0.20 hours. --------- CPU info (if available) ---------- [ 0.140008] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.232014] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.327367] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.424240] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8198000k/10485760k available (2226k kernel code, 189836k reserved, 1082k data, 392k init) [ 0.083992] Calibrating delay using timer specific routine.. 6404.32 BogoMIPS (lpj=12808640) [ 0.152009] Calibrating delay using timer specific routine.. 6400.07 BogoMIPS (lpj=12800150) [ 0.244015] Calibrating delay using timer specific routine.. 6400.09 BogoMIPS (lpj=12800199) [ 0.343793] Calibrating delay using timer specific routine.. 6400.09 BogoMIPS (lpj=12800187) [ 0.428765] Total of 4 processors activated (25604.58 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Apr 29, 2009
(53·10170+1)/9 = 5(8)1699<171> = 1559 · 2903 · 370723 · 33658580232709090033<20> · 67871489825328151030318753<26> · C114
C114 = P50 · P64
P50 = 15878422731457635314161599067107119872220986892417<50>
P64 = 9676095432618857994298840083734799477765342988159463785324899923<64>
Number: n N=153641133669048676609099915708201614219856303269170854973086875495889780066889209852193311327532571098675292583891 ( 114 digits) Divisors found: Wed Apr 29 23:25:18 2009 prp50 factor: 15878422731457635314161599067107119872220986892417 Wed Apr 29 23:25:18 2009 prp64 factor: 9676095432618857994298840083734799477765342988159463785324899923 Wed Apr 29 23:25:18 2009 elapsed time 00:59:50 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 18.46 hours. Scaled time: 49.31 units (timescale=2.671). Factorization parameters were as follows: name: KA_5_8_169_9 n: 153641133669048676609099915708201614219856303269170854973086875495889780066889209852193311327532571098675292583891 Y0: -8973732757865968818489 Y1: 1655113373459 c0: 6530038059463148739514985720 c1: -505049272014818434778864 c2: -6938797053941142849 c3: 242228848255076 c4: 1249680886 c5: 2640 skew: 50592.33 type: gnfs rlim: 3500000 alim: 3500080 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3500000/3500080 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1750040, 2600177) Primes: RFBsize:250150, AFBsize:249214, largePrimes:16960803 encountered Relations: rels:14902027, finalFF:531448 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 952641 hash collisions in 15494590 relations Msieve: matrix is 583643 x 583891 (164.2 MB) Total sieving time: 17.90 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500080,28,28,56,56,2.6,2.6,100000 total time: 18.46 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 29, 2009
(32·10181+13)/9 = 3(5)1807<182> = 232 · 37 · 97 · C176
C176 = P66 · P110
P66 = 187800281843242246319283489339418659405151754020076889041478011149<66>
P110 = 99719960730962349469939681299619260059373306342828270295826680925337086911707248717062806086045272017174413653<110>
Number: 35557_181 N=18727436730671778320522303528559253229414786914835635432755071053358037163310680742910392316975444058249585114122365890923566366436594254106385535068325004598463565976671817297 ( 176 digits) SNFS difficulty: 182 digits. Divisors found: r1=187800281843242246319283489339418659405151754020076889041478011149 (pp66) r2=99719960730962349469939681299619260059373306342828270295826680925337086911707248717062806086045272017174413653 (pp110) Version: Msieve-1.39 Total time: 137.88 hours. Scaled time: 239.22 units (timescale=1.735). Factorization parameters were as follows: n: 18727436730671778320522303528559253229414786914835635432755071053358037163310680742910392316975444058249585114122365890923566366436594254106385535068325004598463565976671817297 m: 2000000000000000000000000000000000000 deg: 5 c5: 10 c0: 13 skew: 1.05 type: snfs lss: 1 rlim: 7700000 alim: 7700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3850000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1475073 x 1475319 Total sieving time: 137.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7700000,7700000,28,28,53,53,2.5,2.5,100000 total time: 137.88 hours. --------- CPU info (if available) ----------
(38·10170+43)/9 = 4(2)1697<171> = 7 · 17 · 2895407 · 52481041 · C155
C155 = P51 · P105
P51 = 159420766227975595294803856574498124726059142719287<51>
P105 = 146466118542925818385076619853708085471450289535066254778571014685940595834245664133461216599012397408957<105>
Number: 42227_170 N=23349740844550738413468620796920875678681831018675493539509566502420110283104445553529638281716803731915120107180379989058300534100274710632172829990453659 ( 155 digits) SNFS difficulty: 171 digits. Divisors found: r1=159420766227975595294803856574498124726059142719287 (pp51) r2=146466118542925818385076619853708085471450289535066254778571014685940595834245664133461216599012397408957 (pp105) Version: Msieve-1.39 Total time: 72.39 hours. Scaled time: 185.32 units (timescale=2.560). Factorization parameters were as follows: n: 23349740844550738413468620796920875678681831018675493539509566502420110283104445553529638281716803731915120107180379989058300534100274710632172829990453659 m: 10000000000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1013018 x 1013266 Total sieving time: 72.39 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 72.39 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Apr 29, 2009
6·10202+1 = 6(0)2011<203> = 113761 · 244393 · 660429923798209<15> · 135180804513951511904761<24> · 5164634473621039289825138497<28> · C127
C127 = P40 · P88
P40 = 1664792180982452240067957261454638056603<40>
P88 = 2811432753405739343413857814027793980466733704390188713337746638191403396481943299125843<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2090088941 Step 1 took 39950ms Step 2 took 13878ms ********** Factor found in step 2: 1664792180982452240067957261454638056603 Found probable prime factor of 40 digits: 1664792180982452240067957261454638056603 Probable prime cofactor 2811432753405739343413857814027793980466733704390188713337746638191403396481943299125843 has 88 digits
By matsui / GGNFS / Apr 29, 2009
6·10173-7 = 5(9)1723<174> = 13413022373<11> · C164
C164 = P63 · P102
P63 = 254106107960663411887642298189807618950496854389331792179242251<63>
P102 = 176039244907150995933870857374771574815002400239328663586454894500763717483116064141859499252833070191<102>
N=44732647371690177676556686975116849751041565641321994088050866177437636038751129875566338175972264890219757780761885559854944409552577729082119380134429900275839941 ( 164 digits) SNFS difficulty: 175 digits. Divisors found: r1=254106107960663411887642298189807618950496854389331792179242251 (pp63) r2=176039244907150995933870857374771574815002400239328663586454894500763717483116064141859499252833070191 (pp102) Version: GGNFS-0.77.1-20060722-nocona
Factorizations of 611...113 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GMP-ECM / Apr 28, 2009
(17·10195-11)/3 = 5(6)1943<196> = 72 · C195
C195 = P30 · P31 · P135
P30 = 414958074700194542917848678779<30>
P31 = 2262764706204964092765220058089<31>
P135 = 123165186981656208756429892828244296154398570791072162187495203445595219090684605813054472085211731050735511770532990502679306295915277<135>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 115646258503401360544217687074829931972789115646258503401360544217687074829931972789115646258503401360544217687074829931972789115646258503401360544217687074829931972789115646258503401360544217687 (195 digits) Using B1=256000, B2=128992510, polynomial Dickson(3), sigma=2791982785 Step 1 took 4578ms Step 2 took 1922ms ********** Factor found in step 2: 414958074700194542917848678779 Found probable prime factor of 30 digits: 414958074700194542917848678779 Composite cofactor 278693838135226779409771569075683326071205809800631128168413521983821959681026143781812575882484316995296990661338781612806612800609366574896864133131995689362525653 has 165 digits GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 278693838135226779409771569075683326071205809800631128168413521983821959681026143781812575882484316995296990661338781612806612800609366574896864133131995689362525653 (165 digits) Using B1=582000, B2=522330282, polynomial Dickson(3), sigma=2912169454 Step 1 took 8203ms Step 2 took 3687ms ********** Factor found in step 2: 2262764706204964092765220058089 Found probable prime factor of 31 digits: 2262764706204964092765220058089 Probable prime cofactor 123165186981656208756429892828244296154398570791072162187495203445595219090684605813054472085211731050735511770532990502679306295915277 has 135 digits
By Ignacio Santos / GGNFS, Msieve / Apr 28, 2009
(37·10194+71)/9 = 4(1)1939<195> = 116269 · 575551 · 474471463 · 16349135082988589810249<23> · 7590690876337436335686621759791<31> · C123
C123 = P50 · P73
P50 = 12689133514263467130577716351690146927441657627153<50>
P73 = 8222299893729791483441854911572970421842011419673633184844616755425556501<73>
Number: 41119_194 N=104333861145851641332524267483514811395721107982807617312384858364100696592011759800416745004248697924636939449966193271653 ( 123 digits) Divisors found: r1=12689133514263467130577716351690146927441657627153 (pp50) r2=8222299893729791483441854911572970421842011419673633184844616755425556501 (pp73) Version: Msieve-1.39 Total time: 52.43 hours. Scaled time: 134.81 units (timescale=2.571). Factorization parameters were as follows: # Murphy_E = 2.261027e-10, selected by Jeff Gilchrist n: 104333861145851641332524267483514811395721107982807617312384858364100696592011759800416745004248697924636939449966193271653 Y0: -358902855847175299483599 Y1: 12722330017853 c0: -67487540322810138587241212720 c1: -1928877254811875151103060 c2: 9917690775179473736 c3: -365384477507579 c4: 7519778430 c5: 17520 skew: 108467.52 type: gnfs # selected mechanically rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3000000, 5460001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 872357 x 872605 Total sieving time: 52.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,27,27,52,52,2.5,2.5,60000 total time: 52.43 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Apr 28, 2009
(53·10151+1)/9 = 5(8)1509<152> = C152
C152 = P41 · P112
P41 = 11005133755709399739846139646663420523079<41>
P112 = 5351037997001869599349449652602850650625326819936478162439626755570976783012160572839424777050332270827075435391<112>
Number: 58889_151 N=58888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 152 digits) SNFS difficulty: 153 digits. Divisors found: r1=11005133755709399739846139646663420523079 (pp41) r2=5351037997001869599349449652602850650625326819936478162439626755570976783012160572839424777050332270827075435391 (pp112) Version: Msieve-1.40 Total time: 17.28 hours. Scaled time: 44.13 units (timescale=2.554). Factorization parameters were as follows: name: 58889_151 n: 58888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 2000000000000000000000000000000 deg: 5 c5: 265 c0: 16 skew: 0.57 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 417672 x 417920 Total sieving time: 17.28 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 17.28 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Apr 28, 2009
(53·10159+1)/9 = 5(8)1589<160> = 32 · 13 · 47 · 61 · 543172787 · 146740646009623<15> · C132
C132 = P35 · P98
P35 = 10377904187206720222921982134102753<35>
P98 = 21223730306600451520506577284963975239844497432815229537295512873899546101677447590414810139556667<98>
Number: 58889_159 N=220257839617014993830972198331986848532988764441820703907772064964369436808103896076625018003186857576871201553751260640857244204251 ( 132 digits) SNFS difficulty: 161 digits. Divisors found: r1=10377904187206720222921982134102753 r2=21223730306600451520506577284963975239844497432815229537295512873899546101677447590414810139556667 Version: Total time: 35.62 hours. Scaled time: 13.04 units (timescale=0.366). Factorization parameters were as follows: n: 220257839617014993830972198331986848532988764441820703907772064964369436808103896076625018003186857576871201553751260640857244204251 m: 100000000000000000000000000000000 deg: 5 c5: 53 c0: 10 skew: 0.72 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 552981 x 553229 Total sieving time: 35.62 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 35.62 hours. --------- CPU info (if available) ----------
(53·10158+1)/9 = 5(8)1579<159> = 17 · 89803869709<11> · C147
C147 = P44 · P104
P44 = 19946527811963839934482153629736138114375201<44>
P104 = 19338468652164063844346333500613745540736302026055121157305398505959820677361605766269700887682845416813<104>
Number: 58889_158 N=385735302811181373164720709392959043285994687825358692003531655890684490008848014445034506438029630727378434344317104001017539262422756993915654413 ( 147 digits) SNFS difficulty: 161 digits. Divisors found: r1=19946527811963839934482153629736138114375201 r2=19338468652164063844346333500613745540736302026055121157305398505959820677361605766269700887682845416813 Version: Total time: 49.58 hours. Scaled time: 38.92 units (timescale=0.785). Factorization parameters were as follows: n: 385735302811181373164720709392959043285994687825358692003531655890684490008848014445034506438029630727378434344317104001017539262422756993915654413 m: 100000000000000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 652164 x 652412 Total sieving time: 49.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 49.58 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 27, 2009
(8·10196+1)/9 = (8)1959<196> = 3 · 1049 · 19963 · 41551177 · 17551912671521<14> · C168
C168 = P84 · P84
P84 = 421129308634456116834768473972139562323863312499765456942425930345152305882854016787<84>
P84 = 460682463707263415511160506455196986916514178796229063957358489523887114186474351731<84>
Number: 88889_196 N=194006887441057763765515995169149538695667950334540943575287725969382691109491784798555200805367453309820823386266387230890825153146947270793405098814003126465216508297 ( 168 digits) SNFS difficulty: 197 digits. Divisors found: r1=421129308634456116834768473972139562323863312499765456942425930345152305882854016787 r2=460682463707263415511160506455196986916514178796229063957358489523887114186474351731 Version: Total time: 229.06 hours. Scaled time: 547.23 units (timescale=2.389). Factorization parameters were as follows: n: 194006887441057763765515995169149538695667950334540943575287725969382691109491784798555200805367453309820823386266387230890825153146947270793405098814003126465216508297 m: 2000000000000000000000000000000000000000 deg: 5 c5: 5 c0: 2 skew: 0.83 type: snfs lss: 1 rlim: 14000000 alim: 14000000 lpbr: 29 lpba: 29 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14000000/14000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 55/55 Sieved rational special-q in [7000000, 12300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 33667751 Max relations in full relation-set: Initial matrix: Pruned matrix : 2463371 x 2463619 Total sieving time: 202.13 hours. Total relation processing time: 9.13 hours. Matrix solve time: 17.44 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,14000000,14000000,29,29,55,55,2.5,2.5,100000 total time: 229.06 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673787) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Ignacio Santos / GGNFS, Msieve / Apr 27, 2009
(53·10153-17)/9 = 5(8)1527<154> = 73 · 523 · 23831 · 229108109084325281<18> · C127
C127 = P37 · P91
P37 = 1259429971180200006189700716076596071<37>
P91 = 4773982244934065198215618554300837516932709210804279640544817629668719303310081359797913443<91>
Number: 58887_153 N=6012496321152096259587445596313959195882890027045872444206377914501626152518858072335323398759172848423407980293982711731882453 ( 127 digits) SNFS difficulty: 156 digits. Divisors found: r1=1259429971180200006189700716076596071 (pp37) r2=4773982244934065198215618554300837516932709210804279640544817629668719303310081359797913443 (pp91) Version: Msieve-1.39 Total time: 22.23 hours. Scaled time: 57.14 units (timescale=2.571). Factorization parameters were as follows: n: 6012496321152096259587445596313959195882890027045872444206377914501626152518858072335323398759172848423407980293982711731882453 m: 5000000000000000000000000000000 deg: 5 c5: 424 c0: -425 skew: 1.00 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 520131 x 520379 Total sieving time: 22.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 22.23 hours. --------- CPU info (if available) ----------
(53·10154+1)/9 = 5(8)1539<155> = 37971697959006556067063120880293<32> · C124
C124 = P56 · P68
P56 = 26750290160545884056238066771927664782732542089391686301<56>
P68 = 57975545719181940975342922884870737353678736928569607670017493537673<68>
Number: 58889_154 N=1550862670204110724982219118634479678512243171560765368957625011087319684805930920674488261437103400564207360267959541517573 ( 124 digits) SNFS difficulty: 156 digits. Divisors found: r1=26750290160545884056238066771927664782732542089391686301 (pp56) r2=57975545719181940975342922884870737353678736928569607670017493537673 (pp68) Version: Msieve-1.39 Total time: 15.78 hours. Scaled time: 27.44 units (timescale=1.739). Factorization parameters were as follows: n: 1550862670204110724982219118634479678512243171560765368957625011087319684805930920674488261437103400564207360267959541517573 m: 10000000000000000000000000000000 deg: 5 c5: 53 c0: 10 skew: 0.72 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 450588 x 450836 Total sieving time: 15.78 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 15.78 hours. --------- CPU info (if available) ----------
(53·10169-17)/9 = 5(8)1687<170> = 3 · 10289 · C166
C166 = P53 · P114
P53 = 10349469969241347631837446124602660629190655792332907<53>
P114 = 184340529031864544303987400282044404412493423618646133662587944074027945204887635621848468895056963952913120131623<114>
Number: 58887_169 N=1907826769329344895483490099099001810635594288038646090934943107165869339064012987620724038257326234777882168299118440045643855537917157122133310295425175394074218061 ( 166 digits) SNFS difficulty: 171 digits. Divisors found: r1=10349469969241347631837446124602660629190655792332907 (pp53) r2=184340529031864544303987400282044404412493423618646133662587944074027945204887635621848468895056963952913120131623 (pp114) Version: Msieve-1.39 Total time: 72.50 hours. Scaled time: 186.41 units (timescale=2.571). Factorization parameters were as follows: n: 1907826769329344895483490099099001810635594288038646090934943107165869339064012987620724038257326234777882168299118440045643855537917157122133310295425175394074218061 m: 10000000000000000000000000000000000 deg: 5 c5: 53 c0: -170 skew: 1.26 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1038042 x 1038289 Total sieving time: 72.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 72.50 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1, Msieve / Apr 27, 2009
(10212-7)/3 = (3)2111<212> = 31 · 1093 · 100741 · 10606483 · 31419071 · 50412367 · 160369474887919636204031018406084819503<39> · C142
C142 = P44 · P99
P44 = 25944778565180928052792910166261047114212759<44>
P99 = 139706665555714048450456121278199435970156709083690111782361972187434491639694660431695110194802271<99>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4244805371 Step 1 took 162657ms Step 2 took 52038ms ********** Factor found in step 2: 25944778565180928052792910166261047114212759 Found probable prime factor of 44 digits: 25944778565180928052792910166261047114212759 Probable prime cofactor 139706665555714048450456121278199435970156709083690111782361972187434491639694660431695110194802271 has 99 digits
(14·10194-11)/3 = 4(6)1933<195> = 23 · 1487 · C191
C191 = P44 · P68 · P80
P44 = 19918602523557170046661811204547110828816287<44>
P68 = 38002400406508649071698524483443108152436953406221425871715619951251<68>
P80 = 18025946657480442016359745430074112476927580274403990407522607197025714289498299<80>
Number: 46663_194 N=13644825200042883736342991920314220831749558979756927185364950342582575558219545237468689999317758739997855813182850403984288958412522051012153640731752482870871222089022738126565500034112063 ( 191 digits) SNFS difficulty: 195 digits. Divisors found: r1=19918602523557170046661811204547110828816287 r2=38002400406508649071698524483443108152436953406221425871715619951251 r3=18025946657480442016359745430074112476927580274403990407522607197025714289498299 Version: Total time: 581.92 hours. Scaled time: 1161.52 units (timescale=1.996). Factorization parameters were as follows: n: 13644825200042883736342991920314220831749558979756927185364950342582575558219545237468689999317758739997855813182850403984288958412522051012153640731752482870871222089022738126565500034112063 m: 1000000000000000000000000000000000000000 deg: 5 c5: 7 c0: -55 skew: 1.51 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 12150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1950698 x 1950946 Total sieving time: 581.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 581.92 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 27, 2009
(53·10155-17)/9 = 5(8)1547<156> = 13 · 12659042761<11> · C145
C145 = P67 · P78
P67 = 4922032361863921654624733150235114276655806509234915061421645406483<67>
P78 = 727017184113077927619676603072589808158867829035481257917742796614728442684473<78>
Number: n N=3578402107835750531698448482643947610984702739732320519120106422645908869862545312176728426906934381208959970689773175902877349108209185797638459 ( 145 digits) SNFS difficulty: 156 digits. Divisors found: r1=4922032361863921654624733150235114276655806509234915061421645406483 (pp67) r2=727017184113077927619676603072589808158867829035481257917742796614728442684473 (pp78) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 19.09 hours. Scaled time: 48.76 units (timescale=2.554). Factorization parameters were as follows: name: KA_5_8_154_7 n: 3578402107835750531698448482643947610984702739732320519120106422645908869862545312176728426906934381208959970689773175902877349108209185797638459 m: 10000000000000000000000000000000 deg: 5 c5: 53 c0: -17 skew: 0.80 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1450000, 2550001) Primes: RFBsize:210109, AFBsize:209174, largePrimes:13191696 encountered Relations: rels:12964330, finalFF:660670 Max relations in full relation-set: 28 Initial matrix: 419348 x 660670 with sparse part having weight 77279116. Pruned matrix : 341602 x 343762 with weight 40442152. Total sieving time: 17.68 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.70 hours. Total square root time: 0.44 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,28,28,56,56,2.4,2.4,100000 total time: 19.09 hours. --------- CPU info (if available) ----------
(53·10155+1)/9 = 5(8)1549<156> = 7 · 1792927 · 3543577 · C143
C143 = P67 · P76
P67 = 2443577634254454687137637845111973397935401399897115454809979896223<67>
P76 = 5418819651805614652357594463326606111851486150836128615586608425053563039831<76>
Number: n N=13241306505210711739279184521760332252149425240510002368729844950310950047876697791013586060711032376595753767593684056758030112492701795458313 ( 143 digits) SNFS difficulty: 156 digits. Divisors found: Mon Apr 27 18:10:44 2009 prp67 factor: 2443577634254454687137637845111973397935401399897115454809979896223 Mon Apr 27 18:10:44 2009 prp76 factor: 5418819651805614652357594463326606111851486150836128615586608425053563039831 Mon Apr 27 18:10:44 2009 elapsed time 00:34:11 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 15.04 hours. Scaled time: 39.84 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_8_154_9 n: 13241306505210711739279184521760332252149425240510002368729844950310950047876697791013586060711032376595753767593684056758030112492701795458313 m: 10000000000000000000000000000000 deg: 5 c5: 53 c0: 1 skew: 0.45 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1450000, 2361467) Primes: RFBsize:210109, AFBsize:210189, largePrimes:12185451 encountered Relations: rels:11340683, finalFF:370663 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 907702 hash collisions in 12192549 relations Msieve: matrix is 486333 x 486581 (129.7 MB) Total sieving time: 14.81 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,28,28,56,56,2.4,2.4,100000 total time: 15.04 hours. --------- CPU info (if available) ----------
(53·10161-17)/9 = 5(8)1607<162> = 13 · 301013 · C156
C156 = P38 · P55 · P63
P38 = 40079032860800981034271182219977895493<38>
P55 = 3845042550038572909061181163224247339297802581922082119<55>
P63 = 976531759921969567716202456727446938275394815869598707738421069<63>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 150488999807799992509622990698558863388953783720787139244149406501198616489318219808265088701481814071635773688508952434430736032327990150409780126769094023 (156 digits) Using B1=1398000, B2=2139965110, polynomial Dickson(6), sigma=2643783734 Step 1 took 23821ms Step 2 took 9563ms ********** Factor found in step 2: 40079032860800981034271182219977895493 Found probable prime factor of 38 digits: 40079032860800981034271182219977895493 Composite cofactor 3754806168364025338444730098765301182030827656499506159990711901017869567305316246258327391762206262324084086017765211 has 118 digits Number: n N=3754806168364025338444730098765301182030827656499506159990711901017869567305316246258327391762206262324084086017765211 ( 118 digits) Divisors found: Mon Apr 27 18:53:56 2009 prp55 factor: 3845042550038572909061181163224247339297802581922082119 Mon Apr 27 18:53:56 2009 prp63 factor: 976531759921969567716202456727446938275394815869598707738421069 Mon Apr 27 18:53:56 2009 elapsed time 00:56:10 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 27.34 hours. Scaled time: 72.15 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_8_160_7 n: 3754806168364025338444730098765301182030827656499506159990711901017869567305316246258327391762206262324084086017765211 Y0: -46560131168840686478827 Y1: 3378042388439 c0: 81517691767964263443146531760 c1: 2433157487496539211369302 c2: -4257028842031457161 c3: -501233010921252 c4: -401084884 c5: 17160 skew: 94782.03 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 3750001) Primes: RFBsize:315948, AFBsize:316419, largePrimes:14325298 encountered Relations: rels:13552992, finalFF:777281 Max relations in full relation-set: 28 Initial matrix: 632452 x 777281 with sparse part having weight 74821822. Pruned matrix : Msieve: found 1227986 hash collisions in 14513606 relations Msieve: matrix is 580380 x 580628 (160.7 MB) Total sieving time: 26.66 hours. Total relation processing time: 0.68 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000 total time: 27.34 hours. --------- CPU info (if available) ----------
(53·10172+1)/9 = 5(8)1719<173> = 807379 · 603812754341<12> · 28759572858649<14> · 9993027152629419597904559069<28> · C114
C114 = P38 · P77
P38 = 35301764274656969995635746440541350381<38>
P77 = 11906324612627081905737388568432204863860375854067088525617352372196014894391<77>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 420314264852507707333627373820020436227707521394433722129394296927603797534587440177074834216240620687800242612971 (114 digits) Using B1=1172000, B2=1426247560, polynomial Dickson(6), sigma=1695054277 Step 1 took 11700ms Step 2 took 5070ms ********** Factor found in step 2: 35301764274656969995635746440541350381 Found probable prime factor of 38 digits: 35301764274656969995635746440541350381 Probable prime cofactor 11906324612627081905737388568432204863860375854067088525617352372196014894391 has 77 digits
By Serge Batalov / GMP-ECM 6.2.2 / Apr 27, 2009
6·10216+1 = 6(0)2151<217> = 73 · 3559 · 4057 · 18461 · 8865690481<10> · C193
C193 = P35 · C158
P35 = 75489457323208605217787830670233307<35>
C158 = [98055067697465091816689131698585149675657995487502821941906044701157348721437441754279639798790119281752053294533196233210198961184141683435508604336743525047<158>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1144671962 Step 1 took 16225ms ********** Factor found in step 1: 75489457323208605217787830670233307 Found probable prime factor of 35 digits: 75489457323208605217787830670233307 Composite cofactor has 158 digits
6·10233+1 = 6(0)2321<234> = 294510113 · 1778348809<10> · 778008505367081881201<21> · C196
C196 = P31 · C165
P31 = 2561616974580876396755878639763<31>
C165 = [574824873435899378320065034350864626543502944955975704501487535802286423132854167632694971627309959241359282121449541103533943009375174285144531117192634556032152531<165>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2878558676 Step 1 took 15537ms Step 2 took 15985ms ********** Factor found in step 2: 2561616974580876396755878639763 Found probable prime factor of 31 digits: 2561616974580876396755878639763 Composite cofactor has 165 digits
By Tyler Cadigan / ggnfs, msieve / Apr 27, 2009
6·10194+1 = 6(0)1931<195> = 153817 · 33881245227068299278185531<26> · 901361069267656452128353133474957<33> · C132
C132 = P51 · P81
P51 = 266634767326292612283152421868647275640368024889323<51>
P81 = 479040217579134298529209937599938953347103505261874490787658533513714122044192133<81>
Number: 60001_194 N=127728776954149061732629779151943546510736581677373866290113899810994265965188567884730521444012921154476658141238516044262272295959 ( 132 digits) Divisors found: r1=266634767326292612283152421868647275640368024889323 (pp51) r2=479040217579134298529209937599938953347103505261874490787658533513714122044192133 (pp81) Version: Msieve-1.40 Total time: 172.66 hours. Scaled time: 437.34 units (timescale=2.533). Factorization parameters were as follows: name: 60001_194 n: 127728776954149061732629779151943546510736581677373866290113899810994265965188567884730521444012921154476658141238516044262272295959 skew: 135621.62 # norm 3.35e+18 c5: 118440 c4: -198636398962 c3: -14944684265948103 c2: -3350417460951912749221 c1: 53455124993580901826489895 c0: 1773295866630335112183564218255 # alpha -6.78 Y1: 439575619875863 Y0: -16090222539693828700212894 # Murphy_E 6.47e-11 # M 59533760174489839394087245664387266171938052700247014464675137044353023313433652697868784876534862498628846968815646467114351145795 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [4000000, 11000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1368948 x 1369196 Total sieving time: 166.98 hours. Total relation processing time: 0.38 hours. Matrix solve time: 3.76 hours. Time per square root: 1.54 hours. Prototype def-par.txt line would be: gnfs,131,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8000000,8000000,28,28,55,55,2.5,2.5,100000 total time: 172.66 hours. --------- CPU info (if available) ----------
Factorizations of 600...001 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Apr 26, 2009
(53·10149+1)/9 = 5(8)1489<150> = 7 · 89 · 181 · 13860095467<11> · 127907351040860227747<21> · C115
C115 = P36 · P79
P36 = 298749405551037697759977109415955797<36>
P79 = 9860477861640212173667954263879056032708182342505378235882532507138565347054351<79>
Number: 58889_149 N=2945811899614180730648502625419787915632663325606645886918019990610313348603055671902651871116824477221833172522747 ( 115 digits) SNFS difficulty: 151 digits. Divisors found: r1=298749405551037697759977109415955797 (pp36) r2=9860477861640212173667954263879056032708182342505378235882532507138565347054351 (pp79) Version: Msieve-1.39 Total time: 11.63 hours. Scaled time: 29.90 units (timescale=2.571). Factorization parameters were as follows: n: 2945811899614180730648502625419787915632663325606645886918019990610313348603055671902651871116824477221833172522747 m: 1000000000000000000000000000000 deg: 5 c5: 53 c0: 10 skew: 0.72 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 361280 x 361528 Total sieving time: 11.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 11.63 hours. --------- CPU info (if available) ----------
(53·10150-17)/9 = 5(8)1497<151> = 23 · 853 · 1003753 · 816312569 · 3680454677<10> · C122
C122 = P42 · P81
P42 = 646588374346983737232638435333887307048501<42>
P81 = 153937272537308898972231509958686605521190984086624596387981731443058693734868357<81>
Number: 58887_150 N=99534050801307145446580083087138050744490378834399385389609897359260896132388374257778620864667781554294052423079449182857 ( 122 digits) SNFS difficulty: 151 digits. Divisors found: r1=646588374346983737232638435333887307048501 (pp42) r2=153937272537308898972231509958686605521190984086624596387981731443058693734868357 (pp81) Version: Msieve-1.39 Total time: 13.05 hours. Scaled time: 33.54 units (timescale=2.571). Factorization parameters were as follows: n: 99534050801307145446580083087138050744490378834399385389609897359260896132388374257778620864667781554294052423079449182857 m: 1000000000000000000000000000000 deg: 5 c5: 53 c0: -17 skew: 0.80 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 410988 x 411236 Total sieving time: 13.05 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 13.05 hours. --------- CPU info (if available) ----------
(85·10180+41)/9 = 9(4)1799<181> = 7 · 127 · 2011 · C175
C175 = P81 · P95
P81 = 414375958481886884185001240050648075749952502026192245534940573345783519916635579<81>
P95 = 12748762611266692012282983698888185917241129880100555296765430261008552339575567088257949707889<95>
Number: 94449_180 N=5282780726501678588038255536307588602642968982432640972091318023337585039562744860771070945818495711407531045193194709438048239991880676775174361285396262314550313234714382731 ( 175 digits) SNFS difficulty: 181 digits. Divisors found: r1=414375958481886884185001240050648075749952502026192245534940573345783519916635579 (pp81) r2=12748762611266692012282983698888185917241129880100555296765430261008552339575567088257949707889 (pp95) Version: Msieve-1.39 Total time: 128.77 hours. Scaled time: 223.92 units (timescale=1.739). Factorization parameters were as follows: n: 5282780726501678588038255536307588602642968982432640972091318023337585039562744860771070945818495711407531045193194709438048239991880676775174361285396262314550313234714382731 m: 1000000000000000000000000000000000000 deg: 5 c5: 85 c0: 41 skew: 0.86 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3750000, 5850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1247569 x 1247817 Total sieving time: 128.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 128.77 hours. --------- CPU info (if available) ----------
(53·10162+1)/9 = 5(8)1619<163> = 3 · 1723 · 2655315417745817<16> · 171350162476640484283<21> · C124
C124 = P47 · P77
P47 = 26342549352212524177658708353759886900127603649<47>
P77 = 95053560209664005393787353568489591164108220293809699182000297998744547765379<77>
Number: 58889_162 N=2503953100926578709140928919928972652459114083988579647062913004484757863174594928313473290166903382947849977348817156267971 ( 124 digits) SNFS difficulty: 165 digits. Divisors found: r1=26342549352212524177658708353759886900127603649 (pp47) r2=95053560209664005393787353568489591164108220293809699182000297998744547765379 (pp77) Version: Msieve-1.39 Total time: 35.93 hours. Scaled time: 91.98 units (timescale=2.560). Factorization parameters were as follows: n: 2503953100926578709140928919928972652459114083988579647062913004484757863174594928313473290166903382947849977348817156267971 m: 500000000000000000000000000000000 deg: 5 c5: 212 c0: 125 skew: 0.90 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 724072 x 724320 Total sieving time: 35.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 35.93 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Apr 26, 2009
(53·10140+1)/9 = 5(8)1399<141> = 577153 · 11923297 · C128
C128 = P34 · P45 · P50
P34 = 3492350119576818700587648285417907<34>
P45 = 626497419541031597886693211292085596727199999<45>
P50 = 39111905731165024668312789845345170825587785659453<50>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 85574829142419551318043870019681831105246990546938000717559749678652140035247595216207608491893437943546231263497379972501175129 (128 digits) Using B1=882000, B2=871165692, polynomial Dickson(3), sigma=3328769994 Step 1 took 10904ms Step 2 took 4243ms ********** Factor found in step 2: 3492350119576818700587648285417907 Found probable prime factor of 34 digits: 3492350119576818700587648285417907 Composite cofactor 24503508013906972671895221182159865490563135055105532257550937518736971877266849444954435940547 has 95 digits Number: n N=24503508013906972671895221182159865490563135055105532257550937518736971877266849444954435940547 ( 95 digits) Divisors found: r1=626497419541031597886693211292085596727199999 (pp45) r2=39111905731165024668312789845345170825587785659453 (pp50) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 3.36 hours. Scaled time: 8.94 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_8_139_9 n: 24503508013906972671895221182159865490563135055105532257550937518736971877266849444954435940547 m: 4878869189112173983388 deg: 4 c4: 43246560 c3: 243773149584 c2: 347355289183340212 c1: -1107047333699642379 c0: -74718258204081308948937 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.819 # E(F1,F2) = 4.143619e-05 # GGNFS version 0.77.1-20060513-pentium-m polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1240667234. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1440001) Primes: RFBsize:92938, AFBsize:92998, largePrimes:1843462 encountered Relations: rels:1887158, finalFF:211814 Max relations in full relation-set: 28 Initial matrix: 186017 x 211814 with sparse part having weight 16131864. Pruned matrix : 174225 x 175219 with weight 11184565. Total sieving time: 3.17 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 3.36 hours. --------- CPU info (if available) ----------
(53·10142+1)/9 = 5(8)1419<143> = 172 · 6379 · 2008796784103<13> · 24838614894526801<17> · C108
C108 = P43 · P66
P43 = 2068776505732953917580438564404929945073177<43>
P66 = 309461026129065613336287718747252395686825797638200927646978423349<66>
Number: n N=640205700295822709913287799054834670776087148367279389602473482798865277861406545945488212501320225890409773 ( 108 digits) Divisors found: Sun Apr 26 14:28:43 2009 prp43 factor: 2068776505732953917580438564404929945073177 Sun Apr 26 14:28:43 2009 prp66 factor: 309461026129065613336287718747252395686825797638200927646978423349 Sun Apr 26 14:28:43 2009 elapsed time 00:27:26 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 9.15 hours. Scaled time: 23.74 units (timescale=2.595). Factorization parameters were as follows: name: KA_5_8_141_9 n: 640205700295822709913287799054834670776087148367279389602473482798865277861406545945488212501320225890409773 Y0: -715245836271708223585 Y1: 146694848041 c0: 286853924357173847644917408 c1: 9917237000351373716964 c2: -1001623086484141097 c3: -14504523771059 c4: 642729609 c5: 3420 skew: 32438.62 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1250000, 2346959) Primes: RFBsize:183072, AFBsize:182762, largePrimes:15313352 encountered Relations: rels:13294024, finalFF:336894 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1147672 hash collisions in 14735925 relations Msieve: matrix is 368338 x 368586 (100.7 MB) Total sieving time: 8.61 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 9.15 hours. --------- CPU info (if available) ----------
By matsui / GGNFS / Apr 26, 2009
4·10177-9 = 3(9)1761<178> = 13 · 227 · 385001 · 5083123 · 1162925053<10> · 332230023790700823439<21> · C133
C133 = P41 · P92
P41 = 64657499314578118063033769725403663002679<41>
P92 = 27726100791358863600050685537869345949466612785403199549604397338078169719410730274414575719<92>
N=1792700342913209540033076226702597938072348072879606518518071854016188520494872504571755209446502225955209177348084664558615345351201 ( 133 digits) SNFS difficulty: 177 digits. Divisors found: r1=64657499314578118063033769725403663002679 (pp41) r2=27726100791358863600050685537869345949466612785403199549604397338078169719410730274414575719 (pp92) Version: GGNFS-0.77.1-20060722-nocona
By Ignacio Santos / GGNFS, Msieve / Apr 25, 2009
(53·10113+1)/9 = 5(8)1129<114> = 7 · 47 · C112
C112 = P39 · P73
P39 = 289531175486154600675813449406456787961<39>
P73 = 6182186873256482269014449455225313046649108060530092150465438847951149881<73>
Number: 58889_113 N=1789935832489023978385680513340087808172914555893279297534616683552853765619723066531577169875042215467747382641 ( 112 digits) SNFS difficulty: 116 digits. Divisors found: r1=289531175486154600675813449406456787961 (pp39) r2=6182186873256482269014449455225313046649108060530092150465438847951149881 (pp73) Version: Msieve-1.39 Total time: 1.06 hours. Scaled time: 1.28 units (timescale=1.203). Factorization parameters were as follows: n: 1789935832489023978385680513340087808172914555893279297534616683552853765619723066531577169875042215467747382641 m: 100000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 59612 x 59838 Total sieving time: 1.03 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 1.06 hours. --------- CPU info (if available) ----------
(53·10128+1)/9 = 5(8)1279<129> = 19 · 71 · 673 · 941 · 5903 · 921784063808351<15> · C102
C102 = P29 · P74
P29 = 12421340045339931728781770009<29>
P74 = 10198734659319124820400947026165352095142553000316341381362596248248760401<74>
Number: 58889_128 N=126681951235596951070128622542082458491076664658048307858846714431283866232339985443226702580928613609 ( 102 digits) SNFS difficulty: 131 digits. Divisors found: r1=12421340045339931728781770009 (pp29) r2=10198734659319124820400947026165352095142553000316341381362596248248760401 (pp74) Version: Msieve-1.39 Total time: 2.59 hours. Scaled time: 3.08 units (timescale=1.186). Factorization parameters were as follows: n: 126681951235596951070128622542082458491076664658048307858846714431283866232339985443226702580928613609 m: 100000000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148952 x 149186 Total sieving time: 2.48 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.59 hours. --------- CPU info (if available) ----------
(53·10133+1)/9 = 5(8)1329<134> = 262918391 · C126
C126 = P58 · P68
P58 = 6902507297954552900544343980154530186562139765296085565049<58>
P68 = 32449313991032259990721014237413613972619180694610646930008757342471<68>
Number: 58889_133 N=223981626636718953939166959563847661341001013842690406883286034140110377021472373489798546990533229335367752531578853640896079 ( 126 digits) SNFS difficulty: 136 digits. Divisors found: r1=6902507297954552900544343980154530186562139765296085565049 (pp58) r2=32449313991032259990721014237413613972619180694610646930008757342471 (pp68) Version: Msieve-1.39 Total time: 4.06 hours. Scaled time: 4.83 units (timescale=1.189). Factorization parameters were as follows: n: 223981626636718953939166959563847661341001013842690406883286034140110377021472373489798546990533229335367752531578853640896079 m: 1000000000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 197595 x 197831 Total sieving time: 3.86 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 4.06 hours. --------- CPU info (if available) ----------
(53·10138+1)/9 = 5(8)1379<139> = 3 · 568606156271<12> · 421748910868721<15> · C112
C112 = P42 · P71
P42 = 633237938276842858605725159374066027361003<42>
P71 = 12926461350690842029880554414352022638905256637045133099332495876548231<71>
Number: 58889_138 N=8185525734926762194466972507409641598365163339665518849949331023072147151841412623469926862436337252969778035693 ( 112 digits) SNFS difficulty: 141 digits. Divisors found: r1=633237938276842858605725159374066027361003 (pp42) r2=12926461350690842029880554414352022638905256637045133099332495876548231 (pp71) Version: Msieve-1.39 Total time: 5.99 hours. Scaled time: 7.06 units (timescale=1.178). Factorization parameters were as follows: n: 8185525734926762194466972507409641598365163339665518849949331023072147151841412623469926862436337252969778035693 m: 10000000000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1705001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 238513 x 238750 Total sieving time: 5.82 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 5.99 hours. --------- CPU info (if available) ----------
(53·10146+1)/9 = 5(8)1459<147> = 19 · 541 · 1172317 · 235060575725579<15> · C123
C123 = P34 · P89
P34 = 9237495928744902899345213964123421<34>
P89 = 22506262284520226043638845786993481451478146780791861537970684431898609724245820689195797<89>
Number: 58889_146 N=207901506224520545540916343484854785474436665052904598304605157182071243981211522776531317754495948145242139489790542461537 ( 123 digits) SNFS difficulty: 148 digits. Divisors found: r1=9237495928744902899345213964123421 (pp34) r2=22506262284520226043638845786993481451478146780791861537970684431898609724245820689195797 (pp89) Version: Msieve-1.39 Total time: 8.46 hours. Scaled time: 21.74 units (timescale=2.571). Factorization parameters were as follows: n: 207901506224520545540916343484854785474436665052904598304605157182071243981211522776531317754495948145242139489790542461537 m: 200000000000000000000000000000 deg: 5 c5: 265 c0: 16 skew: 0.57 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 347190 x 347428 Total sieving time: 8.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 8.46 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Apr 25, 2009
(53·10125-17)/9 = 5(8)1247<126> = 13 · 339749 · 35535200978096463458378999<26> · C94
C94 = P36 · P59
P36 = 333310210633105268385300246208958849<36>
P59 = 11257045633707776513130579531935967239498275141186226824801<59>
Sat Apr 25 07:11:07 2009 Msieve v. 1.41 Sat Apr 25 07:11:07 2009 random seeds: 54733750 bd397ade Sat Apr 25 07:11:07 2009 factoring 3752088251277616965378755358494011502094212586258828900203423274576430990063210653009341614049 (94 digits) Sat Apr 25 07:11:08 2009 searching for 15-digit factors Sat Apr 25 07:11:09 2009 commencing quadratic sieve (94-digit input) Sat Apr 25 07:11:10 2009 using multiplier of 1 Sat Apr 25 07:11:10 2009 using 32kb Intel Core sieve core Sat Apr 25 07:11:10 2009 sieve interval: 36 blocks of size 32768 Sat Apr 25 07:11:10 2009 processing polynomials in batches of 6 Sat Apr 25 07:11:10 2009 using a sieve bound of 2023667 (75294 primes) Sat Apr 25 07:11:10 2009 using large prime bound of 271171378 (28 bits) Sat Apr 25 07:11:10 2009 using double large prime bound of 1512999890036866 (42-51 bits) Sat Apr 25 07:11:10 2009 using trial factoring cutoff of 51 bits Sat Apr 25 07:11:10 2009 polynomial 'A' values have 12 factors Sat Apr 25 10:02:45 2009 75406 relations (18873 full + 56533 combined from 1065411 partial), need 75390 Sat Apr 25 10:02:47 2009 begin with 1084284 relations Sat Apr 25 10:02:48 2009 reduce to 194604 relations in 11 passes Sat Apr 25 10:02:48 2009 attempting to read 194604 relations Sat Apr 25 10:02:51 2009 recovered 194604 relations Sat Apr 25 10:02:51 2009 recovered 177197 polynomials Sat Apr 25 10:02:51 2009 attempting to build 75406 cycles Sat Apr 25 10:02:51 2009 found 75406 cycles in 6 passes Sat Apr 25 10:02:51 2009 distribution of cycle lengths: Sat Apr 25 10:02:51 2009 length 1 : 18873 Sat Apr 25 10:02:51 2009 length 2 : 13359 Sat Apr 25 10:02:51 2009 length 3 : 12926 Sat Apr 25 10:02:51 2009 length 4 : 10168 Sat Apr 25 10:02:51 2009 length 5 : 7471 Sat Apr 25 10:02:51 2009 length 6 : 5003 Sat Apr 25 10:02:51 2009 length 7 : 3191 Sat Apr 25 10:02:51 2009 length 9+: 4415 Sat Apr 25 10:02:51 2009 largest cycle: 21 relations Sat Apr 25 10:02:51 2009 matrix is 75294 x 75406 (19.0 MB) with weight 4689045 (62.18/col) Sat Apr 25 10:02:51 2009 sparse part has weight 4689045 (62.18/col) Sat Apr 25 10:02:53 2009 filtering completed in 3 passes Sat Apr 25 10:02:53 2009 matrix is 71416 x 71480 (18.2 MB) with weight 4481400 (62.69/col) Sat Apr 25 10:02:53 2009 sparse part has weight 4481400 (62.69/col) Sat Apr 25 10:02:53 2009 saving the first 48 matrix rows for later Sat Apr 25 10:02:53 2009 matrix is 71368 x 71480 (10.9 MB) with weight 3486418 (48.77/col) Sat Apr 25 10:02:53 2009 sparse part has weight 2428371 (33.97/col) Sat Apr 25 10:02:53 2009 matrix includes 64 packed rows Sat Apr 25 10:02:53 2009 using block size 28592 for processor cache size 1024 kB Sat Apr 25 10:02:53 2009 commencing Lanczos iteration Sat Apr 25 10:02:53 2009 memory use: 10.9 MB Sat Apr 25 10:03:25 2009 lanczos halted after 1130 iterations (dim = 71366) Sat Apr 25 10:03:25 2009 recovered 16 nontrivial dependencies Sat Apr 25 10:03:26 2009 prp36 factor: 333310210633105268385300246208958849 Sat Apr 25 10:03:26 2009 prp59 factor: 11257045633707776513130579531935967239498275141186226824801 Sat Apr 25 10:03:26 2009 elapsed time 02:52:19
(44·10200-53)/9 = 4(8)1993<201> = 3 · 7 · 23 · 490151 · 603522709 · 12983684697563<14> · 485460576989519<15> · 7046882295480502467634870497200027<34> · C122
C122 = P41 · P82
P41 = 17093319897861558819189989484935430767783<41>
P82 = 4506757199284748937489169617028628948676844119512148373046760090531769332278731307<82>
Number: 48883_200 N=77035442509364829592824984655079160994427570285601319384761126720874299891224577489225266938170642713438522459468169082381 ( 122 digits) Divisors found: r1=17093319897861558819189989484935430767783 (pp41) r2=4506757199284748937489169617028628948676844119512148373046760090531769332278731307 (pp82) Version: Msieve-1.40 Total time: 79.27 hours. Scaled time: 154.97 units (timescale=1.955). Factorization parameters were as follows: name: 48883_200 # Murphy_E = 2.266954e-10, selected by Jeff Gilchrist n: 77035442509364829592824984655079160994427570285601319384761126720874299891224577489225266938170642713438522459468169082381 Y0: -368091799120498919063005 Y1: 12847974784117 c0: 109359585716408333906284552008 c1: 3405141569669740082931020 c2: -37901142473314887746 c3: -844999055076687 c4: 3776565670 c5: 11400 skew: 118654.68 type: gnfs # selected mechanically rlim: 5900000 alim: 5900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2950000, 5350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 810955 x 811203 Total sieving time: 79.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5900000,5900000,27,27,52,52,2.5,2.5,100000 total time: 79.27 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Apr 25, 2009
(53·10137+1)/9 = 5(8)1369<138> = 7 · 31 · 83 · 563 · C131
C131 = P35 · P97
P35 = 36467916497685454043561178729676819<35>
P97 = 1592488069431850510302639201300386274192150371140061427937716746570830122530356070413043274127267<97>
GMP-ECM 6.2.1 [powered by GMP 4.1.4] [ECM] Input number is 58074721939601040028418481668829073459340358599573882754390265440597520075691743627452543446548688855220890656508104815055185723673 (131 digits) Using B1=2328000, B2=3567716890, polynomial Dickson(6), sigma=2561432034 Step 1 took 30984ms Step 2 took 14000ms ********** Factor found in step 2: 36467916497685454043561178729676819 Found probable prime factor of 35 digits: 36467916497685454043561178729676819 Probable prime cofactor 1592488069431850510302639201300386274192150371140061427937716746570830122530356070413043274127267 has 97 digits
(53·10149-17)/9 = 5(8)1487<150> = 13 · 71 · 103 · 349 · 45001306334623<14> · C129
C129 = P60 · P70
P60 = 131330752110030357457784241422186029366093966226597288556911<60>
P70 = 3003152975980207409359615676165557286711523353567898461432663515019759<70>
Number: n N=394406339036956571634680918351574479618516919731322456206028760825031051850575746378939836515426834482961187849144726626761004449 ( 129 digits) SNFS difficulty: 151 digits. Divisors found: Sat Apr 25 14:53:44 2009 prp60 factor: 131330752110030357457784241422186029366093966226597288556911 Sat Apr 25 14:53:44 2009 prp70 factor: 3003152975980207409359615676165557286711523353567898461432663515019759 Sat Apr 25 14:53:44 2009 elapsed time 00:30:53 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 14.25 hours. Scaled time: 23.12 units (timescale=1.623). Factorization parameters were as follows: name: KA_5_8_148_7 n: 394406339036956571634680918351574479618516919731322456206028760825031051850575746378939836515426834482961187849144726626761004449 m: 1000000000000000000000000000000 deg: 5 c5: 53 c0: -170 skew: 1.26 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1200000, 2100000) Primes: RFBsize:176302, AFBsize:177593, largePrimes:12023284 encountered Relations: rels:11768502, finalFF:640523 Max relations in full relation-set: 28 Initial matrix: 353960 x 640523 with sparse part having weight 76137185. Pruned matrix : 278048 x 279881 with weight 34253707. Msieve: found 1026664 hash collisions in 12593327 relations Msieve: matrix is 353458 x 353706 (92.8 MB) Total sieving time: 13.96 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.02 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.4,2.4,100000 total time: 14.25 hours. --------- CPU info (if available) ----------
(17·10168+7)/3 = 5(6)1679<169> = 739 · 857 · 4229411 · 851745859 · C148
C148 = P62 · P87
P62 = 17750314911886256685469328373006864448252907163669091067552591<62>
P87 = 139928578638319314678328668947574395690000477539047365624769415108634425048302841672417<87>
Number: n N=2483776336002808045620469682926685372479589939012661589982962543702359427428652288125288118566905146030280923577515033415821039268567270581541582447 ( 148 digits) SNFS difficulty: 170 digits. Divisors found: Sat Apr 25 15:59:55 2009 prp62 factor: 17750314911886256685469328373006864448252907163669091067552591 Sat Apr 25 15:59:55 2009 prp87 factor: 139928578638319314678328668947574395690000477539047365624769415108634425048302841672417 Sat Apr 25 15:59:55 2009 elapsed time 01:36:27 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 60.77 hours. Scaled time: 160.36 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_6_167_9 n: 2483776336002808045620469682926685372479589939012661589982962543702359427428652288125288118566905146030280923577515033415821039268567270581541582447 m: 5000000000000000000000000000000000 deg: 5 c5: 136 c0: 175 skew: 1.05 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2450000, 5951689) Primes: RFBsize:341992, AFBsize:341883, largePrimes:17859820 encountered Relations: rels:18199396, finalFF:629046 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2359672 hash collisions in 20150521 relations Msieve: matrix is 817865 x 818113 (216.9 MB) Total sieving time: 59.83 hours. Total relation processing time: 0.94 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,28,28,56,56,2.4,2.4,100000 total time: 60.77 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.41 / Apr 25, 2009
(53·10188+1)/9 = 5(8)1879<189> = 23 · 149 · 9133 · 1021637597731<13> · C170
C170 = P35 · C135
P35 = 29078929780665430520713512844261283<35>
C135 = [633330658677630357428348768527318821653634753038708389251181720953905597265954465448747588805040851833232202227201717842921321235662823<135>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1241649351 Step 1 took 11620ms Step 2 took 13245ms ********** Factor found in step 2: 29078929780665430520713512844261283 Found probable prime factor of 35 digits: 29078929780665430520713512844261283 Composite cofactor has 135 digits
(53·10178+1)/9 = 5(8)1779<179> = 29 · 83 · 56671 · 397302042061058419<18> · C154
C154 = P30 · C124
P30 = 764648480363550491427385880911<30>
C124 = [1421064422676721817294303535151760278742043022221943758499295816466638534361724872580455743508352819227160020715265251355093<124>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3079772143 Step 1 took 9764ms Step 2 took 11665ms ********** Factor found in step 2: 764648480363550491427385880911 Found probable prime factor of 30 digits: 764648480363550491427385880911 Composite cofactor has 124 digits
(53·10143+1)/9 = 5(8)1429<144> = 73 · C142
C142 = P53 · P89
P53 = 79473050106862706275240784169605362262487122995225933<53>
P89 = 21603263304638811935007782608993962985407454791157017884866832547047245476678698092370731<89>
SNFS difficulty: 146 digits. Divisors found: r1=79473050106862706275240784169605362262487122995225933 (pp53) r2=21603263304638811935007782608993962985407454791157017884866832547047245476678698092370731 (pp89) Version: Msieve-1.41 Total time: 6.28 hours. Factorization parameters were as follows: n: 1716877227081308713961775186264982183349530288305798509880142533203757693553611920958859734369938451571104632329122125040492387431162941367023 m: 100000000000000000000000000000 deg: 5 c5: 53 c0: 100 skew: 1.14 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 2175001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 319085 x 319317 Total sieving time: 6.00 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.15 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,146.000,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 6.28 hours.
By Wataru Sakai / Msieve / Apr 25, 2009
(7·10200+11)/9 = (7)1999<200> = 31 · C199
C199 = P46 · P154
P46 = 1224138868623984405220163344723881547828209211<46>
P154 = 2049571856416049713388251526936262340434423910767572808137910239843291577199511366868089995800953673223303727077940898700883017337359301880186873070702519<154>
Number: 77779_200 N=2508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702509 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=1224138868623984405220163344723881547828209211 r2=2049571856416049713388251526936262340434423910767572808137910239843291577199511366868089995800953673223303727077940898700883017337359301880186873070702519 Version: Total time: 659.25 hours. Scaled time: 1318.50 units (timescale=2.000). Factorization parameters were as follows: n: 2508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702508960573476702509 m: 10000000000000000000000000000000000000000 deg: 5 c5: 7 c0: 11 skew: 1.09 type: snfs lss: 1 rlim: 15600000 alim: 15600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 15600000/15600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7800000, 14200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2392576 x 2392824 Total sieving time: 659.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000 total time: 659.25 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS via factLat.pl / Apr 25, 2009
(53·10103+1)/9 = 5(8)1029<104> = 17597 · 35327 · C95
C95 = P30 · P66
P30 = 660234879222823531615373589467<30>
P66 = 143479384203030468046198093958135532280512482215395035709729983593<66>
Number: c95 N=94730093900252915605913258436650410862800245694330855242156893772095109619833510783979427614931 ( 95 digits) SNFS difficulty: 105 digits. Divisors found: r1=660234879222823531615373589467 (pp30) r2=143479384203030468046198093958135532280512482215395035709729983593 (pp66) Version: GGNFS-0.77.1-VC8(Sat Total time: 0.35 hours. Scaled time: 0.38 units (timescale=1.083). Factorization parameters were as follows: n: 94730093900252915605913258436650410862800245694330855242156893772095109619833510783979427614931 m: 100000000000000000000000000 deg: 4 c4: 53 c0: 10 skew: 0.66 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 260001) Primes: RFBsize:33860, AFBsize:33767, largePrimes:1130050 encountered Relations: rels:1106897, finalFF:145363 Max relations in full relation-set: 32 Initial matrix: 67692 x 145363 with sparse part having weight 5316144. Pruned matrix : 41195 x 41597 with weight 1145405. Total sieving time: 0.32 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.35 hours. --------- CPU info (if available) ----------
Factorizations of 588...889 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Apr 24, 2009
(53·10165-71)/9 = 5(8)1641<166> = 367 · 1942027 · 1371144007102407524796878911<28> · C130
C130 = P37 · P93
P37 = 7456075032830949289097809630839141133<37>
P93 = 808199714463033799839895000646180717663570250954579698107795831316200571506223546388577376143<93>
Number: 58881_165 N=6025997712548928580140437380295469588477406790695466700698973804134750409989600365698409400134707346602045944981706534764804190019 ( 130 digits) SNFS difficulty: 166 digits. Divisors found: r1=7456075032830949289097809630839141133 r2=808199714463033799839895000646180717663570250954579698107795831316200571506223546388577376143 Version: Total time: 24.84 hours. Scaled time: 59.16 units (timescale=2.382). Factorization parameters were as follows: n: 6025997712548928580140437380295469588477406790695466700698973804134750409989600365698409400134707346602045944981706534764804190019 m: 1000000000000000000000000000000000 deg: 5 c5: 53 c0: -71 skew: 1.06 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9904777 Max relations in full relation-set: Initial matrix: Pruned matrix : 778856 x 779104 Total sieving time: 22.38 hours. Total relation processing time: 0.97 hours. Matrix solve time: 1.39 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 24.84 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672387) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672339) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672379)
2·10191-1 = 1(9)191<192> = 2749 · 218227091623637911<18> · 1634251873308525786539681<25> · C147
C147 = P39 · P108
P39 = 374917624436804778786980691929301633251<39>
P108 = 544116308602057079193319001051462073305059198331631713353356980808064530293851666207891990993563912562753711<108>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 203998793838406605456849058402298086054508973666863581672079665320253658796228665748890577906627191442159765577090127199451780519415081662361244461 (147 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2535079878 Step 1 took 13915ms Step 2 took 6304ms ********** Factor found in step 2: 374917624436804778786980691929301633251 Found probable prime factor of 39 digits: 374917624436804778786980691929301633251 Probable prime cofactor 544116308602057079193319001051462073305059198331631713353356980808064530293851666207891990993563912562753711 has 108 digits
2·10180-1 = 1(9)180<181> = 2089 · 25247 · 906097649 · 2812810690923703<16> · C149
C149 = P37 · P112
P37 = 3646742702319169110919751900918642423<37>
P112 = 4080009229030868132507753050857621102187848916600309751871730009887972204041194243916993303782420351451924397113<112>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 14878743881363177813121181985179871892369482209890801997246302818188423938858501010328725657818896907386546241733098581247875698793343660876700524799 (149 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=386652535 Step 1 took 13915ms Step 2 took 6364ms ********** Factor found in step 2: 3646742702319169110919751900918642423 Found probable prime factor of 37 digits: 3646742702319169110919751900918642423 Probable prime cofactor 4080009229030868132507753050857621102187848916600309751871730009887972204041194243916993303782420351451924397113 has 112 digits
By Sinkiti Sibata / Msieve / Apr 24, 2009
(53·10113-17)/9 = 5(8)1127<114> = 13 · 2963 · 255383398285427<15> · C95
C95 = P34 · P62
P34 = 5067488575798423942258912441786211<34>
P62 = 11813345789802296777872794313744435491728937700087705183033609<62>
Fri Apr 24 06:48:16 2009 Msieve v. 1.41 Fri Apr 24 06:48:16 2009 random seeds: 4fb1af00 b2fd5f23 Fri Apr 24 06:48:16 2009 factoring 59863994831779548547391373386370555107607649273242788480501437709143034117417916270887605765499 (95 digits) Fri Apr 24 06:48:17 2009 searching for 15-digit factors Fri Apr 24 06:48:19 2009 commencing quadratic sieve (95-digit input) Fri Apr 24 06:48:19 2009 using multiplier of 3 Fri Apr 24 06:48:19 2009 using 32kb Intel Core sieve core Fri Apr 24 06:48:19 2009 sieve interval: 36 blocks of size 32768 Fri Apr 24 06:48:19 2009 processing polynomials in batches of 6 Fri Apr 24 06:48:19 2009 using a sieve bound of 2150039 (80000 primes) Fri Apr 24 06:48:19 2009 using large prime bound of 322505850 (28 bits) Fri Apr 24 06:48:19 2009 using double large prime bound of 2067129303583950 (43-51 bits) Fri Apr 24 06:48:19 2009 using trial factoring cutoff of 51 bits Fri Apr 24 06:48:19 2009 polynomial 'A' values have 12 factors Fri Apr 24 06:48:19 2009 restarting with 1761 full and 115577 partial relations Fri Apr 24 11:14:39 2009 80263 relations (18873 full + 61390 combined from 1218465 partial), need 80096 Fri Apr 24 11:14:40 2009 begin with 1237338 relations Fri Apr 24 11:14:42 2009 reduce to 213249 relations in 11 passes Fri Apr 24 11:14:42 2009 attempting to read 213249 relations Fri Apr 24 11:14:46 2009 recovered 213249 relations Fri Apr 24 11:14:46 2009 recovered 200611 polynomials Fri Apr 24 11:14:46 2009 attempting to build 80263 cycles Fri Apr 24 11:14:46 2009 found 80263 cycles in 6 passes Fri Apr 24 11:14:46 2009 distribution of cycle lengths: Fri Apr 24 11:14:46 2009 length 1 : 18873 Fri Apr 24 11:14:46 2009 length 2 : 13543 Fri Apr 24 11:14:46 2009 length 3 : 13334 Fri Apr 24 11:14:46 2009 length 4 : 11007 Fri Apr 24 11:14:46 2009 length 5 : 8458 Fri Apr 24 11:14:46 2009 length 6 : 5909 Fri Apr 24 11:14:46 2009 length 7 : 3736 Fri Apr 24 11:14:46 2009 length 9+: 5403 Fri Apr 24 11:14:46 2009 largest cycle: 21 relations Fri Apr 24 11:14:46 2009 matrix is 80000 x 80263 (22.1 MB) with weight 5481572 (68.30/col) Fri Apr 24 11:14:46 2009 sparse part has weight 5481572 (68.30/col) Fri Apr 24 11:14:48 2009 filtering completed in 3 passes Fri Apr 24 11:14:48 2009 matrix is 76727 x 76791 (21.3 MB) with weight 5264271 (68.55/col) Fri Apr 24 11:14:48 2009 sparse part has weight 5264271 (68.55/col) Fri Apr 24 11:14:48 2009 saving the first 48 matrix rows for later Fri Apr 24 11:14:48 2009 matrix is 76679 x 76791 (14.7 MB) with weight 4313718 (56.17/col) Fri Apr 24 11:14:48 2009 sparse part has weight 3380078 (44.02/col) Fri Apr 24 11:14:48 2009 matrix includes 64 packed rows Fri Apr 24 11:14:48 2009 using block size 30716 for processor cache size 1024 kB Fri Apr 24 11:14:49 2009 commencing Lanczos iteration Fri Apr 24 11:14:49 2009 memory use: 13.4 MB Fri Apr 24 11:15:34 2009 lanczos halted after 1214 iterations (dim = 76677) Fri Apr 24 11:15:35 2009 recovered 16 nontrivial dependencies Fri Apr 24 11:15:37 2009 prp34 factor: 5067488575798423942258912441786211 Fri Apr 24 11:15:37 2009 prp62 factor: 11813345789802296777872794313744435491728937700087705183033609 Fri Apr 24 11:15:37 2009 elapsed time 04:27:21
(53·10114-17)/9 = 5(8)1137<115> = 71 · 181 · 277 · 10789 · 18899 · 68813 · C96
C96 = P36 · P60
P36 = 167266927763015205609857861924093563<36>
P60 = 704881442955466017239089882681824408103143399235767556204409<60>
Fri Apr 24 12:54:32 2009 Msieve v. 1.41 Fri Apr 24 12:54:32 2009 random seeds: 59d15950 4f27dd33 Fri Apr 24 12:54:32 2009 factoring 117903353400321857683749787677987415989823219588292979192960515969393246858575069561884069119267 (96 digits) Fri Apr 24 12:54:33 2009 searching for 15-digit factors Fri Apr 24 12:54:34 2009 commencing quadratic sieve (96-digit input) Fri Apr 24 12:54:34 2009 using multiplier of 3 Fri Apr 24 12:54:34 2009 using 32kb Intel Core sieve core Fri Apr 24 12:54:34 2009 sieve interval: 36 blocks of size 32768 Fri Apr 24 12:54:34 2009 processing polynomials in batches of 6 Fri Apr 24 12:54:34 2009 using a sieve bound of 2191457 (81176 primes) Fri Apr 24 12:54:34 2009 using large prime bound of 328718550 (28 bits) Fri Apr 24 12:54:34 2009 using double large prime bound of 2139358506583350 (43-51 bits) Fri Apr 24 12:54:34 2009 using trial factoring cutoff of 51 bits Fri Apr 24 12:54:34 2009 polynomial 'A' values have 12 factors Fri Apr 24 17:40:31 2009 81350 relations (19358 full + 61992 combined from 1224123 partial), need 81272 Fri Apr 24 17:40:33 2009 begin with 1243481 relations Fri Apr 24 17:40:34 2009 reduce to 214446 relations in 11 passes Fri Apr 24 17:40:34 2009 attempting to read 214446 relations Fri Apr 24 17:40:37 2009 recovered 214446 relations Fri Apr 24 17:40:37 2009 recovered 201995 polynomials Fri Apr 24 17:40:38 2009 attempting to build 81350 cycles Fri Apr 24 17:40:38 2009 found 81350 cycles in 5 passes Fri Apr 24 17:40:38 2009 distribution of cycle lengths: Fri Apr 24 17:40:38 2009 length 1 : 19358 Fri Apr 24 17:40:38 2009 length 2 : 13809 Fri Apr 24 17:40:38 2009 length 3 : 13726 Fri Apr 24 17:40:38 2009 length 4 : 11158 Fri Apr 24 17:40:38 2009 length 5 : 8472 Fri Apr 24 17:40:38 2009 length 6 : 5816 Fri Apr 24 17:40:38 2009 length 7 : 3810 Fri Apr 24 17:40:38 2009 length 9+: 5201 Fri Apr 24 17:40:38 2009 largest cycle: 20 relations Fri Apr 24 17:40:38 2009 matrix is 81176 x 81350 (22.6 MB) with weight 5591847 (68.74/col) Fri Apr 24 17:40:38 2009 sparse part has weight 5591847 (68.74/col) Fri Apr 24 17:40:40 2009 filtering completed in 3 passes Fri Apr 24 17:40:40 2009 matrix is 77874 x 77938 (21.8 MB) with weight 5392030 (69.18/col) Fri Apr 24 17:40:40 2009 sparse part has weight 5392030 (69.18/col) Fri Apr 24 17:40:40 2009 saving the first 48 matrix rows for later Fri Apr 24 17:40:40 2009 matrix is 77826 x 77938 (15.6 MB) with weight 4492035 (57.64/col) Fri Apr 24 17:40:40 2009 sparse part has weight 3631965 (46.60/col) Fri Apr 24 17:40:40 2009 matrix includes 64 packed rows Fri Apr 24 17:40:40 2009 using block size 31175 for processor cache size 1024 kB Fri Apr 24 17:40:41 2009 commencing Lanczos iteration Fri Apr 24 17:40:41 2009 memory use: 14.0 MB Fri Apr 24 17:41:26 2009 lanczos halted after 1233 iterations (dim = 77826) Fri Apr 24 17:41:26 2009 recovered 18 nontrivial dependencies Fri Apr 24 17:41:27 2009 prp36 factor: 167266927763015205609857861924093563 Fri Apr 24 17:41:27 2009 prp60 factor: 704881442955466017239089882681824408103143399235767556204409 Fri Apr 24 17:41:27 2009 elapsed time 04:46:55
(53·10121-17)/9 = 5(8)1207<122> = 32 · 21211 · 620505581 · 136569534114199<15> · C94
C94 = P37 · P58
P37 = 3631090387354731446722862437746442697<37>
P58 = 1002520188473252584276320790788755291702994964270538468591<58>
Fri Apr 24 18:28:38 2009 Msieve v. 1.41 Fri Apr 24 18:28:38 2009 random seeds: 752e6e18 d6e9ebde Fri Apr 24 18:28:38 2009 factoring 3640241419494281102214649384034662170741936618630879393491492058162045661401457588404315829927 (94 digits) Fri Apr 24 18:28:39 2009 searching for 15-digit factors Fri Apr 24 18:28:41 2009 commencing quadratic sieve (94-digit input) Fri Apr 24 18:28:41 2009 using multiplier of 3 Fri Apr 24 18:28:41 2009 using 32kb Intel Core sieve core Fri Apr 24 18:28:41 2009 sieve interval: 36 blocks of size 32768 Fri Apr 24 18:28:41 2009 processing polynomials in batches of 6 Fri Apr 24 18:28:41 2009 using a sieve bound of 2024387 (75294 primes) Fri Apr 24 18:28:41 2009 using large prime bound of 271267858 (28 bits) Fri Apr 24 18:28:41 2009 using double large prime bound of 1513968973265930 (42-51 bits) Fri Apr 24 18:28:41 2009 using trial factoring cutoff of 51 bits Fri Apr 24 18:28:41 2009 polynomial 'A' values have 12 factors Fri Apr 24 21:36:38 2009 75663 relations (18586 full + 57077 combined from 1073486 partial), need 75390 Fri Apr 24 21:36:39 2009 begin with 1092072 relations Fri Apr 24 21:36:40 2009 reduce to 196620 relations in 11 passes Fri Apr 24 21:36:40 2009 attempting to read 196620 relations Fri Apr 24 21:36:43 2009 recovered 196620 relations Fri Apr 24 21:36:43 2009 recovered 180006 polynomials Fri Apr 24 21:36:43 2009 attempting to build 75663 cycles Fri Apr 24 21:36:44 2009 found 75663 cycles in 5 passes Fri Apr 24 21:36:44 2009 distribution of cycle lengths: Fri Apr 24 21:36:44 2009 length 1 : 18586 Fri Apr 24 21:36:44 2009 length 2 : 13344 Fri Apr 24 21:36:44 2009 length 3 : 12710 Fri Apr 24 21:36:44 2009 length 4 : 10087 Fri Apr 24 21:36:44 2009 length 5 : 7735 Fri Apr 24 21:36:44 2009 length 6 : 5214 Fri Apr 24 21:36:44 2009 length 7 : 3265 Fri Apr 24 21:36:44 2009 length 9+: 4722 Fri Apr 24 21:36:44 2009 largest cycle: 20 relations Fri Apr 24 21:36:44 2009 matrix is 75294 x 75663 (19.9 MB) with weight 4913605 (64.94/col) Fri Apr 24 21:36:44 2009 sparse part has weight 4913605 (64.94/col) Fri Apr 24 21:36:45 2009 filtering completed in 4 passes Fri Apr 24 21:36:45 2009 matrix is 71656 x 71720 (18.9 MB) with weight 4671198 (65.13/col) Fri Apr 24 21:36:45 2009 sparse part has weight 4671198 (65.13/col) Fri Apr 24 21:36:45 2009 saving the first 48 matrix rows for later Fri Apr 24 21:36:46 2009 matrix is 71608 x 71720 (12.0 MB) with weight 3712909 (51.77/col) Fri Apr 24 21:36:46 2009 sparse part has weight 2707303 (37.75/col) Fri Apr 24 21:36:46 2009 matrix includes 64 packed rows Fri Apr 24 21:36:46 2009 using block size 28688 for processor cache size 1024 kB Fri Apr 24 21:36:46 2009 commencing Lanczos iteration Fri Apr 24 21:36:46 2009 memory use: 11.5 MB Fri Apr 24 21:37:20 2009 lanczos halted after 1134 iterations (dim = 71607) Fri Apr 24 21:37:20 2009 recovered 17 nontrivial dependencies Fri Apr 24 21:37:21 2009 prp37 factor: 3631090387354731446722862437746442697 Fri Apr 24 21:37:21 2009 prp58 factor: 1002520188473252584276320790788755291702994964270538468591 Fri Apr 24 21:37:21 2009 elapsed time 03:08:43
By Ignacio Santos / GGNFS, Msieve / Apr 24, 2009
(52·10180+11)/9 = 5(7)1799<181> = 7 · C180
C180 = P83 · P97
P83 = 85953570641100435302364859126378100802894940416504268380526330442075309405460436217<83>
P97 = 9602821840215038595051714729650614572066911996666266197149048428837644236481298696881375472096541<97>
Number: 57779_180 N=825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825397 ( 180 digits) SNFS difficulty: 181 digits. Divisors found: r1=85953570641100435302364859126378100802894940416504268380526330442075309405460436217 (pp83) r2=9602821840215038595051714729650614572066911996666266197149048428837644236481298696881375472096541 (pp97) Version: Msieve-1.39 Total time: 110.43 hours. Scaled time: 192.03 units (timescale=1.739). Factorization parameters were as follows: n: 825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825397 m: 1000000000000000000000000000000000000 deg: 5 c5: 52 c0: 11 skew: 0.73 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3750000, 5550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1404538 x 1404784 Total sieving time: 110.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000 total time: 110.43 hours. --------- CPU info (if available) ----------
(53·10147-17)/9 = 5(8)1467<148> = 7 · 157090823 · 108192642452257497081257210337049<33> · C107
C107 = P52 · P56
P52 = 2579775523673369950784734958514551180203035362426083<52>
P56 = 19186902085390185374523921439602412837798066940823099701<56>
Number: 58887_147 N=49497900375007139446580117975996554390248271087641053217622845679414045570759456353804961562101355551901183 ( 107 digits) SNFS difficulty: 149 digits. Divisors found: r1=2579775523673369950784734958514551180203035362426083 (pp52) r2=19186902085390185374523921439602412837798066940823099701 (pp56) Version: Msieve-1.39 Total time: 12.45 hours. Scaled time: 32.15 units (timescale=2.583). Factorization parameters were as follows: n: 49497900375007139446580117975996554390248271087641053217622845679414045570759456353804961562101355551901183 m: 200000000000000000000000000000 deg: 5 c5: 1325 c0: -136 skew: 0.63 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 402501 x 402749 Total sieving time: 12.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 12.45 hours. --------- CPU info (if available) ----------
(53·10143-17)/9 = 5(8)1427<144> = 132 · 29 · 127 · 268114348509373801<18> · C121
C121 = P52 · P70
P52 = 3197499649810280310555966924736478732434405762799143<52>
P70 = 1103606817437336719982382319701730917790387846170402709338588861412267<70>
Number: 58887_143 N=3528782412284122116403286244880646943846723460132929373308594335392789097445085449072815348528186472100920160758037287181 ( 121 digits) SNFS difficulty: 146 digits. Divisors found: r1=3197499649810280310555966924736478732434405762799143 (pp52) r2=1103606817437336719982382319701730917790387846170402709338588861412267 (pp70) Version: Msieve-1.39 Total time: 9.26 hours. Scaled time: 23.82 units (timescale=2.571). Factorization parameters were as follows: n: 3528782412284122116403286244880646943846723460132929373308594335392789097445085449072815348528186472100920160758037287181 m: 50000000000000000000000000000 deg: 5 c5: 424 c0: -425 skew: 1.00 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2455001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 319640 x 319868 Total sieving time: 9.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 9.26 hours. --------- CPU info (if available) ----------
(53·10164-17)/9 = 5(8)1637<165> = 800977 · C159
C159 = P35 · P43 · P83
P35 = 26420433379971578160086373777968563<35>
P43 = 1931614398915714664197849198169905631094719<43>
P83 = 14406316220093108541547534674609427084176701563508733048745187396069463990428743523<83>
Number: 58887_164 N=735213231951590231540841857992038334295352911368102815547623575819141983963196057925369753299893616032531382160647420448887906754986583745711660745425759901831 ( 159 digits) SNFS difficulty: 166 digits. Divisors found: r1=26420433379971578160086373777968563 (pp35) r2=1931614398915714664197849198169905631094719 (pp43) r3=14406316220093108541547534674609427084176701563508733048745187396069463990428743523 (pp83) Version: Msieve-1.39 Total time: 44.59 hours. Scaled time: 77.54 units (timescale=1.739). Factorization parameters were as follows: n: 735213231951590231540841857992038334295352911368102815547623575819141983963196057925369753299893616032531382160647420448887906754986583745711660745425759901831 m: 1000000000000000000000000000000000 deg: 5 c5: 53 c0: -170 skew: 1.26 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 784296 x 784544 Total sieving time: 44.59 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 44.59 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve / Apr 24, 2009
(53·10128-17)/9 = 5(8)1277<129> = 23 · 63691 · 4788800872882184084781263<25> · C98
C98 = P48 · P51
P48 = 112604159725354687671910018636786167653258924591<48>
P51 = 745497589659523189147719856571126344213064487387523<51>
Number: n N=83946129660887876362622100012087832005382299917977951928607011873563078474950417997646958051278093 ( 98 digits) SNFS difficulty: 131 digits. Divisors found: r1=112604159725354687671910018636786167653258924591 (pp48) r2=745497589659523189147719856571126344213064487387523 (pp51) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 2.60 hours. Scaled time: 6.88 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_8_127_7 n: 83946129660887876362622100012087832005382299917977951928607011873563078474950417997646958051278093 m: 50000000000000000000000000 deg: 5 c5: 424 c0: -425 skew: 1.00 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 qintsize: 20000 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 1055001) Primes: RFBsize:83548, AFBsize:84061, largePrimes:2777007 encountered Relations: rels:2655347, finalFF:192381 Max relations in full relation-set: 28 Initial matrix: 167676 x 192381 with sparse part having weight 15348036. Pruned matrix : 160977 x 161879 with weight 10790182. Total sieving time: 2.33 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Total square root time: 0.14 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 2.60 hours. --------- CPU info (if available) ----------
(53·10144-17)/9 = 5(8)1437<145> = 17519 · 106957 · 6636577684770897967<19> · C117
C117 = P36 · P81
P36 = 493043766422451686167629421455051011<36>
P81 = 960473041699645228846742337228722619911387336255548265515490052356974875912822097<81>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 473555246026821580479096651610338154141012072413920587982512535283509902483472861171889354142003106781845080102990067 (117 digits) Using B1=2400000, B2=3567796060, polynomial Dickson(6), sigma=4105013632 Step 1 took 26785ms Step 2 took 9594ms ********** Factor found in step 2: 493043766422451686167629421455051011 Found probable prime factor of 36 digits: 493043766422451686167629421455051011 Probable prime cofactor 960473041699645228846742337228722619911387336255548265515490052356974875912822097 has 81 digits
(17·10167-53)/9 = 1(8)1663<168> = 32 · 2842894383216641696187208791071<31> · C136
C136 = P48 · P88
P48 = 823828965221082614714987491762129205824830523981<48>
P88 = 8961198957496977939253687411601927777122185598907503134441460972542651247105156582110937<88>
Number: n N=7382495264294979622827850118446254916311984354166976601889891234115975629567482988730135681174541273056980748634482050644700216780880197 ( 136 digits) SNFS difficulty: 169 digits. Divisors found: Fri Apr 24 20:49:26 2009 prp48 factor: 823828965221082614714987491762129205824830523981 Fri Apr 24 20:49:26 2009 prp88 factor: 8961198957496977939253687411601927777122185598907503134441460972542651247105156582110937 Fri Apr 24 20:49:26 2009 elapsed time 01:44:44 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 56.29 hours. Scaled time: 149.11 units (timescale=2.649). Factorization parameters were as follows: name: KA_1_8_166_3 n: 7382495264294979622827850118446254916311984354166976601889891234115975629567482988730135681174541273056980748634482050644700216780880197 m: 2000000000000000000000000000000000 deg: 5 c5: 425 c0: -424 skew: 1.00 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2300000, 5636291) Primes: RFBsize:322441, AFBsize:322881, largePrimes:16952467 encountered Relations: rels:16721012, finalFF:607071 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2174169 hash collisions in 18710656 relations Msieve: matrix is 829496 x 829744 (220.4 MB) Total sieving time: 55.50 hours. Total relation processing time: 0.79 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,56,56,2.4,2.4,100000 total time: 56.29 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Apr 24, 2009
(53·10137-17)/9 = 5(8)1367<138> = 13 · 257 · 1187573234723866457<19> · C117
C117 = P49 · P68
P49 = 5584838927938453061724271226184215519985376889149<49>
P68 = 26575768460269751918333188566808886042747046132589556424376472164199<68>
Number: 58887_137 N=148421386236793474713355586446923384287979293005900666819660923606388680051470227246194467606188867817466602149376651 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=5584838927938453061724271226184215519985376889149 r2=26575768460269751918333188566808886042747046132589556424376472164199 Version: Total time: 7.27 hours. Scaled time: 7.31 units (timescale=1.005). Factorization parameters were as follows: n: 148421386236793474713355586446923384287979293005900666819660923606388680051470227246194467606188867817466602149376651 m: 2000000000000000000000000000 deg: 5 c5: 1325 c0: -136 skew: 0.63 type: snfs lss: 1 rlim: 1490000 alim: 1490000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1490000/1490000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [745000, 1645001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 265186 x 265427 Total sieving time: 7.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1490000,1490000,26,26,48,48,2.3,2.3,75000 total time: 7.27 hours. --------- CPU info (if available) ----------
(53·10126-17)/9 = 5(8)1257<127> = 139 · 2152525333033<13> · C113
C113 = P49 · P64
P49 = 4186857306152507699817842593643290853547861453707<49>
P64 = 4700912079944416830169055586945991616973525269591821004558075543<64>
Number: 58887_126 N=19682048087495862967660904785941718578127783173067256935609610238613756161755275463953558441169432519094303387901 ( 113 digits) SNFS difficulty: 128 digits. Divisors found: r1=4186857306152507699817842593643290853547861453707 r2=4700912079944416830169055586945991616973525269591821004558075543 Version: Total time: 3.85 hours. Scaled time: 3.00 units (timescale=0.779). Factorization parameters were as follows: n: 19682048087495862967660904785941718578127783173067256935609610238613756161755275463953558441169432519094303387901 m: 20000000000000000000000000 deg: 5 c5: 265 c0: -272 skew: 1.01 type: snfs lss: 1 rlim: 990000 alim: 990000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 990000/990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [495000, 895001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 157081 x 157329 Total sieving time: 3.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,990000,990000,26,26,47,47,2.3,2.3,50000 total time: 3.85 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 23, 2009
(35·10176-71)/9 = 3(8)1751<177> = 32 · 367 · 232568767 · 60323230600525753781<20> · 8193256915460198815721<22> · C124
C124 = P61 · P63
P61 = 1320105305128237839759047437665736026132731396793537417927679<61>
P63 = 775918004093695593851387986591834584873455900442876905422417139<63>
Number: 38881_176 N=1024293473548601319173469912038505104746286056967893105461707929204618101281103354521416633306699402398601839123952472090381 ( 124 digits) Divisors found: r1=1320105305128237839759047437665736026132731396793537417927679 (pp61) r2=775918004093695593851387986591834584873455900442876905422417139 (pp63) Version: Msieve-1.39 Total time: 61.25 hours. Scaled time: 156.80 units (timescale=2.560). Factorization parameters were as follows: # Murphy_E = 1.931282e-10, selected by Jeff Gilchrist n: 1024293473548601319173469912038505104746286056967893105461707929204618101281103354521416633306699402398601839123952472090381 Y0: -520935780629937847389521 Y1: 22406701384781 c0: -94888778317472415354353368632 c1: 14232405039257419376998134 c2: -339826485793637340641 c3: -3544791087233806 c4: -11143299794 c5: 26700 skew: 129910.61 type: gnfs # selected mechanically rlim: 6300000 alim: 6300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6300000/6300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [3150000, 5970001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 917653 x 917901 Total sieving time: 61.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6300000,6300000,27,27,52,52,2.5,2.5,60000 total time: 61.25 hours. --------- CPU info (if available) ----------
(53·10129-17)/9 = 5(8)1287<130> = 7 · 4623547 · 5222837 · C116
C116 = P35 · P81
P35 = 57168349928028616133688579199585387<35>
P81 = 609393635442267750361101031452473824611828346367866478338485749744303280641982437<81>
Number: 58887_129 N=34838028594877064284253557354927967622169804547748141483986966848529666618721039767304379796183953057786696135848119 ( 116 digits) SNFS difficulty: 131 digits. Divisors found: r1=57168349928028616133688579199585387 (pp35) r2=609393635442267750361101031452473824611828346367866478338485749744303280641982437 (pp81) Version: Msieve-1.39 Total time: 2.82 hours. Scaled time: 7.26 units (timescale=2.571). Factorization parameters were as follows: n: 34838028594877064284253557354927967622169804547748141483986966848529666618721039767304379796183953057786696135848119 m: 100000000000000000000000000 deg: 5 c5: 53 c0: -170 skew: 1.26 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 160216 x 160464 Total sieving time: 2.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.82 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 23, 2009
(53·10167-71)/9 = 5(8)1661<168> = 73 · 769 · 66501587107<11> · 353614322081<12> · C141
C141 = P41 · P101
P41 = 15289508170453564157615559715265886034189<41>
P101 = 29176204089714079058424787149185032695439825811546932354672800303249154820310505588922930701582824751<101>
Number: n N=446089810812504105158182504969145136704663270654799288006352123575641893590592744605656997178397333941887287764109361491827634663159581411939 ( 141 digits) SNFS difficulty: 169 digits. Divisors found: Thu Apr 23 06:30:42 2009 prp41 factor: 15289508170453564157615559715265886034189 Thu Apr 23 06:30:42 2009 prp101 factor: 29176204089714079058424787149185032695439825811546932354672800303249154820310505588922930701582824751 Thu Apr 23 06:30:42 2009 elapsed time 01:28:32 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 61.86 hours. Scaled time: 164.56 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_8_166_1 n: 446089810812504105158182504969145136704663270654799288006352123575641893590592744605656997178397333941887287764109361491827634663159581411939 m: 2000000000000000000000000000000000 deg: 5 c5: 1325 c0: -568 skew: 0.84 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2350000, 6054613) Primes: RFBsize:328964, AFBsize:327815, largePrimes:17382610 encountered Relations: rels:17432208, finalFF:658654 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2355284 hash collisions in 19429834 relations Msieve: matrix is 837045 x 837293 (221.6 MB) Total sieving time: 60.95 hours. Total relation processing time: 0.91 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,28,28,56,56,2.4,2.4,100000 total time: 61.86 hours. --------- CPU info (if available) ----------
(52·10164-43)/9 = 5(7)1633<165> = 3 · 241 · 107897 · 36883061 · 6612904342793249107<19> · C131
C131 = P57 · P74
P57 = 428137267533980125175224262378383639832168779350627365977<57>
P74 = 70926893194183362183806185858869881540459489448292533660130576984615410977<74>
Number: n N=30366446246832116288365725625880877232177375057371824681954491156869978949948474947696757112176249442217908790306207886226842129529 ( 131 digits) SNFS difficulty: 166 digits. Divisors found: Thu Apr 23 22:54:37 2009 prp57 factor: 428137267533980125175224262378383639832168779350627365977 Thu Apr 23 22:54:37 2009 prp74 factor: 70926893194183362183806185858869881540459489448292533660130576984615410977 Thu Apr 23 22:54:37 2009 elapsed time 01:04:41 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 36.73 hours. Scaled time: 97.29 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_7_163_3 n: 30366446246832116288365725625880877232177375057371824681954491156869978949948474947696757112176249442217908790306207886226842129529 m: 1000000000000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2100000, 4258643) Primes: RFBsize:296314, AFBsize:296491, largePrimes:15450463 encountered Relations: rels:14663369, finalFF:610735 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1605925 hash collisions in 16362314 relations Msieve: matrix is 745844 x 746092 (199.0 MB) Total sieving time: 36.28 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,56,56,2.4,2.4,100000 total time: 36.73 hours. --------- CPU info (if available) ----------
(53·10109-17)/9 = 5(8)1087<110> = 3 · 19 · 479 · 34483 · 62171 · C97
C97 = P43 · P54
P43 = 1184825813345484206359746383415693747268967<43>
P54 = 849132744499225818718955971430604327755370155419332359<54>
Number: n N=1006074394639578460861665960829727793726759540115934699440062720584295891926720766143730739603153 ( 97 digits) SNFS difficulty: 111 digits. Divisors found: r1=1184825813345484206359746383415693747268967 (pp43) r2=849132744499225818718955971430604327755370155419332359 (pp54) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 0.60 hours. Scaled time: 1.56 units (timescale=2.627). Factorization parameters were as follows: name: KA_5_8_108_7 n: 1006074394639578460861665960829727793726759540115934699440062720584295891926720766143730739603153 m: 10000000000000000000000 deg: 5 c5: 53 c0: -170 skew: 1.26 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 qintsize: 20000 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 395001) Primes: RFBsize:42291, AFBsize:42411, largePrimes:1076456 encountered Relations: rels:1001878, finalFF:95374 Max relations in full relation-set: 28 Initial matrix: 84767 x 95374 with sparse part having weight 4131287. Pruned matrix : 78247 x 78734 with weight 2783143. Total sieving time: 0.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.60 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.41 / Apr 23, 2009
(53·10124-17)/9 = 5(8)1237<125> = 3 · 89 · 1191809 · 4836787 · C110
C110 = P33 · P78
P33 = 162409129263521507054727247357759<33>
P78 = 235585218437968568279588300257584868514845787402833345248144612223210092321113<78>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1932810670 Step 1 took 7136ms Step 2 took 9389ms ********** Factor found in step 2: 162409129263521507054727247357759 Found probable prime factor of 33 digits: 162409129263521507054727247357759 Probable prime cofactor has 78 digits
(53·10102-17)/9 = 5(8)1017<103> = 59 · 1399 · C98
C98 = P49 · P50
P49 = 3536462375192796870546965456753026665578804701991<49>
P50 = 20174119642955981100844036468742758967519435241877<50>
SNFS difficulty: 105 digits. Divisors found: r1=3536462375192796870546965456753026665578804701991 (pp49) r2=20174119642955981100844036468742758967519435241877 (pp50) Version: Msieve-1.40 Total time: 0.42 hours. Scaled time: 0.84 units (timescale=2.015). Factorization parameters were as follows: n: 71345015069951768077547992983958140668139335468299255992644732785995915834420335213880239988477107 m: 50000000000000000000000000 deg: 4 c4: 212 c0: -425 skew: 1.19 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 320001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 34633 x 34864 Total sieving time: 0.40 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105.000,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.42 hours.
(53·10104-17)/9 = 5(8)1037<105> = 409 · 34159 · C98
C98 = P38 · P60
P38 = 66094496635789648498726769864747288141<38>
P60 = 637734048402595454621522275124133541105908678950119792488997<60>
SNFS difficulty: 105 digits. Divisors found: r1=66094496635789648498726769864747288141 (pp38) r2=637734048402595454621522275124133541105908678950119792488997 (pp60) Version: Msieve-1.41 Total time: 0.42 hours. Scaled time: 0.84 units (timescale=1.848). Factorization parameters were as follows: n: 42150710916673858134656553899915395570225911665995794361124020760449882967755843422642816331084577 m: 100000000000000000000000000 deg: 4 c4: 53 c0: -17 skew: 0.75 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 260001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 39510 x 39752 Total sieving time: 0.40 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.42 hours.
(53·10193-17)/9 = 5(8)1927<194> = 33 · 7018213 · 17851313 · 679746483103291781<18> · C161
C161 = P32 · C130
P32 = 20572446508725500234225553940201<32>
C130 = [1244915789843555096011732458304270596627375015872090006518666492540398283834017403659916118975910672983647063299114503997601252229<130>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=376038659 Step 1 took 11933ms Step 2 took 12688ms ********** Factor found in step 2: 20572446508725500234225553940201 Found probable prime factor of 32 digits: 20572446508725500234225553940201 Composite cofactor has 130 digits
(53·10201-17)/9 = 5(8)2007<202> = 7 · 941 · 5749 · 33767 · 276508825669<12> · 296805472688401<15> · C164
C164 = P31 · P133
P31 = 7137096825470911352763152350693<31>
P133 = 7862459463037571684520567683265681573742169480804138362430647497393328622184882892466314752452755748772299349279963553756975752154591<133>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1668989920 Step 1 took 11501ms Step 2 took 12549ms ********** Factor found in step 2: 7137096825470911352763152350693 Found probable prime factor of 31 digits: 7137096825470911352763152350693 Probable prime cofactor has 133 digits
(53·10197-17)/9 = 5(8)1967<198> = 13 · 97 · 1381 · 8093 · 199895588321879<15> · C174
C174 = P33 · P142
P33 = 124131209152910945615138358610613<33>
P142 = 1683956464285538192987701175282364657277752256350514234040551728309986650671586386857006585378655255901615254486990382871923560979892400767137<142>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3750431010 Step 1 took 12365ms Step 2 took 12241ms ********** Factor found in step 2: 124131209152910945615138358610613 Found probable prime factor of 33 digits: 124131209152910945615138358610613 Probable prime cofactor has 142 digits
(53·10130-17)/9 = 5(8)1297<131> = 32 · 31 · 1787 · 689561 · 1251681026599<13> · C108
C108 = P34 · P74
P34 = 2684522574849883505513247949489097<34>
P74 = 50976637352551995002585907351700594122427409787504925659946717615102657493<74>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2846608915 Step 1 took 7404ms Step 2 took 5757ms ********** Factor found in step 2: 2684522574849883505513247949489097 Found probable prime factor of 34 digits: 2684522574849883505513247949489097 Probable prime cofactor has 74 digits
(53·10148-17)/9 = 5(8)1477<149> = 32 · 1669 · 27337 · 218487524683<12> · 66654703895377530032933214908629<32> · C97
C97 = P49 · P49
P49 = 1293513234549944335404040049217391458765838967629<49>
P49 = 7612991358325177921065847363673485843300748322977<49>
N=9847505076507975189294121039002185454967285936943322205169240479190597831569216491897858739911533 ( 97 digits) Divisors found: r1=1293513234549944335404040049217391458765838967629 (pp49) r2=7612991358325177921065847363673485843300748322977 (pp49) Version: Msieve-1.40 Total time: 2.08 hours. Factorization parameters were as follows: n: 9847505076507975189294121039002185454967285936943322205169240479190597831569216491897858739911533 skew: 3372.48 # norm 5.25e+13 c5: 140400 c4: -913012644 c3: -6915870530610 c2: 2736702776419444 c1: 6677853531088220367 c0: 9789361965300509717732 # alpha -6.05 Y1: 1013445211 Y0: -2339871812921506437 # Murphy_E 4.64e-09 # M 1911477931379528567900052509646008537492807656147084893400253968977167626506619701535654175781347 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 137001 x 137249 Polynomial selection time: 0.26 hours. Total sieving time: 1.60 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 2.08 hours.
(53·10138-17)/9 = 5(8)1377<139> = C139
C139 = P50 · P90
P50 = 14212328108433255333011168440885868143857201519173<50>
P90 = 414350755482105931010853345568490156490520800534066379136735288507168858874680066897030219<90>
SNFS difficulty: 141 digits. Divisors found: r1=14212328108433255333011168440885868143857201519173 (pp50) r2=414350755482105931010853345568490156490520800534066379136735288507168858874680066897030219 (pp90) Version: Msieve-1.40 Total time: 6.39 hours. Factorization parameters were as follows: n: 5888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 5000000000000000000000000000 deg: 5 c5: 424 c0: -425 skew: 1.00 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1885001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 260637 x 260870 Total sieving time: 6.00 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,141.000,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 6.39 hours.
By matsui / GGNFS / Apr 23, 2009
5·10169+3 = 5(0)1683<170> = 31 · 16244243 · 29298332253113065055747<23> · C139
C139 = P63 · P77
P63 = 219470599991522042446043080605252718567618567796903842516245509<63>
P77 = 15441503431769976028446348762595181204879730780351588237227771804855548607617<77>
N=3388956022941703290284911268189108916185410146351262338185883006343651520714919578492806480155277094510806544535131569600239126927479442053 ( 139 digits) SNFS difficulty: 170 digits. Divisors found: r1=219470599991522042446043080605252718567618567796903842516245509 (pp63) r2=15441503431769976028446348762595181204879730780351588237227771804855548607617 (pp77) Version: GGNFS-0.77.1-20060722-nocona
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 23, 2009
(52·10165-43)/9 = 5(7)1643<166> = 2132023 · 139451311 · 41362644195312023971<20> · C132
C132 = P43 · P90
P43 = 2212108396188581657218483107142706525530369<43>
P90 = 212388818457277709952441788024194276072656999962330691651813192423763170730676394041761159<90>
Number: 57773_165 N=469827088565916424848798223220483523992904480604340677368464169830717413232119283714579864983812929914816116960729561312397299137671 ( 132 digits) SNFS difficulty: 166 digits. Divisors found: r1=2212108396188581657218483107142706525530369 r2=212388818457277709952441788024194276072656999962330691651813192423763170730676394041761159 Version: Total time: 24.79 hours. Scaled time: 58.87 units (timescale=2.375). Factorization parameters were as follows: n: 469827088565916424848798223220483523992904480604340677368464169830717413232119283714579864983812929914816116960729561312397299137671 m: 1000000000000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9737720 Max relations in full relation-set: Initial matrix: Pruned matrix : 825721 x 825969 Total sieving time: 22.27 hours. Total relation processing time: 0.94 hours. Matrix solve time: 1.48 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 24.79 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 22, 2009
(4·10181+17)/3 = 1(3)1809<182> = 19 · 199 · 1453 · C175
C175 = P56 · P57 · P63
P56 = 22309717107372494315385593361862526662022588401333102253<56>
P57 = 156122557936970418953523058188454015963068329714979720107<57>
P63 = 696797723896822116787571000843431402872490055258855522222137813<63>
Number: 13339_181 N=2426981383050532361400098863086638563435741633027187834221881554935421362496427028345140294389201291954999639289891944114627786910306473748343509362899791334208138772853897723 ( 175 digits) SNFS difficulty: 181 digits. Divisors found: r1=22309717107372494315385593361862526662022588401333102253 (pp56) r2=156122557936970418953523058188454015963068329714979720107 (pp57) r3=696797723896822116787571000843431402872490055258855522222137813 (pp63) Version: Msieve-1.39 Total time: 131.58 hours. Scaled time: 228.81 units (timescale=1.739). Factorization parameters were as follows: n: 2426981383050532361400098863086638563435741633027187834221881554935421362496427028345140294389201291954999639289891944114627786910306473748343509362899791334208138772853897723 m: 1000000000000000000000000000000000000 deg: 5 c5: 40 c0: 17 skew: 0.84 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1446798 x 1447043 Total sieving time: 131.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 131.58 hours. --------- CPU info (if available) ----------
(8·10173-11)/3 = 2(6)1723<174> = 26026517172463<14> · 835337687643105193<18> · 133430923595218323637<21> · C122
C122 = P40 · P83
P40 = 2420995607054671044108003821518248239767<40>
P83 = 37969957194046514176647750464622844630717776681886775745942777306692010895939678283<83>
Number: 26663_173 N=91925099566840514579862159855723574163615261031069756391977117342379508653758020321481439131791263848497042220577026880061 ( 122 digits) Divisors found: r1=2420995607054671044108003821518248239767 (pp40) r2=37969957194046514176647750464622844630717776681886775745942777306692010895939678283 (pp83) Version: Msieve-1.39 Total time: 54.53 hours. Scaled time: 140.20 units (timescale=2.571). Factorization parameters were as follows: # Murphy_E = 2.150701e-10, selected by Jeff Gilchrist n: 91925099566840514579862159855723574163615261031069756391977117342379508653758020321481439131791263848497042220577026880061 Y0: -349452957735598923964078 Y1: 10362996766331 c0: -1062632721513365353062035043615 c1: 316697255897387397597827777 c2: 1563572907539943899645 c3: -3712873729966849 c4: -11060071302 c5: 17640 skew: 347138.3 type: gnfs # selected mechanically rlim: 5900000 alim: 5900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2950000, 5470001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 809289 x 809537 Total sieving time: 54.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5900000,5900000,27,27,52,52,2.5,2.5,60000 total time: 54.53 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 21, 2009
(17·10164+7)/3 = 5(6)1639<165> = 631 · 20411 · 546745561 · 36771006513555924569<20> · C130
C130 = P53 · P77
P53 = 24684467871388862668725282027781049084155761016849459<53>
P77 = 88658314742674979794126359600408571068896112076998888313552681943961026591339<77>
Number: 56669_164 N=2188483321797042080199208926466285626226356003556927267628384147997644819195672652362693649569098240692076340501181169127676235601 ( 130 digits) SNFS difficulty: 166 digits. Divisors found: r1=24684467871388862668725282027781049084155761016849459 r2=88658314742674979794126359600408571068896112076998888313552681943961026591339 Version: Total time: 21.83 hours. Scaled time: 52.00 units (timescale=2.382). Factorization parameters were as follows: n: 2188483321797042080199208926466285626226356003556927267628384147997644819195672652362693649569098240692076340501181169127676235601 m: 1000000000000000000000000000000000 deg: 5 c5: 17 c0: 70 skew: 1.33 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9658440 Max relations in full relation-set: Initial matrix: Pruned matrix : 757735 x 757983 Total sieving time: 19.70 hours. Total relation processing time: 0.84 hours. Matrix solve time: 1.21 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 21.83 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Apr 22, 2009
2·10183-1 = 1(9)183<184> = 298385575419109<15> · C169
C169 = P39 · P131
P39 = 138315648629492573181397043870991531509<39>
P131 = 48459714744214666303053112592352799187563839995254738535415184574936072669072865614713121962535167281027204906904020713946527407079<131>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 6702736877246236350782731803505581851819006651598315170749396069506347157382739930428866242940491670173578185223001548816068081968260436967719825339733369220980898152211 (169 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3048775659 Step 1 took 16609ms Step 2 took 7140ms ********** Factor found in step 2: 138315648629492573181397043870991531509 Found probable prime factor of 39 digits: 138315648629492573181397043870991531509 Probable prime cofactor 48459714744214666303053112592352799187563839995254738535415184574936072669072865614713121962535167281027204906904020713946527407079 has 131 digits
By matsui / GGNFS / Apr 22, 2009
7·10175+1 = 7(0)1741<176> = 17 · 43 · 16106554067<11> · C163
C163 = P42 · P50 · P72
P42 = 546424038802294846052914856058998495168369<42>
P50 = 50847756028512910420533268455094582971422236487293<50>
P72 = 213981604431953258247908719407251822585834319843385691315588724389559589<72>
N=5945358239123625634011428660866607620137468294219930437924782752600840851464522625179701735071778160104909516766334428716890094478708550908337237518092811760086913 ( 163 digits) SNFS difficulty: 175 digits. Divisors found: r1=546424038802294846052914856058998495168369 (pp42) r2=50847756028512910420533268455094582971422236487293 (pp50) r3=213981604431953258247908719407251822585834319843385691315588724389559589 (pp72) Version: GGNFS-0.77.1-20060722-nocona
By Sinkiti Sibata / GGNFS / Apr 22, 2009
5·10188+9 = 5(0)1879<189> = 89 · 20644698707<11> · 2095779451075181845289<22> · 17069365974029360492115172688628301<35> · C121
C121 = P54 · P68
P54 = 112851366896191612350337923343819108022586261622918801<54>
P68 = 67406481306382958257320834957187828313474877802170323638967682116047<68>
Number: 50009_188 N=7606913553087904523289891655928436341384431709516903459521491661869372564112334503851881776661479063881775251744140099647 ( 121 digits) Divisors found: r1=112851366896191612350337923343819108022586261622918801 (pp54) r2=67406481306382958257320834957187828313474877802170323638967682116047 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 140.12 hours. Scaled time: 62.64 units (timescale=0.447). Factorization parameters were as follows: name: 50009_188 n: 7606913553087904523289891655928436341384431709516903459521491661869372564112334503851881776661479063881775251744140099647 skew: 109016.74 # norm 2.11e+16 c5: 5700 c4: 4393438342 c3: -159644453182350 c2: -66523826013641583182 c1: -1678125279183183409996345 c0: 13790779317453160370267289525 # alpha -5.21 Y1: 9695498203633 Y0: -266111893921478002019566 # Murphy_E 2.41e-10 # M 5755240981910880162683132603904024483240966666901395640250549525151778137375628477746712617517491336934374610157755148949 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5380001) Primes: RFBsize:348513, AFBsize:347346, largePrimes:7784026 encountered Relations: rels:7980316, finalFF:810325 Max relations in full relation-set: 28 Initial matrix: 695939 x 810325 with sparse part having weight 73710325. Pruned matrix : 602700 x 606243 with weight 51408708. Total sieving time: 117.79 hours. Total relation processing time: 1.23 hours. Matrix solve time: 20.51 hours. Time per square root: 0.59 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 140.12 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS / Apr 22, 2009
(53·10162-71)/9 = 5(8)1611<163> = 70679701 · 44026722517<11> · 1236279080219216121922252206884753<34> · C112
C112 = P42 · P70
P42 = 443544821402465146063268358238856200246841<42>
P70 = 3451185210796963823875477889316547070862232437023870711320410226459441<70>
Number: KA_5_8_161_1 N=1530755327949768346559116010704472935748277600679650175511082917507123042329452736442582425054160912093674875881 ( 112 digits) Divisors found: r1=443544821402465146063268358238856200246841 (pp42) r2=3451185210796963823875477889316547070862232437023870711320410226459441 (pp70) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 15.86 hours. Scaled time: 42.37 units (timescale=2.671). Factorization parameters were as follows: n: 1530755327949768346559116010704472935748277600679650175511082917507123042329452736442582425054160912093674875881 Y0: -2793386256401126466886 Y1: 580659604429 c0: 1249418291818091229406104855 c1: 87816497597904215717963 c2: -2303223579921404027 c3: -109127595890605 c4: 828480114 c5: 9000 skew: 36890.51 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1750000, 2400001) Primes: RFBsize:250150, AFBsize:250833, largePrimes:16869364 encountered Relations: rels:15156758, finalFF:588554 Max relations in full relation-set: 28 Initial matrix: 501060 x 588554 with sparse part having weight 51733363. Pruned matrix : 430049 x 432618 with weight 33187546. Total sieving time: 14.33 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.80 hours. Total square root time: 0.25 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,56,56,2.6,2.6,100000 total time: 15.86 hours. --------- CPU info (if available) ----------
Factorizations of 588...887 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM / Apr 21, 2009
8·10190-9 = 7(9)1891<191> = 31 · 257 · 30319 · 2445649 · 568034078420777<15> · 1118584622077795641597568510231<31> · C132
C132 = P46 · P86
P46 = 5956694674603727915072852316779388032674317487<46>
P86 = 35779774073720156830334101164802233650029559245191540826257705794588243741259881976407<86>
By Sinkiti Sibata / Msieve / Apr 21, 2009
(13·10195-1)/3 = 4(3)195<196> = 7 · C195
C195 = P55 · P141
P55 = 4108959678924632386368511921044689765845824495413027737<55>
P141 = 150657993122393397191374958950288699170836432534995369715829292300612307048500313165210751477061418430213152010301608423612711599020092518587<141>
Number: 43333_195 N=619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: r1=4108959678924632386368511921044689765845824495413027737 r2=150657993122393397191374958950288699170836432534995369715829292300612307048500313165210751477061418430213152010301608423612711599020092518587 Version: Total time: 441.44 hours. Scaled time: 1473.97 units (timescale=3.339). Factorization parameters were as follows: name: 43333_195 n: 619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 m: 1000000000000000000000000000000000000000 deg: 5 c5: 13 c0: -1 skew: 0.60 type: snfs rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved algebraic special-q in [4750000, 12750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1926738 x 1926986 Total sieving time: 441.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,55,55,2.5,2.5,100000 total time: 441.44 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve v1.41, GGNFS / Apr 21, 2009
(52·10188+11)/9 = 5(7)1879<189> = 32 · 1093 · 5081 · 64231 · 11552017 · 14214270311<11> · 96882854526001774645678465981<29> · C131
C131 = P44 · P87
P44 = 81794757600323035554827444059633541274214747<44>
P87 = 138308699903585154803319669716002943598265094204006724265991671763585624304306433563833<87>
Mon Apr 20 19:08:11 2009 Mon Apr 20 19:08:11 2009 Mon Apr 20 19:08:11 2009 Msieve v. 1.41 Mon Apr 20 19:08:11 2009 random seeds: 87569ffc 473e86b3 Mon Apr 20 19:08:11 2009 factoring 11312926582629569735706825148931447422166875763212917695378460963807918703953528423373129743219702130852404196787051012831774445251 (131 digits) Mon Apr 20 19:08:12 2009 searching for 15-digit factors Mon Apr 20 19:08:14 2009 commencing number field sieve (131-digit input) Mon Apr 20 19:08:14 2009 R0: -12083212830902574969747860 Mon Apr 20 19:08:14 2009 R1: 213108260669881 Mon Apr 20 19:08:14 2009 A0: 56090967640472498013392023696851 Mon Apr 20 19:08:14 2009 A1: 332754979081695566842805070 Mon Apr 20 19:08:14 2009 A2: -1465196442719012042647 Mon Apr 20 19:08:14 2009 A3: -25753535061241090 Mon Apr 20 19:08:14 2009 A4: 2934479696 Mon Apr 20 19:08:14 2009 A5: 43920 Mon Apr 20 19:08:14 2009 skew 392473.78, size 1.303298e-012, alpha -6.358696, combined = 6.937147e-011 Mon Apr 20 19:08:14 2009 Mon Apr 20 19:08:14 2009 commencing relation filtering Mon Apr 20 19:08:14 2009 commencing duplicate removal, pass 1 Mon Apr 20 19:10:10 2009 error -15 reading relation 9581126 Mon Apr 20 19:10:11 2009 error -15 reading relation 9725613 Mon Apr 20 19:11:18 2009 found 3444048 hash collisions in 15840366 relations Mon Apr 20 19:11:59 2009 added 104414 free relations Mon Apr 20 19:11:59 2009 commencing duplicate removal, pass 2 Mon Apr 20 19:13:09 2009 found 3625670 duplicates and 12319109 unique relations Mon Apr 20 19:13:09 2009 memory use: 106.6 MB Mon Apr 20 19:13:09 2009 reading rational ideals above 10420224 Mon Apr 20 19:13:09 2009 reading algebraic ideals above 10420224 Mon Apr 20 19:13:09 2009 commencing singleton removal, pass 1 Mon Apr 20 19:16:02 2009 relations with 0 large ideals: 374026 Mon Apr 20 19:16:02 2009 relations with 1 large ideals: 2578236 Mon Apr 20 19:16:02 2009 relations with 2 large ideals: 5243824 Mon Apr 20 19:16:02 2009 relations with 3 large ideals: 3361638 Mon Apr 20 19:16:02 2009 relations with 4 large ideals: 647320 Mon Apr 20 19:16:02 2009 relations with 5 large ideals: 15067 Mon Apr 20 19:16:02 2009 relations with 6 large ideals: 98994 Mon Apr 20 19:16:02 2009 relations with 7+ large ideals: 4 Mon Apr 20 19:16:02 2009 12319109 relations and about 11869560 large ideals Mon Apr 20 19:16:02 2009 commencing singleton removal, pass 2 Mon Apr 20 19:18:33 2009 found 5868335 singletons Mon Apr 20 19:18:33 2009 current dataset: 6450774 relations and about 4791520 large ideals Mon Apr 20 19:18:33 2009 commencing singleton removal, pass 3 Mon Apr 20 19:20:20 2009 found 1098994 singletons Mon Apr 20 19:20:20 2009 current dataset: 5351780 relations and about 3626493 large ideals Mon Apr 20 19:20:20 2009 commencing singleton removal, pass 4 Mon Apr 20 19:21:59 2009 found 274520 singletons Mon Apr 20 19:21:59 2009 current dataset: 5077260 relations and about 3346643 large ideals Mon Apr 20 19:21:59 2009 commencing singleton removal, final pass Mon Apr 20 19:23:46 2009 memory use: 74.7 MB Mon Apr 20 19:23:46 2009 commencing in-memory singleton removal Mon Apr 20 19:23:46 2009 begin with 5077260 relations and 3647012 unique ideals Mon Apr 20 19:23:52 2009 reduce to 4263128 relations and 2811805 ideals in 14 passes Mon Apr 20 19:23:52 2009 max relations containing the same ideal: 23 Mon Apr 20 19:23:53 2009 reading rational ideals above 720000 Mon Apr 20 19:23:53 2009 reading algebraic ideals above 720000 Mon Apr 20 19:23:53 2009 commencing singleton removal, final pass Mon Apr 20 19:25:41 2009 keeping 4000705 ideals with weight <= 20, new excess is 343752 Mon Apr 20 19:25:46 2009 memory use: 128.7 MB Mon Apr 20 19:25:46 2009 commencing in-memory singleton removal Mon Apr 20 19:25:47 2009 begin with 4290130 relations and 4000705 unique ideals Mon Apr 20 19:25:54 2009 reduce to 4190944 relations and 3768298 ideals in 12 passes Mon Apr 20 19:25:54 2009 max relations containing the same ideal: 20 Mon Apr 20 19:25:57 2009 removing 149756 relations and 137809 ideals in 11947 cliques Mon Apr 20 19:25:57 2009 commencing in-memory singleton removal Mon Apr 20 19:25:58 2009 begin with 4041188 relations and 3768298 unique ideals Mon Apr 20 19:26:02 2009 reduce to 4037824 relations and 3627111 ideals in 8 passes Mon Apr 20 19:26:02 2009 max relations containing the same ideal: 20 Mon Apr 20 19:26:05 2009 removing 110736 relations and 98789 ideals in 11947 cliques Mon Apr 20 19:26:05 2009 commencing in-memory singleton removal Mon Apr 20 19:26:06 2009 begin with 3927088 relations and 3627111 unique ideals Mon Apr 20 19:26:10 2009 reduce to 3925129 relations and 3526358 ideals in 7 passes Mon Apr 20 19:26:10 2009 max relations containing the same ideal: 20 Mon Apr 20 19:26:11 2009 relations with 0 large ideals: 8781 Mon Apr 20 19:26:11 2009 relations with 1 large ideals: 84877 Mon Apr 20 19:26:11 2009 relations with 2 large ideals: 374180 Mon Apr 20 19:26:11 2009 relations with 3 large ideals: 893493 Mon Apr 20 19:26:11 2009 relations with 4 large ideals: 1203750 Mon Apr 20 19:26:11 2009 relations with 5 large ideals: 907674 Mon Apr 20 19:26:11 2009 relations with 6 large ideals: 366841 Mon Apr 20 19:26:11 2009 relations with 7+ large ideals: 85533 Mon Apr 20 19:26:11 2009 commencing 2-way merge Mon Apr 20 19:26:15 2009 reduce to 2337038 relation sets and 1938267 unique ideals Mon Apr 20 19:26:15 2009 commencing full merge Mon Apr 20 19:26:54 2009 memory use: 175.7 MB Mon Apr 20 19:26:55 2009 found 1180571 cycles, need 1128467 Mon Apr 20 19:26:55 2009 weight of 1128467 cycles is about 79026752 (70.03/cycle) Mon Apr 20 19:26:55 2009 distribution of cycle lengths: Mon Apr 20 19:26:55 2009 1 relations: 128978 Mon Apr 20 19:26:55 2009 2 relations: 137710 Mon Apr 20 19:26:55 2009 3 relations: 137141 Mon Apr 20 19:26:55 2009 4 relations: 123799 Mon Apr 20 19:26:55 2009 5 relations: 109162 Mon Apr 20 19:26:55 2009 6 relations: 93570 Mon Apr 20 19:26:55 2009 7 relations: 78142 Mon Apr 20 19:26:55 2009 8 relations: 66063 Mon Apr 20 19:26:55 2009 9 relations: 55092 Mon Apr 20 19:26:55 2009 10+ relations: 198810 Mon Apr 20 19:26:55 2009 heaviest cycle: 19 relations Mon Apr 20 19:26:55 2009 commencing cycle optimization Mon Apr 20 19:26:58 2009 start with 6454929 relations Mon Apr 20 19:27:15 2009 pruned 170048 relations Mon Apr 20 19:27:15 2009 memory use: 171.3 MB Mon Apr 20 19:27:15 2009 distribution of cycle lengths: Mon Apr 20 19:27:15 2009 1 relations: 128978 Mon Apr 20 19:27:15 2009 2 relations: 141126 Mon Apr 20 19:27:15 2009 3 relations: 142718 Mon Apr 20 19:27:15 2009 4 relations: 126930 Mon Apr 20 19:27:15 2009 5 relations: 112065 Mon Apr 20 19:27:15 2009 6 relations: 94751 Mon Apr 20 19:27:15 2009 7 relations: 78734 Mon Apr 20 19:27:15 2009 8 relations: 65542 Mon Apr 20 19:27:15 2009 9 relations: 54402 Mon Apr 20 19:27:15 2009 10+ relations: 183221 Mon Apr 20 19:27:15 2009 heaviest cycle: 19 relations Mon Apr 20 19:27:17 2009 RelProcTime: 895 Mon Apr 20 19:27:17 2009 Mon Apr 20 19:27:17 2009 commencing linear algebra Mon Apr 20 19:27:17 2009 read 1128467 cycles Mon Apr 20 19:27:20 2009 cycles contain 3583964 unique relations Mon Apr 20 19:28:27 2009 read 3583964 relations Mon Apr 20 19:28:33 2009 using 20 quadratic characters above 268430840 Mon Apr 20 19:28:56 2009 building initial matrix Mon Apr 20 19:29:53 2009 memory use: 407.2 MB Mon Apr 20 19:30:05 2009 read 1128467 cycles Mon Apr 20 19:30:25 2009 matrix is 1128216 x 1128467 (323.7 MB) with weight 105969391 (93.91/col) Mon Apr 20 19:30:25 2009 sparse part has weight 75825912 (67.19/col) Mon Apr 20 19:30:49 2009 filtering completed in 3 passes Mon Apr 20 19:30:49 2009 matrix is 1122687 x 1122887 (322.9 MB) with weight 105636528 (94.08/col) Mon Apr 20 19:30:49 2009 sparse part has weight 75655471 (67.38/col) Mon Apr 20 19:30:55 2009 read 1122887 cycles Mon Apr 20 19:30:56 2009 matrix is 1122687 x 1122887 (322.9 MB) with weight 105636528 (94.08/col) Mon Apr 20 19:30:56 2009 sparse part has weight 75655471 (67.38/col) Mon Apr 20 19:30:56 2009 saving the first 48 matrix rows for later Mon Apr 20 19:30:57 2009 matrix is 1122639 x 1122887 (309.2 MB) with weight 84191763 (74.98/col) Mon Apr 20 19:30:57 2009 sparse part has weight 74309659 (66.18/col) Mon Apr 20 19:30:57 2009 matrix includes 64 packed rows Mon Apr 20 19:30:57 2009 using block size 65536 for processor cache size 3072 kB Mon Apr 20 19:31:07 2009 commencing Lanczos iteration Mon Apr 20 19:31:07 2009 memory use: 307.1 MB Mon Apr 20 22:47:31 2009 lanczos halted after 17753 iterations (dim = 1122639) Mon Apr 20 22:47:34 2009 recovered 30 nontrivial dependencies Mon Apr 20 22:47:34 2009 BLanczosTime: 12017 Mon Apr 20 22:47:34 2009 Mon Apr 20 22:47:34 2009 commencing square root phase Mon Apr 20 22:47:34 2009 reading relations for dependency 1 Mon Apr 20 22:47:35 2009 read 560536 cycles Mon Apr 20 22:47:36 2009 cycles contain 2179676 unique relations Mon Apr 20 22:48:35 2009 read 2179676 relations Mon Apr 20 22:48:49 2009 multiplying 1789248 relations Mon Apr 20 22:55:12 2009 multiply complete, coefficients have about 83.73 million bits Mon Apr 20 22:55:16 2009 initial square root is modulo 1023313 Mon Apr 20 23:03:42 2009 reading relations for dependency 2 Mon Apr 20 23:03:43 2009 read 562605 cycles Mon Apr 20 23:03:44 2009 cycles contain 2184477 unique relations Mon Apr 20 23:04:41 2009 read 2184477 relations Mon Apr 20 23:04:55 2009 multiplying 1793096 relations Mon Apr 20 23:11:28 2009 multiply complete, coefficients have about 83.91 million bits Mon Apr 20 23:11:31 2009 initial square root is modulo 1054013 Mon Apr 20 23:20:00 2009 reading relations for dependency 3 Mon Apr 20 23:20:01 2009 read 561085 cycles Mon Apr 20 23:20:02 2009 cycles contain 2178671 unique relations Mon Apr 20 23:20:59 2009 read 2178671 relations Mon Apr 20 23:21:13 2009 multiplying 1788758 relations Mon Apr 20 23:27:36 2009 multiply complete, coefficients have about 83.70 million bits Mon Apr 20 23:27:40 2009 initial square root is modulo 1017953 Mon Apr 20 23:36:06 2009 sqrtTime: 2912 Mon Apr 20 23:36:06 2009 prp44 factor: 81794757600323035554827444059633541274214747 Mon Apr 20 23:36:06 2009 prp87 factor: 138308699903585154803319669716002943598265094204006724265991671763585624304306433563833 Mon Apr 20 23:36:06 2009 elapsed time 04:27:55 total time 191,26 hours
By Robert Backstrom / GGNFS, Msieve / Apr 21, 2009
(53·10154-71)/9 = 5(8)1531<155> = 3 · 229 · 784913 · C147
C147 = P44 · P49 · P54
P44 = 58432003235623530165281017016867956379005573<44>
P49 = 1909904305005828208979377889723705736501215261699<49>
P54 = 978571848436525753147014195992938337808040799827522913<54>
Number: n N=109208162789513448702851703858513074211371194492462397897159818344452513876803589060910022195654513695691535571956886639124083657821847491431599151 ( 147 digits) SNFS difficulty: 156 digits. Divisors found: r1=58432003235623530165281017016867956379005573 (pp44) r2=1909904305005828208979377889723705736501215261699 (pp49) r3=978571848436525753147014195992938337808040799827522913 (pp54) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 24.35 hours. Scaled time: 35.09 units (timescale=1.441). Factorization parameters were as follows: name: KA_5_8_153_1 n: 109208162789513448702851703858513074211371194492462397897159818344452513876803589060910022195654513695691535571956886639124083657821847491431599151 m: 10000000000000000000000000000000 deg: 5 c5: 53 c0: -710 skew: 1.68 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 20000 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1450000, 2950001) Primes: RFBsize:210109, AFBsize:209895, largePrimes:13516363 encountered Relations: rels:13120834, finalFF:478919 Max relations in full relation-set: 28 Initial matrix: 420069 x 478918 with sparse part having weight 55190721. Pruned matrix : 400471 x 402635 with weight 43607320. Total sieving time: 22.43 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.94 hours. Total square root time: 0.45 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,28,28,56,56,2.4,2.4,100000 total time: 24.35 hours. --------- CPU info (if available) ----------
2·10189-1 = 1(9)189<190> = 31 · 5439829 · 2720009561<10> · 13767101225803399878919<23> · 317174697888724493139312350540581<33> · C117
C117 = P54 · P64
P54 = 513218192797005307893534212745911015541469979463052889<54>
P64 = 1945671599615643697213895686057854815110769046170890008443525071<64>
Number: n N=998554062131199145511682309200429404184445404728977563784886142161737708964524438853301713011987413991352186470480119 ( 117 digits) Divisors found: Tue Apr 21 14:48:53 2009 prp54 factor: 513218192797005307893534212745911015541469979463052889 Tue Apr 21 14:48:53 2009 prp64 factor: 1945671599615643697213895686057854815110769046170890008443525071 Tue Apr 21 14:48:53 2009 elapsed time 00:56:00 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 21.19 hours. Scaled time: 56.37 units (timescale=2.660). Factorization parameters were as follows: name: KA_1_9_189 n: 998554062131199145511682309200429404184445404728977563784886142161737708964524438853301713011987413991352186470480119 Y0: -39549417387425509027250 Y1: 1988506022909 c0: 2486995315355389860517375156431 c1: 58401840270545545618714084 c2: 125760847171208808779 c3: -1783059507957566 c4: -4048042212 c5: 10320 skew: 217819.22 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 3451699) Primes: RFBsize:315948, AFBsize:315612, largePrimes:13634890 encountered Relations: rels:12392196, finalFF:666830 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 934308 hash collisions in 13111368 relations Msieve: matrix is 654514 x 654762 (184.4 MB) Total sieving time: 20.61 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000 total time: 21.19 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 21, 2009
(25·10173+11)/9 = 2(7)1729<174> = 32 · 19 · 67 · 941 · 15161 · 10094239 · 34387963 · 92007751184296289889437071<26> · C122
C122 = P39 · P84
P39 = 309663452002993767114281190640908937591<39>
P84 = 171836221375684041886673540732326857211429098070211664166511506444287611655348677411<84>
Number: 27779_173 N=53211397490344946900536786881309863034780265482886037675997088339278604798975900411608112094043137173327508782150990456901 ( 122 digits) Divisors found: r1=309663452002993767114281190640908937591 (pp39) r2=171836221375684041886673540732326857211429098070211664166511506444287611655348677411 (pp84) Version: Msieve-1.39 Total time: 45.64 hours. Scaled time: 117.34 units (timescale=2.571). Factorization parameters were as follows: # Murphy_E = 2.358547e-10, selected by Jeff Gilchrist n: 53211397490344946900536786881309863034780265482886037675997088339278604798975900411608112094043137173327508782150990456901 Y0: -348709088850161602305536 Y1: 11955423470957 c0: 21632123064086795098280205422505 c1: 296416490313361015058593979 c2: -1664067767180628526287 c3: -3283788797457339 c4: 5983105142 c5: 10320 skew: 411539.22 type: gnfs # selected mechanically rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2900000, 5000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 792665 x 792913 Total sieving time: 45.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5800000,5800000,27,27,52,52,2.5,2.5,60000 total time: 45.64 hours. --------- CPU info (if available) ----------
(49·10173-31)/9 = 5(4)1721<174> = 2741 · 807085684543<12> · 15477414385463353<17> · 294569208541863507869<21> · C122
C122 = P40 · P82
P40 = 5931851484368810751905079921740369165257<40>
P82 = 9100156549889364411984182615500796454801011418152264037858984439499480211034026343<82>
Number: 54441_173 N=53980777138449781902663795465980934453425776747350796708496115707652003245333207846637476138009335666563011187390658365151 ( 122 digits) Divisors found: r1=5931851484368810751905079921740369165257 (pp40) r2=9100156549889364411984182615500796454801011418152264037858984439499480211034026343 (pp82) Version: Msieve-1.39 Total time: 49.31 hours. Scaled time: 130.12 units (timescale=2.639). Factorization parameters were as follows: # Murphy_E = 2.256858e-10, selected by Jeff Gilchrist n: 53980777138449781902663795465980934453425776747350796708496115707652003245333207846637476138009335666563011187390658365151 Y0: -323737180325506520777503 Y1: 16149092889517 c0: 427754643269965365750037883136 c1: 71856727713288899503966296 c2: -221173711071066753176 c3: -1988180336202337 c4: 3126697882 c5: 15180 skew: 249593.92 type: gnfs # selected mechanically rlim: 5900000 alim: 5900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2950000, 5230001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 804752 x 805000 Total sieving time: 49.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5900000,5900000,27,27,52,52,2.5,2.5,60000 total time: 49.31 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Apr 20, 2009
2·10183-9 = 1(9)1821<184> = 11 · 29 · 89 · 181 · C177
C177 = P60 · P118
P60 = 199744837434442791340990120371036864210437097079699444679911<60>
P118 = 1948476479308863608330608439312461206938858412379710908007928999570893351886680145473233888864975347874868634937712811<118>
Number: 19991_183 N=389198117604384394634436911082435858690725856435322764917915198011353298288637497175881159133185736433867163958074800375420504241189187064377844430117629293074161117512339039821 ( 177 digits) SNFS difficulty: 183 digits. Divisors found: r1=199744837434442791340990120371036864210437097079699444679911 r2=1948476479308863608330608439312461206938858412379710908007928999570893351886680145473233888864975347874868634937712811 Version: Total time: 168.64 hours. Scaled time: 317.05 units (timescale=1.880). Factorization parameters were as follows: n: 389198117604384394634436911082435858690725856435322764917915198011353298288637497175881159133185736433867163958074800375420504241189187064377844430117629293074161117512339039821 m: 2000000000000000000000000000000000000 deg: 5 c5: 125 c0: -18 skew: 0.68 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1426873 x 1427120 Total sieving time: 168.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000 total time: 168.64 hours. --------- CPU info (if available) ----------
2·10191-7 = 1(9)1903<192> = 17 · 31 · 389 · C186
C186 = P75 · P112
P75 = 128310718329815993931447087546082492234669614032972499261568404331467602141<75>
P112 = 7603382568421390295289669853703818922067601220779471394301400646577106498502213407372609170471837455808074363591<112>
Number: 19993_191 N=975595479090549894391789388447973932088798700506821851387540670136534587298722457720130924913293951795827378135929718101686316785608015492456207957932322941615488553826041570123364048331 ( 186 digits) SNFS difficulty: 191 digits. Divisors found: r1=128310718329815993931447087546082492234669614032972499261568404331467602141 r2=7603382568421390295289669853703818922067601220779471394301400646577106498502213407372609170471837455808074363591 Version: Total time: 339.94 hours. Scaled time: 675.12 units (timescale=1.986). Factorization parameters were as follows: n: 975595479090549894391789388447973932088798700506821851387540670136534587298722457720130924913293951795827378135929718101686316785608015492456207957932322941615488553826041570123364048331 m: 100000000000000000000000000000000000000 deg: 5 c5: 20 c0: -7 skew: 0.81 type: snfs lss: 1 rlim: 10800000 alim: 10800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 10800000/10800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5400000, 9000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1393898 x 1394146 Total sieving time: 339.94 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10800000,10800000,28,28,54,54,2.5,2.5,100000 total time: 339.94 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 20, 2009
(53·10163-71)/9 = 5(8)1621<164> = 3 · 23 · 2389 · 96513550638754153673<20> · C139
C139 = P57 · P82
P57 = 377498624063625239463952264309281335010127635110927025061<57>
P82 = 9805380550742964674231939389316251929069674579746840643746394494793350010716857197<82>
Number: 58881_163 N=3701517666325701027779366640216236218837963742983531931726635303099814464739514466644120549856564034083324033280638783693272531866777214017 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: r1=377498624063625239463952264309281335010127635110927025061 r2=9805380550742964674231939389316251929069674579746840643746394494793350010716857197 Version: Total time: 34.87 hours. Scaled time: 83.23 units (timescale=2.387). Factorization parameters were as follows: n: 3701517666325701027779366640216236218837963742983531931726635303099814464739514466644120549856564034083324033280638783693272531866777214017 m: 1000000000000000000000000000000000 deg: 5 c5: 53 c0: -7100 skew: 2.66 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 10183017 Max relations in full relation-set: Initial matrix: Pruned matrix : 870654 x 870902 Total sieving time: 31.70 hours. Total relation processing time: 1.43 hours. Matrix solve time: 1.63 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 34.87 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 20, 2009
(52·10183+11)/9 = 5(7)1829<184> = 199 · 229 · 1381 · 27093641 · 3271989401<10> · 75894316021<11> · 13201833342001<14> · 25458040823627<14> · C122
C122 = P51 · P71
P51 = 760709516823435322284803971154506765518059289320909<51>
P71 = 53371819833679274984631391612038926591773108484753524753906129523475223<71>
Number: 57779_183 N=40600451277665603438462039829671810932492997712468478849840455596499272861676146916196939261839959572308339955745357337707 ( 122 digits) Divisors found: r1=760709516823435322284803971154506765518059289320909 (pp51) r2=53371819833679274984631391612038926591773108484753524753906129523475223 (pp71) Version: Msieve-1.39 Total time: 51.53 hours. Scaled time: 132.99 units (timescale=2.581). Factorization parameters were as follows: # Murphy_E = 2.262445e-10, selected by Jeff Gilchrist n: 40600451277665603438462039829671810932492997712468478849840455596499272861676146916196939261839959572308339955745357337707 Y0: -293254863654452879987050 Y1: 12192311360713 c0: -63029949335627363746734079251 c1: -30365307533505781597878895 c2: -1310763885392580973715 c3: -1061241013495825 c4: -1142314074 c5: 18720 skew: 203548.67 type: gnfs rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2900000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 818639 x 818887 Total sieving time: 51.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5800000,5800000,27,27,52,52,2.5,2.5,60000 total time: 51.53 hours. --------- CPU info (if available) ----------
(17·10180-11)/3 = 5(6)1793<181> = 4423 · C178
C178 = P42 · P136
P42 = 175738775151637385522300574841309392108541<42>
P136 = 7290261927712186063891569599218901948236195147537934711419522834797162143981560091333540946292921842334124888216342937023769847028282741<136>
Number: 56663_180 N=1281181701710754389931419097143718441480141683623483306956063003994272364157057803903836008742181023438088778355565604039490541864496194136709623935488733137387896601100308990881 ( 178 digits) SNFS difficulty: 181 digits. Divisors found: r1=175738775151637385522300574841309392108541 (pp42) r2=7290261927712186063891569599218901948236195147537934711419522834797162143981560091333540946292921842334124888216342937023769847028282741 (pp136) Version: Msieve-1.39 Total time: 131.06 hours. Scaled time: 227.92 units (timescale=1.739). Factorization parameters were as follows: n: 1281181701710754389931419097143718441480141683623483306956063003994272364157057803903836008742181023438088778355565604039490541864496194136709623935488733137387896601100308990881 m: 1000000000000000000000000000000000000 deg: 5 c5: 17 c0: -11 skew: 0.92 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 5850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1378758 x 1379006 Total sieving time: 131.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 131.06 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 20, 2009
(13·10167+17)/3 = 4(3)1669<168> = 263 · 341569 · 7993784054790885255053<22> · C138
C138 = P49 · P90
P49 = 1846311335649698654729517594024921557409680683367<49>
P90 = 326836501228653793160065539312213663723576161842178591891017245168156703068080309956568087<90>
Number: n N=603441937122550160266933168238968012391700013260122407056599572853112687366988676069682707100660537151260148591255804012395446972223908929 ( 138 digits) SNFS difficulty: 169 digits. Divisors found: Mon Apr 20 10:46:06 2009 prp49 factor: 1846311335649698654729517594024921557409680683367 Mon Apr 20 10:46:06 2009 prp90 factor: 326836501228653793160065539312213663723576161842178591891017245168156703068080309956568087 Mon Apr 20 10:46:06 2009 elapsed time 00:58:38 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 61.67 hours. Scaled time: 164.72 units (timescale=2.671). Factorization parameters were as follows: name: KA_4_3_166_9 n: 603441937122550160266933168238968012391700013260122407056599572853112687366988676069682707100660537151260148591255804012395446972223908929 m: 2000000000000000000000000000000000 deg: 5 c5: 325 c0: 136 skew: 0.84 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [2300000, 6034741) Primes: RFBsize:322441, AFBsize:321816, largePrimes:10466991 encountered Relations: rels:11329164, finalFF:647785 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1597998 hash collisions in 12898935 relations Msieve: matrix is 739632 x 739880 (193.8 MB) Total sieving time: 61.26 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 61.67 hours. --------- CPU info (if available) ----------
By Markus Tervooren / Msieve, ggnfs, factMsieve.pl / Apr 20, 2009
(53·10183-71)/9 = 5(8)1821<184> = 73 · 113 · 5779 · 80273 · 543483353732909<15> · 1633503274622224469<19> · 9329922208436263697241721<25> · C114
C114 = P43 · P72
P43 = 1099460710064905094872964317328985126416851<43>
P72 = 168984112509748557056357145099368984533273143568828753891708684224898777<72>
Sun Apr 19 18:52:26 2009 random seeds: 83640b58 38b2f3fd factoring 185791392329655960317126843193149532656075039568978618086291692551310739540908266190324079981475502216424182091227 (114 digits) searching for 15-digit factors commencing number field sieve (114-digit input) R0: -5971029592928472269554 R1: 2129960935729 A0: 862370790294329460331503539 A1: -10194782863141842356898 A2: 1238072463545608887 A3: -92182453340548 A4: -5047177812 A5: 24480 skew 39869.06, size 7.804671e-11, alpha -6.508276, combined = 6.655291e-10 commencing relation filtering commencing duplicate removal, pass 1 error -5 reading relation 5820643 error -5 reading relation 7796563 found 689413 hash collisions in 7929051 relations added 509 free relations commencing duplicate removal, pass 2 found 775167 duplicates and 7154393 unique relations memory use: 48.6 MB reading rational ideals above 2686976 reading algebraic ideals above 2686976 commencing singleton removal, pass 1 relations with 0 large ideals: 73324 relations with 1 large ideals: 655600 relations with 2 large ideals: 2115377 relations with 3 large ideals: 2828898 relations with 4 large ideals: 1334809 relations with 5 large ideals: 88476 relations with 6 large ideals: 57908 relations with 7+ large ideals: 1 7154393 relations and about 7393740 large ideals commencing singleton removal, pass 2 found 3488166 singletons current dataset: 3666227 relations and about 3152132 large ideals commencing singleton removal, pass 3 found 720586 singletons current dataset: 2945641 relations and about 2375343 large ideals commencing singleton removal, pass 4 found 217203 singletons current dataset: 2728438 relations and about 2151780 large ideals commencing singleton removal, final pass memory use: 46.1 MB commencing in-memory singleton removal begin with 2728438 relations and 2260018 unique ideals reduce to 2313233 relations and 1835471 ideals in 16 passes max relations containing the same ideal: 65 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 2011906 ideals with weight <= 20, new excess is 218763 memory use: 65.5 MB commencing in-memory singleton removal begin with 2313746 relations and 2011906 unique ideals reduce to 2311378 relations and 2007004 ideals in 9 passes max relations containing the same ideal: 20 removing 254221 relations and 228917 ideals in 25304 cliques commencing in-memory singleton removal begin with 2057157 relations and 2007004 unique ideals reduce to 2037641 relations and 1758296 ideals in 8 passes max relations containing the same ideal: 20 removing 188091 relations and 162787 ideals in 25304 cliques commencing in-memory singleton removal begin with 1849550 relations and 1758296 unique ideals reduce to 1836735 relations and 1582524 ideals in 8 passes max relations containing the same ideal: 20 relations with 0 large ideals: 18963 relations with 1 large ideals: 140280 relations with 2 large ideals: 422112 relations with 3 large ideals: 621928 relations with 4 large ideals: 452573 relations with 5 large ideals: 152546 relations with 6 large ideals: 26344 relations with 7+ large ideals: 1989 commencing 2-way merge reduce to 1057712 relation sets and 803500 unique ideals commencing full merge memory use: 71.5 MB found 498479 cycles, need 465700 weight of 465700 cycles is about 32909516 (70.67/cycle) distribution of cycle lengths: 1 relations: 51136 2 relations: 49656 3 relations: 50299 4 relations: 45791 5 relations: 42157 6 relations: 37795 7 relations: 33099 8 relations: 28795 9 relations: 25932 10+ relations: 101040 heaviest cycle: 18 relations commencing cycle optimization start with 2870886 relations pruned 70362 relations memory use: 96.4 MB distribution of cycle lengths: 1 relations: 51136 2 relations: 50814 3 relations: 52098 4 relations: 47102 5 relations: 43351 6 relations: 38370 7 relations: 33575 8 relations: 29072 9 relations: 25739 10+ relations: 94443 heaviest cycle: 18 relations RelProcTime: 275 commencing linear algebra read 465700 cycles cycles contain 1621811 unique relations read 1621811 relations using 20 quadratic characters above 134217404 building initial matrix memory use: 198.4 MB read 465700 cycles matrix is 465414 x 465700 (140.0 MB) with weight 43993893 (94.47/col) sparse part has weight 31572525 (67.80/col) filtering completed in 3 passes matrix is 460957 x 461157 (139.2 MB) with weight 43699323 (94.76/col) sparse part has weight 31410540 (68.11/col) read 461157 cycles matrix is 460957 x 461157 (139.2 MB) with weight 43699323 (94.76/col) sparse part has weight 31410540 (68.11/col) saving the first 48 matrix rows for later matrix is 460909 x 461157 (133.7 MB) with weight 34683440 (75.21/col) sparse part has weight 30448887 (66.03/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 134.9 MB linear algebra completed 459370 of 461157 dimensions (99.6%, ETA 0h 0m) lanczos halted after 7290 iterations (dim = 460906) recovered 27 nontrivial dependencies BLanczosTime: 1632 commencing square root phase reading relations for dependency 1 read 230605 cycles cycles contain 985785 unique relations read 985785 relations multiplying 807772 relations multiply complete, coefficients have about 36.24 million bits initial square root is modulo 159773 sqrtTime: 209 prp43 factor: 1099460710064905094872964317328985126416851 prp72 factor: 168984112509748557056357145099368984533273143568828753891708684224898777 elapsed time 00:32:31 Total Sieving time: 08:11:12
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Apr 19, 2009
(53·10148-71)/9 = 5(8)1471<149> = 3 · 19 · 2381 · 5711 · 13834209197<11> · C130
C130 = P41 · P89
P41 = 82385359894943408004943162699533169281913<41>
P89 = 66662648941747010745791795419173523195324651729972252459647715337503778584049915638822583<89>
Number: 58881_148 N=5492026324616095798033102395215615366695629783537974299978961263104321958528283500871403176146355042788370590000930782242917841279 ( 130 digits) SNFS difficulty: 151 digits. Divisors found: r1=82385359894943408004943162699533169281913 r2=66662648941747010745791795419173523195324651729972252459647715337503778584049915638822583 Version: Total time: 9.99 hours. Scaled time: 23.83 units (timescale=2.386). Factorization parameters were as follows: n: 5492026324616095798033102395215615366695629783537974299978961263104321958528283500871403176146355042788370590000930782242917841279 m: 1000000000000000000000000000000 deg: 5 c5: 53 c0: -7100 skew: 2.66 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6910517 Max relations in full relation-set: Initial matrix: Pruned matrix : 436261 x 436509 Total sieving time: 9.21 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.39 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 9.99 hours. --------- CPU info (if available) ----------
2·10199-1 = 1(9)199<200> = 19 · 17339562682791539<17> · 7572092218037286911<19> · C163
C163 = P35 · P129
P35 = 15088679290694653491630959079652649<35>
P129 = 531338312951247025629014580036481987176765320031147478358915519016343794161299690194525950929141452320767635858987664888979395601<129>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 8017193398980115789611498508984984667086036428422295572972632192194297168351927795512719154924815800899613373920817281990053320592884375557748210291511125038597049 (163 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1624952013 Step 1 took 5507ms ********** Factor found in step 1: 15088679290694653491630959079652649 Found probable prime factor of 35 digits: 15088679290694653491630959079652649 Probable prime cofactor 531338312951247025629014580036481987176765320031147478358915519016343794161299690194525950929141452320767635858987664888979395601 has 129 digits
By Ignacio Santos / GGNFS, Msieve / Apr 19, 2009
(53·10150-71)/9 = 5(8)1491<151> = 248747801 · 11462866529<11> · C133
C133 = P61 · P73
P61 = 1006667291845049530667097296308918344203566521580425950778739<61>
P73 = 2051610515873675499019042734361944316125748570732769002787444070163735651<73>
Number: 58881_150 N=2065289201935377916361303754850202748421005648580776733236968519814503971051359873268351261206738974803314183796084499535780787124089 ( 133 digits) SNFS difficulty: 151 digits. Divisors found: r1=1006667291845049530667097296308918344203566521580425950778739 (pp61) r2=2051610515873675499019042734361944316125748570732769002787444070163735651 (pp73) Version: Msieve-1.39 Total time: 13.07 hours. Scaled time: 33.81 units (timescale=2.587). Factorization parameters were as follows: n: 2065289201935377916361303754850202748421005648580776733236968519814503971051359873268351261206738974803314183796084499535780787124089 m: 1000000000000000000000000000000 deg: 5 c5: 53 c0: -71 skew: 1.06 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 388006 x 388254 Total sieving time: 13.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 13.07 hours. --------- CPU info (if available) ----------
(37·10186+17)/9 = 4(1)1853<187> = 3 · 5431 · 48847 · 118529 · 20791445904137<14> · 6636802404266483<16> · 8319806456856435884237<22> · C122
C122 = P54 · P68
P54 = 936611623971359060206147696654335999846721752617956297<54>
P68 = 40530251017074094158289636271902336998641296433950350474105003157453<68>
Number: 41113_186 N=37961104225068594578714829076645712945921588378067673385352537851945754998378505684467544660269645616821258158008963831541 ( 122 digits) Divisors found: r1=936611623971359060206147696654335999846721752617956297 (pp54) r2=40530251017074094158289636271902336998641296433950350474105003157453 (pp68) Version: Msieve-1.39 Total time: 49.82 hours. Scaled time: 128.79 units (timescale=2.585). Factorization parameters were as follows: n: 37961104225068594578714829076645712945921588378067673385352537851945754998378505684467544660269645616821258158008963831541 Y0: -318842747860980647659276 Y1: 12477258589133 c0: 182009490340765499157220857085 c1: 2767449488789833424934041 c2: -35423532070220414210 c3: -462278175788232 c4: 2468121056 c5: 11520 skew: 131899.69 type: gnfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 678008 x 678256 Total sieving time: 49.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 49.82 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 19, 2009
(53·10159-71)/9 = 5(8)1581<160> = 73 · 5966567237<10> · 4981932222649<13> · 26273193042133<14> · 2062452635612297<16> · C107
C107 = P52 · P55
P52 = 6078143242188653953677512610851837554339876404942979<52>
P55 = 8239870283677649983233243756347853355656983261837612011<55>
Number: n N=50083111881246415258836189923446650619873710853182232529963769466745141613279822608636885515510257980520769 ( 107 digits) Divisors found: r1=6078143242188653953677512610851837554339876404942979 (pp52) r2=8239870283677649983233243756347853355656983261837612011 (pp55) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 8.87 hours. Scaled time: 23.49 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_8_158_1 n: 50083111881246415258836189923446650619873710853182232529963769466745141613279822608636885515510257980520769 Y0: -476444653022084686012 Y1: 101590671413 c0: -176302300640800173013419063 c1: 18648490637306616368999 c2: 138703903042426525 c3: -19244747603213 c4: -25299728 c5: 2040 skew: 40590.29 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1250000, 2200001) Primes: RFBsize:183072, AFBsize:182873, largePrimes:15737194 encountered Relations: rels:14081049, finalFF:507587 Max relations in full relation-set: 28 Initial matrix: 366022 x 507587 with sparse part having weight 47260200. Pruned matrix : 271239 x 273133 with weight 27017065. Total sieving time: 7.88 hours. Total relation processing time: 0.50 hours. Matrix solve time: 0.30 hours. Total square root time: 0.18 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 8.87 hours. --------- CPU info (if available) ----------
2·10193-1 = 1(9)193<194> = 61 · 3011 · 3019 · 2630399 · 1921011481<10> · 5467489597378404813936108409<28> · 394666621455911984281003929471901<33> · C109
C109 = P50 · P60
P50 = 27527725817981321521808835728186950658541825851539<50>
P60 = 120167217091555354429467632255431770850693114035283138229779<60>
Number: n N=3307930204406174659160459281208577919156483154925588805331903346568937950394323661593005058106900251722779881 ( 109 digits) Divisors found: r1=27527725817981321521808835728186950658541825851539 (pp50) r2=120167217091555354429467632255431770850693114035283138229779 (pp60) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 11.32 hours. Scaled time: 30.11 units (timescale=2.660). Factorization parameters were as follows: name: KA_1_9_193 n: 3307930204406174659160459281208577919156483154925588805331903346568937950394323661593005058106900251722779881 Y0: -839776940653718696932 Y1: 114057450119 c0: -1649652311583314793830770533 c1: 216144923746544112026007 c2: -3923772748444895801 c3: -94689262172047 c4: 1534734054 c5: 7920 skew: 54002.35 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1600000, 2700001) Primes: RFBsize:230209, AFBsize:230226, largePrimes:16506913 encountered Relations: rels:14758898, finalFF:602642 Max relations in full relation-set: 28 Initial matrix: 460518 x 602642 with sparse part having weight 53211012. Pruned matrix : 348381 x 350747 with weight 29897839. Total sieving time: 9.85 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.54 hours. Total square root time: 0.21 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 11.32 hours. --------- CPU info (if available) ----------
(53·10149-71)/9 = 5(8)1481<150> = 65563 · 1815347719<10> · 321073852383149036798633<24> · C113
C113 = P57 · P57
P57 = 106800209355250487145003373704765155010615558207705547567<57>
P57 = 144290479211011391034524051927928805222760474712705729043<57>
Number: n N=15410253387705434693965673668065684984653498882240991066120364949759038956067606885783711480075651457014249888381 ( 113 digits) SNFS difficulty: 151 digits. Divisors found: Sun Apr 19 10:39:07 2009 prp57 factor: 106800209355250487145003373704765155010615558207705547567 Sun Apr 19 10:39:07 2009 prp57 factor: 144290479211011391034524051927928805222760474712705729043 Sun Apr 19 10:39:07 2009 elapsed time 00:25:17 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 15.47 hours. Scaled time: 40.98 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_8_148_1 n: 15410253387705434693965673668065684984653498882240991066120364949759038956067606885783711480075651457014249888381 m: 1000000000000000000000000000000 deg: 5 c5: 53 c0: -710 skew: 1.68 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1200000, 2207143) Primes: RFBsize:176302, AFBsize:176159, largePrimes:11666723 encountered Relations: rels:11027980, finalFF:373357 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1019499 hash collisions in 11953025 relations Msieve: matrix is 406774 x 407022 (108.2 MB) Total sieving time: 15.20 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.4,2.4,100000 total time: 15.47 hours. --------- CPU info (if available) ----------
(53·10156-71)/9 = 5(8)1551<157> = 21893 · 414036871 · 5097582013<10> · C135
C135 = P33 · P102
P33 = 458737405579699161469808051148151<33>
P102 = 277818197649398752305269669956120329087419350051266481378494174971171347683342879820983467197939102529<102>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 127445599212513259661167031097844600127945207600601649714644003218328810348288025994342263956141841235757118525999000793680536957773879 (135 digits) Using B1=2072000, B2=2854078510, polynomial Dickson(6), sigma=272239408 Step 1 took 25849ms Step 2 took 9266ms ********** Factor found in step 2: 458737405579699161469808051148151 Found probable prime factor of 33 digits: 458737405579699161469808051148151 Probable prime cofactor 277818197649398752305269669956120329087419350051266481378494174971171347683342879820983467197939102529 has 102 digits
By Markus Tervooren / Lattice siever (64bit/asm), msieve 1.40, factMsieve.pl / Apr 19, 2009
(53·10152-71)/9 = 5(8)1511<153> = 7 · 47 · 132859 · C146
C146 = P39 · P107
P39 = 358120980514725128858958545331653679533<39>
P107 = 37619820414914044458839692273435650922151956137997093517622555060481625863874724410536072161511382815906487<107>
N=13472446973776891128080751122167770404510906719855480603757492405880322489403977649474835501358900905981133251349172146984833702939748174393830571 ( 146 digits) SNFS difficulty: 154 digits. Divisors found: r1=358120980514725128858958545331653679533 (pp39) r2=37619820414914044458839692273435650922151956137997093517622555060481625863874724410536072161511382815906487 (pp107) Version: Msieve-1.39 Total time: 11.66 hours. Scaled time: 26.15 units (timescale=2.243). Factorization parameters were as follows: n: 13472446973776891128080751122167770404510906719855480603757492405880322489403977649474835501358900905981133251349172146984833702939748174393830571 m: 2000000000000000000000000000000 deg: 5 c5: 1325 c0: -568 skew: 0.84 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 479562 x 479810 Total sieving time: 10.80 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.73 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 11.66 hours. --------- CPU info (if available) ---------- [ 0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.238418] CPU1: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.335353] CPU2: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.432195] CPU3: Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b [ 0.004000] Memory: 8198000k/10485760k available (2226k kernel code, 189836k reserved, 1082k data, 392k init) [ 0.083969] Calibrating delay using timer specific routine.. 5804.04 BogoMIPS (lpj=11608082) [ 0.160010] Calibrating delay using timer specific routine.. 8120.06 BogoMIPS (lpj=16240129) [ 0.252015] Calibrating delay using timer specific routine.. 5800.09 BogoMIPS (lpj=11600186) [ 0.351781] Calibrating delay using timer specific routine.. 5800.09 BogoMIPS (lpj=11600195) [ 0.439785] Total of 4 processors activated (25524.29 BogoMIPS).
By Serge Batalov / GMP-ECM 6.2.2 / Apr 19, 2009
(53·10195-71)/9 = 5(8)1941<196> = 1319 · 33857 · C189
C189 = P34 · P155
P34 = 6522546262176896794087564739115713<34>
P155 = 20217289175101472176634624589120256959714664779605055451404756357758626997987860981678743694952263411707665143615277807384449498161455207993683372278411239<155>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3935644505 Step 1 took 11044ms Step 2 took 11361ms ********** Factor found in step 2: 6522546262176896794087564739115713 Found probable prime factor of 34 digits: 6522546262176896794087564739115713 Probable prime cofactor has 155 digits
(53·10201-71)/9 = 5(8)2001<202> = 845726166293<12> · C190
C190 = P32 · C159
P32 = 26614080411265630091650323405683<32>
C159 = [261632763104934685678706508770395191162055898507905747696347081652713863042849725984808309953127668896691497252042853273203709573229850203050723384365743227999<159>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1279820415 Step 1 took 11153ms Step 2 took 11248ms ********** Factor found in step 2: 26614080411265630091650323405683 Found probable prime factor of 32 digits: 26614080411265630091650323405683 Composite cofactor has 159 digits
(53·10162-71)/9 = 5(8)1611<163> = 70679701 · 44026722517<11> · C145
C145 = P34 · C112
P34 = 1236279080219216121922252206884753<34>
C112 = [1530755327949768346559116010704472935748277600679650175511082917507123042329452736442582425054160912093674875881<112>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3167953602 Step 1 took 8465ms Step 2 took 8816ms ********** Factor found in step 2: 1236279080219216121922252206884753 Found probable prime factor of 34 digits: 1236279080219216121922252206884753 Composite cofactor has 112 digits
(53·10169-71)/9 = 5(8)1681<170> = 32 · 55619 · C165
C165 = P33 · C132
P33 = 268408781245025917238865818507107<33>
C132 = [438299479011775469486372343095698175154784520161586980563186912608598242291187115880197057529976739290204068936254644363207769097473<132>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=504785334 Step 1 took 9505ms Step 2 took 9856ms ********** Factor found in step 2: 268408781245025917238865818507107 Found probable prime factor of 33 digits: 268408781245025917238865818507107 Composite cofactor has 132 digits
(53·10175-71)/9 = 5(8)1741<176> = 3 · 73 · 1024183 · C168
C168 = P40 · P129
P40 = 2158548290899707807210634246105330347041<40>
P129 = 121632578456805687673146582029186126326283394657268436697370779282164748561294068326344587870149269097387136954490861643986922133<129>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2926320089 Step 1 took 9548ms Step 2 took 4621ms ********** Factor found in step 2: 2158548290899707807210634246105330347041 Found probable prime factor of 40 digits: 2158548290899707807210634246105330347041 Probable prime cofactor has 129 digits
By Ignacio Santos / GGNFS, Msieve / Apr 17, 2009
(53·10107-71)/9 = 5(8)1061<108> = 97 · 269 · 461 · C101
C101 = P40 · P62
P40 = 1384979565662153197387040503504412975669<40>
P62 = 35348016964029802824250185131245245092377627875980924329954213<62>
Number: 58881_107 N=48956281181860419416589475081239022881768631931593997948842662890271506639806479700042463569853043497 ( 101 digits) SNFS difficulty: 109 digits. Divisors found: r1=1384979565662153197387040503504412975669 (pp40) r2=35348016964029802824250185131245245092377627875980924329954213 (pp62) Version: Msieve-1.39 Total time: 0.76 hours. Scaled time: 0.84 units (timescale=1.095). Factorization parameters were as follows: n: 48956281181860419416589475081239022881768631931593997948842662890271506639806479700042463569853043497 m: 2000000000000000000000 deg: 5 c5: 1325 c0: -568 skew: 0.84 type: snfs lss: 1 rlim: 470000 alim: 470000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 470000/470000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [235000, 385001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52946 x 53184 Total sieving time: 0.72 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000 total time: 0.76 hours. --------- CPU info (if available) ----------
(53·10111-71)/9 = 5(8)1101<112> = 73 · 73751 · 106363 · C101
C101 = P50 · P51
P50 = 14493900658606329765271121197487209608426062754421<50>
P51 = 709523408350170592136127179652066112526467686866489<51>
Number: 58881_111 N=10283761795583145401413388163687678748300979703369701831666106090610374480536842407958300829821497869 ( 101 digits) SNFS difficulty: 112 digits. Divisors found: r1=14493900658606329765271121197487209608426062754421 (pp50) r2=709523408350170592136127179652066112526467686866489 (pp51) Version: Msieve-1.39 Total time: 0.96 hours. Scaled time: 1.15 units (timescale=1.194). Factorization parameters were as follows: n: 10283761795583145401413388163687678748300979703369701831666106090610374480536842407958300829821497869 m: 10000000000000000000000 deg: 5 c5: 530 c0: -71 skew: 0.67 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 67516 x 67760 Total sieving time: 0.93 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 0.96 hours. --------- CPU info (if available) ----------
(53·10115-71)/9 = 5(8)1141<116> = 32 · 223 · 5273 · C109
C109 = P51 · P59
P51 = 258714152872988458408233821774037897987784234433911<51>
P59 = 21508396256747219765998592929869798919896339768469661174761<59>
Number: 58881_115 N=5564526517220912931129146686473021353849511621980841461190488031968603807486322892528236218644273668075720271 ( 109 digits) SNFS difficulty: 116 digits. Divisors found: r1=258714152872988458408233821774037897987784234433911 (pp51) r2=21508396256747219765998592929869798919896339768469661174761 (pp59) Version: Msieve-1.39 Total time: 1.34 hours. Scaled time: 1.60 units (timescale=1.188). Factorization parameters were as follows: n: 5564526517220912931129146686473021353849511621980841461190488031968603807486322892528236218644273668075720271 m: 100000000000000000000000 deg: 5 c5: 53 c0: -71 skew: 1.06 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 59467 x 59698 Total sieving time: 1.30 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 1.34 hours. --------- CPU info (if available) ----------
(53·10120-71)/9 = 5(8)1191<121> = 331 · 43613 · 3706627 · C108
C108 = P50 · P58
P50 = 26786575570913598534091002158361449653541557924127<50>
P58 = 4108594908349800945919523446359933990845020074836239443163<58>
Number: 58881_120 N=110055188002782773317772931442183797479669644135257477753433827406525740778348919818614135594749472682893701 ( 108 digits) SNFS difficulty: 121 digits. Divisors found: r1=26786575570913598534091002158361449653541557924127 (pp50) r2=4108594908349800945919523446359933990845020074836239443163 (pp58) Version: Msieve-1.39 Total time: 1.36 hours. Scaled time: 1.63 units (timescale=1.196). Factorization parameters were as follows: n: 110055188002782773317772931442183797479669644135257477753433827406525740778348919818614135594749472682893701 m: 1000000000000000000000000 deg: 5 c5: 53 c0: -71 skew: 1.06 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 625001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80948 x 81174 Total sieving time: 1.32 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.36 hours. --------- CPU info (if available) ----------
(53·10119-71)/9 = 5(8)1181<120> = 23 · 73 · 3137 · C114
C114 = P36 · P78
P36 = 247302525192062034320407341931514849<36>
P78 = 452105295957014023819909058843366067525219824276276508453661905503232282583903<78>
Number: 58881_119 N=111806781342874122419607601654461901702135891354354991213991070266617193220703400932346201808666658354992732875647 ( 114 digits) SNFS difficulty: 121 digits. Divisors found: r1=247302525192062034320407341931514849 (pp36) r2=452105295957014023819909058843366067525219824276276508453661905503232282583903 (pp78) Version: Msieve-1.39 Total time: 1.79 hours. Scaled time: 2.10 units (timescale=1.175). Factorization parameters were as follows: n: 111806781342874122419607601654461901702135891354354991213991070266617193220703400932346201808666658354992732875647 m: 1000000000000000000000000 deg: 5 c5: 53 c0: -710 skew: 1.68 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 725001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 91225 x 91452 Total sieving time: 1.74 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.79 hours. --------- CPU info (if available) ----------
(53·10124-71)/9 = 5(8)1231<125> = 32 · 103 · 10391 · 313517 · 1925993 · C107
C107 = P42 · P65
P42 = 645449533165367934958837365343863903897071<42>
P65 = 15686216002025477513604797878670354464346679288472277430682098283<65>
Number: 58881_124 N=10124660795638468662831440992732320261481090609423641679678285332988429044938130752945016949841399137829093 ( 107 digits) SNFS difficulty: 126 digits. Divisors found: r1=645449533165367934958837365343863903897071 (pp42) r2=15686216002025477513604797878670354464346679288472277430682098283 (pp65) Version: Msieve-1.39 Total time: 2.33 hours. Scaled time: 2.75 units (timescale=1.178). Factorization parameters were as follows: n: 10124660795638468662831440992732320261481090609423641679678285332988429044938130752945016949841399137829093 m: 10000000000000000000000000 deg: 5 c5: 53 c0: -710 skew: 1.68 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 855001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135894 x 136122 Total sieving time: 2.21 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 2.33 hours. --------- CPU info (if available) ----------
(53·10128-71)/9 = 5(8)1271<129> = 7 · 167 · C126
C126 = P53 · P74
P53 = 24969206764244227895770332415233048905828749459976209<53>
P74 = 20175026012093362314000182915103646299439827080940433333601709650431305361<74>
Number: 58881_128 N=503754395969964832240281342077749263378005892975952856192377150460982796312137629502898963976808288185533694515730443874156449 ( 126 digits) SNFS difficulty: 131 digits. Divisors found: r1=24969206764244227895770332415233048905828749459976209 (pp53) r2=20175026012093362314000182915103646299439827080940433333601709650431305361 (pp74) Version: Msieve-1.39 Total time: 3.22 hours. Scaled time: 3.79 units (timescale=1.176). Factorization parameters were as follows: n: 503754395969964832240281342077749263378005892975952856192377150460982796312137629502898963976808288185533694515730443874156449 m: 50000000000000000000000000 deg: 5 c5: 424 c0: -1775 skew: 1.33 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 1085001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 182936 x 183184 Total sieving time: 3.05 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 3.22 hours. --------- CPU info (if available) ----------
(53·10129-71)/9 = 5(8)1281<130> = 17 · 21589 · C125
C125 = P56 · P69
P56 = 25322624759976549455734598285790216107772481213399224703<56>
P69 = 633640886576731402778133093433220256786188375338961718270777059934179<69>
Number: 58881_129 N=16045450403361431036200049831719554590406576576003817000729916621179328494873175851778789549386231247636701939410562810823837 ( 125 digits) SNFS difficulty: 131 digits. Divisors found: r1=25322624759976549455734598285790216107772481213399224703 (pp56) r2=633640886576731402778133093433220256786188375338961718270777059934179 (pp69) Version: Msieve-1.39 Total time: 3.29 hours. Scaled time: 3.90 units (timescale=1.183). Factorization parameters were as follows: n: 16045450403361431036200049831719554590406576576003817000729916621179328494873175851778789549386231247636701939410562810823837 m: 100000000000000000000000000 deg: 5 c5: 53 c0: -710 skew: 1.68 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178470 x 178705 Total sieving time: 3.15 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 3.29 hours. --------- CPU info (if available) ----------
(28·10176+71)/9 = 3(1)1759<177> = 11 · 4177 · 334891 · 78854016401726471<17> · 20922377657995813028793412603<29> · C122
C122 = P44 · P78
P44 = 17523944894902605507691685863551313076801221<44>
P78 = 699339647751129622336695924473895312705541651662527802496178396153595100045639<78>
Number: 31119_176 N=12255189450011394345886624005277270545972982902709668725171403353927774914407355488728521798333587784910725597129230925219 ( 122 digits) Divisors found: r1=17523944894902605507691685863551313076801221 (pp44) r2=699339647751129622336695924473895312705541651662527802496178396153595100045639 (pp78) Version: Msieve-1.39 Total time: 42.01 hours. Scaled time: 73.06 units (timescale=1.739). Factorization parameters were as follows: n: 12255189450011394345886624005277270545972982902709668725171403353927774914407355488728521798333587784910725597129230925219 Y0: -244870820893368151508838 Y1: 12427739286793 c0: -163742196505265923710132207365 c1: 65321964375096181901087226 c2: 197404084512766770793 c3: -2347860226599054 c4: -2773401392 c5: 13920 skew: 246057.74 type: gnfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [3000000, 5220001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 704331 x 704579 Total sieving time: 42.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,27,27,50,50,2.4,2.4,60000 total time: 42.01 hours. --------- CPU info (if available) ----------
(52·10167-43)/9 = 5(7)1663<168> = 34 · 7 · 61 · 129913170341<12> · 867242538361868937630981343<27> · C126
C126 = P44 · P82
P44 = 49637779755040036765627367016478664200260103<44>
P82 = 2987045509611890878333062958493333869323375170995634475635740926374588918561839811<82>
Number: 57773_167 N=148270307124396366588776691013993480723011390291670678142012858099810032240249803524315671307492094495902151881145156420360533 ( 126 digits) SNFS difficulty: 169 digits. Divisors found: r1=49637779755040036765627367016478664200260103 (pp44) r2=2987045509611890878333062958493333869323375170995634475635740926374588918561839811 (pp82) Version: Msieve-1.39 Total time: 52.12 hours. Scaled time: 134.21 units (timescale=2.575). Factorization parameters were as follows: n: 148270307124396366588776691013993480723011390291670678142012858099810032240249803524315671307492094495902151881145156420360533 m: 2000000000000000000000000000000000 deg: 5 c5: 325 c0: -86 skew: 0.77 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 4900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 877895 x 878143 Total sieving time: 52.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 52.12 hours. --------- CPU info (if available) ----------
(53·10135-71)/9 = 5(8)1341<136> = 73 · 17971 · C130
C130 = P39 · P42 · P50
P39 = 208950478073359106691735508553258069951<39>
P42 = 238220374772566897555570835368515940408729<42>
P50 = 90181194435531348598364513854322550480408866621333<50>
Number: 58881_135 N=4488882689149023875520064585705347876974462576989631612642963502758164324782689377702804967279009552596450208508600910972159017907 ( 130 digits) SNFS difficulty: 136 digits. Divisors found: r1=208950478073359106691735508553258069951 (pp39) r2=238220374772566897555570835368515940408729 (pp42) r3=90181194435531348598364513854322550480408866621333 (pp50) Version: Msieve-1.39 Total time: 3.61 hours. Scaled time: 9.32 units (timescale=2.585). Factorization parameters were as follows: n: 4488882689149023875520064585705347876974462576989631612642963502758164324782689377702804967279009552596450208508600910972159017907 m: 1000000000000000000000000000 deg: 5 c5: 53 c0: -71 skew: 1.06 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 180652 x 180900 Total sieving time: 3.61 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.61 hours. --------- CPU info (if available) ----------
(53·10142-71)/9 = 5(8)1411<143> = 32 · 1709 · 278909 · 76152539500821414403933627<26> · C108
C108 = P53 · P55
P53 = 71133922634174006030717975784795514715709640159273987<53>
P55 = 2534107945612965006523312677086987427729240908255143361<55>
Number: 58881_142 N=180261038549878282546405625387619251986666046371548632232487890600553463920445113493554792990997936363050307 ( 108 digits) SNFS difficulty: 144 digits. Divisors found: r1=71133922634174006030717975784795514715709640159273987 (pp53) r2=2534107945612965006523312677086987427729240908255143361 (pp55) Version: Msieve-1.39 Total time: 9.02 hours. Scaled time: 23.19 units (timescale=2.570). Factorization parameters were as follows: n: 180261038549878282546405625387619251986666046371548632232487890600553463920445113493554792990997936363050307 m: 20000000000000000000000000000 deg: 5 c5: 1325 c0: -568 skew: 0.84 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 323665 x 323913 Total sieving time: 9.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,100000 total time: 9.02 hours. --------- CPU info (if available) ----------
(53·10158-71)/9 = 5(8)1571<159> = 7 · 1032 · 36843969518977<14> · C141
C141 = P54 · P87
P54 = 590800533267749425396799989726967304158855580389298407<54>
P87 = 364295308035138105843948238320786618697318570121178416315717666433432812884446432322033<87>
Number: 58881_158 N=215225862254098635062373516145563229858180884948610690716839884723050559871095844778820344045193448097260622781286766391923370173940757901431 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: r1=590800533267749425396799989726967304158855580389298407 (pp54) r2=364295308035138105843948238320786618697318570121178416315717666433432812884446432322033 (pp87) Version: Msieve-1.39 Total time: 36.12 hours. Scaled time: 62.82 units (timescale=1.739). Factorization parameters were as follows: n: 215225862254098635062373516145563229858180884948610690716839884723050559871095844778820344045193448097260622781286766391923370173940757901431 m: 50000000000000000000000000000000 deg: 5 c5: 424 c0: -1775 skew: 1.33 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 710549 x 710797 Total sieving time: 36.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 36.12 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 18, 2009
(53·10147-71)/9 = 5(8)1461<148> = 173 · 911 · 1864678338609841<16> · C128
C128 = P40 · P88
P40 = 8841650303160994912744847210119857502267<40>
P88 = 2266374213407869403317452567641879525824318358979772631723729317593675170965387268563441<88>
Number: 58881_147 N=20038488251053949891160955364517975958712532523335809074228319663764962729976432022531272278261934548560037253969985567490820747 ( 128 digits) SNFS difficulty: 149 digits. Divisors found: r1=8841650303160994912744847210119857502267 (pp40) r2=2266374213407869403317452567641879525824318358979772631723729317593675170965387268563441 (pp88) Version: Msieve-1.39 Total time: 13.69 hours. Scaled time: 35.28 units (timescale=2.577). Factorization parameters were as follows: n: 20038488251053949891160955364517975958712532523335809074228319663764962729976432022531272278261934548560037253969985567490820747 m: 200000000000000000000000000000 deg: 5 c5: 1325 c0: -568 skew: 0.84 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 406122 x 406370 Total sieving time: 13.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 13.69 hours. --------- CPU info (if available) ----------
(32·10194+13)/9 = 3(5)1937<195> = 3 · 7 · 17 · 167 · 166186338707<12> · 494623864127202459693037<24> · 3118053696717644861370191005951739<34> · C122
C122 = P44 · P79
P44 = 19474818079230790147783809942972607846336609<44>
P79 = 1194800501768501725770690816539500998982141406904802206750689178224457211794067<79>
Number: 35557_194 N=23268522412915237066157072508677930272386856866646539514759309590878493431200958246887248353476180538089263618054471098803 ( 122 digits) Divisors found: r1=19474818079230790147783809942972607846336609 (pp44) r2=1194800501768501725770690816539500998982141406904802206750689178224457211794067 (pp79) Version: Msieve-1.39 Total time: 50.89 hours. Scaled time: 131.26 units (timescale=2.579). Factorization parameters were as follows: n: 23268522412915237066157072508677930272386856866646539514759309590878493431200958246887248353476180538089263618054471098803 Y0: -279098707443920442464360 Y1: 10054681781741 c0: 794709234251163174045516183 c1: -1662989921838592892427253 c2: 9037051214934208389 c3: -32437449469927 c4: -6193801292 c5: 13740 skew: 95344.69 type: gnfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5080001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 686177 x 686425 Total sieving time: 50.89 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 50.89 hours. --------- CPU info (if available) ----------
(52·10175+11)/9 = 5(7)1749<176> = 59 · C174
C174 = P84 · P91
P84 = 221396733866059271753457736994463053326306135043477879714218658472367433821816422859<84>
P91 = 4423210550645817710188763098309667499105730033402825302895493919405103994634059074107437659<91>
Number: 57779_175 N=979284369114877589453860640301318267419962335216572504708097928436911487758945386064030131826741996233521657250470809792843691148775894538606403013182674199623352165725047081 ( 174 digits) SNFS difficulty: 176 digits. Divisors found: r1=221396733866059271753457736994463053326306135043477879714218658472367433821816422859 (pp84) r2=4423210550645817710188763098309667499105730033402825302895493919405103994634059074107437659 (pp91) Version: Msieve-1.39 Total time: 59.74 hours. Scaled time: 103.90 units (timescale=1.739). Factorization parameters were as follows: n: 979284369114877589453860640301318267419962335216572504708097928436911487758945386064030131826741996233521657250470809792843691148775894538606403013182674199623352165725047081 m: 100000000000000000000000000000000000 deg: 5 c5: 52 c0: 11 skew: 0.73 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1140797 x 1141045 Total sieving time: 59.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000 total time: 59.74 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Apr 17, 2009
(47·10196+61)/9 = 5(2)1959<197> = C197
C197 = P76 · P122
P76 = 1579229435921678256326591199705715594120801084508283699645866680988859851099<76>
P122 = 33068166685826757029330791732171671095878658225580448280795059966475529175322301526715686040210443228306558116508701585871<122>
Number: 52229_196 N=52222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: r1=1579229435921678256326591199705715594120801084508283699645866680988859851099 r2=33068166685826757029330791732171671095878658225580448280795059966475529175322301526715686040210443228306558116508701585871 Version: Total time: 419.87 hours. Scaled time: 1003.49 units (timescale=2.390). Factorization parameters were as follows: n: 52222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 m: 1000000000000000000000000000000000000000 deg: 5 c5: 470 c0: 61 skew: 0.66 type: snfs lss: 1 rlim: 18000000 alim: 18000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 18000000/18000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [9000000, 18400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 24409029 Max relations in full relation-set: Initial matrix: Pruned matrix : 2823593 x 2823841 Total sieving time: 384.51 hours. Total relation processing time: 12.75 hours. Matrix solve time: 21.79 hours. Time per square root: 0.82 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,18000000,18000000,28,28,55,55,2.5,2.5,100000 total time: 419.87 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Apr 18, 2009
2·10189-1 = 1(9)189<190> = 31 · 5439829 · 2720009561<10> · 13767101225803399878919<23> · C150
C150 = P33 · C117
P33 = 317174697888724493139312350540581<33>
C117 = [998554062131199145511682309200429404184445404728977563784886142161737708964524438853301713011987413991352186470480119<117>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 316716082982021715964078119995152309103483041202058322413122073625672839431656295396252831115566430331967060364389847629059167242554614320568263209139 (150 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3783356541 Step 1 took 4615ms Step 2 took 2683ms ********** Factor found in step 2: 317174697888724493139312350540581 Found probable prime factor of 33 digits: 317174697888724493139312350540581 Composite cofactor 998554062131199145511682309200429404184445404728977563784886142161737708964524438853301713011987413991352186470480119 has 117 digits
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.41 / Apr 17, 2009
(53·10139-71)/9 = 5(8)1381<140> = 3 · 751 · 2415546311873706757<19> · C119
C119 = P35 · P37 · P48
P35 = 19628836388346054508128484997147281<35>
P37 = 1950538446329560608415371227959497329<37>
P48 = 282623148366498362008930795950925297690193155889<48>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2883563787 Step 1 took 6925ms ********** Factor found in step 1: 1950538446329560608415371227959497329 Found probable prime factor of 37 digits: 1950538446329560608415371227959497329 Composite cofactor has 82 digits Thu Apr 16 11:00:26 2009 Msieve v. 1.41 Thu Apr 16 11:00:26 2009 random seeds: 06ab07b0 44c37f3d Thu Apr 16 11:00:26 2009 factoring 5547563538845248822936990017294757100627630247645492603497532000944928035525487809 (82 digits) Thu Apr 16 11:00:26 2009 searching for 15-digit factors Thu Apr 16 11:00:27 2009 commencing quadratic sieve (82-digit input) Thu Apr 16 11:00:27 2009 using multiplier of 1 Thu Apr 16 11:00:27 2009 using 64kb Opteron sieve core Thu Apr 16 11:00:27 2009 sieve interval: 6 blocks of size 65536 Thu Apr 16 11:00:27 2009 processing polynomials in batches of 17 Thu Apr 16 11:00:27 2009 using a sieve bound of 1348597 (51765 primes) Thu Apr 16 11:00:27 2009 using large prime bound of 125419521 (26 bits) Thu Apr 16 11:00:27 2009 using trial factoring cutoff of 27 bits Thu Apr 16 11:00:27 2009 polynomial 'A' values have 10 factors Thu Apr 16 11:13:18 2009 51987 relations (27028 full + 24959 combined from 270581 partial), need 51861 Thu Apr 16 11:13:18 2009 begin with 297609 relations Thu Apr 16 11:13:18 2009 reduce to 73841 relations in 2 passes Thu Apr 16 11:13:18 2009 attempting to read 73841 relations Thu Apr 16 11:13:18 2009 recovered 73841 relations Thu Apr 16 11:13:18 2009 recovered 64025 polynomials Thu Apr 16 11:13:18 2009 attempting to build 51987 cycles Thu Apr 16 11:13:18 2009 found 51987 cycles in 1 passes Thu Apr 16 11:13:18 2009 distribution of cycle lengths: Thu Apr 16 11:13:18 2009 length 1 : 27028 Thu Apr 16 11:13:18 2009 length 2 : 24959 Thu Apr 16 11:13:18 2009 largest cycle: 2 relations Thu Apr 16 11:13:18 2009 matrix is 51765 x 51987 (7.6 MB) with weight 1583604 (30.46/col) Thu Apr 16 11:13:18 2009 sparse part has weight 1583604 (30.46/col) Thu Apr 16 11:13:19 2009 filtering completed in 3 passes Thu Apr 16 11:13:19 2009 matrix is 36391 x 36453 (5.9 MB) with weight 1254865 (34.42/col) Thu Apr 16 11:13:19 2009 sparse part has weight 1254865 (34.42/col) Thu Apr 16 11:13:19 2009 saving the first 48 matrix rows for later Thu Apr 16 11:13:19 2009 matrix is 36343 x 36453 (4.6 MB) with weight 1009631 (27.70/col) Thu Apr 16 11:13:19 2009 sparse part has weight 832049 (22.83/col) Thu Apr 16 11:13:19 2009 matrix includes 64 packed rows Thu Apr 16 11:13:19 2009 using block size 14581 for processor cache size 6144 kB Thu Apr 16 11:13:19 2009 commencing Lanczos iteration Thu Apr 16 11:13:19 2009 memory use: 4.3 MB Thu Apr 16 11:13:25 2009 lanczos halted after 576 iterations (dim = 36339) Thu Apr 16 11:13:25 2009 recovered 15 nontrivial dependencies Thu Apr 16 11:13:25 2009 prp35 factor: 19628836388346054508128484997147281 Thu Apr 16 11:13:25 2009 prp48 factor: 282623148366498362008930795950925297690193155889 Thu Apr 16 11:13:25 2009 elapsed time 00:12:59
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.41 / Apr 18, 2009
(53·10138-71)/9 = 5(8)1371<139> = 29 · 647951 · 358891536869<12> · 207918343886153<15> · 6192700806701161<16> · C90
C90 = P42 · P49
P42 = 343285591799040843138102857725593336454477<42>
P49 = 1975611290293895905492495874305707347552169153691<49>
Fri Apr 17 16:08:56 2009 Msieve v. 1.41 Fri Apr 17 16:08:56 2009 random seeds: c0d9302b 3e47c1e3 Fri Apr 17 16:08:56 2009 factoring 678198890953406730719061459299602476927341145140434803371927643801924003643416583638024607 (90 digits) Fri Apr 17 16:08:56 2009 searching for 15-digit factors Fri Apr 17 16:08:57 2009 commencing quadratic sieve (90-digit input) Fri Apr 17 16:08:57 2009 using multiplier of 15 Fri Apr 17 16:08:57 2009 using 64kb Opteron sieve core Fri Apr 17 16:08:57 2009 sieve interval: 18 blocks of size 65536 Fri Apr 17 16:08:57 2009 processing polynomials in batches of 6 Fri Apr 17 16:08:57 2009 using a sieve bound of 1618739 (61134 primes) Fri Apr 17 16:08:57 2009 using large prime bound of 135974076 (27 bits) Fri Apr 17 16:08:57 2009 using double large prime bound of 436737990159996 (42-49 bits) Fri Apr 17 16:08:57 2009 using trial factoring cutoff of 49 bits Fri Apr 17 16:08:57 2009 polynomial 'A' values have 12 factors Fri Apr 17 17:01:51 2009 61570 relations (16202 full + 45368 combined from 667867 partial), need 61230 Fri Apr 17 17:01:51 2009 begin with 684069 relations Fri Apr 17 17:01:51 2009 reduce to 150644 relations in 10 passes Fri Apr 17 17:01:51 2009 attempting to read 150644 relations Fri Apr 17 17:01:52 2009 recovered 150644 relations Fri Apr 17 17:01:52 2009 recovered 130162 polynomials Fri Apr 17 17:01:52 2009 attempting to build 61570 cycles Fri Apr 17 17:01:52 2009 found 61570 cycles in 5 passes Fri Apr 17 17:01:52 2009 distribution of cycle lengths: Fri Apr 17 17:01:52 2009 length 1 : 16202 Fri Apr 17 17:01:52 2009 length 2 : 11713 Fri Apr 17 17:01:52 2009 length 3 : 10999 Fri Apr 17 17:01:52 2009 length 4 : 8245 Fri Apr 17 17:01:52 2009 length 5 : 5920 Fri Apr 17 17:01:52 2009 length 6 : 3701 Fri Apr 17 17:01:52 2009 length 7 : 2252 Fri Apr 17 17:01:52 2009 length 9+: 2538 Fri Apr 17 17:01:52 2009 largest cycle: 16 relations Fri Apr 17 17:01:53 2009 matrix is 61134 x 61570 (16.2 MB) with weight 3746682 (60.85/col) Fri Apr 17 17:01:53 2009 sparse part has weight 3746682 (60.85/col) Fri Apr 17 17:01:53 2009 filtering completed in 3 passes Fri Apr 17 17:01:53 2009 matrix is 57223 x 57287 (15.1 MB) with weight 3493687 (60.99/col) Fri Apr 17 17:01:53 2009 sparse part has weight 3493687 (60.99/col) Fri Apr 17 17:01:53 2009 saving the first 48 matrix rows for later Fri Apr 17 17:01:53 2009 matrix is 57175 x 57287 (9.8 MB) with weight 2739358 (47.82/col) Fri Apr 17 17:01:53 2009 sparse part has weight 2003525 (34.97/col) Fri Apr 17 17:01:53 2009 matrix includes 64 packed rows Fri Apr 17 17:01:53 2009 using block size 22914 for processor cache size 6144 kB Fri Apr 17 17:01:53 2009 commencing Lanczos iteration Fri Apr 17 17:01:53 2009 memory use: 8.7 MB Fri Apr 17 17:02:08 2009 lanczos halted after 905 iterations (dim = 57171) Fri Apr 17 17:02:08 2009 recovered 15 nontrivial dependencies Fri Apr 17 17:02:09 2009 prp42 factor: 343285591799040843138102857725593336454477 Fri Apr 17 17:02:09 2009 prp49 factor: 1975611290293895905492495874305707347552169153691 Fri Apr 17 17:02:09 2009 elapsed time 00:53:13
(53·10133-71)/9 = 5(8)1321<134> = 33 · C133
C133 = P49 · P85
P49 = 1736132214682934259760138027279169156218659023617<49>
P85 = 1256281025374591242622665628469340154953343169071606736108858272346763080946503313059<85>
SNFS difficulty: 136 digits. Divisors found: r1=1736132214682934259760138027279169156218659023617 (pp49) r2=1256281025374591242622665628469340154953343169071606736108858272346763080946503313059 (pp85) Version: Msieve-1.41 Total time: 2.32 hours. Scaled time: 6.60 units (timescale=2.846). Factorization parameters were as follows: n: 2181069958847736625514403292181069958847736625514403292181069958847736625514403292181069958847736625514403292181069958847736625514403 m: 500000000000000000000000000 deg: 5 c5: 424 c0: -1775 skew: 1.33 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1475001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 230935 x 231183 Total sieving time: 2.06 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.18 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,136.000,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 2.32 hours.
By Robert Backstrom / GGNFS, Msieve / Apr 17, 2009
(89·10167+1)/9 = 9(8)1669<168> = 11 · 47 · 247241048054093075068483<24> · C142
C142 = P53 · P90
P53 = 11735515965675694227339384230495652756357364865648203<53>
P90 = 659225790392093267074705101810375554863868616091506172922557608512373829311495920690579333<90>
Number: n N=7736354788131589206605390894565669193375418184832672785771192551985407171377229803380722616315685306413508395609143695564930928388730640388599 ( 142 digits) SNFS difficulty: 171 digits. Divisors found: Fri Apr 17 03:58:58 2009 prp53 factor: 11735515965675694227339384230495652756357364865648203 Fri Apr 17 03:58:58 2009 prp90 factor: 659225790392093267074705101810375554863868616091506172922557608512373829311495920690579333 Fri Apr 17 03:58:58 2009 elapsed time 01:46:12 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 38.58 hours. Scaled time: 102.19 units (timescale=2.649). Factorization parameters were as follows: name: KA_9_8_166_9 n: 7736354788131589206605390894565669193375418184832672785771192551985407171377229803380722616315685306413508395609143695564930928388730640388599 m: 5000000000000000000000000000000000 deg: 5 c5: 356 c0: 125 skew: 0.81 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4700557) Primes: RFBsize:348513, AFBsize:349036, largePrimes:16214116 encountered Relations: rels:15325613, finalFF:700471 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1460658 hash collisions in 16448507 relations Msieve: matrix is 883293 x 883541 (238.8 MB) Total sieving time: 38.03 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 38.58 hours. --------- CPU info (if available) ----------
(82·10167-1)/9 = 9(1)167<168> = 6136826462026924582665204373<28> · C141
C141 = P52 · P89
P52 = 9296318818779243323402076699581821393618881424501441<52>
P89 = 15970425640509844064334216093304767762181621347681644889750865211008039470305029735475627<89>
Number: n N=148466168425786214041772406044824270769076040264514519242184892190960766848593410970947645326074786069119538379819788655771134770639481878507 ( 141 digits) SNFS difficulty: 171 digits. Divisors found: Fri Apr 17 19:21:19 2009 prp52 factor: 9296318818779243323402076699581821393618881424501441 Fri Apr 17 19:21:19 2009 prp89 factor: 15970425640509844064334216093304767762181621347681644889750865211008039470305029735475627 Fri Apr 17 19:21:19 2009 elapsed time 01:21:04 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 52.39 hours. Scaled time: 139.35 units (timescale=2.660). Factorization parameters were as follows: name: KA_9_1_167 n: 148466168425786214041772406044824270769076040264514519242184892190960766848593410970947645326074786069119538379819788655771134770639481878507 m: 5000000000000000000000000000000000 deg: 5 c5: 328 c0: -125 skew: 0.82 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5581229) Primes: RFBsize:348513, AFBsize:348767, largePrimes:17098512 encountered Relations: rels:16600199, finalFF:677269 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2019117 hash collisions in 18657465 relations Msieve: matrix is 870062 x 870310 (231.6 MB) Total sieving time: 51.69 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 52.39 hours. --------- CPU info (if available) ----------
4·10217+1 = 4(0)2161<218> = 18686807 · C211
C211 = P57 · P154
P57 = 578022421484392833484314349887736849483921909178334750733<57>
P154 = 3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371<154>
Number: n N=2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943 ( 211 digits) SNFS difficulty: 218 digits. Divisors found: Sat Apr 18 00:43:41 2009 prp57 factor: 578022421484392833484314349887736849483921909178334750733 Sat Apr 18 00:43:41 2009 prp154 factor: 3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371 Sat Apr 18 00:43:41 2009 elapsed time 56:50:02 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 174.05 hours. Scaled time: 350.71 units (timescale=2.015). Factorization parameters were as follows: name: KA_4_0_216_1 n: 2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943 m: 2000000000000000000000000000000000000 deg: 6 c6: 5 c0: 8 skew: 1.08 type: snfs lss: 1 rlim: 31000000 alim: 31000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 31000000/31000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [15500000, 45599990) Primes: RFBsize:1915979, AFBsize:1916784, largePrimes:34927111 encountered Relations: rels:29018997, finalFF:841025 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8207149 hash collisions in 48938562 relations Msieve: matrix is 5272052 x 5272300 (1428.4 MB) Total sieving time: 173.00 hours. Total relation processing time: 1.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,218,6,0,0,0,0,0,0,0,0,31000000,31000000,29,29,58,58,2.6,2.6,100000 total time: 174.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830489) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.69 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Apr 18, 2009
(53·10145-71)/9 = 5(8)1441<146> = 3 · 17 · 929 · 485499853 · 850230413 · 1274328443<10> · 4221790879<10> · C105
C105 = P43 · P63
P43 = 3316688302115642889056012400773516430032419<43>
P63 = 168748133784761883638959898979058638917739521572854314854336157<63>
Number: n N=559684961327765247034503844891371736894556026815844268035413780122864846810001043646439238215822233873783 ( 105 digits) Divisors found: Sat Apr 18 02:54:26 2009 prp43 factor: 3316688302115642889056012400773516430032419 Sat Apr 18 02:54:26 2009 prp63 factor: 168748133784761883638959898979058638917739521572854314854336157 Sat Apr 18 02:54:26 2009 elapsed time 00:38:14 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 5.68 hours. Scaled time: 15.10 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_8_144_1 n: 559684961327765247034503844891371736894556026815844268035413780122864846810001043646439238215822233873783 Y0: -176799813543897703182 Y1: 72476416319 c0: -10442345234358626558524313 c1: 19040482229417220485271 c2: 581533457134543607 c3: -10679814889731 c4: -189005634 c5: 3240 skew: 43207.82 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1250000, 1851097) Primes: RFBsize:183072, AFBsize:183757, largePrimes:14104467 encountered Relations: rels:11862900, finalFF:384598 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 684206 hash collisions in 12317492 relations Msieve: matrix is 376672 x 376920 (104.9 MB) Total sieving time: 5.43 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 5.68 hours. --------- CPU info (if available) ----------
(46·10165+71)/9 = 5(1)1649<166> = 181 · 191 · 1361 · 23993 · 25637611 · 1804773857<10> · C137
C137 = P57 · P81
P57 = 694575844284880677867191247137091366345427839339582636913<57>
P81 = 140877189974738893565168112114361733965740981505111702335142003362792062349532543<81>
Number: n N=97849893167185795053681505438158227359229056175828170023743411900227181839092558179099204573640195680027563053318468911424344244846559759 ( 137 digits) SNFS difficulty: 166 digits. Divisors found: Sat Apr 18 05:42:10 2009 prp57 factor: 694575844284880677867191247137091366345427839339582636913 Sat Apr 18 05:42:10 2009 prp81 factor: 140877189974738893565168112114361733965740981505111702335142003362792062349532543 Sat Apr 18 05:42:10 2009 elapsed time 00:59:04 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 34.25 hours. Scaled time: 91.11 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_1_164_9 n: 97849893167185795053681505438158227359229056175828170023743411900227181839092558179099204573640195680027563053318468911424344244846559759 m: 1000000000000000000000000000000000 deg: 5 c5: 46 c0: 71 skew: 1.09 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [2100000, 4073129) Primes: RFBsize:296314, AFBsize:296472, largePrimes:8717814 encountered Relations: rels:8479753, finalFF:538519 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 872510 hash collisions in 9552985 relations Msieve: matrix is 720695 x 720943 (193.3 MB) Total sieving time: 33.98 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 34.25 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Apr 17, 2009
(53·10130-71)/9 = 5(8)1291<131> = 3 · 19 · 61 · 577 · 2927 · 7382416109<10> · 1369886219328469<16> · C96
C96 = P38 · P59
P38 = 37956724012464402598129885947865441919<38>
P59 = 26125126047863880080771368057462882723263924827439187557293<59>
Fri Apr 17 08:04:56 2009 Msieve v. 1.41 Fri Apr 17 08:04:56 2009 random seeds: 8d9111a4 23cf54e5 Fri Apr 17 08:04:56 2009 factoring 991624199189614174782401830448492816243117370394794813266981352510574370554134332396855576365267 (96 digits) Fri Apr 17 08:04:57 2009 searching for 15-digit factors Fri Apr 17 08:04:59 2009 commencing quadratic sieve (96-digit input) Fri Apr 17 08:04:59 2009 using multiplier of 67 Fri Apr 17 08:04:59 2009 using 32kb Intel Core sieve core Fri Apr 17 08:04:59 2009 sieve interval: 36 blocks of size 32768 Fri Apr 17 08:04:59 2009 processing polynomials in batches of 6 Fri Apr 17 08:04:59 2009 using a sieve bound of 2299963 (84681 primes) Fri Apr 17 08:04:59 2009 using large prime bound of 344994450 (28 bits) Fri Apr 17 08:04:59 2009 using double large prime bound of 2333789820820650 (43-52 bits) Fri Apr 17 08:04:59 2009 using trial factoring cutoff of 52 bits Fri Apr 17 08:04:59 2009 polynomial 'A' values have 13 factors Fri Apr 17 12:43:45 2009 85035 relations (21540 full + 63495 combined from 1262176 partial), need 84777 Fri Apr 17 12:43:47 2009 begin with 1283716 relations Fri Apr 17 12:43:48 2009 reduce to 219055 relations in 12 passes Fri Apr 17 12:43:48 2009 attempting to read 219055 relations Fri Apr 17 12:43:52 2009 recovered 219055 relations Fri Apr 17 12:43:52 2009 recovered 204927 polynomials Fri Apr 17 12:43:52 2009 attempting to build 85035 cycles Fri Apr 17 12:43:52 2009 found 85035 cycles in 6 passes Fri Apr 17 12:43:52 2009 distribution of cycle lengths: Fri Apr 17 12:43:52 2009 length 1 : 21540 Fri Apr 17 12:43:52 2009 length 2 : 15038 Fri Apr 17 12:43:52 2009 length 3 : 14584 Fri Apr 17 12:43:52 2009 length 4 : 11363 Fri Apr 17 12:43:52 2009 length 5 : 8571 Fri Apr 17 12:43:52 2009 length 6 : 5599 Fri Apr 17 12:43:52 2009 length 7 : 3502 Fri Apr 17 12:43:52 2009 length 9+: 4838 Fri Apr 17 12:43:52 2009 largest cycle: 21 relations Fri Apr 17 12:43:53 2009 matrix is 84681 x 85035 (22.9 MB) with weight 5657471 (66.53/col) Fri Apr 17 12:43:53 2009 sparse part has weight 5657471 (66.53/col) Fri Apr 17 12:43:54 2009 filtering completed in 3 passes Fri Apr 17 12:43:54 2009 matrix is 80389 x 80453 (21.7 MB) with weight 5370825 (66.76/col) Fri Apr 17 12:43:54 2009 sparse part has weight 5370825 (66.76/col) Fri Apr 17 12:43:54 2009 saving the first 48 matrix rows for later Fri Apr 17 12:43:54 2009 matrix is 80341 x 80453 (13.9 MB) with weight 4286515 (53.28/col) Fri Apr 17 12:43:54 2009 sparse part has weight 3167151 (39.37/col) Fri Apr 17 12:43:54 2009 matrix includes 64 packed rows Fri Apr 17 12:43:54 2009 using block size 32181 for processor cache size 1024 kB Fri Apr 17 12:43:55 2009 commencing Lanczos iteration Fri Apr 17 12:43:55 2009 memory use: 13.2 MB Fri Apr 17 12:44:38 2009 lanczos halted after 1272 iterations (dim = 80340) Fri Apr 17 12:44:38 2009 recovered 17 nontrivial dependencies Fri Apr 17 12:44:40 2009 prp38 factor: 37956724012464402598129885947865441919 Fri Apr 17 12:44:40 2009 prp59 factor: 26125126047863880080771368057462882723263924827439187557293 Fri Apr 17 12:44:40 2009 elapsed time 04:39:44
(44·10185+1)/9 = 4(8)1849<186> = 32 · 19 · C184
C184 = P33 · P46 · P106
P33 = 301279492672528356310887081620281<33>
P46 = 2007681696397209428158663231335805768631686309<46>
P106 = 4726608434867671415692354975353016939132883160285222480786726238803221676691996179230672373731698457768071<106>
Number: 48889_185 N=2858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402859 ( 184 digits) SNFS difficulty: 187 digits. Divisors found: r1=301279492672528356310887081620281 (pp33) r2=2007681696397209428158663231335805768631686309 (pp46) r3=4726608434867671415692354975353016939132883160285222480786726238803221676691996179230672373731698457768071 (pp106) Version: GGNFS-0.77.1-20060513-nocona Total time: 342.67 hours. Scaled time: 871.76 units (timescale=2.544). Factorization parameters were as follows: name: 48889_185 n: 2858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402858999350227420402859 m: 20000000000000000000000000000000000000 deg: 5 c5: 11 c0: 8 skew: 0.94 type: snfs rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved algebraic special-q in [4000000, 8100001) Primes: RFBsize:539777, AFBsize:539726, largePrimes:19572351 encountered Relations: rels:20827886, finalFF:1635103 Max relations in full relation-set: 28 Initial matrix: 1079569 x 1635103 with sparse part having weight 203875562. Pruned matrix : 801126 x 806587 with weight 198989218. Total sieving time: 323.10 hours. Total relation processing time: 0.57 hours. Matrix solve time: 18.63 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,54,54,2.5,2.5,100000 total time: 342.67 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Apr 18, 2009
(53·10151-71)/9 = 5(8)1501<152> = 32 · 73 · 601 · 3067 · 8360509 · 50792883547972719649<20> · 542501417551026748883<21> · C96
C96 = P47 · P49
P47 = 42936148687473484273728024786408390015437208617<47>
P49 = 4916094149477628730365878389162042910302106837749<49>
Fri Apr 17 22:03:47 2009 Msieve v. 1.41 Fri Apr 17 22:03:47 2009 random seeds: e488b000 c6788c06 Fri Apr 17 22:03:47 2009 factoring 211078149363589963815116393190719711120312274320994824021579216883462998082421755858953483683133 (96 digits) Fri Apr 17 22:03:48 2009 searching for 15-digit factors Fri Apr 17 22:03:50 2009 commencing quadratic sieve (96-digit input) Fri Apr 17 22:03:50 2009 using multiplier of 3 Fri Apr 17 22:03:50 2009 using 32kb Intel Core sieve core Fri Apr 17 22:03:50 2009 sieve interval: 36 blocks of size 32768 Fri Apr 17 22:03:50 2009 processing polynomials in batches of 6 Fri Apr 17 22:03:50 2009 using a sieve bound of 2221733 (82353 primes) Fri Apr 17 22:03:50 2009 using large prime bound of 333259950 (28 bits) Fri Apr 17 22:03:50 2009 using double large prime bound of 2192853470339550 (43-51 bits) Fri Apr 17 22:03:50 2009 using trial factoring cutoff of 51 bits Fri Apr 17 22:03:50 2009 polynomial 'A' values have 12 factors Sat Apr 18 02:35:33 2009 82536 relations (20005 full + 62531 combined from 1235511 partial), need 82449 Sat Apr 18 02:35:35 2009 begin with 1255516 relations Sat Apr 18 02:35:36 2009 reduce to 216093 relations in 10 passes Sat Apr 18 02:35:36 2009 attempting to read 216093 relations Sat Apr 18 02:35:39 2009 recovered 216093 relations Sat Apr 18 02:35:39 2009 recovered 202007 polynomials Sat Apr 18 02:35:40 2009 attempting to build 82536 cycles Sat Apr 18 02:35:40 2009 found 82536 cycles in 6 passes Sat Apr 18 02:35:40 2009 distribution of cycle lengths: Sat Apr 18 02:35:40 2009 length 1 : 20005 Sat Apr 18 02:35:40 2009 length 2 : 14414 Sat Apr 18 02:35:40 2009 length 3 : 13967 Sat Apr 18 02:35:40 2009 length 4 : 11178 Sat Apr 18 02:35:40 2009 length 5 : 8393 Sat Apr 18 02:35:40 2009 length 6 : 5707 Sat Apr 18 02:35:40 2009 length 7 : 3677 Sat Apr 18 02:35:40 2009 length 9+: 5195 Sat Apr 18 02:35:40 2009 largest cycle: 20 relations Sat Apr 18 02:35:40 2009 matrix is 82353 x 82536 (23.0 MB) with weight 5698494 (69.04/col) Sat Apr 18 02:35:40 2009 sparse part has weight 5698494 (69.04/col) Sat Apr 18 02:35:42 2009 filtering completed in 3 passes Sat Apr 18 02:35:42 2009 matrix is 78705 x 78769 (22.1 MB) with weight 5470954 (69.46/col) Sat Apr 18 02:35:42 2009 sparse part has weight 5470954 (69.46/col) Sat Apr 18 02:35:42 2009 saving the first 48 matrix rows for later Sat Apr 18 02:35:42 2009 matrix is 78657 x 78769 (15.6 MB) with weight 4510774 (57.27/col) Sat Apr 18 02:35:42 2009 sparse part has weight 3628703 (46.07/col) Sat Apr 18 02:35:42 2009 matrix includes 64 packed rows Sat Apr 18 02:35:42 2009 using block size 31507 for processor cache size 1024 kB Sat Apr 18 02:35:43 2009 commencing Lanczos iteration Sat Apr 18 02:35:43 2009 memory use: 14.0 MB Sat Apr 18 02:36:32 2009 lanczos halted after 1245 iterations (dim = 78657) Sat Apr 18 02:36:32 2009 recovered 19 nontrivial dependencies Sat Apr 18 02:36:33 2009 prp47 factor: 42936148687473484273728024786408390015437208617 Sat Apr 18 02:36:33 2009 prp49 factor: 4916094149477628730365878389162042910302106837749 Sat Apr 18 02:36:33 2009 elapsed time 04:32:46
By Jeff Gilchrist / GGNFS, Msieve 1.41 / Apr 18, 2009
(32·10170+31)/9 = 3(5)1699<171> = 3449 · 15128611 · 23008033 · C153
C153 = P52 · P102
P52 = 1528216471097860021313334111063020163874176813026371<52>
P102 = 193798696059930635413390537724663298714890396659618435429067607489207334036908047360384278676186052967<102>
Number: 35559_170 N=296166359396073944683160485101585851681443934301671987655522323564543253916503976987487165849021699261332677580008470890265619918699850211710956573792757 ( 153 digits) SNFS difficulty: 171 digits. Divisors found: r1=1528216471097860021313334111063020163874176813026371 (pp52) r2=193798696059930635413390537724663298714890396659618435429067607489207334036908047360384278676186052967 (pp102) Version: Msieve-1.41 Total time: 90.66 hours. Scaled time: 68.27 units (timescale=0.753). Factorization parameters were as follows: n: 296166359396073944683160485101585851681443934301671987655522323564543253916503976987487165849021699261332677580008470890265619918699850211710956573792757 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 794466 x 794714 Total sieving time: 90.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 90.66 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.2.1 / Apr 17, 2009
(17·10190+1)/9 = 1(8)1899<191> = 13 · 649123 · 707912267722698978623<21> · 24592951456281913764228758669239<32> · C132
C132 = P37 · P95
P37 = 7213700843439887344632470841269291957<37>
P95 = 17823288757233023573682324129309601544137069773637839144377564166930756298795605248649159083659<95>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=87697117 Step 1 took 38211ms Step 2 took 13867ms ********** Factor found in step 2: 7213700843439887344632470841269291957 Found probable prime factor of 37 digits: 7213700843439887344632470841269291957 Probable prime cofactor 17823288757233023573682324129309601544137069773637839144377564166930756298795605248649159083659 has 95 digits
(49·10197+41)/9 = 5(4)1969<198> = 3 · 103 · 229 · 693483587 · 106035242108839020242123<24> · 2001264824074391733510725271041<31> · C131
C131 = P40 · P91
P40 = 7753115765111063522021142552571754477947<40>
P91 = 6743608649761494883582317379979859049540910030066178214889108592918675243582982981900750267<91>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2900669674 Step 1 took 41286ms Step 2 took 15713ms ********** Factor found in step 2: 7753115765111063522021142552571754477947 Found probable prime factor of 40 digits: 7753115765111063522021142552571754477947 Probable prime cofactor 6743608649761494883582317379979859049540910030066178214889108592918675243582982981900750267 has 91 digits
By Max Dettweiler / GMP-ECM, YAFU v1.10, Msieve / Apr 17, 2009
(34·10170-7)/9 = 3(7)170<171> = 13 · 29 · 33490275305670749792334851887141<32> · C137
C137 = P41 · P96
P41 = 34681276407981177103088346208185521753173<41>
P96 = 862742647641399005036569351298107041173106291055284796151924344953422830786304949874008936124657<96>
P41=34681276407981177103088346208185521753173 P96=862742647641399005036569351298107041173106291055284796151924344953422830786304949874008936124657 B1=3000000 B2=(unknown--might be 760000000?) Method=ECM Found by the ECM "workers" at http://factorization.ath.cx
(53·10123-71)/9 = 5(8)1221<124> = 90943231 · 77869883783146913142335509<26> · C90
C90 = P36 · P55
P36 = 202264546609434854254852740781297727<36>
P55 = 4111248127642512233539893307565579092523923938001118957<55>
04/16/09 16:34:17 v1.10 @ Core2Duo, starting SIQS on c90: 831559738536500690691743153345461801909511644511260916432349884974767033138555344560710739 04/16/09 16:34:17 v1.10 @ Core2Duo, random seeds: 597820055, 1786273408 04/16/09 16:34:18 v1.10 @ Core2Duo, ==== sieve params ==== 04/16/09 16:34:18 v1.10 @ Core2Duo, n = 90 digits, 299 bits 04/16/09 16:34:18 v1.10 @ Core2Duo, factor base: 66328 primes (max prime = 1764199) 04/16/09 16:34:18 v1.10 @ Core2Duo, single large prime cutoff: 211703880 (120 * pmax) 04/16/09 16:34:18 v1.10 @ Core2Duo, double large prime range from 43 to 50 bits 04/16/09 16:34:18 v1.10 @ Core2Duo, double large prime cutoff: 968973437116546 04/16/09 16:34:18 v1.10 @ Core2Duo, using 10 large prime slices of factor base 04/16/09 16:34:18 v1.10 @ Core2Duo, buckets hold 1024 elements 04/16/09 16:34:18 v1.10 @ Core2Duo, sieve interval: 22 blocks of size 32768 04/16/09 16:34:18 v1.10 @ Core2Duo, polynomial A has ~ 12 factors 04/16/09 16:34:18 v1.10 @ Core2Duo, using multiplier of 1 04/16/09 16:34:18 v1.10 @ Core2Duo, using small prime variation correction of 20 bits 04/16/09 16:34:18 v1.10 @ Core2Duo, using SSE2 for trial division and x128 sieve scanning 04/16/09 16:34:18 v1.10 @ Core2Duo, trial factoring cutoff at 97 bits 04/16/09 16:34:18 v1.10 @ Core2Duo, ==== sieving started ==== 04/16/09 17:40:00 v1.10 @ Core2Duo, sieve time = 1211.2770, relation time = 637.2920, poly_time = 2089.8140 04/16/09 17:40:00 v1.10 @ Core2Duo, 66408 relations found: 18863 full + 47545 from 811249 partial, using 443534 polys (223 A polys) 04/16/09 17:40:00 v1.10 @ Core2Duo, on average, sieving found 1.87 rels/poly and 210.54 rels/sec 04/16/09 17:40:00 v1.10 @ Core2Duo, trial division touched 26209823 sieve locations out of 639483772928 04/16/09 17:40:00 v1.10 @ Core2Duo, ==== post processing stage (msieve-1.38) ==== 04/16/09 17:40:00 v1.10 @ Core2Duo, begin with 830112 relations 04/16/09 17:40:01 v1.10 @ Core2Duo, reduce to 156592 relations in 9 passes 04/16/09 17:40:03 v1.10 @ Core2Duo, recovered 156592 relations 04/16/09 17:40:03 v1.10 @ Core2Duo, recovered 132068 polynomials 04/16/09 17:40:04 v1.10 @ Core2Duo, attempting to build 66408 cycles 04/16/09 17:40:04 v1.10 @ Core2Duo, found 66408 cycles in 5 passes 04/16/09 17:40:04 v1.10 @ Core2Duo, distribution of cycle lengths: 04/16/09 17:40:04 v1.10 @ Core2Duo, length 1 : 18863 04/16/09 17:40:04 v1.10 @ Core2Duo, length 2 : 14095 04/16/09 17:40:04 v1.10 @ Core2Duo, length 3 : 11947 04/16/09 17:40:04 v1.10 @ Core2Duo, length 4 : 8470 04/16/09 17:40:04 v1.10 @ Core2Duo, length 5 : 5531 04/16/09 17:40:04 v1.10 @ Core2Duo, length 6 : 3328 04/16/09 17:40:04 v1.10 @ Core2Duo, length 7 : 2009 04/16/09 17:40:04 v1.10 @ Core2Duo, length 9+: 2165 04/16/09 17:40:04 v1.10 @ Core2Duo, largest cycle: 19 relations 04/16/09 17:40:04 v1.10 @ Core2Duo, matrix is 66328 x 66408 (15.3 MB) with weight 3748888 (56.45/col) 04/16/09 17:40:04 v1.10 @ Core2Duo, sparse part has weight 3748888 (56.45/col) 04/16/09 17:40:04 v1.10 @ Core2Duo, filtering completed in 3 passes 04/16/09 17:40:04 v1.10 @ Core2Duo, matrix is 61551 x 61614 (14.4 MB) with weight 3515995 (57.06/col) 04/16/09 17:40:04 v1.10 @ Core2Duo, sparse part has weight 3515995 (57.06/col) 04/16/09 17:40:04 v1.10 @ Core2Duo, saving the first 48 matrix rows for later 04/16/09 17:40:04 v1.10 @ Core2Duo, matrix is 61503 x 61614 (9.0 MB) with weight 2658612 (43.15/col) 04/16/09 17:40:04 v1.10 @ Core2Duo, sparse part has weight 1991948 (32.33/col) 04/16/09 17:40:04 v1.10 @ Core2Duo, matrix includes 64 packed rows 04/16/09 17:40:04 v1.10 @ Core2Duo, using block size 24645 for processor cache size 2048 kB 04/16/09 17:40:05 v1.10 @ Core2Duo, commencing Lanczos iteration 04/16/09 17:40:05 v1.10 @ Core2Duo, memory use: 9.0 MB 04/16/09 17:40:23 v1.10 @ Core2Duo, lanczos halted after 974 iterations (dim = 61500) 04/16/09 17:40:23 v1.10 @ Core2Duo, recovered 16 nontrivial dependencies 04/16/09 17:40:24 v1.10 @ Core2Duo, prp36 = 202264546609434854254852740781297727 04/16/09 17:40:28 v1.10 @ Core2Duo, prp55 = 4111248127642512233539893307565579092523923938001118957 04/16/09 17:40:28 v1.10 @ Core2Duo, Lanczos elapsed time = 22.7030 seconds. 04/16/09 17:40:28 v1.10 @ Core2Duo, Sqrt elapsed time = 4.9220 seconds. 04/16/09 17:40:28 v1.10 @ Core2Duo, SIQS elapsed time = 3970.3590 seconds.
(53·10121-71)/9 = 5(8)1201<122> = 3 · 194659 · 384621067 · 207102242897777867<18> · C91
C91 = P34 · P58
P34 = 1133539780530774666049337268862213<34>
P58 = 1116819481169900334059112170711297777323250963240946700829<58>
04/16/09 16:35:26 v1.10 @ Core2Duo, starting SIQS on c91: 1265959309577822454446640479059957214320018167680776045410923986160203316835382572933874577 04/16/09 16:35:26 v1.10 @ Core2Duo, random seeds: 1414385627, 1486820648 04/16/09 16:35:27 v1.10 @ Core2Duo, ==== sieve params ==== 04/16/09 16:35:27 v1.10 @ Core2Duo, n = 91 digits, 305 bits 04/16/09 16:35:27 v1.10 @ Core2Duo, factor base: 67412 primes (max prime = 1799261) 04/16/09 16:35:27 v1.10 @ Core2Duo, single large prime cutoff: 215911320 (120 * pmax) 04/16/09 16:35:27 v1.10 @ Core2Duo, double large prime range from 43 to 50 bits 04/16/09 16:35:27 v1.10 @ Core2Duo, double large prime cutoff: 1003912224363295 04/16/09 16:35:27 v1.10 @ Core2Duo, using 10 large prime slices of factor base 04/16/09 16:35:27 v1.10 @ Core2Duo, buckets hold 1024 elements 04/16/09 16:35:27 v1.10 @ Core2Duo, sieve interval: 22 blocks of size 32768 04/16/09 16:35:27 v1.10 @ Core2Duo, polynomial A has ~ 12 factors 04/16/09 16:35:27 v1.10 @ Core2Duo, using multiplier of 29 04/16/09 16:35:27 v1.10 @ Core2Duo, using small prime variation correction of 23 bits 04/16/09 16:35:27 v1.10 @ Core2Duo, using SSE2 for trial division and x128 sieve scanning 04/16/09 16:35:27 v1.10 @ Core2Duo, trial factoring cutoff at 96 bits 04/16/09 16:35:27 v1.10 @ Core2Duo, ==== sieving started ==== 04/16/09 17:38:42 v1.10 @ Core2Duo, sieve time = 1146.0730, relation time = 650.4160, poly_time = 1994.7900 04/16/09 17:38:42 v1.10 @ Core2Duo, 67497 relations found: 19809 full + 47688 from 813125 partial, using 414687 polys (202 A polys) 04/16/09 17:38:42 v1.10 @ Core2Duo, on average, sieving found 2.01 rels/poly and 219.41 rels/sec 04/16/09 17:38:42 v1.10 @ Core2Duo, trial division touched 29489564 sieve locations out of 597892399104 04/16/09 17:38:42 v1.10 @ Core2Duo, ==== post processing stage (msieve-1.38) ==== 04/16/09 17:38:44 v1.10 @ Core2Duo, begin with 832934 relations 04/16/09 17:38:45 v1.10 @ Core2Duo, reduce to 156443 relations in 10 passes 04/16/09 17:38:47 v1.10 @ Core2Duo, recovered 156443 relations 04/16/09 17:38:47 v1.10 @ Core2Duo, recovered 130277 polynomials 04/16/09 17:38:48 v1.10 @ Core2Duo, attempting to build 67497 cycles 04/16/09 17:38:48 v1.10 @ Core2Duo, found 67497 cycles in 5 passes 04/16/09 17:38:48 v1.10 @ Core2Duo, distribution of cycle lengths: 04/16/09 17:38:48 v1.10 @ Core2Duo, length 1 : 19809 04/16/09 17:38:48 v1.10 @ Core2Duo, length 2 : 14671 04/16/09 17:38:48 v1.10 @ Core2Duo, length 3 : 12452 04/16/09 17:38:48 v1.10 @ Core2Duo, length 4 : 8410 04/16/09 17:38:48 v1.10 @ Core2Duo, length 5 : 5369 04/16/09 17:38:48 v1.10 @ Core2Duo, length 6 : 3216 04/16/09 17:38:48 v1.10 @ Core2Duo, length 7 : 1758 04/16/09 17:38:48 v1.10 @ Core2Duo, length 9+: 1812 04/16/09 17:38:48 v1.10 @ Core2Duo, largest cycle: 19 relations 04/16/09 17:38:48 v1.10 @ Core2Duo, matrix is 67412 x 67497 (15.8 MB) with weight 3859261 (57.18/col) 04/16/09 17:38:48 v1.10 @ Core2Duo, sparse part has weight 3859261 (57.18/col) 04/16/09 17:38:48 v1.10 @ Core2Duo, filtering completed in 3 passes 04/16/09 17:38:48 v1.10 @ Core2Duo, matrix is 62004 x 62068 (14.7 MB) with weight 3599837 (58.00/col) 04/16/09 17:38:48 v1.10 @ Core2Duo, sparse part has weight 3599837 (58.00/col) 04/16/09 17:38:49 v1.10 @ Core2Duo, saving the first 48 matrix rows for later 04/16/09 17:38:49 v1.10 @ Core2Duo, matrix is 61956 x 62068 (9.8 MB) with weight 2860904 (46.09/col) 04/16/09 17:38:49 v1.10 @ Core2Duo, sparse part has weight 2204854 (35.52/col) 04/16/09 17:38:49 v1.10 @ Core2Duo, matrix includes 64 packed rows 04/16/09 17:38:49 v1.10 @ Core2Duo, using block size 24827 for processor cache size 2048 kB 04/16/09 17:38:49 v1.10 @ Core2Duo, commencing Lanczos iteration 04/16/09 17:38:49 v1.10 @ Core2Duo, memory use: 9.4 MB 04/16/09 17:39:10 v1.10 @ Core2Duo, lanczos halted after 982 iterations (dim = 61955) 04/16/09 17:39:10 v1.10 @ Core2Duo, recovered 17 nontrivial dependencies 04/16/09 17:39:11 v1.10 @ Core2Duo, prp58 = 1116819481169900334059112170711297777323250963240946700829 04/16/09 17:39:12 v1.10 @ Core2Duo, prp34 = 1133539780530774666049337268862213 04/16/09 17:39:12 v1.10 @ Core2Duo, Lanczos elapsed time = 27.3910 seconds. 04/16/09 17:39:12 v1.10 @ Core2Duo, Sqrt elapsed time = 2.2500 seconds. 04/16/09 17:39:12 v1.10 @ Core2Duo, SIQS elapsed time = 3825.8750 seconds.
Factorizations of 588...881 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Apr 16, 2009
(52·10174-61)/9 = 5(7)1731<175> = 15749 · C171
C171 = P34 · P51 · P87
P34 = 4456418495820421423482950428914067<34>
P51 = 586089258996949155306651521414790973265453349486223<51>
P87 = 140461764836441451075909139943636759414509330131265327498354115378476241498359801842619<87>
Number: 57771_174 N=366866326609802386042147296830133835657995922139677298735016685362739080435442109199173139740794830006843468015605929124247747652408265780543385470682441918710888169266479 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: r1=4456418495820421423482950428914067 (pp34) r2=586089258996949155306651521414790973265453349486223 (pp51) r3=140461764836441451075909139943636759414509330131265327498354115378476241498359801842619 (pp87) Version: Msieve-1.39 Total time: 81.98 hours. Scaled time: 142.24 units (timescale=1.735). Factorization parameters were as follows: n: 366866326609802386042147296830133835657995922139677298735016685362739080435442109199173139740794830006843468015605929124247747652408265780543385470682441918710888169266479 m: 100000000000000000000000000000000000 deg: 5 c5: 26 c0: -305 skew: 1.64 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3050000, 7050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1314040 x 1314288 Total sieving time: 81.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000 total time: 81.98 hours. --------- CPU info (if available) ----------
(52·10168-61)/9 = 5(7)1671<169> = 113 · C167
C167 = P47 · P51 · P71
P47 = 19594909439998386601697728948481069367588129493<47>
P51 = 227202190339783073222336540223881606408474505882161<51>
P71 = 11484884081582197425900107097665164509550167084613358848553590701850079<71>
Number: 57771_168 N=51130776794493608652900688298918387413962635201573254670599803343166175024582104228121927236971484759095378564405113077679449360865290068829891838741396263520157325467 ( 167 digits) SNFS difficulty: 171 digits. Divisors found: r1=19594909439998386601697728948481069367588129493 (pp47) r2=227202190339783073222336540223881606408474505882161 (pp51) r3=11484884081582197425900107097665164509550167084613358848553590701850079 (pp71) Version: Msieve-1.39 Total time: 70.05 hours. Scaled time: 180.81 units (timescale=2.581). Factorization parameters were as follows: n: 51130776794493608652900688298918387413962635201573254670599803343166175024582104228121927236971484759095378564405113077679449360865290068829891838741396263520157325467 m: 10000000000000000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1040706 x 1040954 Total sieving time: 70.05 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 70.05 hours. --------- CPU info (if available) ----------
(37·10178+17)/9 = 4(1)1773<179> = 13752402607<11> · 4488398865557<13> · 10792876087603367<17> · 7049599458449368393<19> · C121
C121 = P57 · P64
P57 = 901053580759546473335733195289088783980467426146667758137<57>
P64 = 9714868865503115801159431371805518306707962321967502211308133021<64>
Number: 41113_178 N=8753617377871015379501280731640734720391420036927883299454746453053412071345125172976838459344035255267627866305051141877 ( 121 digits) Divisors found: r1=901053580759546473335733195289088783980467426146667758137 (pp57) r2=9714868865503115801159431371805518306707962321967502211308133021 (pp64) Version: Msieve-1.39 Total time: 42.93 hours. Scaled time: 74.87 units (timescale=1.744). Factorization parameters were as follows: n: 8753617377871015379501280731640734720391420036927883299454746453053412071345125172976838459344035255267627866305051141877 Y0: -232444750578107045732042 Y1: 18042078346271 c0: -88669467322140490833982108215 c1: -3045316310392554112648423 c2: 33782754219691244909 c3: -10726229016841 c4: -330767170 c5: 12900 skew: 121095.13 type: gnfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [3000000, 5280001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 713270 x 713518 Total sieving time: 42.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,27,27,50,50,2.4,2.4,60000 total time: 42.93 hours. --------- CPU info (if available) ----------
(47·10187+61)/9 = 5(2)1869<188> = 472333 · 17123431378539583<17> · 3005422296029909783<19> · 229120334047763623675514957<27> · C121
C121 = P33 · P45 · P45
P33 = 418959790849984109280420085898543<33>
P45 = 130459351366153640145461498845742658269799017<45>
P45 = 171553492944694353363214986772791976579824851<45>
Number: 52229_187 N=9376637445301894692630526042340308089577381927812760651326578892014175084978443337190895669157712510157322717408832872581 ( 121 digits) Divisors found: r1=418959790849984109280420085898543 (pp33) r2=130459351366153640145461498845742658269799017 (pp45) r3=171553492944694353363214986772791976579824851 (pp45) Version: Msieve-1.39 Total time: 44.72 hours. Scaled time: 115.52 units (timescale=2.583). Factorization parameters were as follows: n: 9376637445301894692630526042340308089577381927812760651326578892014175084978443337190895669157712510157322717408832872581 Y0: -235662499711423574126299 Y1: 7140679275653 c0: 3616806725893284226991581464 c1: 3136244370186715815288714 c2: -77509608345842470109 c3: -1117609557837509 c4: 4914956575 c5: 12900 skew: 113010.98 type: gnfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 4720001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 640055 x 640303 Total sieving time: 44.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 44.72 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 16, 2009
(29·10169+43)/9 = 3(2)1687<170> = 37 · 67 · 89 · 219274245089<12> · 7009215964631<13> · 11889948082870718027<20> · C121
C121 = P50 · P72
P50 = 32583084617094617615042603090346568972351851388073<50>
P72 = 245278642849600244520859043647749948902552614694651833843364433822233153<72>
Number: n N=7991934774734654452054356447725718770084016035191644948179308728459372861636901877233956143656618879080281199811689384169 ( 121 digits) SNFS difficulty: 171 digits. Divisors found: Thu Apr 16 21:15:03 2009 prp50 factor: 32583084617094617615042603090346568972351851388073 Thu Apr 16 21:15:03 2009 prp72 factor: 245278642849600244520859043647749948902552614694651833843364433822233153 Thu Apr 16 21:15:03 2009 elapsed time 01:37:35 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 65.88 hours. Scaled time: 175.23 units (timescale=2.660). Factorization parameters were as follows: name: KA_3_2_168_7 n: 7991934774734654452054356447725718770084016035191644948179308728459372861636901877233956143656618879080281199811689384169 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: 430 skew: 1.71 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 6403351) Primes: RFBsize:348513, AFBsize:348691, largePrimes:18018717 encountered Relations: rels:18137376, finalFF:707077 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2444613 hash collisions in 20202113 relations Msieve: matrix is 880336 x 880584 (232.9 MB) Total sieving time: 64.94 hours. Total relation processing time: 0.94 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 65.88 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Apr 16, 2009
2·10193-1 = 1(9)193<194> = 61 · 3011 · 3019 · 2630399 · 1921011481<10> · 5467489597378404813936108409<28> · C142
C142 = P33 · C109
P33 = 394666621455911984281003929471901<33>
C109 = [3307930204406174659160459281208577919156483154925588805331903346568937950394323661593005058106900251722779881<109>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1305529637784949287620571177887970771289520181235731640907698902880282231900498703097479220981210951629363692688397047212888405051383997623781 (142 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1344099513 Step 1 took 4654ms Step 2 took 2600ms ********** Factor found in step 2: 394666621455911984281003929471901 Found probable prime factor of 33 digits: 394666621455911984281003929471901 Composite cofactor 3307930204406174659160459281208577919156483154925588805331903346568937950394323661593005058106900251722779881 has 109 digits
(8·10193+1)/9 = (8)1929<193> = 3 · 2418067 · C187
C187 = P58 · P59 · P71
P58 = 1681578303467735333201104967483311312998583427691180027389<58>
P59 = 35884535642448250237342854660843058641051045981390093667103<59>
P71 = 20306424780177190474846958704671361567809643262574547068456307082537867<71>
Number: 88889_193 N=1225343616600765389446596377587123501111823188920308230898053264431036428255694719361772425231791742314403597155481201704900221111723936087363568901508090124451871252104661683469880265089 ( 187 digits) SNFS difficulty: 195 digits. Divisors found: r1=1681578303467735333201104967483311312998583427691180027389 r2=35884535642448250237342854660843058641051045981390093667103 r3=20306424780177190474846958704671361567809643262574547068456307082537867 Version: Total time: 208.79 hours. Scaled time: 499.02 units (timescale=2.390). Factorization parameters were as follows: n: 1225343616600765389446596377587123501111823188920308230898053264431036428255694719361772425231791742314403597155481201704900221111723936087363568901508090124451871252104661683469880265089 m: 1000000000000000000000000000000000000000 deg: 5 c5: 2 c0: 25 skew: 1.66 type: snfs lss: 1 rlim: 12000000 alim: 12000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6000000, 11100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 22616652 Max relations in full relation-set: Initial matrix: Pruned matrix : 2153331 x 2153578 Total sieving time: 188.60 hours. Total relation processing time: 6.21 hours. Matrix solve time: 12.83 hours. Time per square root: 1.16 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,55,55,2.5,2.5,100000 total time: 208.79 hours. --------- CPU info (if available) ----------
By Jeff Gilchrist / GGNFS, Msieve 1.41 / Apr 15, 2009
(47·10182+61)/9 = 5(2)1819<183> = 613 · 3677 · 5851441249<10> · 530965497313<12> · 10585881510667<14> · 2179431821107410771893<22> · C121
C121 = P44 · P78
P44 = 17506708982877796590471231654665554196604017<44>
P78 = 184627872613379352806475438960335967278715754772741368162582062046769524215971<78>
Number: 52229_182 N=3232226435970265846236451757188221400714438709580553767065174279795300964396998306487207820154993202004200696972674155507 ( 121 digits) Divisors found: r1=17506708982877796590471231654665554196604017 (pp44) r2=184627872613379352806475438960335967278715754772741368162582062046769524215971 (pp78) Version: Msieve-1.41 Total time: 24.87 hours. Scaled time: 92.16 units (timescale=3.706). Factorization parameters were as follows: n: 3232226435970265846236451757188221400714438709580553767065174279795300964396998306487207820154993202004200696972674155507 Y0: -185237779331646459172495 Y1: 7107011474677 c0: 55561197852791414195499475416 c1: -4782340600789847977395504 c2: -149176072421321140560 c3: 896428011026213 c4: 5109382940 c5: 14820 skew: 114386.69 type: gnfs Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2200000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 721051 x 721299 Total sieving time: 24.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.42 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4400000,4400000,27,27,53,53,2.5,2.5,100000 total time: 24.87 hours. --------- CPU info (if available) ----------
(43·10180+11)/9 = 4(7)1799<181> = 3 · 123341 · 44408731 · 85698463 · 4608479822817881<16> · 101634239042663041733027<24> · C121
C121 = P59 · P63
P59 = 18676433807687590180365272544953252176843032508168358289251<59>
P63 = 387850313579850484085035039843960807035642431536398508046292593<63>
Number: 47779_180 N=7243660708864952842040160790748686888826709453225422267548583677017716601532894954117510926890870537131075823270472817843 ( 121 digits) Divisors found: r1=18676433807687590180365272544953252176843032508168358289251 (pp59) r2=387850313579850484085035039843960807035642431536398508046292593 (pp63) Version: Msieve-1.41 Total time: 27.88 hours. Scaled time: 99.14 units (timescale=3.556). Factorization parameters were as follows: n: 7243660708864952842040160790748686888826709453225422267548583677017716601532894954117510926890870537131075823270472817843 Y0: -238635564021888899190086 Y1: 10660975489501 c0: 3060659713647717335169676087065 c1: 77381263460365481918711579 c2: -243420606357591876439 c3: -1951509855053695 c4: 3094543218 c5: 9360 skew: 286689.37 type: gnfs Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2200000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 733879 x 734127 Total sieving time: 26.99 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.50 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4400000,4400000,27,27,53,53,2.5,2.5,100000 total time: 27.88 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 15, 2009
(46·10164+53)/9 = 5(1)1637<165> = 112 · 9511 · 1759886443463004645030568229<28> · C132
C132 = P44 · P89
P44 = 11285753184776442856762752555140164277069129<44>
P89 = 22360863791807806952061637322870117280197298346250658978177527581370911848085145743419727<89>
Number: n N=252359189752747203387481007806132642014097328260445368426717671665279502548365537787656106881257387644151261259364816582589241307783 ( 132 digits) SNFS difficulty: 166 digits. Divisors found: Wed Apr 15 16:30:13 2009 prp44 factor: 11285753184776442856762752555140164277069129 Wed Apr 15 16:30:13 2009 prp89 factor: 22360863791807806952061637322870117280197298346250658978177527581370911848085145743419727 Wed Apr 15 16:30:13 2009 elapsed time 00:57:06 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 28.65 hours. Scaled time: 74.34 units (timescale=2.595). Factorization parameters were as follows: name: KA_5_1_163_7 n: 252359189752747203387481007806132642014097328260445368426717671665279502548365537787656106881257387644151261259364816582589241307783 m: 1000000000000000000000000000000000 deg: 5 c5: 23 c0: 265 skew: 1.63 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2050000, 3645899) Primes: RFBsize:289774, AFBsize:289682, largePrimes:14524305 encountered Relations: rels:13480818, finalFF:556526 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1314584 hash collisions in 15355401 relations Msieve: matrix is 675331 x 675579 (181.4 MB) Total sieving time: 28.29 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,28,28,56,56,2.4,2.4,100000 total time: 28.65 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 14, 2009
(2·10171+7)/9 = (2)1703<171> = 151 · 599 · 4139 · 147729150559<12> · C151
C151 = P65 · P87
P65 = 25253094403184544346171495882979001456863037424443302102508569041<65>
P87 = 159113667900210245746532907667701881096819030984060918003028803426828497942798849216147<87>
Number: n N=4018112476320963647194617559312925511372532354290249565022495815523720386385026834556628042670177642790261114138766659873405014576266701042753481505027 ( 151 digits) SNFS difficulty: 171 digits. Divisors found: Tue Apr 14 12:01:12 2009 prp65 factor: 25253094403184544346171495882979001456863037424443302102508569041 Tue Apr 14 12:01:12 2009 prp87 factor: 159113667900210245746532907667701881096819030984060918003028803426828497942798849216147 Tue Apr 14 12:01:12 2009 elapsed time 01:23:33 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 35.03 hours. Scaled time: 91.29 units (timescale=2.606). Factorization parameters were as follows: name: KA_2_170_3 n: 4018112476320963647194617559312925511372532354290249565022495815523720386385026834556628042670177642790261114138766659873405014576266701042753481505027 m: 10000000000000000000000000000000000 deg: 5 c5: 20 c0: 7 skew: 0.81 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4422959) Primes: RFBsize:348513, AFBsize:347941, largePrimes:15922524 encountered Relations: rels:14992231, finalFF:680601 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1379854 hash collisions in 16218455 relations Msieve: matrix is 860413 x 860661 (232.8 MB) Total sieving time: 34.59 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 35.03 hours. --------- CPU info (if available) ----------
(47·10164+7)/9 = 5(2)1633<165> = 23 · 43 · 21759131 · 3120834083<10> · 3374993773673<13> · C133
C133 = P65 · P69
P65 = 20398266286980159421404905123974135815941181589412331885179004209<65>
P69 = 112948533588779377061204194941043083851885494268137274349596053865987<69>
Number: n N=2303954264867844524330553774540163037301266630240816352596872696898564697965909487259971496062975076341497274290832388187297394939283 ( 133 digits) SNFS difficulty: 166 digits. Divisors found: Wed Apr 15 00:44:52 2009 prp65 factor: 20398266286980159421404905123974135815941181589412331885179004209 Wed Apr 15 00:44:52 2009 prp69 factor: 112948533588779377061204194941043083851885494268137274349596053865987 Wed Apr 15 00:44:52 2009 elapsed time 01:02:06 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 46.09 hours. Scaled time: 122.59 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_2_163_3 n: 2303954264867844524330553774540163037301266630240816352596872696898564697965909487259971496062975076341497274290832388187297394939283 m: 1000000000000000000000000000000000 deg: 5 c5: 47 c0: 70 skew: 1.08 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2100000, 4872583) Primes: RFBsize:296314, AFBsize:296696, largePrimes:16186740 encountered Relations: rels:15719737, finalFF:550036 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1974808 hash collisions in 17758903 relations Msieve: matrix is 759246 x 759494 (201.2 MB) Total sieving time: 45.52 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,56,56,2.4,2.4,100000 total time: 46.09 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Apr 14, 2009
(82·10195+71)/9 = 9(1)1949<196> = 11 · C195
C195 = P44 · P53 · P99
P44 = 26817179798988518160368430220371768368944123<44>
P53 = 41336149253678642884740626247977819067177540825049981<53>
P99 = 747197718833206552292925059686568743196749345648134372526995569692687022286641164505132635390259683<99>
Number: 91119_195 N=828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282829 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: r1=26817179798988518160368430220371768368944123 r2=41336149253678642884740626247977819067177540825049981 r3=747197718833206552292925059686568743196749345648134372526995569692687022286641164505132635390259683 Version: Total time: 729.76 hours. Scaled time: 1444.92 units (timescale=1.980). Factorization parameters were as follows: n: 828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282828282829 m: 1000000000000000000000000000000000000000 deg: 5 c5: 82 c0: 71 skew: 0.97 type: snfs lss: 1 rlim: 13400000 alim: 13400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13400000/13400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6700000, 15200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2253396 x 2253644 Total sieving time: 729.76 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13400000,13400000,28,28,55,55,2.5,2.5,100000 total time: 729.76 hours. --------- CPU info (if available) ----------
(52·10186-61)/9 = 5(7)1851<187> = C187
C187 = P52 · P54 · P83
P52 = 1482475847766385096562505037464122985100924080834529<52>
P54 = 192860932423855597241429916466095224241530870434302299<54>
P83 = 20208261142197016589293170339084167717687793242636949187506813175574959234255083601<83>
Number: 57771_186 N=5777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 187 digits) SNFS difficulty: 188 digits. Divisors found: r1=1482475847766385096562505037464122985100924080834529 r2=192860932423855597241429916466095224241530870434302299 r3=20208261142197016589293170339084167717687793242636949187506813175574959234255083601 Version: Total time: 393.88 hours. Scaled time: 684.17 units (timescale=1.737). Factorization parameters were as follows: n: 5777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 m: 20000000000000000000000000000000000000 deg: 5 c5: 65 c0: -244 skew: 1.30 type: snfs lss: 1 rlim: 9600000 alim: 9600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4800000, 9100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1926902 x 1927149 Total sieving time: 393.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9600000,9600000,28,28,54,54,2.5,2.5,100000 total time: 393.88 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 14, 2009
(7·10194+17)/3 = 2(3)1939<195> = 1709 · C192
C192 = P63 · P129
P63 = 346829221976324092618801102438231038737439780793265937700693079<63>
P129 = 393657963022806093903868529787748043691165968836977987683147655420299632252039577434692218103776328441087411740739267406602236849<129>
Number: 23339_194 N=136532085039984396333138287497561927052857421494051102008972108445484688901891944606982640920616344841037643846303881412131850984981470645601716403354788375268188024185683635654378779013068071 ( 192 digits) SNFS difficulty: 195 digits. Divisors found: r1=346829221976324092618801102438231038737439780793265937700693079 (pp63) r2=393657963022806093903868529787748043691165968836977987683147655420299632252039577434692218103776328441087411740739267406602236849 (pp129) Version: Msieve-1.39 Total time: 525.40 hours. Scaled time: 916.30 units (timescale=1.744). Factorization parameters were as follows: n: 136532085039984396333138287497561927052857421494051102008972108445484688901891944606982640920616344841037643846303881412131850984981470645601716403354788375268188024185683635654378779013068071 m: 500000000000000000000000000000000000000 deg: 5 c5: 112 c0: 85 skew: 0.95 type: snfs lss: 1 rlim: 12700000 alim: 12700000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12700000/12700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6350000, 14950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2537985 x 2538232 Total sieving time: 525.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12700000,12700000,28,28,55,55,2.5,2.5,100000 total time: 525.40 hours. --------- CPU info (if available) ----------
(29·10167+43)/9 = 3(2)1667<168> = 32 · 9067 · 55143554263432152331343<23> · C140
C140 = P37 · P104
P37 = 4800573794884051481511926497391306549<37>
P104 = 14916311979172569492728684520219784207270861744830265394871640637715056063809315699069363930229167578787<104>
Number: 32227_167 N=71606856403530898614318803019976572490320678307484085258590318918033797130638183025963493447882757092868811532376557010544452763536826576063 ( 140 digits) SNFS difficulty: 169 digits. Divisors found: r1=4800573794884051481511926497391306549 (pp37) r2=14916311979172569492728684520219784207270861744830265394871640637715056063809315699069363930229167578787 (pp104) Version: Msieve-1.39 Total time: 59.66 hours. Scaled time: 103.75 units (timescale=1.739). Factorization parameters were as follows: n: 71606856403530898614318803019976572490320678307484085258590318918033797130638183025963493447882757092868811532376557010544452763536826576063 m: 2000000000000000000000000000000000 deg: 5 c5: 725 c0: 344 skew: 0.86 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 974006 x 974254 Total sieving time: 59.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 59.66 hours. --------- CPU info (if available) ----------
By Jeff Gilchrist / GGNFS & Msieve 1.41 / Apr 14, 2009
(29·10170-11)/9 = 3(2)1691<171> = 32 · 257 · 3307 · 22121849 · C157
C157 = P50 · P108
P50 = 12128123182634994286036427814173335412207095123621<50>
P108 = 157011201819375816815738752111265025210257283065238438120187834665257869938723695758458452814451628310344539<108>
Number: 32221_170 N=1904251196718953636692162604583969903297314220743772932280383376864559932289145597338154925039823123268209183786578507255925998331853435869770613657307255719 ( 157 digits) SNFS difficulty: 171 digits. Divisors found: r1=12128123182634994286036427814173335412207095123621 (pp50) r2=157011201819375816815738752111265025210257283065238438120187834665257869938723695758458452814451628310344539 (pp108) Version: Msieve-1.41 Total time: 34.88 hours. Scaled time: 129.51 units (timescale=3.713). Factorization parameters were as follows: n: 1904251196718953636692162604583969903297314220743772932280383376864559932289145597338154925039823123268209183786578507255925998331853435869770613657307255719 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: -11 skew: 0.82 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 805085 x 805333 Total sieving time: 34.08 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.53 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 34.88 hours. --------- CPU info (if available) ----------
(43·10177-61)/9 = 4(7)1761<178> = 13 · 2593 · 357583 · 127558727 · 458872771789<12> · 2367916363141745435233386787<28> · C121
C121 = P44 · P78
P44 = 23458394311309179842266062524539260421928509<44>
P78 = 121909095092311908628611882099805127119896107845918011449043507752877570553757<78>
Number: 47771_177 N=2859791622810339532002420199806141256086331750290755724214138455762859858329326969029525125381588126101060803108995358313 ( 121 digits) Divisors found: r1=23458394311309179842266062524539260421928509 (pp44) r2=121909095092311908628611882099805127119896107845918011449043507752877570553757 (pp78) Version: Msieve-1.41 Total time: 29.33 hours. Scaled time: 108.98 units (timescale=3.716). Factorization parameters were as follows: n: 2859791622810339532002420199806141256086331750290755724214138455762859858329326969029525125381588126101060803108995358313 Y0: -174568903292024692763149 Y1: 10713486627859 c0: 3999749289757025257324102518 c1: -90701164448737131225067 c2: -14051139356920072819 c3: -43072998826651 c4: 920786306 c5: 17640 skew: 58874.87 type: gnfs Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2200000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 766054 x 766302 Total sieving time: 28.49 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.49 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4400000,4400000,27,27,53,53,2.5,2.5,100000 total time: 29.33 hours. --------- CPU info (if available) ----------
By Andreas Tete / GMP-ECM 6.2.1 / Apr 14, 2009
(46·10164+71)/9 = 5(1)1639<165> = 3 · 17 · 79 · 179 · 233 · 41244039563019883<17> · 38761045063606867373<20> · C121
C121 = P37 · P84
P37 = 2085491164318326769316061631065415687<37>
P84 = 912313446682833428261016780631623637749006006146390104272853716796969509502773150281<84>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=983803196 ********** Factor found in step 2: 2085491164318326769316061631065415687 Found probable prime factor of 37 digits: 2085491164318326769316061631065415687 Probable prime cofactor 912313446682833428261016780631623637749006006146390104272853716796969509502773150281 has 84 digits
By Robert Backstrom / GGNFS, Msieve / Apr 13, 2009
(32·10167+31)/9 = 3(5)1669<168> = 983 · 9337 · 1179789025019489<16> · C146
C146 = P61 · P85
P61 = 5463215511259409267862691359715547396629804846074347587647637<61>
P85 = 6010268966830633552407442674646264717255365729873344812447062941431439165340265027253<85>
Number: n N=32835394646430181205812761282197698125513991593693821482034452227895325294651015157181683388666833151226627373344575666356437173478223009966051161 ( 146 digits) SNFS difficulty: 168 digits. Divisors found: Mon Apr 13 20:51:07 2009 prp61 factor: 5463215511259409267862691359715547396629804846074347587647637 Mon Apr 13 20:51:07 2009 prp85 factor: 6010268966830633552407442674646264717255365729873344812447062941431439165340265027253 Mon Apr 13 20:51:07 2009 elapsed time 01:21:47 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 38.37 hours. Scaled time: 97.99 units (timescale=2.554). Factorization parameters were as follows: name: KA_3_5_166_9 n: 32835394646430181205812761282197698125513991593693821482034452227895325294651015157181683388666833151226627373344575666356437173478223009966051161 m: 2000000000000000000000000000000000 deg: 5 c5: 100 c0: 31 skew: 0.79 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 4453171) Primes: RFBsize:315948, AFBsize:316592, largePrimes:15819911 encountered Relations: rels:15045685, finalFF:641270 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1549571 hash collisions in 16281834 relations Msieve: matrix is 826261 x 826509 (221.8 MB) Total sieving time: 37.90 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 38.37 hours. --------- CPU info (if available) ----------
By Jeff Gilchrist / GGNFS, Msieve 1.41 / Apr 13, 2009
5·10170-7 = 4(9)1693<171> = 29 · 371840101717736949659<21> · C149
C149 = P47 · P103
P47 = 36186346361901794734149614174823118926381921601<47>
P103 = 1281359654549060281898606138184287341774636409267856035278076719876171866019239509683237360176741662263<103>
Number: 49993_170 N=46367724273679128016875371673688962314473643710346808216784893586777456121488913841522626515505467594301778975907422007305297498445090108152886243063 ( 149 digits) SNFS difficulty: 170 digits. Divisors found: r1=36186346361901794734149614174823118926381921601 (pp47) r2=1281359654549060281898606138184287341774636409267856035278076719876171866019239509683237360176741662263 (pp103) Version: Msieve-1.41 Total time: 33.32 hours. Scaled time: 122.77 units (timescale=3.685). Factorization parameters were as follows: n: 46367724273679128016875371673688962314473643710346808216784893586777456121488913841522626515505467594301778975907422007305297498445090108152886243063 m: 10000000000000000000000000000000000 deg: 5 c5: 5 c0: -7 skew: 1.07 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 860100 x 860348 Total sieving time: 32.47 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.63 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 33.32 hours. --------- CPU info (if available) ----------
3·10171+7 = 3(0)1707<172> = 31620332097111024989233352721851562907652707<44> · C128
C128 = P54 · P75
P54 = 119542069001731768208656345412449977669924073427695871<54>
P75 = 793659208661801859516537543036477671956372358203480550399351605739016658931<75>
Number: 30007_171 N=94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901 ( 128 digits) SNFS difficulty: 171 digits. Divisors found: r1=119542069001731768208656345412449977669924073427695871 (pp54) r2=793659208661801859516537543036477671956372358203480550399351605739016658931 (pp75) Version: Msieve-1.41 Total time: 44.42 hours. Scaled time: 163.50 units (timescale=3.681). Factorization parameters were as follows: n: 94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901 m: 10000000000000000000000000000000000 deg: 5 c5: 30 c0: 7 skew: 0.75 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 982062 x 982310 Total sieving time: 43.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.84 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 44.42 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS / Apr 13, 2009
(17·10180+7)/3 = 5(6)1799<181> = 239 · C179
C179 = P48 · P49 · P83
P48 = 554926436167528943257699327435205874475108632793<48>
P49 = 3523835766306910904207910803375786328587724571921<49>
P83 = 12124914694059309969702016472528715477560656576791053322559643089873095090003003307<83>
Number: 56669_180 N=23709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902371 ( 179 digits) SNFS difficulty: 181 digits. Divisors found: r1=554926436167528943257699327435205874475108632793 (pp48) r2=3523835766306910904207910803375786328587724571921 (pp49) r3=12124914694059309969702016472528715477560656576791053322559643089873095090003003307 (pp83) Version: GGNFS-0.77.1-20060513-nocona Total time: 266.79 hours. Scaled time: 678.70 units (timescale=2.544). Factorization parameters were as follows: name: 56669_180 n: 23709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902371 m: 1000000000000000000000000000000000000 deg: 5 c5: 17 c0: 7 skew: 0.84 type: snfs rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [3000000, 6300001) Primes: RFBsize:412849, AFBsize:413446, largePrimes:18103909 encountered Relations: rels:19163581, finalFF:1171199 Max relations in full relation-set: 28 Initial matrix: 826360 x 1171199 with sparse part having weight 155619666. Pruned matrix : 656224 x 660419 with weight 152393023. Total sieving time: 254.35 hours. Total relation processing time: 0.44 hours. Matrix solve time: 11.67 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000 total time: 266.79 hours. --------- CPU info (if available) ----------
By Jeff Gilchrist / GGNFS & Msieve 1.41 / Apr 12, 2009
(17·10164-11)/3 = 5(6)1633<165> = 31 · 383069 · 1593268421<10> · 12235022127066387424376957<26> · C124
C124 = P42 · P82
P42 = 450081134598038991950517876062431432323767<42>
P82 = 5438817017371359971306142994586362267552757887934854040958910381842538227187462283<82>
Number: 56663_164 N=2447908934049624041479766689351333818597811560902790473946582004995814104101521660195361352308148553703338584975482356980061 ( 124 digits) SNFS difficulty: 166 digits. Divisors found: r1=450081134598038991950517876062431432323767 (pp42) r2=5438817017371359971306142994586362267552757887934854040958910381842538227187462283 (pp82) Version: Msieve-1.41 Total time: 21.95 hours. Scaled time: 80.85 units (timescale=3.683). Factorization parameters were as follows: n: 2447908934049624041479766689351333818597811560902790473946582004995814104101521660195361352308148553703338584975482356980061 m: 1000000000000000000000000000000000 deg: 5 c5: 17 c0: -110 skew: 1.45 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 753801 x 754049 Total sieving time: 21.38 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.46 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 21.95 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 12, 2009
(52·10161+11)/9 = 5(7)1609<162> = 32 · 8664553 · C154
C154 = P47 · P108
P47 = 18928489948339749847018632028593340878665991563<47>
P108 = 391431879723808945338088267301885408398292615483568378380918267204298704333073286676905854436479613341848329<108>
Number: n N=7409214400811851559358864890571681062392662479437488681089206894365760226084084298889686619055539375683607782674712805634350769647035555578866083939648227 ( 154 digits) SNFS difficulty: 163 digits. Divisors found: Sun Apr 12 04:53:40 2009 prp47 factor: 18928489948339749847018632028593340878665991563 Sun Apr 12 04:53:40 2009 prp108 factor: 391431879723808945338088267301885408398292615483568378380918267204298704333073286676905854436479613341848329 Sun Apr 12 04:53:40 2009 elapsed time 00:55:48 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 22.58 hours. Scaled time: 59.57 units (timescale=2.638). Factorization parameters were as follows: name: KA_5_7_160_9 n: 7409214400811851559358864890571681062392662479437488681089206894365760226084084298889686619055539375683607782674712805634350769647035555578866083939648227 m: 200000000000000000000000000000000 deg: 5 c5: 65 c0: 44 skew: 0.92 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1850000, 3250123) Primes: RFBsize:263397, AFBsize:263373, largePrimes:13742240 encountered Relations: rels:12753845, finalFF:533425 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1099106 hash collisions in 13613282 relations Msieve: matrix is 678552 x 678800 (183.0 MB) Total sieving time: 22.26 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,28,28,56,56,2.4,2.4,100000 total time: 22.58 hours. --------- CPU info (if available) ----------
(52·10162+11)/9 = 5(7)1619<163> = 7 · 23 · C161
C161 = P42 · P120
P42 = 321519970820085608181037744328588516697743<42>
P120 = 111616141305248804803400290837173564328599235003578090047986807312818902456903064735501933589562639357218054538297354173<120>
Number: n N=35886818495514147688060731538992408557625948930296756383712905452035886818495514147688060731538992408557625948930296756383712905452035886818495514147688060731539 ( 161 digits) SNFS difficulty: 164 digits. Divisors found: Sun Apr 12 06:15:36 2009 prp42 factor: 321519970820085608181037744328588516697743 Sun Apr 12 06:15:36 2009 prp120 factor: 111616141305248804803400290837173564328599235003578090047986807312818902456903064735501933589562639357218054538297354173 Sun Apr 12 06:15:36 2009 elapsed time 00:52:55 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 30.70 hours. Scaled time: 81.32 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_7_161_9 n: 35886818495514147688060731538992408557625948930296756383712905452035886818495514147688060731538992408557625948930296756383712905452035886818495514147688060731539 m: 200000000000000000000000000000000 deg: 5 c5: 325 c0: 22 skew: 0.58 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [1900000, 3800113) Primes: RFBsize:269987, AFBsize:269688, largePrimes:8808225 encountered Relations: rels:8644280, finalFF:545089 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 881198 hash collisions in 9436045 relations Msieve: matrix is 699430 x 699678 (186.3 MB) Total sieving time: 30.47 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 30.70 hours. --------- CPU info (if available) ----------
(52·10163+11)/9 = 5(7)1629<164> = 97 · 87931 · 876568187833930289<18> · C139
C139 = P54 · P86
P54 = 285499687981964450229006620431228817065494664829635261<54>
P86 = 27067973613206102904512248875476135325093088787990227833361756111499707732578188978893<86>
Number: n N=7727898020874389273633226675969318827671185863144042247840595857996178908012693244379155722125782899946146998056281826623324143363217546073 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: Sun Apr 12 13:31:34 2009 prp54 factor: 285499687981964450229006620431228817065494664829635261 Sun Apr 12 13:31:34 2009 prp86 factor: 27067973613206102904512248875476135325093088787990227833361756111499707732578188978893 Sun Apr 12 13:31:34 2009 elapsed time 01:05:41 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 30.87 hours. Scaled time: 82.12 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_7_162_9 n: 7727898020874389273633226675969318827671185863144042247840595857996178908012693244379155722125782899946146998056281826623324143363217546073 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: 275 skew: 1.84 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2050000, 3861203) Primes: RFBsize:289774, AFBsize:290078, largePrimes:14963521 encountered Relations: rels:14071940, finalFF:586784 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1356936 hash collisions in 15148444 relations Msieve: matrix is 754434 x 754682 (201.5 MB) Total sieving time: 30.49 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,28,28,56,56,2.4,2.4,100000 total time: 30.87 hours. --------- CPU info (if available) ----------
(52·10165+11)/9 = 5(7)1649<166> = 17 · 86761097 · 592224781 · 124457150677<12> · 190862997763738379<18> · C120
C120 = P39 · P81
P39 = 947603373792569765729573937197287389869<39>
P81 = 293854339940673288307735977122722469845978112409126167654289550189645063181598133<81>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 278457363931370693256810083723809311549125447635796682650235234084816134689205258661992118672738189311298709411653514577 (120 digits) Using B1=2136000, B2=2854078510, polynomial Dickson(6), sigma=2890840773 Step 1 took 23758ms ********** Factor found in step 1: 947603373792569765729573937197287389869 Found probable prime factor of 39 digits: 947603373792569765729573937197287389869 Probable prime cofactor 293854339940673288307735977122722469845978112409126167654289550189645063181598133 has 81 digits
By Andreas Tete / GMP-ECM 6.2.2 / Apr 11, 2009
(47·10164+43)/9 = 5(2)1637<165> = 21031 · 56099 · 9480603531462587241575906463236513<34> · C122
C122 = P37 · P86
P37 = 1925457966905235846156525388783627303<37>
P86 = 24247684792636549715927770946748662555654899363148036016451038975272737398252341068097<86>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=17151464 ********** Factor found in step 2: 1925457966905235846156525388783627303 Found probable prime factor of 37 digits: 1925457966905235846156525388783627303 Probable prime cofactor 24247684792636549715927770946748662555654899363148036016451038975272737398252341068097 has 86 digits
(49·10166+23)/9 = 5(4)1657<167> = 3 · 29 · 193 · 955469 · 4188451 · 622422253 · 1830545011<10> · 15678994369<11> · C122
C122 = P32 · P91
P32 = 29197910954985748593465543486977<32>
P91 = 1553357653460083080407321738143405658573231909383968797372397037983792553040705001133212217<91>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=15830070 ********** Factor found in step 2: 29197910954985748593465543486977 Found probable prime factor of 32 digits: 29197910954985748593465543486977 Probable prime cofactor 1553357653460083080407321738143405658573231909383968797372397037983792553040705001133212217 has 91 digits
By Robert Backstrom / GGNFS / Apr 11, 2009
(52·10160+11)/9 = 5(7)1599<161> = 3331 · C158
C158 = P40 · P52 · P66
P40 = 1984602862159222328197712995842323139233<40>
P52 = 8995729372655953524904434979327475766365640628552961<52>
P66 = 971574720881561621643707317580907592723358162775265761540357497393<66>
Number: n N=17345475165949497981920677807798792488074985823409720137429534007138330164448447246405817405517195370092398011941692518096000533706928183061476366790086393809 ( 158 digits) SNFS difficulty: 161 digits. Divisors found: r1=1984602862159222328197712995842323139233 (pp40) r2=8995729372655953524904434979327475766365640628552961 (pp52) r3=971574720881561621643707317580907592723358162775265761540357497393 (pp66) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 20.60 hours. Scaled time: 54.79 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_7_159_9 n: 17345475165949497981920677807798792488074985823409720137429534007138330164448447246405817405517195370092398011941692518096000533706928183061476366790086393809 m: 100000000000000000000000000000000 deg: 5 c5: 52 c0: 11 skew: 0.73 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [1750000, 2850001) Primes: RFBsize:250150, AFBsize:249882, largePrimes:13781805 encountered Relations: rels:13310814, finalFF:645052 Max relations in full relation-set: 28 Initial matrix: 500100 x 645052 with sparse part having weight 68070186. Pruned matrix : 420473 x 423037 with weight 45366021. Total sieving time: 18.84 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.15 hours. Total square root time: 0.31 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,56,56,2.4,2.4,100000 total time: 20.60 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Apr 10, 2009
(52·10151+11)/9 = 5(7)1509<152> = C152
C152 = P64 · P89
P64 = 3953535681244358031390387279802526646473653843971170017410808979<64>
P89 = 14614204205080672347139781653275652403689134613732690915539647764779044145671465056087201<89>
Number: 57779_151 N=57777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 152 digits) SNFS difficulty: 153 digits. Divisors found: r1=3953535681244358031390387279802526646473653843971170017410808979 (pp64) r2=14614204205080672347139781653275652403689134613732690915539647764779044145671465056087201 (pp89) Version: Msieve-1.40 Total time: 15.17 hours. Scaled time: 39.07 units (timescale=2.575). Factorization parameters were as follows: name: 57779_151 n: 57777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 m: 2000000000000000000000000000000 deg: 5 c5: 65 c0: 44 skew: 0.92 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416304 x 416552 Total sieving time: 15.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153.000,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 15.17 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Apr 10, 2009
(52·10154+11)/9 = 5(7)1539<155> = 1009 · 1873 · 1780071853727<13> · C137
C137 = P41 · P96
P41 = 93050385464681516500046281914738043499239<41>
P96 = 184576404077904571046705571397602099672425078097604346576358124523939748687222923404111884169099<96>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 17174905547133833686201829165853188941164294376020559094629779979976178551279987548468323356118519181871603715021418206048713273953815661 (137 digits) Using B1=1262000, B2=1426326730, polynomial Dickson(6), sigma=2614469203 Step 1 took 17378ms Step 2 took 6412ms ********** Factor found in step 2: 93050385464681516500046281914738043499239 Found probable prime factor of 41 digits: 93050385464681516500046281914738043499239 Probable prime cofactor 184576404077904571046705571397602099672425078097604346576358124523939748687222923404111884169099 has 96 digits
(52·10166+11)/9 = 5(7)1659<167> = 19 · 313 · 1543 · 83115250284832640411<20> · 12632594670057892169047869846613<32> · C109
C109 = P47 · P63
P47 = 42691128655357150982468169102793571554807074883<47>
P63 = 140470799532314444373497792586935413113578875626021083297673571<63>
Number: n N=5996856975154919058724890468413883408998447325094790249647861377749782830297948367090644019881202485487017193 ( 109 digits) Divisors found: r1=42691128655357150982468169102793571554807074883 (pp47) r2=140470799532314444373497792586935413113578875626021083297673571 (pp63) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 13.47 hours. Scaled time: 35.25 units (timescale=2.616). Factorization parameters were as follows: name: KA_5_7_165_9 n:5996856975154919058724890468413883408998447325094790249647861377749782830297948367090644019881202485487017193 Y0: -1067795297988797501616 Y1: 164264666753 c0: 8530558915607398247347346489 c1: 242316730277730117495673 c2: -1667914485931205175 c3: -70391702544601 c4: -4927106 c5: 4320 skew: 77192.47 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1600000, 2900001) Primes: RFBsize:230209, AFBsize:230575, largePrimes:16977985 encountered Relations: rels:15492064, finalFF:690402 Max relations in full relation-set: 28 Initial matrix: 460861 x 690402 with sparse part having weight 64012452. Pruned matrix : 306082 x 308450 with weight 37318507. Total sieving time: 11.29 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.52 hours. Total square root time: 1.16 hours, sqrts: 5. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 13.47 hours. --------- CPU info (if available) ----------
(41·10166-23)/9 = 4(5)1653<167> = 439 · 2586919225049507147<19> · C146
C146 = P52 · P95
P52 = 1065505954138455564238719164964882682924840493039843<52>
P95 = 37647667807395859819607873997112941704493623479901923145975021806996208571696732038445830885287<95>
Number: n N=40113814208206942961286412653651200042765317891904117999505219090653791939685124936497665627919725179282174773415014399429404984085252766453489941 ( 146 digits) SNFS difficulty: 167 digits. Divisors found: Fri Apr 10 12:32:01 2009 prp52 factor: 1065505954138455564238719164964882682924840493039843 Fri Apr 10 12:32:01 2009 prp95 factor: 37647667807395859819607873997112941704493623479901923145975021806996208571696732038445830885287 Fri Apr 10 12:32:01 2009 elapsed time 01:07:27 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 44.86 hours. Scaled time: 115.97 units (timescale=2.585). Factorization parameters were as follows: name: KA_4_5_165_3 n: 40113814208206942961286412653651200042765317891904117999505219090653791939685124936497665627919725179282174773415014399429404984085252766453489941 m: 1000000000000000000000000000000000 deg: 5 c5: 410 c0: -23 skew: 0.56 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2200000, 4801133) Primes: RFBsize:309335, AFBsize:309429, largePrimes:16673429 encountered Relations: rels:16590378, finalFF:596243 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1931330 hash collisions in 18160482 relations Msieve: matrix is 738140 x 738388 (196.1 MB) Total sieving time: 44.21 hours. Total relation processing time: 0.65 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4400000,4400000,28,28,56,56,2.4,2.4,100000 total time: 44.86 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 10, 2009
(52·10153+11)/9 = 5(7)1529<154> = 29 · 40543 · 710027 · 470818507 · C134
C134 = P35 · P99
P35 = 19627040332408708604436682113596563<35>
P99 = 748968841027261409761188316700947313844944317053127062144103065053216914230007485726769694669513251<99>
Number: 57779_153 N=14700041650559466010672832813381002063469358855134283947591049880295228687855696994256445000105441634400101420815978396489308196556313 ( 134 digits) SNFS difficulty: 156 digits. Divisors found: r1=19627040332408708604436682113596563 r2=748968841027261409761188316700947313844944317053127062144103065053216914230007485726769694669513251 Version: Total time: 9.99 hours. Scaled time: 23.80 units (timescale=2.383). Factorization parameters were as follows: n: 14700041650559466010672832813381002063469358855134283947591049880295228687855696994256445000105441634400101420815978396489308196556313 m: 10000000000000000000000000000000 deg: 5 c5: 13 c0: 275 skew: 1.84 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7814054 Max relations in full relation-set: Initial matrix: Pruned matrix : 480721 x 480969 Total sieving time: 9.06 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.51 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 9.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Andreas Tete / Msieve v1.41, GGNFS / Apr 10, 2009
(52·10172+11)/9 = 5(7)1719<173> = 3951719 · 13380499109519<14> · 36282474114511<14> · 309043953890409714925505897364313<33> · C107
C107 = P51 · P57
P51 = 118145920262199525963524190015546715838352113676563<51>
P57 = 824834068673450927934822305182677949265824343092447793071<57>
Thu Apr 09 17:24:45 2009 Msieve v. 1.41 Thu Apr 09 17:24:45 2009 random seeds: ae9280b0 10196da0 Thu Apr 09 17:24:45 2009 factoring 97450780107039141260457072613462534480633327041513829548037360610763669539962170088778288463915365246494973 (107 digits) Thu Apr 09 17:24:47 2009 searching for 15-digit factors Thu Apr 09 17:24:49 2009 commencing number field sieve (107-digit input) Thu Apr 09 17:24:49 2009 R0: -583560684231641996834 Thu Apr 09 17:24:49 2009 R1: 78488406179 Thu Apr 09 17:24:49 2009 A0: -27278358361861303319170275 Thu Apr 09 17:24:50 2009 A1: 3917602922717724100809 Thu Apr 09 17:24:50 2009 A2: 311529443604860231 Thu Apr 09 17:24:50 2009 A3: -1660678779952 Thu Apr 09 17:24:50 2009 A4: -179866821 Thu Apr 09 17:24:50 2009 A5: 1440 Thu Apr 09 17:24:50 2009 skew 39860.96, size 3.272186e-010, alpha -4.805594, combined = 1.441065e-009 Thu Apr 09 17:24:50 2009 Thu Apr 09 17:24:50 2009 commencing relation filtering Thu Apr 09 17:24:50 2009 commencing duplicate removal, pass 1 Thu Apr 09 17:26:03 2009 found 423914 hash collisions in 5084040 relations Thu Apr 09 17:26:30 2009 added 34695 free relations Thu Apr 09 17:26:30 2009 commencing duplicate removal, pass 2 Thu Apr 09 17:26:42 2009 found 407648 duplicates and 4711086 unique relations Thu Apr 09 17:26:42 2009 memory use: 41.3 MB Thu Apr 09 17:26:42 2009 reading rational ideals above 2949120 Thu Apr 09 17:26:42 2009 reading algebraic ideals above 2949120 Thu Apr 09 17:26:42 2009 commencing singleton removal, pass 1 Thu Apr 09 17:27:46 2009 relations with 0 large ideals: 116858 Thu Apr 09 17:27:46 2009 relations with 1 large ideals: 738043 Thu Apr 09 17:27:46 2009 relations with 2 large ideals: 1692634 Thu Apr 09 17:27:46 2009 relations with 3 large ideals: 1613036 Thu Apr 09 17:27:46 2009 relations with 4 large ideals: 515175 Thu Apr 09 17:27:46 2009 relations with 5 large ideals: 2472 Thu Apr 09 17:27:46 2009 relations with 6 large ideals: 32868 Thu Apr 09 17:27:46 2009 relations with 7+ large ideals: 0 Thu Apr 09 17:27:46 2009 4711086 relations and about 4612394 large ideals Thu Apr 09 17:27:46 2009 commencing singleton removal, pass 2 Thu Apr 09 17:28:51 2009 found 2070067 singletons Thu Apr 09 17:28:51 2009 current dataset: 2641019 relations and about 2113480 large ideals Thu Apr 09 17:28:51 2009 commencing singleton removal, pass 3 Thu Apr 09 17:29:29 2009 found 489447 singletons Thu Apr 09 17:29:29 2009 current dataset: 2151572 relations and about 1588891 large ideals Thu Apr 09 17:29:29 2009 commencing singleton removal, final pass Thu Apr 09 17:30:04 2009 memory use: 33.4 MB Thu Apr 09 17:30:04 2009 commencing in-memory singleton removal Thu Apr 09 17:30:04 2009 begin with 2151572 relations and 1635870 unique ideals Thu Apr 09 17:30:08 2009 reduce to 1811566 relations and 1286231 ideals in 14 passes Thu Apr 09 17:30:08 2009 max relations containing the same ideal: 42 Thu Apr 09 17:30:08 2009 reading rational ideals above 100000 Thu Apr 09 17:30:08 2009 reading algebraic ideals above 100000 Thu Apr 09 17:30:08 2009 commencing singleton removal, final pass Thu Apr 09 17:30:48 2009 keeping 1637389 ideals with weight <= 25, new excess is 128075 Thu Apr 09 17:30:52 2009 memory use: 47.7 MB Thu Apr 09 17:30:52 2009 commencing in-memory singleton removal Thu Apr 09 17:30:53 2009 begin with 1820656 relations and 1637389 unique ideals Thu Apr 09 17:30:56 2009 reduce to 1801170 relations and 1573710 ideals in 11 passes Thu Apr 09 17:30:56 2009 max relations containing the same ideal: 25 Thu Apr 09 17:30:58 2009 removing 290398 relations and 250951 ideals in 39447 cliques Thu Apr 09 17:30:58 2009 commencing in-memory singleton removal Thu Apr 09 17:30:58 2009 begin with 1510772 relations and 1573710 unique ideals Thu Apr 09 17:31:01 2009 reduce to 1480022 relations and 1291204 ideals in 9 passes Thu Apr 09 17:31:01 2009 max relations containing the same ideal: 25 Thu Apr 09 17:31:02 2009 removing 217191 relations and 177744 ideals in 39447 cliques Thu Apr 09 17:31:02 2009 commencing in-memory singleton removal Thu Apr 09 17:31:02 2009 begin with 1262831 relations and 1291204 unique ideals Thu Apr 09 17:31:04 2009 reduce to 1240337 relations and 1090388 ideals in 8 passes Thu Apr 09 17:31:04 2009 max relations containing the same ideal: 25 Thu Apr 09 17:31:05 2009 relations with 0 large ideals: 5419 Thu Apr 09 17:31:05 2009 relations with 1 large ideals: 46967 Thu Apr 09 17:31:05 2009 relations with 2 large ideals: 172417 Thu Apr 09 17:31:05 2009 relations with 3 large ideals: 329391 Thu Apr 09 17:31:05 2009 relations with 4 large ideals: 356668 Thu Apr 09 17:31:05 2009 relations with 5 large ideals: 223079 Thu Apr 09 17:31:05 2009 relations with 6 large ideals: 85257 Thu Apr 09 17:31:05 2009 relations with 7+ large ideals: 21139 Thu Apr 09 17:31:05 2009 commencing 2-way merge Thu Apr 09 17:31:07 2009 reduce to 751009 relation sets and 601060 unique ideals Thu Apr 09 17:31:07 2009 commencing full merge Thu Apr 09 17:31:23 2009 memory use: 50.7 MB Thu Apr 09 17:31:24 2009 found 355008 cycles, need 335260 Thu Apr 09 17:31:24 2009 weight of 335260 cycles is about 23712374 (70.73/cycle) Thu Apr 09 17:31:24 2009 distribution of cycle lengths: Thu Apr 09 17:31:24 2009 1 relations: 32881 Thu Apr 09 17:31:24 2009 2 relations: 33611 Thu Apr 09 17:31:24 2009 3 relations: 33970 Thu Apr 09 17:31:24 2009 4 relations: 31832 Thu Apr 09 17:31:24 2009 5 relations: 30348 Thu Apr 09 17:31:24 2009 6 relations: 26986 Thu Apr 09 17:31:24 2009 7 relations: 24661 Thu Apr 09 17:31:24 2009 8 relations: 21895 Thu Apr 09 17:31:24 2009 9 relations: 19028 Thu Apr 09 17:31:24 2009 10+ relations: 80048 Thu Apr 09 17:31:24 2009 heaviest cycle: 19 relations Thu Apr 09 17:31:24 2009 commencing cycle optimization Thu Apr 09 17:31:25 2009 start with 2173536 relations Thu Apr 09 17:31:35 2009 pruned 66094 relations Thu Apr 09 17:31:35 2009 memory use: 55.2 MB Thu Apr 09 17:31:35 2009 distribution of cycle lengths: Thu Apr 09 17:31:35 2009 1 relations: 32881 Thu Apr 09 17:31:35 2009 2 relations: 34444 Thu Apr 09 17:31:35 2009 3 relations: 35444 Thu Apr 09 17:31:35 2009 4 relations: 32852 Thu Apr 09 17:31:35 2009 5 relations: 31506 Thu Apr 09 17:31:35 2009 6 relations: 27645 Thu Apr 09 17:31:35 2009 7 relations: 25198 Thu Apr 09 17:31:35 2009 8 relations: 22193 Thu Apr 09 17:31:35 2009 9 relations: 19286 Thu Apr 09 17:31:35 2009 10+ relations: 73811 Thu Apr 09 17:31:35 2009 heaviest cycle: 19 relations Thu Apr 09 17:31:36 2009 RelProcTime: 305 Thu Apr 09 17:31:36 2009 Thu Apr 09 17:31:36 2009 commencing linear algebra Thu Apr 09 17:31:36 2009 read 335260 cycles Thu Apr 09 17:31:37 2009 cycles contain 1123030 unique relations Thu Apr 09 17:31:54 2009 read 1123030 relations Thu Apr 09 17:31:57 2009 using 20 quadratic characters above 87500574 Thu Apr 09 17:32:07 2009 building initial matrix Thu Apr 09 17:32:32 2009 memory use: 125.5 MB Thu Apr 09 17:32:33 2009 read 335260 cycles Thu Apr 09 17:32:34 2009 matrix is 335062 x 335260 (94.9 MB) with weight 31928740 (95.24/col) Thu Apr 09 17:32:34 2009 sparse part has weight 22524397 (67.18/col) Thu Apr 09 17:32:41 2009 filtering completed in 2 passes Thu Apr 09 17:32:41 2009 matrix is 333741 x 333937 (94.7 MB) with weight 31851832 (95.38/col) Thu Apr 09 17:32:41 2009 sparse part has weight 22487289 (67.34/col) Thu Apr 09 17:32:42 2009 read 333937 cycles Thu Apr 09 17:32:43 2009 matrix is 333741 x 333937 (94.7 MB) with weight 31851832 (95.38/col) Thu Apr 09 17:32:43 2009 sparse part has weight 22487289 (67.34/col) Thu Apr 09 17:32:43 2009 saving the first 48 matrix rows for later Thu Apr 09 17:32:44 2009 matrix is 333693 x 333937 (91.4 MB) with weight 25249537 (75.61/col) Thu Apr 09 17:32:44 2009 sparse part has weight 21955093 (65.75/col) Thu Apr 09 17:32:44 2009 matrix includes 64 packed rows Thu Apr 09 17:32:44 2009 using block size 65536 for processor cache size 3072 kB Thu Apr 09 17:32:49 2009 commencing Lanczos iteration Thu Apr 09 17:32:49 2009 memory use: 88.4 MB Thu Apr 09 17:49:15 2009 lanczos halted after 5279 iterations (dim = 333693) Thu Apr 09 17:49:16 2009 recovered 33 nontrivial dependencies Thu Apr 09 17:49:16 2009 BLanczosTime: 1060 Thu Apr 09 17:49:16 2009 Thu Apr 09 17:49:16 2009 commencing square root phase Thu Apr 09 17:49:16 2009 reading relations for dependency 1 Thu Apr 09 17:49:17 2009 read 166851 cycles Thu Apr 09 17:49:17 2009 cycles contain 696453 unique relations Thu Apr 09 17:49:26 2009 read 696453 relations Thu Apr 09 17:49:29 2009 multiplying 561498 relations Thu Apr 09 17:50:54 2009 multiply complete, coefficients have about 21.70 million bits Thu Apr 09 17:50:55 2009 initial square root is modulo 1709443 Thu Apr 09 17:52:58 2009 reading relations for dependency 2 Thu Apr 09 17:52:58 2009 read 167207 cycles Thu Apr 09 17:52:59 2009 cycles contain 697067 unique relations Thu Apr 09 17:53:07 2009 read 697067 relations Thu Apr 09 17:53:11 2009 multiplying 561526 relations Thu Apr 09 17:54:35 2009 multiply complete, coefficients have about 21.70 million bits Thu Apr 09 17:54:36 2009 initial square root is modulo 1712237 Thu Apr 09 17:56:39 2009 sqrtTime: 443 Thu Apr 09 17:56:39 2009 prp51 factor: 118145920262199525963524190015546715838352113676563 Thu Apr 09 17:56:39 2009 prp57 factor: 824834068673450927934822305182677949265824343092447793071 Thu Apr 09 17:56:39 2009 elapsed time 00:31:54 total time for Polysearch + Sieving + factorization ~ 10 hours
By Robert Backstrom / GGNFS / Apr 9, 2009
(52·10140+11)/9 = 5(7)1399<141> = 3 · 23 · 113 · 1439 · 2821728461<10> · C125
C125 = P43 · P82
P43 = 1858703100709054768133619754033983334336277<43>
P82 = 9818547917634304819287024108448651704534852780908499389251702140960977795402014729<82>
Number: n N=18249765458967315251100758570354262987161550021582943083881949385207687813350351661755670150068944041437021726912929793023933 ( 125 digits) SNFS difficulty: 141 digits. Divisors found: r1=1858703100709054768133619754033983334336277 (pp43) r2=9818547917634304819287024108448651704534852780908499389251702140960977795402014729 (pp82) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 3.60 hours. Scaled time: 9.55 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_7_139_9 n: 18249765458967315251100758570354262987161550021582943083881949385207687813350351661755670150068944041437021726912929793023933 m: 10000000000000000000000000000 deg: 5 c5: 52 c0: 11 skew: 0.73 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [800000, 1400001) Primes: RFBsize:121127, AFBsize:120941, largePrimes:5917320 encountered Relations: rels:5319702, finalFF:317067 Max relations in full relation-set: 28 Initial matrix: 242136 x 317067 with sparse part having weight 24371004. Pruned matrix : 208945 x 210219 with weight 12742149. Total sieving time: 3.16 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.11 hours. Total square root time: 0.24 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,28,28,56,56,2.3,2.3,100000 total time: 3.60 hours. --------- CPU info (if available) ----------
(52·10139+11)/9 = 5(7)1389<140> = 353 · 2894867749<10> · C128
C128 = P60 · P69
P60 = 106562174939360003911367421423355456729232756135646331248841<60>
P69 = 530584214402232516348340135462445847762080807588416523417975808079327<69>
Number: n N=56540207875193597111760613217706491076129293855908752726056959507882390115350784593308042957937614467659848751785382557504810007 ( 128 digits) SNFS difficulty: 141 digits. Divisors found: r1=106562174939360003911367421423355456729232756135646331248841 (pp60) r2=530584214402232516348340135462445847762080807588416523417975808079327 (pp69) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 4.78 hours. Scaled time: 12.72 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_7_138_9 n: 56540207875193597111760613217706491076129293855908752726056959507882390115350784593308042957937614467659848751785382557504810007 m: 10000000000000000000000000000 deg: 5 c5: 26 c0: 55 skew: 1.16 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.3 alambda: 2.3 qintsize: 100000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [800000, 1700001) Primes: RFBsize:121127, AFBsize:121466, largePrimes:6325858 encountered Relations: rels:5753045, finalFF:323128 Max relations in full relation-set: 28 Initial matrix: 242659 x 323128 with sparse part having weight 28887173. Pruned matrix : 217171 x 218448 with weight 16093286. Total sieving time: 4.48 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.15 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,28,28,56,56,2.3,2.3,100000 total time: 4.78 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 9, 2009
(52·10144+11)/9 = 5(7)1439<145> = 7 · 103 · 167 · 653 · 2954611865092757<16> · C122
C122 = P39 · P83
P39 = 724290725579767305836091030202155649537<39>
P83 = 34338597671396579436444177778028131407510991420689462672723960428011307199603139061<83>
Number: 57779_144 N=24871127822807536540677308893737853256793987719707497098779318903928078213373681114319761189526515069860939915500591264757 ( 122 digits) SNFS difficulty: 146 digits. Divisors found: r1=724290725579767305836091030202155649537 r2=34338597671396579436444177778028131407510991420689462672723960428011307199603139061 Version: Total time: 5.51 hours. Scaled time: 13.14 units (timescale=2.384). Factorization parameters were as follows: n: 24871127822807536540677308893737853256793987719707497098779318903928078213373681114319761189526515069860939915500591264757 m: 100000000000000000000000000000 deg: 5 c5: 26 c0: 55 skew: 1.16 type: snfs lss: 1 rlim: 1350000 alim: 1350000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1350000/1350000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [675000, 1275001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4442108 Max relations in full relation-set: Initial matrix: Pruned matrix : 236109 x 236357 Total sieving time: 5.21 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1350000,1350000,27,27,49,49,2.3,2.3,75000 total time: 5.51 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(52·10145+11)/9 = 5(7)1449<146> = 223 · 145617467609<12> · C133
C133 = P35 · P45 · P53
P35 = 56954380313470557383476264133069369<35>
P45 = 877944135394782865480706076381912796258246379<45>
P53 = 35583485323197678203373839989701525841764457126274647<53>
Number: 57779_145 N=1779272625363021460612243496577185608423839199881627329550077736603303475175902484372231463577430300728043315288438234114262937132597 ( 133 digits) SNFS difficulty: 146 digits. Divisors found: r1=56954380313470557383476264133069369 r2=877944135394782865480706076381912796258246379 r3=35583485323197678203373839989701525841764457126274647 Version: Total time: 4.23 hours. Scaled time: 10.09 units (timescale=2.384). Factorization parameters were as follows: n: 1779272625363021460612243496577185608423839199881627329550077736603303475175902484372231463577430300728043315288438234114262937132597 m: 100000000000000000000000000000 deg: 5 c5: 52 c0: 11 skew: 0.73 type: snfs lss: 1 rlim: 1350000 alim: 1350000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1350000/1350000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [675000, 1125001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4184175 Max relations in full relation-set: Initial matrix: Pruned matrix : 215777 x 216025 Total sieving time: 3.95 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1350000,1350000,27,27,49,49,2.3,2.3,75000 total time: 4.23 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Andreas Tete / Msieve v1.41, GGNFS / Apr 9, 2009
(52·10142+11)/9 = 5(7)1419<143> = 33937 · 58603297 · 850234538894121437711<21> · C110
C110 = P31 · P80
P31 = 3343047086365563711398608131791<31>
P80 = 10220781380272666838366366338702762386870049984758453088533674483692999433547011<80>
Thu Apr 09 03:03:15 2009 Msieve v. 1.41 Thu Apr 09 03:03:15 2009 random seeds: 0244d728 35297466 Thu Apr 09 03:03:15 2009 factoring 34168553413699943534215778841743330944560565854995941012155248657561572877659329534745682232709216307282126701 (110 digits) Thu Apr 09 03:03:16 2009 searching for 15-digit factors Thu Apr 09 03:03:18 2009 commencing number field sieve (110-digit input) Thu Apr 09 03:03:18 2009 R0: -1700913657140603924940 Thu Apr 09 03:03:18 2009 R1: 198739532677 Thu Apr 09 03:03:18 2009 A0: 2785491139512664258540157293 Thu Apr 09 03:03:18 2009 A1: 403368444129627968520825 Thu Apr 09 03:03:18 2009 A2: 728029085584517419 Thu Apr 09 03:03:18 2009 A3: -89078160501357 Thu Apr 09 03:03:18 2009 A4: 189651940 Thu Apr 09 03:03:18 2009 A5: 2400 Thu Apr 09 03:03:18 2009 skew 104086.27, size 1.972286e-010, alpha -6.860694, combined = 1.100483e-009 Thu Apr 09 03:03:19 2009 Thu Apr 09 03:03:19 2009 commencing relation filtering Thu Apr 09 03:03:19 2009 commencing duplicate removal, pass 1 Thu Apr 09 03:04:30 2009 found 550305 hash collisions in 5661426 relations Thu Apr 09 03:04:47 2009 added 42618 free relations Thu Apr 09 03:04:47 2009 commencing duplicate removal, pass 2 Thu Apr 09 03:05:13 2009 found 539667 duplicates and 5164376 unique relations Thu Apr 09 03:05:13 2009 memory use: 41.3 MB Thu Apr 09 03:05:13 2009 reading rational ideals above 3080192 Thu Apr 09 03:05:13 2009 reading algebraic ideals above 3080192 Thu Apr 09 03:05:13 2009 commencing singleton removal, pass 1 Thu Apr 09 03:06:09 2009 relations with 0 large ideals: 111892 Thu Apr 09 03:06:09 2009 relations with 1 large ideals: 725947 Thu Apr 09 03:06:09 2009 relations with 2 large ideals: 1725109 Thu Apr 09 03:06:09 2009 relations with 3 large ideals: 1771461 Thu Apr 09 03:06:09 2009 relations with 4 large ideals: 711542 Thu Apr 09 03:06:09 2009 relations with 5 large ideals: 76946 Thu Apr 09 03:06:09 2009 relations with 6 large ideals: 41477 Thu Apr 09 03:06:09 2009 relations with 7+ large ideals: 2 Thu Apr 09 03:06:09 2009 5164376 relations and about 5234055 large ideals Thu Apr 09 03:06:09 2009 commencing singleton removal, pass 2 Thu Apr 09 03:07:05 2009 found 2269372 singletons Thu Apr 09 03:07:05 2009 current dataset: 2895004 relations and about 2370513 large ideals Thu Apr 09 03:07:05 2009 commencing singleton removal, pass 3 Thu Apr 09 03:07:46 2009 found 592847 singletons Thu Apr 09 03:07:46 2009 current dataset: 2302157 relations and about 1730815 large ideals Thu Apr 09 03:07:46 2009 commencing singleton removal, pass 4 Thu Apr 09 03:08:23 2009 found 185711 singletons Thu Apr 09 03:08:23 2009 current dataset: 2116446 relations and about 1539384 large ideals Thu Apr 09 03:08:23 2009 commencing singleton removal, final pass Thu Apr 09 03:09:01 2009 memory use: 33.3 MB Thu Apr 09 03:09:01 2009 commencing in-memory singleton removal Thu Apr 09 03:09:01 2009 begin with 2116446 relations and 1590336 unique ideals Thu Apr 09 03:09:03 2009 reduce to 1885716 relations and 1355557 ideals in 14 passes Thu Apr 09 03:09:03 2009 max relations containing the same ideal: 39 Thu Apr 09 03:09:03 2009 reading rational ideals above 720000 Thu Apr 09 03:09:03 2009 reading algebraic ideals above 720000 Thu Apr 09 03:09:03 2009 commencing singleton removal, final pass Thu Apr 09 03:09:43 2009 keeping 1723978 ideals with weight <= 20, new excess is 193681 Thu Apr 09 03:09:45 2009 memory use: 47.9 MB Thu Apr 09 03:09:45 2009 commencing in-memory singleton removal Thu Apr 09 03:09:45 2009 begin with 1905859 relations and 1723978 unique ideals Thu Apr 09 03:09:47 2009 reduce to 1875377 relations and 1595193 ideals in 11 passes Thu Apr 09 03:09:47 2009 max relations containing the same ideal: 20 Thu Apr 09 03:09:48 2009 removing 235209 relations and 207452 ideals in 27757 cliques Thu Apr 09 03:09:48 2009 commencing in-memory singleton removal Thu Apr 09 03:09:48 2009 begin with 1640168 relations and 1595193 unique ideals Thu Apr 09 03:09:50 2009 reduce to 1620757 relations and 1367935 ideals in 8 passes Thu Apr 09 03:09:50 2009 max relations containing the same ideal: 20 Thu Apr 09 03:09:51 2009 removing 174444 relations and 146687 ideals in 27757 cliques Thu Apr 09 03:09:51 2009 commencing in-memory singleton removal Thu Apr 09 03:09:51 2009 begin with 1446313 relations and 1367935 unique ideals Thu Apr 09 03:09:52 2009 reduce to 1432880 relations and 1207596 ideals in 7 passes Thu Apr 09 03:09:52 2009 max relations containing the same ideal: 20 Thu Apr 09 03:09:53 2009 relations with 0 large ideals: 15040 Thu Apr 09 03:09:53 2009 relations with 1 large ideals: 103426 Thu Apr 09 03:09:53 2009 relations with 2 large ideals: 299605 Thu Apr 09 03:09:53 2009 relations with 3 large ideals: 441521 Thu Apr 09 03:09:53 2009 relations with 4 large ideals: 358753 Thu Apr 09 03:09:53 2009 relations with 5 large ideals: 163345 Thu Apr 09 03:09:53 2009 relations with 6 large ideals: 44150 Thu Apr 09 03:09:53 2009 relations with 7+ large ideals: 7040 Thu Apr 09 03:09:53 2009 commencing 2-way merge Thu Apr 09 03:09:54 2009 reduce to 864816 relation sets and 639532 unique ideals Thu Apr 09 03:09:54 2009 commencing full merge Thu Apr 09 03:10:04 2009 memory use: 49.4 MB Thu Apr 09 03:10:05 2009 found 403958 cycles, need 375732 Thu Apr 09 03:10:05 2009 weight of 375732 cycles is about 26631272 (70.88/cycle) Thu Apr 09 03:10:05 2009 distribution of cycle lengths: Thu Apr 09 03:10:05 2009 1 relations: 40847 Thu Apr 09 03:10:05 2009 2 relations: 37918 Thu Apr 09 03:10:05 2009 3 relations: 37801 Thu Apr 09 03:10:05 2009 4 relations: 35042 Thu Apr 09 03:10:05 2009 5 relations: 32630 Thu Apr 09 03:10:05 2009 6 relations: 29567 Thu Apr 09 03:10:05 2009 7 relations: 26654 Thu Apr 09 03:10:05 2009 8 relations: 23522 Thu Apr 09 03:10:05 2009 9 relations: 20609 Thu Apr 09 03:10:05 2009 10+ relations: 91142 Thu Apr 09 03:10:05 2009 heaviest cycle: 20 relations Thu Apr 09 03:10:05 2009 commencing cycle optimization Thu Apr 09 03:10:05 2009 start with 2428548 relations Thu Apr 09 03:10:12 2009 pruned 77505 relations Thu Apr 09 03:10:12 2009 memory use: 61.7 MB Thu Apr 09 03:10:12 2009 distribution of cycle lengths: Thu Apr 09 03:10:12 2009 1 relations: 40847 Thu Apr 09 03:10:12 2009 2 relations: 39017 Thu Apr 09 03:10:12 2009 3 relations: 39486 Thu Apr 09 03:10:12 2009 4 relations: 36367 Thu Apr 09 03:10:12 2009 5 relations: 33787 Thu Apr 09 03:10:12 2009 6 relations: 30392 Thu Apr 09 03:10:12 2009 7 relations: 27261 Thu Apr 09 03:10:12 2009 8 relations: 23779 Thu Apr 09 03:10:12 2009 9 relations: 20663 Thu Apr 09 03:10:12 2009 10+ relations: 84133 Thu Apr 09 03:10:12 2009 heaviest cycle: 20 relations Thu Apr 09 03:10:13 2009 RelProcTime: 321 Thu Apr 09 03:10:13 2009 Thu Apr 09 03:10:13 2009 commencing linear algebra Thu Apr 09 03:10:13 2009 read 375732 cycles Thu Apr 09 03:10:14 2009 cycles contain 1262361 unique relations Thu Apr 09 03:10:36 2009 read 1262361 relations Thu Apr 09 03:10:38 2009 using 20 quadratic characters above 129051674 Thu Apr 09 03:10:46 2009 building initial matrix Thu Apr 09 03:11:03 2009 memory use: 140.2 MB Thu Apr 09 03:11:03 2009 read 375732 cycles Thu Apr 09 03:11:04 2009 matrix is 375495 x 375732 (108.0 MB) with weight 35920809 (95.60/col) Thu Apr 09 03:11:04 2009 sparse part has weight 25294481 (67.32/col) Thu Apr 09 03:11:09 2009 filtering completed in 3 passes Thu Apr 09 03:11:10 2009 matrix is 373450 x 373650 (107.6 MB) with weight 35776280 (95.75/col) Thu Apr 09 03:11:10 2009 sparse part has weight 25215452 (67.48/col) Thu Apr 09 03:11:11 2009 read 373650 cycles Thu Apr 09 03:11:11 2009 matrix is 373450 x 373650 (107.6 MB) with weight 35776280 (95.75/col) Thu Apr 09 03:11:11 2009 sparse part has weight 25215452 (67.48/col) Thu Apr 09 03:11:11 2009 saving the first 48 matrix rows for later Thu Apr 09 03:11:12 2009 matrix is 373402 x 373650 (102.5 MB) with weight 28487580 (76.24/col) Thu Apr 09 03:11:12 2009 sparse part has weight 24633976 (65.93/col) Thu Apr 09 03:11:12 2009 matrix includes 64 packed rows Thu Apr 09 03:11:12 2009 using block size 65536 for processor cache size 3072 kB Thu Apr 09 03:11:15 2009 commencing Lanczos iteration Thu Apr 09 03:11:15 2009 memory use: 99.6 MB Thu Apr 09 03:30:38 2009 lanczos halted after 5906 iterations (dim = 373402) Thu Apr 09 03:30:39 2009 recovered 31 nontrivial dependencies Thu Apr 09 03:30:39 2009 BLanczosTime: 1226 Thu Apr 09 03:30:39 2009 Thu Apr 09 03:30:39 2009 commencing square root phase Thu Apr 09 03:30:39 2009 reading relations for dependency 1 Thu Apr 09 03:30:39 2009 read 186146 cycles Thu Apr 09 03:30:40 2009 cycles contain 777166 unique relations Thu Apr 09 03:30:58 2009 read 777166 relations Thu Apr 09 03:31:03 2009 multiplying 628388 relations Thu Apr 09 03:32:32 2009 multiply complete, coefficients have about 25.11 million bits Thu Apr 09 03:32:33 2009 initial square root is modulo 16293239 Thu Apr 09 03:34:38 2009 sqrtTime: 239 Thu Apr 09 03:34:38 2009 prp31 factor: 3343047086365563711398608131791 Thu Apr 09 03:34:38 2009 prp80 factor: 10220781380272666838366366338702762386870049984758453088533674483692999433547011 Thu Apr 09 03:34:38 2009 elapsed time 00:31:23
By Sinkiti Sibata / GGNFS, Msieve / Apr 9, 2009
(52·10157-43)/9 = 5(7)1563<158> = 23 · 53 · 1213 · 29567 · 12658876837<11> · 135348159141181289<18> · C120
C120 = P34 · P87
P34 = 1563245310616346305114141976356471<34>
P87 = 493417335839288436508758464426809943832532907598333625203510886400945640369114348815759<87>
Number: 57773_157 N=771332336427578513933358574990653834345535965729313032742009229397885912124919989008537968701911759932297553236486426489 ( 120 digits) SNFS difficulty: 159 digits. Divisors found: r1=1563245310616346305114141976356471 (pp34) r2=493417335839288436508758464426809943832532907598333625203510886400945640369114348815759 (pp87) Version: GGNFS-0.77.1-20060513-k8 Total time: 65.25 hours. Scaled time: 129.14 units (timescale=1.979). Factorization parameters were as follows: name: 57773_157 n: 771332336427578513933358574990653834345535965729313032742009229397885912124919989008537968701911759932297553236486426489 m: 20000000000000000000000000000000 deg: 5 c5: 325 c0: -86 skew: 0.77 type: snfs rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 3500001) Primes: RFBsize:148933, AFBsize:148895, largePrimes:8955379 encountered Relations: rels:10119563, finalFF:424072 Max relations in full relation-set: 28 Initial matrix: 297894 x 424072 with sparse part having weight 61358057. Pruned matrix : 267588 x 269141 with weight 42138672. Total sieving time: 63.24 hours. Total relation processing time: 0.31 hours. Matrix solve time: 1.54 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,50,50,2.4,2.4,100000 total time: 65.25 hours. --------- CPU info (if available) ----------
(52·10169-43)/9 = 5(7)1683<170> = 5153 · C167
C167 = P30 · P137
P30 = 141123905140081748758439889157<30>
P137 = 79451135073637208062710826844545700257591647268293500083720115297127311011627099148183218921499931962868099751915326230940533150055049513<137>
Number: 57773_169 N=11212454449403799297065355671992582530133471332772710610863143368480065549733704206826659766694697802790176164909330055846648122992000344998598443193824525087866830541 ( 167 digits) SNFS difficulty: 171 digits. Divisors found: r1=141123905140081748758439889157 (pp30) r2=79451135073637208062710826844545700257591647268293500083720115297127311011627099148183218921499931962868099751915326230940533150055049513 (pp137) Version: GGNFS-0.77.1-20060513-nocona Total time: 129.59 hours. Scaled time: 329.68 units (timescale=2.544). Factorization parameters were as follows: name: 57773_169 n: 11212454449403799297065355671992582530133471332772710610863143368480065549733704206826659766694697802790176164909330055846648122992000344998598443193824525087866830541 m: 10000000000000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2500000, 7400001) Primes: RFBsize:348513, AFBsize:348441, largePrimes:10507710 encountered Relations: rels:11670776, finalFF:884620 Max relations in full relation-set: 28 Initial matrix: 697020 x 884620 with sparse part having weight 117081634. Pruned matrix : 600360 x 603909 with weight 99044012. Total sieving time: 122.70 hours. Total relation processing time: 0.27 hours. Matrix solve time: 6.37 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 129.59 hours. --------- CPU info (if available) ----------
(52·10136+11)/9 = 5(7)1359<137> = C137
C137 = P39 · P42 · P58
P39 = 162327654977075883402432607143510339247<39>
P42 = 225516353255079604804093456753934845067833<42>
P58 = 1578302626785572386446896929818689186951420900821885917029<58>
Number: 57779_136 N=57777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 137 digits) SNFS difficulty: 138 digits. Divisors found: r1=162327654977075883402432607143510339247 (pp39) r2=225516353255079604804093456753934845067833 (pp42) r3=1578302626785572386446896929818689186951420900821885917029 (pp58) Version: Msieve-1.40 Total time: 5.82 hours. Scaled time: 11.40 units (timescale=1.960). Factorization parameters were as follows: name: 57779_136 n: 57777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 m: 2000000000000000000000000000 deg: 5 c5: 65 c0: 44 skew: 0.92 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1305001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 195509 x 195757 Total sieving time: 5.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138.000,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 5.82 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve, GGNFS / Apr 8, 2009
(52·10149+11)/9 = 5(7)1489<150> = 3 · 17 · 1783 · 628363 · 8825785487<10> · 213641945483460762505333<24> · C106
C106 = P48 · P59
P48 = 449254024867847727675909476262097732256487477847<48>
P59 = 11937045302486433091318474345081585284330222063528243378473<59>
Wed Apr 08 15:53:47 2009 Msieve v. 1.41 Wed Apr 08 15:53:47 2009 random seeds: 55fce73c e1f53e2b Wed Apr 08 15:53:47 2009 factoring 5362765647171864912608824510227527182258184685704261834523201022179084754944556645341581873430918024187631 (106 digits) Wed Apr 08 15:53:49 2009 searching for 15-digit factors Wed Apr 08 15:53:52 2009 commencing number field sieve (106-digit input) Wed Apr 08 15:53:52 2009 R0: -271133063771250244924 Wed Apr 08 15:53:52 2009 R1: 100195085147 Wed Apr 08 15:53:52 2009 A0: -59425125008032265936367375 Wed Apr 08 15:53:52 2009 A1: 5255982720263690813535 Wed Apr 08 15:53:52 2009 A2: 111647876233073929 Wed Apr 08 15:53:52 2009 A3: -15196907018525 Wed Apr 08 15:53:52 2009 A4: -106597328 Wed Apr 08 15:53:52 2009 A5: 3660 Wed Apr 08 15:53:52 2009 skew 36177.73, size 5.317563e-010, alpha -6.255835, combined = 1.903280e-009 Wed Apr 08 15:53:52 2009 Wed Apr 08 15:53:52 2009 commencing relation filtering Wed Apr 08 15:53:52 2009 commencing duplicate removal, pass 1 Wed Apr 08 15:54:41 2009 found 351678 hash collisions in 4591979 relations Wed Apr 08 15:55:04 2009 added 31407 free relations Wed Apr 08 15:55:04 2009 commencing duplicate removal, pass 2 Wed Apr 08 15:55:11 2009 found 335788 duplicates and 4287597 unique relations Wed Apr 08 15:55:11 2009 memory use: 40.3 MB Wed Apr 08 15:55:11 2009 reading rational ideals above 2555904 Wed Apr 08 15:55:11 2009 reading algebraic ideals above 2555904 Wed Apr 08 15:55:11 2009 commencing singleton removal, pass 1 Wed Apr 08 15:55:58 2009 relations with 0 large ideals: 94646 Wed Apr 08 15:55:58 2009 relations with 1 large ideals: 617918 Wed Apr 08 15:55:58 2009 relations with 2 large ideals: 1486882 Wed Apr 08 15:55:58 2009 relations with 3 large ideals: 1505950 Wed Apr 08 15:55:58 2009 relations with 4 large ideals: 534854 Wed Apr 08 15:55:58 2009 relations with 5 large ideals: 17526 Wed Apr 08 15:55:58 2009 relations with 6 large ideals: 29821 Wed Apr 08 15:55:58 2009 relations with 7+ large ideals: 0 Wed Apr 08 15:55:58 2009 4287597 relations and about 4323015 large ideals Wed Apr 08 15:55:58 2009 commencing singleton removal, pass 2 Wed Apr 08 15:56:45 2009 found 1956078 singletons Wed Apr 08 15:56:45 2009 current dataset: 2331519 relations and about 1946125 large ideals Wed Apr 08 15:56:45 2009 commencing singleton removal, pass 3 Wed Apr 08 15:57:13 2009 found 481565 singletons Wed Apr 08 15:57:13 2009 current dataset: 1849954 relations and about 1424840 large ideals Wed Apr 08 15:57:13 2009 commencing singleton removal, final pass Wed Apr 08 15:57:38 2009 memory use: 33.3 MB Wed Apr 08 15:57:38 2009 commencing in-memory singleton removal Wed Apr 08 15:57:38 2009 begin with 1849954 relations and 1464090 unique ideals Wed Apr 08 15:57:43 2009 reduce to 1493132 relations and 1095577 ideals in 17 passes Wed Apr 08 15:57:43 2009 max relations containing the same ideal: 15 Wed Apr 08 15:57:43 2009 reading rational ideals above 100000 Wed Apr 08 15:57:43 2009 reading algebraic ideals above 100000 Wed Apr 08 15:57:43 2009 commencing singleton removal, final pass Wed Apr 08 15:58:20 2009 keeping 1381232 ideals with weight <= 25, new excess is 104356 Wed Apr 08 15:58:23 2009 memory use: 46.6 MB Wed Apr 08 15:58:23 2009 commencing in-memory singleton removal Wed Apr 08 15:58:23 2009 begin with 1496135 relations and 1381232 unique ideals Wed Apr 08 15:58:27 2009 reduce to 1480368 relations and 1350857 ideals in 12 passes Wed Apr 08 15:58:27 2009 max relations containing the same ideal: 25 Wed Apr 08 15:58:29 2009 relations with 0 large ideals: 3762 Wed Apr 08 15:58:29 2009 relations with 1 large ideals: 37480 Wed Apr 08 15:58:29 2009 relations with 2 large ideals: 160886 Wed Apr 08 15:58:29 2009 relations with 3 large ideals: 359726 Wed Apr 08 15:58:29 2009 relations with 4 large ideals: 446278 Wed Apr 08 15:58:29 2009 relations with 5 large ideals: 312236 Wed Apr 08 15:58:29 2009 relations with 6 large ideals: 127460 Wed Apr 08 15:58:29 2009 relations with 7+ large ideals: 32540 Wed Apr 08 15:58:29 2009 commencing 2-way merge Wed Apr 08 15:58:32 2009 reduce to 831906 relation sets and 702521 unique ideals Wed Apr 08 15:58:32 2009 ignored 126 oversize relation sets Wed Apr 08 15:58:32 2009 commencing full merge Wed Apr 08 15:58:48 2009 memory use: 53.8 MB Wed Apr 08 15:58:49 2009 found 362928 cycles, need 348721 Wed Apr 08 15:58:49 2009 weight of 348721 cycles is about 24522820 (70.32/cycle) Wed Apr 08 15:58:49 2009 distribution of cycle lengths: Wed Apr 08 15:58:49 2009 1 relations: 38690 Wed Apr 08 15:58:49 2009 2 relations: 37640 Wed Apr 08 15:58:49 2009 3 relations: 37108 Wed Apr 08 15:58:49 2009 4 relations: 33406 Wed Apr 08 15:58:49 2009 5 relations: 30118 Wed Apr 08 15:58:49 2009 6 relations: 26528 Wed Apr 08 15:58:49 2009 7 relations: 23071 Wed Apr 08 15:58:49 2009 8 relations: 19577 Wed Apr 08 15:58:49 2009 9 relations: 16983 Wed Apr 08 15:58:49 2009 10+ relations: 85600 Wed Apr 08 15:58:49 2009 heaviest cycle: 23 relations Wed Apr 08 15:58:49 2009 commencing cycle optimization Wed Apr 08 15:58:50 2009 start with 2308529 relations Wed Apr 08 15:59:03 2009 pruned 63973 relations Wed Apr 08 15:59:03 2009 memory use: 59.7 MB Wed Apr 08 15:59:03 2009 distribution of cycle lengths: Wed Apr 08 15:59:03 2009 1 relations: 38690 Wed Apr 08 15:59:03 2009 2 relations: 38619 Wed Apr 08 15:59:03 2009 3 relations: 38562 Wed Apr 08 15:59:03 2009 4 relations: 34268 Wed Apr 08 15:59:03 2009 5 relations: 31073 Wed Apr 08 15:59:03 2009 6 relations: 26924 Wed Apr 08 15:59:03 2009 7 relations: 23273 Wed Apr 08 15:59:03 2009 8 relations: 19526 Wed Apr 08 15:59:03 2009 9 relations: 17009 Wed Apr 08 15:59:03 2009 10+ relations: 80777 Wed Apr 08 15:59:03 2009 heaviest cycle: 23 relations Wed Apr 08 15:59:04 2009 RelProcTime: 258 Wed Apr 08 15:59:05 2009 Wed Apr 08 15:59:05 2009 commencing linear algebra Wed Apr 08 15:59:05 2009 read 348721 cycles Wed Apr 08 15:59:07 2009 cycles contain 1241197 unique relations Wed Apr 08 15:59:29 2009 read 1241197 relations Wed Apr 08 15:59:33 2009 using 20 quadratic characters above 67107102 Wed Apr 08 15:59:44 2009 building initial matrix Wed Apr 08 16:00:16 2009 memory use: 133.6 MB Wed Apr 08 16:00:16 2009 read 348721 cycles Wed Apr 08 16:00:18 2009 matrix is 348372 x 348721 (98.2 MB) with weight 32653745 (93.64/col) Wed Apr 08 16:00:18 2009 sparse part has weight 23311371 (66.85/col) Wed Apr 08 16:00:25 2009 filtering completed in 3 passes Wed Apr 08 16:00:25 2009 matrix is 345226 x 345426 (97.5 MB) with weight 32393005 (93.78/col) Wed Apr 08 16:00:25 2009 sparse part has weight 23152847 (67.03/col) Wed Apr 08 16:00:27 2009 read 345426 cycles Wed Apr 08 16:00:28 2009 matrix is 345226 x 345426 (97.5 MB) with weight 32393005 (93.78/col) Wed Apr 08 16:00:28 2009 sparse part has weight 23152847 (67.03/col) Wed Apr 08 16:00:28 2009 saving the first 48 matrix rows for later Wed Apr 08 16:00:28 2009 matrix is 345178 x 345426 (93.6 MB) with weight 25761950 (74.58/col) Wed Apr 08 16:00:28 2009 sparse part has weight 22474477 (65.06/col) Wed Apr 08 16:00:28 2009 matrix includes 64 packed rows Wed Apr 08 16:00:28 2009 using block size 65536 for processor cache size 3072 kB Wed Apr 08 16:00:33 2009 commencing Lanczos iteration Wed Apr 08 16:00:33 2009 memory use: 91.0 MB Wed Apr 08 16:20:55 2009 lanczos halted after 5461 iterations (dim = 345178) Wed Apr 08 16:20:56 2009 recovered 30 nontrivial dependencies Wed Apr 08 16:20:56 2009 BLanczosTime: 1311 Wed Apr 08 16:20:56 2009 Wed Apr 08 16:20:56 2009 commencing square root phase Wed Apr 08 16:20:56 2009 reading relations for dependency 1 Wed Apr 08 16:20:56 2009 read 172900 cycles Wed Apr 08 16:20:57 2009 cycles contain 761657 unique relations Wed Apr 08 16:21:06 2009 read 761657 relations Wed Apr 08 16:21:10 2009 multiplying 618710 relations Wed Apr 08 16:22:39 2009 multiply complete, coefficients have about 24.39 million bits Wed Apr 08 16:22:40 2009 initial square root is modulo 10105189 Wed Apr 08 16:24:44 2009 sqrtTime: 228 Wed Apr 08 16:24:44 2009 prp48 factor: 449254024867847727675909476262097732256487477847 Wed Apr 08 16:24:44 2009 prp59 factor: 11937045302486433091318474345081585284330222063528243378473 Wed Apr 08 16:24:44 2009 elapsed time 00:30:57
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 8, 2009
(8·10184+1)/9 = (8)1839<184> = 3 · 19603 · 172173708801163613627<21> · 27179099398845119796776615939<29> · C131
C131 = P54 · P77
P54 = 655200614742021634033184493527939976327840479083596331<54>
P77 = 49297794490247366498009769287197835197566546266043480968889690856371958296947<77>
Number: 88889_184 N=32299945255435921563264500910223759473383544543244622969530356135443820563047187110300569176110925997216606362828072402522777701457 ( 131 digits) SNFS difficulty: 185 digits. Divisors found: r1=655200614742021634033184493527939976327840479083596331 r2=49297794490247366498009769287197835197566546266043480968889690856371958296947 Version: Total time: 90.35 hours. Scaled time: 215.67 units (timescale=2.387). Factorization parameters were as follows: n: 32299945255435921563264500910223759473383544543244622969530356135443820563047187110300569176110925997216606362828072402522777701457 m: 10000000000000000000000000000000000000 deg: 5 c5: 4 c0: 5 skew: 1.05 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3700000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 19738380 Max relations in full relation-set: Initial matrix: Pruned matrix : 1439655 x 1439903 Total sieving time: 82.17 hours. Total relation processing time: 2.51 hours. Matrix solve time: 5.15 hours. Time per square root: 0.52 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,54,54,2.5,2.5,100000 total time: 90.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 8, 2009
(64·10321-1)/9 = 7(1)321<322> = 13 · 557 · 3163 · 48947 · 10809769 · 1731548410507<13> · 261280146756814062538507318913686335068158574151673052598829302142577942835385969<81> · C211
C211 = P57 · P154
P57 = 136920528458324437784046746620817633432816773555317196129<57>
P154 = 9473001739252911590386140919918219522378832016848880341270650479366213030853894032663349942975658310158914485340068110000467344258703110989631095198989717<154>
Number: n N=1297048404225135176763377838306703308284086026735410232090598831035125692096921942005723226083643408967468407954149338910641471501414593415858038052157558954903248295597331322908306784373809350097683957943205493 ( 211 digits) SNFS difficulty: 216 digits. Divisors found: Wed Apr 8 03:01:28 2009 prp57 factor: 136920528458324437784046746620817633432816773555317196129 Wed Apr 8 03:01:28 2009 prp154 factor: 9473001739252911590386140919918219522378832016848880341270650479366213030853894032663349942975658310158914485340068110000467344258703110989631095198989717 Wed Apr 8 03:01:28 2009 elapsed time 37:00:40 (Msieve 1.40 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 164.17 hours. Scaled time: 330.47 units (timescale=2.013). Factorization parameters were as follows: name: KA_7_1_321 n: 1297048404225135176763377838306703308284086026735410232090598831035125692096921942005723226083643408967468407954149338910641471501414593415858038052157558954903248295597331322908306784373809350097683957943205493 m: 1000000000000000000000000000000000000 deg: 6 c6: 4 c3: 10 c0: 25 skew: 1.36 type: snfs lss: 1 rlim: 29000000 alim: 29000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 Factor base limits: 29000000/29000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [14500000, 43099990) Primes: RFBsize:1799676, AFBsize:1800414, largePrimes:38190043 encountered Relations: rels:35567012, finalFF:1582831 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 10222882 hash collisions in 53039926 relations Msieve: matrix is 4419521 x 4419769 (1191.6 MB) Total sieving time: 162.85 hours. Total relation processing time: 1.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,216,6,0,0,0,0,0,0,0,0,29000000,29000000,29,29,58,58,2.6,2.6,100000 total time: 164.17 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368972k/3407296k available (2746k kernel code, 36964k reserved, 1423k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.94 BogoMIPS (lpj=2830471) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830448) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.66 BogoMIPS).
(52·10121+11)/9 = 5(7)1209<122> = 2131 · 364423 · 26234906906371<14> · C100
C100 = P30 · P70
P30 = 364380770250394223205085702913<30>
P70 = 7782813588336038236590157745377257175997742877047838277174240662961821<70>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2835907610033120194199551806236055848179990717764081780027871686218836290400926117700635184267484573 (100 digits) Using B1=410000, B2=258309880, polynomial Dickson(3), sigma=1875643875 Step 1 took 2844ms Step 2 took 1547ms ********** Factor found in step 2: 364380770250394223205085702913 Found probable prime factor of 30 digits: 364380770250394223205085702913 Probable prime cofactor 7782813588336038236590157745377257175997742877047838277174240662961821 has 70 digits
(52·10131+11)/9 = 5(7)1309<132> = 3 · 156615616223844733<18> · C115
C115 = P43 · P72
P43 = 7763687498449931812059462700396020833572123<43>
P72 = 158393177019022554878786757562711332700651832607685626917554728976969727<72>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1229715128262352446646479717712916921331965604795480595127657762873153975570827675722018351807183853308813442120421 (115 digits) Using B1=3016000, B2=5707048630, polynomial Dickson(6), sigma=776505955 Step 1 took 23656ms Step 2 took 10813ms ********** Factor found in step 2: 7763687498449931812059462700396020833572123 Found probable prime factor of 43 digits: 7763687498449931812059462700396020833572123 Probable prime cofactor 158393177019022554878786757562711332700651832607685626917554728976969727 has 72 digits
(52·10163-43)/9 = 5(7)1623<164> = 68227 · 1064333 · 10051697 · C146
C146 = P50 · P97
P50 = 11345284585959792348128719462608562601664887183003<50>
P97 = 6977056631564364741721701334882809627921614120837450546938867006111665296912706481813926549424033<97>
Number: n N=79156693057455737307008940043409821123504830816174226754932381838488471827986295021737720124311306762782216540492587282060531047450730353517311099 ( 146 digits) SNFS difficulty: 166 digits. Divisors found: Wed Apr 08 12:35:24 2009 prp50 factor: 11345284585959792348128719462608562601664887183003 Wed Apr 08 12:35:24 2009 prp97 factor: 6977056631564364741721701334882809627921614120837450546938867006111665296912706481813926549424033 Wed Apr 08 12:35:24 2009 elapsed time 00:49:52 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 38.25 hours. Scaled time: 100.47 units (timescale=2.627). Factorization parameters were as follows: name: KA_5_7_162_3 n: 79156693057455737307008940043409821123504830816174226754932381838488471827986295021737720124311306762782216540492587282060531047450730353517311099 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [2050000, 4350000) Primes: RFBsize:289774, AFBsize:289152, largePrimes:9241359 encountered Relations: rels:9588942, finalFF:654042 Max relations in full relation-set: 28 Initial matrix: 578992 x 654042 with sparse part having weight 71044949. Pruned matrix : 543963 x 546921 with weight 56786987. Msieve: found 1073917 hash collisions in 10559866 relations Msieve: matrix is 634107 x 634355 (168.3 MB) Total sieving time: 37.64 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.33 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 38.25 hours. --------- CPU info (if available) ----------
(52·10152+11)/9 = 5(7)1519<153> = 32 · 757 · C149
C149 = P38 · P111
P38 = 93808864550850625172985855237704776067<38>
P111 = 904021097507399866702195420272204652716997344737015447439748923511012042343544803174140630732101383321666439749<111>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 84805192687182999820604400084805192687182999820604400084805192687182999820604400084805192687182999820604400084805192687182999820604400084805192687183 (149 digits) Using B1=2012000, B2=2853999340, polynomial Dickson(6), sigma=853283790 Step 1 took 23687ms Step 2 took 9922ms ********** Factor found in step 2: 93808864550850625172985855237704776067 Found probable prime factor of 38 digits: 93808864550850625172985855237704776067 Probable prime cofactor 904021097507399866702195420272204652716997344737015447439748923511012042343544803174140630732101383321666439749 has 111 digits
(52·10163-61)/9 = 5(7)1621<164> = 3 · 281 · 49559 · 154452407 · C148
C148 = P72 · P76
P72 = 985599952264306027024189286435490320222399984074792036487401000273442791<72>
P76 = 9084799990658051214181652821663796864828696072835756124477903941113082320359<76>
Number: n N=8953978437123343116951200201478548849810829379828748970302581367078882584804549791697998382013828361531770509760399305306292768437157835291721081969 ( 148 digits) SNFS difficulty: 166 digits. Divisors found: Wed Apr 08 16:56:58 2009 prp72 factor: 985599952264306027024189286435490320222399984074792036487401000273442791 Wed Apr 08 16:56:58 2009 prp76 factor: 9084799990658051214181652821663796864828696072835756124477903941113082320359 Wed Apr 08 16:56:58 2009 elapsed time 00:55:33 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 42.65 hours. Scaled time: 112.98 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_7_162_1 n: 8953978437123343116951200201478548849810829379828748970302581367078882584804549791697998382013828361531770509760399305306292768437157835291721081969 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [2050000, 4750091) Primes: RFBsize:289774, AFBsize:290733, largePrimes:9093056 encountered Relations: rels:9165804, finalFF:598084 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1115970 hash collisions in 10198363 relations Msieve: matrix is 725226 x 725474 (192.8 MB) Total sieving time: 42.35 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 42.65 hours. --------- CPU info (if available) ----------
(52·10156-61)/9 = 5(7)1551<157> = 4937 · 114370423 · 18365093151893<14> · C132
C132 = P50 · P83
P50 = 24695978014100333072677731977278205511815080160837<50>
P83 = 22561325654314430046535809389320157194646910045717054254420912038014349179571854781<83>
Number: n N=557174002327906975798769654208559431606013104752429834529952087837656117353644842339464494240064263927360215844965204480695887411697 ( 132 digits) SNFS difficulty: 158 digits. Divisors found: Wed Apr 08 21:24:46 2009 prp50 factor: 24695978014100333072677731977278205511815080160837 Wed Apr 08 21:24:46 2009 prp83 factor: 22561325654314430046535809389320157194646910045717054254420912038014349179571854781 Wed Apr 08 21:24:46 2009 elapsed time 00:52:14 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 21.26 hours. Scaled time: 55.86 units (timescale=2.627). Factorization parameters were as follows: name: KA_5_7_155_1 n: 557174002327906975798769654208559431606013104752429834529952087837656117353644842339464494240064263927360215844965204480695887411697 m: 20000000000000000000000000000000 deg: 5 c5: 65 c0: -244 skew: 1.30 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1500000, 2900083) Primes: RFBsize:216816, AFBsize:216527, largePrimes:12681842 encountered Relations: rels:11727577, finalFF:433586 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1107459 hash collisions in 12643471 relations Msieve: matrix is 588100 x 588348 (157.8 MB) Total sieving time: 20.97 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.4,2.4,100000 total time: 21.26 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GMP-ECM, msieve v1.40beta2, GGNFS, msieve v1.41, msieve v1.39 / Apr 8, 2009
(49·10190-13)/9 = 5(4)1893<191> = 23 · 56783 · 3577949592990109125475959133<28> · 10560005477046551407109442082543<32> · C127
C127 = P36 · P41 · P51
P36 = 151384963804792601957076838327835443<36>
P41 = 27247030603187965412926575051567284862283<41>
P51 = 267489733874812578723107950256592587386798727120657<51>
--------------------------------- P36=151384963804792601957076838327835443 B1=1000000 B2=900000000 Method=ECM Found by the ECM "workers" at http://factorization.ath.cx --------------------------------- Tue Apr 07 03:16:09 2009 Msieve v. 1.40 Tue Apr 07 03:16:09 2009 random seeds: 28de34d8 8bda56ae Tue Apr 07 03:16:09 2009 factoring 7288300964925622921639267800655225120410607285033175107865679394472800601695388603369479931 (91 digits) Tue Apr 07 03:16:10 2009 searching for 15-digit factors Tue Apr 07 03:16:11 2009 commencing quadratic sieve (91-digit input) Tue Apr 07 03:16:11 2009 using multiplier of 3 Tue Apr 07 03:16:11 2009 using 32kb Intel Core sieve core Tue Apr 07 03:16:11 2009 sieve interval: 36 blocks of size 32768 Tue Apr 07 03:16:11 2009 processing polynomials in batches of 6 Tue Apr 07 03:16:11 2009 using a sieve bound of 1713449 (64706 primes) Tue Apr 07 03:16:11 2009 using large prime bound of 164491104 (27 bits) Tue Apr 07 03:16:11 2009 using double large prime bound of 615256603721856 (42-50 bits) Tue Apr 07 03:16:11 2009 using trial factoring cutoff of 50 bits Tue Apr 07 03:16:11 2009 polynomial 'A' values have 12 factors Tue Apr 07 04:37:43 2009 64819 relations (16665 full + 48154 combined from 762683 partial), need 64802 Tue Apr 07 04:37:43 2009 begin with 779348 relations Tue Apr 07 04:37:44 2009 reduce to 162308 relations in 11 passes Tue Apr 07 04:37:44 2009 attempting to read 162308 relations Tue Apr 07 04:37:46 2009 recovered 162308 relations Tue Apr 07 04:37:46 2009 recovered 142998 polynomials Tue Apr 07 04:37:46 2009 attempting to build 64819 cycles Tue Apr 07 04:37:46 2009 found 64819 cycles in 5 passes Tue Apr 07 04:37:46 2009 distribution of cycle lengths: Tue Apr 07 04:37:46 2009 length 1 : 16665 Tue Apr 07 04:37:46 2009 length 2 : 11914 Tue Apr 07 04:37:46 2009 length 3 : 11364 Tue Apr 07 04:37:46 2009 length 4 : 8678 Tue Apr 07 04:37:46 2009 length 5 : 6457 Tue Apr 07 04:37:46 2009 length 6 : 4061 Tue Apr 07 04:37:46 2009 length 7 : 2502 Tue Apr 07 04:37:46 2009 length 9+: 3178 Tue Apr 07 04:37:46 2009 largest cycle: 22 relations Tue Apr 07 04:37:46 2009 matrix is 64706 x 64819 (16.1 MB) with weight 3957333 (61.05/col) Tue Apr 07 04:37:46 2009 sparse part has weight 3957333 (61.05/col) Tue Apr 07 04:37:47 2009 filtering completed in 3 passes Tue Apr 07 04:37:47 2009 matrix is 60951 x 61015 (15.3 MB) with weight 3763741 (61.69/col) Tue Apr 07 04:37:47 2009 sparse part has weight 3763741 (61.69/col) Tue Apr 07 04:37:47 2009 saving the first 48 matrix rows for later Tue Apr 07 04:37:47 2009 matrix is 60903 x 61015 (9.4 MB) with weight 2929803 (48.02/col) Tue Apr 07 04:37:47 2009 sparse part has weight 2100869 (34.43/col) Tue Apr 07 04:37:47 2009 matrix includes 64 packed rows Tue Apr 07 04:37:47 2009 using block size 24406 for processor cache size 2048 kB Tue Apr 07 04:37:47 2009 commencing Lanczos iteration Tue Apr 07 04:37:47 2009 memory use: 9.3 MB Tue Apr 07 04:38:04 2009 lanczos halted after 965 iterations (dim = 60897) Tue Apr 07 04:38:04 2009 recovered 14 nontrivial dependencies Tue Apr 07 04:38:04 2009 prp41 factor: 27247030603187965412926575051567284862283 Tue Apr 07 04:38:04 2009 prp51 factor: 267489733874812578723107950256592587386798727120657 Tue Apr 07 04:38:04 2009 elapsed time 01:21:55
(52·10112+11)/9 = 5(7)1119<113> = 19 · 1471 · 6203 · 244561123 · C97
C97 = P39 · P58
P39 = 342635300376985740079889564063862325331<39>
P58 = 3977161757490024436199522761739823455145947091623722643189<58>
Number: 57779_112 N=1362716013425455038269365465041655392090464515205357520408224328485283338132684220072647149320559 ( 97 digits) SNFS difficulty: 114 digits. Divisors found: r1=342635300376985740079889564063862325331 (pp40) r2=3977161757490024436199522761739823455145947091623722643189 (pp59) Version: Msieve-1.41 Total time: 0.95 hours. Scaled time: 1.03 units (timescale=1.088). Factorization parameters were as follows: n: 1362716013425455038269365465041655392090464515205357520408224328485283338132684220072647149320559 m: 20000000000000000000000 deg: 5 c5: 325 c0: 22 skew: 0.58 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 56708 x 56935 Total sieving time: 0.95 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 0.95 hours. --------- CPU info (if available) ----------
(52·10113+11)/9 = 5(7)1129<114> = 3 · 797 · C111
C111 = P32 · P80
P32 = 21191076950997992778938517729283<32>
P80 = 11403239072609000017840567548152233635496296586350682597719486296171078116689943<80>
Number: 57779_113 N=241646916678284306891584181421069752311910404758585436126214043403503880291835122449927970630605511408522700869 ( 111 digits) SNFS difficulty: 116 digits. Divisors found: r1=21191076950997992778938517729283 (pp33) r2=11403239072609000017840567548152233635496296586350682597719486296171078116689943 (pp81) Version: Msieve-1.39 Total time: 1.01 hours. Scaled time: 1.09 units (timescale=1.085). Factorization parameters were as follows: n: 241646916678284306891584181421069752311910404758585436126214043403503880291835122449927970630605511408522700869 m: 100000000000000000000000 deg: 5 c5: 13 c0: 275 skew: 1.84 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 59957 x 60198 Total sieving time: 1.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 1.01 hours. --------- CPU info (if available) ----------
(52·10114+11)/9 = 5(7)1139<115> = 7 · 419 · 36721 · C107
C107 = P42 · P66
P42 = 156191211927687234042225904227266197684409<42>
P66 = 343461195244667387875682227644599921552361260327667052031805907567<66>
Number: 57779_114 N=53645620335396606821871926431568222512112838049256370755536983441795441250273823494624946636921862091022903 ( 107 digits) SNFS difficulty: 116 digits. Divisors found: r1=156191211927687234042225904227266197684409 (pp43) r2=343461195244667387875682227644599921552361260327667052031805907567 (pp67) Version: Msieve-1.39 Total time: 1.01 hours. Scaled time: 1.10 units (timescale=1.090). Factorization parameters were as follows: n: 53645620335396606821871926431568222512112838049256370755536983441795441250273823494624946636921862091022903 m: 100000000000000000000000 deg: 5 c5: 26 c0: 55 skew: 1.16 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 62274 x 62507 Total sieving time: 1.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.01 hours. --------- CPU info (if available) ----------
(52·10104+11)/9 = 5(7)1039<105> = 3 · 27103 · 997052731 · C91
C91 = P29 · P63
P29 = 19220610958847864530012111841<29>
P63 = 370797586486105227102882427553203663841628754066639649741320861<63>
Number: 57779_104 N=7126956154329172964190407581733579595542753084022720093873577878288167714232922899398415101 ( 91 digits) SNFS difficulty: 106 digits. Divisors found: r1=19220610958847864530012111841 (pp29) r2=370797586486105227102882427553203663841628754066639649741320861 (pp63) Version: GGNFS-0.77.1-VC8(Sat Total time: 0.35 hours. Scaled time: 0.38 units (timescale=1.092). Factorization parameters were as follows: n: 7126956154329172964190407581733579595542753084022720093873577878288167714232922899398415101 m: 200000000000000000000000000 deg: 4 c4: 13 c0: 44 skew: 1.36 type: snfs lss: 1 rlim: 410000 alim: 410000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 410000/410000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [205000, 265001) Primes: RFBsize:34614, AFBsize:34155, largePrimes:979903 encountered Relations: rels:899445, finalFF:86300 Max relations in full relation-set: 32 Initial matrix: 68836 x 86300 with sparse part having weight 3259399. Pruned matrix : 57430 x 57838 with weight 1677024. Total sieving time: 0.31 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,106,4,0,0,0,0,0,0,0,0,410000,410000,25,25,44,44,2.2,2.2,20000 total time: 0.35 hours. --------- CPU info (if available) ----------
(52·10117+11)/9 = 5(7)1169<118> = 17 · 59 · 10956842667605569320979<23> · C93
C93 = P38 · P55
P38 = 71924007866618544951803639781410382773<38>
P55 = 7309717546312534089494372288483167098053407071733225079<55>
Number: 57779_117 N=525744182303742310034568486879758102100680007383383575604620876268515086518106958523153164067 ( 93 digits) SNFS difficulty: 119 digits. Divisors found: r1=71924007866618544951803639781410382773 (pp39) r2=7309717546312534089494372288483167098053407071733225079 (pp56) Version: Msieve-1.41 Total time: 1.23 hours. Scaled time: 1.34 units (timescale=1.088). Factorization parameters were as follows: n: 525744182303742310034568486879758102100680007383383575604620876268515086518106958523153164067 m: 200000000000000000000000 deg: 5 c5: 325 c0: 22 skew: 0.58 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73690 x 73919 Total sieving time: 1.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 1.23 hours. --------- CPU info (if available) ----------
(52·10119+11)/9 = 5(7)1189<120> = 3 · 1069 · 25044948075953116163<20> · C97
C97 = P47 · P51
P47 = 65362022175359856796126919799848878544914687343<47>
P51 = 110056642251239621825067197259113037041248732781833<51>
Number: 57779_119 N=7193524691371170713641673802460032864647362592976192622799232625333131233825174851481483825439719 ( 97 digits) SNFS difficulty: 121 digits. Divisors found: r1=65362022175359856796126919799848878544914687343 (pp48) r2=110056642251239621825067197259113037041248732781833 (pp52) Version: Msieve-1.41 Total time: 1.25 hours. Scaled time: 1.35 units (timescale=1.081). Factorization parameters were as follows: n: 7193524691371170713641673802460032864647362592976192622799232625333131233825174851481483825439719 m: 1000000000000000000000000 deg: 5 c5: 26 c0: 55 skew: 1.16 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 620001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83078 x 83303 Total sieving time: 1.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.25 hours. --------- CPU info (if available) ----------
(52·10133+11)/9 = 5(7)1329<134> = 17 · 5372303 · C126
C126 = P45 · P82
P45 = 552786152596759621451787350162034188925429337<45>
P82 = 1144443240550567536987813732224100088589848122719187256363678808463144355031420117<82>
Number: 57779_133 N=632632375809316105191624717695862274880643287462266870057488849072710396462327540718929685197421552487417492556979729043772429 ( 126 digits) SNFS difficulty: 136 digits. Divisors found: r1=552786152596759621451787350162034188925429337 (pp46) r2=1144443240550567536987813732224100088589848122719187256363678808463144355031420117 (pp83) Version: Msieve-1.39 Total time: 3.25 hours. Scaled time: 3.54 units (timescale=1.090). Factorization parameters were as follows: n: 632632375809316105191624717695862274880643287462266870057488849072710396462327540718929685197421552487417492556979729043772429 m: 1000000000000000000000000000 deg: 5 c5: 13 c0: 275 skew: 1.84 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1175001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 182164 x 182412 Total sieving time: 3.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 3.25 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2 / Apr 8, 2009
(52·10116+11)/9 = 5(7)1159<117> = 33 · 162618791 · C108
C108 = P37 · P71
P37 = 2645715604664475548380977250122717151<37>
P71 = 49737411941327305141315767551566392120952692721970711669814872930052497<71>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2645698852 Step 1 took 6533ms Step 2 took 7036ms ********** Factor found in step 2: 2645715604664475548380977250122717151 Found probable prime factor of 37 digits: 2645715604664475548380977250122717151 Probable prime cofactor has 71 digits
(52·10143+11)/9 = 5(7)1429<144> = 33 · 83 · 357347 · C135
C135 = P31 · P105
P31 = 2627625558851476694029546636907<31>
P105 = 274577761184714753670872305144563611669505000759721875940972634740657525851157819603161894138821807409811<105>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4099621279 Step 1 took 8108ms Step 2 took 7905ms ********** Factor found in step 2: 2627625558851476694029546636907 Found probable prime factor of 31 digits: 2627625558851476694029546636907 Probable prime cofactor has 105 digits
Factorizations of 577...779 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / Msieve / Apr 7, 2009
(17·10185-11)/3 = 5(6)1843<186> = C186
C186 = P70 · P117
P70 = 4925952720289718922267290651764752755426360242050366403515405657991967<70>
P117 = 115036968246284402056838380084523901776546762863252344722745402064736836757750211510628015588193248445323115293824889<117>
Number: 56663_185 N=566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 186 digits) SNFS difficulty: 186 digits. Divisors found: r1=4925952720289718922267290651764752755426360242050366403515405657991967 r2=115036968246284402056838380084523901776546762863252344722745402064736836757750211510628015588193248445323115293824889 Version: Total time: 295.50 hours. Scaled time: 576.22 units (timescale=1.950). Factorization parameters were as follows: n: 566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 10000000000000000000000000000000000000 deg: 5 c5: 17 c0: -11 skew: 0.92 type: snfs lss: 1 rlim: 8900000 alim: 8900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8900000/8900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4450000, 7350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1351725 x 1351973 Total sieving time: 295.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000 total time: 295.50 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 7, 2009
(52·10156-43)/9 = 5(7)1553<157> = 67 · 2539 · 12377 · 7507813 · 152592998381199941<18> · C124
C124 = P56 · P68
P56 = 42324712149887703249058741715715368573418753560232777947<56>
P68 = 56593411293658825684156944002955180765863478393823025834036693149223<68>
Number: 57773_156 N=2395299842584313661176009271399515634228386385781040937035513146893887555216345156622566136206011349430618766637825094585181 ( 124 digits) SNFS difficulty: 158 digits. Divisors found: r1=42324712149887703249058741715715368573418753560232777947 r2=56593411293658825684156944002955180765863478393823025834036693149223 Version: Total time: 12.70 hours. Scaled time: 30.37 units (timescale=2.391). Factorization parameters were as follows: n: 2395299842584313661176009271399515634228386385781040937035513146893887555216345156622566136206011349430618766637825094585181 m: 20000000000000000000000000000000 deg: 5 c5: 65 c0: -172 skew: 1.21 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8058475 Max relations in full relation-set: Initial matrix: Pruned matrix : 577122 x 577370 Total sieving time: 11.43 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.75 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 12.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve / Apr 7, 2009
(49·10163-13)/9 = 5(4)1623<164> = 22877 · 1141039 · 712917216005380730823319<24> · C130
C130 = P43 · P88
P43 = 1838559489041997202537670965985653716498713<43>
P88 = 1591245618155628933095288983361565267658381139712189781371408687414923895947384324120423<88>
Number: 54443_163 N=2925599730656530118218153085930991963465403815206131233254026841784401287021285104721191904053437108456642251087246239876936515599 ( 130 digits) SNFS difficulty: 166 digits. Divisors found: r1=1838559489041997202537670965985653716498713 r2=1591245618155628933095288983361565267658381139712189781371408687414923895947384324120423 Version: Total time: 55.29 hours. Scaled time: 141.76 units (timescale=2.564). Factorization parameters were as follows: name: 54443_163 n: 2925599730656530118218153085930991963465403815206131233254026841784401287021285104721191904053437108456642251087246239876936515599 m: 500000000000000000000000000000000 deg: 5 c5: 392 c0: -325 skew: 0.96 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 784249 x 784497 Total sieving time: 55.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 55.29 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 7, 2009
(52·10153-43)/9 = 5(7)1523<154> = 19 · 251 · 3217 · 21637541 · C140
C140 = P43 · P97
P43 = 5226656307048277075739951443464065439796783<43>
P97 = 3330048848530137402109121586611241776634331048046456390576341906231093818995585219392171771569367<97>
Number: n N=17405020816948895352788462978289144993085486311485555507689951772738726034033330243643593383421865564930217703918043370446279816473467946361 ( 140 digits) SNFS difficulty: 156 digits. Divisors found: Tue Apr 07 04:13:58 2009 prp43 factor: 5226656307048277075739951443464065439796783 Tue Apr 07 04:13:58 2009 prp97 factor: 3330048848530137402109121586611241776634331048046456390576341906231093818995585219392171771569367 Tue Apr 07 04:13:58 2009 elapsed time 00:25:53 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 16.44 hours. Scaled time: 43.74 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_7_152_3 n: 17405020816948895352788462978289144993085486311485555507689951772738726034033330243643593383421865564930217703918043370446279816473467946361 m: 10000000000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [1400000, 2437891) Primes: RFBsize:203362, AFBsize:203212, largePrimes:7790060 encountered Relations: rels:7668575, finalFF:424928 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 658674 hash collisions in 8502371 relations Msieve: matrix is 424079 x 424327 (112.4 MB) Total sieving time: 16.30 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 16.44 hours. --------- CPU info (if available) ----------
(52·10153-61)/9 = 5(7)1521<154> = 109 · 10654546681733<14> · C139
C139 = P65 · P75
P65 = 21877636042769256562956587384071382231100312437993942946107314253<65>
P75 = 227404453978194883205305035375145786814416581210812947786666686879475096631<75>
Number: n N=4975071878639619027580647578105061421944161740530495775744169980983929912826073249348360403185875188699533329276365263088506585953058581643 ( 139 digits) SNFS difficulty: 156 digits. Divisors found: Tue Apr 07 16:01:50 2009 prp65 factor: 21877636042769256562956587384071382231100312437993942946107314253 Tue Apr 07 16:01:50 2009 prp75 factor: 227404453978194883205305035375145786814416581210812947786666686879475096631 Tue Apr 07 16:01:50 2009 elapsed time 01:33:48 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.53 hours. Scaled time: 48.37 units (timescale=1.823). Factorization parameters were as follows: name: KA_5_7_152_1 n: 4975071878639619027580647578105061421944161740530495775744169980983929912826073249348360403185875188699533329276365263088506585953058581643 m: 10000000000000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1400000, 2550059) Primes: RFBsize:203362, AFBsize:203673, largePrimes:12268068 encountered Relations: rels:11304635, finalFF:423323 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1009925 hash collisions in 12132181 relations Msieve: matrix is 540033 x 540281 (144.2 MB) Total sieving time: 26.17 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,56,56,2.4,2.4,100000 total time: 26.53 hours. --------- CPU info (if available) ----------
(52·10159-43)/9 = 5(7)1583<160> = 332623 · 6508577549<10> · C145
C145 = P45 · P101
P45 = 255158710652956081464085443158694106632566387<45>
P101 = 10459527719841289135517282631223674345622062975143907800726130556696015686727283793221178817377069877<101>
Number: n N=2668839607033556974468153671896871207588601016196528363541022727523800195201718900138212731528155645460355752215651205000868056419190870740424399 ( 145 digits) SNFS difficulty: 161 digits. Divisors found: Tue Apr 07 17:36:05 2009 prp45 factor: 255158710652956081464085443158694106632566387 Tue Apr 07 17:36:05 2009 prp101 factor: 10459527719841289135517282631223674345622062975143907800726130556696015686727283793221178817377069877 Tue Apr 07 17:36:05 2009 elapsed time 00:34:01 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 26.54 hours. Scaled time: 70.60 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_7_158_3 n: 2668839607033556974468153671896871207588601016196528363541022727523800195201718900138212731528155645460355752215651205000868056419190870740424399 m: 100000000000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [1700000, 3353351) Primes: RFBsize:243539, AFBsize:243539, largePrimes:8794996 encountered Relations: rels:8707881, finalFF:419993 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 891260 hash collisions in 9762998 relations Msieve: matrix is 566469 x 566717 (150.8 MB) Total sieving time: 26.37 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 26.54 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GMP-ECM / Apr 7, 2009
(17·10200+7)/3 = 5(6)1999<201> = 139 · 1319 · 4091 · 5953 · 4583407129440823<16> · 1454913548016373279<19> · 16235484672840827305747235427721<32> · C124
C124 = P39 · P86
P39 = 100034433648149700990445975108099542857<39>
P86 = 11718237858780679052337995092680150045988631324939268850238847645056920552478961481867<86>
P39=100034433648149700990445975108099542857 P86=11718237858780679052337995092680150045988631324939268850238847645056920552478961481867 B1=1000000 B2=900000000 Method=ECM Found by the ECM "workers" at http://factorization.ath.cx/
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 6, 2009
(52·10154-43)/9 = 5(7)1533<155> = 149 · 43869806235097027<17> · C136
C136 = P45 · P92
P45 = 644362268145717611996869352240115972961249339<45>
P92 = 13717619367664715143177371786799265045598831380451245098960355618867000486046534325108460809<92>
Number: 57773_154 N=8839116329308060449769823283800910310769081476155727628618745501770973967180392667477101570262093537763612128214917683828260403958655251 ( 136 digits) SNFS difficulty: 156 digits. Divisors found: r1=644362268145717611996869352240115972961249339 r2=13717619367664715143177371786799265045598831380451245098960355618867000486046534325108460809 Version: Total time: 12.25 hours. Scaled time: 29.19 units (timescale=2.383). Factorization parameters were as follows: n: 8839116329308060449769823283800910310769081476155727628618745501770973967180392667477101570262093537763612128214917683828260403958655251 m: 10000000000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8347585 Max relations in full relation-set: Initial matrix: Pruned matrix : 476289 x 476537 Total sieving time: 11.17 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.52 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 12.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Andreas Tete / Msieve v1.41, GGNFS / Apr 6, 2009
(52·10164-61)/9 = 5(7)1631<165> = 31 · 331 · 25913 · 157931 · 87326546699387<14> · 3012754065006304230901<22> · C116
C116 = P58 · P59
P58 = 1685645882744324078184380208870777133400255977328802807319<58>
P59 = 31024854582650382849964071719783112624254304541889736365429<59>
Mon Apr 06 12:28:44 2009 Msieve v. 1.41 Mon Apr 06 12:28:44 2009 random seeds: d61ac388 89579085 Mon Apr 06 12:28:44 2009 factoring 52296918389985992784801051521686146462966025183955903334306486053990434106755070365178483332617530969438858859774851 (116 digits) Mon Apr 06 12:28:45 2009 searching for 15-digit factors Mon Apr 06 12:28:47 2009 commencing number field sieve (116-digit input) Mon Apr 06 12:28:47 2009 R0: -22847768657417603897317 Mon Apr 06 12:28:47 2009 R1: 2527396540427 Mon Apr 06 12:28:47 2009 A0: 898990150492261702300858080 Mon Apr 06 12:28:47 2009 A1: 215800709421276599729876 Mon Apr 06 12:28:47 2009 A2: 12656715388262471695 Mon Apr 06 12:28:47 2009 A3: 171570845453858 Mon Apr 06 12:28:47 2009 A4: -3873010736 Mon Apr 06 12:28:47 2009 A5: 8400 Mon Apr 06 12:28:47 2009 skew 58360.61, size 4.912365e-011, alpha -6.153610, combined = 5.160237e-010 Mon Apr 06 12:28:47 2009 Mon Apr 06 12:28:47 2009 commencing relation filtering Mon Apr 06 12:28:47 2009 commencing duplicate removal, pass 1 Mon Apr 06 12:30:20 2009 found 636778 hash collisions in 8155392 relations Mon Apr 06 12:30:45 2009 added 59663 free relations Mon Apr 06 12:30:45 2009 commencing duplicate removal, pass 2 Mon Apr 06 12:31:05 2009 found 565861 duplicates and 7649193 unique relations Mon Apr 06 12:31:05 2009 memory use: 48.6 MB Mon Apr 06 12:31:05 2009 reading rational ideals above 3997696 Mon Apr 06 12:31:05 2009 reading algebraic ideals above 3997696 Mon Apr 06 12:31:05 2009 commencing singleton removal, pass 1 Mon Apr 06 12:32:27 2009 relations with 0 large ideals: 128553 Mon Apr 06 12:32:27 2009 relations with 1 large ideals: 967018 Mon Apr 06 12:32:27 2009 relations with 2 large ideals: 2568517 Mon Apr 06 12:32:27 2009 relations with 3 large ideals: 2794911 Mon Apr 06 12:32:27 2009 relations with 4 large ideals: 1068979 Mon Apr 06 12:32:27 2009 relations with 5 large ideals: 62451 Mon Apr 06 12:32:27 2009 relations with 6 large ideals: 58745 Mon Apr 06 12:32:27 2009 relations with 7+ large ideals: 19 Mon Apr 06 12:32:27 2009 7649193 relations and about 7686588 large ideals Mon Apr 06 12:32:27 2009 commencing singleton removal, pass 2 Mon Apr 06 12:33:51 2009 found 3501835 singletons Mon Apr 06 12:33:51 2009 current dataset: 4147358 relations and about 3436549 large ideals Mon Apr 06 12:33:51 2009 commencing singleton removal, pass 3 Mon Apr 06 12:34:46 2009 found 796417 singletons Mon Apr 06 12:34:46 2009 current dataset: 3350941 relations and about 2582397 large ideals Mon Apr 06 12:34:46 2009 commencing singleton removal, pass 4 Mon Apr 06 12:35:36 2009 found 238513 singletons Mon Apr 06 12:35:36 2009 current dataset: 3112428 relations and about 2337330 large ideals Mon Apr 06 12:35:36 2009 commencing singleton removal, final pass Mon Apr 06 12:36:31 2009 memory use: 50.1 MB Mon Apr 06 12:36:31 2009 commencing in-memory singleton removal Mon Apr 06 12:36:31 2009 begin with 3112428 relations and 2459063 unique ideals Mon Apr 06 12:36:35 2009 reduce to 2672100 relations and 2009098 ideals in 14 passes Mon Apr 06 12:36:35 2009 max relations containing the same ideal: 19 Mon Apr 06 12:36:36 2009 reading rational ideals above 720000 Mon Apr 06 12:36:36 2009 reading algebraic ideals above 720000 Mon Apr 06 12:36:36 2009 commencing singleton removal, final pass Mon Apr 06 12:37:29 2009 keeping 2395199 ideals with weight <= 20, new excess is 241096 Mon Apr 06 12:37:33 2009 memory use: 67.0 MB Mon Apr 06 12:37:33 2009 commencing in-memory singleton removal Mon Apr 06 12:37:33 2009 begin with 2682564 relations and 2395199 unique ideals Mon Apr 06 12:37:36 2009 reduce to 2663888 relations and 2325325 ideals in 9 passes Mon Apr 06 12:37:36 2009 max relations containing the same ideal: 20 Mon Apr 06 12:37:38 2009 removing 283257 relations and 253811 ideals in 29446 cliques Mon Apr 06 12:37:38 2009 commencing in-memory singleton removal Mon Apr 06 12:37:39 2009 begin with 2380631 relations and 2325325 unique ideals Mon Apr 06 12:37:41 2009 reduce to 2359480 relations and 2050072 ideals in 7 passes Mon Apr 06 12:37:41 2009 max relations containing the same ideal: 20 Mon Apr 06 12:37:42 2009 removing 209956 relations and 180510 ideals in 29446 cliques Mon Apr 06 12:37:42 2009 commencing in-memory singleton removal Mon Apr 06 12:37:43 2009 begin with 2149524 relations and 2050072 unique ideals Mon Apr 06 12:37:45 2009 reduce to 2136134 relations and 1855986 ideals in 7 passes Mon Apr 06 12:37:45 2009 max relations containing the same ideal: 20 Mon Apr 06 12:37:46 2009 relations with 0 large ideals: 16774 Mon Apr 06 12:37:46 2009 relations with 1 large ideals: 130730 Mon Apr 06 12:37:46 2009 relations with 2 large ideals: 416239 Mon Apr 06 12:37:46 2009 relations with 3 large ideals: 668603 Mon Apr 06 12:37:46 2009 relations with 4 large ideals: 570245 Mon Apr 06 12:37:46 2009 relations with 5 large ideals: 257488 Mon Apr 06 12:37:46 2009 relations with 6 large ideals: 66509 Mon Apr 06 12:37:46 2009 relations with 7+ large ideals: 9546 Mon Apr 06 12:37:46 2009 commencing 2-way merge Mon Apr 06 12:37:48 2009 reduce to 1255153 relation sets and 975005 unique ideals Mon Apr 06 12:37:48 2009 commencing full merge Mon Apr 06 12:38:04 2009 memory use: 75.0 MB Mon Apr 06 12:38:05 2009 found 599605 cycles, need 563205 Mon Apr 06 12:38:05 2009 weight of 563205 cycles is about 39603761 (70.32/cycle) Mon Apr 06 12:38:05 2009 distribution of cycle lengths: Mon Apr 06 12:38:05 2009 1 relations: 61811 Mon Apr 06 12:38:05 2009 2 relations: 61616 Mon Apr 06 12:38:05 2009 3 relations: 61256 Mon Apr 06 12:38:05 2009 4 relations: 56642 Mon Apr 06 12:38:05 2009 5 relations: 51364 Mon Apr 06 12:38:05 2009 6 relations: 45948 Mon Apr 06 12:38:05 2009 7 relations: 40047 Mon Apr 06 12:38:05 2009 8 relations: 34563 Mon Apr 06 12:38:05 2009 9 relations: 30620 Mon Apr 06 12:38:05 2009 10+ relations: 119338 Mon Apr 06 12:38:05 2009 heaviest cycle: 18 relations Mon Apr 06 12:38:05 2009 commencing cycle optimization Mon Apr 06 12:38:06 2009 start with 3440975 relations Mon Apr 06 12:38:15 2009 pruned 88888 relations Mon Apr 06 12:38:15 2009 memory use: 91.0 MB Mon Apr 06 12:38:15 2009 distribution of cycle lengths: Mon Apr 06 12:38:15 2009 1 relations: 61811 Mon Apr 06 12:38:15 2009 2 relations: 63169 Mon Apr 06 12:38:15 2009 3 relations: 63625 Mon Apr 06 12:38:15 2009 4 relations: 58170 Mon Apr 06 12:38:15 2009 5 relations: 52951 Mon Apr 06 12:38:15 2009 6 relations: 46648 Mon Apr 06 12:38:15 2009 7 relations: 40611 Mon Apr 06 12:38:15 2009 8 relations: 34684 Mon Apr 06 12:38:15 2009 9 relations: 30566 Mon Apr 06 12:38:15 2009 10+ relations: 110970 Mon Apr 06 12:38:15 2009 heaviest cycle: 18 relations Mon Apr 06 12:38:16 2009 RelProcTime: 488 Mon Apr 06 12:38:16 2009 Mon Apr 06 12:38:16 2009 commencing linear algebra Mon Apr 06 12:38:17 2009 read 563205 cycles Mon Apr 06 12:38:18 2009 cycles contain 1908962 unique relations Mon Apr 06 12:38:41 2009 read 1908962 relations Mon Apr 06 12:38:44 2009 using 20 quadratic characters above 134215308 Mon Apr 06 12:38:57 2009 building initial matrix Mon Apr 06 12:39:25 2009 memory use: 211.0 MB Mon Apr 06 12:39:30 2009 read 563205 cycles Mon Apr 06 12:39:31 2009 matrix is 562965 x 563205 (159.4 MB) with weight 53088746 (94.26/col) Mon Apr 06 12:39:31 2009 sparse part has weight 37833274 (67.17/col) Mon Apr 06 12:39:41 2009 filtering completed in 3 passes Mon Apr 06 12:39:41 2009 matrix is 558794 x 558994 (158.7 MB) with weight 52833426 (94.52/col) Mon Apr 06 12:39:41 2009 sparse part has weight 37701662 (67.45/col) Mon Apr 06 12:39:43 2009 read 558994 cycles Mon Apr 06 12:39:45 2009 matrix is 558794 x 558994 (158.7 MB) with weight 52833426 (94.52/col) Mon Apr 06 12:39:45 2009 sparse part has weight 37701662 (67.45/col) Mon Apr 06 12:39:45 2009 saving the first 48 matrix rows for later Mon Apr 06 12:39:45 2009 matrix is 558746 x 558994 (152.4 MB) with weight 41872936 (74.91/col) Mon Apr 06 12:39:45 2009 sparse part has weight 36594739 (65.47/col) Mon Apr 06 12:39:45 2009 matrix includes 64 packed rows Mon Apr 06 12:39:45 2009 using block size 65536 for processor cache size 3072 kB Mon Apr 06 12:39:50 2009 commencing Lanczos iteration Mon Apr 06 12:39:50 2009 memory use: 150.0 MB Mon Apr 06 13:26:56 2009 lanczos halted after 8838 iterations (dim = 558743) Mon Apr 06 13:26:58 2009 recovered 28 nontrivial dependencies Mon Apr 06 13:26:58 2009 BLanczosTime: 2922 Mon Apr 06 13:26:58 2009 Mon Apr 06 13:26:58 2009 commencing square root phase Mon Apr 06 13:26:58 2009 reading relations for dependency 1 Mon Apr 06 13:26:58 2009 read 279405 cycles Mon Apr 06 13:26:59 2009 cycles contain 1164385 unique relations Mon Apr 06 13:27:16 2009 read 1164385 relations Mon Apr 06 13:27:23 2009 multiplying 951528 relations Mon Apr 06 13:30:28 2009 multiply complete, coefficients have about 41.70 million bits Mon Apr 06 13:30:29 2009 initial square root is modulo 972337 Mon Apr 06 13:34:46 2009 sqrtTime: 468 Mon Apr 06 13:34:46 2009 prp58 factor: 1685645882744324078184380208870777133400255977328802807319 Mon Apr 06 13:34:46 2009 prp59 factor: 31024854582650382849964071719783112624254304541889736365429 Mon Apr 06 13:34:46 2009 elapsed time 01:06:02
By Robert Backstrom / GGNFS, Msieve / Apr 6, 2009
(17·10167-11)/3 = 5(6)1663<168> = 457 · 33995374298549333<17> · C149
C149 = P66 · P84
P66 = 211948524783140872523869494554357501250761114692475486316231413047<66>
P84 = 172092221659899480381622501487547441908021614419060870914312272506350998473867118309<84>
Number: n N=36474692507468977480556677591592218144617617675625929624485770122373994931696435310509024634439460262095368089707082829808131805594612499364995177523 ( 149 digits) SNFS difficulty: 168 digits. Divisors found: Mon Apr 06 02:28:48 2009 prp66 factor: 211948524783140872523869494554357501250761114692475486316231413047 Mon Apr 06 02:28:48 2009 prp84 factor: 172092221659899480381622501487547441908021614419060870914312272506350998473867118309 Mon Apr 06 02:28:48 2009 elapsed time 01:58:21 (Msieve 1.40 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 55.83 hours. Scaled time: 147.35 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_6_166_3 n: 36474692507468977480556677591592218144617617675625929624485770122373994931696435310509024634439460262095368089707082829808131805594612499364995177523 skew: 0.36 deg: 5 c5: 1700 c0: -11 m: 1000000000000000000000000000000000 type: snfs rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3000000, 6267913) Primes: RFBsize:412849, AFBsize:413992, largePrimes:17364952 encountered Relations: rels:16491595, finalFF:741470 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1772352 hash collisions in 18183333 relations Msieve: matrix is 1054088 x 1054336 (282.2 MB) Total sieving time: 54.69 hours. Total relation processing time: 1.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.4,2.4,100000 total time: 55.83 hours. --------- CPU info (if available) ----------
(49·10164-31)/9 = 5(4)1631<165> = 523 · 1637 · 454200427 · 18266240106599<14> · C137
C137 = P56 · P81
P56 = 97242893951521724288182917546832140952424722461682859509<56>
P81 = 788222135806169106863746019469358535526566092827867970024563598445394794227816063<81>
Number: n N=76649001562441256983057132920583752272727540399996815081522836182540755572653972704335494117436254992778464429440434061430253553922493067 ( 137 digits) SNFS difficulty: 166 digits. Divisors found: Mon Apr 06 04:07:25 2009 prp56 factor: 97242893951521724288182917546832140952424722461682859509 Mon Apr 06 04:07:25 2009 prp81 factor: 788222135806169106863746019469358535526566092827867970024563598445394794227816063 Mon Apr 06 04:07:25 2009 elapsed time 01:20:18 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 45.90 hours. Scaled time: 122.08 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_163_1 n: 76649001562441256983057132920583752272727540399996815081522836182540755572653972704335494117436254992778464429440434061430253553922493067 skew: 1.45 deg: 5 c5: 49 c0: -310 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 5304371) Primes: RFBsize:348513, AFBsize:348872, largePrimes:16463712 encountered Relations: rels:15664570, finalFF:702248 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1652819 hash collisions in 17291763 relations Msieve: matrix is 857577 x 857825 (228.7 MB) Total sieving time: 45.07 hours. Total relation processing time: 0.83 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 45.90 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.41 / Apr 6, 2009
(34·10191+11)/9 = 3(7)1909<192> = 113 · 1013 · 1367 · 2387502161115178976633<22> · 1337145504619678888281505265819<31> · 120026378003113347218196971409257395549<39> · C94
C94 = P46 · P49
P46 = 5576459049616245331794588700591305015687512059<46>
P49 = 1129854043384976187722965516017107068808930983589<49>
N=6300584804979656332522486024330108364763076187442062528945022670680294571785341216951168599751 ( 94 digits) Divisors found: r1=5576459049616245331794588700591305015687512059 (pp46) r2=1129854043384976187722965516017107068808930983589 (pp49) Version: Msieve-1.41 Total time: 1.82 hours. Scaled time: 5.19 units (timescale=2.847). Factorization parameters were as follows: name: t n: 6300584804979656332522486024330108364763076187442062528945022670680294571785341216951168599751 m: 2977730393083962263171 deg: 4 c4: 80138160 c3: 449063211 c2: -104636056272405988 c1: 116041174740284550030 c0: -88597242062159449752 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.529 # E(F1,F2) = 5.303132e-05 # GGNFS version 0.77.1-20060722-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1238954774. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 158994 x 159221 Polynomial selection time: 0.17 hours. Total sieving time: 1.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 1.82 hours.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 5, 2009
(52·10173-61)/9 = 5(7)1721<174> = 487 · 3887741496601493354323269097<28> · 90653296002215312383583343122057<32> · C112
C112 = P56 · P57
P56 = 11358246151509454265298361082211131044094523460551505429<56>
P57 = 296373669679166061270584211220807804253893546318858753913<57>
Number: n N=3366285093042122150456621987002021960445506732334155592635888015253782697409856377749511153026058866847194493677 ( 112 digits) Divisors found: Sun Apr 05 12:27:26 2009 prp56 factor: 11358246151509454265298361082211131044094523460551505429 Sun Apr 05 12:27:26 2009 prp57 factor: 296373669679166061270584211220807804253893546318858753913 Sun Apr 05 12:27:26 2009 elapsed time 00:41:20 (Msieve 1.40 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 16.14 hours. Scaled time: 42.23 units (timescale=2.616). Factorization parameters were as follows: name: KA_5_7_172_1 n: 3366285093042122150456621987002021960445506732334155592635888015253782697409856377749511153026058866847194493677 Y0: -3622036013363435736377 Y1: 481341996359 c0: -1520636057258479594764414408 c1: 196038286467304068605146 c2: -187469281259963629 c3: -111326065901342 c4: -625599852 c5: 5400 skew: 68735.52 type: gnfs rlim: 3500000 alim: 3500080 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 1750001 qintsize: 99999 Factor base limits: 3500000/3500080 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1750001, 2518163) Primes: RFBsize:250150, AFBsize:250369, largePrimes:16373806 encountered Relations: rels:14214082, finalFF:505175 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 969515 hash collisions in 16139625 relations Msieve: matrix is 450646 x 450894 (124.0 MB) Total sieving time: 15.77 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500080,28,28,56,56,2.6,2.6,100000 total time: 16.14 hours. --------- CPU info (if available) ----------
(52·10151-61)/9 = 5(7)1501<152> = 3 · 167 · C150
C150 = P71 · P79
P71 = 94351484168597880784045155675864400216052806712470671801849481953624839<71>
P79 = 1222290319651907786823602119359510097400460955121974664647743836225572719664489<79>
Number: n N=115324905744067420714127300953648259037480594366821911732091372809935684187181193169217121312929696163229097360833887779995564426702151253049456642271 ( 150 digits) SNFS difficulty: 153 digits. Divisors found: Sun Apr 05 16:18:40 2009 prp71 factor: 94351484168597880784045155675864400216052806712470671801849481953624839 Sun Apr 05 16:18:40 2009 prp79 factor: 1222290319651907786823602119359510097400460955121974664647743836225572719664489 Sun Apr 05 16:18:40 2009 elapsed time 00:59:05 (Msieve 1.40 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.37 hours. Scaled time: 38.95 units (timescale=1.823). Factorization parameters were as follows: name: KA_5_7_150_1 n: 115324905744067420714127300953648259037480594366821911732091372809935684187181193169217121312929696163229097360833887779995564426702151253049456642271 skew: 1.30 deg: 5 c5: 65 c0: -244 type: snfs m: 2000000000000000000000000000000 lss: 1 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1000000, 2000000 ) Primes: RFBsize:148933, AFBsize:148971, largePrimes:17723461 encountered Relations: rels:17159742, finalFF:364288 Max relations in full relation-set: 28 Initial matrix: 297971 x 364287 with sparse part having weight 64131147. Pruned matrix : 285825 x 287378 with weight 44814466. Msieve: found 1569893 hash collisions in 18295843 relations Msieve: matrix is 399889 x 400137 (105.8 MB) Total sieving time: 20.97 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.6,2.6,100000 total time: 21.37 hours. --------- CPU info (if available) ----------
(37·10167+17)/9 = 4(1)1663<168> = 157 · 76919 · 4887648636361<13> · C148
C148 = P57 · P92
P57 = 173207329770929129788153516150523370482395041926341393891<57>
P92 = 40212371719260342715433361435253229581586380261851521721210578233067994371204047342065429361<92>
Number: n N=6965077529249110553611950308829260280080127396948883048161401576107756620314473740991982962973447965340956826328069876057159678111842314192137433651 ( 148 digits) SNFS difficulty: 168 digits. Divisors found: Sun Apr 05 23:04:03 2009 prp57 factor: 173207329770929129788153516150523370482395041926341393891 Sun Apr 05 23:04:03 2009 prp92 factor: 40212371719260342715433361435253229581586380261851521721210578233067994371204047342065429361 Sun Apr 05 23:04:03 2009 elapsed time 01:51:37 (Msieve 1.40 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 49.39 hours. Scaled time: 130.35 units (timescale=2.639). Factorization parameters were as follows: name: KA_4_1_166_3 n: 6965077529249110553611950308829260280080127396948883048161401576107756620314473740991982962973447965340956826328069876057159678111842314192137433651 skew: 0.34 deg: 5 c5: 3700 c0: 17 m: 1000000000000000000000000000000000 type: snfs rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [3000000, 5916623) Primes: RFBsize:412849, AFBsize:411316, largePrimes:17134015 encountered Relations: rels:16290176, finalFF:820249 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1583804 hash collisions in 17495448 relations Msieve: matrix is 1034114 x 1034362 (277.9 MB) Total sieving time: 48.45 hours. Total relation processing time: 0.95 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.4,2.4,100000 total time: 49.39 hours. --------- CPU info (if available) ----------
(52·10160-61)/9 = 5(7)1591<161> = 3 · 7 · 67 · 439 · 217720831 · C147
C147 = P39 · P109
P39 = 149008281078740942531313177231564940583<39>
P109 = 2883313254510041458866821834674195828764042985699917059832669638957731959328453054117719731853150688457037899<109>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 429637551866091578297626068655909887684954878631681645707893117502917598671280423538565206659975600988026257343457552634828423780994648030114155117 (147 digits) Using B1=634000, B2=522408822, polynomial Dickson(3), sigma=4032056949 Step 1 took 9703ms ********** Factor found in step 1: 149008281078740942531313177231564940583 Found probable prime factor of 39 digits: 149008281078740942531313177231564940583 Probable prime cofactor 2883313254510041458866821834674195828764042985699917059832669638957731959328453054117719731853150688457037899 has 109 digits
By Andreas Tete / Msieve v1.40, GGNFS, Msieve v1.41 / Apr 5, 2009
(49·10161-31)/9 = 5(4)1601<162> = 17 · 99928195881605184721<20> · 954328629156044847391<21> · C120
C120 = P59 · P61
P59 = 42332905570352079910250248491152463870303006578684797037033<59>
P61 = 7933056952978764392358391566405953858218810888756092478579471<61>
Sun Apr 05 09:14:00 2009 Sun Apr 05 09:14:00 2009 Sun Apr 05 09:14:00 2009 Msieve v. 1.41 Sun Apr 05 09:14:00 2009 random seeds: 4dfce958 7c71a87e Sun Apr 05 09:14:00 2009 factoring 335829350874675033217001092909629874466816595322856380608747420361731618351359657712279857781403403313118396761620549543 (120 digits) Sun Apr 05 09:14:01 2009 searching for 15-digit factors Sun Apr 05 09:14:03 2009 commencing number field sieve (120-digit input) Sun Apr 05 09:14:03 2009 R0: -124649807631972485453326 Sun Apr 05 09:14:03 2009 R1: 6091932872993 Sun Apr 05 09:14:03 2009 A0: -3902837875525956067279602109515 Sun Apr 05 09:14:03 2009 A1: 281787695888883644122412193 Sun Apr 05 09:14:03 2009 A2: 298129955431666715375 Sun Apr 05 09:14:03 2009 A3: -3716331300607841 Sun Apr 05 09:14:03 2009 A4: -1896684492 Sun Apr 05 09:14:03 2009 A5: 11160 Sun Apr 05 09:14:03 2009 skew 377391.63, size 1.615448e-011, alpha -7.252922, combined = 2.729843e-010 Sun Apr 05 09:14:04 2009 Sun Apr 05 09:14:04 2009 commencing relation filtering Sun Apr 05 09:14:04 2009 commencing duplicate removal, pass 1 Sun Apr 05 09:15:44 2009 found 822477 hash collisions in 8818929 relations Sun Apr 05 09:16:08 2009 added 58983 free relations Sun Apr 05 09:16:08 2009 commencing duplicate removal, pass 2 Sun Apr 05 09:16:46 2009 found 747915 duplicates and 8129996 unique relations Sun Apr 05 09:16:46 2009 memory use: 48.6 MB Sun Apr 05 09:16:46 2009 reading rational ideals above 5570560 Sun Apr 05 09:16:46 2009 reading algebraic ideals above 5570560 Sun Apr 05 09:16:46 2009 commencing singleton removal, pass 1 Sun Apr 05 09:18:19 2009 relations with 0 large ideals: 216641 Sun Apr 05 09:18:19 2009 relations with 1 large ideals: 1421092 Sun Apr 05 09:18:19 2009 relations with 2 large ideals: 3105061 Sun Apr 05 09:18:19 2009 relations with 3 large ideals: 2621118 Sun Apr 05 09:18:19 2009 relations with 4 large ideals: 704509 Sun Apr 05 09:18:19 2009 relations with 5 large ideals: 5859 Sun Apr 05 09:18:19 2009 relations with 6 large ideals: 55716 Sun Apr 05 09:18:19 2009 relations with 7+ large ideals: 0 Sun Apr 05 09:18:19 2009 8129996 relations and about 7649754 large ideals Sun Apr 05 09:18:19 2009 commencing singleton removal, pass 2 Sun Apr 05 09:19:53 2009 found 3539625 singletons Sun Apr 05 09:19:53 2009 current dataset: 4590371 relations and about 3452788 large ideals Sun Apr 05 09:19:53 2009 commencing singleton removal, pass 3 Sun Apr 05 09:20:57 2009 found 702710 singletons Sun Apr 05 09:20:57 2009 current dataset: 3887661 relations and about 2711027 large ideals Sun Apr 05 09:20:57 2009 commencing singleton removal, pass 4 Sun Apr 05 09:21:56 2009 found 179345 singletons Sun Apr 05 09:21:56 2009 current dataset: 3708316 relations and about 2528624 large ideals Sun Apr 05 09:21:56 2009 commencing singleton removal, final pass Sun Apr 05 09:22:57 2009 memory use: 66.6 MB Sun Apr 05 09:22:57 2009 commencing in-memory singleton removal Sun Apr 05 09:22:58 2009 begin with 3708316 relations and 2663753 unique ideals Sun Apr 05 09:23:01 2009 reduce to 3341110 relations and 2290421 ideals in 12 passes Sun Apr 05 09:23:01 2009 max relations containing the same ideal: 19 Sun Apr 05 09:23:02 2009 reading rational ideals above 720000 Sun Apr 05 09:23:02 2009 reading algebraic ideals above 720000 Sun Apr 05 09:23:02 2009 commencing singleton removal, final pass Sun Apr 05 09:24:08 2009 keeping 2824055 ideals with weight <= 20, new excess is 334702 Sun Apr 05 09:24:13 2009 memory use: 92.0 MB Sun Apr 05 09:24:13 2009 commencing in-memory singleton removal Sun Apr 05 09:24:13 2009 begin with 3357964 relations and 2824055 unique ideals Sun Apr 05 09:24:17 2009 reduce to 3327759 relations and 2712302 ideals in 10 passes Sun Apr 05 09:24:17 2009 max relations containing the same ideal: 20 Sun Apr 05 09:24:20 2009 removing 636215 relations and 522614 ideals in 113601 cliques Sun Apr 05 09:24:20 2009 commencing in-memory singleton removal Sun Apr 05 09:24:20 2009 begin with 2691544 relations and 2712302 unique ideals Sun Apr 05 09:24:23 2009 reduce to 2620186 relations and 2115568 ideals in 8 passes Sun Apr 05 09:24:23 2009 max relations containing the same ideal: 20 Sun Apr 05 09:24:25 2009 removing 487715 relations and 374114 ideals in 113601 cliques Sun Apr 05 09:24:25 2009 commencing in-memory singleton removal Sun Apr 05 09:24:25 2009 begin with 2132471 relations and 2115568 unique ideals Sun Apr 05 09:24:27 2009 reduce to 2073625 relations and 1680289 ideals in 8 passes Sun Apr 05 09:24:27 2009 max relations containing the same ideal: 20 Sun Apr 05 09:24:29 2009 relations with 0 large ideals: 27264 Sun Apr 05 09:24:29 2009 relations with 1 large ideals: 183328 Sun Apr 05 09:24:29 2009 relations with 2 large ideals: 488627 Sun Apr 05 09:24:29 2009 relations with 3 large ideals: 655097 Sun Apr 05 09:24:29 2009 relations with 4 large ideals: 474809 Sun Apr 05 09:24:29 2009 relations with 5 large ideals: 191787 Sun Apr 05 09:24:29 2009 relations with 6 large ideals: 46151 Sun Apr 05 09:24:29 2009 relations with 7+ large ideals: 6562 Sun Apr 05 09:24:29 2009 commencing 2-way merge Sun Apr 05 09:24:30 2009 reduce to 1314049 relation sets and 920713 unique ideals Sun Apr 05 09:24:30 2009 commencing full merge Sun Apr 05 09:24:45 2009 memory use: 71.9 MB Sun Apr 05 09:24:46 2009 found 643030 cycles, need 586913 Sun Apr 05 09:24:46 2009 weight of 586913 cycles is about 41219723 (70.23/cycle) Sun Apr 05 09:24:46 2009 distribution of cycle lengths: Sun Apr 05 09:24:46 2009 1 relations: 61391 Sun Apr 05 09:24:46 2009 2 relations: 61235 Sun Apr 05 09:24:46 2009 3 relations: 63460 Sun Apr 05 09:24:46 2009 4 relations: 60361 Sun Apr 05 09:24:46 2009 5 relations: 57898 Sun Apr 05 09:24:46 2009 6 relations: 51907 Sun Apr 05 09:24:46 2009 7 relations: 47009 Sun Apr 05 09:24:46 2009 8 relations: 41190 Sun Apr 05 09:24:46 2009 9 relations: 35581 Sun Apr 05 09:24:46 2009 10+ relations: 106881 Sun Apr 05 09:24:46 2009 heaviest cycle: 16 relations Sun Apr 05 09:24:46 2009 commencing cycle optimization Sun Apr 05 09:24:47 2009 start with 3439931 relations Sun Apr 05 09:24:56 2009 pruned 115086 relations Sun Apr 05 09:24:56 2009 memory use: 88.4 MB Sun Apr 05 09:24:56 2009 distribution of cycle lengths: Sun Apr 05 09:24:56 2009 1 relations: 61391 Sun Apr 05 09:24:56 2009 2 relations: 63128 Sun Apr 05 09:24:56 2009 3 relations: 66431 Sun Apr 05 09:24:56 2009 4 relations: 62893 Sun Apr 05 09:24:56 2009 5 relations: 60470 Sun Apr 05 09:24:56 2009 6 relations: 53689 Sun Apr 05 09:24:56 2009 7 relations: 48368 Sun Apr 05 09:24:56 2009 8 relations: 41672 Sun Apr 05 09:24:56 2009 9 relations: 35699 Sun Apr 05 09:24:56 2009 10+ relations: 93172 Sun Apr 05 09:24:56 2009 heaviest cycle: 16 relations Sun Apr 05 09:24:57 2009 RelProcTime: 514 Sun Apr 05 09:24:57 2009 Sun Apr 05 09:24:57 2009 commencing linear algebra Sun Apr 05 09:24:57 2009 read 586913 cycles Sun Apr 05 09:24:58 2009 cycles contain 1811025 unique relations Sun Apr 05 09:25:25 2009 read 1811025 relations Sun Apr 05 09:25:28 2009 using 20 quadratic characters above 134212104 Sun Apr 05 09:25:39 2009 building initial matrix Sun Apr 05 09:26:07 2009 memory use: 208.0 MB Sun Apr 05 09:26:08 2009 read 586913 cycles Sun Apr 05 09:26:08 2009 matrix is 586646 x 586913 (167.0 MB) with weight 56007431 (95.43/col) Sun Apr 05 09:26:08 2009 sparse part has weight 39093231 (66.61/col) Sun Apr 05 09:26:19 2009 filtering completed in 3 passes Sun Apr 05 09:26:19 2009 matrix is 584235 x 584435 (166.6 MB) with weight 55838102 (95.54/col) Sun Apr 05 09:26:19 2009 sparse part has weight 38999914 (66.73/col) Sun Apr 05 09:26:21 2009 read 584435 cycles Sun Apr 05 09:26:22 2009 matrix is 584235 x 584435 (166.6 MB) with weight 55838102 (95.54/col) Sun Apr 05 09:26:22 2009 sparse part has weight 38999914 (66.73/col) Sun Apr 05 09:26:22 2009 saving the first 48 matrix rows for later Sun Apr 05 09:26:23 2009 matrix is 584187 x 584435 (159.9 MB) with weight 44285250 (75.77/col) Sun Apr 05 09:26:23 2009 sparse part has weight 38420102 (65.74/col) Sun Apr 05 09:26:23 2009 matrix includes 64 packed rows Sun Apr 05 09:26:23 2009 using block size 65536 for processor cache size 3072 kB Sun Apr 05 09:26:28 2009 commencing Lanczos iteration Sun Apr 05 09:26:28 2009 memory use: 156.6 MB Sun Apr 05 10:16:16 2009 lanczos halted after 9240 iterations (dim = 584187) Sun Apr 05 10:16:18 2009 recovered 30 nontrivial dependencies Sun Apr 05 10:16:18 2009 BLanczosTime: 3081 Sun Apr 05 10:16:18 2009 Sun Apr 05 10:16:18 2009 commencing square root phase Sun Apr 05 10:16:18 2009 reading relations for dependency 1 Sun Apr 05 10:16:18 2009 read 292523 cycles Sun Apr 05 10:16:19 2009 cycles contain 1115775 unique relations Sun Apr 05 10:16:58 2009 read 1115775 relations Sun Apr 05 10:17:05 2009 multiplying 904932 relations Sun Apr 05 10:19:17 2009 multiply complete, coefficients have about 39.86 million bits Sun Apr 05 10:19:18 2009 initial square root is modulo 527981 Sun Apr 05 10:23:19 2009 reading relations for dependency 2 Sun Apr 05 10:23:19 2009 read 292163 cycles Sun Apr 05 10:23:20 2009 cycles contain 1114875 unique relations Sun Apr 05 10:23:47 2009 read 1114875 relations Sun Apr 05 10:23:54 2009 multiplying 903926 relations Sun Apr 05 10:26:07 2009 multiply complete, coefficients have about 39.81 million bits Sun Apr 05 10:26:08 2009 initial square root is modulo 519487 Sun Apr 05 10:29:55 2009 sqrtTime: 817 Sun Apr 05 10:29:55 2009 prp59 factor: 42332905570352079910250248491152463870303006578684797037033 Sun Apr 05 10:29:55 2009 prp61 factor: 7933056952978764392358391566405953858218810888756092478579471 Sun Apr 05 10:29:55 2009 elapsed time 01:15:55
By Sinkiti Sibata / GGNFS, Msieve / Apr 5, 2009
(52·10143-43)/9 = 5(7)1423<144> = 3 · 7 · C143
C143 = P54 · P89
P54 = 807615122125603613914057337949993440439897588347926777<54>
P89 = 34067251540330300201992138205970272893273963119767457598149839792467516383883488667168769<89>
Number: 57773_143 N=27513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513 ( 143 digits) SNFS difficulty: 146 digits. Divisors found: r1=807615122125603613914057337949993440439897588347926777 r2=34067251540330300201992138205970272893273963119767457598149839792467516383883488667168769 Version: Total time: 12.31 hours. Scaled time: 24.59 units (timescale=1.997). Factorization parameters were as follows: name: 57773_143 n: 27513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513227513 m: 100000000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [955000, 2255001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 304696 x 304944 Total sieving time: 12.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 12.31 hours. --------- CPU info (if available) ----------
(52·10150-43)/9 = 5(7)1493<151> = 17 · 2789 · C147
C147 = P53 · P94
P53 = 83934125900908945406290151909996201257658792803890131<53>
P94 = 1451860288607149446470241259122719534737861510205531933315916529210374674233815808967348105891<94>
Number: 57773_150 N=121860624254482479020053103110492434095665276986855456895319380291856195089485537253027181949629379659118338383518819264289915798995587239317861721 ( 147 digits) SNFS difficulty: 151 digits. Divisors found: r1=83934125900908945406290151909996201257658792803890131 (pp53) r2=1451860288607149446470241259122719534737861510205531933315916529210374674233815808967348105891 (pp94) Version: GGNFS-0.77.1-20060513-nocona Total time: 31.31 hours. Scaled time: 79.96 units (timescale=2.554). Factorization parameters were as follows: name: 57773_150 n: 121860624254482479020053103110492434095665276986855456895319380291856195089485537253027181949629379659118338383518819264289915798995587239317861721 m: 1000000000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176638, largePrimes:7741497 encountered Relations: rels:8627507, finalFF:1294063 Max relations in full relation-set: 28 Initial matrix: 353006 x 1294063 with sparse part having weight 144568564. Pruned matrix : 225830 x 227659 with weight 57153150. Total sieving time: 30.27 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.82 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 31.31 hours. --------- CPU info (if available) ----------
(52·10148-43)/9 = 5(7)1473<149> = 3037 · C146
C146 = P36 · P110
P36 = 279391734608130202021631452260130399<36>
P110 = 68093003102523641973256112661038226007344276787206714553496377637729064483403180969104371107836390478992760271<110>
Number: 57773_148 N=19024622251490871839900486591299893901145135916291662093440163904437858998280466834961401968316686788863278820473420407565945926169831339406578129 ( 146 digits) SNFS difficulty: 151 digits. Divisors found: r1=279391734608130202021631452260130399 (pp36) r2=68093003102523641973256112661038226007344276787206714553496377637729064483403180969104371107836390478992760271 (pp110) Version: GGNFS-0.77.1-20060513-nocona Total time: 25.01 hours. Scaled time: 64.39 units (timescale=2.575). Factorization parameters were as follows: name: 57773_148 n: 19024622251490871839900486591299893901145135916291662093440163904437858998280466834961401968316686788863278820473420407565945926169831339406578129 m: 1000000000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:169386, largePrimes:7403976 encountered Relations: rels:7863011, finalFF:884468 Max relations in full relation-set: 28 Initial matrix: 338963 x 884468 with sparse part having weight 100265027. Pruned matrix : 226894 x 228652 with weight 48084185. Total sieving time: 24.07 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.72 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 25.01 hours. --------- CPU info (if available) ----------
(52·10144-43)/9 = 5(7)1433<145> = 53 · 234569521 · C135
C135 = P35 · P37 · P64
P35 = 31371138588821349613700530590890927<35>
P37 = 1982018047701077780509528578676893737<37>
P64 = 7474385572268945148575813102413960721896402211291117415186582479<64>
Number: 57773_144 N=464743563390790662302223148122243684524167207021974568049135016313948762126363846796085039585775798660735169198518865155608494645009321 ( 135 digits) SNFS difficulty: 146 digits. Divisors found: r1=31371138588821349613700530590890927 (pp35) r2=1982018047701077780509528578676893737 (pp37) r3=7474385572268945148575813102413960721896402211291117415186582479 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.48 hours. Scaled time: 34.81 units (timescale=1.991). Factorization parameters were as follows: name: 57773_144 n: 464743563390790662302223148122243684524167207021974568049135016313948762126363846796085039585775798660735169198518865155608494645009321 m: 100000000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [965000, 2465001) Primes: RFBsize:144125, AFBsize:144102, largePrimes:4071093 encountered Relations: rels:4146063, finalFF:323236 Max relations in full relation-set: 28 Initial matrix: 288293 x 323236 with sparse part having weight 32977760. Pruned matrix : 276680 x 278185 with weight 26148654. Total sieving time: 16.29 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.96 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 17.48 hours. --------- CPU info (if available) ----------
By Yang Hae Hun / yafu 1.08, Msieve / Apr 5, 2009
(52·10125-61)/9 = 5(7)1241<126> = 89 · 406465909 · 13816078758771664430119<23> · C94
C94 = P38 · P56
P38 = 93345974488586136481557578198948240419<38>
P56 = 12384152945704090840185713643463307864708033860757696411<56>
04/04/09 05:55:26 v1.08 @ *-PC, starting SIQS on c94: 1156010824932442916599876024512135484674672743806345713411843319712970870311267513080241436209 04/04/09 05:55:26 v1.08 @ *-PC, random seeds: 422699426, 400398816 04/04/09 05:55:26 v1.08 @ *-PC, ==== sieve params ==== 04/04/09 05:55:26 v1.08 @ *-PC, n = 94 digits, 314 bits 04/04/09 05:55:26 v1.08 @ *-PC, factor base: 78247 primes (max prime = 2104337) 04/04/09 05:55:26 v1.08 @ *-PC, single large prime cutoff: 252520440 (120 * pmax) 04/04/09 05:55:26 v1.08 @ *-PC, double large prime range from 44 to 51 bits 04/04/09 05:55:26 v1.08 @ *-PC, double large prime cutoff: 1330864275125599 04/04/09 05:55:26 v1.08 @ *-PC, using 6 large prime slices of factor base 04/04/09 05:55:26 v1.08 @ *-PC, buckets hold 2048 elements 04/04/09 05:55:26 v1.08 @ *-PC, sieve interval: 22 blocks of size 32768 04/04/09 05:55:26 v1.08 @ *-PC, polynomial A has ~ 12 factors 04/04/09 05:55:26 v1.08 @ *-PC, using multiplier of 17 04/04/09 05:55:26 v1.08 @ *-PC, using small prime variation correction of 22 bits 04/04/09 05:55:26 v1.08 @ *-PC, using x128 sieve scanning 04/04/09 05:55:26 v1.08 @ *-PC, trial factoring cutoff at 98 bits 04/04/09 05:55:26 v1.08 @ *-PC, ==== sieving started ==== 04/04/09 07:48:48 v1.08 @ *-PC, sieve time = 2093.8070, relation time = 1660.5040, poly_time = 3039.7980 04/04/09 07:48:48 v1.08 @ *-PC, 78347 relations found: 21602 full + 56745 from 987404 partial, using 634518 polys (309 A polys) 04/04/09 07:48:48 v1.08 @ *-PC, trial division touched 55165090 sieve locations out of 914842976256 04/04/09 07:48:48 v1.08 @ *-PC, ==== post processing stage (msieve-1.38) ==== 04/04/09 07:48:49 v1.08 @ *-PC, begin with 1009006 relations 04/04/09 07:48:50 v1.08 @ *-PC, reduce to 189007 relations in 9 passes 04/04/09 07:48:52 v1.08 @ *-PC, failed to read relation 115163 04/04/09 07:48:52 v1.08 @ *-PC, failed to read relation 117523 04/04/09 07:48:53 v1.08 @ *-PC, recovered 189005 relations 04/04/09 07:48:53 v1.08 @ *-PC, recovered 163565 polynomials 04/04/09 07:48:53 v1.08 @ *-PC, attempting to build 78345 cycles 04/04/09 07:48:54 v1.08 @ *-PC, found 78345 cycles in 5 passes 04/04/09 07:48:54 v1.08 @ *-PC, distribution of cycle lengths: 04/04/09 07:48:54 v1.08 @ *-PC, length 1 : 21602 04/04/09 07:48:54 v1.08 @ *-PC, length 2 : 15679 04/04/09 07:48:54 v1.08 @ *-PC, length 3 : 13869 04/04/09 07:48:54 v1.08 @ *-PC, length 4 : 10354 04/04/09 07:48:54 v1.08 @ *-PC, length 5 : 6936 04/04/09 07:48:54 v1.08 @ *-PC, length 6 : 4448 04/04/09 07:48:54 v1.08 @ *-PC, length 7 : 2507 04/04/09 07:48:54 v1.08 @ *-PC, length 9+: 2950 04/04/09 07:48:54 v1.08 @ *-PC, largest cycle: 18 relations 04/04/09 07:48:54 v1.08 @ *-PC, matrix is 78247 x 78345 (19.5 MB) with weight 4811341 (61.41/col) 04/04/09 07:48:54 v1.08 @ *-PC, sparse part has weight 4811341 (61.41/col) 04/04/09 07:48:54 v1.08 @ *-PC, filtering completed in 3 passes 04/04/09 07:48:54 v1.08 @ *-PC, matrix is 72791 x 72855 (18.4 MB) with weight 4532402 (62.21/col) 04/04/09 07:48:54 v1.08 @ *-PC, sparse part has weight 4532402 (62.21/col) 04/04/09 07:48:55 v1.08 @ *-PC, saving the first 48 matrix rows for later 04/04/09 07:48:55 v1.08 @ *-PC, matrix is 72743 x 72855 (12.7 MB) with weight 3684887 (50.58/col) 04/04/09 07:48:55 v1.08 @ *-PC, sparse part has weight 2890111 (39.67/col) 04/04/09 07:48:55 v1.08 @ *-PC, matrix includes 64 packed rows 04/04/09 07:48:55 v1.08 @ *-PC, using block size 29142 for processor cache size 3072 kB 04/04/09 07:48:55 v1.08 @ *-PC, commencing Lanczos iteration 04/04/09 07:48:55 v1.08 @ *-PC, memory use: 11.8 MB 04/04/09 07:49:27 v1.08 @ *-PC, lanczos halted after 1152 iterations (dim = 72741) 04/04/09 07:49:28 v1.08 @ *-PC, recovered 16 nontrivial dependencies 04/04/09 07:49:34 v1.08 @ *-PC, prp38 = 93345974488586136481557578198948240419 04/04/09 07:49:40 v1.08 @ *-PC, Lanczos elapsed time = 39.7290 seconds. 04/04/09 07:49:40 v1.08 @ *-PC, Sqrt elapsed time = 12.7690 seconds. 04/04/09 07:49:40 v1.08 @ *-PC, SIQS elapsed time = 6855.0230 seconds.
(52·10108-43)/9 = 5(7)1073<109> = 787 · 27101510437<11> · C96
C96 = P48 · P49
P48 = 168828879314912911150075820888642221890121755641<48>
P49 = 1604522709759573928184708173767707806180222246187<49>
04/04/09 01:21:39 v1.08 @ *-PC, starting SIQS on c96: 270889770924036143349846384565327398000486810407942250817297836462141095614664437154536957990867 04/04/09 01:21:39 v1.08 @ *-PC, random seeds: 422699426, 400398816 04/04/09 01:21:39 v1.08 @ *-PC, ==== sieve params ==== 04/04/09 01:21:39 v1.08 @ *-PC, n = 96 digits, 323 bits 04/04/09 01:21:39 v1.08 @ *-PC, factor base: 88192 primes (max prime = 2417741) 04/04/09 01:21:39 v1.08 @ *-PC, single large prime cutoff: 314306330 (130 * pmax) 04/04/09 01:21:39 v1.08 @ *-PC, double large prime range from 44 to 51 bits 04/04/09 01:21:39 v1.08 @ *-PC, double large prime cutoff: 1973493179149929 04/04/09 01:21:39 v1.08 @ *-PC, using 6 large prime slices of factor base 04/04/09 01:21:39 v1.08 @ *-PC, buckets hold 2048 elements 04/04/09 01:21:39 v1.08 @ *-PC, sieve interval: 26 blocks of size 32768 04/04/09 01:21:39 v1.08 @ *-PC, polynomial A has ~ 13 factors 04/04/09 01:21:39 v1.08 @ *-PC, using multiplier of 43 04/04/09 01:21:39 v1.08 @ *-PC, using small prime variation correction of 22 bits 04/04/09 01:21:39 v1.08 @ *-PC, using x128 sieve scanning 04/04/09 01:21:39 v1.08 @ *-PC, trial factoring cutoff at 98 bits 04/04/09 01:21:39 v1.08 @ *-PC, ==== sieving started ==== 04/04/09 05:13:03 v1.08 @ *-PC, sieve time = 4487.4190, relation time = 3026.6580, poly_time = 6358.5370 04/04/09 05:13:03 v1.08 @ *-PC, 88261 relations found: 22368 full + 65893 from 1212706 partial, using 1164596 polys (284 A polys) 04/04/09 05:13:03 v1.08 @ *-PC, trial division touched 107331281 sieve locations out of 1984397049856 04/04/09 05:13:03 v1.08 @ *-PC, ==== post processing stage (msieve-1.38) ==== 04/04/09 05:13:04 v1.08 @ *-PC, begin with 1235074 relations 04/04/09 05:13:05 v1.08 @ *-PC, reduce to 225380 relations in 10 passes 04/04/09 05:13:09 v1.08 @ *-PC, failed to read relation 173574 04/04/09 05:13:10 v1.08 @ *-PC, recovered 225379 relations 04/04/09 05:13:10 v1.08 @ *-PC, recovered 204955 polynomials 04/04/09 05:13:10 v1.08 @ *-PC, attempting to build 88260 cycles 04/04/09 05:13:10 v1.08 @ *-PC, found 88260 cycles in 6 passes 04/04/09 05:13:10 v1.08 @ *-PC, distribution of cycle lengths: 04/04/09 05:13:10 v1.08 @ *-PC, length 1 : 22368 04/04/09 05:13:10 v1.08 @ *-PC, length 2 : 15781 04/04/09 05:13:10 v1.08 @ *-PC, length 3 : 15116 04/04/09 05:13:10 v1.08 @ *-PC, length 4 : 11934 04/04/09 05:13:10 v1.08 @ *-PC, length 5 : 8788 04/04/09 05:13:10 v1.08 @ *-PC, length 6 : 5766 04/04/09 05:13:10 v1.08 @ *-PC, length 7 : 3630 04/04/09 05:13:10 v1.08 @ *-PC, length 9+: 4877 04/04/09 05:13:10 v1.08 @ *-PC, largest cycle: 19 relations 04/04/09 05:13:11 v1.08 @ *-PC, matrix is 88192 x 88260 (23.5 MB) with weight 5803843 (65.76/col) 04/04/09 05:13:11 v1.08 @ *-PC, sparse part has weight 5803843 (65.76/col) 04/04/09 05:13:11 v1.08 @ *-PC, filtering completed in 3 passes 04/04/09 05:13:11 v1.08 @ *-PC, matrix is 83625 x 83689 (22.5 MB) with weight 5553704 (66.36/col) 04/04/09 05:13:11 v1.08 @ *-PC, sparse part has weight 5553704 (66.36/col) 04/04/09 05:13:12 v1.08 @ *-PC, saving the first 48 matrix rows for later 04/04/09 05:13:12 v1.08 @ *-PC, matrix is 83577 x 83689 (14.4 MB) with weight 4333696 (51.78/col) 04/04/09 05:13:12 v1.08 @ *-PC, sparse part has weight 3270621 (39.08/col) 04/04/09 05:13:12 v1.08 @ *-PC, matrix includes 64 packed rows 04/04/09 05:13:12 v1.08 @ *-PC, using block size 33475 for processor cache size 3072 kB 04/04/09 05:13:13 v1.08 @ *-PC, commencing Lanczos iteration 04/04/09 05:13:13 v1.08 @ *-PC, memory use: 13.7 MB 04/04/09 05:13:55 v1.08 @ *-PC, lanczos halted after 1323 iterations (dim = 83573) 04/04/09 05:13:55 v1.08 @ *-PC, recovered 16 nontrivial dependencies 04/04/09 05:13:56 v1.08 @ *-PC, prp48 = 168828879314912911150075820888642221890121755641 04/04/09 05:13:57 v1.08 @ *-PC, prp49 = 1604522709759573928184708173767707806180222246187 04/04/09 05:13:57 v1.08 @ *-PC, Lanczos elapsed time = 52.1000 seconds. 04/04/09 05:13:57 v1.08 @ *-PC, Sqrt elapsed time = 2.1370 seconds. 04/04/09 05:13:57 v1.08 @ *-PC, SIQS elapsed time = 13938.3330 seconds. 04/04/09 05:13:57 v1.08 @ *-PC, 04/04/09 05:13:57 v1.08 @ *-PC, 04/04/09 05:13:57 v1.08 @ *-PC, Total factoring time = 13948.1140 seconds
By Wataru Sakai / GMP-ECM / Apr 5, 2009
(34·10191+11)/9 = 3(7)1909<192> = 113 · 1013 · 1367 · 2387502161115178976633<22> · 1337145504619678888281505265819<31> · C132
C132 = P39 · C94
P39 = 120026378003113347218196971409257395549<39>
C94 = [6300584804979656332522486024330108364763076187442062528945022670680294571785341216951168599751<94>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=314363672 Step 1 took 40842ms Step 2 took 15087ms ********** Factor found in step 2: 120026378003113347218196971409257395549 Found probable prime factor of 39 digits: 120026378003113347218196971409257395549 Composite cofactor 6300584804979656332522486024330108364763076187442062528945022670680294571785341216951168599751 has 94 digits
By Tyler Cadigan / GGNFS, Msieve / Apr 5, 2009
6·10195+1 = 6(0)1941<196> = 17 · 353 · 421 · 53984968629707<14> · 5444649381690383<16> · 450367983155898302933<21> · C140
C140 = P48 · P93
P48 = 154154162540960500400074342123380051113966965013<48>
P93 = 116380439153233275654538630432091976492720690680968724771611953842197614880172185920433608769<93>
Number: 60001_195 N=17940529133815885800153881115863745792404754507504894161833210949988179704602632689155214043439581558442074568668317290243055511365952998997 ( 140 digits) SNFS difficulty: 195 digits. Divisors found: r1=154154162540960500400074342123380051113966965013 (pp48) r2=116380439153233275654538630432091976492720690680968724771611953842197614880172185920433608769 (pp93) Version: Msieve-1.40 Total time: 357.78 hours. Scaled time: 908.76 units (timescale=2.540). Factorization parameters were as follows: n: 17940529133815885800153881115863745792404754507504894161833210949988179704602632689155214043439581558442074568668317290243055511365952998997 m: 1000000000000000000000000000000000000000 deg: 5 c5: 6 c0: 1 skew: 0.70 type: snfs lss: 1 rlim: 12800000 alim: 12800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 12800000/12800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6400000, 6400000) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2217430 x 2217678 Total sieving time: 343.89 hours. Total relation processing time: 1.18 hours. Matrix solve time: 12.41 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,195.000,5,0,0,0,0,0,0,0,0,12800000,12800000,28,28,55,55,2.5,2.5,100000 total time: 357.78 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 5, 2009
(52·10160-43)/9 = 5(7)1593<161> = 31 · C160
C160 = P68 · P92
P68 = 25077457244459140237993454335905531978093720860626327806488779925969<68>
P92 = 74321701159152728181638421439507978993647655703021914136648517945051670135068011396281957507<92>
Number: 57773_160 N=1863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: r1=25077457244459140237993454335905531978093720860626327806488779925969 (pp68) r2=74321701159152728181638421439507978993647655703021914136648517945051670135068011396281957507 (pp92) Version: Msieve-1.39 Total time: 27.54 hours. Scaled time: 70.82 units (timescale=2.571). Factorization parameters were as follows: n: 1863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283154121863799283 m: 100000000000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 603436 x 603684 Total sieving time: 27.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 27.54 hours. --------- CPU info (if available) ----------
(52·10158-43)/9 = 5(7)1573<159> = 32 · 472 · C155
C155 = P41 · P115
P41 = 17854761218842140415213502565193224912319<41>
P115 = 1627678258039001439860605970380250863485153126084028212198178736018092326228243501514019586278029624355784203540507<115>
Number: 57773_158 N=29061806638387293283928262048074934750655287851605944257219343985603228096060448557807845570030570785059995864281362998731340364055016235490054714439805733 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: r1=17854761218842140415213502565193224912319 (pp41) r2=1627678258039001439860605970380250863485153126084028212198178736018092326228243501514019586278029624355784203540507 (pp115) Version: Msieve-1.39 Total time: 24.46 hours. Scaled time: 42.54 units (timescale=1.739). Factorization parameters were as follows: n: 29061806638387293283928262048074934750655287851605944257219343985603228096060448557807845570030570785059995864281362998731340364055016235490054714439805733 m: 100000000000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 576977 x 577225 Total sieving time: 24.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 24.46 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Apr 4, 2009
(16·10164+17)/3 = 5(3)1639<165> = 7 · 11 · 31 · 47940839077<11> · 842314039257867811<18> · C133
C133 = P37 · P38 · P59
P37 = 2649677219441206617450398015543024233<37>
P38 = 77491984690871110773116882178649397417<38>
P59 = 26947400854473157601390674819569193818375636070543656911591<59>
Number: 53339_164 N=5533076039547277534902686816907006617446562817173649013529351377329245459054776917181026429204484592208927485101171248718472484912151 ( 133 digits) SNFS difficulty: 165 digits. Divisors found: r1=2649677219441206617450398015543024233 (pp37) r2=77491984690871110773116882178649397417 (pp38) r3=26947400854473157601390674819569193818375636070543656911591 (pp59) Version: Msieve-1.39 Total time: 27.26 hours. Scaled time: 70.09 units (timescale=2.571). Factorization parameters were as follows: n: 5533076039547277534902686816907006617446562817173649013529351377329245459054776917181026429204484592208927485101171248718472484912151 m: 1000000000000000000000000000000000 deg: 5 c5: 8 c0: 85 skew: 1.60 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 657083 x 657331 Total sieving time: 27.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 27.26 hours. --------- CPU info (if available) ----------
(52·10111-43)/9 = 5(7)1103<112> = 83 · 229 · 7223179 · C101
C101 = P36 · P65
P36 = 584863423487287086370090553502096421<36>
P65 = 71955570365071690112944453052017200142045082048440819573180970021<65>
Number: 57773_111 N=42084181222696208551145766341065718167394244888696962675813164926208923535971702108149224245852394841 ( 101 digits) SNFS difficulty: 113 digits. Divisors found: r1=584863423487287086370090553502096421 (pp36) r2=71955570365071690112944453052017200142045082048440819573180970021 (pp65) Version: Msieve-1.39 Total time: 0.76 hours. Scaled time: 1.94 units (timescale=2.571). Factorization parameters were as follows: n: 42084181222696208551145766341065718167394244888696962675813164926208923535971702108149224245852394841 m: 20000000000000000000000 deg: 5 c5: 65 c0: -172 skew: 1.21 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [270000, 420001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 55522 x 55767 Total sieving time: 0.76 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,540000,540000,25,25,45,45,2.2,2.2,50000 total time: 0.76 hours. --------- CPU info (if available) ----------
(52·10113-61)/9 = 5(7)1121<114> = 17 · 19 · C112
C112 = P37 · P75
P37 = 6334577555036252676913035833364473701<37>
P75 = 282384369624194315326280610935163963623341034525658187309847619129846017477<75>
Number: 57771_113 N=1788785689714482284141726866185070519435844513243894048847609219126246990024079807361541107671138630890952872377 ( 112 digits) SNFS difficulty: 116 digits. Divisors found: r1=6334577555036252676913035833364473701 (pp37) r2=282384369624194315326280610935163963623341034525658187309847619129846017477 (pp75) Version: Msieve-1.39 Total time: 0.96 hours. Scaled time: 2.46 units (timescale=2.560). Factorization parameters were as follows: n: 1788785689714482284141726866185070519435844513243894048847609219126246990024079807361541107671138630890952872377 m: 100000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 71901 x 72149 Total sieving time: 0.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.96 hours. --------- CPU info (if available) ----------
(52·10115-43)/9 = 5(7)1143<116> = 31 · 17296260017<11> · C105
C105 = P39 · P66
P39 = 550328367113756181354375808078026537541<39>
P66 = 195805567121042826972413900256066733405415435163832249084028696839<66>
Number: 57773_115 N=107757358025506483908409848584543500927131912107158239835226331391898336429932949665089098889429541532899 ( 105 digits) SNFS difficulty: 116 digits. Divisors found: r1=550328367113756181354375808078026537541 (pp39) r2=195805567121042826972413900256066733405415435163832249084028696839 (pp66) Version: Msieve-1.39 Total time: 1.02 hours. Scaled time: 2.62 units (timescale=2.571). Factorization parameters were as follows: n: 107757358025506483908409848584543500927131912107158239835226331391898336429932949665089098889429541532899 m: 100000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61620 x 61857 Total sieving time: 1.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 1.02 hours. --------- CPU info (if available) ----------
(16·10165+17)/3 = 5(3)1649<166> = 19 · 3527 · 14731 · 415998187758484049<18> · C140
C140 = P50 · P90
P50 = 17341860308469023779168462781855560492984381719029<50>
P90 = 748893938640871307834077166117365969021084229218403936692626349730095244157941293835195353<90>
Number: 53339_165 N=12987214069769162665161528597771091153224110850225315252735583091972876470942161386503929317169635014496235037525504716535947677808172472237 ( 140 digits) SNFS difficulty: 166 digits. Divisors found: r1=17341860308469023779168462781855560492984381719029 (pp50) r2=748893938640871307834077166117365969021084229218403936692626349730095244157941293835195353 (pp90) Version: Msieve-1.39 Total time: 26.23 hours. Scaled time: 45.62 units (timescale=1.739). Factorization parameters were as follows: n: 12987214069769162665161528597771091153224110850225315252735583091972876470942161386503929317169635014496235037525504716535947677808172472237 m: 1000000000000000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 629722 x 629970 Total sieving time: 26.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 26.23 hours. --------- CPU info (if available) ----------
(52·10118-61)/9 = 5(7)1171<119> = 3 · 7 · 893573383 · C109
C109 = P47 · P62
P47 = 35469078962720437482623252574943957771679143009<47>
P62 = 86808330592926759947184437511766974195098122568233928200733033<62>
Number: 57771_118 N=3079011532422459502412599001197813568660563775233613155587158700454209167901460143786256134210885231037316297 ( 109 digits) SNFS difficulty: 121 digits. Divisors found: r1=35469078962720437482623252574943957771679143009 (pp47) r2=86808330592926759947184437511766974195098122568233928200733033 (pp62) Version: Msieve-1.39 Total time: 1.30 hours. Scaled time: 2.26 units (timescale=1.735). Factorization parameters were as follows: n: 3079011532422459502412599001197813568660563775233613155587158700454209167901460143786256134210885231037316297 m: 1000000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 90017 x 90265 Total sieving time: 1.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.30 hours. --------- CPU info (if available) ----------
(52·10123-43)/9 = 5(7)1223<124> = 67 · 1399 · 1188132191<10> · C110
C110 = P52 · P59
P52 = 3351093236793991965948846032892508785295368129973073<52>
P59 = 15481642800218606985702257125585375058473500820560165696967<59>
Number: 57773_123 N=51880428482272973194192552107268711120003394748027687836359488509276490989788630088265501092903065879987769591 ( 110 digits) SNFS difficulty: 126 digits. Divisors found: r1=3351093236793991965948846032892508785295368129973073 (pp52) r2=15481642800218606985702257125585375058473500820560165696967 (pp59) Version: Msieve-1.39 Total time: 1.72 hours. Scaled time: 4.42 units (timescale=2.571). Factorization parameters were as follows: n: 51880428482272973194192552107268711120003394748027687836359488509276490989788630088265501092903065879987769591 m: 10000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 110711 x 110957 Total sieving time: 1.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.72 hours. --------- CPU info (if available) ----------
(52·10125-43)/9 = 5(7)1243<126> = 3 · 7 · 40933 · 79481 · C115
C115 = P41 · P75
P41 = 14055106398571740700573036109279926184137<41>
P75 = 601686827538001186614971055977599214541821458117175854938872100149974919813<75>
Number: 57773_125 N=8456772379665691914425816005149003194304336951392330104780408317456651846308656132020957545982902312336505647606381 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=14055106398571740700573036109279926184137 (pp41) r2=601686827538001186614971055977599214541821458117175854938872100149974919813 (pp75) Version: Msieve-1.39 Total time: 1.57 hours. Scaled time: 2.73 units (timescale=1.739). Factorization parameters were as follows: n: 8456772379665691914425816005149003194304336951392330104780408317456651846308656132020957545982902312336505647606381 m: 10000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 910000 alim: 910000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 910000/910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [455000, 755001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112107 x 112352 Total sieving time: 1.57 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000 total time: 1.57 hours. --------- CPU info (if available) ----------
(52·10126-61)/9 = 5(7)1251<127> = 59 · 558718289 · C117
C117 = P34 · P84
P34 = 1079623793866750213337578330763569<34>
P84 = 162346708300343897190983060524349673701062352373627192853614222738074262254046907409<84>
Number: 57771_126 N=175273369136995905543707848858571777917934298230314867088250610038095869054135327591545894755333845216855190013382721 ( 117 digits) SNFS difficulty: 128 digits. Divisors found: r1=1079623793866750213337578330763569 (pp34) r2=162346708300343897190983060524349673701062352373627192853614222738074262254046907409 (pp84) Version: Msieve-1.39 Total time: 2.21 hours. Scaled time: 5.69 units (timescale=2.571). Factorization parameters were as follows: n: 175273369136995905543707848858571777917934298230314867088250610038095869054135327591545894755333845216855190013382721 m: 20000000000000000000000000 deg: 5 c5: 65 c0: -244 skew: 1.30 type: snfs lss: 1 rlim: 960000 alim: 960000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 960000/960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [480000, 880001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 138707 x 138954 Total sieving time: 2.21 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000 total time: 2.21 hours. --------- CPU info (if available) ----------
(52·10128-43)/9 = 5(7)1273<129> = 3 · 8753 · 556297188168655163<18> · C107
C107 = P44 · P64
P44 = 22280461524640293696839248296287379439151813<44>
P64 = 1775217634961080691725523313726899374646671985030998419880422313<64>
Number: 57773_128 N=39552668213613296251633284908196732545871870203936203625314569956333416616933435735524261822510328959603469 ( 107 digits) SNFS difficulty: 131 digits. Divisors found: r1=22280461524640293696839248296287379439151813 (pp44) r2=1775217634961080691725523313726899374646671985030998419880422313 (pp64) Version: Msieve-1.39 Total time: 2.08 hours. Scaled time: 3.62 units (timescale=1.739). Factorization parameters were as follows: n: 39552668213613296251633284908196732545871870203936203625314569956333416616933435735524261822510328959603469 m: 100000000000000000000000000 deg: 5 c5: 13 c0: -1075 skew: 2.42 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 935001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148648 x 148888 Total sieving time: 2.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 2.08 hours. --------- CPU info (if available) ----------
(52·10130-43)/9 = 5(7)1293<131> = 31 · 11047 · 1155101 · 7951426453<10> · C110
C110 = P43 · P67
P43 = 9069319562026888280647856398649591992308737<43>
P67 = 2025419913187861110709996677032782962657803641003575793894784431349<67>
Number: 57773_130 N=18369180439993470611356772724825352981162210617425475877591603791499473317466866124191856857952278218189396213 ( 110 digits) SNFS difficulty: 131 digits. Divisors found: r1=9069319562026888280647856398649591992308737 (pp43) r2=2025419913187861110709996677032782962657803641003575793894784431349 (pp67) Version: Msieve-1.39 Total time: 2.36 hours. Scaled time: 6.06 units (timescale=2.571). Factorization parameters were as follows: n: 18369180439993470611356772724825352981162210617425475877591603791499473317466866124191856857952278218189396213 m: 100000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149408 x 149656 Total sieving time: 2.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.36 hours. --------- CPU info (if available) ----------
(52·10137-43)/9 = 5(7)1363<138> = 3 · 7 · 367 · 117847184220059599<18> · C117
C117 = P45 · P73
P45 = 152645919106180786882959648969601199812661693<45>
P73 = 4167456418324956580495444071727674303785313298397610150851768988491199277<73>
Number: 57773_137 N=636145215310165239663009084995166438093475786332103850131046358434587007959262497181659221575042494159288643047195961 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=152645919106180786882959648969601199812661693 (pp45) r2=4167456418324956580495444071727674303785313298397610150851768988491199277 (pp73) Version: Msieve-1.39 Total time: 4.01 hours. Scaled time: 6.97 units (timescale=1.739). Factorization parameters were as follows: n: 636145215310165239663009084995166438093475786332103850131046358434587007959262497181659221575042494159288643047195961 m: 2000000000000000000000000000 deg: 5 c5: 325 c0: -86 skew: 0.77 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1475001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 226018 x 226266 Total sieving time: 4.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 4.01 hours. --------- CPU info (if available) ----------
(52·10139-43)/9 = 5(7)1383<140> = 8117 · 159571 · 1888446894411880963<19> · C113
C113 = P43 · P70
P43 = 3247662922074435283007291656832063050525993<43>
P70 = 7273368612241825094697226221211906396160023667985265743758395925654521<70>
Number: 57773_139 N=23621449560557765908725892838169934193339121800804351781075706927027056750885980500072820603341159937671848464353 ( 113 digits) SNFS difficulty: 141 digits. Divisors found: r1=3247662922074435283007291656832063050525993 (pp43) r2=7273368612241825094697226221211906396160023667985265743758395925654521 (pp70) Version: Msieve-1.39 Total time: 5.46 hours. Scaled time: 14.04 units (timescale=2.571). Factorization parameters were as follows: n: 23621449560557765908725892838169934193339121800804351781075706927027056750885980500072820603341159937671848464353 m: 10000000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [795000, 1695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 265096 x 265344 Total sieving time: 5.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 5.46 hours. --------- CPU info (if available) ----------
(52·10162-61)/9 = 5(7)1611<163> = C163
C163 = P71 · P92
P71 = 89078462498074378184875910436072504162314307600547461270396507262562803<71>
P92 = 64861669316560968069909293449376891140462180764471597340201527070805685962402940951248966057<92>
Number: 57771_162 N=5777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 163 digits) SNFS difficulty: 164 digits. Divisors found: r1=89078462498074378184875910436072504162314307600547461270396507262562803 (pp71) r2=64861669316560968069909293449376891140462180764471597340201527070805685962402940951248966057 (pp92) Version: Msieve-1.39 Total time: 34.98 hours. Scaled time: 89.94 units (timescale=2.571). Factorization parameters were as follows: n: 5777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 m: 200000000000000000000000000000000 deg: 5 c5: 325 c0: -122 skew: 0.82 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 756780 x 757028 Total sieving time: 34.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 34.98 hours. --------- CPU info (if available) ----------
(52·10166-43)/9 = 5(7)1653<167> = 172 · C165
C165 = P33 · P54 · P78
P33 = 930690578246037840231253796684173<33>
P54 = 829470565962315416296810464504282017537683004182518241<54>
P78 = 258974315881724332250612717573084960788626745202188734295579617407732766967649<78>
Number: 57773_166 N=199923106497500961168781237985390234525182622068435217224144559784698193002691272587466359092656670511341791618608227604767397154940407535563244905805459438677431757 ( 165 digits) SNFS difficulty: 168 digits. Divisors found: r1=930690578246037840231253796684173 (pp33) r2=829470565962315416296810464504282017537683004182518241 (pp54) r3=258974315881724332250612717573084960788626745202188734295579617407732766967649 (pp78) Version: Msieve-1.39 Total time: 41.71 hours. Scaled time: 72.36 units (timescale=1.735). Factorization parameters were as follows: n: 199923106497500961168781237985390234525182622068435217224144559784698193002691272587466359092656670511341791618608227604767397154940407535563244905805459438677431757 m: 2000000000000000000000000000000000 deg: 5 c5: 65 c0: -172 skew: 1.21 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 835200 x 835448 Total sieving time: 41.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 41.71 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Apr 4, 2009
(52·10131-43)/9 = 5(7)1303<132> = 32 · 7 · 53 · 538305143176019<15> · 1690631556676993027<19> · C96
C96 = P45 · P52
P45 = 125155891443348836665628058919128450479204023<45>
P52 = 1519202326823390871867348017285177880865046294224793<52>
Sat Apr 04 03:56:01 2009 Msieve v. 1.40 Sat Apr 04 03:56:01 2009 random seeds: a1b86020 f9981365 Sat Apr 04 03:56:01 2009 factoring 190137121496391268466690391434700784277022450168414359899204069633799018412216845934612471942239 (96 digits) Sat Apr 04 03:56:02 2009 searching for 15-digit factors Sat Apr 04 03:56:03 2009 commencing quadratic sieve (96-digit input) Sat Apr 04 03:56:03 2009 using multiplier of 11 Sat Apr 04 03:56:03 2009 using 32kb Intel Core sieve core Sat Apr 04 03:56:03 2009 sieve interval: 36 blocks of size 32768 Sat Apr 04 03:56:03 2009 processing polynomials in batches of 6 Sat Apr 04 03:56:03 2009 using a sieve bound of 2231371 (82052 primes) Sat Apr 04 03:56:03 2009 using large prime bound of 334705650 (28 bits) Sat Apr 04 03:56:03 2009 using double large prime bound of 2210005845812100 (43-51 bits) Sat Apr 04 03:56:03 2009 using trial factoring cutoff of 51 bits Sat Apr 04 03:56:04 2009 polynomial 'A' values have 12 factors Sat Apr 04 08:47:03 2009 82295 relations (19804 full + 62491 combined from 1244824 partial), need 82148 Sat Apr 04 08:47:05 2009 begin with 1264628 relations Sat Apr 04 08:47:06 2009 reduce to 217236 relations in 13 passes Sat Apr 04 08:47:06 2009 attempting to read 217236 relations Sat Apr 04 08:47:09 2009 recovered 217236 relations Sat Apr 04 08:47:09 2009 recovered 203981 polynomials Sat Apr 04 08:47:10 2009 attempting to build 82295 cycles Sat Apr 04 08:47:10 2009 found 82295 cycles in 5 passes Sat Apr 04 08:47:10 2009 distribution of cycle lengths: Sat Apr 04 08:47:10 2009 length 1 : 19804 Sat Apr 04 08:47:10 2009 length 2 : 13973 Sat Apr 04 08:47:10 2009 length 3 : 13819 Sat Apr 04 08:47:10 2009 length 4 : 11182 Sat Apr 04 08:47:10 2009 length 5 : 8586 Sat Apr 04 08:47:10 2009 length 6 : 5841 Sat Apr 04 08:47:10 2009 length 7 : 3726 Sat Apr 04 08:47:10 2009 length 9+: 5364 Sat Apr 04 08:47:10 2009 largest cycle: 19 relations Sat Apr 04 08:47:10 2009 matrix is 82052 x 82295 (23.0 MB) with weight 5693962 (69.19/col) Sat Apr 04 08:47:10 2009 sparse part has weight 5693962 (69.19/col) Sat Apr 04 08:47:12 2009 filtering completed in 3 passes Sat Apr 04 08:47:12 2009 matrix is 78662 x 78726 (22.1 MB) with weight 5475579 (69.55/col) Sat Apr 04 08:47:12 2009 sparse part has weight 5475579 (69.55/col) Sat Apr 04 08:47:12 2009 saving the first 48 matrix rows for later Sat Apr 04 08:47:12 2009 matrix is 78614 x 78726 (16.2 MB) with weight 4588936 (58.29/col) Sat Apr 04 08:47:12 2009 sparse part has weight 3771115 (47.90/col) Sat Apr 04 08:47:12 2009 matrix includes 64 packed rows Sat Apr 04 08:47:12 2009 using block size 31490 for processor cache size 1024 kB Sat Apr 04 08:47:13 2009 commencing Lanczos iteration Sat Apr 04 08:47:13 2009 memory use: 14.3 MB Sat Apr 04 08:47:59 2009 lanczos halted after 1244 iterations (dim = 78611) Sat Apr 04 08:48:00 2009 recovered 15 nontrivial dependencies Sat Apr 04 08:48:01 2009 prp45 factor: 125155891443348836665628058919128450479204023 Sat Apr 04 08:48:01 2009 prp52 factor: 1519202326823390871867348017285177880865046294224793 Sat Apr 04 08:48:01 2009 elapsed time 04:52:00
(52·10132-43)/9 = 5(7)1313<133> = 16774897 · 177179604623047913<18> · C109
C109 = P38 · P71
P38 = 58243268431179785212059991498513475671<38>
P71 = 33376554773954173590238561719317951008512612316705496043260499341740883<71>
Number: 57773_132 N=1943959639007388070686902824258908750890244729630791609378855341289029354915096807349162275426308192206557493 ( 109 digits) SNFS difficulty: 134 digits. Divisors found: r1=58243268431179785212059991498513475671 r2=33376554773954173590238561719317951008512612316705496043260499341740883 Version: Total time: 4.63 hours. Scaled time: 9.26 units (timescale=1.997). Factorization parameters were as follows: name: 57773_132 n: 1943959639007388070686902824258908750890244729630791609378855341289029354915096807349162275426308192206557493 m: 200000000000000000000000000 deg: 5 c5: 325 c0: -86 skew: 0.77 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1125001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 192102 x 192350 Total sieving time: 4.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 4.63 hours. --------- CPU info (if available) ----------
(52·10131-61)/9 = 5(7)1301<132> = 19 · 1439 · 22790595942931147<17> · C111
C111 = P45 · P67
P45 = 170734765586832689268962358210656835090378467<45>
P67 = 5430862347417027425377351447539772306948373514937322866566784004119<67>
Number: 57771_131 N=927237009820602090854641088217798022236681357650069566783350283991149548339030541083050828802686994777396905573 ( 111 digits) SNFS difficulty: 133 digits. Divisors found: r1=170734765586832689268962358210656835090378467 (pp45) r2=5430862347417027425377351447539772306948373514937322866566784004119 (pp67) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 7.08 hours. Scaled time: 3.35 units (timescale=0.473). Factorization parameters were as follows: name: 57771_131 n: 927237009820602090854641088217798022236681357650069566783350283991149548339030541083050828802686994777396905573 m: 200000000000000000000000000 deg: 5 c5: 65 c0: -244 skew: 1.30 type: snfs lss: 1 rlim: 1170000 alim: 1170000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1170000/1170000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [585000, 1185001) Primes: RFBsize:90764, AFBsize:90658, largePrimes:3000713 encountered Relations: rels:2937323, finalFF:244128 Max relations in full relation-set: 28 Initial matrix: 181489 x 244128 with sparse part having weight 20379068. Pruned matrix : 164404 x 165375 with weight 10687648. Total sieving time: 6.42 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.46 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1170000,1170000,26,26,47,47,2.3,2.3,50000 total time: 7.08 hours. --------- CPU info (if available) ----------
(52·10138-61)/9 = 5(7)1371<139> = 193 · 10667 · C133
C133 = P40 · P94
P40 = 1488134143786863459816687408572516745377<40>
P94 = 1885902120508917874568650234764485594866141066106480990873896225831672478296591657582919019233<94>
Number: 57771_138 N=2806475337369368692547874286527855158239603803400142018446206803014953278392260949962757532566312829494371910549643337462630026835841 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=1488134143786863459816687408572516745377 r2=1885902120508917874568650234764485594866141066106480990873896225831672478296591657582919019233 Version: Total time: 7.06 hours. Scaled time: 18.09 units (timescale=2.564). Factorization parameters were as follows: name: 57771_138 n: 2806475337369368692547874286527855158239603803400142018446206803014953278392260949962757532566312829494371910549643337462630026835841 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 275592 x 275840 Total sieving time: 7.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 7.06 hours. --------- CPU info (if available) ----------
(52·10135-61)/9 = 5(7)1341<136> = 229 · 281 · 419 · 148781 · 49719491941057866118670558347<29> · C95
C95 = P30 · P66
P30 = 212622608180129249577618921109<30>
P66 = 136245263200260621589881241454529097142890857081373341190727226007<66>
Sat Apr 04 08:56:03 2009 Msieve v. 1.40 Sat Apr 04 08:56:03 2009 random seeds: 7e00eff0 a03e8cf1 Sat Apr 04 08:56:03 2009 factoring 28968823213827596660909780275544464919163711569396466774004831324203409199116588424275746081763 (95 digits) Sat Apr 04 08:56:04 2009 searching for 15-digit factors Sat Apr 04 08:56:06 2009 commencing quadratic sieve (95-digit input) Sat Apr 04 08:56:06 2009 using multiplier of 43 Sat Apr 04 08:56:06 2009 using 32kb Intel Core sieve core Sat Apr 04 08:56:06 2009 sieve interval: 36 blocks of size 32768 Sat Apr 04 08:56:06 2009 processing polynomials in batches of 6 Sat Apr 04 08:56:06 2009 using a sieve bound of 2128183 (78614 primes) Sat Apr 04 08:56:06 2009 using large prime bound of 310714718 (28 bits) Sat Apr 04 08:56:06 2009 using double large prime bound of 1933086450144842 (43-51 bits) Sat Apr 04 08:56:06 2009 using trial factoring cutoff of 51 bits Sat Apr 04 08:56:06 2009 polynomial 'A' values have 12 factors Sat Apr 04 12:02:44 2009 78791 relations (20247 full + 58544 combined from 1150423 partial), need 78710 Sat Apr 04 12:02:45 2009 begin with 1170670 relations Sat Apr 04 12:02:46 2009 reduce to 201338 relations in 11 passes Sat Apr 04 12:02:46 2009 attempting to read 201338 relations Sat Apr 04 12:02:49 2009 recovered 201338 relations Sat Apr 04 12:02:49 2009 recovered 183647 polynomials Sat Apr 04 12:02:50 2009 attempting to build 78791 cycles Sat Apr 04 12:02:50 2009 found 78791 cycles in 5 passes Sat Apr 04 12:02:50 2009 distribution of cycle lengths: Sat Apr 04 12:02:50 2009 length 1 : 20247 Sat Apr 04 12:02:50 2009 length 2 : 14054 Sat Apr 04 12:02:50 2009 length 3 : 13555 Sat Apr 04 12:02:50 2009 length 4 : 10496 Sat Apr 04 12:02:50 2009 length 5 : 7683 Sat Apr 04 12:02:50 2009 length 6 : 5176 Sat Apr 04 12:02:50 2009 length 7 : 3289 Sat Apr 04 12:02:50 2009 length 9+: 4291 Sat Apr 04 12:02:50 2009 largest cycle: 17 relations Sat Apr 04 12:02:50 2009 matrix is 78614 x 78791 (21.4 MB) with weight 5287791 (67.11/col) Sat Apr 04 12:02:50 2009 sparse part has weight 5287791 (67.11/col) Sat Apr 04 12:02:51 2009 filtering completed in 3 passes Sat Apr 04 12:02:51 2009 matrix is 74280 x 74344 (20.3 MB) with weight 5033352 (67.70/col) Sat Apr 04 12:02:51 2009 sparse part has weight 5033352 (67.70/col) Sat Apr 04 12:02:51 2009 saving the first 48 matrix rows for later Sat Apr 04 12:02:52 2009 matrix is 74232 x 74344 (14.7 MB) with weight 4174334 (56.15/col) Sat Apr 04 12:02:52 2009 sparse part has weight 3395769 (45.68/col) Sat Apr 04 12:02:52 2009 matrix includes 64 packed rows Sat Apr 04 12:02:52 2009 using block size 29737 for processor cache size 1024 kB Sat Apr 04 12:02:52 2009 commencing Lanczos iteration Sat Apr 04 12:02:52 2009 memory use: 13.0 MB Sat Apr 04 12:03:33 2009 lanczos halted after 1175 iterations (dim = 74230) Sat Apr 04 12:03:33 2009 recovered 16 nontrivial dependencies Sat Apr 04 12:03:35 2009 prp30 factor: 212622608180129249577618921109 Sat Apr 04 12:03:35 2009 prp66 factor: 136245263200260621589881241454529097142890857081373341190727226007 Sat Apr 04 12:03:35 2009 elapsed time 03:07:32
(52·10133-61)/9 = 5(7)1321<134> = 3 · 619 · C131
C131 = P61 · P70
P61 = 3727936761833065162703458001986420391902010444196421633656883<61>
P70 = 8346038692541827722054963938348693762716229106800612265655725055932841<70>
SNFS difficulty: 136 digits. Divisors found: r1=3727936761833065162703458001986420391902010444196421633656883 (pp61) r2=8346038692541827722054963938348693762716229106800612265655725055932841 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.19 hours. Scaled time: 14.46 units (timescale=2.010). Factorization parameters were as follows: name: 57771_133 n: 31113504457607850176509304134506073116735475378447914796864716089271824328367139352599772632082809788787171662777478609465685394603 m: 1000000000000000000000000000 deg: 5 c5: 13 c0: -1525 skew: 2.59 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1325001) Primes: RFBsize:100021, AFBsize:100334, largePrimes:3209377 encountered Relations: rels:3139651, finalFF:235208 Max relations in full relation-set: 28 Initial matrix: 200421 x 235208 with sparse part having weight 20085663. Pruned matrix : 190225 x 191291 with weight 13896714. Total sieving time: 6.70 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.32 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 7.19 hours. --------- CPU info (if available) ---------- リファイル、B1とsigmaを含むGMP-ECMの出力など)
(52·10141-43)/9 = 5(7)1403<142> = 190766010375699666087127<24> · C119
C119 = P38 · P82
P38 = 20393852617805428554285413653665644021<38>
P82 = 1485116628074158277002992507452765414963770251509441579656065692357493518700226319<82>
Number: 57773_141 N=30287249633196543786224687333698870543501346160586480059269536897380902988604308015472103838181959086901590647589188699 ( 119 digits) SNFS difficulty: 143 digits. Divisors found: r1=20393852617805428554285413653665644021 (pp38) r2=1485116628074158277002992507452765414963770251509441579656065692357493518700226319 (pp82) Version: GGNFS-0.77.1-20060513-nocona Total time: 14.70 hours. Scaled time: 37.86 units (timescale=2.575). Factorization parameters were as follows: name: 57773_141 n: 30287249633196543786224687333698870543501346160586480059269536897380902988604308015472103838181959086901590647589188699 m: 20000000000000000000000000000 deg: 5 c5: 65 c0: -172 skew: 1.21 type: snfs lss: 1 rlim: 1710000 alim: 1710000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1710000/1710000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [855000, 2155001) Primes: RFBsize:128837, AFBsize:128081, largePrimes:4479831 encountered Relations: rels:5338652, finalFF:979480 Max relations in full relation-set: 28 Initial matrix: 256985 x 979480 with sparse part having weight 111332712. Pruned matrix : 175547 x 176895 with weight 31186762. Total sieving time: 14.26 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.29 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1710000,1710000,26,26,48,48,2.3,2.3,100000 total time: 14.70 hours. --------- CPU info (if available) ----------
(52·10135-43)/9 = 5(7)1343<136> = 19 · 23 · 578213 · 677027299937<12> · C116
C116 = P48 · P69
P48 = 121450106747496191455412062850052462583940149739<48>
P69 = 278091339149783647900019057676926732120133817504646813479559173522831<69>
Number: 57773_135 N=33774222825295390805722597659168785422704821500943553011801432552753561624812264670904491506852692162555018275191109 ( 116 digits) SNFS difficulty: 136 digits. Divisors found: r1=121450106747496191455412062850052462583940149739 (pp48) r2=278091339149783647900019057676926732120133817504646813479559173522831 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.01 hours. Scaled time: 11.85 units (timescale=1.972). Factorization parameters were as follows: name: 57773_135 n: 33774222825295390805722597659168785422704821500943553011801432552753561624812264670904491506852692162555018275191109 m: 1000000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1190001) Primes: RFBsize:102146, AFBsize:102092, largePrimes:3274557 encountered Relations: rels:3266462, finalFF:306601 Max relations in full relation-set: 28 Initial matrix: 204304 x 306601 with sparse part having weight 25546728. Pruned matrix : 173094 x 174179 with weight 10913020. Total sieving time: 5.66 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.20 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 6.01 hours. --------- CPU info (if available) ----------
(52·10137-61)/9 = 5(7)1361<138> = 809 · 120527697096371<15> · 7390796411862630909918487<25> · C96
C96 = P37 · P60
P37 = 7661897610542591853010023137765323993<37>
P60 = 104640033648984922939572123020578281103707523333533750006079<60>
Sat Apr 04 12:11:37 2009 Msieve v. 1.40 Sat Apr 04 12:11:37 2009 random seeds: ae493be0 3b80aac3 Sat Apr 04 12:11:37 2009 factoring 801741223782253989753375726173871272236737637575163767113820153002695760206582401004739154553447 (96 digits) Sat Apr 04 12:11:38 2009 searching for 15-digit factors Sat Apr 04 12:11:40 2009 commencing quadratic sieve (96-digit input) Sat Apr 04 12:11:40 2009 using multiplier of 7 Sat Apr 04 12:11:40 2009 using 32kb Intel Core sieve core Sat Apr 04 12:11:40 2009 sieve interval: 36 blocks of size 32768 Sat Apr 04 12:11:40 2009 processing polynomials in batches of 6 Sat Apr 04 12:11:40 2009 using a sieve bound of 2300003 (84369 primes) Sat Apr 04 12:11:40 2009 using large prime bound of 345000450 (28 bits) Sat Apr 04 12:11:40 2009 using double large prime bound of 2333862839164950 (43-52 bits) Sat Apr 04 12:11:40 2009 using trial factoring cutoff of 52 bits Sat Apr 04 12:11:40 2009 polynomial 'A' values have 13 factors Sat Apr 04 17:18:49 2009 84861 relations (20544 full + 64317 combined from 1279231 partial), need 84465 Sat Apr 04 17:18:50 2009 begin with 1299775 relations Sat Apr 04 17:18:52 2009 reduce to 222805 relations in 10 passes Sat Apr 04 17:18:52 2009 attempting to read 222805 relations Sat Apr 04 17:18:55 2009 recovered 222805 relations Sat Apr 04 17:18:55 2009 recovered 209685 polynomials Sat Apr 04 17:18:56 2009 attempting to build 84861 cycles Sat Apr 04 17:18:56 2009 found 84861 cycles in 5 passes Sat Apr 04 17:18:56 2009 distribution of cycle lengths: Sat Apr 04 17:18:56 2009 length 1 : 20544 Sat Apr 04 17:18:56 2009 length 2 : 14698 Sat Apr 04 17:18:56 2009 length 3 : 14151 Sat Apr 04 17:18:56 2009 length 4 : 11368 Sat Apr 04 17:18:56 2009 length 5 : 8725 Sat Apr 04 17:18:56 2009 length 6 : 6139 Sat Apr 04 17:18:56 2009 length 7 : 3811 Sat Apr 04 17:18:56 2009 length 9+: 5425 Sat Apr 04 17:18:56 2009 largest cycle: 20 relations Sat Apr 04 17:18:56 2009 matrix is 84369 x 84861 (23.1 MB) with weight 5723707 (67.45/col) Sat Apr 04 17:18:56 2009 sparse part has weight 5723707 (67.45/col) Sat Apr 04 17:18:58 2009 filtering completed in 3 passes Sat Apr 04 17:18:58 2009 matrix is 80555 x 80619 (22.0 MB) with weight 5443758 (67.52/col) Sat Apr 04 17:18:58 2009 sparse part has weight 5443758 (67.52/col) Sat Apr 04 17:18:58 2009 saving the first 48 matrix rows for later Sat Apr 04 17:18:58 2009 matrix is 80507 x 80619 (14.2 MB) with weight 4370777 (54.22/col) Sat Apr 04 17:18:58 2009 sparse part has weight 3242834 (40.22/col) Sat Apr 04 17:18:58 2009 matrix includes 64 packed rows Sat Apr 04 17:18:58 2009 using block size 32247 for processor cache size 1024 kB Sat Apr 04 17:18:59 2009 commencing Lanczos iteration Sat Apr 04 17:18:59 2009 memory use: 13.4 MB Sat Apr 04 17:19:43 2009 lanczos halted after 1274 iterations (dim = 80501) Sat Apr 04 17:19:43 2009 recovered 13 nontrivial dependencies Sat Apr 04 17:19:44 2009 prp37 factor: 7661897610542591853010023137765323993 Sat Apr 04 17:19:44 2009 prp60 factor: 104640033648984922939572123020578281103707523333533750006079 Sat Apr 04 17:19:44 2009 elapsed time 05:08:07
(52·10145-43)/9 = 5(7)1443<146> = 31 · 89 · 173 · 809 · 1223258461<10> · C129
C129 = P38 · P41 · P51
P38 = 13419920511365218416841677070162907599<38>
P41 = 20666737252888646473219963431260187449291<41>
P51 = 441036384332449093808152402633252549071244128342479<51>
Number: 57773_145 N=122319664330917094801628691096892538188494950873258729274378802181259935772704253682964589697748126855092868966579095257840524011 ( 129 digits) SNFS difficulty: 146 digits. Divisors found: r1=13419920511365218416841677070162907599 (pp38) r2=20666737252888646473219963431260187449291 (pp41) r3=441036384332449093808152402633252549071244128342479 (pp51) Version: GGNFS-0.77.1-20060513-nocona Total time: 14.81 hours. Scaled time: 37.97 units (timescale=2.564). Factorization parameters were as follows: name: 57773_145 n: 122319664330917094801628691096892538188494950873258729274378802181259935772704253682964589697748126855092868966579095257840524011 m: 100000000000000000000000000000 deg: 5 c5: 52 c0: -43 skew: 0.96 type: snfs rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [975000, 2275001) Primes: RFBsize:145502, AFBsize:145551, largePrimes:4006262 encountered Relations: rels:4065679, finalFF:342403 Max relations in full relation-set: 28 Initial matrix: 291119 x 342403 with sparse part having weight 31724919. Pruned matrix : 272864 x 274383 with weight 22738350. Total sieving time: 14.09 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.57 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 14.81 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 4, 2009
(37·10195+53)/9 = 4(1)1947<196> = C196
C196 = P73 · P124
P73 = 4056360560086047507543906248121877688926356700992813898073165645472671699<73>
P124 = 1013497456701408757672140181978775551363217130114066050778854198003534742597824804711171095712189587253568907167829952469983<124>
Number: 41117_195 N=4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 196 digits) SNFS difficulty: 196 digits. Divisors found: r1=4056360560086047507543906248121877688926356700992813898073165645472671699 r2=1013497456701408757672140181978775551363217130114066050778854198003534742597824804711171095712189587253568907167829952469983 Version: Total time: 297.67 hours. Scaled time: 709.65 units (timescale=2.384). Factorization parameters were as follows: n: 4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 1000000000000000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 16000000 alim: 16000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [8000000, 14700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 23311414 Max relations in full relation-set: Initial matrix: Pruned matrix : 2563890 x 2564137 Total sieving time: 270.08 hours. Total relation processing time: 8.66 hours. Matrix solve time: 17.77 hours. Time per square root: 1.17 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,16000000,16000000,28,28,55,55,2.5,2.5,100000 total time: 297.67 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.41 / Apr 4, 2009
(52·10134-61)/9 = 5(7)1331<135> = 31 · 131 · 151 · 198899 · 1493071 · 3030209714127622153<19> · C100
C100 = P31 · P69
P31 = 1157114914057201543799531433343<31>
P69 = 904875147033446577736916556210785819990564089251781354589525835489571<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=175975155 Step 1 took 6637ms Step 2 took 6012ms ********** Factor found in step 2: 1157114914057201543799531433343 Found probable prime factor of 31 digits: 1157114914057201543799531433343 Probable prime cofactor has 69 digits
(52·10165-61)/9 = 5(7)1641<166> = 412642667 · 10656471820840239088252079<26> · 19263288243743295037277268265951<32> · C101
C101 = P35 · P67
P35 = 26071796022213963116946939411064517<35>
P67 = 2616205707065874152343040065011215274098234733772473710931790869341<67>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2576297680 Step 1 took 6720ms Step 2 took 5984ms ********** Factor found in step 2: 26071796022213963116946939411064517 Found probable prime factor of 35 digits: 26071796022213963116946939411064517 Probable prime cofactor has 67 digits
(52·10183-43)/9 = 5(7)1823<184> = 53 · 155534297 · 208302845438646705692873<24> · 12102717778758856313763816055466931127<38> · C114
C114 = P28 · P87
P28 = 1927918425418659151712340193<28>
P87 = 144208889124852107838377556122845331733359677018582379551483368531814341400694406271151<87>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=827704889 Step 1 took 6520ms Step 2 took 6257ms ********** Factor found in step 2: 1927918425418659151712340193 Found probable prime factor of 28 digits: 1927918425418659151712340193 Probable prime cofactor has 87 digits
(52·10171-43)/9 = 5(7)1703<172> = 19 · 30158387489<11> · C161
C161 = P30 · C131
P30 = 570722929894025945844003120791<30>
C131 = [17667446903780369270027340030229025609340516134487338842476289026281681885771004853140501484263830394674231779800354344547160811833<131>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1171269362 Step 1 took 10276ms Step 2 took 8617ms ********** Factor found in step 2: 570722929894025945844003120791 Found probable prime factor of 30 digits: 570722929894025945844003120791 Composite cofactor has 131 digits
(52·10119-43)/9 = 5(7)1183<120> = 3 · 7 · 29 · C117
C117 = P40 · P78
P40 = 1110328809306095270316842029530857139241<40>
P78 = 854460386205466413815166641841724795646010036397639195420102772004094676165317<78>
SNFS difficulty: 121 digits. Divisors found: r1=1110328809306095270316842029530857139241 (pp40) r2=854460386205466413815166641841724795646010036397639195420102772004094676165317 (pp78) Version: Msieve-1.41 Total time: 0.68 hours. Scaled time: 1.95 units (timescale=2.847). Factorization parameters were as follows: n: 948731983214741835431490603904397007845283707352672869914249224594052180259076810800948731983214741835431490603904397 m: 1000000000000000000000000 deg: 5 c5: 26 c0: -215 skew: 1.53 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 370000) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 75841 x 76071 Total sieving time: 0.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 0.68 hours.
By Robert Backstrom / Msieve, GGNFS / Apr 4, 2009
(52·10114-61)/9 = 5(7)1131<115> = 2009630868555904244621<22> · C94
C94 = P40 · P54
P40 = 4086170979912939632301607690085835323423<40>
P54 = 703603524213671653937284467857848873269377644859294537<54>
Sat Apr 04 05:00:04 2009 Sat Apr 04 05:00:04 2009 Sat Apr 04 05:00:04 2009 Msieve v. 1.40 Sat Apr 04 05:00:04 2009 random seeds: 52a843a0 459c56f1 Sat Apr 04 05:00:04 2009 factoring 2875044302006376450035207601416874806511587051887097330162325414618175753882613109911012040151 (94 digits) Sat Apr 04 05:00:04 2009 searching for 15-digit factors Sat Apr 04 05:00:05 2009 commencing quadratic sieve (94-digit input) Sat Apr 04 05:00:05 2009 using multiplier of 1 Sat Apr 04 05:00:05 2009 using 64kb Opteron sieve core Sat Apr 04 05:00:05 2009 sieve interval: 18 blocks of size 65536 Sat Apr 04 05:00:05 2009 processing polynomials in batches of 6 Sat Apr 04 05:00:05 2009 using a sieve bound of 2022539 (75294 primes) Sat Apr 04 05:00:05 2009 using large prime bound of 271020226 (28 bits) Sat Apr 04 05:00:05 2009 using double large prime bound of 1511482239584034 (42-51 bits) Sat Apr 04 05:00:05 2009 using trial factoring cutoff of 51 bits Sat Apr 04 05:00:05 2009 polynomial 'A' values have 12 factors Sat Apr 04 06:55:37 2009 75475 relations (18579 full + 56896 combined from 1070057 partial), need 75390 Sat Apr 04 06:55:40 2009 begin with 1088636 relations Sat Apr 04 06:55:40 2009 reduce to 195823 relations in 12 passes Sat Apr 04 06:55:40 2009 attempting to read 195823 relations Sat Apr 04 06:55:43 2009 recovered 195823 relations Sat Apr 04 06:55:43 2009 recovered 177830 polynomials Sat Apr 04 06:55:43 2009 attempting to build 75475 cycles Sat Apr 04 06:55:43 2009 found 75475 cycles in 5 passes Sat Apr 04 06:55:43 2009 distribution of cycle lengths: Sat Apr 04 06:55:43 2009 length 1 : 18579 Sat Apr 04 06:55:43 2009 length 2 : 13293 Sat Apr 04 06:55:43 2009 length 3 : 12866 Sat Apr 04 06:55:43 2009 length 4 : 10164 Sat Apr 04 06:55:43 2009 length 5 : 7653 Sat Apr 04 06:55:43 2009 length 6 : 5192 Sat Apr 04 06:55:43 2009 length 7 : 3227 Sat Apr 04 06:55:43 2009 length 9+: 4501 Sat Apr 04 06:55:43 2009 largest cycle: 20 relations Sat Apr 04 06:55:43 2009 matrix is 75294 x 75475 (19.1 MB) with weight 4697664 (62.24/col) Sat Apr 04 06:55:43 2009 sparse part has weight 4697664 (62.24/col) Sat Apr 04 06:55:45 2009 filtering completed in 3 passes Sat Apr 04 06:55:45 2009 matrix is 71542 x 71606 (18.2 MB) with weight 4479870 (62.56/col) Sat Apr 04 06:55:45 2009 sparse part has weight 4479870 (62.56/col) Sat Apr 04 06:55:45 2009 saving the first 48 matrix rows for later Sat Apr 04 06:55:45 2009 matrix is 71494 x 71606 (10.6 MB) with weight 3406165 (47.57/col) Sat Apr 04 06:55:45 2009 sparse part has weight 2353599 (32.87/col) Sat Apr 04 06:55:45 2009 matrix includes 64 packed rows Sat Apr 04 06:55:45 2009 using block size 28642 for processor cache size 1024 kB Sat Apr 04 06:55:45 2009 commencing Lanczos iteration Sat Apr 04 06:55:45 2009 memory use: 10.8 MB Sat Apr 04 06:56:16 2009 lanczos halted after 1132 iterations (dim = 71494) Sat Apr 04 06:56:17 2009 recovered 18 nontrivial dependencies Sat Apr 04 06:56:18 2009 prp40 factor: 4086170979912939632301607690085835323423 Sat Apr 04 06:56:18 2009 prp54 factor: 703603524213671653937284467857848873269377644859294537 Sat Apr 04 06:56:18 2009 elapsed time 01:56:14
(17·10163-11)/3 = 5(6)1623<164> = 43 · 103 · 478309750388080201<18> · C143
C143 = P55 · P89
P55 = 1581505296155364220086626947364770666501816355519283359<55>
P89 = 16913835469895485186233099368027408790492129797916749218694546323573961927732707309455733<89>
Number: n N=26749320373940163244971032413497287625039267210811665245714874458689143859502033260323866931096097072092563654060575255012266473731240494047147 ( 143 digits) SNFS difficulty: 164 digits. Divisors found: Sat Apr 04 13:06:14 2009 prp55 factor: 1581505296155364220086626947364770666501816355519283359 Sat Apr 04 13:06:14 2009 prp89 factor: 16913835469895485186233099368027408790492129797916749218694546323573961927732707309455733 Sat Apr 04 13:06:14 2009 elapsed time 01:26:54 (Msieve 1.40 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 32.70 hours. Scaled time: 85.91 units (timescale=2.627). Factorization parameters were as follows: name: KA_5_6_162_3 n: 26749320373940163244971032413497287625039267210811665245714874458689143859502033260323866931096097072092563654060575255012266473731240494047147 skew: 0.23 deg: 5 c5: 17000 c0: -11 m: 100000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4435447) Primes: RFBsize:348513, AFBsize:348762, largePrimes:15989422 encountered Relations: rels:15347668, finalFF:722034 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1339057 hash collisions in 16592062 relations Msieve: matrix is 738183 x 738430 (197.4 MB) Total sieving time: 32.29 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 32.70 hours. --------- CPU info (if available) ----------
By Erik Branger / GMP-ECM, Msieve / Apr 3, 2009
(16·10193+17)/3 = 5(3)1929<194> = 26513 · 50023 · 2101717849035273779<19> · 30071047709254340291<20> · 1967786130729617339487631<25> · C123
C123 = P35 · P35 · P54
P35 = 28908882578973117144496171187035193<35>
P35 = 57749307267023763311033988438420401<35>
P54 = 193682851615402438266837470310134941116692660151926803<54>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 323347311841892954308216612017508749535509420962094692577376901022301501696811575352725622481922650643907464856537865349579 (123 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1898868028 Step 1 took 37627ms Step 2 took 12776ms ********** Factor found in step 2: 28908882578973117144496171187035193 Found probable prime factor of 35 digits: 28908882578973117144496171187035193 Composite cofactor 11185050510291245263177482647494883428694317570240480105088214343493952278744833893908003 has 89 digits Fri Apr 03 07:48:01 2009 Msieve v. 1.40 Fri Apr 03 07:48:01 2009 random seeds: 5ec5ff50 75d6f83e Fri Apr 03 07:48:01 2009 factoring 11185050510291245263177482647494883428694317570240480105088214343493952278744833893908003 (89 digits) Fri Apr 03 07:48:02 2009 searching for 15-digit factors Fri Apr 03 07:48:03 2009 commencing quadratic sieve (89-digit input) Fri Apr 03 07:48:03 2009 using multiplier of 3 Fri Apr 03 07:48:03 2009 using 32kb Intel Core sieve core Fri Apr 03 07:48:03 2009 sieve interval: 28 blocks of size 32768 Fri Apr 03 07:48:03 2009 processing polynomials in batches of 8 Fri Apr 03 07:48:03 2009 using a sieve bound of 1531469 (58333 primes) Fri Apr 03 07:48:03 2009 using large prime bound of 122517520 (26 bits) Fri Apr 03 07:48:03 2009 using double large prime bound of 362040129222640 (42-49 bits) Fri Apr 03 07:48:03 2009 using trial factoring cutoff of 49 bits Fri Apr 03 07:48:03 2009 polynomial 'A' values have 11 factors Fri Apr 03 08:43:33 2009 58566 relations (15659 full + 42907 combined from 617626 partial), need 58429 Fri Apr 03 08:43:34 2009 begin with 633285 relations Fri Apr 03 08:43:35 2009 reduce to 142097 relations in 11 passes Fri Apr 03 08:43:35 2009 attempting to read 142097 relations Fri Apr 03 08:43:36 2009 recovered 142097 relations Fri Apr 03 08:43:36 2009 recovered 119810 polynomials Fri Apr 03 08:43:37 2009 attempting to build 58566 cycles Fri Apr 03 08:43:37 2009 found 58566 cycles in 6 passes Fri Apr 03 08:43:37 2009 distribution of cycle lengths: Fri Apr 03 08:43:37 2009 length 1 : 15659 Fri Apr 03 08:43:37 2009 length 2 : 11326 Fri Apr 03 08:43:37 2009 length 3 : 10358 Fri Apr 03 08:43:37 2009 length 4 : 7828 Fri Apr 03 08:43:37 2009 length 5 : 5459 Fri Apr 03 08:43:37 2009 length 6 : 3414 Fri Apr 03 08:43:37 2009 length 7 : 2156 Fri Apr 03 08:43:37 2009 length 9+: 2366 Fri Apr 03 08:43:37 2009 largest cycle: 17 relations Fri Apr 03 08:43:37 2009 matrix is 58333 x 58566 (14.2 MB) with weight 3485108 (59.51/col) Fri Apr 03 08:43:37 2009 sparse part has weight 3485108 (59.51/col) Fri Apr 03 08:43:37 2009 filtering completed in 3 passes Fri Apr 03 08:43:38 2009 matrix is 54258 x 54322 (13.3 MB) with weight 3258769 (59.99/col) Fri Apr 03 08:43:38 2009 sparse part has weight 3258769 (59.99/col) Fri Apr 03 08:43:38 2009 saving the first 48 matrix rows for later Fri Apr 03 08:43:38 2009 matrix is 54210 x 54322 (9.2 MB) with weight 2638136 (48.56/col) Fri Apr 03 08:43:38 2009 sparse part has weight 2091942 (38.51/col) Fri Apr 03 08:43:38 2009 matrix includes 64 packed rows Fri Apr 03 08:43:38 2009 using block size 21728 for processor cache size 2048 kB Fri Apr 03 08:43:38 2009 commencing Lanczos iteration Fri Apr 03 08:43:38 2009 memory use: 8.6 MB Fri Apr 03 08:43:57 2009 lanczos halted after 859 iterations (dim = 54209) Fri Apr 03 08:43:57 2009 recovered 17 nontrivial dependencies Fri Apr 03 08:43:58 2009 prp35 factor: 57749307267023763311033988438420401 Fri Apr 03 08:43:58 2009 prp54 factor: 193682851615402438266837470310134941116692660151926803 Fri Apr 03 08:43:58 2009 elapsed time 00:55:57
By Ignacio Santos / GGNFS, Msieve / Apr 3, 2009
(49·10160-31)/9 = 5(4)1591<161> = 3 · 100483242763<12> · 17953395062563<14> · 214735143465929<15> · C122
C122 = P61 · P62
P61 = 1567737971651068384965094581648394152466087463266918812121997<61>
P62 = 29882400504340187380633681424970223502423170295790042907585351<62>
Number: 54441_160 N=46847773954739148293115346008995526360669585899651036428463200421145076006403340307215453801976038064451718542119702065947 ( 122 digits) SNFS difficulty: 161 digits. Divisors found: r1=1567737971651068384965094581648394152466087463266918812121997 (pp61) r2=29882400504340187380633681424970223502423170295790042907585351 (pp62) Version: Msieve-1.39 Total time: 25.51 hours. Scaled time: 65.15 units (timescale=2.554). Factorization parameters were as follows: n: 46847773954739148293115346008995526360669585899651036428463200421145076006403340307215453801976038064451718542119702065947 m: 100000000000000000000000000000000 deg: 5 c5: 49 c0: -31 skew: 0.91 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 682659 x 682906 Total sieving time: 25.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 25.51 hours. --------- CPU info (if available) ----------
(17·10161-11)/3 = 5(6)1603<162> = 10123777 · 650392879 · 72267019367663<14> · C133
C133 = P50 · P84
P50 = 10823475366366524674742715673706966151548924932793<50>
P84 = 110027803460989649627988595282755172401357864566493256317329413217484842292458614079<84>
Number: 56663_161 N=1190883220375438919605700302393143743902592774522304485685872845482221743405099031895484550773471103314323235837109088713048998592647 ( 133 digits) SNFS difficulty: 162 digits. Divisors found: r1=10823475366366524674742715673706966151548924932793 (pp50) r2=110027803460989649627988595282755172401357864566493256317329413217484842292458614079 (pp84) Version: Msieve-1.39 Total time: 26.02 hours. Scaled time: 45.25 units (timescale=1.739). Factorization parameters were as follows: n: 1190883220375438919605700302393143743902592774522304485685872845482221743405099031895484550773471103314323235837109088713048998592647 m: 100000000000000000000000000000000 deg: 5 c5: 170 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 679494 x 679742 Total sieving time: 26.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 26.02 hours. --------- CPU info (if available) ----------
(16·10162+17)/3 = 5(3)1619<163> = 11 · 128934707059768151160147271273<30> · C133
C133 = P62 · P71
P62 = 88786862660586663244640643872864911682545620326200986806441777<62>
P71 = 42353323427847191474859755218340012612106669231687179673124239284988569<71>
Number: 53339_162 N=3760418710407676147088591359768419603013377672839821197966929806224449753101770249904932480950033657688556959993576877288425009047113 ( 133 digits) SNFS difficulty: 163 digits. Divisors found: r1=88786862660586663244640643872864911682545620326200986806441777 (pp62) r2=42353323427847191474859755218340012612106669231687179673124239284988569 (pp71) Version: Msieve-1.39 Total time: 26.45 hours. Scaled time: 68.01 units (timescale=2.571). Factorization parameters were as follows: n: 3760418710407676147088591359768419603013377672839821197966929806224449753101770249904932480950033657688556959993576877288425009047113 m: 200000000000000000000000000000000 deg: 5 c5: 50 c0: 17 skew: 0.81 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 596624 x 596872 Total sieving time: 26.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 26.45 hours. --------- CPU info (if available) ----------
(17·10163+7)/3 = 5(6)1629<164> = 487 · 123379 · 28380172528601352066591619<26> · C131
C131 = P63 · P69
P63 = 148591516859296022679317547384453453317316739620861227614314937<63>
P69 = 223639448250590176645911909739904742040253594405448053845320498425051<69>
Number: 56669_163 N=33230924845131230638453045298820336196589723482764603996276526130903891126914846634423420467368882127568945743878401132370804286787 ( 131 digits) SNFS difficulty: 165 digits. Divisors found: r1=148591516859296022679317547384453453317316739620861227614314937 (pp63) r2=223639448250590176645911909739904742040253594405448053845320498425051 (pp69) Version: Msieve-1.39 Total time: 39.44 hours. Scaled time: 68.59 units (timescale=1.739). Factorization parameters were as follows: n: 33230924845131230638453045298820336196589723482764603996276526130903891126914846634423420467368882127568945743878401132370804286787 m: 500000000000000000000000000000000 deg: 5 c5: 136 c0: 175 skew: 1.05 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 750901 x 751149 Total sieving time: 39.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 39.44 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 3, 2009
(16·10161+17)/3 = 5(3)1609<162> = 53 · 311 · 4078073 · 270585397 · 1011552929<10> · 324228801887<12> · C122
C122 = P49 · P74
P49 = 3163136667118281002802364642599093883066161549419<49>
P74 = 28264737660333454210808193745298846039677110745960392543532282451321424089<74>
Number: 53339_161 N=89405228079879721975382948088960952194148538040782131611170920385353678079829242583342250139601121790793716448717830554291 ( 122 digits) SNFS difficulty: 162 digits. Divisors found: r1=3163136667118281002802364642599093883066161549419 r2=28264737660333454210808193745298846039677110745960392543532282451321424089 Version: Total time: 12.35 hours. Scaled time: 29.54 units (timescale=2.391). Factorization parameters were as follows: n: 89405228079879721975382948088960952194148538040782131611170920385353678079829242583342250139601121790793716448717830554291 m: 200000000000000000000000000000000 deg: 5 c5: 5 c0: 17 skew: 1.28 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9090268 Max relations in full relation-set: Initial matrix: Pruned matrix : 549032 x 549280 Total sieving time: 11.13 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.69 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 12.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Apr 3, 2009
(17·10165+7)/3 = 5(6)1649<166> = 752287 · 793892455313<12> · C148
C148 = P52 · P97
P52 = 7257637173651497122210754800561918501478911133555621<52>
P97 = 1307335884095391993398822026800587406558775089321301467965713560222929048372608055123835019731719<97>
Number: n N=9488169510859261975548862126800284710138279837509243307297657669910691674074118310280029600192922952587724790404344825790272107433974239825984442499 ( 148 digits) SNFS difficulty: 166 digits. Divisors found: Fri Apr 03 07:00:45 2009 prp52 factor: 7257637173651497122210754800561918501478911133555621 Fri Apr 03 07:00:45 2009 prp97 factor: 1307335884095391993398822026800587406558775089321301467965713560222929048372608055123835019731719 Fri Apr 03 07:00:45 2009 elapsed time 01:21:33 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 32.55 hours. Scaled time: 85.90 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_6_164_9 n: 9488169510859261975548862126800284710138279837509243307297657669910691674074118310280029600192922952587724790404344825790272107433974239825984442499 skew: 0.84 deg: 5 c5: 17 c0: 7 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2500000, 4500137) Primes: RFBsize:348513, AFBsize:349046, largePrimes:15772259 encountered Relations: rels:14854719, finalFF:735109 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1253373 hash collisions in 15777903 relations Msieve: matrix is 840330 x 840578 (225.3 MB) Total sieving time: 32.08 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 32.55 hours. --------- CPU info (if available) ----------
(49·10164+23)/9 = 5(4)1637<165> = 31 · 17574544940866361270498281<26> · C138
C138 = P33 · P106
P33 = 116881026652426546549683929429743<33>
P106 = 8549953848429424668598583893325141587389629788921750650527504769263938653022826202215204408813818779715639<106>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 999327383635296506345501756747525298073121935987552909461603917267905674696629019627053241237793565161394081678893939537848872116968850777 (138 digits) Using B1=412000, B2=258309880, polynomial Dickson(3), sigma=473458618 Step 1 took 5678ms ********** Factor found in step 1: 116881026652426546549683929429743 Found probable prime factor of 33 digits: 116881026652426546549683929429743 Probable prime cofactor 8549953848429424668598583893325141587389629788921750650527504769263938653022826202215204408813818779715639 has 106 digits
Factorizations of 577...771 and Factorizations of 577...773 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By mersenneforum,Tom Womack
The first hole of repunit numbers, (10263-1)/9, was completely factored. Congratulations!
See also: 10^263-1 sieving - mersenneforum.org
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 2, 2009
(49·10159+23)/9 = 5(4)1587<160> = 13 · 12309503347<11> · 3352290844358539423008099551<28> · C122
C122 = P46 · P76
P46 = 4541937364441984968505266910447705904637713171<46>
P76 = 2234533427167717200687940183412832692594637552725928783392672647725505963037<76>
Number: 54447_159 N=10149110864947657634820731641856022994726723192422012104136400709120522063809365407235470987049813809054869015715734060327 ( 122 digits) SNFS difficulty: 161 digits. Divisors found: r1=4541937364441984968505266910447705904637713171 r2=2234533427167717200687940183412832692594637552725928783392672647725505963037 Version: Total time: 17.99 hours. Scaled time: 42.98 units (timescale=2.389). Factorization parameters were as follows: n: 10149110864947657634820731641856022994726723192422012104136400709120522063809365407235470987049813809054869015715734060327 m: 100000000000000000000000000000000 deg: 5 c5: 49 c0: 230 skew: 1.36 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9239528 Max relations in full relation-set: Initial matrix: Pruned matrix : 714452 x 714699 Total sieving time: 16.04 hours. Total relation processing time: 0.68 hours. Matrix solve time: 1.19 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 17.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Ignacio Santos / GGNFS, Msieve / Apr 2, 2009
(17·10159-11)/3 = 5(6)1583<160> = 7 · 97 · 37409 · 83351596807<11> · 788178310186820437<18> · C124
C124 = P46 · P78
P46 = 5024692703056695669806893926694802530649223503<46>
P78 = 675824424361780743765679593969457519635514350512020551879532910413503246526229<78>
Number: 56663_159 N=3395810053638131453696372678482980616610204164219241348030275455590375109043845161436300944878284771737131376771000972760187 ( 124 digits) SNFS difficulty: 161 digits. Divisors found: r1=5024692703056695669806893926694802530649223503 (pp46) r2=675824424361780743765679593969457519635514350512020551879532910413503246526229 (pp78) Version: Msieve-1.39 Total time: 23.83 hours. Scaled time: 61.26 units (timescale=2.571). Factorization parameters were as follows: n: 3395810053638131453696372678482980616610204164219241348030275455590375109043845161436300944878284771737131376771000972760187 m: 100000000000000000000000000000000 deg: 5 c5: 17 c0: -110 skew: 1.45 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 581876 x 582124 Total sieving time: 23.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 23.83 hours. --------- CPU info (if available) ----------
(49·10160+23)/9 = 5(4)1597<161> = 32 · 3307 · 31838452761895407829<20> · C137
C137 = P61 · P76
P61 = 9285683870890698716616456731171714281776817892289149419042703<61>
P76 = 6187440244467790533181492495760904465444360877468414333345719414889567252687<76>
Number: 54447_160 N=57454614080154564373390560969099711576819122294811653619347417220368300344461613266527072685189981522380001361300747252253901429244492961 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: r1=9285683870890698716616456731171714281776817892289149419042703 (pp61) r2=6187440244467790533181492495760904465444360877468414333345719414889567252687 (pp76) Version: Msieve-1.39 Total time: 24.37 hours. Scaled time: 42.37 units (timescale=1.739). Factorization parameters were as follows: n: 57454614080154564373390560969099711576819122294811653619347417220368300344461613266527072685189981522380001361300747252253901429244492961 m: 100000000000000000000000000000000 deg: 5 c5: 49 c0: 23 skew: 0.86 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 669295 x 669543 Total sieving time: 24.37 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 24.37 hours. --------- CPU info (if available) ----------
(16·10163+17)/3 = 5(3)1629<164> = 489977 · 1818023 · 404670141371483587<18> · C135
C135 = P56 · P79
P56 = 27301446782712309048436486454571303733558437148082226127<56>
P79 = 5419220686700744836266372750790973569994429238428190314031647706010711660202441<79>
Number: 53339_163 N=147952565181734040237698809471184003259730494285431717731168000912810184465437822121306390798769757887521596502279744695010454759376007 ( 135 digits) SNFS difficulty: 165 digits. Divisors found: r1=27301446782712309048436486454571303733558437148082226127 (pp56) r2=5419220686700744836266372750790973569994429238428190314031647706010711660202441 (pp79) Version: Msieve-1.39 Total time: 28.82 hours. Scaled time: 74.08 units (timescale=2.571). Factorization parameters were as follows: n: 147952565181734040237698809471184003259730494285431717731168000912810184465437822121306390798769757887521596502279744695010454759376007 m: 400000000000000000000000000000000 deg: 5 c5: 125 c0: 136 skew: 1.02 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 635590 x 635838 Total sieving time: 28.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 28.82 hours. --------- CPU info (if available) ----------
(17·10160+7)/3 = 5(6)1599<161> = 2347 · 205991 · 14990497243464228674047859<26> · C127
C127 = P42 · P85
P42 = 989305839297597455448441667592295923732537<42>
P85 = 7903504770702278656014169956012092871449979941049288506442631913106346161258415273459<85>
Number: 56669_160 N=7818983420572183313885508354149170315271535459558520090924152834647048606412117555333256200815847360324458229993451556830835483 ( 127 digits) SNFS difficulty: 161 digits. Divisors found: r1=989305839297597455448441667592295923732537 (pp42) r2=7903504770702278656014169956012092871449979941049288506442631913106346161258415273459 (pp85) Version: Msieve-1.39 Total time: 21.08 hours. Scaled time: 36.66 units (timescale=1.739). Factorization parameters were as follows: n: 7818983420572183313885508354149170315271535459558520090924152834647048606412117555333256200815847360324458229993451556830835483 m: 100000000000000000000000000000000 deg: 5 c5: 17 c0: 7 skew: 0.84 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 678821 x 679069 Total sieving time: 21.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 21.08 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Apr 2, 2009
(49·10151+23)/9 = 5(4)1507<152> = 32 · 35141 · 216023 · 1077539993<10> · C132
C132 = P42 · P91
P42 = 721551372956281980471202568692439332262527<42>
P91 = 1024934935996861843669773828940876270110257891172988594032904817298182725911063379309446971<91>
Number: n N=739543210259394661443579113437306566244676470411317230428536046709252205643074977157926363275568492588887893658971345668634556955717 ( 132 digits) SNFS difficulty: 152 digits. Divisors found: r1=721551372956281980471202568692439332262527 (pp42) r2=1024934935996861843669773828940876270110257891172988594032904817298182725911063379309446971 (pp91) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 16.69 hours. Scaled time: 44.40 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_150_7 n: 739543210259394661443579113437306566244676470411317230428536046709252205643074977157926363275568492588887893658971345668634556955717 skew: 0.54 deg: 5 c5: 490 c0: 23 m: 1000000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176098, largePrimes:12236159 encountered Relations: rels:12002234, finalFF:607088 Max relations in full relation-set: 28 Initial matrix: 352466 x 607088 with sparse part having weight 72817144. Pruned matrix : 280201 x 282027 with weight 40961214. Total sieving time: 15.87 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.46 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.4,2.4,100000 total time: 16.69 hours. --------- CPU info (if available) ----------
(17·10157-11)/3 = 5(6)1563<158> = 53 · 83 · 63541 · 69341 · C145
C145 = P38 · P108
P38 = 26201209266896744637916838325961582561<38>
P108 = 111585617966479360240182754132847068745709815654221731867966943515303904651729783621338697908163074841361257<108>
Number: n N=2923678127515718895502905546363302956334206803471874728800797810382648762181563970508588374406983004178545147309611651741668796899365351232239177 ( 145 digits) SNFS difficulty: 158 digits. Divisors found: Thu Apr 02 21:23:40 2009 prp38 factor: 26201209266896744637916838325961582561 Thu Apr 02 21:23:40 2009 prp108 factor: 111585617966479360240182754132847068745709815654221731867966943515303904651729783621338697908163074841361257 Thu Apr 02 21:23:40 2009 elapsed time 01:04:52 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 23.56 hours. Scaled time: 62.30 units (timescale=2.644). Factorization parameters were as follows: name: KA_5_6_156_3 n: 2923678127515718895502905546363302956334206803471874728800797810382648762181563970508588374406983004178545147309611651741668796899365351232239177 skew: 0.36 deg: 5 c5: 1700 c0: -11 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1750000, 3350261) Primes: RFBsize:250150, AFBsize:250482, largePrimes:13834293 encountered Relations: rels:12944590, finalFF:527612 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1178405 hash collisions in 13882782 relations Msieve: matrix is 640506 x 640754 (171.0 MB) Total sieving time: 23.21 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,56,56,2.4,2.4,100000 total time: 23.56 hours. --------- CPU info (if available) ----------
(47·10160+61)/9 = 5(2)1599<161> = 602702967978397806981731<24> · C137
C137 = P39 · P45 · P54
P39 = 149475423087669771725404269873003177613<39>
P45 = 805851248526890988295119477659282638721085559<45>
P54 = 719328626510539286405990039328350670878493687056107477<54>
Number: n N=86646698285537530193450319277642828024489879500902537700671930529507367477335548923716463218539734619713860135139678033581656660881717159 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: Thu Apr 02 23:59:54 2009 prp39 factor: 149475423087669771725404269873003177613 Thu Apr 02 23:59:54 2009 prp45 factor: 805851248526890988295119477659282638721085559 Thu Apr 02 23:59:54 2009 prp54 factor: 719328626510539286405990039328350670878493687056107477 Thu Apr 02 23:59:54 2009 elapsed time 01:04:50 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 26.06 hours. Scaled time: 68.45 units (timescale=2.627). Factorization parameters were as follows: name: KA_5_2_159_9 n: 86646698285537530193450319277642828024489879500902537700671930529507367477335548923716463218539734619713860135139678033581656660881717159 skew: 1.05 deg: 5 c5: 47 c0: 61 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 3858307) Primes: RFBsize:315948, AFBsize:315702, largePrimes:15105273 encountered Relations: rels:14286619, finalFF:585267 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1139206 hash collisions in 15114291 relations Msieve: matrix is 721821 x 722069 (193.9 MB) Total sieving time: 25.67 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 26.06 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM / Apr 2, 2009
(10228-7)/3 = (3)2271<228> = 19 · 169543477479631<15> · 581348028289141<15> · 400300190913832630371913<24> · 231114981863793246629131203527<30> · C145
C145 = P38 · P107
P38 = 89875252897502081322528223874139578641<38>
P107 = 21406902544531901415351462430088886680130030138525132686272468825695973807571949096156849738401872062478109<107>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2832758251 Step 1 took 44394ms Step 2 took 15690ms ********** Factor found in step 2: 89875252897502081322528223874139578641 Found probable prime factor of 38 digits: 89875252897502081322528223874139578641 Probable prime cofactor 21406902544531901415351462430088886680130030138525132686272468825695973807571949096156849738401872062478109 has 107 digits
(11·10199+1)/3 = 3(6)1987<200> = 37 · 804767 · 3708220977874028647789423<25> · 202496992269035712972643097267<30> · C139
C139 = P36 · P103
P36 = 719085495087018136230487973283012437<36>
P103 = 2280524986393322347188566632802167131802841297889369062727060879857698833111173208966665751748661072369<103>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3773404872 Step 1 took 14486ms Step 2 took 6765ms ********** Factor found in step 2: 719085495087018136230487973283012437 Found probable prime factor of 36 digits: 719085495087018136230487973283012437 Probable prime cofactor 2280524986393322347188566632802167131802841297889369062727060879857698833111173208966665751748661072369 has 103 digits
By Sinkiti Sibata / Msieve / Apr 2, 2009
(49·10173+23)/9 = 5(4)1727<174> = C174
C174 = P59 · P116
P59 = 53213885460303743162383640973716467334882950425261428933189<59>
P116 = 10231247722938530429684370381649939532547858816450603052160092865623046227263385154146691843887422122878799160699923<116>
Number: 54447_173 N=544444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 ( 174 digits) SNFS difficulty: 176 digits. Divisors found: r1=53213885460303743162383640973716467334882950425261428933189 r2=10231247722938530429684370381649939532547858816450603052160092865623046227263385154146691843887422122878799160699923 Version: Total time: 101.87 hours. Scaled time: 340.14 units (timescale=3.339). Factorization parameters were as follows: name: 54447_173 n: 544444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 m: 50000000000000000000000000000000000 deg: 5 c5: 392 c0: 575 skew: 1.08 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved algebraic special-q in [2500000, 8200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1225107 x 1225354 Total sieving time: 101.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,53,53,2.5,2.5,100000 total time: 101.87 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.40 / Apr 2, 2009
(64·10291-1)/9 = 7(1)291<292> = 13 · 373 · 7963 · 36637 · 8447849 · 118824644683<12> · 112742918287126625015508954219077<33> · 1076861795965616779294050545059091493301417539513533599117<58> · C173
C173 = P71 · P103
P71 = 29526732107423789709510964684168327772183952338581119781372039115193043<71>
P103 = 1396919461377911767198329585214695926966845728727174158023799620445910709651433967937547618165269580961<103>
SNFS difficulty: 195 digits. Divisors found: r1=29526732107423789709510964684168327772183952338581119781372039115193043 (pp71) r2=1396919461377911767198329585214695926966845728727174158023799620445910709651433967937547618165269580961 (pp103) Version: Msieve-1.40 Total time: 223.80 hours. Scaled time: 637.17 units (timescale=2.847). Factorization parameters were as follows: n: 41246466711752333929895586078766965786778844173689331039930896474968955906844933773973849869182007627958973707341586225377562029715681445290994676117150913031629425232454323 m: 200000000000000000000000000000000 deg: 6 c6: 25 c3: 5 c0: 1 skew: 0.58 type: snfs lss: 0 rlim: 12500000 alim: 12500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [6250000, 12850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2288296 x 2288544 Total sieving time: 204.26 hours. Total relation processing time: 0.36 hours. Matrix solve time: 18.91 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,195,6,0,0,0,0,0,0,0,0,12500000,12500000,28,28,56,56,2.6,2.6,100000 total time: 223.80 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Apr 1, 2009
(17·10152-11)/3 = 5(6)1513<153> = 51980313113038103168212390459<29> · C125
C125 = P53 · P72
P53 = 26115174500292589890466940447279158913756606529973591<53>
P72 = 417441712422809702333784001467203387678858490366427777403814455586698627<72>
Number: 56663_152 N=10901563163622632381653948387832731890897911637792767943828429248839136551842798610658820914905961307803746277372645185959557 ( 125 digits) SNFS difficulty: 153 digits. Divisors found: r1=26115174500292589890466940447279158913756606529973591 r2=417441712422809702333784001467203387678858490366427777403814455586698627 Version: Total time: 12.47 hours. Scaled time: 29.80 units (timescale=2.390). Factorization parameters were as follows: n: 10901563163622632381653948387832731890897911637792767943828429248839136551842798610658820914905961307803746277372645185959557 m: 1000000000000000000000000000000 deg: 5 c5: 1700 c0: -11 skew: 0.36 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7437194 Max relations in full relation-set: Initial matrix: Pruned matrix : 445819 x 446067 Total sieving time: 11.54 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.43 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 12.47 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Andreas Tete / Msieve v1.40, GGNFS / Apr 1, 2009
(29·10199-11)/9 = 3(2)1981<200> = 12983 · 135123913 · 784830287 · 2800975366074227639275163<25> · 59042658088541072222079473718797<32> · C123
C123 = P48 · P75
P48 = 155050675604209896581134157847019089481518228889<48>
P75 = 912690668714493907373500136316795190459438996987480098514102369812675642763<75>
Wed Apr 01 09:36:21 2009 Msieve v. 1.40 Wed Apr 01 09:36:21 2009 random seeds: 2f036818 1c9667a9 Wed Apr 01 09:36:21 2009 factoring 141513304801840397176199213853517368373409932385348059248024938365674114582593771384352156694628593078442977112469430380307 (123 digits) Wed Apr 01 09:36:23 2009 searching for 15-digit factors Wed Apr 01 09:36:27 2009 commencing number field sieve (123-digit input) Wed Apr 01 09:36:27 2009 R0: -423073470827005685607315 Wed Apr 01 09:36:27 2009 R1: 13967401442491 Wed Apr 01 09:36:27 2009 A0: 70931679734101278720793471830592 Wed Apr 01 09:36:27 2009 A1: 399817006788178411525051256 Wed Apr 01 09:36:27 2009 A2: -2498575242122106646366 Wed Apr 01 09:36:27 2009 A3: -3509459972756639 Wed Apr 01 09:36:27 2009 A4: 12966908382 Wed Apr 01 09:36:27 2009 A5: 10440 Wed Apr 01 09:36:27 2009 skew 445487.65, size 1.077372e-011, alpha -7.850271, combined = 2.207649e-010 Wed Apr 01 09:36:27 2009 Wed Apr 01 09:36:27 2009 commencing relation filtering Wed Apr 01 09:36:27 2009 commencing duplicate removal, pass 1 Wed Apr 01 09:39:09 2009 found 988578 hash collisions in 8803354 relations Wed Apr 01 09:40:00 2009 added 36113 free relations Wed Apr 01 09:40:00 2009 commencing duplicate removal, pass 2 Wed Apr 01 09:40:28 2009 found 938588 duplicates and 7900878 unique relations Wed Apr 01 09:40:29 2009 memory use: 50.6 MB Wed Apr 01 09:40:29 2009 reading rational ideals above 5963776 Wed Apr 01 09:40:29 2009 reading algebraic ideals above 5963776 Wed Apr 01 09:40:29 2009 commencing singleton removal, pass 1 Wed Apr 01 09:43:04 2009 relations with 0 large ideals: 209492 Wed Apr 01 09:43:04 2009 relations with 1 large ideals: 1364215 Wed Apr 01 09:43:04 2009 relations with 2 large ideals: 2981284 Wed Apr 01 09:43:04 2009 relations with 3 large ideals: 2528208 Wed Apr 01 09:43:04 2009 relations with 4 large ideals: 727713 Wed Apr 01 09:43:04 2009 relations with 5 large ideals: 33577 Wed Apr 01 09:43:04 2009 relations with 6 large ideals: 56384 Wed Apr 01 09:43:04 2009 relations with 7+ large ideals: 5 Wed Apr 01 09:43:04 2009 7900878 relations and about 7583434 large ideals Wed Apr 01 09:43:04 2009 commencing singleton removal, pass 2 Wed Apr 01 09:46:06 2009 found 3541501 singletons Wed Apr 01 09:46:06 2009 current dataset: 4359377 relations and about 3355214 large ideals Wed Apr 01 09:46:06 2009 commencing singleton removal, pass 3 Wed Apr 01 09:47:41 2009 found 714711 singletons Wed Apr 01 09:47:41 2009 current dataset: 3644666 relations and about 2595898 large ideals Wed Apr 01 09:47:41 2009 commencing singleton removal, pass 4 Wed Apr 01 09:49:14 2009 found 193202 singletons Wed Apr 01 09:49:14 2009 current dataset: 3451464 relations and about 2398555 large ideals Wed Apr 01 09:49:14 2009 commencing singleton removal, final pass Wed Apr 01 09:50:46 2009 memory use: 52.8 MB Wed Apr 01 09:50:46 2009 commencing in-memory singleton removal Wed Apr 01 09:50:46 2009 begin with 3451464 relations and 2525566 unique ideals Wed Apr 01 09:50:53 2009 reduce to 3066244 relations and 2133375 ideals in 13 passes Wed Apr 01 09:50:53 2009 max relations containing the same ideal: 34 Wed Apr 01 09:50:55 2009 reading rational ideals above 720000 Wed Apr 01 09:50:55 2009 reading algebraic ideals above 720000 Wed Apr 01 09:50:55 2009 commencing singleton removal, final pass Wed Apr 01 09:52:34 2009 keeping 2716200 ideals with weight <= 20, new excess is 299435 Wed Apr 01 09:52:43 2009 memory use: 91.4 MB Wed Apr 01 09:52:43 2009 commencing in-memory singleton removal Wed Apr 01 09:52:43 2009 begin with 3076966 relations and 2716200 unique ideals Wed Apr 01 09:52:53 2009 reduce to 3044552 relations and 2631466 ideals in 11 passes Wed Apr 01 09:52:53 2009 max relations containing the same ideal: 20 Wed Apr 01 09:52:57 2009 removing 287604 relations and 254733 ideals in 32871 cliques Wed Apr 01 09:52:57 2009 commencing in-memory singleton removal Wed Apr 01 09:52:58 2009 begin with 2756948 relations and 2631466 unique ideals Wed Apr 01 09:53:03 2009 reduce to 2739934 relations and 2359481 ideals in 7 passes Wed Apr 01 09:53:03 2009 max relations containing the same ideal: 20 Wed Apr 01 09:53:07 2009 removing 213938 relations and 181067 ideals in 32871 cliques Wed Apr 01 09:53:07 2009 commencing in-memory singleton removal Wed Apr 01 09:53:08 2009 begin with 2525996 relations and 2359481 unique ideals Wed Apr 01 09:53:12 2009 reduce to 2514692 relations and 2166979 ideals in 7 passes Wed Apr 01 09:53:12 2009 max relations containing the same ideal: 20 Wed Apr 01 09:53:16 2009 relations with 0 large ideals: 14088 Wed Apr 01 09:53:16 2009 relations with 1 large ideals: 113775 Wed Apr 01 09:53:16 2009 relations with 2 large ideals: 386067 Wed Apr 01 09:53:16 2009 relations with 3 large ideals: 685336 Wed Apr 01 09:53:16 2009 relations with 4 large ideals: 700000 Wed Apr 01 09:53:16 2009 relations with 5 large ideals: 422321 Wed Apr 01 09:53:16 2009 relations with 6 large ideals: 155398 Wed Apr 01 09:53:16 2009 relations with 7+ large ideals: 37707 Wed Apr 01 09:53:16 2009 commencing 2-way merge Wed Apr 01 09:53:21 2009 reduce to 1535349 relation sets and 1187636 unique ideals Wed Apr 01 09:53:21 2009 commencing full merge Wed Apr 01 09:53:46 2009 memory use: 101.8 MB Wed Apr 01 09:53:47 2009 found 756022 cycles, need 709836 Wed Apr 01 09:53:47 2009 weight of 709836 cycles is about 49793751 (70.15/cycle) Wed Apr 01 09:53:47 2009 distribution of cycle lengths: Wed Apr 01 09:53:47 2009 1 relations: 81660 Wed Apr 01 09:53:47 2009 2 relations: 80216 Wed Apr 01 09:53:47 2009 3 relations: 79723 Wed Apr 01 09:53:47 2009 4 relations: 72217 Wed Apr 01 09:53:47 2009 5 relations: 66456 Wed Apr 01 09:53:47 2009 6 relations: 58726 Wed Apr 01 09:53:47 2009 7 relations: 51392 Wed Apr 01 09:53:47 2009 8 relations: 43837 Wed Apr 01 09:53:47 2009 9 relations: 38242 Wed Apr 01 09:53:47 2009 10+ relations: 137367 Wed Apr 01 09:53:47 2009 heaviest cycle: 18 relations Wed Apr 01 09:53:47 2009 commencing cycle optimization Wed Apr 01 09:53:50 2009 start with 4180043 relations Wed Apr 01 09:54:13 2009 pruned 121259 relations Wed Apr 01 09:54:13 2009 memory use: 109.1 MB Wed Apr 01 09:54:13 2009 distribution of cycle lengths: Wed Apr 01 09:54:13 2009 1 relations: 81660 Wed Apr 01 09:54:13 2009 2 relations: 82329 Wed Apr 01 09:54:13 2009 3 relations: 83048 Wed Apr 01 09:54:13 2009 4 relations: 74701 Wed Apr 01 09:54:13 2009 5 relations: 68609 Wed Apr 01 09:54:13 2009 6 relations: 59877 Wed Apr 01 09:54:13 2009 7 relations: 52159 Wed Apr 01 09:54:13 2009 8 relations: 44088 Wed Apr 01 09:54:13 2009 9 relations: 38064 Wed Apr 01 09:54:13 2009 10+ relations: 125301 Wed Apr 01 09:54:13 2009 heaviest cycle: 18 relations Wed Apr 01 09:54:15 2009 RelProcTime: 566 Wed Apr 01 09:54:15 2009 Wed Apr 01 09:54:15 2009 commencing linear algebra Wed Apr 01 09:54:16 2009 read 709836 cycles Wed Apr 01 09:54:19 2009 cycles contain 2265034 unique relations Wed Apr 01 09:55:18 2009 read 2265034 relations Wed Apr 01 09:55:26 2009 using 20 quadratic characters above 134217104 Wed Apr 01 09:55:55 2009 building initial matrix Wed Apr 01 09:57:11 2009 memory use: 265.2 MB Wed Apr 01 09:57:13 2009 read 709836 cycles Wed Apr 01 09:57:15 2009 matrix is 709592 x 709836 (202.6 MB) with weight 67855787 (95.59/col) Wed Apr 01 09:57:15 2009 sparse part has weight 47435926 (66.83/col) Wed Apr 01 09:57:42 2009 filtering completed in 3 passes Wed Apr 01 09:57:43 2009 matrix is 706151 x 706351 (202.1 MB) with weight 67635450 (95.75/col) Wed Apr 01 09:57:43 2009 sparse part has weight 47325320 (67.00/col) Wed Apr 01 09:57:48 2009 read 706351 cycles Wed Apr 01 09:57:50 2009 matrix is 706151 x 706351 (202.1 MB) with weight 67635450 (95.75/col) Wed Apr 01 09:57:50 2009 sparse part has weight 47325320 (67.00/col) Wed Apr 01 09:57:50 2009 saving the first 48 matrix rows for later Wed Apr 01 09:57:52 2009 matrix is 706103 x 706351 (193.9 MB) with weight 53758455 (76.11/col) Wed Apr 01 09:57:52 2009 sparse part has weight 46585813 (65.95/col) Wed Apr 01 09:57:52 2009 matrix includes 64 packed rows Wed Apr 01 09:57:52 2009 using block size 65536 for processor cache size 3072 kB Wed Apr 01 09:58:05 2009 commencing Lanczos iteration Wed Apr 01 09:58:05 2009 memory use: 190.9 MB Wed Apr 01 11:15:28 2009 lanczos halted after 11167 iterations (dim = 706103) Wed Apr 01 11:15:30 2009 recovered 29 nontrivial dependencies Wed Apr 01 11:15:30 2009 BLanczosTime: 4699 Wed Apr 01 11:15:30 2009 Wed Apr 01 11:15:30 2009 commencing square root phase Wed Apr 01 11:15:30 2009 reading relations for dependency 1 Wed Apr 01 11:15:31 2009 read 353185 cycles Wed Apr 01 11:15:32 2009 cycles contain 1388016 unique relations Wed Apr 01 11:15:52 2009 read 1388016 relations Wed Apr 01 11:16:01 2009 multiplying 1131652 relations Wed Apr 01 11:19:41 2009 multiply complete, coefficients have about 50.96 million bits Wed Apr 01 11:19:43 2009 initial square root is modulo 20687743 Wed Apr 01 11:25:15 2009 sqrtTime: 585 Wed Apr 01 11:25:15 2009 prp48 factor: 155050675604209896581134157847019089481518228889 Wed Apr 01 11:25:15 2009 prp75 factor: 912690668714493907373500136316795190459438996987480098514102369812675642763 Wed Apr 01 11:25:15 2009 elapsed time 01:48:54
By Ignacio Santos / GGNFS, Msieve / Apr 1, 2009
(17·10151-11)/3 = 5(6)1503<152> = 197 · 2549 · 150077 · 64049057277893410133<20> · C122
C122 = P47 · P75
P47 = 32464004422451646227175787281454353721578743329<47>
P75 = 361628487228543343997268749954229942453264699691372232919817973583847898639<75>
Number: 56663_151 N=11739908808671929786042058831125218787662532380612200515342021307743382533901311210652185262270993252909610679206989429231 ( 122 digits) SNFS difficulty: 152 digits. Divisors found: r1=32464004422451646227175787281454353721578743329 (pp47) r2=361628487228543343997268749954229942453264699691372232919817973583847898639 (pp75) Version: Msieve-1.39 Total time: 11.87 hours. Scaled time: 20.64 units (timescale=1.739). Factorization parameters were as follows: n: 11739908808671929786042058831125218787662532380612200515342021307743382533901311210652185262270993252909610679206989429231 m: 1000000000000000000000000000000 deg: 5 c5: 170 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 469483 x 469731 Total sieving time: 11.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 11.87 hours. --------- CPU info (if available) ----------
(17·10151+7)/3 = 5(6)1509<152> = 59513 · 75059999230714943790772542299<29> · C119
C119 = P35 · P84
P35 = 62238710570922495573366663882681629<35>
P84 = 203819945539082511597499093572063494216006110047531367428499987663572659507351099803<84>
Number: 56669_151 N=12685490598988142060189052548698739487943122986927356219830691821817806004377075201132067447650111602237073638053619087 ( 119 digits) SNFS difficulty: 153 digits. Divisors found: r1=62238710570922495573366663882681629 (pp35) r2=203819945539082511597499093572063494216006110047531367428499987663572659507351099803 (pp84) Version: Msieve-1.39 Total time: 18.17 hours. Scaled time: 46.72 units (timescale=2.571). Factorization parameters were as follows: n: 12685490598988142060189052548698739487943122986927356219830691821817806004377075201132067447650111602237073638053619087 m: 2000000000000000000000000000000 deg: 5 c5: 85 c0: 112 skew: 1.06 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 455657 x 455905 Total sieving time: 18.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 18.17 hours. --------- CPU info (if available) ----------
(17·10154-11)/3 = 5(6)1533<155> = 3329 · 39712011226005639096211<23> · C129
C129 = P33 · P43 · P54
P33 = 198234862416162631936484562619177<33>
P43 = 2328113640357218004986198980376773869988793<43>
P54 = 928769146549963888152360439285040769713792736737212157<54>
Number: 56663_154 N=428639301860656654814110326255012769887434929139487247434823933423336520857476621914409947268509542352591090828640998551880219677 ( 129 digits) SNFS difficulty: 156 digits. Divisors found: r1=198234862416162631936484562619177 (pp33) r2=2328113640357218004986198980376773869988793 (pp43) r3=928769146549963888152360439285040769713792736737212157 (pp54) Version: Msieve-1.39 Total time: 15.68 hours. Scaled time: 27.20 units (timescale=1.735). Factorization parameters were as follows: n: 428639301860656654814110326255012769887434929139487247434823933423336520857476621914409947268509542352591090828640998551880219677 m: 10000000000000000000000000000000 deg: 5 c5: 17 c0: -110 skew: 1.45 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 446463 x 446711 Total sieving time: 15.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 15.68 hours. --------- CPU info (if available) ----------
(47·10159-11)/9 = 5(2)1581<160> = 149 · 190711 · 834433046171802615899<21> · C132
C132 = P39 · P93
P39 = 536600157415957928667906809610285118781<39>
P93 = 410441291752214959587758213627032843532720810198270608605012431607818445610475890040947017281<93>
Number: 52221_159 N=220242861764247661969571070417579128819047493932409916977507088501723368631731121810801082211846597159340822029796611724062744654461 ( 132 digits) SNFS difficulty: 161 digits. Divisors found: r1=536600157415957928667906809610285118781 (pp39) r2=410441291752214959587758213627032843532720810198270608605012431607818445610475890040947017281 (pp93) Version: Msieve-1.39 Total time: 24.30 hours. Scaled time: 42.25 units (timescale=1.739). Factorization parameters were as follows: n: 220242861764247661969571070417579128819047493932409916977507088501723368631731121810801082211846597159340822029796611724062744654461 m: 100000000000000000000000000000000 deg: 5 c5: 47 c0: -110 skew: 1.19 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 631939 x 632187 Total sieving time: 24.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 24.30 hours. --------- CPU info (if available) ----------
(47·10159+7)/9 = 5(2)1583<160> = 33 · 59927713 · 191530975350692846041<21> · C131
C131 = P57 · P74
P57 = 511170948529923283034557432633722003404601633248959994471<57>
P74 = 32965426305433629230190054462246589863807476823608132777661922721319318643<74>
Number: 52223_159 N=16850968233241792739085910398697245799033831050992627002110908064022523588952110206176397144014275422600148319412030862186767222853 ( 131 digits) SNFS difficulty: 161 digits. Divisors found: r1=511170948529923283034557432633722003404601633248959994471 (pp57) r2=32965426305433629230190054462246589863807476823608132777661922721319318643 (pp74) Version: Msieve-1.39 Total time: 35.25 hours. Scaled time: 90.23 units (timescale=2.560). Factorization parameters were as follows: n: 16850968233241792739085910398697245799033831050992627002110908064022523588952110206176397144014275422600148319412030862186767222853 m: 100000000000000000000000000000000 deg: 5 c5: 47 c0: 70 skew: 1.08 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 725307 x 725555 Total sieving time: 35.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 35.25 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Apr 1, 2009
(17·10147+7)/3 = 5(6)1469<148> = 23 · 1032 · 509 · 3797 · 10174717796583088789<20> · C118
C118 = P36 · P82
P36 = 129573033117179924588512239938857447<36>
P82 = 9114440288419780231543146000035797635625289495351245774582669051068725173190763913<82>
Number: 56669_147 N=1180985673335975127458015295142275435200430185710279701518984234077262189735487732400421632109737794206544658338910111 ( 118 digits) SNFS difficulty: 149 digits. Divisors found: r1=129573033117179924588512239938857447 r2=9114440288419780231543146000035797635625289495351245774582669051068725173190763913 Version: Total time: 11.81 hours. Scaled time: 30.29 units (timescale=2.564). Factorization parameters were as follows: name: 56669_147 n: 1180985673335975127458015295142275435200430185710279701518984234077262189735487732400421632109737794206544658338910111 m: 200000000000000000000000000000 deg: 5 c5: 425 c0: 56 skew: 0.67 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 340985 x 341233 Total sieving time: 11.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 11.81 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM / Apr 1, 2009
(17·10172-11)/3 = 5(6)1713<173> = 4955881256811199723<19> · 11290582017638819227<20> · 11112034900286103762642201273601<32> · C104
C104 = P50 · P55
P50 = 24347751356528083429704521631474972231425477386529<50>
P55 = 3743156540295891619951667529358841860694687010479704207<55>
Number: n N=91137444731686262774627615616319827328697194596617503688409426242033418216434046022033424397591326427503 ( 104 digits) Divisors found: r1=24347751356528083429704521631474972231425477386529 (pp50) r2=3743156540295891619951667529358841860694687010479704207 (pp55) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 7.24 hours. Scaled time: 13.21 units (timescale=1.826). Factorization parameters were as follows: name: KA_5_6_171_3 n: 91137444731686262774627615616319827328697194596617503688409426242033418216434046022033424397591326427503 skew: 9728.52 # norm 1.89e+14 c5: 35640 c4: 506717856 c3: -4809118050740 c2: -160389437028591787 c1: 49262667408050328184 c0: 855687188550426097738455 # alpha -5.68 Y1: 14927678093 Y0: -76129256497011755726 # Murphy_E 2.02e-09 # M 75295145679565946908817500749177518298741612364355916353443022990180492699640146162695390995764326746603 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1150000, 1900001) Primes: RFBsize:169511, AFBsize:169665, largePrimes:14693412 encountered Relations: rels:12787035, finalFF:387064 Max relations in full relation-set: 28 Initial matrix: 339260 x 387064 with sparse part having weight 32969349. Pruned matrix : 304212 x 305972 with weight 22888041. Total sieving time: 6.35 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.35 hours. Total square root time: 0.17 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,28,28,56,56,2.6,2.6,100000 total time: 7.24 hours. --------- CPU info (if available) ----------
(17·10177-11)/3 = 5(6)1763<178> = 7 · 1110019 · 24634710995869151<17> · 220512259049881369<18> · 4111560817269325357643<22> · C116
C116 = P37 · P80
P37 = 1473812243093126799020140728678603053<37>
P80 = 22154916899888862927394726868174094819291933894082264587057091242978910569170611<80>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 32652187771767028015187037982311727388503491875203013336891204030571771264825654590531346637599232988597952302475383 (116 digits) Using B1=3130000, B2=5707048630, polynomial Dickson(6), sigma=2678381111 Step 1 took 31871ms Step 2 took 11122ms ********** Factor found in step 2: 1473812243093126799020140728678603053 Found probable prime factor of 37 digits: 1473812243093126799020140728678603053 Probable prime cofactor 22154916899888862927394726868174094819291933894082264587057091242978910569170611 has 80 digits
(17·10157+7)/3 = 5(6)1569<158> = 19 · 47 · 24481189 · 151014727 · 1992059893701340537<19> · C121
C121 = P31 · P91
P31 = 1082985503619346698482704731511<31>
P91 = 7956084075679697378771476734726063706643361276396233640080959594833325824674938385234259973<91>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 8616323719537841537759651358421384010839230693036831137814836804107326568016821978024742706935361081846090501105739109203 (121 digits) Using B1=694000, B2=696689082, polynomial Dickson(3), sigma=3423227726 Step 1 took 7675ms Step 2 took 3276ms ********** Factor found in step 2: 1082985503619346698482704731511 Found probable prime factor of 31 digits: 1082985503619346698482704731511 Probable prime cofactor 7956084075679697378771476734726063706643361276396233640080959594833325824674938385234259973 has 91 digits
Jason Papadopoulos's Msieve Version 1.40 was released.
By Sinkiti Sibata / GGNFS / Mar 31, 2009
(17·10143+7)/3 = 5(6)1429<144> = C144
C144 = P50 · P95
P50 = 27982756612723364391161873357402661413921623326919<50>
P95 = 20250566250825028908340470371472117580789090434207731128039313703339686354231140442904863190251<95>
Number: 56669_143 N=566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 144 digits) SNFS difficulty: 145 digits. Divisors found: r1=27982756612723364391161873357402661413921623326919 (pp50) r2=20250566250825028908340470371472117580789090434207731128039313703339686354231140442904863190251 (pp95) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.71 hours. Scaled time: 35.25 units (timescale=1.991). Factorization parameters were as follows: name: 56669_143 n: 566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 50000000000000000000000000000 deg: 5 c5: 136 c0: 175 skew: 1.05 type: snfs lss: 1 rlim: 1870000 alim: 1870000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1870000/1870000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [935000, 2435001) Primes: RFBsize:139952, AFBsize:140182, largePrimes:4117559 encountered Relations: rels:4277564, finalFF:355683 Max relations in full relation-set: 28 Initial matrix: 280201 x 355683 with sparse part having weight 38073609. Pruned matrix : 254929 x 256394 with weight 25011096. Total sieving time: 16.72 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.74 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1870000,1870000,26,26,49,49,2.3,2.3,100000 total time: 17.71 hours. --------- CPU info (if available) ----------
(17·10132-11)/3 = 5(6)1313<133> = 11927 · 12241 · C125
C125 = P59 · P66
P59 = 52284820891276381659708546870688803399267075582265861157609<59>
P66 = 742341815766471509352216623789785937342597231924390451309162340601<66>
Number: 56663_132 N=38813208877454852412647671331555464620012372235449573546831005263411310143039209096758615090003459192994254154202289800783009 ( 125 digits) SNFS difficulty: 134 digits. Divisors found: r1=52284820891276381659708546870688803399267075582265861157609 (pp59) r2=742341815766471509352216623789785937342597231924390451309162340601 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 8.62 hours. Scaled time: 4.08 units (timescale=0.473). Factorization parameters were as follows: name: 56663_132 n: 38813208877454852412647671331555464620012372235449573546831005263411310143039209096758615090003459192994254154202289800783009 m: 200000000000000000000000000 deg: 5 c5: 425 c0: -88 skew: 0.73 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1350001) Primes: RFBsize:92938, AFBsize:92785, largePrimes:3089925 encountered Relations: rels:3013509, finalFF:213784 Max relations in full relation-set: 28 Initial matrix: 185790 x 213784 with sparse part having weight 19355847. Pruned matrix : 178577 x 179569 with weight 14186814. Total sieving time: 7.78 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.64 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 8.62 hours. --------- CPU info (if available) ----------
(17·10133+7)/3 = 5(6)1329<134> = 1585523 · C128
C128 = P61 · P67
P61 = 6354900264814491244184743748128071268238350143265482183046067<61>
P67 = 5624013846139737478130811647155975800741681473273243786489905382309<67>
Number: 56669_133 N=35740047080153783115518769936901998057843794550231479875515313664113776127288387911538758294056072770099624330058073371793828703 ( 128 digits) SNFS difficulty: 135 digits. Divisors found: r1=6354900264814491244184743748128071268238350143265482183046067 (pp61) r2=5624013846139737478130811647155975800741681473273243786489905382309 (pp67) Version: GGNFS-0.77.1-20060513-nocona Total time: 6.47 hours. Scaled time: 16.65 units (timescale=2.575). Factorization parameters were as follows: name: 56669_133 n: 35740047080153783115518769936901998057843794550231479875515313664113776127288387911538758294056072770099624330058073371793828703 m: 500000000000000000000000000 deg: 5 c5: 136 c0: 175 skew: 1.05 type: snfs lss: 1 rlim: 1280000 alim: 1280000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1280000/1280000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [640000, 1315001) Primes: RFBsize:98610, AFBsize:98755, largePrimes:3463453 encountered Relations: rels:3624793, finalFF:411535 Max relations in full relation-set: 28 Initial matrix: 197432 x 411535 with sparse part having weight 40428850. Pruned matrix : 153381 x 154432 with weight 13499290. Total sieving time: 6.23 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1280000,1280000,26,26,47,47,2.3,2.3,75000 total time: 6.47 hours. --------- CPU info (if available) ----------
(17·10134+7)/3 = 5(6)1339<135> = 3187 · 1526387 · 124908761 · C117
C117 = P39 · P79
P39 = 177690045721539954255192188637430523827<39>
P79 = 5248376050110084584175551640517401731912747171702980190279975114064593981426783<79>
Number: 56669_134 N=932584180307896199826436755725362816413786179614293760112655727894376981585212686153454842386632332266149796537458541 ( 117 digits) SNFS difficulty: 136 digits. Divisors found: r1=177690045721539954255192188637430523827 (pp39) r2=5248376050110084584175551640517401731912747171702980190279975114064593981426783 (pp79) Version: GGNFS-0.77.1-20060513-nocona Total time: 10.06 hours. Scaled time: 25.81 units (timescale=2.564). Factorization parameters were as follows: name: 56669_134 n: 932584180307896199826436755725362816413786179614293760112655727894376981585212686153454842386632332266149796537458541 m: 1000000000000000000000000000 deg: 5 c5: 17 c0: 70 skew: 1.33 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1325001) Primes: RFBsize:100021, AFBsize:100398, largePrimes:4120790 encountered Relations: rels:5006144, finalFF:1098798 Max relations in full relation-set: 28 Initial matrix: 200484 x 1098798 with sparse part having weight 104332057. Pruned matrix : 130458 x 131524 with weight 15361620. Total sieving time: 9.84 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 10.06 hours. --------- CPU info (if available) ----------
(17·10147-11)/3 = 5(6)1463<148> = 7 · 59 · 14797 · 65029 · 332207 · 171783755123<12> · C120
C120 = P35 · P85
P35 = 86544108390160860576618609111824549<35>
P85 = 2887144271562123331708866792687322803919554408546240280625249905275715279143834477443<85>
Number: 56663_147 N=249865326776104423930264688962865431115384646336343536218983974506030500463312084659865793670525610032092933357714148207 ( 120 digits) SNFS difficulty: 149 digits. Divisors found: r1=86544108390160860576618609111824549 (pp35) r2=2887144271562123331708866792687322803919554408546240280625249905275715279143834477443 (pp85) Version: GGNFS-0.77.1-20060513-k8 Total time: 28.69 hours. Scaled time: 55.23 units (timescale=1.925). Factorization parameters were as follows: name: 56663_147 n: 249865326776104423930264688962865431115384646336343536218983974506030500463312084659865793670525610032092933357714148207 m: 200000000000000000000000000000 deg: 5 c5: 425 c0: -88 skew: 0.73 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 3550001) Primes: RFBsize:155805, AFBsize:156018, largePrimes:4577116 encountered Relations: rels:4946005, finalFF:377828 Max relations in full relation-set: 28 Initial matrix: 311890 x 377828 with sparse part having weight 46231365. Pruned matrix : 289754 x 291377 with weight 34207449. Total sieving time: 27.11 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.28 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 28.69 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 31, 2009
(17·10146+7)/3 = 5(6)1459<147> = 2753 · 191602500378467<15> · 348303469429687<15> · C115
C115 = P43 · P73
P43 = 3057392239329248851492355041710477577863419<43>
P73 = 1008814518216364144881525304100909685341593542436645633932512347413758923<73>
Number: 56669_146 N=3084341678917386880850198417534629193145857975643907546729705176891505592880992672853761482215266377566809886537737 ( 115 digits) SNFS difficulty: 148 digits. Divisors found: r1=3057392239329248851492355041710477577863419 (pp43) r2=1008814518216364144881525304100909685341593542436645633932512347413758923 (pp73) Version: Msieve-1.39 Total time: 10.06 hours. Scaled time: 17.50 units (timescale=1.739). Factorization parameters were as follows: n: 3084341678917386880850198417534629193145857975643907546729705176891505592880992672853761482215266377566809886537737 m: 200000000000000000000000000000 deg: 5 c5: 85 c0: 112 skew: 1.06 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 373222 x 373467 Total sieving time: 10.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 10.06 hours. --------- CPU info (if available) ----------
(17·10156+7)/3 = 5(6)1559<157> = 15870103 · C150
C150 = P40 · P111
P40 = 2367635701915964097724774454907252952361<40>
P111 = 150811007437796566561181108281747578101194546138167998981260017491864192266868547474304779267945342162030780643<111>
Number: 56669_156 N=357065525451641156120200774164267658922356500563774958906483887764727592925305315703790118228386209381669839613937393264975448909604850495719319948123 ( 150 digits) SNFS difficulty: 158 digits. Divisors found: r1=2367635701915964097724774454907252952361 (pp40) r2=150811007437796566561181108281747578101194546138167998981260017491864192266868547474304779267945342162030780643 (pp111) Version: Msieve-1.39 Total time: 25.77 hours. Scaled time: 66.27 units (timescale=2.571). Factorization parameters were as follows: n: 357065525451641156120200774164267658922356500563774958906483887764727592925305315703790118228386209381669839613937393264975448909604850495719319948123 m: 20000000000000000000000000000000 deg: 5 c5: 85 c0: 112 skew: 1.06 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 606794 x 607042 Total sieving time: 25.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 25.77 hours. --------- CPU info (if available) ----------
(17·10162+7)/3 = 5(6)1619<163> = 151 · 883 · C158
C158 = P60 · P98
P60 = 938555543805634759258867025023469462009038450912147151697593<60>
P98 = 45282462535927402072019537780515353914840639175316981835821290735171335483580567771222872954596801<98>
Number: 56669_162 N=42500106250265625664064160160400401001002502506256265640664101660254150635376588441471103677759194397985994964987412468531171327928319820799551998879997199993 ( 158 digits) SNFS difficulty: 164 digits. Divisors found: r1=938555543805634759258867025023469462009038450912147151697593 (pp60) r2=45282462535927402072019537780515353914840639175316981835821290735171335483580567771222872954596801 (pp98) Version: Msieve-1.39 Total time: 31.25 hours. Scaled time: 54.35 units (timescale=1.739). Factorization parameters were as follows: n: 42500106250265625664064160160400401001002502506256265640664101660254150635376588441471103677759194397985994964987412468531171327928319820799551998879997199993 m: 200000000000000000000000000000000 deg: 5 c5: 425 c0: 56 skew: 0.67 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 662969 x 663217 Total sieving time: 31.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 31.25 hours. --------- CPU info (if available) ----------
(49·10152+41)/9 = 5(4)1519<153> = 3 · 19 · 71 · 27067 · 54454587301<11> · C134
C134 = P50 · P85
P50 = 71383023650434742673540327947729791872255675161503<50>
P85 = 1278647495690664764624201577118918428375254439965018372226597323792892389586504540967<85>
Number: 54449_152 N=91273724425455878608183269099983069058428866640355708824581369879911159793711223544499072175584234280081660305868836764124980604793401 ( 134 digits) SNFS difficulty: 154 digits. Divisors found: r1=71383023650434742673540327947729791872255675161503 (pp50) r2=1278647495690664764624201577118918428375254439965018372226597323792892389586504540967 (pp85) Version: Msieve-1.39 Total time: 14.99 hours. Scaled time: 26.07 units (timescale=1.739). Factorization parameters were as follows: n: 91273724425455878608183269099983069058428866640355708824581369879911159793711223544499072175584234280081660305868836764124980604793401 m: 2000000000000000000000000000000 deg: 5 c5: 1225 c0: 328 skew: 0.77 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 418620 x 418868 Total sieving time: 14.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 14.99 hours. --------- CPU info (if available) ----------
(17·10168-11)/3 = 5(6)1673<169> = 157 · 2833506191<10> · C158
C158 = P48 · P55 · P56
P48 = 483474821596767408759082695358090165964391803959<48>
P55 = 1837726659308304398305992928336713542412055109386752587<55>
P56 = 14336695821349312910842315435438406296777782235007995553<56>
Number: 56663_168 N=12738076371128477468978940600870901594686948017709240282640546203307075948320395285636508081077478314865146941533419891948955009115764013722423058628275173949 ( 158 digits) SNFS difficulty: 170 digits. Divisors found: r1=483474821596767408759082695358090165964391803959 (pp48) r2=1837726659308304398305992928336713542412055109386752587 (pp55) r3=14336695821349312910842315435438406296777782235007995553 (pp56) Version: Msieve-1.39 Total time: 55.51 hours. Scaled time: 142.10 units (timescale=2.560). Factorization parameters were as follows: n: 12738076371128477468978940600870901594686948017709240282640546203307075948320395285636508081077478314865146941533419891948955009115764013722423058628275173949 m: 5000000000000000000000000000000000 deg: 5 c5: 136 c0: -275 skew: 1.15 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 884260 x 884508 Total sieving time: 55.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 55.51 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Mar 31, 2009
(16·10157+17)/3 = 5(3)1569<158> = 17169989 · 6719426025889<13> · C138
C138 = P57 · P82
P57 = 151415726802733836070298952223999025939393684802019324559<57>
P82 = 3052991170776104521524354567572988782090802728355355198184479556190327131801237201<82>
Number: n N=462270877045393163584348333685350086843161288349162181866585708605048711534748880933255975279236570378999265058357048501718512986563719359 ( 138 digits) SNFS difficulty: 158 digits. Divisors found: Tue Mar 31 10:09:36 2009 prp57 factor: 151415726802733836070298952223999025939393684802019324559 Tue Mar 31 10:09:36 2009 prp82 factor: 3052991170776104521524354567572988782090802728355355198184479556190327131801237201 Tue Mar 31 10:09:36 2009 elapsed time 00:45:07 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 17.44 hours. Scaled time: 46.39 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_3_156_9 n: 462270877045393163584348333685350086843161288349162181866585708605048711534748880933255975279236570378999265058357048501718512986563719359 skew: 0.81 deg: 5 c5: 50 c0: 17 m: 20000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 3240409) Primes: RFBsize:315948, AFBsize:316401, largePrimes:14457525 encountered Relations: rels:13441122, finalFF:589292 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 934151 hash collisions in 15350882 relations Msieve: matrix is 569049 x 569297 (151.8 MB) Total sieving time: 17.16 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 17.44 hours. --------- CPU info (if available) ----------
(17·10202-11)/3 = 5(6)2013<203> = 25508661453125273<17> · 1409768013786543156259<22> · 1513242066470195178659029<25> · 6533393411141674191648447518542097<34> · C108
C108 = P43 · P65
P43 = 8533119906049968013405927966076339919424151<43>
P65 = 18678297133149696415319508843765989670835661272807507536836918743<65>
Number: n N=159384149077995724360968874191338336220570220714108819627737775487450405265340226750529863760307117738762193 ( 108 digits) Divisors found: Tue Mar 31 14:05:24 2009 prp43 factor: 8533119906049968013405927966076339919424151 Tue Mar 31 14:05:24 2009 prp65 factor: 18678297133149696415319508843765989670835661272807507536836918743 Tue Mar 31 14:05:24 2009 elapsed time 00:25:39 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 8.88 hours. Scaled time: 23.35 units (timescale=2.629). Factorization parameters were as follows: name: KA_5_6_201_3 n: 159384149077995724360968874191338336220570220714108819627737775487450405265340226750529863760307117738762193 skew: 21605.08 # norm 6.21e+14 c5: 25380 c4: -660213150 c3: -24921912202565 c2: 707460791442207938 c1: 7580049824717362649974 c0: 756794256944768577900120 # alpha -5.93 Y1: 259070668967 Y0: -362737383380765073881 # Murphy_E 1.36e-09 # M 109100457503249211478622374976003187991088526352527265693883999034580980374613343265241024834765793558473934 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1250000, 2306641) Primes: RFBsize:183072, AFBsize:183136, largePrimes:15477607 encountered Relations: rels:13629014, finalFF:405215 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1107998 hash collisions in 14538239 relations Msieve: matrix is 358515 x 358763 (98.6 MB) Total sieving time: 8.41 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 8.88 hours. --------- CPU info (if available) ----------
(17·10140-11)/3 = 5(6)1393<141> = 23 · 1988582244189483800485209843958743589043<40> · C101
C101 = P49 · P52
P49 = 3005579956989595830896695132357111722799545705839<49>
P52 = 4122189828877880282767943433686839636744205235978853<52>
Number: n N=12389571128581728818477254444904148656371225081269043431614820414039285832831268485708657579962622667 ( 101 digits) Divisors found: r1=3005579956989595830896695132357111722799545705839 (pp49) r2=4122189828877880282767943433686839636744205235978853 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.57 hours. Scaled time: 8.33 units (timescale=1.823). Factorization parameters were as follows: name: KA_5_6_139_3 n: 12389571128581728818477254444904148656371225081269043431614820414039285832831268485708657579962622667 skew: 4651.48 # norm 9.89e+13 c5: 69300 c4: 571486905 c3: -12839315526392 c2: -9622006559641436 c1: 57287478236820850868 c0: 2430459791125601077760 # alpha -5.44 Y1: 15320936839 Y0: -11232169038330410541 # Murphy_E 3.14e-09 # M 4060843220027718992330198455824508205853740189188640325603580098901770979732502745137967010543083242 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [900000, 1400001) Primes: RFBsize:135072, AFBsize:135518, largePrimes:10265150 encountered Relations: rels:8908522, finalFF:341461 Max relations in full relation-set: 48 Initial matrix: 270671 x 341461 with sparse part having weight 36163373. Pruned matrix : 227834 x 229251 with weight 18117846. Total sieving time: 3.78 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.40 hours. Total square root time: 0.19 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,28,28,56,56,2.5,2.5,100000 total time: 4.57 hours. --------- CPU info (if available) ----------
(17·10145+7)/3 = 5(6)1449<146> = 239 · 677 · 1049 · 292118833 · 29674305301143700049<20> · C110
C110 = P41 · P70
P41 = 18183749665123138488743833669798206342683<41>
P70 = 2118078478457350688003065996325803900532514144740988502378387478125357<70>
Number: n N=38514608823353377272641347653420217491397580608502431726839383981631414778701495850403463655142317875973712831 ( 110 digits) Divisors found: Tue Mar 31 17:40:48 2009 prp41 factor: 18183749665123138488743833669798206342683 Tue Mar 31 17:40:48 2009 prp70 factor: 2118078478457350688003065996325803900532514144740988502378387478125357 Tue Mar 31 17:40:48 2009 elapsed time 00:33:50 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 13.42 hours. Scaled time: 35.42 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_6_144_9 n: 38514608823353377272641347653420217491397580608502431726839383981631414778701495850403463655142317875973712831 skew: 37739.22 # norm 4.10e+15 c5: 20580 c4: -3779595533 c3: -179745057398388 c2: 4385492615468670600 c1: 77526627803213528726734 c0: -311510180055772786998885888 # alpha -6.59 Y1: 159942219547 Y0: -1133543719479839699269 # Murphy_E 9.84e-10 # M 33740392465434260340494028499491057358071137137340339477433159730462287355555309704189306725907028187501742996 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1600000, 2200141) Primes: RFBsize:230209, AFBsize:230131, largePrimes:16112914 encountered Relations: rels:14158601, finalFF:468589 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 786233 hash collisions in 14611703 relations Msieve: matrix is 452695 x 452943 (125.8 MB) Total sieving time: 12.98 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 13.42 hours. --------- CPU info (if available) ----------
(17·10145-11)/3 = 5(6)1443<146> = 352357 · 50632934702653297795467724997<29> · C112
C112 = P39 · P73
P39 = 464627234444086771952257423350409216049<39>
P73 = 6836077856706214117788292473821556206302849788523878355659660833037097103<73>
Number: n N=3176227949005868364358693738547790942522693886423918740391964916137466084652121419130404718461305044596919006047 ( 112 digits) Divisors found: Tue Mar 31 20:15:07 2009 prp39 factor: 464627234444086771952257423350409216049 Tue Mar 31 20:15:07 2009 prp73 factor: 6836077856706214117788292473821556206302849788523878355659660833037097103 Tue Mar 31 20:15:07 2009 elapsed time 00:42:53 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 15.08 hours. Scaled time: 39.96 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_6_144_3 n: 3176227949005868364358693738547790942522693886423918740391964916137466084652121419130404718461305044596919006047 skew: 54953.55 # norm 5.48e+15 c5: 11520 c4: 1446373908 c3: 134262196311763 c2: -3817045765264157060 c1: -243283989464720815205980 c0: 4747964505240438282057733040 # alpha -6.74 Y1: 316846995377 Y0: -3076739404819159933737 # Murphy_E 8.00e-10 # M 205874714480015875367168626463213627297291540683003617802622108955885926000947565141870728968097023688519563551 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1750000, 2450083) Primes: RFBsize:250150, AFBsize:249829, largePrimes:16312727 encountered Relations: rels:14195956, finalFF:521565 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 815780 hash collisions in 14679846 relations Msieve: matrix is 566775 x 567023 (158.2 MB) Total sieving time: 14.67 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,56,56,2.6,2.6,100000 total time: 15.08 hours. --------- CPU info (if available) ----------
(17·10149-11)/3 = 5(6)1483<150> = 31 · 11382247123588637<17> · C133
C133 = P40 · P93
P40 = 7590405178178339305402471611491947851643<40>
P93 = 211579215767037376360039653308037412309227402033175342484760722035903386871514912511485607703<93>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1605971974953032633620272892291686979162820217563299946643348773906039149427150458389421453602769051062426587033402865804805142006029 (133 digits) Using B1=2564000, B2=3568033570, polynomial Dickson(6), sigma=1582264560 Step 1 took 31746ms Step 2 took 10951ms ********** Factor found in step 2: 7590405178178339305402471611491947851643 Found probable prime factor of 40 digits: 7590405178178339305402471611491947851643 Probable prime cofactor 211579215767037376360039653308037412309227402033175342484760722035903386871514912511485607703 has 93 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 31, 2009
(8·10182+1)/9 = (8)1819<182> = 15236737 · C175
C175 = P52 · P124
P52 = 2110195633562623203363788636409114570248983488203027<52>
P124 = 2764603071590345234203219159089774679474933517069560468037418091215396508782747937036376125151482683214742185677398930843011<124>
Number: 88889_182 N=5833853330203762714345524825222676540842628502998305272899892469686186017970178843993230892473164621066104172362421750069512185508543521417275161269036073070558931934631994297 ( 175 digits) SNFS difficulty: 182 digits. Divisors found: r1=2110195633562623203363788636409114570248983488203027 r2=2764603071590345234203219159089774679474933517069560468037418091215396508782747937036376125151482683214742185677398930843011 Version: Total time: 78.73 hours. Scaled time: 187.62 units (timescale=2.383). Factorization parameters were as follows: n: 5833853330203762714345524825222676540842628502998305272899892469686186017970178843993230892473164621066104172362421750069512185508543521417275161269036073070558931934631994297 m: 2000000000000000000000000000000000000 deg: 5 c5: 25 c0: 1 skew: 0.53 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18294595 Max relations in full relation-set: Initial matrix: Pruned matrix : 1201370 x 1201618 Total sieving time: 72.82 hours. Total relation processing time: 2.03 hours. Matrix solve time: 3.56 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 78.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Erik Branger / GGNFS, Msieve / Mar 31, 2009
(17·10138+7)/3 = 5(6)1379<139> = 239 · C137
C137 = P40 · P98
P40 = 2098112473379109578751455496357626967749<40>
P98 = 11300586918872044831776718863224420912853578411193077140307922192223698599776702875788745176999879<98>
Number: 56669_138 N=23709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902371 ( 137 digits) SNFS difficulty: 140 digits. Divisors found: r1=2098112473379109578751455496357626967749 r2=11300586918872044831776718863224420912853578411193077140307922192223698599776702875788745176999879 Version: Total time: 8.22 hours. Scaled time: 8.60 units (timescale=1.046). Factorization parameters were as follows: n: 23709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902370990237099023709902371 m: 5000000000000000000000000000 deg: 5 c5: 136 c0: 175 skew: 1.05 type: snfs lss: 1 rlim: 1540000 alim: 1540000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1540000/1540000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [770000, 1770001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 234388 x 234636 Total sieving time: 8.22 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1540000,1540000,26,26,48,48,2.3,2.3,100000 total time: 8.22 hours. --------- CPU info (if available) ----------
(17·10137-11)/3 = 5(6)1363<138> = 89 · C136
C136 = P32 · P105
P32 = 30786338087936362186389460909151<32>
P105 = 206813852960212896386184499990362608712079715902907975666006921434264383142752261316006717304525197630817<105>
Number: 56663_137 N=6367041198501872659176029962546816479400749063670411985018726591760299625468164794007490636704119850187265917602996254681647940074906367 ( 136 digits) SNFS difficulty: 139 digits. Divisors found: r1=30786338087936362186389460909151 r2=206813852960212896386184499990362608712079715902907975666006921434264383142752261316006717304525197630817 Version: Total time: 9.54 hours. Scaled time: 7.45 units (timescale=0.781). Factorization parameters were as follows: n: 6367041198501872659176029962546816479400749063670411985018726591760299625468164794007490636704119850187265917602996254681647940074906367 m: 2000000000000000000000000000 deg: 5 c5: 425 c0: -88 skew: 0.73 type: snfs lss: 1 rlim: 1460000 alim: 1460000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1460000/1460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [730000, 1705001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 261625 x 261873 Total sieving time: 9.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1460000,1460000,26,26,48,48,2.3,2.3,75000 total time: 9.54 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Mar 31, 2009
(17·10176+7)/3 = 5(6)1759<177> = C177
C177 = P37 · P141
P37 = 1332900038363680881394620148129664059<37>
P141 = 425138157668843915788962204505688086610791867911821343666941015479820678943431096734573619034309056634425509765000685116141894382558408244791<141>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 (177 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3212400340 Step 1 took 19100ms Step 2 took 7720ms ********** Factor found in step 2: 1332900038363680881394620148129664059 Found probable prime factor of 37 digits: 1332900038363680881394620148129664059 Probable prime cofactor 425138157668843915788962204505688086610791867911821343666941015479820678943431096734573619034309056634425509765000685116141894382558408244791 has 141 digits
By Sinkiti Sibata / GGNFS
(17·10128-11)/3 = 5(6)1273<129> = 29 · 17021 · 5505469367639<13> · C111
C111 = P50 · P61
P50 = 24820327977021975378256090284946693494883960699649<50>
P61 = 8401227213587191514482424464656102094826473116869647302619337<61>
Number: 56663_128 N=208521214850716544221599058555411701945808374634706100934515675276173697928018386423321266670848732764836512713 ( 111 digits) SNFS difficulty: 130 digits. Divisors found: r1=24820327977021975378256090284946693494883960699649 (pp50) r2=8401227213587191514482424464656102094826473116869647302619337 (pp61) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.83 hours. Scaled time: 2.28 units (timescale=0.473). Factorization parameters were as follows: name: 56663_128 n: 208521214850716544221599058555411701945808374634706100934515675276173697928018386423321266670848732764836512713 m: 50000000000000000000000000 deg: 5 c5: 136 c0: -275 skew: 1.15 type: snfs lss: 1 rlim: 1050000 alim: 1050000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1050000/1050000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [525000, 925001) Primes: RFBsize:82134, AFBsize:82353, largePrimes:2798952 encountered Relations: rels:2768491, finalFF:272749 Max relations in full relation-set: 28 Initial matrix: 164554 x 272749 with sparse part having weight 20623329. Pruned matrix : 132835 x 133721 with weight 7226487. Total sieving time: 4.43 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.24 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1050000,1050000,26,26,47,47,2.3,2.3,50000 total time: 4.83 hours. --------- CPU info (if available) ----------
(17·10129+7)/3 = 5(6)1289<130> = 31 · 73571 · 3748847 · 5887939 · C111
C111 = P31 · P81
P31 = 1124466814397827153397456968673<31>
P81 = 100104050957610405407547844556194856347545057379087033154669977098606751781653141<81>
Number: 56663_129 N=112563683288621931257893820232631592344395789058017227723897905579838046080414432892570091892364372398589051893 ( 111 digits) SNFS difficulty: 131 digits. Divisors found: r1=1124466814397827153397456968673 (pp31) r2=100104050957610405407547844556194856347545057379087033154669977098606751781653141 (pp81) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.52 hours. Scaled time: 2.14 units (timescale=0.473). Factorization parameters were as follows: name: 56663_129 n: 112563683288621931257893820232631592344395789058017227723897905579838046080414432892570091892364372398589051893 m: 100000000000000000000000000 deg: 5 c5: 17 c0: 70 skew: 1.33 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 890001) Primes: RFBsize:84270, AFBsize:84768, largePrimes:2723010 encountered Relations: rels:2604917, finalFF:205337 Max relations in full relation-set: 28 Initial matrix: 169103 x 205337 with sparse part having weight 14878093. Pruned matrix : 154361 x 155270 with weight 8821894. Total sieving time: 4.04 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.33 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 4.52 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Mar 30, 2009
(14·10185-11)/3 = 4(6)1843<186> = 5003 · C182
C182 = P51 · P53 · P79
P51 = 472028819964297438740806605192579205630100803128437<51>
P53 = 24871243197390234627509331406490531115713301860364091<53>
P79 = 7945299421360233896153427606410291300881548381778500398649648806810791075311763<79>
Number: 46663_185 N=93277366913185422080085282164034912385901792257978546205609967352921580385102271970151242587780664934372709707508828036511426477446865214204810447065094276767272969551602371910187221 ( 182 digits) SNFS difficulty: 186 digits. Divisors found: r1=472028819964297438740806605192579205630100803128437 r2=24871243197390234627509331406490531115713301860364091 r3=7945299421360233896153427606410291300881548381778500398649648806810791075311763 Version: Total time: 280.59 hours. Scaled time: 564.54 units (timescale=2.012). Factorization parameters were as follows: n: 93277366913185422080085282164034912385901792257978546205609967352921580385102271970151242587780664934372709707508828036511426477446865214204810447065094276767272969551602371910187221 m: 10000000000000000000000000000000000000 deg: 5 c5: 14 c0: -11 skew: 0.95 type: snfs lss: 1 rlim: 8900000 alim: 8900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 8900000/8900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4450000, 7350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1165764 x 1166012 Total sieving time: 280.59 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000 total time: 280.59 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 30, 2009
(17·10101-11)/3 = 5(6)1003<102> = 67912517003<11> · C91
C91 = P40 · P52
P40 = 5123831568700026011372584628954576029969<40>
P52 = 1628482120734270536821075988987892173086356834821509<52>
Number: 56663_101 N=8344068099281822559585314721701608004037927833753428446267223188442051074345256757949803221 ( 91 digits) SNFS difficulty: 103 digits. Divisors found: r1=5123831568700026011372584628954576029969 (pp40) r2=1628482120734270536821075988987892173086356834821509 (pp52) Version: Msieve-1.39 Total time: 0.27 hours. Scaled time: 0.32 units (timescale=1.196). Factorization parameters were as follows: n: 8344068099281822559585314721701608004037927833753428446267223188442051074345256757949803221 m: 20000000000000000000000000 deg: 4 c4: 85 c0: -88 skew: 1.01 type: snfs lss: 1 rlim: 370000 alim: 370000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 370000/370000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [185000, 235001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 36875 x 37111 Total sieving time: 0.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000 total time: 0.27 hours. --------- CPU info (if available) ----------
(17·10115+7)/3 = 5(6)1149<116> = 67 · 21061 · C110
C110 = P41 · P69
P41 = 95290352109099817535683452296597792913083<41>
P69 = 421429510891924613323930011380750009408902662687024674204055392048089<69>
Number: 56669_115 N=40158166482057213103562478193525038971138325749345480942469646922313554491442885283945402846647064756933248387 ( 110 digits) SNFS difficulty: 116 digits. Divisors found: r1=95290352109099817535683452296597792913083 (pp41) r2=421429510891924613323930011380750009408902662687024674204055392048089 (pp69) Version: Msieve-1.39 Total time: 0.77 hours. Scaled time: 0.92 units (timescale=1.198). Factorization parameters were as follows: n: 40158166482057213103562478193525038971138325749345480942469646922313554491442885283945402846647064756933248387 m: 100000000000000000000000 deg: 5 c5: 17 c0: 7 skew: 0.84 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 455001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64735 x 64965 Total sieving time: 0.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 0.77 hours. --------- CPU info (if available) ----------
(17·10118+7)/3 = 5(6)1179<119> = 101917 · 8323537 · C107
C107 = P48 · P60
P48 = 601885235402110792210900200078722304656813123651<48>
P60 = 110983759173059900845424929359819040363022947328137613794411<60>
Number: 56669_118 N=66799486015688331413048161090075435589653725608566758691907701831234347207760026800744726843636555435714561 ( 107 digits) SNFS difficulty: 120 digits. Divisors found: r1=601885235402110792210900200078722304656813123651 (pp48) r2=110983759173059900845424929359819040363022947328137613794411 (pp60) Version: Msieve-1.39 Total time: 1.43 hours. Scaled time: 1.71 units (timescale=1.198). Factorization parameters were as follows: n: 66799486015688331413048161090075435589653725608566758691907701831234347207760026800744726843636555435714561 m: 500000000000000000000000 deg: 5 c5: 136 c0: 175 skew: 1.05 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 660001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83421 x 83653 Total sieving time: 1.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 1.43 hours. --------- CPU info (if available) ----------
(17·10122+7)/3 = 5(6)1219<123> = 13725133 · C116
C116 = P47 · P69
P47 = 74312416334972309488106373427432495350587766049<47>
P69 = 555583989609428877329491732475831696278630005512381518127600113742657<69>
Number: 56669_122 N=41286788744900808368608644205244981354036180681576394681688451883611376783501235774303000682519190645851422107652193 ( 116 digits) SNFS difficulty: 124 digits. Divisors found: r1=74312416334972309488106373427432495350587766049 (pp47) r2=555583989609428877329491732475831696278630005512381518127600113742657 (pp69) Version: Msieve-1.39 Total time: 1.80 hours. Scaled time: 2.14 units (timescale=1.188). Factorization parameters were as follows: n: 41286788744900808368608644205244981354036180681576394681688451883611376783501235774303000682519190645851422107652193 m: 2000000000000000000000000 deg: 5 c5: 425 c0: 56 skew: 0.67 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 760001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 92352 x 92600 Total sieving time: 1.80 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 1.80 hours. --------- CPU info (if available) ----------
(17·10119-11)/3 = 5(6)1183<120> = 31 · 887 · 11731 · C112
C112 = P30 · P82
P30 = 239450380240083774854468268749<30>
P82 = 7336548403427378900248248059735962221136819514321416423825489537237179273289440041<82>
Number: 56663_119 N=1756739304850465415165792566407440251428414804190514777328834092497373475814356681431037481633768504216909578709 ( 112 digits) SNFS difficulty: 121 digits. Divisors found: r1=239450380240083774854468268749 (pp30) r2=7336548403427378900248248059735962221136819514321416423825489537237179273289440041 (pp82) Version: Msieve-1.39 Total time: 1.34 hours. Scaled time: 1.59 units (timescale=1.183). Factorization parameters were as follows: n: 1756739304850465415165792566407440251428414804190514777328834092497373475814356681431037481633768504216909578709 m: 1000000000000000000000000 deg: 5 c5: 17 c0: -110 skew: 1.45 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 565001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 84097 x 84345 Total sieving time: 1.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.34 hours. --------- CPU info (if available) ----------
(17·10122-11)/3 = 5(6)1213<123> = 677 · C120
C120 = P39 · P82
P39 = 795291725793282443500552146174546722231<39>
P82 = 1052476806148759029278464603331228114347816926127482451611939039647002492509057149<82>
Number: 56663_122 N=837026095519448547513540128015755785327424913835548990645002461841457410142786804529788281634662727720334810438207779419 ( 120 digits) SNFS difficulty: 124 digits. Divisors found: r1=795291725793282443500552146174546722231 (pp39) r2=1052476806148759029278464603331228114347816926127482451611939039647002492509057149 (pp82) Version: Msieve-1.39 Total time: 2.21 hours. Scaled time: 2.65 units (timescale=1.198). Factorization parameters were as follows: n: 837026095519448547513540128015755785327424913835548990645002461841457410142786804529788281634662727720334810438207779419 m: 2000000000000000000000000 deg: 5 c5: 425 c0: -88 skew: 0.73 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 860001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 110779 x 111027 Total sieving time: 2.21 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 2.21 hours. --------- CPU info (if available) ----------
(17·10127-11)/3 = 5(6)1263<128> = 3631 · C125
C125 = P37 · P88
P37 = 3958394890072113977857155948035524349<37>
P88 = 3942596213104646669262560616780369956388402140240085425022769072444304806099790128161277<88>
Number: 56663_127 N=15606352703571100706875975397043973193794179748462315248324612136234278894703020288258514642430918938768016157165151932433673 ( 125 digits) SNFS difficulty: 129 digits. Divisors found: r1=3958394890072113977857155948035524349 (pp37) r2=3942596213104646669262560616780369956388402140240085425022769072444304806099790128161277 (pp88) Version: Msieve-1.39 Total time: 2.71 hours. Scaled time: 3.22 units (timescale=1.186). Factorization parameters were as follows: n: 15606352703571100706875975397043973193794179748462315248324612136234278894703020288258514642430918938768016157165151932433673 m: 20000000000000000000000000 deg: 5 c5: 425 c0: -88 skew: 0.73 type: snfs lss: 1 rlim: 990000 alim: 990000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 990000/990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [495000, 995001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 154284 x 154529 Total sieving time: 2.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,990000,990000,26,26,47,47,2.3,2.3,50000 total time: 2.71 hours. --------- CPU info (if available) ----------
(17·10125+7)/3 = 5(6)1249<126> = 23 · 2593 · 144228983586167<15> · C107
C107 = P39 · P69
P39 = 589250921545742190593877958793077296379<39>
P69 = 111800694279228050333176460851172320271408111898525575752334134383047<69>
Number: 56669_125 N=65878662133488915633720942220528513751455616516752988633261898199458452664627642528077056373168179932086813 ( 107 digits) SNFS difficulty: 126 digits. Divisors found: r1=589250921545742190593877958793077296379 (pp39) r2=111800694279228050333176460851172320271408111898525575752334134383047 (pp69) Version: Msieve-1.39 Total time: 1.49 hours. Scaled time: 1.77 units (timescale=1.189). Factorization parameters were as follows: n: 65878662133488915633720942220528513751455616516752988633261898199458452664627642528077056373168179932086813 m: 10000000000000000000000000 deg: 5 c5: 17 c0: 7 skew: 0.84 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 115556 x 115804 Total sieving time: 1.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.49 hours. --------- CPU info (if available) ----------
(49·10168+23)/9 = 5(4)1677<169> = 269 · 491 · 8053 · 10253 · C156
C156 = P71 · P85
P71 = 69456425612216082029462188812207301586685011392460105683467565827546433<71>
P85 = 7187845147472167912233172898770037011894826265333750517439708363073552108865016407969<85>
Number: 54447_168 N=499242031797528964603322450116699697726570511429147637000037655432511436237498026365668367009829901398816139852650418300760547125611219115491032386218724577 ( 156 digits) SNFS difficulty: 171 digits. Divisors found: r1=69456425612216082029462188812207301586685011392460105683467565827546433 (pp71) r2=7187845147472167912233172898770037011894826265333750517439708363073552108865016407969 (pp85) Version: Msieve-1.39 Total time: 70.78 hours. Scaled time: 181.98 units (timescale=2.571). Factorization parameters were as follows: n: 499242031797528964603322450116699697726570511429147637000037655432511436237498026365668367009829901398816139852650418300760547125611219115491032386218724577 m: 5000000000000000000000000000000000 deg: 5 c5: 392 c0: 575 skew: 1.08 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1006000 x 1006248 Total sieving time: 70.78 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 70.78 hours. --------- CPU info (if available) ----------
(17·10131-11)/3 = 5(6)1303<132> = 53 · 163 · 1657 · C125
C125 = P44 · P81
P44 = 57254393326442842901839185810365868132126073<44>
P81 = 691405559039504718020667746214520013146066727040298897302914444029868559857781097<81>
Number: 56663_131 N=39586005825336901941900830116213568736872727428531017579935614060101662917289767862771804210688924806591507744571250840242081 ( 125 digits) SNFS difficulty: 132 digits. Divisors found: r1=57254393326442842901839185810365868132126073 (pp44) r2=691405559039504718020667746214520013146066727040298897302914444029868559857781097 (pp81) Version: Msieve-1.39 Total time: 2.68 hours. Scaled time: 6.90 units (timescale=2.571). Factorization parameters were as follows: n: 39586005825336901941900830116213568736872727428531017579935614060101662917289767862771804210688924806591507744571250840242081 m: 100000000000000000000000000 deg: 5 c5: 170 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 1120000 alim: 1120000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1120000/1120000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [560000, 960001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 175868 x 176116 Total sieving time: 2.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1120000,1120000,26,26,47,47,2.3,2.3,50000 total time: 2.68 hours. --------- CPU info (if available) ----------
(17·10146-11)/3 = 5(6)1453<147> = 127 · 2678747 · C139
C139 = P38 · P101
P38 = 27811417659945137991544604657599424539<38>
P101 = 59892042054550345949298752078376499404048130275627420744018974026631281026436704763054876687625491393<101>
Number: 56663_146 N=1665682596086098376975829143654147064117777625860992926113503451005784075956215933906584661506748434163072836438482662037722974383897492827 ( 139 digits) SNFS difficulty: 147 digits. Divisors found: r1=27811417659945137991544604657599424539 (pp38) r2=59892042054550345949298752078376499404048130275627420744018974026631281026436704763054876687625491393 (pp101) Version: Msieve-1.39 Total time: 8.27 hours. Scaled time: 21.25 units (timescale=2.571). Factorization parameters were as follows: n: 1665682596086098376975829143654147064117777625860992926113503451005784075956215933906584661506748434163072836438482662037722974383897492827 m: 100000000000000000000000000000 deg: 5 c5: 170 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 1990000 alim: 1990000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1990000/1990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [995000, 2295001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 329154 x 329402 Total sieving time: 8.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1990000,1990000,26,26,49,49,2.3,2.3,100000 total time: 8.27 hours. --------- CPU info (if available) ----------
(17·10132+7)/3 = 5(6)1319<133> = 43 · 2067783733<10> · C122
C122 = P52 · P70
P52 = 9908855818710071772279685922495241980372071557069529<52>
P70 = 6431771211676737322956945474073996162358335807731917122684415567681219<70>
Number: 56669_132 N=63731493595434967341012437950993608144671061585793864272607916454570032027829144609646555791788131891898934762993290475851 ( 122 digits) SNFS difficulty: 134 digits. Divisors found: r1=9908855818710071772279685922495241980372071557069529 (pp52) r2=6431771211676737322956945474073996162358335807731917122684415567681219 (pp70) Version: Msieve-1.39 Total time: 3.46 hours. Scaled time: 8.90 units (timescale=2.572). Factorization parameters were as follows: n: 63731493595434967341012437950993608144671061585793864272607916454570032027829144609646555791788131891898934762993290475851 m: 200000000000000000000000000 deg: 5 c5: 425 c0: 56 skew: 0.67 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1125001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165896 x 166141 Total sieving time: 3.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 3.46 hours. --------- CPU info (if available) ----------
(25·10181-61)/9 = 2(7)1801<182> = 3 · 7 · 23 · C179
C179 = P65 · P114
P65 = 75510615435433520332094734482048406815014663397888447357329506169<65>
P114 = 761627047329789607062080654255561176112224466344542541980790154090969468251343258094559369704529752173237377695073<114>
Number: 27771_181 N=57510927076144467448815274902231423970554405337014032666206579250057510927076144467448815274902231423970554405337014032666206579250057510927076144467448815274902231423970554405337 ( 179 digits) SNFS difficulty: 182 digits. Divisors found: r1=75510615435433520332094734482048406815014663397888447357329506169 (pp65) r2=761627047329789607062080654255561176112224466344542541980790154090969468251343258094559369704529752173237377695073 (pp114) Version: Msieve-1.39 Total time: 164.24 hours. Scaled time: 284.96 units (timescale=1.735). Factorization parameters were as follows: n: 57510927076144467448815274902231423970554405337014032666206579250057510927076144467448815274902231423970554405337014032666206579250057510927076144467448815274902231423970554405337 m: 1000000000000000000000000000000000000 deg: 5 c5: 250 c0: -61 skew: 0.75 type: snfs lss: 1 rlim: 7700000 alim: 7700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3850000, 6650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1525062 x 1525310 Total sieving time: 164.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7700000,7700000,28,28,53,53,2.5,2.5,100000 total time: 164.24 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 30, 2009
(17·10112-11)/3 = 5(6)1113<113> = 5827 · 252383 · C104
C104 = P44 · P60
P44 = 81164110798176097423933218771319343515292509<44>
P60 = 474742940179331324463463707253091559418247960492922361378927<60>
Number: 56663_112 N=38532088597367134617100718665769640550757338534360199985556223923342460549288844372419388022112993557843 ( 104 digits) SNFS difficulty: 114 digits. Divisors found: r1=81164110798176097423933218771319343515292509 r2=474742940179331324463463707253091559418247960492922361378927 Version: Total time: 1.43 hours. Scaled time: 1.51 units (timescale=1.058). Factorization parameters were as follows: n: 38532088597367134617100718665769640550757338534360199985556223923342460549288844372419388022112993557843 m: 20000000000000000000000 deg: 5 c5: 425 c0: -88 skew: 0.73 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 530001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64327 x 64554 Total sieving time: 1.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 1.43 hours. --------- CPU info (if available) ----------
(17·10116-11)/3 = 5(6)1153<117> = 61 · 83 · 2147371619171101<16> · C98
C98 = P43 · P56
P43 = 4828924233309463931619182770068478624306471<43>
P56 = 10793496102454005499202825484190161769189847553433786531<56>
Number: 56663_116 N=52120974891271395662797528266595552975220418579988058726081993476367737739647564816301019335942101 ( 98 digits) SNFS difficulty: 117 digits. Divisors found: r1=4828924233309463931619182770068478624306471 r2=10793496102454005499202825484190161769189847553433786531 Version: Total time: 1.35 hours. Scaled time: 1.40 units (timescale=1.036). Factorization parameters were as follows: n: 52120974891271395662797528266595552975220418579988058726081993476367737739647564816301019335942101 m: 100000000000000000000000 deg: 5 c5: 170 c0: -11 skew: 0.58 type: snfs lss: 1 rlim: 630000 alim: 630000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 630000/630000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [315000, 515001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 66128 x 66354 Total sieving time: 1.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,630000,630000,25,25,45,45,2.2,2.2,50000 total time: 1.35 hours. --------- CPU info (if available) ----------
(17·10125-11)/3 = 5(6)1243<126> = C126
C126 = P59 · P67
P59 = 71785287581807633716076980461443991324728287066807910129827<59>
P67 = 7893910935731566057306717859770778813519376767106692139028677261869<67>
Number: 56663_125 N=566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 126 digits) SNFS difficulty: 126 digits. Divisors found: r1=71785287581807633716076980461443991324728287066807910129827 r2=7893910935731566057306717859770778813519376767106692139028677261869 Version: Total time: 1.96 hours. Scaled time: 2.03 units (timescale=1.034). Factorization parameters were as follows: n: 566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 10000000000000000000000000 deg: 5 c5: 17 c0: -11 skew: 0.92 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 118757 x 119002 Total sieving time: 1.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.96 hours. --------- CPU info (if available) ----------
(17·10124-11)/3 = 5(6)1233<125> = 19 · 26981 · 248309 · 310614151 · C106
C106 = P39 · P67
P39 = 804449340177554271459153452597709920213<39>
P67 = 1781573013452190413442256085833160667959483917129251044909137802551<67>
Number: 56663_124 N=1433185235149751598102742298752877358386848046087618306723849826450082955179103739767073691849380357863363 ( 106 digits) SNFS difficulty: 126 digits. Divisors found: r1=804449340177554271459153452597709920213 r2=1781573013452190413442256085833160667959483917129251044909137802551 Version: Total time: 2.02 hours. Scaled time: 2.14 units (timescale=1.058). Factorization parameters were as follows: n: 1433185235149751598102742298752877358386848046087618306723849826450082955179103739767073691849380357863363 m: 10000000000000000000000000 deg: 5 c5: 17 c0: -110 skew: 1.45 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 109917 x 110165 Total sieving time: 2.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 2.02 hours. --------- CPU info (if available) ----------
(17·10127+7)/3 = 5(6)1269<128> = 227 · 6569 · C122
C122 = P44 · P79
P44 = 25921348302963192499630665485734572989144837<44>
P79 = 1466037096889321752043564176958402615677429746334965177187281480617951278229099<79>
Number: 56669_127 N=38001658213533105815170217251009223449526756408700233754905846420992652491153996354970359824289273987261397088491779011863 ( 122 digits) SNFS difficulty: 129 digits. Divisors found: r1=25921348302963192499630665485734572989144837 r2=1466037096889321752043564176958402615677429746334965177187281480617951278229099 Version: Total time: 2.72 hours. Scaled time: 1.08 units (timescale=0.397). Factorization parameters were as follows: n: 38001658213533105815170217251009223449526756408700233754905846420992652491153996354970359824289273987261397088491779011863 m: 20000000000000000000000000 deg: 5 c5: 425 c0: 56 skew: 0.67 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 139261 x 139499 Total sieving time: 2.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 2.72 hours. --------- CPU info (if available) ----------
(17·10142+7)/3 = 5(6)1419<143> = 208001 · 8641465134611<13> · 27133063997213638003<20> · C106
C106 = P42 · P64
P42 = 227233283820335395527908096833051840478717<42>
P64 = 5113333015204387993644768090944545112606409701910513354681529129<64>
Number: 56669_142 N=1161919452311830061295286320108968874314420959924846927818658944252231072336726982590444060540124940047493 ( 106 digits) SNFS difficulty: 144 digits. Divisors found: r1=227233283820335395527908096833051840478717 r2=5113333015204387993644768090944545112606409701910513354681529129 Version: Total time: 9.28 hours. Scaled time: 3.70 units (timescale=0.398). Factorization parameters were as follows: n: 1161919452311830061295286320108968874314420959924846927818658944252231072336726982590444060540124940047493 m: 20000000000000000000000000000 deg: 5 c5: 425 c0: 56 skew: 0.67 type: snfs lss: 1 rlim: 1770000 alim: 1770000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1770000/1770000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [885000, 1985001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 270587 x 270828 Total sieving time: 9.28 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1770000,1770000,26,26,49,49,2.3,2.3,100000 total time: 9.28 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Mar 30, 2009
(17·10138-11)/3 = 5(6)1373<139> = 169006200297797685527<21> · 2300927100902701975264719427<28> · C92
C92 = P35 · P57
P35 = 31468010786775134148962698036356169<35>
P57 = 463076646059587584495461971854363692884207025602098484963<57>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 14572100893306753029562782655749178686780912853468794144718369748167302877578129447958786747 (92 digits) Using B1=1734000, B2=2140281790, polynomial Dickson(6), sigma=3753322 Step 1 took 10719ms Step 2 took 5000ms ********** Factor found in step 2: 31468010786775134148962698036356169 Found probable prime factor of 35 digits: 31468010786775134148962698036356169 Probable prime cofactor 463076646059587584495461971854363692884207025602098484963 has 57 digits
(10207+17)/9 = (1)2063<207> = 1607 · C203
C203 = P54 · P67 · P83
P54 = 115951269499650019696884731749121224100590303382217461<54>
P67 = 8291114615663811786913421243762707131703902669337013526581555333831<67>
P83 = 71920580989461300167938721656900149535458931816276322011236571042026371770244374549<83>
Number: n N=69141948420106478600566963977044873124524649104611767959621102122657816497268893037405794095277604922906727511581276360367835165594966466155016248357878725022471133236534605545184263292539583765470510959 ( 203 digits) SNFS difficulty: 207 digits. Divisors found: Mon Mar 30 09:50:31 2009 prp54 factor: 115951269499650019696884731749121224100590303382217461 Mon Mar 30 09:50:31 2009 prp67 factor: 8291114615663811786913421243762707131703902669337013526581555333831 Mon Mar 30 09:50:31 2009 prp83 factor: 71920580989461300167938721656900149535458931816276322011236571042026371770244374549 Mon Mar 30 09:50:31 2009 elapsed time 18:58:17 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 107.71 hours. Scaled time: 216.94 units (timescale=2.014). Factorization parameters were as follows: name: KA_1_206_3 n: 69141948420106478600566963977044873124524649104611767959621102122657816497268893037405794095277604922906727511581276360367835165594966466155016248357878725022471133236534605545184263292539583765470510959 deg: 5 c5: 100 c0: 17 m: 100000000000000000000000000000000000000000 skew: 0.70 type: snfs rlim: 12000000 alim: 12000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [6000000, 31599990) Primes: RFBsize:788060, AFBsize:787814, largePrimes:36906914 encountered Relations: rels:32333155, finalFF:131025 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7543613 hash collisions in 42811934 relations Msieve: matrix is 3331182 x 3331430 (903.7 MB) Total sieving time: 106.65 hours. Total relation processing time: 1.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,12000000,12000000,29,29,58,58,2.5,2.5,100000 total time: 107.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368972k/3407296k available (2746k kernel code, 36964k reserved, 1423k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830497) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Total of 4 processors activated (22643.71 BogoMIPS).
(49·10158-13)/9 = 5(4)1573<159> = 3 · 29 · 922489 · 715570943 · C142
C142 = P46 · P97
P46 = 1933753263829273755790956506822876419039373431<46>
P97 = 4902519898348793797289993772044717042707344704118234633885033167780703243173321590976815042695197<97>
Number: n N=9480263854419939406567288559368136851958668930098235963980024426324338005691026094222629647173171716995999099228114115163173665542864393110907 ( 142 digits) SNFS difficulty: 161 digits. Divisors found: Mon Mar 30 12:48:36 2009 prp46 factor: 1933753263829273755790956506822876419039373431 Mon Mar 30 12:48:36 2009 prp97 factor: 4902519898348793797289993772044717042707344704118234633885033167780703243173321590976815042695197 Mon Mar 30 12:48:36 2009 elapsed time 01:32:15 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 28.69 hours. Scaled time: 76.31 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_157_3 n: 9480263854419939406567288559368136851958668930098235963980024426324338005691026094222629647173171716995999099228114115163173665542864393110907 skew: 1.92 deg: 5 c5: 49 c0: -1300 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 4049990) Primes: RFBsize:315948, AFBsize:315681, largePrimes:15059121 encountered Relations: rels:14210576, finalFF:560178 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1302492 hash collisions in 15864309 relations Msieve: matrix is 683824 x 684072 (181.8 MB) Total sieving time: 28.34 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 28.69 hours. --------- CPU info (if available) ----------
(49·10158+23)/9 = 5(4)1577<159> = 2039647062871998809149<22> · C138
C138 = P40 · P42 · P56
P40 = 7561107105557510584961327966551236839939<40>
P42 = 487659925013640987505028384915301079926139<42>
P56 = 72392919040279406746095501779506808157490294988149843643<56>
Number: n N=266930712844907468956210745438042353032837564638417938008625283292057659396759594420765443389292001623725450501654132366788120505688933003 ( 138 digits) SNFS difficulty: 161 digits. Divisors found: Mon Mar 30 12:55:35 2009 prp40 factor: 7561107105557510584961327966551236839939 Mon Mar 30 12:55:35 2009 prp42 factor: 487659925013640987505028384915301079926139 Mon Mar 30 12:55:35 2009 prp56 factor: 72392919040279406746095501779506808157490294988149843643 Mon Mar 30 12:55:35 2009 elapsed time 01:38:38 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 28.25 hours. Scaled time: 75.15 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_157_7 n: 266930712844907468956210745438042353032837564638417938008625283292057659396759594420765443389292001623725450501654132366788120505688933003 skew: 2.16 deg: 5 c5: 49 c0: 2300 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2250000, 10000000 ) Primes: RFBsize:315948, AFBsize:316501, largePrimes:15420747 encountered Relations: rels:14977241, finalFF:765435 Max relations in full relation-set: 28 Initial matrix: 632513 x 765435 with sparse part having weight 77547461. Pruned matrix : 547396 x 550622 with weight 58136808. Msieve: found 1271426 hash collisions in 15912073 relations Msieve: matrix is 656971 x 657219 (174.5 MB) Total sieving time: 27.27 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.56 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 28.25 hours. --------- CPU info (if available) ----------
(17·10130-11)/3 = 5(6)1293<131> = 821 · 957659 · 10929609074387850346393<23> · C100
C100 = P39 · P62
P39 = 275500419214459207522978242754423626131<39>
P62 = 23935732489875274791493269824915507905526696732420120893398499<62>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 6594304335165789684057187749729952168894186892873528185290466032084721385086046044161848915572577369 (100 digits) Using B1=1960000, B2=2853920170, polynomial Dickson(6), sigma=2249210397 Step 1 took 13500ms Step 2 took 6625ms ********** Factor found in step 2: 275500419214459207522978242754423626131 Found probable prime factor of 39 digits: 275500419214459207522978242754423626131 Probable prime cofactor 23935732489875274791493269824915507905526696732420120893398499 has 62 digits
(49·10148+23)/9 = 5(4)1477<149> = 3 · 461 · 683 · 1273580364222764178583<22> · C122
C122 = P59 · P63
P59 = 50942162569083495932825063490147390786014622365694977329219<59>
P63 = 888396736999855975410516186125965281921713380681765300530218399<63>
Number: n N=45256851002089977943223127636832110629196301893626535842317331291752486970739396762669811086799587838896573702539794100381 ( 122 digits) SNFS difficulty: 151 digits. Divisors found: Mon Mar 30 15:05:52 2009 prp59 factor: 50942162569083495932825063490147390786014622365694977329219 Mon Mar 30 15:05:52 2009 prp63 factor: 888396736999855975410516186125965281921713380681765300530218399 Mon Mar 30 15:05:52 2009 elapsed time 00:31:22 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 12.12 hours. Scaled time: 32.24 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_147_7 n: 45256851002089977943223127636832110629196301893626535842317331291752486970739396762669811086799587838896573702539794100381 skew: 2.16 deg: 5 c5: 49 c0: 2300 m: 1000000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.4 alambda: 2.4 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [1200000, 1956533) Primes: RFBsize:176302, AFBsize:176533, largePrimes:13701058 encountered Relations: rels:12036131, finalFF:290665 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 887013 hash collisions in 12698429 relations Msieve: matrix is 431379 x 431627 (115.5 MB) Total sieving time: 11.77 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,29,29,58,58,2.4,2.4,100000 total time: 12.12 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Mar 30, 2009
(16·10197+17)/3 = 5(3)1969<198> = C198
C198 = P34 · P164
P34 = 8330730914910739494869962789866397<34>
P164 = 64019992817046568864072386610912369178865900873939871107157058564192119869482424687933582394044661175526797445218338045141217468977459877568210571489380832289734487<164>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 533333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 (198 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4195428485 Step 1 took 21881ms Step 2 took 8593ms ********** Factor found in step 2: 8330730914910739494869962789866397 Found probable prime factor of 34 digits: 8330730914910739494869962789866397 Probable prime cofactor 64019992817046568864072386610912369178865900873939871107157058564192119869482424687933582394044661175526797445218338045141217468977459877568210571489380832289734487 has 164 digits
By Serge Batalov / GMP-ECM 6.2.2 / Mar 30, 2009
(17·10152+7)/3 = 5(6)1519<153> = 239 · 13513006159<11> · 34315669240219<14> · 17652303027868178773<20> · C108
C108 = P29 · P80
P29 = 21420174711076672817390171047<29>
P80 = 13522622829796860710833630636754411679637874455069340439451980743975628136252621<80>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=588125940 Step 1 took 6860ms Step 2 took 5964ms ********** Factor found in step 2: 21420174711076672817390171047 Found probable prime factor of 29 digits: 21420174711076672817390171047 Probable prime cofactor has 80 digits
(17·10172-11)/3 = 5(6)1713<173> = 4955881256811199723<19> · 11290582017638819227<20> · C136
C136 = P32 · C104
P32 = 11112034900286103762642201273601<32>
C104 = [91137444731686262774627615616319827328697194596617503688409426242033418216434046022033424397591326427503<104>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3570570968 Step 1 took 9005ms Step 2 took 7596ms ********** Factor found in step 2: 11112034900286103762642201273601 Found probable prime factor of 32 digits: 11112034900286103762642201273601 Composite cofactor has 104 digits
(17·10200+7)/3 = 5(6)1999<201> = 139 · 1319 · 4091 · 5953 · 4583407129440823<16> · 1454913548016373279<19> · C155
C155 = P32 · C124
P32 = 16235484672840827305747235427721<32>
C124 = [1172227287557431664659229679610875208906271615395435937554333020682862854689618819963973299985339269262349249624933994874019<124>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1267963406 Step 1 took 10029ms Step 2 took 8524ms ********** Factor found in step 2: 16235484672840827305747235427721 Found probable prime factor of 32 digits: 16235484672840827305747235427721 Composite cofactor has 124 digits
(17·10199+7)/3 = 5(6)1989<200> = 853 · 49108949 · 4690843055178469916009<22> · C168
C168 = P33 · C136
P33 = 139439575860152525764642907000219<33>
C136 = [2068145264829021522693134837565772375255413534314070907056190048608030188897413343095857160841289014207680735432647902934113992020248887<136>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1353002088 Step 1 took 9940ms Step 2 took 8913ms ********** Factor found in step 2: 139439575860152525764642907000219 Found probable prime factor of 33 digits: 139439575860152525764642907000219 Composite cofactor has 136 digits
(17·10173+7)/3 = 5(6)1729<174> = 239 · 3719 · C168
C168 = P28 · P140
P28 = 7509372153663948212960430553<28>
P140 = 84898488730764227478927360584223002525621599992773503802613527890415688576632781607023486143938568208272345414025486917663448442946997504653<140>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1914745003 Step 1 took 9889ms Step 2 took 8913ms ********** Factor found in step 2: 7509372153663948212960430553 Found probable prime factor of 28 digits: 7509372153663948212960430553 Probable prime cofactor has 140 digits
(17·10194+7)/3 = 5(6)1939<195> = 239 · 2460564151<10> · C183
C183 = P36 · C148
P36 = 159720630294001366032944725330382413<36>
C148 = [6033010178949490073361316871767491374941752999300200709376915162995870293743735197054524436589368399019120045621934770911807822296559368927412793417<148>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3496528567 Step 1 took 11805ms Step 2 took 9992ms ********** Factor found in step 2: 159720630294001366032944725330382413 Found probable prime factor of 36 digits: 159720630294001366032944725330382413 Composite cofactor has 148 digits
(17·10140-11)/3 = 5(6)1393<141> = 23 · C140
C140 = P40 · C101
P40 = 1988582244189483800485209843958743589043<40>
C101 = [12389571128581728818477254444904148656371225081269043431614820414039285832831268485708657579962622667<101>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1248108625 Step 1 took 9168ms Step 2 took 7753ms ********** Factor found in step 2: 1988582244189483800485209843958743589043 Found probable prime factor of 40 digits: 1988582244189483800485209843958743589043 Composite cofactor has 101 digits
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Mar 29, 2009
(49·10155+23)/9 = 5(4)1547<156> = 17 · 106319 · 42741631 · C142
C142 = P36 · P46 · P61
P36 = 409065749093004214423575760361672489<36>
P46 = 6534980153883198524785693798616329050629060233<46>
P61 = 2636363466388369334313208869093679303721597028944419656356687<61>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 7047623182591198721228603674492812887560618947204801559116644732177071109244426383906311382987479237879253592111943827457642510612559750138719 (142 digits) Using B1=1354000, B2=1426564240, polynomial Dickson(6), sigma=3350466869 Step 1 took 18766ms Step 2 took 6552ms ********** Factor found in step 2: 409065749093004214423575760361672489 Found probable prime factor of 36 digits: 409065749093004214423575760361672489 Composite cofactor 17228582931270708514083747678543048612110301217622656613888747449097910949597250515490753732934867455328071 has 107 digits Number: n N=17228582931270708514083747678543048612110301217622656613888747449097910949597250515490753732934867455328071 ( 107 digits) Divisors found: Sun Mar 29 21:30:54 2009 prp46 factor: 6534980153883198524785693798616329050629060233 Sun Mar 29 21:30:54 2009 prp61 factor: 2636363466388369334313208869093679303721597028944419656356687 Sun Mar 29 21:30:54 2009 elapsed time 00:26:54 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 7.17 hours. Scaled time: 17.91 units (timescale=2.498). Factorization parameters were as follows: name: KA_5_4_154_7 n: 17228582931270708514083747678543048612110301217622656613888747449097910949597250515490753732934867455328071 skew: 18099.40 # norm 8.35e+14 c5: 23100 c4: 3113741728 c3: -31044755523147 c2: -1261698035532545324 c1: 7240654224891409569948 c0: -7973236351116161462387888 # alpha -6.39 Y1: 226421965439 Y0: -236873416973092157223 # Murphy_E 1.53e-09 # M 12147195532541688516625504347878815099683545814935576793611958648061402688146723638257757268267574761915608 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2099990) Primes: RFBsize:183072, AFBsize:183296, largePrimes:14448958 encountered Relations: rels:12209996, finalFF:372024 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 863448 hash collisions in 13117547 relations Msieve: matrix is 384782 x 385030 (105.4 MB) Total sieving time: 6.79 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 7.17 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Mar 29, 2009
(13·10167-31)/9 = 1(4)1661<168> = 32 · 112 · 17 · 173 · 1459 · 452853659 · 155695384417<12> · C138
C138 = P67 · P71
P67 = 5417590935726697778181429215751858994416076969577660845369964579189<67>
P71 = 80925020418520285456515411888513924913719814105591957988967280127650553<71>
Number: 14441_167 N=438418657092873437140255716613415047002897640850210659821001335171971975493968967373742325714372536553148432048435029807813404043888141517 ( 138 digits) SNFS difficulty: 169 digits. Divisors found: r1=5417590935726697778181429215751858994416076969577660845369964579189 r2=80925020418520285456515411888513924913719814105591957988967280127650553 Version: Total time: 40.05 hours. Scaled time: 133.72 units (timescale=3.339). Factorization parameters were as follows: name: 14441_167 n: 438418657092873437140255716613415047002897640850210659821001335171971975493968967373742325714372536553148432048435029807813404043888141517 m: 2000000000000000000000000000000000 deg: 5 c5: 325 c0: -248 skew: 0.95 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 842418 x 842665 Total sieving time: 40.05 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 40.05 hours. --------- CPU info (if available) ----------
(49·10172-13)/9 = 5(4)1713<173> = C173
C173 = P50 · P123
P50 = 90457133252859086370797452249079159362984754582263<50>
P123 = 601881161679680073414733529094278946019249854432828112732618999568591744333440032921249761043945003829360819175126160932861<123>
Number: 54443_172 N=54444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 173 digits) SNFS difficulty: 174 digits. Divisors found: r1=90457133252859086370797452249079159362984754582263 r2=601881161679680073414733529094278946019249854432828112732618999568591744333440032921249761043945003829360819175126160932861 Version: Total time: 134.18 hours. Scaled time: 342.69 units (timescale=2.554). Factorization parameters were as follows: name: 54443_172 n: 54444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 20000000000000000000000000000000000 deg: 5 c5: 1225 c0: -104 skew: 0.61 type: snfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2500000, 8700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1086216 x 1086464 Total sieving time: 134.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 134.18 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Mar 29, 2009
(46·10178+71)/9 = 5(1)1779<179> = C179
C179 = P30 · P150
P30 = 301987358663348695516213202159<30>
P150 = 169249174327489206034164467968894139877111470560964098347821869949162177687945915103723675787020585299769888419146145185091773482803832289761745201441<150>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 (179 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2958435836 Step 1 took 6314ms Step 2 took 3302ms ********** Factor found in step 2: 301987358663348695516213202159 Found probable prime factor of 30 digits: 301987358663348695516213202159 Probable prime cofactor 169249174327489206034164467968894139877111470560964098347821869949162177687945915103723675787020585299769888419146145185091773482803832289761745201441 has 150 digits
By Ignacio Santos / GGNFS, Msieve / Mar 29, 2009
(49·10167+23)/9 = 5(4)1667<168> = 10559587231972013<17> · C152
C152 = P69 · P83
P69 = 767767536287199542101945167997849215441525824338148173132657698090917<69>
P83 = 67154772717526357740761695015258839151705607000361615191854608560565425792519343007<83>
Number: 54447_167 N=51559254399262055672112903247669280513372718601182176087537408205257236885136324117744525371190925777657136066754141731545354083503744691559498994167419 ( 152 digits) SNFS difficulty: 169 digits. Divisors found: r1=767767536287199542101945167997849215441525824338148173132657698090917 (pp69) r2=67154772717526357740761695015258839151705607000361615191854608560565425792519343007 (pp83) Version: Msieve-1.39 Total time: 76.49 hours. Scaled time: 196.65 units (timescale=2.571). Factorization parameters were as follows: n: 51559254399262055672112903247669280513372718601182176087537408205257236885136324117744525371190925777657136066754141731545354083503744691559498994167419 m: 2000000000000000000000000000000000 deg: 5 c5: 1225 c0: 184 skew: 0.68 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 936316 x 936564 Total sieving time: 76.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 76.49 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 29, 2009
(49·10146+23)/9 = 5(4)1457<147> = 367937719 · 4152854718155167<16> · C123
C123 = P41 · P82
P41 = 42507220291575390569061312126266571436511<41>
P82 = 8382427676288048262413847664914236679385164784376828071942780399395127187230556249<82>
Number: 54447_146 N=356313699814174474491639870463144151088608729515701630864241104069885188680083539616515109540850294506582375609049517807239 ( 123 digits) SNFS difficulty: 148 digits. Divisors found: r1=42507220291575390569061312126266571436511 r2=8382427676288048262413847664914236679385164784376828071942780399395127187230556249 Version: Total time: 18.38 hours. Scaled time: 14.08 units (timescale=0.766). Factorization parameters were as follows: n: 356313699814174474491639870463144151088608729515701630864241104069885188680083539616515109540850294506582375609049517807239 m: 200000000000000000000000000000 deg: 5 c5: 245 c0: 368 skew: 1.08 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 373502 x 373745 Total sieving time: 18.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 18.38 hours. --------- CPU info (if available) ----------
Factorizations of 566...663 and Factorizations of 566...669 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Mar 28, 2009
(49·10156+23)/9 = 5(4)1557<157> = 17707721075698273<17> · 2033817327775288969990595237689<31> · C111
C111 = P51 · P60
P51 = 454500693687026425426203190166113666052452088501549<51>
P60 = 332616971158229236983081432079825089338499648979568233502899<60>
Number: n N=151174644123492849592600496381704676212629009609146369177302522320081362468179705521001158149486074548257490551 ( 111 digits) Divisors found: Sat Mar 28 03:43:11 2009 prp51 factor: 454500693687026425426203190166113666052452088501549 Sat Mar 28 03:43:11 2009 prp60 factor: 332616971158229236983081432079825089338499648979568233502899 Sat Mar 28 03:43:11 2009 elapsed time 00:58:49 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.89 hours. Scaled time: 32.72 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_4_155_7 n: 151174644123492849592600496381704676212629009609146369177302522320081362468179705521001158149486074548257490551 skew: 19769.16 # norm 3.26e+14 c5: 22800 c4: -583278862 c3: -30993018703825 c2: 215141010662061476 c1: 6053494876806255768132 c0: 15710288339883256330285332 # alpha -4.64 Y1: 611596749247 Y0: -1459855103768153476979 # Murphy_E 9.39e-10 # M 86602127258112390202379596066607795227983754583130173412703693163778176060001927693573246820648690457463833676 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1600000, 10000000 ) Primes: RFBsize:230209, AFBsize:229831, largePrimes:15089378 encountered Relations: rels:13636040, finalFF:864157 Max relations in full relation-set: 28 Initial matrix: 460118 x 864157 with sparse part having weight 109034210. Pruned matrix : 275917 x 278281 with weight 43207207. Msieve: found 1625564 hash collisions in 15085140 relations Msieve: matrix is 367792 x 368040 (99.3 MB) Total sieving time: 17.53 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 17.89 hours. --------- CPU info (if available) ----------
(49·10158-31)/9 = 5(4)1571<159> = 23 · 2422087 · 99603367 · C143
C143 = P42 · P102
P42 = 338983214914643563511308571161310372441779<42>
P102 = 289456816972690351532668866002715672964035429516916062876460836624896725733021164280118302721885812837<102>
Number: n N=98121002396362140147876046516105890668748182387245599073687682895032770426853914253252119806488821693256356417565016168442322595430837873317023 ( 143 digits) SNFS difficulty: 161 digits. Divisors found: Sat Mar 28 03:48:39 2009 prp42 factor: 338983214914643563511308571161310372441779 Sat Mar 28 03:48:39 2009 prp102 factor: 289456816972690351532668866002715672964035429516916062876460836624896725733021164280118302721885812837 Sat Mar 28 03:48:39 2009 elapsed time 01:18:48 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 30.21 hours. Scaled time: 59.06 units (timescale=1.955). Factorization parameters were as follows: name: KA_5_4_157_1 n: 98121002396362140147876046516105890668748182387245599073687682895032770426853914253252119806488821693256356417565016168442322595430837873317023 skew: 2.29 deg: 5 c5: 49 c0: -3100 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 10000000 ) Primes: RFBsize:315948, AFBsize:316122, largePrimes:15660913 encountered Relations: rels:15286806, finalFF:766542 Max relations in full relation-set: 28 Initial matrix: 632134 x 766542 with sparse part having weight 79728896. Pruned matrix : 555964 x 559188 with weight 59562732. Msieve: found 1378570 hash collisions in 16322804 relations Msieve: matrix is 666431 x 666679 (176.6 MB) Total sieving time: 29.43 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.30 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 30.21 hours. --------- CPU info (if available) ----------
(47·10161-11)/9 = 5(2)1601<162> = 72 · 17 · 89 · 36112890957281<14> · C144
C144 = P58 · P86
P58 = 5659520845447040182541664681416062365985670446984129683683<58>
P86 = 34465010887937013645516458746347821551770956037600985349479839853501589174635796347271<86>
Number: n N=195055447558838732532493662392781748112699080604895365658760154519007772407120895016155495442547256068767076944538986843466920758834616050279093 ( 144 digits) SNFS difficulty: 162 digits. Divisors found: Sat Mar 28 04:25:58 2009 prp58 factor: 5659520845447040182541664681416062365985670446984129683683 Sat Mar 28 04:25:58 2009 prp86 factor: 34465010887937013645516458746347821551770956037600985349479839853501589174635796347271 Sat Mar 28 04:25:58 2009 elapsed time 01:22:01 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 30.24 hours. Scaled time: 80.45 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_2_160_1 n: 195055447558838732532493662392781748112699080604895365658760154519007772407120895016155495442547256068767076944538986843466920758834616050279093 skew: 0.47 deg: 5 c5: 470 c0: -11 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 4250261) Primes: RFBsize:315948, AFBsize:315892, largePrimes:15787994 encountered Relations: rels:15298505, finalFF:692461 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1375752 hash collisions in 16329518 relations Msieve: matrix is 696166 x 696414 (184.1 MB) Total sieving time: 29.66 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.4,2.4,100000 total time: 30.24 hours. --------- CPU info (if available) ----------
(46·10168+71)/9 = 5(1)1679<169> = 13 · 131 · 269 · 811 · 359987 · C155
C155 = P38 · P54 · P65
P38 = 17471464129836365814931789218571329749<38>
P54 = 141275887934387088918433822407219888328785550169645917<54>
P65 = 15482581541185975084705285429391126016253950713185106907656310157<65>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 38215603508259411274979741248363330838097261366926042069863624871097160809685140681287477149915512645041996754268125206269981445882823582837890494768348781 (155 digits) Using B1=1902000, B2=2853920170, polynomial Dickson(6), sigma=2699684377 Step 1 took 32479ms Step 2 took 11388ms ********** Factor found in step 2: 17471464129836365814931789218571329749 Found probable prime factor of 38 digits: 17471464129836365814931789218571329749 Composite cofactor 2187315454747599957262681204066632824538375447374393308106855746227320684871358623712175018680473014032220407420678969 has 118 digits Number: n N=2187315454747599957262681204066632824538375447374393308106855746227320684871358623712175018680473014032220407420678969 ( 118 digits) Divisors found: Sat Mar 28 05:28:03 2009 prp54 factor: 141275887934387088918433822407219888328785550169645917 Sat Mar 28 05:28:03 2009 prp65 factor: 15482581541185975084705285429391126016253950713185106907656310157 Sat Mar 28 05:28:03 2009 elapsed time 01:18:32 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 28.53 hours. Scaled time: 75.89 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_1_167_9 n: 2187315454747599957262681204066632824538375447374393308106855746227320684871358623712175018680473014032220407420678969 skew: 43271.35 # norm 2.74e+16 c5: 56880 c4: 18038371314 c3: -333026503155184 c2: -7470405842608349126 c1: -136619444764706775747779 c0: -3058100909330477201165739940 # alpha -6.32 Y1: 864609803699 Y0: -32884378819716757892421 # Murphy_E 3.76e-10 # M 1118767806770688025859182493513034584215833027743594558217465092282461308752967594068423351362471169988009929142135920 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 4011467) Primes: RFBsize:315948, AFBsize:315599, largePrimes:10805214 encountered Relations: rels:9805383, finalFF:628669 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 824513 hash collisions in 10764421 relations Msieve: matrix is 654424 x 654672 (181.7 MB) Total sieving time: 27.92 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000 total time: 28.53 hours. --------- CPU info (if available) ----------
(49·10163+23)/9 = 5(4)1627<164> = 3 · 193 · 697475003 · C151
C151 = P36 · P116
P36 = 281771363630732629031583706433092583<36>
P116 = 13463129146711053496034967138964031226984131523252406266924392904522707992604894585783077441626599518226160500296939<116>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 3793524258405435352440492779960415544269989551997559007185731146851143361170035411115019941709401493203830929177424803532593017727945863322107578503437 (151 digits) Using B1=320000, B2=215159500, polynomial Dickson(3), sigma=1451542920 Step 1 took 4914ms Step 2 took 2230ms ********** Factor found in step 2: 281771363630732629031583706433092583 Found probable prime factor of 36 digits: 281771363630732629031583706433092583 Probable prime cofactor 13463129146711053496034967138964031226984131523252406266924392904522707992604894585783077441626599518226160500296939 has 116 digits
(49·10169+41)/9 = 5(4)1689<170> = 1633987 · 222842116547<12> · 4309002319101724709<19> · 12626797757710355343920087032327<32> · C103
C103 = P42 · P62
P42 = 161726317463004925294893739483643455711403<42>
P62 = 16992491013336792208581860510277455208049350422509007698567129<62>
Number: n N=2748132996110164316692394787675034756341704156057136951873517972369944327740468903886111422774446271987 ( 103 digits) Divisors found: Sat Mar 28 06:32:51 2009 prp42 factor: 161726317463004925294893739483643455711403 Sat Mar 28 06:32:51 2009 prp62 factor: 16992491013336792208581860510277455208049350422509007698567129 Sat Mar 28 06:32:51 2009 elapsed time 00:21:51 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 5.76 hours. Scaled time: 15.26 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_4_168_9 n: 2748132996110164316692394787675034756341704156057136951873517972369944327740468903886111422774446271987 skew: 6018.30 # norm 9.19e+13 c5: 33540 c4: 684589501 c3: 5791283135574 c2: -28206819817534566 c1: -38476561442250937966 c0: -33218737564069799087307 # alpha -5.31 Y1: 74270204899 Y0: -38255289751789543670 # Murphy_E 2.39e-09 # M 2118835397043999855895382204736405261545507460993547449580085793519358158855105205632886183942560675358 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1751117) Primes: RFBsize:169511, AFBsize:169243, largePrimes:13837185 encountered Relations: rels:11629589, finalFF:365377 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 666886 hash collisions in 12075964 relations Msieve: matrix is 347056 x 347304 (95.4 MB) Total sieving time: 5.33 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,28,28,56,56,2.6,2.6,100000 total time: 5.76 hours. --------- CPU info (if available) ----------
(49·10164+41)/9 = 5(4)1639<165> = 32 · 2999 · 14383957318464271<17> · C145
C145 = P36 · P49 · P60
P36 = 610669137960733395685042251722807251<36>
P49 = 7186553173058630799368238546006774398260215801703<49>
P60 = 319543210483475316340708907207542706196386873040108707971853<60>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1402349324633698256140012135543458744822102593646541812746298229673535472139910433762013003100546995491089384322899717818288966583222385504693409 (145 digits) Using B1=2770000, B2=4281513610, polynomial Dickson(6), sigma=648140982 Step 1 took 38376ms ********** Factor found in step 1: 610669137960733395685042251722807251 Found probable prime factor of 36 digits: 610669137960733395685042251722807251 Composite cofactor 2296414273229361472578839807470333744690001646782988120596944464494727792347492919926882269338661235553465659 has 109 digits GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 2296414273229361472578839807470333744690001646782988120596944464494727792347492919926882269338661235553465659 (109 digits) Using B1=3316000, B2=5707206970, polynomial Dickson(6), sigma=27217913 Step 1 took 32510ms Step 2 took 10920ms ********** Factor found in step 2: 7186553173058630799368238546006774398260215801703 Found probable prime factor of 49 digits: 7186553173058630799368238546006774398260215801703 Probable prime cofactor 319543210483475316340708907207542706196386873040108707971853 has 60 digits
By Ignacio Santos / GGNFS, Msieve / Mar 28, 2009
(49·10146+41)/9 = 5(4)1459<147> = 32 · 401 · 37781 · 246975928358611<15> · C125
C125 = P36 · P89
P36 = 635631229052462147884290094903460557<36>
P89 = 25435096336658932336705167917031068008789759084152689170327716094934210451817361767116803<89>
Number: 54449_146 N=16167341545538294700472713844287897030163776178300163755670307640173965598426295954889076267540032446185900158239333122439271 ( 125 digits) SNFS difficulty: 147 digits. Divisors found: r1=635631229052462147884290094903460557 (pp36) r2=25435096336658932336705167917031068008789759084152689170327716094934210451817361767116803 (pp89) Version: Msieve-1.39 Total time: 12.37 hours. Scaled time: 31.80 units (timescale=2.571). Factorization parameters were as follows: n: 16167341545538294700472713844287897030163776178300163755670307640173965598426295954889076267540032446185900158239333122439271 m: 100000000000000000000000000000 deg: 5 c5: 490 c0: 41 skew: 0.61 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 360372 x 360618 Total sieving time: 12.37 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 12.37 hours. --------- CPU info (if available) ----------
(14·10180+1)/3 = 4(6)1797<181> = 23 · 19477 · C176
C176 = P82 · P94
P82 = 1172452363816037728649885943412504699468920569755011261533521576093947543910089989<82>
P94 = 8885086784734578588942035780312830751406596097560532726566468481627824418076932918133587209093<94>
Number: 46667_180 N=10417341003472695033086219122815241760441338092569980348430292734723155442353783317818936196018641087629928425426348282961769102613041171563933081977776835256448892152989069977 ( 176 digits) SNFS difficulty: 181 digits. Divisors found: r1=1172452363816037728649885943412504699468920569755011261533521576093947543910089989 (pp82) r2=8885086784734578588942035780312830751406596097560532726566468481627824418076932918133587209093 (pp94) Version: Msieve-1.39 Total time: 102.09 hours. Scaled time: 177.54 units (timescale=1.739). Factorization parameters were as follows: n: 10417341003472695033086219122815241760441338092569980348430292734723155442353783317818936196018641087629928425426348282961769102613041171563933081977776835256448892152989069977 m: 1000000000000000000000000000000000000 deg: 5 c5: 14 c0: 1 skew: 0.59 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 5350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1247235 x 1247483 Total sieving time: 102.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 102.09 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 28, 2009
(49·10143+41)/9 = 5(4)1429<144> = 3 · 17 · 19413661 · 14241432483999782428669<23> · C113
C113 = P50 · P63
P50 = 48208737729702173551817182097623439690535527340379<50>
P63 = 800933607368938839181048674491588864161303805763605741405443609<63>
Number: 54449_143 N=38611998216553428634976880852884532742105214703709972979595744163625655295796044808871492594795432863440433187811 ( 113 digits) SNFS difficulty: 146 digits. Divisors found: r1=48208737729702173551817182097623439690535527340379 r2=800933607368938839181048674491588864161303805763605741405443609 Version: Total time: 16.54 hours. Scaled time: 12.92 units (timescale=0.781). Factorization parameters were as follows: n: 38611998216553428634976880852884532742105214703709972979595744163625655295796044808871492594795432863440433187811 m: 50000000000000000000000000000 deg: 5 c5: 392 c0: 1025 skew: 1.21 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 321094 x 321333 Total sieving time: 16.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 16.54 hours. --------- CPU info (if available) ----------
(49·10149+41)/9 = 5(4)1489<150> = 3 · 23 · 5059 · 7663491709<10> · C135
C135 = P33 · P47 · P56
P33 = 131534588641078345566638760776333<33>
P47 = 25803421214234640523206313517076073590238151873<47>
P56 = 59964724923190813318774664569029690764738692093753141799<56>
Number: 54449_149 N=203522818590634280245075835535627462874181435936750438917137494088318261455309665736275011729733172064884678791543045626662602717314491 ( 135 digits) SNFS difficulty: 151 digits. Divisors found: r1=131534588641078345566638760776333 r2=25803421214234640523206313517076073590238151873 r3=59964724923190813318774664569029690764738692093753141799 Version: Total time: 21.59 hours. Scaled time: 21.70 units (timescale=1.005). Factorization parameters were as follows: n: 203522818590634280245075835535627462874181435936750438917137494088318261455309665736275011729733172064884678791543045626662602717314491 m: 1000000000000000000000000000000 deg: 5 c5: 49 c0: 410 skew: 1.53 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 444856 x 445104 Total sieving time: 21.59 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 21.59 hours. --------- CPU info (if available) ----------
By Andreas Tete / Yafu v1.08 / Mar 27, 2009
(49·10158+41)/9 = 5(4)1579<159> = 3 · 1109 · 2017 · 103231 · 1192853 · 395872333 · 3669428891409834705930932488771<31> · C102
C102 = P51 · P52
P51 = 145182403511774248585192727630916578243588995294079<51>
P52 = 3124137943097999819298035626042740374316930537111941<52>
03/26/09 16:03:31 v1.08 @ LAPPIE, 03/26/09 16:03:31 v1.08 @ LAPPIE, **************************** 03/26/09 16:03:31 v1.08 @ LAPPIE, Starting factorization of 453569855481298226564723037610642262164563210989868695838728271565250333688282786216554526112637497339 03/26/09 16:03:31 v1.08 @ LAPPIE, **************************** 03/26/09 16:03:32 v1.08 @ LAPPIE, Rho method, input has 338 bits, 1000 max iterations per poly 03/26/09 16:03:32 v1.08 @ LAPPIE, poly x^2 + 1: 0.0780 sec 03/26/09 16:03:32 v1.08 @ LAPPIE, poly x^2 + 3: 0.1360 sec 03/26/09 16:03:32 v1.08 @ LAPPIE, poly x^2 + 2: 0.1960 sec 03/26/09 16:03:32 v1.08 @ LAPPIE, Williams P+1 method, input has 338 bits, B1 = 20000, B2 = 1000000 03/26/09 16:03:32 v1.08 @ LAPPIE, base 752376243: 0.1660 sec 03/26/09 16:03:32 v1.08 @ LAPPIE, base 352856595: 0.3250 sec 03/26/09 16:03:32 v1.08 @ LAPPIE, base 2326730079: 0.4830 sec 03/26/09 16:03:32 v1.08 @ LAPPIE, Pollard P-1 method, input has 338 bits, B1 = 100000, B2 = 5000000 03/26/09 16:03:33 v1.08 @ LAPPIE, base 2045834211: 0.4800 sec 03/26/09 16:03:33 v1.08 @ LAPPIE, 25 curves using Lenstra ECM method, input has 338 bits, B1 = 2000, B2 = 200000 03/26/09 16:03:35 v1.08 @ LAPPIE, 90 curves using Lenstra ECM method, input has 338 bits, B1 = 11000, B2 = 1100000 03/26/09 16:04:12 v1.08 @ LAPPIE, 200 curves using Lenstra ECM method, input has 338 bits, B1 = 50000, B2 = 5000000 03/26/09 16:08:48 v1.08 @ LAPPIE, 400 curves using Lenstra ECM method, input has 338 bits, B1 = 250000, B2 = 25000000 03/26/09 16:51:46 v1.08 @ LAPPIE, 1000 curves using Lenstra ECM method, input has 338 bits, B1 = 1000000, B2 = 100000000 03/26/09 23:42:56 v1.08 @ LAPPIE, starting SIQS on c102: 453569855481298226564723037610642262164563210989868695838728271565250333688282786216554526112637497339 03/26/09 23:42:56 v1.08 @ LAPPIE, random seeds: 2459799540, 1414896784 03/26/09 23:42:57 v1.08 @ LAPPIE, ==== sieve params ==== 03/26/09 23:42:57 v1.08 @ LAPPIE, n = 102 digits, 342 bits 03/26/09 23:42:57 v1.08 @ LAPPIE, factor base: 121000 primes (max prime = 3375233) 03/26/09 23:42:57 v1.08 @ LAPPIE, single large prime cutoff: 506284950 (150 * pmax) 03/26/09 23:42:57 v1.08 @ LAPPIE, double large prime range from 45 to 53 bits 03/26/09 23:42:57 v1.08 @ LAPPIE, double large prime cutoff: 4654907246467955 03/26/09 23:42:57 v1.08 @ LAPPIE, using 6 large prime slices of factor base 03/26/09 23:42:57 v1.08 @ LAPPIE, buckets hold 2048 elements 03/26/09 23:42:57 v1.08 @ LAPPIE, sieve interval: 40 blocks of size 32768 03/26/09 23:42:57 v1.08 @ LAPPIE, polynomial A has ~ 13 factors 03/26/09 23:42:57 v1.08 @ LAPPIE, using multiplier of 19 03/26/09 23:42:57 v1.08 @ LAPPIE, using small prime variation correction of 21 bits 03/26/09 23:42:57 v1.08 @ LAPPIE, using x128 sieve scanning 03/26/09 23:42:57 v1.08 @ LAPPIE, trial factoring cutoff at 98 bits 03/26/09 23:42:57 v1.08 @ LAPPIE, ==== sieving started ==== 03/27/09 13:27:40 v1.08 @ LAPPIE, sieve time = 14761.2410, relation time = 11943.4010, poly_time = 22714.0660 03/27/09 13:27:40 v1.08 @ LAPPIE, 121065 relations found: 27879 full + 93186 from 1844469 partial, using 2695059 polys (609 A polys) 03/27/09 13:27:40 v1.08 @ LAPPIE, trial division touched 561952386 sieve locations out of 7064935464960 03/27/09 13:27:40 v1.08 @ LAPPIE, ==== post processing stage (msieve-1.38) ==== 03/27/09 13:27:47 v1.08 @ LAPPIE, begin with 1872348 relations 03/27/09 13:27:48 v1.08 @ LAPPIE, reduce to 326294 relations in 15 passes 03/27/09 13:27:51 v1.08 @ LAPPIE, failed to read relation 94436 03/27/09 13:27:51 v1.08 @ LAPPIE, failed to read relation 126269 03/27/09 13:27:54 v1.08 @ LAPPIE, failed to read relation 236788 03/27/09 13:27:56 v1.08 @ LAPPIE, failed to read relation 291206 03/27/09 13:27:57 v1.08 @ LAPPIE, recovered 326290 relations 03/27/09 13:27:57 v1.08 @ LAPPIE, recovered 307271 polynomials 03/27/09 13:27:57 v1.08 @ LAPPIE, attempting to build 121061 cycles 03/27/09 13:27:57 v1.08 @ LAPPIE, found 121061 cycles in 7 passes 03/27/09 13:27:57 v1.08 @ LAPPIE, distribution of cycle lengths: 03/27/09 13:27:57 v1.08 @ LAPPIE, length 1 : 27879 03/27/09 13:27:57 v1.08 @ LAPPIE, length 2 : 19652 03/27/09 13:27:57 v1.08 @ LAPPIE, length 3 : 19792 03/27/09 13:27:57 v1.08 @ LAPPIE, length 4 : 16536 03/27/09 13:27:57 v1.08 @ LAPPIE, length 5 : 12912 03/27/09 13:27:57 v1.08 @ LAPPIE, length 6 : 9112 03/27/09 13:27:57 v1.08 @ LAPPIE, length 7 : 6125 03/27/09 13:27:57 v1.08 @ LAPPIE, length 9+: 9053 03/27/09 13:27:57 v1.08 @ LAPPIE, largest cycle: 21 relations 03/27/09 13:27:57 v1.08 @ LAPPIE, matrix is 121000 x 121061 (36.0 MB) with weight 8959249 (74.01/col) 03/27/09 13:27:57 v1.08 @ LAPPIE, sparse part has weight 8959249 (74.01/col) 03/27/09 13:27:58 v1.08 @ LAPPIE, filtering completed in 3 passes 03/27/09 13:27:58 v1.08 @ LAPPIE, matrix is 116549 x 116613 (34.9 MB) with weight 8691415 (74.53/col) 03/27/09 13:27:58 v1.08 @ LAPPIE, sparse part has weight 8691415 (74.53/col) 03/27/09 13:27:59 v1.08 @ LAPPIE, saving the first 48 matrix rows for later 03/27/09 13:27:59 v1.08 @ LAPPIE, matrix is 116501 x 116613 (24.3 MB) with weight 7166912 (61.46/col) 03/27/09 13:27:59 v1.08 @ LAPPIE, sparse part has weight 5671030 (48.63/col) 03/27/09 13:27:59 v1.08 @ LAPPIE, matrix includes 64 packed rows 03/27/09 13:27:59 v1.08 @ LAPPIE, using block size 46645 for processor cache size 3072 kB 03/27/09 13:28:00 v1.08 @ LAPPIE, commencing Lanczos iteration 03/27/09 13:28:00 v1.08 @ LAPPIE, memory use: 21.8 MB 03/27/09 13:29:28 v1.08 @ LAPPIE, lanczos halted after 1844 iterations (dim = 116501) 03/27/09 13:29:28 v1.08 @ LAPPIE, recovered 18 nontrivial dependencies 03/27/09 13:29:29 v1.08 @ LAPPIE, prp52 = 3124137943097999819298035626042740374316930537111941 03/27/09 13:29:32 v1.08 @ LAPPIE, prp51 = 145182403511774248585192727630916578243588995294079 03/27/09 13:29:32 v1.08 @ LAPPIE, Lanczos elapsed time = 107.5710 seconds. 03/27/09 13:29:32 v1.08 @ LAPPIE, Sqrt elapsed time = 4.3410 seconds. 03/27/09 13:29:32 v1.08 @ LAPPIE, SIQS elapsed time = 49596.1740 seconds. 03/27/09 13:29:32 v1.08 @ LAPPIE, 03/27/09 13:29:32 v1.08 @ LAPPIE, 03/27/09 13:29:32 v1.08 @ LAPPIE, Total factoring time = 77160.9650 seconds
By Robert Backstrom / GGNFS, Msieve / Mar 27, 2009
(49·10145+23)/9 = 5(4)1447<146> = 3 · 19 · 1433 · 1637 · 13441 · 19121 · 843689909 · 12546029357<11> · C111
C111 = P41 · P70
P41 = 28099096755963360760156147612476659621363<41>
P70 = 5326723434107357287126667494376808424483238382966320913407508042003889<70>
Number: n N=149676117167240055804949774649484580128526423564024288653847340628041533707950209508991314055486019230513480707 ( 111 digits) Divisors found: Fri Mar 27 20:38:02 2009 prp41 factor: 28099096755963360760156147612476659621363 Fri Mar 27 20:38:02 2009 prp70 factor: 5326723434107357287126667494376808424483238382966320913407508042003889 Fri Mar 27 20:38:02 2009 elapsed time 00:28:45 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 11.59 hours. Scaled time: 30.31 units (timescale=2.616). Factorization parameters were as follows: name: KA_5_4_144_7 n: 149676117167240055804949774649484580128526423564024288653847340628041533707950209508991314055486019230513480707 skew: 54054.23 # norm 5.58e+14 c5: 4080 c4: 104162355 c3: -24151431615492 c2: -413790679185675356 c1: 24983205633200245884864 c0: 600209768239263810987355997 # alpha -5.44 Y1: 213617932927 Y0: -2055408927863635415646 # Murphy_E 1.01e-09 # M 47036110769373571685223730777806106190142807887105667390924714824160485749629030815867038979515447120817685924 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2310157) Primes: RFBsize:230209, AFBsize:230174, largePrimes:10909616 encountered Relations: rels:9252464, finalFF:462617 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 479607 hash collisions in 9905449 relations Msieve: matrix is 456373 x 456621 (126.1 MB) Total sieving time: 11.29 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 11.59 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Mar 27, 2009
(49·10139+23)/9 = 5(4)1387<140> = 3 · 17 · 2207 · 1904082082311853<16> · 6244544042098850789167<22> · C98
C98 = P49 · P50
P49 = 2072759047416221070534804488754052236069702934877<49>
P50 = 19626634850383055370477280716473069938045234782973<50>
hu Mar 26 18:13:36 2009 Msieve v. 1.39 Thu Mar 26 18:13:36 2009 random seeds: 1860eb28 af6a59ad Thu Mar 26 18:13:36 2009 factoring 40681284956465988403080857946319072263186432526101152628954576776813427435085598802385742247449321 (98 digits) Thu Mar 26 18:13:37 2009 searching for 15-digit factors Thu Mar 26 18:13:39 2009 commencing quadratic sieve (98-digit input) Thu Mar 26 18:13:39 2009 using multiplier of 1 Thu Mar 26 18:13:39 2009 using 32kb Intel Core sieve core Thu Mar 26 18:13:39 2009 sieve interval: 36 blocks of size 32768 Thu Mar 26 18:13:39 2009 processing polynomials in batches of 6 Thu Mar 26 18:13:39 2009 using a sieve bound of 2508151 (91735 primes) Thu Mar 26 18:13:39 2009 using large prime bound of 376222650 (28 bits) Thu Mar 26 18:13:39 2009 using double large prime bound of 2727726703072350 (43-52 bits) Thu Mar 26 18:13:39 2009 using trial factoring cutoff of 52 bits Thu Mar 26 18:13:39 2009 polynomial 'A' values have 13 factors Fri Mar 27 02:30:51 2009 92021 relations (21823 full + 70198 combined from 1396079 partial), need 91831 Fri Mar 27 02:30:53 2009 begin with 1417902 relations Fri Mar 27 02:30:54 2009 reduce to 243523 relations in 10 passes Fri Mar 27 02:30:54 2009 attempting to read 243523 relations Fri Mar 27 02:30:59 2009 recovered 243523 relations Fri Mar 27 02:30:59 2009 recovered 232972 polynomials Fri Mar 27 02:30:59 2009 attempting to build 92021 cycles Fri Mar 27 02:30:59 2009 found 92021 cycles in 6 passes Fri Mar 27 02:30:59 2009 distribution of cycle lengths: Fri Mar 27 02:30:59 2009 length 1 : 21823 Fri Mar 27 02:30:59 2009 length 2 : 15568 Fri Mar 27 02:30:59 2009 length 3 : 15478 Fri Mar 27 02:30:59 2009 length 4 : 12640 Fri Mar 27 02:30:59 2009 length 5 : 9600 Fri Mar 27 02:30:59 2009 length 6 : 6545 Fri Mar 27 02:30:59 2009 length 7 : 4289 Fri Mar 27 02:30:59 2009 length 9+: 6078 Fri Mar 27 02:30:59 2009 largest cycle: 21 relations Fri Mar 27 02:31:00 2009 matrix is 91735 x 92021 (24.9 MB) with weight 6171846 (67.07/col) Fri Mar 27 02:31:00 2009 sparse part has weight 6171846 (67.07/col) Fri Mar 27 02:31:01 2009 filtering completed in 3 passes Fri Mar 27 02:31:01 2009 matrix is 88169 x 88233 (24.0 MB) with weight 5942491 (67.35/col) Fri Mar 27 02:31:01 2009 sparse part has weight 5942491 (67.35/col) Fri Mar 27 02:31:01 2009 saving the first 48 matrix rows for later Fri Mar 27 02:31:01 2009 matrix is 88121 x 88233 (15.1 MB) with weight 4742704 (53.75/col) Fri Mar 27 02:31:01 2009 sparse part has weight 3440666 (39.00/col) Fri Mar 27 02:31:01 2009 matrix includes 64 packed rows Fri Mar 27 02:31:01 2009 using block size 35293 for processor cache size 1024 kB Fri Mar 27 02:31:02 2009 commencing Lanczos iteration Fri Mar 27 02:31:02 2009 memory use: 14.6 MB Fri Mar 27 02:31:57 2009 lanczos halted after 1395 iterations (dim = 88118) Fri Mar 27 02:31:57 2009 recovered 15 nontrivial dependencies Fri Mar 27 02:31:58 2009 prp49 factor: 2072759047416221070534804488754052236069702934877 Fri Mar 27 02:31:58 2009 prp50 factor: 19626634850383055370477280716473069938045234782973 Fri Mar 27 02:31:58 2009 elapsed time 08:18:22
(49·10132+23)/9 = 5(4)1317<133> = 16980584111<11> · C123
C123 = P53 · P70
P53 = 65594212145907328803824064243879179779552967931235427<53>
P70 = 4888047585303310525809787280229165861700492433207353199793648310838651<70>
Number: 54447_132 N=320627630289675401169387043145423187759765541815903934922327033514639056249155459010608144823931872365992041959176892088977 ( 123 digits) SNFS difficulty: 134 digits. Divisors found: r1=65594212145907328803824064243879179779552967931235427 (pp53) r2=4888047585303310525809787280229165861700492433207353199793648310838651 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 8.87 hours. Scaled time: 4.20 units (timescale=0.473). Factorization parameters were as follows: name: 5444_132 n: 320627630289675401169387043145423187759765541815903934922327033514639056249155459010608144823931872365992041959176892088977 m: 200000000000000000000000000 deg: 5 c5: 1225 c0: 184 skew: 0.68 type: snfs lss: 1 rlim: 1230000 alim: 1230000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1230000/1230000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [615000, 1365001) Primes: RFBsize:95051, AFBsize:94798, largePrimes:3188611 encountered Relations: rels:3164491, finalFF:263511 Max relations in full relation-set: 28 Initial matrix: 189914 x 263511 with sparse part having weight 23975523. Pruned matrix : 170528 x 171541 with weight 12559364. Total sieving time: 8.10 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.56 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1230000,1230000,26,26,47,47,2.3,2.3,75000 total time: 8.87 hours. --------- CPU info (if available) ----------
(49·10136+23)/9 = 5(4)1357<137> = 3 · C137
C137 = P47 · P91
P47 = 11469748045393866785079980234484149679778904849<47>
P91 = 1582262145281932184224557733322428115520702729873734992229974599729019302327043912919001701<91>
Number: 54447_136 N=18148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 ( 137 digits) SNFS difficulty: 138 digits. Divisors found: r1=11469748045393866785079980234484149679778904849 r2=1582262145281932184224557733322428115520702729873734992229974599729019302327043912919001701 Version: Total time: 4.53 hours. Scaled time: 15.13 units (timescale=3.339). Factorization parameters were as follows: name: 54447_136 n: 18148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 m: 2000000000000000000000000000 deg: 5 c5: 245 c0: 368 skew: 1.08 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 222076 x 222324 Total sieving time: 4.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 4.53 hours. --------- CPU info (if available) ----------
(49·10141+23)/9 = 5(4)1407<142> = 13 · 417717737 · 237649169221<12> · 75672693320024537909317<23> · C98
C98 = P41 · P58
P41 = 25422400608002178538937352091939883519719<41>
P58 = 2192982932771281359086104058811103715388491439096170268589<58>
Fri Mar 27 04:05:55 2009 Msieve v. 1.39 Fri Mar 27 04:05:55 2009 random seeds: b36ff260 c126c954 Fri Mar 27 04:05:55 2009 factoring 55750890643423023846877628970441753098432966504896865465627005857047479051479338805773750907806491 (98 digits) Fri Mar 27 04:05:56 2009 searching for 15-digit factors Fri Mar 27 04:05:58 2009 commencing quadratic sieve (98-digit input) Fri Mar 27 04:05:58 2009 using multiplier of 19 Fri Mar 27 04:05:58 2009 using 32kb Intel Core sieve core Fri Mar 27 04:05:58 2009 sieve interval: 36 blocks of size 32768 Fri Mar 27 04:05:58 2009 processing polynomials in batches of 6 Fri Mar 27 04:05:58 2009 using a sieve bound of 2508139 (91605 primes) Fri Mar 27 04:05:58 2009 using large prime bound of 376220850 (28 bits) Fri Mar 27 04:05:58 2009 using double large prime bound of 2727703118350350 (43-52 bits) Fri Mar 27 04:05:58 2009 using trial factoring cutoff of 52 bits Fri Mar 27 04:05:58 2009 polynomial 'A' values have 13 factors Fri Mar 27 11:32:05 2009 91986 relations (22361 full + 69625 combined from 1374307 partial), need 91701 Fri Mar 27 11:32:07 2009 begin with 1396668 relations Fri Mar 27 11:32:09 2009 reduce to 240128 relations in 13 passes Fri Mar 27 11:32:09 2009 attempting to read 240128 relations Fri Mar 27 11:32:13 2009 recovered 240128 relations Fri Mar 27 11:32:13 2009 recovered 228608 polynomials Fri Mar 27 11:32:13 2009 attempting to build 91986 cycles Fri Mar 27 11:32:13 2009 found 91986 cycles in 6 passes Fri Mar 27 11:32:13 2009 distribution of cycle lengths: Fri Mar 27 11:32:13 2009 length 1 : 22361 Fri Mar 27 11:32:13 2009 length 2 : 16061 Fri Mar 27 11:32:13 2009 length 3 : 15438 Fri Mar 27 11:32:13 2009 length 4 : 12603 Fri Mar 27 11:32:13 2009 length 5 : 9395 Fri Mar 27 11:32:13 2009 length 6 : 6325 Fri Mar 27 11:32:13 2009 length 7 : 4184 Fri Mar 27 11:32:13 2009 length 9+: 5619 Fri Mar 27 11:32:13 2009 largest cycle: 21 relations Fri Mar 27 11:32:14 2009 matrix is 91605 x 91986 (24.2 MB) with weight 5976920 (64.98/col) Fri Mar 27 11:32:14 2009 sparse part has weight 5976920 (64.98/col) Fri Mar 27 11:32:15 2009 filtering completed in 3 passes Fri Mar 27 11:32:15 2009 matrix is 87537 x 87601 (23.1 MB) with weight 5707780 (65.16/col) Fri Mar 27 11:32:15 2009 sparse part has weight 5707780 (65.16/col) Fri Mar 27 11:32:15 2009 saving the first 48 matrix rows for later Fri Mar 27 11:32:16 2009 matrix is 87489 x 87601 (13.3 MB) with weight 4351256 (49.67/col) Fri Mar 27 11:32:16 2009 sparse part has weight 2973209 (33.94/col) Fri Mar 27 11:32:16 2009 matrix includes 64 packed rows Fri Mar 27 11:32:16 2009 using block size 35040 for processor cache size 1024 kB Fri Mar 27 11:32:16 2009 commencing Lanczos iteration Fri Mar 27 11:32:16 2009 memory use: 13.6 MB Fri Mar 27 11:33:06 2009 lanczos halted after 1385 iterations (dim = 87487) Fri Mar 27 11:33:06 2009 recovered 17 nontrivial dependencies Fri Mar 27 11:33:07 2009 prp41 factor: 25422400608002178538937352091939883519719 Fri Mar 27 11:33:07 2009 prp58 factor: 2192982932771281359086104058811103715388491439096170268589 Fri Mar 27 11:33:07 2009 elapsed time 07:27:12
By Jo Yeong Uk / GMP-ECM / Mar 27, 2009
(49·10185+23)/9 = 5(4)1847<186> = C186
C186 = P33 · P153
P33 = 806733444214685110818405149979937<33>
P153 = 674875261895748026104835169072656059803931384591054243173189832904384059405927583278464754459983266422994151032177491844598621496960454629394526600967231<153>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 544444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 (186 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1723084161 Step 1 took 6221ms Step 2 took 3400ms ********** Factor found in step 2: 806733444214685110818405149979937 Found probable prime factor of 33 digits: 806733444214685110818405149979937 Probable prime cofactor 674875261895748026104835169072656059803931384591054243173189832904384059405927583278464754459983266422994151032177491844598621496960454629394526600967231 has 153 digits
By Ignacio Santos / GGNFS, Msieve / Mar 27, 2009
(49·10137+41)/9 = 5(4)1369<138> = 32 · 233 · 36097 · 5517307 · 160828175857<12> · C112
C112 = P49 · P64
P49 = 2425727394160925168973174009150207745849594329787<49>
P64 = 3341586837971065273981699845466591967077869497074885030760101097<64>
Number: 54449_137 N=8105778732833997840998552688220217168092181072232097955983824590327356982459028278624705999411103235686078476339 ( 112 digits) SNFS difficulty: 139 digits. Divisors found: r1=2425727394160925168973174009150207745849594329787 (pp49) r2=3341586837971065273981699845466591967077869497074885030760101097 (pp64) Version: Msieve-1.39 Total time: 3.99 hours. Scaled time: 6.93 units (timescale=1.739). Factorization parameters were as follows: n: 8105778732833997840998552688220217168092181072232097955983824590327356982459028278624705999411103235686078476339 m: 2000000000000000000000000000 deg: 5 c5: 1225 c0: 328 skew: 0.77 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [740000, 1490001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 226080 x 226328 Total sieving time: 3.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,48,48,2.3,2.3,75000 total time: 3.99 hours. --------- CPU info (if available) ----------
(49·10138+41)/9 = 5(4)1379<139> = 15595643090259138670909471<26> · C114
C114 = P47 · P68
P47 = 18533989362828478542555461551240462977930149887<47>
P68 = 18835683030031066796183322332961649164918753989445572020809159395137<68>
Number: 54449_138 N=349100348920204677754729896469469518001250723946393823346871892322067135526799095817938294302315163602800668899519 ( 114 digits) SNFS difficulty: 141 digits. Divisors found: r1=18533989362828478542555461551240462977930149887 (pp47) r2=18835683030031066796183322332961649164918753989445572020809159395137 (pp68) Version: Msieve-1.39 Total time: 5.77 hours. Scaled time: 10.04 units (timescale=1.739). Factorization parameters were as follows: n: 349100348920204677754729896469469518001250723946393823346871892322067135526799095817938294302315163602800668899519 m: 5000000000000000000000000000 deg: 5 c5: 392 c0: 1025 skew: 1.21 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1885001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 267184 x 267432 Total sieving time: 5.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 5.77 hours. --------- CPU info (if available) ----------
(49·10166+41)/9 = 5(4)1659<167> = 2151847 · C161
C161 = P39 · P122
P39 = 403475196715413542945185597203831441517<39>
P122 = 62708345080053725423367577282775798846310717380281419671758144564588907556000849612451063415371641841328324130172173742451<122>
Number: 54449_166 N=25301261866872711881673950073794486524573747317743521934619164115499124447251335454818323256460354497529073602558380983612889041109541916523082005572164026738167 ( 161 digits) SNFS difficulty: 167 digits. Divisors found: r1=403475196715413542945185597203831441517 (pp39) r2=62708345080053725423367577282775798846310717380281419671758144564588907556000849612451063415371641841328324130172173742451 (pp122) Version: Msieve-1.39 Total time: 51.88 hours. Scaled time: 90.22 units (timescale=1.739). Factorization parameters were as follows: n: 25301261866872711881673950073794486524573747317743521934619164115499124447251335454818323256460354497529073602558380983612889041109541916523082005572164026738167 m: 1000000000000000000000000000000000 deg: 5 c5: 490 c0: 41 skew: 0.61 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 5200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 874003 x 874251 Total sieving time: 51.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 51.88 hours. --------- CPU info (if available) ----------
(8·10170-53)/9 = (8)1693<170> = 320125693285593749063<21> · C150
C150 = P47 · P104
P47 = 23559899128668130997812153260935382432418417441<47>
P104 = 11785649435366880973726668861597007737603372223460325079320068596433820581085450083045755315594565351701<104>
Number: 88883_170 N=277668711863088229130098651489614886471886915528918772949629453601534389737903588995330059164196819694470193153548947465023028184980242144797997417141 ( 150 digits) SNFS difficulty: 170 digits. Divisors found: r1=23559899128668130997812153260935382432418417441 (pp47) r2=11785649435366880973726668861597007737603372223460325079320068596433820581085450083045755315594565351701 (pp104) Version: Msieve-1.39 Total time: 49.08 hours. Scaled time: 126.18 units (timescale=2.571). Factorization parameters were as follows: n: 277668711863088229130098651489614886471886915528918772949629453601534389737903588995330059164196819694470193153548947465023028184980242144797997417141 m: 10000000000000000000000000000000000 deg: 5 c5: 8 c0: -53 skew: 1.46 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 866303 x 866551 Total sieving time: 49.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 49.08 hours. --------- CPU info (if available) ----------
(49·10144+23)/9 = 5(4)1437<145> = 4463 · 5084335385724661558411<22> · C120
C120 = P44 · P77
P44 = 18587922413311078500682008656078799844857539<44>
P77 = 12908079806624081195761137810924158501690725662669177809379445232500203387761<77>
Number: 54447_144 N=239934385950355890837148625513788087364983744889451972553265266567739880538425926972922707561318526301372830222221180179 ( 120 digits) SNFS difficulty: 146 digits. Divisors found: r1=18587922413311078500682008656078799844857539 (pp44) r2=12908079806624081195761137810924158501690725662669177809379445232500203387761 (pp77) Version: Msieve-1.39 Total time: 9.88 hours. Scaled time: 25.40 units (timescale=2.571). Factorization parameters were as follows: n: 239934385950355890837148625513788087364983744889451972553265266567739880538425926972922707561318526301372830222221180179 m: 100000000000000000000000000000 deg: 5 c5: 49 c0: 230 skew: 1.36 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 2375001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 327912 x 328160 Total sieving time: 9.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 9.88 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.40, Msieve-1.40/1.39sqrt / Mar 27, 2009
(47·10157+43)/9 = 5(2)1567<158> = 32 · C157
C157 = P63 · P94
P63 = 863739116053015826056476279862601665119897672463708354914661277<63>
P94 = 6717849206966234942139994623500961571684454208649571846255616026490064023572030489723138698039<94>
SNFS difficulty: 159 digits. Divisors found: r1=863739116053015826056476279862601665119897672463708354914661277 (pp63) r2=6717849206966234942139994623500961571684454208649571846255616026490064023572030489723138698039 (pp94) Version: Msieve-1.40 Total time: 12.45 hours. Scaled time: 35.34 units (timescale=2.840). Factorization parameters were as follows: n: 5802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135803 m: 20000000000000000000000000000000 deg: 5 c5: 1175 c0: 344 skew: 0.78 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1600000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 600280 x 600528 Total sieving time: 12.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,52,52,2.4,2.4,100000 total time: 12.45 hours.
(49·10156-13)/9 = 5(4)1553<157> = 1885805722707991669898771533<28> · C130
C130 = P55 · P76
P55 = 2210524998163295381088357432294324394655053936779965711<55>
P76 = 1306054171647590876958690600009006792110053639951158724187114943389454925961<76>
SNFS difficulty: 158 digits. Divisors found: r1=2210524998163295381088357432294324394655053936779965711 (pp55) r2=1306054171647590876958690600009006792110053639951158724187114943389454925961 (pp76) Version: Msieve-1.40 Total time: 10.84 hours. Scaled time: 30.78 units (timescale=2.839). Factorization parameters were as follows: n: 2887065395382455093675160127696693984232235070487908532313326863483666488669758862609112195172261282961921826638822593725623723271 m: 20000000000000000000000000000000 deg: 5 c5: 245 c0: -208 skew: 0.97 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1600000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 585235 x 585482 Total sieving time: 10.84 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,52,52,2.4,2.4,100000 total time: 10.84 hours.
(49·10175+23)/9 = 5(4)1747<176> = 3 · C176
C176 = P64 · P113
P64 = 1495137986198626713891034616766476860505226920685712498786743139<64>
P113 = 12138109201739721837657904196381001857689869557081702922551111410234045319431624045172325499708883925960213827591<113>
SNFS difficulty: 176 digits. Divisors found: r1=1495137986198626713891034616766476860505226920685712498786743139 (pp64) r2=12138109201739721837657904196381001857689869557081702922551111410234045319431624045172325499708883925960213827591 (pp113) Version: Msieve-1.40/1.39 Total time: 46.80 hours. Scaled time: 132.91 units (timescale=2.840). Factorization parameters were as follows: n: 18148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 m: 100000000000000000000000000000000000 deg: 5 c5: 49 c0: 23 skew: 0.86 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [3100000, 3100000) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1425483 x 1425729 Total sieving time: 38.80 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.10 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,55,55,2.5,2.5,100000 total time: 46.80 hours.
By Erik Branger / GGNFS, Msieve / Mar 27, 2009
(49·10137+23)/9 = 5(4)1367<138> = 367 · 41519 · C131
C131 = P48 · P84
P48 = 111686516686440099713105228891396349952349160121<48>
P84 = 319918883357687655326884373101551813841497448613417153161897436456980513663260915959<84>
Number: 54447_137 N=35730625704435666231824951843684608625357002729024979696071943454432663765471114826221148640883199231555287707118132018638815271039 ( 131 digits) SNFS difficulty: 139 digits. Divisors found: r1=111686516686440099713105228891396349952349160121 r2=319918883357687655326884373101551813841497448613417153161897436456980513663260915959 Version: Total time: 9.81 hours. Scaled time: 7.65 units (timescale=0.780). Factorization parameters were as follows: n: 35730625704435666231824951843684608625357002729024979696071943454432663765471114826221148640883199231555287707118132018638815271039 m: 2000000000000000000000000000 deg: 5 c5: 1225 c0: 184 skew: 0.68 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [750000, 1725001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 245198 x 245446 Total sieving time: 9.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3,75000 total time: 9.81 hours. --------- CPU info (if available) ----------
(49·10144+41)/9 = 5(4)1439<145> = 179 · 94593921041<11> · C132
C132 = P65 · P67
P65 = 34618114200346796804140356391786401986013866968419090798524170021<65>
P67 = 9288250196524313420503337155642549167984865224535302935187999437071<67>
Number: 54449_144 N=321541706024672260551787816221255298649921458882378056825433992581094497126329589535485981556862183103890401989612491476535494248491 ( 132 digits) SNFS difficulty: 146 digits. Divisors found: r1=34618114200346796804140356391786401986013866968419090798524170021 r2=9288250196524313420503337155642549167984865224535302935187999437071 Version: Total time: 13.63 hours. Scaled time: 13.89 units (timescale=1.019). Factorization parameters were as follows: n: 321541706024672260551787816221255298649921458882378056825433992581094497126329589535485981556862183103890401989612491476535494248491 m: 100000000000000000000000000000 deg: 5 c5: 49 c0: 410 skew: 1.53 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 369163 x 369411 Total sieving time: 13.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 13.63 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 26, 2009
(49·10111+41)/9 = 5(4)1109<112> = 172 · 949631 · C104
C104 = P33 · P34 · P37
P33 = 971722182165766413416910057805321<33>
P34 = 2903609920526649428880059207607911<34>
P37 = 7031054367157515839501298639415675681<37>
Number: 54449_111 N=19838135141191171779982639129717270529561053960298031640271697900492627494930363552518843950035039632511 ( 104 digits) SNFS difficulty: 112 digits. Divisors found: r1=971722182165766413416910057805321 (pp33) r2=2903609920526649428880059207607911 (pp34) r3=7031054367157515839501298639415675681 (pp37) Version: Msieve-1.39 Total time: 0.94 hours. Scaled time: 1.12 units (timescale=1.190). Factorization parameters were as follows: n: 19838135141191171779982639129717270529561053960298031640271697900492627494930363552518843950035039632511 m: 10000000000000000000000 deg: 5 c5: 490 c0: 41 skew: 0.61 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 465001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 58703 x 58941 Total sieving time: 0.94 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 0.94 hours. --------- CPU info (if available) ----------
(49·10115+41)/9 = 5(4)1149<116> = 4794897909653311<16> · C101
C101 = P32 · P35 · P35
P32 = 10186924979578406583472433052629<32>
P35 = 16338425213924652585496712373192443<35>
P35 = 68221443328719721898218651146386297<35>
Number: 54449_115 N=11354661865653982362261839676089086822686511351795352067983241640600745659167261885722919030896288159 ( 101 digits) SNFS difficulty: 116 digits. Divisors found: r1=10186924979578406583472433052629 (pp32) r2=16338425213924652585496712373192443 (pp35) r3=68221443328719721898218651146386297 (pp35) Version: Msieve-1.39 Total time: 1.04 hours. Scaled time: 1.24 units (timescale=1.193). Factorization parameters were as follows: n: 11354661865653982362261839676089086822686511351795352067983241640600745659167261885722919030896288159 m: 100000000000000000000000 deg: 5 c5: 49 c0: 41 skew: 0.96 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64279 x 64517 Total sieving time: 1.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 1.04 hours. --------- CPU info (if available) ----------
(49·10118+23)/9 = 5(4)1177<119> = 3 · 163 · 1593269 · C110
C110 = P47 · P64
P47 = 15910289293665460540700312777954637144135377863<47>
P64 = 4392153693257523977981110166469894720194709254490343305931044509<64>
Number: 54447_118 N=69880435881968395010117652457418567106228712803245272656360783554090757226655078402541147914901942326986304267 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=15910289293665460540700312777954637144135377863 (pp47) r2=4392153693257523977981110166469894720194709254490343305931044509 (pp64) Version: Msieve-1.39 Total time: 1.50 hours. Scaled time: 1.78 units (timescale=1.190). Factorization parameters were as follows: n: 69880435881968395010117652457418567106228712803245272656360783554090757226655078402541147914901942326986304267 m: 500000000000000000000000 deg: 5 c5: 392 c0: 575 skew: 1.08 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80344 x 80581 Total sieving time: 1.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.50 hours. --------- CPU info (if available) ----------
(49·10122+41)/9 = 5(4)1219<123> = 3 · 61 · 16421 · 269527 · C111
C111 = P39 · P73
P39 = 194427825632112280839477791635994595997<39>
P73 = 3457340734650925945845897206191168163665361420064678013468291084068546497<73>
Number: 54449_122 N=672203241507509203306318147571058464803415911356671337559948980034010718106973978089196178664520519414524572509 ( 111 digits) SNFS difficulty: 124 digits. Divisors found: r1=194427825632112280839477791635994595997 (pp39) r2=3457340734650925945845897206191168163665361420064678013468291084068546497 (pp73) Version: Msieve-1.39 Total time: 1.69 hours. Scaled time: 2.02 units (timescale=1.194). Factorization parameters were as follows: n: 672203241507509203306318147571058464803415911356671337559948980034010718106973978089196178664520519414524572509 m: 2000000000000000000000000 deg: 5 c5: 1225 c0: 328 skew: 0.77 type: snfs lss: 1 rlim: 830000 alim: 830000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 830000/830000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [415000, 765001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 92849 x 93096 Total sieving time: 1.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,830000,830000,25,25,46,46,2.2,2.2,50000 total time: 1.69 hours. --------- CPU info (if available) ----------
(16·10170+17)/3 = 5(3)1699<171> = 74 · 112 · 3277640053<10> · C156
C156 = P36 · P121
P36 = 132352806904194982440252584077327919<36>
P121 = 4231816069054994431419448863751815900867250965737302061112758210469770212260400845121738062490712318340173811038583094537<121>
Number: 53339_170 N=560092735041705137562298026759894588633998295834374639822117020159143485878569329742355372234945155356505826309236855960429115016162119308543393017126478503 ( 156 digits) SNFS difficulty: 171 digits. Divisors found: r1=132352806904194982440252584077327919 (pp36) r2=4231816069054994431419448863751815900867250965737302061112758210469770212260400845121738062490712318340173811038583094537 (pp121) Version: Msieve-1.39 Total time: 36.83 hours. Scaled time: 64.05 units (timescale=1.739). Factorization parameters were as follows: n: 560092735041705137562298026759894588633998295834374639822117020159143485878569329742355372234945155356505826309236855960429115016162119308543393017126478503 m: 10000000000000000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 812802 x 813050 Total sieving time: 36.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 36.83 hours. --------- CPU info (if available) ----------
(49·10129+41)/9 = 5(4)1289<130> = 103 · C128
C128 = P34 · P38 · P57
P34 = 1933030102714732371359649944976571<34>
P38 = 67460989330069140041565000686446989847<38>
P57 = 405345188912107832212622449426391920980159997852887421459<57>
Number: 54449_129 N=52858683926645091693635382955771305285868392664509169363538295577130528586839266450916936353829557713052858683926645091693635383 ( 128 digits) SNFS difficulty: 131 digits. Divisors found: r1=1933030102714732371359649944976571 (pp34) r2=67460989330069140041565000686446989847 (pp38) r3=405345188912107832212622449426391920980159997852887421459 (pp57) Version: Msieve-1.39 Total time: 2.74 hours. Scaled time: 4.75 units (timescale=1.735). Factorization parameters were as follows: n: 52858683926645091693635382955771305285868392664509169363538295577130528586839266450916936353829557713052858683926645091693635383 m: 100000000000000000000000000 deg: 5 c5: 49 c0: 410 skew: 1.53 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168168 x 168416 Total sieving time: 2.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.74 hours. --------- CPU info (if available) ----------
(49·10124+41)/9 = 5(4)1239<125> = 116538371 · 204661783981<12> · C106
C106 = P41 · P65
P41 = 37428052363683529029244596049442228725609<41>
P65 = 60988877974397866287182423059627153170887298299087679623642765311<65>
Number: 54449_124 N=2282694918428068381348693425024345271947221342778726134596358771658935004775994118288821273088756202549399 ( 106 digits) SNFS difficulty: 126 digits. Divisors found: r1=37428052363683529029244596049442228725609 (pp41) r2=60988877974397866287182423059627153170887298299087679623642765311 (pp65) Version: Msieve-1.39 Total time: 1.93 hours. Scaled time: 3.35 units (timescale=1.739). Factorization parameters were as follows: n: 2282694918428068381348693425024345271947221342778726134596358771658935004775994118288821273088756202549399 m: 10000000000000000000000000 deg: 5 c5: 49 c0: 410 skew: 1.53 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130255 x 130496 Total sieving time: 1.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.93 hours. --------- CPU info (if available) ----------
(49·10131+41)/9 = 5(4)1309<132> = 3 · 127 · 151 · C127
C127 = P48 · P80
P48 = 495966937574525418753568714951542682334528456989<48>
P80 = 19080902894169119340618115193581337119237563669324766720592482700362221956219311<80>
Number: 54449_131 N=9463496974577957004822520805208399722661598867470484511731839259606897923631510741069066145981200473561113911533685220914714579 ( 127 digits) SNFS difficulty: 132 digits. Divisors found: r1=495966937574525418753568714951542682334528456989 (pp48) r2=19080902894169119340618115193581337119237563669324766720592482700362221956219311 (pp80) Version: Msieve-1.39 Total time: 2.75 hours. Scaled time: 4.78 units (timescale=1.735). Factorization parameters were as follows: n: 9463496974577957004822520805208399722661598867470484511731839259606897923631510741069066145981200473561113911533685220914714579 m: 100000000000000000000000000 deg: 5 c5: 490 c0: 41 skew: 0.61 type: snfs lss: 1 rlim: 1140000 alim: 1140000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1140000/1140000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [570000, 1120001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 191855 x 192103 Total sieving time: 2.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1140000,1140000,26,26,47,47,2.3,2.3,50000 total time: 2.75 hours. --------- CPU info (if available) ----------
(35·10169-71)/9 = 3(8)1681<170> = 8143481792871063619<19> · C151
C151 = P75 · P77
P75 = 118340978066617131616605003668155243043376160853287972504030188576447929869<75>
P77 = 40353411013219617905735168316884121943560908269453282029870176563425168687271<77>
Number: 38881_169 N=4775462127628609004397620791239844944136870989009288523975169563758497738965996401945642214198142722452627484918282805662237004596874406817488200997499 ( 151 digits) SNFS difficulty: 170 digits. Divisors found: r1=118340978066617131616605003668155243043376160853287972504030188576447929869 (pp75) r2=40353411013219617905735168316884121943560908269453282029870176563425168687271 (pp77) Version: Msieve-1.39 Total time: 48.10 hours. Scaled time: 123.68 units (timescale=2.571). Factorization parameters were as follows: n: 4775462127628609004397620791239844944136870989009288523975169563758497738965996401945642214198142722452627484918282805662237004596874406817488200997499 m: 5000000000000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 929709 x 929957 Total sieving time: 48.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 48.10 hours. --------- CPU info (if available) ----------
(49·10130+41)/9 = 5(4)1299<131> = 980924498657<12> · C119
C119 = P26 · P93
P26 = 91157362108708740542600653<26>
P93 = 608872332910711521932266724140424623918336615769247686425689983577184398681484932263575936069<93>
Number: 54449_130 N=55503195729115988344309084736747369696542559541433720850677021062175206889975474460757689960075441138258614086125653057 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=91157362108708740542600653 (pp26) r2=608872332910711521932266724140424623918336615769247686425689983577184398681484932263575936069 (pp93) Version: Msieve-1.39 Total time: 2.09 hours. Scaled time: 3.63 units (timescale=1.735). Factorization parameters were as follows: n: 55503195729115988344309084736747369696542559541433720850677021062175206889975474460757689960075441138258614086125653057 m: 100000000000000000000000000 deg: 5 c5: 49 c0: 41 skew: 0.96 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 164089 x 164337 Total sieving time: 2.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.09 hours. --------- CPU info (if available) ----------
(49·10162+41)/9 = 5(4)1619<163> = 1062458317<10> · C154
C154 = P71 · P84
P71 = 34363196394391077614856507380930780469359185367467522330450410543511411<71>
P84 = 149124196210808318999806998432402432647174526275866338390959675701508450716087029127<84>
Number: 54449_162 N=5124384041547716026250886268364017564036297571233982296968027259034995576625943476373054214083058888082895438847079442124075766865538541823513669613868197 ( 154 digits) SNFS difficulty: 164 digits. Divisors found: r1=34363196394391077614856507380930780469359185367467522330450410543511411 (pp71) r2=149124196210808318999806998432402432647174526275866338390959675701508450716087029127 (pp84) Version: Msieve-1.39 Total time: 40.66 hours. Scaled time: 104.54 units (timescale=2.571). Factorization parameters were as follows: n: 5124384041547716026250886268364017564036297571233982296968027259034995576625943476373054214083058888082895438847079442124075766865538541823513669613868197 m: 200000000000000000000000000000000 deg: 5 c5: 1225 c0: 328 skew: 0.77 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1950000, 3850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 679933 x 680181 Total sieving time: 40.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 40.66 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve v1.40beta2, GGNFS / Mar 26, 2009
(25·10190-7)/9 = 2(7)190<191> = 33 · 2797 · 32987 · 126410761 · 1898586340075031513<19> · 41055377346413536886441<23> · C133
C133 = P45 · P88
P45 = 795128268408707329677455854041947365447846189<45>
P88 = 1423235633423252778206479630683161968045089225219334698844656222491689510969378337996137<88>
Wed Mar 25 16:28:21 2009 Wed Mar 25 16:28:21 2009 Wed Mar 25 16:28:21 2009 Msieve v. 1.40 Wed Mar 25 16:28:21 2009 random seeds: 205c5d10 e64a3f8d Wed Mar 25 16:28:21 2009 factoring 1131654884741400727699726376138663572315929999578565409629799410879508529632871965546762957227601037045689888661925111699728852171893 (133 digits) Wed Mar 25 16:28:22 2009 searching for 15-digit factors Wed Mar 25 16:28:24 2009 commencing number field sieve (133-digit input) Wed Mar 25 16:28:24 2009 R0: -28472200377097373513764874 Wed Mar 25 16:28:24 2009 R1: 468852546756907 Wed Mar 25 16:28:24 2009 A0: 3540594829011056504452269227293095 Wed Mar 25 16:28:24 2009 A1: 37878618697434955116910807726 Wed Mar 25 16:28:24 2009 A2: 37056681488483502513677 Wed Mar 25 16:28:24 2009 A3: -141162992671673610 Wed Mar 25 16:28:24 2009 A4: -24837161256 Wed Mar 25 16:28:24 2009 A5: 60480 Wed Mar 25 16:28:24 2009 skew 821183.19, size 9.199391e-013, alpha -7.661392, combined = 5.642171e-011 Wed Mar 25 16:28:24 2009 Wed Mar 25 16:28:24 2009 commencing relation filtering Wed Mar 25 16:28:24 2009 commencing duplicate removal, pass 1 Wed Mar 25 16:28:59 2009 error -15 reading relation 3007155 Wed Mar 25 16:28:59 2009 error -15 reading relation 3007384 Wed Mar 25 16:29:22 2009 error -15 reading relation 5139341 Wed Mar 25 16:31:29 2009 found 3944235 hash collisions in 16830320 relations Wed Mar 25 16:32:12 2009 added 106165 free relations Wed Mar 25 16:32:12 2009 commencing duplicate removal, pass 2 Wed Mar 25 16:33:20 2009 found 4190313 duplicates and 12746171 unique relations Wed Mar 25 16:33:20 2009 memory use: 106.6 MB Wed Mar 25 16:33:20 2009 reading rational ideals above 12255232 Wed Mar 25 16:33:20 2009 reading algebraic ideals above 12255232 Wed Mar 25 16:33:20 2009 commencing singleton removal, pass 1 Wed Mar 25 16:35:52 2009 relations with 0 large ideals: 482609 Wed Mar 25 16:35:52 2009 relations with 1 large ideals: 3067106 Wed Mar 25 16:35:52 2009 relations with 2 large ideals: 5577151 Wed Mar 25 16:35:52 2009 relations with 3 large ideals: 2996424 Wed Mar 25 16:35:52 2009 relations with 4 large ideals: 502027 Wed Mar 25 16:35:52 2009 relations with 5 large ideals: 21449 Wed Mar 25 16:35:52 2009 relations with 6 large ideals: 99405 Wed Mar 25 16:35:52 2009 relations with 7+ large ideals: 0 Wed Mar 25 16:35:52 2009 12746171 relations and about 11981739 large ideals Wed Mar 25 16:35:52 2009 commencing singleton removal, pass 2 Wed Mar 25 16:38:27 2009 found 5973933 singletons Wed Mar 25 16:38:27 2009 current dataset: 6772238 relations and about 4800496 large ideals Wed Mar 25 16:38:27 2009 commencing singleton removal, pass 3 Wed Mar 25 16:40:07 2009 found 1081690 singletons Wed Mar 25 16:40:07 2009 current dataset: 5690548 relations and about 3657854 large ideals Wed Mar 25 16:40:07 2009 commencing singleton removal, pass 4 Wed Mar 25 16:41:38 2009 found 253805 singletons Wed Mar 25 16:41:38 2009 current dataset: 5436743 relations and about 3399748 large ideals Wed Mar 25 16:41:38 2009 commencing singleton removal, final pass Wed Mar 25 16:43:11 2009 memory use: 77.7 MB Wed Mar 25 16:43:11 2009 commencing in-memory singleton removal Wed Mar 25 16:43:11 2009 begin with 5436743 relations and 3712401 unique ideals Wed Mar 25 16:43:16 2009 reduce to 4643827 relations and 2899656 ideals in 13 passes Wed Mar 25 16:43:16 2009 max relations containing the same ideal: 24 Wed Mar 25 16:43:18 2009 reading rational ideals above 720000 Wed Mar 25 16:43:18 2009 reading algebraic ideals above 720000 Wed Mar 25 16:43:18 2009 commencing singleton removal, final pass Wed Mar 25 16:44:51 2009 keeping 4349772 ideals with weight <= 20, new excess is 364446 Wed Mar 25 16:44:58 2009 memory use: 130.1 MB Wed Mar 25 16:44:58 2009 commencing in-memory singleton removal Wed Mar 25 16:44:59 2009 begin with 4680910 relations and 4349772 unique ideals Wed Mar 25 16:45:07 2009 reduce to 4548935 relations and 4035647 ideals in 12 passes Wed Mar 25 16:45:07 2009 max relations containing the same ideal: 20 Wed Mar 25 16:45:10 2009 removing 383563 relations and 338298 ideals in 45265 cliques Wed Mar 25 16:45:10 2009 commencing in-memory singleton removal Wed Mar 25 16:45:11 2009 begin with 4165372 relations and 4035647 unique ideals Wed Mar 25 16:45:15 2009 reduce to 4146785 relations and 3678522 ideals in 8 passes Wed Mar 25 16:45:15 2009 max relations containing the same ideal: 20 Wed Mar 25 16:45:18 2009 removing 284996 relations and 239731 ideals in 45265 cliques Wed Mar 25 16:45:19 2009 commencing in-memory singleton removal Wed Mar 25 16:45:19 2009 begin with 3861789 relations and 3678522 unique ideals Wed Mar 25 16:45:23 2009 reduce to 3849829 relations and 3426710 ideals in 7 passes Wed Mar 25 16:45:23 2009 max relations containing the same ideal: 20 Wed Mar 25 16:45:26 2009 relations with 0 large ideals: 9503 Wed Mar 25 16:45:26 2009 relations with 1 large ideals: 90848 Wed Mar 25 16:45:26 2009 relations with 2 large ideals: 396535 Wed Mar 25 16:45:26 2009 relations with 3 large ideals: 914667 Wed Mar 25 16:45:26 2009 relations with 4 large ideals: 1186000 Wed Mar 25 16:45:26 2009 relations with 5 large ideals: 853357 Wed Mar 25 16:45:26 2009 relations with 6 large ideals: 327220 Wed Mar 25 16:45:26 2009 relations with 7+ large ideals: 71699 Wed Mar 25 16:45:26 2009 commencing 2-way merge Wed Mar 25 16:45:30 2009 reduce to 2378718 relation sets and 1955599 unique ideals Wed Mar 25 16:45:30 2009 commencing full merge Wed Mar 25 16:46:08 2009 memory use: 176.4 MB Wed Mar 25 16:46:09 2009 found 1217257 cycles, need 1159799 Wed Mar 25 16:46:09 2009 weight of 1159799 cycles is about 81408641 (70.19/cycle) Wed Mar 25 16:46:09 2009 distribution of cycle lengths: Wed Mar 25 16:46:09 2009 1 relations: 114539 Wed Mar 25 16:46:09 2009 2 relations: 137131 Wed Mar 25 16:46:09 2009 3 relations: 143480 Wed Mar 25 16:46:09 2009 4 relations: 133059 Wed Mar 25 16:46:09 2009 5 relations: 119083 Wed Mar 25 16:46:09 2009 6 relations: 102704 Wed Mar 25 16:46:09 2009 7 relations: 86519 Wed Mar 25 16:46:09 2009 8 relations: 73187 Wed Mar 25 16:46:09 2009 9 relations: 61798 Wed Mar 25 16:46:09 2009 10+ relations: 188299 Wed Mar 25 16:46:09 2009 heaviest cycle: 17 relations Wed Mar 25 16:46:09 2009 commencing cycle optimization Wed Mar 25 16:46:12 2009 start with 6536252 relations Wed Mar 25 16:46:29 2009 pruned 174023 relations Wed Mar 25 16:46:29 2009 memory use: 172.4 MB Wed Mar 25 16:46:29 2009 distribution of cycle lengths: Wed Mar 25 16:46:29 2009 1 relations: 114539 Wed Mar 25 16:46:29 2009 2 relations: 140634 Wed Mar 25 16:46:29 2009 3 relations: 149409 Wed Mar 25 16:46:29 2009 4 relations: 137047 Wed Mar 25 16:46:29 2009 5 relations: 122430 Wed Mar 25 16:46:29 2009 6 relations: 103915 Wed Mar 25 16:46:29 2009 7 relations: 87256 Wed Mar 25 16:46:29 2009 8 relations: 73271 Wed Mar 25 16:46:29 2009 9 relations: 60820 Wed Mar 25 16:46:29 2009 10+ relations: 170478 Wed Mar 25 16:46:29 2009 heaviest cycle: 17 relations Wed Mar 25 16:46:31 2009 RelProcTime: 935 Wed Mar 25 16:46:31 2009 Wed Mar 25 16:46:31 2009 commencing linear algebra Wed Mar 25 16:46:31 2009 read 1159799 cycles Wed Mar 25 16:46:34 2009 cycles contain 3561496 unique relations Wed Mar 25 16:47:39 2009 read 3561496 relations Wed Mar 25 16:47:45 2009 using 20 quadratic characters above 268431422 Wed Mar 25 16:48:08 2009 building initial matrix Wed Mar 25 16:49:06 2009 memory use: 417.3 MB Wed Mar 25 16:49:11 2009 read 1159799 cycles Wed Mar 25 16:49:13 2009 matrix is 1159583 x 1159799 (333.0 MB) with weight 110624004 (95.38/col) Wed Mar 25 16:49:13 2009 sparse part has weight 78015465 (67.27/col) Wed Mar 25 16:49:32 2009 filtering completed in 2 passes Wed Mar 25 16:49:33 2009 matrix is 1155802 x 1156002 (332.5 MB) with weight 110419103 (95.52/col) Wed Mar 25 16:49:33 2009 sparse part has weight 77923718 (67.41/col) Wed Mar 25 16:49:37 2009 read 1156002 cycles Wed Mar 25 16:49:38 2009 matrix is 1155802 x 1156002 (332.5 MB) with weight 110419103 (95.52/col) Wed Mar 25 16:49:38 2009 sparse part has weight 77923718 (67.41/col) Wed Mar 25 16:49:38 2009 saving the first 48 matrix rows for later Wed Mar 25 16:49:39 2009 matrix is 1155754 x 1156002 (318.0 MB) with weight 87730479 (75.89/col) Wed Mar 25 16:49:39 2009 sparse part has weight 76424675 (66.11/col) Wed Mar 25 16:49:39 2009 matrix includes 64 packed rows Wed Mar 25 16:49:39 2009 using block size 65536 for processor cache size 3072 kB Wed Mar 25 16:49:49 2009 commencing Lanczos iteration Wed Mar 25 16:49:49 2009 memory use: 315.4 MB Wed Mar 25 20:18:27 2009 lanczos halted after 18278 iterations (dim = 1155754) Wed Mar 25 20:18:30 2009 recovered 29 nontrivial dependencies Wed Mar 25 20:18:30 2009 BLanczosTime: 12586 Wed Mar 25 20:18:30 2009 Wed Mar 25 20:18:30 2009 commencing square root phase Wed Mar 25 20:18:30 2009 reading relations for dependency 1 Wed Mar 25 20:18:31 2009 read 578022 cycles Wed Mar 25 20:18:33 2009 cycles contain 2175074 unique relations Wed Mar 25 20:19:35 2009 read 2175074 relations Wed Mar 25 20:19:49 2009 multiplying 1779100 relations Wed Mar 25 20:26:58 2009 multiply complete, coefficients have about 84.98 million bits Wed Mar 25 20:27:01 2009 initial square root is modulo 1258819 Wed Mar 25 20:35:30 2009 sqrtTime: 1020 Wed Mar 25 20:35:30 2009 prp45 factor: 795128268408707329677455854041947365447846189 Wed Mar 25 20:35:30 2009 prp88 factor: 1423235633423252778206479630683161968045089225219334698844656222491689510969378337996137 Wed Mar 25 20:35:30 2009 elapsed time 04:07:09 Msieve v1.40beta2 Polynomial Search take elapsed time 23:28:43 GGNFS for Sieving need 206.94 hours Final Factorization with Msieve v1.40 need 04:07:09 Total time ~ 234 hours
By Sinkiti Sibata / GGNFS / Mar 26, 2009
(49·10131+23)/9 = 5(4)1307<132> = 1663 · 23449818043019<14> · C116
C116 = P40 · P77
P40 = 1155209557118607634866301603249630313369<40>
P77 = 12085401163911818634847149173022128361640247401446141329665954189440760421179<77>
Number: 54447_131 N=13961170926163277240688149356007896284655518876882225973901486035584422030375138157157355587292818264737566194442051 ( 116 digits) SNFS difficulty: 133 digits. Divisors found: r1=1155209557118607634866301603249630313369 (pp40) r2=12085401163911818634847149173022128361640247401446141329665954189440760421179 (pp77) Version: GGNFS-0.77.1-20060513-nocona Total time: 3.30 hours. Scaled time: 11.02 units (timescale=3.339). Factorization parameters were as follows: name: 54447_131 n: 13961170926163277240688149356007896284655518876882225973901486035584422030375138157157355587292818264737566194442051 m: 200000000000000000000000000 deg: 5 c5: 245 c0: 368 skew: 1.08 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1195001) Primes: RFBsize:92225, AFBsize:92072, largePrimes:3029635 encountered Relations: rels:2969240, finalFF:249592 Max relations in full relation-set: 28 Initial matrix: 184363 x 249592 with sparse part having weight 20809548. Pruned matrix : 166372 x 167357 with weight 10744253. Total sieving time: 3.15 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000 total time: 3.30 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 26, 2009
(47·10155+7)/9 = 5(2)1543<156> = 13 · 19 · 48779 · 1340071 · 49118467 · C135
C135 = P37 · P37 · P63
P37 = 1057730668417200572838874936212859657<37>
P37 = 5105488992144329951453710753573117397<37>
P63 = 121938387829153761107662905698626411651559749568993099534450107<63>
Number: 52223_155 N=658495618645305733221984821404460863586812480725034488110267055018883740631864279001729002904992935850854797600803454626685203897402703 ( 135 digits) SNFS difficulty: 156 digits. Divisors found: r1=1057730668417200572838874936212859657 r2=5105488992144329951453710753573117397 r3=121938387829153761107662905698626411651559749568993099534450107 Version: Total time: 25.04 hours. Scaled time: 25.71 units (timescale=1.027). Factorization parameters were as follows: n: 658495618645305733221984821404460863586812480725034488110267055018883740631864279001729002904992935850854797600803454626685203897402703 m: 10000000000000000000000000000000 deg: 5 c5: 47 c0: 7 skew: 0.68 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 521816 x 522064 Total sieving time: 25.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 25.04 hours. --------- CPU info (if available) ----------
(49·10126+41)/9 = 5(4)1259<127> = C127
C127 = P50 · P77
P50 = 89509726479899433582217775103987526302712114761893<50>
P77 = 60825171280878227682314694429796797662398614282260359785768606811199736018893<77>
Number: 54449_126 N=5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 127 digits) SNFS difficulty: 127 digits. Divisors found: r1=89509726479899433582217775103987526302712114761893 r2=60825171280878227682314694429796797662398614282260359785768606811199736018893 Version: Total time: 3.13 hours. Scaled time: 2.97 units (timescale=0.948). Factorization parameters were as follows: n: 5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 m: 10000000000000000000000000 deg: 5 c5: 490 c0: 41 skew: 0.61 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149326 x 149573 Total sieving time: 3.13 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,46,46,2.3,2.3,50000 total time: 3.13 hours. --------- CPU info (if available) ----------
(49·10107+23)/9 = 5(4)1067<108> = 17 · 412784461 · C98
C98 = P47 · P52
P47 = 63256444323242069473713196879638132828513180833<47>
P52 = 1226525361201857409856065873971323956702057027360907<52>
Number: 54447_107 N=77585633221909661959427244730918590129384517933033400072176771385787737729509559518669570045895531 ( 98 digits) SNFS difficulty: 109 digits. Divisors found: r1=63256444323242069473713196879638132828513180833 r2=1226525361201857409856065873971323956702057027360907 Version: Total time: 1.22 hours. Scaled time: 0.96 units (timescale=0.787). Factorization parameters were as follows: n: 77585633221909661959427244730918590129384517933033400072176771385787737729509559518669570045895531 m: 2000000000000000000000 deg: 5 c5: 1225 c0: 184 skew: 0.68 type: snfs lss: 1 rlim: 470000 alim: 470000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 470000/470000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [235000, 385001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 50478 x 50708 Total sieving time: 1.22 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000 total time: 1.22 hours. --------- CPU info (if available) ----------
(49·10142+23)/9 = 5(4)1417<143> = 33 · 59 · 347 · 883 · 2606809451<10> · 10974894967<11> · C115
C115 = P48 · P67
P48 = 422487548822494189048430737716463004689438550629<48>
P67 = 9228349684211586458646457759478541784731866561768689933021851095303<67>
Number: 54447_142 N=3898862837759391465874496029507318729058503037759396950405744980149335186198631726209810851867165775544356469595587 ( 115 digits) SNFS difficulty: 144 digits. Divisors found: r1=422487548822494189048430737716463004689438550629 r2=9228349684211586458646457759478541784731866561768689933021851095303 Version: Total time: 10.83 hours. Scaled time: 10.74 units (timescale=0.992). Factorization parameters were as follows: n: 3898862837759391465874496029507318729058503037759396950405744980149335186198631726209810851867165775544356469595587 m: 20000000000000000000000000000 deg: 5 c5: 1225 c0: 184 skew: 0.68 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 298355 x 298603 Total sieving time: 10.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,100000 total time: 10.83 hours. --------- CPU info (if available) ----------
(49·10136+41)/9 = 5(4)1359<137> = 9257 · C133
C133 = P47 · P86
P47 = 71304781245914521607230391735935498351049913551<47>
P86 = 82483039249126102767427949027373155037745463880624218563063734706630914560237529727607<86>
Number: 54449_136 N=5881435070157118336874197304142210699410656200112827529917299821156362152365177103213184016900123630165760445548713886188229928102457 ( 133 digits) SNFS difficulty: 137 digits. Divisors found: r1=71304781245914521607230391735935498351049913551 r2=82483039249126102767427949027373155037745463880624218563063734706630914560237529727607 Version: Total time: 8.16 hours. Scaled time: 6.41 units (timescale=0.786). Factorization parameters were as follows: n: 5881435070157118336874197304142210699410656200112827529917299821156362152365177103213184016900123630165760445548713886188229928102457 m: 1000000000000000000000000000 deg: 5 c5: 490 c0: 41 skew: 0.61 type: snfs lss: 1 rlim: 1380000 alim: 1380000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1380000/1380000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [690000, 1515001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 242546 x 242794 Total sieving time: 8.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1380000,1380000,26,26,48,48,2.3,2.3,75000 total time: 8.16 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve, GGNFS, GMP-ECM / Mar 26, 2009
(49·10154+41)/9 = 5(4)1539<155> = 111227 · 30989490023981<14> · 19438696293455187099283<23> · 4709579273971574805918139<25> · C90
C90 = P35 · P55
P35 = 85398388677124700509979518851635059<35>
P55 = 2020365738813114803260409765581225522390963662391877669<55>
Thu Mar 26 03:57:27 2009 Thu Mar 26 03:57:27 2009 Thu Mar 26 03:57:27 2009 Msieve v. 1.39 Thu Mar 26 03:57:27 2009 random seeds: 3388a570 6268f5cc Thu Mar 26 03:57:27 2009 factoring 172535978633108583271830002807599001693998076198225974666984044214182960439546361759597471 (90 digits) Thu Mar 26 03:57:28 2009 searching for 15-digit factors Thu Mar 26 03:57:29 2009 commencing quadratic sieve (90-digit input) Thu Mar 26 03:57:29 2009 using multiplier of 21 Thu Mar 26 03:57:29 2009 using 64kb Opteron sieve core Thu Mar 26 03:57:29 2009 sieve interval: 18 blocks of size 65536 Thu Mar 26 03:57:29 2009 processing polynomials in batches of 6 Thu Mar 26 03:57:29 2009 using a sieve bound of 1573577 (59667 primes) Thu Mar 26 03:57:29 2009 using large prime bound of 125886160 (26 bits) Thu Mar 26 03:57:29 2009 using double large prime bound of 380154676666640 (42-49 bits) Thu Mar 26 03:57:29 2009 using trial factoring cutoff of 49 bits Thu Mar 26 03:57:29 2009 polynomial 'A' values have 12 factors Thu Mar 26 04:57:17 2009 60155 relations (15845 full + 44310 combined from 635792 partial), need 59763 Thu Mar 26 04:57:18 2009 begin with 651637 relations Thu Mar 26 04:57:19 2009 reduce to 146951 relations in 10 passes Thu Mar 26 04:57:19 2009 attempting to read 146951 relations Thu Mar 26 04:57:20 2009 recovered 146951 relations Thu Mar 26 04:57:20 2009 recovered 127740 polynomials Thu Mar 26 04:57:20 2009 attempting to build 60155 cycles Thu Mar 26 04:57:20 2009 found 60155 cycles in 5 passes Thu Mar 26 04:57:21 2009 distribution of cycle lengths: Thu Mar 26 04:57:21 2009 length 1 : 15845 Thu Mar 26 04:57:21 2009 length 2 : 11577 Thu Mar 26 04:57:21 2009 length 3 : 10639 Thu Mar 26 04:57:21 2009 length 4 : 8071 Thu Mar 26 04:57:21 2009 length 5 : 5683 Thu Mar 26 04:57:21 2009 length 6 : 3657 Thu Mar 26 04:57:21 2009 length 7 : 2161 Thu Mar 26 04:57:21 2009 length 9+: 2522 Thu Mar 26 04:57:21 2009 largest cycle: 18 relations Thu Mar 26 04:57:21 2009 matrix is 59667 x 60155 (15.0 MB) with weight 3692255 (61.38/col) Thu Mar 26 04:57:21 2009 sparse part has weight 3692255 (61.38/col) Thu Mar 26 04:57:22 2009 filtering completed in 3 passes Thu Mar 26 04:57:22 2009 matrix is 55810 x 55874 (13.9 MB) with weight 3430899 (61.40/col) Thu Mar 26 04:57:22 2009 sparse part has weight 3430899 (61.40/col) Thu Mar 26 04:57:22 2009 saving the first 48 matrix rows for later Thu Mar 26 04:57:22 2009 matrix is 55762 x 55874 (8.9 MB) with weight 2702698 (48.37/col) Thu Mar 26 04:57:22 2009 sparse part has weight 1988182 (35.58/col) Thu Mar 26 04:57:22 2009 matrix includes 64 packed rows Thu Mar 26 04:57:22 2009 using block size 22349 for processor cache size 1024 kB Thu Mar 26 04:57:22 2009 commencing Lanczos iteration Thu Mar 26 04:57:22 2009 memory use: 8.5 MB Thu Mar 26 04:57:40 2009 lanczos halted after 883 iterations (dim = 55760) Thu Mar 26 04:57:40 2009 recovered 18 nontrivial dependencies Thu Mar 26 04:57:40 2009 prp35 factor: 85398388677124700509979518851635059 Thu Mar 26 04:57:40 2009 prp55 factor: 2020365738813114803260409765581225522390963662391877669 Thu Mar 26 04:57:40 2009 elapsed time 01:00:13
(49·10117+41)/9 = 5(4)1169<118> = 59 · 71 · 863 · 2411 · 3142187 · 11039507 · C95
C95 = P42 · P53
P42 = 336604968389700345229006632632467724043359<42>
P53 = 53497436933044664478816389244926048170274046484553327<53>
Thu Mar 26 12:17:04 2009 Thu Mar 26 12:17:04 2009 Thu Mar 26 12:17:04 2009 Msieve v. 1.39 Thu Mar 26 12:17:04 2009 random seeds: 51e810a4 dba85ca5 Thu Mar 26 12:17:04 2009 factoring 18007503067777487071137242913972238984183195788228068696022682661075151599635220265841495705393 (95 digits) Thu Mar 26 12:17:04 2009 searching for 15-digit factors Thu Mar 26 12:17:05 2009 commencing quadratic sieve (95-digit input) Thu Mar 26 12:17:05 2009 using multiplier of 17 Thu Mar 26 12:17:05 2009 using 64kb Opteron sieve core Thu Mar 26 12:17:05 2009 sieve interval: 18 blocks of size 65536 Thu Mar 26 12:17:05 2009 processing polynomials in batches of 6 Thu Mar 26 12:17:05 2009 using a sieve bound of 2117273 (78824 primes) Thu Mar 26 12:17:05 2009 using large prime bound of 309121858 (28 bits) Thu Mar 26 12:17:05 2009 using double large prime bound of 1915285337885478 (43-51 bits) Thu Mar 26 12:17:05 2009 using trial factoring cutoff of 51 bits Thu Mar 26 12:17:05 2009 polynomial 'A' values have 12 factors Thu Mar 26 14:53:41 2009 78965 relations (19422 full + 59543 combined from 1158503 partial), need 78920 Thu Mar 26 14:53:43 2009 begin with 1177925 relations Thu Mar 26 14:53:44 2009 reduce to 204547 relations in 11 passes Thu Mar 26 14:53:44 2009 attempting to read 204547 relations Thu Mar 26 14:53:47 2009 recovered 204547 relations Thu Mar 26 14:53:47 2009 recovered 189076 polynomials Thu Mar 26 14:53:47 2009 attempting to build 78965 cycles Thu Mar 26 14:53:47 2009 found 78965 cycles in 5 passes Thu Mar 26 14:53:48 2009 distribution of cycle lengths: Thu Mar 26 14:53:48 2009 length 1 : 19422 Thu Mar 26 14:53:48 2009 length 2 : 13884 Thu Mar 26 14:53:48 2009 length 3 : 13302 Thu Mar 26 14:53:48 2009 length 4 : 10834 Thu Mar 26 14:53:48 2009 length 5 : 8180 Thu Mar 26 14:53:48 2009 length 6 : 5355 Thu Mar 26 14:53:48 2009 length 7 : 3494 Thu Mar 26 14:53:48 2009 length 9+: 4494 Thu Mar 26 14:53:48 2009 largest cycle: 20 relations Thu Mar 26 14:53:48 2009 matrix is 78824 x 78965 (21.3 MB) with weight 5257190 (66.58/col) Thu Mar 26 14:53:48 2009 sparse part has weight 5257190 (66.58/col) Thu Mar 26 14:53:49 2009 filtering completed in 4 passes Thu Mar 26 14:53:49 2009 matrix is 75072 x 75136 (20.4 MB) with weight 5039369 (67.07/col) Thu Mar 26 14:53:49 2009 sparse part has weight 5039369 (67.07/col) Thu Mar 26 14:53:49 2009 saving the first 48 matrix rows for later Thu Mar 26 14:53:49 2009 matrix is 75024 x 75136 (13.8 MB) with weight 4076805 (54.26/col) Thu Mar 26 14:53:49 2009 sparse part has weight 3163131 (42.10/col) Thu Mar 26 14:53:49 2009 matrix includes 64 packed rows Thu Mar 26 14:53:49 2009 using block size 30054 for processor cache size 1024 kB Thu Mar 26 14:53:50 2009 commencing Lanczos iteration Thu Mar 26 14:53:50 2009 memory use: 12.7 MB Thu Mar 26 14:54:31 2009 lanczos halted after 1188 iterations (dim = 75022) Thu Mar 26 14:54:32 2009 recovered 16 nontrivial dependencies Thu Mar 26 14:54:33 2009 prp42 factor: 336604968389700345229006632632467724043359 Thu Mar 26 14:54:33 2009 prp53 factor: 53497436933044664478816389244926048170274046484553327 Thu Mar 26 14:54:33 2009 elapsed time 02:37:29
(49·10166-13)/9 = 5(4)1653<167> = 3392460707<10> · C158
C158 = P39 · P119
P39 = 228606663332069098898658208677726772027<39>
P119 = 70202060540836190435027353842202723932903383646206976045490228370900250805488572773763887061548507188806030834957521387<119>
Number: n N=16048658819276471709608645570215131881391734700037144584809613962743075168193670826338164701532811134323462171331921176012737955182584357769083055276325841449 ( 158 digits) SNFS difficulty: 167 digits. Divisors found: Thu Mar 26 15:24:14 2009 prp39 factor: 228606663332069098898658208677726772027 Thu Mar 26 15:24:14 2009 prp119 factor: 70202060540836190435027353842202723932903383646206976045490228370900250805488572773763887061548507188806030834957521387 Thu Mar 26 15:24:14 2009 elapsed time 01:17:51 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 46.22 hours. Scaled time: 122.94 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_165_3 n: 16048658819276471709608645570215131881391734700037144584809613962743075168193670826338164701532811134323462171331921176012737955182584357769083055276325841449 skew: 0.48 deg: 5 c5: 490 c0: -13 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 5400709) Primes: RFBsize:348513, AFBsize:347801, largePrimes:16583950 encountered Relations: rels:15857481, finalFF:721908 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1654776 hash collisions in 17166877 relations Msieve: matrix is 879243 x 879491 (235.5 MB) Total sieving time: 45.64 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 46.22 hours. --------- CPU info (if available) ----------
(49·10177+41)/9 = 5(4)1769<178> = 131 · 191 · 449 · 331391 · 472840087 · 726941215300706671579<21> · 2433838839766455950342062363<28> · C109
C109 = P35 · P74
P35 = 83034203406922062183051715629104539<35>
P74 = 21052294409786281603774327103314927783566223455754104095544829887091074031<74>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 1748060496204602348217928342045955454659092137537713587969915638714670667753586844090191544518365344287126709 (109 digits) Using B1=720000, B2=696728352, polynomial Dickson(3), sigma=2714175444 Step 1 took 7176ms Step 2 took 2964ms ********** Factor found in step 2: 83034203406922062183051715629104539 Found probable prime factor of 35 digits: 83034203406922062183051715629104539 Probable prime cofactor 21052294409786281603774327103314927783566223455754104095544829887091074031 has 74 digits
(49·10133+41)/9 = 5(4)1329<134> = 1847 · 17191 · 15928399 · 2569725611564596134156953<25> · C95
C95 = P38 · P58
P38 = 31123736301946053601072239401392732729<38>
P58 = 1345968600983785417249315598989980743105211831323133158399<58>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 41891571807718584945127829778318507717751879939979549720467854224774931298243603645127428540871 (95 digits) Using B1=1538000, B2=2140123450, polynomial Dickson(6), sigma=100538867 Step 1 took 9438ms Step 2 took 5125ms ********** Factor found in step 2: 31123736301946053601072239401392732729 Found probable prime factor of 38 digits: 31123736301946053601072239401392732729 Probable prime cofactor 1345968600983785417249315598989980743105211831323133158399 has 58 digits
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.40 / Mar 26, 2009
(49·10179+23)/9 = 5(4)1787<180> = 31 · 263 · C176
C176 = P32 · C145
P32 = 49019269914862359235884231368959<32>
C145 = [1362289124694138590647084383486475677068698804342845520947990557153490588446492978754390220171132857402672722825249805305208753255232760139820361<145>]
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2685186263 Step 1 took 7737ms Step 2 took 5812ms ********** Factor found in step 2: 49019269914862359235884231368959 Found probable prime factor of 32 digits: 49019269914862359235884231368959 Composite cofactor has 145 digits
(49·10180+23)/9 = 5(4)1797<181> = 14699 · 1856297 · 10162351 · 176396963 · 395885210069<12> · 93495456952771<14> · C130
C130 = P32 · P99
P32 = 19570989095089334341692051382711<32>
P99 = 153659870377095098863641301496034790203531138412155043393272991554591626364446428220183087152397057<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=148828922 Step 1 took 7357ms Step 2 took 7044ms ********** Factor found in step 2: 19570989095089334341692051382711 Found probable prime factor of 32 digits: 19570989095089334341692051382711 Probable prime cofactor has 99 digits
(49·10169+23)/9 = 5(4)1687<170> = 33 · 7757 · C165
C165 = P33 · P133
P33 = 124536554543997314979024046350781<33>
P133 = 2087368708499167158827513265956753940583325925005520026107942223059166689438339761676704306516497762484131504693365842596878578550933<133>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=934136197 Step 1 took 9996ms Step 2 took 8941ms ********** Factor found in step 2: 124536554543997314979024046350781 Found probable prime factor of 33 digits: 124536554543997314979024046350781 Probable prime cofactor has 133 digits
(49·10181+23)/9 = 5(4)1807<182> = 3 · 19 · 25343 · 4898143973671943075533<22> · C154
C154 = P30 · C125
P30 = 165703440094533134905772423687<30>
C125 = [46436301276070201899460398906248605364338025400814138874003744066901307471773211792610214257185020149990475282233636591208907<125>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=946105213 Step 1 took 9201ms Step 2 took 7804ms ********** Factor found in step 2: 165703440094533134905772423687 Found probable prime factor of 30 digits: 165703440094533134905772423687 Composite cofactor has 125 digits
(49·10190+23)/9 = 5(4)1897<191> = 3 · 64109 · 4225530117516618479761<22> · C164
C164 = P39 · P126
P39 = 220761939500028598302869393980575061631<39>
P126 = 303464512073770648945878490978300439558503103582063123665138950766375927106303506145444934484669950085539836507940085379564071<126>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2573314229 Step 1 took 9876ms Step 2 took 8681ms ********** Factor found in step 2: 220761939500028598302869393980575061631 Found probable prime factor of 39 digits: 220761939500028598302869393980575061631 Probable prime cofactor has 126 digits
(49·10125+41)/9 = 5(4)1249<126> = 3 · 661439 · 3876997 · 4170227 · C107
C107 = P32 · P75
P32 = 74576531666662530089711767310951<32>
P75 = 227554367291850453101197310205051455465156475107583107302535931180466407613<75>
SNFS difficulty: 126 digits. Divisors found: r1=74576531666662530089711767310951 (pp32) r2=227554367291850453101197310205051455465156475107583107302535931180466407613 (pp75) Version: Msieve-1.39 Total time: 1.26 hours. Scaled time: 3.56 units (timescale=2.838). Factorization parameters were as follows: n: 16970215478228041594814063236791347986814014122707645679199223191602665685124329148314728537601692084669963 m: 10000000000000000000000000 deg: 5 c5: 49 c0: 41 skew: 0.96 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved special-q in [450000, 450000) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112947 x 113192 Total sieving time: 1.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.26 hours.
(49·10121+23)/9 = 5(4)1207<122> = 3 · 15083 · 52627 · 1866461 · 2198407 · C100
C100 = P37 · P63
P37 = 7124603840479919365732898437556681717<37>
P63 = 782074692248656594203654067738974568526834648445247639018273171<63>
SNFS difficulty: 123 digits. Divisors found: r1=7124603840479919365732898437556681717 (pp37) r2=782074692248656594203654067738974568526834648445247639018273171 (pp63) Version: Msieve-1.39 Total time: 1.06 hours. Scaled time: 3.02 units (timescale=2.840). Factorization parameters were as follows: n: 5571972355936929796164402527839661785202415009775857808001397525490794471008880872643822230207314607 m: 2000000000000000000000000 deg: 5 c5: 245 c0: 368 skew: 1.08 type: snfs lss: 1 rlim: 810000 alim: 810000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 810000/810000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [405000, 905001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 90728 x 90976 Total sieving time: 1.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,810000,810000,25,25,46,46,2.2,2.2,50000 total time: 1.06 hours.
(49·10128+23)/9 = 5(4)1277<129> = 5791 · 16451 · C121
C121 = P38 · P84
P38 = 13430260892711496624143275808375396407<38>
P84 = 425523210547380281621608549880770539602816541215414945259160078414911239467806700781<84>
SNFS difficulty: 131 digits. Divisors found: r1=13430260892711496624143275808375396407 (pp38) r2=425523210547380281621608549880770539602816541215414945259160078414911239467806700781 (pp84) Version: Msieve-1.40 Total time: 1.50 hours. Scaled time: 4.25 units (timescale=2.840). Factorization parameters were as follows: n: 5714887733555521637113705093988157486010342624209431442742454074191225384933231957756240325300087092906343233691711493867 m: 50000000000000000000000000 deg: 5 c5: 392 c0: 575 skew: 1.08 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 1135001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 134952 x 135200 Total sieving time: 1.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 1.50 hours.
By 10metreh / GMP-ECM 6.2.1 / Mar 26, 2009
(49·10135+23)/9 = 5(4)1347<136> = 13 · 15551 · C131
C131 = P34 · P98
P34 = 1005344693062810933520912027258803<34>
P98 = 26787791325737202548916567410163297961651803940100230936923958001195768311232370875084900124086023<98>
Factored with Markus Tervooren's wonderful database workers in just a few minutes! 26930963848203897075352287235767397814854570047162163424783192000734280973493885846789197056060923336339708277204258170112456010469 = 1005344693062810933520912027258803 * 26787791325737202548916567410163297961651803940100230936923958001195768311232370875084900124086023
By Robert Backstrom / GGNFS, Msieve / Mar 25, 2009
(49·10159-13)/9 = 5(4)1583<160> = 2428024769<10> · C151
C151 = P63 · P88
P63 = 601351575708202483414719598577935244714095030835679564985254607<63>
P88 = 3728825024421394506143678851589601389969611659833649468122314998192459819730376930996021<88>
Number: n N=2242334803975982192480032498566510482103094412231856620093830865052614479504284020936379683383882499612360603741618767829153247177786284125194788918747 ( 151 digits) SNFS difficulty: 161 digits. Divisors found: Wed Mar 25 17:13:26 2009 prp63 factor: 601351575708202483414719598577935244714095030835679564985254607 Wed Mar 25 17:13:26 2009 prp88 factor: 3728825024421394506143678851589601389969611659833649468122314998192459819730376930996021 Wed Mar 25 17:13:26 2009 elapsed time 00:56:02 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 25.50 hours. Scaled time: 67.54 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_4_158_3 n: 2242334803975982192480032498566510482103094412231856620093830865052614479504284020936379683383882499612360603741618767829153247177786284125194788918747 skew: 1.22 deg: 5 c5: 49 c0: -130 m: 100000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3700049) Primes: RFBsize:283146, AFBsize:283762, largePrimes:14472488 encountered Relations: rels:13551879, finalFF:611318 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1159398 hash collisions in 14440877 relations Msieve: matrix is 697476 x 697724 (187.1 MB) Total sieving time: 25.15 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.4,2.4,100000 total time: 25.50 hours. --------- CPU info (if available) ----------
(49·10165-13)/9 = 5(4)1643<166> = 21685402247<11> · C156
C156 = P77 · P80
P77 = 14324711689563372779335680404766103636224125956636359995327793344470127538869<77>
P80 = 17526701832941984245416388922140767102049667569465043187924398853225270451740601<80>
Number: n N=251064950625835833703382280840771182234664703586415536986577735970020000544583139843679582377840521338633043270402953869839020673640559582673460585332920269 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: Wed Mar 25 22:46:33 2009 prp77 factor: 14324711689563372779335680404766103636224125956636359995327793344470127538869 Wed Mar 25 22:46:33 2009 prp80 factor: 17526701832941984245416388922140767102049667569465043187924398853225270451740601 Wed Mar 25 22:46:33 2009 elapsed time 01:28:09 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 30.41 hours. Scaled time: 80.57 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_4_164_3 n: 251064950625835833703382280840771182234664703586415536986577735970020000544583139843679582377840521338633043270402953869839020673640559582673460585332920269 skew: 0.77 deg: 5 c5: 49 c0: -13 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 4400587) Primes: RFBsize:348513, AFBsize:348526, largePrimes:15470826 encountered Relations: rels:14467287, finalFF:713923 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1171408 hash collisions in 15321624 relations Msieve: matrix is 838936 x 839183 (226.7 MB) Total sieving time: 30.00 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000 total time: 30.41 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 25, 2009
(47·10154+43)/9 = 5(2)1537<155> = 3 · 7 · 217015951 · 23192531703414525073<20> · C126
C126 = P49 · P78
P49 = 1465580419519146912565525021259863883123452963969<49>
P78 = 337121603846980406888182918563839484405915367888409034254610751275644373799801<78>
Number: 52227_154 N=494078821595025196408271508880661445720441071385869313691441666275744356652202763243018257244781008472892898153247400472370169 ( 126 digits) SNFS difficulty: 156 digits. Divisors found: r1=1465580419519146912565525021259863883123452963969 r2=337121603846980406888182918563839484405915367888409034254610751275644373799801 Version: Total time: 34.14 hours. Scaled time: 33.66 units (timescale=0.986). Factorization parameters were as follows: n: 494078821595025196408271508880661445720441071385869313691441666275744356652202763243018257244781008472892898153247400472370169 m: 10000000000000000000000000000000 deg: 5 c5: 47 c0: 430 skew: 1.56 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 556521 x 556769 Total sieving time: 34.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 34.14 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 25, 2009
(47·10168-11)/9 = 5(2)1671<169> = 42953 · 632473 · C159
C159 = P77 · P82
P77 = 93041312338394025755066831403637404825315085178858933751516025618646156596093<77>
P82 = 2066065228441269232877887311452109654918977329340570718751096746897800608390142513<82>
Number: 52221_168 N=192229420230899534496995068580248964574999947142737668924522307723339501553382715800958683080724049548225892858355344941318481757986963936844497016735249001709 ( 159 digits) SNFS difficulty: 171 digits. Divisors found: r1=93041312338394025755066831403637404825315085178858933751516025618646156596093 (pp77) r2=2066065228441269232877887311452109654918977329340570718751096746897800608390142513 (pp82) Version: Msieve-1.39 Total time: 57.84 hours. Scaled time: 148.72 units (timescale=2.571). Factorization parameters were as follows: n: 192229420230899534496995068580248964574999947142737668924522307723339501553382715800958683080724049548225892858355344941318481757986963936844497016735249001709 m: 5000000000000000000000000000000000 deg: 5 c5: 376 c0: -275 skew: 0.94 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 913109 x 913357 Total sieving time: 57.84 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 57.84 hours. --------- CPU info (if available) ----------
(4·10241-1)/3 = 1(3)241<242> = 13 · 3784757 · 4646801 · 183261467 · 52651626410827<14> · 3917565792818569<16> · 9984057494986111353041<22> · 423978422171785937525330791300274672892443<42> · C126
C126 = P44 · P82
P44 = 56919955399919399921032613355018851582842693<44>
P82 = 6403076371209830662961764899764369901555755044549161602051092579478800140181888067<82>
Number: 13333_241 N=364462821471541316916182370125769150792316542042148094133332048440810743632250528660469332549245321864282313669340167794844431 ( 126 digits) Divisors found: r1=56919955399919399921032613355018851582842693 (pp44) r2=6403076371209830662961764899764369901555755044549161602051092579478800140181888067 (pp82) Version: Msieve-1.39 Total time: 90.96 hours. Scaled time: 158.17 units (timescale=1.739). Factorization parameters were as follows: name: 13333_241 n: 364462821471541316916182370125769150792316542042148094133332048440810743632250528660469332549245321864282313669340167794844431 skew: 104881.74 # norm 1.56e+017 c5: 68280 c4: 20246049836 c3: 1031581154766598 c2: -149265930358695771868 c1: 3984915003571139614187031 c0: -123380521066506364881614258895 # alpha -5.78 Y1: 13341754081406329 Y0: -1397095912174927126195306 # Murphy_E 1.34e-010 # M 234978542453448223942047299040150843515415198217211451624943835103861081502650739162475339104672263335331634329759394120672071 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [4000000, 8200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1001662 x 1001910 Total sieving time: 90.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8000000,8000000,27,27,51,51,2.5,2.5,100000 total time: 90.96 hours. --------- CPU info (if available) ----------
Factorizations of 544...447 and Factorizations of 544...449 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Mar 24, 2009
(47·10170+43)/9 = 5(2)1697<171> = 3972 · 12821581 · 709741139417<12> · 2301500138073341378612732863<28> · C120
C120 = P51 · P69
P51 = 480083270638162015012277626457696051905424961830297<51>
P69 = 329537769239250933349558669210841259940463368184107656991978047362249<69>
Number: n N=158205570055183487273379513322996014641789534534660875883619430317468638627535936866361100062189469901987850488022257953 ( 120 digits) Divisors found: r1=480083270638162015012277626457696051905424961830297 (pp51) r2=329537769239250933349558669210841259940463368184107656991978047362249 (pp69) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 39.86 hours. Scaled time: 106.47 units (timescale=2.671). Factorization parameters were as follows: name: KA_5_2_169_7 n: 158205570055183487273379513322996014641789534534660875883619430317468638627535936866361100062189469901987850488022257953 skew: 55677.21 # norm 2.84e+16 c5: 59400 c4: -15665912550 c3: -807592077619909 c2: 33222887004005503474 c1: 931840140544419999583792 c0: -24071922341916760519440992512 # alpha -6.24 Y1: 242445705203 Y0: -76751546911839328392471 # Murphy_E 3.27e-10 # M 1685311989380475577265181398064331751532813417905642689191093594604343860789446220243040490401329161826299123753053845 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4230001) Primes: RFBsize:315948, AFBsize:315721, largePrimes:7686811 encountered Relations: rels:7783655, finalFF:763522 Max relations in full relation-set: 28 Initial matrix: 631751 x 763522 with sparse part having weight 65387348. Pruned matrix : 522836 x 526058 with weight 41896142. Polynomial selection time: 5.21 hours. Total sieving time: 32.60 hours. Total relation processing time: 0.29 hours. Matrix solve time: 1.50 hours. Total square root time: 0.27 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 39.86 hours. --------- CPU info (if available) ----------
(47·10204+7)/9 = 5(2)2033<205> = 32 · C204
C204 = P56 · P149
P56 = 32435427185289642780743836726941466290571494203044552823<56>
P149 = 17889294636557302013414769601901685301211205126351365730228586586267267345613074310366048610450327741439568237044298792141368152216691075010970173089<149>
Number: n N=580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 ( 204 digits) SNFS difficulty: 206 digits. Divisors found: Tue Mar 24 14:41:42 2009 prp56 factor: 32435427185289642780743836726941466290571494203044552823 Tue Mar 24 14:41:42 2009 prp149 factor: 17889294636557302013414769601901685301211205126351365730228586586267267345613074310366048610450327741439568237044298792141368152216691075010970173089 Tue Mar 24 14:41:42 2009 elapsed time 25:05:37 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 157.28 hours. Scaled time: 317.07 units (timescale=2.016). Factorization parameters were as follows: name: KA_5_2_203_3 n: 580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 deg: 5 c5: 47 c0: 70 m: 100000000000000000000000000000000000000000 skew: 1.08 type: snfs rlim: 12000000 alim: 12000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [6000000, 9099990) Primes: RFBsize:788060, AFBsize:788074, largePrimes:37054617 encountered Relations: rels:31751478, finalFF:79075 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9063074 hash collisions in 46888137 relations Msieve: matrix is 3779800 x 3780048 (1027.0 MB) Total sieving time: 156.12 hours. Total relation processing time: 1.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,12000000,12000000,29,29,58,58,2.5,2.5,100000 total time: 157.28 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
(47·10162+7)/9 = 5(2)1613<163> = 3 · 83 · 28447 · 59910937 · C149
C149 = P33 · P37 · P79
P33 = 677169855882163806082378185483179<33>
P37 = 5496731340466694320360386942697835693<37>
P79 = 3306064243695495188858715370392906167979916663834620388391227511084523258179119<79>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 12305900993670026619980338207680961830364582789630242898677969682151698305106408426947801975811893341357262263082403247088756161137232942831386070593 (149 digits) Using B1=1448000, B2=2140044280, polynomial Dickson(6), sigma=344506990 Step 1 took 22198ms Step 2 took 8736ms ********** Factor found in step 2: 677169855882163806082378185483179 Found probable prime factor of 33 digits: 677169855882163806082378185483179 Composite cofactor 18172546941917347226698165407954137115963849562056879758917105037777316590135405923860492225765462654110141425494467 has 116 digits GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 18172546941917347226698165407954137115963849562056879758917105037777316590135405923860492225765462654110141425494467 (116 digits) Using B1=3640000, B2=8561127130, polynomial Dickson(6), sigma=2816991832 Step 1 took 36332ms Step 2 took 14227ms ********** Factor found in step 2: 5496731340466694320360386942697835693 Found probable prime factor of 37 digits: 5496731340466694320360386942697835693 Probable prime cofactor 3306064243695495188858715370392906167979916663834620388391227511084523258179119 has 79 digits
By Ignacio Santos / GGNFS, Msieve / Mar 24, 2009
(49·10199-13)/9 = 5(4)1983<200> = 1913 · 4583 · 5882926056937<13> · 1218401765880031784578024309927<31> · 4907818000181670992135063669683<31> · C120
C120 = P54 · P66
P54 = 382862862267837988347685597468140406206315789449064437<54>
P66 = 461076664664287937538598147921472880754573683407889104041697315173<66>
Number: 54443_199 N=176529131558277395295848214656542631892093690847442977004772986008117440783537228870033700974644012582018395859574802601 ( 120 digits) Divisors found: r1=382862862267837988347685597468140406206315789449064437 (pp54) r2=461076664664287937538598147921472880754573683407889104041697315173 (pp66) Version: Msieve-1.39 Total time: 34.80 hours. Scaled time: 60.38 units (timescale=1.735). Factorization parameters were as follows: name: 54443_199 n: 176529131558277395295848214656542631892093690847442977004772986008117440783537228870033700974644012582018395859574802601 skew: 59649.00 # norm 2.13e+016 c5: 49140 c4: -7417611066 c3: -888921018349013 c2: 25278019887156247159 c1: 886039038126969350535769 c0: -11713735379912792142821591589 # alpha -5.96 Y1: 3967998397231 Y0: -81484852731824154537860 # Murphy_E 3.16e-010 # M 128248013014603672007157954630463537972435946001750055529136290548333258835222509238735059376381621761948624658563372549 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4170001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 637939 x 638187 Total sieving time: 34.80 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 34.80 hours. --------- CPU info (if available) ----------
(49·10157-13)/9 = 5(4)1563<158> = 47 · 532 · 3067 · C150
C150 = P46 · P104
P46 = 3500992370764356766315734545757211678902724333<46>
P104 = 38405996066735363768333922495487422849558454494069750646053519783449675603954475673158889673318407032931<104>
Number: 54443_157 N=134459099221246402322816172819154065510441731566376235533720791826155841719807351755353346138400212316515559376872179170380656802454630653643146010023 ( 150 digits) SNFS difficulty: 159 digits. Divisors found: r1=3500992370764356766315734545757211678902724333 (pp46) r2=38405996066735363768333922495487422849558454494069750646053519783449675603954475673158889673318407032931 (pp104) Version: Msieve-1.39 Total time: 27.90 hours. Scaled time: 71.73 units (timescale=2.571). Factorization parameters were as follows: n: 134459099221246402322816172819154065510441731566376235533720791826155841719807351755353346138400212316515559376872179170380656802454630653643146010023 m: 20000000000000000000000000000000 deg: 5 c5: 1225 c0: -104 skew: 0.61 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 570062 x 570310 Total sieving time: 27.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 27.90 hours. --------- CPU info (if available) ----------
(16·10169+17)/3 = 5(3)1689<170> = 25717 · 4507879 · C159
C159 = P36 · P124
P36 = 117980842480867583939408945317682323<36>
P124 = 3899372097972789414698208696244062153377248699113952186123882034637330975141875979630721018894931532069809165030022672431651<124>
Number: 53339_169 N=460051205265217827867701313446325309642435347740758774579621175352669685683423258785786058802508686637912682582855982468213333463621214818058817838949948405273 ( 159 digits) SNFS difficulty: 170 digits. Divisors found: r1=117980842480867583939408945317682323 (pp36) r2=3899372097972789414698208696244062153377248699113952186123882034637330975141875979630721018894931532069809165030022672431651 (pp124) Version: Msieve-1.39 Total time: 42.98 hours. Scaled time: 110.50 units (timescale=2.571). Factorization parameters were as follows: n: 460051205265217827867701313446325309642435347740758774579621175352669685683423258785786058802508686637912682582855982468213333463621214818058817838949948405273 m: 10000000000000000000000000000000000 deg: 5 c5: 8 c0: 85 skew: 1.60 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 819069 x 819316 Total sieving time: 42.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 42.98 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 24, 2009
(16·10153+17)/3 = 5(3)1529<154> = 181 · 35354371022851<14> · 7978261056929857142957<22> · C117
C117 = P48 · P69
P48 = 264723415122518858514699565296543054555719138609<48>
P69 = 394617588357467205736723452214598506058331081720963009624925936387913<69>
Number: 53339_153 N=104464515657401055928513502186110775732201553600729263450936442463049596896934901716742173064842467251215741239233017 ( 117 digits) SNFS difficulty: 155 digits. Divisors found: r1=264723415122518858514699565296543054555719138609 r2=394617588357467205736723452214598506058331081720963009624925936387913 Version: Total time: 26.42 hours. Scaled time: 20.69 units (timescale=0.783). Factorization parameters were as follows: n: 104464515657401055928513502186110775732201553600729263450936442463049596896934901716742173064842467251215741239233017 m: 4000000000000000000000000000000 deg: 5 c5: 125 c0: 136 skew: 1.02 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 387890 x 388138 Total sieving time: 26.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 26.42 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve v1.40beta2 / Mar 24, 2009
(49·10129-13)/9 = 5(4)1283<130> = C130
C130 = P44 · P87
P44 = 20839062423751865311924060808738807499975091<44>
P87 = 261261487380497348335111454787673218382349317230937862709249245977725305196403288090873<87>
Number: 54443_129 N=5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 130 digits) SNFS difficulty: 131 digits. Divisors found: r1=20839062423751865311924060808738807499975091 (pp44) r2=261261487380497348335111454787673218382349317230937862709249245977725305196403288090873 (pp87) Version: Msieve-1.39 Total time: 3.19 hours. Scaled time: 5.21 units (timescale=1.633). Factorization parameters were as follows: n: 5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 100000000000000000000000000 deg: 5 c5: 49 c0: -130 skew: 1.22 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 157349 x 157597 Total sieving time: 3.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 3.19 hours. --------- CPU info (if available) ---------- [ 0.371579] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456481] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.12 BogoMIPS (lpj=8800256) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800811) [ 0.460049] Total of 2 processors activated (8800.53 BogoMIPS).
GMP-ECM 6.2.2 has been released
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Mar 23, 2009
(49·10136-13)/9 = 5(4)1353<137> = 79 · 139 · 26881 · 84933809214398144209871<23> · C106
C106 = P33 · P74
P33 = 125847487970644875553830835870751<33>
P74 = 17256038650001398282032180042544723209657376815989641751284647004305394703<74>
Number: n N=2171629116427034008262569406122406716652087870362523529087901011585934547193430581966660132012993748031953 ( 106 digits) SNFS difficulty: 137 digits. Divisors found: Mon Mar 23 03:16:52 2009 prp33 factor: 125847487970644875553830835870751 Mon Mar 23 03:16:52 2009 prp74 factor: 17256038650001398282032180042544723209657376815989641751284647004305394703 Mon Mar 23 03:16:52 2009 elapsed time 00:11:15 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 3.90 hours. Scaled time: 10.37 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_135_3 n: 2171629116427034008262569406122406716652087870362523529087901011585934547193430581966660132012993748031953 skew: 0.48 deg: 5 c5: 490 c0: -13 m: 1000000000000000000000000000 type: snfs rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1353901) Primes: RFBsize:71274, AFBsize:71505, largePrimes:6541331 encountered Relations: rels:6007484, finalFF:107350 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 727967 hash collisions in 6710840 relations Msieve: matrix is 176657 x 176893 (45.9 MB) Total sieving time: 3.80 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,900000,900000,28,28,56,56,2.4,2.4,75000 total time: 3.90 hours. --------- CPU info (if available) ----------
(49·10146-13)/9 = 5(4)1453<147> = 3 · 23 · C145
C145 = P65 · P81
P65 = 73830498158509907022394810208166019095040149681165283254334567363<65>
P81 = 106873167480281185337382613792493068629199332855411315792688634423552805727583669<81>
Number: n N=7890499194847020933977455716586151368760064412238325281803542673107890499194847020933977455716586151368760064412238325281803542673107890499194847 ( 145 digits) SNFS difficulty: 147 digits. Divisors found: Mon Mar 23 13:37:42 2009 prp65 factor: 73830498158509907022394810208166019095040149681165283254334567363 Mon Mar 23 13:37:42 2009 prp81 factor: 106873167480281185337382613792493068629199332855411315792688634423552805727583669 Mon Mar 23 13:37:42 2009 elapsed time 00:16:47 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 9.42 hours. Scaled time: 25.05 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_145_3 n: 7890499194847020933977455716586151368760064412238325281803542673107890499194847020933977455716586151368760064412238325281803542673107890499194847 skew: 0.48 deg: 5 c5: 490 c0: -13 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2849741) Primes: RFBsize:114155, AFBsize:114387, largePrimes:9440774 encountered Relations: rels:8881276, finalFF:237685 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1299095 hash collisions in 10127488 relations Msieve: matrix is 296878 x 297126 (77.5 MB) Total sieving time: 9.21 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,56,56,2.4,2.4,100000 total time: 9.42 hours. --------- CPU info (if available) ----------
(47·10160-11)/9 = 5(2)1591<161> = 32 · 132 · 929 · 615289 · 1614723877096292986341793487631067<34> · C116
C116 = P55 · P62
P55 = 3417337460494739626420771102558070436997856679143288723<55>
P62 = 10885418609842797831468671827111280439846804963174619275986981<62>
Number: n N=37199148788582365677151994359438136376925389872701302600149177581980521614758458078941790703622822529963458072115263 ( 116 digits) Divisors found: Mon Mar 23 18:21:00 2009 prp55 factor: 3417337460494739626420771102558070436997856679143288723 Mon Mar 23 18:21:00 2009 prp62 factor: 10885418609842797831468671827111280439846804963174619275986981 Mon Mar 23 18:21:00 2009 elapsed time 00:43:35 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 21.22 hours. Scaled time: 56.01 units (timescale=2.639). Factorization parameters were as follows: name: KA_5_2_159_1 n: 37199148788582365677151994359438136376925389872701302600149177581980521614758458078941790703622822529963458072115263 skew: 71051.95 # norm 1.50e+16 c5: 31020 c4: -4568203496 c3: -650994879945791 c2: 21226493527766243622 c1: 1134333360693395111011895 c0: -8668750557182613034144373155 # alpha -6.50 Y1: 646741172849 Y0: -16435341978766525421481 # Murphy_E 4.84e-10 # M 28697786502530949098227155344670279630021951848559771566053143617605185826843583689525558783262810034586906964477928 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 3510491) Primes: RFBsize:315948, AFBsize:315927, largePrimes:7299564 encountered Relations: rels:7154500, finalFF:669197 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 567717 hash collisions in 7651579 relations Msieve: matrix is 560477 x 560725 (154.2 MB) Total sieving time: 20.95 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 21.22 hours. --------- CPU info (if available) ----------
(46·10174+53)/9 = 5(1)1737<175> = 11 · 110557 · 77883837686821<14> · 111420482169715189<18> · 2910487467143313244591<22> · C117
C117 = P42 · P75
P42 = 536853205010070477751570463792644371118157<42>
P75 = 309957915371554430586833991064591498214078894243423889658794630549706504457<75>
Number: n N=166401900285459186183164258465440493370443079394472429719834326550583531484317913711130389138522747212789132994125749 ( 117 digits) Divisors found: Mon Mar 23 20:10:51 2009 prp42 factor: 536853205010070477751570463792644371118157 Mon Mar 23 20:10:51 2009 prp75 factor: 309957915371554430586833991064591498214078894243423889658794630549706504457 Mon Mar 23 20:10:51 2009 elapsed time 00:34:07 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 22.73 hours. Scaled time: 60.50 units (timescale=2.662). Factorization parameters were as follows: name: KA_5_1_173_7 n: 166401900285459186183164258465440493370443079394472429719834326550583531484317913711130389138522747212789132994125749 skew: 40828.59 # norm 4.82e+15 c5: 68640 c4: 381354376 c3: -346318543916472 c2: -1356621578298215941 c1: 235682672015256546584246 c0: 1514919480965173090953299231 # alpha -5.53 Y1: 1090532184019 Y0: -18919783983081763516780 # Murphy_E 4.53e-10 # M 111681274936674277178175601615880864336178708841231058862797851527797567703832190659576344088915678181723073994938108 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 3630281) Primes: RFBsize:315948, AFBsize:316486, largePrimes:7414964 encountered Relations: rels:7356594, finalFF:692768 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 607005 hash collisions in 7889899 relations Msieve: matrix is 528742 x 528990 (145.4 MB) Total sieving time: 22.42 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 22.73 hours. --------- CPU info (if available) ----------
(49·10205-31)/9 = 5(4)2041<206> = 3 · 47 · C204
C204 = P38 · P166
P38 = 63857407154518619099432007817527624871<38>
P166 = 6046766207221483202200867690264664743792040332470375333789197689476780699012131797397027054060393163481932245065472333058710972868763794831723965812621141889670190331<166>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 386130811662726556343577620173364854215918045705279747832939322301024428684003152088258471237194641449960598896769109535066981875492513790386130811662726556343577620173364854215918045705279747832939322301 (204 digits) Using B1=2254000, B2=3567637720, polynomial Dickson(6), sigma=1092356064 Step 1 took 44047ms Step 2 took 17234ms ********** Factor found in step 2: 63857407154518619099432007817527624871 Found probable prime factor of 38 digits: 63857407154518619099432007817527624871 Probable prime cofactor 6046766207221483202200867690264664743792040332470375333789197689476780699012131797397027054060393163481932245065472333058710972868763794831723965812621141889670190331 has 166 digits
By Erik Branger / GGNFS, Msieve / Mar 23, 2009
(16·10155+17)/3 = 5(3)1549<156> = 269 · 857 · 5345787068339760725287117<25> · C126
C126 = P36 · P40 · P52
P36 = 133580396914047305026081348186586773<36>
P40 = 1641967491171100517839361762257277209237<40>
P52 = 1973089047991938179155944152604719461286180910126899<52>
Number: 53339_155 N=432766833624903841995769451831156239493595362335642487063658241830861851563850104811991408368391566906660453126060429189684699 ( 126 digits) SNFS difficulty: 156 digits. Divisors found: r1=133580396914047305026081348186586773 r2=1641967491171100517839361762257277209237 r3=1973089047991938179155944152604719461286180910126899 Version: Total time: 19.87 hours. Scaled time: 20.08 units (timescale=1.011). Factorization parameters were as follows: n: 432766833624903841995769451831156239493595362335642487063658241830861851563850104811991408368391566906660453126060429189684699 m: 10000000000000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 401024 x 401272 Total sieving time: 19.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 19.87 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 23, 2009
(49·10140-13)/9 = 5(4)1393<141> = 3 · 10501 · 22541 · 689699 · C127
C127 = P33 · P41 · P54
P33 = 207071850488006696795938318543661<33>
P41 = 22474022215667142175693151054126926046513<41>
P54 = 238872971288671773181147192316633901673882791915267263<54>
Number: 54443_140 N=1111652072716786806280199894478985340144711508394996871064426887611081159266241363692668499358204687809656342000550329708807459 ( 127 digits) SNFS difficulty: 141 digits. Divisors found: r1=207071850488006696795938318543661 (pp33) r2=22474022215667142175693151054126926046513 (pp41) r3=238872971288671773181147192316633901673882791915267263 (pp54) Version: Msieve-1.39 Total time: 4.00 hours. Scaled time: 6.94 units (timescale=1.735). Factorization parameters were as follows: n: 1111652072716786806280199894478985340144711508394996871064426887611081159266241363692668499358204687809656342000550329708807459 m: 10000000000000000000000000000 deg: 5 c5: 49 c0: -13 skew: 0.77 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220560 x 220808 Total sieving time: 4.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 4.00 hours. --------- CPU info (if available) ----------
(49·10145-13)/9 = 5(4)1443<146> = 1687354103<10> · 3505546146359<13> · C124
C124 = P40 · P85
P40 = 7140402236701543140617963582986208678971<40>
P85 = 1289047654260669015173951513328700605459640910666217630944435952587966282067732957329<85>
Number: 54443_145 N=9204318753697758502580249941200569767639330400560493094684823652953383377250635701260550464876367513699991278670232202628459 ( 124 digits) SNFS difficulty: 146 digits. Divisors found: r1=7140402236701543140617963582986208678971 (pp40) r2=1289047654260669015173951513328700605459640910666217630944435952587966282067732957329 (pp85) Version: Msieve-1.39 Total time: 5.93 hours. Scaled time: 10.31 units (timescale=1.739). Factorization parameters were as follows: n: 9204318753697758502580249941200569767639330400560493094684823652953383377250635701260550464876367513699991278670232202628459 m: 100000000000000000000000000000 deg: 5 c5: 49 c0: -13 skew: 0.77 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 1975001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 285559 x 285807 Total sieving time: 5.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 5.93 hours. --------- CPU info (if available) ----------
(49·10144-31)/9 = 5(4)1431<145> = 173 · 2999 · 16657 · 951427 · 2585941 · C123
C123 = P55 · P68
P55 = 3257882588377989083926255526466788253796211702624682169<55>
P68 = 78596770878296901617141918915241683753362330196819502016865089290893<68>
Number: 54441_144 N=256059051347137664296684943791344848347371374573110192549585933050014669914539392291032586449386941150008047188499711186917 ( 123 digits) SNFS difficulty: 146 digits. Divisors found: r1=3257882588377989083926255526466788253796211702624682169 (pp55) r2=78596770878296901617141918915241683753362330196819502016865089290893 (pp68) Version: Msieve-1.39 Total time: 9.85 hours. Scaled time: 25.32 units (timescale=2.571). Factorization parameters were as follows: n: 256059051347137664296684943791344848347371374573110192549585933050014669914539392291032586449386941150008047188499711186917 m: 100000000000000000000000000000 deg: 5 c5: 49 c0: -310 skew: 1.45 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 2575001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 330263 x 330511 Total sieving time: 9.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 9.85 hours. --------- CPU info (if available) ----------
(49·10152-13)/9 = 5(4)1513<153> = 32 · 491 · 632557 · 1592703598113809<16> · C129
C129 = P55 · P74
P55 = 2146907550860162740600213632708655391877338081071796699<55>
P74 = 56961523739466424569149913442650025242540002908402280547451425617956522631<74>
Number: 54443_152 N=122291125424760880247517015235560595578717771861593788079807861507241681725560766919603504057041448257822793649727924561424595069 ( 129 digits) SNFS difficulty: 154 digits. Divisors found: r1=2146907550860162740600213632708655391877338081071796699 (pp55) r2=56961523739466424569149913442650025242540002908402280547451425617956522631 (pp74) Version: Msieve-1.39 Total time: 16.42 hours. Scaled time: 28.56 units (timescale=1.739). Factorization parameters were as follows: n: 122291125424760880247517015235560595578717771861593788079807861507241681725560766919603504057041448257822793649727924561424595069 m: 2000000000000000000000000000000 deg: 5 c5: 1225 c0: -104 skew: 0.61 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 534392 x 534640 Total sieving time: 16.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 16.42 hours. --------- CPU info (if available) ----------
(49·10161-13)/9 = 5(4)1603<162> = 32 · C161
C161 = P41 · P120
P41 = 89340062336934973963648121180445133883587<41>
P120 = 677118703279485685836228095722187177748680567602212027120674408179765141637070828398608720395665830122030286741076835521<120>
Number: 54443_161 N=60493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827 ( 161 digits) SNFS difficulty: 163 digits. Divisors found: r1=89340062336934973963648121180445133883587 (pp41) r2=677118703279485685836228095722187177748680567602212027120674408179765141637070828398608720395665830122030286741076835521 (pp120) Version: Msieve-1.39 Total time: 36.44 hours. Scaled time: 93.68 units (timescale=2.571). Factorization parameters were as follows: n: 60493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827 m: 200000000000000000000000000000000 deg: 5 c5: 245 c0: -208 skew: 0.97 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705300 x 705548 Total sieving time: 36.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 36.44 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS / Mar 23, 2009
(49·10123-13)/9 = 5(4)1223<124> = 79 · 7854023 · 96574919997336701<17> · C98
C98 = P39 · P60
P39 = 155032799336605825909522832709907573331<39>
P60 = 586065780886139499566709891878394247094033801102050578861509<60>
Sun Mar 22 22:14:39 2009 Msieve v. 1.39 Sun Mar 22 22:14:39 2009 random seeds: 13f8fae4 833acdc7 Sun Mar 22 22:14:39 2009 Msieve v. 1.39 Sun Mar 22 22:14:39 2009 factoring 90859418606172063134774748261539956958066980337601966602849256308594895491730641401085698910816479 (98 digits) Sun Mar 22 22:14:40 2009 searching for 15-digit factors Sun Mar 22 22:14:41 2009 commencing quadratic sieve (98-digit input) Sun Mar 22 22:14:42 2009 using multiplier of 1 Sun Mar 22 22:14:42 2009 using 32kb Intel Core sieve core Sun Mar 22 22:14:42 2009 sieve interval: 36 blocks of size 32768 Sun Mar 22 22:14:42 2009 processing polynomials in batches of 6 Sun Mar 22 22:14:42 2009 using a sieve bound of 2540407 (92941 primes) Sun Mar 22 22:14:42 2009 using large prime bound of 381061050 (28 bits) Sun Mar 22 22:14:42 2009 using double large prime bound of 2791194835856850 (43-52 bits) Sun Mar 22 22:14:42 2009 using trial factoring cutoff of 52 bits Sun Mar 22 22:14:42 2009 polynomial 'A' values have 13 factors Mon Mar 23 05:36:50 2009 93057 relations (22480 full + 70577 combined from 1401100 partial), need 93037 Mon Mar 23 05:36:52 2009 begin with 1423580 relations Mon Mar 23 05:36:53 2009 reduce to 244565 relations in 11 passes Mon Mar 23 05:36:53 2009 attempting to read 244565 relations Mon Mar 23 05:36:57 2009 recovered 244565 relations Mon Mar 23 05:36:57 2009 recovered 232392 polynomials Mon Mar 23 05:36:57 2009 attempting to build 93057 cycles Mon Mar 23 05:36:58 2009 found 93057 cycles in 5 passes Mon Mar 23 05:36:58 2009 distribution of cycle lengths: Mon Mar 23 05:36:58 2009 length 1 : 22480 Mon Mar 23 05:36:58 2009 length 2 : 16000 Mon Mar 23 05:36:58 2009 length 3 : 15708 Mon Mar 23 05:36:58 2009 length 4 : 12614 Mon Mar 23 05:36:58 2009 length 5 : 9517 Mon Mar 23 05:36:58 2009 length 6 : 6655 Mon Mar 23 05:36:58 2009 length 7 : 4213 Mon Mar 23 05:36:58 2009 length 9+: 5870 Mon Mar 23 05:36:58 2009 largest cycle: 22 relations Mon Mar 23 05:36:58 2009 matrix is 92941 x 93057 (25.3 MB) with weight 6271809 (67.40/col) Mon Mar 23 05:36:58 2009 sparse part has weight 6271809 (67.40/col) Mon Mar 23 05:37:00 2009 filtering completed in 3 passes Mon Mar 23 05:37:00 2009 matrix is 88962 x 89026 (24.4 MB) with weight 6046007 (67.91/col) Mon Mar 23 05:37:00 2009 sparse part has weight 6046007 (67.91/col) Mon Mar 23 05:37:00 2009 saving the first 48 matrix rows for later Mon Mar 23 05:37:00 2009 matrix is 88914 x 89026 (15.1 MB) with weight 4767098 (53.55/col) Mon Mar 23 05:37:00 2009 sparse part has weight 3421741 (38.44/col) Mon Mar 23 05:37:00 2009 matrix includes 64 packed rows Mon Mar 23 05:37:00 2009 using block size 35610 for processor cache size 1024 kB Mon Mar 23 05:37:01 2009 commencing Lanczos iteration Mon Mar 23 05:37:01 2009 memory use: 14.6 MB Mon Mar 23 05:37:56 2009 lanczos halted after 1407 iterations (dim = 88908) Mon Mar 23 05:37:56 2009 recovered 14 nontrivial dependencies Mon Mar 23 05:37:57 2009 prp39 factor: 155032799336605825909522832709907573331 Mon Mar 23 05:37:57 2009 prp60 factor: 586065780886139499566709891878394247094033801102050578861509 Mon Mar 23 05:37:57 2009 elapsed time 07:23:18
(49·10127-13)/9 = 5(4)1263<128> = C128
C128 = P31 · P42 · P55
P31 = 6388426039807794712107618364273<31>
P42 = 952116963596930070553655728861886818163819<42>
P55 = 8950955467063706290214969828203183230927212987298134689<55>
Number: 54443_127 N=54444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 128 digits) SNFS difficulty: 129 digits. Divisors found: r1=6388426039807794712107618364273 (pp31) r2=952116963596930070553655728861886818163819 (pp42) r3=8950955467063706290214969828203183230927212987298134689 (pp55) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.21 hours. Scaled time: 2.47 units (timescale=0.473). Factorization parameters were as follows: name: 54443_127 n: 54444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 20000000000000000000000000 deg: 5 c5: 1225 c0: -104 skew: 0.61 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 955001) Primes: RFBsize:79251, AFBsize:79761, largePrimes:2639543 encountered Relations: rels:2518399, finalFF:189964 Max relations in full relation-set: 28 Initial matrix: 159077 x 189964 with sparse part having weight 14598093. Pruned matrix : 149777 x 150636 with weight 9259399. Total sieving time: 4.74 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.32 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 5.21 hours. --------- CPU info (if available) ----------
(49·10148-13)/9 = 5(4)1473<149> = C149
C149 = P43 · P107
P43 = 2400513117999809722405970619454289674628549<43>
P107 = 22680336148218774284672959283888357977629962447175151940084971677874951003250148874102472003345354598125407<107>
Number: 54443_148 N=54444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 149 digits) SNFS difficulty: 151 digits. Divisors found: r1=2400513117999809722405970619454289674628549 (pp43) r2=22680336148218774284672959283888357977629962447175151940084971677874951003250148874102472003345354598125407 (pp107) Version: GGNFS-0.77.1-20060513-nocona Total time: 24.37 hours. Scaled time: 62.76 units (timescale=2.575). Factorization parameters were as follows: name: 54443_148 n: 54444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 500000000000000000000000000000 deg: 5 c5: 392 c0: -325 skew: 0.96 type: snfs rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:169201, largePrimes:6871087 encountered Relations: rels:6772219, finalFF:417043 Max relations in full relation-set: 28 Initial matrix: 338777 x 417043 with sparse part having weight 43198668. Pruned matrix : 312178 x 313935 with weight 29224094. Total sieving time: 23.29 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.86 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 24.37 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 23, 2009
4·10189+1 = 4(0)1881<190> = 53 · 18077 · 2643247 · 96964568413<11> · 3643105412001703<16> · C151
C151 = P65 · P87
P65 = 13506270059310058545933600271041349759458769588496747569910410889<65>
P87 = 331054716915185039351115638053193982176316954185352183355312068630530447500029226468933<87>
Number: 40001_189 N=4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437 ( 151 digits) SNFS difficulty: 190 digits. Divisors found: r1=13506270059310058545933600271041349759458769588496747569910410889 r2=331054716915185039351115638053193982176316954185352183355312068630530447500029226468933 Version: Total time: 141.02 hours. Scaled time: 336.91 units (timescale=2.389). Factorization parameters were as follows: n: 4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437 m: 100000000000000000000000000000000000000 deg: 5 c5: 2 c0: 5 skew: 1.20 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20345343 Max relations in full relation-set: Initial matrix: Pruned matrix : 1869145 x 1869393 Total sieving time: 127.54 hours. Total relation processing time: 3.81 hours. Matrix solve time: 9.25 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,54,54,2.5,2.5,100000 total time: 141.02 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Ignacio Santos / GGNFS, Msieve / Mar 22, 2009
(47·10156+43)/9 = 5(2)1557<157> = 337 · 9491 · 51820057 · C143
C143 = P66 · P78
P66 = 113581577204809565513012062452451703276361480125789394032540587489<66>
P78 = 277400789537348018726881092733478275821865326592097829516429044974540705826297<78>
Number: 52227_156 N=31507619193511423542935436939709466487629251657249002190486601003992558407642434351504182852325940175227371864963648554636926509550429565398233 ( 143 digits) SNFS difficulty: 157 digits. Divisors found: r1=113581577204809565513012062452451703276361480125789394032540587489 (pp66) r2=277400789537348018726881092733478275821865326592097829516429044974540705826297 (pp78) Version: Msieve-1.39 Total time: 22.76 hours. Scaled time: 58.51 units (timescale=2.571). Factorization parameters were as follows: n: 31507619193511423542935436939709466487629251657249002190486601003992558407642434351504182852325940175227371864963648554636926509550429565398233 m: 10000000000000000000000000000000 deg: 5 c5: 470 c0: 43 skew: 0.62 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 546997 x 547245 Total sieving time: 22.76 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 22.76 hours. --------- CPU info (if available) ----------
(11·10180-17)/3 = 3(6)1791<181> = 29 · 160907 · C174
C174 = P60 · P115
P60 = 176325185615773625215171251016539484947995017242946993964977<60>
P115 = 4456399789592708971102926999895272616391578598936752012977840464910707166020866224669377586464398546940798085854731<115>
Number: 36661_180 N=785775520078028937826512051760605058579922192508001873574576418776634664887099416104497857654478645443012737635482879415817332622135053524528232878719334485280245767723756187 ( 174 digits) SNFS difficulty: 181 digits. Divisors found: r1=176325185615773625215171251016539484947995017242946993964977 (pp60) r2=4456399789592708971102926999895272616391578598936752012977840464910707166020866224669377586464398546940798085854731 (pp115) Version: Msieve-1.39 Total time: 125.86 hours. Scaled time: 218.88 units (timescale=1.739). Factorization parameters were as follows: n: 785775520078028937826512051760605058579922192508001873574576418776634664887099416104497857654478645443012737635482879415817332622135053524528232878719334485280245767723756187 m: 1000000000000000000000000000000000000 deg: 5 c5: 11 c0: -17 skew: 1.09 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1437252 x 1437500 Total sieving time: 125.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 125.86 hours. --------- CPU info (if available) ----------
(11·10167+1)/3 = 3(6)1667<168> = 7 · 36549260837<11> · C157
C157 = P39 · P43 · P75
P39 = 759382237599703068226186568773861458713<39>
P43 = 2871319944773339904197170463553741091654931<43>
P75 = 657283560153017018445541294295980692946948772344737839113428718868371336571<75>
Number: 36667_167 N=1433160375378246967538829528995992399920964573485346432325743080005051346816679054388297120909596040511367262821916323312932145259760301536419849988687539513 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: r1=759382237599703068226186568773861458713 (pp39) r2=2871319944773339904197170463553741091654931 (pp43) r3=657283560153017018445541294295980692946948772344737839113428718868371336571 (pp75) Version: Msieve-1.39 Total time: 48.74 hours. Scaled time: 84.76 units (timescale=1.739). Factorization parameters were as follows: n: 1433160375378246967538829528995992399920964573485346432325743080005051346816679054388297120909596040511367262821916323312932145259760301536419849988687539513 m: 5000000000000000000000000000000000 deg: 5 c5: 44 c0: 125 skew: 1.23 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2400000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 953625 x 953873 Total sieving time: 48.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000 total time: 48.74 hours. --------- CPU info (if available) ----------
(49·10134-13)/9 = 5(4)1333<135> = 32 · 419 · 7625281 · 10726355401104146640073<23> · C103
C103 = P40 · P63
P40 = 3053575784592854265729449920832931528209<40>
P63 = 578069825269579937655670787941745063303826005806320438808706249<63>
Number: 54443_134 N=1765180020247011731278134277411512103003119124883459439773398747293564455928072644004637247393738078041 ( 103 digits) SNFS difficulty: 136 digits. Divisors found: r1=3053575784592854265729449920832931528209 (pp40) r2=578069825269579937655670787941745063303826005806320438808706249 (pp63) Version: Msieve-1.39 Total time: 3.55 hours. Scaled time: 6.18 units (timescale=1.739). Factorization parameters were as follows: n: 1765180020247011731278134277411512103003119124883459439773398747293564455928072644004637247393738078041 m: 1000000000000000000000000000 deg: 5 c5: 49 c0: -130 skew: 1.22 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1340001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 188447 x 188695 Total sieving time: 3.55 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.55 hours. --------- CPU info (if available) ----------
(16·10168+17)/3 = 5(3)1679<169> = 11 · 227 · 5715255044861<13> · C153
C153 = P57 · P97
P57 = 237162299947870602923360845817776486574128966845412187779<57>
P97 = 1575792091453108964971588622205552962509706167218824000441526861593990073743591728636132377122173<97>
Number: 53339_168 N=373718476648684572637694595120833703274454218519866059110650467541553477345097898834202957714009891476604066068299185279577128527994396935030163900523767 ( 153 digits) SNFS difficulty: 170 digits. Divisors found: r1=237162299947870602923360845817776486574128966845412187779 (pp57) r2=1575792091453108964971588622205552962509706167218824000441526861593990073743591728636132377122173 (pp97) Version: Msieve-1.39 Total time: 42.58 hours. Scaled time: 109.01 units (timescale=2.560). Factorization parameters were as follows: n: 373718476648684572637694595120833703274454218519866059110650467541553477345097898834202957714009891476604066068299185279577128527994396935030163900523767 m: 4000000000000000000000000000000000 deg: 5 c5: 125 c0: 136 skew: 1.02 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2400000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 836237 x 836485 Total sieving time: 42.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000 total time: 42.58 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Mar 22, 2009
(49·10142-31)/9 = 5(4)1411<143> = 3 · 151 · 2023864397<10> · 93445315257300767<17> · C114
C114 = P43 · P72
P43 = 1716464456102413811533728553420001764417351<43>
P72 = 370238527354276951849469480548758543807489129866387577784804649042444353<72>
Number: 54441_142 N=635501272483317646192623949232245073819008743834263346476971567061448712480937188483427830079004753214351885168903 ( 114 digits) SNFS difficulty: 144 digits. Divisors found: r1=1716464456102413811533728553420001764417351 (pp43) r2=370238527354276951849469480548758543807489129866387577784804649042444353 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 17.43 hours. Scaled time: 8.25 units (timescale=0.473). Factorization parameters were as follows: name: 54441_142 n: 635501272483317646192623949232245073819008743834263346476971567061448712480937188483427830079004753214351885168903 m: 20000000000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 2300001) Primes: RFBsize:135072, AFBsize:135069, largePrimes:3971918 encountered Relations: rels:4090853, finalFF:368042 Max relations in full relation-set: 28 Initial matrix: 270206 x 368042 with sparse part having weight 36737791. Pruned matrix : 237779 x 239194 with weight 21727203. Total sieving time: 15.54 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.60 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,100000 total time: 17.43 hours. --------- CPU info (if available) ----------
(49·10151-31)/9 = 5(4)1501<152> = 3 · 59 · 911 · 3407 · 339851027 · C135
C135 = P42 · P94
P42 = 286120041668600745533526907489500541024577<42>
P94 = 1019184775083452183488830452860126346217069699358811608060108774820628340331919578837659937651<94>
Number: 54441_151 N=291609190314880817618579760477553066552329881899773875289977893723653566933468795197023008294377682242284847777615153600283937478648627 ( 135 digits) SNFS difficulty: 152 digits. Divisors found: r1=286120041668600745533526907489500541024577 (pp42) r2=1019184775083452183488830452860126346217069699358811608060108774820628340331919578837659937651 (pp94) Version: GGNFS-0.77.1-20060513-nocona Total time: 33.36 hours. Scaled time: 85.21 units (timescale=2.554). Factorization parameters were as follows: name: 54441_151 n: 291609190314880817618579760477553066552329881899773875289977893723653566933468795197023008294377682242284847777615153600283937478648627 m: 1000000000000000000000000000000 deg: 5 c5: 490 c0: -31 skew: 0.58 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2150001) Primes: RFBsize:183072, AFBsize:183427, largePrimes:8957809 encountered Relations: rels:10343365, finalFF:1581511 Max relations in full relation-set: 28 Initial matrix: 366565 x 1581511 with sparse part having weight 194579687. Pruned matrix : 248031 x 249927 with weight 42723486. Total sieving time: 32.29 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.81 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 33.36 hours. --------- CPU info (if available) ----------
(16·10129+17)/3 = 5(3)1289<130> = 19 · 47 · 485858449 · C119
C119 = P39 · P80
P39 = 623219998062802938785799973843610813257<39>
P80 = 19724051551602642903450015600131998699589330106576447898110400616964952612756111<80>
Number: 53339_129 N=12292423369780424409286096691655132415558349762911633736102345174234635424394221190217084491352027704098652792906563527 ( 119 digits) SNFS difficulty: 130 digits. Divisors found: r1=623219998062802938785799973843610813257 (pp39) r2=19724051551602642903450015600131998699589330106576447898110400616964952612756111 (pp80) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.40 hours. Scaled time: 1.61 units (timescale=0.473). Factorization parameters were as follows: name: 53339_129 n: 12292423369780424409286096691655132415558349762911633736102345174234635424394221190217084491352027704098652792906563527 m: 100000000000000000000000000 deg: 5 c5: 8 c0: 85 skew: 1.60 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 780001) Primes: RFBsize:82832, AFBsize:82838, largePrimes:2518222 encountered Relations: rels:2385744, finalFF:190256 Max relations in full relation-set: 28 Initial matrix: 165735 x 190256 with sparse part having weight 11939402. Pruned matrix : 153355 x 154247 with weight 7704026. Total sieving time: 2.98 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.30 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 3.40 hours. --------- CPU info (if available) ----------
(49·10159-31)/9 = 5(4)1581<160> = 19 · 47 · 292246842172269949747673873<27> · 3567663311467094797752460691<28> · C103
C103 = P31 · P36 · P37
P31 = 1286968891444224528016148245727<31>
P36 = 827600391338879236747200546595124171<36>
P37 = 5490092802033096484410654870220759027<37>
Sat Mar 21 15:17:17 2009 Msieve v. 1.39 Sat Mar 21 15:17:17 2009 random seeds: 58f44c04 9e64a594 Sat Mar 21 15:17:17 2009 factoring 5847475653589482742496899192309564306665185208063887360339104592368359867530932457634445089863133120559 (103 digits) Sat Mar 21 15:17:18 2009 searching for 15-digit factors Sat Mar 21 15:17:19 2009 commencing quadratic sieve (103-digit input) Sat Mar 21 15:17:20 2009 using multiplier of 1 Sat Mar 21 15:17:20 2009 using 32kb Intel Core sieve core Sat Mar 21 15:17:20 2009 sieve interval: 36 blocks of size 32768 Sat Mar 21 15:17:20 2009 processing polynomials in batches of 6 Sat Mar 21 15:17:20 2009 using a sieve bound of 3499337 (124945 primes) Sat Mar 21 15:17:20 2009 using large prime bound of 524900550 (28 bits) Sat Mar 21 15:17:20 2009 using double large prime bound of 4967508683642700 (44-53 bits) Sat Mar 21 15:17:20 2009 using trial factoring cutoff of 53 bits Sat Mar 21 15:17:20 2009 polynomial 'A' values have 13 factors Sun Mar 22 13:17:00 2009 125221 relations (29552 full + 95669 combined from 1877452 partial), need 125041 Sun Mar 22 13:17:02 2009 begin with 1907004 relations Sun Mar 22 13:17:05 2009 reduce to 331621 relations in 12 passes Sun Mar 22 13:17:05 2009 attempting to read 331621 relations Sun Mar 22 13:17:11 2009 recovered 331621 relations Sun Mar 22 13:17:11 2009 recovered 323390 polynomials Sun Mar 22 13:17:12 2009 attempting to build 125221 cycles Sun Mar 22 13:17:12 2009 found 125221 cycles in 7 passes Sun Mar 22 13:17:12 2009 distribution of cycle lengths: Sun Mar 22 13:17:12 2009 length 1 : 29552 Sun Mar 22 13:17:12 2009 length 2 : 21309 Sun Mar 22 13:17:12 2009 length 3 : 20439 Sun Mar 22 13:17:12 2009 length 4 : 17242 Sun Mar 22 13:17:12 2009 length 5 : 13129 Sun Mar 22 13:17:12 2009 length 6 : 9202 Sun Mar 22 13:17:12 2009 length 7 : 6019 Sun Mar 22 13:17:12 2009 length 9+: 8329 Sun Mar 22 13:17:12 2009 largest cycle: 24 relations Sun Mar 22 13:17:12 2009 matrix is 124945 x 125221 (37.4 MB) with weight 9296264 (74.24/col) Sun Mar 22 13:17:12 2009 sparse part has weight 9296264 (74.24/col) Sun Mar 22 13:17:15 2009 filtering completed in 3 passes Sun Mar 22 13:17:15 2009 matrix is 120045 x 120109 (36.0 MB) with weight 8961886 (74.61/col) Sun Mar 22 13:17:15 2009 sparse part has weight 8961886 (74.61/col) Sun Mar 22 13:17:15 2009 saving the first 48 matrix rows for later Sun Mar 22 13:17:15 2009 matrix is 119997 x 120109 (26.3 MB) with weight 7548817 (62.85/col) Sun Mar 22 13:17:15 2009 sparse part has weight 6175038 (51.41/col) Sun Mar 22 13:17:15 2009 matrix includes 64 packed rows Sun Mar 22 13:17:15 2009 using block size 43690 for processor cache size 1024 kB Sun Mar 22 13:17:17 2009 commencing Lanczos iteration Sun Mar 22 13:17:17 2009 memory use: 23.0 MB Sun Mar 22 13:19:16 2009 lanczos halted after 1899 iterations (dim = 119995) Sun Mar 22 13:19:16 2009 recovered 17 nontrivial dependencies Sun Mar 22 13:19:18 2009 prp31 factor: 1286968891444224528016148245727 Sun Mar 22 13:19:18 2009 prp36 factor: 827600391338879236747200546595124171 Sun Mar 22 13:19:18 2009 prp37 factor: 5490092802033096484410654870220759027 Sun Mar 22 13:19:18 2009 elapsed time 22:02:01
(49·10139-13)/9 = 5(4)1383<140> = 432 · 5879 · 6361 · 259993 · 2700760419073<13> · 10123937678771113627<20> · C93
C93 = P46 · P47
P46 = 1205299344754500667641838377887933065643674837<46>
P47 = 91895808846580213792838373174075953576019739123<47>
Sun Mar 22 13:51:54 2009 Msieve v. 1.39 Sun Mar 22 13:51:54 2009 random seeds: 1c254e34 3755ed4b Sun Mar 22 13:51:54 2009 factoring 110761958188467977456119371945228710724443759220876141066030782141391152874649874683779547951 (93 digits) Sun Mar 22 13:51:55 2009 searching for 15-digit factors Sun Mar 22 13:51:57 2009 commencing quadratic sieve (93-digit input) Sun Mar 22 13:51:57 2009 using multiplier of 1 Sun Mar 22 13:51:57 2009 using 32kb Intel Core sieve core Sun Mar 22 13:51:57 2009 sieve interval: 36 blocks of size 32768 Sun Mar 22 13:51:57 2009 processing polynomials in batches of 6 Sun Mar 22 13:51:57 2009 using a sieve bound of 1854599 (69412 primes) Sun Mar 22 13:51:57 2009 using large prime bound of 209569687 (27 bits) Sun Mar 22 13:51:57 2009 using double large prime bound of 951461467997464 (42-50 bits) Sun Mar 22 13:51:57 2009 using trial factoring cutoff of 50 bits Sun Mar 22 13:51:57 2009 polynomial 'A' values have 12 factors Sun Mar 22 16:03:41 2009 69822 relations (17555 full + 52267 combined from 897392 partial), need 69508 Sun Mar 22 16:03:42 2009 begin with 914947 relations Sun Mar 22 16:03:43 2009 reduce to 177819 relations in 9 passes Sun Mar 22 16:03:43 2009 attempting to read 177819 relations Sun Mar 22 16:03:45 2009 recovered 177819 relations Sun Mar 22 16:03:45 2009 recovered 158523 polynomials Sun Mar 22 16:03:46 2009 attempting to build 69822 cycles Sun Mar 22 16:03:46 2009 found 69822 cycles in 6 passes Sun Mar 22 16:03:46 2009 distribution of cycle lengths: Sun Mar 22 16:03:46 2009 length 1 : 17555 Sun Mar 22 16:03:46 2009 length 2 : 12647 Sun Mar 22 16:03:46 2009 length 3 : 12035 Sun Mar 22 16:03:46 2009 length 4 : 9404 Sun Mar 22 16:03:46 2009 length 5 : 7018 Sun Mar 22 16:03:46 2009 length 6 : 4605 Sun Mar 22 16:03:46 2009 length 7 : 2822 Sun Mar 22 16:03:46 2009 length 9+: 3736 Sun Mar 22 16:03:46 2009 largest cycle: 21 relations Sun Mar 22 16:03:46 2009 matrix is 69412 x 69822 (17.5 MB) with weight 4299783 (61.58/col) Sun Mar 22 16:03:46 2009 sparse part has weight 4299783 (61.58/col) Sun Mar 22 16:03:47 2009 filtering completed in 3 passes Sun Mar 22 16:03:47 2009 matrix is 65537 x 65601 (16.5 MB) with weight 4051076 (61.75/col) Sun Mar 22 16:03:47 2009 sparse part has weight 4051076 (61.75/col) Sun Mar 22 16:03:47 2009 saving the first 48 matrix rows for later Sun Mar 22 16:03:47 2009 matrix is 65489 x 65601 (9.7 MB) with weight 3112910 (47.45/col) Sun Mar 22 16:03:47 2009 sparse part has weight 2157274 (32.88/col) Sun Mar 22 16:03:47 2009 matrix includes 64 packed rows Sun Mar 22 16:03:47 2009 using block size 26240 for processor cache size 1024 kB Sun Mar 22 16:03:48 2009 commencing Lanczos iteration Sun Mar 22 16:03:48 2009 memory use: 9.8 MB Sun Mar 22 16:04:14 2009 lanczos halted after 1037 iterations (dim = 65489) Sun Mar 22 16:04:14 2009 recovered 18 nontrivial dependencies Sun Mar 22 16:04:14 2009 prp46 factor: 1205299344754500667641838377887933065643674837 Sun Mar 22 16:04:14 2009 prp47 factor: 91895808846580213792838373174075953576019739123 Sun Mar 22 16:04:14 2009 elapsed time 02:12:20
(49·10113-13)/9 = 5(4)1123<114> = 3 · C114
C114 = P47 · P67
P47 = 49270994758445485506745344522078417472249246961<47>
P67 = 3683333011058680643342779360261730707241153817449805238013851687321<67>
Number: 54443_113 N=181481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481 ( 114 digits) SNFS difficulty: 116 digits. Divisors found: r1=49270994758445485506745344522078417472249246961 (pp47) r2=3683333011058680643342779360261730707241153817449805238013851687321 (pp67) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.44 hours. Scaled time: 1.15 units (timescale=0.473). Factorization parameters were as follows: name: 54443_113 n: 181481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481 m: 50000000000000000000000 deg: 5 c5: 392 c0: -325 skew: 0.96 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 550001) Primes: RFBsize:49098, AFBsize:49136, largePrimes:1303299 encountered Relations: rels:1299767, finalFF:165600 Max relations in full relation-set: 28 Initial matrix: 98299 x 165600 with sparse part having weight 8125362. Pruned matrix : 77886 x 78441 with weight 2834014. Total sieving time: 2.32 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 2.44 hours. --------- CPU info (if available) ----------
(49·10141-13)/9 = 5(4)1403<142> = C142
C142 = P53 · P90
P53 = 29895894509244796665860680741717481942098627486442047<53>
P90 = 182113448479049276921181897697664273046509544887453509951853505999576736492064061755845669<90>
Number: 54443_141 N=5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 142 digits) SNFS difficulty: 143 digits. Divisors found: r1=29895894509244796665860680741717481942098627486442047 (pp53) r2=182113448479049276921181897697664273046509544887453509951853505999576736492064061755845669 (pp90) Version: GGNFS-0.77.1-20060513-nocona Total time: 14.53 hours. Scaled time: 37.10 units (timescale=2.554). Factorization parameters were as follows: name: 54443_141 n: 5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 20000000000000000000000000000 deg: 5 c5: 245 c0: -208 skew: 0.97 type: snfs lss: 1 rlim: 1750000 alim: 1750000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1750000/1750000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [875000, 2175001) Primes: RFBsize:131608, AFBsize:131782, largePrimes:4300365 encountered Relations: rels:4799866, finalFF:622644 Max relations in full relation-set: 28 Initial matrix: 263456 x 622644 with sparse part having weight 71808746. Pruned matrix : 194268 x 195649 with weight 27959680. Total sieving time: 14.09 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.29 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000 total time: 14.53 hours. --------- CPU info (if available) ----------
(49·10120-13)/9 = 5(4)1193<121> = 433 · 24517 · 1153799 · 1500979523<10> · C99
C99 = P28 · P71
P28 = 9666149732721867133816317637<28>
P71 = 30636553223357949753688263264707804811627036708515492327059389308255287<71>
Number: 54443_120 N=296137510751480703017039742522270090064956369608944183048399620173500991977630933097560191476596819 ( 99 digits) SNFS difficulty: 121 digits. Divisors found: r1=9666149732721867133816317637 (pp28) r2=30636553223357949753688263264707804811627036708515492327059389308255287 (pp71) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.32 hours. Scaled time: 1.03 units (timescale=0.446). Factorization parameters were as follows: name: 54443_120 n: 296137510751480703017039742522270090064956369608944183048399620173500991977630933097560191476596819 m: 1000000000000000000000000 deg: 5 c5: 49 c0: -13 skew: 0.77 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 575001) Primes: RFBsize:60238, AFBsize:59821, largePrimes:1299470 encountered Relations: rels:1274107, finalFF:150534 Max relations in full relation-set: 28 Initial matrix: 120123 x 150534 with sparse part having weight 6474460. Pruned matrix : 102811 x 103475 with weight 3409529. Total sieving time: 2.15 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 2.32 hours. --------- CPU info (if available) ----------
(49·10112-13)/9 = 5(4)1113<113> = 33751 · 713542013531<12> · C97
C97 = P34 · P63
P34 = 3237808002986528818226382726266713<34>
P63 = 698226429531598067180105615871883648384973706998991877568268031<63>
Sun Mar 22 16:28:56 2009 Msieve v. 1.39 Sun Mar 22 16:28:56 2009 random seeds: d3015b48 7ed2183f Sun Mar 22 16:28:56 2009 factoring 2260723121434117828143713675810233409179298217736488423452589864962066789740202246598297977352103 (97 digits) Sun Mar 22 16:28:57 2009 searching for 15-digit factors Sun Mar 22 16:28:58 2009 commencing quadratic sieve (97-digit input) Sun Mar 22 16:28:59 2009 using multiplier of 7 Sun Mar 22 16:28:59 2009 using 32kb Intel Core sieve core Sun Mar 22 16:28:59 2009 sieve interval: 36 blocks of size 32768 Sun Mar 22 16:28:59 2009 processing polynomials in batches of 6 Sun Mar 22 16:28:59 2009 using a sieve bound of 2363903 (87059 primes) Sun Mar 22 16:28:59 2009 using large prime bound of 354585450 (28 bits) Sun Mar 22 16:28:59 2009 using double large prime bound of 2451870804143850 (43-52 bits) Sun Mar 22 16:28:59 2009 using trial factoring cutoff of 52 bits Sun Mar 22 16:28:59 2009 polynomial 'A' values have 13 factors Sun Mar 22 22:04:35 2009 87192 relations (21295 full + 65897 combined from 1307645 partial), need 87155 Sun Mar 22 22:04:37 2009 begin with 1328940 relations Sun Mar 22 22:04:38 2009 reduce to 227421 relations in 10 passes Sun Mar 22 22:04:38 2009 attempting to read 227421 relations Sun Mar 22 22:04:42 2009 recovered 227421 relations Sun Mar 22 22:04:42 2009 recovered 213881 polynomials Sun Mar 22 22:04:42 2009 attempting to build 87192 cycles Sun Mar 22 22:04:43 2009 found 87192 cycles in 5 passes Sun Mar 22 22:04:43 2009 distribution of cycle lengths: Sun Mar 22 22:04:43 2009 length 1 : 21295 Sun Mar 22 22:04:43 2009 length 2 : 15274 Sun Mar 22 22:04:43 2009 length 3 : 14822 Sun Mar 22 22:04:43 2009 length 4 : 11786 Sun Mar 22 22:04:43 2009 length 5 : 8794 Sun Mar 22 22:04:43 2009 length 6 : 5923 Sun Mar 22 22:04:43 2009 length 7 : 3909 Sun Mar 22 22:04:43 2009 length 9+: 5389 Sun Mar 22 22:04:43 2009 largest cycle: 20 relations Sun Mar 22 22:04:43 2009 matrix is 87059 x 87192 (23.4 MB) with weight 5778193 (66.27/col) Sun Mar 22 22:04:43 2009 sparse part has weight 5778193 (66.27/col) Sun Mar 22 22:04:45 2009 filtering completed in 3 passes Sun Mar 22 22:04:45 2009 matrix is 83157 x 83220 (22.4 MB) with weight 5551015 (66.70/col) Sun Mar 22 22:04:45 2009 sparse part has weight 5551015 (66.70/col) Sun Mar 22 22:04:45 2009 saving the first 48 matrix rows for later Sun Mar 22 22:04:45 2009 matrix is 83109 x 83220 (14.0 MB) with weight 4373772 (52.56/col) Sun Mar 22 22:04:45 2009 sparse part has weight 3161875 (37.99/col) Sun Mar 22 22:04:45 2009 matrix includes 64 packed rows Sun Mar 22 22:04:45 2009 using block size 33288 for processor cache size 1024 kB Sun Mar 22 22:04:46 2009 commencing Lanczos iteration Sun Mar 22 22:04:46 2009 memory use: 13.5 MB Sun Mar 22 22:05:32 2009 lanczos halted after 1315 iterations (dim = 83108) Sun Mar 22 22:05:32 2009 recovered 17 nontrivial dependencies Sun Mar 22 22:05:33 2009 prp34 factor: 3237808002986528818226382726266713 Sun Mar 22 22:05:33 2009 prp63 factor: 698226429531598067180105615871883648384973706998991877568268031 Sun Mar 22 22:05:33 2009 elapsed time 05:36:37
By Robert Backstrom / GGNFS, Msieve / Mar 22, 2009
(47·10154+61)/9 = 5(2)1539<155> = 223 · 2041669007527<13> · C141
C141 = P67 · P74
P67 = 6287405169625602502477237795484824113448923850663462083007464764063<67>
P74 = 18242892600702144900224066166443686086519340119714997012668019979791537123<74>
Number: n N=114700457246579318138478529527468263717968577260197719911362953388175243029481033280139922014098783960013610492455511266691921061547300810749 ( 141 digits) SNFS difficulty: 156 digits. Divisors found: Sun Mar 22 13:39:49 2009 prp67 factor: 6287405169625602502477237795484824113448923850663462083007464764063 Sun Mar 22 13:39:49 2009 prp74 factor: 18242892600702144900224066166443686086519340119714997012668019979791537123 Sun Mar 22 13:39:49 2009 elapsed time 01:25:39 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.36 hours. Scaled time: 44.42 units (timescale=1.823). Factorization parameters were as follows: name: KA_5_2_153_9 n: 114700457246579318138478529527468263717968577260197719911362953388175243029481033280139922014098783960013610492455511266691921061547300810749 deg: 5 c5: 47 c0: 610 m: 10000000000000000000000000000000 skew: 1.67 type: snfs rlim: 3000000 alim: 3000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [1500000, 10000000 ) Primes: RFBsize:216816, AFBsize:217102, largePrimes:24249774 encountered Relations: rels:22372236, finalFF:558517 Max relations in full relation-set: 28 Initial matrix: 433983 x 558517 with sparse part having weight 89057458. Pruned matrix : 399040 x 401273 with weight 56926209. Msieve: found 2110438 hash collisions in 23723689 relations Msieve: matrix is 535966 x 536214 (141.4 MB) Total sieving time: 23.82 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,29,29,58,58,2.5,2.5,100000 total time: 24.36 hours. --------- CPU info (if available) ----------
(47·10122+43)/9 = 5(2)1217<123> = 31 · C122
C122 = P58 · P64
P58 = 3553753901649698354047921541097460083255890435040418905481<58>
P64 = 4740305210324396166746716284276132282091713424142937278623424357<64>
Number: n N=16845878136200716845878136200716845878136200716845878136200716845878136200716845878136200716845878136200716845878136200717 ( 122 digits) SNFS difficulty: 123 digits. Divisors found: r1=3553753901649698354047921541097460083255890435040418905481 (pp58) r2=4740305210324396166746716284276132282091713424142937278623424357 (pp64) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 1.59 hours. Scaled time: 4.23 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_2_121_7 n: 16845878136200716845878136200716845878136200716845878136200716845878136200716845878136200716845878136200716845878136200717 skew: 0.39 deg: 5 c5: 4700 c0: 43 m: 1000000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [300000, 660001) Primes: RFBsize:49098, AFBsize:49206, largePrimes:4778585 encountered Relations: rels:4334253, finalFF:160209 Max relations in full relation-set: 28 Initial matrix: 98371 x 160209 with sparse part having weight 17227502. Pruned matrix : 87616 x 88171 with weight 7733167. Total sieving time: 1.48 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,600000,28,28,56,56,2.4,2.4,50000 total time: 1.59 hours. --------- CPU info (if available) ----------
(49·10117-13)/9 = 5(4)1163<118> = 223 · 185904631079077<15> · C102
C102 = P47 · P55
P47 = 39440726016344745653943373742754827920013325257<47>
P55 = 3329765108465687231084607438784113510264349945122473369<55>
Number: n N=131328353341779614268153512653441448934258520553999210062837824880361345306679232117334355334117580833 ( 102 digits) SNFS difficulty: 121 digits. Divisors found: Sun Mar 22 20:10:43 2009 prp47 factor: 39440726016344745653943373742754827920013325257 Sun Mar 22 20:10:43 2009 prp55 factor: 3329765108465687231084607438784113510264349945122473369 Sun Mar 22 20:10:43 2009 elapsed time 00:04:08 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 1.08 hours. Scaled time: 2.88 units (timescale=2.660). Factorization parameters were as follows: name: KA_5_4_116_3 n: 131328353341779614268153512653441448934258520553999210062837824880361345306679232117334355334117580833 skew: 3.05 deg: 5 c5: 49 c0: -13000 m: 1000000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 540613) Primes: RFBsize:49098, AFBsize:49661, largePrimes:3831306 encountered Relations: rels:3248478, finalFF:82968 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 187218 hash collisions in 3421566 relations Msieve: matrix is 111486 x 111726 (29.9 MB) Total sieving time: 1.04 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,28,28,56,56,2.4,2.4,50000 total time: 1.08 hours. --------- CPU info (if available) ----------
(49·10130-13)/9 = 5(4)1293<131> = 29 · 8837 · C126
C126 = P38 · P89
P38 = 15365173779343757359334278547951668963<38>
P89 = 13826531303417091869063585125914867774939884422495793079249247555637563832749104437904857<89>
Number: n N=212447056242539964976585299444125773860080634496979566495278255783654323492698975094701527060768962959205395981802392153853291 ( 126 digits) SNFS difficulty: 131 digits. Divisors found: r1=15365173779343757359334278547951668963 (pp38) r2=13826531303417091869063585125914867774939884422495793079249247555637563832749104437904857 (pp89) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 1.87 hours. Scaled time: 4.96 units (timescale=2.649). Factorization parameters were as follows: name: KA_5_4_129_3 n: 212447056242539964976585299444125773860080634496979566495278255783654323492698975094701527060768962959205395981802392153853291 skew: 0.77 deg: 5 c5: 49 c0: -13 m: 100000000000000000000000000 type: snfs rlim: 850000 alim: 850000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 850000/850000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [425000, 785001) Primes: RFBsize:67617, AFBsize:67170, largePrimes:5700028 encountered Relations: rels:5209170, finalFF:264753 Max relations in full relation-set: 28 Initial matrix: 134851 x 264753 with sparse part having weight 26750384. Pruned matrix : 109263 x 110001 with weight 8945134. Total sieving time: 1.74 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.03 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,850000,850000,28,28,56,56,2.4,2.4,50000 total time: 1.87 hours. --------- CPU info (if available) ----------
By Erik Branger / GMP-ECM, GGNFS, Msieve / Mar 22, 2009
(10204+17)/9 = (1)2033<204> = 23 · 773909 · 1540195883333<13> · 1282146599377795849<19> · 21676096960363463710282387103<29> · C138
C138 = P37 · P101
P37 = 3563655936076273099916412456811109387<37>
P101 = 40921284929194423257867202290995071601945357815830179626243613336714911803694463810877773792377543507<101>
GMP-ECM 6.2 [powered by GMP 4.2.2] [ECM] Input number is 145829379949792239395107343637243079763628528658681310890575160988171862082801967137706829973725352350567726447106111950156737778528600209 (138 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=560508884 Step 1 took 46594ms ********** Factor found in step 1: 3563655936076273099916412456811109387 Found probable prime factor of 37 digits: 3563655936076273099916412456811109387 Probable prime cofactor 40921284929194423257867202290995071601945357815830179626243613336714911803694463810877773792377543507 has 101 digits
(49·10102-13)/9 = 5(4)1013<103> = 23 · 29 · C100
C100 = P36 · P64
P36 = 856284975732961798770754067476869163<36>
P64 = 9532557040362265696725320268206781344444145146303960880095399683<64>
Number: 54443_102 N=8162585373979676828252540396468432450441445943694819257038147592870231550891221056138597367982675329 ( 100 digits) SNFS difficulty: 105 digits. Divisors found: r1=856284975732961798770754067476869163 r2=9532557040362265696725320268206781344444145146303960880095399683 Version: Total time: 0.67 hours. Scaled time: 0.52 units (timescale=0.774). Factorization parameters were as follows: n: 8162585373979676828252540396468432450441445943694819257038147592870231550891221056138597367982675329 m: 50000000000000000000000000 deg: 4 c4: 196 c0: -325 skew: 1.13 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [195000, 255001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 33044 x 33269 Total sieving time: 0.67 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,390000,390000,25,25,44,44,2.2,2.2,20000 total time: 0.67 hours. --------- CPU info (if available) ----------
(49·10126-13)/9 = 5(4)1253<127> = 1935510386548969<16> · C112
C112 = P33 · P34 · P46
P33 = 886472740761278554450087477716581<33>
P34 = 1905222917172293197745705906814437<34>
P46 = 1665508609598934955964817532355973948697940251<46>
Number: 54443_126 N=2812924426694466797269053611378786655841506454604882955955606250617376556226484570126893360140540172447027234147 ( 112 digits) SNFS difficulty: 128 digits. Divisors found: r1=886472740761278554450087477716581 r2=1905222917172293197745705906814437 r3=1665508609598934955964817532355973948697940251 Version: Total time: 3.21 hours. Scaled time: 3.00 units (timescale=0.934). Factorization parameters were as follows: n: 2812924426694466797269053611378786655841506454604882955955606250617376556226484570126893360140540172447027234147 m: 20000000000000000000000000 deg: 5 c5: 245 c0: -208 skew: 0.97 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 137383 x 137631 Total sieving time: 3.21 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 3.21 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve v1.40beta2 / Mar 22, 2009
(49·10129-31)/9 = 5(4)1281<130> = 17 · 1051 · 1223 · 188833 · C118
C118 = P34 · P84
P34 = 7162696482730668159103867263627691<34>
P84 = 184213322171955253139200172783060241904468670066761404841591156427180089235354386967<84>
Number: 54441_129 N=1319464114793195299715358693826383356772564901259144652368208640721475989621654185864368906977656604154533991830703197 ( 118 digits) SNFS difficulty: 131 digits. Divisors found: r1=7162696482730668159103867263627691 (pp34) r2=184213322171955253139200172783060241904468670066761404841591156427180089235354386967 (pp84) Version: Msieve-1.40 Total time: 3.93 hours. Scaled time: 6.40 units (timescale=1.631). Factorization parameters were as follows: n: 1319464114793195299715358693826383356772564901259144652368208640721475989621654185864368906977656604154533991830703197 m: 100000000000000000000000000 deg: 5 c5: 49 c0: -310 skew: 1.45 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167913 x 168161 Total sieving time: 3.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 3.93 hours. --------- CPU info (if available) ---------- [ 0.371529] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.10 BogoMIPS (lpj=8800216) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800821) [ 0.460049] Total of 2 processors activated (8800.51 BogoMIPS).
By Serge Batalov / Msieve-1.40b2 / Mar 22, 2009
(47·10158+7)/9 = 5(2)1573<159> = 103 · C157
C157 = P56 · P101
P56 = 71303755236789181010241436764968018401427992819337740943<56>
P101 = 71105913643882583795061215112708628113247174708582329597976670564566008135825025418369512291553408087<101>
SNFS difficulty: 161 digits. Divisors found: r1=71303755236789181010241436764968018401427992819337740943 (pp56) r2=71105913643882583795061215112708628113247174708582329597976670564566008135825025418369512291553408087 (pp101) Version: Msieve-1.40b2 Total time: 9.38 hours. Scaled time: 26.62 units (timescale=2.840). Factorization parameters were as follows: n: 5070118662351672060409924487594390507011866235167206040992448759439050701186623516720604099244875943905070118662351672060409924487594390507011866235167206041 m: 50000000000000000000000000000000 deg: 5 c5: 376 c0: 175 skew: 0.86 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 655490 x 655738 Total sieving time: 9.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.55 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 9.38 hours. --------- CPU info (if available) ---------- CPU0: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU1: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU2: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU3: AMD Phenom(tm) II X4 940 Processor stepping 02 Memory: 8173900k/9175040k available (2699k kernel code, 213168k reserved, 3164k data, 788k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6012.77 BogoMIPS (lpj=12025552) Calibrating delay using timer specific routine.. 6012.90 BogoMIPS (lpj=12025812) Calibrating delay using timer specific routine.. 6012.85 BogoMIPS (lpj=12025719) Calibrating delay using timer specific routine.. 6012.90 BogoMIPS (lpj=12025802) Total of 4 processors activated (24051.44 BogoMIPS).
Factorizations of 544...443 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Sinkiti Sibata / GGNFS, Msieve / Mar 21, 2009
(16·10146+17)/3 = 5(3)1459<147> = 7 · 11 · 114391987 · 10724771108770309319<20> · C118
C118 = P41 · P77
P41 = 86647924148580878037180406898757962104657<41>
P77 = 65157768781765977762053170572689023638293806097473705832942639134885363376267<77>
Number: 53339_146 N=5645785407093229523450444930076978097985520970778427251742486562229340790332525704995666239342427900024865562723975419 ( 118 digits) SNFS difficulty: 147 digits. Divisors found: r1=86647924148580878037180406898757962104657 (pp41) r2=65157768781765977762053170572689023638293806097473705832942639134885363376267 (pp77) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 13.73 hours. Scaled time: 6.48 units (timescale=0.472). Factorization parameters were as follows: name: 53339_146 n: 5645785407093229523450444930076978097985520970778427251742486562229340790332525704995666239342427900024865562723975419 m: 200000000000000000000000000000 deg: 5 c5: 5 c0: 17 skew: 1.28 type: snfs rlim: 1990000 alim: 1990000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1990000/1990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [995000, 1995001) Primes: RFBsize:148219, AFBsize:148151, largePrimes:3891517 encountered Relations: rels:3932779, finalFF:384477 Max relations in full relation-set: 28 Initial matrix: 296435 x 384477 with sparse part having weight 29846694. Pruned matrix : 262135 x 263681 with weight 17013240. Total sieving time: 11.83 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.65 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1990000,1990000,26,26,49,49,2.3,2.3,100000 total time: 13.73 hours. --------- CPU info (if available) ----------
(16·10148+17)/3 = 5(3)1479<149> = 113 · 13 · 53 · 8387 · C139
C139 = P52 · P88
P52 = 1970805129651612702855917094141798731030723421241267<52>
P88 = 3518447892045144824283402589333190568229454329679224368597593827794731475863057750227249<88>
Number: 53339_148 N=6934175154054475060038774393210973357889745590439477645571012428168544246773102249928479498122105298705396229221788410415615970922906684483 ( 139 digits) SNFS difficulty: 150 digits. Divisors found: r1=1970805129651612702855917094141798731030723421241267 (pp52) r2=3518447892045144824283402589333190568229454329679224368597593827794731475863057750227249 (pp88) Version: GGNFS-0.77.1-20060513-nocona Total time: 23.56 hours. Scaled time: 60.66 units (timescale=2.575). Factorization parameters were as follows: name: 53339_148 n: 6934175154054475060038774393210973357889745590439477645571012428168544246773102249928479498122105298705396229221788410415615970922906684483 m: 400000000000000000000000000000 deg: 5 c5: 125 c0: 136 skew: 1.02 type: snfs rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [1100000, 1600001) Primes: RFBsize:162662, AFBsize:161875, largePrimes:8008307 encountered Relations: rels:9347537, finalFF:1756819 Max relations in full relation-set: 28 Initial matrix: 324603 x 1756819 with sparse part having weight 181642673. Pruned matrix : 188940 x 190627 with weight 44204690. Total sieving time: 22.89 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.46 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 23.56 hours. --------- CPU info (if available) ----------
(49·10146-31)/9 = 5(4)1451<147> = 643 · C144
C144 = P37 · P108
P37 = 3042106189827290624120844036782865833<37>
P108 = 278335260575092870871504582135628218174720978379908946178727055375423453765822803874949132681646831312143739<108>
Number: 54441_146 N=846725419042681873163988249524796958700535683428373941593226196647658545014688094003801624330395714532573008467254190426818731639882495247969587 ( 144 digits) SNFS difficulty: 147 digits. Divisors found: r1=3042106189827290624120844036782865833 (pp37) r2=278335260575092870871504582135628218174720978379908946178727055375423453765822803874949132681646831312143739 (pp108) Version: GGNFS-0.77.1-20060513-nocona Total time: 17.67 hours. Scaled time: 45.31 units (timescale=2.564). Factorization parameters were as follows: name:54441_146 n: 846725419042681873163988249524796958700535683428373941593226196647658545014688094003801624330395714532573008467254190426818731639882495247969587 m: 100000000000000000000000000000 deg: 5 c5: 490 c0: -31 skew: 0.58 type: snfs rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1000000, 2700001) Primes: RFBsize:148933, AFBsize:149076, largePrimes:4248112 encountered Relations: rels:4418526, finalFF:360963 Max relations in full relation-set: 28 Initial matrix: 298075 x 360963 with sparse part having weight 39507402. Pruned matrix : 276783 x 278337 with weight 28392277. Total sieving time: 16.91 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.59 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 17.67 hours. --------- CPU info (if available) ----------
(16·10159+17)/3 = 5(3)1589<160> = 4201 · 11369 · 20060626646968543458887062589<29> · 181460042160288350794014941791<30> · C95
C95 = P29 · P67
P29 = 16433336450614236706160575327<29>
P67 = 1866691415650896562187704322494751573492502375255655246746456677447<67>
Sat Mar 21 07:47:23 2009 Msieve v. 1.39 Sat Mar 21 07:47:23 2009 random seeds: 2dc22e14 ac7a317a Sat Mar 21 07:47:23 2009 factoring 30675968082864569337146521319456691256436797450754597199363823113423792359722327736654385550169 (95 digits) SSSat Mar 21 07:47:24 2009 searching for 15-digit factors Sat Mar 21 07:47:26 2009 commencing quadratic sieve (95-digit input) Sat Mar 21 07:47:26 2009 using multiplier of 5 Sat Mar 21 07:47:26 2009 using 32kb Intel Core sieve core Sat Mar 21 07:47:26 2009 sieve interval: 36 blocks of size 32768 Sat Mar 21 07:47:26 2009 processing polynomials in batches of 6 SSat Mar 21 07:47:26 2009 using a sieve bound of 2120351 (78824 primes) Sat Mar 21 07:47:26 2009 using large prime bound of 309571246 (28 bits) Sat Mar 21 07:47:26 2009 using double large prime bound of 1920299848206370 (43-51 bits) Sat Mar 21 07:47:26 2009 using trial factoring cutoff of 51 bits Sat Mar 21 07:47:26 2009 polynomial 'A' values have 12 factors Sat Mar 21 11:37:13 2009 79215 relations (19218 full + 59997 combined from 1172811 partial), need 78920 Sat Mar 21 11:37:14 2009 begin with 1192029 relations Sat Mar 21 11:37:16 2009 reduce to 207251 relations in 11 passes Sat Mar 21 11:37:16 2009 attempting to read 207251 relations Sat Mar 21 11:37:19 2009 recovered 207251 relations Sat Mar 21 11:37:19 2009 recovered 191354 polynomials Sat Mar 21 11:37:19 2009 attempting to build 79215 cycles Sat Mar 21 11:37:19 2009 found 79215 cycles in 5 passes Sat Mar 21 11:37:19 2009 distribution of cycle lengths: Sat Mar 21 11:37:19 2009 length 1 : 19218 Sat Mar 21 11:37:19 2009 length 2 : 13842 Sat Mar 21 11:37:19 2009 length 3 : 13308 Sat Mar 21 11:37:19 2009 length 4 : 10659 Sat Mar 21 11:37:19 2009 length 5 : 8146 Sat Mar 21 11:37:19 2009 length 6 : 5481 Sat Mar 21 11:37:19 2009 length 7 : 3649 Sat Mar 21 11:37:19 2009 length 9+: 4912 Sat Mar 21 11:37:19 2009 largest cycle: 20 relations Sat Mar 21 11:37:19 2009 matrix is 78824 x 79215 (21.5 MB) with weight 5319220 (67.15/col) Sat Mar 21 11:37:19 2009 sparse part has weight 5319220 (67.15/col) Sat Mar 21 11:37:21 2009 filtering completed in 3 passes Sat Mar 21 11:37:21 2009 matrix is 75158 x 75222 (20.5 MB) with weight 5063299 (67.31/col) Sat Mar 21 11:37:21 2009 sparse part has weight 5063299 (67.31/col) Sat Mar 21 11:37:21 2009 saving the first 48 matrix rows for later Sat Mar 21 11:37:21 2009 matrix is 75110 x 75222 (13.9 MB) with weight 4111085 (54.65/col) Sat Mar 21 11:37:21 2009 sparse part has weight 3194501 (42.47/col) Sat Mar 21 11:37:21 2009 matrix includes 64 packed rows Sat Mar 21 11:37:21 2009 using block size 30088 for processor cache size 1024 kB Sat Mar 21 11:37:22 2009 commencing Lanczos iteration Sat Mar 21 11:37:22 2009 memory use: 12.8 MB Sat Mar 21 11:38:01 2009 lanczos halted after 1189 iterations (dim = 75109) Sat Mar 21 11:38:01 2009 recovered 17 nontrivial dependencies Sat Mar 21 11:38:04 2009 prp29 factor: 16433336450614236706160575327 Sat Mar 21 11:38:04 2009 prp67 factor: 1866691415650896562187704322494751573492502375255655246746456677447 Sat Mar 21 11:38:04 2009 elapsed time 03:50:41
(49·10148-31)/9 = 5(4)1471<149> = 32 · 1522307981<10> · 32325361034799231983<20> · C120
C120 = P47 · P73
P47 = 41174538329149687535593202758980475987623219157<47>
P73 = 2985632945849170426739484835964697951250750532381210173726652975197022159<73>
Number: 54441_148 N=122932058165638761226488241379896999017363022195995159595839729811725901694163162728063867754278449558440225991842299963 ( 120 digits) SNFS difficulty: 151 digits. Divisors found: r1=41174538329149687535593202758980475987623219157 (pp47) r2=2985632945849170426739484835964697951250750532381210173726652975197022159 (pp73) Version: GGNFS-0.77.1-20060513-nocona Total time: 24.50 hours. Scaled time: 63.09 units (timescale=2.575). Factorization parameters were as follows: name: 54441_148 n: 122932058165638761226488241379896999017363022195995159595839729811725901694163162728063867754278449558440225991842299963 m: 500000000000000000000000000000 deg: 5 c5: 392 c0: -775 skew: 1.15 type: snfs rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:169652, largePrimes:7433177 encountered Relations: rels:7869366, finalFF:804921 Max relations in full relation-set: 28 Initial matrix: 339228 x 804921 with sparse part having weight 96545322. Pruned matrix : 240416 x 242176 with weight 52494306. Total sieving time: 23.51 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.76 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 24.50 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve v1.40beta2, Yafu v1.07 / Mar 21, 2009
(49·10102-31)/9 = 5(4)1011<103> = 383 · 1877279 · C94
C94 = P39 · P56
P39 = 473755973482677914291347623099642100603<39>
P56 = 15983477561793208607093630496325319497714439131327943771<56>
Number: 54441_102 N=7572267971925880781094517844222788058246527492006759130638750213193534517648005235215109193913 ( 94 digits) SNFS difficulty: 105 digits. Divisors found: r1=473755973482677914291347623099642100603 (pp39) r2=15983477561793208607093630496325319497714439131327943771 (pp56) Version: GGNFS-0.77.1-20060722-prescott Total time: 0.66 hours. Scaled time: 1.07 units (timescale=1.608). Factorization parameters were as follows: n: 7572267971925880781094517844222788058246527492006759130638750213193534517648005235215109193913 m: 50000000000000000000000000 deg: 4 c4: 196 c0: -775 skew: 1.41 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [195000, 275001) Primes: RFBsize:33067, AFBsize:33072, largePrimes:1135645 encountered Relations: rels:1107071, finalFF:140559 Max relations in full relation-set: 32 Initial matrix: 66207 x 140559 with sparse part having weight 5846477. Pruned matrix : 43382 x 43777 with weight 1352172. Total sieving time: 0.63 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,390000,390000,25,25,44,44,2.2,2.2,20000 total time: 0.66 hours. --------- CPU info (if available) ---------- [ 0.371529] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.10 BogoMIPS (lpj=8800216) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800821) [ 0.460049] Total of 2 processors activated (8800.51 BogoMIPS).
(49·10121-31)/9 = 5(4)1201<122> = 32 · 131 · 1275455269903484432893507007<28> · C92
C92 = P41 · P51
P41 = 36277844381237430670455147233624365514761<41>
P51 = 998005786686987798358882485633772896334040422474877<51>
Number: 54441_121 N=36205498621004982089560554169086346790384341114722758168707702248023354316750849491695159397 ( 92 digits) SNFS difficulty: 122 digits. Divisors found: r1=36277844381237430670455147233624365514761 (pp41) r2=998005786686987798358882485633772896334040422474877 (pp51) Version: GGNFS-0.77.1-20060722-prescott Total time: 2.30 hours. Scaled time: 3.65 units (timescale=1.587). Factorization parameters were as follows: n: 36205498621004982089560554169086346790384341114722758168707702248023354316750849491695159397 m: 1000000000000000000000000 deg: 5 c5: 490 c0: -31 skew: 0.58 type: snfs lss: 1 rlim: 780000 alim: 780000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 780000/780000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [390000, 690001) Primes: RFBsize:62468, AFBsize:62381, largePrimes:1358161 encountered Relations: rels:1333530, finalFF:152464 Max relations in full relation-set: 32 Initial matrix: 124915 x 152464 with sparse part having weight 7336245. Pruned matrix : 112805 x 113493 with weight 4186936. Total sieving time: 2.17 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000 total time: 2.30 hours. --------- CPU info (if available) ---------- [ 0.371529] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.10 BogoMIPS (lpj=8800216) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800821) [ 0.460049] Total of 2 processors activated (8800.51 BogoMIPS).
(49·10128-31)/9 = 5(4)1271<129> = 157 · 653 · 1801003 · C118
C118 = P36 · P40 · P43
P36 = 334785113105198068383674639652573199<36>
P40 = 2656934680962281058637638782134286920741<40>
P43 = 3314967576878842350279855338342491270012073<43>
Number: 54441_128 N=2948670878569275337440589887212647142554801661452814756709502398448268894092307014198822999294104956368884068184401507 ( 118 digits) SNFS difficulty: 131 digits. Divisors found: r1=334785113105198068383674639652573199 (pp36) r2=2656934680962281058637638782134286920741 (pp40) r3=3314967576878842350279855338342491270012073 (pp43) Version: Msieve-1.40 Total time: 4.04 hours. Scaled time: 6.58 units (timescale=1.630). Factorization parameters were as follows: n: 2948670878569275337440589887212647142554801661452814756709502398448268894092307014198822999294104956368884068184401507 m: 50000000000000000000000000 deg: 5 c5: 392 c0: -775 skew: 1.15 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 1035001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159940 x 160188 Total sieving time: 4.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 4.04 hours. --------- CPU info (if available) ---------- [ 0.371529] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.10 BogoMIPS (lpj=8800216) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800821) [ 0.460049] Total of 2 processors activated (8800.51 BogoMIPS).
(49·10145-31)/9 = 5(4)1441<146> = 3 · 17 · 182773 · 1476511 · 1360874413<10> · 49121077427<11> · 215691204456149170031<21> · C93
C93 = P39 · P54
P39 = 434960582530030125624174611913048830633<39>
P54 = 630763272083566084158310359068270763055519969092874889<54>
03/21/09 00:53:21 v1.07 @ Core2Duo, starting SIQS on c93: 274357160264015792942527616510918476292414957531453870300145327758573457549272898173619674737 03/21/09 00:53:21 v1.07 @ Core2Duo, random seeds: 1948697553, 1062661827 03/21/09 00:53:21 v1.07 @ Core2Duo, ==== sieve params ==== 03/21/09 00:53:21 v1.07 @ Core2Duo, n = 93 digits, 314 bits 03/21/09 00:53:21 v1.07 @ Core2Duo, factor base: 76080 primes (max prime = 2050033) 03/21/09 00:53:21 v1.07 @ Core2Duo, single large prime cutoff: 246003960 (120 * pmax) 03/21/09 00:53:21 v1.07 @ Core2Duo, double large prime range from 43 to 51 bits 03/21/09 00:53:21 v1.07 @ Core2Duo, double large prime cutoff: 1269684379467337 03/21/09 00:53:21 v1.07 @ Core2Duo, using 5 large prime slices of factor base 03/21/09 00:53:21 v1.07 @ Core2Duo, buckets hold 2048 elements 03/21/09 00:53:21 v1.07 @ Core2Duo, sieve interval: 22 blocks of size 32768 03/21/09 00:53:21 v1.07 @ Core2Duo, polynomial A has ~ 12 factors 03/21/09 00:53:21 v1.07 @ Core2Duo, using multiplier of 73 03/21/09 00:53:21 v1.07 @ Core2Duo, using small prime variation correction of 23 bits 03/21/09 00:53:21 v1.07 @ Core2Duo, using x128 sieve scanning 03/21/09 00:53:21 v1.07 @ Core2Duo, trial factoring cutoff at 98 bits 03/21/09 00:53:21 v1.07 @ Core2Duo, ==== sieving started ==== 03/21/09 02:55:00 v1.07 @ Core2Duo, sieve time = 2128.9600, relation time = 1238.0100, poly_time = 2958.2200 03/21/09 02:55:00 v1.07 @ Core2Duo, 76157 relations found: 20962 full + 55195 from 959290 partial, using 664939 polys (324 A polys) 03/21/09 02:55:00 v1.07 @ Core2Duo, trial division touched 46556240 sieve locations out of 958703730688 03/21/09 02:55:00 v1.07 @ Core2Duo, ==== post processing stage (msieve-1.38) ==== 03/21/09 02:55:01 v1.07 @ Core2Duo, begin with 980252 relations 03/21/09 02:55:02 v1.07 @ Core2Duo, reduce to 183836 relations in 9 passes 03/21/09 02:55:02 v1.07 @ Core2Duo, failed to read relation 27535 03/21/09 02:55:06 v1.07 @ Core2Duo, recovered 183835 relations 03/21/09 02:55:06 v1.07 @ Core2Duo, recovered 160637 polynomials 03/21/09 02:55:06 v1.07 @ Core2Duo, attempting to build 76156 cycles 03/21/09 02:55:06 v1.07 @ Core2Duo, found 76156 cycles in 6 passes 03/21/09 02:55:06 v1.07 @ Core2Duo, distribution of cycle lengths: 03/21/09 02:55:06 v1.07 @ Core2Duo, length 1 : 20962 03/21/09 02:55:06 v1.07 @ Core2Duo, length 2 : 15209 03/21/09 02:55:06 v1.07 @ Core2Duo, length 3 : 13707 03/21/09 02:55:06 v1.07 @ Core2Duo, length 4 : 10124 03/21/09 02:55:06 v1.07 @ Core2Duo, length 5 : 6651 03/21/09 02:55:06 v1.07 @ Core2Duo, length 6 : 4256 03/21/09 02:55:06 v1.07 @ Core2Duo, length 7 : 2395 03/21/09 02:55:06 v1.07 @ Core2Duo, length 9+: 2852 03/21/09 02:55:06 v1.07 @ Core2Duo, largest cycle: 21 relations 03/21/09 02:55:06 v1.07 @ Core2Duo, matrix is 76080 x 76156 (18.8 MB) with weight 4623885 (60.72/col) 03/21/09 02:55:06 v1.07 @ Core2Duo, sparse part has weight 4623885 (60.72/col) 03/21/09 02:55:07 v1.07 @ Core2Duo, filtering completed in 3 passes 03/21/09 02:55:07 v1.07 @ Core2Duo, matrix is 71114 x 71178 (17.8 MB) with weight 4370124 (61.40/col) 03/21/09 02:55:07 v1.07 @ Core2Duo, sparse part has weight 4370124 (61.40/col) 03/21/09 02:55:07 v1.07 @ Core2Duo, saving the first 48 matrix rows for later 03/21/09 02:55:07 v1.07 @ Core2Duo, matrix is 71066 x 71178 (11.9 MB) with weight 3488332 (49.01/col) 03/21/09 02:55:07 v1.07 @ Core2Duo, sparse part has weight 2684687 (37.72/col) 03/21/09 02:55:07 v1.07 @ Core2Duo, matrix includes 64 packed rows 03/21/09 02:55:07 v1.07 @ Core2Duo, using block size 28471 for processor cache size 2048 kB 03/21/09 02:55:08 v1.07 @ Core2Duo, commencing Lanczos iteration 03/21/09 02:55:08 v1.07 @ Core2Duo, memory use: 11.2 MB 03/21/09 02:55:37 v1.07 @ Core2Duo, lanczos halted after 1125 iterations (dim = 71065) 03/21/09 02:55:37 v1.07 @ Core2Duo, recovered 17 nontrivial dependencies 03/21/09 02:55:38 v1.07 @ Core2Duo, prp54 = 630763272083566084158310359068270763055519969092874889 03/21/09 02:55:40 v1.07 @ Core2Duo, prp39 = 434960582530030125624174611913048830633 03/21/09 02:55:40 v1.07 @ Core2Duo, Lanczos elapsed time = 34.4500 seconds. 03/21/09 02:55:40 v1.07 @ Core2Duo, Sqrt elapsed time = 2.8200 seconds. 03/21/09 02:55:40 v1.07 @ Core2Duo, SIQS elapsed time = 2099.7127 seconds. 03/21/09 02:55:40 v1.07 @ Core2Duo, 03/21/09 02:55:40 v1.07 @ Core2Duo, 03/21/09 02:55:40 v1.07 @ Core2Duo, Total factoring time = 2106.7827 seconds
By Serge Batalov / GMP-ECM 6.2.2 / Mar 21, 2009
(49·10136-31)/9 = 5(4)1351<137> = 3 · 23 · 665857 · 13972061 · 39460147 · 11671026512077<14> · C102
C102 = P29 · P31 · P43
P29 = 18667939549767870850524668531<29>
P31 = 3022782052436438642593509297659<31>
P43 = 3263563458913913551196308954723352628160607<43>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1100200419 Step 1 took 5688ms Step 2 took 6513ms ********** Factor found in step 2: 18667939549767870850524668531 Found probable prime factor of 29 digits: 18667939549767870850524668531 Composite cofactor has 73 digits 54441_136 Fri Mar 20 17:56:23 2009 Msieve v. 1.40 Fri Mar 20 17:56:23 2009 random seeds: 2779744d bad5cbc1 Fri Mar 20 17:56:23 2009 factoring 9865041050592362501661952318539719039996375986698139725961087645621119013 (73 digits) Fri Mar 20 17:56:23 2009 searching for 15-digit factors Fri Mar 20 17:56:23 2009 commencing quadratic sieve (73-digit input) Fri Mar 20 17:56:23 2009 using multiplier of 13 Fri Mar 20 17:56:23 2009 using 64kb Opteron sieve core Fri Mar 20 17:56:23 2009 sieve interval: 6 blocks of size 65536 Fri Mar 20 17:56:23 2009 processing polynomials in batches of 17 Fri Mar 20 17:56:23 2009 using a sieve bound of 497561 (20551 primes) Fri Mar 20 17:56:23 2009 using large prime bound of 49756100 (25 bits) Fri Mar 20 17:56:23 2009 using trial factoring cutoff of 26 bits Fri Mar 20 17:56:23 2009 polynomial 'A' values have 9 factors Fri Mar 20 17:57:54 2009 20938 relations (10558 full + 10380 combined from 114926 partial), need 20647 Fri Mar 20 17:57:54 2009 begin with 125484 relations Fri Mar 20 17:57:54 2009 reduce to 30024 relations in 2 passes Fri Mar 20 17:57:54 2009 attempting to read 30024 relations Fri Mar 20 17:57:55 2009 recovered 30024 relations Fri Mar 20 17:57:55 2009 recovered 23652 polynomials Fri Mar 20 17:57:55 2009 attempting to build 20938 cycles Fri Mar 20 17:57:55 2009 found 20938 cycles in 1 passes Fri Mar 20 17:57:55 2009 distribution of cycle lengths: Fri Mar 20 17:57:55 2009 length 1 : 10558 Fri Mar 20 17:57:55 2009 length 2 : 10380 Fri Mar 20 17:57:55 2009 largest cycle: 2 relations Fri Mar 20 17:57:55 2009 matrix is 20551 x 20938 (2.9 MB) with weight 602761 (28.79/col) Fri Mar 20 17:57:55 2009 sparse part has weight 602761 (28.79/col) Fri Mar 20 17:57:55 2009 filtering completed in 3 passes Fri Mar 20 17:57:55 2009 matrix is 15156 x 15220 (2.3 MB) with weight 484811 (31.85/col) Fri Mar 20 17:57:55 2009 sparse part has weight 484811 (31.85/col) Fri Mar 20 17:57:55 2009 saving the first 48 matrix rows for later Fri Mar 20 17:57:55 2009 matrix is 15108 x 15220 (1.7 MB) with weight 379916 (24.96/col) Fri Mar 20 17:57:55 2009 sparse part has weight 304295 (19.99/col) Fri Mar 20 17:57:55 2009 matrix includes 64 packed rows Fri Mar 20 17:57:55 2009 commencing Lanczos iteration Fri Mar 20 17:57:55 2009 memory use: 2.3 MB Fri Mar 20 17:57:57 2009 lanczos halted after 240 iterations (dim = 15106) Fri Mar 20 17:57:57 2009 recovered 16 nontrivial dependencies Fri Mar 20 17:57:57 2009 prp31 factor: 3022782052436438642593509297659 Fri Mar 20 17:57:57 2009 prp43 factor: 3263563458913913551196308954723352628160607 Fri Mar 20 17:57:57 2009 elapsed time 00:01:34
(49·10201-31)/9 = 5(4)2001<202> = 1319 · 178067 · 5439093729791<13> · C181
C181 = P33 · C149
P33 = 424468423345885433156577302198219<33>
C149 = [10040455184883628723379516918972718663570880925820870748754105264964125669194550840151796264594212956524156346638928243460828919631807445780254353073<149>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1761079087 Step 1 took 11284ms Step 2 took 10537ms ********** Factor found in step 2: 424468423345885433156577302198219 Found probable prime factor of 33 digits: 424468423345885433156577302198219 Composite cofactor has 149 digits
(49·10203-31)/9 = 5(4)2021<204> = 787 · 7433 · C197
C197 = P30 · P168
P30 = 250258947013949118526184405219<30>
P168 = 371899070167657494778515770799102838016236456489920897993331203914363646004089375009102210345490410627952983442877093935149349822956554542662818169335938886868137369209<168>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1435368007 Step 1 took 13265ms Step 2 took 12292ms ********** Factor found in step 2: 250258947013949118526184405219 Found probable prime factor of 30 digits: 250258947013949118526184405219 Probable prime cofactor has 168 digits
(49·10152-31)/9 = 5(4)1511<153> = 139066913 · 143811039393017<15> · C131
C131 = P30 · P101
P30 = 812352607758978810286632150707<30>
P101 = 33511429361318384365714365555561437168521607903032200299203243906271811241705138132135209592480782203<101>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1803878505 Step 1 took 6969ms Step 2 took 7556ms ********** Factor found in step 2: 812352607758978810286632150707 Found probable prime factor of 30 digits: 812352607758978810286632150707 Probable prime cofactor has 101 digits
(49·10190-31)/9 = 5(4)1891<191> = 3 · 63389 · 8043221326363661<16> · C170
C170 = P32 · C139
P32 = 10488120350258049738490426522001<32>
C139 = [3393835074574017376539546445699521745886417441021383295473943155188861165490674176590119566336901074380489532848268861497947052610509364443<139>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=135339706 Step 1 took 9849ms Step 2 took 9693ms ********** Factor found in step 2: 10488120350258049738490426522001 Found probable prime factor of 32 digits: 10488120350258049738490426522001 Composite cofactor has 139 digits
(49·10186-31)/9 = 5(4)1851<187> = 4861 · C184
C184 = P31 · C153
P31 = 1241191640392313005099385818109<31>
C153 = [902379265325329705591066395933044306860508809089952038926144254478684282445955327984884168429055650670735545558654745328579151448711225262133357429176209<153>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1750105925 Step 1 took 11496ms Step 2 took 10725ms ********** Factor found in step 2: 1241191640392313005099385818109 Found probable prime factor of 31 digits: 1241191640392313005099385818109 Composite cofactor has 153 digits
(49·10169-31)/9 = 5(4)1681<170> = 3 · 1087 · 675074612021<12> · 2254401221812081<16> · 910389927427035326570473463<27> · C113
C113 = P35 · P78
P35 = 29391527720593538801969447888738177<35>
P78 = 409987089110436215559923537098846799981853399910166677561191189758960834735231<78>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3128579257 Step 1 took 5816ms Step 2 took 6796ms ********** Factor found in step 2: 29391527720593538801969447888738177 Found probable prime factor of 35 digits: 29391527720593538801969447888738177 Probable prime cofactor has 78 digits
(49·10165-31)/9 = 5(4)1641<166> = 2657 · 3415503671<10> · 97183337723738729<17> · 17795071470385183553<20> · C117
C117 = P31 · P86
P31 = 3634817774191577551868236530631<31>
P86 = 95440579885143177494526759532437749091043702738081194606442117590125371568906001930449<86>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1236416677 Step 1 took 7152ms Step 2 took 4841ms ********** Factor found in step 2: 3634817774191577551868236530631 Found probable prime factor of 31 digits: 3634817774191577551868236530631 Probable prime cofactor 95440579885143177494526759532437749091043702738081194606442117590125371568906001930449 has 86 digits
By Erik Branger / GGNFS, Msieve / Mar 21, 2009
(49·10127-31)/9 = 5(4)1261<128> = 3 · C128
C128 = P42 · P86
P42 = 212686756056207820346328747855854527191863<42>
P86 = 85328059370805598805282609306653258989436996598344573461264897015482912785725445799269<86>
Number: 54441_127 N=18148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148147 ( 128 digits) SNFS difficulty: 129 digits. Divisors found: r1=212686756056207820346328747855854527191863 r2=85328059370805598805282609306653258989436996598344573461264897015482912785725445799269 Version: Total time: 3.09 hours. Scaled time: 3.10 units (timescale=1.003). Factorization parameters were as follows: n: 18148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148147 m: 20000000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135042 x 135285 Total sieving time: 3.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 3.09 hours. --------- CPU info (if available) ----------
(49·10120-31)/9 = 5(4)1191<121> = 257 · 35597 · C114
C114 = P54 · P61
P54 = 536245068924591737124655246514569309654380430554957439<54>
P61 = 1109797486936534216431504198518455998801702013987553663743811<61>
Number: 54441_120 N=595123429874620488877865745522476530609183767447333792987237966698374600102864048509798178949024411125062504660029 ( 114 digits) SNFS difficulty: 121 digits. Divisors found: r1=536245068924591737124655246514569309654380430554957439 r2=1109797486936534216431504198518455998801702013987553663743811 Version: Total time: 2.27 hours. Scaled time: 1.79 units (timescale=0.789). Factorization parameters were as follows: n: 595123429874620488877865745522476530609183767447333792987237966698374600102864048509798178949024411125062504660029 m: 1000000000000000000000000 deg: 5 c5: 49 c0: -31 skew: 0.91 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 625001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 80161 x 80380 Total sieving time: 2.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 2.27 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 21, 2009
(47·10162+61)/9 = 5(2)1619<163> = 3 · 329083 · C157
C157 = P42 · P115
P42 = 971829109621331280713052310611805906814693<42>
P115 = 5443005115212690963075124445015554464452373759718062686515066448009637291266093021375952448364071566322188969133697<115>
Number: 52229_162 N=5289670814781501143300446211869773706757081771895663831740748506427681590178589415863902847429799596882065438630195849499186347337117811435840626044921010021 ( 157 digits) SNFS difficulty: 164 digits. Divisors found: r1=971829109621331280713052310611805906814693 (pp42) r2=5443005115212690963075124445015554464452373759718062686515066448009637291266093021375952448364071566322188969133697 (pp115) Version: Msieve-1.39 Total time: 53.98 hours. Scaled time: 138.18 units (timescale=2.560). Factorization parameters were as follows: n: 5289670814781501143300446211869773706757081771895663831740748506427681590178589415863902847429799596882065438630195849499186347337117811435840626044921010021 m: 200000000000000000000000000000000 deg: 5 c5: 1175 c0: 488 skew: 0.84 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1950000, 4850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 809812 x 810060 Total sieving time: 53.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 53.98 hours. --------- CPU info (if available) ----------
(49·10114-31)/9 = 5(4)1131<115> = 23 · 43 · 109 · 4813 · C107
C107 = P53 · P54
P53 = 22217334636516340591183544712573576415815305878084841<53>
P54 = 472305456504688210183240694188825900424928109872524477<54>
Number: 54441_114 N=10493368377817271347115806055703917115117200333973420452515559643189386533008085084441860317566670655153157 ( 107 digits) SNFS difficulty: 116 digits. Divisors found: r1=22217334636516340591183544712573576415815305878084841 (pp53) r2=472305456504688210183240694188825900424928109872524477 (pp54) Version: Msieve-1.39 Total time: 0.96 hours. Scaled time: 2.48 units (timescale=2.571). Factorization parameters were as follows: n: 10493368377817271347115806055703917115117200333973420452515559643189386533008085084441860317566670655153157 m: 100000000000000000000000 deg: 5 c5: 49 c0: -310 skew: 1.45 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 75195 x 75435 Total sieving time: 0.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 0.96 hours. --------- CPU info (if available) ----------
(49·10117-31)/9 = 5(4)1161<118> = C118
C118 = P39 · P80
P39 = 154246452441159111248982572678667916573<39>
P80 = 35297048057045941607042149181609332851433750679475844777668550528971140848239917<80>
Number: 54441_117 N=5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 ( 118 digits) SNFS difficulty: 119 digits. Divisors found: r1=154246452441159111248982572678667916573 (pp39) r2=35297048057045941607042149181609332851433750679475844777668550528971140848239917 (pp80) Version: Msieve-1.39 Total time: 1.25 hours. Scaled time: 3.21 units (timescale=2.571). Factorization parameters were as follows: n: 5444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 m: 200000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 74942 x 75178 Total sieving time: 1.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 1.25 hours. --------- CPU info (if available) ----------
(49·10125-31)/9 = 5(4)1241<126> = 4804924649857833704429<22> · C105
C105 = P40 · P66
P40 = 1025115644707967819539554614441428582207<40>
P66 = 110533552316652305766096265640112667609906689555884231601589422947<66>
Number: 54441_125 N=113309673744946918369078305215256276714041773591243698665463621421495132893957196327768571317221481704029 ( 105 digits) SNFS difficulty: 126 digits. Divisors found: r1=1025115644707967819539554614441428582207 (pp40) r2=110533552316652305766096265640112667609906689555884231601589422947 (pp66) Version: Msieve-1.39 Total time: 1.87 hours. Scaled time: 4.82 units (timescale=2.571). Factorization parameters were as follows: n: 113309673744946918369078305215256276714041773591243698665463621421495132893957196327768571317221481704029 m: 10000000000000000000000000 deg: 5 c5: 49 c0: -31 skew: 0.91 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112522 x 112770 Total sieving time: 1.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.87 hours. --------- CPU info (if available) ----------
(49·10130-31)/9 = 5(4)1291<131> = 33 · C130
C130 = P43 · P87
P43 = 3485194438046429071043711780795569694241101<43>
P87 = 578579170027623963886718225384340201589963557785325638183886905382835163611758103197383<87>
Number: 54441_130 N=2016460905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794238683 ( 130 digits) SNFS difficulty: 131 digits. Divisors found: r1=3485194438046429071043711780795569694241101 (pp43) r2=578579170027623963886718225384340201589963557785325638183886905382835163611758103197383 (pp87) Version: Msieve-1.39 Total time: 2.36 hours. Scaled time: 6.06 units (timescale=2.571). Factorization parameters were as follows: n: 2016460905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794238683 m: 100000000000000000000000000 deg: 5 c5: 49 c0: -31 skew: 0.91 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 146156 x 146404 Total sieving time: 2.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.36 hours. --------- CPU info (if available) ----------
(49·10124-31)/9 = 5(4)1231<125> = 3 · 149 · C123
C123 = P46 · P77
P46 = 3678469373978815613162658522544463360181425083<46>
P77 = 33111503622293235320810964516155255520009807603765550297505951353818595518341<77>
Number: 54441_124 N=121799652000994282873477504349987571464081531195625155356698980860054685558041262739249316430524484215759383544618443947303 ( 123 digits) SNFS difficulty: 126 digits. Divisors found: r1=3678469373978815613162658522544463360181425083 (pp46) r2=33111503622293235320810964516155255520009807603765550297505951353818595518341 (pp77) Version: Msieve-1.39 Total time: 1.91 hours. Scaled time: 4.88 units (timescale=2.560). Factorization parameters were as follows: n: 121799652000994282873477504349987571464081531195625155356698980860054685558041262739249316430524484215759383544618443947303 m: 10000000000000000000000000 deg: 5 c5: 49 c0: -310 skew: 1.45 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135026 x 135274 Total sieving time: 1.91 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.91 hours. --------- CPU info (if available) ----------
(49·10132-31)/9 = 5(4)1311<133> = 937 · 4933 · 135039659411715644318569<24> · C103
C103 = P48 · P55
P48 = 917343383904947349456475388877809429569624434029<48>
P55 = 9508447156545723192298461689453019352567992309220057321<55>
Number: 54441_132 N=8722511090267028359167642705465348623623120554971794762786759770704907991910292127174579618889562976309 ( 103 digits) SNFS difficulty: 134 digits. Divisors found: r1=917343383904947349456475388877809429569624434029 (pp48) r2=9508447156545723192298461689453019352567992309220057321 (pp55) Version: Msieve-1.39 Total time: 3.04 hours. Scaled time: 7.78 units (timescale=2.560). Factorization parameters were as follows: n: 8722511090267028359167642705465348623623120554971794762786759770704907991910292127174579618889562976309 m: 200000000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs lss: 1 rlim: 1230000 alim: 1230000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1230000/1230000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [615000, 1140001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 190721 x 190969 Total sieving time: 3.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1230000,1230000,26,26,47,47,2.3,2.3,75000 total time: 3.04 hours. --------- CPU info (if available) ----------
(49·10139-31)/9 = 5(4)1381<140> = 32 · 29 · 141301 · 452326029838012123503316567<27> · C106
C106 = P45 · P61
P45 = 750377221650197702999288202630635030091562231<45>
P61 = 4349472657235673314417701685009106480893148418132764187177953<61>
Number: 54441_139 N=3263745208180007214729459399101391881242230962552165253868053894917788151729797936352756748668504970693143 ( 106 digits) SNFS difficulty: 141 digits. Divisors found: r1=750377221650197702999288202630635030091562231 (pp45) r2=4349472657235673314417701685009106480893148418132764187177953 (pp61) Version: Msieve-1.39 Total time: 6.53 hours. Scaled time: 16.72 units (timescale=2.560). Factorization parameters were as follows: n: 3263745208180007214729459399101391881242230962552165253868053894917788151729797936352756748668504970693143 m: 10000000000000000000000000000 deg: 5 c5: 49 c0: -310 skew: 1.45 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1905001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 254680 x 254928 Total sieving time: 6.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 6.53 hours. --------- CPU info (if available) ----------
(49·10157-31)/9 = 5(4)1561<158> = 33 · 6122309 · C150
C150 = P31 · P120
P31 = 1923220060004563723065726411371<31>
P120 = 171255915216534977122827386763108934627093798220839334994149913976056197515328298881509804914207268712955084143436490397<120>
Number: 54441_157 N=329362811538880876264678501528828568657641134853390701452092814222508899613385664136922998389952914608381833065998613488766123807721493968445713104287 ( 150 digits) SNFS difficulty: 159 digits. Divisors found: r1=1923220060004563723065726411371 (pp31) r2=171255915216534977122827386763108934627093798220839334994149913976056197515328298881509804914207268712955084143436490397 (pp120) Version: Msieve-1.39 Total time: 24.52 hours. Scaled time: 62.77 units (timescale=2.560). Factorization parameters were as follows: n: 329362811538880876264678501528828568657641134853390701452092814222508899613385664136922998389952914608381833065998613488766123807721493968445713104287 m: 20000000000000000000000000000000 deg: 5 c5: 1225 c0: -248 skew: 0.73 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 608559 x 608807 Total sieving time: 24.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 24.52 hours. --------- CPU info (if available) ----------
(47·10174+43)/9 = 5(2)1737<175> = 232 · C172
C172 = P47 · P126
P47 = 20155372881344237249701760518000538181423547561<47>
P126 = 489788788056215750930608840816878998358650966697873970244482403849329672929816622034720262339309577873049188174812546664400683<126>
Number: 52227_174 N=9871875656374711195127074144087376601554295316110060911573198907792480571308548624238605335013652593992858643142197017433312329342575089266960722537282083595883217811384163 ( 172 digits) SNFS difficulty: 176 digits. Divisors found: r1=20155372881344237249701760518000538181423547561 (pp47) r2=489788788056215750930608840816878998358650966697873970244482403849329672929816622034720262339309577873049188174812546664400683 (pp126) Version: Msieve-1.39 Total time: 101.80 hours. Scaled time: 177.03 units (timescale=1.739). Factorization parameters were as follows: n: 9871875656374711195127074144087376601554295316110060911573198907792480571308548624238605335013652593992858643142197017433312329342575089266960722537282083595883217811384163 m: 100000000000000000000000000000000000 deg: 5 c5: 47 c0: 430 skew: 1.56 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 8400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1363720 x 1363968 Total sieving time: 101.80 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000 total time: 101.80 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM / Mar 20, 2009
(23·10191-41)/9 = 2(5)1901<192> = 536749 · 1049437 · 2222514223<10> · 164646728337905536231<21> · 640556862356338194459757<24> · C127
C127 = P44 · P84
P44 = 18183469352047122005819738271467857341848407<44>
P84 = 106445086486657196807532944997246788012201790725070046199662462071658155594075770621<84>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3307947160 Step 1 took 151244ms Step 2 took 48221ms ********** Factor found in step 2: 18183469352047122005819738271467857341848407 Found probable prime factor of 44 digits: 18183469352047122005819738271467857341848407 Probable prime cofactor 106445086486657196807532944997246788012201790725070046199662462071658155594075770621 has 84 digits
By Erik Branger / GGNFS, Msieve / Mar 20, 2009
(47·10152+61)/9 = 5(2)1519<153> = 67 · 5963899 · 50127534151990733094529<23> · C122
C122 = P58 · P65
P58 = 1142881122706237152034929100702236331731481069594600653461<58>
P65 = 22812499110881731749464498894319372578237508831024251483110858577<65>
Number: 52229_152 N=26071974595579550393999475913790933972486860700120637626726518445387274546574219539309075431750905426207893727988956584997 ( 122 digits) SNFS difficulty: 154 digits. Divisors found: r1=1142881122706237152034929100702236331731481069594600653461 r2=22812499110881731749464498894319372578237508831024251483110858577 Version: Total time: 35.93 hours. Scaled time: 36.25 units (timescale=1.009). Factorization parameters were as follows: n: 26071974595579550393999475913790933972486860700120637626726518445387274546574219539309075431750905426207893727988956584997 m: 2000000000000000000000000000000 deg: 5 c5: 1175 c0: 488 skew: 0.84 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 508553 x 508801 Total sieving time: 35.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 35.93 hours. --------- CPU info (if available) ----------
(16·10147+17)/3 = 5(3)1469<148> = 192 · 844735909 · C137
C137 = P31 · P49 · P58
P31 = 1027482580059048117497952822277<31>
P49 = 9409699702063826388217071571541161674436721450537<49>
P58 = 1808924074299550618481698414759567874414711834398853215939<58>
Number: 53339_147 N=17489225199528876930103479638040835832191914225321633209217253619853852876614293076683294006157083460741282726660636470553825466010806311 ( 137 digits) SNFS difficulty: 148 digits. Divisors found: r1=1027482580059048117497952822277 r2=9409699702063826388217071571541161674436721450537 r3=1808924074299550618481698414759567874414711834398853215939 Version: Total time: 9.11 hours. Scaled time: 9.07 units (timescale=0.995). Factorization parameters were as follows: n: 17489225199528876930103479638040835832191914225321633209217253619853852876614293076683294006157083460741282726660636470553825466010806311 m: 200000000000000000000000000000 deg: 5 c5: 50 c0: 17 skew: 0.81 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 299724 x 299972 Total sieving time: 9.11 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 9.11 hours. --------- CPU info (if available) ----------
(16·10141+17)/3 = 5(3)1409<142> = 627491 · C136
C136 = P53 · P83
P53 = 98531454093262507723164589411652625162805522024873067<53>
P83 = 86261366709419004879256051310572074798571199905749754449998290361726951365465220987<83>
Number: 53339_141 N=8499457893951201424934115920918918890204534142056751942790148915814463208768465736294756950033280689816002673079507647652848141779457129 ( 136 digits) SNFS difficulty: 142 digits. Divisors found: r1=98531454093262507723164589411652625162805522024873067 r2=86261366709419004879256051310572074798571199905749754449998290361726951365465220987 Version: Total time: 7.22 hours. Scaled time: 5.69 units (timescale=0.789). Factorization parameters were as follows: n: 8499457893951201424934115920918918890204534142056751942790148915814463208768465736294756950033280689816002673079507647652848141779457129 m: 20000000000000000000000000000 deg: 5 c5: 5 c0: 17 skew: 1.28 type: snfs lss: 1 rlim: 1700000 alim: 1700000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1700000/1700000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [850000, 1450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 218106 x 218354 Total sieving time: 7.22 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1700000,1700000,26,26,48,48,2.3,2.3,100000 total time: 7.22 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve / Mar 20, 2009
(16·10126+17)/3 = 5(3)1259<127> = 112 · 937 · 1537258295437<13> · 9025370693297974973<19> · C91
C91 = P41 · P50
P41 = 77645603363146301434635923149259748641629<41>
P50 = 43666160215801579806770536601220923608024965501583<50>
Fri Mar 20 03:19:19 2009 Fri Mar 20 03:19:19 2009 Fri Mar 20 03:19:19 2009 Msieve v. 1.39 Fri Mar 20 03:19:19 2009 random seeds: 01ab27d4 f393454b Fri Mar 20 03:19:19 2009 factoring 3390485356507728372669909109598783194410042535424399523149281361272522288277422770899198707 (91 digits) Fri Mar 20 03:19:20 2009 searching for 15-digit factors Fri Mar 20 03:19:22 2009 commencing quadratic sieve (91-digit input) Fri Mar 20 03:19:22 2009 using multiplier of 43 Fri Mar 20 03:19:22 2009 using 64kb Opteron sieve core Fri Mar 20 03:19:22 2009 sieve interval: 18 blocks of size 65536 Fri Mar 20 03:19:22 2009 processing polynomials in batches of 6 Fri Mar 20 03:19:22 2009 using a sieve bound of 1683637 (63529 primes) Fri Mar 20 03:19:22 2009 using large prime bound of 154894604 (27 bits) Fri Mar 20 03:19:22 2009 using double large prime bound of 552160384714396 (42-49 bits) Fri Mar 20 03:19:22 2009 using trial factoring cutoff of 49 bits Fri Mar 20 03:19:22 2009 polynomial 'A' values have 12 factors Fri Mar 20 04:18:10 2009 64199 relations (17518 full + 46681 combined from 716708 partial), need 63625 Fri Mar 20 04:18:11 2009 begin with 734226 relations Fri Mar 20 04:18:11 2009 reduce to 155637 relations in 9 passes Fri Mar 20 04:18:11 2009 attempting to read 155637 relations Fri Mar 20 04:18:12 2009 recovered 155637 relations Fri Mar 20 04:18:12 2009 recovered 132969 polynomials Fri Mar 20 04:18:13 2009 attempting to build 64199 cycles Fri Mar 20 04:18:13 2009 found 64199 cycles in 6 passes Fri Mar 20 04:18:13 2009 distribution of cycle lengths: Fri Mar 20 04:18:13 2009 length 1 : 17518 Fri Mar 20 04:18:13 2009 length 2 : 12567 Fri Mar 20 04:18:13 2009 length 3 : 11363 Fri Mar 20 04:18:13 2009 length 4 : 8435 Fri Mar 20 04:18:13 2009 length 5 : 5794 Fri Mar 20 04:18:13 2009 length 6 : 3759 Fri Mar 20 04:18:13 2009 length 7 : 2181 Fri Mar 20 04:18:13 2009 length 9+: 2582 Fri Mar 20 04:18:13 2009 largest cycle: 18 relations Fri Mar 20 04:18:13 2009 matrix is 63529 x 64199 (15.4 MB) with weight 3775271 (58.81/col) Fri Mar 20 04:18:13 2009 sparse part has weight 3775271 (58.81/col) Fri Mar 20 04:18:14 2009 filtering completed in 3 passes Fri Mar 20 04:18:14 2009 matrix is 58990 x 59053 (14.2 MB) with weight 3474411 (58.84/col) Fri Mar 20 04:18:14 2009 sparse part has weight 3474411 (58.84/col) Fri Mar 20 04:18:14 2009 saving the first 48 matrix rows for later Fri Mar 20 04:18:14 2009 matrix is 58942 x 59053 (8.3 MB) with weight 2643233 (44.76/col) Fri Mar 20 04:18:14 2009 sparse part has weight 1831762 (31.02/col) Fri Mar 20 04:18:14 2009 matrix includes 64 packed rows Fri Mar 20 04:18:14 2009 using block size 23621 for processor cache size 1024 kB Fri Mar 20 04:18:15 2009 commencing Lanczos iteration Fri Mar 20 04:18:15 2009 memory use: 8.5 MB Fri Mar 20 04:18:33 2009 lanczos halted after 934 iterations (dim = 58938) Fri Mar 20 04:18:33 2009 recovered 16 nontrivial dependencies Fri Mar 20 04:18:34 2009 prp41 factor: 77645603363146301434635923149259748641629 Fri Mar 20 04:18:34 2009 prp50 factor: 43666160215801579806770536601220923608024965501583 Fri Mar 20 04:18:34 2009 elapsed time 00:59:15
(16·10137+17)/3 = 5(3)1369<138> = 2087 · 7759 · 28201 · 792993427 · 20925773837827387826419<23> · C95
C95 = P34 · P61
P34 = 7354562144409310904345832577230403<34>
P61 = 9569694675376026666594225015995206118078921791743315366068497<61>
Fri Mar 20 04:35:22 2009 Fri Mar 20 04:35:22 2009 Fri Mar 20 04:35:22 2009 Msieve v. 1.39 Fri Mar 20 04:35:22 2009 random seeds: bb7c5658 294ba63c Fri Mar 20 04:35:22 2009 factoring 70380914193075875069160056899381282352396507812412050756086369583463941326145489766315048914291 (95 digits) Fri Mar 20 04:35:22 2009 searching for 15-digit factors Fri Mar 20 04:35:23 2009 commencing quadratic sieve (95-digit input) Fri Mar 20 04:35:23 2009 using multiplier of 1 Fri Mar 20 04:35:23 2009 using 64kb Opteron sieve core Fri Mar 20 04:35:23 2009 sieve interval: 18 blocks of size 65536 Fri Mar 20 04:35:23 2009 processing polynomials in batches of 6 Fri Mar 20 04:35:23 2009 using a sieve bound of 2196599 (80820 primes) Fri Mar 20 04:35:23 2009 using large prime bound of 329489850 (28 bits) Fri Mar 20 04:35:23 2009 using double large prime bound of 2148402323041500 (43-51 bits) Fri Mar 20 04:35:23 2009 using trial factoring cutoff of 51 bits Fri Mar 20 04:35:23 2009 polynomial 'A' values have 12 factors Fri Mar 20 07:49:29 2009 81047 relations (19018 full + 62029 combined from 1236147 partial), need 80916 Fri Mar 20 07:49:31 2009 begin with 1255165 relations Fri Mar 20 07:49:32 2009 reduce to 215317 relations in 11 passes Fri Mar 20 07:49:32 2009 attempting to read 215317 relations Fri Mar 20 07:49:35 2009 recovered 215317 relations Fri Mar 20 07:49:35 2009 recovered 201777 polynomials Fri Mar 20 07:49:35 2009 attempting to build 81047 cycles Fri Mar 20 07:49:35 2009 found 81047 cycles in 7 passes Fri Mar 20 07:49:36 2009 distribution of cycle lengths: Fri Mar 20 07:49:36 2009 length 1 : 19018 Fri Mar 20 07:49:36 2009 length 2 : 13676 Fri Mar 20 07:49:36 2009 length 3 : 13585 Fri Mar 20 07:49:36 2009 length 4 : 11033 Fri Mar 20 07:49:36 2009 length 5 : 8460 Fri Mar 20 07:49:36 2009 length 6 : 5900 Fri Mar 20 07:49:36 2009 length 7 : 3881 Fri Mar 20 07:49:36 2009 length 9+: 5494 Fri Mar 20 07:49:36 2009 largest cycle: 23 relations Fri Mar 20 07:49:36 2009 matrix is 80820 x 81047 (22.0 MB) with weight 5430538 (67.00/col) Fri Mar 20 07:49:36 2009 sparse part has weight 5430538 (67.00/col) Fri Mar 20 07:49:38 2009 filtering completed in 3 passes Fri Mar 20 07:49:38 2009 matrix is 77513 x 77577 (21.1 MB) with weight 5218749 (67.27/col) Fri Mar 20 07:49:38 2009 sparse part has weight 5218749 (67.27/col) Fri Mar 20 07:49:38 2009 saving the first 48 matrix rows for later Fri Mar 20 07:49:38 2009 matrix is 77465 x 77577 (13.7 MB) with weight 4138441 (53.35/col) Fri Mar 20 07:49:38 2009 sparse part has weight 3127760 (40.32/col) Fri Mar 20 07:49:38 2009 matrix includes 64 packed rows Fri Mar 20 07:49:38 2009 using block size 31030 for processor cache size 1024 kB Fri Mar 20 07:49:38 2009 commencing Lanczos iteration Fri Mar 20 07:49:38 2009 memory use: 13.0 MB Fri Mar 20 07:50:22 2009 lanczos halted after 1226 iterations (dim = 77462) Fri Mar 20 07:50:22 2009 recovered 15 nontrivial dependencies Fri Mar 20 07:50:23 2009 prp34 factor: 7354562144409310904345832577230403 Fri Mar 20 07:50:23 2009 prp61 factor: 9569694675376026666594225015995206118078921791743315366068497 Fri Mar 20 07:50:23 2009 elapsed time 03:15:01
By Sinkiti Sibata / GGNFS, Msieve / Mar 20, 2009
(47·10155+61)/9 = 5(2)1549<156> = 43 · 35909329 · 58770731 · 20170670960464360204959468810331<32> · C108
C108 = P40 · P69
P40 = 1362060369851719248423367258847794687379<40>
P69 = 209460342073774190375828058205240979575586001449705679614534145203053<69>
Number: 52227_155 N=285297630994272504091552978449388295403830314074853375107757128116579477814437793906499110695817310611368087 ( 108 digits) Divisors found: r1=1362060369851719248423367258847794687379 (pp40) r2=209460342073774190375828058205240979575586001449705679614534145203053 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 20.73 hours. Scaled time: 9.78 units (timescale=0.472). Factorization parameters were as follows: name: 52227_155 n: 285297630994272504091552978449388295403830314074853375107757128116579477814437793906499110695817310611368087 skew: 12217.28 # norm 5.15e+14 c5: 24480 c4: 2762001072 c3: -4673288308058 c2: -155456926716493285 c1: 560007686009585776790 c0: -3036206145102312397412120 # alpha -6.01 Y1: 239892078833 Y0: -410479642376546949693 # Murphy_E 1.42e-09 # M 253874833941645235923460218686059303773393118734419260658942706884390200216848854565959869477840516971217388 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:182725, largePrimes:4485821 encountered Relations: rels:4584016, finalFF:461794 Max relations in full relation-set: 28 Initial matrix: 365882 x 461794 with sparse part having weight 37155706. Pruned matrix : 295333 x 297226 with weight 21432233. Total sieving time: 17.67 hours. Total relation processing time: 0.35 hours. Matrix solve time: 2.50 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 20.73 hours. --------- CPU info (if available) ----------
(16·10119+17)/3 = 5(3)1189<120> = 31 · 7079 · 7507 · 32909 · C106
C106 = P37 · P70
P37 = 4977605857740139864313943677940325771<37>
P70 = 1976348440568735697281734967191062750712135499265960643476367149133007<70>
Number: 53339_119 N=9837483574710529484514161171773761501488325082032517410013632145633355081949361660424442639434305788823397 ( 106 digits) SNFS difficulty: 120 digits. Divisors found: r1=4977605857740139864313943677940325771 (pp37) r2=1976348440568735697281734967191062750712135499265960643476367149133007 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.22 hours. Scaled time: 1.05 units (timescale=0.471). Factorization parameters were as follows: name: 53339_119 n: 9837483574710529484514161171773761501488325082032517410013632145633355081949361660424442639434305788823397 m: 1000000000000000000000000 deg: 5 c5: 8 c0: 85 skew: 1.60 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 560001) Primes: RFBsize:58029, AFBsize:58122, largePrimes:1442756 encountered Relations: rels:1515012, finalFF:240263 Max relations in full relation-set: 28 Initial matrix: 116216 x 240263 with sparse part having weight 10375872. Pruned matrix : 73227 x 73872 with weight 2689877. Total sieving time: 2.11 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 2.22 hours. --------- CPU info (if available) ----------
(16·10134+17)/3 = 5(3)1339<135> = 7 · 11 · 31 · 4163857 · 129955037024232517<18> · C108
C108 = P34 · P37 · P38
P34 = 7099268159581713691554413997525083<34>
P37 = 4760738577651298269591554866833674069<37>
P38 = 12217137744962110664685060042692824819<38>
Number: 53339_134 N=412911886952778951482599343105106825878811600735884610546214381342461568817914643805148222356406506358511413 ( 108 digits) SNFS difficulty: 135 digits. Divisors found: r1=7099268159581713691554413997525083 r2=4760738577651298269591554866833674069 r3=12217137744962110664685060042692824819 Version: Total time: 2.82 hours. Scaled time: 7.21 units (timescale=2.554). Factorization parameters were as follows: name: 53339_134 n: 412911886952778951482599343105106825878811600735884610546214381342461568817914643805148222356406506358511413 m: 1000000000000000000000000000 deg: 5 c5: 8 c0: 85 skew: 1.60 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 153532 x 153780 Total sieving time: 2.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 2.82 hours. --------- CPU info (if available) ----------
(16·10135+17)/3 = 5(3)1349<136> = 53 · 109 · 39983 · C128
C128 = P42 · P87
P42 = 133371437502545860492092625754017350087647<42>
P87 = 173124348209509979320647923853723089400683536821989636733066792235614750308712167807707<87>
Number: 53339_135 N=23089843187393647550915965204085430843911558956321943721240490915291817671174492422795930841723074756716789564305237088292095429 ( 128 digits) SNFS difficulty: 136 digits. Divisors found: r1=133371437502545860492092625754017350087647 r2=173124348209509979320647923853723089400683536821989636733066792235614750308712167807707 Version: Total time: 2.81 hours. Scaled time: 7.21 units (timescale=2.564). Factorization parameters were as follows: name: 53339_135 n: 23089843187393647550915965204085430843911558956321943721240490915291817671174492422795930841723074756716789564305237088292095429 m: 1000000000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1025001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165863 x 166111 Total sieving time: 2.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 2.81 hours. --------- CPU info (if available) ----------
(16·10130+17)/3 = 5(3)1299<131> = 11 · 13 · 499 · 32102129 · C119
C119 = P42 · P77
P42 = 275816506470850227753681936494105767780247<42>
P77 = 84412751354152141283549803205638828396580374356093958903094653958614394263729<77>
Number: 53339_130 N=23282430180094775401664521018455232150876520275482514920064567080964332978328610680296163882721213301511223106234761063 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=275816506470850227753681936494105767780247 (pp42) r2=84412751354152141283549803205638828396580374356093958903094653958614394263729 (pp77) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.44 hours. Scaled time: 1.62 units (timescale=0.471). Factorization parameters were as follows: name: 53339_130 n: 23282430180094775401664521018455232150876520275482514920064567080964332978328610680296163882721213301511223106234761063 m: 100000000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 790001) Primes: RFBsize:84270, AFBsize:83658, largePrimes:2549375 encountered Relations: rels:2425796, finalFF:198554 Max relations in full relation-set: 28 Initial matrix: 167992 x 198554 with sparse part having weight 12368837. Pruned matrix : 152731 x 153634 with weight 7390128. Total sieving time: 3.02 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.30 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 3.44 hours. --------- CPU info (if available) ----------
(16·10131+17)/3 = 5(3)1309<132> = 61 · 113 · 1171 · 1184923 · 754627619 · 7329756391<10> · C101
C101 = P46 · P55
P46 = 1715422178096007542208514188552440247371207737<46>
P55 = 5876925256617012992829424695030398752503942555565595747<55>
Number: 53339_131 N=10081407924213394489644691046726487228205642771742243655608201909603448312917038974804331061300694539 ( 101 digits) SNFS difficulty: 132 digits. Divisors found: r1=1715422178096007542208514188552440247371207737 (pp46) r2=5876925256617012992829424695030398752503942555565595747 (pp55) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.88 hours. Scaled time: 1.83 units (timescale=0.471). Factorization parameters were as follows: name: 53339_131 n: 10081407924213394489644691046726487228205642771742243655608201909603448312917038974804331061300694539 m: 200000000000000000000000000 deg: 5 c5: 5 c0: 17 skew: 1.28 type: snfs rlim: 1120000 alim: 1120000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1120000/1120000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [560000, 860001) Primes: RFBsize:87166, AFBsize:87008, largePrimes:2732090 encountered Relations: rels:2654691, finalFF:241993 Max relations in full relation-set: 28 Initial matrix: 174239 x 241993 with sparse part having weight 16453366. Pruned matrix : 145300 x 146235 with weight 7280426. Total sieving time: 3.47 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.28 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1120000,1120000,26,26,47,47,2.3,2.3,50000 total time: 3.88 hours. --------- CPU info (if available) ----------
(16·10138+17)/3 = 5(3)1379<139> = 11 · 9187 · 15215909 · C127
C127 = P39 · P88
P39 = 454899394030094871696840828218919010961<39>
P88 = 7624635131405306021976110358540209676561181550632754418412763175674346292489709058390223<88>
Number: 53339_138 N=3468441900976846493796351077859498146675611652658964776630576869620175883842676469694774931859655655146040671758074217952234303 ( 127 digits) SNFS difficulty: 140 digits. Divisors found: r1=454899394030094871696840828218919010961 r2=7624635131405306021976110358540209676561181550632754418412763175674346292489709058390223 Version: Total time: 4.22 hours. Scaled time: 10.83 units (timescale=2.564). Factorization parameters were as follows: name: 53339_138 n: 3468441900976846493796351077859498146675611652658964776630576869620175883842676469694774931859655655146040671758074217952234303 m: 4000000000000000000000000000 deg: 5 c5: 125 c0: 136 skew: 1.02 type: snfs rlim: 1510000 alim: 1510000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1510000/1510000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [755000, 1355001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 207358 x 207606 Total sieving time: 4.22 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000 total time: 4.22 hours. --------- CPU info (if available) ----------
(16·10127+17)/3 = 5(3)1269<128> = 5246909 · 4320900800743087688077<22> · C100
C100 = P31 · P69
P31 = 9558968044013240910768539170267<31>
P69 = 246099023374013580364688187219244824856754420286164173821931207411369<69>
Fri Mar 20 02:52:59 2009 Msieve v. 1.39 Fri Mar 20 02:52:59 2009 random seeds: 487af480 a062588b Fri Mar 20 02:52:59 2009 factoring 2352452700095063449936800197036820541946192934736737492782356811379725987285009842257277012202565523 (100 digits) Fri Mar 20 02:53:00 2009 searching for 15-digit factors Fri Mar 20 02:53:02 2009 commencing quadratic sieve (100-digit input) Fri Mar 20 02:53:02 2009 using multiplier of 7 Fri Mar 20 02:53:02 2009 using 32kb Intel Core sieve core Fri Mar 20 02:53:02 2009 sieve interval: 36 blocks of size 32768 Fri Mar 20 02:53:02 2009 processing polynomials in batches of 6 Fri Mar 20 02:53:02 2009 using a sieve bound of 2712223 (98824 primes) Fri Mar 20 02:53:02 2009 using large prime bound of 406833450 (28 bits) Fri Mar 20 02:53:02 2009 using double large prime bound of 3140146831659150 (43-52 bits) Fri Mar 20 02:53:02 2009 using trial factoring cutoff of 52 bits Fri Mar 20 02:53:02 2009 polynomial 'A' values have 13 factors Fri Mar 20 15:36:05 2009 99080 relations (22548 full + 76532 combined from 1498989 partial), need 98920 Fri Mar 20 15:36:07 2009 begin with 1521537 relations Fri Mar 20 15:36:08 2009 reduce to 264208 relations in 11 passes Fri Mar 20 15:36:08 2009 attempting to read 264208 relations Fri Mar 20 15:36:13 2009 recovered 264208 relations Fri Mar 20 15:36:13 2009 recovered 256016 polynomials Fri Mar 20 15:36:14 2009 attempting to build 99080 cycles Fri Mar 20 15:36:14 2009 found 99080 cycles in 6 passes Fri Mar 20 15:36:14 2009 distribution of cycle lengths: Fri Mar 20 15:36:14 2009 length 1 : 22548 Fri Mar 20 15:36:14 2009 length 2 : 16737 Fri Mar 20 15:36:14 2009 length 3 : 16641 Fri Mar 20 15:36:14 2009 length 4 : 13788 Fri Mar 20 15:36:14 2009 length 5 : 10419 Fri Mar 20 15:36:14 2009 length 6 : 7348 Fri Mar 20 15:36:14 2009 length 7 : 4725 Fri Mar 20 15:36:14 2009 length 9+: 6874 Fri Mar 20 15:36:14 2009 largest cycle: 21 relations Fri Mar 20 15:36:14 2009 matrix is 98824 x 99080 (26.9 MB) with weight 6658301 (67.20/col) Fri Mar 20 15:36:14 2009 sparse part has weight 6658301 (67.20/col) Fri Mar 20 15:36:16 2009 filtering completed in 3 passes Fri Mar 20 15:36:16 2009 matrix is 95296 x 95360 (26.0 MB) with weight 6432846 (67.46/col) Fri Mar 20 15:36:16 2009 sparse part has weight 6432846 (67.46/col) Fri Mar 20 15:36:16 2009 saving the first 48 matrix rows for later Fri Mar 20 15:36:16 2009 matrix is 95248 x 95360 (15.2 MB) with weight 4959974 (52.01/col) Fri Mar 20 15:36:16 2009 sparse part has weight 3417728 (35.84/col) Fri Mar 20 15:36:16 2009 matrix includes 64 packed rows Fri Mar 20 15:36:16 2009 using block size 38144 for processor cache size 1024 kB Fri Mar 20 15:36:17 2009 commencing Lanczos iteration Fri Mar 20 15:36:17 2009 memory use: 15.4 MB Fri Mar 20 15:37:20 2009 lanczos halted after 1508 iterations (dim = 95246) Fri Mar 20 15:37:20 2009 recovered 17 nontrivial dependencies Fri Mar 20 15:37:21 2009 prp31 factor: 9558968044013240910768539170267 Fri Mar 20 15:37:21 2009 prp69 factor: 246099023374013580364688187219244824856754420286164173821931207411369 Fri Mar 20 15:37:21 2009 elapsed time 12:44:22
(16·10145+17)/3 = 5(3)1449<146> = 29 · 751 · 750670353889<12> · C130
C130 = P37 · P94
P37 = 1017920604757100124175506379483305391<37>
P94 = 3204775581603897617400152633317975172533435467301482055633599256186949556972877362944784052759<94>
Number: 53339_145 N=3262207098137026742245065842599988326637156703447034000654332100641563831391951069640537622805004889844622538445754817690253123769 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=1017920604757100124175506379483305391 (pp37) r2=3204775581603897617400152633317975172533435467301482055633599256186949556972877362944784052759 (pp94) Version: GGNFS-0.77.1-20060513-nocona Total time: 17.11 hours. Scaled time: 44.07 units (timescale=2.575). Factorization parameters were as follows: name: 53339_145 n: 3262207098137026742245065842599988326637156703447034000654332100641563831391951069640537622805004889844622538445754817690253123769 m: 100000000000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [955000, 2255001) Primes: RFBsize:142718, AFBsize:142015, largePrimes:4682805 encountered Relations: rels:5729679, finalFF:1220613 Max relations in full relation-set: 28 Initial matrix: 284797 x 1220613 with sparse part having weight 121044188. Pruned matrix : 178108 x 179595 with weight 38970759. Total sieving time: 16.63 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.33 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 17.11 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.39 / Mar 20, 2009
(16·10136+17)/3 = 5(3)1359<137> = 11 · 13 · 347897551 · 2941447767611012578678018619<28> · C99
C99 = P30 · P69
P30 = 771382818250946354031587328347<30>
P69 = 472476504763422496979618639544003838355917850725179339642495333077011<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1151270288 Step 1 took 5788ms Step 2 took 6180ms ********** Factor found in step 2: 771382818250946354031587328347 Found probable prime factor of 30 digits: 771382818250946354031587328347 Probable prime cofactor has 69 digits
(16·10159+17)/3 = 5(3)1589<160> = 4201 · 11369 · 20060626646968543458887062589<29> · C124
C124 = P30 · C95
P30 = 181460042160288350794014941791<30>
C95 = [30675968082864569337146521319456691256436797450754597199363823113423792359722327736654385550169<95>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1862731850 Step 1 took 6880ms Step 2 took 7373ms ********** Factor found in step 2: 181460042160288350794014941791 Found probable prime factor of 30 digits: 181460042160288350794014941791 Composite cofactor has 95 digits
(10211+53)/9 = (1)2107<211> = 7 · 181 · C207
C207 = P60 · P148
P60 = 775679158324538211798792416886447302960143319020119609397291<60>
P148 = 1130573373691367761073599909764570902857706940533980710309137548448013445674329861601139507177146771800294938047935087576614132552921906658313292861<148>
SNFS difficulty: 211 digits. Divisors found: r1=775679158324538211798792416886447302960143319020119609397291 (pp60) r2=1130573373691367761073599909764570902857706940533980710309137548448013445674329861601139507177146771800294938047935087576614132552921906658313292861 (pp148) Version: Msieve-1.39 Total time: 700 hours. Factorization parameters were as follows: n: 876962202929053757783039550995352100324476015083749890379724633868280277120056125580987459440498114531263702534420766464965359992984302376567569937735683592037183197404191879330000876962202929053757783039551 m: 100000000000000000000000000000000000 c6: 10 c0: 53 skew: 1.32 type: snfs lss: 0 rlim: 24000000 alim: 24000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 24000000/24000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [12000000, 12000000) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3105940 x 3106188 Total sieving time: 638.24 hours. Total relation processing time: 13.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.70 hours. Prototype def-par.txt line would be: snfs,211,6,0,0,0,0,0,0,0,0,24000000,24000000,29,29,57,57,2.6,2.6,100000 total time: 700 hours. --------- CPU info (if available) ---------- CPU0: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU1: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU2: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU3: AMD Phenom(tm) II X4 940 Processor stepping 02 Memory: 3529040k/4980736k available (2699k kernel code, 139436k reserved, 3164k data, 788k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6012.71 BogoMIPS (lpj=12025428) Calibrating delay using timer specific routine.. 6012.89 BogoMIPS (lpj=12025792) Calibrating delay using timer specific routine.. 6012.90 BogoMIPS (lpj=12025816) Calibrating delay using timer specific routine.. 6012.92 BogoMIPS (lpj=12025858) Total of 4 processors activated (24051.44 BogoMIPS).
(16·10178+17)/3 = 5(3)1779<179> = 11 · 132 · 347 · 32983 · 12815736715308752903<20> · C150
C150 = P31 · P119
P31 = 8027904486080268433980556857271<31>
P119 = 24364299818203828966518485563165406695156284904992604114161373746380016498564692263558254965206297584342752781795141517<119>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1159831445 Step 1 took 8153ms Step 2 took 8392ms ********** Factor found in step 2: 8027904486080268433980556857271 Found probable prime factor of 31 digits: 8027904486080268433980556857271 Probable prime cofactor has 119 digits
(16·10198+17)/3 = 5(3)1979<199> = 11 · 785468738335223<15> · C183
C183 = P29 · C155
P29 = 10809721554503831623054520711<29>
C155 = [57103487227479446124405422629494541923845415148310131046666472629860297816874516504637895482742596878953891789085625659624914076124765874321722241320269233<155>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2135270727 Step 1 took 11285ms Step 2 took 10733ms ********** Factor found in step 2: 10809721554503831623054520711 Found probable prime factor of 29 digits: 10809721554503831623054520711 Composite cofactor has 155 digits
(16·10201+17)/3 = 5(3)2009<202> = 19 · 29 · 313 · 1901 · 94360271 · C186
C186 = P31 · C155
P31 = 2501174201872189797561830194829<31>
C155 = [68926710845622768023245400986497791282629481535689213308309687739001187639469203420891227576987844761091134389590016352081985710450401698271387066361347267<155>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1396396328 Step 1 took 11309ms Step 2 took 10765ms ********** Factor found in step 2: 2501174201872189797561830194829 Found probable prime factor of 31 digits: 2501174201872189797561830194829 Composite cofactor has 155 digits
(16·10179+17)/3 = 5(3)1789<180> = 31 · C179
C179 = P28 · C151
P28 = 4352766929105745465096103339<28>
C151 = [3952497653901114378182237986523852819615423623387147757833038683132838563176883622310981910798946192505014288043510847790520570489159500579928667953871<151>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1608146848 Step 1 took 11397ms Step 2 took 10308ms ********** Factor found in step 2: 4352766929105745465096103339 Found probable prime factor of 28 digits: 4352766929105745465096103339 Composite cofactor has 151 digits
(10214+17)/9 = (1)2133<214> = 34 · 7 · C211
C211 = P31 · C180
P31 = 2400620043423893687330474477519<31>
C180 = [816302269336336417450842188577028118534151673845025146540677993240102379833555401451594875762033128334475072601234838476484961787092961779341206131926579524992582962870838310352081<180>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4255587043 Step 1 took 13105ms Step 2 took 11832ms ********** Factor found in step 2: 2400620043423893687330474477519 Found probable prime factor of 31 digits: 2400620043423893687330474477519 Composite cofactor has 180 digits
By Ignacio Santos / GGNFS, Msieve / Mar 20, 2009
(16·10102+17)/3 = 5(3)1019<103> = 11 · C102
C102 = P37 · P66
P37 = 2216835011184651104357370439054681171<37>
P66 = 218712029719066643999777936156525071087223952004261785269174040619<66>
Number: 53339_102 N=484848484848484848484848484848484848484848484848484848484848484848484848484848484848484848484848484849 ( 102 digits) SNFS difficulty: 103 digits. Divisors found: r1=2216835011184651104357370439054681171 (pp37) r2=218712029719066643999777936156525071087223952004261785269174040619 (pp66) Version: Msieve-1.39 Total time: 0.22 hours. Scaled time: 0.26 units (timescale=1.161). Factorization parameters were as follows: n: 484848484848484848484848484848484848484848484848484848484848484848484848484848484848484848484848484849 m: 40000000000000000000000000 deg: 4 c4: 25 c0: 68 skew: 1.28 type: snfs lss: 1 rlim: 380000 alim: 380000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 380000/380000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [190000, 230001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37393 x 37641 Total sieving time: 0.22 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,380000,380000,25,25,43,43,2.2,2.2,10000 total time: 0.22 hours. --------- CPU info (if available) ----------
(16·10110+17)/3 = 5(3)1099<111> = 7 · 11 · C109
C109 = P51 · P59
P51 = 135086690288448751461631065121489142470928690167339<51>
P59 = 51273792492932242100515971807088862039055864903322893309013<59>
Number: 53339_110 N=6926406926406926406926406926406926406926406926406926406926406926406926406926406926406926406926406926406926407 ( 109 digits) SNFS difficulty: 111 digits. Divisors found: r1=135086690288448751461631065121489142470928690167339 (pp51) r2=51273792492932242100515971807088862039055864903322893309013 (pp59) Version: Msieve-1.39 Total time: 0.60 hours. Scaled time: 0.69 units (timescale=1.141). Factorization parameters were as follows: n: 6926406926406926406926406926406926406926406926406926406926406926406926406926406926406926406926406926406926407 m: 10000000000000000000000 deg: 5 c5: 16 c0: 17 skew: 1.01 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 41203 x 41434 Total sieving time: 0.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.60 hours. --------- CPU info (if available) ----------
(16·10112+17)/3 = 5(3)1119<113> = 11 · 13 · 991 · 5851 · C104
C104 = P44 · P61
P44 = 10052627114734674217024858005477241449308291<44>
P61 = 6398517534744581605598630845005091076336770653616769994460283<61>
Number: 53339_112 N=64321910863878643972984750803785593219329524248465718103326515801739318258957238451545530070232222106353 ( 104 digits) SNFS difficulty: 113 digits. Divisors found: r1=10052627114734674217024858005477241449308291 (pp44) r2=6398517534744581605598630845005091076336770653616769994460283 (pp61) Version: Msieve-1.39 Total time: 0.55 hours. Scaled time: 0.64 units (timescale=1.153). Factorization parameters were as follows: n: 64321910863878643972984750803785593219329524248465718103326515801739318258957238451545530070232222106353 m: 20000000000000000000000 deg: 5 c5: 50 c0: 17 skew: 0.81 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [270000, 370001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 53786 x 54015 Total sieving time: 0.55 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,540000,540000,25,25,45,45,2.2,2.2,50000 total time: 0.55 hours. --------- CPU info (if available) ----------
(16·10118+17)/3 = 5(3)1179<119> = 11 · 13 · 283 · 364415983 · C106
C106 = P40 · P67
P40 = 2517482123877466831458022023288845848163<40>
P67 = 1436522534239865706135598288861372125341339035520699265067882825739<67>
Number: 53339_118 N=3616419800496018185554643018778838665393873550895999781300841991930045462239647250842316622568282582267457 ( 106 digits) SNFS difficulty: 120 digits. Divisors found: r1=2517482123877466831458022023288845848163 (pp40) r2=1436522534239865706135598288861372125341339035520699265067882825739 (pp67) Version: Msieve-1.39 Total time: 0.85 hours. Scaled time: 1.01 units (timescale=1.188). Factorization parameters were as follows: n: 3616419800496018185554643018778838665393873550895999781300841991930045462239647250842316622568282582267457 m: 400000000000000000000000 deg: 5 c5: 125 c0: 136 skew: 1.02 type: snfs lss: 1 rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [350000, 500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68036 x 68272 Total sieving time: 0.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.2,2.2,50000 total time: 0.85 hours. --------- CPU info (if available) ----------
(47·10174+7)/9 = 5(2)1733<175> = 3 · C175
C175 = P75 · P100
P75 = 620557364544933209347505543283287271715542928474811138177123479741287954493<75>
P100 = 2805124618925858366785530971753399005552313623794237404028517151752362815052615083829211038292546537<100>
Number: 52223_174 N=1740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 ( 175 digits) SNFS difficulty: 176 digits. Divisors found: r1=620557364544933209347505543283287271715542928474811138177123479741287954493 (pp75) r2=2805124618925858366785530971753399005552313623794237404028517151752362815052615083829211038292546537 (pp100) Version: Msieve-1.39 Total time: 102.99 hours. Scaled time: 179.10 units (timescale=1.739). Factorization parameters were as follows: n: 1740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 m: 100000000000000000000000000000000000 deg: 5 c5: 47 c0: 70 skew: 1.08 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1410995 x 1411243 Total sieving time: 102.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000 total time: 102.99 hours. --------- CPU info (if available) ----------
(16·10124+17)/3 = 5(3)1239<125> = 11 · 13 · C123
C123 = P37 · P86
P37 = 4344103805341820701058553135691460443<37>
P86 = 85854387849055129411080779368254210843202081626934091049880827926685804285234450918511<86>
Number: 53339_124 N=372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960373 ( 123 digits) SNFS difficulty: 125 digits. Divisors found: r1=4344103805341820701058553135691460443 r2=85854387849055129411080779368254210843202081626934091049880827926685804285234450918511 Version: Total time: 2.03 hours. Scaled time: 5.16 units (timescale=2.544). Factorization parameters were as follows: n: 372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960373 m: 10000000000000000000000000 deg: 5 c5: 8 c0: 85 skew: 1.60 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 95005 x 95253 Total sieving time: 2.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 2.03 hours. --------- CPU info (if available) ----------
(47·10165+61)/9 = 5(2)1649<166> = 32 · 7 · 5591 · 57457 · C156
C156 = P77 · P79
P77 = 72533535683897919367050843049102695262622230330026538812469651505101456980937<77>
P79 = 3557488562285399128352167251090547646264542317070408776923597887660186679045557<79>
Number: 52229_165 N=258037223577586703584366939521687141457565042608347763233440879201328184257788165302728714631007910945833069136088685122225466935446774836043071413903546909 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: r1=72533535683897919367050843049102695262622230330026538812469651505101456980937 (pp77) r2=3557488562285399128352167251090547646264542317070408776923597887660186679045557 (pp79) Version: Msieve-1.39 Total time: 43.32 hours. Scaled time: 110.89 units (timescale=2.560). Factorization parameters were as follows: n: 258037223577586703584366939521687141457565042608347763233440879201328184257788165302728714631007910945833069136088685122225466935446774836043071413903546909 m: 1000000000000000000000000000000000 deg: 5 c5: 47 c0: 61 skew: 1.05 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 743624 x 743872 Total sieving time: 43.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 43.32 hours. --------- CPU info (if available) ----------
(16·10166+17)/3 = 5(3)1659<167> = 11 · 13 · C165
C165 = P32 · P134
P32 = 18446113805573149007822003131717<32>
P134 = 20218913148399309160757726082320481802184037361213630414348530230821676575403409534317023506556541934147864836343737525024390817510769<134>
Number: 53339_166 N=372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960373 ( 165 digits) SNFS difficulty: 167 digits. Divisors found: r1=18446113805573149007822003131717 (pp32) r2=20218913148399309160757726082320481802184037361213630414348530230821676575403409534317023506556541934147864836343737525024390817510769 (pp134) Version: Msieve-1.39 Total time: 26.55 hours. Scaled time: 46.17 units (timescale=1.739). Factorization parameters were as follows: n: 372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960373 m: 2000000000000000000000000000000000 deg: 5 c5: 5 c0: 17 skew: 1.28 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2150000, 3550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705711 x 705959 Total sieving time: 26.55 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 26.55 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, msieve / Mar 20, 2009
(10185+53)/9 = (1)1847<185> = 8527 · 29587001068429855351442206649<29> · C152
C152 = P67 · P85
P67 = 5477538869759508716233535573334454107332303923923355918060914957961<67>
P85 = 8040347369121449262829305304011094341740754632560203590976683381742939344017026888739<85>
Number: 11117_185 N=44041315240731342627152033825315210424898830618066156602341326236451254516042808567074969782491829929498528258973637320140692358628653317197742809301179 ( 152 digits) SNFS difficulty: 185 digits. Divisors found: r1=5477538869759508716233535573334454107332303923923355918060914957961 (pp67) r2=8040347369121449262829305304011094341740754632560203590976683381742939344017026888739 (pp85) Version: Msieve-1.39 Total time: 250.09 hours. Scaled time: 641.24 units (timescale=2.564). Factorization parameters were as follows: n: 44041315240731342627152033825315210424898830618066156602341326236451254516042808567074969782491829929498528258973637320140692358628653317197742809301179 m: 10000000000000000000000000000000000000 deg: 5 c5: 1 c0: 53 skew: 2.21 type: snfs lss: 1 rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4250000, 8250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1207241 x 1207489 Total sieving time: 250.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,54,54,2.5,2.5,100000 total time: 250.09 hours. --------- CPU info (if available) ----------
Factorizations of 544...441 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GGNFS, Msieve / Mar 19, 2009
(47·10155+43)/9 = 5(2)1547<156> = 53 · 1123 · 6854419180999669<16> · 9562893297694897418761<22> · C114
C114 = P43 · P71
P43 = 1397470491947633752572738006663140974036393<43>
P71 = 95784912349718487411932418288029995627417379622853984198602872452343209<71>
Number: n N=133856588582522074245145041981306385740123220548779419003259092949533192359296116928474190874485652535703692405137 ( 114 digits) Divisors found: Thu Mar 19 20:53:29 2009 prp43 factor: 1397470491947633752572738006663140974036393 Thu Mar 19 20:53:29 2009 prp71 factor: 95784912349718487411932418288029995627417379622853984198602872452343209 Thu Mar 19 20:53:29 2009 elapsed time 01:42:06 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.11 hours. Scaled time: 34.84 units (timescale=1.823). Factorization parameters were as follows: n: 133856588582522074245145041981306385740123220548779419003259092949533192359296116928474190874485652535703692405137 skew: 80691.62 Y0: -8289403519030582587562 Y1: 509751010163 c0: -2041210546406800131753532935 c1: 1083180025265749843277181 c2: 3650027098564077305 c3: -235277594845393 c4: -353315578 c5: 3420 type: gnfs name: KA_5_2_154_7 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1750000, 2602283) Primes: RFBsize:250150, AFBsize:248462, largePrimes:16642854 encountered Relations: rels:14546049, finalFF:509469 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 905433 hash collisions in 15107156 relations Msieve: matrix is 598018 x 598266 (167.6 MB) Total sieving time: 18.64 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,56,56,2.6,2.6,100000 total time: 19.11 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 19, 2009
(47·10148+43)/9 = 5(2)1477<149> = 33 · 7 · 29 · 67 · 1223 · 21705793 · 2017078085045614618421<22> · C112
C112 = P55 · P57
P55 = 3980941556193166603838231490318104342696694098555483207<55>
P57 = 667129456521162682500034200289208198670786991776880206997<57>
Number: 52227_148 N=2655803376825658847637458230916276479422795676367628311147056956567958355588426064464073349447932249543517399379 ( 112 digits) SNFS difficulty: 151 digits. Divisors found: r1=3980941556193166603838231490318104342696694098555483207 (pp55) r2=667129456521162682500034200289208198670786991776880206997 (pp57) Version: Msieve-1.39 Total time: 17.37 hours. Scaled time: 44.66 units (timescale=2.571). Factorization parameters were as follows: n: 2655803376825658847637458230916276479422795676367628311147056956567958355588426064464073349447932249543517399379 m: 500000000000000000000000000000 deg: 5 c5: 376 c0: 1075 skew: 1.23 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 431941 x 432189 Total sieving time: 17.37 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 17.37 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve, GMP-ECM / Mar 19, 2009
(47·10153+43)/9 = 5(2)1527<154> = 2002540933830131711<19> · C136
C136 = P36 · P101
P36 = 257352985880137140848352215811551723<36>
P101 = 10133156143982625350749263738927449627185877360057069960197245768769800614330181000523922313277930759<101>
Number: 52227_153 N=2607797990043585498486776563577293170179160358822379016514029370980619932719161276506780892488605173914090155178598786073131670341147757 ( 136 digits) SNFS difficulty: 156 digits. Divisors found: r1=257352985880137140848352215811551723 r2=10133156143982625350749263738927449627185877360057069960197245768769800614330181000523922313277930759 Version: Total time: 37.46 hours. Scaled time: 36.11 units (timescale=0.964). Factorization parameters were as follows: n: 2607797990043585498486776563577293170179160358822379016514029370980619932719161276506780892488605173914090155178598786073131670341147757 m: 5000000000000000000000000000000 deg: 5 c5: 376 c0: 1075 skew: 1.23 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 570944 x 571192 Total sieving time: 37.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 37.46 hours. --------- CPU info (if available) ----------
(10225-7)/3 = (3)2241<225> = 137737 · 134156123 · 67743226688030353193<20> · 199494502930691408785361<24> · 122625043098363429270779593379<30> · C140
C140 = P42 · P98
P42 = 860214666824601272460880156994772578011619<42>
P98 = 12654203042712555984328454204858279619330389192948935697292522058994841156413713475656590209377697<98>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 10885331054317837011064517548146007631894457980921054037615043412068918053334979676466099035906851721409340820885267078426597342035625461443 (140 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1082531224 Step 1 took 42901ms Step 2 took 15132ms ********** Factor found in step 2: 860214666824601272460880156994772578011619 Found probable prime factor of 42 digits: 860214666824601272460880156994772578011619 Probable prime cofactor 12654203042712555984328454204858279619330389192948935697292522058994841156413713475656590209377697 has 98 digits
(47·10152+43)/9 = 5(2)1517<153> = 23 · 31 · 5977957 · C144
C144 = P42 · P103
P42 = 102954757437537587020286226041931725738471<42>
P103 = 1190053845694343160057405598164702056965447494076340682927117292004770107354365772690735150938069056457<103>
Number: 52227_152 N=122521705021069884387637246526784156891699758592426768050055408604573625933007212113030244983476855679600447806602593063561942636751192515857247 ( 144 digits) SNFS difficulty: 154 digits. Divisors found: r1=102954757437537587020286226041931725738471 r2=1190053845694343160057405598164702056965447494076340682927117292004770107354365772690735150938069056457 Version: Total time: 33.77 hours. Scaled time: 26.44 units (timescale=0.783). Factorization parameters were as follows: n: 122521705021069884387637246526784156891699758592426768050055408604573625933007212113030244983476855679600447806602593063561942636751192515857247 m: 2000000000000000000000000000000 deg: 5 c5: 1175 c0: 344 skew: 0.78 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 499587 x 499835 Total sieving time: 33.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 33.77 hours. --------- CPU info (if available) ----------
Factorizations of 533...339 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Sinkiti Sibata / GGNFS / Mar 18, 2009
(47·10143+43)/9 = 5(2)1427<144> = 1256797 · C138
C138 = P37 · P101
P37 = 4843817090846848103800130938749666541<37>
P101 = 85783246430773379911102166695200551942332371371885262915582905035373010589522772606960016182845664651<101>
Number: 52227_143 N=415518355169706979108179142870505119141931610452779742649148766445354518050426777134431592550127206081986368699338256076536005593761142191 ( 138 digits) SNFS difficulty: 146 digits. Divisors found: r1=4843817090846848103800130938749666541 (pp37) r2=85783246430773379911102166695200551942332371371885262915582905035373010589522772606960016182845664651 (pp101) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 30.82 hours. Scaled time: 14.52 units (timescale=0.471). Factorization parameters were as follows: name: 52227_143 n: 415518355169706979108179142870505119141931610452779742649148766445354518050426777134431592550127206081986368699338256076536005593761142191 m: 50000000000000000000000000000 deg: 5 c5: 376 c0: 1075 skew: 1.23 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 3450001) Primes: RFBsize:142029, AFBsize:141497, largePrimes:4391493 encountered Relations: rels:4701517, finalFF:334993 Max relations in full relation-set: 28 Initial matrix: 283593 x 334993 with sparse part having weight 40541816. Pruned matrix : 267398 x 268879 with weight 31033526. Total sieving time: 27.63 hours. Total relation processing time: 0.33 hours. Matrix solve time: 2.77 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 30.82 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 18, 2009
(46·10167+71)/9 = 5(1)1669<168> = 32 · 7 · 19 · 1117 · 4679 · 27883 · C154
C154 = P54 · P101
P54 = 107947980468983175179209407936978627331988033676681083<54>
P101 = 27143192890863234580560273644490456064319074781755462331364854263414746355660087083256912160513206201<101>
Number: 51119_167 N=2930052856048747415696412580021740877656459525605510537337184012695666922105062747081510430361540113889889941395993487864740777776024112205338840894995683 ( 154 digits) SNFS difficulty: 169 digits. Divisors found: r1=107947980468983175179209407936978627331988033676681083 (pp54) r2=27143192890863234580560273644490456064319074781755462331364854263414746355660087083256912160513206201 (pp101) Version: Msieve-1.39 Total time: 62.79 hours. Scaled time: 161.43 units (timescale=2.571). Factorization parameters were as follows: n: 2930052856048747415696412580021740877656459525605510537337184012695666922105062747081510430361540113889889941395993487864740777776024112205338840894995683 m: 2000000000000000000000000000000000 deg: 5 c5: 575 c0: 284 skew: 0.87 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 916037 x 916285 Total sieving time: 62.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 62.79 hours. --------- CPU info (if available) ----------
(47·10161+61)/9 = 5(2)1609<162> = 140853961 · C154
C154 = P63 · P92
P63 = 219943733041963750242646478617524491832623759499803899627166611<63>
P92 = 16856782845527874382183048874522274027542137890355911903085056358760184087391042615656550399<92>
Number: 52229_161 N=3707543746123136872396667795676844488755429619918336710617759781865291116820081632082907645190199672284844174330477097638895807993800204328099954691527789 ( 154 digits) SNFS difficulty: 162 digits. Divisors found: r1=219943733041963750242646478617524491832623759499803899627166611 (pp63) r2=16856782845527874382183048874522274027542137890355911903085056358760184087391042615656550399 (pp92) Version: Msieve-1.39 Total time: 36.14 hours. Scaled time: 92.92 units (timescale=2.571). Factorization parameters were as follows: n: 3707543746123136872396667795676844488755429619918336710617759781865291116820081632082907645190199672284844174330477097638895807993800204328099954691527789 m: 100000000000000000000000000000000 deg: 5 c5: 470 c0: 61 skew: 0.66 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 669486 x 669734 Total sieving time: 36.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 36.14 hours. --------- CPU info (if available) ----------
(47·10149+61)/9 = 5(2)1489<150> = 4076210434301839<16> · 211174768175632908845141<24> · C111
C111 = P54 · P58
P54 = 219213132009021623869566675173488915702299783936522029<54>
P58 = 2767516118398801454302828847039547607150038471761799341899<58>
Number: 52229_149 N=606675876199651581317035127957145483690901889131660586888217858313407073692363357548983792092630032283116193071 ( 111 digits) SNFS difficulty: 151 digits. Divisors found: r1=219213132009021623869566675173488915702299783936522029 (pp54) r2=2767516118398801454302828847039547607150038471761799341899 (pp58) Version: Msieve-1.39 Total time: 16.20 hours. Scaled time: 41.65 units (timescale=2.571). Factorization parameters were as follows: n: 606675876199651581317035127957145483690901889131660586888217858313407073692363357548983792092630032283116193071 m: 1000000000000000000000000000000 deg: 5 c5: 47 c0: 610 skew: 1.67 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 436101 x 436349 Total sieving time: 16.20 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 16.20 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve v1.40beta2 / Mar 18, 2009
(47·10151+61)/9 = 5(2)1509<152> = 73 · 691 · 5003 · 84389 · 6105956179<10> · C129
C129 = P47 · P83
P47 = 13551298952508005615508715858630155784976003377<47>
P83 = 29634901503428958238102266429923613340973044009914909611452496602972186130738987123<83>
Number: 52229_151 N=401591409701094762557236606442942058249930610119999828677048360538804414672459347923455562310561948894319531364533784369607514371 ( 129 digits) SNFS difficulty: 152 digits. Divisors found: r1=13551298952508005615508715858630155784976003377 (pp47) r2=29634901503428958238102266429923613340973044009914909611452496602972186130738987123 (pp83) Version: Msieve-1.40 Total time: 21.55 hours. Scaled time: 35.41 units (timescale=1.643). Factorization parameters were as follows: n: 401591409701094762557236606442942058249930610119999828677048360538804414672459347923455562310561948894319531364533784369607514371 m: 1000000000000000000000000000000 deg: 5 c5: 470 c0: 61 skew: 0.66 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 433946 x 434194 Total sieving time: 21.55 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 21.55 hours. --------- CPU info (if available) ---------- [ 0.366872] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456430] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800268) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800821) [ 0.460050] Total of 2 processors activated (8800.54 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve / Mar 18, 2009
(47·10147+43)/9 = 5(2)1467<148> = 419 · 1230122762141569<16> · 384189113824853757332970331<27> · C104
C104 = P48 · P57
P48 = 185767993337027714455265134749591365614059015697<48>
P57 = 141963574575550541691236928123164412858691879492806034451<57>
Number: n N=26372288375851510075141295091256465723888801319948296741264515789328641332678379950721528722522931777347 ( 104 digits) Divisors found: Wed Mar 18 02:57:01 2009 prp48 factor: 185767993337027714455265134749591365614059015697 Wed Mar 18 02:57:01 2009 prp57 factor: 141963574575550541691236928123164412858691879492806034451 Wed Mar 18 02:57:01 2009 elapsed time 00:31:08 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.77 hours. Scaled time: 12.35 units (timescale=1.823). Factorization parameters were as follows: n: 26372288375851510075141295091256465723888801319948296741264515789328641332678379950721528722522931777347 skew: 29710.99 Y0: -144401432342722261807 Y1: 36431541157 c0: -15122488454704756317858600 c1: -13242623711720306931140 c2: -210177813641840938 c3: 18447924067323 c4: 157240256 c5: 420 type: gnfs name: KA_5_2_146_7 rlim: 2300000 alim: 2300000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1150000, 10000000 ) Primes: RFBsize:169511, AFBsize:169780, largePrimes:14660589 encountered Relations: rels:12861753, finalFF:536940 Max relations in full relation-set: 28 Initial matrix: 339372 x 536940 with sparse part having weight 62352556. Pruned matrix : 237664 x 239424 with weight 22900522. Msieve: found 823997 hash collisions in 13420417 relations Msieve: matrix is 276291 x 276539 (76.0 MB) Total sieving time: 6.44 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,28,28,56,56,2.6,2.6,100000 total time: 6.77 hours. --------- CPU info (if available) ----------
By Luigi Morelli / GGNFS 0.77.1 Msieve 1.39 / Mar 17, 2009
(4·10174+41)/9 = (4)1739<174> = 401 · 1531 · 2333 · 11103172231868232665208082632227<32> · C134
C134 = P41 · P93
P41 = 38399983418304274738274024976546740584967<41>
P93 = 727788294601551888099993904173706931765025315072705833126180244134209183779214775385936665507<93>
Tue Mar 17 12:36:41 2009 Msieve v. 1.39 Tue Mar 17 12:36:41 2009 random seeds: 9f714800 598b1444 Tue Mar 17 12:36:41 2009 factoring 27947058444735539012965143631675640717984624676970856746909322865014587987121750699821648616857592608427104241739512228516510591633269 (134 digits) Tue Mar 17 12:36:43 2009 searching for 15-digit factors Tue Mar 17 12:36:44 2009 commencing number field sieve (134-digit input) Tue Mar 17 12:36:44 2009 R0: -100000000000000000000000000000000000 Tue Mar 17 12:36:44 2009 R1: 1 Tue Mar 17 12:36:44 2009 A0: 205 Tue Mar 17 12:36:44 2009 A1: 0 Tue Mar 17 12:36:44 2009 A2: 0 Tue Mar 17 12:36:44 2009 A3: 0 Tue Mar 17 12:36:44 2009 A4: 0 Tue Mar 17 12:36:44 2009 A5: 2 Tue Mar 17 12:36:44 2009 skew 1.00, size 4.781583e-12, alpha 0.465368, combined = 4.094518e-12 Tue Mar 17 12:36:44 2009 Tue Mar 17 12:36:44 2009 commencing relation filtering Tue Mar 17 12:36:44 2009 commencing duplicate removal, pass 1 Tue Mar 17 12:39:42 2009 found 2143411 hash collisions in 17416460 relations Tue Mar 17 12:40:21 2009 added 671889 free relations Tue Mar 17 12:40:21 2009 commencing duplicate removal, pass 2 Tue Mar 17 12:41:43 2009 found 1937728 duplicates and 16150621 unique relations Tue Mar 17 12:41:43 2009 memory use: 94.6 MB Tue Mar 17 12:41:43 2009 reading rational ideals above 7012352 Tue Mar 17 12:41:43 2009 reading algebraic ideals above 7012352 Tue Mar 17 12:41:43 2009 commencing singleton removal, pass 1 Tue Mar 17 12:44:56 2009 relations with 0 large ideals: 244208 Tue Mar 17 12:44:56 2009 relations with 1 large ideals: 1795043 Tue Mar 17 12:44:56 2009 relations with 2 large ideals: 5122439 Tue Mar 17 12:44:56 2009 relations with 3 large ideals: 5971131 Tue Mar 17 12:44:56 2009 relations with 4 large ideals: 2369746 Tue Mar 17 12:44:56 2009 relations with 5 large ideals: 119 Tue Mar 17 12:44:56 2009 relations with 6 large ideals: 647935 Tue Mar 17 12:44:56 2009 relations with 7+ large ideals: 0 Tue Mar 17 12:44:56 2009 16150621 relations and about 15885771 large ideals Tue Mar 17 12:44:56 2009 commencing singleton removal, pass 2 Tue Mar 17 12:48:09 2009 found 6116062 singletons Tue Mar 17 12:48:09 2009 current dataset: 10034559 relations and about 7925909 large ideals Tue Mar 17 12:48:09 2009 commencing singleton removal, pass 3 Tue Mar 17 12:50:11 2009 found 1790905 singletons Tue Mar 17 12:50:11 2009 current dataset: 8243654 relations and about 6034970 large ideals Tue Mar 17 12:50:11 2009 commencing singleton removal, pass 4 Tue Mar 17 12:52:06 2009 found 425142 singletons Tue Mar 17 12:52:06 2009 current dataset: 7818512 relations and about 5601775 large ideals Tue Mar 17 12:52:07 2009 commencing singleton removal, final pass Tue Mar 17 12:54:13 2009 memory use: 130.9 MB Tue Mar 17 12:54:13 2009 commencing in-memory singleton removal Tue Mar 17 12:54:14 2009 begin with 7818512 relations and 6159339 unique ideals Tue Mar 17 12:54:28 2009 reduce to 6545569 relations and 4850622 ideals in 15 passes Tue Mar 17 12:54:28 2009 max relations containing the same ideal: 23 Tue Mar 17 12:54:30 2009 reading rational ideals above 720000 Tue Mar 17 12:54:30 2009 reading algebraic ideals above 720000 Tue Mar 17 12:54:30 2009 commencing singleton removal, final pass Tue Mar 17 12:56:38 2009 keeping 5403754 ideals with weight <= 20, new excess is 646417 Tue Mar 17 12:56:44 2009 memory use: 180.2 MB Tue Mar 17 12:56:44 2009 commencing in-memory singleton removal Tue Mar 17 12:56:45 2009 begin with 6587026 relations and 5403754 unique ideals Tue Mar 17 12:56:55 2009 reduce to 6544199 relations and 5158066 ideals in 9 passes Tue Mar 17 12:56:55 2009 max relations containing the same ideal: 20 Tue Mar 17 12:57:01 2009 removing 1565742 relations and 1247597 ideals in 318145 cliques Tue Mar 17 12:57:03 2009 commencing in-memory singleton removal Tue Mar 17 12:57:03 2009 begin with 4978457 relations and 5158066 unique ideals Tue Mar 17 12:57:12 2009 reduce to 4751966 relations and 3671154 ideals in 10 passes Tue Mar 17 12:57:12 2009 max relations containing the same ideal: 20 Tue Mar 17 12:57:16 2009 removing 1201681 relations and 883536 ideals in 318145 cliques Tue Mar 17 12:57:17 2009 commencing in-memory singleton removal Tue Mar 17 12:57:18 2009 begin with 3550285 relations and 3671154 unique ideals Tue Mar 17 12:57:22 2009 reduce to 3350302 relations and 2574646 ideals in 9 passes Tue Mar 17 12:57:22 2009 max relations containing the same ideal: 19 Tue Mar 17 12:57:26 2009 removing 166581 relations and 140769 ideals in 25812 cliques Tue Mar 17 12:57:26 2009 commencing in-memory singleton removal Tue Mar 17 12:57:26 2009 begin with 3183721 relations and 2574646 unique ideals Tue Mar 17 12:57:30 2009 reduce to 3178656 relations and 2428761 ideals in 7 passes Tue Mar 17 12:57:30 2009 max relations containing the same ideal: 19 Tue Mar 17 12:57:31 2009 relations with 0 large ideals: 94799 Tue Mar 17 12:57:31 2009 relations with 1 large ideals: 482369 Tue Mar 17 12:57:31 2009 relations with 2 large ideals: 1004006 Tue Mar 17 12:57:31 2009 relations with 3 large ideals: 988933 Tue Mar 17 12:57:31 2009 relations with 4 large ideals: 473837 Tue Mar 17 12:57:31 2009 relations with 5 large ideals: 110708 Tue Mar 17 12:57:31 2009 relations with 6 large ideals: 23262 Tue Mar 17 12:57:31 2009 relations with 7+ large ideals: 742 Tue Mar 17 12:57:31 2009 commencing 2-way merge Tue Mar 17 12:57:34 2009 reduce to 2015714 relation sets and 1265819 unique ideals Tue Mar 17 12:57:34 2009 commencing full merge Tue Mar 17 12:58:00 2009 memory use: 112.3 MB Tue Mar 17 12:58:00 2009 found 985977 cycles, need 886019 Tue Mar 17 12:58:01 2009 weight of 886019 cycles is about 62112073 (70.10/cycle) Tue Mar 17 12:58:01 2009 distribution of cycle lengths: Tue Mar 17 12:58:01 2009 1 relations: 119487 Tue Mar 17 12:58:01 2009 2 relations: 88429 Tue Mar 17 12:58:01 2009 3 relations: 87433 Tue Mar 17 12:58:01 2009 4 relations: 84047 Tue Mar 17 12:58:01 2009 5 relations: 80706 Tue Mar 17 12:58:01 2009 6 relations: 74925 Tue Mar 17 12:58:01 2009 7 relations: 68225 Tue Mar 17 12:58:01 2009 8 relations: 61469 Tue Mar 17 12:58:01 2009 9 relations: 53842 Tue Mar 17 12:58:01 2009 10+ relations: 167456 Tue Mar 17 12:58:01 2009 heaviest cycle: 17 relations Tue Mar 17 12:58:01 2009 commencing cycle optimization Tue Mar 17 12:58:03 2009 start with 5154831 relations Tue Mar 17 12:58:17 2009 pruned 188003 relations Tue Mar 17 12:58:17 2009 memory use: 165.8 MB Tue Mar 17 12:58:17 2009 distribution of cycle lengths: Tue Mar 17 12:58:17 2009 1 relations: 119487 Tue Mar 17 12:58:17 2009 2 relations: 91154 Tue Mar 17 12:58:17 2009 3 relations: 91767 Tue Mar 17 12:58:17 2009 4 relations: 87747 Tue Mar 17 12:58:17 2009 5 relations: 84891 Tue Mar 17 12:58:17 2009 6 relations: 78509 Tue Mar 17 12:58:17 2009 7 relations: 71066 Tue Mar 17 12:58:17 2009 8 relations: 62784 Tue Mar 17 12:58:17 2009 9 relations: 54055 Tue Mar 17 12:58:17 2009 10+ relations: 144559 Tue Mar 17 12:58:17 2009 heaviest cycle: 16 relations Tue Mar 17 12:58:18 2009 Tue Mar 17 12:58:18 2009 commencing linear algebra Tue Mar 17 12:58:20 2009 read 886019 cycles Tue Mar 17 12:58:24 2009 cycles contain 2746427 unique relations Tue Mar 17 13:00:07 2009 read 2746427 relations Tue Mar 17 13:00:21 2009 using 20 quadratic characters above 268435130 Tue Mar 17 13:00:44 2009 building initial matrix Tue Mar 17 13:01:30 2009 memory use: 345.1 MB Tue Mar 17 13:01:34 2009 read 886019 cycles Tue Mar 17 13:01:35 2009 matrix is 885691 x 886019 (261.2 MB) with weight 78785843 (88.92/col) Tue Mar 17 13:01:35 2009 sparse part has weight 58716555 (66.27/col) Tue Mar 17 13:02:07 2009 filtering completed in 3 passes Tue Mar 17 13:02:07 2009 matrix is 882183 x 882383 (260.5 MB) with weight 78558142 (89.03/col) Tue Mar 17 13:02:07 2009 sparse part has weight 58574600 (66.38/col) Tue Mar 17 13:02:17 2009 read 882383 cycles Tue Mar 17 13:02:18 2009 matrix is 882183 x 882383 (260.5 MB) with weight 78558142 (89.03/col) Tue Mar 17 13:02:18 2009 sparse part has weight 58574600 (66.38/col) Tue Mar 17 13:02:18 2009 saving the first 48 matrix rows for later Tue Mar 17 13:02:18 2009 matrix is 882135 x 882383 (248.1 MB) with weight 62087525 (70.36/col) Tue Mar 17 13:02:18 2009 sparse part has weight 56205277 (63.70/col) Tue Mar 17 13:02:18 2009 matrix includes 64 packed rows Tue Mar 17 13:02:18 2009 using block size 65536 for processor cache size 2048 kB Tue Mar 17 13:02:28 2009 commencing Lanczos iteration (2 threads) Tue Mar 17 13:02:28 2009 memory use: 242.6 MB Tue Mar 17 15:14:35 2009 lanczos halted after 13949 iterations (dim = 882135) Tue Mar 17 15:14:38 2009 recovered 38 nontrivial dependencies Tue Mar 17 15:14:38 2009 Tue Mar 17 15:14:38 2009 commencing square root phase Tue Mar 17 15:14:38 2009 reading relations for dependency 1 Tue Mar 17 15:14:38 2009 read 441047 cycles Tue Mar 17 15:14:40 2009 cycles contain 1685937 unique relations Tue Mar 17 15:16:01 2009 read 1685937 relations Tue Mar 17 15:16:14 2009 multiplying 1370800 relations Tue Mar 17 15:18:54 2009 multiply complete, coefficients have about 32.47 million bits Tue Mar 17 15:18:55 2009 initial square root is modulo 2113031471 Tue Mar 17 15:23:50 2009 reading relations for dependency 2 Tue Mar 17 15:23:52 2009 read 441001 cycles Tue Mar 17 15:23:54 2009 cycles contain 1685340 unique relations Tue Mar 17 15:25:24 2009 read 1685340 relations Tue Mar 17 15:25:37 2009 multiplying 1371486 relations Tue Mar 17 15:28:15 2009 multiply complete, coefficients have about 32.49 million bits Tue Mar 17 15:28:16 2009 initial square root is modulo 2141250271 Tue Mar 17 15:33:06 2009 reading relations for dependency 3 Tue Mar 17 15:33:09 2009 read 441310 cycles Tue Mar 17 15:33:11 2009 cycles contain 1685743 unique relations Tue Mar 17 15:34:57 2009 read 1685743 relations Tue Mar 17 15:35:10 2009 multiplying 1370442 relations Tue Mar 17 15:37:50 2009 multiply complete, coefficients have about 32.46 million bits Tue Mar 17 15:37:50 2009 initial square root is modulo 2103565001 Tue Mar 17 15:42:49 2009 prp41 factor: 38399983418304274738274024976546740584967 Tue Mar 17 15:42:49 2009 prp93 factor: 727788294601551888099993904173706931765025315072705833126180244134209183779214775385936665507 Tue Mar 17 15:42:49 2009 elapsed time 03:06:08
By Robert Backstrom / GGNFS, Msieve, GMP-ECM / Mar 17, 2009
(47·10129+43)/9 = 5(2)1287<130> = 53 · 1709 · 39563 · 664394297591<12> · C109
C109 = P50 · P60
P50 = 11392640902908865486786962808915005513936037420777<50>
P60 = 192529771430516722768552082971149709013406250854830961537511<60>
Number: n N=2193422549026999531240180405969308634774081473846196681195301222164747803070319802746246945986037686776266047 ( 109 digits) Divisors found: Tue Mar 17 07:53:13 2009 prp50 factor: 11392640902908865486786962808915005513936037420777 Tue Mar 17 07:53:13 2009 prp60 factor: 192529771430516722768552082971149709013406250854830961537511 Tue Mar 17 07:53:13 2009 elapsed time 01:04:28 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.69 hours. Scaled time: 19.17 units (timescale=1.793). Factorization parameters were as follows: n: 2193422549026999531240180405969308634774081473846196681195301222164747803070319802746246945986037686776266047 skew: 35509.20 Y0: -789741278560127834899 Y1: 216704254129 c0: -302573579818317197066484660 c1: 16492546007944770846450 c2: 278514279697725838 c3: -23720825775976 c4: -6014549 c5: 7140 type: gnfs name: KA_5_2_128_7 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1600000, 10000000 ) Primes: RFBsize:230209, AFBsize:231161, largePrimes:15904187 encountered Relations: rels:13829817, finalFF:539057 Max relations in full relation-set: 28 Initial matrix: 461452 x 539057 with sparse part having weight 57962085. Pruned matrix : 401595 x 403966 with weight 35176102. Msieve: found 968534 hash collisions in 14496195 relations Msieve: matrix is 437224 x 437472 (120.1 MB) Total sieving time: 10.26 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 10.69 hours. --------- CPU info (if available) ----------
(47·10177-11)/9 = 5(2)1761<178> = 17 · 491 · 476994724582963119809<21> · 29336523767341974250914648586797711269<38> · C116
C116 = P33 · P83
P33 = 614088122589594009791062335998749<33>
P83 = 72806811291749103675145316370430609189394369231815902251648901884514781346021057767<83>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 44709798057885060980656834282070292023087303425981948741349201177796626681785466973031767603121232173890091368733483 (116 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=3266589655 Step 1 took 33988ms Step 2 took 15123ms ********** Factor found in step 2: 614088122589594009791062335998749 Found probable prime factor of 33 digits: 614088122589594009791062335998749 Probable prime cofactor 72806811291749103675145316370430609189394369231815902251648901884514781346021057767 has 83 digits
By Sinkiti Sibata / GGNFS, Msieve / Mar 17, 2009
(47·10133+43)/9 = 5(2)1327<134> = 3 · 188443 · 2797019 · C122
C122 = P42 · P81
P42 = 237701512526503316094085015925914398939871<42>
P81 = 138939816988084835328310231759557123542468331563336367798939674241466623501737287<81>
Number: 52227_133 N=33026204648223325723542311678054028103025705149354813007075200971205810804912651075595987113664903079159513943959551669977 ( 122 digits) SNFS difficulty: 136 digits. Divisors found: r1=237701512526503316094085015925914398939871 (pp42) r2=138939816988084835328310231759557123542468331563336367798939674241466623501737287 (pp81) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 12.01 hours. Scaled time: 5.67 units (timescale=0.472). Factorization parameters were as follows: name: 52227_133 n: 33026204648223325723542311678054028103025705149354813007075200971205810804912651075595987113664903079159513943959551669977 m: 500000000000000000000000000 deg: 5 c5: 376 c0: 1075 skew: 1.23 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1700001) Primes: RFBsize:100021, AFBsize:99643, largePrimes:3416033 encountered Relations: rels:3427270, finalFF:250618 Max relations in full relation-set: 28 Initial matrix: 199731 x 250618 with sparse part having weight 26073288. Pruned matrix : 186068 x 187130 with weight 17115454. Total sieving time: 10.98 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.78 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 12.01 hours. --------- CPU info (if available) ----------
(47·10159+43)/9 = 5(2)1587<160> = C160
C160 = P45 · P116
P45 = 447820738433104994589571533297604237016615893<45>
P116 = 11661412199208171450910796477053685957193762778984934328207442349695941331544774427207372189329106930197283990416839<116>
Number: 52227_159 N=5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: r1=447820738433104994589571533297604237016615893 r2=11661412199208171450910796477053685957193762778984934328207442349695941331544774427207372189329106930197283990416839 Version: Total time: 41.14 hours. Scaled time: 105.07 units (timescale=2.554). Factorization parameters were as follows: name: 52227_159 n: 5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 m: 100000000000000000000000000000000 deg: 5 c5: 47 c0: 430 skew: 1.56 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 712197 x 712445 Total sieving time: 41.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 41.14 hours. --------- CPU info (if available) ----------
(47·10146+61)/9 = 5(2)1459<147> = 118268440765127268526454053<27> · C121
C121 = P50 · P72
P50 = 12822898127825871123041260367860744391887985989183<50>
P72 = 344350156992285033341866116549986062298882723986694029020884286713875471<72>
Number: 52229_146 N=4415566983412916558364200333566126155840383990444855088058423457637337768106379951019223089264831632838735255607415030193 ( 121 digits) SNFS difficulty: 147 digits. Divisors found: r1=12822898127825871123041260367860744391887985989183 (pp50) r2=344350156992285033341866116549986062298882723986694029020884286713875471 (pp72) Version: GGNFS-0.77.1-20060513-nocona Total time: 23.49 hours. Scaled time: 60.22 units (timescale=2.564). Factorization parameters were as follows: name: 52229_146 n: 4415566983412916558364200333566126155840383990444855088058423457637337768106379951019223089264831632838735255607415030193 m: 100000000000000000000000000000 deg: 5 c5: 470 c0: 61 skew: 0.66 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 3100001) Primes: RFBsize:148933, AFBsize:149036, largePrimes:4703269 encountered Relations: rels:5381201, finalFF:641992 Max relations in full relation-set: 28 Initial matrix: 298036 x 641992 with sparse part having weight 79596977. Pruned matrix : 227418 x 228972 with weight 37582236. Total sieving time: 22.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.51 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 23.49 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2 / Mar 17, 2009
(47·10155+61)/9 = 5(2)1549<156> = 43 · 35909329 · 58770731 · C139
C139 = P32 · C108
P32 = 20170670960464360204959468810331<32>
C108 = [285297630994272504091552978449388295403830314074853375107757128116579477814437793906499110695817310611368087<108>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=958636256 Step 1 took 7668ms Step 2 took 7649ms ********** Factor found in step 2: 20170670960464360204959468810331 Found probable prime factor of 32 digits: 20170670960464360204959468810331 Composite cofactor has 108 digits
(47·10188+61)/9 = 5(2)1879<189> = 967 · 550690601939<12> · 605847532138397<15> · 109183642953133633<18> · C143
C143 = P35 · P108
P35 = 34461699539841418825579125628841351<35>
P108 = 430193252317702480711040497680446163331824874304874768856386928623928612241031321894543131893971208149393683<108>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2141233825 Step 1 took 7765ms Step 2 took 7620ms ********** Factor found in step 2: 34461699539841418825579125628841351 Found probable prime factor of 35 digits: 34461699539841418825579125628841351 Probable prime cofactor has 108 digits
(47·10179+61)/9 = 5(2)1789<180> = 109 · 668111 · C172
C172 = P29 · P144
P29 = 46086527706787783863770048419<29>
P144 = 155598798818920185760682857386549258894779410779794936254768626444142587537228894385588949913316988978207015735754666249496968259470947413724909<144>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1444878925 Step 1 took 9129ms Step 2 took 8957ms ********** Factor found in step 2: 46086527706787783863770048419 Found probable prime factor of 29 digits: 46086527706787783863770048419 Probable prime cofactor has 144 digits
(47·10190+61)/9 = 5(2)1899<191> = 701 · 12441484225824125533<20> · C169
C169 = P35 · C134
P35 = 93603981074749332057833540879042243<35>
C134 = [63969184928555725419888542337471071127268261667483265316817211212893362944495734135745868593470357733678892956596854054764423090641391<134>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2046487259 Step 1 took 8953ms Step 2 took 8917ms ********** Factor found in step 2: 93603981074749332057833540879042243 Found probable prime factor of 35 digits: 93603981074749332057833540879042243 Composite cofactor has 134 digits
(47·10183+61)/9 = 5(2)1829<184> = 34 · 72 · 73 · 13159 · C175
C175 = P35 · C140
P35 = 23580467869898578816558113541392511<35>
C140 = [58086617139822417192309155633607444600006416172320696813705786684420593367822572818386028872976485426874441318380077890295282806517242070133<140>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2046773793 Step 1 took 11001ms ********** Factor found in step 1: 23580467869898578816558113541392511 Found probable prime factor of 35 digits: 23580467869898578816558113541392511 Composite cofactor has 140 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 17, 2009
4·10187+1 = 4(0)1861<188> = 173 · 466357 · C180
C180 = P53 · P128
P53 = 17220341786228465534537012038573242088381604649445961<53>
P128 = 28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081<128>
Number: 40001_187 N=495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841 ( 180 digits) SNFS difficulty: 187 digits. Divisors found: r1=17220341786228465534537012038573242088381604649445961 r2=28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081 Version: Total time: 123.18 hours. Scaled time: 294.16 units (timescale=2.388). Factorization parameters were as follows: n: 495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841 m: 20000000000000000000000000000000000000 deg: 5 c5: 25 c0: 2 skew: 0.60 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20253983 Max relations in full relation-set: Initial matrix: Pruned matrix : 1689001 x 1689249 Total sieving time: 112.04 hours. Total relation processing time: 3.38 hours. Matrix solve time: 7.54 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 123.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Max Dettweiler / YAFU v1.07, GMP-ECM / Mar 17, 2009
(47·10137+61)/9 = 5(2)1369<138> = 739 · 877 · 295289375079011<15> · 6661471907757357183761<22> · C96
C96 = P40 · P57
P40 = 1229958574412209062018051100217580143117<40>
P57 = 333044917807515859998647944588270739048031866360687340149<57>
03/16/09 14:26:52 v1.07 @ Core2Duo, starting SIQS on c96: 409631452321763546825635704242285696253772845989896048275809030748571767303698583312109480104433 03/16/09 14:26:52 v1.07 @ Core2Duo, random seeds: 3914057527, 3818987683 03/16/09 14:26:54 v1.07 @ Core2Duo, ==== sieve params ==== 03/16/09 14:26:54 v1.07 @ Core2Duo, n = 96 digits, 318 bits 03/16/09 14:26:54 v1.07 @ Core2Duo, factor base: 88192 primes (max prime = 2397251) 03/16/09 14:26:54 v1.07 @ Core2Duo, single large prime cutoff: 311642630 (130 * pmax) 03/16/09 14:26:54 v1.07 @ Core2Duo, double large prime range from 44 to 51 bits 03/16/09 14:26:54 v1.07 @ Core2Duo, double large prime cutoff: 1943490174637453 03/16/09 14:26:54 v1.07 @ Core2Duo, using 6 large prime slices of factor base 03/16/09 14:26:54 v1.07 @ Core2Duo, buckets hold 2048 elements 03/16/09 14:26:54 v1.07 @ Core2Duo, sieve interval: 26 blocks of size 32768 03/16/09 14:26:54 v1.07 @ Core2Duo, polynomial A has ~ 12 factors 03/16/09 14:26:54 v1.07 @ Core2Duo, using multiplier of 1 03/16/09 14:26:54 v1.07 @ Core2Duo, using small prime variation correction of 17 bits 03/16/09 14:26:54 v1.07 @ Core2Duo, using x128 sieve scanning 03/16/09 14:26:54 v1.07 @ Core2Duo, trial factoring cutoff at 100 bits 03/16/09 14:26:54 v1.07 @ Core2Duo, ==== sieving started ==== 03/16/09 17:11:19 v1.07 @ Core2Duo, sieve time = 3229.1400, relation time = 1905.8000, poly_time = 4442.4100 03/16/09 17:11:19 v1.07 @ Core2Duo, 88271 relations found: 21574 full + 66697 from 1222577 partial, using 835916 polys (394 A polys) 03/16/09 17:11:19 v1.07 @ Core2Duo, trial division touched 69874537 sieve locations out of 1424347365376 03/16/09 17:11:19 v1.07 @ Core2Duo, ==== post processing stage (msieve-1.38) ==== 03/16/09 17:11:20 v1.07 @ Core2Duo, begin with 1244251 relations 03/16/09 17:11:21 v1.07 @ Core2Duo, reduce to 229300 relations in 12 passes 03/16/09 17:11:26 v1.07 @ Core2Duo, failed to read relation 207209 03/16/09 17:11:26 v1.07 @ Core2Duo, recovered 229299 relations 03/16/09 17:11:26 v1.07 @ Core2Duo, recovered 208310 polynomials 03/16/09 17:11:26 v1.07 @ Core2Duo, attempting to build 88257 cycles 03/16/09 17:11:26 v1.07 @ Core2Duo, found 88257 cycles in 5 passes 03/16/09 17:11:26 v1.07 @ Core2Duo, distribution of cycle lengths: 03/16/09 17:11:26 v1.07 @ Core2Duo, length 1 : 21574 03/16/09 17:11:26 v1.07 @ Core2Duo, length 2 : 15434 03/16/09 17:11:26 v1.07 @ Core2Duo, length 3 : 14923 03/16/09 17:11:26 v1.07 @ Core2Duo, length 4 : 11922 03/16/09 17:11:26 v1.07 @ Core2Duo, length 5 : 8967 03/16/09 17:11:26 v1.07 @ Core2Duo, length 6 : 6126 03/16/09 17:11:26 v1.07 @ Core2Duo, length 7 : 3975 03/16/09 17:11:26 v1.07 @ Core2Duo, length 9+: 5336 03/16/09 17:11:26 v1.07 @ Core2Duo, largest cycle: 18 relations 03/16/09 17:11:27 v1.07 @ Core2Duo, matrix is 88192 x 88257 (23.5 MB) with weight 5796900 (65.68/col) 03/16/09 17:11:27 v1.07 @ Core2Duo, sparse part has weight 5796900 (65.68/col) 03/16/09 17:11:27 v1.07 @ Core2Duo, filtering completed in 3 passes 03/16/09 17:11:27 v1.07 @ Core2Duo, matrix is 84165 x 84229 (22.6 MB) with weight 5587386 (66.34/col) 03/16/09 17:11:27 v1.07 @ Core2Duo, sparse part has weight 5587386 (66.34/col) 03/16/09 17:11:28 v1.07 @ Core2Duo, saving the first 48 matrix rows for later 03/16/09 17:11:28 v1.07 @ Core2Duo, matrix is 84117 x 84229 (15.3 MB) with weight 4514775 (53.60/col) 03/16/09 17:11:28 v1.07 @ Core2Duo, sparse part has weight 3511399 (41.69/col) 03/16/09 17:11:28 v1.07 @ Core2Duo, matrix includes 64 packed rows 03/16/09 17:11:28 v1.07 @ Core2Duo, using block size 33691 for processor cache size 2048 kB 03/16/09 17:11:29 v1.07 @ Core2Duo, commencing Lanczos iteration 03/16/09 17:11:29 v1.07 @ Core2Duo, memory use: 14.3 MB 03/16/09 17:12:10 v1.07 @ Core2Duo, lanczos halted after 1331 iterations (dim = 84113) 03/16/09 17:12:10 v1.07 @ Core2Duo, recovered 14 nontrivial dependencies 03/16/09 17:12:14 v1.07 @ Core2Duo, prp40 = 1229958574412209062018051100217580143117 03/16/09 17:12:21 v1.07 @ Core2Duo, prp57 = 333044917807515859998647944588270739048031866360687340149 03/16/09 17:12:21 v1.07 @ Core2Duo, Lanczos elapsed time = 51.2800 seconds. 03/16/09 17:12:21 v1.07 @ Core2Duo, Sqrt elapsed time = 10.8300 seconds. 03/16/09 17:12:21 v1.07 @ Core2Duo, SIQS elapsed time = 1096.3454 seconds.
(67·10191+23)/9 = 7(4)1907<192> = 32 · 112 · 9956010343<10> · 561750256945597<15> · C165
C165 = P34 · P131
P34 = 8742382186818513270120447634366543<34>
P131 = 13981250154135229763977812263070237818367049830931795609270922886301496724935321192761453876499684380506757087169425148648104581491<131>
p34=8742382186818513270120447634366543 p131=13981250154135229763977812263070237818367049830931795609270922886301496724935321192761453876499684380506757087169425148648104581491 B1=1000000 B2=900000000 Method=ECM Found by the ECM "workers" at http://factorization.ath.cx/
By Erik Branger / GMP-ECM, GGNFS, Msieve / Mar 17, 2009
3·10197-7 = 2(9)1963<198> = 67 · 25681669240470105277<20> · 21451079937695822139779<23> · 1876671100474280819361703093<28> · C127
C127 = P41 · P87
P41 = 18169475745070368235047593594222882815709<41>
P87 = 238365545013807894815720084404080433701714960158653579266908647472548106703098919265349<87>
GMP-ECM 6.2 [powered by GMP 4.2.2] [ECM] Input number is 4330976988588861597642516703502643572946498675819236690760299247042532595697073682060977818571773462597312462576121850836567441 (127 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3289226908 Step 1 took 46469ms Step 2 took 20219ms ********** Factor found in step 2: 18169475745070368235047593594222882815709 Found probable prime factor of 41 digits: 18169475745070368235047593594222882815709 Probable prime cofactor 238365545013807894815720084404080433701714960158653579266908647472548106703098919265349 has 87 digits
(47·10144+61)/9 = 5(2)1439<145> = 3 · 29 · C143
C143 = P29 · P34 · P81
P29 = 35665836196780192728533512673<29>
P34 = 1976709432008267264427519070426499<34>
P81 = 851414124657241695767207870881297397947237108071634876732657125843696881206420721<81>
Number: 52229_144 N=60025542784163473818646232439335887611749680715197956577266922094508301404853128991060025542784163473818646232439335887611749680715197956577267 ( 143 digits) SNFS difficulty: 146 digits. Divisors found: r1=35665836196780192728533512673 r2=1976709432008267264427519070426499 r3=851414124657241695767207870881297397947237108071634876732657125843696881206420721 Version: Total time: 12.31 hours. Scaled time: 12.75 units (timescale=1.036). Factorization parameters were as follows: n: 60025542784163473818646232439335887611749680715197956577266922094508301404853128991060025542784163473818646232439335887611749680715197956577267 m: 100000000000000000000000000000 deg: 5 c5: 47 c0: 610 skew: 1.67 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 364332 x 364580 Total sieving time: 12.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 12.31 hours. --------- CPU info (if available) ----------
(47·10143+61)/9 = 5(2)1429<144> = 73 · 4041006941<10> · 22110538207<11> · 132175148290802436241<21> · C102
C102 = P39 · P63
P39 = 843533943620266080062357916034467423067<39>
P63 = 718110386575849847385899895133421039103985314002695286774474957<63>
Number: 52229_143 N=605750486343000404874843255841407322336179563269398224619563116036694385526322917940252330159715633119 ( 102 digits) Divisors found: r1=843533943620266080062357916034467423067 r2=718110386575849847385899895133421039103985314002695286774474957 Version: Total time: 9.17 hours. Scaled time: 7.24 units (timescale=0.789). Factorization parameters were as follows: name: 52229_143 n: 605750486343000404874843255841407322336179563269398224619563116036694385526322917940252330159715633119 skew: 2028.19 # norm 3.98e+013 c5: 484680 c4: -957011292 c3: -7259569440258 c2: 12296856586459339 c1: 22812751531700371574 c0: -73288405825787053568 # alpha -5.27 Y1: 25932542933 Y0: -16571735877576221307 # Murphy_E 2.82e-009 # M 383023636319566478011625387693809335917375317312372669279878183539994291798391880866888635246176265339 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 232156 x 232404 Polynomial selection time: 0.62 hours. Total sieving time: 8.55 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 9.17 hours. --------- CPU info (if available) ----------
(47·10200+43)/9 = 5(2)1997<201> = 113 · 853 · 24859327 · 4022503938417172421<19> · 81661159834850505446996196467<29> · C141
C141 = P35 · P107
P35 = 14203539304945934778007887162430733<35>
P107 = 46712155440985981607753930130389120385682882442511927976679692258734669248416395002564591942933159986827539<107>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 663477935824788494666093050738147217914783193816803634989617103134072298117191799321453512055544348268243496237828509997594797466760504356087 (141 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1727023116 Step 1 took 93569ms Step 2 took 17098ms ********** Factor found in step 2: 14203539304945934778007887162430733 Found probable prime factor of 35 digits: 14203539304945934778007887162430733 Probable prime cofactor 46712155440985981607753930130389120385682882442511927976679692258734669248416395002564591942933159986827539 has 107 digits
By Markus Tervooren / Msieve / Mar 17, 2009
(47·10125+61)/9 = 5(2)1249<126> = 17 · 41668745081<11> · 71510375148277575668027<23> · C92
C92 = P38 · P54
P38 = 36119310367160443267030313272188255347<38>
P54 = 285422036073732811972082844292589214988221463070831533<54>
Msieve v. 1.40 Mon Mar 16 18:48:35 2009 random seeds: 09b0ea96 fc39a54b factoring 10309247106574019575801427213546091197756556283296533777875259460763507614969253051823456951 (92 digits) searching for 15-digit factors commencing quadratic sieve (92-digit input) using multiplier of 11 using 32kb Intel Core sieve core sieve interval: 36 blocks of size 32768 processing polynomials in batches of 6 using a sieve bound of 1748333 (65882 primes) using large prime bound of 176581633 (27 bits) using double large prime bound of 699039714332622 (42-50 bits) using trial factoring cutoff of 50 bits polynomial 'A' values have 12 factors sieving in progress (press Ctrl-C to pause) 66430 relations (16969 full + 49461 combined from 801476 partial), need 65978 66430 relations (16969 full + 49461 combined from 801476 partial), need 65978 sieving complete, commencing postprocessing begin with 818445 relations reduce to 166376 relations in 11 passes attempting to read 166376 relations recovered 166376 relations recovered 147930 polynomials attempting to build 66430 cycles found 66430 cycles in 5 passes distribution of cycle lengths: length 1 : 16969 length 2 : 12288 length 3 : 11501 length 4 : 9184 length 5 : 6476 length 6 : 4214 length 7 : 2619 length 9+: 3179 largest cycle: 19 relations matrix is 65882 x 66430 (17.4 MB) with weight 4026396 (60.61/col) sparse part has weight 4026396 (60.61/col) filtering completed in 3 passes matrix is 62105 x 62169 (16.3 MB) with weight 3763927 (60.54/col) sparse part has weight 3763927 (60.54/col) saving the first 48 matrix rows for later matrix is 62057 x 62169 (10.1 MB) with weight 2907251 (46.76/col) sparse part has weight 2023206 (32.54/col) matrix includes 64 packed rows using block size 24867 for processor cache size 4096 kB commencing Lanczos iteration memory use: 9.2 MB linear algebra completed 56196 of 62169 dimensions (90.4%, ETA 0h 0m) lanczos halted after 983 iterations (dim = 62057) recovered 18 nontrivial dependencies prp38 factor: 36119310367160443267030313272188255347 prp54 factor: 285422036073732811972082844292589214988221463070831533 elapsed time 01:26:49
By Ignacio Santos / GGNFS, Msieve / Mar 17, 2009
(47·10172-11)/9 = 5(2)1711<173> = 3 · 13 · C172
C172 = P38 · P40 · P94
P38 = 57326470280112762825482407875021619271<38>
P40 = 2765222216575167074537458175588223153487<40>
P94 = 8447058499970139658223220341483759714366251045724118947254686381744093301848283714760444491507<94>
Number: 52221_172 N=1339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339 ( 172 digits) SNFS difficulty: 174 digits. Divisors found: r1=57326470280112762825482407875021619271 (pp38) r2=2765222216575167074537458175588223153487 (pp40) r3=8447058499970139658223220341483759714366251045724118947254686381744093301848283714760444491507 (pp94) Version: Msieve-1.39 Total time: 76.71 hours. Scaled time: 133.09 units (timescale=1.735). Factorization parameters were as follows: n: 1339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339031339 m: 20000000000000000000000000000000000 deg: 5 c5: 1175 c0: -88 skew: 0.60 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 6950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1063299 x 1063547 Total sieving time: 76.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 76.71 hours. --------- CPU info (if available) ----------
(47·10124+61)/9 = 5(2)1239<125> = 5474531 · 10669691 · 130625682749<12> · C100
C100 = P40 · P61
P40 = 4060994832987603706866691724669597451559<40>
P61 = 1685371232188603324955176401904084463066907092390985334424239<61>
Number: 52229_124 N=6844283865583869028296936434404561653472298359609743449444989938676734020553820586253449788957938601 ( 100 digits) SNFS difficulty: 126 digits. Divisors found: r1=4060994832987603706866691724669597451559 (pp40) r2=1685371232188603324955176401904084463066907092390985334424239 (pp61) Version: Msieve-1.39 Total time: 1.72 hours. Scaled time: 2.98 units (timescale=1.739). Factorization parameters were as follows: n: 6844283865583869028296936434404561653472298359609743449444989938676734020553820586253449788957938601 m: 10000000000000000000000000 deg: 5 c5: 47 c0: 610 skew: 1.67 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 144287 x 144535 Total sieving time: 1.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.72 hours. --------- CPU info (if available) ----------
(47·10120+61)/9 = 5(2)1199<121> = 32 · 953 · 541999 · 556403 · 246792659 · C97
C97 = P46 · P51
P46 = 9009871097094871337526875860959775050975172901<46>
P51 = 907990229708034753497605253062135272842718763548199<51>
Number: 52229_120 N=8180874927090955321763329739007171305207975714973516401847502742135482630269011446011380272155299 ( 97 digits) SNFS difficulty: 121 digits. Divisors found: r1=9009871097094871337526875860959775050975172901 (pp46) r2=907990229708034753497605253062135272842718763548199 (pp51) Version: Msieve-1.39 Total time: 1.40 hours. Scaled time: 1.69 units (timescale=1.205). Factorization parameters were as follows: n: 8180874927090955321763329739007171305207975714973516401847502742135482630269011446011380272155299 m: 1000000000000000000000000 deg: 5 c5: 47 c0: 61 skew: 1.05 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 675001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 84053 x 84301 Total sieving time: 1.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.40 hours. --------- CPU info (if available) ----------
(47·10126+61)/9 = 5(2)1259<127> = 3 · 31 · 83 · 241 · 128629 · 897861760885987<15> · C101
C101 = P41 · P61
P41 = 23894510075301486165654975089685133299839<41>
P61 = 1017257184052053219025068016261178571707894387955363477622483<61>
Number: 52229_126 N=24306862033504603934335500192850107717193325380275387792278851810924822007257197746988141412086680237 ( 101 digits) SNFS difficulty: 127 digits. Divisors found: r1=23894510075301486165654975089685133299839 (pp41) r2=1017257184052053219025068016261178571707894387955363477622483 (pp61) Version: Msieve-1.39 Total time: 1.75 hours. Scaled time: 3.04 units (timescale=1.739). Factorization parameters were as follows: n: 24306862033504603934335500192850107717193325380275387792278851810924822007257197746988141412086680237 m: 10000000000000000000000000 deg: 5 c5: 470 c0: 61 skew: 0.66 type: snfs lss: 1 rlim: 940000 alim: 940000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 940000/940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [470000, 820001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 139863 x 140111 Total sieving time: 1.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,940000,940000,26,26,46,46,2.3,2.3,50000 total time: 1.75 hours. --------- CPU info (if available) ----------
(47·10119+61)/9 = 5(2)1189<120> = 67 · 73 · 84499 · 51527471 · 13944102105239<14> · C91
C91 = P39 · P52
P39 = 449984349489798173821454543304923876501<39>
P52 = 3908222901972372478578448309529138923621476871226249<52>
Number: 52229_119 N=1758639140205169286031893103550385204774521808095693803127341596688532507052227630505474749 ( 91 digits) SNFS difficulty: 121 digits. Divisors found: r1=449984349489798173821454543304923876501 (pp39) r2=3908222901972372478578448309529138923621476871226249 (pp52) Version: Msieve-1.39 Total time: 1.57 hours. Scaled time: 1.89 units (timescale=1.203). Factorization parameters were as follows: n: 1758639140205169286031893103550385204774521808095693803127341596688532507052227630505474749 m: 1000000000000000000000000 deg: 5 c5: 47 c0: 610 skew: 1.67 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 725001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 89511 x 89759 Total sieving time: 1.57 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 1.57 hours. --------- CPU info (if available) ----------
(47·10118+61)/9 = 5(2)1179<119> = C119
C119 = P29 · P41 · P51
P29 = 18545033725620385839073282769<29>
P41 = 18245443874384613460664481658963115751599<41>
P51 = 154338149112696928687790210316254402187911944002059<51>
Number: 52229_118 N=52222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=18545033725620385839073282769 (pp29) r2=18245443874384613460664481658963115751599 (pp41) r3=154338149112696928687790210316254402187911944002059 (pp51) Version: Msieve-1.39 Total time: 1.87 hours. Scaled time: 3.26 units (timescale=1.739). Factorization parameters were as follows: n: 52222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 m: 500000000000000000000000 deg: 5 c5: 376 c0: 1525 skew: 1.32 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 815001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 96047 x 96284 Total sieving time: 1.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.87 hours. --------- CPU info (if available) ----------
(47·10151+7)/9 = 5(2)1503<152> = 54377 · C147
C147 = P67 · P81
P67 = 1396878228389702772023212273444635430643248153499312015251540972847<67>
P81 = 687514015860989579211268857010371322143295142608516624964678470259632117016644217<81>
Number: 52223_151 N=960373360468989135520941247627162627990183758247461651474377443077444916457734377075274881332589554815863733236887327771341232915060084635456575799 ( 147 digits) SNFS difficulty: 153 digits. Divisors found: r1=1396878228389702772023212273444635430643248153499312015251540972847 (pp67) r2=687514015860989579211268857010371322143295142608516624964678470259632117016644217 (pp81) Version: Msieve-1.39 Total time: 18.35 hours. Scaled time: 47.19 units (timescale=2.571). Factorization parameters were as follows: n: 960373360468989135520941247627162627990183758247461651474377443077444916457734377075274881332589554815863733236887327771341232915060084635456575799 m: 2000000000000000000000000000000 deg: 5 c5: 235 c0: 112 skew: 0.86 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 436659 x 436907 Total sieving time: 18.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 18.35 hours. --------- CPU info (if available) ----------
(47·10141+61)/9 = 5(2)1409<142> = 3 · 72 · 17 · 19 · 31 · C136
C136 = P33 · P49 · P55
P33 = 237889815236994003472994542573001<33>
P49 = 2770758482137124969166412549823186766443947403693<49>
P55 = 5382688866148215158381784090133347240153974065965281623<55>
Number: 52229_141 N=3547919828184056116315607548433446194927697545722684470883241053448355384409942056430193280858844197931955275979473094651933589885680739 ( 136 digits) SNFS difficulty: 142 digits. Divisors found: r1=237889815236994003472994542573001 (pp33) r2=2770758482137124969166412549823186766443947403693 (pp49) r3=5382688866148215158381784090133347240153974065965281623 (pp55) Version: Msieve-1.39 Total time: 5.65 hours. Scaled time: 6.78 units (timescale=1.200). Factorization parameters were as follows: n: 3547919828184056116315607548433446194927697545722684470883241053448355384409942056430193280858844197931955275979473094651933589885680739 m: 10000000000000000000000000000 deg: 5 c5: 470 c0: 61 skew: 0.66 type: snfs lss: 1 rlim: 1670000 alim: 1670000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1670000/1670000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [835000, 1835001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 274463 x 274711 Total sieving time: 5.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1670000,1670000,26,26,48,48,2.3,2.3,100000 total time: 5.65 hours. --------- CPU info (if available) ----------
(47·10142+61)/9 = 5(2)1419<143> = 1487 · 4300297 · C133
C133 = P37 · P97
P37 = 4565845753121195746924551387258397021<37>
P97 = 1788647224960539742443560414147995611121695950816486297797249923096857197776551827973807510280991<97>
Number: 52229_142 N=8166687335918092412037262866937791195485907167805717719906495118566264796547401483301565255820867166648568323166129315468551947327811 ( 133 digits) SNFS difficulty: 144 digits. Divisors found: r1=4565845753121195746924551387258397021 (pp37) r2=1788647224960539742443560414147995611121695950816486297797249923096857197776551827973807510280991 (pp97) Version: Msieve-1.39 Total time: 10.51 hours. Scaled time: 27.01 units (timescale=2.571). Factorization parameters were as follows: n: 8166687335918092412037262866937791195485907167805717719906495118566264796547401483301565255820867166648568323166129315468551947327811 m: 20000000000000000000000000000 deg: 5 c5: 1175 c0: 488 skew: 0.84 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 344241 x 344489 Total sieving time: 10.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,100000 total time: 10.51 hours. --------- CPU info (if available) ----------
Factorizations of 522...229 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By matsui / GGNFS / Mar 16, 2009
6·10192-1 = 5(9)192<193> = 23 · 267413 · C186
C186 = P84 · P103
P84 = 890232504322972376418629865797962384943059627593763817566906419095999519232749088479<84>
P103 = 1095815529709465005938774668510968742822557932763346596236533113736034194519679191569679150889348208619<103>
N=975530603289261570483955854638786218809238079707028649220168965152258377734879722767209619902385156066198856385473763998660921658551606950915689930199159450314519195922152007503781400501 ( 186 digits) SNFS difficulty: 193 digits. Divisors found: r1=890232504322972376418629865797962384943059627593763817566906419095999519232749088479 (pp84) r2=1095815529709465005938774668510968742822557932763346596236533113736034194519679191569679150889348208619 (pp103) Version: GGNFS-0.77.1-20060722-nocona
By Robert Backstrom / GMP-ECM, Msieve, GGNFS / Mar 16, 2009
(47·10150+7)/9 = 5(2)1493<151> = 32 · 12227 · 612162408550839449<18> · C128
C128 = P38 · P43 · P48
P38 = 12981001349455405687802789400335433709<38>
P43 = 8235387083643003571164062884161771612247309<43>
P48 = 725160363174653876136764441831634563361439526269<48>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 77522232259394358631908094737783731115797641883602078896925959594795952897334482639214941425170554281822871672429199668480018789 (128 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=652276842 Step 1 took 38621ms Step 2 took 16218ms ********** Factor found in step 2: 12981001349455405687802789400335433709 Found probable prime factor of 38 digits: 12981001349455405687802789400335433709 Composite cofactor 5971976288458414107720523065381110836076091172026394562990564642925121822831406723430060121 has 91 digits Mon Mar 16 04:27:42 2009 Mon Mar 16 04:27:42 2009 Mon Mar 16 04:27:42 2009 Msieve v. 1.39 Mon Mar 16 04:27:42 2009 random seeds: 548c4a60 89bde685 Mon Mar 16 04:27:42 2009 factoring 5971976288458414107720523065381110836076091172026394562990564642925121822831406723430060121 (91 digits) Mon Mar 16 04:27:43 2009 searching for 15-digit factors Mon Mar 16 04:27:44 2009 commencing quadratic sieve (91-digit input) Mon Mar 16 04:27:44 2009 using multiplier of 1 Mon Mar 16 04:27:44 2009 using 32kb Intel Core sieve core Mon Mar 16 04:27:44 2009 sieve interval: 36 blocks of size 32768 Mon Mar 16 04:27:44 2009 processing polynomials in batches of 6 Mon Mar 16 04:27:44 2009 using a sieve bound of 1716163 (64706 primes) Mon Mar 16 04:27:44 2009 using large prime bound of 164751648 (27 bits) Mon Mar 16 04:27:44 2009 using double large prime bound of 617011891179744 (42-50 bits) Mon Mar 16 04:27:44 2009 using trial factoring cutoff of 50 bits Mon Mar 16 04:27:44 2009 polynomial 'A' values have 12 factors Mon Mar 16 05:26:25 2009 65029 relations (16951 full + 48078 combined from 761306 partial), need 64802 Mon Mar 16 05:26:26 2009 begin with 778257 relations Mon Mar 16 05:26:26 2009 reduce to 161404 relations in 9 passes Mon Mar 16 05:26:26 2009 attempting to read 161404 relations Mon Mar 16 05:26:28 2009 recovered 161404 relations Mon Mar 16 05:26:28 2009 recovered 139326 polynomials Mon Mar 16 05:26:28 2009 attempting to build 65029 cycles Mon Mar 16 05:26:28 2009 found 65029 cycles in 6 passes Mon Mar 16 05:26:28 2009 distribution of cycle lengths: Mon Mar 16 05:26:28 2009 length 1 : 16951 Mon Mar 16 05:26:28 2009 length 2 : 12287 Mon Mar 16 05:26:28 2009 length 3 : 11392 Mon Mar 16 05:26:28 2009 length 4 : 8627 Mon Mar 16 05:26:28 2009 length 5 : 6184 Mon Mar 16 05:26:28 2009 length 6 : 4044 Mon Mar 16 05:26:28 2009 length 7 : 2499 Mon Mar 16 05:26:28 2009 length 9+: 3045 Mon Mar 16 05:26:28 2009 largest cycle: 21 relations Mon Mar 16 05:26:28 2009 matrix is 64706 x 65029 (15.9 MB) with weight 3898076 (59.94/col) Mon Mar 16 05:26:28 2009 sparse part has weight 3898076 (59.94/col) Mon Mar 16 05:26:28 2009 filtering completed in 3 passes Mon Mar 16 05:26:28 2009 matrix is 60820 x 60884 (14.9 MB) with weight 3665169 (60.20/col) Mon Mar 16 05:26:28 2009 sparse part has weight 3665169 (60.20/col) Mon Mar 16 05:26:28 2009 saving the first 48 matrix rows for later Mon Mar 16 05:26:28 2009 matrix is 60772 x 60884 (9.3 MB) with weight 2866426 (47.08/col) Mon Mar 16 05:26:28 2009 sparse part has weight 2067717 (33.96/col) Mon Mar 16 05:26:28 2009 matrix includes 64 packed rows Mon Mar 16 05:26:28 2009 using block size 24353 for processor cache size 6144 kB Mon Mar 16 05:26:29 2009 commencing Lanczos iteration Mon Mar 16 05:26:29 2009 memory use: 9.2 MB Mon Mar 16 05:26:41 2009 lanczos halted after 962 iterations (dim = 60769) Mon Mar 16 05:26:42 2009 recovered 15 nontrivial dependencies Mon Mar 16 05:26:42 2009 prp43 factor: 8235387083643003571164062884161771612247309 Mon Mar 16 05:26:42 2009 prp48 factor: 725160363174653876136764441831634563361439526269 Mon Mar 16 05:26:42 2009 elapsed time 00:59:00
(46·10165+53)/9 = 5(1)1647<166> = 7 · 4253 · 4844406113<10> · 4523158715685319<16> · 10446812610506949093142876229<29> · C108
C108 = P52 · P56
P52 = 9805395862581591558891811743241601906381832514763117<52>
P56 = 76487522248477928542358689183140209557258551332628166337<56>
Number: n N=749990434194342913627839994778316141735461561144432665049318858824500331417760967267346175218968089628592429 ( 108 digits) Divisors found: r1=9805395862581591558891811743241601906381832514763117 (pp52) r2=76487522248477928542358689183140209557258551332628166337 (pp56) Version: GGNFS-0.77.1-20051202-athlon Total time: 13.07 hours. Scaled time: 23.90 units (timescale=1.829). Factorization parameters were as follows: n: 749990434194342913627839994778316141735461561144432665049318858824500331417760967267346175218968089628592429 skew: 60805.78 Y0: -788541049841131603807 Y1: 173557720067 c0: -882568465664650229685322800 c1: 66651423558043426366728 c2: 163379316995626583 c3: -27437337795142 c4: -23583382 c5: 2460 type: gnfs name: KA_5_1_164_7 rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:183340, largePrimes:15881747 encountered Relations: rels:14006430, finalFF:471490 Max relations in full relation-set: 48 Initial matrix: 366494 x 471490 with sparse part having weight 64122111. Pruned matrix : 317653 x 319549 with weight 36740128. Total sieving time: 10.80 hours. Total relation processing time: 0.47 hours. Matrix solve time: 1.22 hours. Total square root time: 0.58 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,56,56,2.6,2.6,150000 total time: 13.07 hours. --------- CPU info (if available) ----------
(41·10203-23)/9 = 4(5)2023<204> = 33 · 7 · C202
C202 = P86 · P117
P86 = 15094125456308490465551318878115996120339025537086545292989082174692040718527594086663<86>
P117 = 159687744862615450159285579376615435998685210599348040474599213834374916299730103004717447075079045798991536586802979<117>
Number: n N=2410346854791299235743680188124632569077013521457965902410346854791299235743680188124632569077013521457965902410346854791299235743680188124632569077013521457965902410346854791299235743680188124632569077 ( 202 digits) SNFS difficulty: 204 digits. Divisors found: Mon Mar 16 16:21:54 2009 prp86 factor: 15094125456308490465551318878115996120339025537086545292989082174692040718527594086663 Mon Mar 16 16:21:54 2009 prp117 factor: 159687744862615450159285579376615435998685210599348040474599213834374916299730103004717447075079045798991536586802979 Mon Mar 16 16:21:54 2009 elapsed time 21:39:56 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 125.18 hours. Scaled time: 252.35 units (timescale=2.016). Factorization parameters were as follows: name: KA_4_5_202_3 n: 2410346854791299235743680188124632569077013521457965902410346854791299235743680188124632569077013521457965902410346854791299235743680188124632569077013521457965902410346854791299235743680188124632569077 deg: 5 c5: 41000 c0: -23 m: 10000000000000000000000000000000000000000 skew: 0.22 type: snfs rlim: 12000000 alim: 12000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [6000000, 36099990) Primes: RFBsize:788060, AFBsize:789435, largePrimes:34237679 encountered Relations: rels:27085591, finalFF:93251 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8491922 hash collisions in 45468912 relations Msieve: matrix is 3545224 x 3545472 (963.9 MB) Total sieving time: 124.26 hours. Total relation processing time: 0.92 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,12000000,12000000,29,29,58,58,2.5,2.5,100000 total time: 125.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
(46·10170+53)/9 = 5(1)1697<171> = 11 · 19387 · 1665479 · 1794248597877849317<19> · 5408617979271676407647398602101<31> · C111
C111 = P55 · P56
P55 = 9374595531922456602937532247107542324675101892801624967<55>
P56 = 15817993895177507742759884041742063160131832583292046701<56>
Number: n N=148287294893707759450826773884287490623864556110591552787817847024979548974477424569602377450628469980051583867 ( 111 digits) Divisors found: Mon Mar 16 20:53:16 2009 prp55 factor: 9374595531922456602937532247107542324675101892801624967 Mon Mar 16 20:53:16 2009 prp56 factor: 15817993895177507742759884041742063160131832583292046701 Mon Mar 16 20:53:16 2009 elapsed time 01:30:27 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 20.68 hours. Scaled time: 27.03 units (timescale=1.307). Factorization parameters were as follows: n: 148287294893707759450826773884287490623864556110591552787817847024979548974477424569602377450628469980051583867 skew: 63714.37 Y0: -2083158238752119845248 Y1: 469520352907 c0: -2678946942485839684630308575 c1: 101572738408480540974053 c2: 414611238680719735 c3: -50779098672521 c4: 32437288 c5: 3780 type: gnfs name: KA_5_1_169_7 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1600000, 10000000 ) Primes: RFBsize:230209, AFBsize:230792, largePrimes:16366686 encountered Relations: rels:14572121, finalFF:522575 Max relations in full relation-set: 28 Initial matrix: 461084 x 522575 with sparse part having weight 45745102. Pruned matrix : 412416 x 414785 with weight 31728828. Msieve: found 814083 hash collisions in 15032833 relations Msieve: matrix is 427960 x 428207 (118.9 MB) Total sieving time: 20.02 hours. Total relation processing time: 0.62 hours. Matrix solve time: 0.05 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,28,28,56,56,2.6,2.6,100000 total time: 20.68 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GMP-ECM / Mar 16, 2009
(67·10177+23)/9 = 7(4)1767<178> = 11 · 3313 · 43467157849<11> · C163
C163 = P32 · P132
P32 = 10508727647188092857659286600551<32>
P132 = 447205144929609509317687519376751730320168590535112616587559943697202952809222522383487947174800411997675493575507903924616064217571<132>
p32 = 10508727647188092857659286600551 p132 = 447205144929609509317687519376751730320168590535112616587559943697202952809222522383487947174800411997675493575507903924616064217571 B1=600000 B2=600000000 Application: GMP-ECM Note: This result was found by the ECM "workers" at http://factorization.ath.cx/. They don't report tons of information to the user when a factor is found, so I don't know the sigma of the factor-finding curve, the exact GMP-ECM version used, or what hardware/OS the factor was found on.
(67·10178+23)/9 = 7(4)1777<179> = 20795833 · 235531171 · C164
C164 = P33 · C131
P33 = 198704163317525547507605592238973<33>
C131 = [76489287256485156251050899344113604927615140216976893295676856936461741706567528717104729246446033285942552667734816863911083369473<131>]
p33 = 198704163317525547507605592238973 c131 = 76489287256485156251050899344113604927615140216976893295676856936461741706567528717104729246446033285942552667734816863911083369473 B1=600000 B2=600000000 Method=ECM Found with: GMP-ECM (version unknown) Found by the ECM "workers" at http://factorization.ath.cx/
By Sinkiti Sibata / Msieve, GGNFS / Mar 16, 2009
(47·10119+7)/9 = 5(2)1183<120> = 13 · 19 · 2893741 · 143729909341<12> · C100
C100 = P50 · P51
P50 = 39630807092145422370870826294127675253372111261851<50>
P51 = 128268102157416318560550976482838943377755476654339<51>
Sun Mar 15 20:54:05 2009 Msieve v. 1.39 Sun Mar 15 20:54:05 2009 random seeds: 4ac18da0 1b5e6302 Sun Mar 15 20:54:05 2009 factoring 5083368412676168189528847700401902044764602883805115375607617419999378580510744455954739057044321489 (100 digits) Sun Mar 15 20:54:06 2009 searching for 15-digit factors Sun Mar 15 20:54:07 2009 commencing quadratic sieve (100-digit input) Sun Mar 15 20:54:08 2009 using multiplier of 1 Sun Mar 15 20:54:08 2009 using 32kb Intel Core sieve core Sun Mar 15 20:54:08 2009 sieve interval: 36 blocks of size 32768 Sun Mar 15 20:54:08 2009 processing polynomials in batches of 6 Sun Mar 15 20:54:08 2009 using a sieve bound of 2751557 (99748 primes) Sun Mar 15 20:54:08 2009 using large prime bound of 412733550 (28 bits) Sun Mar 15 20:54:08 2009 using double large prime bound of 3222593841584400 (43-52 bits) Sun Mar 15 20:54:08 2009 using trial factoring cutoff of 52 bits Sun Mar 15 20:54:08 2009 polynomial 'A' values have 13 factors Mon Mar 16 04:22:33 2009 100300 relations (24922 full + 75378 combined from 1480412 partial), need 99844 Mon Mar 16 04:22:34 2009 begin with 1505334 relations Mon Mar 16 04:22:36 2009 reduce to 258872 relations in 11 passes Mon Mar 16 04:22:36 2009 attempting to read 258872 relations Mon Mar 16 04:22:40 2009 recovered 258872 relations Mon Mar 16 04:22:40 2009 recovered 245085 polynomials Mon Mar 16 04:22:41 2009 attempting to build 100300 cycles Mon Mar 16 04:22:41 2009 found 100300 cycles in 7 passes Mon Mar 16 04:22:41 2009 distribution of cycle lengths: Mon Mar 16 04:22:41 2009 length 1 : 24922 Mon Mar 16 04:22:41 2009 length 2 : 17935 Mon Mar 16 04:22:41 2009 length 3 : 16953 Mon Mar 16 04:22:41 2009 length 4 : 13617 Mon Mar 16 04:22:41 2009 length 5 : 10084 Mon Mar 16 04:22:41 2009 length 6 : 6762 Mon Mar 16 04:22:41 2009 length 7 : 4343 Mon Mar 16 04:22:41 2009 length 9+: 5684 Mon Mar 16 04:22:41 2009 largest cycle: 21 relations Mon Mar 16 04:22:41 2009 matrix is 99748 x 100300 (26.1 MB) with weight 6448649 (64.29/col) Mon Mar 16 04:22:41 2009 sparse part has weight 6448649 (64.29/col) Mon Mar 16 04:22:43 2009 filtering completed in 3 passes Mon Mar 16 04:22:43 2009 matrix is 94724 x 94788 (24.7 MB) with weight 6106123 (64.42/col) Mon Mar 16 04:22:43 2009 sparse part has weight 6106123 (64.42/col) Mon Mar 16 04:22:43 2009 saving the first 48 matrix rows for later Mon Mar 16 04:22:43 2009 matrix is 94676 x 94788 (14.0 MB) with weight 4666638 (49.23/col) Mon Mar 16 04:22:43 2009 sparse part has weight 3103290 (32.74/col) Mon Mar 16 04:22:43 2009 matrix includes 64 packed rows Mon Mar 16 04:22:43 2009 using block size 37915 for processor cache size 1024 kB Mon Mar 16 04:22:44 2009 commencing Lanczos iteration Mon Mar 16 04:22:44 2009 memory use: 14.4 MB Mon Mar 16 04:23:41 2009 lanczos halted after 1498 iterations (dim = 94675) Mon Mar 16 04:23:42 2009 recovered 16 nontrivial dependencies Mon Mar 16 04:23:42 2009 prp50 factor: 39630807092145422370870826294127675253372111261851 Mon Mar 16 04:23:42 2009 prp51 factor: 128268102157416318560550976482838943377755476654339 Mon Mar 16 04:23:42 2009 elapsed time 07:29:37
(47·10134+43)/9 = 5(2)1337<135> = 641 · 1091 · 13597 · 19179759098013795972018131<26> · C100
C100 = P35 · P65
P35 = 33140813277130657263276598717234867<35>
P65 = 86401873769297648431111420569995876592842102131867050272977396093<65>
Number: 52227_134 N=2863428365382506574459322158320072149516768735261054173117115655009321393116863539484787994769174631 ( 100 digits) SNFS difficulty: 136 digits. Divisors found: r1=33140813277130657263276598717234867 (pp35) r2=86401873769297648431111420569995876592842102131867050272977396093 (pp65) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 10.58 hours. Scaled time: 4.98 units (timescale=0.471). Factorization parameters were as follows: name: 52227_134 n: 2863428365382506574459322158320072149516768735261054173117115655009321393116863539484787994769174631 m: 1000000000000000000000000000 deg: 5 c5: 47 c0: 430 skew: 1.56 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1565001) Primes: RFBsize:102146, AFBsize:102377, largePrimes:3399888 encountered Relations: rels:3402913, finalFF:274311 Max relations in full relation-set: 28 Initial matrix: 204588 x 274311 with sparse part having weight 26498437. Pruned matrix : 185448 x 186534 with weight 15077134. Total sieving time: 9.64 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.71 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 10.58 hours. --------- CPU info (if available) ----------
(47·10116+43)/9 = 5(2)1157<117> = 53 · 311 · C113
C113 = P55 · P58
P55 = 3685081937763363023441186298874982289878764245745070221<55>
P58 = 8597495180320429810468301518681351153843577630984803856789<58>
Number: 52227_116 N=31682474199006383681503501924541783790706923631755276480144526009963126992793922357715356562653777966524432580369 ( 113 digits) SNFS difficulty: 117 digits. Divisors found: r1=3685081937763363023441186298874982289878764245745070221 (pp55) r2=8597495180320429810468301518681351153843577630984803856789 (pp58) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.54 hours. Scaled time: 1.20 units (timescale=0.473). Factorization parameters were as follows: name: 52227_116 n: 31682474199006383681503501924541783790706923631755276480144526009963126992793922357715356562653777966524432580369 m: 100000000000000000000000 deg: 5 c5: 470 c0: 43 skew: 0.62 type: snfs lss: 1 rlim: 640000 alim: 640000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 640000/640000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [320000, 570001) Primes: RFBsize:52074, AFBsize:52431, largePrimes:1376744 encountered Relations: rels:1402615, finalFF:193849 Max relations in full relation-set: 28 Initial matrix: 104572 x 193849 with sparse part having weight 9381540. Pruned matrix : 77739 x 78325 with weight 2885815. Total sieving time: 2.42 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,50000 total time: 2.54 hours. --------- CPU info (if available) ----------
(47·10132+43)/9 = 5(2)1317<133> = 313 · 541 · 389985959115019<15> · C113
C113 = P44 · P70
P44 = 66805162715275047378310258081346195204829497<44>
P70 = 1183735708075989040372436812349988192444720219615958206238555847039933<70>
Number: 52227_132 N=79079656589897770829755883230016693801070150647426375600966191633835688276797963739134622541280218760533415303701 ( 113 digits) SNFS difficulty: 134 digits. Divisors found: r1=66805162715275047378310258081346195204829497 (pp44) r2=1183735708075989040372436812349988192444720219615958206238555847039933 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 8.20 hours. Scaled time: 3.87 units (timescale=0.472). Factorization parameters were as follows: name: 52227_132 n: 79079656589897770829755883230016693801070150647426375600966191633835688276797963739134622541280218760533415303701 m: 200000000000000000000000000 deg: 5 c5: 1175 c0: 344 skew: 0.78 type: snfs lss: 1 rlim: 1220000 alim: 1220000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1220000/1220000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [610000, 1285001) Primes: RFBsize:94358, AFBsize:94703, largePrimes:3084901 encountered Relations: rels:3026470, finalFF:247939 Max relations in full relation-set: 28 Initial matrix: 189128 x 247939 with sparse part having weight 21305585. Pruned matrix : 172342 x 173351 with weight 11877184. Total sieving time: 7.47 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.53 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1220000,1220000,26,26,47,47,2.3,2.3,75000 total time: 8.20 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS,Msieve / Mar 16, 2009
(47·10138+43)/9 = 5(2)1377<139> = 13109 · 35591 · C131
C131 = P41 · P90
P41 = 12110497390862521623462778958590913065727<41>
P90 = 924237560545730707810965451625528143183388041524274755116745709326870820529485298305483679<90>
Number: 52227_138 N=11192976565526213593774731826873141752598428254938857864208351985208269040250801302155933442685237411336000086672694960933452769633 ( 131 digits) SNFS difficulty: 141 digits. Divisors found: r1=12110497390862521623462778958590913065727 r2=924237560545730707810965451625528143183388041524274755116745709326870820529485298305483679 Version: Total time: 9.42 hours. Scaled time: 8.22 units (timescale=0.872). Factorization parameters were as follows: n: 11192976565526213593774731826873141752598428254938857864208351985208269040250801302155933442685237411336000086672694960933452769633 m: 5000000000000000000000000000 deg: 5 c5: 376 c0: 1075 skew: 1.23 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 301018 x 301266 Total sieving time: 9.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 9.42 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2 / Mar 16, 2009
(47·10173+43)/9 = 5(2)1727<174> = C174
C174 = P29 · C145
P29 = 90388236299737203736595896523<29>
C145 = [5777546322405015660288908414817858932872526998188643108740269812721019661590310819817117987276322539822666494675788815649610583379222590816956249<145>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4040459943 Step 1 took 11205ms ********** Factor found in step 1: 90388236299737203736595896523 Found probable prime factor of 29 digits: 90388236299737203736595896523 Composite cofactor has 145 digits
By Ignacio Santos / GGNFS, Msieve / Mar 16, 2009
(5·10179+1)/3 = 1(6)1787<180> = 107 · 3251 · C174
C174 = P59 · P115
P59 = 56945100399310037342624160677944917077499834609175255165571<59>
P115 = 8413789442005456821614991149706287245459928630228872132857739495389538113846090243571030134274400462207636702323561<115>
Number: 16667_179 N=479124084513655515532723695848198158055369495702736085997023681187001171937510720401390993042160044692694603433786488892466348719924183404866559151222101802368981123469318331 ( 174 digits) SNFS difficulty: 180 digits. Divisors found: r1=56945100399310037342624160677944917077499834609175255165571 (pp59) r2=8413789442005456821614991149706287245459928630228872132857739495389538113846090243571030134274400462207636702323561 (pp115) Version: Msieve-1.39 Total time: 94.34 hours. Scaled time: 164.05 units (timescale=1.739). Factorization parameters were as follows: n: 479124084513655515532723695848198158055369495702736085997023681187001171937510720401390993042160044692694603433786488892466348719924183404866559151222101802368981123469318331 m: 1000000000000000000000000000000000000 deg: 5 c5: 1 c0: 2 skew: 1.15 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3500000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1232775 x 1233023 Total sieving time: 94.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000 total time: 94.34 hours. --------- CPU info (if available) ----------
(47·10137+43)/9 = 5(2)1367<138> = 31 · 149 · 32621 · 51973 · 128113 · C120
C120 = P51 · P70
P51 = 225137369694189736044300833591348660134434473007233<51>
P70 = 2312019757258537421611817790983585370931405479576855830076562217781769<70>
Number: 52227_137 N=520522046830186152910240975750485609199636284388609452902752302842431586706848237660180276152553860197687119043952535177 ( 120 digits) SNFS difficulty: 139 digits. Divisors found: r1=225137369694189736044300833591348660134434473007233 (pp51) r2=2312019757258537421611817790983585370931405479576855830076562217781769 (pp70) Version: Msieve-1.39 Total time: 5.48 hours. Scaled time: 14.08 units (timescale=2.571). Factorization parameters were as follows: n: 520522046830186152910240975750485609199636284388609452902752302842431586706848237660180276152553860197687119043952535177 m: 2000000000000000000000000000 deg: 5 c5: 1175 c0: 344 skew: 0.78 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [740000, 1640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 235565 x 235813 Total sieving time: 5.48 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,48,48,2.3,2.3,75000 total time: 5.48 hours. --------- CPU info (if available) ----------
(47·10142+7)/9 = 5(2)1413<143> = 23 · 4567 · 5156969 · C131
C131 = P58 · P74
P58 = 5096739469024961520866987421681254104278729943636216958479<58>
P74 = 18915139382309534187342328756837372102811459581455292795741652706009590153<74>
Number: 52223_142 N=96405537451925433914025982196964859702746930465175341349339857626698320278573835356653181875433714404584241620469192691147008257287 ( 131 digits) SNFS difficulty: 145 digits. Divisors found: r1=5096739469024961520866987421681254104278729943636216958479 (pp58) r2=18915139382309534187342328756837372102811459581455292795741652706009590153 (pp74) Version: Msieve-1.39 Total time: 9.63 hours. Scaled time: 24.66 units (timescale=2.560). Factorization parameters were as follows: n: 96405537451925433914025982196964859702746930465175341349339857626698320278573835356653181875433714404584241620469192691147008257287 m: 50000000000000000000000000000 deg: 5 c5: 188 c0: 875 skew: 1.36 type: snfs lss: 1 rlim: 1880000 alim: 1880000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1880000/1880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [940000, 2540001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 319979 x 320227 Total sieving time: 9.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1880000,1880000,26,26,49,49,2.3,2.3,100000 total time: 9.63 hours. --------- CPU info (if available) ----------
(47·10163+43)/9 = 5(2)1627<164> = 3 · 19 · 59 · 39097 · C156
C156 = P51 · P106
P51 = 307031513422353026269894950420686124016927088828921<51>
P106 = 1293606215378519849799542839583733138204875126738568274252542589532440363745910647106817207149014577563617<106>
Number: 52227_163 N=397177874080229317051149764073089318013554005934812637198388942769447745098210464469279064246630105665903019528647062188207604864641024185378483205906967257 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: r1=307031513422353026269894950420686124016927088828921 (pp51) r2=1293606215378519849799542839583733138204875126738568274252542589532440363745910647106817207149014577563617 (pp106) Version: Msieve-1.39 Total time: 58.14 hours. Scaled time: 150.06 units (timescale=2.581). Factorization parameters were as follows: n: 397177874080229317051149764073089318013554005934812637198388942769447745098210464469279064246630105665903019528647062188207604864641024185378483205906967257 m: 500000000000000000000000000000000 deg: 5 c5: 376 c0: 1075 skew: 1.23 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 5150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 810291 x 810539 Total sieving time: 58.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 58.14 hours. --------- CPU info (if available) ----------
By Andreas Tete / Yafu v1.06 / Mar 15, 2009
(47·10111+43)/9 = 5(2)1107<112> = 1583 · 8483699246273473787<19> · C90
C90 = P32 · P59
P32 = 20563788999704702751348942468709<32>
P59 = 18909760596300166302687932434463976442247508762236338683643<59>
03/15/09 06:39:02 v1.06 @ LAPPIE, starting SIQS on c90: 388856326937246800236647155286316443867200551015387592401267281897787797733872823777626887 03/15/09 06:39:03 v1.06 @ LAPPIE, ==== sieve params ==== 03/15/09 06:39:03 v1.06 @ LAPPIE, n = 90 digits, 301 bits 03/15/09 06:39:03 v1.06 @ LAPPIE, factor base: 65244 primes (max prime = 1730863) 03/15/09 06:39:03 v1.06 @ LAPPIE, single large prime cutoff: 190394930 (110 * pmax) 03/15/09 06:39:03 v1.06 @ LAPPIE, double large prime range from 43 to 50 bits 03/15/09 06:39:03 v1.06 @ LAPPIE, double large prime cutoff: 800533817759177 03/15/09 06:39:03 v1.06 @ LAPPIE, using 10 large prime slices of factor base 03/15/09 06:39:03 v1.06 @ LAPPIE, buckets hold 1024 elements 03/15/09 06:39:03 v1.06 @ LAPPIE, sieve interval: 18 blocks of size 32768 03/15/09 06:39:03 v1.06 @ LAPPIE, polynomial A has ~ 12 factors 03/15/09 06:39:03 v1.06 @ LAPPIE, using multiplier of 7 03/15/09 06:39:03 v1.06 @ LAPPIE, using small prime variation correction of 19 bits 03/15/09 06:39:03 v1.06 @ LAPPIE, trial factoring cutoff at 100 bits 03/15/09 06:39:03 v1.06 @ LAPPIE, ==== sieving started ==== 03/15/09 07:56:06 v1.06 @ LAPPIE, sieve time = 1510.8310, relation time = 761.0720, poly_time = 2338.4970 03/15/09 07:56:06 v1.06 @ LAPPIE, 65309 relations found: 19538 full + 45771 from 717255 partial, using 573435 polys (280 A polys) 03/15/09 07:56:06 v1.06 @ LAPPIE, trial division touched 17037504 sieve locations out of 676451450880 03/15/09 07:56:06 v1.06 @ LAPPIE, ==== post processing stage (msieve-1.38) ==== 03/15/09 07:56:07 v1.06 @ LAPPIE, begin with 736793 relations 03/15/09 07:56:07 v1.06 @ LAPPIE, reduce to 146259 relations in 9 passes 03/15/09 07:56:10 v1.06 @ LAPPIE, recovered 146259 relations 03/15/09 07:56:10 v1.06 @ LAPPIE, recovered 129211 polynomials 03/15/09 07:56:10 v1.06 @ LAPPIE, attempting to build 65309 cycles 03/15/09 07:56:10 v1.06 @ LAPPIE, found 65309 cycles in 5 passes 03/15/09 07:56:10 v1.06 @ LAPPIE, distribution of cycle lengths: 03/15/09 07:56:10 v1.06 @ LAPPIE, length 1 : 19538 03/15/09 07:56:10 v1.06 @ LAPPIE, length 2 : 15375 03/15/09 07:56:10 v1.06 @ LAPPIE, length 3 : 12259 03/15/09 07:56:10 v1.06 @ LAPPIE, length 4 : 7991 03/15/09 07:56:10 v1.06 @ LAPPIE, length 5 : 4760 03/15/09 07:56:10 v1.06 @ LAPPIE, length 6 : 2682 03/15/09 07:56:10 v1.06 @ LAPPIE, length 7 : 1421 03/15/09 07:56:10 v1.06 @ LAPPIE, length 9+: 1283 03/15/09 07:56:10 v1.06 @ LAPPIE, largest cycle: 16 relations 03/15/09 07:56:10 v1.06 @ LAPPIE, matrix is 65244 x 65309 (14.4 MB) with weight 3502635 (53.63/col) 03/15/09 07:56:10 v1.06 @ LAPPIE, sparse part has weight 3502635 (53.63/col) 03/15/09 07:56:11 v1.06 @ LAPPIE, filtering completed in 3 passes 03/15/09 07:56:11 v1.06 @ LAPPIE, matrix is 60115 x 60179 (13.4 MB) with weight 3274208 (54.41/col) 03/15/09 07:56:11 v1.06 @ LAPPIE, sparse part has weight 3274208 (54.41/col) 03/15/09 07:56:11 v1.06 @ LAPPIE, saving the first 48 matrix rows for later 03/15/09 07:56:11 v1.06 @ LAPPIE, matrix is 60067 x 60179 (8.5 MB) with weight 2518371 (41.85/col) 03/15/09 07:56:11 v1.06 @ LAPPIE, sparse part has weight 1869106 (31.06/col) 03/15/09 07:56:11 v1.06 @ LAPPIE, matrix includes 64 packed rows 03/15/09 07:56:11 v1.06 @ LAPPIE, using block size 24071 for processor cache size 3072 kB 03/15/09 07:56:11 v1.06 @ LAPPIE, commencing Lanczos iteration 03/15/09 07:56:11 v1.06 @ LAPPIE, memory use: 8.6 MB 03/15/09 07:56:30 v1.06 @ LAPPIE, lanczos halted after 952 iterations (dim = 60065) 03/15/09 07:56:30 v1.06 @ LAPPIE, recovered 17 nontrivial dependencies 03/15/09 07:56:32 v1.06 @ LAPPIE, prp32 = 20563788999704702751348942468709 03/15/09 07:56:34 v1.06 @ LAPPIE, prp59 = 18909760596300166302687932434463976442247508762236338683643 03/15/09 07:56:34 v1.06 @ LAPPIE, Lanczos elapsed time = 23.7060 seconds. 03/15/09 07:56:34 v1.06 @ LAPPIE, Sqrt elapsed time = 4.7680 seconds. 03/15/09 07:56:34 v1.06 @ LAPPIE, Total elapsed time = 4652.3250 seconds.
By Markus Tervooren / Msieve / Mar 15, 2009
(47·10148+7)/9 = 5(2)1473<149> = 4603 · 9239 · C142
C142 = P51 · P91
P51 = 150977405811707391544441629014942915254146978114697<51>
P91 = 8133499563790653802159123230440166841774559689885450265413877571628391523856582549817248627<91>
N=1227974664311766589355733242444396647490170147725325989585003427865148305779162556968586001779105369927197797636322777822494344543088171771019 ( 142 digits) SNFS difficulty: 151 digits. Divisors found: r1=150977405811707391544441629014942915254146978114697 (pp51) r2=8133499563790653802159123230440166841774559689885450265413877571628391523856582549817248627 (pp91) Version: Msieve-1.39 Total time: 15.16 hours. Scaled time: 23.14 units (timescale=1.526). Factorization parameters were as follows: n: 1227974664311766589355733242444396647490170147725325989585003427865148305779162556968586001779105369927197797636322777822494344543088171771019 m: 500000000000000000000000000000 deg: 5 c5: 376 c0: 175 skew: 0.86 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 346131 x 346379 Total sieving time: 15.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 15.16 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2 / Mar 15, 2009
(47·10189+43)/9 = 5(2)1887<190> = 4229 · 15527 · 16249 · 35311 · 55829 · 20581049 · 606170051 · 1410339719<10> · 12297067394789855226919<23> · C122
C122 = P30 · P92
P30 = 981354875644372438893894308249<30>
P92 = 11692846518522856896650066130971974113304536609575734325101988145505082809852763906711273609<92>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3996468663 Step 1 took 6425ms Step 2 took 6668ms ********** Factor found in step 2: 981354875644372438893894308249 Found probable prime factor of 30 digits: 981354875644372438893894308249 Probable prime cofactor has 92 digits
(47·10135+43)/9 = 5(2)1347<136> = 1009 · 1436749 · C127
C127 = P28 · P100
P28 = 1224497256592206800729962339<28>
P100 = 2941883444553664147916566056863280701237761715183346787691176035860224740326839623028029463639854373<100>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1675325719 Step 1 took 6537ms Step 2 took 6712ms ********** Factor found in step 2: 1224497256592206800729962339 Found probable prime factor of 28 digits: 1224497256592206800729962339 Probable prime cofactor has 100 digits
(47·10172+43)/9 = 5(2)1717<173> = 3 · 7 · 2423 · 64373 · 106530477041<12> · 30832106241816221<17> · C136
C136 = P37 · P100
P37 = 2223523490790922978933773329717835559<37>
P100 = 2183032004907169798835967219091617895808587877255565369566738265988864330167127921846207946304885847<100>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4024211974 Step 1 took 8060ms Step 2 took 7553ms ********** Factor found in step 2: 2223523490790922978933773329717835559 Found probable prime factor of 37 digits: 2223523490790922978933773329717835559 Probable prime cofactor 2183032004907169798835967219091617895808587877255565369566738265988864330167127921846207946304885847 has 100 digits
(47·10164+43)/9 = 5(2)1637<165> = 21031 · 56099 · C156
C156 = P34 · C122
P34 = 9480603531462587241575906463236513<34>
C122 = [46687897862988976253887223591929792850820668664171354728982099424768530856044160419085192929785748509473936291264991452391<122>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3007815294 Step 1 took 9252ms Step 2 took 8645ms ********** Factor found in step 2: 9480603531462587241575906463236513 Found probable prime factor of 34 digits: 9480603531462587241575906463236513 Composite cofactor has 122 digits
(47·10169+43)/9 = 5(2)1687<170> = 3 · 8572033 · C163
C163 = P34 · C129
P34 = 2460206087289861850132545179847589<34>
C129 = [825427190163644852254913733459514842316359767509942803406052438727183699044270460684675686871923852679575050581068620849873014557<129>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1783504632 Step 1 took 9136ms Step 2 took 8777ms ********** Factor found in step 2: 2460206087289861850132545179847589 Found probable prime factor of 34 digits: 2460206087289861850132545179847589 Composite cofactor has 129 digits
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Mar 15, 2009
(47·10146+7)/9 = 5(2)1453<147> = 43943 · 2497759601<10> · 72190476728398314067<20> · C113
C113 = P32 · P81
P32 = 85624867478828930787372533109107<32>
P81 = 769724280521484580060958723080328755146417996214229835475972442189748684927038369<81>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 65907539514889062053452502588117361920303710604156293441563097996941129629342441926458247231633200554053052326483 (113 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=1394535338 Step 1 took 31217ms Step 2 took 14063ms ********** Factor found in step 2: 85624867478828930787372533109107 Found probable prime factor of 32 digits: 85624867478828930787372533109107 Probable prime cofactor 769724280521484580060958723080328755146417996214229835475972442189748684927038369 has 81 digits
(47·10131-11)/9 = 5(2)1301<132> = 7 · C131
C131 = P49 · P83
P49 = 2026351164998001359133074021408059324775297164471<49>
P83 = 36816508358386235661569433453134759579938638148610938541997940810668852410721162893<83>
Number: n N=74603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603 ( 131 digits) SNFS difficulty: 132 digits. Divisors found: Mon Mar 16 01:01:43 2009 prp49 factor: 2026351164998001359133074021408059324775297164471 Mon Mar 16 01:01:43 2009 prp83 factor: 36816508358386235661569433453134759579938638148610938541997940810668852410721162893 Mon Mar 16 01:01:43 2009 elapsed time 00:21:16 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.42 hours. Scaled time: 7.73 units (timescale=1.748). Factorization parameters were as follows: name: KA_5_2_130_1 n: 74603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603 deg: 5 c5: 470 c0: -11 m: 100000000000000000000000000 skew: 0.47 type: snfs rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [450000, 950329) Primes: RFBsize:71274, AFBsize:71211, largePrimes:8837000 encountered Relations: rels:8087219, finalFF:150682 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 727414 hash collisions in 8727469 relations Msieve: matrix is 170628 x 170876 (44.1 MB) Total sieving time: 4.23 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,900000,900000,28,28,56,56,2.5,2.5,50000 total time: 4.42 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve v1.40beta2 / Mar 15, 2009
(47·10157+7)/9 = 5(2)1563<158> = 53 · 421 · 7753 · 11813 · 861740186150432041<18> · 241830508061251464811661998926787<33> · C96
C96 = P42 · P54
P42 = 353857639571532254488773357157059114181483<42>
P54 = 346538414823540919935905899613289637969994899089486299<54>
Number: 52223_157 N=122625265490318673039471791592719193179089888733075612849378008814899208570958452107536328001417 ( 96 digits) Divisors found: r1=353857639571532254488773357157059114181483 (pp42) r2=346538414823540919935905899613289637969994899089486299 (pp54) Version: Msieve-1.40 Total time: 6.12 hours. Scaled time: 10.00 units (timescale=1.634). Factorization parameters were as follows: name: 52223_157 n: 122625265490318673039471791592719193179089888733075612849378008814899208570958452107536328001417 m: 6416193915203397720025 deg: 4 c4: 72355248 c3: -272460385524 c2: -509605734721730048 c1: 1140845574484152871 c0: 281369533074014834402142 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.934 # E(F1,F2) = 3.706629e-05 # GGNFS version 0.77.1-20060722-prescott polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1237065719. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178331 x 178579 Polynomial selection time: 0.17 hours. Total sieving time: 5.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 6.12 hours. --------- CPU info (if available) ---------- [ 0.371546] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456482] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004011] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800268) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800829) [ 0.460049] Total of 2 processors activated (8800.54 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve / Mar 15, 2009
(47·10127+7)/9 = 5(2)1263<128> = 197083 · 10577279383829<14> · C110
C110 = P48 · P63
P48 = 111720058899756669513508290883342780785552558577<48>
P63 = 224233787317142184660331278856736740012475797164269565267779257<63>
Number: 52223_127 N=25051411926386634933371128325976038352163784425090994680862630687952591764836059175251741466149949475198037289 ( 110 digits) SNFS difficulty: 130 digits. Divisors found: r1=111720058899756669513508290883342780785552558577 (pp48) r2=224233787317142184660331278856736740012475797164269565267779257 (pp63) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.24 hours. Scaled time: 2.95 units (timescale=0.472). Factorization parameters were as follows: name: 52223_127 n: 25051411926386634933371128325976038352163784425090994680862630687952591764836059175251741466149949475198037289 m: 50000000000000000000000000 deg: 5 c5: 188 c0: 875 skew: 1.36 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 1080001) Primes: RFBsize:82832, AFBsize:82708, largePrimes:2783700 encountered Relations: rels:2679599, finalFF:202916 Max relations in full relation-set: 28 Initial matrix: 165607 x 202916 with sparse part having weight 16321093. Pruned matrix : 155684 x 156576 with weight 10102232. Total sieving time: 5.69 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.37 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 6.24 hours. --------- CPU info (if available) ----------
(47·10138+7)/9 = 5(2)1373<139> = 3 · C139
C139 = P38 · P101
P38 = 74888297967594832839979980338219968859<38>
P101 = 23244495975779587331338347767981862919991270902971405226871275122113539942555509695342001780626474399<101>
Number: 52223_138 N=1740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 ( 139 digits) SNFS difficulty: 141 digits. Divisors found: r1=74888297967594832839979980338219968859 r2=23244495975779587331338347767981862919991270902971405226871275122113539942555509695342001780626474399 Version: Total time: 5.23 hours. Scaled time: 13.40 units (timescale=2.564). Factorization parameters were as follows: name: 52223_138 n: 1740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 m: 5000000000000000000000000000 deg: 5 c5: 376 c0: 175 skew: 0.86 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1485001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 217288 x 217536 Total sieving time: 5.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 5.23 hours. --------- CPU info (if available) ----------
(47·10193+7)/9 = 5(2)1923<194> = 29 · 61 · 23761 · 37326449201<11> · 96950219421558950849098121<26> · 2433677934669052310957101691<28> · 86827052202846906758072160839<29> · C94
C94 = P46 · P48
P46 = 4220483980270647555621065653971504476779218067<46>
P48 = 384961155431091348987210023432906809484810914729<48>
Sun Mar 15 13:30:35 2009 Msieve v. 1.39 Sun Mar 15 13:30:35 2009 random seeds: 2a5d9f80 e0541b20 Sun Mar 15 13:30:35 2009 factoring 1624722389523399828043595125130484644425963577835363151624918075220481108987769453839633208843 (94 digits) Sun Mar 15 13:30:36 2009 searching for 15-digit factors Sun Mar 15 13:30:38 2009 commencing quadratic sieve (94-digit input) Sun Mar 15 13:30:38 2009 using multiplier of 43 Sun Mar 15 13:30:38 2009 using 32kb Intel Core sieve core Sun Mar 15 13:30:38 2009 sieve interval: 36 blocks of size 32768 Sun Mar 15 13:30:38 2009 processing polynomials in batches of 6 Sun Mar 15 13:30:38 2009 using a sieve bound of 1987889 (74118 primes) Sun Mar 15 13:30:38 2009 using large prime bound of 256437681 (27 bits) Sun Mar 15 13:30:38 2009 using double large prime bound of 1368255814560987 (42-51 bits) Sun Mar 15 13:30:38 2009 using trial factoring cutoff of 51 bits Sun Mar 15 13:30:38 2009 polynomial 'A' values have 12 factors Sun Mar 15 16:13:11 2009 74514 relations (18880 full + 55634 combined from 1019526 partial), need 74214 Sun Mar 15 16:13:13 2009 begin with 1038406 relations Sun Mar 15 16:13:13 2009 reduce to 189554 relations in 9 passes Sun Mar 15 16:13:14 2009 attempting to read 189554 relations Sun Mar 15 16:13:17 2009 recovered 189554 relations Sun Mar 15 16:13:17 2009 recovered 171469 polynomials Sun Mar 15 16:13:17 2009 attempting to build 74514 cycles Sun Mar 15 16:13:17 2009 found 74514 cycles in 5 passes Sun Mar 15 16:13:17 2009 distribution of cycle lengths: Sun Mar 15 16:13:17 2009 length 1 : 18880 Sun Mar 15 16:13:17 2009 length 2 : 13503 Sun Mar 15 16:13:17 2009 length 3 : 12691 Sun Mar 15 16:13:17 2009 length 4 : 10168 Sun Mar 15 16:13:17 2009 length 5 : 7464 Sun Mar 15 16:13:17 2009 length 6 : 4933 Sun Mar 15 16:13:17 2009 length 7 : 3032 Sun Mar 15 16:13:17 2009 length 9+: 3843 Sun Mar 15 16:13:17 2009 largest cycle: 19 relations Sun Mar 15 16:13:17 2009 matrix is 74118 x 74514 (19.6 MB) with weight 4839013 (64.94/col) Sun Mar 15 16:13:17 2009 sparse part has weight 4839013 (64.94/col) Sun Mar 15 16:13:19 2009 filtering completed in 3 passes Sun Mar 15 16:13:19 2009 matrix is 69918 x 69981 (18.5 MB) with weight 4557257 (65.12/col) Sun Mar 15 16:13:19 2009 sparse part has weight 4557257 (65.12/col) Sun Mar 15 16:13:19 2009 saving the first 48 matrix rows for later Sun Mar 15 16:13:19 2009 matrix is 69870 x 69981 (12.2 MB) with weight 3653003 (52.20/col) Sun Mar 15 16:13:19 2009 sparse part has weight 2769154 (39.57/col) Sun Mar 15 16:13:19 2009 matrix includes 64 packed rows Sun Mar 15 16:13:19 2009 using block size 27992 for processor cache size 1024 kB Sun Mar 15 16:13:19 2009 commencing Lanczos iteration Sun Mar 15 16:13:19 2009 memory use: 11.4 MB Sun Mar 15 16:13:52 2009 lanczos halted after 1106 iterations (dim = 69866) Sun Mar 15 16:13:53 2009 recovered 14 nontrivial dependencies Sun Mar 15 16:13:53 2009 prp46 factor: 4220483980270647555621065653971504476779218067 Sun Mar 15 16:13:53 2009 prp48 factor: 384961155431091348987210023432906809484810914729 Sun Mar 15 16:13:53 2009 elapsed time 02:43:18
(47·10114+43)/9 = 5(2)1137<115> = 17 · 1129 · C111
C111 = P45 · P67
P45 = 217690804652865617561647456806370878599153369<45>
P67 = 1249891747297204550590383589450639722047981968436979229406865298531<67>
Number: 52227_114 N=272089940198104633054875330705060293972918367228792904820623259637483573293503997406461846622321795562039400939 ( 111 digits) SNFS difficulty: 116 digits. Divisors found: r1=217690804652865617561647456806370878599153369 (pp45) r2=1249891747297204550590383589450639722047981968436979229406865298531 (pp67) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.61 hours. Scaled time: 1.23 units (timescale=0.472). Factorization parameters were as follows: name: 52227_114 n: 272089940198104633054875330705060293972918367228792904820623259637483573293503997406461846622321795562039400939 m: 100000000000000000000000 deg: 5 c5: 47 c0: 430 skew: 1.56 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 560001) Primes: RFBsize:50612, AFBsize:50883, largePrimes:1253203 encountered Relations: rels:1214381, finalFF:134219 Max relations in full relation-set: 28 Initial matrix: 101560 x 134219 with sparse part having weight 6656102. Pruned matrix : 89680 x 90251 with weight 3329314. Total sieving time: 2.47 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 2.61 hours. --------- CPU info (if available) ----------
(47·10121+43)/9 = 5(2)1207<122> = 33 · 181 · 197 · 3079 · 668861027 · 934380757 · C95
C95 = P45 · P50
P45 = 587455999345399754749625762418451209379317133<45>
P50 = 47984610496102341660255252672803946541711790573741<50>
Sun Mar 15 17:34:01 2009 Msieve v. 1.39 Sun Mar 15 17:34:01 2009 random seeds: ba2193c0 b2b2aacf Sun Mar 15 17:34:01 2009 factoring 28188847312187559423374635049668712587940909163633526270956401395328262084066106415596861204553 (95 digits) Sun Mar 15 17:34:01 2009 searching for 15-digit factors Sun Mar 15 17:34:03 2009 commencing quadratic sieve (95-digit input) Sun Mar 15 17:34:03 2009 using multiplier of 17 Sun Mar 15 17:34:03 2009 using 32kb Intel Core sieve core Sun Mar 15 17:34:03 2009 sieve interval: 36 blocks of size 32768 Sun Mar 15 17:34:03 2009 processing polynomials in batches of 6 Sun Mar 15 17:34:03 2009 using a sieve bound of 2128183 (78401 primes) Sun Mar 15 17:34:03 2009 using large prime bound of 310714718 (28 bits) Sun Mar 15 17:34:03 2009 using double large prime bound of 1933086450144842 (43-51 bits) Sun Mar 15 17:34:03 2009 using trial factoring cutoff of 51 bits Sun Mar 15 17:34:03 2009 polynomial 'A' values have 12 factors Sun Mar 15 20:43:29 2009 78536 relations (19778 full + 58758 combined from 1150950 partial), need 78497 Sun Mar 15 20:43:30 2009 begin with 1170728 relations Sun Mar 15 20:43:31 2009 reduce to 202017 relations in 10 passes Sun Mar 15 20:43:31 2009 attempting to read 202017 relations Sun Mar 15 20:43:34 2009 recovered 202017 relations Sun Mar 15 20:43:34 2009 recovered 184087 polynomials Sun Mar 15 20:43:35 2009 attempting to build 78536 cycles Sun Mar 15 20:43:35 2009 found 78536 cycles in 5 passes Sun Mar 15 20:43:35 2009 distribution of cycle lengths: Sun Mar 15 20:43:35 2009 length 1 : 19778 Sun Mar 15 20:43:35 2009 length 2 : 14088 Sun Mar 15 20:43:35 2009 length 3 : 13458 Sun Mar 15 20:43:35 2009 length 4 : 10557 Sun Mar 15 20:43:35 2009 length 5 : 7781 Sun Mar 15 20:43:35 2009 length 6 : 5251 Sun Mar 15 20:43:35 2009 length 7 : 3225 Sun Mar 15 20:43:35 2009 length 9+: 4398 Sun Mar 15 20:43:35 2009 largest cycle: 17 relations Sun Mar 15 20:43:35 2009 matrix is 78401 x 78536 (21.2 MB) with weight 5255274 (66.92/col) Sun Mar 15 20:43:35 2009 sparse part has weight 5255274 (66.92/col) Sun Mar 15 20:43:36 2009 filtering completed in 3 passes Sun Mar 15 20:43:36 2009 matrix is 74350 x 74414 (20.3 MB) with weight 5015728 (67.40/col) Sun Mar 15 20:43:36 2009 sparse part has weight 5015728 (67.40/col) Sun Mar 15 20:43:36 2009 saving the first 48 matrix rows for later Sun Mar 15 20:43:36 2009 matrix is 74302 x 74414 (14.2 MB) with weight 4104596 (55.16/col) Sun Mar 15 20:43:36 2009 sparse part has weight 3285109 (44.15/col) Sun Mar 15 20:43:36 2009 matrix includes 64 packed rows Sun Mar 15 20:43:36 2009 using block size 29765 for processor cache size 1024 kB Sun Mar 15 20:43:37 2009 commencing Lanczos iteration Sun Mar 15 20:43:37 2009 memory use: 12.8 MB Sun Mar 15 20:44:17 2009 lanczos halted after 1176 iterations (dim = 74298) Sun Mar 15 20:44:18 2009 recovered 15 nontrivial dependencies Sun Mar 15 20:44:18 2009 prp45 factor: 587455999345399754749625762418451209379317133 Sun Mar 15 20:44:18 2009 prp50 factor: 47984610496102341660255252672803946541711790573741 Sun Mar 15 20:44:18 2009 elapsed time 03:10:17
(47·10115+43)/9 = 5(2)1147<116> = 3 · 67 · 109 · 191 · C110
C110 = P51 · P59
P51 = 289307599580437389286466005391800602139333155100951<51>
P59 = 43135971538668027066686811497458559892059332937372918510383<59>
Number: 52227_115 N=12479564381422113272969945943040984668430321188672665832235198048429790674425132185802870517536297144906674233 ( 110 digits) SNFS difficulty: 116 digits. Divisors found: r1=289307599580437389286466005391800602139333155100951 (pp51) r2=43135971538668027066686811497458559892059332937372918510383 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.07 hours. Scaled time: 0.97 units (timescale=0.472). Factorization parameters were as follows: name: 52227_115 n: 12479564381422113272969945943040984668430321188672665832235198048429790674425132185802870517536297144906674233 m: 100000000000000000000000 deg: 5 c5: 47 c0: 43 skew: 0.98 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: RFBsize:50612, AFBsize:50513, largePrimes:1250618 encountered Relations: rels:1223349, finalFF:143869 Max relations in full relation-set: 28 Initial matrix: 101190 x 143869 with sparse part having weight 6594746. Pruned matrix : 83890 x 84459 with weight 2840891. Total sieving time: 1.95 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 2.07 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Mar 15, 2009
(47·10133+7)/9 = 5(2)1323<134> = 17 · 61 · 2447 · C128
C128 = P42 · P86
P42 = 670530294355163812218807659151808165983773<42>
P86 = 30691931400014721397861209168400013999985859919109854327608444234510209403027930283209<86>
Number: 52223_133 N=20579869795980366103623322527150212163132161603121064236735759419745754537062178048188509505557243542748396072817884659988367557 ( 128 digits) SNFS difficulty: 136 digits. Divisors found: r1=670530294355163812218807659151808165983773 r2=30691931400014721397861209168400013999985859919109854327608444234510209403027930283209 Version: Total time: 3.32 hours. Scaled time: 3.44 units (timescale=1.036). Factorization parameters were as follows: n: 20579869795980366103623322527150212163132161603121064236735759419745754537062178048188509505557243542748396072817884659988367557 m: 500000000000000000000000000 deg: 5 c5: 376 c0: 175 skew: 0.86 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 175412 x 175660 Total sieving time: 3.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 3.32 hours. --------- CPU info (if available) ----------
(47·10131+43)/9 = 5(2)1307<132> = 11137491919<11> · C122
C122 = P59 · P64
P59 = 39950370666748923637428313257142978450538278038369002709049<59>
P64 = 1173673052829063384478836643948244815409866910460348090878975717<64>
Number: 52227_131 N=46888673502095873639414330175481424941649129130310637419751579010974833661939667282305143033004091755626280533171287163133 ( 122 digits) SNFS difficulty: 132 digits. Divisors found: r1=39950370666748923637428313257142978450538278038369002709049 r2=1173673052829063384478836643948244815409866910460348090878975717 Version: Total time: 3.31 hours. Scaled time: 3.18 units (timescale=0.961). Factorization parameters were as follows: n: 46888673502095873639414330175481424941649129130310637419751579010974833661939667282305143033004091755626280533171287163133 m: 100000000000000000000000000 deg: 5 c5: 470 c0: 43 skew: 0.62 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168382 x 168630 Total sieving time: 3.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 3.31 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 15, 2009
(47·10140+7)/9 = 5(2)1393<141> = 1103 · 1485277 · 894342431 · 283548934196313789203440276497841<33> · C91
C91 = P34 · P57
P34 = 1911449618135293346702987304200387<34>
P57 = 657624023197298791172408414280655129548713829126953741129<57>
Number: xx N=1257015188017072067989007346481096231837401079833480219711434479996912229920252505539616923 ( 91 digits) Divisors found: r1=1911449618135293346702987304200387 (pp34) r2=657624023197298791172408414280655129548713829126953741129 (pp57) Version: Msieve-1.39 Total time: 2.18 hours. Scaled time: 2.62 units (timescale=1.205). Factorization parameters were as follows: name: xx n: 1257015188017072067989007346481096231837401079833480219711434479996912229920252505539616923 m: 546290656101251286969 deg: 4 c4: 14113848 c3: -68846950066 c2: -56128707678443779 c1: 262207139052200188 c0: 7295248138280862827356 skew: 1635.250 type: gnfs # adj. I(F,S) = 52.887 # E(F1,F2) = 1.611276e-004 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1237044911. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 40000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [350000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 117271 x 117519 Polynomial selection time: 0.17 hours. Total sieving time: 2.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,90,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 2.18 hours. --------- CPU info (if available) ----------
(38·10166+61)/9 = 4(2)1659<167> = 11 · 563 · 4153 · 243527 · 2877547 · C148
C148 = P41 · P108
P41 = 21542209814132096929259164948657660906663<41>
P108 = 108747249169588185424876695250126633643543443939403426766972201603072209923897950037118523330042709677118583<108>
Number: 42229_166 N=2342656058320971136078914378894172103407965837435963776301999121838755344379699057145088347325698602189976417552725256631608747785795775281145818529 ( 148 digits) SNFS difficulty: 167 digits. Divisors found: r1=21542209814132096929259164948657660906663 (pp41) r2=108747249169588185424876695250126633643543443939403426766972201603072209923897950037118523330042709677118583 (pp108) Version: Msieve-1.39 Total time: 44.29 hours. Scaled time: 114.32 units (timescale=2.581). Factorization parameters were as follows: n: 2342656058320971136078914378894172103407965837435963776301999121838755344379699057145088347325698602189976417552725256631608747785795775281145818529 m: 1000000000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2150000, 4350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 831110 x 831358 Total sieving time: 44.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 44.29 hours. --------- CPU info (if available) ----------
Factorizations of 522...227 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Mar 15, 2009
(47·10139+7)/9 = 5(2)1383<140> = 712139226103<12> · C128
C128 = P51 · P77
P51 = 924167590475255281190980833502221704983289143438697<51>
P77 = 79348679913887986573832937048156352419037224563313906740755084949360325692353<77>
Number: 52223_139 N=73331478323410147266499510383342895161258683453862402218627955193839501880292089862428301297353485747455249979776189823737184041 ( 128 digits) SNFS difficulty: 141 digits. Divisors found: r1=924167590475255281190980833502221704983289143438697 (pp51) r2=79348679913887986573832937048156352419037224563313906740755084949360325692353 (pp77) Version: Msieve-1.39 Total time: 6.56 hours. Scaled time: 7.86 units (timescale=1.198). Factorization parameters were as follows: n: 73331478323410147266499510383342895161258683453862402218627955193839501880292089862428301297353485747455249979776189823737184041 m: 10000000000000000000000000000 deg: 5 c5: 47 c0: 70 skew: 1.08 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 2005001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 283781 x 284029 Total sieving time: 6.56 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 6.56 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Mar 14, 2009
(47·10169-11)/9 = 5(2)1681<170> = 32 · 7727 · 969869 · 6303598959291446191404704491<28> · 2723550519870143340321040847893<31> · C101
C101 = P49 · P52
P49 = 5805251729809190300376404710785985342337985768647<49>
P52 = 7768618262293985963268696684274056390156286740861383<52>
Number: n N=45098784605409428064742625617997210424985502259284439385429485124528215712007524190417355036134458801 ( 101 digits) Divisors found: Sat Mar 14 05:34:03 2009 prp49 factor: 5805251729809190300376404710785985342337985768647 Sat Mar 14 05:34:03 2009 prp52 factor: 7768618262293985963268696684274056390156286740861383 Sat Mar 14 05:34:03 2009 elapsed time 00:16:37 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.16 hours. Scaled time: 5.77 units (timescale=1.829). Factorization parameters were as follows: n: 45098784605409428064742625617997210424985502259284439385429485124528215712007524190417355036134458801 skew: 32984.96 Y0: -31305207112067097170 Y1: 26298819041 c0: 26248303229749943875156701 c1: -3897369683786665875900 c2: 71120558524893231 c3: 1928967252970 c4: -38352050 c5: 1500 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [900000, 1500181) Primes: RFBsize:135072, AFBsize:134791, largePrimes:3688710 encountered Relations: rels:3527827, finalFF:290551 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 225974 hash collisions in 3737360 relations Msieve: matrix is 226443 x 226690 (61.6 MB) Total sieving time: 3.09 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.16 hours. --------- CPU info (if available) ----------
(47·10137-11)/9 = 5(2)1361<138> = 7 · 225949 · 5060791 · 7599924193<10> · 259123385897011<15> · C101
C101 = P50 · P51
P50 = 59735147037019557046749771013459511227068774912011<50>
P51 = 554603588668536543331375075752887783477078375203489<51>
Number: n N=33129326916373743879818593308170668459850957394530166149302667433219613956117071489960973800195206379 ( 101 digits) Divisors found: r1=59735147037019557046749771013459511227068774912011 (pp50) r2=554603588668536543331375075752887783477078375203489 (pp51) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.78 hours. Scaled time: 12.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_2_136_1 n: 33129326916373743879818593308170668459850957394530166149302667433219613956117071489960973800195206379 skew: 15026.39 # norm 5.20e+13 c5: 9000 c4: -68441619 c3: -6377284134589 c2: 18276659793282929 c1: 683527944422973233418 c0: -1557233758004421869608896 # alpha -5.25 Y1: 24649527023 Y0: -20568130175978555333 # Murphy_E 2.90e-09 # M 10810837796529747267112602995107017395615473595624487260735474662472120610519955415167163896302648703 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [900000, 900000) Primes: RFBsize:135072, AFBsize:134636, largePrimes:4037346 encountered Relations: rels:4161508, finalFF:490593 Max relations in full relation-set: 28 Initial matrix: 269787 x 490593 with sparse part having weight 44061731. Pruned matrix : 169019 x 170431 with weight 14515096. Total sieving time: 6.37 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.20 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 6.78 hours. --------- CPU info (if available) ----------
By matsui / GGNFS / Mar 14, 2009
6·10198+1 = 6(0)1971<199> = 7 · 83 · 827 · C194
C194 = P97 · P97
P97 = 1671913865053753682774008058984727775285847092318926307764219314568321887709471774615950144902657<97>
P97 = 7468883908162308115227893005644186201669945225303700140432172123968956930897287431172882486068439<97>
N=12487330562533429624526782202223993573187203816128219910216093255384640999652435966009486208784004562038098845546289493784431212498985404391794158843007198946069300522178539689939582132294942423 ( 194 digits) SNFS difficulty: 200 digits. Divisors found: r1=1671913865053753682774008058984727775285847092318926307764219314568321887709471774615950144902657 (pp97) r2=7468883908162308115227893005644186201669945225303700140432172123968956930897287431172882486068439 (pp97) Version: GGNFS-0.77.1-20060722-nocona
Two P97s are the largest nice-split in our tables so far. Congratulations!
By Sinkiti Sibata / GGNFS, Msieve / Mar 14, 2009
(46·10149+71)/9 = 5(1)1489<150> = 32 · 7 · 19 · 29 · 199 · 15557131706506123<17> · 49266879156806711<17> · C110
C110 = P43 · P68
P43 = 3717593605046269974941029954521038665650971<43>
P68 = 25967109193812927293021015198828053542275514600080287790314157459599<68>
Number: 51119_149 N=96535159080457141562553599924179572078378688482304099085018154453390575429391121077991157384943851790967620629 ( 110 digits) SNFS difficulty: 151 digits. Divisors found: r1=3717593605046269974941029954521038665650971 (pp43) r2=25967109193812927293021015198828053542275514600080287790314157459599 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 35.80 hours. Scaled time: 16.90 units (timescale=0.472). Factorization parameters were as follows: name: 51119_149 n: 96535159080457141562553599924179572078378688482304099085018154453390575429391121077991157384943851790967620629 m: 1000000000000000000000000000000 deg: 5 c5: 23 c0: 355 skew: 1.73 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:169527, largePrimes:7020669 encountered Relations: rels:7047587, finalFF:505189 Max relations in full relation-set: 28 Initial matrix: 339103 x 505189 with sparse part having weight 53942190. Pruned matrix : 286006 x 287765 with weight 27710283. Total sieving time: 32.65 hours. Total relation processing time: 0.29 hours. Matrix solve time: 2.73 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 35.80 hours. --------- CPU info (if available) ----------
(47·10106+7)/9 = 5(2)1053<107> = 102552171005093<15> · C93
C93 = P33 · P60
P33 = 586131916604674594186662435865517<33>
P60 = 868790611576412906071918691609898995245693401683366767021583<60>
Sat Mar 14 14:24:25 2009 Msieve v. 1.39 Sat Mar 14 14:24:25 2009 random seeds: e23c4660 a3ab0f61 Sat Mar 14 14:24:25 2009 factoring 509225906291430287531211482278866257672652842930993643159194275834613445437410934426824453411 (93 digits) Sat Mar 14 14:24:26 2009 searching for 15-digit factors Sat Mar 14 14:24:27 2009 commencing quadratic sieve (93-digit input) Sat Mar 14 14:24:28 2009 using multiplier of 1 Sat Mar 14 14:24:28 2009 using 32kb Intel Core sieve core Sat Mar 14 14:24:28 2009 sieve interval: 36 blocks of size 32768 Sat Mar 14 14:24:28 2009 processing polynomials in batches of 6 Sat Mar 14 14:24:28 2009 using a sieve bound of 1923133 (71628 primes) Sat Mar 14 14:24:28 2009 using large prime bound of 232699093 (27 bits) Sat Mar 14 14:24:28 2009 using double large prime bound of 1148762820023984 (42-51 bits) Sat Mar 14 14:24:28 2009 using trial factoring cutoff of 51 bits Sat Mar 14 14:24:28 2009 polynomial 'A' values have 12 factors Sat Mar 14 17:06:34 2009 71866 relations (17567 full + 54299 combined from 972710 partial), need 71724 Sat Mar 14 17:06:35 2009 begin with 990277 relations Sat Mar 14 17:06:36 2009 reduce to 186074 relations in 11 passes Sat Mar 14 17:06:36 2009 attempting to read 186074 relations Sat Mar 14 17:06:39 2009 recovered 186074 relations Sat Mar 14 17:06:39 2009 recovered 168654 polynomials Sat Mar 14 17:06:39 2009 attempting to build 71866 cycles Sat Mar 14 17:06:39 2009 found 71866 cycles in 6 passes Sat Mar 14 17:06:39 2009 distribution of cycle lengths: Sat Mar 14 17:06:39 2009 length 1 : 17567 Sat Mar 14 17:06:39 2009 length 2 : 12827 Sat Mar 14 17:06:39 2009 length 3 : 12187 Sat Mar 14 17:06:39 2009 length 4 : 9710 Sat Mar 14 17:06:39 2009 length 5 : 7313 Sat Mar 14 17:06:39 2009 length 6 : 4822 Sat Mar 14 17:06:39 2009 length 7 : 3160 Sat Mar 14 17:06:39 2009 length 9+: 4280 Sat Mar 14 17:06:39 2009 largest cycle: 19 relations Sat Mar 14 17:06:40 2009 matrix is 71628 x 71866 (17.9 MB) with weight 4415802 (61.44/col) Sat Mar 14 17:06:40 2009 sparse part has weight 4415802 (61.44/col) Sat Mar 14 17:06:41 2009 filtering completed in 3 passes Sat Mar 14 17:06:41 2009 matrix is 68211 x 68275 (17.1 MB) with weight 4214479 (61.73/col) Sat Mar 14 17:06:41 2009 sparse part has weight 4214479 (61.73/col) Sat Mar 14 17:06:41 2009 saving the first 48 matrix rows for later Sat Mar 14 17:06:41 2009 matrix is 68163 x 68275 (9.7 MB) with weight 3197837 (46.84/col) Sat Mar 14 17:06:41 2009 sparse part has weight 2134685 (31.27/col) Sat Mar 14 17:06:41 2009 matrix includes 64 packed rows Sat Mar 14 17:06:41 2009 using block size 27310 for processor cache size 1024 kB Sat Mar 14 17:06:41 2009 commencing Lanczos iteration Sat Mar 14 17:06:41 2009 memory use: 10.1 MB Sat Mar 14 17:07:09 2009 lanczos halted after 1080 iterations (dim = 68162) Sat Mar 14 17:07:09 2009 recovered 17 nontrivial dependencies Sat Mar 14 17:07:10 2009 prp33 factor: 586131916604674594186662435865517 Sat Mar 14 17:07:10 2009 prp60 factor: 868790611576412906071918691609898995245693401683366767021583 Sat Mar 14 17:07:10 2009 elapsed time 02:42:45
(47·10165-11)/9 = 5(2)1641<166> = C166
C166 = P40 · P63 · P64
P40 = 5918524479803075086436339126178823754311<40>
P63 = 519179504524486311724334410233223760285302400037254392850689843<63>
P64 = 1699512489917835059576268585912961688023355579409275026948322377<64>
Number: 52221_165 N=5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 166 digits) SNFS difficulty: 166 digits. Divisors found: r1=5918524479803075086436339126178823754311 r2=519179504524486311724334410233223760285302400037254392850689843 r3=1699512489917835059576268585912961688023355579409275026948322377 Version: Total time: 44.30 hours. Scaled time: 113.57 units (timescale=2.564). Factorization parameters were as follows: name: 52221_165 n: 5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 1000000000000000000000000000000000 deg: 5 c5: 47 c0: -11 skew: 0.75 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 751824 x 752072 Total sieving time: 44.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 44.30 hours. --------- CPU info (if available) ----------
(47·10124+7)/9 = 5(2)1233<125> = 103 · 11887 · 14394089 · C112
C112 = P37 · P76
P37 = 2785752717121406456107181322074188931<37>
P76 = 1063699890799604316061313992156606964334667038811968046342270980758586143477<76>
Number: 52223_124 N=2963204860996741060096307919041764536362963095353592541342576306410981071514265999823483457395547611649971253087 ( 112 digits) SNFS difficulty: 126 digits. Divisors found: r1=2785752717121406456107181322074188931 (pp37) r2=1063699890799604316061313992156606964334667038811968046342270980758586143477 (pp76) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.64 hours. Scaled time: 2.18 units (timescale=0.471). Factorization parameters were as follows: name: 52223_124 n: 2963204860996741060096307919041764536362963095353592541342576306410981071514265999823483457395547611649971253087 m: 10000000000000000000000000 deg: 5 c5: 47 c0: 70 skew: 1.08 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 850001) Primes: RFBsize:71274, AFBsize:71085, largePrimes:2493548 encountered Relations: rels:2351487, finalFF:160090 Max relations in full relation-set: 28 Initial matrix: 142424 x 160090 with sparse part having weight 12470984. Pruned matrix : 137621 x 138397 with weight 9162565. Total sieving time: 4.22 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 4.64 hours. --------- CPU info (if available) ----------
(47·10111+7)/9 = 5(2)1103<112> = 3 · 167 · 1100719420842443<16> · C94
C94 = P32 · P62
P32 = 99354390761686984015872318744119<32>
P62 = 95313392755558649228750245113021824453060736428646393675802319<62>
Sat Mar 14 17:15:47 2009 Msieve v. 1.39 Sat Mar 14 17:15:47 2009 random seeds: 99cf8800 54b6b3f0 Sat Mar 14 17:15:47 2009 factoring 9469804068657919367648212382115094366701990833108454850429643038325714139839345127949787811961 (94 digits) Sat Mar 14 17:15:48 2009 searching for 15-digit factors Sat Mar 14 17:15:49 2009 commencing quadratic sieve (94-digit input) Sat Mar 14 17:15:49 2009 using multiplier of 1 Sat Mar 14 17:15:49 2009 using 32kb Intel Core sieve core Sat Mar 14 17:15:49 2009 sieve interval: 36 blocks of size 32768 Sat Mar 14 17:15:49 2009 processing polynomials in batches of 6 Sat Mar 14 17:15:49 2009 using a sieve bound of 2092589 (77647 primes) Sat Mar 14 17:15:49 2009 using large prime bound of 297147638 (28 bits) Sat Mar 14 17:15:49 2009 using double large prime bound of 1783816197254578 (42-51 bits) Sat Mar 14 17:15:49 2009 using trial factoring cutoff of 51 bits Sat Mar 14 17:15:49 2009 polynomial 'A' values have 12 factors Sat Mar 14 20:51:17 2009 77940 relations (18705 full + 59235 combined from 1144313 partial), need 77743 Sat Mar 14 20:51:19 2009 begin with 1163018 relations Sat Mar 14 20:51:20 2009 reduce to 204434 relations in 11 passes Sat Mar 14 20:51:20 2009 attempting to read 204434 relations Sat Mar 14 20:51:23 2009 recovered 204434 relations Sat Mar 14 20:51:23 2009 recovered 188189 polynomials Sat Mar 14 20:51:23 2009 attempting to build 77940 cycles Sat Mar 14 20:51:23 2009 found 77940 cycles in 6 passes Sat Mar 14 20:51:23 2009 distribution of cycle lengths: Sat Mar 14 20:51:23 2009 length 1 : 18705 Sat Mar 14 20:51:23 2009 length 2 : 13510 Sat Mar 14 20:51:23 2009 length 3 : 13074 Sat Mar 14 20:51:23 2009 length 4 : 10635 Sat Mar 14 20:51:23 2009 length 5 : 8000 Sat Mar 14 20:51:23 2009 length 6 : 5524 Sat Mar 14 20:51:24 2009 length 7 : 3607 Sat Mar 14 20:51:24 2009 length 9+: 4885 Sat Mar 14 20:51:24 2009 largest cycle: 20 relations Sat Mar 14 20:51:24 2009 matrix is 77647 x 77940 (20.2 MB) with weight 4978462 (63.88/col) Sat Mar 14 20:51:24 2009 sparse part has weight 4978462 (63.88/col) Sat Mar 14 20:51:25 2009 filtering completed in 3 passes Sat Mar 14 20:51:25 2009 matrix is 74172 x 74236 (19.3 MB) with weight 4757980 (64.09/col) Sat Mar 14 20:51:25 2009 sparse part has weight 4757980 (64.09/col) Sat Mar 14 20:51:25 2009 saving the first 48 matrix rows for later Sat Mar 14 20:51:25 2009 matrix is 74124 x 74236 (12.0 MB) with weight 3724349 (50.17/col) Sat Mar 14 20:51:25 2009 sparse part has weight 2705848 (36.45/col) Sat Mar 14 20:51:25 2009 matrix includes 64 packed rows Sat Mar 14 20:51:25 2009 using block size 29694 for processor cache size 1024 kB Sat Mar 14 20:51:26 2009 commencing Lanczos iteration Sat Mar 14 20:51:26 2009 memory use: 11.8 MB Sat Mar 14 20:52:02 2009 lanczos halted after 1173 iterations (dim = 74120) Sat Mar 14 20:52:02 2009 recovered 14 nontrivial dependencies Sat Mar 14 20:52:03 2009 prp32 factor: 99354390761686984015872318744119 Sat Mar 14 20:52:03 2009 prp62 factor: 95313392755558649228750245113021824453060736428646393675802319 Sat Mar 14 20:52:03 2009 elapsed time 03:36:16
By Serge Batalov / GMP-ECM 6.2.2, msieve-1.40 qs, GMP-ECM 6.2.1 / Mar 14, 2009
(47·10152+7)/9 = 5(2)1513<153> = 1952695607832913<16> · 283524340410277072904211677<27> · C111
C111 = P36 · P76
P36 = 339373340987111439213032822853497251<36>
P76 = 2779410708331052353653724618917632167285726758443818868201468908679417755673<76>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1946158246 Step 1 took 5372ms Step 2 took 3256ms ********** Factor found in step 2: 339373340987111439213032822853497251 Found probable prime factor of 36 digits: 339373340987111439213032822853497251 Probable prime cofactor has 76 digits
(47·10134+7)/9 = 5(2)1333<135> = 3799661 · 18715250221<11> · C118
C118 = P34 · P85
P34 = 4525990818863841521810589260294153<34>
P85 = 1622561588863687464350670473498891981365744075605523527865925442743054930210085773311<85>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1946389392 Step 1 took 6456ms Step 2 took 6709ms ********** Factor found in step 2: 4525990818863841521810589260294153 Found probable prime factor of 34 digits: 4525990818863841521810589260294153 Probable prime cofactor has 85 digits
(47·10186+7)/9 = 5(2)1853<187> = 33 · 23 · 67 · 283 · 432814036485059<15> · C166
C166 = P28 · P138
P28 = 4840591880169166213085470327<28>
P138 = 211691151514429896660769178295263694791289185531220177711932718691581543566221485464975234795208195314453290424266620986638735069610692831<138>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3938707912 Step 1 took 9141ms Step 2 took 9192ms ********** Factor found in step 2: 4840591880169166213085470327 Found probable prime factor of 28 digits: 4840591880169166213085470327 Probable prime cofactor has 138 digits
(47·10137+7)/9 = 5(2)1363<138> = 132 · 19 · 29 · 97 · 109 · 197 · 229937 · 47675357 · C114
C114 = P34 · P37 · P43
P34 = 6422170386514943990059678887791069<34>
P37 = 4358789346295655325743077570815223087<37>
P43 = 8774089653393861131013655175773030008711191<43>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=480940633 Step 1 took 5329ms Step 2 took 6460ms ********** Factor found in step 2: 6422170386514943990059678887791069 Found probable prime factor of 34 digits: 6422170386514943990059678887791069 Composite cofactor has 80 digits Sat Mar 14 00:21:33 2009 Msieve v. 1.40 Sat Mar 14 00:21:33 2009 random seeds: 8e3810e2 83902929 Sat Mar 14 00:21:33 2009 factoring 38244408504656100974238958952130843351545315858136955428199482775131044018466617 (80 digits) Sat Mar 14 00:21:34 2009 searching for 15-digit factors Sat Mar 14 00:21:34 2009 commencing quadratic sieve (80-digit input) Sat Mar 14 00:21:34 2009 using multiplier of 2 Sat Mar 14 00:21:34 2009 using 64kb Opteron sieve core Sat Mar 14 00:21:34 2009 sieve interval: 6 blocks of size 65536 Sat Mar 14 00:21:34 2009 processing polynomials in batches of 17 Sat Mar 14 00:21:34 2009 using a sieve bound of 1252877 (48647 primes) Sat Mar 14 00:21:34 2009 using large prime bound of 125287700 (26 bits) Sat Mar 14 00:21:34 2009 using trial factoring cutoff of 27 bits Sat Mar 14 00:21:34 2009 polynomial 'A' values have 10 factors Sat Mar 14 00:26:42 2009 49083 relations (25890 full + 23193 combined from 258044 partial), need 48743 Sat Mar 14 00:26:42 2009 begin with 283934 relations Sat Mar 14 00:26:42 2009 reduce to 69404 relations in 2 passes Sat Mar 14 00:26:42 2009 attempting to read 69404 relations Sat Mar 14 00:26:43 2009 recovered 69404 relations Sat Mar 14 00:26:43 2009 recovered 54668 polynomials Sat Mar 14 00:26:43 2009 attempting to build 49083 cycles Sat Mar 14 00:26:43 2009 found 49083 cycles in 1 passes Sat Mar 14 00:26:43 2009 distribution of cycle lengths: Sat Mar 14 00:26:43 2009 length 1 : 25890 Sat Mar 14 00:26:43 2009 length 2 : 23193 Sat Mar 14 00:26:43 2009 largest cycle: 2 relations Sat Mar 14 00:26:43 2009 matrix is 48647 x 49083 (7.2 MB) with weight 1506848 (30.70/col) Sat Mar 14 00:26:43 2009 sparse part has weight 1506848 (30.70/col) Sat Mar 14 00:26:43 2009 filtering completed in 3 passes Sat Mar 14 00:26:43 2009 matrix is 33410 x 33472 (5.4 MB) with weight 1150563 (34.37/col) Sat Mar 14 00:26:43 2009 sparse part has weight 1150563 (34.37/col) Sat Mar 14 00:26:43 2009 saving the first 48 matrix rows for later Sat Mar 14 00:26:43 2009 matrix is 33362 x 33472 (3.6 MB) with weight 845758 (25.27/col) Sat Mar 14 00:26:43 2009 sparse part has weight 616640 (18.42/col) Sat Mar 14 00:26:43 2009 matrix includes 64 packed rows Sat Mar 14 00:26:43 2009 using block size 13388 for processor cache size 6144 kB Sat Mar 14 00:26:43 2009 commencing Lanczos iteration Sat Mar 14 00:26:43 2009 memory use: 3.6 MB Sat Mar 14 00:26:45 2009 lanczos halted after 529 iterations (dim = 33361) Sat Mar 14 00:26:45 2009 recovered 17 nontrivial dependencies Sat Mar 14 00:26:45 2009 prp37 factor: 4358789346295655325743077570815223087 Sat Mar 14 00:26:45 2009 prp43 factor: 8774089653393861131013655175773030008711191 Sat Mar 14 00:26:45 2009 elapsed time 00:05:12
(47·10140+7)/9 = 5(2)1393<141> = 1103 · 1485277 · 894342431 · C123
C123 = P33 · C91
P33 = 283548934196313789203440276497841<33>
C91 = [1257015188017072067989007346481096231837401079833480219711434479996912229920252505539616923<91>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2255321493 Step 1 took 6393ms Step 2 took 6728ms ********** Factor found in step 2: 283548934196313789203440276497841 Found probable prime factor of 33 digits: 283548934196313789203440276497841 Composite cofactor has 91 digits
(47·10157+7)/9 = 5(2)1563<158> = 53 · 421 · 7753 · 11813 · 861740186150432041<18> · C128
C128 = P33 · C96
P33 = 241830508061251464811661998926787<33>
C96 = [122625265490318673039471791592719193179089888733075612849378008814899208570958452107536328001417<96>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3844973302 Step 1 took 6400ms Step 2 took 7389ms ********** Factor found in step 2: 241830508061251464811661998926787 Found probable prime factor of 33 digits: 241830508061251464811661998926787 Composite cofactor has 96 digits
(47·10153+7)/9 = 5(2)1523<154> = 3 · 67 · 107 · 193 · C148
C148 = P32 · P38 · P79
P32 = 13570844613002159206276004364691<32>
P38 = 15817293669014247931825045270010627021<38>
P79 = 5861100234609922300221141974629455706532441454493876553268835399948265889446243<79>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2000005749 Step 1 took 7681ms Step 2 took 7924ms ********** Factor found in step 2: 15817293669014247931825045270010627021 Found probable prime factor of 38 digits: 15817293669014247931825045270010627021 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2056501203 Step 1 took 7769ms Step 2 took 8460ms ********** Factor found in step 2: 13570844613002159206276004364691 Found probable prime factor of 32 digits: 13570844613002159206276004364691
(47·10190+7)/9 = 5(2)1893<191> = 14419 · 295837 · 75219844079669<14> · 21189621711595422727<20> · C148
C148 = P33 · P116
P33 = 316337110404787322260442929286567<33>
P116 = 24280741272539150477959519296127039083963060012467775306321450629307336526410616631121968182054636945330923198095621<116>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2071500620 Step 1 took 7669ms Step 2 took 8472ms ********** Factor found in step 2: 316337110404787322260442929286567 Found probable prime factor of 33 digits: 316337110404787322260442929286567 Probable prime cofactor has 116 digits
By Wataru Sakai / GMP-ECM / Mar 14, 2009
(5·10176+1)/3 = 1(6)1757<177> = 43 · 502769 · 26728601 · 90499058006410250891821665501032497487<38> · C124
C124 = P49 · P76
P49 = 2725754774355785969760441380232560871052705129783<49>
P76 = 1169242880077307275718954778478639891947328564280437102540201756848172409281<76>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3476594416 Step 1 took 521560ms Step 2 took 144786ms ********** Factor found in step 2: 2725754774355785969760441380232560871052705129783 Found probable prime factor of 49 digits: 2725754774355785969760441380232560871052705129783 Probable prime cofactor 1169242880077307275718954778478639891947328564280437102540201756848172409281 has 76 digits
By Tyler Cadigan / GGNFS, Msieve / Mar 13, 2009
(10186+53)/9 = (1)1857<186> = 3 · 23 · 29 · 229 · 40306300676599127<17> · C163
C163 = P67 · P97
P67 = 1169319768458061656957638542309755826295782876079702955713679861317<67>
P97 = 5144802260188377367236157788169330632323206741118039994276567261208535262981380543018891749384547<97>
Number: 11117_186 N=6015918987645985707374326771781404241768501075705916328537600681329537905805438980542336186668469369633194704138210533713686971145820624763164643448184023062868399 ( 163 digits) SNFS difficulty: 186 digits. Divisors found: r1=1169319768458061656957638542309755826295782876079702955713679861317 (pp67) r2=5144802260188377367236157788169330632323206741118039994276567261208535262981380543018891749384547 (pp97) Version: Msieve-1.39 Total time: 208.74 hours. Scaled time: 527.49 units (timescale=2.527). Factorization parameters were as follows: n: 6015918987645985707374326771781404241768501075705916328537600681329537905805438980542336186668469369633194704138210533713686971145820624763164643448184023062868399 m: 10000000000000000000000000000000000000 deg: 5 c5: 10 c0: 53 skew: 1.40 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4400000, 7400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1494341 x 1494588 Total sieving time: 208.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,54,54,2.5,2.5,100000 total time: 208.74 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 13, 2009
(34·10166+11)/9 = 3(7)1659<167> = 3 · 7 · 31626402448477<14> · C152
C152 = P67 · P85
P67 = 7433469121613363106548924286466391259517809872867192997109258626823<67>
P85 = 7652014390216588291222042775069211091736777411099684795795933848178270670770807272469<85>
Number: 37779_166 N=56881012687816116882509529469225512722853884217827165715545764590324915101749318460398051179992115444952447748972611232406682686285021225138144952835987 ( 152 digits) SNFS difficulty: 168 digits. Divisors found: r1=7433469121613363106548924286466391259517809872867192997109258626823 (pp67) r2=7652014390216588291222042775069211091736777411099684795795933848178270670770807272469 (pp85) Version: Msieve-1.39 Total time: 52.08 hours. Scaled time: 133.90 units (timescale=2.571). Factorization parameters were as follows: n: 56881012687816116882509529469225512722853884217827165715545764590324915101749318460398051179992115444952447748972611232406682686285021225138144952835987 m: 2000000000000000000000000000000000 deg: 5 c5: 85 c0: 88 skew: 1.01 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 851783 x 852031 Total sieving time: 52.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 52.08 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 14, 2009
(47·10156-11)/9 = 5(2)1551<157> = 394379920267<12> · 2919127164391<13> · C133
C133 = P43 · P90
P43 = 7273499550758919787884339332474160728899697<43>
P90 = 623654589879613371292973321974587414376379766723300320931456522981021853230936509414590769<90>
Number: 52221_156 N=4536151379318106219337955194636765662118353139712989327151999232488671237829986338239190025532845797040103540422941405561898903096993 ( 133 digits) SNFS difficulty: 158 digits. Divisors found: r1=7273499550758919787884339332474160728899697 (pp43) r2=623654589879613371292973321974587414376379766723300320931456522981021853230936509414590769 (pp90) Version: Msieve-1.39 Total time: 25.98 hours. Scaled time: 66.81 units (timescale=2.571). Factorization parameters were as follows: n: 4536151379318106219337955194636765662118353139712989327151999232488671237829986338239190025532845797040103540422941405561898903096993 m: 20000000000000000000000000000000 deg: 5 c5: 235 c0: -176 skew: 0.94 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 598154 x 598402 Total sieving time: 25.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 25.98 hours. --------- CPU info (if available) ----------
(46·10173+71)/9 = 5(1)1729<174> = 3 · 72 · C172
C172 = P33 · P52 · P89
P33 = 126509766445013568298328610136223<33>
P52 = 1180604026176186007639458182676328295836124161667627<52>
P89 = 23279286946766512066852874314714772481738009363765283757882378099668313192812207895727137<89>
Number: 51119_173 N=3476946334089191232048374905517762660619803476946334089191232048374905517762660619803476946334089191232048374905517762660619803476946334089191232048374905517762660619803477 ( 172 digits) SNFS difficulty: 176 digits. Divisors found: r1=126509766445013568298328610136223 (pp33) r2=1180604026176186007639458182676328295836124161667627 (pp52) r3=23279286946766512066852874314714772481738009363765283757882378099668313192812207895727137 (pp89) Version: Msieve-1.39 Total time: 99.49 hours. Scaled time: 172.62 units (timescale=1.735). Factorization parameters were as follows: n: 3476946334089191232048374905517762660619803476946334089191232048374905517762660619803476946334089191232048374905517762660619803476946334089191232048374905517762660619803477 m: 50000000000000000000000000000000000 deg: 5 c5: 368 c0: 1775 skew: 1.37 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3000000, 8300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1409394 x 1409641 Total sieving time: 99.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000 total time: 99.49 hours. --------- CPU info (if available) ----------
(47·10125+7)/9 = 5(2)1243<126> = 13 · 414971 · C119
C119 = P51 · P69
P51 = 249262664540884389477543315300142196556005259225137<51>
P69 = 388362256356922383654110336587870767762061470294935602486273863612673<69>
Number: 52223_125 N=96804210826636490116588725889134833374310349809842545479493603579383067588267469704967746999599827869755165879473361201 ( 119 digits) SNFS difficulty: 126 digits. Divisors found: r1=249262664540884389477543315300142196556005259225137 (pp51) r2=388362256356922383654110336587870767762061470294935602486273863612673 (pp69) Version: Msieve-1.39 Total time: 1.68 hours. Scaled time: 2.01 units (timescale=1.198). Factorization parameters were as follows: n: 96804210826636490116588725889134833374310349809842545479493603579383067588267469704967746999599827869755165879473361201 m: 10000000000000000000000000 deg: 5 c5: 47 c0: 7 skew: 0.68 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 110741 x 110989 Total sieving time: 1.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.68 hours. --------- CPU info (if available) ----------
(47·10130+7)/9 = 5(2)1293<131> = 88793 · C126
C126 = P47 · P80
P47 = 30602062129474609741231985600401032056090268883<47>
P80 = 19218784915527384809400907508899151102992419244502866884919413944562822687207517<80>
Number: 52223_130 N=588134450037978469273729035196718460038766819706758665910851330873179442323406374626628475467911009000959785368466232948793511 ( 126 digits) SNFS difficulty: 131 digits. Divisors found: r1=30602062129474609741231985600401032056090268883 (pp47) r2=19218784915527384809400907508899151102992419244502866884919413944562822687207517 (pp80) Version: Msieve-1.39 Total time: 2.20 hours. Scaled time: 2.64 units (timescale=1.203). Factorization parameters were as follows: n: 588134450037978469273729035196718460038766819706758665910851330873179442323406374626628475467911009000959785368466232948793511 m: 100000000000000000000000000 deg: 5 c5: 47 c0: 7 skew: 0.68 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 153635 x 153878 Total sieving time: 2.20 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.20 hours. --------- CPU info (if available) ----------
(47·10135+7)/9 = 5(2)1343<136> = 3 · 2593 · C132
C132 = P38 · P44 · P51
P38 = 41772283146786978635729672887661947099<38>
P44 = 33809349590802576044638725167462602354959817<44>
P51 = 475342392548263571865729455529900570409279608682439<51>
Number: 52223_135 N=671323077802059676336575680964419876876490837154161488908885746525545985630829441087829055434146062761566039622345060061990258673637 ( 132 digits) SNFS difficulty: 136 digits. Divisors found: r1=41772283146786978635729672887661947099 (pp38) r2=33809349590802576044638725167462602354959817 (pp44) r3=475342392548263571865729455529900570409279608682439 (pp51) Version: Msieve-1.39 Total time: 3.33 hours. Scaled time: 3.98 units (timescale=1.195). Factorization parameters were as follows: n: 671323077802059676336575680964419876876490837154161488908885746525545985630829441087829055434146062761566039622345060061990258673637 m: 1000000000000000000000000000 deg: 5 c5: 47 c0: 7 skew: 0.68 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 183120 x 183368 Total sieving time: 3.33 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.33 hours. --------- CPU info (if available) ----------
Factorizations of 522...223 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Max Dettweiler / GGNFS, msieve v1.40beta2 / Mar 13, 2009
(46·10161+71)/9 = 5(1)1609<162> = 3 · 7 · 467 · 1549693919876341<16> · C143
C143 = P41 · P103
P41 = 16992883783519846308764066577664900740967<41>
P103 = 1979092671373367048595934073451965110198678986743029049601958788254140099138182740089543592879492970011<103>
Thu Mar 12 16:04:04 2009 Msieve v. 1.40 Thu Mar 12 16:04:04 2009 random seeds: 30e12317 790c577c Thu Mar 12 16:04:04 2009 factoring 33630491761463461278107881750538416295896144123471294761109199342706343370308250905348604392930090333968989529496276747314290683246581410140637 (143 digits) Thu Mar 12 16:04:05 2009 no P-1/P+1/ECM available, skipping Thu Mar 12 16:04:05 2009 commencing number field sieve (143-digit input) Thu Mar 12 16:04:05 2009 R0: -100000000000000000000000000000000 Thu Mar 12 16:04:05 2009 R1: 1 Thu Mar 12 16:04:05 2009 A0: 71 Thu Mar 12 16:04:05 2009 A1: 0 Thu Mar 12 16:04:05 2009 A2: 0 Thu Mar 12 16:04:05 2009 A3: 0 Thu Mar 12 16:04:05 2009 A4: 0 Thu Mar 12 16:04:05 2009 A5: 460 Thu Mar 12 16:04:05 2009 skew 0.69, size 1.255037e-11, alpha 1.174105, combined = 3.813267e-10 Thu Mar 12 16:04:05 2009 Thu Mar 12 16:04:05 2009 commencing relation filtering Thu Mar 12 16:04:05 2009 commencing duplicate removal, pass 1 Thu Mar 12 16:04:05 2009 error -9 reading relation 13 Thu Mar 12 16:05:33 2009 found 919606 hash collisions in 9599998 relations Thu Mar 12 16:05:58 2009 added 1921 free relations Thu Mar 12 16:05:58 2009 commencing duplicate removal, pass 2 Thu Mar 12 16:06:06 2009 found 831756 duplicates and 8770163 unique relations Thu Mar 12 16:06:06 2009 memory use: 50.6 MB Thu Mar 12 16:06:06 2009 reading rational ideals above 3735552 Thu Mar 12 16:06:06 2009 reading algebraic ideals above 3735552 Thu Mar 12 16:06:06 2009 commencing singleton removal, pass 1 Thu Mar 12 16:07:27 2009 relations with 0 large ideals: 98865 Thu Mar 12 16:07:27 2009 relations with 1 large ideals: 729844 Thu Mar 12 16:07:27 2009 relations with 2 large ideals: 2341536 Thu Mar 12 16:07:27 2009 relations with 3 large ideals: 3355712 Thu Mar 12 16:07:27 2009 relations with 4 large ideals: 1836344 Thu Mar 12 16:07:27 2009 relations with 5 large ideals: 58253 Thu Mar 12 16:07:27 2009 relations with 6 large ideals: 349609 Thu Mar 12 16:07:27 2009 relations with 7+ large ideals: 0 Thu Mar 12 16:07:27 2009 8770163 relations and about 9159306 large ideals Thu Mar 12 16:07:27 2009 commencing singleton removal, pass 2 Thu Mar 12 16:08:52 2009 found 3682975 singletons Thu Mar 12 16:08:52 2009 current dataset: 5087188 relations and about 4419395 large ideals Thu Mar 12 16:08:52 2009 commencing singleton removal, pass 3 Thu Mar 12 16:09:40 2009 found 986850 singletons Thu Mar 12 16:09:40 2009 current dataset: 4100338 relations and about 3355585 large ideals Thu Mar 12 16:09:40 2009 commencing singleton removal, pass 4 Thu Mar 12 16:10:19 2009 found 294336 singletons Thu Mar 12 16:10:19 2009 current dataset: 3806002 relations and about 3052506 large ideals Thu Mar 12 16:10:19 2009 commencing singleton removal, final pass Thu Mar 12 16:10:59 2009 memory use: 66.6 MB Thu Mar 12 16:10:59 2009 commencing in-memory singleton removal Thu Mar 12 16:11:00 2009 begin with 3806002 relations and 3220753 unique ideals Thu Mar 12 16:11:05 2009 reduce to 3206585 relations and 2607067 ideals in 15 passes Thu Mar 12 16:11:05 2009 max relations containing the same ideal: 49 Thu Mar 12 16:11:06 2009 reading rational ideals above 720000 Thu Mar 12 16:11:06 2009 reading algebraic ideals above 720000 Thu Mar 12 16:11:06 2009 commencing singleton removal, final pass Thu Mar 12 16:11:48 2009 keeping 2822482 ideals with weight <= 20, new excess is 327745 Thu Mar 12 16:11:50 2009 memory use: 92.0 MB Thu Mar 12 16:11:51 2009 commencing in-memory singleton removal Thu Mar 12 16:11:51 2009 begin with 3208506 relations and 2822482 unique ideals Thu Mar 12 16:11:55 2009 reduce to 3206205 relations and 2810646 ideals in 9 passes Thu Mar 12 16:11:55 2009 max relations containing the same ideal: 20 Thu Mar 12 16:11:58 2009 relations with 0 large ideals: 25956 Thu Mar 12 16:11:58 2009 relations with 1 large ideals: 178840 Thu Mar 12 16:11:58 2009 relations with 2 large ideals: 602522 Thu Mar 12 16:11:58 2009 relations with 3 large ideals: 1016724 Thu Mar 12 16:11:58 2009 relations with 4 large ideals: 888209 Thu Mar 12 16:11:58 2009 relations with 5 large ideals: 373815 Thu Mar 12 16:11:58 2009 relations with 6 large ideals: 110612 Thu Mar 12 16:11:58 2009 relations with 7+ large ideals: 9527 Thu Mar 12 16:11:58 2009 commencing 2-way merge Thu Mar 12 16:12:01 2009 reduce to 1833929 relation sets and 1438640 unique ideals Thu Mar 12 16:12:01 2009 ignored 270 oversize relation sets Thu Mar 12 16:12:01 2009 commencing full merge Thu Mar 12 16:12:25 2009 memory use: 100.4 MB Thu Mar 12 16:12:25 2009 found 818948 cycles, need 770840 Thu Mar 12 16:12:25 2009 weight of 770840 cycles is about 54088079 (70.17/cycle) Thu Mar 12 16:12:25 2009 distribution of cycle lengths: Thu Mar 12 16:12:25 2009 1 relations: 95092 Thu Mar 12 16:12:25 2009 2 relations: 85980 Thu Mar 12 16:12:25 2009 3 relations: 85852 Thu Mar 12 16:12:25 2009 4 relations: 78763 Thu Mar 12 16:12:25 2009 5 relations: 70763 Thu Mar 12 16:12:25 2009 6 relations: 61917 Thu Mar 12 16:12:25 2009 7 relations: 52224 Thu Mar 12 16:12:25 2009 8 relations: 44948 Thu Mar 12 16:12:25 2009 9 relations: 38437 Thu Mar 12 16:12:25 2009 10+ relations: 156864 Thu Mar 12 16:12:25 2009 heaviest cycle: 21 relations Thu Mar 12 16:12:26 2009 commencing cycle optimization Thu Mar 12 16:12:28 2009 start with 4639290 relations Thu Mar 12 16:12:36 2009 pruned 124918 relations Thu Mar 12 16:12:36 2009 memory use: 123.4 MB Thu Mar 12 16:12:36 2009 distribution of cycle lengths: Thu Mar 12 16:12:36 2009 1 relations: 95092 Thu Mar 12 16:12:36 2009 2 relations: 88075 Thu Mar 12 16:12:36 2009 3 relations: 89333 Thu Mar 12 16:12:36 2009 4 relations: 80965 Thu Mar 12 16:12:36 2009 5 relations: 72987 Thu Mar 12 16:12:36 2009 6 relations: 62789 Thu Mar 12 16:12:36 2009 7 relations: 52906 Thu Mar 12 16:12:36 2009 8 relations: 44508 Thu Mar 12 16:12:36 2009 9 relations: 38326 Thu Mar 12 16:12:36 2009 10+ relations: 145859 Thu Mar 12 16:12:36 2009 heaviest cycle: 21 relations Thu Mar 12 16:12:38 2009 RelProcTime: 466 Thu Mar 12 16:12:38 2009 Thu Mar 12 16:12:38 2009 commencing linear algebra Thu Mar 12 16:12:39 2009 read 770840 cycles Thu Mar 12 16:12:41 2009 cycles contain 2614730 unique relations Thu Mar 12 16:13:03 2009 read 2614730 relations Thu Mar 12 16:13:08 2009 using 20 quadratic characters above 134215832 Thu Mar 12 16:13:25 2009 building initial matrix Thu Mar 12 16:14:20 2009 memory use: 279.4 MB Thu Mar 12 16:14:21 2009 read 770840 cycles Thu Mar 12 16:14:25 2009 matrix is 769966 x 770840 (217.9 MB) with weight 67686320 (87.81/col) Thu Mar 12 16:14:25 2009 sparse part has weight 51726666 (67.10/col) Thu Mar 12 16:14:46 2009 filtering completed in 3 passes Thu Mar 12 16:14:46 2009 matrix is 758782 x 758981 (215.4 MB) with weight 66834112 (88.06/col) Thu Mar 12 16:14:46 2009 sparse part has weight 51142090 (67.38/col) Thu Mar 12 16:14:56 2009 read 758981 cycles Thu Mar 12 16:14:56 2009 matrix is 758782 x 758981 (215.4 MB) with weight 66834112 (88.06/col) Thu Mar 12 16:14:56 2009 sparse part has weight 51142090 (67.38/col) Thu Mar 12 16:14:56 2009 saving the first 48 matrix rows for later Thu Mar 12 16:14:57 2009 matrix is 758734 x 758981 (202.7 MB) with weight 53035025 (69.88/col) Thu Mar 12 16:14:57 2009 sparse part has weight 48576287 (64.00/col) Thu Mar 12 16:14:57 2009 matrix includes 64 packed rows Thu Mar 12 16:14:57 2009 using block size 65536 for processor cache size 2048 kB Thu Mar 12 16:15:02 2009 commencing Lanczos iteration (2 threads) Thu Mar 12 16:15:02 2009 memory use: 209.4 MB Thu Mar 12 17:28:24 2009 lanczos halted after 12001 iterations (dim = 758732) Thu Mar 12 17:28:26 2009 recovered 37 nontrivial dependencies Thu Mar 12 17:28:26 2009 BLanczosTime: 7786 Thu Mar 12 17:28:26 2009 Thu Mar 12 17:28:26 2009 commencing square root phase Thu Mar 12 17:28:26 2009 reading relations for dependency 1 Thu Mar 12 17:28:27 2009 read 379915 cycles Thu Mar 12 17:28:28 2009 cycles contain 1582369 unique relations Thu Mar 12 17:28:48 2009 read 1582369 relations Thu Mar 12 17:28:58 2009 multiplying 1298358 relations Thu Mar 12 17:30:51 2009 multiply complete, coefficients have about 39.09 million bits Thu Mar 12 17:30:52 2009 initial square root is modulo 409691 Thu Mar 12 17:34:41 2009 reading relations for dependency 2 Thu Mar 12 17:34:42 2009 read 379636 cycles Thu Mar 12 17:34:43 2009 cycles contain 1581643 unique relations Thu Mar 12 17:35:04 2009 read 1581643 relations Thu Mar 12 17:35:13 2009 multiplying 1297484 relations Thu Mar 12 17:37:06 2009 multiply complete, coefficients have about 39.06 million bits Thu Mar 12 17:37:07 2009 initial square root is modulo 406331 Thu Mar 12 17:40:54 2009 sqrtTime: 668 Thu Mar 12 17:40:54 2009 prp41 factor: 16992883783519846308764066577664900740967 Thu Mar 12 17:40:54 2009 prp103 factor: 1979092671373367048595934073451965110198678986743029049601958788254140099138182740089543592879492970011 Thu Mar 12 17:40:54 2009 elapsed time 01:36:50
By Ignacio Santos / GGNFS, Msieve / Mar 13, 2009
(47·10153-11)/9 = 5(2)1521<154> = 43 · 71 · 2441 · 17898373 · 8263935083818247538581<22> · C118
C118 = P57 · P62
P57 = 226172031937598581999049537050152677114695575507414403739<57>
P62 = 20946979782671921817910823270603751543852860787070098351507811<62>
Number: 52221_153 N=4737620980402705705626055815487932594604850839169072620739338386990968212221775269943468270813335695462747750166105329 ( 118 digits) SNFS difficulty: 156 digits. Divisors found: r1=226172031937598581999049537050152677114695575507414403739 (pp57) r2=20946979782671921817910823270603751543852860787070098351507811 (pp62) Version: Msieve-1.39 Total time: 17.16 hours. Scaled time: 44.12 units (timescale=2.571). Factorization parameters were as follows: n: 4737620980402705705626055815487932594604850839169072620739338386990968212221775269943468270813335695462747750166105329 m: 5000000000000000000000000000000 deg: 5 c5: 376 c0: -275 skew: 0.94 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 473115 x 473363 Total sieving time: 17.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 17.16 hours. --------- CPU info (if available) ----------
(47·10167-11)/9 = 5(2)1661<168> = 7 · 11821 · C163
C163 = P72 · P92
P72 = 142395689927785736847713012883930874539337535506768450256382601505671667<72>
P92 = 44320662851452234004074288506988846359535994616193319803200659596263235671600926965502726029<92>
Number: 52221_167 N=6311071364789324352813059352269232989984195465965197798376040487536976835682528940290550983385768936906742506945535454121868130835223297789916519296436393128720343 ( 163 digits) SNFS difficulty: 169 digits. Divisors found: r1=142395689927785736847713012883930874539337535506768450256382601505671667 (pp72) r2=44320662851452234004074288506988846359535994616193319803200659596263235671600926965502726029 (pp92) Version: Msieve-1.39 Total time: 49.16 hours. Scaled time: 85.29 units (timescale=1.735). Factorization parameters were as follows: n: 6311071364789324352813059352269232989984195465965197798376040487536976835682528940290550983385768936906742506945535454121868130835223297789916519296436393128720343 m: 2000000000000000000000000000000000 deg: 5 c5: 1175 c0: -88 skew: 0.60 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 914933 x 915181 Total sieving time: 49.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 49.16 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.40 / Mar 13, 2009
(47·10150-11)/9 = 5(2)1491<151> = C151
C151 = P43 · P108
P43 = 5988111156090505828245750143728185640174571<43>
P108 = 872098410683425902866041654560780729494484106633726077490895857353439091643504043220735089594598475864322151<108>
SNFS difficulty: 151 digits. Divisors found: r1=5988111156090505828245750143728185640174571 (pp43) r2=872098410683425902866041654560780729494484106633726077490895857353439091643504043220735089594598475864322151 (pp108) Version: Msieve-1.40 Total time: 4.93 hours. Scaled time: 14.93 units (timescale=3.028). Factorization parameters were as follows: n: 5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 1000000000000000000000000000000 deg: 5 c5: 47 c0: -11 skew: 0.75 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1200000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 435666 x 435914 Total sieving time: 4.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.30 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,51,51,2.5,2.5,100000 total time: 4.93 hours. --------- CPU info (if available) ---------- CPU0: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU1: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU2: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU3: AMD Phenom(tm) II X4 940 Processor stepping 02 Memory: 8173900k/9175040k available (2699k kernel code, 213168k reserved, 3164k data, 788k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6413.63 BogoMIPS (lpj=12827264) Calibrating delay using timer specific routine.. 6413.75 BogoMIPS (lpj=12827519) Calibrating delay using timer specific routine.. 6413.73 BogoMIPS (lpj=12827464) Calibrating delay using timer specific routine.. 6413.70 BogoMIPS (lpj=12827407) Total of 4 processors activated (25654.82 BogoMIPS).
By Serge Batalov / PFGW / Mar 13, 2009
(19·1056544-1)/9 = 2(1)56544<56545> is PRP.
It's the largest unprovable near-repdigit PRP so far in our tables. Congratulations!
By Sinkiti Sibata / Msieve, GGNFS / Mar 12, 2009
(46·10195+53)/9 = 5(1)1947<196> = 7 · 17 · 8171 · 218664548357<12> · 383029520353<12> · 1317758454923<13> · 36851587108333<14> · 333880318201853<15> · 920693601912765731333<21> · C106
C106 = P53 · P54
P53 = 32929899691477187500923347753881273778706767921810279<53>
P54 = 127671560463196479694817849115602475215226567268386757<54>
Thu Mar 12 07:10:59 2009 Msieve v. 1.39 Thu Mar 12 07:10:59 2009 random seeds: 0238fc48 25b627af Thu Mar 12 07:10:59 2009 factoring 4204211679507424846451086882635743171490086993932991463923317493021943202107350324813720870968483350075203 (106 digits) Thu Mar 12 07:11:00 2009 searching for 15-digit factors Thu Mar 12 07:11:02 2009 commencing quadratic sieve (106-digit input) Thu Mar 12 07:11:02 2009 using multiplier of 2 Thu Mar 12 07:11:02 2009 using 32kb Intel Core sieve core Thu Mar 12 07:11:02 2009 sieve interval: 40 blocks of size 32768 Thu Mar 12 07:11:02 2009 processing polynomials in batches of 6 Thu Mar 12 07:11:02 2009 using a sieve bound of 4380851 (153831 primes) Thu Mar 12 07:11:02 2009 using large prime bound of 657127650 (29 bits) Thu Mar 12 07:11:02 2009 using double large prime bound of 7443368346761550 (45-53 bits) Thu Mar 12 07:11:02 2009 using trial factoring cutoff of 53 bits Thu Mar 12 07:11:02 2009 polynomial 'A' values have 14 factors Thu Mar 12 07:11:06 2009 restarting with 28225 full and 1742777 partial relations Thu Mar 12 15:40:24 2009 154260 relations (37055 full + 117205 combined from 2278358 partial), need 153927 Thu Mar 12 15:40:27 2009 begin with 2315413 relations Thu Mar 12 15:40:29 2009 reduce to 404849 relations in 10 passes Thu Mar 12 15:40:29 2009 attempting to read 404849 relations Thu Mar 12 15:40:38 2009 recovered 404849 relations Thu Mar 12 15:40:38 2009 recovered 395853 polynomials Thu Mar 12 15:40:39 2009 attempting to build 154260 cycles Thu Mar 12 15:40:39 2009 found 154260 cycles in 6 passes Thu Mar 12 15:40:39 2009 distribution of cycle lengths: Thu Mar 12 15:40:39 2009 length 1 : 37055 Thu Mar 12 15:40:39 2009 length 2 : 26623 Thu Mar 12 15:40:39 2009 length 3 : 25681 Thu Mar 12 15:40:39 2009 length 4 : 21146 Thu Mar 12 15:40:39 2009 length 5 : 15928 Thu Mar 12 15:40:39 2009 length 6 : 10746 Thu Mar 12 15:40:39 2009 length 7 : 7172 Thu Mar 12 15:40:39 2009 length 9+: 9909 Thu Mar 12 15:40:39 2009 largest cycle: 20 relations Thu Mar 12 15:40:40 2009 matrix is 153831 x 154260 (42.4 MB) with weight 10493401 (68.02/col) Thu Mar 12 15:40:40 2009 sparse part has weight 10493401 (68.02/col) Thu Mar 12 15:40:43 2009 filtering completed in 3 passes Thu Mar 12 15:40:43 2009 matrix is 147388 x 147451 (40.7 MB) with weight 10068967 (68.29/col) Thu Mar 12 15:40:43 2009 sparse part has weight 10068967 (68.29/col) Thu Mar 12 15:40:43 2009 saving the first 48 matrix rows for later Thu Mar 12 15:40:43 2009 matrix is 147340 x 147451 (22.6 MB) with weight 7695468 (52.19/col) Thu Mar 12 15:40:43 2009 sparse part has weight 5029748 (34.11/col) Thu Mar 12 15:40:43 2009 matrix includes 64 packed rows Thu Mar 12 15:40:43 2009 using block size 43690 for processor cache size 1024 kB Thu Mar 12 15:40:44 2009 commencing Lanczos iteration Thu Mar 12 15:40:44 2009 memory use: 23.5 MB Thu Mar 12 15:43:17 2009 lanczos halted after 2331 iterations (dim = 147339) Thu Mar 12 15:43:17 2009 recovered 17 nontrivial dependencies Thu Mar 12 15:43:19 2009 prp53 factor: 32929899691477187500923347753881273778706767921810279 Thu Mar 12 15:43:19 2009 prp54 factor: 127671560463196479694817849115602475215226567268386757 Thu Mar 12 15:43:19 2009 elapsed time 08:32:20
(44·10180+1)/9 = 4(8)1799<181> = C181
C181 = P83 · P99
P83 = 29998628377250006041227482776218252221391624699072260154192585502404897950350750219<83>
P99 = 162970414093881199747897196519081791013520831322884381372253453463024642558226884272512371979865931<99>
Number: 48889_180 N=4888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 181 digits) SNFS difficulty: 182 digits. Divisors found: r1=29998628377250006041227482776218252221391624699072260154192585502404897950350750219 r2=162970414093881199747897196519081791013520831322884381372253453463024642558226884272512371979865931 Version: Total time: 141.87 hours. Scaled time: 363.75 units (timescale=2.564). Factorization parameters were as follows: name: 48889_180 n: 4888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 2000000000000000000000000000000000000 deg: 5 c5: 11 c0: 8 skew: 0.94 type: snfs lss: 1 rlim: 7700000 alim: 7700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3850000, 5750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1429172 x 1429420 Total sieving time: 141.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7700000,7700000,28,28,53,53,2.5,2.5,100000 total time: 141.87 hours. --------- CPU info (if available) ----------
(46·10148+53)/9 = 5(1)1477<149> = 3 · 11 · 2073601 · 362810318840012022254398567<27> · C115
C115 = P44 · P72
P44 = 10580955501994082609495759629247655155837933<44>
P72 = 194568114473872391604919830308514587164898854724487789394376603300161559<72>
Number: 51117_148 N=2058716561354934581684959442841534654116623410836174062651661961139069179305115649044521621779174803752300920617547 ( 115 digits) SNFS difficulty: 151 digits. Divisors found: r1=10580955501994082609495759629247655155837933 (pp44) r2=194568114473872391604919830308514587164898854724487789394376603300161559 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 33.00 hours. Scaled time: 15.57 units (timescale=0.472). Factorization parameters were as follows: name: 51117_148 n: 2058716561354934581684959442841534654116623410836174062651661961139069179305115649044521621779174803752300920617547 m: 500000000000000000000000000000 deg: 5 c5: 368 c0: 1325 skew: 1.29 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: RFBsize:169511, AFBsize:169721, largePrimes:6941653 encountered Relations: rels:6938774, finalFF:502200 Max relations in full relation-set: 28 Initial matrix: 339299 x 502200 with sparse part having weight 52499115. Pruned matrix : 282610 x 284370 with weight 26631670. Total sieving time: 29.86 hours. Total relation processing time: 0.30 hours. Matrix solve time: 2.72 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 33.00 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 12, 2009
4·10182+1 = 4(0)1811<183> = 1160317 · 413745536263432081<18> · C159
C159 = P47 · P113
P47 = 30385872315370452048023578488339493475461704437<47>
P113 = 27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649<113>
Number: 40001_182 N=833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613 ( 159 digits) SNFS difficulty: 182 digits. Divisors found: r1=30385872315370452048023578488339493475461704437 r2=27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649 Version: Total time: 87.22 hours. Scaled time: 208.02 units (timescale=2.385). Factorization parameters were as follows: n: 833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613 m: 2000000000000000000000000000000000000 deg: 5 c5: 25 c0: 2 skew: 0.60 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18344751 Max relations in full relation-set: Initial matrix: Pruned matrix : 1254004 x 1254252 Total sieving time: 80.75 hours. Total relation processing time: 2.24 hours. Matrix solve time: 3.90 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 87.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Serge Batalov / GMP-ECM 6.2.2 / Mar 12, 2009
(47·10140-11)/9 = 5(2)1391<141> = 19 · 103 · 647 · 2255083 · 84974721827<11> · C118
C118 = P31 · P87
P31 = 4818450292839103564887902613193<31>
P87 = 446684185015450509131514437747403540032672941709118393224734479146379724274632078862423<87>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=614797269 Step 1 took 6497ms Step 2 took 6556ms ********** Factor found in step 2: 4818450292839103564887902613193 Found probable prime factor of 31 digits: 4818450292839103564887902613193 Probable prime cofactor 446684185015450509131514437747403540032672941709118393224734479146379724274632078862423 has 87 digits
(47·10177-11)/9 = 5(2)1761<178> = 17 · 491 · 476994724582963119809<21> · C154
C154 = P38 · C116
P38 = 29336523767341974250914648586797711269<38>
C116 = [44709798057885060980656834282070292023087303425981948741349201177796626681785466973031767603121232173890091368733483<116>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2578320307 Step 1 took 7724ms Step 2 took 7937ms ********** Factor found in step 2: 29336523767341974250914648586797711269 Found probable prime factor of 38 digits: 29336523767341974250914648586797711269 Composite cofactor has 116 digits
(47·10179-11)/9 = 5(2)1781<180> = 7 · 23 · 5322059 · 919996412717<12> · 29156504009218880992100765849<29> · C131
C131 = P34 · P97
P34 = 3072254686607955376409364861872723<34>
P97 = 7395558714522408519984500388661316649969956019249487652617042960649999491932991242793231406163481<97>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1973163813 Step 1 took 6428ms Step 2 took 7081ms ********** Factor found in step 2: 3072254686607955376409364861872723 Found probable prime factor of 34 digits: 3072254686607955376409364861872723 Probable prime cofactor 7395558714522408519984500388661316649969956019249487652617042960649999491932991242793231406163481 has 97 digits
(47·10197-11)/9 = 5(2)1961<198> = 7 · 373 · 1404797 · C189
C189 = P37 · P152
P37 = 5163985378115699491845176569607097011<37>
P152 = 27570833888524445160516755860685768710081216469115014628752510615388153394577264288236432164511019626347857612199983283847920376203939402113270533430633<152>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3665488111 Step 1 took 10545ms Step 2 took 9945ms ********** Factor found in step 2: 5163985378115699491845176569607097011 Found probable prime factor of 37 digits: 5163985378115699491845176569607097011 Probable prime cofactor has 152 digits
By Robert Backstrom / GMP-ECM, GGNFS / Mar 12, 2009
(46·10171+17)/9 = 5(1)1703<172> = 263 · 970249022030821397<18> · 19026574647719725580906261568180313<35> · C118
C118 = P39 · P79
P39 = 630342612127198618772322707546108783051<39>
P79 = 1670086954568573035831635264946570628527344374543767768165202474247383904070241<79>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 1052726973422312414369679920117417355319166283649319053416903491099269688020426323445565576922947838234591638134285291 (118 digits) Using B1=10000000, B2=22329304695, polynomial Dickson(12), sigma=2297428923 Step 1 took 115620ms Step 2 took 43491ms ********** Factor found in step 2: 630342612127198618772322707546108783051 Found probable prime factor of 39 digits: 630342612127198618772322707546108783051 Probable prime cofactor 1670086954568573035831635264946570628527344374543767768165202474247383904070241 has 79 digits
(47·10200-11)/9 = 5(2)1991<201> = 379 · 165247 · 3640480496159251<16> · 1381752074574568323937<22> · 400063996400046574075489<24> · 2207360148890597730653248989359101<34> · C100
C100 = P47 · P53
P47 = 19655714323899734215684139076568893767821207919<47>
P53 = 95499747359901403850988662561208824995212239981906401<53>
Number: n N=1877115752110819849830579533457599023919068731916339392275250841391975474365193648865172520217989519 ( 100 digits) Divisors found: r1=19655714323899734215684139076568893767821207919 (pp47) r2=95499747359901403850988662561208824995212239981906401 (pp53) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.05 hours. Scaled time: 7.38 units (timescale=1.823). Factorization parameters were as follows: name: n n: 1877115752110819849830579533457599023919068731916339392275250841391975474365193648865172520217989519 skew: 2212.04 # norm 2.08e+13 c5: 81840 c4: 1870972448 c3: -1317042875282 c2: -6858498513143125 c1: 4671328310322123114 c0: 3377541918769261871349 # alpha -4.84 Y1: 1908640651 Y0: -7449113266076813386 # Murphy_E 3.46e-09 # M 874845903364873350744744798599273379445262588134333452794906208939213299236812744033704378092847643 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135011, largePrimes:3962908 encountered Relations: rels:4028871, finalFF:449210 Max relations in full relation-set: 48 Initial matrix: 270165 x 449210 with sparse part having weight 38385272. Pruned matrix : 169771 x 171185 with weight 13681875. Total sieving time: 3.70 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.20 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.05 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 12, 2009
(47·10105-11)/9 = 5(2)1041<106> = C106
C106 = P49 · P58
P49 = 4727963546619759731766917175356370990122850807563<49>
P58 = 1104539442981922084666125317770203910599526816212631418567<58>
Number: 52221_105 N=5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 106 digits) SNFS difficulty: 107 digits. Divisors found: r1=4727963546619759731766917175356370990122850807563 (pp49) r2=1104539442981922084666125317770203910599526816212631418567 (pp58) Version: Msieve-1.39 Total time: 0.39 hours. Scaled time: 0.47 units (timescale=1.196). Factorization parameters were as follows: n: 5222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 200000000000000000000000000 deg: 4 c4: 235 c0: -88 skew: 0.78 type: snfs lss: 1 rlim: 430000 alim: 430000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 430000/430000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [215000, 295001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 40222 x 40453 Total sieving time: 0.39 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,4,0,0,0,0,0,0,0,0,430000,430000,25,25,44,44,2.2,2.2,20000 total time: 0.39 hours. --------- CPU info (if available) ----------
(47·10110-11)/9 = 5(2)1091<111> = 21773 · 272269 · C101
C101 = P48 · P54
P48 = 216910834226941566211301968179911755666633923569<48>
P54 = 406123046208282273526869154596718542736108868487201557<54>
Number: 52221_110 N=88092488751825245839141850043708474345184733484139123482124413214805496243909062730162730403835796933 ( 101 digits) SNFS difficulty: 111 digits. Divisors found: r1=216910834226941566211301968179911755666633923569 (pp48) r2=406123046208282273526869154596718542736108868487201557 (pp54) Version: Msieve-1.39 Total time: 0.71 hours. Scaled time: 0.85 units (timescale=1.198). Factorization parameters were as follows: n: 88092488751825245839141850043708474345184733484139123482124413214805496243909062730162730403835796933 m: 10000000000000000000000 deg: 5 c5: 47 c0: -11 skew: 0.75 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 48196 x 48427 Total sieving time: 0.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.71 hours. --------- CPU info (if available) ----------
(47·10125-11)/9 = 5(2)1241<126> = 7 · 61 · 3299 · 285497 · 32485493 · C107
C107 = P48 · P59
P48 = 739186659997327189314836263152927554553245196443<48>
P59 = 54075435562763884561227665822779541333185768077925461195059<59>
Number: 52221_125 N=39971840601540122795462405359026089084329468172411782611476635366212541263283110174683000066457789995975137 ( 107 digits) SNFS difficulty: 126 digits. Divisors found: r1=739186659997327189314836263152927554553245196443 (pp48) r2=54075435562763884561227665822779541333185768077925461195059 (pp59) Version: Msieve-1.39 Total time: 1.35 hours. Scaled time: 1.62 units (timescale=1.197). Factorization parameters were as follows: n: 39971840601540122795462405359026089084329468172411782611476635366212541263283110174683000066457789995975137 m: 10000000000000000000000000 deg: 5 c5: 47 c0: -11 skew: 0.75 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 117698 x 117937 Total sieving time: 1.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.35 hours. --------- CPU info (if available) ----------
(47·10123-11)/9 = 5(2)1221<124> = 572549 · 35307465251<11> · 167535992353<12> · C97
C97 = P45 · P52
P45 = 213931892963841771830937155726601487835244691<45>
P52 = 7207630115544321559557722525529973748657968318948273<52>
Number: 52221_123 N=1541941954401590302360835451795037441318811896762871211954952005084360128665956851129690726868643 ( 97 digits) SNFS difficulty: 126 digits. Divisors found: r1=213931892963841771830937155726601487835244691 (pp45) r2=7207630115544321559557722525529973748657968318948273 (pp52) Version: Msieve-1.39 Total time: 1.32 hours. Scaled time: 1.58 units (timescale=1.198). Factorization parameters were as follows: n: 1541941954401590302360835451795037441318811896762871211954952005084360128665956851129690726868643 m: 5000000000000000000000000 deg: 5 c5: 376 c0: -275 skew: 0.94 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 690001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 129286 x 129534 Total sieving time: 1.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.32 hours. --------- CPU info (if available) ----------
(47·10127-11)/9 = 5(2)1261<128> = 3 · 27992513 · C120
C120 = P42 · P78
P42 = 773971033907263552982623116836469574628753<42>
P78 = 803465989309873832290717161694379700388955748501632241534778895093776564980863<78>
Number: 52221_127 N=621859402455485415239689534391121204709538132835998233077802175439104285042482874167367803219646889416731088323774553839 ( 120 digits) SNFS difficulty: 129 digits. Divisors found: r1=773971033907263552982623116836469574628753 (pp42) r2=803465989309873832290717161694379700388955748501632241534778895093776564980863 (pp78) Version: Msieve-1.39 Total time: 2.10 hours. Scaled time: 2.52 units (timescale=1.197). Factorization parameters were as follows: n: 621859402455485415239689534391121204709538132835998233077802175439104285042482874167367803219646889416731088323774553839 m: 20000000000000000000000000 deg: 5 c5: 1175 c0: -88 skew: 0.60 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 905001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 138680 x 138928 Total sieving time: 2.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 2.10 hours. --------- CPU info (if available) ----------
(46·10153+71)/9 = 5(1)1529<154> = 67 · 167907469285391491<18> · C135
C135 = P40 · P95
P40 = 7133083920115793161754192878302086398429<40>
P95 = 63693214863059925710776140780854555073194599184277823947866274871020184275904123806802758151363<95>
Number: 51119_153 N=454329046760172996815214720499930206896377654307005578295605754041686616968350140341961416219894897211617500385463382812242770707408727 ( 135 digits) SNFS difficulty: 156 digits. Divisors found: r1=7133083920115793161754192878302086398429 (pp40) r2=63693214863059925710776140780854555073194599184277823947866274871020184275904123806802758151363 (pp95) Version: Msieve-1.39 Total time: 25.06 hours. Scaled time: 64.43 units (timescale=2.571). Factorization parameters were as follows: n: 454329046760172996815214720499930206896377654307005578295605754041686616968350140341961416219894897211617500385463382812242770707408727 m: 5000000000000000000000000000000 deg: 5 c5: 368 c0: 1775 skew: 1.37 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 523197 x 523445 Total sieving time: 25.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 25.06 hours. --------- CPU info (if available) ----------
(47·10138-11)/9 = 5(2)1371<139> = 69383 · 2943852115113191436936232499<28> · C107
C107 = P31 · P76
P31 = 3445662944462953372813157292509<31>
P76 = 7420163804356413285723061705356166490106356012527781697564305483421044156957<76>
Number: 52221_138 N=25567383462516148887418148093946022278181522749536079967073271232486321862137511716451779062548888556335113 ( 107 digits) SNFS difficulty: 141 digits. Divisors found: r1=3445662944462953372813157292509 (pp31) r2=7420163804356413285723061705356166490106356012527781697564305483421044156957 (pp76) Version: Msieve-1.39 Total time: 4.53 hours. Scaled time: 5.43 units (timescale=1.199). Factorization parameters were as follows: n: 25567383462516148887418148093946022278181522749536079967073271232486321862137511716451779062548888556335113 m: 5000000000000000000000000000 deg: 5 c5: 376 c0: -275 skew: 0.94 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 235266 x 235514 Total sieving time: 4.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 4.53 hours. --------- CPU info (if available) ----------
(47·10121-11)/9 = 5(2)1201<122> = 3 · 3691 · 1909757 · 74109151212795992011<20> · C92
C92 = P35 · P57
P35 = 79379976514831063632425217374113177<35>
P57 = 419787142593259868022055127950287131578980559640947153163<57>
Wed Mar 11 22:42:37 2009 Wed Mar 11 22:42:37 2009 Wed Mar 11 22:42:37 2009 Msieve v. 1.40 Wed Mar 11 22:42:37 2009 random seeds: d2ddc4a8 0ca4d5a3 Wed Mar 11 22:42:37 2009 factoring 33322693520281007205858432921805287015651697127047237999398735204667991282155230129915528851 (92 digits) Wed Mar 11 22:42:38 2009 searching for 15-digit factors Wed Mar 11 22:42:39 2009 commencing quadratic sieve (92-digit input) Wed Mar 11 22:42:39 2009 using multiplier of 3 Wed Mar 11 22:42:39 2009 using 32kb Intel Core sieve core Wed Mar 11 22:42:39 2009 sieve interval: 36 blocks of size 32768 Wed Mar 11 22:42:39 2009 processing polynomials in batches of 6 Wed Mar 11 22:42:39 2009 using a sieve bound of 1805081 (68235 primes) Wed Mar 11 22:42:39 2009 using large prime bound of 196753829 (27 bits) Wed Mar 11 22:42:39 2009 using double large prime bound of 849301085385043 (42-50 bits) Wed Mar 11 22:42:39 2009 using trial factoring cutoff of 50 bits Wed Mar 11 22:42:39 2009 polynomial 'A' values have 12 factors Thu Mar 12 00:12:42 2009 68477 relations (17462 full + 51015 combined from 857491 partial), need 68331 Thu Mar 12 00:12:43 2009 begin with 874953 relations Thu Mar 12 00:12:44 2009 reduce to 172235 relations in 12 passes Thu Mar 12 00:12:44 2009 attempting to read 172235 relations Thu Mar 12 00:12:45 2009 recovered 172235 relations Thu Mar 12 00:12:45 2009 recovered 152549 polynomials Thu Mar 12 00:12:46 2009 attempting to build 68477 cycles Thu Mar 12 00:12:46 2009 found 68477 cycles in 5 passes Thu Mar 12 00:12:46 2009 distribution of cycle lengths: Thu Mar 12 00:12:46 2009 length 1 : 17462 Thu Mar 12 00:12:46 2009 length 2 : 12684 Thu Mar 12 00:12:46 2009 length 3 : 11864 Thu Mar 12 00:12:46 2009 length 4 : 9303 Thu Mar 12 00:12:46 2009 length 5 : 6763 Thu Mar 12 00:12:46 2009 length 6 : 4296 Thu Mar 12 00:12:46 2009 length 7 : 2696 Thu Mar 12 00:12:46 2009 length 9+: 3409 Thu Mar 12 00:12:46 2009 largest cycle: 18 relations Thu Mar 12 00:12:46 2009 matrix is 68235 x 68477 (16.9 MB) with weight 4154283 (60.67/col) Thu Mar 12 00:12:46 2009 sparse part has weight 4154283 (60.67/col) Thu Mar 12 00:12:46 2009 filtering completed in 3 passes Thu Mar 12 00:12:46 2009 matrix is 64316 x 64379 (16.0 MB) with weight 3934154 (61.11/col) Thu Mar 12 00:12:46 2009 sparse part has weight 3934154 (61.11/col) Thu Mar 12 00:12:46 2009 saving the first 48 matrix rows for later Thu Mar 12 00:12:46 2009 matrix is 64268 x 64379 (9.5 MB) with weight 3027732 (47.03/col) Thu Mar 12 00:12:46 2009 sparse part has weight 2093212 (32.51/col) Thu Mar 12 00:12:46 2009 matrix includes 64 packed rows Thu Mar 12 00:12:46 2009 using block size 25751 for processor cache size 4096 kB Thu Mar 12 00:12:47 2009 commencing Lanczos iteration Thu Mar 12 00:12:47 2009 memory use: 9.6 MB Thu Mar 12 00:13:04 2009 lanczos halted after 1018 iterations (dim = 64266) Thu Mar 12 00:13:04 2009 recovered 16 nontrivial dependencies Thu Mar 12 00:13:04 2009 prp35 factor: 79379976514831063632425217374113177 Thu Mar 12 00:13:04 2009 prp57 factor: 419787142593259868022055127950287131578980559640947153163 Thu Mar 12 00:13:04 2009 elapsed time 01:30:27
(47·10141-11)/9 = 5(2)1401<142> = 52342943 · 73148720929412482777607<23> · C112
C112 = P36 · P76
P36 = 392991753933664432111486782642856073<36>
P76 = 3470619774205893994555452494039320050463535188041950431210437525856898810477<76>
Number: 52221_141 N=1363924952302032704411362231222452808718178922616558200506126938401445710984766595384909799427910544275615476821 ( 112 digits) SNFS difficulty: 143 digits. Divisors found: r1=392991753933664432111486782642856073 (pp36) r2=3470619774205893994555452494039320050463535188041950431210437525856898810477 (pp76) Version: Msieve-1.39 Total time: 6.65 hours. Scaled time: 7.93 units (timescale=1.192). Factorization parameters were as follows: n: 1363924952302032704411362231222452808718178922616558200506126938401445710984766595384909799427910544275615476821 m: 20000000000000000000000000000 deg: 5 c5: 235 c0: -176 skew: 0.94 type: snfs lss: 1 rlim: 1750000 alim: 1750000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1750000/1750000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [875000, 2075001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 305735 x 305983 Total sieving time: 6.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000 total time: 6.65 hours. --------- CPU info (if available) ----------
(46·10156+71)/9 = 5(1)1559<157> = 13 · 12791 · 14542537 · 4407263369<10> · 1097910141634106723759003<25> · C111
C111 = P43 · P69
P43 = 2715484761041453250674567065722056986464791<43>
P69 = 160858540162485163688402882005891457614428281179133660553932660406097<69>
Number: 51119_156 N=436808914494603035272948990060886924872748227290197848685460751713925847982802181671282981837615851006452230727 ( 111 digits) SNFS difficulty: 157 digits. Divisors found: r1=2715484761041453250674567065722056986464791 (pp43) r2=160858540162485163688402882005891457614428281179133660553932660406097 (pp69) Version: Msieve-1.39 Total time: 27.31 hours. Scaled time: 70.23 units (timescale=2.571). Factorization parameters were as follows: n: 436808914494603035272948990060886924872748227290197848685460751713925847982802181671282981837615851006452230727 m: 10000000000000000000000000000000 deg: 5 c5: 460 c0: 71 skew: 0.69 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 542240 x 542488 Total sieving time: 27.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 27.31 hours. --------- CPU info (if available) ----------
(46·10163+71)/9 = 5(1)1629<164> = C164
C164 = P49 · P115
P49 = 7541934798456785863129669147390842480985292538523<49>
P115 = 6776922961674152159210898254957167446794903963445963850920375427234007766800528046684857758168998176148283384837853<115>
Number: 51119_163 N=51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 ( 164 digits) SNFS difficulty: 166 digits. Divisors found: r1=7541934798456785863129669147390842480985292538523 (pp49) r2=6776922961674152159210898254957167446794903963445963850920375427234007766800528046684857758168998176148283384837853 (pp115) Version: Msieve-1.39 Total time: 48.64 hours. Scaled time: 84.59 units (timescale=1.739). Factorization parameters were as follows: n: 51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 m: 500000000000000000000000000000000 deg: 5 c5: 368 c0: 1775 skew: 1.37 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 862475 x 862723 Total sieving time: 48.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 48.64 hours. --------- CPU info (if available) ----------
(47·10152-11)/9 = 5(2)1511<153> = 105707097157561<15> · C139
C139 = P60 · P80
P60 = 131389417429374689747949086527324232738423508338228019362549<60>
P80 = 37600257118637648059825623678721994185204133889456608930817885145174309666005889<80>
Number: 52221_152 N=4940275878012499147589824021265307849742946323735234697706010297652630964917861993303997069328761719581734393133552513562136273904660051061 ( 139 digits) SNFS difficulty: 154 digits. Divisors found: r1=131389417429374689747949086527324232738423508338228019362549 (pp60) r2=37600257118637648059825623678721994185204133889456608930817885145174309666005889 (pp80) Version: Msieve-1.39 Total time: 16.75 hours. Scaled time: 42.87 units (timescale=2.560). Factorization parameters were as follows: n: 4940275878012499147589824021265307849742946323735234697706010297652630964917861993303997069328761719581734393133552513562136273904660051061 m: 2000000000000000000000000000000 deg: 5 c5: 1175 c0: -88 skew: 0.60 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 524524 x 524772 Total sieving time: 16.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 16.75 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Mar 12, 2009
(55·1056453-1)/9 = 6(1)56453<56454> is PRP.
It's the largest unprovable near-repdigit PRP so far in our tables. Congratulations!
Factorizations of 522...221 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Serge Batalov / Msieve-1.40b2, GMP-ECM 6.2.2 / Mar 11, 2009
(46·10154+53)/9 = 5(1)1537<155> = 3 · 11 · C154
C154 = P33 · P121
P33 = 852516063533571245521819271819209<33>
P121 = 1816765237715145703759492901073027105339922842612605998891568224247917184885659921290464520661996160310348489261441512261<121>
SNFS difficulty: 156 digits. Divisors found: r1=852516063533571245521819271819209 (pp33) r2=1816765237715145703759492901073027105339922842612605998891568224247917184885659921290464520661996160310348489261441512261 (pp121) Version: Msieve-1.40b2 Total time: 6.85 hours. Scaled time: 19.46 units (timescale=2.840). Factorization parameters were as follows: n: 1548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821548821549 m: 10000000000000000000000000000000 deg: 5 c5: 23 c0: 265 skew: 1.63 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 445234 x 445482 Total sieving time: 6.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 6.85 hours. --------- CPU info (if available) ---------- CPU0: AMD Phenom(tm) II X4 940 Processor stepping 02 ... Calibrating delay using timer specific routine.. 6012.92 BogoMIPS (lpj=12025858) Total of 4 processors activated (24051.44 BogoMIPS).
(46·10182+71)/9 = 5(1)1819<183> = 3 · 58733 · 1774823 · 25827526641592153<17> · 465844686356268889049<21> · 117845274305787930833478395083<30> · C106
C106 = P42 · P64
P42 = 120741530617798527131119236048256983443581<42>
P64 = 9546936235292443702002424002293228582932021131309767346381629137<64>
Divisors found: r1=120741530617798527131119236048256983443581 (pp42) r2=9546936235292443702002424002293228582932021131309767346381629137 (pp64) Version: Msieve-1.40b2 Total time: 4.09 hours. Scaled time: 11.61 units (timescale=2.840). Factorization parameters were as follows: name: g106 n: 1152711693759732794797020856846100225412145841268368099985008497977318506429012851894590630051823105219597 skew: 16026.11 # norm 4.89e+14 c5: 39780 c4: 2017627500 c3: -35388693634601 c2: -489589232804229509 c1: 3381677356890778647529 c0: -84010979717976372460179 # alpha -5.92 Y1: 158309817083 Y0: -123710210749591011442 # Murphy_E 1.68e-09 # M 892813726663633194563281820820942635632008401814611827374918494568458312093080093548243109977242039588608 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 283578 x 283826 Total sieving time: 4.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 4.09 hours. --------- CPU info (if available) ---------- CPU0: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU1: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU2: AMD Phenom(tm) II X4 940 Processor stepping 02 CPU3: AMD Phenom(tm) II X4 940 Processor stepping 02 Memory: 3529040k/4980736k available (2699k kernel code, 139436k reserved, 3164k data, 788k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6012.79 BogoMIPS (lpj=12025596) Calibrating delay using timer specific routine.. 6012.90 BogoMIPS (lpj=12025808) Calibrating delay using timer specific routine.. 6012.93 BogoMIPS (lpj=12025873) Calibrating delay using timer specific routine.. 6012.86 BogoMIPS (lpj=12025737) Total of 4 processors activated (24051.50 BogoMIPS).
(46·10172+71)/9 = 5(1)1719<173> = 197 · 23563 · 46883601728218168478809<23> · 1269359887331725771628730353<28> · C117
C117 = P34 · P83
P34 = 1955938999159069482043304901345331<34>
P83 = 94592666598604770978903820599325507097005874985563292774803682806961506334518555867<83>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1592344803 Step 1 took 7368ms Step 2 took 7085ms ********** Factor found in step 2: 1955938999159069482043304901345331 Found probable prime factor of 34 digits: 1955938999159069482043304901345331 Probable prime cofactor 94592666598604770978903820599325507097005874985563292774803682806961506334518555867 has 83 digits
(46·10188+71)/9 = 5(1)1879<189> = 3 · 10889 · 36749 · 5256173899<10> · 29420718373331819<17> · C154
C154 = P35 · P120
P35 = 13826404143888325933007602257630223<35>
P120 = 199126150836918433734212739176738106376290382162007550285895120053233146782672635111439257595447412165879529697928622711<120>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3930800050 Step 1 took 8356ms Step 2 took 8449ms ********** Factor found in step 2: 13826404143888325933007602257630223 Found probable prime factor of 35 digits: 13826404143888325933007602257630223 Probable prime cofactor 199126150836918433734212739176738106376290382162007550285895120053233146782672635111439257595447412165879529697928622711 has 120 digits
By Sinkiti Sibata / GGNFS / Mar 11, 2009
(46·10144+17)/9 = 5(1)1433<145> = 72 · 53 · 1409177477<10> · 244959711137861<15> · C118
C118 = P54 · P65
P54 = 137650711667873379471304368018035611255346407634131777<54>
P65 = 41419471879750193306941692642248802022013014694168758886515974941<65>
Number: 51113_144 N=5701419781155083271333386525485811005817385766910918648397290166476505121632518945836340115783145510877303515223800157 ( 118 digits) SNFS difficulty: 146 digits. Divisors found: r1=137650711667873379471304368018035611255346407634131777 (pp54) r2=41419471879750193306941692642248802022013014694168758886515974941 (pp65) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 16.67 hours. Scaled time: 7.84 units (timescale=0.470). Factorization parameters were as follows: name: 51113_144 n: 5701419781155083271333386525485811005817385766910918648397290166476505121632518945836340115783145510877303515223800157 m: 100000000000000000000000000000 deg: 5 c5: 23 c0: 85 skew: 1.30 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2165001) Primes: RFBsize:144125, AFBsize:143987, largePrimes:4038730 encountered Relations: rels:4137598, finalFF:378490 Max relations in full relation-set: 28 Initial matrix: 288177 x 378490 with sparse part having weight 34073323. Pruned matrix : 255568 x 257072 with weight 19711452. Total sieving time: 14.69 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.70 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 16.67 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve 1.40beta2, Yafu v1.06 / Mar 11, 2009
(46·10101+71)/9 = 5(1)1009<102> = 3 · 7 · 1163 · 37277 · C93
C93 = P30 · P63
P30 = 910268395208904786366326084731<30>
P63 = 616745365847203538452641773299137697957859556570687989939496119<63>
Number: 93snfs N=561403814422262839080338689536646105016417937847801158082802893349651531081065464852239658989 ( 93 digits) SNFS difficulty: 103 digits. Divisors found: r1=910268395208904786366326084731 (pp30) r2=616745365847203538452641773299137697957859556570687989939496119 (pp63) Version: Msieve-1.40 Total time: 0.37 hours. Scaled time: 0.60 units (timescale=1.617). Factorization parameters were as follows: n: 561403814422262839080338689536646105016417937847801158082802893349651531081065464852239658989 m: 20000000000000000000000000 deg: 4 c4: 115 c0: 284 skew: 1.25 type: snfs lss: 1 rlim: 370000 alim: 370000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 370000/370000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [185000, 235001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 36202 x 36442 Total sieving time: 0.37 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000 total time: 0.37 hours. --------- CPU info (if available) ---------- [ 0.371493] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004011] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.12 BogoMIPS (lpj=8800240) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800805) [ 0.460053] Total of 2 processors activated (8800.52 BogoMIPS).
(46·10146+71)/9 = 5(1)1459<147> = 3 · 593 · 3659 · 7188543623<10> · 230211757577<12> · 24148169986644262188264915023<29> · C91
C91 = P42 · P49
P42 = 611134958113531502328771287835413519939267<42>
P49 = 3215046068556093932138125748101914783298678553189<49>
03/10/09 12:15:11 v1.06 @ Core2Duo, starting SIQS on c91: 1964827044440102596080671481043079945118991673870403606934075870005358155177051070709172463 03/10/09 12:15:12 v1.06 @ Core2Duo, ==== sieve params ==== 03/10/09 12:15:12 v1.06 @ Core2Duo, n = 91 digits, 302 bits 03/10/09 12:15:12 v1.06 @ Core2Duo, factor base: 67412 primes (max prime = 1793819) 03/10/09 12:15:12 v1.06 @ Core2Duo, single large prime cutoff: 215258280 (120 * pmax) 03/10/09 12:15:12 v1.06 @ Core2Duo, double large prime range from 43 to 50 bits 03/10/09 12:15:12 v1.06 @ Core2Duo, double large prime cutoff: 998453303834859 03/10/09 12:15:12 v1.06 @ Core2Duo, using 10 large prime slices of factor base 03/10/09 12:15:12 v1.06 @ Core2Duo, buckets hold 1024 elements 03/10/09 12:15:12 v1.06 @ Core2Duo, sieve interval: 22 blocks of size 32768 03/10/09 12:15:12 v1.06 @ Core2Duo, polynomial A has ~ 12 factors 03/10/09 12:15:12 v1.06 @ Core2Duo, using multiplier of 3 03/10/09 12:15:12 v1.06 @ Core2Duo, using small prime variation correction of 21 bits 03/10/09 12:15:12 v1.06 @ Core2Duo, trial factoring cutoff at 97 bits 03/10/09 12:15:12 v1.06 @ Core2Duo, ==== sieving started ==== 03/10/09 13:57:06 v1.06 @ Core2Duo, sieve time = 2433.0100, relation time = 1022.4100, poly_time = 2401.3600 03/10/09 13:57:06 v1.06 @ Core2Duo, 67491 relations found: 18551 full + 48940 from 829029 partial, using 522557 polys (255 A polys) 03/10/09 13:57:06 v1.06 @ Core2Duo, trial division touched 29391370 sieve locations out of 753418502144 03/10/09 13:57:06 v1.06 @ Core2Duo, ==== post processing stage (msieve-1.38) ==== 03/10/09 13:57:07 v1.06 @ Core2Duo, begin with 847580 relations 03/10/09 13:57:07 v1.06 @ Core2Duo, reduce to 160926 relations in 10 passes 03/10/09 13:57:08 v1.06 @ Core2Duo, failed to read relation 52007 03/10/09 13:57:10 v1.06 @ Core2Duo, recovered 160925 relations 03/10/09 13:57:10 v1.06 @ Core2Duo, recovered 138434 polynomials 03/10/09 13:57:10 v1.06 @ Core2Duo, attempting to build 67490 cycles 03/10/09 13:57:10 v1.06 @ Core2Duo, found 67490 cycles in 5 passes 03/10/09 13:57:10 v1.06 @ Core2Duo, distribution of cycle lengths: 03/10/09 13:57:10 v1.06 @ Core2Duo, length 1 : 18551 03/10/09 13:57:10 v1.06 @ Core2Duo, length 2 : 14074 03/10/09 13:57:10 v1.06 @ Core2Duo, length 3 : 12387 03/10/09 13:57:10 v1.06 @ Core2Duo, length 4 : 8750 03/10/09 13:57:10 v1.06 @ Core2Duo, length 5 : 6007 03/10/09 13:57:10 v1.06 @ Core2Duo, length 6 : 3475 03/10/09 13:57:10 v1.06 @ Core2Duo, length 7 : 2016 03/10/09 13:57:10 v1.06 @ Core2Duo, length 9+: 2230 03/10/09 13:57:10 v1.06 @ Core2Duo, largest cycle: 18 relations 03/10/09 13:57:11 v1.06 @ Core2Duo, matrix is 67412 x 67490 (15.9 MB) with weight 3888400 (57.61/col) 03/10/09 13:57:11 v1.06 @ Core2Duo, sparse part has weight 3888400 (57.61/col) 03/10/09 13:57:11 v1.06 @ Core2Duo, filtering completed in 3 passes 03/10/09 13:57:11 v1.06 @ Core2Duo, matrix is 63087 x 63151 (15.0 MB) with weight 3679787 (58.27/col) 03/10/09 13:57:11 v1.06 @ Core2Duo, sparse part has weight 3679787 (58.27/col) 03/10/09 13:57:11 v1.06 @ Core2Duo, saving the first 48 matrix rows for later 03/10/09 13:57:12 v1.06 @ Core2Duo, matrix is 63039 x 63151 (9.5 MB) with weight 2844451 (45.04/col) 03/10/09 13:57:12 v1.06 @ Core2Duo, sparse part has weight 2117659 (33.53/col) 03/10/09 13:57:12 v1.06 @ Core2Duo, matrix includes 64 packed rows 03/10/09 13:57:12 v1.06 @ Core2Duo, using block size 25260 for processor cache size 2048 kB 03/10/09 13:57:12 v1.06 @ Core2Duo, commencing Lanczos iteration 03/10/09 13:57:12 v1.06 @ Core2Duo, memory use: 9.4 MB 03/10/09 13:57:33 v1.06 @ Core2Duo, lanczos halted after 998 iterations (dim = 63038) 03/10/09 13:57:33 v1.06 @ Core2Duo, recovered 17 nontrivial dependencies 03/10/09 13:57:36 v1.06 @ Core2Duo, prp42 = 611134958113531502328771287835413519939267 03/10/09 13:57:36 v1.06 @ Core2Duo, prp49 = 3215046068556093932138125748101914783298678553189 03/10/09 13:57:36 v1.06 @ Core2Duo, Lanczos elapsed time = 26.3700 seconds. 03/10/09 13:57:36 v1.06 @ Core2Duo, Sqrt elapsed time = 3.3200 seconds. 03/10/09 13:57:36 v1.06 @ Core2Duo, Total elapsed time = 1615.5627 seconds.
(46·10140+71)/9 = 5(1)1399<141> = 32 · 446998291 · C132
C132 = P54 · P78
P54 = 170709216132860956637096332810026479832037334714407579<54>
P78 = 744234814445627626849250096187520695493006138311265255510571169683581844890519<78>
Number: c132-snfs N=127047741792798316217254001664158763991314954393841571660035996551025121160452319171820107600344546858211866086955852492935198843501 ( 132 digits) SNFS difficulty: 141 digits. Divisors found: r1=170709216132860956637096332810026479832037334714407579 (pp54) r2=744234814445627626849250096187520695493006138311265255510571169683581844890519 (pp78) Version: Msieve-1.40 Total time: 3.79 hours. Scaled time: 5.29 units (timescale=1.397). Factorization parameters were as follows: n: 127047741792798316217254001664158763991314954393841571660035996551025121160452319171820107600344546858211866086955852492935198843501 m: 10000000000000000000000000000 deg: 5 c5: 46 c0: 71 skew: 1.09 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1605001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240599 x 240847 Total sieving time: 3.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 3.79 hours. --------- CPU info (if available) ----------
(46·10131+71)/9 = 5(1)1309<132> = 33 · 72 · 19 · 139 · 173 · 10733 · 2958650081<10> · 530919129224999<15> · C95
C95 = P38 · P58
P38 = 24836285458873298928376313085558197539<38>
P58 = 2019348256878070729579299955784787789740821226032796066657<58>
Number: c95-snfs N=50153109748701971208896012917889902994802688403405049385816511415632634298926030804541817357123 ( 95 digits) SNFS difficulty: 132 digits. Divisors found: r1=24836285458873298928376313085558197539 (pp38) r2=2019348256878070729579299955784787789740821226032796066657 (pp58) Version: Msieve-1.40 Total time: 3.76 hours. Scaled time: 6.01 units (timescale=1.598). Factorization parameters were as follows: n: 50153109748701971208896012917889902994802688403405049385816511415632634298926030804541817357123 m: 100000000000000000000000000 deg: 5 c5: 460 c0: 71 skew: 0.69 type: snfs lss: 1 rlim: 1140000 alim: 1140000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1140000/1140000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [570000, 1120001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 186854 x 187102 Total sieving time: 3.76 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1140000,1140000,26,26,47,47,2.3,2.3,50000 total time: 3.76 hours. --------- CPU info (if available) ---------- [ 0.371493] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004011] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.12 BogoMIPS (lpj=8800240) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800805) [ 0.460053] Total of 2 processors activated (8800.52 BogoMIPS).
(46·10135+71)/9 = 5(1)1349<136> = 57719 · 7913196622413294944729351989<28> · C104
C104 = P34 · P70
P34 = 4073095510555953166009954261289693<34>
P70 = 2747387848474171759521012098472172516349340423226028190381151990067113<70>
Number: c104-snfs N=11190373111376128317290326404384020441398937771609307971986652839947006576393671485775642513777005166309 ( 104 digits) SNFS difficulty: 136 digits. Divisors found: r1=4073095510555953166009954261289693 (pp34) r2=2747387848474171759521012098472172516349340423226028190381151990067113 (pp70) Version: Msieve-1.40 Total time: 4.42 hours. Scaled time: 7.21 units (timescale=1.630). Factorization parameters were as follows: n: 11190373111376128317290326404384020441398937771609307971986652839947006576393671485775642513777005166309 m: 1000000000000000000000000000 deg: 5 c5: 46 c0: 71 skew: 1.09 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178456 x 178704 Total sieving time: 4.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 4.42 hours. --------- CPU info (if available) ---------- [ 0.371493] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004011] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.12 BogoMIPS (lpj=8800240) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800805) [ 0.460053] Total of 2 processors activated (8800.52 BogoMIPS).
By Ignacio Santos / GGNFS, Msieve / Mar 11, 2009
(46·10104+71)/9 = 5(1)1039<105> = 33 · C104
C104 = P35 · P69
P35 = 46397742154740265377875973078126593<35>
P69 = 407994878050965040134414999083253246694580794853731611179624305780829<69>
Number: 51119_104 N=18930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485597 ( 104 digits) SNFS difficulty: 105 digits. Divisors found: r1=46397742154740265377875973078126593 (pp35) r2=407994878050965040134414999083253246694580794853731611179624305780829 (pp69) Version: Msieve-1.39 Total time: 0.31 hours. Scaled time: 0.36 units (timescale=1.139). Factorization parameters were as follows: n: 18930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485597 m: 100000000000000000000000000 deg: 4 c4: 46 c0: 71 skew: 1.11 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 260001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38758 x 38990 Total sieving time: 0.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.31 hours. --------- CPU info (if available) ----------
5·10177+9 = 5(0)1769<178> = 361873 · C173
C173 = P47 · P126
P47 = 59065588279102023578540722642848366939231685729<47>
P126 = 233926428229777021792526147696670859387164608180601153770469223624167359153947326848196873305595620698830254470527744319418777<126>
Number: 50009_177 N=13817002097420918388495411373603446513003180673882826295413031643698203513387293332191127826613204079884379326448781754925070397625686359579189384120948509559983751205533433 ( 173 digits) SNFS difficulty: 178 digits. Divisors found: r1=59065588279102023578540722642848366939231685729 (pp47) r2=233926428229777021792526147696670859387164608180601153770469223624167359153947326848196873305595620698830254470527744319418777 (pp126) Version: Msieve-1.39 Total time: 100.42 hours. Scaled time: 174.63 units (timescale=1.739). Factorization parameters were as follows: n: 13817002097420918388495411373603446513003180673882826295413031643698203513387293332191127826613204079884379326448781754925070397625686359579189384120948509559983751205533433 m: 200000000000000000000000000000000000 deg: 5 c5: 125 c0: 72 skew: 0.90 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 8400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1405205 x 1405453 Total sieving time: 100.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 100.42 hours. --------- CPU info (if available) ----------
(46·10121+71)/9 = 5(1)1209<122> = 29 · 701233933 · C112
C112 = P50 · P62
P50 = 46009683390482676142661469113136711350972508440317<50>
P62 = 54626723951423242493762457044144963710391442346120152601866451<62>
Number: 51119_121 N=2513358273664280143428310555211316635939192846588905490712504526036387538687321885693404474919042021725138104967 ( 112 digits) SNFS difficulty: 122 digits. Divisors found: r1=46009683390482676142661469113136711350972508440317 (pp50) r2=54626723951423242493762457044144963710391442346120152601866451 (pp62) Version: Msieve-1.39 Total time: 1.85 hours. Scaled time: 2.22 units (timescale=1.203). Factorization parameters were as follows: n: 2513358273664280143428310555211316635939192846588905490712504526036387538687321885693404474919042021725138104967 m: 1000000000000000000000000 deg: 5 c5: 460 c0: 71 skew: 0.69 type: snfs lss: 1 rlim: 780000 alim: 780000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 780000/780000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [390000, 790001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 98393 x 98630 Total sieving time: 1.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000 total time: 1.85 hours. --------- CPU info (if available) ----------
(46·10128+71)/9 = 5(1)1279<129> = 3 · 186475951384166345773<21> · C108
C108 = P43 · P66
P43 = 1370699867468772090856264595932743748201541<43>
P66 = 666544064106153667875823113158516179177104168930788199356268868261<66>
Number: 51119_128 N=913631860332401561017826634196444054068347171953019310974100172516873181398679747654830915258945166206190201 ( 108 digits) SNFS difficulty: 131 digits. Divisors found: r1=1370699867468772090856264595932743748201541 (pp43) r2=666544064106153667875823113158516179177104168930788199356268868261 (pp66) Version: Msieve-1.39 Total time: 3.01 hours. Scaled time: 3.60 units (timescale=1.197). Factorization parameters were as follows: n: 913631860332401561017826634196444054068347171953019310974100172516873181398679747654830915258945166206190201 m: 50000000000000000000000000 deg: 5 c5: 368 c0: 1775 skew: 1.37 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 1135001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167666 x 167914 Total sieving time: 3.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 3.01 hours. --------- CPU info (if available) ----------
(46·10129+71)/9 = 5(1)1289<130> = 412876198061<12> · C119
C119 = P37 · P40 · P42
P37 = 8538467243791808437910109352246048481<37>
P40 = 1856651886231892063895947145518138484891<40>
P42 = 780881394845341467663468221315394520530449<42>
Number: 51119_129 N=12379282543083229215318036156147492197131000724546780647582298971878710416303799076634055246353614555139699826550886379 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=8538467243791808437910109352246048481 (pp37) r2=1856651886231892063895947145518138484891 (pp40) r3=780881394845341467663468221315394520530449 (pp42) Version: Msieve-1.39 Total time: 2.65 hours. Scaled time: 3.17 units (timescale=1.198). Factorization parameters were as follows: n: 12379282543083229215318036156147492197131000724546780647582298971878710416303799076634055246353614555139699826550886379 m: 100000000000000000000000000 deg: 5 c5: 23 c0: 355 skew: 1.73 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 1040001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 163702 x 163950 Total sieving time: 2.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 2.65 hours. --------- CPU info (if available) ----------
(46·10143+71)/9 = 5(1)1429<144> = 3 · 7 · 19079 · C139
C139 = P59 · P80
P59 = 97048476889694747931582548591254566855340946171026940283703<59>
P80 = 13144730780789614385948948986670127604676454170169609999833165175217833747435347<80>
Number: 51119_143 N=1275676101400720091427151545606391248196374251198927544647970246796181069465832818209777169890383371173768993361215175775687332896830249941 ( 139 digits) SNFS difficulty: 146 digits. Divisors found: r1=97048476889694747931582548591254566855340946171026940283703 (pp59) r2=13144730780789614385948948986670127604676454170169609999833165175217833747435347 (pp80) Version: Msieve-1.39 Total time: 9.57 hours. Scaled time: 11.48 units (timescale=1.200). Factorization parameters were as follows: n: 1275676101400720091427151545606391248196374251198927544647970246796181069465832818209777169890383371173768993361215175775687332896830249941 m: 50000000000000000000000000000 deg: 5 c5: 368 c0: 1775 skew: 1.37 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 360745 x 360993 Total sieving time: 9.57 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 9.57 hours. --------- CPU info (if available) ----------
(46·10163+17)/9 = 5(1)1623<164> = 181 · 214087 · 10207247 · 5373228193<10> · 524720358470069<15> · C125
C125 = P40 · P86
P40 = 2901428838271710072989478722772703305541<40>
P86 = 15796566642975477222426106514151356215220954988925611533724771019602789181077878704181<86>
Number: 51113_163 N=45832614003609986015505277560643422175904489813533037778187090635645628988225589864451526185487048322758261220754908397166921 ( 125 digits) SNFS difficulty: 166 digits. Divisors found: r1=2901428838271710072989478722772703305541 (pp40) r2=15796566642975477222426106514151356215220954988925611533724771019602789181077878704181 (pp86) Version: Msieve-1.39 Total time: 42.88 hours. Scaled time: 110.25 units (timescale=2.571). Factorization parameters were as follows: n: 45832614003609986015505277560643422175904489813533037778187090635645628988225589864451526185487048322758261220754908397166921 m: 500000000000000000000000000000000 deg: 5 c5: 368 c0: 425 skew: 1.03 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 762163 x 762411 Total sieving time: 42.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 42.88 hours. --------- CPU info (if available) ----------
(46·10144+71)/9 = 5(1)1439<145> = 13 · 241 · 137273 · 2139989681<10> · C127
C127 = P48 · P80
P48 = 500082844191092308756949487823356333584022932113<48>
P80 = 11104938743856477054517868159608136536088822909774673995551781412181151757616147<80>
Number: 51119_144 N=5553389351595602956412071273642650455228243831370613711217333031056967390411741311451239092475845957096412679705356650093628611 ( 127 digits) SNFS difficulty: 146 digits. Divisors found: r1=500082844191092308756949487823356333584022932113 (pp48) r2=11104938743856477054517868159608136536088822909774673995551781412181151757616147 (pp80) Version: Msieve-1.39 Total time: 8.25 hours. Scaled time: 9.95 units (timescale=1.207). Factorization parameters were as follows: n: 5553389351595602956412071273642650455228243831370613711217333031056967390411741311451239092475845957096412679705356650093628611 m: 100000000000000000000000000000 deg: 5 c5: 23 c0: 355 skew: 1.73 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2465001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 319483 x 319731 Total sieving time: 8.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 8.25 hours. --------- CPU info (if available) ----------
(46·10150+71)/9 = 5(1)1499<151> = 13 · 1947223 · 38390909 · C136
C136 = P41 · P96
P41 = 42538139961910785733246934292034615902317<41>
P96 = 123637264648317163042355890662940623511699502455330354446549884735561640038234169014759390237077<96>
Number: 51119_150 N=5259299268117919981353554263166022581820714930286677440908229002432500590164069557166613950508425935153269996940771900328189140903607409 ( 136 digits) SNFS difficulty: 151 digits. Divisors found: r1=42538139961910785733246934292034615902317 (pp41) r2=123637264648317163042355890662940623511699502455330354446549884735561640038234169014759390237077 (pp96) Version: Msieve-1.39 Total time: 11.95 hours. Scaled time: 14.33 units (timescale=1.199). Factorization parameters were as follows: n: 5259299268117919981353554263166022581820714930286677440908229002432500590164069557166613950508425935153269996940771900328189140903607409 m: 1000000000000000000000000000000 deg: 5 c5: 46 c0: 71 skew: 1.09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 354651 x 354899 Total sieving time: 11.95 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 11.95 hours. --------- CPU info (if available) ----------
(44·10177-17)/9 = 4(8)1767<178> = 3 · 18191 · C173
C173 = P43 · P131
P43 = 2461339886774522358152390757453165420172103<43>
P131 = 36396594389213756106769747898329596555265057158903246811091893445667012912315124913287462349109779266801430409018816915629171603573<131>
Number: 48887_177 N=89584389512925602200518367853863428598187544919445309748206785203102063087770305625288858755957870904822694169074247134826542225805597802739246310242956936376759366149724019 ( 173 digits) SNFS difficulty: 178 digits. Divisors found: r1=2461339886774522358152390757453165420172103 (pp43) r2=36396594389213756106769747898329596555265057158903246811091893445667012912315124913287462349109779266801430409018816915629171603573 (pp131) Version: Msieve-1.39 Total time: 105.06 hours. Scaled time: 182.70 units (timescale=1.739). Factorization parameters were as follows: n: 89584389512925602200518367853863428598187544919445309748206785203102063087770305625288858755957870904822694169074247134826542225805597802739246310242956936376759366149724019 m: 200000000000000000000000000000000000 deg: 5 c5: 275 c0: -34 skew: 0.66 type: snfs lss: 1 rlim: 6700000 alim: 6700000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3350000, 8650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1424087 x 1424335 Total sieving time: 105.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6700000,6700000,28,28,53,53,2.5,2.5,100000 total time: 105.06 hours. --------- CPU info (if available) ----------
(46·10162+71)/9 = 5(1)1619<163> = 13 · C162
C162 = P65 · P97
P65 = 57800249016433959471978077093391209607071442449632919182640852059<65>
P97 = 6802088223713498538731821213822390527250157537497199065944202659052719853731469736697689689346257<97>
Number: 51119_162 N=393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393163 ( 162 digits) SNFS difficulty: 164 digits. Divisors found: r1=57800249016433959471978077093391209607071442449632919182640852059 (pp65) r2=6802088223713498538731821213822390527250157537497199065944202659052719853731469736697689689346257 (pp97) Version: Msieve-1.39 Total time: 43.47 hours. Scaled time: 111.28 units (timescale=2.560). Factorization parameters were as follows: n: 393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393163 m: 200000000000000000000000000000000 deg: 5 c5: 575 c0: 284 skew: 0.87 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 749577 x 749825 Total sieving time: 43.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 43.47 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, msieve 1.40beta2 / Mar 10, 2009
(46·10143+53)/9 = 5(1)1427<144> = 167 · 37118570924934461<17> · 1129812302800707336140404313<28> · C98
C98 = P42 · P57
P42 = 142378625024556480860219230295193029828263<42>
P57 = 512573925015667689031096840646605437504778974894108140489<57>
Number: c98-2 N=72979570667170880800269840951809789385404819622537142712477547587739621926706887797224141946840607 ( 98 digits) Divisors found: r1=142378625024556480860219230295193029828263 (pp42) r2=512573925015667689031096840646605437504778974894108140489 (pp57) Version: Msieve-1.39 Total time: 2.25 hours. Scaled time: 3.17 units (timescale=1.404). Factorization parameters were as follows: n: 72979570667170880800269840951809789385404819622537142712477547587739621926706887797224141946840607 Y0: -9466360392364189172 Y1: 5116167023 c0: 53504203757430072580740345 c1: -1917373529601613998914 c2: -91409190740534357 c3: 774922611166 c4: 60938008 c5: 960 skew: 39491.60 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 211356 x 211604 Total sieving time: 2.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 2.25 hours. --------- CPU info (if available) ----------
(46·10160+17)/9 = 5(1)1593<161> = 79 · 1933 · 65599 · 210773 · 404690413 · 13770380053<11> · 1861888931832967<16> · C112
C112 = P47 · P65
P47 = 69421810469250964905352073912281382114825982371<47>
P65 = 33606681669793526544589443702103712368855493759521473358763489429<65>
Number: 51113_160 N=2333036685380856739826065847758746702938037939625502537307957298158902603241338377544987477719833473532798856159 ( 112 digits) Divisors found: r1=69421810469250964905352073912281382114825982371 (pp47) r2=33606681669793526544589443702103712368855493759521473358763489429 (pp65) Version: Msieve-1.40beta2 Total time: 22.62 hours. Scaled time: 36.91 units (timescale=1.632). Factorization parameters were as follows: n: 2333036685380856739826065847758746702938037939625502537307957298158902603241338377544987477719833473532798856159 Y0: -3076877135434206027874 Y1: 294082766161 c0: -51400975692427172720771409 c1: 63166927505729826659688 c2: -278627879419892472 c3: -51454969560080 c4: 88080333 c5: 8460 skew: 49144.96 type: gnfs Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 385651 x 385899 Total sieving time: 22.62 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.62 hours. --------- CPU info (if available) ---------- [ 0.367147] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.452481] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800276) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800811) [ 0.456049] Total of 2 processors activated (8800.54 BogoMIPS).
(46·10176+53)/9 = 5(1)1757<177> = 11 · 3028560721<10> · 3604539157<10> · 495781041989729909690483821<27> · 379434690236893159237540439461513<33> · C98
C98 = P41 · P58
P41 = 17207130506967340177607673105985067756831<41>
P58 = 1314925662121152539307720963217751339151597375268076893777<58>
Number: c98-1 N=22626097475079112950538412361578435764788431930006107071944439400234866205055016590621131653140687 ( 98 digits) Divisors found: r1=17207130506967340177607673105985067756831 (pp41) r2=1314925662121152539307720963217751339151597375268076893777 (pp58) Version: Msieve-1.40beta2 Total time: 3.93 hours. Scaled time: 6.39 units (timescale=1.625). Factorization parameters were as follows: n: 22626097475079112950538412361578435764788431930006107071944439400234866205055016590621131653140687 Y0: -6604835464427066740 Y1: 9414325037 c0: -20535393666216700134369 c1: 23023711095567736083 c2: -8222964854909011 c3: 405478485133 c4: 78897468 c5: 1800 skew: 10007.05 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159895 x 160143 Total sieving time: 3.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.93 hours. --------- CPU info (if available) ---------- [ 0.367147] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.452481] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800276) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800811) [ 0.456049] Total of 2 processors activated (8800.54 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve / Mar 10, 2009
(46·10143+17)/9 = 5(1)1423<144> = 3 · 179 · 6733 · 24169183 · C130
C130 = P39 · P92
P39 = 139623054636055338710939135384408668661<39>
P92 = 41890285173377352541316306659022432235174853079005378363036811052955504759851453668960732831<92>
Number: 51113_143 N=5848849575482404980903607610112559837740405564754665231895575593151694941823586596327909534403255257458667454847960312051623509291 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=139623054636055338710939135384408668661 (pp39) r2=41890285173377352541316306659022432235174853079005378363036811052955504759851453668960732831 (pp92) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 19.94 hours. Scaled time: 9.39 units (timescale=0.471). Factorization parameters were as follows: name: 51113_143 n: 5848849575482404980903607610112559837740405564754665231895575593151694941823586596327909534403255257458667454847960312051623509291 m: 50000000000000000000000000000 deg: 5 c5: 368 c0: 425 skew: 1.03 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2450001) Primes: RFBsize:142029, AFBsize:142512, largePrimes:4151889 encountered Relations: rels:4321208, finalFF:386100 Max relations in full relation-set: 28 Initial matrix: 284608 x 386100 with sparse part having weight 39663465. Pruned matrix : 250533 x 252020 with weight 23269867. Total sieving time: 17.80 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.83 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 19.94 hours. --------- CPU info (if available) ----------
(46·10162+53)/9 = 5(1)1617<163> = 11 · 11215279 · 13426327 · 248887681753<12> · 2317578175073617<16> · 32185135718630441<17> · C105
C105 = P36 · P69
P36 = 644922593370834891407360750242576241<36>
P69 = 257723845874142713268164872256040302227306103279377599115103092063039<69>
Mon Mar 09 07:58:40 2009 Msieve v. 1.39 Mon Mar 09 07:58:40 2009 random seeds: 1d3debe0 a1696c50 Mon Mar 09 07:58:40 2009 factoring 166211931054657464690785485770816308830203049067739149906327056881572343337683955416814248719378935656399 (105 digits) Mon Mar 09 07:58:41 2009 searching for 15-digit factors Mon Mar 09 07:58:43 2009 commencing quadratic sieve (105-digit input) Mon Mar 09 07:58:43 2009 using multiplier of 2 Mon Mar 09 07:58:43 2009 using 32kb Intel Core sieve core Mon Mar 09 07:58:43 2009 sieve interval: 36 blocks of size 32768 Mon Mar 09 07:58:43 2009 processing polynomials in batches of 6 Mon Mar 09 07:58:43 2009 using a sieve bound of 3877483 (137428 primes) Mon Mar 09 07:58:43 2009 using large prime bound of 581622450 (29 bits) Mon Mar 09 07:58:43 2009 using double large prime bound of 5975222047534050 (44-53 bits) Mon Mar 09 07:58:43 2009 using trial factoring cutoff of 53 bits Mon Mar 09 07:58:43 2009 polynomial 'A' values have 14 factors Tue Mar 10 22:29:55 2009 137524 relations (31697 full + 105827 combined from 2070007 partial), need 137524 Tue Mar 10 22:29:58 2009 begin with 2101704 relations Tue Mar 10 22:30:00 2009 reduce to 366393 relations in 11 passes Tue Mar 10 22:30:00 2009 attempting to read 366393 relations Tue Mar 10 22:30:09 2009 recovered 366393 relations Tue Mar 10 22:30:09 2009 recovered 360266 polynomials Tue Mar 10 22:30:10 2009 attempting to build 137524 cycles Tue Mar 10 22:30:10 2009 found 137524 cycles in 7 passes Tue Mar 10 22:30:10 2009 distribution of cycle lengths: Tue Mar 10 22:30:10 2009 length 1 : 31697 Tue Mar 10 22:30:10 2009 length 2 : 23149 Tue Mar 10 22:30:10 2009 length 3 : 23173 Tue Mar 10 22:30:10 2009 length 4 : 18839 Tue Mar 10 22:30:10 2009 length 5 : 14434 Tue Mar 10 22:30:10 2009 length 6 : 10125 Tue Mar 10 22:30:10 2009 length 7 : 6672 Tue Mar 10 22:30:10 2009 length 9+: 9435 Tue Mar 10 22:30:10 2009 largest cycle: 24 relations Tue Mar 10 22:30:11 2009 matrix is 137428 x 137524 (39.8 MB) with weight 9887948 (71.90/col) Tue Mar 10 22:30:11 2009 sparse part has weight 9887948 (71.90/col) Tue Mar 10 22:30:13 2009 filtering completed in 3 passes Tue Mar 10 22:30:13 2009 matrix is 132629 x 132693 (38.7 MB) with weight 9601925 (72.36/col) Tue Mar 10 22:30:13 2009 sparse part has weight 9601925 (72.36/col) Tue Mar 10 22:30:13 2009 saving the first 48 matrix rows for later Tue Mar 10 22:30:14 2009 matrix is 132581 x 132693 (24.2 MB) with weight 7667651 (57.78/col) Tue Mar 10 22:30:14 2009 sparse part has weight 5548870 (41.82/col) Tue Mar 10 22:30:14 2009 matrix includes 64 packed rows Tue Mar 10 22:30:14 2009 using block size 43690 for processor cache size 1024 kB Tue Mar 10 22:30:15 2009 commencing Lanczos iteration Tue Mar 10 22:30:15 2009 memory use: 23.3 MB Tue Mar 10 22:32:26 2009 lanczos halted after 2098 iterations (dim = 132578) Tue Mar 10 22:32:27 2009 recovered 16 nontrivial dependencies Tue Mar 10 22:32:30 2009 prp36 factor: 644922593370834891407360750242576241 Tue Mar 10 22:32:30 2009 prp69 factor: 257723845874142713268164872256040302227306103279377599115103092063039 Tue Mar 10 22:32:30 2009 elapsed time 38:33:50
By Robert Backstrom / GGNFS, Msieve / Mar 10, 2009
(44·10202-17)/9 = 4(8)2017<203> = 19 · C202
C202 = P58 · P144
P58 = 2891584018994382557518753539240993661489392732788328409241<58>
P144 = 889858084116654916807069578355138652152689469299026049021329528371839912902115848416237708291106981386858036660316985335361448495359121966080853<144>
Number: n N=2573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573 ( 202 digits) SNFS difficulty: 203 digits. Divisors found: Tue Mar 10 07:53:12 2009 prp58 factor: 2891584018994382557518753539240993661489392732788328409241 Tue Mar 10 07:53:12 2009 prp144 factor: 889858084116654916807069578355138652152689469299026049021329528371839912902115848416237708291106981386858036660316985335361448495359121966080853 Tue Mar 10 07:53:12 2009 elapsed time 17:11:08 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 85.73 hours. Scaled time: 172.75 units (timescale=2.015). Factorization parameters were as follows: name: KA_4_8_201_7 n: 2573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573 deg: 5 c5: 275 c0: -34 m: 20000000000000000000000000000000000000000 skew: 0.66 type: snfs rlim: 12000000 alim: 12000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [6000000, 25599990) Primes: RFBsize:788060, AFBsize:788250, largePrimes:33189330 encountered Relations: rels:25821250, finalFF:119729 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 6931779 hash collisions in 42735830 relations Msieve: matrix is 3220003 x 3220251 (873.3 MB) Total sieving time: 85.01 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,12000000,12000000,29,29,58,58,2.5,2.5,100000 total time: 85.73 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
By Ignacio Santos / Msieve, Yafu 1.06, GGNFS / Mar 10, 2009
(46·10136+53)/9 = 5(1)1357<137> = 3 · 11 · 35083 · 9683850720145068769<19> · 1356173883615136264781<22> · C91
C91 = P28 · P64
P28 = 1093686932178979004947141309<28>
P64 = 3073605843053092781133130455435874869768958447225792163177835103<64>
Mon Mar 09 19:01:21 2009 Mon Mar 09 19:01:21 2009 Mon Mar 09 19:01:21 2009 Msieve v. 1.40 Mon Mar 09 19:01:21 2009 random seeds: b3e6df80 516fea8b Mon Mar 09 19:01:21 2009 factoring 3361562545216121472298202857987577242590374665871039124930644519950592605605373751241569827 (91 digits) Mon Mar 09 19:01:22 2009 searching for 15-digit factors Mon Mar 09 19:01:23 2009 commencing quadratic sieve (91-digit input) Mon Mar 09 19:01:23 2009 using multiplier of 3 Mon Mar 09 19:01:23 2009 using 32kb Intel Core sieve core Mon Mar 09 19:01:23 2009 sieve interval: 36 blocks of size 32768 Mon Mar 09 19:01:23 2009 processing polynomials in batches of 6 Mon Mar 09 19:01:23 2009 using a sieve bound of 1679009 (63529 primes) Mon Mar 09 19:01:23 2009 using large prime bound of 154468828 (27 bits) Mon Mar 09 19:01:23 2009 using double large prime bound of 549431410063824 (42-49 bits) Mon Mar 09 19:01:23 2009 using trial factoring cutoff of 49 bits Mon Mar 09 19:01:23 2009 polynomial 'A' values have 12 factors Mon Mar 09 20:22:24 2009 64117 relations (16634 full + 47483 combined from 727403 partial), need 63625 Mon Mar 09 20:22:25 2009 begin with 744037 relations Mon Mar 09 20:22:25 2009 reduce to 159247 relations in 10 passes Mon Mar 09 20:22:25 2009 attempting to read 159247 relations Mon Mar 09 20:22:27 2009 recovered 159247 relations Mon Mar 09 20:22:27 2009 recovered 139681 polynomials Mon Mar 09 20:22:27 2009 attempting to build 64117 cycles Mon Mar 09 20:22:27 2009 found 64117 cycles in 5 passes Mon Mar 09 20:22:27 2009 distribution of cycle lengths: Mon Mar 09 20:22:27 2009 length 1 : 16634 Mon Mar 09 20:22:27 2009 length 2 : 12079 Mon Mar 09 20:22:27 2009 length 3 : 11154 Mon Mar 09 20:22:27 2009 length 4 : 8516 Mon Mar 09 20:22:27 2009 length 5 : 6276 Mon Mar 09 20:22:27 2009 length 6 : 3898 Mon Mar 09 20:22:27 2009 length 7 : 2491 Mon Mar 09 20:22:27 2009 length 9+: 3069 Mon Mar 09 20:22:27 2009 largest cycle: 17 relations Mon Mar 09 20:22:28 2009 matrix is 63529 x 64117 (16.0 MB) with weight 3926651 (61.24/col) Mon Mar 09 20:22:28 2009 sparse part has weight 3926651 (61.24/col) Mon Mar 09 20:22:28 2009 filtering completed in 3 passes Mon Mar 09 20:22:28 2009 matrix is 59791 x 59855 (14.9 MB) with weight 3663215 (61.20/col) Mon Mar 09 20:22:28 2009 sparse part has weight 3663215 (61.20/col) Mon Mar 09 20:22:28 2009 saving the first 48 matrix rows for later Mon Mar 09 20:22:28 2009 matrix is 59743 x 59855 (9.6 MB) with weight 2901903 (48.48/col) Mon Mar 09 20:22:28 2009 sparse part has weight 2165890 (36.19/col) Mon Mar 09 20:22:28 2009 matrix includes 64 packed rows Mon Mar 09 20:22:28 2009 using block size 23942 for processor cache size 4096 kB Mon Mar 09 20:22:29 2009 commencing Lanczos iteration Mon Mar 09 20:22:29 2009 memory use: 9.3 MB Mon Mar 09 20:22:44 2009 lanczos halted after 946 iterations (dim = 59741) Mon Mar 09 20:22:44 2009 recovered 17 nontrivial dependencies Mon Mar 09 20:22:45 2009 prp28 factor: 1093686932178979004947141309 Mon Mar 09 20:22:45 2009 prp64 factor: 3073605843053092781133130455435874869768958447225792163177835103 Mon Mar 09 20:22:45 2009 elapsed time 01:21:24
(46·10139+53)/9 = 5(1)1387<140> = 3 · 22397 · 389727889 · 74127510042103036208845291422325007<35> · C92
C92 = P44 · P48
P44 = 87679135327818129083845195790361427454587883<44>
P48 = 300308110768732222706837801807141690286149914543<48>
03/09/09 19:06:23 v1.06 @ IGNACIO1, starting SIQS on c92: 26330755484133069354472838342356404140621472902394058726689606504726770947356086733733282469 03/09/09 19:06:24 v1.06 @ IGNACIO1, ==== sieve params ==== 03/09/09 19:06:24 v1.06 @ IGNACIO1, n = 92 digits, 307 bits 03/09/09 19:06:24 v1.06 @ IGNACIO1, factor base: 71746 primes (max prime = 1926293) 03/09/09 19:06:24 v1.06 @ IGNACIO1, single large prime cutoff: 231155160 (120 * pmax) 03/09/09 19:06:24 v1.06 @ IGNACIO1, double large prime range from 43 to 51 bits 03/09/09 19:06:24 v1.06 @ IGNACIO1, double large prime cutoff: 1135079986864172 03/09/09 19:06:24 v1.06 @ IGNACIO1, using 10 large prime slices of factor base 03/09/09 19:06:24 v1.06 @ IGNACIO1, buckets hold 1024 elements 03/09/09 19:06:24 v1.06 @ IGNACIO1, sieve interval: 22 blocks of size 32768 03/09/09 19:06:24 v1.06 @ IGNACIO1, polynomial A has ~ 12 factors 03/09/09 19:06:24 v1.06 @ IGNACIO1, using multiplier of 5 03/09/09 19:06:24 v1.06 @ IGNACIO1, using small prime variation correction of 18 bits 03/09/09 19:06:24 v1.06 @ IGNACIO1, trial factoring cutoff at 101 bits 03/09/09 19:06:24 v1.06 @ IGNACIO1, ==== sieving started ==== 03/09/09 20:55:52 v1.06 @ IGNACIO1, sieve time = 2156.7930, relation time = 1121.8380, poly_time = 3280.0710 03/09/09 20:55:52 v1.06 @ IGNACIO1, 71836 relations found: 19691 full + 52145 from 892722 partial, using 715821 polys (349 A polys) 03/09/09 20:55:52 v1.06 @ IGNACIO1, trial division touched 26420759 sieve locations out of 1032064991232 03/09/09 20:55:52 v1.06 @ IGNACIO1, ==== post processing stage (msieve-1.38) ==== 03/09/09 20:55:53 v1.06 @ IGNACIO1, begin with 912413 relations 03/09/09 20:55:53 v1.06 @ IGNACIO1, reduce to 172190 relations in 11 passes 03/09/09 20:55:55 v1.06 @ IGNACIO1, failed to read relation 80418 03/09/09 20:55:56 v1.06 @ IGNACIO1, failed to read relation 129039 03/09/09 20:55:56 v1.06 @ IGNACIO1, recovered 172188 relations 03/09/09 20:55:56 v1.06 @ IGNACIO1, recovered 152900 polynomials 03/09/09 20:55:57 v1.06 @ IGNACIO1, attempting to build 71834 cycles 03/09/09 20:55:57 v1.06 @ IGNACIO1, found 71834 cycles in 5 passes 03/09/09 20:55:57 v1.06 @ IGNACIO1, distribution of cycle lengths: 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 1 : 19691 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 2 : 14772 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 3 : 13092 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 4 : 9227 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 5 : 6460 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 6 : 3873 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 7 : 2212 03/09/09 20:55:57 v1.06 @ IGNACIO1, length 9+: 2507 03/09/09 20:55:57 v1.06 @ IGNACIO1, largest cycle: 18 relations 03/09/09 20:55:57 v1.06 @ IGNACIO1, matrix is 71746 x 71834 (17.3 MB) with weight 4246484 (59.12/col) 03/09/09 20:55:57 v1.06 @ IGNACIO1, sparse part has weight 4246484 (59.12/col) 03/09/09 20:55:57 v1.06 @ IGNACIO1, filtering completed in 3 passes 03/09/09 20:55:57 v1.06 @ IGNACIO1, matrix is 67142 x 67206 (16.3 MB) with weight 4015995 (59.76/col) 03/09/09 20:55:57 v1.06 @ IGNACIO1, sparse part has weight 4015995 (59.76/col) 03/09/09 20:55:57 v1.06 @ IGNACIO1, saving the first 48 matrix rows for later 03/09/09 20:55:57 v1.06 @ IGNACIO1, matrix is 67094 x 67206 (11.1 MB) with weight 3229491 (48.05/col) 03/09/09 20:55:57 v1.06 @ IGNACIO1, sparse part has weight 2496296 (37.14/col) 03/09/09 20:55:57 v1.06 @ IGNACIO1, matrix includes 64 packed rows 03/09/09 20:55:57 v1.06 @ IGNACIO1, using block size 26882 for processor cache size 4096 kB 03/09/09 20:55:58 v1.06 @ IGNACIO1, commencing Lanczos iteration 03/09/09 20:55:58 v1.06 @ IGNACIO1, memory use: 10.5 MB 03/09/09 20:56:21 v1.06 @ IGNACIO1, lanczos halted after 1063 iterations (dim = 67091) 03/09/09 20:56:21 v1.06 @ IGNACIO1, recovered 16 nontrivial dependencies 03/09/09 20:56:22 v1.06 @ IGNACIO1, prp48 = 300308110768732222706837801807141690286149914543 03/09/09 20:56:23 v1.06 @ IGNACIO1, prp44 = 87679135327818129083845195790361427454587883 03/09/09 20:56:23 v1.06 @ IGNACIO1, Lanczos elapsed time = 29.6310 seconds. 03/09/09 20:56:23 v1.06 @ IGNACIO1, Sqrt elapsed time = 1.9950 seconds. 03/09/09 20:56:23 v1.06 @ IGNACIO1, Total elapsed time = 6600.2490 seconds.
(46·10163+53)/9 = 5(1)1627<164> = 3 · 17 · 19 · C161
C161 = P50 · P112
P50 = 19681554786229512498521615841720531903117438305569<50>
P112 = 2679983632879134839217655504863995441112610536764554382163896252409598726595514228780873486445695938122612848197<112>
Number: 51117_163 N=52746244696709092993922715284944387111569774108473798876275656461414975346863891755532622405687421167297328288040362343767916523334479990826740052746244696709093 ( 161 digits) SNFS difficulty: 166 digits. Divisors found: r1=19681554786229512498521615841720531903117438305569 (pp50) r2=2679983632879134839217655504863995441112610536764554382163896252409598726595514228780873486445695938122612848197 (pp112) Version: Msieve-1.39 Total time: 35.35 hours. Scaled time: 61.47 units (timescale=1.739). Factorization parameters were as follows: n: 52746244696709092993922715284944387111569774108473798876275656461414975346863891755532622405687421167297328288040362343767916523334479990826740052746244696709093 m: 500000000000000000000000000000000 deg: 5 c5: 368 c0: 1325 skew: 1.29 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 757733 x 757981 Total sieving time: 35.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 35.35 hours. --------- CPU info (if available) ----------
(46·10161+53)/9 = 5(1)1607<162> = 167281501 · C154
C154 = P32 · P123
P32 = 29304073293056004611600603550341<32>
P123 = 104265207929804161640682601999886440675679347982672371444289866714737148563122388946690763349474640988083937818479288943037<123>
Number: 51117_161 N=3055395295090705284328546950993171152326706532308740529002732412779528509318619224436006890631087242044242005642399819876742444528346927680372207510925617 ( 154 digits) SNFS difficulty: 163 digits. Divisors found: r1=29304073293056004611600603550341 (pp32) r2=104265207929804161640682601999886440675679347982672371444289866714737148563122388946690763349474640988083937818479288943037 (pp123) Version: Msieve-1.39 Total time: 35.10 hours. Scaled time: 90.25 units (timescale=2.571). Factorization parameters were as follows: n: 3055395295090705284328546950993171152326706532308740529002732412779528509318619224436006890631087242044242005642399819876742444528346927680372207510925617 m: 200000000000000000000000000000000 deg: 5 c5: 115 c0: 424 skew: 1.30 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 666390 x 666638 Total sieving time: 35.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 35.10 hours. --------- CPU info (if available) ----------
(44·10163+1)/9 = 4(8)1629<164> = 7 · 5068012901506364190633732107<28> · C136
C136 = P41 · P95
P41 = 42566000178928534066137272811737382493561<41>
P95 = 32375133858060673452433631534485078300706599193409229345003393728689063018119668175725228319301<95>
Number: 48889_163 N=1378079953595045867594053404080634834157078864784978858028996260948676240385650162839972747333355597162475697307787418612773224484520861 ( 136 digits) SNFS difficulty: 166 digits. Divisors found: r1=42566000178928534066137272811737382493561 (pp41) r2=32375133858060673452433631534485078300706599193409229345003393728689063018119668175725228319301 (pp95) Version: Msieve-1.39 Total time: 28.88 hours. Scaled time: 74.24 units (timescale=2.571). Factorization parameters were as follows: n: 1378079953595045867594053404080634834157078864784978858028996260948676240385650162839972747333355597162475697307787418612773224484520861 m: 1000000000000000000000000000000000 deg: 5 c5: 11 c0: 25 skew: 1.18 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 659068 x 659316 Total sieving time: 28.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 28.88 hours. --------- CPU info (if available) ----------
Factorizations of 511...119 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Andreas Tete / Msieve 1.40beta2 / Mar 9, 2009
(31·10168+41)/9 = 3(4)1679<169> = 1303 · 312340090511<12> · 29368458645403<14> · 7717403667575857<16> · C125
C125 = P58 · P68
P58 = 3199531318649953244341022926800550296567933036062498357291<58>
P68 = 11671006212528191652002268221699814254356844004459282877277697877073<68>
Mon Mar 09 07:15:26 2009 Mon Mar 09 07:15:26 2009 Mon Mar 09 07:15:26 2009 Msieve v. 1.40 Mon Mar 09 07:15:26 2009 random seeds: ade51018 e14bc1bb Mon Mar 09 07:15:26 2009 factoring 37341749897142121501044346885341085486989665803866127120929436699947381633311322080195902338164347592550563750975260551289243 (125 digits) Mon Mar 09 07:15:27 2009 searching for 15-digit factors Mon Mar 09 07:15:29 2009 commencing number field sieve (125-digit input) Mon Mar 09 07:15:29 2009 R0: -1088114432624936520075342 Mon Mar 09 07:15:29 2009 R1: 34737124470091 Mon Mar 09 07:15:29 2009 A0: -71496577573595625906473163785 Mon Mar 09 07:15:29 2009 A1: 35064141251845164949397623 Mon Mar 09 07:15:29 2009 A2: -776953222852106819385 Mon Mar 09 07:15:29 2009 A3: -2160258613523839 Mon Mar 09 07:15:29 2009 A4: 18360593834 Mon Mar 09 07:15:29 2009 A5: 24480 Mon Mar 09 07:15:29 2009 skew 181474.42, size 5.173726e-012, alpha -6.170813, combined = 1.493559e-010 Mon Mar 09 07:15:29 2009 Mon Mar 09 07:15:29 2009 commencing relation filtering Mon Mar 09 07:15:29 2009 commencing duplicate removal, pass 1 Mon Mar 09 07:17:02 2009 found 1491858 hash collisions in 9245826 relations Mon Mar 09 07:17:25 2009 added 58666 free relations Mon Mar 09 07:17:25 2009 commencing duplicate removal, pass 2 Mon Mar 09 07:17:40 2009 found 1497815 duplicates and 7806676 unique relations Mon Mar 09 07:17:40 2009 memory use: 65.3 MB Mon Mar 09 07:17:40 2009 reading rational ideals above 7405568 Mon Mar 09 07:17:40 2009 reading algebraic ideals above 7405568 Mon Mar 09 07:17:40 2009 commencing singleton removal, pass 1 Mon Mar 09 07:19:02 2009 relations with 0 large ideals: 263246 Mon Mar 09 07:19:02 2009 relations with 1 large ideals: 1611965 Mon Mar 09 07:19:02 2009 relations with 2 large ideals: 3137880 Mon Mar 09 07:19:02 2009 relations with 3 large ideals: 2223928 Mon Mar 09 07:19:02 2009 relations with 4 large ideals: 502682 Mon Mar 09 07:19:02 2009 relations with 5 large ideals: 12488 Mon Mar 09 07:19:02 2009 relations with 6 large ideals: 54487 Mon Mar 09 07:19:02 2009 relations with 7+ large ideals: 0 Mon Mar 09 07:19:02 2009 7806676 relations and about 7357141 large ideals Mon Mar 09 07:19:02 2009 commencing singleton removal, pass 2 Mon Mar 09 07:20:24 2009 found 3492596 singletons Mon Mar 09 07:20:24 2009 current dataset: 4314080 relations and about 3200149 large ideals Mon Mar 09 07:20:24 2009 commencing singleton removal, pass 3 Mon Mar 09 07:21:13 2009 found 697808 singletons Mon Mar 09 07:21:13 2009 current dataset: 3616272 relations and about 2461138 large ideals Mon Mar 09 07:21:13 2009 commencing singleton removal, pass 4 Mon Mar 09 07:21:56 2009 found 183238 singletons Mon Mar 09 07:21:56 2009 current dataset: 3433034 relations and about 2274326 large ideals Mon Mar 09 07:21:56 2009 commencing singleton removal, final pass Mon Mar 09 07:22:39 2009 memory use: 50.7 MB Mon Mar 09 07:22:39 2009 commencing in-memory singleton removal Mon Mar 09 07:22:39 2009 begin with 3433034 relations and 2394020 unique ideals Mon Mar 09 07:22:41 2009 reduce to 3078894 relations and 2033836 ideals in 11 passes Mon Mar 09 07:22:41 2009 max relations containing the same ideal: 26 Mon Mar 09 07:22:42 2009 reading rational ideals above 720000 Mon Mar 09 07:22:42 2009 reading algebraic ideals above 720000 Mon Mar 09 07:22:42 2009 commencing singleton removal, final pass Mon Mar 09 07:23:28 2009 keeping 2804566 ideals with weight <= 20, new excess is 247608 Mon Mar 09 07:23:32 2009 memory use: 91.6 MB Mon Mar 09 07:23:32 2009 commencing in-memory singleton removal Mon Mar 09 07:23:33 2009 begin with 3082211 relations and 2804566 unique ideals Mon Mar 09 07:23:37 2009 reduce to 3031265 relations and 2737239 ideals in 10 passes Mon Mar 09 07:23:37 2009 max relations containing the same ideal: 20 Mon Mar 09 07:23:40 2009 relations with 0 large ideals: 4169 Mon Mar 09 07:23:40 2009 relations with 1 large ideals: 43318 Mon Mar 09 07:23:40 2009 relations with 2 large ideals: 218635 Mon Mar 09 07:23:40 2009 relations with 3 large ideals: 583081 Mon Mar 09 07:23:40 2009 relations with 4 large ideals: 887820 Mon Mar 09 07:23:40 2009 relations with 5 large ideals: 779594 Mon Mar 09 07:23:40 2009 relations with 6 large ideals: 389468 Mon Mar 09 07:23:40 2009 relations with 7+ large ideals: 125180 Mon Mar 09 07:23:40 2009 commencing 2-way merge Mon Mar 09 07:23:43 2009 reduce to 1807463 relation sets and 1513482 unique ideals Mon Mar 09 07:23:43 2009 ignored 45 oversize relation sets Mon Mar 09 07:23:43 2009 commencing full merge Mon Mar 09 07:24:18 2009 memory use: 140.6 MB Mon Mar 09 07:24:18 2009 found 877039 cycles, need 841682 Mon Mar 09 07:24:18 2009 weight of 841682 cycles is about 59272709 (70.42/cycle) Mon Mar 09 07:24:18 2009 distribution of cycle lengths: Mon Mar 09 07:24:18 2009 1 relations: 98931 Mon Mar 09 07:24:18 2009 2 relations: 100305 Mon Mar 09 07:24:18 2009 3 relations: 99032 Mon Mar 09 07:24:18 2009 4 relations: 88140 Mon Mar 09 07:24:18 2009 5 relations: 78635 Mon Mar 09 07:24:18 2009 6 relations: 67756 Mon Mar 09 07:24:18 2009 7 relations: 57401 Mon Mar 09 07:24:18 2009 8 relations: 47966 Mon Mar 09 07:24:18 2009 9 relations: 40843 Mon Mar 09 07:24:18 2009 10+ relations: 162673 Mon Mar 09 07:24:18 2009 heaviest cycle: 20 relations Mon Mar 09 07:24:18 2009 commencing cycle optimization Mon Mar 09 07:24:20 2009 start with 4988347 relations Mon Mar 09 07:24:34 2009 pruned 149444 relations Mon Mar 09 07:24:34 2009 memory use: 129.3 MB Mon Mar 09 07:24:34 2009 distribution of cycle lengths: Mon Mar 09 07:24:34 2009 1 relations: 98931 Mon Mar 09 07:24:34 2009 2 relations: 103120 Mon Mar 09 07:24:34 2009 3 relations: 103173 Mon Mar 09 07:24:34 2009 4 relations: 90861 Mon Mar 09 07:24:34 2009 5 relations: 80983 Mon Mar 09 07:24:34 2009 6 relations: 68708 Mon Mar 09 07:24:34 2009 7 relations: 57891 Mon Mar 09 07:24:34 2009 8 relations: 47807 Mon Mar 09 07:24:34 2009 9 relations: 40685 Mon Mar 09 07:24:34 2009 10+ relations: 149523 Mon Mar 09 07:24:34 2009 heaviest cycle: 20 relations Mon Mar 09 07:24:35 2009 RelProcTime: 534 Mon Mar 09 07:24:35 2009 Mon Mar 09 07:24:35 2009 commencing linear algebra Mon Mar 09 07:24:35 2009 read 841682 cycles Mon Mar 09 07:24:37 2009 cycles contain 2673765 unique relations Mon Mar 09 07:25:09 2009 read 2673765 relations Mon Mar 09 07:25:14 2009 using 20 quadratic characters above 134216838 Mon Mar 09 07:25:30 2009 building initial matrix Mon Mar 09 07:26:13 2009 memory use: 307.6 MB Mon Mar 09 07:26:14 2009 read 841682 cycles Mon Mar 09 07:26:15 2009 matrix is 841349 x 841682 (241.5 MB) with weight 80038905 (95.09/col) Mon Mar 09 07:26:15 2009 sparse part has weight 56569614 (67.21/col) Mon Mar 09 07:26:32 2009 filtering completed in 3 passes Mon Mar 09 07:26:32 2009 matrix is 837333 x 837533 (240.7 MB) with weight 79742206 (95.21/col) Mon Mar 09 07:26:32 2009 sparse part has weight 56405744 (67.35/col) Mon Mar 09 07:26:35 2009 read 837533 cycles Mon Mar 09 07:26:36 2009 matrix is 837333 x 837533 (240.7 MB) with weight 79742206 (95.21/col) Mon Mar 09 07:26:36 2009 sparse part has weight 56405744 (67.35/col) Mon Mar 09 07:26:36 2009 saving the first 48 matrix rows for later Mon Mar 09 07:26:37 2009 matrix is 837285 x 837533 (230.5 MB) with weight 63294546 (75.57/col) Mon Mar 09 07:26:37 2009 sparse part has weight 55403246 (66.15/col) Mon Mar 09 07:26:37 2009 matrix includes 64 packed rows Mon Mar 09 07:26:37 2009 using block size 65536 for processor cache size 3072 kB Mon Mar 09 07:26:43 2009 commencing Lanczos iteration Mon Mar 09 07:26:43 2009 memory use: 229.4 MB Mon Mar 09 09:11:21 2009 lanczos halted after 13243 iterations (dim = 837285) Mon Mar 09 09:11:23 2009 recovered 30 nontrivial dependencies Mon Mar 09 09:11:23 2009 BLanczosTime: 6361 Mon Mar 09 09:11:23 2009 Mon Mar 09 09:11:23 2009 commencing square root phase Mon Mar 09 09:11:23 2009 reading relations for dependency 1 Mon Mar 09 09:11:24 2009 read 418665 cycles Mon Mar 09 09:11:25 2009 cycles contain 1638314 unique relations Mon Mar 09 09:11:47 2009 read 1638314 relations Mon Mar 09 09:11:57 2009 multiplying 1333398 relations Mon Mar 09 09:15:37 2009 multiply complete, coefficients have about 61.72 million bits Mon Mar 09 09:15:40 2009 initial square root is modulo 726184289 Mon Mar 09 09:22:06 2009 sqrtTime: 613 Mon Mar 09 09:22:06 2009 prp58 factor: 3199531318649953244341022926800550296567933036062498357291 Mon Mar 09 09:22:06 2009 prp68 factor: 11671006212528191652002268221699814254356844004459282877277697877073 #Mon Mar 09 09:22:06 2009 elapsed time 02:06:40 Total time: 119.2 hours.
By Jo Yeong Uk / GMP-ECM / Mar 9, 2009
(46·10193+17)/9 = 5(1)1923<194> = C194
C194 = P36 · C159
P36 = 217410993050638873355737846333375723<36>
C159 = [235089819488596087295387233793131386382105303301089051036631344503098791738232356187656689122842975052128957602428239192437050778955177424652359127571338331931<159>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 (194 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1525602877 Step 1 took 22444ms Step 2 took 8829ms ********** Factor found in step 2: 217410993050638873355737846333375723 Found probable prime factor of 36 digits: 217410993050638873355737846333375723 Composite cofactor 235089819488596087295387233793131386382105303301089051036631344503098791738232356187656689122842975052128957602428239192437050778955177424652359127571338331931 has 159 digits
By Serge Batalov / GMP-ECM 6.2.2 / Mar 9, 2009
(46·10165+53)/9 = 5(1)1647<166> = 7 · 4253 · 4844406113<10> · 4523158715685319<16> · C136
C136 = P29 · C108
P29 = 10446812610506949093142876229<29>
C108 = [749990434194342913627839994778316141735461561144432665049318858824500331417760967267346175218968089628592429<108>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=143967436 Step 1 took 11117ms ********** Factor found in step 1: 10446812610506949093142876229 Found probable prime factor of 29 digits: 10446812610506949093142876229 Composite cofactor 749990434194342913627839994778316141735461561144432665049318858824500331417760967267346175218968089628592 429 has 108 digits
(46·10170+53)/9 = 5(1)1697<171> = 11 · 19387 · 1665479 · 1794248597877849317<19> · C141
C141 = P31 · C111
P31 = 5408617979271676407647398602101<31>
C111 = [148287294893707759450826773884287490623864556110591552787817847024979548974477424569602377450628469980051583867<111>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=79750547 Step 1 took 10712ms Step 2 took 9745ms ********** Factor found in step 2: 5408617979271676407647398602101 Found probable prime factor of 31 digits: 5408617979271676407647398602101 Composite cofactor 148287294893707759450826773884287490623864556110591552787817847024979548974477424569602377450628469980051 583867 has 111 digits
(46·10166+53)/9 = 5(1)1657<167> = 3 · 11 · 2929337 · C159
C159 = P29 · C131
P29 = 16036699817919812260473949319<29>
C131 = [32969855616823691466101238160783310004651583931458204036145062340110338667916054195949780242413798330360782553087497224960254295683<131>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3914349354 Step 1 took 12984ms Step 2 took 11077ms ********** Factor found in step 2: 16036699817919812260473949319 Found probable prime factor of 29 digits: 16036699817919812260473949319 Composite cofactor has 131 digits
By Max Dettweiler / GGNFS (sieving), msieve-140beta2 (postprocessing) / Mar 9, 2009
(46·10145+53)/9 = 5(1)1447<146> = 3 · 19 · 47653 · 1435121 · 404405147141<12> · C122
C122 = P55 · P68
P55 = 1301015403308368069679292029098359067832886330689235907<55>
P68 = 24920834858529572925651828244003251158782838939266717456699645961551<68>
Number: 51117_145 N=32422390014251090047405979420912278617048780624947206533054875806767396646879580371495665058985390191313647208718490611757 ( 122 digits) SNFS difficulty: 146 digits. Divisors found: r1=1301015403308368069679292029098359067832886330689235907 (pp55) r2=24920834858529572925651828244003251158782838939266717456699645961551 (pp68) Version: Msieve-1.40beta2 Total time: 7.75 hours. Scaled time: 12.73 units (timescale=1.642). Factorization parameters were as follows: n: 32422390014251090047405979420912278617048780624947206533054875806767396646879580371495665058985390191313647208718490611757 m: 100000000000000000000000000000 deg: 5 c5: 46 c0: 53 skew: 1.03 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 1975001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 279389 x 279637 Total sieving time: 7.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 7.75 hours. --------- CPU info (if available) ---------- [ 0.371537] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800276) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800811) [ 0.460049] Total of 2 processors activated (8800.54 BogoMIPS).
By Sinkiti Sibata / GGNFS / Mar 9, 2009
(46·10142+17)/9 = 5(1)1413<143> = 199 · 373 · 8836327 · 30944437944034327607351<23> · C109
C109 = P46 · P63
P46 = 3253898913398857863840646050922281096920564879<46>
P63 = 773918056022581270276301143282161876126995043437065725389072093<63>
Number: 51113_142 N=2518251121551633601419087702525546323870542114736815313608600828242439007408590192176793239962892307214821747 ( 109 digits) SNFS difficulty: 144 digits. Divisors found: r1=3253898913398857863840646050922281096920564879 (pp46) r2=773918056022581270276301143282161876126995043437065725389072093 (pp63) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 15.98 hours. Scaled time: 7.53 units (timescale=0.471). Factorization parameters were as follows: name: 51113_142 n: 2518251121551633601419087702525546323870542114736815313608600828242439007408590192176793239962892307214821747 m: 20000000000000000000000000000 deg: 5 c5: 575 c0: 68 skew: 0.65 type: snfs lss: 1 rlim: 1780000 alim: 1780000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1780000/1780000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [890000, 2090001) Primes: RFBsize:133671, AFBsize:133292, largePrimes:3844978 encountered Relations: rels:3887227, finalFF:322419 Max relations in full relation-set: 28 Initial matrix: 267030 x 322419 with sparse part having weight 29853912. Pruned matrix : 247373 x 248772 with weight 20147298. Total sieving time: 14.09 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.62 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1780000,1780000,26,26,49,49,2.3,2.3,100000 total time: 15.98 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM / Mar 9, 2009
(14·10204-17)/3 = 4(6)2031<205> = 47 · 22571 · 24527 · 116818569354037<15> · 278275966685165104601346551<27> · 10382326534732513036533810389<29> · C126
C126 = P41 · P86
P41 = 49351688284424227009747656018018277788269<41>
P86 = 10767860236981571264712003983278864892088044356372016005085807037138655167068407215317<86>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 531412081905760891258313848288852999676582475963092517114464340668350919020889228921749982581663250527798455996226636019716273 (126 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=3154146542 Step 1 took 38963ms Step 2 took 15980ms ********** Factor found in step 2: 49351688284424227009747656018018277788269 Found probable prime factor of 41 digits: 49351688284424227009747656018018277788269 Probable prime cofactor 10767860236981571264712003983278864892088044356372016005085807037138655167068407215317 has 86 digits
(46·10151+53)/9 = 5(1)1507<152> = 32 · 29 · 3639913 · 523471288572563<15> · 926549273118053965459<21> · C108
C108 = P35 · P73
P35 = 32146023557560743005476615795064849<35>
P73 = 3450604360129407926878446661028474159406037561413177599498500341434877193<73>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 110923209048541761045506758771335276930568084266286353957676501456575706096911007045699418647710773786088857 (108 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=3172833204 Step 1 took 31683ms Step 2 took 13907ms ********** Factor found in step 2: 32146023557560743005476615795064849 Found probable prime factor of 35 digits: 32146023557560743005476615795064849 Probable prime cofactor 3450604360129407926878446661028474159406037561413177599498500341434877193 has 73 digits
(46·10153+17)/9 = 5(1)1523<154> = 937 · 6301 · 1168853512068217384515790254569897<34> · C114
C114 = P45 · P70
P45 = 196490224292758436049630492490170845480502019<45>
P70 = 3769339166967671013328223086443654127269835499673885309638515657941743<70>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 740638298352956917629241927420886535153044207773338129179800117727688945646884036097074009882338060886955895879117 (114 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=1271141060 Step 1 took 31279ms Step 2 took 14671ms ********** Factor found in step 2: 196490224292758436049630492490170845480502019 Found probable prime factor of 45 digits: 196490224292758436049630492490170845480502019 Probable prime cofactor 3769339166967671013328223086443654127269835499673885309638515657941743 has 70 digits
(46·10155+53)/9 = 5(1)1547<156> = 8694331 · 120263232533603<15> · C135
C135 = P40 · P95
P40 = 6101604350504945071703086087387533827909<40>
P95 = 80112859990158471449995653126153528876347931825122100676739917892233937272907061694672355442841<95>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 488816975047344480420714150543104820075654662965054212542775479303930556384979153820933164864013988575435626337025233349492623580049469 (135 digits) Using B1=3000000, B2=4016636513, polynomial Dickson(6), sigma=2831832470 Step 1 took 39028ms Step 2 took 16267ms ********** Factor found in step 2: 6101604350504945071703086087387533827909 Found probable prime factor of 40 digits: 6101604350504945071703086087387533827909 Probable prime cofactor 80112859990158471449995653126153528876347931825122100676739917892233937272907061694672355442841 has 95 digits
By Ignacio Santos / GGNFS, Msieve / Mar 9, 2009
(46·10149+17)/9 = 5(1)1483<150> = 3 · 182809683463050359<18> · C132
C132 = P66 · P67
P66 = 196402249692752872132715270377448801991427612454686894648603854373<66>
P67 = 4745133252295663327826221303086537424769467238293624817207646507953<67>
Number: 51113_149 N=931954845842757379712167151150040856218413162686610932846537310731272241905042886757291832003286399733437061941542968128409598328469 ( 132 digits) SNFS difficulty: 151 digits. Divisors found: r1=196402249692752872132715270377448801991427612454686894648603854373 (pp66) r2=4745133252295663327826221303086537424769467238293624817207646507953 (pp67) Version: Msieve-1.39 Total time: 13.09 hours. Scaled time: 33.66 units (timescale=2.571). Factorization parameters were as follows: n: 931954845842757379712167151150040856218413162686610932846537310731272241905042886757291832003286399733437061941542968128409598328469 m: 1000000000000000000000000000000 deg: 5 c5: 23 c0: 85 skew: 1.30 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 357966 x 358214 Total sieving time: 13.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 13.09 hours. --------- CPU info (if available) ----------
(46·10101+53)/9 = 5(1)1007<102> = 131 · C100
C100 = P46 · P55
P46 = 1051366045249180782192749418420461357285312957<46>
P55 = 3710992525229035182238005631475257690538237143563716251<55>
Number: 51117_101 N=3901611535199321458863443596268023748939779474130619168787107718405428329092451229855810008481764207 ( 100 digits) SNFS difficulty: 103 digits. Divisors found: r1=1051366045249180782192749418420461357285312957 (pp46) r2=3710992525229035182238005631475257690538237143563716251 (pp55) Version: Msieve-1.39 Total time: 0.31 hours. Scaled time: 0.36 units (timescale=1.187). Factorization parameters were as follows: n: 3901611535199321458863443596268023748939779474130619168787107718405428329092451229855810008481764207 m: 20000000000000000000000000 deg: 4 c4: 115 c0: 212 skew: 1.17 type: snfs lss: 1 rlim: 370000 alim: 370000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2Factor base limits: 370000/370000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [185000, 245001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 39096 x 39344 Total sieving time: 0.31 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000 total time: 0.31 hours. --------- CPU info (if available) ----------
(46·10105+53)/9 = 5(1)1047<106> = 7 · C105
C105 = P42 · P64
P42 = 162116180279236321466962628363259874093861<42>
P64 = 4503922612172772491525277627009783736239098637189147106166898671<64>
Number: 51117_105 N=730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158731 ( 105 digits) SNFS difficulty: 107 digits. Divisors found: r1=162116180279236321466962628363259874093861 (pp42) r2=4503922612172772491525277627009783736239098637189147106166898671 (pp64) Version: Msieve-1.39 Total time: 0.48 hours. Scaled time: 0.57 units (timescale=1.185). Factorization parameters were as follows: n: 730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158731 m: 200000000000000000000000000 deg: 4 c4: 115 c0: 212 skew: 1.17 type: snfs lss: 1 rlim: 430000 alim: 430000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 430000/430000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [215000, 315001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 42475 x 42706 Total sieving time: 0.48 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,4,0,0,0,0,0,0,0,0,430000,430000,25,25,44,44,2.2,2.2,20000 total time: 0.48 hours. --------- CPU info (if available) ----------
(46·10117+53)/9 = 5(1)1167<118> = 72 · 197807 · 13400317261<11> · C101
C101 = P29 · P73
P29 = 37154143007493125814082790629<29>
P73 = 1059144601138791998487927996098498231586938131803254324761721580375436051<73>
Number: 51117_117 N=39351609976324944510715763909123822322422147274612099562749814149650216428995341890016476920811566079 ( 101 digits) SNFS difficulty: 119 digits. Divisors found: r1=37154143007493125814082790629 (pp29) r2=1059144601138791998487927996098498231586938131803254324761721580375436051 (pp73) Version: Msieve-1.39 Total time: 1.18 hours. Scaled time: 1.41 units (timescale=1.194). Factorization parameters were as follows: n: 39351609976324944510715763909123822322422147274612099562749814149650216428995341890016476920811566079 m: 200000000000000000000000 deg: 5 c5: 575 c0: 212 skew: 0.82 type: snfs lss: 1 rlim: 680000 alim: 680000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 680000/680000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [340000, 590001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 72296 x 72542 Total sieving time: 1.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000 total time: 1.18 hours. --------- CPU info (if available) ----------
(46·10119+53)/9 = 5(1)1187<120> = 44004769 · C113
C113 = P34 · P79
P34 = 2299987638111194800868753964704987<34>
P79 = 5049984846279583185486306417912232813427855410859885830255590638230699819958039<79>
Number: 51117_119 N=11614902719091903677783449132777202196223575474538023619919720771880682094050104231000760647354179068889354040493 ( 113 digits) SNFS difficulty: 121 digits. Divisors found: r1=2299987638111194800868753964704987 (pp34) r2=5049984846279583185486306417912232813427855410859885830255590638230699819958039 (pp79) Version: Msieve-1.39 Total time: 0.99 hours. Scaled time: 1.18 units (timescale=1.197). Factorization parameters were as follows: n: 11614902719091903677783449132777202196223575474538023619919720771880682094050104231000760647354179068889354040493 m: 1000000000000000000000000 deg: 5 c5: 23 c0: 265 skew: 1.63 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 570001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76768 x 77005 Total sieving time: 0.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 0.99 hours. --------- CPU info (if available) ----------
(46·10123+53)/9 = 5(1)1227<124> = 7 · 29 · 1447 · C119
C119 = P43 · P76
P43 = 4381846120736352361081456772199148603930499<43>
P76 = 3970942797979298014223135734108633716505660790785836094432416623786964706763<76>
Number: 51117_123 N=17400060294991543948958814435543935341375943811422685669045557518736271446992796753300053826708260376015302974767264737 ( 119 digits) SNFS difficulty: 126 digits. Divisors found: r1=4381846120736352361081456772199148603930499 (pp43) r2=3970942797979298014223135734108633716505660790785836094432416623786964706763 (pp76) Version: Msieve-1.39 Total time: 1.61 hours. Scaled time: 1.94 units (timescale=1.202). Factorization parameters were as follows: n: 17400060294991543948958814435543935341375943811422685669045557518736271446992796753300053826708260376015302974767264737 m: 5000000000000000000000000 deg: 5 c5: 368 c0: 1325 skew: 1.29 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 111404 x 111652 Total sieving time: 1.61 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.61 hours. --------- CPU info (if available) ----------
(46·10126+53)/9 = 5(1)1257<127> = 11 · 29303 · 1095503 · C116
C116 = P29 · P34 · P54
P29 = 22951036736328310483109547343<29>
P34 = 2309389485245674100787978593428487<34>
P54 = 273084775309771947450739812234858862933212157629549863<54>
Number: 51117_126 N=14474280371439186954052991391897505152047200545966590968214180692694363767671954878797501982661887134634256255224383 ( 116 digits) SNFS difficulty: 128 digits. Divisors found: r1=22951036736328310483109547343 (pp29) r2=2309389485245674100787978593428487 (pp34) r3=273084775309771947450739812234858862933212157629549863 (pp54) Version: Msieve-1.39 Total time: 2.36 hours. Scaled time: 2.82 units (timescale=1.193). Factorization parameters were as follows: n: 14474280371439186954052991391897505152047200545966590968214180692694363767671954878797501982661887134634256255224383 m: 20000000000000000000000000 deg: 5 c5: 115 c0: 424 skew: 1.30 type: snfs lss: 1 rlim: 970000 alim: 970000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 970000/970000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [485000, 835001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 137624 x 137872 Total sieving time: 2.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,970000,970000,26,26,47,47,2.3,2.3,50000 total time: 2.36 hours. --------- CPU info (if available) ----------
(46·10127+53)/9 = 5(1)1267<128> = 3 · 19 · 1920011 · 46326801803<11> · C110
C110 = P38 · P72
P38 = 91721246203875859269650966930388504827<38>
P72 = 109909310516648039879605703572736508047398488711402133692683632228955591<72>
Number: 51117_127 N=10081018929995717084531629906985375658680279384835188006477904963900095345058949423977762182884447646272137757 ( 110 digits) SNFS difficulty: 129 digits. Divisors found: r1=91721246203875859269650966930388504827 (pp38) r2=109909310516648039879605703572736508047398488711402133692683632228955591 (pp72) Version: Msieve-1.39 Total time: 1.89 hours. Scaled time: 2.25 units (timescale=1.192). Factorization parameters were as follows: n: 10081018929995717084531629906985375658680279384835188006477904963900095345058949423977762182884447646272137757 m: 20000000000000000000000000 deg: 5 c5: 575 c0: 212 skew: 0.82 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148735 x 148983 Total sieving time: 1.89 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.89 hours. --------- CPU info (if available) ----------
(46·10132+53)/9 = 5(1)1317<133> = 11 · 10508293 · 348100629696191<15> · C111
C111 = P32 · P79
P32 = 16249156839947455989159436879759<32>
P79 = 7817264810862193227507798014636507921023443527299739490009654804228203145655691<79>
Number: 51117_132 N=127023961971101962933194516572132634935878613282066905551848043549985581772021811459751701479613930969181058469 ( 111 digits) SNFS difficulty: 134 digits. Divisors found: r1=16249156839947455989159436879759 (pp32) r2=7817264810862193227507798014636507921023443527299739490009654804228203145655691 (pp79) Version: Msieve-1.39 Total time: 2.84 hours. Scaled time: 3.40 units (timescale=1.195). Factorization parameters were as follows: n: 127023961971101962933194516572132634935878613282066905551848043549985581772021811459751701479613930969181058469 m: 200000000000000000000000000 deg: 5 c5: 575 c0: 212 skew: 0.82 type: snfs lss: 1 rlim: 1210000 alim: 1210000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1210000/1210000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [605000, 1130001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 176344 x 176592 Total sieving time: 2.84 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1210000,1210000,26,26,47,47,2.3,2.3,75000 total time: 2.84 hours. --------- CPU info (if available) ----------
(46·10133+53)/9 = 5(1)1327<134> = 37 · 659 · 7691 · 14851 · 337078854520259<15> · C105
C105 = P42 · P64
P42 = 284006308075259780796263372870612103890893<42>
P64 = 3243270108864037332056686357910502399618877853861850651186350747<64>
Number: 51117_133 N=921109169709321114107770234761017212288149670987861927693816180198512855050548520942752864928652517047071 ( 105 digits) SNFS difficulty: 136 digits. Divisors found: r1=284006308075259780796263372870612103890893 (pp42) r2=3243270108864037332056686357910502399618877853861850651186350747 (pp64) Version: Msieve-1.39 Total time: 3.32 hours. Scaled time: 3.97 units (timescale=1.198). Factorization parameters were as follows: n: 921109169709321114107770234761017212288149670987861927693816180198512855050548520942752864928652517047071 m: 500000000000000000000000000 deg: 5 c5: 368 c0: 1325 skew: 1.29 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 188774 x 189022 Total sieving time: 3.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 3.32 hours. --------- CPU info (if available) ----------
(46·10151+17)/9 = 5(1)1503<152> = 9883 · 18356749 · C141
C141 = P64 · P77
P64 = 8172175016707545457583974190335930691504416901869276777808732983<64>
P77 = 34474112793907433702099859827871212701283307072048202180063531357502611064033<77>
Number: 51113_151 N=281728483297528288628543635323252275165617448625794641793103989907614506221161628367059228669427524783995179771689025780827272937745212100439 ( 141 digits) SNFS difficulty: 153 digits. Divisors found: r1=8172175016707545457583974190335930691504416901869276777808732983 (pp64) r2=34474112793907433702099859827871212701283307072048202180063531357502611064033 (pp77) Version: Msieve-1.39 Total time: 18.05 hours. Scaled time: 46.41 units (timescale=2.571). Factorization parameters were as follows: n: 281728483297528288628543635323252275165617448625794641793103989907614506221161628367059228669427524783995179771689025780827272937745212100439 m: 2000000000000000000000000000000 deg: 5 c5: 115 c0: 136 skew: 1.03 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 484060 x 484308 Total sieving time: 18.05 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 18.05 hours. --------- CPU info (if available) ----------
(46·10140+53)/9 = 5(1)1397<141> = 11 · 47 · 107 · 3793 · 331307 · 35317276157668117<17> · C111
C111 = P55 · P56
P55 = 5098238417384787350273120921414830381099413431566691293<55>
P56 = 40833838266530485664218230832533871115304766142842709953<56>
Number: 51117_140 N=208180642979702751743044581507404564446557630316631281934749627910209055736595897807415521997315736741889539229 ( 111 digits) SNFS difficulty: 141 digits. Divisors found: r1=5098238417384787350273120921414830381099413431566691293 (pp55) r2=40833838266530485664218230832533871115304766142842709953 (pp56) Version: Msieve-1.39 Total time: 4.18 hours. Scaled time: 5.02 units (timescale=1.201). Factorization parameters were as follows: n: 208180642979702751743044581507404564446557630316631281934749627910209055736595897807415521997315736741889539229 m: 10000000000000000000000000000 deg: 5 c5: 46 c0: 53 skew: 1.03 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 211578 x 211826 Total sieving time: 4.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 4.18 hours. --------- CPU info (if available) ----------
(46·10159+53)/9 = 5(1)1587<160> = 72 · 11497 · C154
C154 = P63 · P92
P63 = 146206979062345930258847590663260807771848228702899166301406463<63>
P92 = 62053546445206031125688035764078006914277054585201952605461595095457720445664741389665548203<92>
Number: 51117_159 N=9072661565858548922453792047102103141566852597059234815668170953400640648245613516056737269724508631552705161969690604489744638106322520890296334822235989 ( 154 digits) SNFS difficulty: 161 digits. Divisors found: r1=146206979062345930258847590663260807771848228702899166301406463 (pp63) r2=62053546445206031125688035764078006914277054585201952605461595095457720445664741389665548203 (pp92) Version: Msieve-1.39 Total time: 22.23 hours. Scaled time: 57.14 units (timescale=2.571). Factorization parameters were as follows: n: 9072661565858548922453792047102103141566852597059234815668170953400640648245613516056737269724508631552705161969690604489744638106322520890296334822235989 m: 100000000000000000000000000000000 deg: 5 c5: 23 c0: 265 skew: 1.63 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 585594 x 585842 Total sieving time: 22.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 22.23 hours. --------- CPU info (if available) ----------
(13·10166+11)/3 = 4(3)1657<167> = 7 · 7039 · 1594049 · 195875087561731<15> · 30727426106161913<17> · C125
C125 = P59 · P67
P59 = 30522543014935933535828931337221102964882591495905606382609<59>
P67 = 3003207391500507654404750316309514446820381495431181608193686383603<67>
Number: 43337_166 N=91665526789847785397159889897757673029427981309456458068846002562248947844791517560634814045955028451056130736972331961960227 ( 125 digits) SNFS difficulty: 167 digits. Divisors found: r1=30522543014935933535828931337221102964882591495905606382609 (pp59) r2=3003207391500507654404750316309514446820381495431181608193686383603 (pp67) Version: Msieve-1.39 Total time: 39.29 hours. Scaled time: 68.33 units (timescale=1.739). Factorization parameters were as follows: n: 91665526789847785397159889897757673029427981309456458068846002562248947844791517560634814045955028451056130736972331961960227 m: 1000000000000000000000000000000000 deg: 5 c5: 130 c0: 11 skew: 0.61 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2150000, 4350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 765171 x 765419 Total sieving time: 39.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 39.29 hours. --------- CPU info (if available) ----------
(46·10160+53)/9 = 5(1)1597<161> = 33 · 11 · 229 · C156
C156 = P31 · P49 · P77
P31 = 3497829786460425219596265083453<31>
P49 = 3711630603234302531527368993031032123750398751737<49>
P77 = 57884191535844480051940302137313331900332209124470821556366740038336486224669<77>
Number: 51117_160 N=751490319661110539324998325483526842090646069297209520402145341495171674696177364784836885758768340039567599004765428831416216180893521990077060431257423009 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: r1=3497829786460425219596265083453 (pp31) r2=3711630603234302531527368993031032123750398751737 (pp49) r3=57884191535844480051940302137313331900332209124470821556366740038336486224669 (pp77) Version: Msieve-1.39 Total time: 22.23 hours. Scaled time: 57.16 units (timescale=2.571). Factorization parameters were as follows: n: 751490319661110539324998325483526842090646069297209520402145341495171674696177364784836885758768340039567599004765428831416216180893521990077060431257423009 m: 100000000000000000000000000000000 deg: 5 c5: 46 c0: 53 skew: 1.03 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 637029 x 637277 Total sieving time: 22.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 22.23 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Mar 9, 2009
(19·1053049-1)/9 = 2(1)53049<53050> is PRP.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 8, 2009
4·10178+1 = 4(0)1771<179> = 13 · 566167021042476149422414249581680453<36> · C142
C142 = P67 · P75
P67 = 6061095723787709816177996585617442722607441719998843595973408858077<67>
P75 = 896645819043518706309661143084647289327440781070529452934200366627156144117<75>
Number: 40001_178 N=5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009 ( 142 digits) SNFS difficulty: 180 digits. Divisors found: r1=6061095723787709816177996585617442722607441719998843595973408858077 r2=896645819043518706309661143084647289327440781070529452934200366627156144117 Version: Total time: 59.57 hours. Scaled time: 142.08 units (timescale=2.385). Factorization parameters were as follows: n: 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009 m: 1000000000000000000000000000000000000 deg: 5 c5: 1 c0: 25 skew: 1.90 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [2600000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17171844 Max relations in full relation-set: Initial matrix: Pruned matrix : 1152624 x 1152872 Total sieving time: 54.31 hours. Total relation processing time: 1.46 hours. Matrix solve time: 3.25 hours. Time per square root: 0.55 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,53,53,2.5,2.5,100000 total time: 59.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GMP-ECM / Mar 8, 2009
(44·10132-53)/9 = 4(8)1313<133> = C133
C133 = P46 · P88
P46 = 1110220553312655297808882682723776743181104103<46>
P88 = 4403529437733352862117465895923540771817098994724462891230371415746741912312872108706261<88>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 4888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 (133 digits) Using B1=20000000, B2=59950304286, polynomial Dickson(12), sigma=2504866877 Step 1 took 257030ms Step 2 took 84305ms ********** Factor found in step 2: 1110220553312655297808882682723776743181104103 Found probable prime factor of 46 digits: 1110220553312655297808882682723776743181104103 Probable prime cofactor 4403529437733352862117465895923540771817098994724462891230371415746741912312872108706261 has 88 digits
By Sinkiti Sibata / GGNFS / Mar 8, 2009
(44·10154+1)/9 = 4(8)1539<155> = 113 · 2099 · 13442499459349<14> · C137
C137 = P31 · P106
P31 = 8332570143318425779243813301039<31>
P106 = 1840179884800480883378157296911883995857869467338990022378628791144496792021799871577494763177951771934377<106>
Number: 48889_154 N=15333427966423627234645482187688620560689563067187928456403538018817446826320562875885755637186001325087230224620697300802742730853917703 ( 137 digits) SNFS difficulty: 156 digits. Divisors found: r1=8332570143318425779243813301039 (pp31) r2=1840179884800480883378157296911883995857869467338990022378628791144496792021799871577494763177951771934377 (pp106) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 46.89 hours. Scaled time: 22.13 units (timescale=0.472). Factorization parameters were as follows: name: 48889_154 n: 15333427966423627234645482187688620560689563067187928456403538018817446826320562875885755637186001325087230224620697300802742730853917703 m: 10000000000000000000000000000000 deg: 5 c5: 22 c0: 5 skew: 0.74 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: RFBsize:203362, AFBsize:203168, largePrimes:8086929 encountered Relations: rels:8238652, finalFF:570345 Max relations in full relation-set: 28 Initial matrix: 406596 x 570345 with sparse part having weight 62465658. Pruned matrix : 347207 x 349303 with weight 35844249. Total sieving time: 41.39 hours. Total relation processing time: 0.36 hours. Matrix solve time: 4.99 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 46.89 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS (sieving), msieve v1.40beta2 (postprocessing) / Mar 8, 2009
(46·10150+17)/9 = 5(1)1493<151> = 7 · 13597 · 93765122431<11> · 12927026782792133527436421144607<32> · C104
C104 = P42 · P63
P42 = 215277725831553129790685239591654012757177<42>
P63 = 205795139875606871141235190127379148672452160595173895881524083<63>
Sat Mar 7 17:47:25 2009 Msieve v. 1.40 Sat Mar 7 17:47:25 2009 random seeds: 5be9bc6a a4db309b Sat Mar 7 17:47:25 2009 factoring 44303109699607022872926009371300736105651392884345897886736800768893549967713945190056822343455756593691 (104 digits) Sat Mar 7 17:47:26 2009 no P-1/P+1/ECM available, skipping Sat Mar 7 17:47:26 2009 commencing number field sieve (104-digit input) Sat Mar 7 17:47:26 2009 R0: -205803718671706643940 Sat Mar 7 17:47:26 2009 R1: 45109791671 Sat Mar 7 17:47:26 2009 A0: -16910212684373235259751719 Sat Mar 7 17:47:26 2009 A1: -671274074771843691581 Sat Mar 7 17:47:26 2009 A2: 68600220111545809 Sat Mar 7 17:47:26 2009 A3: 630091046276 Sat Mar 7 17:47:26 2009 A4: -16543905 Sat Mar 7 17:47:26 2009 A5: 120 Sat Mar 7 17:47:26 2009 skew 49338.29, size 6.783315e-10, alpha -4.664099, combined = 2.157279e-09 Sat Mar 7 17:47:26 2009 Sat Mar 7 17:47:26 2009 commencing relation filtering Sat Mar 7 17:47:26 2009 commencing duplicate removal, pass 1 Sat Mar 7 17:48:04 2009 found 350324 hash collisions in 4485313 relations Sat Mar 7 17:48:21 2009 added 608 free relations Sat Mar 7 17:48:21 2009 commencing duplicate removal, pass 2 Sat Mar 7 17:48:25 2009 found 333640 duplicates and 4152281 unique relations Sat Mar 7 17:48:25 2009 memory use: 40.3 MB Sat Mar 7 17:48:25 2009 reading rational ideals above 1638400 Sat Mar 7 17:48:25 2009 reading algebraic ideals above 1638400 Sat Mar 7 17:48:25 2009 commencing singleton removal, pass 1 Sat Mar 7 17:49:00 2009 relations with 0 large ideals: 46830 Sat Mar 7 17:49:00 2009 relations with 1 large ideals: 383631 Sat Mar 7 17:49:00 2009 relations with 2 large ideals: 1185742 Sat Mar 7 17:49:00 2009 relations with 3 large ideals: 1588216 Sat Mar 7 17:49:00 2009 relations with 4 large ideals: 815270 Sat Mar 7 17:49:00 2009 relations with 5 large ideals: 98913 Sat Mar 7 17:49:00 2009 relations with 6 large ideals: 33676 Sat Mar 7 17:49:00 2009 relations with 7+ large ideals: 3 Sat Mar 7 17:49:00 2009 4152281 relations and about 4324405 large ideals Sat Mar 7 17:49:00 2009 commencing singleton removal, pass 2 Sat Mar 7 17:49:38 2009 found 1958944 singletons Sat Mar 7 17:49:38 2009 current dataset: 2193337 relations and about 1929600 large ideals Sat Mar 7 17:49:38 2009 commencing singleton removal, pass 3 Sat Mar 7 17:49:58 2009 found 473190 singletons Sat Mar 7 17:49:58 2009 current dataset: 1720147 relations and about 1414479 large ideals Sat Mar 7 17:49:58 2009 commencing singleton removal, final pass Sat Mar 7 17:50:17 2009 memory use: 33.3 MB Sat Mar 7 17:50:17 2009 commencing in-memory singleton removal Sat Mar 7 17:50:17 2009 begin with 1720147 relations and 1452587 unique ideals Sat Mar 7 17:50:19 2009 reduce to 1355162 relations and 1074705 ideals in 15 passes Sat Mar 7 17:50:19 2009 max relations containing the same ideal: 53 Sat Mar 7 17:50:20 2009 reading rational ideals above 720000 Sat Mar 7 17:50:20 2009 reading algebraic ideals above 720000 Sat Mar 7 17:50:20 2009 commencing singleton removal, final pass Sat Mar 7 17:50:36 2009 keeping 1159198 ideals with weight <= 20, new excess is 167390 Sat Mar 7 17:50:37 2009 memory use: 33.9 MB Sat Mar 7 17:50:37 2009 commencing in-memory singleton removal Sat Mar 7 17:50:37 2009 begin with 1355770 relations and 1159198 unique ideals Sat Mar 7 17:50:38 2009 reduce to 1352754 relations and 1153168 ideals in 10 passes Sat Mar 7 17:50:38 2009 max relations containing the same ideal: 20 Sat Mar 7 17:50:39 2009 relations with 0 large ideals: 20819 Sat Mar 7 17:50:39 2009 relations with 1 large ideals: 135377 Sat Mar 7 17:50:39 2009 relations with 2 large ideals: 361336 Sat Mar 7 17:50:39 2009 relations with 3 large ideals: 468155 Sat Mar 7 17:50:39 2009 relations with 4 large ideals: 285605 Sat Mar 7 17:50:39 2009 relations with 5 large ideals: 71003 Sat Mar 7 17:50:39 2009 relations with 6 large ideals: 10069 Sat Mar 7 17:50:39 2009 relations with 7+ large ideals: 390 Sat Mar 7 17:50:39 2009 commencing 2-way merge Sat Mar 7 17:50:40 2009 reduce to 747235 relation sets and 547805 unique ideals Sat Mar 7 17:50:40 2009 ignored 156 oversize relation sets Sat Mar 7 17:50:40 2009 commencing full merge Sat Mar 7 17:50:48 2009 memory use: 34.0 MB Sat Mar 7 17:50:48 2009 found 311219 cycles, need 292005 Sat Mar 7 17:50:48 2009 weight of 292005 cycles is about 20642731 (70.69/cycle) Sat Mar 7 17:50:48 2009 distribution of cycle lengths: Sat Mar 7 17:50:48 2009 1 relations: 35474 Sat Mar 7 17:50:48 2009 2 relations: 29215 Sat Mar 7 17:50:48 2009 3 relations: 29093 Sat Mar 7 17:50:48 2009 4 relations: 26887 Sat Mar 7 17:50:48 2009 5 relations: 24684 Sat Mar 7 17:50:48 2009 6 relations: 21474 Sat Mar 7 17:50:48 2009 7 relations: 19536 Sat Mar 7 17:50:48 2009 8 relations: 16873 Sat Mar 7 17:50:48 2009 9 relations: 14629 Sat Mar 7 17:50:48 2009 10+ relations: 74140 Sat Mar 7 17:50:48 2009 heaviest cycle: 21 relations Sat Mar 7 17:50:48 2009 commencing cycle optimization Sat Mar 7 17:50:49 2009 start with 1939747 relations Sat Mar 7 17:50:53 2009 pruned 57961 relations Sat Mar 7 17:50:53 2009 memory use: 50.5 MB Sat Mar 7 17:50:53 2009 distribution of cycle lengths: Sat Mar 7 17:50:53 2009 1 relations: 35474 Sat Mar 7 17:50:53 2009 2 relations: 30041 Sat Mar 7 17:50:53 2009 3 relations: 30255 Sat Mar 7 17:50:53 2009 4 relations: 27709 Sat Mar 7 17:50:53 2009 5 relations: 25469 Sat Mar 7 17:50:53 2009 6 relations: 22072 Sat Mar 7 17:50:53 2009 7 relations: 19928 Sat Mar 7 17:50:53 2009 8 relations: 16959 Sat Mar 7 17:50:53 2009 9 relations: 14701 Sat Mar 7 17:50:53 2009 10+ relations: 69397 Sat Mar 7 17:50:53 2009 heaviest cycle: 21 relations Sat Mar 7 17:50:53 2009 RelProcTime: 191 Sat Mar 7 17:50:53 2009 Sat Mar 7 17:50:53 2009 commencing linear algebra Sat Mar 7 17:50:54 2009 read 292005 cycles Sat Mar 7 17:50:54 2009 cycles contain 1060412 unique relations Sat Mar 7 17:51:04 2009 read 1060412 relations Sat Mar 7 17:51:05 2009 using 20 quadratic characters above 67107098 Sat Mar 7 17:51:12 2009 building initial matrix Sat Mar 7 17:51:34 2009 memory use: 114.4 MB Sat Mar 7 17:51:34 2009 read 292005 cycles Sat Mar 7 17:51:36 2009 matrix is 291468 x 292005 (82.3 MB) with weight 27886129 (95.50/col) Sat Mar 7 17:51:36 2009 sparse part has weight 19524201 (66.86/col) Sat Mar 7 17:51:43 2009 filtering completed in 3 passes Sat Mar 7 17:51:43 2009 matrix is 287466 x 287666 (81.2 MB) with weight 27492798 (95.57/col) Sat Mar 7 17:51:43 2009 sparse part has weight 19277016 (67.01/col) Sat Mar 7 17:51:47 2009 read 287666 cycles Sat Mar 7 17:51:47 2009 matrix is 287466 x 287666 (81.2 MB) with weight 27492798 (95.57/col) Sat Mar 7 17:51:47 2009 sparse part has weight 19277016 (67.01/col) Sat Mar 7 17:51:47 2009 saving the first 48 matrix rows for later Sat Mar 7 17:51:47 2009 matrix is 287418 x 287666 (78.4 MB) with weight 21745986 (75.59/col) Sat Mar 7 17:51:47 2009 sparse part has weight 18816033 (65.41/col) Sat Mar 7 17:51:47 2009 matrix includes 64 packed rows Sat Mar 7 17:51:47 2009 using block size 65536 for processor cache size 2048 kB Sat Mar 7 17:51:49 2009 commencing Lanczos iteration Sat Mar 7 17:51:49 2009 memory use: 76.1 MB Sat Mar 7 18:04:53 2009 lanczos halted after 4547 iterations (dim = 287417) Sat Mar 7 18:04:54 2009 recovered 33 nontrivial dependencies Sat Mar 7 18:04:54 2009 BLanczosTime: 819 Sat Mar 7 18:04:54 2009 Sat Mar 7 18:04:54 2009 commencing square root phase Sat Mar 7 18:04:54 2009 reading relations for dependency 1 Sat Mar 7 18:04:54 2009 read 144047 cycles Sat Mar 7 18:04:55 2009 cycles contain 647455 unique relations Sat Mar 7 18:05:01 2009 read 647455 relations Sat Mar 7 18:05:04 2009 multiplying 527798 relations Sat Mar 7 18:05:53 2009 multiply complete, coefficients have about 18.48 million bits Sat Mar 7 18:05:54 2009 initial square root is modulo 204107 Sat Mar 7 18:07:25 2009 sqrtTime: 137 Sat Mar 7 18:07:25 2009 prp42 factor: 215277725831553129790685239591654012757177 Sat Mar 7 18:07:25 2009 prp63 factor: 205795139875606871141235190127379148672452160595173895881524083 Sat Mar 7 18:07:25 2009 elapsed time 00:20:00
By Tyler Cadigan / GGNFS, Msieve / Mar 8, 2009
(10194+53)/9 = (1)1937<194> = 17 · 1329533 · C186
C186 = P74 · P113
P74 = 25299773945108783709147719647499992506518778128599196990273018706302023747<74>
P113 = 19430895096918866733182687120277920415164945096409546688245140181892747950729635954281219412653480029348815900651<113>
Number: 11117_194 N=491597253503169959195805688300332925882781712300976053073704699368394373907366726915351264254667355827024407690569064082744981137388803220693507158975949631810617231371559925933794759297 ( 186 digits) SNFS difficulty: 194 digits. Divisors found: r1=25299773945108783709147719647499992506518778128599196990273018706302023747 (pp74) r2=19430895096918866733182687120277920415164945096409546688245140181892747950729635954281219412653480029348815900651 (pp113) Version: Msieve-1.39 Total time: 499.32 hours. Scaled time: 1277.26 units (timescale=2.558). Factorization parameters were as follows: n: 491597253503169959195805688300332925882781712300976053073704699368394373907366726915351264254667355827024407690569064082744981137388803220693507158975949631810617231371559925933794759297 m: 500000000000000000000000000000000000000 deg: 5 c5: 16 c0: 265 skew: 1.75 type: snfs lss: 1 rlim: 12300000 alim: 12300000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 12300000/12300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6150000, 13150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1793514 x 1793762 Total sieving time: 499.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12300000,12300000,28,28,55,55,2.5,2.5,100000 total time: 499.32 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, Msieve / Mar 8, 2009
(46·10196+17)/9 = 5(1)1953<197> = 53 · 34319 · 810389 · C185
C185 = P32 · C153
P32 = 46638014411653612788414145080653<32>
C153 = [743483334775093414308085926936551688757350932685493179334475707140726021929978120094874282079886030617190668431423415363905819287792994902061667650047227<153>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=213234464 Step 1 took 15805ms Step 2 took 12860ms ********** Factor found in step 2: 46638014411653612788414145080653 Found probable prime factor of 32 digits: 46638014411653612788414145080653 Composite cofactor has 153 digits
(46·10153+17)/9 = 5(1)1523<154> = 937 · 6301 · C147
C147 = P34 · C114
P34 = 1168853512068217384515790254569897<34>
C114 = [740638298352956917629241927420886535153044207773338129179800117727688945646884036097074009882338060886955895879117<114>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3675542085 Step 1 took 10717ms Step 2 took 10124ms ********** Factor found in step 2: 1168853512068217384515790254569897 Found probable prime factor of 34 digits: 1168853512068217384515790254569897 Composite cofactor has 114 digits
(46·10180+17)/9 = 5(1)1793<181> = 7 · 47 · 389 · 73665373 · C168
C168 = P34 · P134
P34 = 8104568488111348562614408845397543<34>
P134 = 66892362423519288858149215229470409647792932927990440248147057831515216094067576405705120507840562693982861619178921972432842900479207<134>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3582017823 Step 1 took 13133ms Step 2 took 11373ms ********** Factor found in step 2: 8104568488111348562614408845397543 Found probable prime factor of 34 digits: 8104568488111348562614408845397543 Probable prime cofactor has 134 digits
(44·10166+1)/9 = 4(8)1659<167> = 47 · 59 · 587 · 296627 · C156
C156 = P55 · P101
P55 = 2937281513117464590091985435058991865462100989285797601<55>
P101 = 34471957438172422129150819718021939069550799090932442883442048563826723794482089824148538350124767557<101>
SNFS difficulty: 168 digits. Divisors found: r1=2937281513117464590091985435058991865462100989285797601 (pp55) r2=34471957438172422129150819718021939069550799090932442883442048563826723794482089824148538350124767557 (pp101) Version: Msieve-1.39 Total time: 30.00 hours. Scaled time: x units (timescale=3.543). Factorization parameters were as follows: n: 101253843304115930376530093063534683573706849408114924995162372570713821635391260017879929438836832145342326795629939482980889279584171294606970491473230757 m: 2000000000000000000000000000000000 deg: 5 c5: 55 c0: 4 skew: 0.59 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 3850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 707238 x 707486 Total sieving time: 28.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.50 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 30.00 hours. --------- CPU info (if available) ---------- [ 0.295427] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 3.20GHz stepping 0b * 4
Factorizations of 511...117 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Robert Backstrom / GMP-ECM / Mar 7, 2009
(13·10170+11)/3 = 4(3)1697<171> = 1499 · 567902254172162219<18> · 1373651784966490440402937717<28> · C123
C123 = P41 · P82
P41 = 75419873015009426887961716945954103895361<41>
P82 = 4913426010328832983926082517300597573047085667748765160896669600454929105984112621<82>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 370569965767644980357356235399428856137811078710645235253822530344840763763076823444886948979877902193136601912075023451181 (123 digits) Using B1=20000000, B2=59950304286, polynomial Dickson(12), sigma=139757922 Step 1 took 231729ms Step 2 took 76758ms ********** Factor found in step 2: 75419873015009426887961716945954103895361 Found probable prime factor of 41 digits: 75419873015009426887961716945954103895361 Probable prime cofactor 4913426010328832983926082517300597573047085667748765160896669600454929105984112621 has 82 digits
By Max Dettweiler / GMP-ECM 6.2.1, GGNFS msieve v1.40-beta2 / Mar 7, 2009
(35·10168-53)/9 = 3(8)1673<169> = 55865683 · 167058817 · 49490597625208871233348177<26> · C127
C127 = P39 · P89
P39 = 569618098720578477422424600101143173899<39>
P89 = 14781024690642080932758969397118873168017503155014627158552385373431832745996639435957011<89>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 8419539181425468806006365315094861322014249606974102335052229082073286916817362732334516441385931952781233787411201237061255889 (127 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2713672085 Step 1 took 11893ms Step 2 took 6988ms ********** Factor found in step 2: 569618098720578477422424600101143173899 Found probable prime factor of 39 digits: 569618098720578477422424600101143173899 Probable prime cofactor 14781024690642080932758969397118873168017503155014627158552385373431832745996639435957011 has 89 digits
(46·10113+17)/9 = 5(1)1123<114> = 3 · 61 · 5399 · 1320331 · 2982873143<10> · C93
C93 = P34 · P59
P34 = 4412416030289271351015581005697119<34>
P59 = 29768492848110394115729558818954963316995218350789392555507<59>
Number: 51113_113 N=131350975040553830349733335037245342075215762201405132631282575232890983280795267893437484333 ( 93 digits) SNFS difficulty: 116 digits. Divisors found: r1=4412416030289271351015581005697119 (pp34) r2=29768492848110394115729558818954963316995218350789392555507 (pp59) Version: GGNFS-0.77.1-20060722-prescott Total time: 1.28 hours. Scaled time: 2.07 units (timescale=1.621). Factorization parameters were as follows: n: 131350975040553830349733335037245342075215762201405132631282575232890983280795267893437484333 m: 50000000000000000000000 deg: 5 c5: 368 c0: 425 skew: 1.03 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 500001) Primes: RFBsize:49098, AFBsize:49246, largePrimes:1245641 encountered Relations: rels:1220739, finalFF:145520 Max relations in full relation-set: 32 Initial matrix: 98411 x 145520 with sparse part having weight 6465754. Pruned matrix : 79822 x 80378 with weight 2618257. Total sieving time: 1.21 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 1.28 hours. --------- CPU info (if available) ---------- [ 0.371537] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800276) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800811) [ 0.460049] Total of 2 processors activated (8800.54 BogoMIPS).
(46·10126+17)/9 = 5(1)1253<127> = 7 · 29 · 613 · 320189773 · 22998881309715211<17> · C97
C97 = P37 · P61
P37 = 2718013478775412943759161342874328001<37>
P61 = 2052074083338351936368477625152429496333705580464085045253489<61>
Fri Mar 6 15:36:55 2009 Msieve v. 1.40 Fri Mar 6 15:36:55 2009 random seeds: 0ccba1c4 88d7ca1a Fri Mar 6 15:36:55 2009 factoring 5577565017959340603130194616039714070499780268304544574590233529387927501354604569332715575645489 (97 digits) Fri Mar 6 15:36:56 2009 no P-1/P+1/ECM available, skipping Fri Mar 6 15:36:56 2009 commencing number field sieve (97-digit input) Fri Mar 6 15:36:56 2009 R0: -20000000000000000000000000 Fri Mar 6 15:36:56 2009 R1: 1 Fri Mar 6 15:36:56 2009 A0: 136 Fri Mar 6 15:36:56 2009 A1: 0 Fri Mar 6 15:36:56 2009 A2: 0 Fri Mar 6 15:36:56 2009 A3: 0 Fri Mar 6 15:36:56 2009 A4: 0 Fri Mar 6 15:36:56 2009 A5: 115 Fri Mar 6 15:36:56 2009 skew 1.03, size 2.597754e-09, alpha 1.172882, combined = 7.517651e-09 Fri Mar 6 15:36:56 2009 Fri Mar 6 15:36:56 2009 commencing relation filtering Fri Mar 6 15:36:56 2009 commencing duplicate removal, pass 1 Fri Mar 6 15:37:31 2009 found 374913 hash collisions in 3892578 relations Fri Mar 6 15:37:40 2009 added 31511 free relations Fri Mar 6 15:37:40 2009 commencing duplicate removal, pass 2 Fri Mar 6 15:37:43 2009 found 377312 duplicates and 3546777 unique relations Fri Mar 6 15:37:43 2009 memory use: 40.3 MB Fri Mar 6 15:37:43 2009 reading rational ideals above 1114112 Fri Mar 6 15:37:43 2009 reading algebraic ideals above 1114112 Fri Mar 6 15:37:43 2009 commencing singleton removal, pass 1 Fri Mar 6 15:38:14 2009 relations with 0 large ideals: 60150 Fri Mar 6 15:38:14 2009 relations with 1 large ideals: 530121 Fri Mar 6 15:38:14 2009 relations with 2 large ideals: 1484931 Fri Mar 6 15:38:14 2009 relations with 3 large ideals: 1111827 Fri Mar 6 15:38:14 2009 relations with 4 large ideals: 202778 Fri Mar 6 15:38:14 2009 relations with 5 large ideals: 0 Fri Mar 6 15:38:14 2009 relations with 6 large ideals: 156970 Fri Mar 6 15:38:14 2009 relations with 7+ large ideals: 0 Fri Mar 6 15:38:14 2009 3546777 relations and about 3528629 large ideals Fri Mar 6 15:38:14 2009 commencing singleton removal, pass 2 Fri Mar 6 15:38:47 2009 found 1578884 singletons Fri Mar 6 15:38:47 2009 current dataset: 1967893 relations and about 1377042 large ideals Fri Mar 6 15:38:47 2009 commencing singleton removal, pass 3 Fri Mar 6 15:39:04 2009 found 317709 singletons Fri Mar 6 15:39:04 2009 current dataset: 1650184 relations and about 1044914 large ideals Fri Mar 6 15:39:04 2009 commencing singleton removal, final pass Fri Mar 6 15:39:20 2009 memory use: 26.4 MB Fri Mar 6 15:39:20 2009 commencing in-memory singleton removal Fri Mar 6 15:39:21 2009 begin with 1650184 relations and 1068111 unique ideals Fri Mar 6 15:39:21 2009 reduce to 1549980 relations and 966655 ideals in 7 passes Fri Mar 6 15:39:21 2009 max relations containing the same ideal: 23 Fri Mar 6 15:39:22 2009 reading rational ideals above 557056 Fri Mar 6 15:39:22 2009 reading algebraic ideals above 557056 Fri Mar 6 15:39:22 2009 commencing singleton removal, final pass Fri Mar 6 15:39:43 2009 keeping 1178944 ideals with weight <= 20, new excess is 140370 Fri Mar 6 15:39:44 2009 memory use: 34.0 MB Fri Mar 6 15:39:44 2009 commencing in-memory singleton removal Fri Mar 6 15:39:44 2009 begin with 1580117 relations and 1178944 unique ideals Fri Mar 6 15:39:44 2009 reduce to 1549968 relations and 999952 ideals in 2 passes Fri Mar 6 15:39:44 2009 max relations containing the same ideal: 20 Fri Mar 6 15:39:45 2009 removing 534828 relations and 341235 ideals in 193593 cliques Fri Mar 6 15:39:45 2009 commencing in-memory singleton removal Fri Mar 6 15:39:45 2009 begin with 1015140 relations and 999952 unique ideals Fri Mar 6 15:39:46 2009 reduce to 948043 relations and 582060 ideals in 6 passes Fri Mar 6 15:39:46 2009 max relations containing the same ideal: 19 Fri Mar 6 15:39:46 2009 removing 426135 relations and 234333 ideals in 191802 cliques Fri Mar 6 15:39:46 2009 commencing in-memory singleton removal Fri Mar 6 15:39:47 2009 begin with 521908 relations and 582060 unique ideals Fri Mar 6 15:39:47 2009 reduce to 470591 relations and 289788 ideals in 7 passes Fri Mar 6 15:39:47 2009 max relations containing the same ideal: 14 Fri Mar 6 15:39:47 2009 removing 63694 relations and 45721 ideals in 17973 cliques Fri Mar 6 15:39:47 2009 commencing in-memory singleton removal Fri Mar 6 15:39:47 2009 begin with 406897 relations and 289788 unique ideals Fri Mar 6 15:39:47 2009 reduce to 400558 relations and 237472 ideals in 6 passes Fri Mar 6 15:39:47 2009 max relations containing the same ideal: 14 Fri Mar 6 15:39:48 2009 relations with 0 large ideals: 36310 Fri Mar 6 15:39:48 2009 relations with 1 large ideals: 112733 Fri Mar 6 15:39:48 2009 relations with 2 large ideals: 146048 Fri Mar 6 15:39:48 2009 relations with 3 large ideals: 81988 Fri Mar 6 15:39:48 2009 relations with 4 large ideals: 20059 Fri Mar 6 15:39:48 2009 relations with 5 large ideals: 2184 Fri Mar 6 15:39:48 2009 relations with 6 large ideals: 1234 Fri Mar 6 15:39:48 2009 relations with 7+ large ideals: 2 Fri Mar 6 15:39:48 2009 commencing 2-way merge Fri Mar 6 15:39:48 2009 reduce to 310081 relation sets and 146995 unique ideals Fri Mar 6 15:39:48 2009 commencing full merge Fri Mar 6 15:39:49 2009 memory use: 10.3 MB Fri Mar 6 15:39:49 2009 found 163405 cycles, need 142070 Fri Mar 6 15:39:49 2009 weight of 142070 cycles is about 7188564 (50.60/cycle) Fri Mar 6 15:39:49 2009 distribution of cycle lengths: Fri Mar 6 15:39:49 2009 1 relations: 36324 Fri Mar 6 15:39:49 2009 2 relations: 17964 Fri Mar 6 15:39:49 2009 3 relations: 14416 Fri Mar 6 15:39:49 2009 4 relations: 12395 Fri Mar 6 15:39:49 2009 5 relations: 11292 Fri Mar 6 15:39:49 2009 6 relations: 9710 Fri Mar 6 15:39:49 2009 7 relations: 8514 Fri Mar 6 15:39:49 2009 8 relations: 7597 Fri Mar 6 15:39:49 2009 9 relations: 6625 Fri Mar 6 15:39:49 2009 10+ relations: 17233 Fri Mar 6 15:39:49 2009 heaviest cycle: 16 relations Fri Mar 6 15:39:49 2009 matrix can improve, retrying Fri Mar 6 15:39:50 2009 reading rational ideals above 557056 Fri Mar 6 15:39:50 2009 reading algebraic ideals above 557056 Fri Mar 6 15:39:50 2009 commencing singleton removal, final pass Fri Mar 6 15:40:11 2009 keeping 1188055 ideals with weight <= 25, new excess is 131259 Fri Mar 6 15:40:12 2009 memory use: 34.0 MB Fri Mar 6 15:40:12 2009 commencing in-memory singleton removal Fri Mar 6 15:40:12 2009 begin with 1580117 relations and 1188055 unique ideals Fri Mar 6 15:40:12 2009 reduce to 1549968 relations and 1009063 ideals in 2 passes Fri Mar 6 15:40:12 2009 max relations containing the same ideal: 25 Fri Mar 6 15:40:13 2009 removing 536286 relations and 341964 ideals in 194322 cliques Fri Mar 6 15:40:13 2009 commencing in-memory singleton removal Fri Mar 6 15:40:13 2009 begin with 1013682 relations and 1009063 unique ideals Fri Mar 6 15:40:14 2009 reduce to 946319 relations and 590094 ideals in 6 passes Fri Mar 6 15:40:14 2009 max relations containing the same ideal: 23 Fri Mar 6 15:40:15 2009 removing 425142 relations and 233773 ideals in 191369 cliques Fri Mar 6 15:40:15 2009 commencing in-memory singleton removal Fri Mar 6 15:40:15 2009 begin with 521177 relations and 590094 unique ideals Fri Mar 6 15:40:15 2009 reduce to 469861 relations and 298399 ideals in 7 passes Fri Mar 6 15:40:15 2009 max relations containing the same ideal: 17 Fri Mar 6 15:40:15 2009 removing 66868 relations and 47667 ideals in 19201 cliques Fri Mar 6 15:40:15 2009 commencing in-memory singleton removal Fri Mar 6 15:40:15 2009 begin with 402993 relations and 298399 unique ideals Fri Mar 6 15:40:15 2009 reduce to 396019 relations and 243465 ideals in 6 passes Fri Mar 6 15:40:15 2009 max relations containing the same ideal: 16 Fri Mar 6 15:40:16 2009 relations with 0 large ideals: 29445 Fri Mar 6 15:40:16 2009 relations with 1 large ideals: 99567 Fri Mar 6 15:40:16 2009 relations with 2 large ideals: 143008 Fri Mar 6 15:40:16 2009 relations with 3 large ideals: 90693 Fri Mar 6 15:40:16 2009 relations with 4 large ideals: 27334 Fri Mar 6 15:40:16 2009 relations with 5 large ideals: 4613 Fri Mar 6 15:40:16 2009 relations with 6 large ideals: 1354 Fri Mar 6 15:40:16 2009 relations with 7+ large ideals: 5 Fri Mar 6 15:40:16 2009 commencing 2-way merge Fri Mar 6 15:40:16 2009 reduce to 306024 relation sets and 153470 unique ideals Fri Mar 6 15:40:16 2009 commencing full merge Fri Mar 6 15:40:18 2009 memory use: 10.4 MB Fri Mar 6 15:40:18 2009 found 155708 cycles, need 135959 Fri Mar 6 15:40:18 2009 weight of 135959 cycles is about 7629747 (56.12/cycle) Fri Mar 6 15:40:18 2009 distribution of cycle lengths: Fri Mar 6 15:40:18 2009 1 relations: 29610 Fri Mar 6 15:40:18 2009 2 relations: 15266 Fri Mar 6 15:40:18 2009 3 relations: 13262 Fri Mar 6 15:40:18 2009 4 relations: 11881 Fri Mar 6 15:40:18 2009 5 relations: 10947 Fri Mar 6 15:40:18 2009 6 relations: 9907 Fri Mar 6 15:40:18 2009 7 relations: 8930 Fri Mar 6 15:40:18 2009 8 relations: 7882 Fri Mar 6 15:40:18 2009 9 relations: 6920 Fri Mar 6 15:40:18 2009 10+ relations: 21354 Fri Mar 6 15:40:18 2009 heaviest cycle: 16 relations Fri Mar 6 15:40:18 2009 matrix can improve, retrying Fri Mar 6 15:40:18 2009 reading rational ideals above 557056 Fri Mar 6 15:40:18 2009 reading algebraic ideals above 557056 Fri Mar 6 15:40:18 2009 commencing singleton removal, final pass Fri Mar 6 15:40:38 2009 keeping 1192907 ideals with weight <= 30, new excess is 126407 Fri Mar 6 15:40:39 2009 memory use: 34.0 MB Fri Mar 6 15:40:39 2009 commencing in-memory singleton removal Fri Mar 6 15:40:39 2009 begin with 1580117 relations and 1192907 unique ideals Fri Mar 6 15:40:40 2009 reduce to 1549968 relations and 1013915 ideals in 2 passes Fri Mar 6 15:40:40 2009 max relations containing the same ideal: 30 Fri Mar 6 15:40:40 2009 removing 537062 relations and 342352 ideals in 194710 cliques Fri Mar 6 15:40:41 2009 commencing in-memory singleton removal Fri Mar 6 15:40:41 2009 begin with 1012906 relations and 1013915 unique ideals Fri Mar 6 15:40:41 2009 reduce to 945360 relations and 594342 ideals in 6 passes Fri Mar 6 15:40:41 2009 max relations containing the same ideal: 27 Fri Mar 6 15:40:42 2009 removing 424587 relations and 233454 ideals in 191133 cliques Fri Mar 6 15:40:42 2009 commencing in-memory singleton removal Fri Mar 6 15:40:42 2009 begin with 520773 relations and 594342 unique ideals Fri Mar 6 15:40:42 2009 reduce to 469516 relations and 303031 ideals in 7 passes Fri Mar 6 15:40:42 2009 max relations containing the same ideal: 18 Fri Mar 6 15:40:42 2009 removing 68492 relations and 48640 ideals in 19852 cliques Fri Mar 6 15:40:42 2009 commencing in-memory singleton removal Fri Mar 6 15:40:43 2009 begin with 401024 relations and 303031 unique ideals Fri Mar 6 15:40:43 2009 reduce to 393653 relations and 246703 ideals in 6 passes Fri Mar 6 15:40:43 2009 max relations containing the same ideal: 16 Fri Mar 6 15:40:43 2009 relations with 0 large ideals: 26105 Fri Mar 6 15:40:43 2009 relations with 1 large ideals: 91713 Fri Mar 6 15:40:43 2009 relations with 2 large ideals: 139422 Fri Mar 6 15:40:43 2009 relations with 3 large ideals: 95927 Fri Mar 6 15:40:43 2009 relations with 4 large ideals: 32101 Fri Mar 6 15:40:43 2009 relations with 5 large ideals: 6784 Fri Mar 6 15:40:43 2009 relations with 6 large ideals: 1585 Fri Mar 6 15:40:43 2009 relations with 7+ large ideals: 16 Fri Mar 6 15:40:43 2009 commencing 2-way merge Fri Mar 6 15:40:43 2009 reduce to 303906 relation sets and 156956 unique ideals Fri Mar 6 15:40:43 2009 commencing full merge Fri Mar 6 15:40:45 2009 memory use: 10.6 MB Fri Mar 6 15:40:45 2009 found 151966 cycles, need 133107 Fri Mar 6 15:40:45 2009 weight of 133107 cycles is about 7916211 (59.47/cycle) Fri Mar 6 15:40:45 2009 distribution of cycle lengths: Fri Mar 6 15:40:45 2009 1 relations: 26429 Fri Mar 6 15:40:45 2009 2 relations: 14052 Fri Mar 6 15:40:45 2009 3 relations: 12599 Fri Mar 6 15:40:45 2009 4 relations: 11271 Fri Mar 6 15:40:45 2009 5 relations: 10883 Fri Mar 6 15:40:45 2009 6 relations: 9895 Fri Mar 6 15:40:45 2009 7 relations: 8963 Fri Mar 6 15:40:45 2009 8 relations: 7951 Fri Mar 6 15:40:45 2009 9 relations: 7092 Fri Mar 6 15:40:45 2009 10+ relations: 23972 Fri Mar 6 15:40:45 2009 heaviest cycle: 16 relations Fri Mar 6 15:40:45 2009 matrix can improve, retrying Fri Mar 6 15:40:45 2009 reading rational ideals above 557056 Fri Mar 6 15:40:45 2009 reading algebraic ideals above 557056 Fri Mar 6 15:40:45 2009 commencing singleton removal, final pass Fri Mar 6 15:41:06 2009 keeping 1197503 ideals with weight <= 35, new excess is 121811 Fri Mar 6 15:41:07 2009 memory use: 34.0 MB Fri Mar 6 15:41:07 2009 commencing in-memory singleton removal Fri Mar 6 15:41:07 2009 begin with 1580117 relations and 1197503 unique ideals Fri Mar 6 15:41:08 2009 reduce to 1549968 relations and 1018511 ideals in 2 passes Fri Mar 6 15:41:08 2009 max relations containing the same ideal: 35 Fri Mar 6 15:41:08 2009 removing 537798 relations and 342720 ideals in 195078 cliques Fri Mar 6 15:41:09 2009 commencing in-memory singleton removal Fri Mar 6 15:41:09 2009 begin with 1012170 relations and 1018511 unique ideals Fri Mar 6 15:41:09 2009 reduce to 944493 relations and 598396 ideals in 6 passes Fri Mar 6 15:41:09 2009 max relations containing the same ideal: 30 Fri Mar 6 15:41:10 2009 removing 424150 relations and 233182 ideals in 190968 cliques Fri Mar 6 15:41:10 2009 commencing in-memory singleton removal Fri Mar 6 15:41:10 2009 begin with 520343 relations and 598396 unique ideals Fri Mar 6 15:41:10 2009 reduce to 469090 relations and 307347 ideals in 7 passes Fri Mar 6 15:41:10 2009 max relations containing the same ideal: 20 Fri Mar 6 15:41:11 2009 removing 69957 relations and 49515 ideals in 20442 cliques Fri Mar 6 15:41:11 2009 commencing in-memory singleton removal Fri Mar 6 15:41:11 2009 begin with 399133 relations and 307347 unique ideals Fri Mar 6 15:41:11 2009 reduce to 391449 relations and 249810 ideals in 6 passes Fri Mar 6 15:41:11 2009 max relations containing the same ideal: 19 Fri Mar 6 15:41:11 2009 relations with 0 large ideals: 23355 Fri Mar 6 15:41:11 2009 relations with 1 large ideals: 84028 Fri Mar 6 15:41:11 2009 relations with 2 large ideals: 134661 Fri Mar 6 15:41:11 2009 relations with 3 large ideals: 100205 Fri Mar 6 15:41:11 2009 relations with 4 large ideals: 37834 Fri Mar 6 15:41:11 2009 relations with 5 large ideals: 9201 Fri Mar 6 15:41:11 2009 relations with 6 large ideals: 2124 Fri Mar 6 15:41:11 2009 relations with 7+ large ideals: 41 Fri Mar 6 15:41:11 2009 commencing 2-way merge Fri Mar 6 15:41:11 2009 reduce to 301917 relation sets and 160278 unique ideals Fri Mar 6 15:41:11 2009 commencing full merge Fri Mar 6 15:41:13 2009 memory use: 10.7 MB Fri Mar 6 15:41:13 2009 found 147593 cycles, need 130011 Fri Mar 6 15:41:13 2009 weight of 130011 cycles is about 8359711 (64.30/cycle) Fri Mar 6 15:41:13 2009 distribution of cycle lengths: Fri Mar 6 15:41:13 2009 1 relations: 23765 Fri Mar 6 15:41:13 2009 2 relations: 12632 Fri Mar 6 15:41:13 2009 3 relations: 11596 Fri Mar 6 15:41:13 2009 4 relations: 10671 Fri Mar 6 15:41:13 2009 5 relations: 10244 Fri Mar 6 15:41:13 2009 6 relations: 9368 Fri Mar 6 15:41:13 2009 7 relations: 8683 Fri Mar 6 15:41:13 2009 8 relations: 7701 Fri Mar 6 15:41:13 2009 9 relations: 7179 Fri Mar 6 15:41:13 2009 10+ relations: 28172 Fri Mar 6 15:41:13 2009 heaviest cycle: 18 relations Fri Mar 6 15:41:13 2009 commencing cycle optimization Fri Mar 6 15:41:14 2009 start with 765303 relations Fri Mar 6 15:41:15 2009 pruned 66696 relations Fri Mar 6 15:41:15 2009 memory use: 17.0 MB Fri Mar 6 15:41:15 2009 distribution of cycle lengths: Fri Mar 6 15:41:15 2009 1 relations: 23765 Fri Mar 6 15:41:15 2009 2 relations: 13466 Fri Mar 6 15:41:15 2009 3 relations: 12785 Fri Mar 6 15:41:15 2009 4 relations: 11950 Fri Mar 6 15:41:15 2009 5 relations: 11544 Fri Mar 6 15:41:15 2009 6 relations: 10687 Fri Mar 6 15:41:15 2009 7 relations: 9475 Fri Mar 6 15:41:15 2009 8 relations: 8477 Fri Mar 6 15:41:15 2009 9 relations: 7342 Fri Mar 6 15:41:15 2009 10+ relations: 20520 Fri Mar 6 15:41:15 2009 heaviest cycle: 17 relations Fri Mar 6 15:41:16 2009 RelProcTime: 221 Fri Mar 6 15:41:16 2009 Fri Mar 6 15:41:16 2009 commencing linear algebra Fri Mar 6 15:41:16 2009 read 130011 cycles Fri Mar 6 15:41:16 2009 cycles contain 333059 unique relations Fri Mar 6 15:41:19 2009 read 333059 relations Fri Mar 6 15:41:20 2009 using 20 quadratic characters above 66514674 Fri Mar 6 15:41:22 2009 building initial matrix Fri Mar 6 15:41:30 2009 memory use: 36.3 MB Fri Mar 6 15:41:30 2009 read 130011 cycles Fri Mar 6 15:41:31 2009 matrix is 129812 x 130011 (31.6 MB) with weight 10123002 (77.86/col) Fri Mar 6 15:41:31 2009 sparse part has weight 7368844 (56.68/col) Fri Mar 6 15:41:33 2009 filtering completed in 2 passes Fri Mar 6 15:41:33 2009 matrix is 129413 x 129612 (31.5 MB) with weight 10104954 (77.96/col) Fri Mar 6 15:41:33 2009 sparse part has weight 7358402 (56.77/col) Fri Mar 6 15:41:34 2009 read 129612 cycles Fri Mar 6 15:41:34 2009 matrix is 129413 x 129612 (31.5 MB) with weight 10104954 (77.96/col) Fri Mar 6 15:41:34 2009 sparse part has weight 7358402 (56.77/col) Fri Mar 6 15:41:34 2009 saving the first 48 matrix rows for later Fri Mar 6 15:41:34 2009 matrix is 129365 x 129612 (29.4 MB) with weight 7655401 (59.06/col) Fri Mar 6 15:41:34 2009 sparse part has weight 6916344 (53.36/col) Fri Mar 6 15:41:34 2009 matrix includes 64 packed rows Fri Mar 6 15:41:34 2009 using block size 51844 for processor cache size 2048 kB Fri Mar 6 15:41:35 2009 commencing Lanczos iteration Fri Mar 6 15:41:35 2009 memory use: 29.3 MB Fri Mar 6 15:43:37 2009 lanczos halted after 2047 iterations (dim = 129362) Fri Mar 6 15:43:38 2009 recovered 36 nontrivial dependencies Fri Mar 6 15:43:38 2009 BLanczosTime: 132 Fri Mar 6 15:43:38 2009 Fri Mar 6 15:43:38 2009 commencing square root phase Fri Mar 6 15:43:38 2009 reading relations for dependency 1 Fri Mar 6 15:43:38 2009 read 64856 cycles Fri Mar 6 15:43:38 2009 cycles contain 211230 unique relations Fri Mar 6 15:43:44 2009 read 211230 relations Fri Mar 6 15:43:45 2009 multiplying 166240 relations Fri Mar 6 15:43:54 2009 multiply complete, coefficients have about 4.36 million bits Fri Mar 6 15:43:54 2009 initial square root is modulo 104231 Fri Mar 6 15:44:13 2009 sqrtTime: 27 Fri Mar 6 15:44:13 2009 prp37 factor: 2718013478775412943759161342874328001 Fri Mar 6 15:44:13 2009 prp61 factor: 2052074083338351936368477625152429496333705580464085045253489 Fri Mar 6 15:44:13 2009 elapsed time 00:07:18
(46·10145+17)/9 = 5(1)1443<146> = 157 · 491 · 10795901819827<14> · 1187111663117279<16> · C113
C113 = P42 · P72
P42 = 151187449087050159689435421843968531441609<42>
P72 = 342190493465467590083868747754619291085634754952297946010802975078867067<72>
Number: 51113_145 N=51734907808882951637333473963353371587253719697383137652805531581141899550195669462548918187805945701871983590803 ( 113 digits) SNFS difficulty: 146 digits. Divisors found: r1=151187449087050159689435421843968531441609 (pp42) r2=342190493465467590083868747754619291085634754952297946010802975078867067 (pp72) Version: Msieve-1.40beta2 Total time: 8.92 hours. Scaled time: 14.67 units (timescale=1.644). Factorization parameters were as follows: n: 51734907808882951637333473963353371587253719697383137652805531581141899550195669462548918187805945701871983590803 m: 100000000000000000000000000000 deg: 5 c5: 46 c0: 17 skew: 0.82 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 2175001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 332083 x 332331 Total sieving time: 8.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 8.92 hours. --------- CPU info (if available) ---------- [ 0.371537] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.456480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004010] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.13 BogoMIPS (lpj=8800276) [ 0.004000] Calibrating delay using timer specific routine.. 4400.40 BogoMIPS (lpj=8800811) [ 0.460049] Total of 2 processors activated (8800.54 BogoMIPS).
By Serge Batalov / GMP-ECM 6.2.2, Msieve-1.40 / Mar 7, 2009
(46·10110+17)/9 = 5(1)1093<111> = 33 · 19 · 24709 · 648502445425889<15> · C89
C89 = P33 · P57
P33 = 509413598709906626667570172159511<33>
P57 = 122056422191446221014247383030211096456944262433194285491<57>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2686212401 Step 1 took 5805ms Step 2 took 6368ms ********** Factor found in step 2: 509413598709906626667570172159511 Found probable prime factor of 33 digits: 509413598709906626667570172159511 Probable prime cofactor 122056422191446221014247383030211096456944262433194285491 has 57 digits
(46·10138+17)/9 = 5(1)1373<139> = 7 · 1709 · 931540693 · C126
C126 = P28 · P99
P28 = 2995443894178877333175966911<28>
P99 = 153113046879406592655362075559329006950987502421523034157252675103445336866089598291005284520872737<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1492474375 Step 1 took 8777ms Step 2 took 8525ms ********** Factor found in step 2: 2995443894178877333175966911 Found probable prime factor of 28 digits: 2995443894178877333175966911 Probable prime cofactor has 99 digits
(44·10156+1)/9 = 4(8)1559<157> = C157
C157 = P53 · P105
P53 = 47642835071258058596160680423741344870035443171703557<53>
P105 = 102615406526012027575384100100642854238249884773756740758595557060587802504484698285306807742770051495077<105>
SNFS difficulty: 158 digits. Divisors found: r1=47642835071258058596160680423741344870035443171703557 (pp53) r2=102615406526012027575384100100642854238249884773756740758595557060587802504484698285306807742770051495077 (pp105) Version: Msieve-1.40 Total time: 8.26 hours. Scaled time: 25.72 units (timescale=3.543). Factorization parameters were as follows: n: 4888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 20000000000000000000000000000000 deg: 5 c5: 55 c0: 4 skew: 0.59 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1500000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 456648 x 456896 Total sieving time: 7.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,52,52,2.4,2.4,100000 total time: 8.26 hours. --------- CPU info (if available) ---------- [ 0.296963] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 3.20GHz stepping 0b [ 0.576059] Total of 4 processors activated (25632.11 BogoMIPS).
(44·10149+1)/9 = 4(8)1489<150> = 32 · 19 · 139 · C146
C146 = P67 · P79
P67 = 2097300725793172414818766211917996426019369864092134123926619108377<67>
P79 = 9807053607602909688818978170095407278852726104132093533745020732100373184796553<79>
SNFS difficulty: 151 digits. Divisors found: r1=2097300725793172414818766211917996426019369864092134123926619108377 (pp67) r2=9807053607602909688818978170095407278852726104132093533745020732100373184796553 (pp79) Version: Msieve-1.40 Total time: 6.50 hours. Scaled time: 23.00 units (timescale=3.536). Factorization parameters were as follows: n: 20568340649118132394669060073578564049345319066384319445028772303794391387474815469262017286755391008830362610496398203074966927043160793003024481 m: 1000000000000000000000000000000 deg: 5 c5: 22 c0: 5 skew: 0.74 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 316427 x 316675 Total sieving time: 6.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 6.50 hours. --------- CPU info (if available) ---------- [ 0.296963] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b
(46·10195+17)/9 = 5(1)1943<196> = 383 · 1291 · 409523 · 1626467 · 145476985781<12> · C168
C168 = P31 · P137
P31 = 1352232292703206748131418929363<31>
P137 = 78889854420261070134295297737329302219952025430485075571736676711205438128918148705492132762635601259166557687516563362370477021572531427<137>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=979988983 Step 1 took 13253ms Step 2 took 11473ms ********** Factor found in step 2: 1352232292703206748131418929363 Found probable prime factor of 31 digits: 1352232292703206748131418929363 Probable prime cofactor 788898544202610701342952977373293022199520254304850755717366767112054381289181487054921327626356012591665576875 16563362370477021572531427 has 137 digits
(46·10150+17)/9 = 5(1)1493<151> = 7 · 13597 · 93765122431<11> · C135
C135 = P32 · C104
P32 = 12927026782792133527436421144607<32>
C104 = [44303109699607022872926009371300736105651392884345897886736800768893549967713945190056822343455756593691<104>]
Using B1=43000000, B2=582162027730, polynomial Dickson(30), sigma=643304458 Step 1 took 136340ms Step 2 took 89838ms ********** Factor found in step 2: 12927026782792133527436421144607 Found probable prime factor of 32 digits: 12927026782792133527436421144607 Composite cofactor has 104 digits
(46·10197+17)/9 = 5(1)1963<198> = 3 · 857 · 941929 · 579647353553<12> · 1267710460787<13> · 245525980953755657<18> · C148
C148 = P30 · P118
P30 = 130550024777403132153418348493<30>
P118 = 8960592608030015896461355940957297379276489908903690773678245168039100889919773852994128966768993206114558634605407037<118>
Using B1=43000000, B2=582162027730, polynomial Dickson(30), sigma=1748386705 Step 1 took 154413ms Step 2 took 115743ms ********** Factor found in step 2: 130550024777403132153418348493 Found probable prime factor of 30 digits: 130550024777403132153418348493 Probable prime cofactor has 118 digits
(46·10192+17)/9 = 5(1)1913<193> = 7 · 384865744381226570291<21> · C172
C172 = P35 · C137
P35 = 24527637055228679790053330005147297<35>
C137 = [77348574344711900248143397201902127252238419609437775764473096905398712073855667946645489904090700000217853926771032123860527776171449717<137>]
Using B1=43000000, B2=582162027730, polynomial Dickson(30), sigma=2994922549 Step 1 took 187100ms Step 2 took 128392ms ********** Factor found in step 2: 24527637055228679790053330005147297 Found probable prime factor of 35 digits: 24527637055228679790053330005147297 Composite cofactor has 137 digits
By Erik Branger / GGNFS, Msieve / Mar 7, 2009
(46·10127+17)/9 = 5(1)1263<128> = C128
C128 = P58 · P70
P58 = 6599238864992473661867771888020943737578620316459510081053<58>
P70 = 7745000924613357302214301740844777467164561254663784453622295281253021<70>
Number: 51113_127 N=51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 128 digits) SNFS difficulty: 129 digits. Divisors found: r1=6599238864992473661867771888020943737578620316459510081053 r2=7745000924613357302214301740844777467164561254663784453622295281253021 Version: Total time: 2.86 hours. Scaled time: 2.84 units (timescale=0.995). Factorization parameters were as follows: n: 51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 m: 20000000000000000000000000 deg: 5 c5: 575 c0: 68 skew: 0.65 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 132565 x 132813 Total sieving time: 2.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 2.86 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve, Yafu 1.06 / Mar 7, 2009
(46·10112+17)/9 = 5(1)1113<113> = 13109 · 11411987 · C102
C102 = P30 · P72
P30 = 517866767205520783356060520331<30>
P72 = 659730326748824292543983066756293862349872523611320087213527547002192181<72>
Number: 51113_112 N=341652411540855550987982852437214566361269865885464620167649342547784989794149585043200330164519731911 ( 102 digits) SNFS difficulty: 114 digits. Divisors found: r1=517866767205520783356060520331 (pp30) r2=659730326748824292543983066756293862349872523611320087213527547002192181 (pp72) Version: Msieve-1.39 Total time: 0.66 hours. Scaled time: 0.79 units (timescale=1.184). Factorization parameters were as follows: n: 341652411540855550987982852437214566361269865885464620167649342547784989794149585043200330164519731911 m: 20000000000000000000000 deg: 5 c5: 575 c0: 68 skew: 0.65 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 430001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65804 x 66045 Total sieving time: 0.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 0.66 hours. --------- CPU info (if available) ----------
(46·10115+17)/9 = 5(1)1143<116> = 43 · 431 · C112
C112 = P40 · P72
P40 = 3149446937547697015940394432710152051321<40>
P72 = 875659574895009800158875966619714504676290535754462619860371208304102141<72>
Number: 51113_115 N=2757843366487406847844985221556742627265478395894410570933529979555987217995527497496957379329364437010257978261 ( 112 digits) SNFS difficulty: 116 digits. Divisors found: r1=3149446937547697015940394432710152051321 (pp40) r2=875659574895009800158875966619714504676290535754462619860371208304102141 (pp72) Version: Msieve-1.39 Total time: 1.03 hours. Scaled time: 2.61 units (timescale=2.544). Factorization parameters were as follows: n: 2757843366487406847844985221556742627265478395894410570933529979555987217995527497496957379329364437010257978261 m: 100000000000000000000000 deg: 5 c5: 46 c0: 17 skew: 0.82 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61649 x 61881 Total sieving time: 1.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,50000 total time: 1.03 hours. --------- CPU info (if available) ----------
(46·10116+17)/9 = 5(1)1153<117> = 3 · 257 · 131251 · C109
C109 = P35 · P75
P35 = 30361717830758145620260372150707551<35>
P75 = 166353515614767575628006317055974058159089119918491151110217499030179553903<75>
Number: 51113_116 N=5050778501250192301528964311329771609977887153703816742322552335724886835633236616744409621852067574993621553 ( 109 digits) SNFS difficulty: 118 digits. Divisors found: r1=30361717830758145620260372150707551 (pp35) r2=166353515614767575628006317055974058159089119918491151110217499030179553903 (pp75) Version: Msieve-1.39 Total time: 1.26 hours. Scaled time: 1.51 units (timescale=1.192). Factorization parameters were as follows: n: 5050778501250192301528964311329771609977887153703816742322552335724886835633236616744409621852067574993621553 m: 200000000000000000000000 deg: 5 c5: 115 c0: 136 skew: 1.03 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 630001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76182 x 76425 Total sieving time: 1.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 1.26 hours. --------- CPU info (if available) ----------
(46·10118+17)/9 = 5(1)1173<119> = 53 · 1933 · 16733728229<11> · C104
C104 = P46 · P59
P46 = 2016015307475000907731963844200174382199696883<46>
P59 = 14788395673150931151082918084560210578584532965509326765191<59>
Number: 51113_118 N=29813632050069347490532431275832226137066203213154862026980704247830053064634704339885126599399115599653 ( 104 digits) SNFS difficulty: 121 digits. Divisors found: r1=2016015307475000907731963844200174382199696883 (pp46) r2=14788395673150931151082918084560210578584532965509326765191 (pp59) Version: Msieve-1.39 Total time: 1.54 hours. Scaled time: 3.93 units (timescale=2.552). Factorization parameters were as follows: n: 29813632050069347490532431275832226137066203213154862026980704247830053064634704339885126599399115599653 m: 500000000000000000000000 deg: 5 c5: 368 c0: 425 skew: 1.03 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79366 x 79598 Total sieving time: 1.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.54 hours. --------- CPU info (if available) ----------
(46·10122+17)/9 = 5(1)1213<123> = 3 · 1327 · 1709759869<10> · C110
C110 = P44 · P67
P44 = 34049764786873379485800962656346734204740599<44>
P67 = 2205331644498568848091937648557874956117764055165157741281702138583<67>
Number: 51113_122 N=75091023772224931608850193272260239506670593186929340447367012240320458339626335158324329345270161515064431217 ( 110 digits) SNFS difficulty: 124 digits. Divisors found: r1=34049764786873379485800962656346734204740599 (pp44) r2=2205331644498568848091937648557874956117764055165157741281702138583 (pp67) Version: Msieve-1.39 Total time: 1.60 hours. Scaled time: 1.87 units (timescale=1.168). Factorization parameters were as follows: n: 75091023772224931608850193272260239506670593186929340447367012240320458339626335158324329345270161515064431217 m: 2000000000000000000000000 deg: 5 c5: 575 c0: 68 skew: 0.65 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 760001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 93359 x 93597 Total sieving time: 1.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 1.60 hours. --------- CPU info (if available) ----------
(46·10124+17)/9 = 5(1)1233<125> = 811 · 24151811 · 990028579567<12> · C103
C103 = P41 · P62
P41 = 60690029957183105131052218040318610567451<41>
P62 = 43428985360115019825925624610794271374784635308137098147997509<62>
Number: 51113_124 N=2635706422515447056256903802271865338169561795700607621402887842394171988138136389923500327521824479559 ( 103 digits) SNFS difficulty: 126 digits. Divisors found: r1=60690029957183105131052218040318610567451 (pp41) r2=43428985360115019825925624610794271374784635308137098147997509 (pp62) Version: Msieve-1.39 Total time: 1.50 hours. Scaled time: 3.84 units (timescale=2.556). Factorization parameters were as follows: n: 2635706422515447056256903802271865338169561795700607621402887842394171988138136389923500327521824479559 m: 10000000000000000000000000 deg: 5 c5: 23 c0: 85 skew: 1.30 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 131110 x 131358 Total sieving time: 1.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.50 hours. --------- CPU info (if available) ----------
(46·10130+17)/9 = 5(1)1293<131> = 197 · 8263 · 4085874223<10> · 14325620117<11> · 2861354203786141573<19> · C87
C87 = P41 · P47
P41 = 13747478299743188012769630624319808854561<41>
P47 = 13636981603296597526680098271187326870062608421<47>
Fri Mar 06 18:22:58 2009 Fri Mar 06 18:22:58 2009 Fri Mar 06 18:22:58 2009 Msieve v. 1.40 Fri Mar 06 18:22:58 2009 random seeds: 0010f447 0021e88e Fri Mar 06 18:22:58 2009 factoring 187474108665317042616501734125735600581889023212579579612019036645896104785475882858181 (87 digits) Fri Mar 06 18:22:59 2009 searching for 15-digit factors Fri Mar 06 18:23:00 2009 commencing quadratic sieve (87-digit input) Fri Mar 06 18:23:00 2009 using multiplier of 5 Fri Mar 06 18:23:00 2009 using 32kb Intel Core sieve core Fri Mar 06 18:23:00 2009 sieve interval: 19 blocks of size 32768 Fri Mar 06 18:23:00 2009 processing polynomials in batches of 11 Fri Mar 06 18:23:00 2009 using a sieve bound of 1478933 (56333 primes) Fri Mar 06 18:23:00 2009 using large prime bound of 118314640 (26 bits) Fri Mar 06 18:23:00 2009 using double large prime bound of 339992380628560 (41-49 bits) Fri Mar 06 18:23:00 2009 using trial factoring cutoff of 49 bits Fri Mar 06 18:23:00 2009 polynomial 'A' values have 11 factors Fri Mar 06 18:48:15 2009 56602 relations (16793 full + 39809 combined from 580979 partial), need 56429 Fri Mar 06 18:48:15 2009 begin with 597772 relations Fri Mar 06 18:48:15 2009 reduce to 131917 relations in 11 passes Fri Mar 06 18:48:15 2009 attempting to read 131917 relations Fri Mar 06 18:48:17 2009 recovered 131917 relations Fri Mar 06 18:48:17 2009 recovered 104390 polynomials Fri Mar 06 18:48:17 2009 attempting to build 56602 cycles Fri Mar 06 18:48:17 2009 found 56602 cycles in 5 passes Fri Mar 06 18:48:17 2009 distribution of cycle lengths: Fri Mar 06 18:48:17 2009 length 1 : 16793 Fri Mar 06 18:48:17 2009 length 2 : 11564 Fri Mar 06 18:48:17 2009 length 3 : 10042 Fri Mar 06 18:48:17 2009 length 4 : 7084 Fri Mar 06 18:48:17 2009 length 5 : 4903 Fri Mar 06 18:48:17 2009 length 6 : 2853 Fri Mar 06 18:48:17 2009 length 7 : 1626 Fri Mar 06 18:48:17 2009 length 9+: 1737 Fri Mar 06 18:48:17 2009 largest cycle: 17 relations Fri Mar 06 18:48:17 2009 matrix is 56333 x 56602 (12.7 MB) with weight 3113120 (55.00/col) Fri Mar 06 18:48:17 2009 sparse part has weight 3113120 (55.00/col) Fri Mar 06 18:48:18 2009 filtering completed in 3 passes Fri Mar 06 18:48:18 2009 matrix is 50734 x 50797 (11.6 MB) with weight 2826636 (55.65/col) Fri Mar 06 18:48:18 2009 sparse part has weight 2826636 (55.65/col) Fri Mar 06 18:48:18 2009 saving the first 48 matrix rows for later Fri Mar 06 18:48:18 2009 matrix is 50686 x 50797 (7.4 MB) with weight 2216417 (43.63/col) Fri Mar 06 18:48:18 2009 sparse part has weight 1642296 (32.33/col) Fri Mar 06 18:48:18 2009 matrix includes 64 packed rows Fri Mar 06 18:48:18 2009 using block size 20318 for processor cache size 4096 kB Fri Mar 06 18:48:18 2009 commencing Lanczos iteration Fri Mar 06 18:48:18 2009 memory use: 7.3 MB Fri Mar 06 18:48:28 2009 lanczos halted after 803 iterations (dim = 50680) Fri Mar 06 18:48:29 2009 recovered 14 nontrivial dependencies Fri Mar 06 18:48:29 2009 prp41 factor: 13747478299743188012769630624319808854561 Fri Mar 06 18:48:29 2009 prp47 factor: 13636981603296597526680098271187326870062608421 Fri Mar 06 18:48:29 2009 elapsed time 00:25:02
(46·10128+17)/9 = 5(1)1273<129> = 32 · 19 · 67 · 241 · 40813 · 34543871077489<14> · C105
C105 = P32 · P34 · P39
P32 = 86754520556469833455200256325953<32>
P34 = 5542838338358103983727907338142633<34>
P39 = 273044552898454950594350745066450950693<39>
Number: 51113_128 N=131297919127251267690339352393994188785077492024334806689386353399493233465038256753629303186449568944557 ( 105 digits) SNFS difficulty: 131 digits. Divisors found: r1=86754520556469833455200256325953 (pp32) r2=5542838338358103983727907338142633 (pp34) r3=273044552898454950594350745066450950693 (pp39) Version: Msieve-1.39 Total time: 2.08 hours. Scaled time: 2.43 units (timescale=1.170). Factorization parameters were as follows: n: 131297919127251267690339352393994188785077492024334806689386353399493233465038256753629303186449568944557 m: 50000000000000000000000000 deg: 5 c5: 368 c0: 425 skew: 1.03 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 935001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 161969 x 162217 Total sieving time: 2.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 2.08 hours. --------- CPU info (if available) ----------
(46·10125+17)/9 = 5(1)1243<126> = 3 · 3463 · 4965509 · 596347207 · 3713495999<10> · 14359326067<11> · C87
C87 = P38 · P50
P38 = 25918694903313710763660728913817190897<38>
P50 = 12021217799467288439523031407236435366656415114659<50>
Fri Mar 06 18:53:23 2009 Fri Mar 06 18:53:23 2009 Fri Mar 06 18:53:23 2009 Msieve v. 1.40 Fri Mar 06 18:53:23 2009 random seeds: 0010f447 0021e88e Fri Mar 06 18:53:23 2009 factoring 311574276510676870408699248115153667418766226787058099189185771886362891194019546059123 (87 digits) Fri Mar 06 18:53:24 2009 searching for 15-digit factors Fri Mar 06 18:53:25 2009 commencing quadratic sieve (87-digit input) Fri Mar 06 18:53:25 2009 using multiplier of 11 Fri Mar 06 18:53:25 2009 using 32kb Intel Core sieve core Fri Mar 06 18:53:25 2009 sieve interval: 20 blocks of size 32768 Fri Mar 06 18:53:25 2009 processing polynomials in batches of 11 Fri Mar 06 18:53:25 2009 using a sieve bound of 1489637 (56445 primes) Fri Mar 06 18:53:25 2009 using large prime bound of 119170960 (26 bits) Fri Mar 06 18:53:25 2009 using double large prime bound of 344434582165760 (42-49 bits) Fri Mar 06 18:53:25 2009 using trial factoring cutoff of 49 bits Fri Mar 06 18:53:25 2009 polynomial 'A' values have 11 factors Fri Mar 06 19:26:01 2009 56840 relations (16048 full + 40792 combined from 593695 partial), need 56541 Fri Mar 06 19:26:02 2009 begin with 609743 relations Fri Mar 06 19:26:02 2009 reduce to 135618 relations in 10 passes Fri Mar 06 19:26:02 2009 attempting to read 135618 relations Fri Mar 06 19:26:03 2009 recovered 135618 relations Fri Mar 06 19:26:03 2009 recovered 113425 polynomials Fri Mar 06 19:26:03 2009 attempting to build 56840 cycles Fri Mar 06 19:26:03 2009 found 56840 cycles in 4 passes Fri Mar 06 19:26:03 2009 distribution of cycle lengths: Fri Mar 06 19:26:03 2009 length 1 : 16048 Fri Mar 06 19:26:03 2009 length 2 : 11289 Fri Mar 06 19:26:03 2009 length 3 : 10080 Fri Mar 06 19:26:03 2009 length 4 : 7357 Fri Mar 06 19:26:03 2009 length 5 : 5026 Fri Mar 06 19:26:03 2009 length 6 : 3101 Fri Mar 06 19:26:03 2009 length 7 : 1809 Fri Mar 06 19:26:03 2009 length 9+: 2130 Fri Mar 06 19:26:03 2009 largest cycle: 18 relations Fri Mar 06 19:26:04 2009 matrix is 56445 x 56840 (13.2 MB) with weight 3235525 (56.92/col) Fri Mar 06 19:26:04 2009 sparse part has weight 3235525 (56.92/col) Fri Mar 06 19:26:04 2009 filtering completed in 3 passes Fri Mar 06 19:26:04 2009 matrix is 51747 x 51811 (12.1 MB) with weight 2966797 (57.26/col) Fri Mar 06 19:26:04 2009 sparse part has weight 2966797 (57.26/col) Fri Mar 06 19:26:04 2009 saving the first 48 matrix rows for later Fri Mar 06 19:26:04 2009 matrix is 51699 x 51811 (8.0 MB) with weight 2357180 (45.50/col) Fri Mar 06 19:26:04 2009 sparse part has weight 1788183 (34.51/col) Fri Mar 06 19:26:04 2009 matrix includes 64 packed rows Fri Mar 06 19:26:04 2009 using block size 20724 for processor cache size 4096 kB Fri Mar 06 19:26:04 2009 commencing Lanczos iteration Fri Mar 06 19:26:04 2009 memory use: 7.7 MB Fri Mar 06 19:26:16 2009 lanczos halted after 819 iterations (dim = 51697) Fri Mar 06 19:26:16 2009 recovered 16 nontrivial dependencies Fri Mar 06 19:26:16 2009 prp38 factor: 25918694903313710763660728913817190897 Fri Mar 06 19:26:16 2009 prp50 factor: 12021217799467288439523031407236435366656415114659 Fri Mar 06 19:26:16 2009 elapsed time 00:32:30
(46·10164+17)/9 = 5(1)1633<165> = 33 · 192 · 352973 · 764777593 · 140476876586885601519484471<27> · 23192450523982436626071140623501<32> · C89
C89 = P32 · P57
P32 = 63196433917841945793059806729903<32>
P57 = 943460367647408648898474271030755521492481831856147907147<57>
03/06/09 19:22:06 v1.06 @ IGNACIO1, starting SIQS on c89: 59623330778132327923866078409993846933798124893348604036533381388770126581603759352316741 03/06/09 19:22:06 v1.06 @ IGNACIO1, ==== sieve params ==== 03/06/09 19:22:06 v1.06 @ IGNACIO1, n = 89 digits, 298 bits 03/06/09 19:22:06 v1.06 @ IGNACIO1, factor base: 63461 primes (max prime = 1684867) 03/06/09 19:22:06 v1.06 @ IGNACIO1, single large prime cutoff: 185335370 (110 * pmax) 03/06/09 19:22:06 v1.06 @ IGNACIO1, double large prime range from 43 to 50 bits 03/06/09 19:22:06 v1.06 @ IGNACIO1, double large prime cutoff: 762649442103813 03/06/09 19:22:06 v1.06 @ IGNACIO1, using 10 large prime slices of factor base 03/06/09 19:22:06 v1.06 @ IGNACIO1, buckets hold 1024 elements 03/06/09 19:22:06 v1.06 @ IGNACIO1, sieve interval: 18 blocks of size 32768 03/06/09 19:22:06 v1.06 @ IGNACIO1, polynomial A has ~ 12 factors 03/06/09 19:22:06 v1.06 @ IGNACIO1, using multiplier of 5 03/06/09 19:22:06 v1.06 @ IGNACIO1, using small prime variation correction of 22 bits 03/06/09 19:22:06 v1.06 @ IGNACIO1, trial factoring cutoff at 99 bits 03/06/09 19:22:06 v1.06 @ IGNACIO1, ==== sieving started ==== 03/06/09 20:10:54 v1.06 @ IGNACIO1, sieve time = 964.0200, relation time = 483.0980, poly_time = 1477.0580 03/06/09 20:10:54 v1.06 @ IGNACIO1, 63569 relations found: 22378 full + 41191 from 525403 partial, using 390919 polys (217 A polys) 03/06/09 20:10:54 v1.06 @ IGNACIO1, trial division touched 13057043 sieve locations out of 461146816512 03/06/09 20:10:54 v1.06 @ IGNACIO1, ==== post processing stage (msieve-1.38) ==== 03/06/09 20:10:55 v1.06 @ IGNACIO1, begin with 547781 relations 03/06/09 20:10:55 v1.06 @ IGNACIO1, reduce to 123657 relations in 8 passes 03/06/09 20:10:57 v1.06 @ IGNACIO1, recovered 123657 relations 03/06/09 20:10:57 v1.06 @ IGNACIO1, recovered 105947 polynomials 03/06/09 20:10:57 v1.06 @ IGNACIO1, attempting to build 63569 cycles 03/06/09 20:10:57 v1.06 @ IGNACIO1, found 63569 cycles in 4 passes 03/06/09 20:10:57 v1.06 @ IGNACIO1, distribution of cycle lengths: 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 1 : 22378 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 2 : 19249 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 3 : 11557 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 4 : 5805 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 5 : 2681 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 6 : 1160 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 7 : 465 03/06/09 20:10:57 v1.06 @ IGNACIO1, length 9+: 274 03/06/09 20:10:57 v1.06 @ IGNACIO1, largest cycle: 13 relations 03/06/09 20:10:57 v1.06 @ IGNACIO1, matrix is 63461 x 63569 (12.2 MB) with weight 2951178 (46.42/col) 03/06/09 20:10:57 v1.06 @ IGNACIO1, sparse part has weight 2951178 (46.42/col) 03/06/09 20:10:58 v1.06 @ IGNACIO1, filtering completed in 3 passes 03/06/09 20:10:58 v1.06 @ IGNACIO1, matrix is 55505 x 55569 (10.9 MB) with weight 2647033 (47.64/col) 03/06/09 20:10:58 v1.06 @ IGNACIO1, sparse part has weight 2647033 (47.64/col) 03/06/09 20:10:58 v1.06 @ IGNACIO1, saving the first 48 matrix rows for later 03/06/09 20:10:58 v1.06 @ IGNACIO1, matrix is 55457 x 55569 (6.8 MB) with weight 1941756 (34.94/col) 03/06/09 20:10:58 v1.06 @ IGNACIO1, sparse part has weight 1446471 (26.03/col) 03/06/09 20:10:58 v1.06 @ IGNACIO1, matrix includes 64 packed rows 03/06/09 20:10:58 v1.06 @ IGNACIO1, using block size 22227 for processor cache size 4096 kB 03/06/09 20:10:58 v1.06 @ IGNACIO1, commencing Lanczos iteration 03/06/09 20:10:58 v1.06 @ IGNACIO1, memory use: 7.2 MB 03/06/09 20:11:12 v1.06 @ IGNACIO1, lanczos halted after 878 iterations (dim = 55457) 03/06/09 20:11:12 v1.06 @ IGNACIO1, recovered 18 nontrivial dependencies 03/06/09 20:11:13 v1.06 @ IGNACIO1, prp32 = 63196433917841945793059806729903 03/06/09 20:11:16 v1.06 @ IGNACIO1, prp57 = 943460367647408648898474271030755521492481831856147907147 03/06/09 20:11:16 v1.06 @ IGNACIO1, Lanczos elapsed time = 17.9010 seconds. 03/06/09 20:11:16 v1.06 @ IGNACIO1, Sqrt elapsed time = 4.0970 seconds. 03/06/09 20:11:16 v1.06 @ IGNACIO1, Total elapsed time = 2950.5970 seconds. 03/06/09 20:11:16 v1.06 @ IGNACIO1, 03/06/09 20:11:16 v1.06 @ IGNACIO1,
(44·10175+1)/9 = 4(8)1749<176> = 7 · C175
C175 = P38 · P54 · P84
P38 = 35442986267229399162633261670157472131<38>
P54 = 371307805068356206321839822265856301084971076882538433<54>
P84 = 530698355873105582302138603830762439466162476705852733800413550935202519189328196949<84>
Number: 48889_175 N=6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 ( 175 digits) SNFS difficulty: 177 digits. Divisors found: r1=35442986267229399162633261670157472131 (pp38) r2=371307805068356206321839822265856301084971076882538433 (pp54) r3=530698355873105582302138603830762439466162476705852733800413550935202519189328196949 (pp84) Version: Msieve-1.39 Total time: 59.27 hours. Scaled time: 103.06 units (timescale=1.739). Factorization parameters were as follows: n: 6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 m: 200000000000000000000000000000000000 deg: 5 c5: 11 c0: 8 skew: 0.94 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3200000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1243658 x 1243905 Total sieving time: 59.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,53,53,2.5,2.5,100000 total time: 59.27 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 6, 2009
(44·10158+1)/9 = 4(8)1579<159> = 32 · C158
C158 = P61 · P97
P61 = 9848360416398149225067186080579760654382657351109622344230129<61>
P97 = 5515739205063319279332955934402176085731630867337489498620965400737434071245588770985154056282049<97>
Number: 48889_158 N=54320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654321 ( 158 digits) SNFS difficulty: 161 digits. Divisors found: r1=9848360416398149225067186080579760654382657351109622344230129 (pp61) r2=5515739205063319279332955934402176085731630867337489498620965400737434071245588770985154056282049 (pp97) Version: Msieve-1.39 Total time: 18.21 hours. Scaled time: 31.66 units (timescale=1.739). Factorization parameters were as follows: n: 54320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654321 m: 100000000000000000000000000000000 deg: 5 c5: 11 c0: 25 skew: 1.18 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 526161 x 526409 Total sieving time: 18.21 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 18.21 hours. --------- CPU info (if available) ----------
(35·10165+1)/9 = 3(8)1649<166> = 397 · 9902507529972705094099711<25> · C138
C138 = P46 · P93
P46 = 7969168206574953146277054418993341701964192859<46>
P93 = 124130027950451329601018911129048488882630366948490024869787253847677630490858463394940065113<93>
Number: 38889_165 N=989213072223997029324437268621781087584043847236369906456237869412242320118933081610072849568352041473013475415066713491512284727949628067 ( 138 digits) SNFS difficulty: 166 digits. Divisors found: r1=7969168206574953146277054418993341701964192859 (pp46) r2=124130027950451329601018911129048488882630366948490024869787253847677630490858463394940065113 (pp93) Version: Msieve-1.39 Total time: 38.30 hours. Scaled time: 98.85 units (timescale=2.581). Factorization parameters were as follows: n: 989213072223997029324437268621781087584043847236369906456237869412242320118933081610072849568352041473013475415066713491512284727949628067 m: 1000000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 722039 x 722287 Total sieving time: 38.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 38.30 hours. --------- CPU info (if available) ----------
(43·10165+11)/9 = 4(7)1649<166> = 34 · 44357 · 32757690414695357<17> · C143
C143 = P42 · P102
P42 = 311620381809285671492200011861477753236249<42>
P102 = 130268565846521345031874733901498664011189946967186605113219925825056610344851701278521564348131570859<102>
Number: 47779_165 N=40594340226841052848893161107437392322771902721395587847436530558355802823372594879027855716908914037237639106806282387269815916653335310867891 ( 143 digits) SNFS difficulty: 166 digits. Divisors found: r1=311620381809285671492200011861477753236249 (pp42) r2=130268565846521345031874733901498664011189946967186605113219925825056610344851701278521564348131570859 (pp102) Version: Msieve-1.39 Total time: 43.69 hours. Scaled time: 112.29 units (timescale=2.570). Factorization parameters were as follows: n: 40594340226841052848893161107437392322771902721395587847436530558355802823372594879027855716908914037237639106806282387269815916653335310867891 m: 1000000000000000000000000000000000 deg: 5 c5: 43 c0: 11 skew: 0.76 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 749830 x 750078 Total sieving time: 43.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 43.69 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM / Mar 6, 2009
(13·10169+17)/3 = 4(3)1689<170> = 72 · 113 · 6143 · 165463 · 64817842125068594359353753328875377<35> · C123
C123 = P49 · P74
P49 = 4490825067022399399420148296361555083596606512629<49>
P74 = 26451204777688322705232514006591186691207302878522084165834979925093494151<74>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 118787733468585373018803001626199942041486879025646793084250872377023430370450048163478120248088756637535072725204319132979 (123 digits) Using B1=20000000, B2=59950304286, polynomial Dickson(12), sigma=2331681453 Step 1 took 231773ms Step 2 took 76796ms ********** Factor found in step 2: 4490825067022399399420148296361555083596606512629 Found probable prime factor of 49 digits: 4490825067022399399420148296361555083596606512629 Probable prime cofactor 26451204777688322705232514006591186691207302878522084165834979925093494151 has 74 digits
By Jo Yeong Uk / GMP-ECM 6.2.1, GGNFS, Msieve v1.39
(44·10161+1)/9 = 4(8)1609<162> = 3 · 31 · 146383 · 62455187 · 35234957627963<14> · C134
C134 = P35 · P39 · P62
P35 = 10721680065653804531622153413577899<35>
P39 = 100644272567173590767194450322889930527<39>
P62 = 15123154865058221644757828838829835138556742249437823869848087<62>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 16319028784686495073441410728477763729850335981284337339121317606455778849483709735073921300370763471261381354479505089192348146685251 (134 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3824567271 Step 1 took 3925ms Step 2 took 2391ms ********** Factor found in step 2: 10721680065653804531622153413577899 Found probable prime factor of 35 digits: 10721680065653804531622153413577899 Composite cofactor 1522058920314497003594731912903917548980500574915904153188245724469760275415729343658461101473851849 has 100 digits Number: 48889_161 N=1522058920314497003594731912903917548980500574915904153188245724469760275415729343658461101473851849 ( 100 digits) Divisors found: r1=100644272567173590767194450322889930527 r2=15123154865058221644757828838829835138556742249437823869848087 Version: Total time: 2.53 hours. Scaled time: 6.05 units (timescale=2.387). Factorization parameters were as follows: name: 48889_161 n: 1522058920314497003594731912903917548980500574915904153188245724469760275415729343658461101473851849 skew: 4608.20 # norm 8.74e+13 c5: 120960 c4: -2251381788 c3: -7275030022098 c2: 39890601536605384 c1: 12293703365155763303 c0: -119863409440619186752761 # alpha -6.24 Y1: 9469641071 Y0: -6606329861627734912 # Murphy_E 3.63e-09 # M 147994836345165664546504426837728667798585326610074997195026692594517836550201728327005161694661867 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [600000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4272446 Max relations in full relation-set: Initial matrix: Pruned matrix : 174732 x 174980 Polynomial selection time: 0.17 hours. Total sieving time: 1.92 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.07 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,49,49,2.5,2.5,50000 total time: 2.53 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / GGNFS, Msieve / Mar 6, 2009
(44·10133+1)/9 = 4(8)1329<134> = 7 · 167 · 1438837 · 375241913 · 4189304017<10> · C107
C107 = P42 · P65
P42 = 475289440566006397290321440921632356329911<42>
P65 = 38902066629120643950031096910524820921090037036621244084069980523<65>
Number: 48889_133 N=18489741485016257135346283032261676060769126256758607819178488418225259325848314110850542595306213532323453 ( 107 digits) SNFS difficulty: 136 digits. Divisors found: r1=475289440566006397290321440921632356329911 (pp42) r2=38902066629120643950031096910524820921090037036621244084069980523 (pp65) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.19 hours. Scaled time: 2.45 units (timescale=0.472). Factorization parameters were as follows: name: 48889_133 n: 18489741485016257135346283032261676060769126256758607819178488418225259325848314110850542595306213532323453 m: 1000000000000000000000000000 deg: 5 c5: 11 c0: 25 skew: 1.18 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1025001) Primes: RFBsize:100021, AFBsize:99949, largePrimes:2903136 encountered Relations: rels:2787872, finalFF:227347 Max relations in full relation-set: 28 Initial matrix: 200036 x 227347 with sparse part having weight 14910802. Pruned matrix : 186194 x 187258 with weight 9969896. Total sieving time: 4.50 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.53 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 5.19 hours. --------- CPU info (if available) ----------
4·10176+9 = 4(0)1759<177> = 5949217 · 260808949 · 37078796641<11> · 25253318745384671209<20> · C132
C132 = P47 · P85
P47 = 30659586774476168038113800824694868364850678869<47>
P85 = 8979813218286857062544785990149537754786720685038107462329302196640845737147656966793<85>
Number: 40009_176 N=275317362584653997775606639924754580390675306209828825216020217427536840717775925177388698131497326405770200711260894351163439797117 ( 132 digits) SNFS difficulty: 177 digits. Divisors found: r1=30659586774476168038113800824694868364850678869 r2=8979813218286857062544785990149537754786720685038107462329302196640845737147656966793 Version: Total time: 80.41 hours. Scaled time: 206.18 units (timescale=2.564). Factorization parameters were as follows: name: 40009_176 n: 275317362584653997775606639924754580390675306209828825216020217427536840717775925177388698131497326405770200711260894351163439797117 m: 200000000000000000000000000000000000 deg: 5 c5: 5 c0: 36 skew: 1.48 type: snfs lss: 1 rlim: 6300000 alim: 6300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6300000/6300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3150000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1237352 x 1237600 Total sieving time: 80.41 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6300000,6300000,28,28,53,53,2.5,2.5,100000 total time: 80.41 hours. --------- CPU info (if available) ----------
By Max Dettweiler / GGNFS, Msieve / Mar 6, 2009
(44·10155+1)/9 = 4(8)1549<156> = 3 · 67 · 414433 · 11481317 · 7836538053022379<16> · C125
C125 = P36 · P89
P36 = 747721133841090078198137225206595801<36>
P89 = 87237692433773177153894343644156201159419193259335438153340217639240104716819068675807631<89>
Number: 48889_155 N=65229466300261165037466919710830889605772008462449035695061304084027061958672194500187578471781399630589280305316461848357431 ( 125 digits) SNFS difficulty: 157 digits. Divisors found: r1=747721133841090078198137225206595801 (pp36) r2=87237692433773177153894343644156201159419193259335438153340217639240104716819068675807631 (pp89) Version: Msieve-1.39 Total time: 19.81 hours. Scaled time: 32.49 units (timescale=1.640). Factorization parameters were as follows: n: 65229466300261165037466919710830889605772008462449035695061304084027061958672194500187578471781399630589280305316461848357431 m: 20000000000000000000000000000000 deg: 5 c5: 11 c0: 8 skew: 0.94 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 417069 x 417317 Total sieving time: 19.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 19.81 hours. --------- CPU info (if available) ---------- [ 0.367604] CPU0: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.452480] CPU1: Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz stepping 0d [ 0.004000] Memory: 2036264k/2070528k available (2576k kernel code, 32096k reserved, 1165k data, 424k init, 1152180k highmem) [ 0.004011] Calibrating delay loop (skipped), value calculated using timer frequency.. 4400.12 BogoMIPS (lpj=8800252) [ 0.004000] Calibrating delay using timer specific routine.. 4400.41 BogoMIPS (lpj=8800821) [ 0.456049] Total of 2 processors activated (8800.53 BogoMIPS).
Factorizations of 511...113 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Erik Branger / GGNFS, Msieve / Mar 5, 2009
(44·10153+1)/9 = 4(8)1529<154> = 197914564441789163<18> · C137
C137 = P54 · P83
P54 = 514376085519544118671517084473390831428830178432400813<54>
P83 = 48023260529503490148502526990560189158732046641053517542997206357039491897439290231<83>
Number: 48889_153 N=24702016765051234823956342110814867364739946009553963035599813443028417579906934494458521408693453087791090127424365104513052832027357803 ( 137 digits) SNFS difficulty: 156 digits. Divisors found: r1=514376085519544118671517084473390831428830178432400813 r2=48023260529503490148502526990560189158732046641053517542997206357039491897439290231 Version: Total time: 18.83 hours. Scaled time: 18.72 units (timescale=0.994). Factorization parameters were as follows: n: 24702016765051234823956342110814867364739946009553963035599813443028417579906934494458521408693453087791090127424365104513052832027357803 m: 10000000000000000000000000000000 deg: 5 c5: 11 c0: 25 skew: 1.18 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 427579 x 427827 Total sieving time: 18.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 18.83 hours. --------- CPU info (if available) ----------
(44·10137+1)/9 = 4(8)1369<138> = 3 · 29 · 66085433 · C128
C128 = P62 · P67
P62 = 12240016285778463240974206995369762183863435353214459015510897<62>
P67 = 6947094057530157592362535638508766194233043079469194501342993730647<67>
Number: 48889_137 N=85032544403003913164511408344638894700587909343810261464472220252022999799189906695559056297867704674071987039169362400711360359 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=12240016285778463240974206995369762183863435353214459015510897 r2=6947094057530157592362535638508766194233043079469194501342993730647 Version: Total time: 7.58 hours. Scaled time: 5.98 units (timescale=0.789). Factorization parameters were as follows: n: 85032544403003913164511408344638894700587909343810261464472220252022999799189906695559056297867704674071987039169362400711360359 m: 5000000000000000000000000000 deg: 5 c5: 176 c0: 125 skew: 0.93 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220979 x 221227 Total sieving time: 7.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 7.58 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.40-beta2 / Mar 5, 2009
(44·10173-71)/9 = 4(8)1721<174> = 37 · 73 · 2731 · 732227884459<12> · C155
C155 = P78 · P78
P78 = 222196801234260691724485672982075026225893236567024475775850854282288166181119<78>
P78 = 407361345743615648080243275018852929330785456412776829217583991628992578941731<78>
SNFS difficulty: 174 digits. Divisors found: r1=222196801234260691724485672982075026225893236567024475775850854282288166181119 (pp78) r2=407361345743615648080243275018852929330785456412776829217583991628992578941731 (pp78) Version: Msieve-1.40-beta2 Total time: 60 hours. Scaled time: 212.58 units (timescale=3.543). Factorization parameters were as follows: n: 90514387970715113812688616286590075454506183274898175753627866482315868310183245520287337553072997967662130006545915774082545876796675105196971760693376989 m: 20000000000000000000000000000000000 deg: 5 c5: 1375 c0: -71 skew: 0.55 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 7350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1141060 x 1141308 Total sieving time: 12.78 hours. Total relation processing time: 0.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 60 hours. --------- CPU info (if available) ---------- [ 0.292369] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 3.20GHz stepping 0b ... [ 0.572059] Total of 4 processors activated (25632.32 BogoMIPS).
Two P78s are the largest nice-split in our tables so far. Congratulations!
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 5, 2009
(43·10170+11)/9 = 4(7)1699<171> = 149 · 43721 · 37026599 · 20473164376070342916391015551218974069<38> · C119
C119 = P55 · P65
P55 = 5324442344231370954185372841291055123494530955146799973<55>
P65 = 18170909541081505556029517454042696276539506167164178844597564177<65>
Number: 47779_170 N=96749960193732196416730950508919877162205494953720763444526510277302946135275614100297949828619793715079692652049367221 ( 119 digits) Divisors found: r1=5324442344231370954185372841291055123494530955146799973 r2=18170909541081505556029517454042696276539506167164178844597564177 Version: Total time: 27.68 hours. Scaled time: 66.03 units (timescale=2.386). Factorization parameters were as follows: name: 47779_170 n: 96749960193732196416730950508919877162205494953720763444526510277302946135275614100297949828619793715079692652049367221 skew: 42050.23 # norm 5.50e+16 c5: 49320 c4: -16877363589 c3: -1588772230851617 c2: 32193214923300171239 c1: -106734972629034058898608 c0: -916756717234030448522178740 # alpha -6.26 Y1: 5211415765969 Y0: -72198419571172764114417 # Murphy_E 3.19e-10 # M 47608540711978897969945260508855639284228098998401519360740790972855619763105283292526184099468468137325584232810097265 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9998130 Max relations in full relation-set: Initial matrix: Pruned matrix : 623445 x 623693 Polynomial selection time: 2.34 hours. Total sieving time: 23.19 hours. Total relation processing time: 0.98 hours. Matrix solve time: 0.90 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 27.68 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10147+1)/9 = 4(8)1469<148> = 5595133 · 14976155783<11> · C131
C131 = P58 · P73
P58 = 7555590219918819923651901826599066098972117404756182938387<58>
P73 = 7722021524322947254908061786740476987835591485377922556867885562685104073<73>
Number: 48889_147 N=58344430307177078103853004340775132563588429062398214023891731755851726496979978562384892952305723706132625607061463371516041750251 ( 131 digits) SNFS difficulty: 148 digits. Divisors found: r1=7555590219918819923651901826599066098972117404756182938387 r2=7722021524322947254908061786740476987835591485377922556867885562685104073 Version: Total time: 5.59 hours. Scaled time: 13.25 units (timescale=2.368). Factorization parameters were as follows: n: 58344430307177078103853004340775132563588429062398214023891731755851726496979978562384892952305723706132625607061463371516041750251 m: 200000000000000000000000000000 deg: 5 c5: 275 c0: 2 skew: 0.37 type: snfs lss: 1 rlim: 1650000 alim: 1650000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1650000/1650000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [825000, 1350001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6253725 Max relations in full relation-set: Initial matrix: Pruned matrix : 338846 x 339094 Total sieving time: 5.05 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.25 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1650000,1650000,27,27,49,49,2.4,2.4,75000 total time: 5.59 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10159+1)/9 = 4(8)1589<160> = 137153502420783237145181837<27> · C134
C134 = P35 · P100
P35 = 10034706405889569576221889023898823<35>
P100 = 3552209685768254673703247578789347277682520409617762582884450556424003928454425456401610252003607739<100>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 35645381288841680184701319432383484371971244729826037624397820402415032840173903602698503344578660426775445228295677509218587715791197 (134 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3634558091 Step 1 took 3938ms Step 2 took 908ms ********** Factor found in step 2: 10034706405889569576221889023898823 Found probable prime factor of 35 digits: 10034706405889569576221889023898823 Probable prime cofactor 3552209685768254673703247578789347277682520409617762582884450556424003928454425456401610252003607739 has 100 digits
By Sinkiti Sibata / GGNFS, Msieve / Mar 5, 2009
(44·10182-17)/9 = 4(8)1817<183> = 151 · 33461 · 174367 · 215153 · 5911494629717278475537<22> · 17463721528733402417637979<26> · C119
C119 = P47 · P72
P47 = 72877725369541962550839612773055856131488302427<47>
P72 = 342810168865540864323295835420733036947062052146446962992986050323840027<72>
Number: 48887_182 N=24983225340469191671372170853204405349769299221541164669012057215760689735949602870419904715442180144321430758143845529 ( 119 digits) Divisors found: r1=72877725369541962550839612773055856131488302427 (pp47) r2=342810168865540864323295835420733036947062052146446962992986050323840027 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 95.07 hours. Scaled time: 44.88 units (timescale=0.472). Factorization parameters were as follows: name: 48887_182 n: 24983225340469191671372170853204405349769299221541164669012057215760689735949602870419904715442180144321430758143845529 skew: 81326.26 # norm 1.26e+16 c5: 3780 c4: -3360621385 c3: 88313684980337 c2: 12766101140945879133 c1: 404173228402249633623216 c0: 5564546065439014650337853721 # alpha -5.38 Y1: 2018118572789 Y0: -92051958728877970629458 # Murphy_E 3.33e-10 # M 2326006205974630919379109454394760739892900571011807746130185695075112583263297487941486171691873020998230039209907902 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4230001) Primes: RFBsize:315948, AFBsize:316780, largePrimes:7704127 encountered Relations: rels:7813822, finalFF:775045 Max relations in full relation-set: 28 Initial matrix: 632807 x 775045 with sparse part having weight 64821840. Pruned matrix : 515175 x 518403 with weight 40831694. Total sieving time: 81.22 hours. Total relation processing time: 0.83 hours. Matrix solve time: 12.57 hours. Time per square root: 0.46 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 95.07 hours. --------- CPU info (if available) ----------
(44·10157+1)/9 = 4(8)1569<158> = 7 · 199 · 1871 · 18733765663<11> · 475139979542655439<18> · 111097128739710702376187<24> · C101
C101 = P42 · P59
P42 = 448350774135273865432868518969449532379539<42>
P59 = 42307547057122291786168886739490857260394637940501717287063<59>
Wed Mar 04 20:58:06 2009 Msieve v. 1.39 Wed Mar 04 20:58:06 2009 random seeds: 90f10f5c a26ba651 Wed Mar 04 20:58:06 2009 factoring 18968621474825307162382576287788700571514677901865873275118921187359881407482695541073616281930603957 (101 digits) Wed Mar 04 20:58:07 2009 searching for 15-digit factors Wed Mar 04 20:58:09 2009 commencing quadratic sieve (101-digit input) Wed Mar 04 20:58:09 2009 using multiplier of 1 Wed Mar 04 20:58:09 2009 using 32kb Intel Core sieve core Wed Mar 04 20:58:09 2009 sieve interval: 36 blocks of size 32768 Wed Mar 04 20:58:09 2009 processing polynomials in batches of 6 Wed Mar 04 20:58:09 2009 using a sieve bound of 2895371 (105000 primes) Wed Mar 04 20:58:09 2009 using large prime bound of 434305650 (28 bits) Wed Mar 04 20:58:09 2009 using double large prime bound of 3532090588924500 (43-52 bits) Wed Mar 04 20:58:09 2009 using trial factoring cutoff of 52 bits Wed Mar 04 20:58:09 2009 polynomial 'A' values have 13 factors Thu Mar 05 07:38:25 2009 105133 relations (25969 full + 79164 combined from 1562397 partial), need 105096 Thu Mar 05 07:38:27 2009 begin with 1588366 relations Thu Mar 05 07:38:28 2009 reduce to 273626 relations in 11 passes Thu Mar 05 07:38:28 2009 attempting to read 273626 relations Thu Mar 05 07:38:33 2009 recovered 273626 relations Thu Mar 05 07:38:33 2009 recovered 262620 polynomials Thu Mar 05 07:38:33 2009 attempting to build 105133 cycles Thu Mar 05 07:38:34 2009 found 105133 cycles in 6 passes Thu Mar 05 07:38:34 2009 distribution of cycle lengths: Thu Mar 05 07:38:34 2009 length 1 : 25969 Thu Mar 05 07:38:34 2009 length 2 : 18366 Thu Mar 05 07:38:34 2009 length 3 : 17604 Thu Mar 05 07:38:34 2009 length 4 : 14295 Thu Mar 05 07:38:34 2009 length 5 : 10532 Thu Mar 05 07:38:34 2009 length 6 : 7408 Thu Mar 05 07:38:34 2009 length 7 : 4675 Thu Mar 05 07:38:34 2009 length 9+: 6284 Thu Mar 05 07:38:34 2009 largest cycle: 19 relations Thu Mar 05 07:38:34 2009 matrix is 105000 x 105133 (28.3 MB) with weight 7004619 (66.63/col) Thu Mar 05 07:38:34 2009 sparse part has weight 7004619 (66.63/col) Thu Mar 05 07:38:36 2009 filtering completed in 3 passes Thu Mar 05 07:38:36 2009 matrix is 100178 x 100242 (27.2 MB) with weight 6734418 (67.18/col) Thu Mar 05 07:38:36 2009 sparse part has weight 6734418 (67.18/col) Thu Mar 05 07:38:36 2009 saving the first 48 matrix rows for later Thu Mar 05 07:38:36 2009 matrix is 100130 x 100242 (16.4 MB) with weight 5307533 (52.95/col) Thu Mar 05 07:38:36 2009 sparse part has weight 3704219 (36.95/col) Thu Mar 05 07:38:36 2009 matrix includes 64 packed rows Thu Mar 05 07:38:36 2009 using block size 40096 for processor cache size 1024 kB Thu Mar 05 07:38:37 2009 commencing Lanczos iteration Thu Mar 05 07:38:37 2009 memory use: 16.2 MB Thu Mar 05 07:39:48 2009 lanczos halted after 1584 iterations (dim = 100129) Thu Mar 05 07:39:48 2009 recovered 16 nontrivial dependencies Thu Mar 05 07:39:50 2009 prp42 factor: 448350774135273865432868518969449532379539 Thu Mar 05 07:39:50 2009 prp59 factor: 42307547057122291786168886739490857260394637940501717287063 Thu Mar 05 07:39:50 2009 elapsed time 10:41:44
(44·10126+1)/9 = 4(8)1259<127> = 509 · 12841 · 3553095281152037<16> · C105
C105 = P35 · P70
P35 = 43521265142965607939995083695342551<35>
P70 = 4837101196041471624016224793481902477753259738852941541678317678476263<70>
Number: 48889_126 N=210516763676276950698136815053296181646950051888481831521398162638508208518541145810777388154911507366913 ( 105 digits) SNFS difficulty: 128 digits. Divisors found: r1=43521265142965607939995083695342551 (pp35) r2=4837101196041471624016224793481902477753259738852941541678317678476263 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.26 hours. Scaled time: 1.54 units (timescale=0.472). Factorization parameters were as follows: name: 48889_126 n: 210516763676276950698136815053296181646950051888481831521398162638508208518541145810777388154911507366913 m: 20000000000000000000000000 deg: 5 c5: 55 c0: 4 skew: 0.59 type: snfs lss: 1 rlim: 960000 alim: 960000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 960000/960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [480000, 730001) Primes: RFBsize:75618, AFBsize:75696, largePrimes:2683272 encountered Relations: rels:2701674, finalFF:313626 Max relations in full relation-set: 28 Initial matrix: 151381 x 313626 with sparse part having weight 22104515. Pruned matrix : 104189 x 105009 with weight 5480480. Total sieving time: 3.01 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000 total time: 3.26 hours. --------- CPU info (if available) ----------
(44·10136+1)/9 = 4(8)1359<137> = 8713 · 13931 · 21121 · 196681 · 155441215959456973505639<24> · C96
C96 = P38 · P58
P38 = 63545509271969160839589261705139727353<38>
P58 = 9815947500455591675226778421185762174956963827834493969589<58>
Thu Mar 05 07:47:34 2009 Msieve v. 1.39 Thu Mar 05 07:47:34 2009 random seeds: 301109d8 a9663a24 Thu Mar 05 07:47:34 2009 factoring 623759382903363309442819325262807299780625921424957644014837575765133655544083293853710133467917 (96 digits) Thu Mar 05 07:47:35 2009 searching for 15-digit factors Thu Mar 05 07:47:37 2009 commencing quadratic sieve (96-digit input) Thu Mar 05 07:47:37 2009 using multiplier of 37 Thu Mar 05 07:47:37 2009 using 32kb Intel Core sieve core Thu Mar 05 07:47:37 2009 sieve interval: 36 blocks of size 32768 Thu Mar 05 07:47:37 2009 processing polynomials in batches of 6 Thu Mar 05 07:47:37 2009 using a sieve bound of 2296643 (84706 primes) Thu Mar 05 07:47:37 2009 using large prime bound of 344496450 (28 bits) Thu Mar 05 07:47:37 2009 using double large prime bound of 2327729440990800 (43-52 bits) Thu Mar 05 07:47:37 2009 using trial factoring cutoff of 52 bits Thu Mar 05 07:47:37 2009 polynomial 'A' values have 13 factors Thu Mar 05 12:58:34 2009 84852 relations (21193 full + 63659 combined from 1272611 partial), need 84802 Thu Mar 05 12:58:35 2009 begin with 1293804 relations Thu Mar 05 12:58:36 2009 reduce to 220822 relations in 11 passes Thu Mar 05 12:58:36 2009 attempting to read 220822 relations Thu Mar 05 12:58:40 2009 recovered 220822 relations Thu Mar 05 12:58:40 2009 recovered 207250 polynomials Thu Mar 05 12:58:41 2009 attempting to build 84852 cycles Thu Mar 05 12:58:41 2009 found 84852 cycles in 6 passes Thu Mar 05 12:58:41 2009 distribution of cycle lengths: Thu Mar 05 12:58:41 2009 length 1 : 21193 Thu Mar 05 12:58:41 2009 length 2 : 15024 Thu Mar 05 12:58:41 2009 length 3 : 14112 Thu Mar 05 12:58:41 2009 length 4 : 11403 Thu Mar 05 12:58:41 2009 length 5 : 8579 Thu Mar 05 12:58:41 2009 length 6 : 5646 Thu Mar 05 12:58:41 2009 length 7 : 3635 Thu Mar 05 12:58:41 2009 length 9+: 5260 Thu Mar 05 12:58:41 2009 largest cycle: 20 relations Thu Mar 05 12:58:41 2009 matrix is 84706 x 84852 (23.0 MB) with weight 5702238 (67.20/col) Thu Mar 05 12:58:41 2009 sparse part has weight 5702238 (67.20/col) Thu Mar 05 12:58:43 2009 filtering completed in 3 passes Thu Mar 05 12:58:43 2009 matrix is 80736 x 80800 (22.1 MB) with weight 5469628 (67.69/col) Thu Mar 05 12:58:43 2009 sparse part has weight 5469628 (67.69/col) Thu Mar 05 12:58:43 2009 saving the first 48 matrix rows for later Thu Mar 05 12:58:43 2009 matrix is 80688 x 80800 (14.4 MB) with weight 4400241 (54.46/col) Thu Mar 05 12:58:43 2009 sparse part has weight 3289200 (40.71/col) Thu Mar 05 12:58:43 2009 matrix includes 64 packed rows Thu Mar 05 12:58:43 2009 using block size 32320 for processor cache size 1024 kB Thu Mar 05 12:58:44 2009 commencing Lanczos iteration Thu Mar 05 12:58:44 2009 memory use: 13.5 MB Thu Mar 05 12:59:30 2009 lanczos halted after 1277 iterations (dim = 80687) Thu Mar 05 12:59:31 2009 recovered 17 nontrivial dependencies Thu Mar 05 12:59:31 2009 prp38 factor: 63545509271969160839589261705139727353 Thu Mar 05 12:59:31 2009 prp58 factor: 9815947500455591675226778421185762174956963827834493969589 Thu Mar 05 12:59:31 2009 elapsed time 05:11:57
(44·10129+1)/9 = 4(8)1289<130> = 5953 · 672367679 · C118
C118 = P58 · P60
P58 = 1728160936759207317423250449466784351977326069208277330599<58>
P60 = 706778405413566726875860515905167801632878263168590878384353<60>
Number: 48889_129 N=1221426831180688279002960012848720777457743423346284193353725933058191571678564724627024589146425316248590692769717447 ( 118 digits) SNFS difficulty: 131 digits. Divisors found: r1=1728160936759207317423250449466784351977326069208277330599 (pp58) r2=706778405413566726875860515905167801632878263168590878384353 (pp60) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.53 hours. Scaled time: 2.60 units (timescale=0.471). Factorization parameters were as follows: name: 48889_129 n: 1221426831180688279002960012848720777457743423346284193353725933058191571678564724627024589146425316248590692769717447 m: 100000000000000000000000000 deg: 5 c5: 22 c0: 5 skew: 0.74 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 990001) Primes: RFBsize:84270, AFBsize:84259, largePrimes:2900239 encountered Relations: rels:2881979, finalFF:279784 Max relations in full relation-set: 28 Initial matrix: 168595 x 279784 with sparse part having weight 23071610. Pruned matrix : 139231 x 140137 with weight 8439977. Total sieving time: 5.09 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.27 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 5.53 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 5, 2009
(38·10165+43)/9 = 4(2)1647<166> = 3 · 89 · 6323 · 210361 · 487730764733<12> · 1769013090477089<16> · C128
C128 = P43 · P85
P43 = 9624864893143538828693818535656088289049661<43>
P85 = 1431645782459834913814885047641598665244275971770173259132088449280057432040679887011<85>
Number: 42227_165 N=13779397231014677003271297836843222436382621372327834819315841451944209363898472323132704806248632749606937926483332518047853271 ( 128 digits) SNFS difficulty: 166 digits. Divisors found: r1=9624864893143538828693818535656088289049661 (pp43) r2=1431645782459834913814885047641598665244275971770173259132088449280057432040679887011 (pp85) Version: Msieve-1.39 Total time: 50.19 hours. Scaled time: 129.05 units (timescale=2.571). Factorization parameters were as follows: n: 13779397231014677003271297836843222436382621372327834819315841451944209363898472323132704806248632749606937926483332518047853271 m: 1000000000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 800481 x 800729 Total sieving time: 50.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 50.19 hours. --------- CPU info (if available) ----------
(8·10177-53)/9 = (8)1763<177> = 125399 · C172
C172 = P49 · P124
P49 = 4281919116316707152351160271644136591660758660269<49>
P124 = 1655445718495538671619999369350006699248872472048836636523424165681830716062409891277817279130004176653121465148247908459193<124>
Number: 88883_177 N=7088484668050693298103564533121387641758617603720036753793003842844750666982104234394922518432275288390568416724925150032208302210455337673258071347370305097240718736902917 ( 172 digits) SNFS difficulty: 177 digits. Divisors found: r1=4281919116316707152351160271644136591660758660269 (pp49) r2=1655445718495538671619999369350006699248872472048836636523424165681830716062409891277817279130004176653121465148247908459193 (pp124) Version: Msieve-1.39 Total time: 82.71 hours. Scaled time: 143.82 units (timescale=1.739). Factorization parameters were as follows: n: 7088484668050693298103564533121387641758617603720036753793003842844750666982104234394922518432275288390568416724925150032208302210455337673258071347370305097240718736902917 m: 200000000000000000000000000000000000 deg: 5 c5: 25 c0: -53 skew: 1.16 type: snfs lss: 1 rlim: 6500000 alim: 6500000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3250000, 7350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1293708 x 1293956 Total sieving time: 82.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,53,53,2.5,2.5,100000 total time: 82.71 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve / Mar 5, 2009
(44·10113+1)/9 = 4(8)1129<114> = 33 · 19 · 71 · 16335531151<11> · C99
C99 = P42 · P58
P42 = 388108802120652459580690750421457618243901<42>
P58 = 2117130850233126729863891430790043326178467398399902760293<58>
Number: n N=821677118216657280176438291640989826544716440836332482465075702032722614207146795471847445212222993 ( 99 digits) SNFS difficulty: 116 digits. Divisors found: r1=388108802120652459580690750421457618243901 (pp42) r2=2117130850233126729863891430790043326178467398399902760293 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.28 hours. Scaled time: 2.31 units (timescale=1.803). Factorization parameters were as follows: name: KA_4_8_112_9 n: 821677118216657280176438291640989826544716440836332482465075702032722614207146795471847445212222993 deg: 5 c5: 11 c0: 25 m: 100000000000000000000000 skew: 1.18 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [250000, 330001) Primes: RFBsize:41538, AFBsize:41278, largePrimes:5238750 encountered Relations: rels:4744123, finalFF:291634 Max relations in full relation-set: 48 Initial matrix: 82882 x 291634 with sparse part having weight 36298120. Pruned matrix : 59122 x 59600 with weight 4271825. Total sieving time: 1.13 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.28 hours. --------- CPU info (if available) ----------
(13·10166-7)/3 = 4(3)1651<167> = 41 · 254713 · 1160429 · 720322706891<12> · 7895407570994760379<19> · C123
C123 = P39 · P85
P39 = 314414705694017135605799681084992228187<39>
P85 = 1999696316636496215730131756790259309249856000129855091108599659958985721872494604581<85>
GMP-ECM 6.0 [powered by GMP 4.1.4] [ECM] Input number is 628733928872674059655935066886932148706683298336978421071876163430726051438205282807890104870440171098852917012474687524647 (123 digits) Using B1=20000000, B2=59950304286, polynomial Dickson(12), sigma=583429813 Step 1 took 231640ms Step 2 took 77316ms ********** Factor found in step 2: 314414705694017135605799681084992228187 Found probable prime factor of 39 digits: 314414705694017135605799681084992228187 Probable prime cofactor 1999696316636496215730131756790259309249856000129855091108599659958985721872494604581 has 85 digits
(44·10124+1)/9 = 4(8)1239<125> = 23 · 89 · 395851 · C116
C116 = P53 · P63
P53 = 65607094660330748342507041418685412456239437054398433<53>
P63 = 919622888886411805956840633746774726304291375836858991352861589<63>
Number: n N=60333785922977645087382713158145034367621150985678689491667920138777832729104385222146722853596300475841613507490037 ( 116 digits) SNFS difficulty: 126 digits. Divisors found: r1=65607094660330748342507041418685412456239437054398433 (pp53) r2=919622888886411805956840633746774726304291375836858991352861589 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.19 hours. Scaled time: 4.00 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_8_123_9 n: 60333785922977645087382713158145034367621150985678689491667920138777832729104385222146722853596300475841613507490037 deg: 5 c5: 22 c0: 5 m: 10000000000000000000000000 skew: 0.74 type: snfs rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [350000, 590001) Primes: RFBsize:56543, AFBsize:56389, largePrimes:6813290 encountered Relations: rels:6080771, finalFF:209465 Max relations in full relation-set: 48 Initial matrix: 112998 x 209465 with sparse part having weight 32083107. Pruned matrix : 100471 x 101099 with weight 10250707. Total sieving time: 1.94 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.07 hours. Total square root time: 0.06 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,700000,700000,28,28,56,56,2.5,2.5,50000 total time: 2.19 hours. --------- CPU info (if available) ----------
(44·10184+1)/9 = 4(8)1839<185> = 3634092589279<13> · 31874480460293<14> · 149186643169434870150225958130677<33> · 13539580767694393280067652642610347<35> · C93
C93 = P38 · P55
P38 = 23803194133008155288609041813708681643<38>
P55 = 8778102876478133886827822003867357150158400139814099111<55>
Thu Mar 05 02:37:46 2009 Thu Mar 05 02:37:46 2009 Thu Mar 05 02:37:46 2009 Msieve v. 1.39 Thu Mar 05 02:37:46 2009 random seeds: 6d768a74 eabf09d4 Thu Mar 05 02:37:46 2009 factoring 208946886888326328200126038007985057407936209148615529834458396285284634094860013715548319373 (93 digits) Thu Mar 05 02:37:46 2009 searching for 15-digit factors Thu Mar 05 02:37:47 2009 commencing quadratic sieve (93-digit input) Thu Mar 05 02:37:48 2009 using multiplier of 5 Thu Mar 05 02:37:48 2009 using 64kb Opteron sieve core Thu Mar 05 02:37:48 2009 sieve interval: 18 blocks of size 65536 Thu Mar 05 02:37:48 2009 processing polynomials in batches of 6 Thu Mar 05 02:37:48 2009 using a sieve bound of 1884133 (70588 primes) Thu Mar 05 02:37:48 2009 using large prime bound of 220443561 (27 bits) Thu Mar 05 02:37:48 2009 using double large prime bound of 1042162145233209 (42-50 bits) Thu Mar 05 02:37:48 2009 using trial factoring cutoff of 50 bits Thu Mar 05 02:37:48 2009 polynomial 'A' values have 12 factors Thu Mar 05 02:37:48 2009 restarting with 83 full and 5203 partial relations Thu Mar 05 05:53:01 2009 70935 relations (17619 full + 53316 combined from 931366 partial), need 70684 Thu Mar 05 05:53:03 2009 begin with 948985 relations Thu Mar 05 05:53:03 2009 reduce to 181597 relations in 10 passes Thu Mar 05 05:53:03 2009 attempting to read 181597 relations Thu Mar 05 05:53:07 2009 recovered 181597 relations Thu Mar 05 05:53:07 2009 recovered 164521 polynomials Thu Mar 05 05:53:07 2009 attempting to build 70935 cycles Thu Mar 05 05:53:07 2009 found 70935 cycles in 7 passes Thu Mar 05 05:53:08 2009 distribution of cycle lengths: Thu Mar 05 05:53:08 2009 length 1 : 17619 Thu Mar 05 05:53:08 2009 length 2 : 12717 Thu Mar 05 05:53:08 2009 length 3 : 12181 Thu Mar 05 05:53:08 2009 length 4 : 9544 Thu Mar 05 05:53:08 2009 length 5 : 7136 Thu Mar 05 05:53:08 2009 length 6 : 4883 Thu Mar 05 05:53:08 2009 length 7 : 2947 Thu Mar 05 05:53:08 2009 length 9+: 3908 Thu Mar 05 05:53:08 2009 largest cycle: 20 relations Thu Mar 05 05:53:08 2009 matrix is 70588 x 70935 (17.3 MB) with weight 4242075 (59.80/col) Thu Mar 05 05:53:08 2009 sparse part has weight 4242075 (59.80/col) Thu Mar 05 05:53:10 2009 filtering completed in 3 passes Thu Mar 05 05:53:10 2009 matrix is 66977 x 67041 (16.4 MB) with weight 4020997 (59.98/col) Thu Mar 05 05:53:10 2009 sparse part has weight 4020997 (59.98/col) Thu Mar 05 05:53:10 2009 saving the first 48 matrix rows for later Thu Mar 05 05:53:11 2009 matrix is 66929 x 67041 (9.0 MB) with weight 3004074 (44.81/col) Thu Mar 05 05:53:11 2009 sparse part has weight 1961779 (29.26/col) Thu Mar 05 05:53:11 2009 matrix includes 64 packed rows Thu Mar 05 05:53:11 2009 using block size 21845 for processor cache size 512 kB Thu Mar 05 05:53:11 2009 commencing Lanczos iteration Thu Mar 05 05:53:11 2009 memory use: 9.6 MB Thu Mar 05 05:53:52 2009 lanczos halted after 1060 iterations (dim = 66927) Thu Mar 05 05:53:52 2009 recovered 17 nontrivial dependencies Thu Mar 05 05:53:53 2009 prp38 factor: 23803194133008155288609041813708681643 Thu Mar 05 05:53:53 2009 prp55 factor: 8778102876478133886827822003867357150158400139814099111 Thu Mar 05 05:53:53 2009 elapsed time 03:16:07
(35·10202-17)/9 = 3(8)2017<203> = 37 · C202
C202 = P47 · P55 · P100
P47 = 36118644455111721394476564262279362183697261549<47>
P55 = 3293898399544187326777054807794959505060276762759732491<55>
P100 = 8834503942940752249432849357854950544490744137172844219578502235694939623388905000315383980972142789<100>
Number: n N=1051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051 ( 202 digits) SNFS difficulty: 204 digits. Divisors found: Thu Mar 5 21:30:11 2009 prp47 factor: 36118644455111721394476564262279362183697261549 Thu Mar 5 21:30:11 2009 prp55 factor: 3293898399544187326777054807794959505060276762759732491 Thu Mar 5 21:30:11 2009 prp100 factor: 8834503942940752249432849357854950544490744137172844219578502235694939623388905000315383980972142789 Thu Mar 5 21:30:11 2009 elapsed time 19:52:44 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 97.20 hours. Scaled time: 195.76 units (timescale=2.014). Factorization parameters were as follows: name: KA_3_8_201_7 n: 1051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051051 deg: 5 c5: 28 c0: -425 m: 50000000000000000000000000000000000000000 skew: 1.72 type: snfs rlim: 12000000 alim: 12000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [6000000, 30099990) Primes: RFBsize:788060, AFBsize:788064, largePrimes:34129443 encountered Relations: rels:27304088, finalFF:124994 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7075499 hash collisions in 42646710 relations Msieve: matrix is 3340828 x 3341073 (911.0 MB) Total sieving time: 96.34 hours. Total relation processing time: 0.86 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,12000000,12000000,29,29,58,58,2.5,2.5,100000 total time: 97.20 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
By Serge Batalov / GMP-ECM 6.2.2, Msieve / Mar 4, 2009
(44·10146+1)/9 = 4(8)1459<147> = 3 · 23 · 31 · C144
C144 = P36 · P109
P36 = 156337413536843385713359958798964493<36>
P109 = 1461963263796163962865030542478007762086954023549779035977892379429908347870832965015267111700485435552397607<109>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4255872709 Step 1 took 3561ms Step 2 took 3080ms ********** Factor found in step 2: 156337413536843385713359958798964493 Found probable prime factor of 36 digits: 156337413536843385713359958798964493 Probable prime cofactor has 109 digits
(44·10159+1)/9 = 4(8)1589<160> = C160
C160 = P27 · C134
P27 = 137153502420783237145181837<27>
C134 = [35645381288841680184701319432383484371971244729826037624397820402415032840173903602698503344578660426775445228295677509218587715791197<134>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1407227653 Step 1 took 4596ms Step 2 took 3469ms ********** Factor found in step 2: 137153502420783237145181837 Found probable prime factor of 27 digits: 137153502420783237145181837 Composite cofactor 35645381288841680184701319432383484371971244729826037624397820402415032840173903602698503344578660426775445228295677509218587715791197 has 134 digits
(44·10187+1)/9 = 4(8)1869<188> = 7 · 233 · 188701 · 297924401 · C171
C171 = P30 · P142
P30 = 526456192270207306192497814231<30>
P142 = 1012776676261249602907425802562598136206196450536507964244738758587615890319638376087347271113370719438937571302723714882211006597740928373749<142>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2745248539 Step 1 took 4424ms Step 2 took 3652ms ********** Factor found in step 2: 526456192270207306192497814231 Found probable prime factor of 30 digits: 526456192270207306192497814231 Probable prime cofactor has 142 digits
(43·10171+11)/9 = 4(7)1709<172> = 3 · 355093 · 448570037 · C157
C157 = P35 · C123
P35 = 19956188840224140440597442401083283<35>
C123 = [501019598579825057644595959540665425580414504347777059326970261905824979340160312991495080272365020643529680147710715868931<123>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=708918991 Step 1 took 13081ms Step 2 took 11069ms ********** Factor found in step 2: 19956188840224140440597442401083283 Found probable prime factor of 35 digits: 19956188840224140440597442401083283 Composite cofactor has 123 digits
(44·10121+1)/9 = 4(8)1209<122> = 7 · C121
C121 = P43 · P79
P43 = 4128872157334460592498795153932340323839073<43>
P79 = 1691533842170553966100917485120791742004368907555220632245540146694891547578399<79>
SNFS difficulty: 123 digits. Divisors found: r1=4128872157334460592498795153932340323839073 (pp43) r2=1691533842170553966100917485120791742004368907555220632245540146694891547578399 (pp79) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=3.532). Factorization parameters were as follows: n: 6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 m: 2000000000000000000000000 deg: 5 c5: 55 c0: 4 skew: 0.59 type: snfs lss: 1 rlim: 790000 alim: 790000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 790000/790000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [395000, 595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 75391 x 75629 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.2,2.2,50000 total time: 1.00 hours. --------- CPU info (if available) ---------- [ 0.292369] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 3.20GHz stepping 0b
By Ignacio Santos / GGNFS, Msieve / Mar 4, 2009
(44·10168-17)/9 = 4(8)1677<169> = 3 · 83 · 162391 · C162
C162 = P73 · P89
P73 = 1715819497950141258159881096879952789398002521580423107736772458539641033<73>
P89 = 70465617988301484346048053599489955072455045833762809942425229784950721301400075466556321<89>
Number: 48887_168 N=120906281279433895687407867181020672745576189613869605779656584448499366331553749501491723837270466397711193534571781318644627067337002965372185489657428017119593 ( 162 digits) SNFS difficulty: 171 digits. Divisors found: r1=1715819497950141258159881096879952789398002521580423107736772458539641033 (pp73) r2=70465617988301484346048053599489955072455045833762809942425229784950721301400075466556321 (pp89) Version: Msieve-1.39 Total time: 51.54 hours. Scaled time: 89.43 units (timescale=1.735). Factorization parameters were as follows: n: 120906281279433895687407867181020672745576189613869605779656584448499366331553749501491723837270466397711193534571781318644627067337002965372185489657428017119593 m: 10000000000000000000000000000000000 deg: 5 c5: 11 c0: -425 skew: 2.08 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 938725 x 938973 Total sieving time: 51.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 51.54 hours. --------- CPU info (if available) ----------
Factorizations of 488...889 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 3, 2009
(43·10176-61)/9 = 4(7)1751<177> = 3 · 19 · 41 · 24481 · 10017223 · 58378057 · 81878593 · 11026136010248736668361127139<29> · C119
C119 = P57 · P63
P57 = 103405039411964640209554971522786871674702176896591854287<57>
P63 = 152969793589021182262675715827594600644346714549363121584949737<63>
Number: 47771_176 N=15817847534912831302529090682116843282045429442306500676740679450683592836514865749211284047570846181272431088522972519 ( 119 digits) Divisors found: r1=103405039411964640209554971522786871674702176896591854287 r2=152969793589021182262675715827594600644346714549363121584949737 Version: Total time: 23.71 hours. Scaled time: 56.56 units (timescale=2.385). Factorization parameters were as follows: name: 47771_176 n: 15817847534912831302529090682116843282045429442306500676740679450683592836514865749211284047570846181272431088522972519 skew: 52926.37 # norm 1.01e+16 c5: 16200 c4: 1296699318 c3: 321549041620995 c2: -6027505071870800284 c1: -432965756555996210893964 c0: 1395208670446382882234889360 # alpha -5.84 Y1: 778142714723 Y0: -62795191321863803995807 # Murphy_E 3.59e-10 # M 10039002453100207941900866177830567936876972703857384985376185758164620211110620218550257430073029486337315331444330562 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9461334 Max relations in full relation-set: Initial matrix: Pruned matrix : 641774 x 642022 Polynomial selection time: 2.29 hours. Total sieving time: 19.58 hours. Total relation processing time: 0.78 hours. Matrix solve time: 0.94 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 23.71 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Wataru Sakai / Msieve / Mar 3, 2009
4·10198+1 = 4(0)1971<199> = 601 · C196
C196 = P60 · P136
P60 = 929931633094791878075356891588302829966299262696914473414281<60>
P136 = 7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521<136>
Number: 40001_198 N=6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401 ( 196 digits) SNFS difficulty: 200 digits. Divisors found: r1=929931633094791878075356891588302829966299262696914473414281 r2=7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521 Version: Total time: 598.43 hours. Scaled time: 1065.20 units (timescale=1.780). Factorization parameters were as follows: n: 6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 25 skew: 1.90 type: snfs lss: 1 rlim: 15100000 alim: 15100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15100000/15100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7550000, 13250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2568959 x 2569207 Total sieving time: 598.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15100000,15100000,29,29,56,56,2.6,2.6,100000 total time: 598.43 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 3, 3009
(44·10167-53)/9 = 4(8)1663<168> = 3 · 307261 · C162
C162 = P60 · P103
P60 = 240176965948327227964428493955389903582874479604862156178867<60>
P103 = 2208259555617665688706709242812968313599814381853752897676508469902040009732755649720367881553125991303<103>
Number: 48883_167 N=530373080094652308503073813347489472998405144040288103478680870539908946996081386713455215477925812136792378345976101630089607737275355359004113645932815954393701 ( 162 digits) SNFS difficulty: 168 digits. Divisors found: r1=240176965948327227964428493955389903582874479604862156178867 (pp60) r2=2208259555617665688706709242812968313599814381853752897676508469902040009732755649720367881553125991303 (pp103) Version: Msieve-1.39 Total time: 59.50 hours. Scaled time: 152.96 units (timescale=2.571). Factorization parameters were as follows: n: 530373080094652308503073813347489472998405144040288103478680870539908946996081386713455215477925812136792378345976101630089607737275355359004113645932815954393701 m: 2000000000000000000000000000000000 deg: 5 c5: 275 c0: -106 skew: 0.83 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 954960 x 955207 Total sieving time: 59.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 59.50 hours. --------- CPU info (if available) ----------
(82·10175+71)/9 = 9(1)1749<176> = 3 · 11 · 11587 · C171
C171 = P44 · P127
P44 = 67882709654942508757821179425567338626971537<44>
P127 = 3510162534540666290452358492207298441872470977033021534083805522851039632888388673042910115047458152439653047100048042698309397<127>
Number: 91119_175 N=238279344173881154980663050051157412855868021139446012148178368943018981855609110291081465673681087506926809593591331746160433482432274181648480431599444286075855938633189 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: r1=67882709654942508757821179425567338626971537 (pp44) r2=3510162534540666290452358492207298441872470977033021534083805522851039632888388673042910115047458152439653047100048042698309397 (pp127) Version: Msieve-1.39 Total time: 103.46 hours. Scaled time: 179.91 units (timescale=1.739). Factorization parameters were as follows: n: 238279344173881154980663050051157412855868021139446012148178368943018981855609110291081465673681087506926809593591331746160433482432274181648480431599444286075855938633189 m: 100000000000000000000000000000000000 deg: 5 c5: 82 c0: 71 skew: 0.97 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 7200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1309125 x 1309372 Total sieving time: 103.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000 total time: 103.46 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Mar 2, 2009
(37·10164+71)/9 = 4(1)1639<165> = 25679 · 311393 · 21601121 · 1772064851<10> · C139
C139 = P41 · P98
P41 = 82984091017440112507642480432701193756559<41>
P98 = 16185328543252187405293423598335473778264384560401110207473315740112040289602442795258184152320693<98>
Number: 41119_164 N=1343124776980410906357398666493863766817267437319229096291062496515901520488286342007374944355498394269625371902195894299234123782340175387 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: r1=82984091017440112507642480432701193756559 (pp41) r2=16185328543252187405293423598335473778264384560401110207473315740112040289602442795258184152320693 (pp98) Version: Msieve-1.39 Total time: 56.70 hours. Scaled time: 145.14 units (timescale=2.560). Factorization parameters were as follows: n: 1343124776980410906357398666493863766817267437319229096291062496515901520488286342007374944355498394269625371902195894299234123782340175387 m: 500000000000000000000000000000000 deg: 5 c5: 592 c0: 355 skew: 0.90 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 5050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 879398 x 879646 Total sieving time: 56.70 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 56.70 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.2 / Mar 2, 2009
4·10248+9 = 4(0)2479<249> = 109 · 157 · C245
C245 = P33 · C213
P33 = 222437485156209239721584649092089<33>
C213 = [105081403472507701127044472851803774228799733560932737552951993501629404537657221649279921860005838295301318857627808513987051312269821710093470836004276067692676649441223404038410980976203789322509492454610415737<213>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=566428965 Step 1 took 8529ms Step 2 took 7536ms ********** Factor found in step 2: 222437485156209239721584649092089 Found probable prime factor of 33 digits: 222437485156209239721584649092089 Composite cofactor has 213 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 2, 2009
(38·10164+43)/9 = 4(2)1637<165> = 7 · 389 · 396166847 · 20688385777365387708581<23> · C131
C131 = P57 · P74
P57 = 278000081592423342777657256468034862164665053267856254599<57>
P74 = 68052453504218272772299858954858072418262676712033906643921164158593661093<74>
Number: 42227_164 N=18918587626737275661569539886981494068926834123091527789688832596833492556859843815321929442379184020868294757891620228514128616707 ( 131 digits) SNFS difficulty: 166 digits. Divisors found: r1=278000081592423342777657256468034862164665053267856254599 r2=68052453504218272772299858954858072418262676712033906643921164158593661093 Version: Total time: 20.33 hours. Scaled time: 48.51 units (timescale=2.386). Factorization parameters were as follows: n: 18918587626737275661569539886981494068926834123091527789688832596833492556859843815321929442379184020868294757891620228514128616707 m: 1000000000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2300000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9569371 Max relations in full relation-set: Initial matrix: Pruned matrix : 734818 x 735066 Total sieving time: 18.27 hours. Total relation processing time: 0.77 hours. Matrix solve time: 1.22 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,51,51,2.4,2.4,100000 total time: 20.33 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve / Mar 2, 2009
(44·10140-17)/9 = 4(8)1397<141> = 257 · 6422477429<10> · C129
C129 = P36 · P94
P36 = 266764282411297588607226035777225117<36>
P94 = 1110316455753766733474915862488653783239958544991715616798611308282107315182967999730716957687<94>
Number: 48887_140 N=296192772568608832293367334345646759490235757131489254311000126113016125270223391900385945493158354999363664877502236977162624379 ( 129 digits) SNFS difficulty: 141 digits. Divisors found: r1=266764282411297588607226035777225117 r2=1110316455753766733474915862488653783239958544991715616798611308282107315182967999730716957687 Version: Total time: 5.36 hours. Scaled time: 13.75 units (timescale=2.564). Factorization parameters were as follows: name: 48887_140 n: 296192772568608832293367334345646759490235757131489254311000126113016125270223391900385945493158354999363664877502236977162624379 m: 10000000000000000000000000000 deg: 5 c5: 44 c0: -17 skew: 0.83 type: snfs lss: 1 rlim: 1610000 alim: 1610000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1610000/1610000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [805000, 1505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 205151 x 205399 Total sieving time: 5.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1610000,1610000,26,26,48,48,2.3,2.3,100000 total time: 5.36 hours. --------- CPU info (if available) ----------
(44·10141-17)/9 = 4(8)1407<142> = 3 · 3581871731<10> · C132
C132 = P29 · P46 · P58
P29 = 24511862298614659295884030627<29>
P46 = 1935713272129890223796790170669706733402120501<46>
P58 = 9588740089602400047209894490431903419856559262055026071217<58>
Number: 48887_141 N=454965937368914015315873864169266543070866216239062087628293585488427315665265968070934706966375628047198105997623628926546177772559 ( 132 digits) SNFS difficulty: 143 digits. Divisors found: r1=24511862298614659295884030627 r2=1935713272129890223796790170669706733402120501 r3=9588740089602400047209894490431903419856559262055026071217 Version: Total time: 6.73 hours. Scaled time: 17.25 units (timescale=2.564). Factorization parameters were as follows: name: 48887_141 n: 454965937368914015315873864169266543070866216239062087628293585488427315665265968070934706966375628047198105997623628926546177772559 m: 20000000000000000000000000000 deg: 5 c5: 55 c0: -68 skew: 1.04 type: snfs lss: 1 rlim: 1710000 alim: 1710000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1710000/1710000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [855000, 1755001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 282968 x 283216 Total sieving time: 6.73 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1710000,1710000,26,26,48,48,2.3,2.3,100000 total time: 6.73 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve / Mar 2, 2009
(44·10144-17)/9 = 4(8)1437<145> = 3 · 42920959 · C137
C137 = P58 · P79
P58 = 5881370882122551087199960681673227889956880044401651746057<58>
P79 = 6455664145439386864235246041474399945467845376843360134375006180876717813506283<79>
Number: 48887_144 N=37968155129749771658867865222434327006291486395484071770848121767960255259665321775071000385374185829110426671259363744170525864289976131 ( 137 digits) SNFS difficulty: 146 digits. Divisors found: r1=5881370882122551087199960681673227889956880044401651746057 r2=6455664145439386864235246041474399945467845376843360134375006180876717813506283 Version: Total time: 7.87 hours. Scaled time: 20.17 units (timescale=2.564). Factorization parameters were as follows: name: 48887_144 n: 37968155129749771658867865222434327006291486395484071770848121767960255259665321775071000385374185829110426671259363744170525864289976131 m: 100000000000000000000000000000 deg: 5 c5: 22 c0: -85 skew: 1.31 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [960000, 1960001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 302720 x 302968 Total sieving time: 7.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 7.87 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39 / Mar 2, 2009
(44·10169-17)/9 = 4(8)1687<170> = 31 · 71 · C167
C167 = P76 · P91
P76 = 9950279730184416324167097807141707833908720539115456322172137682732648571133<76>
P91 = 2232311694114726941128124192221372005745626339904571066213105265608109389955468274136910139<91>
SNFS difficulty: 171 digits. Divisors found: r1=9950279730184416324167097807141707833908720539115456322172137682732648571133 (pp76) r2=2232311694114726941128124192221372005745626339904571066213105265608109389955468274136910139 (pp91) Version: Msieve-1.39 Total time: 32.00 hours. Scaled time: 0.00 units (timescale=3.538). Factorization parameters were as follows: n: 22212125801403402493815942248472916351153516078550153970417487000858195769599676914533797768690999040840022212125801403402493815942248472916351153516078550153970417487 m: 10000000000000000000000000000000000 deg: 5 c5: 22 c0: -85 skew: 1.31 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 855369 x 855617 Total sieving time: 31.00 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.70 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 32.00 hours. --------- CPU info (if available) ---------- [ 0.293509] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b [ 0.384446] CPU1: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b [ 0.476479] CPU2: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b [ 0.568475] CPU3: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b [ 0.004000] Memory: 4045172k/4718592k available (3116k kernel code, 147592k reserved, 1575k data, 540k init) [ 0.004000] Calibrating delay loop (skipped), value calculated using timer frequency.. 6407.98 BogoMIPS (lpj=12815976) [ 0.004000] Calibrating delay using timer specific routine.. 6408.03 BogoMIPS (lpj=12816069) [ 0.004000] Calibrating delay using timer specific routine.. 6408.09 BogoMIPS (lpj=12816188) [ 0.004000] Calibrating delay using timer specific routine.. 6407.99 BogoMIPS (lpj=12815998) [ 0.572060] Total of 4 processors activated (25632.11 BogoMIPS).
(44·10133-17)/9 = 4(8)1327<134> = 313 · 61970431833043<14> · 383323733230232520362011<24> · C94
C94 = P38 · P57
P38 = 33566362962259841077602448108183136191<38>
P57 = 195889569350056287572634065511059531775558430638559368593<57>
SNFS difficulty: 136 digits. Divisors found: r1=33566362962259841077602448108183136191 (pp38) r2=195889569350056287572634065511059531775558430638559368593 (pp57) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=3.532). Factorization parameters were as follows: n: 6575300385324759940584283097591155889806485826685800730459825284734913656000610932535487049263 m: 1000000000000000000000000000 c5: 11 c0: -425 skew: 2.08 type: snfs lss: 1 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1625001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 134734 x 134982 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.293509] CPU0: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz stepping 0b
Factorizations of 400...009 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Ignacio Santos / GGNFS, Msieve / Mar 1, 2009
(44·10162-17)/9 = 4(8)1617<163> = 3 · 1493 · 238969207 · C151
C151 = P34 · P117
P34 = 4990620217664536348150795739736133<34>
P117 = 915235043598425178251463651557081130210364541733311841146729064706626965210952206645736477433022202095713997208394163<117>
Number: 48887_162 N=4567590512497384077516115001239745760937417663633887663029203124762414552467670989470663188144500170348913456350212534440575296661544690719878277391679 ( 151 digits) SNFS difficulty: 163 digits. Divisors found: r1=4990620217664536348150795739736133 (pp34) r2=915235043598425178251463651557081130210364541733311841146729064706626965210952206645736477433022202095713997208394163 (pp117) Version: Msieve-1.39 Total time: 36.56 hours. Scaled time: 93.99 units (timescale=2.571). Factorization parameters were as follows: n: 4567590512497384077516115001239745760937417663633887663029203124762414552467670989470663188144500170348913456350212534440575296661544690719878277391679 m: 200000000000000000000000000000000 deg: 5 c5: 275 c0: -34 skew: 0.66 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 695201 x 695449 Total sieving time: 36.56 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 36.56 hours. --------- CPU info (if available) ----------
(4·10176+41)/9 = (4)1759<176> = 7 · 13267 · C171
C171 = P63 · P109
P63 = 458635566321274600833783985784889081388813133607071962664716819<63>
P109 = 1043467632893450375012608605725506256081011775877522672352252150556117313829232637468736945319284152674730559<109>
Number: 44449_176 N=478571368750007477677636718866838713073732294354891777067099295184016673426487250260522288863285320660763488833135324429513017739444211140902178815799076596543996860571821 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: r1=458635566321274600833783985784889081388813133607071962664716819 (pp63) r2=1043467632893450375012608605725506256081011775877522672352252150556117313829232637468736945319284152674730559 (pp109) Version: Msieve-1.39 Total time: 111.09 hours. Scaled time: 192.73 units (timescale=1.735). Factorization parameters were as follows: n: 478571368750007477677636718866838713073732294354891777067099295184016673426487250260522288863285320660763488833135324429513017739444211140902178815799076596543996860571821 m: 100000000000000000000000000000000000 deg: 5 c5: 40 c0: 41 skew: 1.00 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3050000, 7550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1367987 x 1368235 Total sieving time: 111.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000 total time: 111.09 hours. --------- CPU info (if available) ----------
By 10metreh / YAFU 1.06 / Mar 1, 2009
(44·10122-17)/9 = 4(8)1217<123> = 163 · 595078871 · 40277836111526983476473<23> · C90
C90 = P41 · P49
P41 = 25055727059552303768450318768856332883833<41>
P49 = 4994303060252602682538203448316349125497740032091<49>
02/28/09 16:06:27 v1.06 @ CORE2, starting SIQS on c90: 125135894330376016809008922839988182095396611945786965309120924112043026937092615995084803 02/28/09 16:06:27 v1.06 @ CORE2, ==== sieve params ==== 02/28/09 16:06:27 v1.06 @ CORE2, n = 90 digits, 299 bits 02/28/09 16:06:27 v1.06 @ CORE2, factor base: 64055 primes (max prime = 1703573) 02/28/09 16:06:27 v1.06 @ CORE2, single large prime cutoff: 187393030 (110 * pmax) 02/28/09 16:06:27 v1.06 @ CORE2, double large prime range from 43 to 50 bits 02/28/09 16:06:27 v1.06 @ CORE2, double large prime cutoff: 777958052091382 02/28/09 16:06:27 v1.06 @ CORE2, using 10 large prime slices of factor base 02/28/09 16:06:27 v1.06 @ CORE2, buckets hold 1024 elements 02/28/09 16:06:27 v1.06 @ CORE2, sieve interval: 18 blocks of size 32768 02/28/09 16:06:27 v1.06 @ CORE2, polynomial A has ~ 12 factors 02/28/09 16:06:27 v1.06 @ CORE2, using multiplier of 7 02/28/09 16:06:27 v1.06 @ CORE2, using small prime variation correction of 20 bits 02/28/09 16:06:27 v1.06 @ CORE2, trial factoring cutoff at 98 bits 02/28/09 16:06:27 v1.06 @ CORE2, ==== sieving started ==== 02/28/09 16:59:39 v1.06 @ CORE2, starting SIQS on c90: 125135894330376016809008922839988182095396611945786965309120924112043026937092615995084803 02/28/09 16:59:42 v1.06 @ CORE2, sieve time = 0.0000, relation time = 0.0000, poly_time = 0.0000 02/28/09 16:59:42 v1.06 @ CORE2, 162915 relations found: 28176 full + 134739 from 1080440 partial, using 0 polys (0 A polys) 02/28/09 16:59:42 v1.06 @ CORE2, trial division touched 0 sieve locations out of 0 02/28/09 16:59:42 v1.06 @ CORE2, ==== post processing stage (msieve-1.38) ==== 02/28/09 16:59:43 v1.06 @ CORE2, begin with 1108615 relations 02/28/09 16:59:44 v1.06 @ CORE2, reduce to 367689 relations in 8 passes 02/28/09 16:59:50 v1.06 @ CORE2, recovered 367689 relations 02/28/09 16:59:50 v1.06 @ CORE2, recovered 283808 polynomials 02/28/09 16:59:50 v1.06 @ CORE2, attempting to build 162914 cycles 02/28/09 16:59:50 v1.06 @ CORE2, found 162914 cycles in 4 passes 02/28/09 16:59:50 v1.06 @ CORE2, distribution of cycle lengths: 02/28/09 16:59:50 v1.06 @ CORE2, length 1 : 28176 02/28/09 16:59:50 v1.06 @ CORE2, length 2 : 31519 02/28/09 16:59:50 v1.06 @ CORE2, length 3 : 35187 02/28/09 16:59:50 v1.06 @ CORE2, length 4 : 27750 02/28/09 16:59:50 v1.06 @ CORE2, length 5 : 18776 02/28/09 16:59:50 v1.06 @ CORE2, length 6 : 10969 02/28/09 16:59:50 v1.06 @ CORE2, length 7 : 5645 02/28/09 16:59:50 v1.06 @ CORE2, length 9+: 4892 02/28/09 16:59:50 v1.06 @ CORE2, largest cycle: 16 relations 02/28/09 16:59:51 v1.06 @ CORE2, matrix is 64055 x 162914 (42.0 MB) with weight 10348892 (63.52/col) 02/28/09 16:59:51 v1.06 @ CORE2, sparse part has weight 10348892 (63.52/col) 02/28/09 16:59:52 v1.06 @ CORE2, filtering completed in 4 passes 02/28/09 16:59:52 v1.06 @ CORE2, matrix is 50671 x 50732 (8.3 MB) with weight 1983932 (39.11/col) 02/28/09 16:59:52 v1.06 @ CORE2, sparse part has weight 1983932 (39.11/col) 02/28/09 16:59:52 v1.06 @ CORE2, saving the first 48 matrix rows for later 02/28/09 16:59:52 v1.06 @ CORE2, matrix is 50623 x 50732 (5.4 MB) with weight 1481298 (29.20/col) 02/28/09 16:59:52 v1.06 @ CORE2, sparse part has weight 1115306 (21.98/col) 02/28/09 16:59:52 v1.06 @ CORE2, matrix includes 64 packed rows 02/28/09 16:59:52 v1.06 @ CORE2, using block size 20292 for processor cache size 2048 kB 02/28/09 16:59:52 v1.06 @ CORE2, commencing Lanczos iteration 02/28/09 16:59:52 v1.06 @ CORE2, memory use: 6.0 MB 02/28/09 17:00:02 v1.06 @ CORE2, lanczos halted after 803 iterations (dim = 50620) 02/28/09 17:00:02 v1.06 @ CORE2, recovered 16 nontrivial dependencies 02/28/09 17:00:03 v1.06 @ CORE2, prp41 = 25055727059552303768450318768856332883833 02/28/09 17:00:05 v1.06 @ CORE2, prp49 = 4994303060252602682538203448316349125497740032091 02/28/09 17:00:05 v1.06 @ CORE2, Lanczos elapsed time = 20.5940 seconds. 02/28/09 17:00:05 v1.06 @ CORE2, Sqrt elapsed time = 3.0940 seconds. 02/28/09 17:00:05 v1.06 @ CORE2, Total elapsed time = 25.9070 seconds. 02/28/09 17:00:05 v1.06 @ CORE2, 02/28/09 17:00:05 v1.06 @ CORE2,
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Mar 1, 2009
(44·10159-17)/9 = 4(8)1587<160> = 3 · 73259 · 8285839 · C148
C148 = P42 · P106
P42 = 290815744390341441958304938177196752945577<42>
P106 = 9231526502197941525313298896072190111031909233636542906339087491666606405324372762984243973766232005206577<106>
Number: 48887_159 N=2684673251595859366296733447750095450469216783402820386480815643103167145413834896839154922072085461200253423223343640531863431760230894225123459929 ( 148 digits) SNFS difficulty: 161 digits. Divisors found: r1=290815744390341441958304938177196752945577 r2=9231526502197941525313298896072190111031909233636542906339087491666606405324372762984243973766232005206577 Version: Total time: 14.41 hours. Scaled time: 34.38 units (timescale=2.385). Factorization parameters were as follows: n: 2684673251595859366296733447750095450469216783402820386480815643103167145413834896839154922072085461200253423223343640531863431760230894225123459929 m: 100000000000000000000000000000000 deg: 5 c5: 22 c0: -85 skew: 1.31 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9261785 Max relations in full relation-set: Initial matrix: Pruned matrix : 585964 x 586212 Total sieving time: 13.00 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.79 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 14.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10176-17)/9 = 4(8)1757<177> = 43 · 659 · 98196426949<11> · 24146313277163821<17> · 192280009873992323<18> · 40080386376207456114952753675681<32> · C96
C96 = P39 · P58
P39 = 117784917298517583845267164230914271179<39>
P58 = 8015932728867754668581789667849717412702585687637176051847<58>
Number: 48887_176 N=944155973540168858103069780436959607055778687934293351044551531753237918863965710505962721817613 ( 96 digits) Divisors found: r1=117784917298517583845267164230914271179 r2=8015932728867754668581789667849717412702585687637176051847 Version: Total time: 2.00 hours. Scaled time: 4.78 units (timescale=2.390). Factorization parameters were as follows: name: 48887_176 n: 944155973540168858103069780436959607055778687934293351044551531753237918863965710505962721817613 skew: 6105.86 # norm 3.37e+13 c5: 39060 c4: 174496312 c3: 560423064979 c2: -7334819794986332 c1: -65750106517620250884 c0: 81566268293500715958840 # alpha -6.16 Y1: 65268841 Y0: -1890872683509586427 # Murphy_E 4.98e-09 # M 840741212225823904974665603171945511566543766752601403677445864058164547642630522023787412990490 type: gnfs rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 40000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [400000, 800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3835605 Max relations in full relation-set: Initial matrix: Pruned matrix : 138694 x 138942 Polynomial selection time: 0.10 hours. Total sieving time: 1.55 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.04 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,95,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,26,26,48,48,2.5,2.5,40000 total time: 2.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10160-17)/9 = 4(8)1597<161> = 109 · 55763 · 92761 · 369517186744001<15> · C135
C135 = P52 · P83
P52 = 4076131018922486931816494926997155938069156975906851<52>
P83 = 57569086606996077921238443496515686998345474130400656285165932035408929446980022051<83>
Number: 48887_160 N=234659139649811819090670862727260288441828499203678824064334192951265228686681364538703535838427708550772283462309773126403735701971401 ( 135 digits) SNFS difficulty: 161 digits. Divisors found: r1=4076131018922486931816494926997155938069156975906851 r2=57569086606996077921238443496515686998345474130400656285165932035408929446980022051 Version: Total time: 13.39 hours. Scaled time: 31.94 units (timescale=2.386). Factorization parameters were as follows: n: 234659139649811819090670862727260288441828499203678824064334192951265228686681364538703535838427708550772283462309773126403735701971401 m: 100000000000000000000000000000000 deg: 5 c5: 44 c0: -17 skew: 0.83 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9215084 Max relations in full relation-set: Initial matrix: Pruned matrix : 563969 x 564217 Total sieving time: 12.02 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.72 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 13.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve / Mar 1, 2009
(44·10134-17)/9 = 4(8)1337<135> = 43 · 71 · 38083 · 336296610392441169560118324067<30> · C98
C98 = P40 · P58
P40 = 3105462461647958049658077091153892526461<40>
P58 = 4026275015098169845103596818850013238999514021557153176599<58>
Sat Feb 28 08:04:13 2009 Msieve v. 1.39 Sat Feb 28 08:04:13 2009 random seeds: 9dcc2490 61e55782 Sat Feb 28 08:04:13 2009 factoring 12503445919658431989941459603443090426080626858741127995674854088135216176777303913162591813486139 (98 digits) Sat Feb 28 08:04:14 2009 searching for 15-digit factors Sat Feb 28 08:04:15 2009 commencing quadratic sieve (98-digit input) Sat Feb 28 08:04:15 2009 using multiplier of 35 Sat Feb 28 08:04:15 2009 using 32kb Intel Core sieve core Sat Feb 28 08:04:15 2009 sieve interval: 36 blocks of size 32768 Sat Feb 28 08:04:15 2009 processing polynomials in batches of 6 Sat Feb 28 08:04:15 2009 using a sieve bound of 2426387 (89412 primes) Sat Feb 28 08:04:15 2009 using large prime bound of 363958050 (28 bits) Sat Feb 28 08:04:15 2009 using double large prime bound of 2569758932207550 (43-52 bits) Sat Feb 28 08:04:16 2009 using trial factoring cutoff of 52 bits Sat Feb 28 08:04:16 2009 polynomial 'A' values have 13 factors Sat Feb 28 14:28:13 2009 89726 relations (21966 full + 67760 combined from 1333140 partial), need 89508 Sat Feb 28 14:28:14 2009 begin with 1355106 relations Sat Feb 28 14:28:16 2009 reduce to 233233 relations in 12 passes Sat Feb 28 14:28:16 2009 attempting to read 233233 relations Sat Feb 28 14:28:20 2009 recovered 233233 relations Sat Feb 28 14:28:20 2009 recovered 220850 polynomials Sat Feb 28 14:28:20 2009 attempting to build 89726 cycles Sat Feb 28 14:28:20 2009 found 89726 cycles in 6 passes Sat Feb 28 14:28:20 2009 distribution of cycle lengths: Sat Feb 28 14:28:20 2009 length 1 : 21966 Sat Feb 28 14:28:20 2009 length 2 : 15756 Sat Feb 28 14:28:20 2009 length 3 : 15335 Sat Feb 28 14:28:20 2009 length 4 : 11979 Sat Feb 28 14:28:20 2009 length 5 : 9100 Sat Feb 28 14:28:20 2009 length 6 : 6366 Sat Feb 28 14:28:20 2009 length 7 : 3889 Sat Feb 28 14:28:20 2009 length 9+: 5335 Sat Feb 28 14:28:20 2009 largest cycle: 19 relations Sat Feb 28 14:28:21 2009 matrix is 89412 x 89726 (24.1 MB) with weight 5966964 (66.50/col) Sat Feb 28 14:28:21 2009 sparse part has weight 5966964 (66.50/col) Sat Feb 28 14:28:22 2009 filtering completed in 3 passes Sat Feb 28 14:28:22 2009 matrix is 85303 x 85367 (23.1 MB) with weight 5701830 (66.79/col) Sat Feb 28 14:28:22 2009 sparse part has weight 5701830 (66.79/col) Sat Feb 28 14:28:23 2009 saving the first 48 matrix rows for later Sat Feb 28 14:28:23 2009 matrix is 85255 x 85367 (13.7 MB) with weight 4447958 (52.10/col) Sat Feb 28 14:28:23 2009 sparse part has weight 3084971 (36.14/col) Sat Feb 28 14:28:23 2009 matrix includes 64 packed rows Sat Feb 28 14:28:23 2009 using block size 34146 for processor cache size 1024 kB Sat Feb 28 14:28:23 2009 commencing Lanczos iteration Sat Feb 28 14:28:23 2009 memory use: 13.6 MB Sat Feb 28 14:29:11 2009 lanczos halted after 1350 iterations (dim = 85253) Sat Feb 28 14:29:11 2009 recovered 18 nontrivial dependencies Sat Feb 28 14:29:12 2009 prp40 factor: 3105462461647958049658077091153892526461 Sat Feb 28 14:29:12 2009 prp58 factor: 4026275015098169845103596818850013238999514021557153176599 Sat Feb 28 14:29:12 2009 elapsed time 06:24:59
(44·10151-17)/9 = 4(8)1507<152> = 59 · 250813 · C145
C145 = P35 · P111
P35 = 28010092649606243627127076612342517<35>
P111 = 117948810979765038663230411677791182952456300022271405308145892823160288837963818959566692105287562931657362133<111>
Number: 48887_151 N=3303757123454112912191849656705471021045586119288473132078811156214153531284999411668433163074960830017318520097313968120680961708381218101708761 ( 145 digits) SNFS difficulty: 153 digits. Divisors found: r1=28010092649606243627127076612342517 r2=117948810979765038663230411677791182952456300022271405308145892823160288837963818959566692105287562931657362133 Version: Total time: 17.12 hours. Scaled time: 43.88 units (timescale=2.564). Factorization parameters were as follows: name: 48887_151 n: 3303757123454112912191849656705471021045586119288473132078811156214153531284999411668433163074960830017318520097313968120680961708381218101708761 m: 2000000000000000000000000000000 deg: 5 c5: 55 c0: -68 skew: 1.04 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 389657 x 389905 Total sieving time: 17.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 17.12 hours. --------- CPU info (if available) ----------
(44·10136-17)/9 = 4(8)1357<137> = 127 · 199 · 202624700755326247138439253739<30> · C103
C103 = P48 · P56
P48 = 144246135426363968879630879600082913331749818833<48>
P56 = 66184576863078841433464131617341216284110059499927568637<56>
Sat Feb 28 18:46:57 2009 Msieve v. 1.39 Sat Feb 28 18:46:57 2009 random seeds: 53201200 d3923666 Sat Feb 28 18:46:57 2009 factoring 9546869437328265947016345739376682205270945391780931469957305312715675153214382295432221052946922740621 (103 digits) Sat Feb 28 18:46:58 2009 searching for 15-digit factors Sat Feb 28 18:47:00 2009 commencing quadratic sieve (103-digit input) Sat Feb 28 18:47:00 2009 using multiplier of 1 Sat Feb 28 18:47:00 2009 using 32kb Intel Core sieve core Sat Feb 28 18:47:00 2009 sieve interval: 36 blocks of size 32768 Sat Feb 28 18:47:00 2009 processing polynomials in batches of 6 Sat Feb 28 18:47:00 2009 using a sieve bound of 3575521 (127255 primes) Sat Feb 28 18:47:00 2009 using large prime bound of 536328150 (28 bits) Sat Feb 28 18:47:00 2009 using double large prime bound of 5163867185235900 (44-53 bits) Sat Feb 28 18:47:00 2009 using trial factoring cutoff of 53 bits Sat Feb 28 18:47:00 2009 polynomial 'A' values have 13 factors Sun Mar 01 20:21:08 2009 127447 relations (29752 full + 97695 combined from 1921537 partial), need 127351 Sun Mar 01 20:21:10 2009 begin with 1951289 relations Sun Mar 01 20:21:12 2009 reduce to 339333 relations in 11 passes Sun Mar 01 20:21:12 2009 attempting to read 339333 relations Sun Mar 01 20:21:19 2009 recovered 339333 relations Sun Mar 01 20:21:19 2009 recovered 331700 polynomials Sun Mar 01 20:21:20 2009 attempting to build 127447 cycles Sun Mar 01 20:21:20 2009 found 127447 cycles in 6 passes Sun Mar 01 20:21:20 2009 distribution of cycle lengths: Sun Mar 01 20:21:20 2009 length 1 : 29752 Sun Mar 01 20:21:20 2009 length 2 : 21238 Sun Mar 01 20:21:20 2009 length 3 : 21332 Sun Mar 01 20:21:20 2009 length 4 : 17539 Sun Mar 01 20:21:20 2009 length 5 : 13310 Sun Mar 01 20:21:20 2009 length 6 : 9286 Sun Mar 01 20:21:20 2009 length 7 : 6125 Sun Mar 01 20:21:20 2009 length 9+: 8865 Sun Mar 01 20:21:20 2009 largest cycle: 21 relations Sun Mar 01 20:21:21 2009 matrix is 127255 x 127447 (37.7 MB) with weight 9380272 (73.60/col) Sun Mar 01 20:21:21 2009 sparse part has weight 9380272 (73.60/col) Sun Mar 01 20:21:23 2009 filtering completed in 3 passes Sun Mar 01 20:21:23 2009 matrix is 122522 x 122586 (36.5 MB) with weight 9079411 (74.07/col) Sun Mar 01 20:21:23 2009 sparse part has weight 9079411 (74.07/col) Sun Mar 01 20:21:23 2009 saving the first 48 matrix rows for later Sun Mar 01 20:21:23 2009 matrix is 122474 x 122586 (26.6 MB) with weight 7676124 (62.62/col) Sun Mar 01 20:21:23 2009 sparse part has weight 6248906 (50.98/col) Sun Mar 01 20:21:23 2009 matrix includes 64 packed rows Sun Mar 01 20:21:24 2009 using block size 43690 for processor cache size 1024 kB Sun Mar 01 20:21:25 2009 commencing Lanczos iteration Sun Mar 01 20:21:25 2009 memory use: 23.5 MB Sun Mar 01 20:23:29 2009 lanczos halted after 1939 iterations (dim = 122472) Sun Mar 01 20:23:30 2009 recovered 15 nontrivial dependencies Sun Mar 01 20:23:31 2009 prp48 factor: 144246135426363968879630879600082913331749818833 Sun Mar 01 20:23:31 2009 prp56 factor: 66184576863078841433464131617341216284110059499927568637 Sun Mar 01 20:23:31 2009 elapsed time 25:36:34
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 28, 2009
(38·10164+61)/9 = 4(2)1639<165> = 3 · 11 · 13 · 727 · 800001649 · 1032237454763<13> · 4846862823541547<16> · C123
C123 = P49 · P75
P49 = 1424218554316875399625038392232057599399988443713<49>
P75 = 237487918334757094139099263647007383687709373624089339742165459109156850759<75>
Number: 42229_164 N=338234699718451915584474464557708031138343751984940684675044970600595111547260673187174469507135439903150655763704612828167 ( 123 digits) SNFS difficulty: 166 digits. Divisors found: r1=1424218554316875399625038392232057599399988443713 r2=237487918334757094139099263647007383687709373624089339742165459109156850759 Version: Total time: 20.50 hours. Scaled time: 48.82 units (timescale=2.382). Factorization parameters were as follows: n: 338234699718451915584474464557708031138343751984940684675044970600595111547260673187174469507135439903150655763704612828167 m: 1000000000000000000000000000000000 deg: 5 c5: 19 c0: 305 skew: 1.74 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2300000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9507815 Max relations in full relation-set: Initial matrix: Pruned matrix : 752528 x 752776 Total sieving time: 18.30 hours. Total relation processing time: 0.77 hours. Matrix solve time: 1.26 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,51,51,2.4,2.4,100000 total time: 20.50 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GGNFS, Msieve / Feb 28, 2009
(44·10125-17)/9 = 4(8)1247<126> = 7 · 211 · 4453417 · C116
C116 = P43 · P74
P43 = 1602043501271566697868732461382414268534571<43>
P74 = 46394019911217396269265065640038665422658070408067883179766258176382621433<74>
Number: n N=74325238096629497479463277119643411178173653499498587019630169598148762753958763910702546007032640075828840366060243 ( 116 digits) SNFS difficulty: 126 digits. Divisors found: r1=1602043501271566697868732461382414268534571 (pp43) r2=46394019911217396269265065640038665422658070408067883179766258176382621433 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.59 hours. Scaled time: 2.91 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_8_124_7 n: 74325238096629497479463277119643411178173653499498587019630169598148762753958763910702546007032640075828840366060243 deg: 5 c5: 44 c0: -17 m: 10000000000000000000000000 skew: 0.83 type: snfs rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [350000, 530001) Primes: RFBsize:56543, AFBsize:56739, largePrimes:6408695 encountered Relations: rels:5600306, finalFF:171999 Max relations in full relation-set: 48 Initial matrix: 113350 x 171999 with sparse part having weight 23574962. Pruned matrix : 102616 x 103246 with weight 9631499. Total sieving time: 1.30 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.06 hours. Total square root time: 0.14 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,700000,700000,28,28,56,56,2.5,2.5,50000 total time: 1.59 hours. --------- CPU info (if available) ----------
(44·10118-17)/9 = 4(8)1177<119> = C119
C119 = P52 · P67
P52 = 5119206635006373557156560747475490922102229350311527<52>
P67 = 9550090936860184163762019684239003669175453223403396936392071157681<67>
Number: n N=48888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: Sat Feb 28 16:08:16 2009 prp52 factor: 5119206635006373557156560747475490922102229350311527 Sat Feb 28 16:08:16 2009 prp67 factor: 9550090936860184163762019684239003669175453223403396936392071157681 Sat Feb 28 16:08:16 2009 elapsed time 00:11:05 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.61 hours. Scaled time: 2.82 units (timescale=1.751). Factorization parameters were as follows: name: KA_4_8_117_7 n: 48888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 deg: 5 c5: 11 c0: -425 m: 1000000000000000000000000 skew: 2.08 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [250000, 413089) Primes: RFBsize:41538, AFBsize:41413, largePrimes:5166760 encountered Relations: rels:4518399, finalFF:83995 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 274027 hash collisions in 4762437 relations Msieve: matrix is 98251 x 98499 (25.3 MB) Total sieving time: 1.52 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.61 hours. --------- CPU info (if available) ----------
(44·10126-17)/9 = 4(8)1257<127> = 3 · 47653 · 71147 · C117
C117 = P45 · P72
P45 = 597361534589012167168440041910515739916420567<45>
P72 = 804645930508513497385460242371516277261563191572489892715193841447820557<72>
Number: n N=480664527849369266189969060980799482078884937664464172800653847852361236391117647744931659139661111090766438760195819 ( 117 digits) SNFS difficulty: 127 digits. Divisors found: r1=597361534589012167168440041910515739916420567 (pp45) r2=804645930508513497385460242371516277261563191572489892715193841447820557 (pp72) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.93 hours. Scaled time: 3.52 units (timescale=1.823). Factorization parameters were as follows: name: KA_4_8_125_7 n: 480664527849369266189969060980799482078884937664464172800653847852361236391117647744931659139661111090766438760195819 deg: 5 c5: 440 c0: -17 m: 10000000000000000000000000 skew: 0.52 type: snfs rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [350000, 610001) Primes: RFBsize:56543, AFBsize:56804, largePrimes:6699266 encountered Relations: rels:5887799, finalFF:149506 Max relations in full relation-set: 48 Initial matrix: 113414 x 149506 with sparse part having weight 22406191. Pruned matrix : 107903 x 108534 with weight 12662178. Total sieving time: 1.69 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.09 hours. Total square root time: 0.04 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,700000,700000,28,28,56,56,2.5,2.5,50000 total time: 1.93 hours. --------- CPU info (if available) ----------
(55·10189-1)/9 = 6(1)189<190> = 3 · 7 · C189
C189 = P44 · P146
P44 = 10804513265786317319460462777997312080002291<44>
P146 = 26933678903129430985310353961003134949691654361236458943029562303853859698336539161768227604516361368354018288214754655403161113549617827609433001<146>
Number: n N=291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: Sat Feb 28 20:23:31 2009 prp44 factor: 10804513265786317319460462777997312080002291 Sat Feb 28 20:23:31 2009 prp146 factor: 26933678903129430985310353961003134949691654361236458943029562303853859698336539161768227604516361368354018288214754655403161113549617827609433001 Sat Feb 28 20:23:31 2009 elapsed time 05:43:31 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 25.68 hours. Scaled time: 51.74 units (timescale=2.015). Factorization parameters were as follows: name: KA_6_1_189 n: 291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291 deg: 5 c5: 11 c0: -2 m: 100000000000000000000000000000000000000 skew: 0.71 type: snfs rlim: 9000000 alim: 9000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [4500000, 12000091) Primes: RFBsize:602489, AFBsize:603256, largePrimes:35249275 encountered Relations: rels:31811549, finalFF:766356 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3439632 hash collisions in 33747700 relations Msieve: matrix is 1996963 x 1997209 (545.6 MB) Total sieving time: 24.93 hours. Total relation processing time: 0.74 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,9000000,9000000,29,29,58,58,2.5,2.5,100000 total time: 25.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
By Wataru Sakai / Msieve / Feb 28, 2009
5·10195-7 = 4(9)1943<196> = 103 · C194
C194 = P40 · P155
P40 = 1538107507489534601481055687712361944471<40>
P155 = 31560660801675883119225896760035021175119702951582155400620760556441646547154939591760010210551656217315637522354907153165554249169443274017081188872379961<155>
Number: 49993_195 N=48543689320388349514563106796116504854368932038834951456310679611650485436893203883495145631067961165048543689320388349514563106796116504854368932038834951456310679611650485436893203883495145631 ( 194 digits) SNFS difficulty: 195 digits. Divisors found: r1=1538107507489534601481055687712361944471 r2=31560660801675883119225896760035021175119702951582155400620760556441646547154939591760010210551656217315637522354907153165554249169443274017081188872379961 Version: Total time: 490.56 hours. Scaled time: 960.02 units (timescale=1.957). Factorization parameters were as follows: n: 48543689320388349514563106796116504854368932038834951456310679611650485436893203883495145631067961165048543689320388349514563106796116504854368932038834951456310679611650485436893203883495145631 m: 1000000000000000000000000000000000000000 deg: 5 c5: 5 c0: -7 skew: 1.07 type: snfs lss: 1 rlim: 12800000 alim: 12800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12800000/12800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6400000, 12100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2209599 x 2209846 Total sieving time: 490.56 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12800000,12800000,28,28,55,55,2.5,2.5,100000 total time: 490.56 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Feb 28, 2009
(44·10164-53)/9 = 4(8)1633<165> = 3 · 7 · 107 · 191 · 2011 · 74353 · 977464297 · 8323776453036833<16> · 9095888398974523051<19> · C108
C108 = P46 · P62
P46 = 7862625727717047507506747886063428866231417793<46>
P62 = 13092697172411652719473407661621196298322843061510254562777291<62>
Number: 48883_164 N=102942977633012101180739550347858143335187192258265597979941494870078161661437989140125181736468106633738763 ( 108 digits) Divisors found: r1=7862625727717047507506747886063428866231417793 (pp46) r2=13092697172411652719473407661621196298322843061510254562777291 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 21.84 hours. Scaled time: 10.31 units (timescale=0.472). Factorization parameters were as follows: name: 48883_164 n: 102942977633012101180739550347858143335187192258265597979941494870078161661437989140125181736468106633738763 skew: 20692.37 # norm 1.34e+15 c5: 27600 c4: 3288080556 c3: -66558113477159 c2: -1080970303183105211 c1: 9820381395717295647051 c0: 99797268987273415522565403 # alpha -6.18 Y1: 172874243003 Y0: -326837632365735623162 # Murphy_E 1.34e-09 # M 29593209732172111755289090560667936426206250818983003423088700963706017810763694749058577282903162950489239 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:183778, largePrimes:4450675 encountered Relations: rels:4527310, finalFF:452352 Max relations in full relation-set: 28 Initial matrix: 366925 x 452352 with sparse part having weight 32939034. Pruned matrix : 301955 x 303853 with weight 19313258. Polynomial selection time: 1.24 hours. Total sieving time: 17.66 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.44 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 21.84 hours. --------- CPU info (if available) ----------
(44·10151-53)/9 = 4(8)1503<152> = 89 · 3828689299<10> · C141
C141 = P61 · P81
P61 = 1223424440156560969442482741818564284725731966756254692657813<61>
P81 = 117271609007689616091476396520146862786413933843883272607744325347034802241242981<81>
Number: 48883_151 N=143472952596491781054853177023595303753457066690313745153344570376869567149465397211683238998531186432590885097236794256571770660035621060553 ( 141 digits) SNFS difficulty: 153 digits. Divisors found: r1=1223424440156560969442482741818564284725731966756254692657813 r2=117271609007689616091476396520146862786413933843883272607744325347034802241242981 Version: Total time: 20.66 hours. Scaled time: 52.98 units (timescale=2.564). Factorization parameters were as follows: name: 48883_151 n: 143472952596491781054853177023595303753457066690313745153344570376869567149465397211683238998531186432590885097236794256571770660035621060553 m: 2000000000000000000000000000000 deg: 5 c5: 55 c0: -212 skew: 1.31 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 441545 x 441793 Total sieving time: 20.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 20.66 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1 / Feb 28, 2009
(44·10146-17)/9 = 4(8)1457<147> = 29437746451<11> · 39356253678142543<17> · C120
C120 = P39 · P82
P39 = 145977862620685020006575147046184107331<39>
P82 = 2890712197147550381221784038267660221257757249803464957889274361683240563824349089<82>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=695496723 Step 1 took 13197ms Step 2 took 11773ms ********** Factor found in step 2: 145977862620685020006575147046184107331 Found probable prime factor of 39 digits: 145977862620685020006575147046184107331 Probable prime cofactor 2890712197147550381221784038267660221257757249803464957889274361683240563824349089 has 82 digits
(44·10197-17)/9 = 4(8)1967<198> = 7 · 43 · 179 · C193
C193 = P30 · P164
P30 = 180192366370524429277382033171<30>
P164 = 50356350969832803448648096347995128791247155483945461392799207399795166974995809400922218508687516833945192101225665458371976955557885982556232271977569349459988443<164>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4228587319 Step 1 took 26145ms Step 2 took 18697ms ********** Factor found in step 2: 180192366370524429277382033171 Found probable prime factor of 30 digits: 180192366370524429277382033171 Probable prime cofactor has 164 digits
(44·10170-17)/9 = 4(8)1697<171> = 523 · 26393 · 5248786129<10> · C154
C154 = P29 · C126
P29 = 67204076825777480647940943101<29>
C126 = [100407284951808774048499368281072908226415208673026207174570944509767601913362756510328274963943649362315407074660910461389377<126>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=910978272 Step 1 took 15253ms Step 2 took 12953ms ********** Factor found in step 2: 67204076825777480647940943101 Found probable prime factor of 29 digits: 67204076825777480647940943101 Composite cofactor has 126 digits
(44·10166-17)/9 = 4(8)1657<167> = 19 · 177636367 · 493973401 · C149
C149 = P35 · P115
P35 = 10130025607661052751984594948001591<35>
P115 = 2894746758907489244526766490846737550788329151477578304420727802540456057343393197016694224714405763736055795654909<115>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2251914498 Step 1 took 14833ms Step 2 took 13428ms ********** Factor found in step 2: 10130025607661052751984594948001591 Found probable prime factor of 35 digits: 10130025607661052751984594948001591 Probable prime cofactor has 115 digits
(44·10176-17)/9 = 4(8)1757<177> = 43 · 659 · 98196426949<11> · 24146313277163821<17> · 192280009873992323<18> · C128
C128 = P32 · C96
P32 = 40080386376207456114952753675681<32>
C96 = [944155973540168858103069780436959607055778687934293351044551531753237918863965710505962721817613<96>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4011473568 Step 1 took 13833ms Step 2 took 12244ms ********** Factor found in step 2: 40080386376207456114952753675681 Found probable prime factor of 32 digits: 40080386376207456114952753675681 Composite cofactor has 96 digits
By Ignacio Santos / GGNFS, Msieve / Feb 28, 2009
(44·10104-17)/9 = 4(8)1037<105> = 1453 · 5568533287<10> · C92
C92 = P43 · P50
P43 = 5335076764314319996463585618733855222723227<43>
P50 = 11325648007691200306292519178705980717619362257871<50>
Number: 48887_104 N=60423201526636093683096215646055084505807396854920856177881774149911269616988042460035269717 ( 92 digits) SNFS difficulty: 105 digits. Divisors found: r1=5335076764314319996463585618733855222723227 (pp43) r2=11325648007691200306292519178705980717619362257871 (pp50) Version: GGNFS-0.77.1-VC8(Sat Total time: 0.40 hours. Scaled time: 0.48 units (timescale=1.201). Factorization parameters were as follows: n: 60423201526636093683096215646055084505807396854920856177881774149911269616988042460035269717 m: 100000000000000000000000000 deg: 4 c4: 44 c0: -17 skew: 0.79 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 280001) Primes: RFBsize:33860, AFBsize:33817, largePrimes:1146791 encountered Relations: rels:1124713, finalFF:144310 Max relations in full relation-set: 32 Initial matrix: 67743 x 144310 with sparse part having weight 5929428. Pruned matrix : 44033 x 44435 with weight 1341953. Total sieving time: 0.37 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.40 hours. --------- CPU info (if available) ----------
(44·10105-17)/9 = 4(8)1047<106> = 3 · 671323 · 2473609 · C93
C93 = P34 · P60
P34 = 2460362561262722710018034351313961<34>
P60 = 398866188750874688871780951536826630692272742500588933046327<60>
Number: 48887_105 N=981355437756202646545847788660158742199717984732887942496510975874151466019670362386934871247 ( 93 digits) SNFS difficulty: 106 digits. Divisors found: r1=2460362561262722710018034351313961 (pp34) r2=398866188750874688871780951536826630692272742500588933046327 (pp60) Version: GGNFS-0.77.1-VC8(Sat Total time: 0.43 hours. Scaled time: 0.48 units (timescale=1.123). Factorization parameters were as follows: n: 981355437756202646545847788660158742199717984732887942496510975874151466019670362386934871247 m: 200000000000000000000000000 deg: 4 c4: 55 c0: -34 skew: 0.89 type: snfs lss: 1 rlim: 420000 alim: 420000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 420000/420000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [210000, 290001) Primes: RFBsize:35390, AFBsize:35562, largePrimes:1153944 encountered Relations: rels:1133793, finalFF:148449 Max relations in full relation-set: 32 Initial matrix: 71018 x 148449 with sparse part having weight 5955462. Pruned matrix : 45383 x 45802 with weight 1386381. Total sieving time: 0.39 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,106,4,0,0,0,0,0,0,0,0,420000,420000,25,25,44,44,2.2,2.2,20000 total time: 0.43 hours. --------- CPU info (if available) ----------
(44·10107-17)/9 = 4(8)1067<108> = 7 · 151 · 2591167 · 9364636130953<13> · C86
C86 = P37 · P50
P37 = 1684619316590834232011834229283191761<37>
P50 = 11314805483343756222966792594459489946735699966481<50>
Fri Feb 27 16:38:55 2009 Fri Feb 27 16:38:55 2009 Fri Feb 27 16:38:55 2009 Msieve v. 1.39 Fri Feb 27 16:38:55 2009 random seeds: a52dbf50 a353c414 Fri Feb 27 16:38:55 2009 factoring 19061139880708782409319760633568622394892870084200765718273837254648507553224395363041 (86 digits) Fri Feb 27 16:38:55 2009 searching for 15-digit factors Fri Feb 27 16:38:56 2009 commencing quadratic sieve (86-digit input) Fri Feb 27 16:38:57 2009 using multiplier of 19 Fri Feb 27 16:38:57 2009 using 32kb Intel Core sieve core Fri Feb 27 16:38:57 2009 sieve interval: 14 blocks of size 32768 Fri Feb 27 16:38:57 2009 processing polynomials in batches of 15 Fri Feb 27 16:38:57 2009 using a sieve bound of 1446187 (55333 primes) Fri Feb 27 16:38:57 2009 using large prime bound of 115694960 (26 bits) Fri Feb 27 16:38:57 2009 using double large prime bound of 326562213825440 (41-49 bits) Fri Feb 27 16:38:57 2009 using trial factoring cutoff of 49 bits Fri Feb 27 16:38:57 2009 polynomial 'A' values have 11 factors Fri Feb 27 17:10:54 2009 55640 relations (15993 full + 39647 combined from 576459 partial), need 55429 Fri Feb 27 17:10:55 2009 begin with 592452 relations Fri Feb 27 17:10:55 2009 reduce to 131325 relations in 9 passes Fri Feb 27 17:10:55 2009 attempting to read 131325 relations Fri Feb 27 17:10:56 2009 recovered 131325 relations Fri Feb 27 17:10:56 2009 recovered 112086 polynomials Fri Feb 27 17:10:56 2009 attempting to build 55640 cycles Fri Feb 27 17:10:56 2009 found 55640 cycles in 5 passes Fri Feb 27 17:10:56 2009 distribution of cycle lengths: Fri Feb 27 17:10:56 2009 length 1 : 15993 Fri Feb 27 17:10:56 2009 length 2 : 11214 Fri Feb 27 17:10:56 2009 length 3 : 9830 Fri Feb 27 17:10:56 2009 length 4 : 7059 Fri Feb 27 17:10:56 2009 length 5 : 4878 Fri Feb 27 17:10:56 2009 length 6 : 3028 Fri Feb 27 17:10:56 2009 length 7 : 1708 Fri Feb 27 17:10:56 2009 length 9+: 1930 Fri Feb 27 17:10:56 2009 largest cycle: 17 relations Fri Feb 27 17:10:57 2009 matrix is 55333 x 55640 (12.7 MB) with weight 3100185 (55.72/col) Fri Feb 27 17:10:57 2009 sparse part has weight 3100185 (55.72/col) Fri Feb 27 17:10:57 2009 filtering completed in 3 passes Fri Feb 27 17:10:57 2009 matrix is 50382 x 50446 (11.6 MB) with weight 2837645 (56.25/col) Fri Feb 27 17:10:57 2009 sparse part has weight 2837645 (56.25/col) Fri Feb 27 17:10:57 2009 saving the first 48 matrix rows for later Fri Feb 27 17:10:57 2009 matrix is 50334 x 50446 (7.3 MB) with weight 2211621 (43.84/col) Fri Feb 27 17:10:57 2009 sparse part has weight 1613234 (31.98/col) Fri Feb 27 17:10:57 2009 matrix includes 64 packed rows Fri Feb 27 17:10:57 2009 using block size 20178 for processor cache size 4096 kB Fri Feb 27 17:10:57 2009 commencing Lanczos iteration Fri Feb 27 17:10:57 2009 memory use: 7.2 MB Fri Feb 27 17:11:08 2009 lanczos halted after 797 iterations (dim = 50328) Fri Feb 27 17:11:08 2009 recovered 16 nontrivial dependencies Fri Feb 27 17:11:08 2009 prp37 factor: 1684619316590834232011834229283191761 Fri Feb 27 17:11:08 2009 prp50 factor: 11314805483343756222966792594459489946735699966481 Fri Feb 27 17:11:08 2009 elapsed time 00:32:13
(44·10110-17)/9 = 4(8)1097<111> = 217003 · 1687573343<10> · C97
C97 = P45 · P52
P45 = 981851775139662680653913806484673951169790561<45>
P52 = 1359677287156986953147563312834625938221211913279323<52>
Number: 48887_110 N=1335001558012168518348363004668761307750965113758421449552209044664630372326427757870752601870203 ( 97 digits) SNFS difficulty: 111 digits. Divisors found: r1=981851775139662680653913806484673951169790561 (pp45) r2=1359677287156986953147563312834625938221211913279323 (pp52) Version: GGNFS-0.77.1-VC8(Sat Total time: 0.54 hours. Scaled time: 0.64 units (timescale=1.191). Factorization parameters were as follows: n: 1335001558012168518348363004668761307750965113758421449552209044664630372326427757870752601870203 m: 10000000000000000000000 deg: 5 c5: 44 c0: -17 skew: 0.83 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 355001) Primes: RFBsize:42291, AFBsize:42417, largePrimes:1164161 encountered Relations: rels:1141095, finalFF:142153 Max relations in full relation-set: 32 Initial matrix: 84776 x 142153 with sparse part having weight 5736914. Pruned matrix : 60886 x 61373 with weight 1839283. Total sieving time: 0.49 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.54 hours. --------- CPU info (if available) ----------
(44·10114-17)/9 = 4(8)1137<115> = 3 · 335809 · 2932883 · 23406287 · C95
C95 = P44 · P52
P44 = 26447950848946508125891246620051919927934567<44>
P52 = 2672866621436084828667546678655921370908295550092983<52>
Number: 48887_114 N=70691845029531284698770512690565030169046872661552376667469972646495013880968365567935989843361 ( 95 digits) SNFS difficulty: 116 digits. Divisors found: r1=26447950848946508125891246620051919927934567 (pp44) r2=2672866621436084828667546678655921370908295550092983 (pp52) Version: GGNFS-0.77.1-VC8(Sat Total time: 0.77 hours. Scaled time: 0.91 units (timescale=1.180). Factorization parameters were as follows: n: 70691845029531284698770512690565030169046872661552376667469972646495013880968365567935989843361 m: 100000000000000000000000 deg: 5 c5: 22 c0: -85 skew: 1.31 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 455001) Primes: RFBsize:49861, AFBsize:49685, largePrimes:1196972 encountered Relations: rels:1159168, finalFF:133478 Max relations in full relation-set: 32 Initial matrix: 99612 x 133478 with sparse part having weight 5722621. Pruned matrix : 82459 x 83021 with weight 2662959. Total sieving time: 0.70 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 0.77 hours. --------- CPU info (if available) ----------
(44·10191-17)/9 = 4(8)1907<192> = 7 · 751 · 1229217511<10> · 555335785751<12> · 17600056050845750873641<23> · 809722687213904864836267331<27> · 3959130287390886271927035127231<31> · C88
C88 = P36 · P53
P36 = 144550996278661975016517134044638733<36>
P53 = 16703848779271170927251535893830201636903983700639807<53>
Fri Feb 27 17:57:37 2009 Fri Feb 27 17:57:37 2009 Fri Feb 27 17:57:37 2009 Msieve v. 1.39 Fri Feb 27 17:57:37 2009 random seeds: 358661f0 a7325abd Fri Feb 27 17:57:37 2009 factoring 2414557982731759402829396316481997213725995106766293870774234544362028453002350273844531 (88 digits) Fri Feb 27 17:57:37 2009 searching for 15-digit factors Fri Feb 27 17:57:39 2009 commencing quadratic sieve (88-digit input) Fri Feb 27 17:57:39 2009 using multiplier of 1 Fri Feb 27 17:57:39 2009 using 32kb Intel Core sieve core Fri Feb 27 17:57:39 2009 sieve interval: 25 blocks of size 32768 Fri Feb 27 17:57:39 2009 processing polynomials in batches of 9 Fri Feb 27 17:57:39 2009 using a sieve bound of 1517671 (57486 primes) Fri Feb 27 17:57:39 2009 using large prime bound of 121413680 (26 bits) Fri Feb 27 17:57:39 2009 using double large prime bound of 356189977465520 (42-49 bits) Fri Feb 27 17:57:39 2009 using trial factoring cutoff of 49 bits Fri Feb 27 17:57:39 2009 polynomial 'A' values have 11 factors Fri Feb 27 18:32:02 2009 57591 relations (16453 full + 41138 combined from 603248 partial), need 57582 Fri Feb 27 18:32:02 2009 begin with 619701 relations Fri Feb 27 18:32:03 2009 reduce to 136773 relations in 9 passes Fri Feb 27 18:32:03 2009 attempting to read 136773 relations Fri Feb 27 18:32:04 2009 recovered 136773 relations Fri Feb 27 18:32:04 2009 recovered 109875 polynomials Fri Feb 27 18:32:04 2009 attempting to build 57591 cycles Fri Feb 27 18:32:04 2009 found 57591 cycles in 5 passes Fri Feb 27 18:32:04 2009 distribution of cycle lengths: Fri Feb 27 18:32:04 2009 length 1 : 16453 Fri Feb 27 18:32:04 2009 length 2 : 11427 Fri Feb 27 18:32:04 2009 length 3 : 10253 Fri Feb 27 18:32:04 2009 length 4 : 7428 Fri Feb 27 18:32:04 2009 length 5 : 5066 Fri Feb 27 18:32:04 2009 length 6 : 3145 Fri Feb 27 18:32:04 2009 length 7 : 1772 Fri Feb 27 18:32:04 2009 length 9+: 2047 Fri Feb 27 18:32:04 2009 largest cycle: 16 relations Fri Feb 27 18:32:04 2009 matrix is 57486 x 57591 (13.1 MB) with weight 3193032 (55.44/col) Fri Feb 27 18:32:04 2009 sparse part has weight 3193032 (55.44/col) Fri Feb 27 18:32:05 2009 filtering completed in 3 passes Fri Feb 27 18:32:05 2009 matrix is 52712 x 52775 (12.1 MB) with weight 2967477 (56.23/col) Fri Feb 27 18:32:05 2009 sparse part has weight 2967477 (56.23/col) Fri Feb 27 18:32:05 2009 saving the first 48 matrix rows for later Fri Feb 27 18:32:05 2009 matrix is 52664 x 52775 (7.4 MB) with weight 2253771 (42.71/col) Fri Feb 27 18:32:05 2009 sparse part has weight 1629875 (30.88/col) Fri Feb 27 18:32:05 2009 matrix includes 64 packed rows Fri Feb 27 18:32:05 2009 using block size 21110 for processor cache size 4096 kB Fri Feb 27 18:32:05 2009 commencing Lanczos iteration Fri Feb 27 18:32:05 2009 memory use: 7.5 MB Fri Feb 27 18:32:16 2009 lanczos halted after 834 iterations (dim = 52660) Fri Feb 27 18:32:16 2009 recovered 14 nontrivial dependencies Fri Feb 27 18:32:17 2009 prp36 factor: 144550996278661975016517134044638733 Fri Feb 27 18:32:17 2009 prp53 factor: 16703848779271170927251535893830201636903983700639807 Fri Feb 27 18:32:17 2009 elapsed time 00:34:40
(44·10123-17)/9 = 4(8)1227<124> = 3 · 4026625162490093161507<22> · C102
C102 = P45 · P58
P45 = 145178383648848147018910389708774434246239763<45>
P58 = 2787698185156916726878264114124424897244941552415044169669<58>
Number: 48887_123 N=404713516621908573560883803475538757792929116276848385070404870112011575428570816498677996319826348447 ( 102 digits) SNFS difficulty: 126 digits. Divisors found: r1=145178383648848147018910389708774434246239763 (pp45) r2=2787698185156916726878264114124424897244941552415044169669 (pp58) Version: Msieve-1.39 Total time: 1.60 hours. Scaled time: 1.91 units (timescale=1.196). Factorization parameters were as follows: n: 404713516621908573560883803475538757792929116276848385070404870112011575428570816498677996319826348447 m: 10000000000000000000000000 deg: 5 c5: 11 c0: -425 skew: 2.08 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 109885 x 110130 Total sieving time: 1.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.60 hours. --------- CPU info (if available) ----------
(44·10163-53)/9 = 4(8)1623<164> = 30585951059<11> · C154
C154 = P46 · P108
P46 = 3409381221648677307546535609243234419019084991<46>
P108 = 468826997834597142439467798015574281037728660247030807287630943512703579760743270536065940594634112718677407<108>
Number: 48883_163 N=1598409962619200596193855594467257493982145487120616427743983492682436548094421930883169039497314160954071802200907617979095677885648999229600476844498337 ( 154 digits) SNFS difficulty: 166 digits. Divisors found: r1=3409381221648677307546535609243234419019084991 (pp46) r2=468826997834597142439467798015574281037728660247030807287630943512703579760743270536065940594634112718677407 (pp108) Version: Msieve-1.39 Total time: 43.07 hours. Scaled time: 110.73 units (timescale=2.571). Factorization parameters were as follows: n: 1598409962619200596193855594467257493982145487120616427743983492682436548094421930883169039497314160954071802200907617979095677885648999229600476844498337 m: 1000000000000000000000000000000000 deg: 5 c5: 11 c0: -1325 skew: 2.61 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 809954 x 810202 Total sieving time: 43.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 43.07 hours. --------- CPU info (if available) ----------
(32·10165+31)/9 = 3(5)1649<166> = 345912299 · 1961284511<10> · C148
C148 = P50 · P99
P50 = 46393037881197844769329919028092780602515119298841<50>
P99 = 112966079015722151503179720005482232418100365053255767820984303808963205364486267061134585021699491<99>
Number: 35559_165 N=5240839583066786717102808797593959640532192845212103667267982451818208133709752857084047933147048892935211822889041927310853330956386924574126589931 ( 148 digits) SNFS difficulty: 166 digits. Divisors found: r1=46393037881197844769329919028092780602515119298841 (pp50) r2=112966079015722151503179720005482232418100365053255767820984303808963205364486267061134585021699491 (pp99) Version: Msieve-1.39 Total time: 32.66 hours. Scaled time: 84.30 units (timescale=2.581). Factorization parameters were as follows: n: 5240839583066786717102808797593959640532192845212103667267982451818208133709752857084047933147048892935211822889041927310853330956386924574126589931 m: 2000000000000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 760137 x 760385 Total sieving time: 32.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 32.66 hours. --------- CPU info (if available) ----------
(44·10139-17)/9 = 4(8)1387<140> = 31 · 47 · C137
C137 = P42 · P96
P42 = 247241610213621214642616779079680643653573<42>
P96 = 135715375271042152313074475367181093008863209189025885597583020412222531793776330579073842334267<96>
Number: 48887_139 N=33554487912758331426828338290246320445359566842065126210630671852360253183863341721955311522916190040417905894913444673225043849614885991 ( 137 digits) SNFS difficulty: 141 digits. Divisors found: r1=247241610213621214642616779079680643653573 (pp42) r2=135715375271042152313074475367181093008863209189025885597583020412222531793776330579073842334267 (pp96) Version: Msieve-1.39 Total time: 3.89 hours. Scaled time: 4.63 units (timescale=1.189). Factorization parameters were as follows: n: 33554487912758331426828338290246320445359566842065126210630671852360253183863341721955311522916190040417905894913444673225043849614885991 m: 10000000000000000000000000000 deg: 5 c5: 22 c0: -85 skew: 1.31 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [795000, 1495001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 221252 x 221500 Total sieving time: 3.89 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 3.89 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Feb 28, 2009
(35·1056898-17)/9 = 3(8)568977<56899> is PRP.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 27, 2009
(43·10185+11)/9 = 4(7)1849<186> = C186
C186 = P76 · P110
P76 = 6092161031711376573217867290800843504998437328608501888921342869012660587079<76>
P110 = 78425008021096752968798242838308148647291250676054244791585916514921983250238038209750337111800904899951773301<110>
Number: 47779_185 N=477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 186 digits) SNFS difficulty: 186 digits. Divisors found: r1=6092161031711376573217867290800843504998437328608501888921342869012660587079 r2=78425008021096752968798242838308148647291250676054244791585916514921983250238038209750337111800904899951773301 Version: Total time: 142.37 hours. Scaled time: 339.83 units (timescale=2.387). Factorization parameters were as follows: n: 477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 m: 10000000000000000000000000000000000000 deg: 5 c5: 43 c0: 11 skew: 0.76 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20439229 Max relations in full relation-set: Initial matrix: Pruned matrix : 1810029 x 1810277 Total sieving time: 129.27 hours. Total relation processing time: 3.92 hours. Matrix solve time: 8.89 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 142.37 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / GGNFS, Msieve / Feb 27, 2009
(44·10143-53)/9 = 4(8)1423<144> = 32 · 471671 · 5072605471<10> · C128
C128 = P52 · P76
P52 = 3166361761003036680303142908682110958372709395350709<52>
P76 = 7170292373088502235906232820143055411742367312635436307677957012591149333623<76>
Number: 48883_143 N=22703739585359152834153630462313097456102458702056872748467242203681433200574940099692377148680851774990929417252110879730588707 ( 128 digits) SNFS difficulty: 146 digits. Divisors found: r1=3166361761003036680303142908682110958372709395350709 (pp52) r2=7170292373088502235906232820143055411742367312635436307677957012591149333623 (pp76) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 19.94 hours. Scaled time: 9.41 units (timescale=0.472). Factorization parameters were as follows: name: 48883_143 n: 22703739585359152834153630462313097456102458702056872748467242203681433200574940099692377148680851774990929417252110879730588707 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: -1325 skew: 2.61 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2450001) Primes: RFBsize:142029, AFBsize:142523, largePrimes:4104424 encountered Relations: rels:4229370, finalFF:348448 Max relations in full relation-set: 28 Initial matrix: 284618 x 348448 with sparse part having weight 35413561. Pruned matrix : 262138 x 263625 with weight 24173663. Total sieving time: 17.49 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.14 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 19.94 hours. --------- CPU info (if available) ----------
(44·10153-53)/9 = 4(8)1523<154> = 17 · 1283 · 4019 · C146
C146 = P63 · P84
P63 = 200326200647338176783717118787364154206526143935667093756398611<63>
P84 = 278406152648363885257167153873463163169044380062157145420913892618617561178604359417<84>
Number: 48883_153 N=55772046796889604611565433373184869108095366970314153076733218930415322606287422908723895375387076542638241231242160565438609419535425162563569787 ( 146 digits) SNFS difficulty: 156 digits. Divisors found: r1=200326200647338176783717118787364154206526143935667093756398611 r2=278406152648363885257167153873463163169044380062157145420913892618617561178604359417 Version: Total time: 21.35 hours. Scaled time: 54.53 units (timescale=2.554). Factorization parameters were as follows: name: 48883_153 n: 55772046796889604611565433373184869108095366970314153076733218930415322606287422908723895375387076542638241231242160565438609419535425162563569787 m: 10000000000000000000000000000000 deg: 5 c5: 11 c0: -1325 skew: 2.61 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 556380 x 556627 Total sieving time: 21.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 21.35 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Feb 27, 2009
(44·10161-53)/9 = 4(8)1603<162> = 33 · 127 · 557 · 809 · C153
C153 = P69 · P85
P69 = 270753400153194627352563532766388049026002628614359930789354579172611<69>
P85 = 1168597750273654958778265117257632928376975109003170721228878788746067186593553414889<85>
Number: 48883_161 N=316401814297965907394291797154972600399998639673545127845303781978003377261891752987666719911842619277112628571479923032120541297983200838818775228405179 ( 153 digits) SNFS difficulty: 163 digits. Divisors found: r1=270753400153194627352563532766388049026002628614359930789354579172611 (pp69) r2=1168597750273654958778265117257632928376975109003170721228878788746067186593553414889 (pp85) Version: Msieve-1.39 Total time: 38.09 hours. Scaled time: 97.94 units (timescale=2.571). Factorization parameters were as follows: n: 316401814297965907394291797154972600399998639673545127845303781978003377261891752987666719911842619277112628571479923032120541297983200838818775228405179 m: 200000000000000000000000000000000 deg: 5 c5: 55 c0: -212 skew: 1.31 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 695008 x 695256 Total sieving time: 38.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 38.09 hours. --------- CPU info (if available) ----------
(44·10171-53)/9 = 4(8)1703<172> = C172
C172 = P59 · P113
P59 = 75059015380479339613706194125465158146139625871231697571901<59>
P113 = 65133933133905008261265014533189153316103348018734416649842781849800236873376647775219658789236125956277334331183<113>
Number: 48883_171 N=4888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 ( 172 digits) SNFS difficulty: 173 digits. Divisors found: r1=75059015380479339613706194125465158146139625871231697571901 (pp59) r2=65133933133905008261265014533189153316103348018734416649842781849800236873376647775219658789236125956277334331183 (pp113) Version: Msieve-1.39 Total time: 84.05 hours. Scaled time: 146.16 units (timescale=1.739). Factorization parameters were as follows: n: 4888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 m: 20000000000000000000000000000000000 deg: 5 c5: 55 c0: -212 skew: 1.31 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 7100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1078148 x 1078396 Total sieving time: 84.05 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 84.05 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Feb 27, 2009
(44·10141-53)/9 = 4(8)1403<142> = 39161 · 123787 · 171881 · 6897173 · 269695261837<12> · 6199736064021385889457145645067<31> · C78
C78 = P31 · P47
P31 = 8369302132878724900360524015317<31>
P47 = 60792023715215966066345455742641376351243291791<47>
GMP-ECM 6.2.1 [powered by GMP 4.1.4] [ECM] Input number is 508786813741771010621372438944508866566847913331596410044410894001651984362747 (78 digits) Using B1=452000, B2=347971482, polynomial Dickson(3), sigma=880082943 Step 1 took 3437ms Step 2 took 1875ms ********** Factor found in step 2: 8369302132878724900360524015317 Found probable prime factor of 31 digits: 8369302132878724900360524015317 Probable prime cofactor 60792023715215966066345455742641376351243291791 has 47 digits
(43·10179-61)/9 = 4(7)1781<180> = 32 · 7 · C178
C178 = P38 · P45 · P96
P38 = 90888011291841593728293037617292729219<38>
P45 = 509748305905847001126736992629137395340449583<45>
P96 = 163690322664170779588161072669009425584870041615565614512563841959454808119330543582803439622121<96>
Number: n N=7583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917 ( 178 digits) SNFS difficulty: 181 digits. Divisors found: Fri Feb 27 08:19:29 2009 prp38 factor: 90888011291841593728293037617292729219 Fri Feb 27 08:19:29 2009 prp45 factor: 509748305905847001126736992629137395340449583 Fri Feb 27 08:19:29 2009 prp96 factor: 163690322664170779588161072669009425584870041615565614512563841959454808119330543582803439622121 Fri Feb 27 08:19:29 2009 elapsed time 03:37:09 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 8.15 hours. Scaled time: 16.43 units (timescale=2.016). Factorization parameters were as follows: name: KA_4_7_178_1 n: 7583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917107583774250440917 deg: 5 c5: 43 c0: -610 m: 1000000000000000000000000000000000000 skew: 1.70 type: snfs rlim: 8000000 alim: 8000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [4000000, 5599990) Primes: RFBsize:539777, AFBsize:539266, largePrimes:30064188 encountered Relations: rels:23614284, finalFF:235540 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3257735 hash collisions in 34545968 relations Msieve: matrix is 1564511 x 1564759 (427.1 MB) Total sieving time: 7.71 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8000000,8000000,29,29,58,58,2.5,2.5,100000 total time: 8.15 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
Factorizations of 488...887 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Serge Batalov / PFGW / Feb 27, 2009
(61·1052763-7)/9 = 6(7)52763<52764> is PRP.
(76·1040743-31)/9 = 8(4)407421<40744> is PRP.
By matsui / GGNFS / Feb 26, 2009
(86·10181+31)/9 = 9(5)1809<182> = 33 · 11 · 38219 · C175
C175 = P53 · P123
P53 = 32928690580332125411741090087710651306629243139878707<53>
P123 = 255649949770519847347395270618009705435442504020620821952131412204032479590771377721477095985577060681219537413453936952959<123>
N=8418218092870897903880335538818376034304121264940636341132313176468061618263234097127070662630346440900237586586145040200760014348950625555339324814077046096605885076424744013 ( 175 digits) SNFS difficulty: 183 digits. Divisors found: r1=32928690580332125411741090087710651306629243139878707 (pp53) r2=255649949770519847347395270618009705435442504020620821952131412204032479590771377721477095985577060681219537413453936952959 (pp123) Version: GGNFS-0.77.1-20060722-nocona
By Robert Backstrom / Msieve, GGNFS / Feb 26, 2009
(44·10110-53)/9 = 4(8)1093<111> = 3 · 72 · 73 · 233 · 761 · 60433935059<11> · C91
C91 = P40 · P51
P40 = 5206728456358460814368918326710497623619<40>
P51 = 816551520937130805126208331277646872665420305239041<51>
Thu Feb 26 12:33:30 2009 Thu Feb 26 12:33:30 2009 Thu Feb 26 12:33:30 2009 Msieve v. 1.39 Thu Feb 26 12:33:30 2009 random seeds: 1c0eaa08 647b5fed Thu Feb 26 12:33:30 2009 factoring 4251562040146140473214122361854652982848323985713055697350360731657598250913534246242509379 (91 digits) Thu Feb 26 12:33:30 2009 searching for 15-digit factors Thu Feb 26 12:33:31 2009 commencing quadratic sieve (91-digit input) Thu Feb 26 12:33:32 2009 using multiplier of 3 Thu Feb 26 12:33:32 2009 using 64kb Opteron sieve core Thu Feb 26 12:33:32 2009 sieve interval: 18 blocks of size 65536 Thu Feb 26 12:33:32 2009 processing polynomials in batches of 6 Thu Feb 26 12:33:32 2009 using a sieve bound of 1719869 (64602 primes) Thu Feb 26 12:33:32 2009 using large prime bound of 165107424 (27 bits) Thu Feb 26 12:33:32 2009 using double large prime bound of 619412223763104 (42-50 bits) Thu Feb 26 12:33:32 2009 using trial factoring cutoff of 50 bits Thu Feb 26 12:33:32 2009 polynomial 'A' values have 12 factors Thu Feb 26 14:20:01 2009 64779 relations (16935 full + 47844 combined from 763205 partial), need 64698 Thu Feb 26 14:20:02 2009 begin with 780140 relations Thu Feb 26 14:20:03 2009 reduce to 161345 relations in 11 passes Thu Feb 26 14:20:03 2009 attempting to read 161345 relations Thu Feb 26 14:20:04 2009 recovered 161345 relations Thu Feb 26 14:20:04 2009 recovered 140533 polynomials Thu Feb 26 14:20:05 2009 attempting to build 64779 cycles Thu Feb 26 14:20:05 2009 found 64779 cycles in 6 passes Thu Feb 26 14:20:05 2009 distribution of cycle lengths: Thu Feb 26 14:20:05 2009 length 1 : 16935 Thu Feb 26 14:20:05 2009 length 2 : 12091 Thu Feb 26 14:20:05 2009 length 3 : 11203 Thu Feb 26 14:20:05 2009 length 4 : 8860 Thu Feb 26 14:20:05 2009 length 5 : 6186 Thu Feb 26 14:20:05 2009 length 6 : 4047 Thu Feb 26 14:20:05 2009 length 7 : 2466 Thu Feb 26 14:20:05 2009 length 9+: 2991 Thu Feb 26 14:20:05 2009 largest cycle: 21 relations Thu Feb 26 14:20:06 2009 matrix is 64602 x 64779 (16.1 MB) with weight 3955790 (61.07/col) Thu Feb 26 14:20:06 2009 sparse part has weight 3955790 (61.07/col) Thu Feb 26 14:20:07 2009 filtering completed in 3 passes Thu Feb 26 14:20:07 2009 matrix is 60649 x 60713 (15.2 MB) with weight 3741452 (61.63/col) Thu Feb 26 14:20:07 2009 sparse part has weight 3741452 (61.63/col) Thu Feb 26 14:20:08 2009 saving the first 48 matrix rows for later Thu Feb 26 14:20:08 2009 matrix is 60601 x 60713 (9.7 MB) with weight 2963658 (48.81/col) Thu Feb 26 14:20:08 2009 sparse part has weight 2177748 (35.87/col) Thu Feb 26 14:20:08 2009 matrix includes 64 packed rows Thu Feb 26 14:20:08 2009 using block size 21845 for processor cache size 512 kB Thu Feb 26 14:20:08 2009 commencing Lanczos iteration Thu Feb 26 14:20:08 2009 memory use: 9.4 MB Thu Feb 26 14:20:43 2009 lanczos halted after 960 iterations (dim = 60599) Thu Feb 26 14:20:43 2009 recovered 16 nontrivial dependencies Thu Feb 26 14:20:44 2009 prp40 factor: 5206728456358460814368918326710497623619 Thu Feb 26 14:20:44 2009 prp51 factor: 816551520937130805126208331277646872665420305239041 Thu Feb 26 14:20:44 2009 elapsed time 01:47:14
(44·10125-53)/9 = 4(8)1243<126> = 32 · 71 · 571 · 30429810494761178782216697<26> · C95
C95 = P41 · P55
P41 = 21359195843830967403453380962112507429977<41>
P55 = 2061527132411459461397036590954458932353735933027377703<55>
Thu Feb 26 12:35:45 2009 Thu Feb 26 12:35:45 2009 Thu Feb 26 12:35:45 2009 Msieve v. 1.39 Thu Feb 26 12:35:45 2009 random seeds: 4e3e03e0 16ce5ef6 Thu Feb 26 12:35:45 2009 factoring 44032561758547617341803247676823990868053192972587863182516175908299645509602916744544203602831 (95 digits) Thu Feb 26 12:35:45 2009 searching for 15-digit factors Thu Feb 26 12:35:46 2009 commencing quadratic sieve (95-digit input) Thu Feb 26 12:35:46 2009 using multiplier of 1 Thu Feb 26 12:35:46 2009 using 64kb Opteron sieve core Thu Feb 26 12:35:46 2009 sieve interval: 18 blocks of size 65536 Thu Feb 26 12:35:46 2009 processing polynomials in batches of 6 Thu Feb 26 12:35:46 2009 using a sieve bound of 2162071 (79710 primes) Thu Feb 26 12:35:46 2009 using large prime bound of 324310650 (28 bits) Thu Feb 26 12:35:46 2009 using double large prime bound of 2087998231332900 (43-51 bits) Thu Feb 26 12:35:46 2009 using trial factoring cutoff of 51 bits Thu Feb 26 12:35:46 2009 polynomial 'A' values have 12 factors Thu Feb 26 14:29:17 2009 79910 relations (20477 full + 59433 combined from 1182055 partial), need 79806 Thu Feb 26 14:29:19 2009 begin with 1202532 relations Thu Feb 26 14:29:20 2009 reduce to 204460 relations in 10 passes Thu Feb 26 14:29:20 2009 attempting to read 204460 relations Thu Feb 26 14:29:23 2009 recovered 204460 relations Thu Feb 26 14:29:23 2009 recovered 182671 polynomials Thu Feb 26 14:29:23 2009 attempting to build 79910 cycles Thu Feb 26 14:29:23 2009 found 79910 cycles in 5 passes Thu Feb 26 14:29:24 2009 distribution of cycle lengths: Thu Feb 26 14:29:24 2009 length 1 : 20477 Thu Feb 26 14:29:24 2009 length 2 : 14443 Thu Feb 26 14:29:24 2009 length 3 : 13675 Thu Feb 26 14:29:24 2009 length 4 : 10718 Thu Feb 26 14:29:24 2009 length 5 : 7849 Thu Feb 26 14:29:24 2009 length 6 : 5123 Thu Feb 26 14:29:24 2009 length 7 : 3277 Thu Feb 26 14:29:24 2009 length 9+: 4348 Thu Feb 26 14:29:24 2009 largest cycle: 21 relations Thu Feb 26 14:29:24 2009 matrix is 79710 x 79910 (21.1 MB) with weight 5207940 (65.17/col) Thu Feb 26 14:29:24 2009 sparse part has weight 5207940 (65.17/col) Thu Feb 26 14:29:25 2009 filtering completed in 3 passes Thu Feb 26 14:29:25 2009 matrix is 75065 x 75129 (20.0 MB) with weight 4934428 (65.68/col) Thu Feb 26 14:29:25 2009 sparse part has weight 4934428 (65.68/col) Thu Feb 26 14:29:25 2009 saving the first 48 matrix rows for later Thu Feb 26 14:29:25 2009 matrix is 75017 x 75129 (13.0 MB) with weight 3925757 (52.25/col) Thu Feb 26 14:29:25 2009 sparse part has weight 2952697 (39.30/col) Thu Feb 26 14:29:25 2009 matrix includes 64 packed rows Thu Feb 26 14:29:25 2009 using block size 30051 for processor cache size 1024 kB Thu Feb 26 14:29:26 2009 commencing Lanczos iteration Thu Feb 26 14:29:26 2009 memory use: 12.2 MB Thu Feb 26 14:30:04 2009 lanczos halted after 1188 iterations (dim = 75016) Thu Feb 26 14:30:04 2009 recovered 17 nontrivial dependencies Thu Feb 26 14:30:05 2009 prp41 factor: 21359195843830967403453380962112507429977 Thu Feb 26 14:30:05 2009 prp55 factor: 2061527132411459461397036590954458932353735933027377703 Thu Feb 26 14:30:05 2009 elapsed time 01:54:20
(37·10205+17)/9 = 4(1)2043<206> = C206
C206 = P53 · P75 · P79
P53 = 38708903282648616349050646735593058494904684196090851<53>
P75 = 523279404482581894105023739895022302701579043553621531881177081933138648717<75>
P79 = 2029619869509639122374709122919684913926210413942382626800386423565291654417839<79>
Number: n N=41111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 206 digits) SNFS difficulty: 206 digits. Divisors found: Thu Feb 26 18:48:16 2009 prp53 factor: 38708903282648616349050646735593058494904684196090851 Thu Feb 26 18:48:16 2009 prp75 factor: 523279404482581894105023739895022302701579043553621531881177081933138648717 Thu Feb 26 18:48:16 2009 prp79 factor: 2029619869509639122374709122919684913926210413942382626800386423565291654417839 Thu Feb 26 18:48:16 2009 elapsed time 16:58:34 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 111.52 hours. Scaled time: 224.70 units (timescale=2.015). Factorization parameters were as follows: name: KA_4_1_204_3 n: 41111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 deg: 5 c5: 37 c0: 17 m: 100000000000000000000000000000000000000000 skew: 0.86 type: snfs rlim: 11000000 alim: 11000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [5500000, 32599990) Primes: RFBsize:726517, AFBsize:727428, largePrimes:36880338 encountered Relations: rels:31940379, finalFF:85284 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8266595 hash collisions in 45511633 relations Msieve: matrix is 3184069 x 3184317 (863.6 MB) Total sieving time: 110.22 hours. Total relation processing time: 1.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,11000000,11000000,29,29,58,58,2.5,2.5,100000 total time: 111.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368976k/3407296k available (2745k kernel code, 36940k reserved, 1424k data, 412k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.99 BogoMIPS (lpj=2830498) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830458) Calibrating delay using timer specific routine.. 5660.90 BogoMIPS (lpj=2830454) Total of 4 processors activated (22643.71 BogoMIPS).
By Serge Batalov / GMP-ECM 6.2.1 / Feb 26, 2009
(44·10200-53)/9 = 4(8)1993<201> = 3 · 7 · 23 · 490151 · 603522709 · 12983684697563<14> · 485460576989519<15> · C156
C156 = P34 · C122
P34 = 7046882295480502467634870497200027<34>
C122 = [77035442509364829592824984655079160994427570285601319384761126720874299891224577489225266938170642713438522459468169082381<122>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2540175551 Step 1 took 32875ms ********** Factor found in step 1: 7046882295480502467634870497200027 Found probable prime factor of 34 digits: 7046882295480502467634870497200027 Composite cofactor has 122 digits
(44·10204-53)/9 = 4(8)2033<205> = 31 · 131 · C202
C202 = P35 · C167
P35 = 75956254527312360496911296790966809<35>
C167 = [15849429573449204111210382410071127103818486388678547282497647139185547003406911430474426852551951533584065408618982135342664560514133979604513938702039208944975046567<167>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=100595225 Step 1 took 63234ms Step 2 took 31359ms ********** Factor found in step 2: 75956254527312360496911296790966809 Found probable prime factor of 35 digits: 75956254527312360496911296790966809 Composite cofactor has 167 digits
(44·10192-53)/9 = 4(8)1913<193> = 696457 · 8169034619<10> · 363391761793<12> · 8428473113059<13> · C153
C153 = P30 · P124
P30 = 133396886663428373837032220609<30>
P124 = 2103175169457846601552806103544676440988572210079484013420789074998367704348399128910180822984955341604439165177509040355947<124>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2020511789 Step 1 took 29469ms ********** Factor found in step 1: 133396886663428373837032220609 Found probable prime factor of 30 digits: 133396886663428373837032220609 Probable prime cofactor has 124 digits
By Ignacio Santos / GGNFS, Msieve / Feb 26, 2009
(4·10190+41)/9 = (4)1899<190> = 32 · C189
C189 = P40 · P150
P40 = 2948837566996825795307130730192425607301<40>
P150 = 167465026226166064292399776036696947548186926080316744399282734221869926819933052095255866949131779342147271334939590492205749388252413890515966641861<150>
Number: 44449_190 N=493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827161 ( 189 digits) SNFS difficulty: 190 digits. Divisors found: r1=2948837566996825795307130730192425607301 (pp40) r2=167465026226166064292399776036696947548186926080316744399282734221869926819933052095255866949131779342147271334939590492205749388252413890515966641861 (pp150) Version: Msieve-1.39 Total time: 258.26 hours. Scaled time: 449.12 units (timescale=1.739). Factorization parameters were as follows: n: 493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827161 m: 100000000000000000000000000000000000000 deg: 5 c5: 4 c0: 41 skew: 1.59 type: snfs lss: 1 rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5250000, 9550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1923959 x 1924207 Total sieving time: 258.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000 total time: 258.26 hours. --------- CPU info (if available) ----------
(43·10163+11)/9 = 4(7)1629<164> = 7 · 52419239 · 1739922117943453<16> · C140
C140 = P68 · P73
P68 = 30725208977326294282026917154259056299124533303220352723575950353573<68>
P73 = 2435636872107711589373030968932924793282530963776468209854648002649046067<73>
Number: 47779_163 N=74835451888390795421193860921480029591140239303958107726711659068218174860236715990676357673712284630905548931915876695279066763919815047391 ( 140 digits) SNFS difficulty: 166 digits. Divisors found: r1=30725208977326294282026917154259056299124533303220352723575950353573 (pp68) r2=2435636872107711589373030968932924793282530963776468209854648002649046067 (pp73) Version: Msieve-1.39 Total time: 46.46 hours. Scaled time: 119.46 units (timescale=2.571). Factorization parameters were as follows: n: 74835451888390795421193860921480029591140239303958107726711659068218174860236715990676357673712284630905548931915876695279066763919815047391 m: 500000000000000000000000000000000 deg: 5 c5: 344 c0: 275 skew: 0.96 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 4450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 764035 x 764282 Total sieving time: 46.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 46.46 hours. --------- CPU info (if available) ----------
(44·10156-53)/9 = 4(8)1553<157> = 23 · 54439171 · C148
C148 = P68 · P81
P68 = 22678645829390954202749404051050551174900006487478899476556840123289<68>
P81 = 172168505322445876370816162423063654892260575030429034434333933237155428621798959<81>
Number: 48883_156 N=3904548555183361474972152974898301500498034441516456316616201170811593739854587975847222604768148422814799459053584850965755880391863655682531856151 ( 148 digits) SNFS difficulty: 158 digits. Divisors found: r1=22678645829390954202749404051050551174900006487478899476556840123289 (pp68) r2=172168505322445876370816162423063654892260575030429034434333933237155428621798959 (pp81) Version: Msieve-1.39 Total time: 25.70 hours. Scaled time: 66.08 units (timescale=2.571). Factorization parameters were as follows: n: 3904548555183361474972152974898301500498034441516456316616201170811593739854587975847222604768148422814799459053584850965755880391863655682531856151 m: 20000000000000000000000000000000 deg: 5 c5: 55 c0: -212 skew: 1.31 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 569817 x 570065 Total sieving time: 25.70 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 25.70 hours. --------- CPU info (if available) ----------
(44·10135-53)/9 = 4(8)1343<136> = 1097 · 7356997 · 4215858307<10> · C117
C117 = P42 · P75
P42 = 332560041044241248900484291976845162767167<42>
P75 = 432062813561467316727657432335915267712627225383416457686955661487805189323<75>
Number: 48883_135 N=143686827011691925346526157094251099188322446463017116723156638837921518214692501721207858184843360138281649003357941 ( 117 digits) SNFS difficulty: 136 digits. Divisors found: r1=332560041044241248900484291976845162767167 (pp42) r2=432062813561467316727657432335915267712627225383416457686955661487805189323 (pp75) Version: Msieve-1.39 Total time: 3.60 hours. Scaled time: 9.25 units (timescale=2.571). Factorization parameters were as follows: n: 143686827011691925346526157094251099188322446463017116723156638837921518214692501721207858184843360138281649003357941 m: 1000000000000000000000000000 deg: 5 c5: 44 c0: -53 skew: 1.04 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 190904 x 191152 Total sieving time: 3.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 3.60 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Feb 26, 2009
(44·10139-71)/9 = 4(8)1381<140> = 1559 · 3121 · 30390539151758346199<20> · C114
C114 = P31 · P83
P31 = 6461651849899623748232000554729<31>
P83 = 51166807863622394221848695179553706577606524639170306964578149461210274319629978249<83>
Number: 48881_139 N=330622098685434258936754116359866216587190321981358794573361525938189338670519776376487359516392275259786204089521 ( 114 digits) SNFS difficulty: 141 digits. Divisors found: r1=6461651849899623748232000554729 (pp31) r2=51166807863622394221848695179553706577606524639170306964578149461210274319629978249 (pp83) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 11.95 hours. Scaled time: 5.65 units (timescale=0.473). Factorization parameters were as follows: name: 48881_139 n: 330622098685434258936754116359866216587190321981358794573361525938189338670519776376487359516392275259786204089521 m: 10000000000000000000000000000 deg: 5 c5: 22 c0: -355 skew: 1.74 type: snfs lss: 1 rlim: 1590000 alim: 1590000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1590000/1590000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [795000, 1695001) Primes: RFBsize:120451, AFBsize:120405, largePrimes:3586520 encountered Relations: rels:3542114, finalFF:272496 Max relations in full relation-set: 28 Initial matrix: 240922 x 272496 with sparse part having weight 24250856. Pruned matrix : 230443 x 231711 with weight 18069601. Total sieving time: 10.45 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.28 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000 total time: 11.95 hours. --------- CPU info (if available) ----------
(31·10191+23)/9 = 3(4)1907<192> = 479 · C189
C189 = P75 · P114
P75 = 721654199380406659494358792402938501466495953581632403259971904944621801459<75>
P114 = 996447743020499121699374464603815726961346486644180235752675167236186326151725810337002716980797888594745956623227<114>
Number: 34447_191 N=719090698213871491533286940385061470656460218046856877754581303641846439341220134539549988401762932034330781721178380886105311992577128276501971700301554163767107399675249362096961261888193 ( 189 digits) SNFS difficulty: 192 digits. Divisors found: r1=721654199380406659494358792402938501466495953581632403259971904944621801459 r2=996447743020499121699374464603815726961346486644180235752675167236186326151725810337002716980797888594745956623227 Version: Total time: 366.43 hours. Scaled time: 935.87 units (timescale=2.554). Factorization parameters were as follows: name: 34447_191 n: 719090698213871491533286940385061470656460218046856877754581303641846439341220134539549988401762932034330781721178380886105311992577128276501971700301554163767107399675249362096961261888193 m: 100000000000000000000000000000000000000 deg: 5 c5: 310 c0: 23 skew: 0.59 type: snfs lss: 1 rlim: 11300000 alim: 11300000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11300000/11300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5650000, 10350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2016938 x 2017186 Total sieving time: 366.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11300000,11300000,28,28,55,55,2.5,2.5,100000 total time: 366.43 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Feb 26, 2009
(44·10128-53)/9 = 4(8)1273<129> = 3 · 7 · 109 · 613 · 11383 · C119
C119 = P41 · P79
P41 = 11596514298237038639067575234023927441349<41>
P79 = 2639488026190419162144058720175270446979675692915179501209940086668045827264157<79>
Number: 48883_128 N=30608860635742654933980094618371424703761115776636432481511316570990030268286904377930692261821975632452045301747427793 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=11596514298237038639067575234023927441349 r2=2639488026190419162144058720175270446979675692915179501209940086668045827264157 Version: Total time: 2.71 hours. Scaled time: 2.57 units (timescale=0.950). Factorization parameters were as follows: n: 30608860635742654933980094618371424703761115776636432481511316570990030268286904377930692261821975632452045301747427793 m: 100000000000000000000000000 deg: 5 c5: 11 c0: -1325 skew: 2.61 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 935001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 164487 x 164734 Total sieving time: 2.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 2.71 hours. --------- CPU info (if available) ----------
(44·10124-53)/9 = 4(8)1233<125> = 27857387 · 27098180189257291<17> · C101
C101 = P33 · P69
P33 = 105879858460003669738444647465173<33>
P69 = 611668775478348043887642134207958264068062222551430503567302962499263<69>
Number: 48883_124 N=64763403372051254345862180645606745671444139005957866904918665429237488531590248316682524769830667499 ( 101 digits) SNFS difficulty: 126 digits. Divisors found: r1=105879858460003669738444647465173 r2=611668775478348043887642134207958264068062222551430503567302962499263 Version: Total time: 2.66 hours. Scaled time: 2.09 units (timescale=0.787). Factorization parameters were as follows: n: 64763403372051254345862180645606745671444139005957866904918665429237488531590248316682524769830667499 m: 10000000000000000000000000 deg: 5 c5: 22 c0: -265 skew: 1.64 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 114200 x 114440 Total sieving time: 2.66 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 2.66 hours. --------- CPU info (if available) ----------
(44·10129-53)/9 = 4(8)1283<130> = 19 · 31 · 1904637519067<13> · C115
C115 = P45 · P71
P45 = 105441685305072759250343963660885215379364893<45>
P71 = 41330456138185682306653571302025199180323207767883057670613596493709137<71>
Number: 48883_129 N=4357952949637687480439860834487236713464822412626922260738831005387602493757440039797623836283296431890596931127341 ( 115 digits) SNFS difficulty: 131 digits. Divisors found: r1=105441685305072759250343963660885215379364893 r2=41330456138185682306653571302025199180323207767883057670613596493709137 Version: Total time: 2.55 hours. Scaled time: 2.54 units (timescale=0.997). Factorization parameters were as follows: n: 4357952949637687480439860834487236713464822412626922260738831005387602493757440039797623836283296431890596931127341 m: 100000000000000000000000000 deg: 5 c5: 22 c0: -265 skew: 1.64 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 890001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 138240 x 138488 Total sieving time: 2.55 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 2.55 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Feb 26, 2009
(44·10162-71)/9 = 4(8)1611<163> = 3 · 61 · 21602829725909<14> · 13890992668947677<17> · C131
C131 = P55 · P77
P55 = 2919528487754485360741130920221825593218288436977792273<55>
P77 = 30493160198018619499137574747553107457658730557098544861937924757079677957063<77>
Number: 48881_162 N=89025649879776563556284994705112048537492877537816182828421619511054800970064111601633295089238610188889885975117868575212627174199 ( 131 digits) SNFS difficulty: 163 digits. Divisors found: r1=2919528487754485360741130920221825593218288436977792273 r2=30493160198018619499137574747553107457658730557098544861937924757079677957063 Version: Total time: 23.99 hours. Scaled time: 57.03 units (timescale=2.377). Factorization parameters were as follows: n: 89025649879776563556284994705112048537492877537816182828421619511054800970064111601633295089238610188889885975117868575212627174199 m: 200000000000000000000000000000000 deg: 5 c5: 275 c0: -142 skew: 0.88 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9810253 Max relations in full relation-set: Initial matrix: Pruned matrix : 738638 x 738886 Total sieving time: 21.56 hours. Total relation processing time: 0.93 hours. Matrix solve time: 1.17 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 23.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10141-53)/9 = 4(8)1403<142> = 39161 · 123787 · 171881 · 6897173 · 269695261837<12> · C109
C109 = P31 · C78
P31 = 6199736064021385889457145645067<31>
C78 = [508786813741771010621372438944508866566847913331596410044410894001651984362747<78>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 3154343958053389376334984624566041695442685230963101653023859921211386889423050385418406800432231574239119049 (109 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1434853449 Step 1 took 3287ms Step 2 took 1989ms ********** Factor found in step 2: 6199736064021385889457145645067 Found probable prime factor of 31 digits: 6199736064021385889457145645067 Composite cofactor 508786813741771010621372438944508866566847913331596410044410894001651984362747 has 78 digits
(44·10111-53)/9 = 4(8)1103<112> = 19 · 107 · C109
C109 = P47 · P63
P47 = 15072748997352795060939680449363695294889116749<47>
P63 = 159543943113817436805969360550316504075555966470480954857298799<63>
Number: 48883_111 N=2404765808602503142591681696452970432311307864677269497731868612340820899601027490845493796797289173088484451 ( 109 digits) SNFS difficulty: 113 digits. Divisors found: r1=15072748997352795060939680449363695294889116749 r2=159543943113817436805969360550316504075555966470480954857298799 Version: Total time: 0.55 hours. Scaled time: 1.31 units (timescale=2.380). Factorization parameters were as follows: n: 2404765808602503142591681696452970432311307864677269497731868612340820899601027490845493796797289173088484451 m: 20000000000000000000000 deg: 5 c5: 55 c0: -212 skew: 1.31 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [200000, 400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1137031 Max relations in full relation-set: Initial matrix: Pruned matrix : 51705 x 51933 Total sieving time: 0.50 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,400000,400000,25,25,45,45,2.2,2.2,25000 total time: 0.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GGNFS, Msieve / Feb 25, 2009
(44·10148-71)/9 = 4(8)1471<149> = 7 · C148
C148 = P45 · P104
P45 = 473996607386740060872943445846528011842562499<45>
P104 = 14734550575440180609780035105536363694945692984151226981094395946180645394713692742435856565307183185517<104>
Number: n N=6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126983 ( 148 digits) SNFS difficulty: 151 digits. Divisors found: Wed Feb 25 16:18:01 2009 prp45 factor: 473996607386740060872943445846528011842562499 Wed Feb 25 16:18:01 2009 prp104 factor: 14734550575440180609780035105536363694945692984151226981094395946180645394713692742435856565307183185517 Wed Feb 25 16:18:01 2009 elapsed time 01:34:40 (Msieve 1.39 - dependency 6) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.68 hours. Scaled time: 39.73 units (timescale=1.752). Factorization parameters were as follows: name: KA_4_8_147_1 n: 6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126983 deg: 5 c5: 11 c0: -1775 m: 1000000000000000000000000000000 skew: 2.76 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [1000000, 1788991) Primes: RFBsize:148933, AFBsize:149372, largePrimes:13961450 encountered Relations: rels:13132793, finalFF:269448 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1051593 hash collisions in 14069728 relations Msieve: matrix is 367270 x 367518 (97.5 MB) Total sieving time: 22.02 hours. Total relation processing time: 0.65 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.5,2.5,100000 total time: 22.68 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS / Feb 25, 2009
(44·10136-71)/9 = 4(8)1351<137> = 7 · 41 · 45481 · 3280681 · C124
C124 = P34 · P90
P34 = 2744064447066890196809404077767207<34>
P90 = 416044662604396313993951723092527975044912145201118051288551518737312394333927471726272169<90>
Number: 48881_136 N=1141653367044663660491761682722608073379051329153751902242675265147625385123173999076345161864440171891051539400931104961983 ( 124 digits) SNFS difficulty: 138 digits. Divisors found: r1=2744064447066890196809404077767207 (pp34) r2=416044662604396313993951723092527975044912145201118051288551518737312394333927471726272169 (pp90) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.29 hours. Scaled time: 4.39 units (timescale=0.472). Factorization parameters were as follows: name: 48881_136 n: 1141653367044663660491761682722608073379051329153751902242675265147625385123173999076345161864440171891051539400931104961983 m: 2000000000000000000000000000 deg: 5 c5: 55 c0: -284 skew: 1.39 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1455001) Primes: RFBsize:107805, AFBsize:108301, largePrimes:3367603 encountered Relations: rels:3384708, finalFF:322308 Max relations in full relation-set: 28 Initial matrix: 216173 x 322308 with sparse part having weight 27607988. Pruned matrix : 185337 x 186481 with weight 12402631. Total sieving time: 8.46 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.61 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 9.29 hours. --------- CPU info (if available) ----------
(44·10137-71)/9 = 4(8)1361<138> = 37 · C137
C137 = P33 · P104
P33 = 340868543207612725222075573719347<33>
P104 = 38763369270966856217289969579602950513973542633663421837299638535905817359925420336650549634976872218479<104>
Number: 48881_137 N=13213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213 ( 137 digits) SNFS difficulty: 138 digits. Divisors found: r1=340868543207612725222075573719347 (pp33) r2=38763369270966856217289969579602950513973542633663421837299638535905817359925420336650549634976872218479 (pp104) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 11.13 hours. Scaled time: 4.76 units (timescale=0.428). Factorization parameters were as follows: name: 48881_137 n: 13213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213 m: 2000000000000000000000000000 deg: 5 c5: 275 c0: -142 skew: 0.88 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [725000, 1625001) Primes: RFBsize:110630, AFBsize:110661, largePrimes:3552440 encountered Relations: rels:3600847, finalFF:325726 Max relations in full relation-set: 28 Initial matrix: 221357 x 325726 with sparse part having weight 30493824. Pruned matrix : 191788 x 192958 with weight 14833527. Total sieving time: 10.14 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.75 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,48,48,2.3,2.3,75000 total time: 11.13 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Feb 25, 2009
(44·10157-71)/9 = 4(8)1561<158> = 73 · C156
C156 = P57 · P100
P57 = 266760531775608133956050583465012094689794027545223607047<57>
P100 = 2510531832574284225993222640708878791275251483907369761442063478864181134791112368628433935088415951<100>
Number: 48881_157 N=669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697 ( 156 digits) SNFS difficulty: 158 digits. Divisors found: r1=266760531775608133956050583465012094689794027545223607047 (pp57) r2=2510531832574284225993222640708878791275251483907369761442063478864181134791112368628433935088415951 (pp100) Version: Msieve-1.39 Total time: 26.26 hours. Scaled time: 67.52 units (timescale=2.571). Factorization parameters were as follows: n: 669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697 m: 20000000000000000000000000000000 deg: 5 c5: 275 c0: -142 skew: 0.88 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 538218 x 538466 Total sieving time: 26.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 26.26 hours. --------- CPU info (if available) ----------
(44·10163-71)/9 = 4(8)1621<164> = 40293606533484649013<20> · C145
C145 = P70 · P75
P70 = 2090142133341823514836371166394869125392607600423305654469844115347859<70>
P75 = 580494629132693000760167098993643357602606695180416440687702991593086018143<75>
Number: 48881_163 N=1213316282528877603116799145583708290172539600829303853559907218216047380074537193956932129439123596354105227950875751697368095787851087630205837 ( 145 digits) SNFS difficulty: 164 digits. Divisors found: r1=2090142133341823514836371166394869125392607600423305654469844115347859 (pp70) r2=580494629132693000760167098993643357602606695180416440687702991593086018143 (pp75) Version: Msieve-1.39 Total time: 42.36 hours. Scaled time: 108.90 units (timescale=2.571). Factorization parameters were as follows: n: 1213316282528877603116799145583708290172539600829303853559907218216047380074537193956932129439123596354105227950875751697368095787851087630205837 m: 200000000000000000000000000000000 deg: 5 c5: 1375 c0: -71 skew: 0.55 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1950000, 4150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 732974 x 733222 Total sieving time: 42.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 42.36 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve, GMP-ECM / Feb 25, 2009
(44·10150-71)/9 = 4(8)1491<151> = 32 · 51197 · 4521741435891364483<19> · C127
C127 = P57 · P71
P57 = 230042934078513792659027921169867040472521633549158310061<57>
P71 = 10200196105649887861156671475312764849458021711987665441965423462292219<71>
Number: 48881_150 N=2346483040319930262471884695240655852973736090122040956860740182038035783923398759608186873543390899886975864020261543389715359 ( 127 digits) SNFS difficulty: 151 digits. Divisors found: r1=230042934078513792659027921169867040472521633549158310061 r2=10200196105649887861156671475312764849458021711987665441965423462292219 Version: Total time: 19.56 hours. Scaled time: 20.23 units (timescale=1.034). Factorization parameters were as follows: n: 2346483040319930262471884695240655852973736090122040956860740182038035783923398759608186873543390899886975864020261543389715359 m: 1000000000000000000000000000000 deg: 5 c5: 44 c0: -71 skew: 1.10 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 433086 x 433334 Total sieving time: 19.56 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 19.56 hours. --------- CPU info (if available) ----------
(44·10143-71)/9 = 4(8)1421<144> = 23 · 37 · 199 · 30302636207<11> · 4307160298747<13> · C116
C116 = P38 · P79
P38 = 16407153915374855716140672893295921439<38>
P79 = 1348102242729470640250881292514087976844275396957524728539042720088578215437399<79>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 22118520990124458332699006534768476475381642269965611325044514221416868763053419753069680858556126450701594126497161 (116 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=853145556 Step 1 took 31309ms Step 2 took 11544ms ********** Factor found in step 2: 16407153915374855716140672893295921439 Found probable prime factor of 38 digits: 16407153915374855716140672893295921439 Probable prime cofactor 1348102242729470640250881292514087976844275396957524728539042720088578215437399 has 79 digits
(43·10158+11)/9 = 4(7)1579<159> = 223 · 15507127 · 14607641584687<14> · C136
C136 = P50 · P87
P50 = 30394270223730515609456784038820180026129302682419<50>
P87 = 311184469852027455725596184106294444408741498018266638730912165177164854047468063456183<87>
Number: 47779_158 N=9458224866110844426386379033165601182210899487313783158712396653134358965763386452505542412533445380253027686320324072560877769970946677 ( 136 digits) SNFS difficulty: 161 digits. Divisors found: r1=30394270223730515609456784038820180026129302682419 r2=311184469852027455725596184106294444408741498018266638730912165177164854047468063456183 Version: Total time: 55.26 hours. Scaled time: 43.27 units (timescale=0.783). Factorization parameters were as follows: n: 9458224866110844426386379033165601182210899487313783158712396653134358965763386452505542412533445380253027686320324072560877769970946677 m: 50000000000000000000000000000000 deg: 5 c5: 344 c0: 275 skew: 0.96 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 683237 x 683485 Total sieving time: 55.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 55.26 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve / Feb 25, 2009
(10196+53)/9 = (1)1957<196> = 19 · 739 · 1297 · 175039 · 259878475236857<15> · 1510283330627080248420932638301<31> · C138
C138 = P60 · P79
P60 = 276770545742713499359339707621751061182650942179447980819891<60>
P79 = 3208751188163324485416450871925542565808986088227453373291593937334726893986197<79>
Number: 11117_196 N=888087817500543690374777485610139659656184329191590913987962706355569305479165393738154255599358025085365797320711586900377767369297044527 ( 138 digits) Divisors found: r1=276770545742713499359339707621751061182650942179447980819891 (pp60) r2=3208751188163324485416450871925542565808986088227453373291593937334726893986197 (pp79) Version: Msieve-1.39 Total time: 949.97 hours. Scaled time: 2407.23 units (timescale=2.534). Factorization parameters were as follows: name: 11117_196 n: 888087817500543690374777485610139659656184329191590913987962706355569305479165393738154255599358025085365797320711586900377767369297044527 skew: 550372.48 # norm 1.41e+19 c5: 111720 c4: 790382198768 c3: -169446067282460132 c2: -364765162766298110614081 c1: 34335070314051591273192601162 c0: 18956319517172044216016560873788003 # alpha 7.114396 Y1: 2556859849182053 Y0: -380242682535105905692270984 type: gnfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 20450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1955255 x 1955503 Total sieving time: 949.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,137,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,12900000,12900000,28,28,55,55,2.5,2.5,60000 total time: 949.97 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Feb 25, 2009
(76·1035427-31)/9 = 8(4)354261<35428> is PRP.
Factorizations of 488...883 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM / Feb 24, 2009
(43·10190+11)/9 = 4(7)1899<191> = C191
C191 = P43 · P47 · P50 · P53
P43 = 2296681587052719423860117114229198911432333<43>
P47 = 15570079985107990077984373269745574874310941497<47>
P50 = 60119068484720194413645850533910859383261467146867<50>
P53 = 22223991954571482014953594682406371807911258907638637<53>
------- Input number is 47777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 (191 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=208888904 Step 1 took 73125ms Step 2 took 24257ms ********** Factor found in step 2: 2296681587052719423860117114229198911432333 Found probable prime factor of 43 digits: 2296681587052719423860117114229198911432333 Composite cofactor 20802961127532676845791180520483094188690819112594979637430646939415754594890399668350082445540467751199882868417289174626988408216248330568874577663 has 149 digits ---------- Input number is 20802961127532676845791180520483094188690819112594979637430646939415754594890399668350082445540467751199882868417289174626988408216248330568874577663 (149 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1301257518 Step 1 took 185301ms Step 2 took 57413ms ********** Factor found in step 2: 60119068484720194413645850533910859383261467146867 Found probable prime factor of 50 digits: 60119068484720194413645850533910859383261467146867 Composite cofactor 346029332321074431997114693740257714417458796246588353710386771084181929049928930706702480523819589 has 99 digits ---------- Input number is 346029332321074431997114693740257714417458796246588353710386771084181929049928930706702480523819589 (99 digits) Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1827407922 Step 1 took 411700ms Step 2 took 119590ms ********** Factor found in step 2: 15570079985107990077984373269745574874310941497 Found probable prime factor of 47 digits: 15570079985107990077984373269745574874310941497 Probable prime cofactor 22223991954571482014953594682406371807911258907638637 has 53 digits ----------
By Ignacio Santos / GGNFS, Msieve / Feb 24, 2009
(7·10169-43)/9 = (7)1683<169> = 32 · 113 · 49991 · 5632442647674936588605121832519<31> · C131
C131 = P57 · P75
P57 = 165855014904250974498183632926088661986783788509769529269<57>
P75 = 163763596475382264171981673046491009331053941417905993150662041160894520369<75>
Number: 77773_169 N=27161013734198267779787441623856865261526769714349621384721227945530504045181223735394220143911476359430775105460879711466662180261 ( 131 digits) SNFS difficulty: 170 digits. Divisors found: r1=165855014904250974498183632926088661986783788509769529269 (pp57) r2=163763596475382264171981673046491009331053941417905993150662041160894520369 (pp75) Version: Msieve-1.39 Total time: 49.96 hours. Scaled time: 128.45 units (timescale=2.571). Factorization parameters were as follows: n: 27161013734198267779787441623856865261526769714349621384721227945530504045181223735394220143911476359430775105460879711466662180261 m: 5000000000000000000000000000000000 deg: 5 c5: 112 c0: -215 skew: 1.14 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 4850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 908762 x 909010 Total sieving time: 49.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 49.96 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 24, 2009
(44·10140-71)/9 = 4(8)1391<141> = 13 · 37 · 18953839044024127688623<23> · C116
C116 = P48 · P69
P48 = 509123278828127286216988563096938862260588684297<48>
P69 = 105328269145172653612757075034695759465207254455961930240426228195271<69>
Number: 48881_140 N=53625073740481772972409824072405535386545820550053849846053767223604814908309704448037052570648052207497954687359487 ( 116 digits) SNFS difficulty: 141 digits. Divisors found: r1=509123278828127286216988563096938862260588684297 r2=105328269145172653612757075034695759465207254455961930240426228195271 Version: Total time: 4.50 hours. Scaled time: 10.74 units (timescale=2.389). Factorization parameters were as follows: n: 53625073740481772972409824072405535386545820550053849846053767223604814908309704448037052570648052207497954687359487 m: 10000000000000000000000000000 deg: 5 c5: 44 c0: -71 skew: 1.10 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [600000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3360002 Max relations in full relation-set: Initial matrix: Pruned matrix : 198140 x 198388 Total sieving time: 4.21 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,48,48,2.3,2.3,50000 total time: 4.50 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10153-71)/9 = 4(8)1521<154> = 3 · 29 · 5686565066897115489601<22> · 480561239432935951772923342469<30> · C101
C101 = P30 · P71
P30 = 207788945034135538746511370141<30>
P71 = 98962287285357687567718782537306001105195681542297973648064568489776647<71>
Number: 48881_153 N=20563269273189518839408618741350859979878540178289245336713437567214603823608381501320185903034897227 ( 101 digits) Divisors found: r1=207788945034135538746511370141 r2=98962287285357687567718782537306001105195681542297973648064568489776647 Version: Total time: 2.54 hours. Scaled time: 6.07 units (timescale=2.385). Factorization parameters were as follows: name: 48881_153 n: 20563269273189518839408618741350859979878540178289245336713437567214603823608381501320185903034897227 skew: 5676.13 # norm 1.86e+14 c5: 344520 c4: -1637807466 c3: -26734948702069 c2: 70694864340124641 c1: 482804719370645285549 c0: 199362126528802262426345 # alpha -6.87 Y1: 36487728641 Y0: -9019391019254834158 # Murphy_E 3.44e-09 # M 15579905984155218821420874809478929204387125506285712518361026215595714425854941028538745894119301401 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [600000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4083039 Max relations in full relation-set: Initial matrix: Pruned matrix : 209301 x 209549 Polynomial selection time: 0.19 hours. Total sieving time: 1.93 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.10 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,49,49,2.5,2.5,50000 total time: 2.54 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10155-71)/9 = 4(8)1541<156> = 37 · 97 · 498889679 · 18697682263419627917303<23> · 440832314293904601752619068922493<33> · C89
C89 = P39 · P51
P39 = 261205238291645927272402074009059256239<39>
P51 = 126820397395510759541604069650822061270444804667271<51>
Tue Feb 24 00:48:15 2009 Tue Feb 24 00:48:15 2009 Tue Feb 24 00:48:15 2009 Msieve v. 1.39 Tue Feb 24 00:48:15 2009 random seeds: 5915a884 8e521e17 Tue Feb 24 00:48:15 2009 factoring 33126152121935620473093722297086995034869661998940995868094417359149617683041111125853769 (89 digits) Tue Feb 24 00:48:16 2009 searching for 15-digit factors Tue Feb 24 00:48:17 2009 commencing quadratic sieve (89-digit input) Tue Feb 24 00:48:17 2009 using multiplier of 1 Tue Feb 24 00:48:17 2009 using VC8 32kb sieve core Tue Feb 24 00:48:17 2009 sieve interval: 32 blocks of size 32768 Tue Feb 24 00:48:17 2009 processing polynomials in batches of 7 Tue Feb 24 00:48:17 2009 using a sieve bound of 1550243 (59000 primes) Tue Feb 24 00:48:17 2009 using large prime bound of 124019440 (26 bits) Tue Feb 24 00:48:17 2009 using double large prime bound of 370067932007440 (42-49 bits) Tue Feb 24 00:48:17 2009 using trial factoring cutoff of 49 bits Tue Feb 24 00:48:17 2009 polynomial 'A' values have 11 factors Tue Feb 24 01:44:43 2009 59380 relations (15995 full + 43385 combined from 624990 partial), need 59096 Tue Feb 24 01:44:48 2009 begin with 640985 relations Tue Feb 24 01:44:48 2009 reduce to 143986 relations in 10 passes Tue Feb 24 01:44:48 2009 attempting to read 143986 relations Tue Feb 24 01:44:50 2009 recovered 143986 relations Tue Feb 24 01:44:50 2009 recovered 118738 polynomials Tue Feb 24 01:44:50 2009 attempting to build 59380 cycles Tue Feb 24 01:44:50 2009 found 59380 cycles in 5 passes Tue Feb 24 01:44:50 2009 distribution of cycle lengths: Tue Feb 24 01:44:50 2009 length 1 : 15995 Tue Feb 24 01:44:50 2009 length 2 : 11514 Tue Feb 24 01:44:50 2009 length 3 : 10428 Tue Feb 24 01:44:50 2009 length 4 : 7909 Tue Feb 24 01:44:50 2009 length 5 : 5509 Tue Feb 24 01:44:50 2009 length 6 : 3484 Tue Feb 24 01:44:50 2009 length 7 : 2091 Tue Feb 24 01:44:50 2009 length 9+: 2450 Tue Feb 24 01:44:50 2009 largest cycle: 17 relations Tue Feb 24 01:44:50 2009 matrix is 59000 x 59380 (15.1 MB) with weight 3493763 (58.84/col) Tue Feb 24 01:44:50 2009 sparse part has weight 3493763 (58.84/col) Tue Feb 24 01:44:51 2009 filtering completed in 3 passes Tue Feb 24 01:44:51 2009 matrix is 54792 x 54855 (14.1 MB) with weight 3246248 (59.18/col) Tue Feb 24 01:44:51 2009 sparse part has weight 3246248 (59.18/col) Tue Feb 24 01:44:51 2009 saving the first 48 matrix rows for later Tue Feb 24 01:44:51 2009 matrix is 54744 x 54855 (10.2 MB) with weight 2652281 (48.35/col) Tue Feb 24 01:44:51 2009 sparse part has weight 2118421 (38.62/col) Tue Feb 24 01:44:51 2009 matrix includes 64 packed rows Tue Feb 24 01:44:51 2009 using block size 21942 for processor cache size 4096 kB Tue Feb 24 01:44:52 2009 commencing Lanczos iteration Tue Feb 24 01:44:52 2009 memory use: 8.7 MB Tue Feb 24 01:45:13 2009 lanczos halted after 867 iterations (dim = 54742) Tue Feb 24 01:45:13 2009 recovered 15 nontrivial dependencies Tue Feb 24 01:45:13 2009 prp39 factor: 261205238291645927272402074009059256239 Tue Feb 24 01:45:13 2009 prp51 factor: 126820397395510759541604069650822061270444804667271 Tue Feb 24 01:45:13 2009 elapsed time 00:56:58
(44·10143-71)/9 = 4(8)1421<144> = 23 · 37 · 199 · 30302636207<11> · 4307160298747<13> · C116
C116 = P38 · P79
P38 = 16407153915374855716140672893295921439<38>
P79 = 1348102242729470640250881292514087976844275396957524728539042720088578215437399<79>
Number: 48881_143 N=22118520990124458332699006534768476475381642269965611325044514221416868763053419753069680858556126450701594126497161 ( 116 digits) SNFS difficulty: 146 digits. Divisors found: r1=16407153915374855716140672893295921439 r2=1348102242729470640250881292514087976844275396957524728539042720088578215437399 Version: Total time: 5.53 hours. Scaled time: 13.18 units (timescale=2.384). Factorization parameters were as follows: n: 22118520990124458332699006534768476475381642269965611325044514221416868763053419753069680858556126450701594126497161 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: -1775 skew: 2.76 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [750000, 1350001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3676723 Max relations in full relation-set: Initial matrix: Pruned matrix : 264624 x 264872 Total sieving time: 5.21 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.15 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,49,49,2.3,2.3,75000 total time: 5.53 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve, GGNFS / Feb 24, 2009
(44·10149-71)/9 = 4(8)1481<150> = 37 · 73 · 61961 · 24126935406859<14> · 27995820258820794195604377373<29> · C100
C100 = P43 · P58
P43 = 1823386628589600235665888424988868096924179<43>
P58 = 2371881789921313843032874446987776090309859711930752765857<58>
Mon Feb 23 13:53:09 2009 Msieve v. 1.39 Mon Feb 23 13:53:09 2009 random seeds: 79c73e94 b196d9d5 Mon Feb 23 13:53:09 2009 factoring 4324857540337690895886670133751822679873755496465154258190521001152601075515706549500196558668956403 (100 digits) Mon Feb 23 13:53:10 2009 searching for 15-digit factors Mon Feb 23 13:53:12 2009 commencing quadratic sieve (100-digit input) Mon Feb 23 13:53:12 2009 using multiplier of 11 Mon Feb 23 13:53:12 2009 using 32kb Intel Core sieve core Mon Feb 23 13:53:12 2009 sieve interval: 36 blocks of size 32768 Mon Feb 23 13:53:12 2009 processing polynomials in batches of 6 Mon Feb 23 13:53:12 2009 using a sieve bound of 2711333 (98824 primes) Mon Feb 23 13:53:12 2009 using large prime bound of 406699950 (28 bits) Mon Feb 23 13:53:12 2009 using double large prime bound of 3138292436875950 (43-52 bits) Mon Feb 23 13:53:12 2009 using trial factoring cutoff of 52 bits Mon Feb 23 13:53:12 2009 polynomial 'A' values have 13 factors Tue Feb 24 02:43:55 2009 99124 relations (22994 full + 76130 combined from 1499481 partial), need 98920 Tue Feb 24 02:43:58 2009 begin with 1522475 relations Tue Feb 24 02:43:59 2009 reduce to 263904 relations in 14 passes Tue Feb 24 02:43:59 2009 attempting to read 263904 relations Tue Feb 24 02:44:04 2009 recovered 263904 relations Tue Feb 24 02:44:04 2009 recovered 255780 polynomials Tue Feb 24 02:44:05 2009 attempting to build 99124 cycles Tue Feb 24 02:44:05 2009 found 99124 cycles in 6 passes Tue Feb 24 02:44:05 2009 distribution of cycle lengths: Tue Feb 24 02:44:05 2009 length 1 : 22994 Tue Feb 24 02:44:05 2009 length 2 : 16653 Tue Feb 24 02:44:05 2009 length 3 : 16437 Tue Feb 24 02:44:05 2009 length 4 : 13818 Tue Feb 24 02:44:05 2009 length 5 : 10262 Tue Feb 24 02:44:05 2009 length 6 : 7282 Tue Feb 24 02:44:05 2009 length 7 : 4731 Tue Feb 24 02:44:05 2009 length 9+: 6947 Tue Feb 24 02:44:05 2009 largest cycle: 22 relations Tue Feb 24 02:44:05 2009 matrix is 98824 x 99124 (27.6 MB) with weight 6829409 (68.90/col) Tue Feb 24 02:44:05 2009 sparse part has weight 6829409 (68.90/col) Tue Feb 24 02:44:07 2009 filtering completed in 3 passes Tue Feb 24 02:44:07 2009 matrix is 95251 x 95314 (26.6 MB) with weight 6588098 (69.12/col) Tue Feb 24 02:44:07 2009 sparse part has weight 6588098 (69.12/col) Tue Feb 24 02:44:07 2009 saving the first 48 matrix rows for later Tue Feb 24 02:44:08 2009 matrix is 95203 x 95314 (16.3 MB) with weight 5168196 (54.22/col) Tue Feb 24 02:44:08 2009 sparse part has weight 3703985 (38.86/col) Tue Feb 24 02:44:08 2009 matrix includes 64 packed rows Tue Feb 24 02:44:08 2009 using block size 38125 for processor cache size 1024 kB Tue Feb 24 02:44:08 2009 commencing Lanczos iteration Tue Feb 24 02:44:08 2009 memory use: 15.9 MB Tue Feb 24 02:45:13 2009 lanczos halted after 1507 iterations (dim = 95201) Tue Feb 24 02:45:13 2009 recovered 17 nontrivial dependencies Tue Feb 24 02:45:15 2009 prp43 factor: 1823386628589600235665888424988868096924179 Tue Feb 24 02:45:15 2009 prp58 factor: 2371881789921313843032874446987776090309859711930752765857 Tue Feb 24 02:45:15 2009 elapsed time 12:52:06
(44·10151-71)/9 = 4(8)1501<152> = 19 · 41 · 40795973 · 53086617357311<14> · 787828356283625781569<21> · C107
C107 = P36 · P71
P36 = 425947598878060367961552767720056277<36>
P71 = 86354023540670324234290958731200652262153362934003180239457072040500101<71>
Number: 48881_151 N=36782288980608025602558997767137002692332449728901869109100194795392576159672152415241702975132762944183977 ( 107 digits) Divisors found: r1=425947598878060367961552767720056277 (pp36) r2=86354023540670324234290958731200652262153362934003180239457072040500101 (pp71) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 18.41 hours. Scaled time: 8.71 units (timescale=0.473). Factorization parameters were as follows: name: 48881_151 n: 36782288980608025602558997767137002692332449728901869109100194795392576159672152415241702975132762944183977 skew: 12055.98 # norm 7.62e+14 c5: 155700 c4: 1637779484 c3: -13851048219839 c2: -236112434457720744 c1: -3660715319507968407076 c0: 16672546580673607696079200 # alpha -6.72 Y1: 92626107473 Y0: -188221650890861899581 # Murphy_E 1.53e-09 # M 18157611387834815042861964823819336260349267121385750848762299243356676082757506236419679403295869746734284 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183993, largePrimes:4418375 encountered Relations: rels:4476604, finalFF:446496 Max relations in full relation-set: 28 Initial matrix: 367151 x 446496 with sparse part having weight 33191043. Pruned matrix : 303955 x 305854 with weight 19226197. Total sieving time: 15.49 hours. Total relation processing time: 0.33 hours. Matrix solve time: 2.39 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 18.41 hours. --------- CPU info (if available) ----------
(44·10135-71)/9 = 4(8)1341<136> = 3 · 82549 · C131
C131 = P65 · P66
P65 = 38357340097329560078233395558992864916910707708764623785880080749<65>
P66 = 514669713737333210325188168649284923465893594557365709330203361227<66>
Number: 48881_135 N=19741361247618137465379709380242396996082685794251046404312949031843264359709137962054411678271446409158555883531352646665975719023 ( 131 digits) SNFS difficulty: 136 digits. Divisors found: r1=38357340097329560078233395558992864916910707708764623785880080749 (pp65) r2=514669713737333210325188168649284923465893594557365709330203361227 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.13 hours. Scaled time: 4.31 units (timescale=0.472). Factorization parameters were as follows: name: 48881_135 n: 19741361247618137465379709380242396996082685794251046404312949031843264359709137962054411678271446409158555883531352646665975719023 m: 1000000000000000000000000000 deg: 5 c5: 44 c0: -71 skew: 1.10 type: snfs lss: 1 rlim: 1330000 alim: 1330000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1330000/1330000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [665000, 1415001) Primes: RFBsize:102146, AFBsize:102624, largePrimes:3331762 encountered Relations: rels:3328059, finalFF:289048 Max relations in full relation-set: 28 Initial matrix: 204836 x 289048 with sparse part having weight 25651418. Pruned matrix : 181849 x 182937 with weight 12934923. Total sieving time: 8.30 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.62 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1330000,1330000,26,26,48,48,2.3,2.3,75000 total time: 9.13 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Feb 24, 2009
(32·10165+13)/9 = 3(5)1647<166> = 458981 · 630263 · C155
C155 = P44 · P111
P44 = 18681192180063273540908440345016705640959411<44>
P111 = 657940106077601764355434130314334771812300887403075420900850959415178524121749594369791636050706233899226953629<111>
Number: 35557_165 N=12291105564606894753648143531039730271512437525537283493091738158472357920721801541135677888602504092366897956430047188487377389072348162342113998368152519 ( 155 digits) SNFS difficulty: 166 digits. Divisors found: r1=18681192180063273540908440345016705640959411 r2=657940106077601764355434130314334771812300887403075420900850959415178524121749594369791636050706233899226953629 Version: Total time: 38.75 hours. Scaled time: 37.47 units (timescale=0.967). Factorization parameters were as follows: n: 12291105564606894753648143531039730271512437525537283493091738158472357920721801541135677888602504092366897956430047188487377389072348162342113998368152519 m: 2000000000000000000000000000000000 deg: 5 c5: 1 c0: 13 skew: 1.67 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 3600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 685665 x 685913 Total sieving time: 38.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 38.75 hours. --------- CPU info (if available) ----------
(44·10144-71)/9 = 4(8)1431<145> = 3 · 3861802112461<13> · C132
C132 = P50 · P83
P50 = 27176738312456067705423924254415620270867506101379<50>
P83 = 15527500933247063626950184057751950006067441741686919878574402788064647788046405133<83>
Number: 48881_144 N=421986829509272820353632573560155796304665185167618184592094823146824649144255133281704521784352850104568736051129758745664803978407 ( 132 digits) SNFS difficulty: 146 digits. Divisors found: r1=27176738312456067705423924254415620270867506101379 r2=15527500933247063626950184057751950006067441741686919878574402788064647788046405133 Version: Total time: 9.10 hours. Scaled time: 9.65 units (timescale=1.060). Factorization parameters were as follows: n: 421986829509272820353632573560155796304665185167618184592094823146824649144255133281704521784352850104568736051129758745664803978407 m: 100000000000000000000000000000 deg: 5 c5: 22 c0: -355 skew: 1.74 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 341023 x 341271 Total sieving time: 9.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 9.10 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Feb 23, 2009
(31·1035990+23)/9 = 3(4)359897<35991> is PRP.
(13·1022048-7)/3 = 4(3)220471<22049> is PRP.
By Sinkiti Sibata / Msieve / Feb 23, 2009
(44·10141-71)/9 = 4(8)1401<142> = 32 · 41 · 73 · 131 · 153953 · 789490181 · 4200148643<10> · 583003741888800227<18> · C94
C94 = P46 · P49
P46 = 1689109804305687021321287700092427147181180249<46>
P49 = 2755883601781023358092221328064703478054177727799<49>
Mon Feb 23 07:23:14 2009 Msieve v. 1.39 Mon Feb 23 07:23:14 2009 random seeds: df699430 3111daa0 Mon Feb 23 07:23:14 2009 factoring 4654990011293596264643196610177277729826715307937834774996988833394165195376426115665877041951 (94 digits) Mon Feb 23 07:23:15 2009 searching for 15-digit factors Mon Feb 23 07:23:17 2009 commencing quadratic sieve (94-digit input) Mon Feb 23 07:23:17 2009 using multiplier of 39 Mon Feb 23 07:23:17 2009 using 32kb Intel Core sieve core Mon Feb 23 07:23:17 2009 sieve interval: 36 blocks of size 32768 Mon Feb 23 07:23:17 2009 processing polynomials in batches of 6 Mon Feb 23 07:23:17 2009 using a sieve bound of 2059481 (76413 primes) Mon Feb 23 07:23:17 2009 using large prime bound of 284208378 (28 bits) Mon Feb 23 07:23:17 2009 using double large prime bound of 1646441586215862 (42-51 bits) Mon Feb 23 07:23:17 2009 using trial factoring cutoff of 51 bits Mon Feb 23 07:23:17 2009 polynomial 'A' values have 12 factors Mon Feb 23 10:36:21 2009 76733 relations (19105 full + 57628 combined from 1093329 partial), need 76509 Mon Feb 23 10:36:22 2009 begin with 1112434 relations Mon Feb 23 10:36:23 2009 reduce to 197760 relations in 11 passes Mon Feb 23 10:36:23 2009 attempting to read 197760 relations Mon Feb 23 10:36:26 2009 recovered 197760 relations Mon Feb 23 10:36:26 2009 recovered 180870 polynomials Mon Feb 23 10:36:27 2009 attempting to build 76733 cycles Mon Feb 23 10:36:27 2009 found 76733 cycles in 6 passes Mon Feb 23 10:36:27 2009 distribution of cycle lengths: Mon Feb 23 10:36:27 2009 length 1 : 19105 Mon Feb 23 10:36:27 2009 length 2 : 13731 Mon Feb 23 10:36:27 2009 length 3 : 13102 Mon Feb 23 10:36:27 2009 length 4 : 10332 Mon Feb 23 10:36:27 2009 length 5 : 7683 Mon Feb 23 10:36:27 2009 length 6 : 5124 Mon Feb 23 10:36:27 2009 length 7 : 3231 Mon Feb 23 10:36:27 2009 length 9+: 4425 Mon Feb 23 10:36:27 2009 largest cycle: 17 relations Mon Feb 23 10:36:27 2009 matrix is 76413 x 76733 (20.9 MB) with weight 5160119 (67.25/col) Mon Feb 23 10:36:27 2009 sparse part has weight 5160119 (67.25/col) Mon Feb 23 10:36:28 2009 filtering completed in 3 passes Mon Feb 23 10:36:28 2009 matrix is 72426 x 72490 (19.8 MB) with weight 4900322 (67.60/col) Mon Feb 23 10:36:28 2009 sparse part has weight 4900322 (67.60/col) Mon Feb 23 10:36:28 2009 saving the first 48 matrix rows for later Mon Feb 23 10:36:29 2009 matrix is 72378 x 72490 (13.7 MB) with weight 4007388 (55.28/col) Mon Feb 23 10:36:29 2009 sparse part has weight 3153350 (43.50/col) Mon Feb 23 10:36:29 2009 matrix includes 64 packed rows Mon Feb 23 10:36:29 2009 using block size 28996 for processor cache size 1024 kB Mon Feb 23 10:36:29 2009 commencing Lanczos iteration Mon Feb 23 10:36:29 2009 memory use: 12.4 MB Mon Feb 23 10:37:06 2009 lanczos halted after 1146 iterations (dim = 72376) Mon Feb 23 10:37:06 2009 recovered 18 nontrivial dependencies Mon Feb 23 10:37:07 2009 prp46 factor: 1689109804305687021321287700092427147181180249 Mon Feb 23 10:37:07 2009 prp49 factor: 2755883601781023358092221328064703478054177727799 Mon Feb 23 10:37:07 2009 elapsed time 03:13:53
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39, yafu-1.06 / Feb 23, 2009
(13·10172-7)/3 = 4(3)1711<173> = 289733 · 341083 · 4227751937<10> · 88169691859<11> · C142
C142 = P37 · P105
P37 = 3446714640637299830656897972064937911<37>
P105 = 341294988336445193728905705649852576939546047528827589956637878582237898276169125438517320288890233544833<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1660133444 Step 1 took 26687ms Step 2 took 17954ms ********** Factor found in step 2: 3446714640637299830656897972064937911 Found probable prime factor of 37 digits: 3446714640637299830656897972064937911 Probable prime cofactor has 105 digits
(44·10124-71)/9 = 4(8)1231<125> = 72 · 197 · 4679 · 31154132951377<14> · C104
C104 = P32 · P73
P32 = 25396419038491858287986340454153<32>
P73 = 1368064780176544709535508833324802532043828326786680880921691567406497923<73>
SNFS difficulty: 126 digits. Divisors found: r1=25396419038491858287986340454153 r2=1368064780176544709535508833324802532043828326786680880921691567406497923 Version: Total time: 1.24 hours. Scaled time: 3.32 units (timescale=2.677). Factorization parameters were as follows: n: 34743946429165779062937821146668289023142555909174816609220785749295779247311346548900553474735071224219 m: 10000000000000000000000000 c5: 22 c0: -355 skew: 1.74 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 113205 x 113450 Total sieving time: 1.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,25,25,48,48,2.3,2.3,50000 total time: 1.24 hours.
(44·10170-71)/9 = 4(8)1691<171> = 13 · 17 · 37 · 222919 · 5364775547<10> · 4563975737099127801032473103<28> · 58627240909157056665846947136373<32> · C93
C93 = P42 · P51
P42 = 629413938427228336143257358605484317506289<42>
P51 = 296850911885490573747756395058094668056965871611231<51>
starting SIQS on c93: 186842101575560748251901609180483102105679639113695638170972246212189545448427085736405531759 ==== sieve params ==== n = 93 digits, 308 bits factor base: 74997 primes (max prime = 2013299) single large prime cutoff: 241595880 (120 * pmax) double large prime range from 43 to 51 bits double large prime cutoff: 1229026205170180 using 11 large prime slices of factor base buckets hold 1024 elements sieve interval: 22 blocks of size 32768 polynomial A has ~ 12 factors using multiplier of 2 using small prime variation correction of 20 bits trial factoring cutoff at 98 bits ==== sieving in progress: 75061 relations needed ==== ==== Press ctrl-c to abort and save state ==== 75075 rels found: 19639 full + 55436 from 963672 partial, (1.28 rels/poly, 202.06 rels/sec) sieve time = 1605.0670, relation time = 962.0480, poly_time = 2294.4940 trial division touched 46335727 sieve locations out of 1106774327296 trial division early aborted 32681170 times size of relation set in memory = 0 bytes QS elapsed time = 4866.5470 seconds. ==== post processing stage (msieve-1.38) ==== begin with 983311 relations reduce to 186463 relations in 11 passes attempting to read 186463 relations recovered 186463 relations recovered 165561 polynomials attempting to build 75075 cycles found 75075 cycles in 5 passes distribution of cycle lengths: length 1 : 19639 length 2 : 14403 length 3 : 13190 length 4 : 9949 length 5 : 7107 length 6 : 4609 length 7 : 2701 length 9+: 3477 largest cycle: 19 relations matrix is 74997 x 75075 (19.0 MB) with weight 4684698 (62.40/col) sparse part has weight 4684698 (62.40/col) filtering completed in 3 passes matrix is 70882 x 70946 (18.1 MB) with weight 4473451 (63.05/col) sparse part has weight 4473451 (63.05/col) saving the first 48 matrix rows for later matrix is 70834 x 70946 (12.3 MB) with weight 3649716 (51.44/col) sparse part has weight 2811715 (39.63/col) matrix includes 64 packed rows using block size 28378 for processor cache size 4096 kB commencing Lanczos iteration memory use: 11.5 MB lanczos halted after 1122 iterations (dim = 70833) recovered 17 nontrivial dependencies Lanczos elapsed time = 26.5630 seconds. Sqrt elapsed time = 1.5150 seconds. Total elapsed time = 4894.6250 seconds. ***factors found*** PRP42 = 629413938427228336143257358605484317506289 PRP51 = 296850911885490573747756395058094668056965871611231
By Ignacio Santos / GGNFS, Msieve / Feb 23, 2009
(37·10175+17)/9 = 4(1)1743<176> = 23 · 2539 · C171
C171 = P74 · P98
P74 = 23586711719453871087522664522636742344493353264814241528919205959807570277<74>
P98 = 29847040760283621496854245399203499887235219181116358275700688536486472950381821332414081846863577<98>
Number: 41113_175 N=703993546091599073772815574620461857819941283132885441223198299760451925802885612464871673392659059730998357982620872837836038000430006868693787542358530594227633459100829 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: r1=23586711719453871087522664522636742344493353264814241528919205959807570277 (pp74) r2=29847040760283621496854245399203499887235219181116358275700688536486472950381821332414081846863577 (pp98) Version: Msieve-1.39 Total time: 77.02 hours. Scaled time: 133.94 units (timescale=1.739). Factorization parameters were as follows: n: 703993546091599073772815574620461857819941283132885441223198299760451925802885612464871673392659059730998357982620872837836038000430006868693787542358530594227633459100829 m: 100000000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3050000, 6950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1306867 x 1307115 Total sieving time: 77.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6100000,6100000,28,28,53,53,2.5,2.5,100000 total time: 77.02 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(44·10118-71)/9 = 4(8)1171<119> = 7 · C118
C118 = P54 · P65
P54 = 416440717606357993741576196275666721789252219034067903<54>
P65 = 16770999301583074158031570541847272998272867034768728791605138361<65>
Number: 48881_118 N=6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126983 ( 118 digits) SNFS difficulty: 119 digits. Divisors found: r1=416440717606357993741576196275666721789252219034067903 r2=16770999301583074158031570541847272998272867034768728791605138361 Version: Total time: 1.68 hours. Scaled time: 1.66 units (timescale=0.989). Factorization parameters were as follows: n: 6984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126983 m: 200000000000000000000000 deg: 5 c5: 1375 c0: -71 skew: 0.55 type: snfs lss: 1 rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [350000, 600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 87398 x 87646 Total sieving time: 1.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,700000,700000,25,25,45,45,2.2,2.2,50000 total time: 1.68 hours. --------- CPU info (if available) ----------
(44·10125-71)/9 = 4(8)1241<126> = 29 · 37 · 73 · 1481 · C118
C118 = P41 · P78
P41 = 12477073105331465445789572500714681458613<41>
P78 = 337769014512650326216567018186916042346285216264847869760875598543396841692813<78>
Number: 48881_125 N=4214368686790102824475544972011472419570332450119467343144868288579673570537216715847822445421317865443217046919048369 ( 118 digits) SNFS difficulty: 126 digits. Divisors found: r1=12477073105331465445789572500714681458613 r2=337769014512650326216567018186916042346285216264847869760875598543396841692813 Version: Total time: 2.17 hours. Scaled time: 2.09 units (timescale=0.965). Factorization parameters were as follows: n: 4214368686790102824475544972011472419570332450119467343144868288579673570537216715847822445421317865443217046919048369 m: 10000000000000000000000000 deg: 5 c5: 44 c0: -71 skew: 1.10 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135095 x 135343 Total sieving time: 2.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Feb 22, 2009
(44·10109-71)/9 = 4(8)1081<110> = 73 · C108
C108 = P41 · P68
P41 = 35566845797976201162695764745383432956709<41>
P68 = 18829637311701547205216682636999200838650523549983041259903340871733<68>
Number: 48881_109 N=669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: r1=35566845797976201162695764745383432956709 r2=18829637311701547205216682636999200838650523549983041259903340871733 Version: Total time: 0.38 hours. Scaled time: 0.91 units (timescale=2.379). Factorization parameters were as follows: n: 669710806697108066971080669710806697108066971080669710806697108066971080669710806697108066971080669710806697 m: 10000000000000000000000 deg: 5 c5: 22 c0: -355 skew: 1.74 type: snfs lss: 1 rlim: 320000 alim: 320000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 320000/320000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [160000, 300001) Primes: rational ideals reading, algebraic ideals reading, Relations: 961229 Max relations in full relation-set: Initial matrix: Pruned matrix : 43983 x 44216 Total sieving time: 0.34 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,320000,320000,25,25,44,44,2.2,2.2,20000 total time: 0.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10111-71)/9 = 4(8)1101<112> = 3 · 41 · 619 · 1993 · 891763 · C98
C98 = P43 · P56
P43 = 1351980281510634921679265723748664648148189<43>
P56 = 26723128574901564786591298311795686272646239432459060663<56>
Number: 48881_111 N=36129142893540309774385216913572919724754103318722012008593516148461445958436410349932217364589307 ( 98 digits) SNFS difficulty: 113 digits. Divisors found: r1=1351980281510634921679265723748664648148189 r2=26723128574901564786591298311795686272646239432459060663 Version: Total time: 0.41 hours. Scaled time: 0.98 units (timescale=2.372). Factorization parameters were as follows: n: 36129142893540309774385216913572919724754103318722012008593516148461445958436410349932217364589307 m: 20000000000000000000000 deg: 5 c5: 55 c0: -284 skew: 1.39 type: snfs lss: 1 rlim: 360000 alim: 360000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [180000, 330001) Primes: rational ideals reading, algebraic ideals reading, Relations: 982594 Max relations in full relation-set: Initial matrix: Pruned matrix : 49757 x 49991 Total sieving time: 0.37 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,360000,360000,25,25,45,45,2.2,2.2,25000 total time: 0.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(44·10142-71)/9 = 4(8)1411<143> = 7 · 601 · 1586766675259<13> · 603149822923393391<18> · 10114884012409807074443<23> · C88
C88 = P32 · P56
P32 = 38857779451858321390658667718439<32>
P56 = 30893029087204983813564181049616963052872694625767854991<56>
Sun Feb 22 22:54:09 2009 Sun Feb 22 22:54:09 2009 Sun Feb 22 22:54:09 2009 Msieve v. 1.39 Sun Feb 22 22:54:09 2009 random seeds: 012cf744 94063b51 Sun Feb 22 22:54:09 2009 factoring 1200434510870455254743290303365774516525651954915925350818770002948070047475388968879049 (88 digits) Sun Feb 22 22:54:10 2009 searching for 15-digit factors Sun Feb 22 22:54:11 2009 commencing quadratic sieve (88-digit input) Sun Feb 22 22:54:11 2009 using multiplier of 5 Sun Feb 22 22:54:11 2009 using VC8 32kb sieve core Sun Feb 22 22:54:11 2009 sieve interval: 24 blocks of size 32768 Sun Feb 22 22:54:11 2009 processing polynomials in batches of 9 Sun Feb 22 22:54:11 2009 using a sieve bound of 1500533 (57333 primes) Sun Feb 22 22:54:11 2009 using large prime bound of 120042640 (26 bits) Sun Feb 22 22:54:11 2009 using double large prime bound of 348982681131840 (42-49 bits) Sun Feb 22 22:54:11 2009 using trial factoring cutoff of 49 bits Sun Feb 22 22:54:11 2009 polynomial 'A' values have 11 factors Sun Feb 22 23:43:15 2009 57727 relations (15785 full + 41942 combined from 604889 partial), need 57429 Sun Feb 22 23:43:15 2009 begin with 620674 relations Sun Feb 22 23:43:15 2009 reduce to 139072 relations in 9 passes Sun Feb 22 23:43:15 2009 attempting to read 139072 relations Sun Feb 22 23:43:17 2009 recovered 139072 relations Sun Feb 22 23:43:17 2009 recovered 116567 polynomials Sun Feb 22 23:43:17 2009 attempting to build 57727 cycles Sun Feb 22 23:43:17 2009 found 57727 cycles in 5 passes Sun Feb 22 23:43:17 2009 distribution of cycle lengths: Sun Feb 22 23:43:17 2009 length 1 : 15785 Sun Feb 22 23:43:17 2009 length 2 : 11179 Sun Feb 22 23:43:17 2009 length 3 : 10318 Sun Feb 22 23:43:17 2009 length 4 : 7571 Sun Feb 22 23:43:17 2009 length 5 : 5283 Sun Feb 22 23:43:17 2009 length 6 : 3301 Sun Feb 22 23:43:17 2009 length 7 : 1998 Sun Feb 22 23:43:17 2009 length 9+: 2292 Sun Feb 22 23:43:17 2009 largest cycle: 19 relations Sun Feb 22 23:43:17 2009 matrix is 57333 x 57727 (14.5 MB) with weight 3340533 (57.87/col) Sun Feb 22 23:43:17 2009 sparse part has weight 3340533 (57.87/col) Sun Feb 22 23:43:18 2009 filtering completed in 3 passes Sun Feb 22 23:43:18 2009 matrix is 52958 x 53021 (13.4 MB) with weight 3087569 (58.23/col) Sun Feb 22 23:43:18 2009 sparse part has weight 3087569 (58.23/col) Sun Feb 22 23:43:18 2009 saving the first 48 matrix rows for later Sun Feb 22 23:43:18 2009 matrix is 52910 x 53021 (9.2 MB) with weight 2470788 (46.60/col) Sun Feb 22 23:43:18 2009 sparse part has weight 1876061 (35.38/col) Sun Feb 22 23:43:18 2009 matrix includes 64 packed rows Sun Feb 22 23:43:18 2009 using block size 21208 for processor cache size 4096 kB Sun Feb 22 23:43:18 2009 commencing Lanczos iteration Sun Feb 22 23:43:18 2009 memory use: 8.0 MB Sun Feb 22 23:43:37 2009 lanczos halted after 838 iterations (dim = 52908) Sun Feb 22 23:43:37 2009 recovered 17 nontrivial dependencies Sun Feb 22 23:43:37 2009 prp32 factor: 38857779451858321390658667718439 Sun Feb 22 23:43:37 2009 prp56 factor: 30893029087204983813564181049616963052872694625767854991 Sun Feb 22 23:43:37 2009 elapsed time 00:49:28
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Feb 23, 2009
(44·10132-71)/9 = 4(8)1311<133> = 35 · 4339 · 15978271 · 93502943 · 105465168068487408287<21> · C92
C92 = P45 · P48
P45 = 260189102411844591320932191190753612446510353<45>
P48 = 113099589360575310311511645016805083348433825191<48>
Sun Feb 22 23:46:51 2009 Sun Feb 22 23:46:51 2009 Sun Feb 22 23:46:51 2009 Msieve v. 1.39 Sun Feb 22 23:46:51 2009 random seeds: d93107a4 3bab7459 Sun Feb 22 23:46:51 2009 factoring 29427280638876298352094944415671764174672400927972612484598350746797758877263449175173702423 (92 digits) Sun Feb 22 23:46:52 2009 searching for 15-digit factors Sun Feb 22 23:46:52 2009 commencing quadratic sieve (92-digit input) Sun Feb 22 23:46:53 2009 using multiplier of 2 Sun Feb 22 23:46:53 2009 using VC8 32kb sieve core Sun Feb 22 23:46:53 2009 sieve interval: 36 blocks of size 32768 Sun Feb 22 23:46:53 2009 processing polynomials in batches of 6 Sun Feb 22 23:46:53 2009 using a sieve bound of 1776617 (67059 primes) Sun Feb 22 23:46:53 2009 using large prime bound of 186544785 (27 bits) Sun Feb 22 23:46:53 2009 using double large prime bound of 771630750831045 (42-50 bits) Sun Feb 22 23:46:53 2009 using trial factoring cutoff of 50 bits Sun Feb 22 23:46:53 2009 polynomial 'A' values have 12 factors Mon Feb 23 01:30:43 2009 67582 relations (17465 full + 50117 combined from 829202 partial), need 67155 Mon Feb 23 01:30:44 2009 begin with 846667 relations Mon Feb 23 01:30:44 2009 reduce to 169150 relations in 10 passes Mon Feb 23 01:30:44 2009 attempting to read 169150 relations Mon Feb 23 01:30:46 2009 recovered 169150 relations Mon Feb 23 01:30:46 2009 recovered 148216 polynomials Mon Feb 23 01:30:47 2009 attempting to build 67582 cycles Mon Feb 23 01:30:47 2009 found 67582 cycles in 5 passes Mon Feb 23 01:30:47 2009 distribution of cycle lengths: Mon Feb 23 01:30:47 2009 length 1 : 17465 Mon Feb 23 01:30:47 2009 length 2 : 12674 Mon Feb 23 01:30:47 2009 length 3 : 11758 Mon Feb 23 01:30:47 2009 length 4 : 9043 Mon Feb 23 01:30:47 2009 length 5 : 6478 Mon Feb 23 01:30:47 2009 length 6 : 4270 Mon Feb 23 01:30:47 2009 length 7 : 2643 Mon Feb 23 01:30:47 2009 length 9+: 3251 Mon Feb 23 01:30:47 2009 largest cycle: 19 relations Mon Feb 23 01:30:47 2009 matrix is 67059 x 67582 (17.7 MB) with weight 4108292 (60.79/col) Mon Feb 23 01:30:47 2009 sparse part has weight 4108292 (60.79/col) Mon Feb 23 01:30:48 2009 filtering completed in 3 passes Mon Feb 23 01:30:48 2009 matrix is 63161 x 63225 (16.6 MB) with weight 3844548 (60.81/col) Mon Feb 23 01:30:48 2009 sparse part has weight 3844548 (60.81/col) Mon Feb 23 01:30:48 2009 saving the first 48 matrix rows for later Mon Feb 23 01:30:48 2009 matrix is 63113 x 63225 (10.4 MB) with weight 2947191 (46.61/col) Mon Feb 23 01:30:48 2009 sparse part has weight 2083604 (32.96/col) Mon Feb 23 01:30:48 2009 matrix includes 64 packed rows Mon Feb 23 01:30:48 2009 using block size 25290 for processor cache size 4096 kB Mon Feb 23 01:30:48 2009 commencing Lanczos iteration Mon Feb 23 01:30:48 2009 memory use: 9.4 MB Mon Feb 23 01:31:14 2009 lanczos halted after 999 iterations (dim = 63111) Mon Feb 23 01:31:14 2009 recovered 17 nontrivial dependencies Mon Feb 23 01:31:14 2009 prp45 factor: 260189102411844591320932191190753612446510353 Mon Feb 23 01:31:14 2009 prp48 factor: 113099589360575310311511645016805083348433825191 Mon Feb 23 01:31:14 2009 elapsed time 01:44:23
(44·10155-71)/9 = 4(8)1541<156> = 37 · 97 · 498889679 · 18697682263419627917303<23> · C122
C122 = P33 · C89
P33 = 440832314293904601752619068922493<33>
C89 = [33126152121935620473093722297086995034869661998940995868094417359149617683041111125853769<89>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 14603078303564818279173845988926349653740533214373454335871022413890641803324821089370234331992907488797307054889512926117 (122 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3845036566 Step 1 took 3945ms Step 2 took 2293ms ********** Factor found in step 2: 440832314293904601752619068922493 Found probable prime factor of 33 digits: 440832314293904601752619068922493 Composite cofactor 33126152121935620473093722297086995034869661998940995868094417359149617683041111125853769 has 89 digits
(44·10153-71)/9 = 4(8)1521<154> = 3 · 29 · 5686565066897115489601<22> · C130
C130 = P30 · C101
P30 = 480561239432935951772923342469<30>
C101 = [20563269273189518839408618741350859979878540178289245336713437567214603823608381501320185903034897227<101>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 9881910168717163209631261810317703627882659164497899775880673087419777791936683716199703007690664433555697694512695772842739433463 (130 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1617530254 Step 1 took 3914ms Step 2 took 2376ms ********** Factor found in step 2: 480561239432935951772923342469 Found probable prime factor of 30 digits: 480561239432935951772923342469 Composite cofactor 20563269273189518839408618741350859979878540178289245336713437567214603823608381501320185903034897227 has 101 digits
(44·10165-71)/9 = 4(8)1641<166> = 3 · 232 · 73 · 110567 · 93218987047<11> · C145
C145 = P28 · P117
P28 = 4682812091093777041353233063<28>
P117 = 874326705316405572786123234035850728935404455548662025784508076079796335019128265791706308917733245997267724658335013<117>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 4094307667221849768503331020912509608304619865549751287988453380418056262380073505171906009921330949575502129726494033608850944517940838122134819 (145 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2266374876 Step 1 took 4701ms Step 2 took 2623ms ********** Factor found in step 2: 4682812091093777041353233063 Found probable prime factor of 28 digits: 4682812091093777041353233063 Probable prime cofactor 874326705316405572786123234035850728935404455548662025784508076079796335019128265791706308917733245997267724658335013 has 117 digits
(14·10163+1)/3 = 4(6)1627<164> = 541 · 56552399 · 1300505580877<13> · 6763759569124322149817<22> · C120
C120 = P41 · P79
P41 = 87626829942236546445549104979905166220049<41>
P79 = 1978887024576844368225830411346447797924000567626738265413690868084042418013093<79>
Number: 46667_163 N=173403596777493614657332166591274041874084815925516146203645866528900650934565328260520164469099995823858736379801101557 ( 120 digits) SNFS difficulty: 165 digits. Divisors found: r1=87626829942236546445549104979905166220049 r2=1978887024576844368225830411346447797924000567626738265413690868084042418013093 Version: Total time: 22.87 hours. Scaled time: 54.51 units (timescale=2.383). Factorization parameters were as follows: n: 173403596777493614657332166591274041874084815925516146203645866528900650934565328260520164469099995823858736379801101557 m: 1000000000000000000000000000000000 deg: 5 c5: 7 c0: 50 skew: 1.48 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9787512 Max relations in full relation-set: Initial matrix: Pruned matrix : 725648 x 725896 Total sieving time: 20.43 hours. Total relation processing time: 0.91 hours. Matrix solve time: 1.15 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 22.87 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GGNFS, Msieve / Feb 22, 2009
(14·10159-11)/3 = 4(6)1583<160> = 5766037489<10> · C150
C150 = P54 · P97
P54 = 260455141077573786525035422943583702088538753349314693<54>
P97 = 3107394444335760734125359606663890296019575646343939677484645823076134984300128089687641614775019<97>
Number: n N=809336858383139566622867419699960030326931970224425064723450442114644854447748573538049479488333355625649950862930760710263336733339554370467026054167 ( 150 digits) SNFS difficulty: 160 digits. Divisors found: Mon Feb 23 00:56:38 2009 prp54 factor: 260455141077573786525035422943583702088538753349314693 Mon Feb 23 00:56:38 2009 prp97 factor: 3107394444335760734125359606663890296019575646343939677484645823076134984300128089687641614775019 Mon Feb 23 00:56:38 2009 elapsed time 02:44:21 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.59 hours. Scaled time: 39.48 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_6_158_3 n: 809336858383139566622867419699960030326931970224425064723450442114644854447748573538049479488333355625649950862930760710263336733339554370467026054167 deg: 5 c5: 7 c0: -55 m: 100000000000000000000000000000000 skew: 1.51 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [2000000, 3200117) Primes: RFBsize:283146, AFBsize:282788, largePrimes:16763038 encountered Relations: rels:15061344, finalFF:470776 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1073168 hash collisions in 16406181 relations Msieve: matrix is 798613 x 798861 (216.7 MB) Total sieving time: 21.25 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.5,2.5,100000 total time: 21.59 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Feb 22, 2009
(14·10205-11)/3 = 4(6)2043<206> = C206
C206 = P103 · P104
P103 = 2121306592776648777932591399219834774802781918867930539380539448487074254168075843706510005973451437893<103>
P104 = 21999020238551709776934090605708851713877528642400823630041963062954447513472170746146025058346596528891<104>
Number: 46663_205 N=46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 206 digits) SNFS difficulty: 206 digits. Divisors found: r1=2121306592776648777932591399219834774802781918867930539380539448487074254168075843706510005973451437893 r2=21999020238551709776934090605708851713877528642400823630041963062954447513472170746146025058346596528891 Version: Total time: 1093.48 hours. Scaled time: 1932.19 units (timescale=1.767). Factorization parameters were as follows: n: 46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 100000000000000000000000000000000000000000 deg: 5 c5: 14 c0: -11 skew: 0.95 type: snfs lss: 1 rlim: 19100000 alim: 19100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 19100000/19100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9550000, 20850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3269052 x 3269300 Total sieving time: 1093.48 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19100000,19100000,29,29,56,56,2.6,2.6,100000 total time: 1093.48 hours. --------- CPU info (if available) ----------
P103 is the largest prime factor which was found in our tables so far. Congratulations!
5·10193-9 = 4(9)1921<194> = 2111 · C191
C191 = P53 · P138
P53 = 46280192363403452945907094423911587820648171502970737<53>
P138 = 511783895437135635957154567370339647742796615436941073014585973056439262887348563848497984154002794113583812498276542761057932913246823513<138>
Number: 49991_193 N=23685457129322595926101373756513500710563713879677877783041212695405021316911416390336333491236380862150639507342491710090004737091425864519185220274751302700142112742775935575556608242539081 ( 191 digits) SNFS difficulty: 194 digits. Divisors found: r1=46280192363403452945907094423911587820648171502970737 r2=511783895437135635957154567370339647742796615436941073014585973056439262887348563848497984154002794113583812498276542761057932913246823513 Version: Total time: 514.11 hours. Scaled time: 1035.93 units (timescale=2.015). Factorization parameters were as follows: n: 23685457129322595926101373756513500710563713879677877783041212695405021316911416390336333491236380862150639507342491710090004737091425864519185220274751302700142112742775935575556608242539081 m: 500000000000000000000000000000000000000 deg: 5 c5: 8 c0: -45 skew: 1.41 type: snfs lss: 1 rlim: 12200000 alim: 12200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12200000/12200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6100000, 11100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1742550 x 1742798 Total sieving time: 514.11 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12200000,12200000,28,28,55,55,2.5,2.5,100000 total time: 514.11 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, yafu-1.06 / Feb 22, 2009
(43·10197+11)/9 = 4(7)1969<198> = 47 · 1321 · 1361 · 132338431180593418567771<24> · C167
C167 = P42 · P126
P42 = 331708104640154262349394010682175102067601<42>
P126 = 128802733727568111758695581281046348446516164327418168890927756109284401384948163029643002128681541870249908675847736129947407<126>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=651099684 Step 1 took 36625ms Step 2 took 18719ms ********** Factor found in step 2: 331708104640154262349394010682175102067601 Found probable prime factor of 42 digits: 331708104640154262349394010682175102067601 Probable prime cofactor has 126 digits
(2·10171+61)/9 = (2)1709<171> = 461 · 151570609 · 216132972529<12> · 2335216729459<13> · C136
C136 = P42 · P45 · P51
P42 = 107307406764746593081378156040526559657763<42>
P45 = 346004849803017639555116780811604078215096527<45>
P51 = 169711573352147205928889097569640982156924008532511<51>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1058474660 Step 1 took 26829ms Step 2 took 17359ms ********** Factor found in step 2: 346004849803017639555116780811604078215096527 Found probable prime factor of 45 digits: 346004849803017639555116780811604078215096527 Composite cofactor has 92 digits starting SIQS on c92: ==== sieve params ==== n = 92 digits, 304 bits factor base: 71746 primes (max prime = 1927319) single large prime cutoff: 231278280 (120 * pmax) double large prime range from 43 to 51 bits double large prime cutoff: 1136168456955099 using 10 large prime slices of factor base buckets hold 1024 elements sieve interval: 22 blocks of size 32768 polynomial A has ~ 12 factors using multiplier of 1 using small prime variation correction of 19 bits trial factoring cutoff at 98 bits ==== sieving in progress: 71810 relations needed ==== ==== Press ctrl-c to abort and save state ==== 71837 rels found: 19040 full + 52797 from 918502 partial, (1.45 rels/poly, 23 sieve time = 1329.8350, relation time = 831.9500, poly_time = 1843.4930 trial division touched 36530963 sieve locations out of 930211037184 trial division early aborted 24830250 times size of relation set in memory = 0 bytes QS elapsed time = 4009.3910 seconds. ==== post processing stage (msieve-1.38) ==== begin with 937542 relations reduce to 177059 relations in 10 passes attempting to read 177059 relations recovered 177059 relations recovered 154919 polynomials attempting to build 71837 cycles found 71837 cycles in 5 passes distribution of cycle lengths: length 1 : 19040 length 2 : 13960 length 3 : 12639 length 4 : 9626 length 5 : 6569 length 6 : 4326 length 7 : 2534 length 9+: 3143 largest cycle: 19 relations matrix is 71746 x 71837 (17.5 MB) with weight 4299912 (59.86/col) sparse part has weight 4299912 (59.86/col) filtering completed in 4 passes matrix is 67493 x 67557 (16.6 MB) with weight 4084336 (60.46/col) sparse part has weight 4084336 (60.46/col) saving the first 48 matrix rows for later matrix is 67445 x 67557 (10.9 MB) with weight 3243734 (48.01/col) sparse part has weight 2463447 (36.46/col) matrix includes 64 packed rows using block size 27022 for processor cache size 4096 kB commencing Lanczos iteration memory use: 10.6 MB lanczos halted after 1069 iterations (dim = 67443) recovered 15 nontrivial dependencies Lanczos elapsed time = 21.5630 seconds. Sqrt elapsed time = 2.8590 seconds. Total elapsed time = 4033.8130 seconds. ***factors found*** PRP51 = 169711573352147205928889097569640982156924008532511 PRP42 = 107307406764746593081378156040526559657763
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Feb 22, 2009
(43·10160+11)/9 = 4(7)1599<161> = 24460091 · 11342534099773<14> · C141
C141 = P33 · P108
P33 = 554530125227161494702649780672981<33>
P108 = 310550790918183757138040292450770137837000349722124572567731528164572899124874670393566999702736101247089513<108>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 172209768977254485464791824792255114721860563702277174648505747761995164855752309554901813150171274613701938489623941891084638103124687548253 (141 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2608419802 Step 1 took 4656ms Step 2 took 2602ms ********** Factor found in step 2: 554530125227161494702649780672981 Found probable prime factor of 33 digits: 554530125227161494702649780672981 Probable prime cofactor 310550790918183757138040292450770137837000349722124572567731528164572899124874670393566999702736101247089513 has 108 digits
(43·10157+11)/9 = 4(7)1569<158> = 7 · 19 · 71 · 634793981 · C145
C145 = P60 · P86
P60 = 569398400463786844822991231371199194147265537056016392601101<60>
P86 = 13998029790680444609644935809592066783975004954562700212966249573206820485535946233113<86>
Number: 47779_157 N=7970455772457882142378370810311293034070800362661745376018533241192809998167135231459500149657003373220030542303745103840118021642124004966457413 ( 145 digits) SNFS difficulty: 158 digits. Divisors found: r1=569398400463786844822991231371199194147265537056016392601101 r2=13998029790680444609644935809592066783975004954562700212966249573206820485535946233113 Version: Total time: 15.16 hours. Scaled time: 35.95 units (timescale=2.371). Factorization parameters were as follows: n: 7970455772457882142378370810311293034070800362661745376018533241192809998167135231459500149657003373220030542303745103840118021642124004966457413 m: 10000000000000000000000000000000 deg: 5 c5: 4300 c0: 11 skew: 0.3 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1700000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8611651 Max relations in full relation-set: Initial matrix: Pruned matrix : 542033 x 542281 Total sieving time: 13.77 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.67 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,50,50,2.4,2.4,100000 total time: 15.16 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Erik Branger / GGNFS, Msieve / Feb 22, 2009
(43·10160-61)/9 = 4(7)1591<161> = 945435727446149<15> · 153348803163867721<18> · C129
C129 = P57 · P72
P57 = 507677995989841246989194634726525592636366766426170255699<57>
P72 = 649120320669006679097042822232948846496567890641704033432611051708405901<72>
Number: 47771_160 N=329544103553524437142630573737847138140672187662421531344207977931454906200837907178392131176682093632910926826470819616850479799 ( 129 digits) SNFS difficulty: 161 digits. Divisors found: r1=507677995989841246989194634726525592636366766426170255699 r2=649120320669006679097042822232948846496567890641704033432611051708405901 Version: Total time: 56.69 hours. Scaled time: 44.05 units (timescale=0.777). Factorization parameters were as follows: n: 329544103553524437142630573737847138140672187662421531344207977931454906200837907178392131176682093632910926826470819616850479799 m: 100000000000000000000000000000000 deg: 5 c5: 43 c0: -61 skew: 1.07 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 633074 x 633322 Total sieving time: 56.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 56.69 hours. --------- CPU info (if available) ----------
(43·10153+11)/9 = 4(7)1529<154> = 3 · 13956860129130757<17> · C138
C138 = P55 · P83
P55 = 2390398834710402655240393538570122004850597163918549889<55>
P83 = 47736062871370708505479132371741318962492341955898192429827608909943783990709854941<83>
Number: 47779_153 N=114108229061387059407795316515320184476644107180547072391599074615035448306680841601658779924230943441450886744859116513862646670261651549 ( 138 digits) SNFS difficulty: 156 digits. Divisors found: r1=2390398834710402655240393538570122004850597163918549889 r2=47736062871370708505479132371741318962492341955898192429827608909943783990709854941 Version: Total time: 26.00 hours. Scaled time: 27.27 units (timescale=1.049). Factorization parameters were as follows: n: 114108229061387059407795316515320184476644107180547072391599074615035448306680841601658779924230943441450886744859116513862646670261651549 m: 5000000000000000000000000000000 deg: 5 c5: 344 c0: 275 skew: 0.96 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 485116 x 485364 Total sieving time: 26.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 26.00 hours. --------- CPU info (if available) ----------
Factorizations of 488...881 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Serge Batalov / PFGW / Feb 22, 2009
(65·1012175-11)/9 = 7(2)121741<12176> is PRP.
By Ignacio Santos / GGNFS, Msieve / Feb 21, 2009
(11·10188+43)/9 = 1(2)1877<189> = 1321 · C185
C185 = P44 · P69 · P73
P44 = 32500590808365891660494126460420756674718181<44>
P69 = 543030414799904978254708147320654776932247308215000344723661626079893<69>
P73 = 5242421637376962007933603554526722658769614576691122109338592923947287939<73>
Number: 12227_188 N=92522499789721591386996383211371856337791235595929010009252249978972159138699638321137185633779123559592901000925224997897215913869963832113718563377912355959290100092522499789721591387 ( 185 digits) SNFS difficulty: 190 digits. Divisors found: r1=32500590808365891660494126460420756674718181 (pp44) r2=543030414799904978254708147320654776932247308215000344723661626079893 (pp69) r3=5242421637376962007933603554526722658769614576691122109338592923947287939 (pp73) Version: Msieve-1.39 Total time: 320.82 hours. Scaled time: 557.90 units (timescale=1.739). Factorization parameters were as follows: n: 92522499789721591386996383211371856337791235595929010009252249978972159138699638321137185633779123559592901000925224997897215913869963832113718563377912355959290100092522499789721591387 m: 50000000000000000000000000000000000000 deg: 5 c5: 88 c0: 1075 skew: 1.65 type: snfs lss: 1 rlim: 10400000 alim: 10400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10400000/10400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5200000, 10500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1944125 x 1944373 Total sieving time: 320.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,10400000,10400000,28,28,54,54,2.5,2.5,100000 total time: 320.82 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS / Feb 21, 2009
(43·10131+11)/9 = 4(7)1309<132> = 55001 · 3884083551878620423<19> · C109
C109 = P41 · P69
P41 = 11966861624006845044170697133053452418829<41>
P69 = 186890199515821385603655482586900451315521584217335048559569919540337<69>
Number: 47779_131 N=2236489156488865591889647066020115676177330652039542505529233844200322483485327020696231388249200924483805373 ( 109 digits) SNFS difficulty: 133 digits. Divisors found: r1=11966861624006845044170697133053452418829 (pp41) r2=186890199515821385603655482586900451315521584217335048559569919540337 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.36 hours. Scaled time: 3.00 units (timescale=0.472). Factorization parameters were as follows: name: 47779_131 n: 2236489156488865591889647066020115676177330652039542505529233844200322483485327020696231388249200924483805373 m: 200000000000000000000000000 deg: 5 c5: 215 c0: 176 skew: 0.96 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1120001) Primes: RFBsize:92225, AFBsize:92618, largePrimes:3053285 encountered Relations: rels:3041735, finalFF:295264 Max relations in full relation-set: 28 Initial matrix: 184910 x 295264 with sparse part having weight 24278213. Pruned matrix : 153701 x 154689 with weight 9384043. Total sieving time: 5.84 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.34 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000 total time: 6.36 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve / Feb 21, 2009
(43·10109+11)/9 = 4(7)1089<110> = 7 · 9326851 · 147552919 · C94
C94 = P34 · P60
P34 = 5186641571572763891836425583825171<34>
P60 = 956222206640134678845241597923401166745068949951938745849003<60>
Fri Feb 20 19:28:21 2009 Msieve v. 1.39 Fri Feb 20 19:28:21 2009 random seeds: 70e09421 4868b65f Fri Feb 20 19:28:21 2009 factoring 4959581848620764314873082640202983684038637690697228712941474720772791534728505411094716654513 (94 digits) Fri Feb 20 19:28:22 2009 searching for 15-digit factors Fri Feb 20 19:28:23 2009 commencing number field sieve (94-digit input) Fri Feb 20 19:28:23 2009 R0: -10000000000000000000000 Fri Feb 20 19:28:23 2009 R1: 1 Fri Feb 20 19:28:23 2009 A0: 110 Fri Feb 20 19:28:23 2009 A1: 0 Fri Feb 20 19:28:23 2009 A2: 0 Fri Feb 20 19:28:23 2009 A3: 0 Fri Feb 20 19:28:23 2009 A4: 0 Fri Feb 20 19:28:23 2009 A5: 43 Fri Feb 20 19:28:23 2009 size score = 6.059901e-08, Murphy alpha = 0.621738, combined = 4.925606e-08 Fri Feb 20 19:28:23 2009 Fri Feb 20 19:28:23 2009 commencing square root phase Fri Feb 20 19:28:23 2009 reading relations for dependency 1 Fri Feb 20 19:28:23 2009 read 25324 cycles Fri Feb 20 19:28:23 2009 cycles contain 90261 unique relations Fri Feb 20 19:28:24 2009 read 90261 relations Fri Feb 20 19:28:24 2009 multiplying 69680 relations Fri Feb 20 19:28:27 2009 multiply complete, coefficients have about 1.69 million bits Fri Feb 20 19:28:27 2009 initial square root is modulo 62099671 Fri Feb 20 19:28:32 2009 Newton iteration failed to converge Fri Feb 20 19:28:32 2009 algebraic square root failed Fri Feb 20 19:28:32 2009 reading relations for dependency 2 Fri Feb 20 19:28:32 2009 read 25291 cycles Fri Feb 20 19:28:32 2009 cycles contain 90029 unique relations Fri Feb 20 19:28:33 2009 read 90029 relations Fri Feb 20 19:28:33 2009 multiplying 69474 relations Fri Feb 20 19:28:36 2009 multiply complete, coefficients have about 1.68 million bits Fri Feb 20 19:28:36 2009 initial square root is modulo 58919291 Fri Feb 20 19:28:41 2009 prp34 factor: 5186641571572763891836425583825171 Fri Feb 20 19:28:41 2009 prp60 factor: 956222206640134678845241597923401166745068949951938745849003 Fri Feb 20 19:28:41 2009 elapsed time 00:00:20
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 21, 2009
(43·10148+11)/9 = 4(7)1479<149> = 55434706652456510426180009<26> · C123
C123 = P36 · P87
P36 = 880473705643800323008781414226040537<36>
P87 = 978876272798095084184897796318874119497804652497593236125475126377821797059918500810163<87>
Number: 47779_148 N=861874819277330356327609514781646580120356516383198868090420835498813576559283961722781870003966532142251375809846179577531 ( 123 digits) SNFS difficulty: 151 digits. Divisors found: r1=880473705643800323008781414226040537 r2=978876272798095084184897796318874119497804652497593236125475126377821797059918500810163 Version: Total time: 9.29 hours. Scaled time: 22.19 units (timescale=2.388). Factorization parameters were as follows: n: 861874819277330356327609514781646580120356516383198868090420835498813576559283961722781870003966532142251375809846179577531 m: 1000000000000000000000000000000 deg: 5 c5: 43 c0: 1100 skew: 1.91 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7230844 Max relations in full relation-set: Initial matrix: Pruned matrix : 368529 x 368777 Total sieving time: 8.56 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.29 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 9.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / GGNFS / Feb 21, 2009
(43·10127+11)/9 = 4(7)1269<128> = 72 · 17 · 3823 · 36191 · 222552349 · C109
C109 = P32 · P77
P32 = 44081140412735548636973386146047<32>
P77 = 42256260316589121143556886855498657765076762677937532780858710902359236274497<77>
Number: 47779_127 N=1862704144332670156720268853192338984265184891905277609373267801082571490102306484312947988653238917023463359 ( 109 digits) SNFS difficulty: 129 digits. Divisors found: r1=44081140412735548636973386146047 (pp32) r2=42256260316589121143556886855498657765076762677937532780858710902359236274497 (pp77) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.71 hours. Scaled time: 2.22 units (timescale=0.472). Factorization parameters were as follows: name: 47779_127 n: 1862704144332670156720268853192338984265184891905277609373267801082571490102306484312947988653238917023463359 m: 20000000000000000000000000 deg: 5 c5: 1075 c0: 88 skew: 0.61 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 905001) Primes: RFBsize:79251, AFBsize:79252, largePrimes:2661170 encountered Relations: rels:2570098, finalFF:217499 Max relations in full relation-set: 28 Initial matrix: 158570 x 217499 with sparse part having weight 16509802. Pruned matrix : 139367 x 140223 with weight 7866099. Total sieving time: 4.30 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.26 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 4.71 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Feb 21, 2009
(43·10159+11)/9 = 4(7)1589<160> = 3 · 17 · 23 · C157
C157 = P50 · P52 · P57
P50 = 11231391656393485544496622672465008980700034909609<50>
P52 = 3014196135867233202687935157625883361795625141037437<52>
P57 = 120315852673499043834233788846040848684277725755808369531<57>
Number: 47779_159 N=4073126835275172871080799469546272615326323766221464431183101259827602538599981055224021975940134507909443970825044993842947807142180543715070569290518139623 ( 157 digits) SNFS difficulty: 161 digits. Divisors found: r1=11231391656393485544496622672465008980700034909609 (pp50) r2=3014196135867233202687935157625883361795625141037437 (pp52) r3=120315852673499043834233788846040848684277725755808369531 (pp57) Version: Msieve-1.39 Total time: 30.34 hours. Scaled time: 77.98 units (timescale=2.570). Factorization parameters were as follows: n: 4073126835275172871080799469546272615326323766221464431183101259827602538599981055224021975940134507909443970825044993842947807142180543715070569290518139623 m: 100000000000000000000000000000000 deg: 5 c5: 43 c0: 110 skew: 1.21 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 620461 x 620709 Total sieving time: 30.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 30.34 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1 / Feb 21, 2009
(43·10184+11)/9 = 4(7)1839<185> = 502173835561<12> · 1764054615755273<16> · C158
C158 = P35 · P124
P35 = 19779660838974429503159350745426911<35>
P124 = 2726722849829117633288105012852610477794751506660331369964335151196302306688943733512946151533573442920320969197061013111613<124>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3925499624 Step 1 took 33172ms Step 2 took 31609ms ********** Factor found in step 2: 19779660838974429503159350745426911 Found probable prime factor of 35 digits: 19779660838974429503159350745426911 Probable prime cofactor has 124 digits
(43·10154+11)/9 = 4(7)1539<155> = 61 · 2521 · 6621191 · 847749629250263763887<21> · C122
C122 = P35 · C88
P35 = 16675085747257594544754493982884013<35>
C88 = [3319337902489520751226070898363623293975319262802295525732486647927953485243921707385579<88>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1862379626 Step 1 took 21938ms Step 2 took 23406ms ********** Factor found in step 2: 16675085747257594544754493982884013 Found probable prime factor of 35 digits: 16675085747257594544754493982884013 Composite cofactor has 88 digits
(43·10172+11)/9 = 4(7)1719<173> = 509 · 49201 · 11533729 · C159
C159 = P32 · P127
P32 = 57344023234304788989693444726809<32>
P127 = 2884538444478075465915083887707291101979033666860029443770170453897934362899979487077169234337132170666443297398816898669830871<127>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4028011784 Step 1 took 33562ms Step 2 took 31500ms ********** Factor found in step 2: 57344023234304788989693444726809 Found probable prime factor of 32 digits: 57344023234304788989693444726809 Probable prime cofactor has 127 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Feb 21, 2009
(43·10146+11)/9 = 4(7)1459<147> = 29 · 5939380283<10> · 211859631176295106006771<24> · C113
C113 = P50 · P63
P50 = 15087489785086270771497404761812202993118278003931<50>
P63 = 867803933596246020684967505127274412556662504314507971740173597<63>
Number: 47779_146 N=13092982983591046266291176692464995493840491391051995577697638177682986033121860520529575409164790910616588409807 ( 113 digits) SNFS difficulty: 147 digits. Divisors found: r1=15087489785086270771497404761812202993118278003931 r2=867803933596246020684967505127274412556662504314507971740173597 Version: Total time: 6.49 hours. Scaled time: 15.49 units (timescale=2.388). Factorization parameters were as follows: n: 13092982983591046266291176692464995493840491391051995577697638177682986033121860520529575409164790910616588409807 m: 100000000000000000000000000000 deg: 5 c5: 430 c0: 11 skew: 0.48 type: snfs lss: 1 rlim: 1650000 alim: 1650000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1650000/1650000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [825000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4161154 Max relations in full relation-set: Initial matrix: Pruned matrix : 254636 x 254884 Total sieving time: 6.09 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.13 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1650000,1650000,26,26,49,49,2.3,2.3,75000 total time: 6.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(28·10194+71)/9 = 3(1)1939<195> = 112 · 41 · 1674922471<10> · 1474538095136372480044028131<28> · 267407641043367558042632242380571217<36> · C119
C119 = P32 · P88
P32 = 12106194029400988433886496553153<32>
P88 = 7843576659298273046592920579513889096997867755355782782493662806320570224295195937674179<88>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 94955860921945704007355546974800936804246583000431312236385646536971406882241375331831813631952300999296434499069136387 (119 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=235263376 Step 1 took 11871ms Step 2 took 5314ms ********** Factor found in step 2: 12106194029400988433886496553153 Found probable prime factor of 32 digits: 12106194029400988433886496553153 Probable prime cofactor 7843576659298273046592920579513889096997867755355782782493662806320570224295195937674179 has 88 digits
(43·10154+11)/9 = 4(7)1539<155> = 61 · 2521 · 6621191 · 847749629250263763887<21> · 16675085747257594544754493982884013<35> · C88
C88 = P40 · P48
P40 = 5636508307787864317600687433160633242081<40>
P48 = 588899673562664672531521296334719610351148598859<48>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 55350244148134926631508712649392541668678343419702755748874150275125536746147316396440138150515401329333495269396625848527 (122 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3859335070 Step 1 took 12059ms ********** Factor found in step 1: 5636508307787864317600687433160633242081 Found probable prime factor of 40 digits: 5636508307787864317600687433160633242081 Composite cofactor 9819952553189439735588237898709102832197648043856985505276394036828197492861141167 has 82 digits
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Feb 20, 2009
(43·10125+11)/9 = 4(7)1249<126> = 2351653 · C120
C120 = P34 · P87
P34 = 1266553334462239478412150091931083<34>
P87 = 160409181960779313344897035534485477224261426249638458525237845325877356661108151236421<87>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 203166784290785153157280337608387707615782506083073386157642210724872154938580554944874000448951345193265238441971573943 (120 digits) Using B1=1474000, B2=2140044280, polynomial Dickson(6), sigma=3687375578 Step 1 took 12812ms Step 2 took 6485ms ********** Factor found in step 2: 1266553334462239478412150091931083 Found probable prime factor of 34 digits: 1266553334462239478412150091931083 Probable prime cofactor 160409181960779313344897035534485477224261426249638458525237845325877356661108151236421 has 87 digits
(41·10203+31)/9 = 4(5)2029<204> = 3 · 13 · C203
C203 = P93 · P110
P93 = 457387337981603800293347279194388993095518723402417924356630498257271643329743269622387958219<93>
P110 = 25538336352856119614320678777293019262107045729253609068129147639376452298149730952253210525759589139805192099<110>
Number: n N=11680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911681 ( 203 digits) SNFS difficulty: 206 digits. Divisors found: Fri Feb 20 21:41:51 2009 prp93 factor: 457387337981603800293347279194388993095518723402417924356630498257271643329743269622387958219 Fri Feb 20 21:41:51 2009 prp110 factor: 25538336352856119614320678777293019262107045729253609068129147639376452298149730952253210525759589139805192099 Fri Feb 20 21:41:51 2009 elapsed time 24:43:38 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20050930-k8 Total time: 171.01 hours. Scaled time: 344.07 units (timescale=2.012). Factorization parameters were as follows: name: KA_4_5_202_9 n: 11680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911680911681 deg: 5 c5: 41 c0: 3100 m: 100000000000000000000000000000000000000000 skew: 2.38 type: snfs rlim: 11000000 alim: 11000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 47599990) Primes: RFBsize:726517, AFBsize:725685, largePrimes:32641643 encountered Relations: rels:24382690, finalFF:56661 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9194383 hash collisions in 46991467 relations Msieve: matrix is 3662245 x 3662493 (995.4 MB) Total sieving time: 169.65 hours. Total relation processing time: 1.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,11000000,11000000,29,29,58,58,2.5,2.5,100000 total time: 171.01 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.92 BogoMIPS (lpj=2830461) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.63 BogoMIPS).
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 20, 2009
(14·10161-11)/3 = 4(6)1603<162> = 2875802551489229275389845286190879<34> · C129
C129 = P40 · P41 · P49
P40 = 7961407472498715044312651769180597757613<40>
P41 = 17841291452200529199647842314509698688099<41>
P49 = 1142435201272643601345229374671734463684938243231<49>
Number: 46663_161 N=162273542189120096933435105385323543745120089475806304724912872877238918245061625164527994822545703074883859629274728091025656697 ( 129 digits) SNFS difficulty: 162 digits. Divisors found: r1=7961407472498715044312651769180597757613 r2=17841291452200529199647842314509698688099 r3=1142435201272643601345229374671734463684938243231 Version: Total time: 16.13 hours. Scaled time: 38.51 units (timescale=2.387). Factorization parameters were as follows: n: 162273542189120096933435105385323543745120089475806304724912872877238918245061625164527994822545703074883859629274728091025656697 m: 100000000000000000000000000000000 deg: 5 c5: 140 c0: -11 skew: 0.60 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9428208 Max relations in full relation-set: Initial matrix: Pruned matrix : 603820 x 604068 Total sieving time: 14.16 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.82 hours. Time per square root: 0.54 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 16.13 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve, GGNFS / Feb 20, 2009
(43·10129+11)/9 = 4(7)1289<130> = 32 · 390307 · 26599219579<11> · 1064068310384686629507983<25> · C89
C89 = P38 · P52
P38 = 27140931207690852879667282035137002753<38>
P52 = 1770573452161694692999975192547293750680635048843173<52>
Fri Feb 20 06:52:14 2009 Msieve v. 1.39 Fri Feb 20 06:52:14 2009 random seeds: 21016154 f81c930e Fri Feb 20 06:52:14 2009 factoring 48055012263284266871337658562328737011072592194561029695649063803572406500776859166255269 (89 digits) Fri Feb 20 06:52:15 2009 searching for 15-digit factors Fri Feb 20 06:52:16 2009 commencing quadratic sieve (89-digit input) Fri Feb 20 06:52:16 2009 using multiplier of 1 Fri Feb 20 06:52:16 2009 using 32kb Intel Core sieve core Fri Feb 20 06:52:16 2009 sieve interval: 32 blocks of size 32768 Fri Feb 20 06:52:16 2009 processing polynomials in batches of 7 Fri Feb 20 06:52:16 2009 using a sieve bound of 1556173 (58969 primes) Fri Feb 20 06:52:16 2009 using large prime bound of 124493840 (26 bits) Fri Feb 20 06:52:16 2009 using double large prime bound of 372619898133360 (42-49 bits) Fri Feb 20 06:52:16 2009 using trial factoring cutoff of 49 bits Fri Feb 20 06:52:16 2009 polynomial 'A' values have 11 factors Fri Feb 20 07:59:21 2009 59187 relations (15670 full + 43517 combined from 631081 partial), need 59065 Fri Feb 20 07:59:22 2009 begin with 646751 relations Fri Feb 20 07:59:23 2009 reduce to 145134 relations in 9 passes Fri Feb 20 07:59:23 2009 attempting to read 145134 relations Fri Feb 20 07:59:24 2009 recovered 145134 relations Fri Feb 20 07:59:24 2009 recovered 123372 polynomials Fri Feb 20 07:59:25 2009 attempting to build 59187 cycles Fri Feb 20 07:59:25 2009 found 59187 cycles in 5 passes Fri Feb 20 07:59:25 2009 distribution of cycle lengths: Fri Feb 20 07:59:25 2009 length 1 : 15670 Fri Feb 20 07:59:25 2009 length 2 : 11090 Fri Feb 20 07:59:25 2009 length 3 : 10545 Fri Feb 20 07:59:25 2009 length 4 : 7913 Fri Feb 20 07:59:25 2009 length 5 : 5579 Fri Feb 20 07:59:25 2009 length 6 : 3664 Fri Feb 20 07:59:25 2009 length 7 : 2137 Fri Feb 20 07:59:25 2009 length 9+: 2589 Fri Feb 20 07:59:25 2009 largest cycle: 17 relations Fri Feb 20 07:59:25 2009 matrix is 58969 x 59187 (14.4 MB) with weight 3532633 (59.69/col) Fri Feb 20 07:59:25 2009 sparse part has weight 3532633 (59.69/col) Fri Feb 20 07:59:26 2009 filtering completed in 3 passes Fri Feb 20 07:59:26 2009 matrix is 55025 x 55089 (13.5 MB) with weight 3314938 (60.17/col) Fri Feb 20 07:59:26 2009 sparse part has weight 3314938 (60.17/col) Fri Feb 20 07:59:26 2009 saving the first 48 matrix rows for later Fri Feb 20 07:59:26 2009 matrix is 54977 x 55089 (9.6 MB) with weight 2720133 (49.38/col) Fri Feb 20 07:59:26 2009 sparse part has weight 2174140 (39.47/col) Fri Feb 20 07:59:26 2009 matrix includes 64 packed rows Fri Feb 20 07:59:26 2009 using block size 22035 for processor cache size 1024 kB Fri Feb 20 07:59:27 2009 commencing Lanczos iteration Fri Feb 20 07:59:27 2009 memory use: 8.8 MB Fri Feb 20 07:59:46 2009 lanczos halted after 871 iterations (dim = 54977) Fri Feb 20 07:59:46 2009 recovered 17 nontrivial dependencies Fri Feb 20 07:59:47 2009 prp38 factor: 27140931207690852879667282035137002753 Fri Feb 20 07:59:47 2009 prp52 factor: 1770573452161694692999975192547293750680635048843173 Fri Feb 20 07:59:47 2009 elapsed time 01:07:33
(43·10142+11)/9 = 4(7)1419<143> = 401 · 1321 · 1867727 · 14366243 · 608193757 · 1383871068526152654861029<25> · C91
C91 = P35 · P57
P35 = 24378346084486836937126300457149213<35>
P57 = 163825055878536304330382129043609238283062757523353906131<57>
Fri Feb 20 08:21:18 2009 Msieve v. 1.39 Fri Feb 20 08:21:18 2009 random seeds: 8f5564e0 c40a7580 Fri Feb 20 08:21:18 2009 factoring 3993783909517352782752855055687311510858077698847215776271767549538611990502412608262524903 (91 digits) Fri Feb 20 08:21:19 2009 searching for 15-digit factors Fri Feb 20 08:21:20 2009 commencing quadratic sieve (91-digit input) Fri Feb 20 08:21:20 2009 using multiplier of 7 Fri Feb 20 08:21:20 2009 using 32kb Intel Core sieve core Fri Feb 20 08:21:20 2009 sieve interval: 36 blocks of size 32768 Fri Feb 20 08:21:20 2009 processing polynomials in batches of 6 Fri Feb 20 08:21:20 2009 using a sieve bound of 1685933 (63261 primes) Fri Feb 20 08:21:20 2009 using large prime bound of 155105836 (27 bits) Fri Feb 20 08:21:20 2009 using double large prime bound of 553516580371368 (42-49 bits) Fri Feb 20 08:21:20 2009 using trial factoring cutoff of 49 bits Fri Feb 20 08:21:20 2009 polynomial 'A' values have 12 factors Fri Feb 20 10:02:11 2009 63847 relations (16461 full + 47386 combined from 729762 partial), need 63357 Fri Feb 20 10:02:12 2009 begin with 746223 relations Fri Feb 20 10:02:13 2009 reduce to 158830 relations in 11 passes Fri Feb 20 10:02:13 2009 attempting to read 158830 relations Fri Feb 20 10:02:15 2009 recovered 158830 relations Fri Feb 20 10:02:15 2009 recovered 139831 polynomials Fri Feb 20 10:02:15 2009 attempting to build 63847 cycles Fri Feb 20 10:02:15 2009 found 63847 cycles in 6 passes Fri Feb 20 10:02:15 2009 distribution of cycle lengths: Fri Feb 20 10:02:15 2009 length 1 : 16461 Fri Feb 20 10:02:15 2009 length 2 : 11921 Fri Feb 20 10:02:15 2009 length 3 : 11240 Fri Feb 20 10:02:15 2009 length 4 : 8716 Fri Feb 20 10:02:15 2009 length 5 : 6117 Fri Feb 20 10:02:15 2009 length 6 : 3998 Fri Feb 20 10:02:15 2009 length 7 : 2425 Fri Feb 20 10:02:15 2009 length 9+: 2969 Fri Feb 20 10:02:15 2009 largest cycle: 20 relations Fri Feb 20 10:02:16 2009 matrix is 63261 x 63847 (15.7 MB) with weight 3848842 (60.28/col) Fri Feb 20 10:02:16 2009 sparse part has weight 3848842 (60.28/col) Fri Feb 20 10:02:17 2009 filtering completed in 3 passes Fri Feb 20 10:02:17 2009 matrix is 59516 x 59580 (14.6 MB) with weight 3588684 (60.23/col) Fri Feb 20 10:02:17 2009 sparse part has weight 3588684 (60.23/col) Fri Feb 20 10:02:17 2009 saving the first 48 matrix rows for later Fri Feb 20 10:02:17 2009 matrix is 59468 x 59580 (8.8 MB) with weight 2770890 (46.51/col) Fri Feb 20 10:02:17 2009 sparse part has weight 1957825 (32.86/col) Fri Feb 20 10:02:17 2009 matrix includes 64 packed rows Fri Feb 20 10:02:17 2009 using block size 23832 for processor cache size 1024 kB Fri Feb 20 10:02:17 2009 commencing Lanczos iteration Fri Feb 20 10:02:17 2009 memory use: 8.8 MB Fri Feb 20 10:02:37 2009 lanczos halted after 942 iterations (dim = 59467) Fri Feb 20 10:02:37 2009 recovered 17 nontrivial dependencies Fri Feb 20 10:02:38 2009 prp35 factor: 24378346084486836937126300457149213 Fri Feb 20 10:02:38 2009 prp57 factor: 163825055878536304330382129043609238283062757523353906131 Fri Feb 20 10:02:38 2009 elapsed time 01:41:20
(43·10119+11)/9 = 4(7)1189<120> = 592 · 877169 · 43205687870409677<17> · C94
C94 = P40 · P55
P40 = 1629543914890988045527593250715973643091<40>
P55 = 2222448240333959828698516219357710508359559810761141373<55>
Fri Feb 20 10:12:46 2009 Msieve v. 1.39 Fri Feb 20 10:12:46 2009 random seeds: bc4c5380 61111fb9 Fri Feb 20 10:12:46 2009 factoring 3621577006196388380317543352631061323163065442252020335260657653797868983538297184444095703943 (94 digits) Fri Feb 20 10:12:47 2009 searching for 15-digit factors Fri Feb 20 10:12:48 2009 commencing quadratic sieve (94-digit input) Fri Feb 20 10:12:48 2009 using multiplier of 3 Fri Feb 20 10:12:48 2009 using 32kb Intel Core sieve core Fri Feb 20 10:12:48 2009 sieve interval: 36 blocks of size 32768 Fri Feb 20 10:12:48 2009 processing polynomials in batches of 6 Fri Feb 20 10:12:48 2009 using a sieve bound of 2017133 (75294 primes) Fri Feb 20 10:12:48 2009 using large prime bound of 270295822 (28 bits) Fri Feb 20 10:12:48 2009 using double large prime bound of 1504217873095760 (42-51 bits) Fri Feb 20 10:12:48 2009 using trial factoring cutoff of 51 bits Fri Feb 20 10:12:48 2009 polynomial 'A' values have 12 factors Fri Feb 20 13:30:21 2009 75562 relations (18319 full + 57243 combined from 1073394 partial), need 75390 Fri Feb 20 13:30:23 2009 begin with 1091713 relations Fri Feb 20 13:30:24 2009 reduce to 197045 relations in 15 passes Fri Feb 20 13:30:24 2009 attempting to read 197045 relations Fri Feb 20 13:30:27 2009 recovered 197045 relations Fri Feb 20 13:30:27 2009 recovered 180850 polynomials Fri Feb 20 13:30:27 2009 attempting to build 75562 cycles Fri Feb 20 13:30:27 2009 found 75562 cycles in 6 passes Fri Feb 20 13:30:27 2009 distribution of cycle lengths: Fri Feb 20 13:30:27 2009 length 1 : 18319 Fri Feb 20 13:30:27 2009 length 2 : 13159 Fri Feb 20 13:30:27 2009 length 3 : 12641 Fri Feb 20 13:30:27 2009 length 4 : 10177 Fri Feb 20 13:30:27 2009 length 5 : 7828 Fri Feb 20 13:30:27 2009 length 6 : 5356 Fri Feb 20 13:30:27 2009 length 7 : 3413 Fri Feb 20 13:30:27 2009 length 9+: 4669 Fri Feb 20 13:30:27 2009 largest cycle: 20 relations Fri Feb 20 13:30:28 2009 matrix is 75294 x 75562 (19.7 MB) with weight 4853868 (64.24/col) Fri Feb 20 13:30:28 2009 sparse part has weight 4853868 (64.24/col) Fri Feb 20 13:30:29 2009 filtering completed in 3 passes Fri Feb 20 13:30:29 2009 matrix is 71919 x 71983 (18.8 MB) with weight 4643042 (64.50/col) Fri Feb 20 13:30:29 2009 sparse part has weight 4643042 (64.50/col) Fri Feb 20 13:30:29 2009 saving the first 48 matrix rows for later Fri Feb 20 13:30:29 2009 matrix is 71871 x 71983 (11.6 MB) with weight 3613430 (50.20/col) Fri Feb 20 13:30:29 2009 sparse part has weight 2611838 (36.28/col) Fri Feb 20 13:30:29 2009 matrix includes 64 packed rows Fri Feb 20 13:30:29 2009 using block size 28793 for processor cache size 1024 kB Fri Feb 20 13:30:29 2009 commencing Lanczos iteration Fri Feb 20 13:30:29 2009 memory use: 11.4 MB Fri Feb 20 13:31:02 2009 lanczos halted after 1139 iterations (dim = 71869) Fri Feb 20 13:31:03 2009 recovered 16 nontrivial dependencies Fri Feb 20 13:31:04 2009 prp40 factor: 1629543914890988045527593250715973643091 Fri Feb 20 13:31:04 2009 prp55 factor: 2222448240333959828698516219357710508359559810761141373 Fri Feb 20 13:31:04 2009 elapsed time 03:18:18
(43·10132+11)/9 = 4(7)1319<133> = 3 · 139 · 1617060083<10> · 5214396783389<13> · C109
C109 = P50 · P59
P50 = 50541247719731333587997428474350383605813549419067<50>
P59 = 26885226523835445887875722827790004920957495463615810581103<59>
Number: 47779_132 N=1358812893742258597789747014238676024239796240176713828444379631747797948175870514261049944549847657338090901 ( 109 digits) SNFS difficulty: 134 digits. Divisors found: r1=50541247719731333587997428474350383605813549419067 (pp50) r2=26885226523835445887875722827790004920957495463615810581103 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 7.22 hours. Scaled time: 3.41 units (timescale=0.472). Factorization parameters were as follows: naqme: 47779_132 n: 1358812893742258597789747014238676024239796240176713828444379631747797948175870514261049944549847657338090901 m: 200000000000000000000000000 deg: 5 c5: 1075 c0: 88 skew: 0.61 type: snfs lss: 1 rlim: 1220000 alim: 1220000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1220000/1220000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [610000, 1210001) Primes: RFBsize:94358, AFBsize:94464, largePrimes:3034738 encountered Relations: rels:2961930, finalFF:243551 Max relations in full relation-set: 28 Initial matrix: 188889 x 243551 with sparse part having weight 19965553. Pruned matrix : 172717 x 173725 with weight 11107596. Total sieving time: 6.54 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.50 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1220000,1220000,26,26,47,47,2.3,2.3,75000 total time: 7.22 hours. --------- CPU info (if available) ----------
(43·10120+11)/9 = 4(7)1199<121> = 32 · 93827 · C115
C115 = P31 · P84
P31 = 7038155769238927850882817067061<31>
P84 = 803890195150983067956507741009808847217713781424351512089994883241101368694024928773<84>
Number: 47779_120 N=5657904414836499062432606792616882107824658121125733504544152509734556124898634695033030977552987919584599289446153 ( 115 digits) SNFS difficulty: 121 digits. Divisors found: r1=7038155769238927850882817067061 (pp31) r2=803890195150983067956507741009808847217713781424351512089994883241101368694024928773 (pp84) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.25 hours. Scaled time: 1.53 units (timescale=0.472). Factorization parameters were as follows: name: 47779_120 n: 5657904414836499062432606792616882107824658121125733504544152509734556124898634695033030977552987919584599289446153 m: 1000000000000000000000000 deg: 5 c5: 43 c0: 11 skew: 0.76 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 675001) Primes: RFBsize:60238, AFBsize:60292, largePrimes:1430749 encountered Relations: rels:1457858, finalFF:198259 Max relations in full relation-set: 28 Initial matrix: 120595 x 198259 with sparse part having weight 9889634. Pruned matrix : 94071 x 94737 with weight 3577001. Total sieving time: 3.10 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000 total time: 3.25 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Feb 20, 2009
4·10199+9 = 4(0)1989<200> = 7 · 167 · 807609247 · 69410343209<11> · 3583758997367<13> · 4408808231743453<16> · 902378687429809728877943<24> · C125
C125 = P56 · P70
P56 = 34354547702604499771852060945580290335045785027459957891<56>
P70 = 1246197671815972306658825990912399156490027586001311061642622929565689<70>
Number: 40009_199 N=42812557363276487782916934524262511105753525850950546127721797492871267553551320202026578618974150388644911007529878858401899 ( 125 digits) Divisors found: r1=34354547702604499771852060945580290335045785027459957891 r2=1246197671815972306658825990912399156490027586001311061642622929565689 Version: Total time: 97.56 hours. Scaled time: 95.51 units (timescale=0.979). Factorization parameters were as follows: name: 40009_199 n: 42812557363276487782916934524262511105753525850950546127721797492871267553551320202026578618974150388644911007529878858401899 skew: 65485.13 # norm 6.24e+016 c5: 68820 c4: 15113653308 c3: 959756630908979 c2: -113306794408852250946 c1: -1423181321023806426462144 c0: 147911972968623758768192128 # alpha -5.27 Y1: 21201521590249 Y0: -909433307150304267179703 # Murphy_E 1.49e-010 # M 32842432499441896725282475792804844789405376223120805660169649129695932462276002551250689726016767061919229024782184398833998 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [4000000, 7600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 942045 x 942293 Total sieving time: 97.56 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8000000,8000000,27,27,51,51,2.5,2.5,100000 total time: 97.56 hours. --------- CPU info (if available) ----------
(43·10138+11)/9 = 4(7)1379<139> = 33 · 827 · C135
C135 = P34 · P102
P34 = 1607990073692464275813762654005857<34>
P102 = 133067901779035413042325512388656807161085244651646675288949326546221468227376511792074081928684625643<102>
Number: 47779_138 N=213971865187772751926990809161976701947143973208732042535616363373987987719010156199461587074108906703290688242992421415100442374391051 ( 135 digits) SNFS difficulty: 141 digits. Divisors found: r1=1607990073692464275813762654005857 r2=133067901779035413042325512388656807161085244651646675288949326546221468227376511792074081928684625643 Version: Total time: 7.39 hours. Scaled time: 7.12 units (timescale=0.963). Factorization parameters were as follows: n: 213971865187772751926990809161976701947143973208732042535616363373987987719010156199461587074108906703290688242992421415100442374391051 m: 5000000000000000000000000000 deg: 5 c5: 344 c0: 275 skew: 0.96 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 254465 x 254713 Total sieving time: 7.39 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 7.39 hours. --------- CPU info (if available) ----------
(43·10133+11)/9 = 4(7)1329<134> = 7 · 4297 · 655021 · C124
C124 = P62 · P63
P62 = 11346499132520100806728972455098551130381922768598092307243241<62>
P63 = 213720137275370303790128482759435136117254500175820246299702841<63>
Number: 47779_133 N=2424975352197066012744415971921744477993322570850246873141852961150303718684874715843679972242569935216148066118330205747681 ( 124 digits) SNFS difficulty: 136 digits. Divisors found: r1=11346499132520100806728972455098551130381922768598092307243241 r2=213720137275370303790128482759435136117254500175820246299702841 Version: Total time: 5.54 hours. Scaled time: 5.40 units (timescale=0.975). Factorization parameters were as follows: n: 2424975352197066012744415971921744477993322570850246873141852961150303718684874715843679972242569935216148066118330205747681 m: 500000000000000000000000000 deg: 5 c5: 344 c0: 275 skew: 0.96 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1325001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 201665 x 201913 Total sieving time: 5.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 5.54 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1 / Feb 20, 2009
(10215+17)/9 = (1)2143<215> = 19 · 8461 · 4461943 · 43154329 · 233686394639<12> · 3159117892938247<16> · 10104647752741917108451<23> · C146
C146 = P33 · P113
P33 = 501928547260793544603300585296669<33>
P113 = 95867515236356305111343622696905285564256741353453902846428516503461544038617123729098432688474118148620085298703<113>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=141999233 Step 1 took 30390ms Step 2 took 29422ms ********** Factor found in step 2: 501928547260793544603300585296669 Found probable prime factor of 33 digits: 501928547260793544603300585296669 Probable prime cofactor 95867515236356305111343622696905285564256741353453902846428516503461544038617123729098432688474118148620085298703 has 113 digits
(10235+17)/9 = (1)2343<235> = 3 · C234
C234 = P37 · C198
P37 = 1462632956704910743229377279655903083<37>
C198 = [253221677162778007115933666937499898630720100146308997547782269439806975654231771169379649040305075932932943995847187788035663927744145241864622405151602202392552517630064393035746096398124433056137<198>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3955205230 Step 1 took 84796ms Step 2 took 55438ms ********** Factor found in step 2: 1462632956704910743229377279655903083 Found probable prime factor of 37 digits: 1462632956704910743229377279655903083 Composite cofactor has 198 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 19, 2009
(14·10166-11)/3 = 4(6)1653<167> = 149 · 185903 · 368231 · 9731163539<10> · 1043796167165768018697691187783<31> · C114
C114 = P51 · P63
P51 = 494708760820451125848952720900188160753421001266359<51>
P63 = 910507854449915240799919859053471284297372043363584815488929473<63>
Number: 46663_166 N=450436212392205245158977097476905739315982037445676265753566615858125703057142741445006681401990315834878238498807 ( 114 digits) Divisors found: r1=494708760820451125848952720900188160753421001266359 r2=910507854449915240799919859053471284297372043363584815488929473 Version: Total time: 15.97 hours. Scaled time: 38.13 units (timescale=2.388). Factorization parameters were as follows: name: 46663_166 n: 450436212392205245158977097476905739315982037445676265753566615858125703057142741445006681401990315834878238498807 skew: 27512.07 # norm 2.14e+15 c5: 51660 c4: -2900960325 c3: -142057854067848 c2: 1898402704471809028 c1: 36240627074749100550306 c0: -188164729597955528825118040 # alpha -5.15 Y1: 438006036127 Y0: -6138978709709931512157 # Murphy_E 5.94e-10 # M 448558176564726215625748641011569023622740611486017860202758900290125331933431385049191181063798011377365875845011 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2520001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9170106 Max relations in full relation-set: Initial matrix: Pruned matrix : 539874 x 540122 Polynomial selection time: 1.15 hours. Total sieving time: 13.07 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.66 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 15.97 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Ignacio Santos / GGNFS, Msieve / Feb 19, 2009
(14·10159+1)/3 = 4(6)1587<160> = 13 · 23283681427<11> · 191171963208617<15> · 1118699180060677<16> · C119
C119 = P41 · P79
P41 = 11174819369441197114738866818706428965753<41>
P79 = 6451099618540499233273736884263980249879617664845365580552739306543961653391721<79>
Number: 46667_159 N=72089872971461088881510076819431699394836374891179644631331325694824456779438131337001864179041635058446583330602730913 ( 119 digits) SNFS difficulty: 160 digits. Divisors found: r1=11174819369441197114738866818706428965753 (pp41) r2=6451099618540499233273736884263980249879617664845365580552739306543961653391721 (pp79) Version: Msieve-1.39 Total time: 20.77 hours. Scaled time: 53.41 units (timescale=2.571). Factorization parameters were as follows: n: 72089872971461088881510076819431699394836374891179644631331325694824456779438131337001864179041635058446583330602730913 m: 100000000000000000000000000000000 deg: 5 c5: 7 c0: 5 skew: 0.93 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 576094 x 576342 Total sieving time: 20.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 20.77 hours. --------- CPU info (if available) ----------
(43·10159-61)/9 = 4(7)1581<160> = 13 · 2689 · 4481225199742768913<19> · 5783879069787889733681<22> · C115
C115 = P41 · P75
P41 = 25751251215386511006956956407779078076869<41>
P75 = 204775258284067508010307871544880791955964544084259425523964948382641441579<75>
Number: 47771_159 N=5273219118768680122071708571506706716912016856156729728638835595725334023723100878336479878234453392900749134736151 ( 115 digits) SNFS difficulty: 161 digits. Divisors found: r1=25751251215386511006956956407779078076869 (pp41) r2=204775258284067508010307871544880791955964544084259425523964948382641441579 (pp75) Version: Msieve-1.39 Total time: 36.92 hours. Scaled time: 94.51 units (timescale=2.560). Factorization parameters were as follows: n: 5273219118768680122071708571506706716912016856156729728638835595725334023723100878336479878234453392900749134736151 m: 100000000000000000000000000000000 deg: 5 c5: 43 c0: -610 skew: 1.70 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 604530 x 604778 Total sieving time: 36.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 36.92 hours. --------- CPU info (if available) ----------
Factorizations of 477...779 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By matsui / GGNFS / Feb 18, 2009
4·10198+9 = 4(0)1979<199> = 13 · C198
C198 = P87 · P112
P87 = 119161480369370553888738724548996511607859620678122425499095327719568445123612055947061<87>
P112 = 2582145729799085189864734222137758538649682303628164199071706577153193715726836851292948073706300167943278781913<112>
N=307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307693 ( 198 digits) SNFS difficulty: 198 digits. Divisors found: r1=119161480369370553888738724548996511607859620678122425499095327719568445123612055947061 (pp87) r2=2582145729799085189864734222137758538649682303628164199071706577153193715726836851292948073706300167943278781913 (pp112) Version: GGNFS-0.77.1-20060722-nocona
By Ignacio Santos / GGNFS, Msieve / Feb 18, 2009
(14·10179+1)/3 = 4(6)1787<180> = 29 · C179
C179 = P38 · P141
P38 = 92675896264996983590750934289457199517<38>
P141 = 173636885873488126303743651617020492024657710926734399245020902788494883365428374403641911428951894559811517313745583408396839097490999409619<141>
Number: 46667_179 N=16091954022988505747126436781609195402298850574712643678160919540229885057471264367816091954022988505747126436781609195402298850574712643678160919540229885057471264367816091954023 ( 179 digits) SNFS difficulty: 180 digits. Divisors found: r1=92675896264996983590750934289457199517 (pp38) r2=173636885873488126303743651617020492024657710926734399245020902788494883365428374403641911428951894559811517313745583408396839097490999409619 (pp141) Version: Msieve-1.39 Total time: 120.30 hours. Scaled time: 307.98 units (timescale=2.560). Factorization parameters were as follows: n: 16091954022988505747126436781609195402298850574712643678160919540229885057471264367816091954022988505747126436781609195402298850574712643678160919540229885057471264367816091954023 m: 1000000000000000000000000000000000000 deg: 5 c5: 7 c0: 5 skew: 0.93 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3600000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1311235 x 1311483 Total sieving time: 120.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000 total time: 120.30 hours. --------- CPU info (if available) ----------
(14·10158-11)/3 = 4(6)1573<159> = 347 · 491 · 125053 · 727032431635420269844340393<27> · C122
C122 = P36 · P36 · P51
P36 = 234803378827784030361597153387592303<36>
P36 = 310713995993218869665380397868638747<36>
P51 = 412936009293891525760838697224581450103900217364471<51>
Number: 46663_158 N=30126446942224599374723108632407551078384197415597531296302534156777173628577007643433952264201441997937407902630281128611 ( 122 digits) SNFS difficulty: 160 digits. Divisors found: r1=234803378827784030361597153387592303 (pp36) r2=310713995993218869665380397868638747 (pp36) r3=412936009293891525760838697224581450103900217364471 (pp51) Version: Msieve-1.39 Total time: 26.56 hours. Scaled time: 68.55 units (timescale=2.581). Factorization parameters were as follows: n: 30126446942224599374723108632407551078384197415597531296302534156777173628577007643433952264201441997937407902630281128611 m: 50000000000000000000000000000000 deg: 5 c5: 112 c0: -275 skew: 1.20 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 624870 x 625118 Total sieving time: 26.56 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 26.56 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 18, 2009
(43·10148-61)/9 = 4(7)1471<149> = 46769 · 2629210397582974763360451419<28> · C117
C117 = P44 · P73
P44 = 69658373543494025241174894925771756251923011<44>
P73 = 5577880312046131909818066047850483955999577280283171864433498801873353451<73>
Number: 47771_148 N=388546070357410472888762122414019432805997798219949048919437242587685416530014291285085014722220535373757598043160961 ( 117 digits) SNFS difficulty: 151 digits. Divisors found: r1=69658373543494025241174894925771756251923011 r2=5577880312046131909818066047850483955999577280283171864433498801873353451 Version: Total time: 10.24 hours. Scaled time: 24.17 units (timescale=2.359). Factorization parameters were as follows: n: 388546070357410472888762122414019432805997798219949048919437242587685416530014291285085014722220535373757598043160961 m: 1000000000000000000000000000000 deg: 5 c5: 43 c0: -6100 skew: 2.69 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7428740 Max relations in full relation-set: Initial matrix: Pruned matrix : 368502 x 368750 Total sieving time: 9.50 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.30 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 10.24 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(43·10154-61)/9 = 4(7)1531<155> = 31 · 269 · 1723 · 11717 · 88339 · 102451 · C134
C134 = P36 · P99
P36 = 144998455525129973735485583611764881<36>
P99 = 216261000622321818515855235227174561862847527613062975417782961788362713610454628027413792585977831<99>
Number: 47771_154 N=31357511080555835774399090121316456047579255614504315798291457403930937839118791844386060841950607986280672665057609217229883050353111 ( 134 digits) SNFS difficulty: 156 digits. Divisors found: r1=144998455525129973735485583611764881 r2=216261000622321818515855235227174561862847527613062975417782961788362713610454628027413792585977831 Version: Total time: 11.55 hours. Scaled time: 27.55 units (timescale=2.385). Factorization parameters were as follows: n: 31357511080555835774399090121316456047579255614504315798291457403930937839118791844386060841950607986280672665057609217229883050353111 m: 10000000000000000000000000000000 deg: 5 c5: 43 c0: -610 skew: 1.70 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7959798 Max relations in full relation-set: Initial matrix: Pruned matrix : 536710 x 536958 Total sieving time: 10.25 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.65 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 11.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Erik Branger / GGNFS, Msieve / Feb 17, 2009
(43·10145-61)/9 = 4(7)1441<146> = 843901 · 293991666959251<15> · C126
C126 = P60 · P66
P60 = 918101328123974051862278530274961583258199669722430734090181<60>
P66 = 209753302917850389604880863916559051862645756212210465413357673241<66>
Number: 47771_145 N=192574785987268684455780319215148361749984341794729274246592538316541197471849039135275279536004523144463306494469797224546621 ( 126 digits) SNFS difficulty: 146 digits. Divisors found: r1=918101328123974051862278530274961583258199669722430734090181 r2=209753302917850389604880863916559051862645756212210465413357673241 Version: Total time: 15.17 hours. Scaled time: 11.88 units (timescale=0.783). Factorization parameters were as follows: n: 192574785987268684455780319215148361749984341794729274246592538316541197471849039135275279536004523144463306494469797224546621 m: 100000000000000000000000000000 deg: 5 c5: 43 c0: -61 skew: 1.07 type: snfs lss: 1 rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [975000, 2375001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 322228 x 322476 Total sieving time: 15.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,100000 total time: 15.17 hours. --------- CPU info (if available) ----------
Factorizations of 11...113 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Wataru Sakai / GMP-ECM 6.2.1 / Feb 17, 2009
4·10250+1 = 4(0)2491<251> = 13 · 609367039316849421092272000364917<33> · C217
C217 = P28 · C190
P28 = 3646063837616479765543282237<28>
C190 = [1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213<190>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1542610798 Step 1 took 31294ms Step 2 took 11523ms ********** Factor found in step 2: 3646063837616479765543282237 Found probable prime factor of 28 digits: 3646063837616479765543282237 Composite cofactor 1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213 has 190 digits
By Sinkiti Sibata / Msieve / Feb 17, 2009
(43·10140-61)/9 = 4(7)1391<141> = 3 · 19 · 613 · 12014939130369479<17> · 2807781173984016080101272676799<31> · C90
C90 = P43 · P47
P43 = 7723640672041417684521576904447403699170337<43>
P47 = 52478779051999590207042356963788789748797491103<47>
Mon Feb 16 21:12:07 2009 Msieve v. 1.39 Mon Feb 16 21:12:07 2009 random seeds: 24d6521f 26e401d8 Mon Feb 16 21:12:07 2009 factoring 405327232305099187365298506794707503782075648245778252701956086130956454512842708239011711 (90 digits) Mon Feb 16 21:12:08 2009 searching for 15-digit factors Mon Feb 16 21:12:10 2009 commencing quadratic sieve (90-digit input) Mon Feb 16 21:12:10 2009 using multiplier of 11 Mon Feb 16 21:12:10 2009 using 64kb Pentium 4 sieve core Mon Feb 16 21:12:10 2009 sieve interval: 18 blocks of size 65536 Mon Feb 16 21:12:10 2009 processing polynomials in batches of 6 Mon Feb 16 21:12:10 2009 using a sieve bound of 1584403 (60000 primes) Mon Feb 16 21:12:10 2009 using large prime bound of 126752240 (26 bits) Mon Feb 16 21:12:10 2009 using double large prime bound of 384875318121120 (42-49 bits) Mon Feb 16 21:12:10 2009 using trial factoring cutoff of 49 bits Mon Feb 16 21:12:10 2009 polynomial 'A' values have 12 factors Mon Feb 16 23:51:54 2009 60283 relations (15605 full + 44678 combined from 641499 partial), need 60096 Mon Feb 16 23:51:56 2009 begin with 657104 relations Mon Feb 16 23:51:57 2009 reduce to 148545 relations in 11 passes Mon Feb 16 23:51:57 2009 attempting to read 148545 relations Mon Feb 16 23:52:01 2009 recovered 148545 relations Mon Feb 16 23:52:01 2009 recovered 130823 polynomials Mon Feb 16 23:52:01 2009 attempting to build 60283 cycles Mon Feb 16 23:52:01 2009 found 60283 cycles in 5 passes Mon Feb 16 23:52:01 2009 distribution of cycle lengths: Mon Feb 16 23:52:01 2009 length 1 : 15605 Mon Feb 16 23:52:01 2009 length 2 : 11482 Mon Feb 16 23:52:01 2009 length 3 : 10488 Mon Feb 16 23:52:01 2009 length 4 : 8082 Mon Feb 16 23:52:01 2009 length 5 : 5828 Mon Feb 16 23:52:01 2009 length 6 : 3718 Mon Feb 16 23:52:01 2009 length 7 : 2305 Mon Feb 16 23:52:01 2009 length 9+: 2775 Mon Feb 16 23:52:01 2009 largest cycle: 18 relations Mon Feb 16 23:52:02 2009 matrix is 60000 x 60283 (14.8 MB) with weight 3645163 (60.47/col) Mon Feb 16 23:52:02 2009 sparse part has weight 3645163 (60.47/col) Mon Feb 16 23:52:03 2009 filtering completed in 3 passes Mon Feb 16 23:52:03 2009 matrix is 56611 x 56675 (14.0 MB) with weight 3440546 (60.71/col) Mon Feb 16 23:52:03 2009 sparse part has weight 3440546 (60.71/col) Mon Feb 16 23:52:03 2009 saving the first 48 matrix rows for later Mon Feb 16 23:52:03 2009 matrix is 56563 x 56675 (8.8 MB) with weight 2717635 (47.95/col) Mon Feb 16 23:52:03 2009 sparse part has weight 1974818 (34.84/col) Mon Feb 16 23:52:03 2009 matrix includes 64 packed rows Mon Feb 16 23:52:03 2009 using block size 21845 for processor cache size 512 kB Mon Feb 16 23:52:04 2009 commencing Lanczos iteration Mon Feb 16 23:52:04 2009 memory use: 8.6 MB Mon Feb 16 23:52:34 2009 lanczos halted after 896 iterations (dim = 56562) Mon Feb 16 23:52:34 2009 recovered 17 nontrivial dependencies Mon Feb 16 23:52:35 2009 prp43 factor: 7723640672041417684521576904447403699170337 Mon Feb 16 23:52:35 2009 prp47 factor: 52478779051999590207042356963788789748797491103 Mon Feb 16 23:52:35 2009 elapsed time 02:40:28
(43·10143-61)/9 = 4(7)1421<144> = 33 · 7 · 5743 · 432337 · 7595130892169<13> · 177081686227891007<18> · C102
C102 = P39 · P64
P39 = 102624840455862064407000833817896986463<39>
P64 = 7376349985613162477584632245935778321122766520937732169503100401<64>
Mon Feb 16 07:33:36 2009 Msieve v. 1.39 Mon Feb 16 07:33:36 2009 random seeds: 1efa2ba8 3f80fda9 Mon Feb 16 07:33:36 2009 factoring 756996740420151233386293617974273659264620199260250699674158397990327213454264657595630963113226871663 (102 digits) Mon Feb 16 07:33:37 2009 searching for 15-digit factors Mon Feb 16 07:33:39 2009 commencing quadratic sieve (102-digit input) Mon Feb 16 07:33:40 2009 using multiplier of 2 Mon Feb 16 07:33:40 2009 using 32kb Intel Core sieve core Mon Feb 16 07:33:40 2009 sieve interval: 36 blocks of size 32768 Mon Feb 16 07:33:40 2009 processing polynomials in batches of 6 Mon Feb 16 07:33:40 2009 using a sieve bound of 3272387 (117500 primes) Mon Feb 16 07:33:40 2009 using large prime bound of 490858050 (28 bits) Mon Feb 16 07:33:40 2009 using double large prime bound of 4402715446837350 (44-52 bits) Mon Feb 16 07:33:40 2009 using trial factoring cutoff of 52 bits Mon Feb 16 07:33:40 2009 polynomial 'A' values have 13 factors Tue Feb 17 03:20:09 2009 117796 relations (27579 full + 90217 combined from 1762840 partial), need 117596 Tue Feb 17 03:20:11 2009 begin with 1790419 relations Tue Feb 17 03:20:13 2009 reduce to 313239 relations in 12 passes Tue Feb 17 03:20:13 2009 attempting to read 313239 relations Tue Feb 17 03:20:19 2009 recovered 313239 relations Tue Feb 17 03:20:19 2009 recovered 305305 polynomials Tue Feb 17 03:20:20 2009 attempting to build 117796 cycles Tue Feb 17 03:20:20 2009 found 117795 cycles in 5 passes Tue Feb 17 03:20:20 2009 distribution of cycle lengths: Tue Feb 17 03:20:20 2009 length 1 : 27579 Tue Feb 17 03:20:20 2009 length 2 : 19739 Tue Feb 17 03:20:20 2009 length 3 : 19664 Tue Feb 17 03:20:20 2009 length 4 : 15984 Tue Feb 17 03:20:20 2009 length 5 : 12454 Tue Feb 17 03:20:20 2009 length 6 : 8760 Tue Feb 17 03:20:20 2009 length 7 : 5606 Tue Feb 17 03:20:20 2009 length 9+: 8009 Tue Feb 17 03:20:20 2009 largest cycle: 19 relations Tue Feb 17 03:20:21 2009 matrix is 117500 x 117795 (34.8 MB) with weight 8657234 (73.49/col) Tue Feb 17 03:20:21 2009 sparse part has weight 8657234 (73.49/col) Tue Feb 17 03:20:23 2009 filtering completed in 3 passes Tue Feb 17 03:20:23 2009 matrix is 113209 x 113273 (33.6 MB) with weight 8359768 (73.80/col) Tue Feb 17 03:20:23 2009 sparse part has weight 8359768 (73.80/col) Tue Feb 17 03:20:23 2009 saving the first 48 matrix rows for later Tue Feb 17 03:20:23 2009 matrix is 113161 x 113273 (23.6 MB) with weight 6934256 (61.22/col) Tue Feb 17 03:20:23 2009 sparse part has weight 5513657 (48.68/col) Tue Feb 17 03:20:23 2009 matrix includes 64 packed rows Tue Feb 17 03:20:23 2009 using block size 43690 for processor cache size 1024 kB Tue Feb 17 03:20:25 2009 commencing Lanczos iteration Tue Feb 17 03:20:25 2009 memory use: 21.1 MB Tue Feb 17 03:22:09 2009 lanczos halted after 1791 iterations (dim = 113159) Tue Feb 17 03:22:10 2009 recovered 16 nontrivial dependencies Tue Feb 17 03:22:11 2009 prp39 factor: 102624840455862064407000833817896986463 Tue Feb 17 03:22:11 2009 prp64 factor: 7376349985613162477584632245935778321122766520937732169503100401 Tue Feb 17 03:22:11 2009 elapsed time 19:48:35
(43·10125-61)/9 = 4(7)1241<126> = 32 · 7 · 167 · 16667869 · 493736484911653679987<21> · C94
C94 = P44 · P50
P44 = 98302269014734626147638425900634857243929937<44>
P50 = 56134529111699639152696867219348421245265838793141<50>
Tue Feb 17 07:51:21 2009 Msieve v. 1.39 Tue Feb 17 07:51:21 2009 random seeds: 4e82ded0 626dabf8 Tue Feb 17 07:51:21 2009 factoring 5518151581753750275625959440828313150369530075974461894895744348308024266777754720900040162117 (94 digits) Tue Feb 17 07:51:22 2009 searching for 15-digit factors Tue Feb 17 07:51:23 2009 commencing quadratic sieve (94-digit input) Tue Feb 17 07:51:24 2009 using multiplier of 13 Tue Feb 17 07:51:24 2009 using 32kb Intel Core sieve core Tue Feb 17 07:51:24 2009 sieve interval: 36 blocks of size 32768 Tue Feb 17 07:51:24 2009 processing polynomials in batches of 6 Tue Feb 17 07:51:24 2009 using a sieve bound of 2050679 (76471 primes) Tue Feb 17 07:51:24 2009 using large prime bound of 282993702 (28 bits) Tue Feb 17 07:51:24 2009 using double large prime bound of 1633797068989626 (42-51 bits) Tue Feb 17 07:51:24 2009 using trial factoring cutoff of 51 bits Tue Feb 17 07:51:24 2009 polynomial 'A' values have 12 factors Tue Feb 17 10:46:01 2009 76683 relations (19245 full + 57438 combined from 1089796 partial), need 76567 Tue Feb 17 10:46:02 2009 begin with 1109041 relations Tue Feb 17 10:46:04 2009 reduce to 197134 relations in 14 passes Tue Feb 17 10:46:04 2009 attempting to read 197134 relations Tue Feb 17 10:46:07 2009 recovered 197134 relations Tue Feb 17 10:46:07 2009 recovered 178691 polynomials Tue Feb 17 10:46:07 2009 attempting to build 76683 cycles Tue Feb 17 10:46:07 2009 found 76682 cycles in 5 passes Tue Feb 17 10:46:07 2009 distribution of cycle lengths: Tue Feb 17 10:46:07 2009 length 1 : 19245 Tue Feb 17 10:46:07 2009 length 2 : 13786 Tue Feb 17 10:46:07 2009 length 3 : 12988 Tue Feb 17 10:46:07 2009 length 4 : 10368 Tue Feb 17 10:46:07 2009 length 5 : 7746 Tue Feb 17 10:46:07 2009 length 6 : 5041 Tue Feb 17 10:46:07 2009 length 7 : 3234 Tue Feb 17 10:46:07 2009 length 9+: 4274 Tue Feb 17 10:46:07 2009 largest cycle: 23 relations Tue Feb 17 10:46:07 2009 matrix is 76471 x 76682 (20.3 MB) with weight 5018304 (65.44/col) Tue Feb 17 10:46:07 2009 sparse part has weight 5018304 (65.44/col) Tue Feb 17 10:46:09 2009 filtering completed in 3 passes Tue Feb 17 10:46:09 2009 matrix is 72546 x 72610 (19.4 MB) with weight 4785339 (65.90/col) Tue Feb 17 10:46:09 2009 sparse part has weight 4785339 (65.90/col) Tue Feb 17 10:46:09 2009 saving the first 48 matrix rows for later Tue Feb 17 10:46:09 2009 matrix is 72498 x 72610 (12.8 MB) with weight 3853848 (53.08/col) Tue Feb 17 10:46:09 2009 sparse part has weight 2914060 (40.13/col) Tue Feb 17 10:46:09 2009 matrix includes 64 packed rows Tue Feb 17 10:46:09 2009 using block size 29044 for processor cache size 1024 kB Tue Feb 17 10:46:10 2009 commencing Lanczos iteration Tue Feb 17 10:46:10 2009 memory use: 11.9 MB Tue Feb 17 10:46:45 2009 lanczos halted after 1148 iterations (dim = 72498) Tue Feb 17 10:46:45 2009 recovered 18 nontrivial dependencies Tue Feb 17 10:46:46 2009 prp44 factor: 98302269014734626147638425900634857243929937 Tue Feb 17 10:46:46 2009 prp50 factor: 56134529111699639152696867219348421245265838793141 Tue Feb 17 10:46:46 2009 elapsed time 02:55:25
By Andreas Tete / Msieve-1.39 ECM / Feb 17, 2009
(4·10199+23)/9 = (4)1987<199> = 7 · 1231 · C195
C195 = P38 · P158
P38 = 14225762137075170435338246532576567317<38>
P158 = 36256497391523557391150836153499812526265014545716861850062848979279699883581750510325625228713377300801607790879317559258903710821964811855003806638790958123<158>
Fri Feb 13 18:48:52 2009 Msieve v. 1.39 Fri Feb 13 18:48:52 2009 random seeds: 471c3938 94b24410 Fri Feb 13 18:48:52 2009 factoring 515776307815300504171340889456242827485719443477363867290755999123180276713989142908720487924387193274276946088481425605714801490593529586218457055175170528541771433729191649581576470284837465991 (195 digits) Fri Feb 13 18:48:55 2009 searching for 15-digit factors Fri Feb 13 18:48:58 2009 searching for 20-digit factors Fri Feb 13 18:49:40 2009 searching for 25-digit factors Fri Feb 13 18:57:51 2009 searching for 30-digit factors Fri Feb 13 20:15:25 2009 searching for 35-digit factors Sat Feb 14 07:16:27 2009 searching for 40-digit factors Mon Feb 16 20:05:38 2009 ECM stage 2 factor found Mon Feb 16 20:05:39 2009 prp38 factor: 14225762137075170435338246532576567317 Mon Feb 16 20:05:39 2009 prp158 factor: 36256497391523557391150836153499812526265014545716861850062848979279699883581750510325625228713377300801607790879317559258903710821964811855003806638790958123 Mon Feb 16 20:05:39 2009 elapsed time 73:16:47
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1 / Feb 17, 2009
(43·10167-61)/9 = 4(7)1661<168> = 3 · 7 · 1201 · 12893 · C160
C160 = P42 · P58 · P60
P42 = 319763349029725752411560301820144379646161<42>
P58 = 6014427291190661113921720374543389795594170837747841101189<58>
P60 = 763988283777773635783075645741983142491685470331316503861583<60>
SNFS difficulty: 168 digits. Divisors found: r1=319763349029725752411560301820144379646161 (pp42) r2=6014427291190661113921720374543389795594170837747841101189 (pp58) r3=763988283777773635783075645741983142491685470331316503861583 (pp60) Version: Msieve-1.39 Total time: 40.84 hours. Scaled time: units (timescale=2.949). Factorization parameters were as follows: n: 1469297235067544757374446987145317016369300741801669019628303151502780964333241182086023179625663090895049087028637150168413736423357403521235814614745394074107 m: 1000000000000000000000000000000000 deg: 5 c5: 4300 c0: -61 skew: 0.5 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 959321 x 959569 Total sieving time: 32.84 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.00 hours. x 4 cpu Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,200000 total time: 40.84 hours.
4·10209+1 = 4(0)2081<210> = 7 · 19 · C208
C208 = P100 · P108
P100 = 3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797<100>
P108 = 777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001<108>
# well, can't have a p102, but I have more than one p100 :-) # (rest in peace, St. George Carlin!) SNFS difficulty: 210 digits. Divisors found: r1=3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797 (pp100) r2=777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001 (pp108) Version: Msieve-1.39 Total time: 1000.01 hours. Scaled time: 2735.04 units (timescale=2.735). Factorization parameters were as follows: n: 3007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518797 m: 1000000000000000000000000000000000000000000 c5: 2 c0: 5 skew: 1.20 type: snfs lss: 1 rlim: 24000000 alim: 24000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 24000000/24000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [12000000, 28800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 50191195 relations (45865473 unique relations and about 35456933 large ideals) Max relations in full relation-set: Initial matrix: Pruned matrix : 3128545 x 3128793 Total sieving time: 900.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 29.10 hours. * 4 cpu Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,210,5,0,0,0,0,0,0,0,0,24000000,24000000,29,29,57,57,2.6,2.6,200000 total time: 1000.01 hours. # quintic was faster than sextic; tested both; sieved on one side to minimize redundant relations
4·10211+1 = 4(0)2101<212> = 41 · 59 · 148721 · C204
C204 = P43 · C161
P43 = 1332356352410729241381459477648619855405009<43>
C161 = [83450977684793282694551706981476556088621921512009377560353348583288515960273808416054497177857020031325682869956011963367750061419815803842510520381026012953211<161>]
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1854358772 Step 1 took 267563ms Step 2 took 91155ms ********** Factor found in step 2: 1332356352410729241381459477648619855405009 Found probable prime factor of 43 digits: 1332356352410729241381459477648619855405009 Composite cofactor has 161 digits
(64·10331-1)/9 = 7(1)331<332> = 1627 · 5507 · 10546009 · 145180731511060009<18> · 623478735428331443<18> · C283
C283 = P38 · P246
P38 = 23456386816454549108790357240236910413<38>
P246 = 354449980168239535745303077765553350378792474439978401690941252988338747486305028374580076545491280877079036161017542178942829000740483344638466667222237280561425839512652267467737233102180796563105230664353426524559063796193515087840859358054081<246>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=3294908386 Step 1 took 111556ms Step 2 took 60526ms ********** Factor found in step 2: 23456386816454549108790357240236910413 Found probable prime factor of 38 digits: 23456386816454549108790357240236910413 Probable prime cofactor 354449980168239535745303077765553350378792474439978401690941252988338747486305028374580076545491280877079036161017542178942829000740483344638466667222237280561425839512652267467737233102180796563105230664353426524559063796193515087840859358054081 has 246 digits
(64·10339-1)/9 = 7(1)339<340> = 13 · 31 · 157 · 3837923 · 34741013129584239530947685332231348396862921255411672754594954962184841471111675073557581361932830161869671<107> · C222
C222 = P43 · C180
P43 = 1601837752074052763584458486041045553597079<43>
C180 = [526229880308897806430105246913759491169408945893819869505892057808030029041536086980688560962160211962119608854022769551651299899931637375167849847544953178072548577431851592405163<180>]
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1474824190 Step 1 took 318827ms Step 2 took 101271ms ********** Factor found in step 2: 1601837752074052763584458486041045553597079 Found probable prime factor of 43 digits: 1601837752074052763584458486041045553597079 Composite cofactor has 180 digits
5·10193-1 = 4(9)193<194> = 7 · 8839 · C189
C189 = P42 · C148
P42 = 107516249752971035684650211176390698878497<42>
C148 = [7516137612365669741489365283749544184373803307710159983061153726053943367711447968803833931459424804091388388814143702729443123989730707737970742479<148>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3184635571 Step 1 took 16335ms Step 2 took 17245ms ********** Factor found in step 2: 107516249752971035684650211176390698878497 Found probable prime factor of 42 digits: 107516249752971035684650211176390698878497 Composite cofactor has 148 digits
(35·10204-71)/9 = 3(8)2031<205> = 61 · 67 · C201
C201 = P37 · C165
P37 = 3902505814693479946914232122945187201<37>
C165 = [243824497793396457157695281071537524590427598565699673829660810250881151190575939082501252646909037808114080747612376446679162713152731850998085293276833764395008663<165>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3483678870 Step 1 took 18399ms Step 2 took 18677ms ********** Factor found in step 2: 3902505814693479946914232122945187201 Found probable prime factor of 37 digits: 3902505814693479946914232122945187201 Composite cofactor has 165 digits
By Ignacio Santos / GGNFS, Msieve / Feb 16, 2009
(38·10171+61)/9 = 4(2)1709<172> = 131 · C170
C170 = P56 · P115
P56 = 19656586353109644988628428880782557935174813548674463961<56>
P115 = 1639689791881402852262937784707669473345717597586097018290930889928565528828480997000727743404647721038578540516319<115>
Number: 42229_171 N=32230703986429177268871925360474978795589482612383375742154368108566581849024597116200169635284139100932994062765055131467345207803223070398642917726887192536047497879559 ( 170 digits) SNFS difficulty: 172 digits. Divisors found: r1=19656586353109644988628428880782557935174813548674463961 (pp56) r2=1639689791881402852262937784707669473345717597586097018290930889928565528828480997000727743404647721038578540516319 (pp115) Version: Msieve-1.39 Total time: 63.58 hours. Scaled time: 110.57 units (timescale=1.739). Factorization parameters were as follows: n: 32230703986429177268871925360474978795589482612383375742154368108566581849024597116200169635284139100932994062765055131467345207803223070398642917726887192536047497879559 m: 10000000000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 984707 x 984955 Total sieving time: 63.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 63.58 hours. --------- CPU info (if available) ----------
(41·10173+31)/9 = 4(5)1729<174> = 32 · 133 · C170
C170 = P43 · P57 · P71
P43 = 3029238009120866184274345315387011894129521<43>
P57 = 679776460891127365680164499381757723798582319378637295351<57>
P71 = 11188432898523632839484220414481435452661059309668165398028722268040373<71>
Number: 45559_173 N=23039273532370179312980101934737043218305545721719291739015604893316924875110279449529942626589569390358344993453474715802131975701995425861303573335131520535859786352883 ( 170 digits) SNFS difficulty: 176 digits. Divisors found: r1=3029238009120866184274345315387011894129521 (pp43) r2=679776460891127365680164499381757723798582319378637295351 (pp57) r3=11188432898523632839484220414481435452661059309668165398028722268040373 (pp71) Version: Msieve-1.39 Total time: 113.83 hours. Scaled time: 292.66 units (timescale=2.571). Factorization parameters were as follows: n: 23039273532370179312980101934737043218305545721719291739015604893316924875110279449529942626589569390358344993453474715802131975701995425861303573335131520535859786352883 m: 50000000000000000000000000000000000 deg: 5 c5: 328 c0: 775 skew: 1.19 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3000000, 8400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1341651 x 1341899 Total sieving time: 113.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000 total time: 113.83 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Feb 17, 2009
(13·10175+11)/3 = 4(3)1747<176> = 29 · 61 · C173
C173 = P40 · P40 · P47 · P48
P40 = 1288621095191851780372499073998595818057<40>
P40 = 7132302930944498108158521532994477253953<40>
P47 = 26155680541725035222970324444772014948886396049<47>
P48 = 101899774506178196286892707388314296027824602137<48>
Number: 43337_175 N=24495948746938006406632749199170906350103636706237045411720369323534953834558130770680233653664970793291878650838515168645185603919351799510081025061239871867345016016581873 ( 173 digits) SNFS difficulty: 176 digits. Divisors found: r1=1288621095191851780372499073998595818057 (pp40) r2=7132302930944498108158521532994477253953 (pp40) r3=26155680541725035222970324444772014948886396049 (pp47) r4=101899774506178196286892707388314296027824602137 (pp48) Version: Msieve-1.39 Total time: 66.16 hours. Scaled time: 115.05 units (timescale=1.739). Factorization parameters were as follows: n: 24495948746938006406632749199170906350103636706237045411720369323534953834558130770680233653664970793291878650838515168645185603919351799510081025061239871867345016016581873 m: 100000000000000000000000000000000000 deg: 5 c5: 13 c0: 11 skew: 0.97 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3000000, 6300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1195582 x 1195828 Total sieving time: 66.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000 total time: 66.16 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Feb 16, 2009
(35·10165-17)/9 = 3(8)1647<166> = 13 · 29 · 200041 · 6591395639<10> · 10664333440055130067457<23> · C126
C126 = P39 · P88
P39 = 109280386502103256471935743911750090597<39>
P88 = 6712925841213146837839103821365744689243652680605247737247853841651220452334798552144461<88>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 733591130487729320041466339475378877828506230498071346123108945591659364833598799646116043576499629418508345462979745381733217 (126 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2491864470 Step 1 took 11843ms Step 2 took 5342ms ********** Factor found in step 2: 109280386502103256471935743911750090597 Found probable prime factor of 39 digits: 109280386502103256471935743911750090597 Probable prime cofactor 6712925841213146837839103821365744689243652680605247737247853841651220452334798552144461 has 88 digits
(43·10124-61)/9 = 4(7)1231<125> = 31 · 163 · 6389 · 41959 · C113
C113 = P44 · P69
P44 = 57670739452665100371167339196616006651255717<44>
P69 = 611593851386938504114770827406703530934017650552297959822029434697721<69>
Number: 47771_124 N=35271069654188110604310693579449758929093792694822280641027184497713020658439788776775525020655692211494968120957 ( 113 digits) SNFS difficulty: 126 digits. Divisors found: r1=57670739452665100371167339196616006651255717 r2=611593851386938504114770827406703530934017650552297959822029434697721 Version: Total time: 1.00 hours. Scaled time: 2.33 units (timescale=2.335). Factorization parameters were as follows: n: 35271069654188110604310693579449758929093792694822280641027184497713020658439788776775525020655692211494968120957 m: 10000000000000000000000000 deg: 5 c5: 43 c0: -610 skew: 1.70 type: snfs lss: 1 rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [400000, 680001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2328603 Max relations in full relation-set: Initial matrix: Pruned matrix : 127754 x 128002 Total sieving time: 0.87 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,800000,800000,26,26,46,46,2.3,2.3,40000 total time: 1.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Feb 17, 2009
(43·10142-61)/9 = 4(7)1411<143> = 35768251 · 971975142044493496125235627<27> · C109
C109 = P49 · P60
P49 = 6359029958009305926862739463303985620388379963359<49>
P60 = 216113657076574346992381331592346705690321604633547083159597<60>
Number: 47771_142 N=1374273219684886110425633843081179314367550784801415167464068283959390961846904203558375753774865608809206323 ( 109 digits) SNFS difficulty: 143 digits. Divisors found: r1=6359029958009305926862739463303985620388379963359 r2=216113657076574346992381331592346705690321604633547083159597 Version: Total time: 6.13 hours. Scaled time: 14.57 units (timescale=2.375). Factorization parameters were as follows: n: 1374273219684886110425633843081179314367550784801415167464068283959390961846904203558375753774865608809206323 m: 10000000000000000000000000000 deg: 5 c5: 4300 c0: -61 skew: 0.43 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [750000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3850387 Max relations in full relation-set: Initial matrix: Pruned matrix : 251977 x 252225 Total sieving time: 5.71 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.14 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,49,49,2.3,2.3,50000 total time: 6.13 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(43·10144-61)/9 = 4(7)1431<145> = 502657741 · 2309269179827263<16> · C121
C121 = P45 · P77
P45 = 110193612870242212645693272924122113622791783<45>
P77 = 37352750701688809281498611377219784036007829353980004226140370590943237683439<77>
Number: 47771_144 N=4116034550460564813748098138709870879452440801197676121176679269551367554028928848439137916612448202103176435268764381737 ( 121 digits) SNFS difficulty: 146 digits. Divisors found: r1=110193612870242212645693272924122113622791783 r2=37352750701688809281498611377219784036007829353980004226140370590943237683439 Version: Total time: 6.41 hours. Scaled time: 14.86 units (timescale=2.319). Factorization parameters were as follows: n: 4116034550460564813748098138709870879452440801197676121176679269551367554028928848439137916612448202103176435268764381737 m: 100000000000000000000000000000 deg: 5 c5: 43 c0: -610 skew: 1.70 type: snfs lss: 1 rlim: 1650000 alim: 1650000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1650000/1650000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [825000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4241738 Max relations in full relation-set: Initial matrix: Pruned matrix : 246727 x 246975 Total sieving time: 6.08 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1650000,1650000,26,26,49,49,2.3,2.3,75000 total time: 6.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Robert Backstrom / GGNFS, Msieve / Feb 16, 2009
(43·10119-61)/9 = 4(7)1181<120> = 3 · 7 · 33786569 · 75207302532881<14> · C97
C97 = P45 · P53
P45 = 686841041276857189302957733169540389755111199<45>
P53 = 13036058767483538717215947584356676918200426562472841<53>
Number: n N=8953700178004697272850078007323773932868947994732885669881369760907449234154980288975464372446359 ( 97 digits) SNFS difficulty: 121 digits. Divisors found: Mon Feb 16 16:33:14 2009 prp45 factor: 686841041276857189302957733169540389755111199 Mon Feb 16 16:33:14 2009 prp53 factor: 13036058767483538717215947584356676918200426562472841 Mon Feb 16 16:33:14 2009 elapsed time 00:16:20 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 1.96 hours. Scaled time: 2.57 units (timescale=1.316). Factorization parameters were as follows: name: KA_4_7_118_1 n: 8953700178004697272850078007323773932868947994732885669881369760907449234154980288975464372446359 deg: 5 c5: 43 c0: -610 m: 1000000000000000000000000 skew: 1.70 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 480203) Primes: RFBsize:49098, AFBsize:49047, largePrimes:5511719 encountered Relations: rels:4688886, finalFF:109219 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 243840 hash collisions in 4898442 relations Msieve: matrix is 124992 x 125240 (33.4 MB) Total sieving time: 1.85 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,28,28,56,56,2.5,2.5,50000 total time: 1.96 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 16, 2009
4·10181+9 = 4(0)1809<182> = 7 · 4463 · 9013 · 44939 · 54440369 · 646495019927<12> · 17375472304230114852745301318776299103<38> · C112
C112 = P47 · P65
P47 = 96680330851377897032675335617773667304146317489<47>
P65 = 53466443788604542141782787390935555045766340238599979694824022367<65>
Number: 40009_181 N=5169153474928885848324348321675877484252277469106881063647738317793449445476644541605020599482510225817619276463 ( 112 digits) Divisors found: r1=96680330851377897032675335617773667304146317489 r2=53466443788604542141782787390935555045766340238599979694824022367 Version: Total time: 11.56 hours. Scaled time: 27.56 units (timescale=2.384). Factorization parameters were as follows: name: 40009_181 n: 5169153474928885848324348321675877484252277469106881063647738317793449445476644541605020599482510225817619276463 skew: 11307.69 # norm 4.27e+15 c5: 81900 c4: 15515914875 c3: -252443578509548 c2: -2026077604162000042 c1: 2623866671835000250456 c0: 6610025439422676503234535 # alpha -5.84 Y1: 426573340633 Y0: -2290994471364759764248 # Murphy_E 7.55e-10 # M 599980959666439027133329231836971032000226273846861958358850094938446921738455534823840668568287349303771514218 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2040001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8194253 Max relations in full relation-set: Initial matrix: Pruned matrix : 442248 x 442496 Polynomial selection time: 0.87 hours. Total sieving time: 9.62 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.42 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 11.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Feb 16, 2009
(43·10140-61)/9 = 4(7)1391<141> = 3 · 19 · 613 · 12014939130369479<17> · C121
C121 = P31 · C90
P31 = 2807781173984016080101272676799<31>
C90 = [405327232305099187365298506794707503782075648245778252701956086130956454512842708239011711<90>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2177330287 Step 1 took 9832ms Step 2 took 12144ms ********** Factor found in step 2: 2807781173984016080101272676799 Found probable prime factor of 31 digits: 2807781173984016080101272676799 Composite cofactor has 90 digits
(43·10142-61)/9 = 4(7)1411<143> = 35768251 · C136
C136 = P27 · C109
P27 = 971975142044493496125235627<27>
C109 = [1374273219684886110425633843081179314367550784801415167464068283959390961846904203558375753774865608809206323<109>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3401780523 Step 1 took 12739ms Step 2 took 13538ms ********** Factor found in step 2: 971975142044493496125235627 Found probable prime factor of 27 digits: 971975142044493496125235627 Composite cofactor has 109 digits
(43·10190-61)/9 = 4(7)1891<191> = 63793 · 1164937 · 8792622349836405869542771<25> · C155
C155 = P38 · P117
P38 = 83298832294425500958607625722801434401<38>
P117 = 877795089404486954963782457552404091105528419858714925670383392791228993400713983819414032809076686946161566570798161<117>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2603822046 Step 1 took 14402ms Step 2 took 15584ms ********** Factor found in step 2: 83298832294425500958607625722801434401 Found probable prime factor of 38 digits: 83298832294425500958607625722801434401 Probable prime cofactor has 117 digits
(43·10171-61)/9 = 4(7)1701<172> = 13 · 17 · 41 · C168
C168 = P34 · P134
P34 = 7845455428462107106676257169548517<34>
P134 = 67209653484714549323117321466492145147605549149413730004693507794615691079450687744110971209177162816167855429388847000741239221795683<134>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4178244371 Step 1 took 13637ms Step 2 took 15854ms ********** Factor found in step 2: 7845455428462107106676257169548517 Found probable prime factor of 34 digits: 7845455428462107106676257169548517 Probable prime cofactor has 134 digits
(43·10127-61)/9 = 4(7)1261<128> = 3911 · 7397642663<10> · 524720936425589<15> · C100
C100 = P33 · P67
P33 = 509054986545985914315609096394579<33>
P67 = 6182323008851373913280520769101995173342062958201255762686072243637<67>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3547595471 Step 1 took 8268ms Step 2 took 10640ms ********** Factor found in step 2: 509054986545985914315609096394579 Found probable prime factor of 33 digits: 509054986545985914315609096394579 Probable prime cofactor 6182323008851373913280520769101995173342062958201255762686072243637 has 67 digits
(43·10181-61)/9 = 4(7)1801<182> = 41 · 4993 · 4637239 · 23447794511<11> · 2238586197354816928711<22> · C138
C138 = P39 · P100
P39 = 787520244228026613351141308129216378279<39>
P100 = 1217540722763297522505208509838978461879989223390529575643052343951874281431929038985853638287595867<100>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4086981410 Step 1 took 11891ms Step 2 took 13652ms ********** Factor found in step 2: 787520244228026613351141308129216378279 Found probable prime factor of 39 digits: 787520244228026613351141308129216378279 Probable prime cofactor 1217540722763297522505208509838978461879989223390529575643052343951874281431929038985853638287595867 has 100 digits
(43·10193-61)/9 = 4(7)1921<194> = 7194113 · 1121757930540769<16> · C172
C172 = P35 · P137
P35 = 71199310765325297693532708112008109<35>
P137 = 83152201696408126546070047639498561500691348762681096052862159690720257463473192817296392702546939875802035388838203099768227067086826327<137>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1650842304 Step 1 took 13686ms Step 2 took 15855ms ********** Factor found in step 2: 71199310765325297693532708112008109 Found probable prime factor of 35 digits: 71199310765325297693532708112008109 Probable prime cofactor has 137 digits
(43·10188-61)/9 = 4(7)1871<189> = 32 · 883 · 66071 · C180
C180 = P32 · C149
P32 = 19525460771553668149596808042841<32>
C149 = [46602644501345193158597898914670594145834189426831461696667881665565602998778190931880816833841590944874547410124468413046847275701045361362861642463<149>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=637296109 Step 1 took 16324ms ********** Factor found in step 1: 19525460771553668149596808042841 Found probable prime factor of 32 digits: 19525460771553668149596808042841 Composite cofactor has 149 digits
(43·10166-61)/9 = 4(7)1651<167> = 41 · 3361 · 56851564871<11> · 54458529178463<14> · 1356201014051082287469709<25> · C113
C113 = P33 · P38 · P43
P33 = 897280718820561928249807356357529<33>
P38 = 73970249053547678867643207278372778361<38>
P43 = 1244101359385847412349825255921033918644487<43>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=59274701 Step 1 took 8344ms Step 2 took 10793ms ********** Factor found in step 2: 897280718820561928249807356357529 Found probable prime factor of 33 digits: 897280718820561928249807356357529 Composite cofactor has 80 digits Sun Feb 15 14:10:39 2009 Sun Feb 15 14:10:39 2009 Msieve v. 1.39 Sun Feb 15 14:10:39 2009 random seeds: d29fd19c 3cf57266 Sun Feb 15 14:10:39 2009 factoring 92026487401628360238713977917529420698694663305061074443251871502594085205545807 (80 digits) Sun Feb 15 14:10:40 2009 searching for 15-digit factors Sun Feb 15 14:10:40 2009 commencing quadratic sieve (80-digit input) Sun Feb 15 14:10:40 2009 using multiplier of 7 Sun Feb 15 14:10:40 2009 using 64kb Opteron sieve core Sun Feb 15 14:10:40 2009 sieve interval: 6 blocks of size 65536 Sun Feb 15 14:10:40 2009 processing polynomials in batches of 17 Sun Feb 15 14:10:40 2009 using a sieve bound of 1301077 (49996 primes) Sun Feb 15 14:10:40 2009 using large prime bound of 130107700 (26 bits) Sun Feb 15 14:10:40 2009 using trial factoring cutoff of 27 bits Sun Feb 15 14:10:40 2009 polynomial 'A' values have 10 factors Sun Feb 15 14:22:26 2009 50288 relations (26258 full + 24030 combined from 270126 partial), need 50092 Sun Feb 15 14:22:27 2009 begin with 296384 relations Sun Feb 15 14:22:27 2009 reduce to 71381 relations in 2 passes Sun Feb 15 14:22:27 2009 attempting to read 71381 relations Sun Feb 15 14:22:27 2009 recovered 71381 relations Sun Feb 15 14:22:27 2009 recovered 58949 polynomials Sun Feb 15 14:22:27 2009 attempting to build 50288 cycles Sun Feb 15 14:22:27 2009 found 50288 cycles in 1 passes Sun Feb 15 14:22:27 2009 distribution of cycle lengths: Sun Feb 15 14:22:27 2009 length 1 : 26258 Sun Feb 15 14:22:27 2009 length 2 : 24030 Sun Feb 15 14:22:27 2009 largest cycle: 2 relations Sun Feb 15 14:22:27 2009 matrix is 49996 x 50288 (7.4 MB) with weight 1533099 (30.49/col) Sun Feb 15 14:22:27 2009 sparse part has weight 1533099 (30.49/col) Sun Feb 15 14:22:28 2009 filtering completed in 3 passes Sun Feb 15 14:22:28 2009 matrix is 34735 x 34799 (5.6 MB) with weight 1196408 (34.38/col) Sun Feb 15 14:22:28 2009 sparse part has weight 1196408 (34.38/col) Sun Feb 15 14:22:28 2009 saving the first 48 matrix rows for later Sun Feb 15 14:22:28 2009 matrix is 34687 x 34799 (4.2 MB) with weight 930902 (26.75/col) Sun Feb 15 14:22:28 2009 sparse part has weight 740458 (21.28/col) Sun Feb 15 14:22:28 2009 matrix includes 64 packed rows Sun Feb 15 14:22:28 2009 using block size 13919 for processor cache size 1024 kB Sun Feb 15 14:22:28 2009 commencing Lanczos iteration Sun Feb 15 14:22:28 2009 memory use: 4.0 MB Sun Feb 15 14:22:34 2009 lanczos halted after 551 iterations (dim = 34686) Sun Feb 15 14:22:34 2009 recovered 17 nontrivial dependencies Sun Feb 15 14:22:34 2009 prp38 factor: 73970249053547678867643207278372778361 Sun Feb 15 14:22:34 2009 prp43 factor: 1244101359385847412349825255921033918644487 Sun Feb 15 14:22:34 2009 elapsed time 00:11:55
By Erik Branger / Msieve, GGNFS / Feb 16, 2009
(43·10107-61)/9 = 4(7)1061<108> = 32 · 72 · 17 · 541 · 5623 · 14393833 · C91
C91 = P32 · P60
P32 = 14226811194310956229338618806873<32>
P60 = 102303162456309080732822575209405595505437738286521037113289<60>
Sun Feb 15 14:55:03 2009 Msieve v. 1.39 Sun Feb 15 14:55:03 2009 random seeds: f5ae9c98 fff75bb0 Sun Feb 15 14:55:03 2009 factoring 1455447776846830371340399960018503553645247165141598369089276272909152778232497473312835297 (91 digits) Sun Feb 15 14:55:04 2009 searching for 15-digit factors Sun Feb 15 14:55:06 2009 commencing quadratic sieve (91-digit input) Sun Feb 15 14:55:06 2009 using multiplier of 1 Sun Feb 15 14:55:06 2009 using 32kb Intel Core sieve core Sun Feb 15 14:55:06 2009 sieve interval: 36 blocks of size 32768 Sun Feb 15 14:55:06 2009 processing polynomials in batches of 6 Sun Feb 15 14:55:06 2009 using a sieve bound of 1652513 (62308 primes) Sun Feb 15 14:55:06 2009 using large prime bound of 145421144 (27 bits) Sun Feb 15 14:55:06 2009 using double large prime bound of 492866721827128 (42-49 bits) Sun Feb 15 14:55:06 2009 using trial factoring cutoff of 49 bits Sun Feb 15 14:55:06 2009 polynomial 'A' values have 12 factors Sun Feb 15 14:55:25 2009 Sun Feb 15 14:55:25 2009 Sun Feb 15 16:49:40 2009 Sun Feb 15 16:49:40 2009 Msieve v. 1.39 Sun Feb 15 16:49:40 2009 random seeds: 2c38db48 15232584 Sun Feb 15 16:49:40 2009 factoring 1455447776846830371340399960018503553645247165141598369089276272909152778232497473312835297 (91 digits) Sun Feb 15 16:49:41 2009 searching for 15-digit factors Sun Feb 15 16:49:43 2009 commencing quadratic sieve (91-digit input) Sun Feb 15 16:49:43 2009 using multiplier of 1 Sun Feb 15 16:49:43 2009 using 32kb Intel Core sieve core Sun Feb 15 16:49:43 2009 sieve interval: 36 blocks of size 32768 Sun Feb 15 16:49:43 2009 processing polynomials in batches of 6 Sun Feb 15 16:49:43 2009 using a sieve bound of 1652513 (62308 primes) Sun Feb 15 16:49:43 2009 using large prime bound of 145421144 (27 bits) Sun Feb 15 16:49:43 2009 using double large prime bound of 492866721827128 (42-49 bits) Sun Feb 15 16:49:43 2009 using trial factoring cutoff of 49 bits Sun Feb 15 16:49:43 2009 polynomial 'A' values have 12 factors Sun Feb 15 16:49:44 2009 restarting with 17030 full and 725896 partial relations Sun Feb 15 16:49:44 2009 68855 relations (17030 full + 51825 combined from 725896 partial), need 62404 Sun Feb 15 16:49:44 2009 begin with 742926 relations Sun Feb 15 16:49:45 2009 reduce to 170003 relations in 10 passes Sun Feb 15 16:49:45 2009 attempting to read 170003 relations Sun Feb 15 16:49:50 2009 recovered 168835 relations Sun Feb 15 16:49:50 2009 recovered 142934 polynomials Sun Feb 15 16:49:51 2009 attempting to build 67691 cycles Sun Feb 15 16:49:51 2009 found 67691 cycles in 6 passes Sun Feb 15 16:49:51 2009 distribution of cycle lengths: Sun Feb 15 16:49:51 2009 length 1 : 16909 Sun Feb 15 16:49:51 2009 length 2 : 12702 Sun Feb 15 16:49:51 2009 length 3 : 12004 Sun Feb 15 16:49:51 2009 length 4 : 9263 Sun Feb 15 16:49:51 2009 length 5 : 6880 Sun Feb 15 16:49:51 2009 length 6 : 4239 Sun Feb 15 16:49:51 2009 length 7 : 2643 Sun Feb 15 16:49:51 2009 length 9+: 3051 Sun Feb 15 16:49:51 2009 largest cycle: 18 relations Sun Feb 15 16:49:51 2009 matrix is 62308 x 67691 (16.6 MB) with weight 4091641 (60.45/col) Sun Feb 15 16:49:51 2009 sparse part has weight 4091641 (60.45/col) Sun Feb 15 16:49:52 2009 filtering completed in 4 passes Sun Feb 15 16:49:52 2009 matrix is 57681 x 57745 (13.2 MB) with weight 3241565 (56.14/col) Sun Feb 15 16:49:52 2009 sparse part has weight 3241565 (56.14/col) Sun Feb 15 16:49:52 2009 saving the first 48 matrix rows for later Sun Feb 15 16:49:52 2009 matrix is 57633 x 57745 (8.2 MB) with weight 2515473 (43.56/col) Sun Feb 15 16:49:52 2009 sparse part has weight 1794001 (31.07/col) Sun Feb 15 16:49:52 2009 matrix includes 64 packed rows Sun Feb 15 16:49:52 2009 using block size 23098 for processor cache size 2048 kB Sun Feb 15 16:49:52 2009 commencing Lanczos iteration Sun Feb 15 16:49:52 2009 memory use: 8.2 MB Sun Feb 15 16:50:09 2009 lanczos halted after 913 iterations (dim = 57631) Sun Feb 15 16:50:09 2009 recovered 15 nontrivial dependencies Sun Feb 15 16:50:10 2009 prp32 factor: 14226811194310956229338618806873 Sun Feb 15 16:50:10 2009 prp60 factor: 102303162456309080732822575209405595505437738286521037113289 Sun Feb 15 16:50:10 2009 elapsed time 00:00:30
(43·10122-61)/9 = 4(7)1211<123> = 3 · 192 · 389 · 41673733 · 17391826414699782103<20> · C91
C91 = P41 · P50
P41 = 28184184763523821836019790432528482078337<41>
P50 = 55518128008771743119102762930430142616557897671791<50>
Sun Feb 15 15:16:02 2009 Msieve v. 1.38 Sun Feb 15 15:16:02 2009 random seeds: 7f02d460 f08de5ca Sun Feb 15 15:16:02 2009 factoring 1564733177524189700508302751567064458781574081944760784627626700487602371134391481177091567 (91 digits) Sun Feb 15 15:16:03 2009 searching for 15-digit factors Sun Feb 15 15:16:05 2009 commencing quadratic sieve (91-digit input) Sun Feb 15 15:16:05 2009 using multiplier of 7 Sun Feb 15 15:16:05 2009 using 64kb Pentium 4 sieve core Sun Feb 15 15:16:05 2009 sieve interval: 18 blocks of size 65536 Sun Feb 15 15:16:05 2009 processing polynomials in batches of 6 Sun Feb 15 15:16:05 2009 using a sieve bound of 1645421 (62353 primes) Sun Feb 15 15:16:05 2009 using large prime bound of 144797048 (27 bits) Sun Feb 15 15:16:05 2009 using double large prime bound of 489065930136608 (42-49 bits) Sun Feb 15 15:16:05 2009 using trial factoring cutoff of 49 bits Sun Feb 15 15:16:05 2009 polynomial 'A' values have 12 factors Sun Feb 15 17:32:30 2009 62641 relations (16533 full + 46108 combined from 696963 partial), need 62449 Sun Feb 15 17:32:33 2009 begin with 713496 relations Sun Feb 15 17:32:34 2009 reduce to 154230 relations in 10 passes Sun Feb 15 17:32:34 2009 attempting to read 154230 relations Sun Feb 15 17:32:40 2009 recovered 154230 relations Sun Feb 15 17:32:40 2009 recovered 134193 polynomials Sun Feb 15 17:32:40 2009 attempting to build 62641 cycles Sun Feb 15 17:32:40 2009 found 62641 cycles in 5 passes Sun Feb 15 17:32:40 2009 distribution of cycle lengths: Sun Feb 15 17:32:40 2009 length 1 : 16533 Sun Feb 15 17:32:40 2009 length 2 : 11802 Sun Feb 15 17:32:40 2009 length 3 : 10893 Sun Feb 15 17:32:40 2009 length 4 : 8380 Sun Feb 15 17:32:40 2009 length 5 : 6072 Sun Feb 15 17:32:40 2009 length 6 : 3885 Sun Feb 15 17:32:40 2009 length 7 : 2327 Sun Feb 15 17:32:40 2009 length 9+: 2749 Sun Feb 15 17:32:40 2009 largest cycle: 17 relations Sun Feb 15 17:32:40 2009 matrix is 62353 x 62641 (15.4 MB) with weight 3792217 (60.54/col) Sun Feb 15 17:32:40 2009 sparse part has weight 3792217 (60.54/col) Sun Feb 15 17:32:41 2009 filtering completed in 3 passes Sun Feb 15 17:32:41 2009 matrix is 58535 x 58599 (14.5 MB) with weight 3566489 (60.86/col) Sun Feb 15 17:32:41 2009 sparse part has weight 3566489 (60.86/col) Sun Feb 15 17:32:42 2009 saving the first 48 matrix rows for later Sun Feb 15 17:32:42 2009 matrix is 58487 x 58599 (9.2 MB) with weight 2813987 (48.02/col) Sun Feb 15 17:32:42 2009 sparse part has weight 2071367 (35.35/col) Sun Feb 15 17:32:42 2009 matrix includes 64 packed rows Sun Feb 15 17:32:42 2009 using block size 21845 for processor cache size 512 kB Sun Feb 15 17:32:42 2009 commencing Lanczos iteration Sun Feb 15 17:32:42 2009 memory use: 9.0 MB Sun Feb 15 17:33:16 2009 lanczos halted after 926 iterations (dim = 58485) Sun Feb 15 17:33:16 2009 recovered 16 nontrivial dependencies Sun Feb 15 17:33:17 2009 prp41 factor: 28184184763523821836019790432528482078337 Sun Feb 15 17:33:17 2009 prp50 factor: 55518128008771743119102762930430142616557897671791 Sun Feb 15 17:33:17 2009 elapsed time 02:17:15
(43·10121-61)/9 = 4(7)1201<122> = 41 · 937 · 11969 · 25429687427<11> · C103
C103 = P35 · P68
P35 = 90194248637814352047759031494690479<35>
P68 = 45302770742221875681422612444030225099879253011075410319280004436519<68>
Number: 47771_121 N=4086049368305861293153821232230387164334742283566132179392795643464068457934791786218016782912709202601 ( 103 digits) SNFS difficulty: 122 digits. Divisors found: r1=90194248637814352047759031494690479 r2=45302770742221875681422612444030225099879253011075410319280004436519 Version: Total time: 2.37 hours. Scaled time: 2.36 units (timescale=0.994). Factorization parameters were as follows: n: 4086049368305861293153821232230387164334742283566132179392795643464068457934791786218016782912709202601 m: 1000000000000000000000000 deg: 5 c5: 430 c0: -61 skew: 0.68 type: snfs lss: 1 rlim: 770000 alim: 770000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 770000/770000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [385000, 685001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 86738 x 86983 Total sieving time: 2.37 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,770000,770000,25,25,46,46,2.2,2.2,50000 total time: 2.37 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM / Feb 15, 2009
(64·10313-1)/9 = 7(1)313<314> = 21311665559<11> · C304
C304 = P32 · C272
P32 = 56869355183867970524925233480563<32>
C272 = [58673469295479689569217613095246308254466564622209413268305902989491810201228240723973260931840271019115647539071466078885025309304572271657870575907588919118705280718254174488336225167199496315865486233581672561101987944769670437830049389779045700170933931843777556163883<272>]
Input number is (64*10^313-1)/9/21311665559 (304 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=586813494 Step 1 took 11294ms Step 2 took 8312ms ********** Factor found in step 2: 56869355183867970524925233480563 Found probable prime factor of 32 digits: 56869355183867970524925233480563 Composite cofactor has 272 digits
(64·10329-1)/9 = 7(1)329<330> = 3 · 25391 · 229689721 · 699955539929<12> · 1124527993523090279<19> · C287
C287 = P29 · C259
P29 = 40704154126759059654594607763<29>
C259 = [1268572766450642491152425150378294135396957255234847563295739922893453854657476574671444949567558350482770410510695204806721172358758008154803977106461792779271742602837417211283835274253110616197477675473057655924764392013624354984613370223714600952428428599<259>]
Input number is (64*10^329-1)/9/17496155117733/699955539929/1124527993523090279 (287 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1652848252 Step 1 took 10096ms Step 2 took 5695ms ********** Factor found in step 2: 40704154126759059654594607763 Found probable prime factor of 29 digits: 40704154126759059654594607763 Composite cofactor has 259 digits
(64·10325-1)/9 = 7(1)325<326> = 2351 · 2693 · 559369 · 409481053 · C305
C305 = P37 · C269
P37 = 2055038511900243647232933024391865987<37>
C269 = [23861421436245432814856204502196893138753855465286917828862029055337849688154013987993558266773941682867659577131547642497160767247096986685566754254247968589257517588732393442403635800292178906992890301105723560177433653333434641150265701045469843517957678137021325403<269>]
Input number is (64*10^325-1)/9/2351/2693/559369/409481053 (305 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4209806395 Step 1 took 34082ms Step 2 took 25836ms ********** Factor found in step 2: 2055038511900243647232933024391865987 Found probable prime factor of 37 digits: 2055038511900243647232933024391865987 Composite cofactor ((64*10^325-1)/9/2351/2693/559369/409481053)/2055038511900243647232933024391865987 has 269 digits
By Serge Batalov / GMP-ECM, Msieve-1.39 / Feb 16, 2009
(64·10309-1)/9 = 7(1)309<310> = 13 · 31 · 67 · 199 · 2332951 · 1107465757<10> · 231408998480608427<18> · 2433987702761838793853<22> · 5870493298900966567934867<25> · 9972146931819828646905779951<28> · C197
C197 = P30 · P42 · P60 · P67
P30 = 175215362685043374193444272439<30>
P42 = 135881099877537704102527393172637763005001<42>
P60 = 455143980801337770203718698452650780386906760272814860845717<60>
P60 = 1433595695421525345160288214513093277763500173335894023645075916027<67>
Input number is (64*10^309-1)/(4*10^103-1)/3/31/1107465757 (197 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1837215423 Step 1 took 6099ms Step 2 took 5093ms ********** Factor found in step 2: 175215362685043374193444272439 Found probable prime factor of 30 digits: 175215362685043374193444272439 Composite cofactor has 167 digits Input number is (64*10^309-1)/(4*10^103-1)/3/31/1107465757/175215362685043374193444272439 (167 digits) Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2067577463 Step 1 took 50538ms Step 2 took 33888ms ********** Factor found in step 2: 135881099877537704102527393172637763005001 Found probable prime factor of 42 digits: 135881099877537704102527393172637763005001 Composite cofactor ((64*10^309-1)/(4*10^103-1)/3/31/1107465757/175215362685043374193444272439)/135881099877537704102527393172637763005001 has 126 digits N=652492451673815201209861895168404601709647029326303666607615459828522384455586028292649098275637500812719004235320429694606359 ( 126 digits) Divisors found: r1=455143980801337770203718698452650780386906760272814860845717 (pp60) r2=1433595695421525345160288214513093277763500173335894023645075916027 (pp67) Version: Msieve-1.39 Total time: 61 hours. Scaled time: 179.19 units (timescale=2.948). Factorization parameters were as follows: name: t n: 652492451673815201209861895168404601709647029326303666607615459828522384455586028292649098275637500812719004235320429694606359 skew: 208560.13 # norm 3.79e+17 c5: 20520 c4: -39040291878 c3: -1815988380632129 c2: 1418998931057512282898 c1: 52248932385834119347087434 c0: -8322878027540642438038865640480 # alpha -7.33 Y1: 10998909987373 Y0: -1997471249591076947964299 # Murphy_E 1.51e-10 # M 440071143724497757575898699709739009936761701217522723178112120106975840417089773780803036670841879485242795129300641371276230 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [4000000, 7500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1019394 x 1019642 Total sieving time: 50.61 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.50 hours. x 4 cpus Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8000000,8000000,27,27,54,54,2.5,2.5,200000 total time: 61 hours.
Factorizations of 711...11 have been extended up to n=350.
By Serge Batalov / PFGW / Feb 16, 2009
(43·1015955-61)/9 = 4(7)159541<15956> is PRP.
(43·1016098-61)/9 = 4(7)160971<16099> is PRP.
By Erik Branger / GGNFS, Msieve / Feb 15, 2009
(85·10186+41)/9 = 9(4)1859<187> = 72 · 73 · 2963 · 13879 · 15569 · 249311 · 13535091039564671486279847232684736987<38> · C130
C130 = P60 · P70
P60 = 292843897769971100638716964000406879520058047538234610226607<60>
P70 = 4173189726567027680792291651364686867194792560382788150602958007405151<70>
Number: 94449_186 N=1222093145661488304689087334206869992908799364801631751346153045069664958899170583005647688332917002870930209205870065660169052657 ( 130 digits) Divisors found: r1=292843897769971100638716964000406879520058047538234610226607 r2=4173189726567027680792291651364686867194792560382788150602958007405151 Version: Total time: 270.00 hours. Factorization parameters were as follows: name: 94449_186 n: 1222093145661488304689087334206869992908799364801631751346153045069664958899170583005647688332917002870930209205870065660169052657 skew: 510698.00 Y0: -7656719028100712519179654 Y1: 142321670357531 c0: 1167978539070622701566323783130925 c1: 5304559839315764477186444265 c2: -3710644512753648335949 c3: -35176895023575725 c4: -8370219004 c5: 46440 type: gnfs Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [5500000, 13300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1252951 x 1253199 Total sieving time: 99.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,129,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,11000000,11000000,27,27,51,51,2.6,2.6,100000 total time: 270.00 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 15, 2009
(14·10154+1)/3 = 4(6)1537<155> = 293 · 7512655541259282306331650654533633<34> · C119
C119 = P41 · P78
P41 = 54231808989727239423216603755622960161369<41>
P78 = 390923332769930875603107034278747100755856831370854327511895410945686871799847<78>
Number: 46667_154 N=21200479512406470387486737841689387728256616761959944459277057188240292447586447134939384922724107131176462502589510543 ( 119 digits) SNFS difficulty: 155 digits. Divisors found: r1=54231808989727239423216603755622960161369 r2=390923332769930875603107034278747100755856831370854327511895410945686871799847 Version: Total time: 8.87 hours. Scaled time: 21.14 units (timescale=2.384). Factorization parameters were as follows: n: 21200479512406470387486737841689387728256616761959944459277057188240292447586447134939384922724107131176462502589510543 m: 10000000000000000000000000000000 deg: 5 c5: 7 c0: 5 skew: 0.93 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8302757 Max relations in full relation-set: Initial matrix: Pruned matrix : 366414 x 366662 Total sieving time: 8.12 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.30 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 8.87 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(14·10175-11)/3 = 4(6)1743<176> = 19 · 18637 · 883431433 · 1059339599<10> · 163183031653807813<18> · 387506515120886326479029<24> · C112
C112 = P53 · P59
P53 = 39458651391662737560426731250115138746054521972087131<53>
P59 = 56438163889499086885495949504388402747909851042790704623549<59>
Number: 46663_175 N=2226973834101272806078695268331691820297865666351981094067120577496103583990954688153969172760108806003182447919 ( 112 digits) Divisors found: r1=39458651391662737560426731250115138746054521972087131 r2=56438163889499086885495949504388402747909851042790704623549 Version: Total time: 11.13 hours. Scaled time: 25.91 units (timescale=2.327). Factorization parameters were as follows: name: 46663_175 n: 2226973834101272806078695268331691820297865666351981094067120577496103583990954688153969172760108806003182447919 skew: 18558.79 # norm 2.18e+15 c5: 48300 c4: 154232447 c3: -77704578312477 c2: 1515535832638192026 c1: 6186317058615615263235 c0: -184906614236828287925975 # alpha -5.68 Y1: 1058921340037 Y0: -2151559993028487286086 # Murphy_E 8.38e-10 # M 1641793509583862624017536670586366418670310473889377820970417999873360158999715871821814994386591398598360466243 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 1980001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8230458 Max relations in full relation-set: Initial matrix: Pruned matrix : 408250 x 408498 Polynomial selection time: 0.93 hours. Total sieving time: 8.99 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.37 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 11.13 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve / Feb 15, 2009
(14·10147+1)/3 = 4(6)1467<148> = 13 · 71 · 10821683 · 415360308636593<15> · C124
C124 = P53 · P71
P53 = 59211116240071953560041490929300702713976962338049427<53>
P71 = 18996869093972672801989286866587901833146301492603126387978691101914233<71>
Number: 46667_147 N=1124825824120646305023027673995572656480837216059662782981628272312007636368630268568362380512011078237498677112251068794491 ( 124 digits) SNFS difficulty: 150 digits. Divisors found: r1=59211116240071953560041490929300702713976962338049427 r2=18996869093972672801989286866587901833146301492603126387978691101914233 Version: Total time: 14.36 hours. Scaled time: 27.90 units (timescale=1.943). Factorization parameters were as follows: name: 46667_147 n: 1124825824120646305023027673995572656480837216059662782981628272312007636368630268568362380512011078237498677112251068794491 m: 500000000000000000000000000000 deg: 5 c5: 56 c0: 125 skew: 1.17 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 318450 x 318698 Total sieving time: 14.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 14.36 hours. --------- CPU info (if available) ----------
(14·10196+1)/3 = 4(6)1957<197> = 19 · 88125623503<11> · 63724402211023850353<20> · 174979598539031380917131233<27> · 300304125643577097155478944475718909<36> · C103
C103 = P35 · P69
P35 = 36569467023955655702572987728072281<35>
P69 = 227602936992216342653791484918798807288750684295729520069400243313211<69>
Sat Feb 14 08:07:36 2009 Msieve v. 1.39 Sat Feb 14 08:07:36 2009 random seeds: 54bcde54 f0c5251e Sat Feb 14 08:07:36 2009 factoring 8323318098892312395018467980900645024149797138390385911208071430477385229001986137257942282261530204291 (103 digits) Sat Feb 14 08:07:37 2009 searching for 15-digit factors Sat Feb 14 08:07:39 2009 commencing quadratic sieve (103-digit input) Sat Feb 14 08:07:39 2009 using multiplier of 3 Sat Feb 14 08:07:39 2009 using 32kb Intel Core sieve core Sat Feb 14 08:07:39 2009 sieve interval: 36 blocks of size 32768 Sat Feb 14 08:07:39 2009 processing polynomials in batches of 6 Sat Feb 14 08:07:39 2009 using a sieve bound of 3491867 (125000 primes) Sat Feb 14 08:07:39 2009 using large prime bound of 523780050 (28 bits) Sat Feb 14 08:07:39 2009 using double large prime bound of 4948437687597450 (44-53 bits) Sat Feb 14 08:07:39 2009 using trial factoring cutoff of 53 bits Sat Feb 14 08:07:39 2009 polynomial 'A' values have 14 factors Sun Feb 15 10:05:35 2009 125322 relations (29305 full + 96017 combined from 1879366 partial), need 125096 Sun Feb 15 10:05:38 2009 begin with 1908671 relations Sun Feb 15 10:05:40 2009 reduce to 331728 relations in 12 passes Sun Feb 15 10:05:40 2009 attempting to read 331728 relations Sun Feb 15 10:05:47 2009 recovered 331728 relations Sun Feb 15 10:05:47 2009 recovered 324855 polynomials Sun Feb 15 10:05:48 2009 attempting to build 125322 cycles Sun Feb 15 10:05:48 2009 found 125322 cycles in 6 passes Sun Feb 15 10:05:48 2009 distribution of cycle lengths: Sun Feb 15 10:05:48 2009 length 1 : 29305 Sun Feb 15 10:05:48 2009 length 2 : 21336 Sun Feb 15 10:05:48 2009 length 3 : 21156 Sun Feb 15 10:05:48 2009 length 4 : 17003 Sun Feb 15 10:05:48 2009 length 5 : 13040 Sun Feb 15 10:05:48 2009 length 6 : 9175 Sun Feb 15 10:05:48 2009 length 7 : 5943 Sun Feb 15 10:05:48 2009 length 9+: 8364 Sun Feb 15 10:05:48 2009 largest cycle: 22 relations Sun Feb 15 10:05:48 2009 matrix is 125000 x 125322 (36.0 MB) with weight 8946269 (71.39/col) Sun Feb 15 10:05:48 2009 sparse part has weight 8946269 (71.39/col) Sun Feb 15 10:05:51 2009 filtering completed in 3 passes Sun Feb 15 10:05:51 2009 matrix is 120297 x 120361 (34.8 MB) with weight 8630529 (71.71/col) Sun Feb 15 10:05:51 2009 sparse part has weight 8630529 (71.71/col) Sun Feb 15 10:05:51 2009 saving the first 48 matrix rows for later Sun Feb 15 10:05:51 2009 matrix is 120249 x 120361 (22.1 MB) with weight 6954167 (57.78/col) Sun Feb 15 10:05:51 2009 sparse part has weight 5074835 (42.16/col) Sun Feb 15 10:05:51 2009 matrix includes 64 packed rows Sun Feb 15 10:05:51 2009 using block size 43690 for processor cache size 1024 kB Sun Feb 15 10:05:52 2009 commencing Lanczos iteration Sun Feb 15 10:05:52 2009 memory use: 21.0 MB Sun Feb 15 10:07:37 2009 lanczos halted after 1904 iterations (dim = 120247) Sun Feb 15 10:07:37 2009 recovered 17 nontrivial dependencies Sun Feb 15 10:07:38 2009 prp35 factor: 36569467023955655702572987728072281 Sun Feb 15 10:07:38 2009 prp69 factor: 227602936992216342653791484918798807288750684295729520069400243313211 Sun Feb 15 10:07:38 2009 elapsed time 26:00:02
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1 / Feb 15, 2009
(14·10170+1)/3 = 4(6)1697<171> = 46743868447870267651<20> · C151
C151 = P48 · P104
P48 = 104294166814274386903054982107897366760334221897<48>
P104 = 95724280549876303733349614934130035922104058690830754970637258308603613525009196486295646799077246779761<104>
SNFS difficulty: 171 digits. Divisors found: r1=104294166814274386903054982107897366760334221897 (pp48) r2=95724280549876303733349614934130035922104058690830754970637258308603613525009196486295646799077246779761 (pp104) Version: Msieve-1.39 Total time: 30.32 hours. Scaled time: units (timescale=2.950). Factorization parameters were as follows: n: 9983484083845200357518942533658895832376749692236922937893888318516337912293695221613470764610702632769022446093554356116181010244931137412628862626617 m: 10000000000000000000000000000000000 deg: 5 c5: 14 c0: 1 skew: 0.59 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 883374 x 883621 Total sieving time: 22.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.60 hours. * 4 Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,200000 total time: 30.32 hours.
7·10195-3 = 6(9)1947<196> = 139 · 3067 · 17876051 · 24527621194063819800299250874272523<35> · C149
C149 = P38 · P112
P38 = 10810175462712766378399682400374658337<38>
P112 = 3464253826178025203451630850730623859360665647158270629727669693950603939546671253113435093020109567689734805669<112>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=705256189 Step 1 took 58911ms Step 2 took 44658ms ********** Factor found in step 2: 10810175462712766378399682400374658337 Found probable prime factor of 38 digits: 10810175462712766378399682400374658337 probable prime cofactor
(8·10181-53)/9 = (8)1803<181> = 3 · 3373 · 104548979020861334868919<24> · C154
C154 = P35 · P120
P35 = 12499821320686222156090511981140217<35>
P120 = 672181074501094515150749049807572101902956191960026465193303607551381843935978711469108196973715165015264234761959682059<120>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1439701945 Step 1 took 45437ms Step 2 took 35187ms ********** Factor found in step 2: 12499821320686222156090511981140217 Found probable prime factor of 35 digits: 12499821320686222156090511981140217 Probable prime cofactor has 120 digits
(28·10190+71)/9 = 3(1)1899<191> = 3 · 11 · 19 · 118571561 · C180
C180 = P41 · C139
P41 = 72948732985607639943348271937061875858767<41>
C139 = [5736535564946222076701029625873664000242757235671459219099940391735526356194060277001714023463867870843827613222563476713106720501742427331<139>]
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=2901755410 Step 1 took 59001ms Step 2 took 44783ms ********** Factor found in step 2: 72948732985607639943348271937061875858767 Found probable prime factor of 41 digits: 72948732985607639943348271937061875858767 Composite cofactor has 139 digits
(8·10189-53)/9 = (8)1883<189> = 67 · 3715079 · 3805037 · 5562883 · C168
C168 = P39 · P129
P39 = 264803101224449082168597348476311611311<39>
P129 = 637122209537919103959346621143746198671213839806088223842581849059827407105588908456565553663175429328843741231582163026217491951<129>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1970532011 Step 1 took 50602ms Step 2 took 39936ms ********** Factor found in step 2: 264803101224449082168597348476311611311 Found probable prime factor of 39 digits: 264803101224449082168597348476311611311 Probable prime cofactor has 129 digits
Factorizations of 477...771 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 15, 2009
(14·10153+1)/3 = 4(6)1527<154> = 132 · 9187433068570610519<19> · 85252816908018269189<20> · C113
C113 = P54 · P59
P54 = 432646889532735937305204725920593650955996146661358049<54>
P59 = 81486106008963007311412437866254747504214979242895064015777<59>
Number: 46667_153 N=35254710304912628291403028187926064483943842176341801575918120849567564630525220153645723046212671844646381939073 ( 113 digits) SNFS difficulty: 155 digits. Divisors found: r1=432646889532735937305204725920593650955996146661358049 r2=81486106008963007311412437866254747504214979242895064015777 Version: Total time: 9.75 hours. Scaled time: 23.18 units (timescale=2.377). Factorization parameters were as follows: n: 35254710304912628291403028187926064483943842176341801575918120849567564630525220153645723046212671844646381939073 m: 10000000000000000000000000000000 deg: 5 c5: 7 c0: 50 skew: 1.48 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7765803 Max relations in full relation-set: Initial matrix: Pruned matrix : 459979 x 460227 Total sieving time: 8.90 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.47 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 9.75 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By matsui / GGNFS / Feb 14, 2009
2·10200-3 = 1(9)1997<201> = 3917 · C197
C197 = P52 · P60 · P87
P52 = 1353143889460780219324261867805948229627354629623799<52>
P60 = 107421636386525513520653234479254640339061189356540018700131<60>
P87 = 351269691736020689086731151005390507435230742784114223916529804772069637453814458555389<87>
N=51059484299208577993362267041102884860862905284656624968087822312994638754148583099310696961960684197089609394945111054378350778657135562930814398774572376818994128159305591013530763339290273168241 ( 197 digits) SNFS difficulty: 200 digits. Divisors found: r1=1353143889460780219324261867805948229627354629623799 (pp52) r2=107421636386525513520653234479254640339061189356540018700131 (pp60) r3=351269691736020689086731151005390507435230742784114223916529804772069637453814458555389 (pp87) Version: GGNFS-0.77.1-20060722-nocona
By Sinkiti Sibata / Msieve / Feb 14, 2009
(14·10166+1)/3 = 4(6)1657<167> = 227 · 93609576563291<14> · 6410436491169121721<19> · 8567432506482975511227306736847<31> · C101
C101 = P48 · P54
P48 = 105837646301488096064392853135688270797190690443<48>
P54 = 377817592382338625566553437445757380341481911272332791<54>
Fri Feb 13 12:23:57 2009 Msieve v. 1.39 Fri Feb 13 12:23:57 2009 random seeds: c697f178 e036b717 Fri Feb 13 12:23:57 2009 factoring 39987324709041758691823561140139597659692108721927001185977095775180330550267978236047812260559216413 (101 digits) Fri Feb 13 12:23:58 2009 searching for 15-digit factors Fri Feb 13 12:23:59 2009 commencing quadratic sieve (101-digit input) Fri Feb 13 12:24:00 2009 using multiplier of 5 Fri Feb 13 12:24:00 2009 using 32kb Intel Core sieve core Fri Feb 13 12:24:00 2009 sieve interval: 36 blocks of size 32768 Fri Feb 13 12:24:00 2009 processing polynomials in batches of 6 Fri Feb 13 12:24:00 2009 using a sieve bound of 2974607 (107273 primes) Fri Feb 13 12:24:00 2009 using large prime bound of 446191050 (28 bits) Fri Feb 13 12:24:00 2009 using double large prime bound of 3707981036623950 (44-52 bits) Fri Feb 13 12:24:00 2009 using trial factoring cutoff of 52 bits Fri Feb 13 12:24:00 2009 polynomial 'A' values have 13 factors Sat Feb 14 03:55:15 2009 107440 relations (25168 full + 82272 combined from 1625467 partial), need 107369 Sat Feb 14 03:55:17 2009 begin with 1650635 relations Sat Feb 14 03:55:19 2009 reduce to 286005 relations in 11 passes Sat Feb 14 03:55:19 2009 attempting to read 286005 relations Sat Feb 14 03:55:25 2009 recovered 286005 relations Sat Feb 14 03:55:25 2009 recovered 278001 polynomials Sat Feb 14 03:55:25 2009 attempting to build 107440 cycles Sat Feb 14 03:55:25 2009 found 107440 cycles in 6 passes Sat Feb 14 03:55:25 2009 distribution of cycle lengths: Sat Feb 14 03:55:25 2009 length 1 : 25168 Sat Feb 14 03:55:25 2009 length 2 : 18101 Sat Feb 14 03:55:25 2009 length 3 : 17717 Sat Feb 14 03:55:25 2009 length 4 : 14669 Sat Feb 14 03:55:25 2009 length 5 : 11309 Sat Feb 14 03:55:25 2009 length 6 : 7873 Sat Feb 14 03:55:25 2009 length 7 : 5171 Sat Feb 14 03:55:25 2009 length 9+: 7432 Sat Feb 14 03:55:25 2009 largest cycle: 21 relations Sat Feb 14 03:55:26 2009 matrix is 107273 x 107440 (30.8 MB) with weight 7645489 (71.16/col) Sat Feb 14 03:55:26 2009 sparse part has weight 7645489 (71.16/col) Sat Feb 14 03:55:28 2009 filtering completed in 3 passes Sat Feb 14 03:55:28 2009 matrix is 103299 x 103363 (29.8 MB) with weight 7398436 (71.58/col) Sat Feb 14 03:55:28 2009 sparse part has weight 7398436 (71.58/col) Sat Feb 14 03:55:28 2009 saving the first 48 matrix rows for later Sat Feb 14 03:55:28 2009 matrix is 103251 x 103363 (19.5 MB) with weight 5997541 (58.02/col) Sat Feb 14 03:55:28 2009 sparse part has weight 4487591 (43.42/col) Sat Feb 14 03:55:28 2009 matrix includes 64 packed rows Sat Feb 14 03:55:28 2009 using block size 41345 for processor cache size 1024 kB Sat Feb 14 03:55:29 2009 commencing Lanczos iteration Sat Feb 14 03:55:29 2009 memory use: 18.2 MB Sat Feb 14 03:56:55 2009 lanczos halted after 1634 iterations (dim = 103249) Sat Feb 14 03:56:55 2009 recovered 17 nontrivial dependencies Sat Feb 14 03:56:56 2009 prp48 factor: 105837646301488096064392853135688270797190690443 Sat Feb 14 03:56:56 2009 prp54 factor: 377817592382338625566553437445757380341481911272332791 Sat Feb 14 03:56:56 2009 elapsed time 15:32:59
(14·10144+1)/3 = 4(6)1437<145> = 34231 · 112734187101659502097272353<27> · C115
C115 = P53 · P62
P53 = 41860487605074545822214730527238787086921508635630057<53>
P62 = 28888651782642712901521098516490340221304589902980438590000517<62>
Number: 46667_144 N=1209293049874629965857509671889586266473728920998546232084066695052908898286693988441135423590198309266664250739469 ( 115 digits) SNFS difficulty: 145 digits. Divisors found: r1=41860487605074545822214730527238787086921508635630057 r2=28888651782642712901521098516490340221304589902980438590000517 Version: Total time: 9.39 hours. Scaled time: 18.52 units (timescale=1.972). Factorization parameters were as follows: name: 46667_144 n: 1209293049874629965857509671889586266473728920998546232084066695052908898286693988441135423590198309266664250739469 m: 100000000000000000000000000000 deg: 5 c5: 7 c0: 5 skew: 0.93 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 1845001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 267507 x 267755 Total sieving time: 9.39 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 9.39 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1 / Feb 14, 2009
(14·10165-11)/3 = 4(6)1643<166> = 1187 · C163
C163 = P53 · P110
P53 = 75273344314006455047373618700306263254729554245011119<53>
P110 = 52229377573155775722074013780922150979377281646505623065824363308585613892793884921603674014013584366953471971<110>
SNFS difficulty: 166 digits. Divisors found: r1=75273344314006455047373618700306263254729554245011119 (pp53) r2=52229377573155775722074013780922150979377281646505623065824363308585613892793884921603674014013584366953471971 (pp110) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.917). Factorization parameters were as follows: n: 3931479921370401572591968548160629036787419264251614714967705700645885987082280258354394832912103341757933164841336703173265936534681269306374613872507722549845549 m: 1000000000000000000000000000000000 deg: 5 c5: 14 c0: -11 skew: 0.95 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 739970 x 740218 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.4,2.4,200000 total time: 29.00 hours.
(10195+17)/9 = (1)1943<195> = 89 · 839 · 46337 · C185
C185 = P39 · P147
P39 = 180219932950749045834203315868394030019<39>
P147 = 178186495547831158629886584868040389093978707544314165250237649071872527239633949856494301323944055336016195990546166140103456946868516762554689901<147>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=410370439 Step 1 took 58922ms Step 2 took 44850ms ********** Factor found in step 2: 180219932950749045834203315868394030019 Found probable prime factor of 39 digits: 180219932950749045834203315868394030019 Probable prime cofactor has 147 digits
(10199+17)/9 = (1)1983<199> = 3 · 53 · 61 · 5261569 · 14429307007535652733<20> · 28953978442052238625370216321<29> · C140
C140 = P44 · P47 · P50
P44 = 22030472258797275743537418347333146628457907<44>
P47 = 34282597905119932900091785459591793403348759523<47>
P50 = 69002370162380621152740212076872714098090972363351<50>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1005177743 Step 1 took 43500ms Step 2 took 35167ms ********** Factor found in step 2: 34282597905119932900091785459591793403348759523 Found probable prime factor of 47 digits: 34282597905119932900091785459591793403348759523 Composite cofactor has 94 digits N=1520154801653587145519307402953669982384665387658339424932743614496399400375403119312412966357 ( 94 digits) Divisors found: r1=22030472258797275743537418347333146628457907 (pp44) r2=69002370162380621152740212076872714098090972363351 (pp50) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: name: t n: 1520154801653587145519307402953669982384665387658339424932743614496399400375403119312412966357 m: 2670485256132997099992 deg: 4 c4: 29890080 c3: -13117314349 c2: -242242966401244948 c1: 324114490938892144 c0: 357487177208619254665813 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.124 # E(F1,F2) = 6.714689e-05 # GGNFS version 0.77.1-20060722-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1234577083. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 140362 x 140589 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 3.00 hours.
(4·10191+41)/9 = (4)1909<191> = 9445455512599<13> · 568330868941154509<18> · 18527367251974270369<20> · C141
C141 = P39 · P103
P39 = 335732563467571075947367193609809575347<39>
P103 = 1331024816574415178535198740376933736414450937292699184327359822630102869705402231438438248290257348273<103>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=152571016 Step 1 took 43365ms Step 2 took 29504ms ********** Factor found in step 2: 335732563467571075947367193609809575347 Found probable prime factor of 39 digits: 335732563467571075947367193609809575347 Probable prime cofactor has 103 digits
7·10186-3 = 6(9)1857<187> = 887 · 439823 · 1196059 · 1026017623085007713<19> · C155
C155 = P32 · P123
P32 = 92337907616891958329226316547999<32>
P123 = 158346705035860066410666443177431638272396001523007818205086265361406331827017357270653495045419576915774032335665253102209<123>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2080995158 Step 1 took 52056ms Step 2 took 32746ms ********** Factor found in step 2: 92337907616891958329226316547999 Found probable prime factor of 32 digits: 92337907616891958329226316547999 Probable prime cofactor 158346705035860066410666443177431638272396001523007818205086265361406331827017357270653495045419576915774032335665253102209 has 123 digits
5·10184-7 = 4(9)1833<185> = 59 · 2381 · 3823 · 6566081 · 31425551790847<14> · C156
C156 = P41 · P115
P41 = 80039443926543333426030393619033027817759<41>
P115 = 5637169435779042518564618258869429332554961926507393446662237475156718430440794073039044584353258208612957374372233<115>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2736760227 Step 1 took 51483ms Step 2 took 33748ms ********** Factor found in step 2: 80039443926543333426030393619033027817759 Found probable prime factor of 41 digits: 80039443926543333426030393619033027817759 Probable prime cofactor 5637169435779042518564618258869429332554961926507393446662237475156718430440794073039044584353258208612957374372233 has 115 digits
7·10195-3 = 6(9)1947<196> = 139 · 3067 · 17876051 · C183
C183 = P35 · C149
P35 = 24527621194063819800299250874272523<35>
C149 = [37449191708358504951512531418661234354118514299816902412910533299054998461221910284706013330562360986172625399055406703880777217563744499862965712453<149>]
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=2507872870 Step 1 took 59190ms Step 2 took 46541ms ********** Factor found in step 2: 24527621194063819800299250874272523 Found probable prime factor of 35 digits: 24527621194063819800299250874272523 Composite cofactor has 149 digits
(4·10184+41)/9 = (4)1839<184> = 3 · 493859316479<12> · C172
C172 = P40 · C133
P40 = 1028468656901316025194870592631166453493<40>
C133 = [2916768192185476209130600299020222703251001859873551312550186038537008789362831619096830736907690865140108164330933656050977865580289<133>]
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1065531543 Step 1 took 50760ms Step 2 took 41555ms ********** Factor found in step 2: 1028468656901316025194870592631166453493 Found probable prime factor of 40 digits: 1028468656901316025194870592631166453493 Composite cofactor has 133 digits
8·10170-7 = 7(9)1693<171> = 13 · 167 · 173 · 3527 · 1164843975864664079<19> · C144
C144 = P39 · P106
P39 = 267225671577587886263333427818158723483<39>
P106 = 1940138194737605546964094210184209125694364459325237602677778591219159584108616662614835144171508335314589<106>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=4243394023 Step 1 took 43630ms Step 2 took 10886ms ********** Factor found in step 2: 267225671577587886263333427818158723483 Found probable prime factor of 39 digits: 267225671577587886263333427818158723483 Probable prime cofactor has 106 digits
(28·10194+71)/9 = 3(1)1939<195> = 112 · 41 · 1674922471<10> · 1474538095136372480044028131<28> · C155
C155 = P36 · C119
P36 = 267407641043367558042632242380571217<36>
C119 = [94955860921945704007355546974800936804246583000431312236385646536971406882241375331831813631952300999296434499069136387<119>]
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=710368225 Step 1 took 55001ms Step 2 took 37692ms ********** Factor found in step 2: 267407641043367558042632242380571217 Found probable prime factor of 36 digits: 267407641043367558042632242380571217 Composite cofactor has 119 digits
8·10196-7 = 7(9)1953<197> = 5531 · 358990876536924989546737<24> · C170
C170 = P36 · P135
P36 = 214605166213413649753799079575549309<36>
P135 = 187742563889361910433535169521129458961729353440826580401787271210018504832215823551155968418007570578866423270571979403524548052497991<135>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1664096161 Step 1 took 50439ms Step 2 took 41184ms ********** Factor found in step 2: 214605166213413649753799079575549309 Found probable prime factor of 36 digits: 214605166213413649753799079575549309 Probable prime cofactor has 135 digits
(8·10182-53)/9 = (8)1813<182> = 157 · 499 · 22385351 · C170
C170 = P38 · P133
P38 = 20927507877603562216772481531959930821<38>
P133 = 2421953813812902991229062272111059316848736284277459734782495754095937631298254836200644777053879601560333590388382682997464506923911<133>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=2787302746 Step 1 took 50683ms Step 2 took 40992ms ********** Factor found in step 2: 20927507877603562216772481531959930821 Found probable prime factor of 38 digits: 20927507877603562216772481531959930821 Probable prime cofactor has 133 digits
By Erik Branger / GGNFS, Msieve / Feb 14, 2009
(14·10143+1)/3 = 4(6)1427<144> = 9020890114447567<16> · C128
C128 = P45 · P84
P45 = 260954755813331551484629836671841329424589369<45>
P84 = 198240403140835028113695300828948914392004001895842843502933578491559379460150732429<84>
Number: 46667_143 N=51731775993953009910301308419212924796902674648198394769006101620615186310053836176840364665870571890912291010439718267916947301 ( 128 digits) SNFS difficulty: 145 digits. Divisors found: r1=260954755813331551484629836671841329424589369 r2=198240403140835028113695300828948914392004001895842843502933578491559379460150732429 Version: Total time: 12.09 hours. Scaled time: 9.46 units (timescale=0.782). Factorization parameters were as follows: n: 51731775993953009910301308419212924796902674648198394769006101620615186310053836176840364665870571890912291010439718267916947301 m: 100000000000000000000000000000 deg: 5 c5: 7 c0: 50 skew: 1.48 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 309798 x 310046 Total sieving time: 12.09 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 12.09 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 14, 2009
(14·10149+1)/3 = 4(6)1487<150> = 17 · 1433 · 88848637 · 29178780371701<14> · C124
C124 = P59 · P66
P59 = 52085636918944088812203312210504732508023447832895818013441<59>
P66 = 141865170733330080376212873778627147222277396429992237445479582291<66>
Number: 46669_149 N=7389137774260243688053830273352604246508616558218557111613676233755812817641078542381629932217207801812449835065450103573331 ( 124 digits) SNFS difficulty: 150 digits. Divisors found: r1=52085636918944088812203312210504732508023447832895818013441 r2=141865170733330080376212873778627147222277396429992237445479582291 Version: Total time: 5.45 hours. Scaled time: 12.87 units (timescale=2.360). Factorization parameters were as follows: n: 7389137774260243688053830273352604246508616558218557111613676233755812817641078542381629932217207801812449835065450103573331 m: 1000000000000000000000000000000 deg: 5 c5: 7 c0: 5 skew: 0.93 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 6346214 Max relations in full relation-set: Initial matrix: Pruned matrix : 348304 x 348552 Total sieving time: 4.98 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.27 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,27,27,49,49,2.4,2.4,100000 total time: 5.45 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(14·10152+1)/3 = 4(6)1517<153> = 1259 · 4449581879<10> · 31680660311933<14> · C127
C127 = P51 · P77
P51 = 164419801792715399978720014469178894785688300264421<51>
P77 = 15992394807860943672501515269727850107518587694312563080621071031105148189079<77>
Number: 46667_152 N=2629466384499347241036001490457162666115412103509341476457525842912585465822458952893668770251581037113343323667412465004458259 ( 127 digits) SNFS difficulty: 153 digits. Divisors found: r1=164419801792715399978720014469178894785688300264421 r2=15992394807860943672501515269727850107518587694312563080621071031105148189079 Version: Total time: 7.86 hours. Scaled time: 18.80 units (timescale=2.392). Factorization parameters were as follows: n: 2629466384499347241036001490457162666115412103509341476457525842912585465822458952893668770251581037113343323667412465004458259 m: 2000000000000000000000000000000 deg: 5 c5: 175 c0: 4 skew: 0.47 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1100000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8279462 Max relations in full relation-set: Initial matrix: Pruned matrix : 340575 x 340823 Total sieving time: 7.23 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.25 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000 total time: 7.86 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 13, 2009
(13·10195+17)/3 = 4(3)1949<196> = C196
C196 = P44 · P49 · P104
P44 = 43038594302076212180404662503389491920977571<44>
P49 = 6396895104394665782573448096012043723085976503681<49>
P104 = 15739639826095135291644801789933718287314134718487647918772287020703181372193969444606666771292347715689<104>
Number: 43339_195 N=4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 ( 196 digits) SNFS difficulty: 196 digits. Divisors found: r1=43038594302076212180404662503389491920977571 r2=6396895104394665782573448096012043723085976503681 r3=15739639826095135291644801789933718287314134718487647918772287020703181372193969444606666771292347715689 Version: Total time: 283.07 hours. Scaled time: 674.00 units (timescale=2.381). Factorization parameters were as follows: n: 4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 m: 1000000000000000000000000000000000000000 deg: 5 c5: 13 c0: 17 skew: 1.06 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7500000, 14100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 23478985 Max relations in full relation-set: Initial matrix: Pruned matrix : 2445387 x 2445635 Total sieving time: 256.46 hours. Total relation processing time: 8.45 hours. Matrix solve time: 17.08 hours. Time per square root: 1.08 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,15000000,15000000,28,28,55,55,2.5,2.5,100000 total time: 283.07 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Erik Branger / Msieve / Feb 13, 2009
(14·10162+1)/3 = 4(6)1617<163> = 139 · 599 · 37243 · 1143529 · 521121781 · 85455939917603<14> · 399007013662755691469737714633<30> · C95
C95 = P42 · P53
P42 = 780810284493164937541387674186542177655467<42>
P53 = 94856213196199882289140137695997617853942491092295137<53>
Thu Feb 12 17:48:12 2009 Msieve v. 1.38 Thu Feb 12 17:48:12 2009 random seeds: bd78225c 7d519f38 Thu Feb 12 17:48:12 2009 factoring 74064706811669136267266549263175661936240043622241422381737475862705723444971303591286665563979 (95 digits) Thu Feb 12 17:48:14 2009 searching for 15-digit factors Thu Feb 12 17:48:15 2009 commencing quadratic sieve (95-digit input) Thu Feb 12 17:48:16 2009 using multiplier of 35 Thu Feb 12 17:48:16 2009 using 64kb Pentium 4 sieve core Thu Feb 12 17:48:16 2009 sieve interval: 18 blocks of size 65536 Thu Feb 12 17:48:16 2009 processing polynomials in batches of 6 Thu Feb 12 17:48:16 2009 using a sieve bound of 2193701 (81176 primes) Thu Feb 12 17:48:16 2009 using large prime bound of 329055150 (28 bits) Thu Feb 12 17:48:16 2009 using double large prime bound of 2143303351966200 (43-51 bits) Thu Feb 12 17:48:16 2009 using trial factoring cutoff of 51 bits Thu Feb 12 17:48:16 2009 polynomial 'A' values have 12 factors Fri Feb 13 00:06:21 2009 81352 relations (19911 full + 61441 combined from 1214476 partial), need 81272 Fri Feb 13 00:06:27 2009 begin with 1234387 relations Fri Feb 13 00:06:29 2009 reduce to 211622 relations in 11 passes Fri Feb 13 00:06:29 2009 attempting to read 211622 relations Fri Feb 13 00:06:35 2009 recovered 211622 relations Fri Feb 13 00:06:35 2009 recovered 196858 polynomials Fri Feb 13 00:06:35 2009 attempting to build 81352 cycles Fri Feb 13 00:06:35 2009 found 81352 cycles in 6 passes Fri Feb 13 00:06:35 2009 distribution of cycle lengths: Fri Feb 13 00:06:35 2009 length 1 : 19911 Fri Feb 13 00:06:35 2009 length 2 : 14320 Fri Feb 13 00:06:35 2009 length 3 : 13518 Fri Feb 13 00:06:35 2009 length 4 : 11192 Fri Feb 13 00:06:35 2009 length 5 : 8350 Fri Feb 13 00:06:35 2009 length 6 : 5604 Fri Feb 13 00:06:35 2009 length 7 : 3538 Fri Feb 13 00:06:35 2009 length 9+: 4919 Fri Feb 13 00:06:35 2009 largest cycle: 20 relations Fri Feb 13 00:06:36 2009 matrix is 81176 x 81352 (22.7 MB) with weight 5613162 (69.00/col) Fri Feb 13 00:06:36 2009 sparse part has weight 5613162 (69.00/col) Fri Feb 13 00:06:37 2009 filtering completed in 3 passes Fri Feb 13 00:06:37 2009 matrix is 77351 x 77415 (21.7 MB) with weight 5377028 (69.46/col) Fri Feb 13 00:06:37 2009 sparse part has weight 5377028 (69.46/col) Fri Feb 13 00:06:38 2009 saving the first 48 matrix rows for later Fri Feb 13 00:06:38 2009 matrix is 77303 x 77415 (16.2 MB) with weight 4522122 (58.41/col) Fri Feb 13 00:06:38 2009 sparse part has weight 3771008 (48.71/col) Fri Feb 13 00:06:38 2009 matrix includes 64 packed rows Fri Feb 13 00:06:38 2009 using block size 21845 for processor cache size 512 kB Fri Feb 13 00:06:40 2009 commencing Lanczos iteration Fri Feb 13 00:06:40 2009 memory use: 14.1 MB Fri Feb 13 00:07:51 2009 lanczos halted after 1223 iterations (dim = 77301) Fri Feb 13 00:07:52 2009 recovered 18 nontrivial dependencies Fri Feb 13 00:07:53 2009 prp42 factor: 780810284493164937541387674186542177655467 Fri Feb 13 00:07:53 2009 prp53 factor: 94856213196199882289140137695997617853942491092295137 Fri Feb 13 00:07:53 2009 elapsed time 06:19:41
By Sinkiti Sibata / GGNFS, Msieve / Feb 13, 2009
(14·10152-11)/3 = 4(6)1513<153> = 599 · 2039 · 5201159 · 500019643 · 9330687712735106756107<22> · C110
C110 = P45 · P65
P45 = 203620709236385827266419928602895446827412681<45>
P65 = 77328562429293032074941586762299177146068262610310551977403790177<65>
Number: 46663_152 N=15745696726082785761030779523873758778735086950631405227876971911156989281795370993215599311066355391913034537 ( 110 digits) SNFS difficulty: 153 digits. Divisors found: r1=203620709236385827266419928602895446827412681 (pp45) r2=77328562429293032074941586762299177146068262610310551977403790177 (pp65) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 45.55 hours. Scaled time: 21.50 units (timescale=0.472). Factorization parameters were as follows: name: 46663_152 n: 15745696726082785761030779523873758778735086950631405227876971911156989281795370993215599311066355391913034537 m: 2000000000000000000000000000000 deg: 5 c5: 175 c0: -44 skew: 0.76 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2400001) Primes: RFBsize:189880, AFBsize:189466, largePrimes:7918447 encountered Relations: rels:7927369, finalFF:448114 Max relations in full relation-set: 28 Initial matrix: 379413 x 448114 with sparse part having weight 48120728. Pruned matrix : 354056 x 356017 with weight 35108498. Total sieving time: 39.99 hours. Total relation processing time: 0.38 hours. Matrix solve time: 5.03 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 45.55 hours. --------- CPU info (if available) ----------
(14·10128+1)/3 = 4(6)1277<129> = C129
C129 = P47 · P82
P47 = 97442427809946115669704136955838175329000474229<47>
P82 = 4789152704372922037448426573012625124657528365691003679694960030537882336201918623<82>
Number: 46667_128 N=466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 ( 129 digits) SNFS difficulty: 130 digits. Divisors found: r1=97442427809946115669704136955838175329000474229 r2=4789152704372922037448426573012625124657528365691003679694960030537882336201918623 Version: Total time: 3.58 hours. Scaled time: 7.10 units (timescale=1.985). Factorization parameters were as follows: name: 46667_128 n: 466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 m: 100000000000000000000000000 deg: 5 c5: 7 c0: 50 skew: 1.48 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 930001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 139335 x 139583 Total sieving time: 3.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 3.58 hours. --------- CPU info (if available) ----------
(14·10139+1)/3 = 4(6)1387<140> = 47 · 919 · 19207 · 320149 · 14326847864654454928200037<26> · C101
C101 = P49 · P53
P49 = 1171756816497492817243664472564133432549308489139<49>
P53 = 10466309853523263277601766588807565342572842167782031<53>
Fri Feb 13 07:37:47 2009 Msieve v. 1.39 Fri Feb 13 07:37:47 2009 random seeds: d3312254 864c9447 Fri Feb 13 07:37:47 2009 factoring 12263969914440759335266783627234628457014011679040525685138368121008357742749535862197848991282861309 (101 digits) Fri Feb 13 07:37:48 2009 searching for 15-digit factors Fri Feb 13 07:37:49 2009 commencing quadratic sieve (101-digit input) Fri Feb 13 07:37:50 2009 using multiplier of 1 Fri Feb 13 07:37:50 2009 using 32kb Intel Core sieve core Fri Feb 13 07:37:50 2009 sieve interval: 36 blocks of size 32768 Fri Feb 13 07:37:50 2009 processing polynomials in batches of 6 Fri Feb 13 07:37:50 2009 using a sieve bound of 2823631 (102500 primes) Fri Feb 13 07:37:50 2009 using large prime bound of 423544650 (28 bits) Fri Feb 13 07:37:50 2009 using double large prime bound of 3376125230508000 (43-52 bits) Fri Feb 13 07:37:50 2009 using trial factoring cutoff of 52 bits Fri Feb 13 07:37:50 2009 polynomial 'A' values have 13 factors Fri Feb 13 07:37:53 2009 restarting with 15879 full and 1011164 partial relations Fri Feb 13 11:40:41 2009 102614 relations (24294 full + 78320 combined from 1548059 partial), need 102596 Fri Feb 13 11:40:43 2009 begin with 1572353 relations Fri Feb 13 11:40:45 2009 reduce to 272541 relations in 10 passes Fri Feb 13 11:40:45 2009 attempting to read 272541 relations Fri Feb 13 11:40:50 2009 recovered 272541 relations Fri Feb 13 11:40:50 2009 recovered 263021 polynomials Fri Feb 13 11:40:50 2009 attempting to build 102614 cycles Fri Feb 13 11:40:50 2009 found 102614 cycles in 6 passes Fri Feb 13 11:40:50 2009 distribution of cycle lengths: Fri Feb 13 11:40:50 2009 length 1 : 24294 Fri Feb 13 11:40:50 2009 length 2 : 17427 Fri Feb 13 11:40:50 2009 length 3 : 16759 Fri Feb 13 11:40:50 2009 length 4 : 14052 Fri Feb 13 11:40:50 2009 length 5 : 10897 Fri Feb 13 11:40:50 2009 length 6 : 7402 Fri Feb 13 11:40:50 2009 length 7 : 4908 Fri Feb 13 11:40:50 2009 length 9+: 6875 Fri Feb 13 11:40:50 2009 largest cycle: 20 relations Fri Feb 13 11:40:51 2009 matrix is 102500 x 102614 (27.8 MB) with weight 6875032 (67.00/col) Fri Feb 13 11:40:51 2009 sparse part has weight 6875032 (67.00/col) Fri Feb 13 11:40:52 2009 filtering completed in 3 passes Fri Feb 13 11:40:52 2009 matrix is 98568 x 98631 (26.9 MB) with weight 6647785 (67.40/col) Fri Feb 13 11:40:52 2009 sparse part has weight 6647785 (67.40/col) Fri Feb 13 11:40:53 2009 saving the first 48 matrix rows for later Fri Feb 13 11:40:53 2009 matrix is 98520 x 98631 (15.8 MB) with weight 5180923 (52.53/col) Fri Feb 13 11:40:53 2009 sparse part has weight 3562677 (36.12/col) Fri Feb 13 11:40:53 2009 matrix includes 64 packed rows Fri Feb 13 11:40:53 2009 using block size 39452 for processor cache size 1024 kB Fri Feb 13 11:40:53 2009 commencing Lanczos iteration Fri Feb 13 11:40:53 2009 memory use: 15.9 MB Fri Feb 13 11:42:06 2009 lanczos halted after 1559 iterations (dim = 98516) Fri Feb 13 11:42:06 2009 recovered 14 nontrivial dependencies Fri Feb 13 11:42:07 2009 prp49 factor: 1171756816497492817243664472564133432549308489139 Fri Feb 13 11:42:07 2009 prp53 factor: 10466309853523263277601766588807565342572842167782031 Fri Feb 13 11:42:07 2009 elapsed time 04:04:20
(14·10142+1)/3 = 4(6)1417<143> = 19 · 631 · 8629 · 82279 · 654047 · 1261759 · 280607091209<12> · C107
C107 = P51 · P56
P51 = 354652338619270676018346061231933256617627024018009<51>
P56 = 66755569921628218018055123882044193969712077797446507941<56>
Number: 46667_142 N=23675018988567691200233651263717779618750621657030298258543712888967462264993398109679892203846411745509469 ( 107 digits) SNFS difficulty: 145 digits. Divisors found: r1=354652338619270676018346061231933256617627024018009 r2=66755569921628218018055123882044193969712077797446507941 Version: Total time: 8.19 hours. Scaled time: 16.11 units (timescale=1.967). Factorization parameters were as follows: name: 46667_142 n: 23675018988567691200233651263717779618750621657030298258543712888967462264993398109679892203846411745509469 m: 50000000000000000000000000000 deg: 5 c5: 56 c0: 125 skew: 1.17 type: snfs lss: 1 rlim: 1840000 alim: 1840000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1840000/1840000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [920000, 1720001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 278300 x 278548 Total sieving time: 8.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1840000,1840000,26,26,49,49,2.3,2.3,100000 total time: 8.19 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve-1.39 / Feb 13, 2009
(14·10175+1)/3 = 4(6)1747<176> = 211 · 128977427 · 674809256778071<15> · 2798171122344373<16> · 169183188323265888376647544823<30> · C106
C106 = P48 · P58
P48 = 645931821966020252623561182000975442691069658013<48>
P58 = 8310199105822166266834778444707835250551130821474294358883<58>
Thu Feb 12 22:34:57 2009 Msieve v. 1.39 Thu Feb 12 22:34:57 2009 random seeds: 9db02c00 3ef00dcd Thu Feb 12 22:34:57 2009 factoring 5367822049324104198459781648285230954004443945514259477635815794499811904007692354910681910349769898679479 (106 digits) Thu Feb 12 22:34:58 2009 searching for 15-digit factors Thu Feb 12 22:34:59 2009 commencing number field sieve (106-digit input) Thu Feb 12 22:34:59 2009 R0: -258172299182433160252 Thu Feb 12 22:34:59 2009 R1: 107981281439 Thu Feb 12 22:34:59 2009 A0: -82194652127860805641635 Thu Feb 12 22:34:59 2009 A1: 7033312543780076998983 Thu Feb 12 22:34:59 2009 A2: -87363472109491385 Thu Feb 12 22:34:59 2009 A3: -17887783854145 Thu Feb 12 22:34:59 2009 A4: 104218002 Thu Feb 12 22:34:59 2009 A5: 4680 Thu Feb 12 22:34:59 2009 skew 24498.05, size 6.764167e-011, alpha -5.840131, combined = 4.738707e-010 Thu Feb 12 22:35:00 2009 Thu Feb 12 22:35:00 2009 commencing relation filtering Thu Feb 12 22:35:00 2009 commencing duplicate removal, pass 1 Thu Feb 12 22:35:56 2009 found 323492 hash collisions in 4679360 relations Thu Feb 12 22:36:09 2009 added 31781 free relations Thu Feb 12 22:36:09 2009 commencing duplicate removal, pass 2 Thu Feb 12 22:36:16 2009 found 299722 duplicates and 4411418 unique relations Thu Feb 12 22:36:16 2009 memory use: 43.3 MB Thu Feb 12 22:36:16 2009 reading rational ideals above 2818048 Thu Feb 12 22:36:16 2009 reading algebraic ideals above 2818048 Thu Feb 12 22:36:16 2009 commencing singleton removal, pass 1 Thu Feb 12 22:37:03 2009 relations with 0 large ideals: 104413 Thu Feb 12 22:37:03 2009 relations with 1 large ideals: 664703 Thu Feb 12 22:37:03 2009 relations with 2 large ideals: 1546652 Thu Feb 12 22:37:03 2009 relations with 3 large ideals: 1511527 Thu Feb 12 22:37:03 2009 relations with 4 large ideals: 528095 Thu Feb 12 22:37:03 2009 relations with 5 large ideals: 25948 Thu Feb 12 22:37:03 2009 relations with 6 large ideals: 30080 Thu Feb 12 22:37:03 2009 relations with 7+ large ideals: 0 Thu Feb 12 22:37:03 2009 4411418 relations and about 4341436 large ideals Thu Feb 12 22:37:03 2009 commencing singleton removal, pass 2 Thu Feb 12 22:37:51 2009 found 1970017 singletons Thu Feb 12 22:37:51 2009 current dataset: 2441401 relations and about 1971541 large ideals Thu Feb 12 22:37:51 2009 commencing singleton removal, pass 3 Thu Feb 12 22:38:24 2009 found 459939 singletons Thu Feb 12 22:38:24 2009 current dataset: 1981462 relations and about 1477357 large ideals Thu Feb 12 22:38:24 2009 commencing singleton removal, final pass Thu Feb 12 22:39:07 2009 memory use: 37.3 MB Thu Feb 12 22:39:07 2009 commencing in-memory singleton removal Thu Feb 12 22:39:07 2009 begin with 1981462 relations and 1518445 unique ideals Thu Feb 12 22:39:09 2009 reduce to 1658341 relations and 1186258 ideals in 16 passes Thu Feb 12 22:39:09 2009 max relations containing the same ideal: 49 Thu Feb 12 22:39:10 2009 reading rational ideals above 720000 Thu Feb 12 22:39:10 2009 reading algebraic ideals above 720000 Thu Feb 12 22:39:10 2009 commencing singleton removal, final pass Thu Feb 12 22:39:32 2009 keeping 1441724 ideals with weight <= 20, new excess is 185015 Thu Feb 12 22:39:34 2009 memory use: 46.8 MB Thu Feb 12 22:39:34 2009 commencing in-memory singleton removal Thu Feb 12 22:39:34 2009 begin with 1663865 relations and 1441724 unique ideals Thu Feb 12 22:39:36 2009 reduce to 1646608 relations and 1397747 ideals in 11 passes Thu Feb 12 22:39:36 2009 max relations containing the same ideal: 20 Thu Feb 12 22:39:37 2009 removing 167614 relations and 150492 ideals in 17122 cliques Thu Feb 12 22:39:37 2009 commencing in-memory singleton removal Thu Feb 12 22:39:37 2009 begin with 1478994 relations and 1397747 unique ideals Thu Feb 12 22:39:38 2009 reduce to 1467517 relations and 1235600 ideals in 7 passes Thu Feb 12 22:39:38 2009 max relations containing the same ideal: 20 Thu Feb 12 22:39:39 2009 removing 123087 relations and 105965 ideals in 17122 cliques Thu Feb 12 22:39:39 2009 commencing in-memory singleton removal Thu Feb 12 22:39:39 2009 begin with 1344430 relations and 1235600 unique ideals Thu Feb 12 22:39:40 2009 reduce to 1336954 relations and 1122079 ideals in 8 passes Thu Feb 12 22:39:40 2009 max relations containing the same ideal: 20 Thu Feb 12 22:39:41 2009 relations with 0 large ideals: 16191 Thu Feb 12 22:39:41 2009 relations with 1 large ideals: 109998 Thu Feb 12 22:39:41 2009 relations with 2 large ideals: 306115 Thu Feb 12 22:39:41 2009 relations with 3 large ideals: 427806 Thu Feb 12 22:39:41 2009 relations with 4 large ideals: 318411 Thu Feb 12 22:39:41 2009 relations with 5 large ideals: 125538 Thu Feb 12 22:39:41 2009 relations with 6 large ideals: 29363 Thu Feb 12 22:39:41 2009 relations with 7+ large ideals: 3532 Thu Feb 12 22:39:41 2009 commencing 2-way merge Thu Feb 12 22:39:42 2009 reduce to 793256 relation sets and 578381 unique ideals Thu Feb 12 22:39:42 2009 commencing full merge Thu Feb 12 22:39:52 2009 memory use: 43.3 MB Thu Feb 12 22:39:52 2009 found 366573 cycles, need 340581 Thu Feb 12 22:39:52 2009 weight of 340581 cycles is about 24093365 (70.74/cycle) Thu Feb 12 22:39:52 2009 distribution of cycle lengths: Thu Feb 12 22:39:52 2009 1 relations: 38055 Thu Feb 12 22:39:52 2009 2 relations: 34114 Thu Feb 12 22:39:52 2009 3 relations: 33825 Thu Feb 12 22:39:52 2009 4 relations: 31479 Thu Feb 12 22:39:52 2009 5 relations: 29063 Thu Feb 12 22:39:52 2009 6 relations: 25710 Thu Feb 12 22:39:52 2009 7 relations: 23273 Thu Feb 12 22:39:52 2009 8 relations: 21000 Thu Feb 12 22:39:52 2009 9 relations: 18232 Thu Feb 12 22:39:52 2009 10+ relations: 85830 Thu Feb 12 22:39:52 2009 heaviest cycle: 20 relations Thu Feb 12 22:39:52 2009 commencing cycle optimization Thu Feb 12 22:39:52 2009 start with 2233449 relations Thu Feb 12 22:39:59 2009 pruned 71620 relations Thu Feb 12 22:39:59 2009 memory use: 56.8 MB Thu Feb 12 22:39:59 2009 distribution of cycle lengths: Thu Feb 12 22:39:59 2009 1 relations: 38055 Thu Feb 12 22:39:59 2009 2 relations: 35065 Thu Feb 12 22:39:59 2009 3 relations: 35335 Thu Feb 12 22:39:59 2009 4 relations: 32598 Thu Feb 12 22:39:59 2009 5 relations: 30086 Thu Feb 12 22:39:59 2009 6 relations: 26481 Thu Feb 12 22:39:59 2009 7 relations: 23791 Thu Feb 12 22:39:59 2009 8 relations: 21224 Thu Feb 12 22:39:59 2009 9 relations: 18440 Thu Feb 12 22:39:59 2009 10+ relations: 79506 Thu Feb 12 22:39:59 2009 heaviest cycle: 19 relations Thu Feb 12 22:40:00 2009 Thu Feb 12 22:40:00 2009 commencing linear algebra Thu Feb 12 22:40:00 2009 read 340581 cycles Thu Feb 12 22:40:00 2009 cycles contain 1166929 unique relations Thu Feb 12 22:40:14 2009 read 1166929 relations Thu Feb 12 22:40:16 2009 using 20 quadratic characters above 67107708 Thu Feb 12 22:40:23 2009 building initial matrix Thu Feb 12 22:40:38 2009 memory use: 137.7 MB Thu Feb 12 22:40:38 2009 read 340581 cycles Thu Feb 12 22:40:39 2009 matrix is 340340 x 340581 (96.0 MB) with weight 32664453 (95.91/col) Thu Feb 12 22:40:39 2009 sparse part has weight 22770201 (66.86/col) Thu Feb 12 22:40:44 2009 filtering completed in 3 passes Thu Feb 12 22:40:44 2009 matrix is 338226 x 338426 (95.6 MB) with weight 32510703 (96.06/col) Thu Feb 12 22:40:44 2009 sparse part has weight 22686610 (67.04/col) Thu Feb 12 22:40:45 2009 read 338426 cycles Thu Feb 12 22:40:46 2009 matrix is 338226 x 338426 (95.6 MB) with weight 32510703 (96.06/col) Thu Feb 12 22:40:46 2009 sparse part has weight 22686610 (67.04/col) Thu Feb 12 22:40:46 2009 saving the first 48 matrix rows for later Thu Feb 12 22:40:46 2009 matrix is 338178 x 338426 (92.3 MB) with weight 25662083 (75.83/col) Thu Feb 12 22:40:46 2009 sparse part has weight 22161269 (65.48/col) Thu Feb 12 22:40:46 2009 matrix includes 64 packed rows Thu Feb 12 22:40:46 2009 using block size 65536 for processor cache size 3072 kB Thu Feb 12 22:40:49 2009 commencing Lanczos iteration Thu Feb 12 22:40:49 2009 memory use: 90.3 MB Thu Feb 12 22:57:01 2009 lanczos halted after 5349 iterations (dim = 338176) Thu Feb 12 22:57:02 2009 recovered 28 nontrivial dependencies Thu Feb 12 22:57:02 2009 Thu Feb 12 22:57:02 2009 commencing square root phase Thu Feb 12 22:57:02 2009 reading relations for dependency 1 Thu Feb 12 22:57:02 2009 read 169394 cycles Thu Feb 12 22:57:03 2009 cycles contain 719905 unique relations Thu Feb 12 22:57:12 2009 read 719905 relations Thu Feb 12 22:57:16 2009 multiplying 582576 relations Thu Feb 12 22:58:47 2009 multiply complete, coefficients have about 23.47 million bits Thu Feb 12 22:58:48 2009 initial square root is modulo 5501819 Thu Feb 12 23:00:56 2009 prp48 factor: 645931821966020252623561182000975442691069658013 Thu Feb 12 23:00:56 2009 prp58 factor: 8310199105822166266834778444707835250551130821474294358883 Thu Feb 12 23:00:56 2009 elapsed time 00:25:59
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1 / Feb 13, 2009
(14·10150+1)/3 = 4(6)1497<151> = 233 · 20231 · 9565063 · C138
C138 = P60 · P78
P60 = 278292037251093167192697707757978140015212683389508754823953<60>
P78 = 371916027933907022212166087325008623133827796688636219284264407757441270101811<78>
SNFS difficulty: 151 digits. Divisors found: r1=278292037251093167192697707757978140015212683389508754823953 (pp60) r2=371916027933907022212166087325008623133827796688636219284264407757441270101811 (pp78) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 103501269100061459963680493576104709397584435573134197614576074461874816345074624925092291323443376939458487404792623379413862577691478883 m: 1000000000000000000000000000000 deg: 5 c5: 14 c0: 1 skew: 0.59 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1150000, 1650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 324486 x 324734 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,52,52,2.4,2.4,100000 total time: 10.00 hours.
(14·10133+1)/3 = 4(6)1327<134> = 17 · 13769216033340347807<20> · C114
C114 = P51 · P63
P51 = 447832221926721618206166623088373467276639957980131<51>
P63 = 445177603722581126154064540081841356282753677680658453973442903<63>
SNFS difficulty: 135 digits. Divisors found: r1=447832221926721618206166623088373467276639957980131 (pp51) r2=445177603722581126154064540081841356282753677680658453973442903 (pp63) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 199364875427097082889189878762010012232418735432546046038860594807740900792360923025260503562375875979319736960293 m: 1000000000000000000000000000 deg: 5 c5: 7 c0: 50 skew: 1.48 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [645000, 1320001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 161579 x 161825 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,49,49,2.3,2.3,75000 total time: 3.00 hours.
(8·10184+7)/3 = 2(6)1839<185> = 23 · 3331 · 9974131 · 44534953 · 560165357 · C157
C157 = P32 · C126
P32 = 10490142307214064479640205122143<32>
C126 = [133349862070778274177903595909790086247733391434306851920325896211332328606192378743990711854039144978397117642580702153728441<126>]
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2422990683 Step 1 took 51122ms Step 2 took 33274ms ********** Factor found in step 2: 10490142307214064479640205122143 Found probable prime factor of 32 digits: 10490142307214064479640205122143 Composite cofactor has 126 digits
(8·10195+7)/3 = 2(6)1949<196> = 17 · 15193 · 114861703391<12> · 190185939589<12> · C168
C168 = P41 · P128
P41 = 21361646902753773798774688972047426229999<41>
P128 = 22125234476041939644861842402929543686459937107236436624986438920087136960016791042077082338659824729805893701781682408595537649<128>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3406529621 Step 1 took 13669ms Step 2 took 317ms ********** Factor found in step 2: 21361646902753773798774688972047426229999 Found probable prime factor of 41 digits: 21361646902753773798774688972047426229999 Probable prime cofactor has 128 digits
(8·10183+7)/3 = 2(6)1829<184> = 566794065586391351689<21> · C163
C163 = P35 · P129
P35 = 30060400046075892826912630127724553<35>
P129 = 156512375065718674354721548240702754368556888089823882809533087811465411008217641205470073242329288280820516388264024561842672157<129>
Using B1=8000000, B2=46840406350, polynomial Dickson(12), sigma=215209419 Step 1 took 36590ms Step 2 took 28115ms ********** Factor found in step 2: 30060400046075892826912630127724553 Found probable prime factor of 35 digits: 30060400046075892826912630127724553 Probable prime cofactor has 129 digits
(5·10180+7)/3 = 1(6)1799<181> = 709 · 2644933042766470246966192621<28> · C150
C150 = P35 · P116
P35 = 31773102888110998286705529243790757<35>
P116 = 27972301658995088320960956104735130981351338320881303986748486437792405387531996289545564795758198381632115477266953<116>
Using B1=6000000, B2=35128842850, polynomial Dickson(12), sigma=1855914501 Step 1 took 23790ms Step 2 took 20738ms ********** Factor found in step 2: 31773102888110998286705529243790757 Found probable prime factor of 35 digits: 31773102888110998286705529243790757 Probable prime cofactor has 116 digits
6·10182+1 = 6(0)1811<183> = 197 · 145547 · 1137803 · C170
C170 = P37 · P133
P37 = 3697766213694124457129202150295765873<37>
P133 = 4973650241959479991177377391777452977902057601073658068611396750923243720787211361706581622604893959178219884712767066984209658142981<133>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=1250300280 Step 1 took 50747ms Step 2 took 32902ms ********** Factor found in step 2: 3697766213694124457129202150295765873 Found probable prime factor of 37 digits: 3697766213694124457129202150295765873 Probable prime cofactor has 133 digits
4·10181+9 = 4(0)1809<182> = 7 · 4463 · 9013 · 44939 · 54440369 · 646495019927<12> · C149
C149 = P38 · C112
P38 = 17375472304230114852745301318776299103<38>
C112 = [5169153474928885848324348321675877484252277469106881063647738317793449445476644541605020599482510225817619276463<112>]
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2640071409 Step 1 took 43398ms Step 2 took 30394ms ********** Factor found in step 2: 17375472304230114852745301318776299103 Found probable prime factor of 38 digits: 17375472304230114852745301318776299103 Composite cofactor has 112 digits
By Sinkiti Sibata / Msieve / Feb 12, 2009
(14·10112+1)/3 = 4(6)1117<113> = 71 · 79 · 1459060062993079<16> · C94
C94 = P46 · P49
P46 = 2788605938735191414130857038217899259398483257<46>
P49 = 2044847961067233264018846952173523758557643519821<49>
Thu Feb 12 07:47:53 2009 Msieve v. 1.39 Thu Feb 12 07:47:53 2009 random seeds: 626506b0 94752051 Thu Feb 12 07:47:53 2009 factoring 5702275168042634161453697274977310092999593281419143237948608709452904758430079124662216136997 (94 digits) Thu Feb 12 07:47:54 2009 searching for 15-digit factors Thu Feb 12 07:47:56 2009 commencing quadratic sieve (94-digit input) Thu Feb 12 07:47:56 2009 using multiplier of 13 Thu Feb 12 07:47:56 2009 using 32kb Intel Core sieve core Thu Feb 12 07:47:56 2009 sieve interval: 36 blocks of size 32768 Thu Feb 12 07:47:56 2009 processing polynomials in batches of 6 Thu Feb 12 07:47:56 2009 using a sieve bound of 2055311 (76471 primes) Thu Feb 12 07:47:56 2009 using large prime bound of 283632918 (28 bits) Thu Feb 12 07:47:56 2009 using double large prime bound of 1640445722406174 (42-51 bits) Thu Feb 12 07:47:56 2009 using trial factoring cutoff of 51 bits Thu Feb 12 07:47:56 2009 polynomial 'A' values have 12 factors Thu Feb 12 10:18:24 2009 76601 relations (20440 full + 56161 combined from 1076215 partial), need 76567 Thu Feb 12 10:18:25 2009 begin with 1096655 relations Thu Feb 12 10:18:26 2009 reduce to 192800 relations in 10 passes Thu Feb 12 10:18:26 2009 attempting to read 192800 relations Thu Feb 12 10:18:29 2009 recovered 192800 relations Thu Feb 12 10:18:29 2009 recovered 170944 polynomials Thu Feb 12 10:18:29 2009 attempting to build 76601 cycles Thu Feb 12 10:18:30 2009 found 76601 cycles in 6 passes Thu Feb 12 10:18:30 2009 distribution of cycle lengths: Thu Feb 12 10:18:30 2009 length 1 : 20440 Thu Feb 12 10:18:30 2009 length 2 : 14239 Thu Feb 12 10:18:30 2009 length 3 : 13100 Thu Feb 12 10:18:30 2009 length 4 : 10074 Thu Feb 12 10:18:30 2009 length 5 : 7275 Thu Feb 12 10:18:30 2009 length 6 : 4693 Thu Feb 12 10:18:30 2009 length 7 : 2891 Thu Feb 12 10:18:30 2009 length 9+: 3889 Thu Feb 12 10:18:30 2009 largest cycle: 20 relations Thu Feb 12 10:18:30 2009 matrix is 76471 x 76601 (19.9 MB) with weight 4914996 (64.16/col) Thu Feb 12 10:18:30 2009 sparse part has weight 4914996 (64.16/col) Thu Feb 12 10:18:31 2009 filtering completed in 3 passes Thu Feb 12 10:18:31 2009 matrix is 71826 x 71890 (18.9 MB) with weight 4656393 (64.77/col) Thu Feb 12 10:18:31 2009 sparse part has weight 4656393 (64.77/col) Thu Feb 12 10:18:31 2009 saving the first 48 matrix rows for later Thu Feb 12 10:18:31 2009 matrix is 71778 x 71890 (12.7 MB) with weight 3753540 (52.21/col) Thu Feb 12 10:18:31 2009 sparse part has weight 2886411 (40.15/col) Thu Feb 12 10:18:31 2009 matrix includes 64 packed rows Thu Feb 12 10:18:31 2009 using block size 28756 for processor cache size 1024 kB Thu Feb 12 10:18:32 2009 commencing Lanczos iteration Thu Feb 12 10:18:32 2009 memory use: 11.8 MB Thu Feb 12 10:19:07 2009 lanczos halted after 1137 iterations (dim = 71778) Thu Feb 12 10:19:08 2009 recovered 18 nontrivial dependencies Thu Feb 12 10:19:09 2009 prp46 factor: 2788605938735191414130857038217899259398483257 Thu Feb 12 10:19:09 2009 prp49 factor: 2044847961067233264018846952173523758557643519821 Thu Feb 12 10:19:09 2009 elapsed time 02:31:16
(14·10119+1)/3 = 4(6)1187<120> = C120
C120 = P36 · P41 · P45
P36 = 342863294583316472753439512436141793<36>
P41 = 10008884276539516247435781948737347856839<41>
P45 = 135987853606852843149955196433161787992971421<45>
Number: 46667_119 N=466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 ( 120 digits) SNFS difficulty: 120 digits. Divisors found: r1=342863294583316472753439512436141793 r2=10008884276539516247435781948737347856839 r3=135987853606852843149955196433161787992971421 Version: Total time: 1.60 hours. Scaled time: 3.18 units (timescale=1.991). Factorization parameters were as follows: name: 46667_119 n: 466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 m: 1000000000000000000000000 deg: 5 c5: 7 c0: 5 skew: 0.93 type: snfs lss: 1 rlim: 720000 alim: 720000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 720000/720000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [360000, 560001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 70783 x 71030 Total sieving time: 1.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000 total time: 1.60 hours. --------- CPU info (if available) ----------
(14·10157+1)/3 = 4(6)1567<158> = 1229 · 14639 · 20570610787<11> · 136089221564531<15> · 6207025213840049369221560139<28> · C99
C99 = P47 · P52
P47 = 69640697804905676650210740049288662547179405011<47>
P52 = 2143512135664749341932732352584032738864120525449489<52>
Thu Feb 12 11:55:17 2009 Msieve v. 1.39 Thu Feb 12 11:55:17 2009 random seeds: e96394ac 9a5ad5fa Thu Feb 12 11:55:17 2009 factoring 149275680880976788467660198622530779642196164017610224805481211436514278248616466484962074353989379 (99 digits) Thu Feb 12 11:55:18 2009 searching for 15-digit factors Thu Feb 12 11:55:20 2009 commencing quadratic sieve (99-digit input) Thu Feb 12 11:55:20 2009 using multiplier of 1 Thu Feb 12 11:55:20 2009 using 32kb Intel Core sieve core Thu Feb 12 11:55:20 2009 sieve interval: 36 blocks of size 32768 Thu Feb 12 11:55:20 2009 processing polynomials in batches of 6 Thu Feb 12 11:55:20 2009 using a sieve bound of 2577401 (94097 primes) Thu Feb 12 11:55:20 2009 using large prime bound of 386610150 (28 bits) Thu Feb 12 11:55:20 2009 using double large prime bound of 2864783531160900 (43-52 bits) Thu Feb 12 11:55:20 2009 using trial factoring cutoff of 52 bits Thu Feb 12 11:55:20 2009 polynomial 'A' values have 13 factors Thu Feb 12 18:39:39 2009 94622 relations (23309 full + 71313 combined from 1406727 partial), need 94193 Thu Feb 12 18:39:41 2009 begin with 1430036 relations Thu Feb 12 18:39:42 2009 reduce to 246673 relations in 12 passes Thu Feb 12 18:39:42 2009 attempting to read 246673 relations Thu Feb 12 18:39:46 2009 recovered 246673 relations Thu Feb 12 18:39:46 2009 recovered 233241 polynomials Thu Feb 12 18:39:47 2009 attempting to build 94622 cycles Thu Feb 12 18:39:47 2009 found 94622 cycles in 6 passes Thu Feb 12 18:39:47 2009 distribution of cycle lengths: Thu Feb 12 18:39:47 2009 length 1 : 23309 Thu Feb 12 18:39:47 2009 length 2 : 16347 Thu Feb 12 18:39:47 2009 length 3 : 15767 Thu Feb 12 18:39:47 2009 length 4 : 12855 Thu Feb 12 18:39:47 2009 length 5 : 9640 Thu Feb 12 18:39:47 2009 length 6 : 6630 Thu Feb 12 18:39:47 2009 length 7 : 4243 Thu Feb 12 18:39:47 2009 length 9+: 5831 Thu Feb 12 18:39:47 2009 largest cycle: 18 relations Thu Feb 12 18:39:47 2009 matrix is 94097 x 94622 (25.6 MB) with weight 6321039 (66.80/col) Thu Feb 12 18:39:47 2009 sparse part has weight 6321039 (66.80/col) Thu Feb 12 18:39:49 2009 filtering completed in 3 passes Thu Feb 12 18:39:49 2009 matrix is 89731 x 89795 (24.3 MB) with weight 6003460 (66.86/col) Thu Feb 12 18:39:49 2009 sparse part has weight 6003460 (66.86/col) Thu Feb 12 18:39:49 2009 saving the first 48 matrix rows for later Thu Feb 12 18:39:49 2009 matrix is 89683 x 89795 (14.6 MB) with weight 4679779 (52.12/col) Thu Feb 12 18:39:49 2009 sparse part has weight 3297305 (36.72/col) Thu Feb 12 18:39:49 2009 matrix includes 64 packed rows Thu Feb 12 18:39:49 2009 using block size 35918 for processor cache size 1024 kB Thu Feb 12 18:39:50 2009 commencing Lanczos iteration Thu Feb 12 18:39:50 2009 memory use: 14.4 MB Thu Feb 12 18:40:44 2009 lanczos halted after 1420 iterations (dim = 89681) Thu Feb 12 18:40:45 2009 recovered 16 nontrivial dependencies Thu Feb 12 18:40:46 2009 prp47 factor: 69640697804905676650210740049288662547179405011 Thu Feb 12 18:40:46 2009 prp52 factor: 2143512135664749341932732352584032738864120525449489 Thu Feb 12 18:40:46 2009 elapsed time 06:45:29
(14·10122+1)/3 = 4(6)1217<123> = 181 · C121
C121 = P36 · P86
P36 = 233363571794395358732871502584131711<36>
P86 = 11048291971135058539564418334874354567896531951537936403069323653753099323612883519137<86>
Number: 46667_122 N=2578268876611418047882136279926335174953959484346224677716390423572744014732965009208103130755064456721915285451197053407 ( 121 digits) SNFS difficulty: 125 digits. Divisors found: r1=233363571794395358732871502584131711 r2=11048291971135058539564418334874354567896531951537936403069323653753099323612883519137 Version: Total time: 1.85 hours. Scaled time: 3.66 units (timescale=1.979). Factorization parameters were as follows: name: 46667_122 n: 2578268876611418047882136279926335174953959484346224677716390423572744014732965009208103130755064456721915285451197053407 m: 5000000000000000000000000 deg: 5 c5: 56 c0: 125 skew: 1.17 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [430000, 630001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 100795 x 101040 Total sieving time: 1.85 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,50000 total time: 1.85 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve / Feb 12, 2009
(14·10165-17)/3 = 4(6)1641<166> = 9488819 · 43588177743829<14> · C146
C146 = P69 · P77
P69 = 192291543504650266312924830780127324976051701536760368444962051931847<69>
P77 = 58676705241607330640162008428812640085749921181414466216785690293885780591613<77>
Number: 46661_165 N=11283034218676076335450062104328480022556931502317869197767600548494780149843252727291425682419289464184378251077512205365756428650696865215799211 ( 146 digits) SNFS difficulty: 166 digits. Divisors found: r1=192291543504650266312924830780127324976051701536760368444962051931847 r2=58676705241607330640162008428812640085749921181414466216785690293885780591613 Version: Total time: 64.10 hours. Scaled time: 49.17 units (timescale=0.767). Factorization parameters were as follows: n: 11283034218676076335450062104328480022556931502317869197767600548494780149843252727291425682419289464184378251077512205365756428650696865215799211 m: 1000000000000000000000000000000000 deg: 5 c5: 14 c0: -17 skew: 1.04 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 751250 x 751498 Total sieving time: 64.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 64.10 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Feb 12, 2009
(32·10196+31)/9 = 3(5)1959<197> = 3 · C197
C197 = P49 · P148
P49 = 3559279910565634648793619648390695211930101119007<49>
P148 = 3329845404029596513584266686001452221852005046336820091842356487673056284411726044805774754469766724250478115806325903135290063433358994107001192979<148>
Number: n N=11851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: Thu Feb 12 05:19:50 2009 prp49 factor: 3559279910565634648793619648390695211930101119007 Thu Feb 12 05:19:50 2009 prp148 factor: 3329845404029596513584266686001452221852005046336820091842356487673056284411726044805774754469766724250478115806325903135290063433358994107001192979 Thu Feb 12 05:19:50 2009 elapsed time 10:06:12 (Msieve 1.39 - dependency 9) Version: GGNFS-0.77.1-20050930-k8 Total time: 40.90 hours. Scaled time: 82.20 units (timescale=2.010). Factorization parameters were as follows: name: KA_3_5_195_9 n: 11851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 deg: 5 c5: 10 c0: 31 m: 2000000000000000000000000000000000000000 skew: 1.25 type: snfs rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 14052713) Primes: RFBsize:664579, AFBsize:664406, largePrimes:37099223 encountered Relations: rels:33783957, finalFF:423024 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 5477645 hash collisions in 39908701 relations Msieve: matrix is 2271192 x 2271440 (617.6 MB) Total sieving time: 40.07 hours. Total relation processing time: 0.82 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 40.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830483) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.68 BogoMIPS).
(14·10101+1)/3 = 4(6)1007<102> = 17 · 97 · C99
C99 = P37 · P62
P37 = 5033234758058990957431315127552236327<37>
P62 = 56226226564171399584270023372840804616856797530190186799408429<62>
Number: n N=282999797857287244794825146553466747523751768748736608045279967657165959167172023448554679603800283 ( 99 digits) SNFS difficulty: 102 digits. Divisors found: r1=5033234758058990957431315127552236327 (pp37) r2=56226226564171399584270023372840804616856797530190186799408429 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.71 hours. Scaled time: 1.25 units (timescale=1.752). Factorization parameters were as follows: name: KA_4_6_100_7 n: 282999797857287244794825146553466747523751768748736608045279967657165959167172023448554679603800283 deg: 5 c5: 140 c0: 1 m: 100000000000000000000 skew: 0.37 type: snfs rlim: 400000 alim: 400000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [200000, 230001) Primes: RFBsize:33860, AFBsize:33783, largePrimes:4654390 encountered Relations: rels:3905590, finalFF:116916 Max relations in full relation-set: 28 Initial matrix: 67710 x 116916 with sparse part having weight 9501067. Pruned matrix : 56212 x 56614 with weight 2878348. Total sieving time: 0.61 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,400000,400000,29,29,58,58,2.5,2.5,20000 total time: 0.71 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Feb 12, 2009
(14·10131+1)/3 = 4(6)1307<132> = 305947 · 159457726751<12> · C115
C115 = P35 · P81
P35 = 46554278325090552516893199847461541<35>
P81 = 205473308908773787368632582384091275114615193757427857138289590570000231197871171<81>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=871041688 Step 1 took 8145ms Step 2 took 9102ms ********** Factor found in step 2: 46554278325090552516893199847461541 Found probable prime factor of 35 digits: 46554278325090552516893199847461541 Probable prime cofactor 205473308908773787368632582384091275114615193757427857138289590570000231197871171 has 81 digits
(14·10162+1)/3 = 4(6)1617<163> = 139 · 599 · 37243 · 1143529 · 521121781 · 85455939917603<14> · C125
C125 = P30 · C95
P30 = 399007013662755691469737714633<30>
C95 = [74064706811669136267266549263175661936240043622241422381737475862705723444971303591286665563979<95>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=953689393 Step 1 took 9805ms Step 2 took 10466ms ********** Factor found in step 2: 399007013662755691469737714633 Found probable prime factor of 30 digits: 399007013662755691469737714633 Composite cofactor has 95 digits
(14·10129+1)/3 = 4(6)1287<130> = 13 · 89399 · C124
C124 = P35 · P90
P35 = 10192161599110403859711452399948989<35>
P90 = 393971192375050542532099397791091062168385809913731410123886724602590737694211075449017269<90>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=76032831 Step 1 took 3242ms Step 2 took 3943ms ********** Factor found in step 2: 10192161599110403859711452399948989 Found probable prime factor of 35 digits: 10192161599110403859711452399948989 Probable prime cofactor 393971192375050542532099397791091062168385809913731410123886724602590737694211075449017269 has 90 digits
(14·10154+1)/3 = 4(6)1537<155> = 293 · C153
C153 = P34 · C119
P34 = 7512655541259282306331650654533633<34>
C119 = [21200479512406470387486737841689387728256616761959944459277057188240292447586447134939384922724107131176462502589510543<119>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3012614861 Step 1 took 3893ms Step 2 took 4707ms ********** Factor found in step 2: 7512655541259282306331650654533633 Found probable prime factor of 34 digits: 7512655541259282306331650654533633 Composite cofactor has 119 digits
(14·10166+1)/3 = 4(6)1657<167> = 227 · 93609576563291<14> · 6410436491169121721<19> · C132
C132 = P31 · C101
P31 = 8567432506482975511227306736847<31>
C101 = [39987324709041758691823561140139597659692108721927001185977095775180330550267978236047812260559216413<101>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3502152376 Step 1 took 3243ms Step 2 took 4098ms ********** Factor found in step 2: 8567432506482975511227306736847 Found probable prime factor of 31 digits: 8567432506482975511227306736847 Composite cofactor has 101 digits
(14·10186+1)/3 = 4(6)1857<187> = 10267 · 13219 · 4164360581<10> · C169
C169 = P31 · C139
P31 = 1488247983280186098571489708637<31>
C139 = [5548057925542539633876144788364042228068713112868763687008067831727809467689271994969198458381672917577464003883096593416056508405328606507<139>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=1804857347 Step 1 took 4577ms Step 2 took 5369ms ********** Factor found in step 2: 1488247983280186098571489708637 Found probable prime factor of 31 digits: 1488247983280186098571489708637 Composite cofactor has 139 digits
(14·10193+1)/3 = 4(6)1927<194> = 162042457 · 20695762423014919<17> · C170
C170 = P33 · P137
P33 = 462119935655791361486982051216493<33>
P137 = 30112154280186876402133415618899951125050959464703518389615185245091234262257669146945323775268235498034779512356171484421776174648079993<137>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3931416344 Step 1 took 4596ms Step 2 took 5150ms ********** Factor found in step 2: 462119935655791361486982051216493 Found probable prime factor of 33 digits: 462119935655791361486982051216493 Probable prime cofactor has 137 digits
(14·10189+1)/3 = 4(6)1887<190> = 13 · 3089 · C186
C186 = P29 · C158
P29 = 10128992616845406650370872567<29>
C158 = [11473060026002633862873187847428263852356990812032173801213368823063425357300143024973808939526542988293615478197607055708097005793552950139882721311441146193<158>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=559243349 Step 1 took 5299ms Step 2 took 5887ms ********** Factor found in step 2: 10128992616845406650370872567 Found probable prime factor of 29 digits: 10128992616845406650370872567 Composite cofactor has 158 digits
(14·10198+1)/3 = 4(6)1977<199> = 104241439 · 804275831676937<15> · C176
C176 = P31 · C146
P31 = 2302547123295387084975840675017<31>
C146 = [24174240446012188423303584163418618873580884672507283345705373054705879742773704017354755985074043014862200477183294129720127756212163374408552357<146>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=1926129916 Step 1 took 5350ms Step 2 took 5715ms ********** Factor found in step 2: 2302547123295387084975840675017 Found probable prime factor of 31 digits: 2302547123295387084975840675017 Composite cofactor has 146 digits
(14·10205+1)/3 = 4(6)2047<206> = 211 · 313883 · 166392511157<12> · C187
C187 = P35 · C152
P35 = 85546395577581480397571844796656383<35>
C152 = [49501805467225833449350459682062479620662966987145895723889560077810294783203738814482530345222472524750975100610029437647086129084137651615311158833889<152>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3996907096 Step 1 took 16003ms Step 2 took 15084ms ********** Factor found in step 2: 85546395577581480397571844796656383 Found probable prime factor of 35 digits: 85546395577581480397571844796656383 Composite cofactor has 152 digits
(14·10196+1)/3 = 4(6)1957<197> = 19 · 88125623503<11> · 63724402211023850353<20> · 174979598539031380917131233<27> · C139
C139 = P36 · C103
P36 = 300304125643577097155478944475718909<36>
C103 = [8323318098892312395018467980900645024149797138390385911208071430477385229001986137257942282261530204291<103>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2390175780 Step 1 took 11879ms Step 2 took 11261ms ********** Factor found in step 2: 300304125643577097155478944475718909 Found probable prime factor of 36 digits: 300304125643577097155478944475718909 Composite cofactor has 103 digits
(14·10145+1)/3 = 4(6)1447<146> = 211 · C144
C144 = P52 · P92
P52 = 8052958223086142680681622957815586168218929634167397<52>
P92 = 27464321831555993887170069360422205207318039121738929888700795651176142159905108128526327701<92>
SNFS difficulty: 146 digits. Divisors found: r1=8052958223086142680681622957815586168218929634167397 (pp52) r2=27464321831555993887170069360422205207318039121738929888700795651176142159905108128526327701 (pp92) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.301). Factorization parameters were as follows: n: 221169036334913112164296998420221169036334913112164296998420221169036334913112164296998420221169036334913112164296998420221169036334913112164297 m: 100000000000000000000000000000 deg: 5 c5: 14 c0: 1 skew: 0.59 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 1755001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 270750 x 270998 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 6.00 hours.
(13·10174+17)/3 = 4(3)1739<175> = 67 · 2339 · 145679 · 2299821779<10> · C155
C155 = P37 · P119
P37 = 1541598869214810667584140500809981461<37>
P119 = 53537064669212941145413465295673500930472498315861866176240448112515332806782940163632147043692072447594155558117056003<119>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=3498946439 Step 1 took 53500ms Step 2 took 33290ms ********** Factor found in step 2: 1541598869214810667584140500809981461 Found probable prime factor of 37 digits: 1541598869214810667584140500809981461 Probable prime cofactor has 119 digits
Factorizations of 466...667 have been extended up to n=205. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.
By Serge Batalov / GMP-ECM 6.2.1 / Feb 11, 2009
(10246-7)/3 = (3)2451<246> = 19 · 2573359 · 14760685190666539<17> · 1961244970676841191<19> · C204
C204 = P34 · C170
P34 = 3670527667049049608762094305631461<34>
P38 = 32853358459821858604617750306149758051<38>
P43 = 1346947706777778949523481608494225806440537<43>
P91 = 1449864434985030623918793573325434152665912082226603904556877026696713336128758158707403277<91>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=978534757 Step 1 took 68215ms Step 2 took 25543ms ********** Factor found in step 2: 3670527667049049608762094305631461 Found probable prime factor of 34 digits: 3670527667049049608762094305631461 Composite cofactor has 170 digits I temporarily created the _largest_ GNFS. 170 digits. 33331_246 So after some CPUs freed up I've restarted it's cracking and it is finished! Input number is 64159046974295305520723950792773478735297829893535629441057371436514358427793184945168214366306467643277111078191056438010184481010418240802535657701836153578260482169199 (170 digits) Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2339262197 Step 1 took 50772ms Step 2 took 34131ms ********** Factor found in step 2: 1346947706777778949523481608494225806440537 Found probable prime factor of 43 digits: 1346947706777778949523481608494225806440537 Composite cofactor has 128 digits Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=3044812234 Step 1 took 50698ms Step 2 took 33816ms ********** Factor found in step 2: 32853358459821858604617750306149758051 Found probable prime factor of 38 digits: 32853358459821858604617750306149758051 Done.
By Robert Backstrom / GGNFS, Msieve / Feb 11, 2009
(14·10151-11)/3 = 4(6)1503<152> = 71 · 8287 · 7636701967<10> · C137
C137 = P48 · P89
P48 = 248786394540065217850357824605605247924193004817<48>
P89 = 41746361077843051159101552049861320614361683800694094804506317570285200098139725783800321<89>
Number: n N=10385926657724283585795401521825314336224352567336082740302586858895012580247310523831021187057343404423646960236022461931116166519146257 ( 137 digits) SNFS difficulty: 152 digits. Divisors found: Wed Feb 11 04:04:05 2009 prp48 factor: 248786394540065217850357824605605247924193004817 Wed Feb 11 04:04:05 2009 prp89 factor: 41746361077843051159101552049861320614361683800694094804506317570285200098139725783800321 Wed Feb 11 04:04:05 2009 elapsed time 01:11:10 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.77 hours. Scaled time: 21.53 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_6_150_3 n: 10385926657724283585795401521825314336224352567336082740302586858895012580247310523831021187057343404423646960236022461931116166519146257 deg: 5 c5: 140 c0: -11 m: 1000000000000000000000000000000 skew: 0.60 type: snfs rlim: 2400000 alim: 2400000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 1900267) Primes: RFBsize:176302, AFBsize:176359, largePrimes:14958013 encountered Relations: rels:13357259, finalFF:360294 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 813924 hash collisions in 13880876 relations Msieve: matrix is 462992 x 463240 (125.6 MB) Total sieving time: 11.32 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,29,29,58,58,2.5,2.5,100000 total time: 11.77 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Feb 10, 2009
(38·10180+43)/9 = 4(2)1797<181> = 32 · C180
C180 = P52 · P61 · P68
P52 = 4095157380675222708692130449535082586017393959914693<52>
P61 = 4359068972382103688986139651920014643722275960934943125231403<61>
P68 = 26280537309026180225728609426477728057761054472759357321451829916157<68>
Number: 42227_180 N=469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135803 ( 180 digits) SNFS difficulty: 181 digits. Divisors found: r1=4095157380675222708692130449535082586017393959914693 r2=4359068972382103688986139651920014643722275960934943125231403 r3=26280537309026180225728609426477728057761054472759357321451829916157 Version: Total time: 264.64 hours. Scaled time: 491.96 units (timescale=1.859). Factorization parameters were as follows: n: 469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135803 m: 1000000000000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 6600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1187661 x 1187909 Total sieving time: 264.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 264.64 hours. --------- CPU info (if available) ----------
(34·10193+11)/9 = 3(7)1929<194> = 3 · 13 · C192
C192 = P65 · P128
P65 = 73872414964991438154457483704634845335532705457402330595616523903<65>
P128 = 13112620849338994250152717854469097344358167518774155826832299075626325663630475733433075729484006608794021173456736425417519787<128>
Number: 37779_193 N=968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968661 ( 192 digits) SNFS difficulty: 195 digits. Divisors found: r1=73872414964991438154457483704634845335532705457402330595616523903 r2=13112620849338994250152717854469097344358167518774155826832299075626325663630475733433075729484006608794021173456736425417519787 Version: Total time: 628.47 hours. Scaled time: 1191.57 units (timescale=1.896). Factorization parameters were as follows: n: 968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968660968661 m: 500000000000000000000000000000000000000 deg: 5 c5: 272 c0: 275 skew: 1.00 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 13550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2002769 x 2003017 Total sieving time: 628.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 628.47 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1 / Feb 10, 2009
(10214-7)/3 = (3)2131<214> = 199 · 3417523601<10> · 146381644507781<15> · 542863066827693324113<21> · 3626441620130113046137<22> · C146
C146 = P32 · C115
P32 = 16330057924125944094464094405083<32>
C115 = [1041522875628824850206331401809802733379697364432095474461905180421216813505211719464595804937315371883591311059963<115>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2876835942 Step 1 took 9988ms Step 2 took 9713ms ********** Factor found in step 2: 16330057924125944094464094405083 Found probable prime factor of 32 digits: 16330057924125944094464094405083 Composite cofactor has 115 digits submitted too soon!! http://hpcgi2.nifty.com/m_kamada/f/c.cgi?q=33331_214 Here's the 2nd factor and it is now done. Input number is 17008128888320931383354727108483414056951585774063347834284200331023442461936324048949309012574574088508559087429890500055997434344403526624991929 (146 digits) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=113639890 Step 1 took 10005ms Step 2 took 9736ms ********** Factor found in step 2: 90101525598690239302205389921070183 Found probable prime factor of 35 digits: 90101525598690239302205389921070183 Probable prime cofactor... 1041522875628824850206331401809802733379697364432095474461905180421216813505211719464595804937315371883591311059963/90101525598690239302205389921070183 is 3-PRP! (0.0003s+0.0002s)
(10201-7)/3 = (3)2001<201> = 17 · 179 · 89172847 · 59585840242305315008580382109<29> · C161
C161 = P30 · P132
P30 = 113651646881442264198543362827<30>
P132 = 181395019774523320920170919435768269521331834965340563969332201510128587969477158608084691969423902103319185187992483378214882686977<132>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4223742160 Step 1 took 13927ms Step 2 took 7230ms ********** Factor found in step 2: 113651646881442264198543362827 Found probable prime factor of 30 digits: 113651646881442264198543362827 Probable prime cofactor has 132 digits
(10224-7)/3 = (3)2231<224> = 6217 · 41690693165187663091061923<26> · C195
C195 = P31 · P164
P31 = 1910292367392025446273032520521<31>
P164 = 67322296392159002608077001735383769255278175908017691909794326083950780784359539151524449036248700307859001497285459431557783174630917455064131629636899687902659521<164>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=859583623 Step 1 took 15768ms Step 2 took 7621ms ********** Factor found in step 2: 1910292367392025446273032520521 Found probable prime factor of 31 digits: 1910292367392025446273032520521 Probable prime cofactor has 164 digits
(10241-7)/3 = (3)2401<241> = 23 · 2213 · 23014650598801<14> · 4338308440643575944982309<25> · C198
C198 = P32 · P167
P32 = 33064576717718812538576350565093<32>
P167 = 19837261401965769198527981065990686460477593452013812421089201511447713289236940228265964568859059864261224949749765633813634285773219174280863253840646720592135734937<167>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1448815010 Step 1 took 18365ms Step 2 took 9100ms ********** Factor found in step 2: 33064576717718812538576350565093 Found probable prime factor of 32 digits: 33064576717718812538576350565093 Probable prime cofactor has 167 digits
(10203-7)/3 = (3)2021<203> = 61 · 137458709 · 74987928326523863886652073<26> · C167
C167 = P35 · C133
P35 = 10610358077968123193638709904195047<35>
C133 = [4996377606594178960305032917299180726132415750204707883244133191273381282972582184700185290354272608872569221264882363056206902082349<133>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4042664593 Step 1 took 13716ms Step 2 took 7519ms ********** Factor found in step 2: 10610358077968123193638709904195047 Found probable prime factor of 35 digits: 10610358077968123193638709904195047 Composite cofactor
(10245-7)/3 = (3)2441<245> = 97 · 66751 · 3258371 · 1403863703183<13> · 2249810655289<13> · 81791825300240873<17> · 145142221366577384926667<24> · C167
C167 = P35 · C133
P35 = 31324445949473317700096188175894333<35>
C133 = [1345211973340636127176790697467331273618032323820765030845459707299234006881987792073875316307596244915355092769177331580459819511583<133>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3217281827 Step 1 took 13848ms Step 2 took 7475ms ********** Factor found in step 2: 31324445949473317700096188175894333 Found probable prime factor of 35 digits: 31324445949473317700096188175894333 Composite cofactor
(10212-7)/3 = (3)2111<212> = 31 · 1093 · 100741 · 10606483 · 31419071 · 50412367 · C180
C180 = P39 · C142
P39 = 160369474887919636204031018406084819503<39>
C142 = [3624658501922790512467951115480401502972941554455672341416503473005149627879493077221463061699864507739026825856828851938839116595131830375689<142>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=983877145 Step 1 took 15973ms Step 2 took 8179ms ********** Factor found in step 2: 160369474887919636204031018406084819503 Found probable prime factor of 39 digits: 160369474887919636204031018406084819503 Composite cofactor has 142 digits
(10230-7)/3 = (3)2291<230> = 233 · 1297 · 393122956362713113380660433<27> · C198
C198 = P34 · C164
P34 = 9303129115468200415617210160203863<34>
C164 = [30159587312927400531121782459578573768168220812002239640548897386508114122444066628011920137122898396501255946521973488448971446636365589871978276114626319714707389<164>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2889055076 Step 1 took 18352ms Step 2 took 9099ms ********** Factor found in step 2: 9303129115468200415617210160203863 Found probable prime factor of 34 digits: 9303129115468200415617210160203863 Composite cofactor has 164 digits
(10231-7)/3 = (3)2301<231> = 1499 · 2482112511942529<16> · C212
C212 = P34 · C179
P34 = 3446466606505865790664327219252139<34>
C179 = [25994506314096885876158633451155888467704893043048927716803604951844879501178514759167485473233340925526490101735084270552747077029197942597564019662065791324161042138087343728699<179>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2658315989 Step 1 took 22491ms Step 2 took 10133ms ********** Factor found in step 2: 3446466606505865790664327219252139 Found probable prime factor of 34 digits: 3446466606505865790664327219252139 Composite cofactor has 179 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 10, 2009
(14·10195-11)/3 = 4(6)1943<196> = 587 · 797 · 83773 · 1172713 · 178969457 · 846897031831<12> · 8237203638149<13> · 201492578685756587<18> · 80127682289557157831<20> · C109
C109 = P41 · P69
P41 = 22558276111077612412558862726288421629303<41>
P69 = 223294318380324094025369972631450077795174647404248745282626852355461<69>
Number: 46663_195 N=5037134888058223633450405039362530589056135098486725936090357273858295899885946655529213127422826484929673683 ( 109 digits) Divisors found: r1=22558276111077612412558862726288421629303 r2=223294318380324094025369972631450077795174647404248745282626852355461 Version: Total time: 7.96 hours. Scaled time: 19.01 units (timescale=2.389). Factorization parameters were as follows: name: 46663_195 n: 5037134888058223633450405039362530589056135098486725936090357273858295899885946655529213127422826484929673683 skew: 28245.07 # norm 9.99e+14 c5: 6720 c4: 193258244 c3: 36868640092844 c2: -461046821771144595 c1: -11402140141774968346118 c0: -51999097899030472876385888 # alpha -6.14 Y1: 297120973369 Y0: -943978439869455520635 # Murphy_E 1.16e-09 # M 3864773925994558014424622908664061302157833946497194619583286798249691747731010960060528393480808806337866640 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 51/51 Sieved algebraic special-q in [900000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 5208950 Max relations in full relation-set: Initial matrix: Pruned matrix : 360431 x 360679 Polynomial selection time: 0.58 hours. Total sieving time: 6.73 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.27 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,51,51,2.6,2.6,50000 total time: 7.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(14·10154-11)/3 = 4(6)1533<155> = 17 · 419 · 124219040700783859777<21> · C131
C131 = P55 · P77
P55 = 1092016169384849798120897210779304049877673274452365493<55>
P77 = 48297716353085503445307835642388754394984414013051487482307443167425362155721<77>
Number: 46663_154 N=52741887201932449189966675575636064389669071230243083895140283552082454064592436345514785806933159360295226874178203392830272935453 ( 131 digits) SNFS difficulty: 155 digits. Divisors found: r1=1092016169384849798120897210779304049877673274452365493 r2=48297716353085503445307835642388754394984414013051487482307443167425362155721 Version: Total time: 8.85 hours. Scaled time: 21.11 units (timescale=2.387). Factorization parameters were as follows: n: 52741887201932449189966675575636064389669071230243083895140283552082454064592436345514785806933159360295226874178203392830272935453 m: 10000000000000000000000000000000 deg: 5 c5: 7 c0: -55 skew: 1.51 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8032928 Max relations in full relation-set: Initial matrix: Pruned matrix : 414630 x 414878 Total sieving time: 8.09 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.36 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 8.85 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve, GGNFS / Feb 10, 2009
(14·10145-11)/3 = 4(6)1443<146> = 953 · 19463 · 313037 · 25299178511<11> · 221211803957189523635743<24> · C100
C100 = P49 · P51
P49 = 2776588592463035618167267446146966595973892341987<49>
P51 = 517228173529495948025544277131777941326206753336991<51>
Mon Feb 09 19:05:19 2009 Msieve v. 1.39 Mon Feb 09 19:05:19 2009 random seeds: 93e85930 5a9aa090 Mon Feb 09 19:05:19 2009 factoring 1436129846322489891861707997659023743610672331253254191596629561333123038998333422561982792429541117 (100 digits) Mon Feb 09 19:05:20 2009 searching for 15-digit factors Mon Feb 09 19:05:22 2009 commencing quadratic sieve (100-digit input) Mon Feb 09 19:05:22 2009 using multiplier of 5 Mon Feb 09 19:05:22 2009 using 32kb Intel Core sieve core Mon Feb 09 19:05:22 2009 sieve interval: 36 blocks of size 32768 Mon Feb 09 19:05:22 2009 processing polynomials in batches of 6 Mon Feb 09 19:05:22 2009 using a sieve bound of 2665589 (97647 primes) Mon Feb 09 19:05:22 2009 using large prime bound of 399838350 (28 bits) Mon Feb 09 19:05:22 2009 using double large prime bound of 3043630695467550 (43-52 bits) Mon Feb 09 19:05:22 2009 using trial factoring cutoff of 52 bits Mon Feb 09 19:05:22 2009 polynomial 'A' values have 13 factors Tue Feb 10 05:05:58 2009 97905 relations (23686 full + 74219 combined from 1461371 partial), need 97743 Tue Feb 10 05:06:00 2009 begin with 1485057 relations Tue Feb 10 05:06:01 2009 reduce to 256622 relations in 11 passes Tue Feb 10 05:06:01 2009 attempting to read 256622 relations Tue Feb 10 05:06:06 2009 recovered 256622 relations Tue Feb 10 05:06:06 2009 recovered 246902 polynomials Tue Feb 10 05:06:06 2009 attempting to build 97905 cycles Tue Feb 10 05:06:06 2009 found 97905 cycles in 7 passes Tue Feb 10 05:06:06 2009 distribution of cycle lengths: Tue Feb 10 05:06:06 2009 length 1 : 23686 Tue Feb 10 05:06:06 2009 length 2 : 16873 Tue Feb 10 05:06:06 2009 length 3 : 16230 Tue Feb 10 05:06:06 2009 length 4 : 13475 Tue Feb 10 05:06:06 2009 length 5 : 10092 Tue Feb 10 05:06:06 2009 length 6 : 6934 Tue Feb 10 05:06:06 2009 length 7 : 4403 Tue Feb 10 05:06:06 2009 length 9+: 6212 Tue Feb 10 05:06:06 2009 largest cycle: 27 relations Tue Feb 10 05:06:07 2009 matrix is 97647 x 97905 (26.2 MB) with weight 6485509 (66.24/col) Tue Feb 10 05:06:07 2009 sparse part has weight 6485509 (66.24/col) Tue Feb 10 05:06:09 2009 filtering completed in 3 passes Tue Feb 10 05:06:09 2009 matrix is 93535 x 93599 (25.2 MB) with weight 6227516 (66.53/col) Tue Feb 10 05:06:09 2009 sparse part has weight 6227516 (66.53/col) Tue Feb 10 05:06:09 2009 saving the first 48 matrix rows for later Tue Feb 10 05:06:09 2009 matrix is 93487 x 93599 (14.8 MB) with weight 4798306 (51.26/col) Tue Feb 10 05:06:09 2009 sparse part has weight 3306922 (35.33/col) Tue Feb 10 05:06:09 2009 matrix includes 64 packed rows Tue Feb 10 05:06:09 2009 using block size 37439 for processor cache size 1024 kB Tue Feb 10 05:06:10 2009 commencing Lanczos iteration Tue Feb 10 05:06:10 2009 memory use: 14.9 MB Tue Feb 10 05:07:16 2009 lanczos halted after 1480 iterations (dim = 93487) Tue Feb 10 05:07:17 2009 recovered 18 nontrivial dependencies Tue Feb 10 05:07:20 2009 prp49 factor: 2776588592463035618167267446146966595973892341987 Tue Feb 10 05:07:20 2009 prp51 factor: 517228173529495948025544277131777941326206753336991 Tue Feb 10 05:07:20 2009 elapsed time 10:02:01
(14·10124-11)/3 = 4(6)1233<125> = 6481 · 461027756647<12> · C110
C110 = P41 · P69
P41 = 46900919101739598763136250902750403061951<41>
P69 = 333009277288341262475781822043827398097001339583286019035504156113359<69>
Number: 46663_124 N=15618441174229263451452204214107669620027686965986696000061011132240544631265281382536562568528268909055703409 ( 110 digits) SNFS difficulty: 125 digits. Divisors found: r1=46900919101739598763136250902750403061951 (pp41) r2=333009277288341262475781822043827398097001339583286019035504156113359 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.20 hours. Scaled time: 1.51 units (timescale=0.472). Factorization parameters were as follows: name: 46663_124 n: 15618441174229263451452204214107669620027686965986696000061011132240544631265281382536562568528268909055703409 m: 10000000000000000000000000 deg: 5 c5: 7 c0: -55 skew: 1.51 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 690001) Primes: RFBsize:69823, AFBsize:69849, largePrimes:2497100 encountered Relations: rels:2459152, finalFF:254174 Max relations in full relation-set: 28 Initial matrix: 139737 x 254174 with sparse part having weight 18212629. Pruned matrix : 105737 x 106499 with weight 5326069. Total sieving time: 2.96 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 3.20 hours. --------- CPU info (if available) ----------
(14·10125-11)/3 = 4(6)1243<126> = 197 · 373 · C121
C121 = P58 · P64
P58 = 5034932239666512615015060534000743855051033015105258165189<58>
P64 = 1261357206557626066936205067924634248448443329495853791285540707<64>
Number: 46663_125 N=6350848065032684185934686063971185295064937421464959195801182165004105369642038985134479207777067087637166977404589848623 ( 121 digits) SNFS difficulty: 126 digits. Divisors found: r1=5034932239666512615015060534000743855051033015105258165189 (pp58) r2=1261357206557626066936205067924634248448443329495853791285540707 (pp64) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.13 hours. Scaled time: 1.48 units (timescale=0.472). Factorization parameters were as follows: name: 46663_125 n: 6350848065032684185934686063971185295064937421464959195801182165004105369642038985134479207777067087637166977404589848623 m: 10000000000000000000000000 deg: 5 c5: 14 c0: -11 skew: 0.95 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: RFBsize:70555, AFBsize:70714, largePrimes:2555662 encountered Relations: rels:2542004, finalFF:275929 Max relations in full relation-set: 28 Initial matrix: 141337 x 275929 with sparse part having weight 20282825. Pruned matrix : 103424 x 104194 with weight 5518508. Total sieving time: 2.88 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 3.13 hours. --------- CPU info (if available) ----------
(14·10126-11)/3 = 4(6)1253<127> = 8297 · 158364175209281901057565131239<30> · C94
C94 = P43 · P52
P43 = 3252180732294199220113691787392621500316407<43>
P52 = 1092079048213714302920212100999726007741012258867823<52>
Tue Feb 10 07:35:01 2009 Msieve v. 1.39 Tue Feb 10 07:35:01 2009 random seeds: 7830df1c 55440e32 Tue Feb 10 07:35:01 2009 factoring 3551638438742829478396902688411967033383524043930677957142978601586957545196084433786091271961 (94 digits) Tue Feb 10 07:35:02 2009 searching for 15-digit factors Tue Feb 10 07:35:03 2009 commencing quadratic sieve (94-digit input) Tue Feb 10 07:35:03 2009 using multiplier of 1 Tue Feb 10 07:35:03 2009 using 32kb Intel Core sieve core Tue Feb 10 07:35:03 2009 sieve interval: 36 blocks of size 32768 Tue Feb 10 07:35:03 2009 processing polynomials in batches of 6 Tue Feb 10 07:35:03 2009 using a sieve bound of 2017283 (75294 primes) Tue Feb 10 07:35:03 2009 using large prime bound of 270315922 (28 bits) Tue Feb 10 07:35:03 2009 using double large prime bound of 1504419205773942 (42-51 bits) Tue Feb 10 07:35:03 2009 using trial factoring cutoff of 51 bits Tue Feb 10 07:35:03 2009 polynomial 'A' values have 12 factors Tue Feb 10 10:04:55 2009 75815 relations (19619 full + 56196 combined from 1059430 partial), need 75390 Tue Feb 10 10:04:56 2009 begin with 1079049 relations Tue Feb 10 10:04:57 2009 reduce to 193123 relations in 11 passes Tue Feb 10 10:04:57 2009 attempting to read 193123 relations Tue Feb 10 10:05:00 2009 recovered 193123 relations Tue Feb 10 10:05:00 2009 recovered 172486 polynomials Tue Feb 10 10:05:00 2009 attempting to build 75815 cycles Tue Feb 10 10:05:00 2009 found 75815 cycles in 6 passes Tue Feb 10 10:05:00 2009 distribution of cycle lengths: Tue Feb 10 10:05:00 2009 length 1 : 19619 Tue Feb 10 10:05:00 2009 length 2 : 13612 Tue Feb 10 10:05:00 2009 length 3 : 12791 Tue Feb 10 10:05:00 2009 length 4 : 10175 Tue Feb 10 10:05:00 2009 length 5 : 7352 Tue Feb 10 10:05:00 2009 length 6 : 4997 Tue Feb 10 10:05:00 2009 length 7 : 3140 Tue Feb 10 10:05:00 2009 length 9+: 4129 Tue Feb 10 10:05:00 2009 largest cycle: 21 relations Tue Feb 10 10:05:00 2009 matrix is 75294 x 75815 (18.8 MB) with weight 4635779 (61.15/col) Tue Feb 10 10:05:00 2009 sparse part has weight 4635779 (61.15/col) Tue Feb 10 10:05:01 2009 filtering completed in 3 passes Tue Feb 10 10:05:01 2009 matrix is 71133 x 71197 (17.7 MB) with weight 4353762 (61.15/col) Tue Feb 10 10:05:01 2009 sparse part has weight 4353762 (61.15/col) Tue Feb 10 10:05:01 2009 saving the first 48 matrix rows for later Tue Feb 10 10:05:02 2009 matrix is 71085 x 71197 (10.5 MB) with weight 3344583 (46.98/col) Tue Feb 10 10:05:02 2009 sparse part has weight 2318253 (32.56/col) Tue Feb 10 10:05:02 2009 matrix includes 64 packed rows Tue Feb 10 10:05:02 2009 using block size 28478 for processor cache size 1024 kB Tue Feb 10 10:05:02 2009 commencing Lanczos iteration Tue Feb 10 10:05:02 2009 memory use: 10.6 MB Tue Feb 10 10:05:32 2009 lanczos halted after 1125 iterations (dim = 71085) Tue Feb 10 10:05:32 2009 recovered 17 nontrivial dependencies Tue Feb 10 10:05:34 2009 prp43 factor: 3252180732294199220113691787392621500316407 Tue Feb 10 10:05:34 2009 prp52 factor: 1092079048213714302920212100999726007741012258867823 Tue Feb 10 10:05:34 2009 elapsed time 02:30:33
(14·10127-11)/3 = 4(6)1263<128> = 43 · C127
C127 = P52 · P75
P52 = 3202818108069289937646699055896780108615579936997021<52>
P75 = 338848876586274922737750506772338476604603843678007719668492077103044148921<75>
Number: 46663_127 N=1085271317829457364341085271317829457364341085271317829457364341085271317829457364341085271317829457364341085271317829457364341 ( 127 digits) SNFS difficulty: 128 digits. Divisors found: r1=3202818108069289937646699055896780108615579936997021 (pp52) r2=338848876586274922737750506772338476604603843678007719668492077103044148921 (pp75) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.12 hours. Scaled time: 2.42 units (timescale=0.472). Factorization parameters were as follows: name: 46663_127 n: 1085271317829457364341085271317829457364341085271317829457364341085271317829457364341085271317829457364341085271317829457364341 m: 20000000000000000000000000 deg: 5 c5: 175 c0: -44 skew: 0.76 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [490000, 940001) Primes: RFBsize:77067, AFBsize:76869, largePrimes:2752811 encountered Relations: rels:2682505, finalFF:229280 Max relations in full relation-set: 28 Initial matrix: 154003 x 229280 with sparse part having weight 19036918. Pruned matrix : 135193 x 136027 with weight 8277896. Total sieving time: 4.71 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.25 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000 total time: 5.12 hours. --------- CPU info (if available) ----------
Torbjörn Granlund's web page moved from http://swox.com/~tege/ to https://gmplib.org/~tege/.
By Robert Backstrom / GGNFS, Msieve
(31·10196-13)/9 = 3(4)1953<197> = 3 · C197
C197 = P73 · P124
P73 = 1541538682997486108092462038285734433957144793058057857281416009722861673<73>
P124 = 7448065759307452366876877828005306670204146180497540890101571996285418693550680753007022233010389291838968682804731542510497<124>
Number: n N=11481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: Mon Feb 9 23:38:14 2009 prp73 factor: 1541538682997486108092462038285734433957144793058057857281416009722861673 Mon Feb 9 23:38:14 2009 prp124 factor: 7448065759307452366876877828005306670204146180497540890101571996285418693550680753007022233010389291838968682804731542510497 Mon Feb 9 23:38:14 2009 elapsed time 10:06:08 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20050930-k8 Total time: 44.75 hours. Scaled time: 89.95 units (timescale=2.010). Factorization parameters were as follows: name: KA_3_4_195_3 n: 11481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481 deg: 5 c5: 310 c0: -13 m: 1000000000000000000000000000000000000000 skew: 0.53 type: snfs rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 15503027) Primes: RFBsize:664579, AFBsize:664376, largePrimes:37285387 encountered Relations: rels:34226712, finalFF:440225 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4998041 hash collisions in 37704766 relations Msieve: matrix is 2492067 x 2492312 (683.2 MB) Total sieving time: 43.87 hours. Total relation processing time: 0.88 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 44.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830483) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.68 BogoMIPS).
Factorizations of 33...331 have been extended up to n=250. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / Msieve, GGNFS / Feb 9, 2009
(14·10113-11)/3 = 4(6)1123<114> = 1061 · 213765728522524457<18> · C94
C94 = P33 · P61
P33 = 654530224410243311038137953434723<33>
P61 = 3143573448517984282356294478527718100470179527192788309661953<61>
Mon Feb 09 07:55:40 2009 Msieve v. 1.39 Mon Feb 09 07:55:40 2009 random seeds: 68aec570 31520c7c Mon Feb 09 07:55:40 2009 factoring 2057563834708558700370740045678726131547157359320251956209589653345623526539050521743382194019 (94 digits) Mon Feb 09 07:55:41 2009 searching for 15-digit factors Mon Feb 09 07:55:42 2009 commencing quadratic sieve (94-digit input) Mon Feb 09 07:55:43 2009 using multiplier of 19 Mon Feb 09 07:55:43 2009 using 32kb Intel Core sieve core Mon Feb 09 07:55:43 2009 sieve interval: 36 blocks of size 32768 Mon Feb 09 07:55:43 2009 processing polynomials in batches of 6 Mon Feb 09 07:55:43 2009 using a sieve bound of 1991609 (73895 primes) Mon Feb 09 07:55:43 2009 using large prime bound of 256917561 (27 bits) Mon Feb 09 07:55:43 2009 using double large prime bound of 1372868018887893 (42-51 bits) Mon Feb 09 07:55:43 2009 using trial factoring cutoff of 51 bits Mon Feb 09 07:55:43 2009 polynomial 'A' values have 12 factors Mon Feb 09 11:00:34 2009 74091 relations (18064 full + 56027 combined from 1032110 partial), need 73991 Mon Feb 09 11:00:35 2009 begin with 1050174 relations Mon Feb 09 11:00:36 2009 reduce to 192079 relations in 11 passes Mon Feb 09 11:00:36 2009 attempting to read 192079 relations Mon Feb 09 11:00:39 2009 recovered 192079 relations Mon Feb 09 11:00:39 2009 recovered 176068 polynomials Mon Feb 09 11:00:40 2009 attempting to build 74091 cycles Mon Feb 09 11:00:40 2009 found 74091 cycles in 5 passes Mon Feb 09 11:00:40 2009 distribution of cycle lengths: Mon Feb 09 11:00:40 2009 length 1 : 18064 Mon Feb 09 11:00:40 2009 length 2 : 13101 Mon Feb 09 11:00:40 2009 length 3 : 12529 Mon Feb 09 11:00:40 2009 length 4 : 9968 Mon Feb 09 11:00:40 2009 length 5 : 7638 Mon Feb 09 11:00:40 2009 length 6 : 5072 Mon Feb 09 11:00:40 2009 length 7 : 3333 Mon Feb 09 11:00:40 2009 length 9+: 4386 Mon Feb 09 11:00:40 2009 largest cycle: 22 relations Mon Feb 09 11:00:40 2009 matrix is 73895 x 74091 (19.5 MB) with weight 4822373 (65.09/col) Mon Feb 09 11:00:40 2009 sparse part has weight 4822373 (65.09/col) Mon Feb 09 11:00:41 2009 filtering completed in 3 passes Mon Feb 09 11:00:41 2009 matrix is 70504 x 70568 (18.7 MB) with weight 4617367 (65.43/col) Mon Feb 09 11:00:41 2009 sparse part has weight 4617367 (65.43/col) Mon Feb 09 11:00:41 2009 saving the first 48 matrix rows for later Mon Feb 09 11:00:41 2009 matrix is 70456 x 70568 (11.9 MB) with weight 3636187 (51.53/col) Mon Feb 09 11:00:41 2009 sparse part has weight 2704076 (38.32/col) Mon Feb 09 11:00:41 2009 matrix includes 64 packed rows Mon Feb 09 11:00:41 2009 using block size 28227 for processor cache size 1024 kB Mon Feb 09 11:00:42 2009 commencing Lanczos iteration Mon Feb 09 11:00:42 2009 memory use: 11.4 MB Mon Feb 09 11:01:15 2009 lanczos halted after 1116 iterations (dim = 70453) Mon Feb 09 11:01:15 2009 recovered 16 nontrivial dependencies Mon Feb 09 11:01:15 2009 prp33 factor: 654530224410243311038137953434723 Mon Feb 09 11:01:15 2009 prp61 factor: 3143573448517984282356294478527718100470179527192788309661953 Mon Feb 09 11:01:15 2009 elapsed time 03:05:35
(14·10139-11)/3 = 4(6)1383<140> = 19 · 35603 · 822283639517<12> · 230069536579690634739859<24> · C99
C99 = P38 · P61
P38 = 98791777779310242924201001806786296129<38>
P61 = 3691178247521975388576957842118369003602251665922839419914457<61>
Number: 46663_139 N=364658061173014811940660341074139620063025883624393215828062415791310764890201996071076685050236953 ( 99 digits) SNFS difficulty: 140 digits. Divisors found: r1=98791777779310242924201001806786296129 (pp38) r2=3691178247521975388576957842118369003602251665922839419914457 (pp61) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.34 hours. Scaled time: 4.41 units (timescale=0.472). Factorization parameters were as follows: name: 46663_139 n: 364658061173014811940660341074139620063025883624393215828062415791310764890201996071076685050236953 m: 10000000000000000000000000000 deg: 5 c5: 7 c0: -55 skew: 1.51 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1480001) Primes: RFBsize:118376, AFBsize:118000, largePrimes:3519188 encountered Relations: rels:3532090, finalFF:334834 Max relations in full relation-set: 28 Initial matrix: 236441 x 334834 with sparse part having weight 27429830. Pruned matrix : 201972 x 203218 with weight 12873741. Total sieving time: 8.36 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.77 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 9.34 hours. --------- CPU info (if available) ----------
(14·10130-11)/3 = 4(6)1293<131> = 157 · 191 · 509 · 691 · 2341 · 501145152136659382411<21> · C97
C97 = P44 · P53
P44 = 55689754421731528313630528731556321420638201<44>
P53 = 67723232865001450904226740152972125229116778491836821<53>
Mon Feb 09 12:09:28 2009 Msieve v. 1.39 Mon Feb 09 12:09:28 2009 random seeds: 02d95db0 73bd4a11 Mon Feb 09 12:09:28 2009 factoring 3771490206897668508996417662258181683331035013057624605196952681250925972453955826817274570999021 (97 digits) Mon Feb 09 12:09:29 2009 searching for 15-digit factors Mon Feb 09 12:09:31 2009 commencing quadratic sieve (97-digit input) Mon Feb 09 12:09:31 2009 using multiplier of 1 Mon Feb 09 12:09:31 2009 using 32kb Intel Core sieve core Mon Feb 09 12:09:31 2009 sieve interval: 36 blocks of size 32768 Mon Feb 09 12:09:31 2009 processing polynomials in batches of 6 Mon Feb 09 12:09:31 2009 using a sieve bound of 2367983 (87059 primes) Mon Feb 09 12:09:31 2009 using large prime bound of 355197450 (28 bits) Mon Feb 09 12:09:31 2009 using double large prime bound of 2459493347837550 (43-52 bits) Mon Feb 09 12:09:31 2009 using trial factoring cutoff of 52 bits Mon Feb 09 12:09:31 2009 polynomial 'A' values have 12 factors Mon Feb 09 18:19:31 2009 87388 relations (20335 full + 67053 combined from 1326971 partial), need 87155 Mon Feb 09 18:19:33 2009 begin with 1347306 relations Mon Feb 09 18:19:34 2009 reduce to 232128 relations in 11 passes Mon Feb 09 18:19:34 2009 attempting to read 232128 relations Mon Feb 09 18:19:38 2009 recovered 232128 relations Mon Feb 09 18:19:38 2009 recovered 219748 polynomials Mon Feb 09 18:19:38 2009 attempting to build 87388 cycles Mon Feb 09 18:19:38 2009 found 87388 cycles in 6 passes Mon Feb 09 18:19:38 2009 distribution of cycle lengths: Mon Feb 09 18:19:38 2009 length 1 : 20335 Mon Feb 09 18:19:38 2009 length 2 : 14866 Mon Feb 09 18:19:38 2009 length 3 : 14623 Mon Feb 09 18:19:38 2009 length 4 : 11771 Mon Feb 09 18:19:38 2009 length 5 : 9183 Mon Feb 09 18:19:38 2009 length 6 : 6338 Mon Feb 09 18:19:38 2009 length 7 : 4190 Mon Feb 09 18:19:38 2009 length 9+: 6082 Mon Feb 09 18:19:38 2009 largest cycle: 23 relations Mon Feb 09 18:19:39 2009 matrix is 87059 x 87388 (24.7 MB) with weight 6119422 (70.03/col) Mon Feb 09 18:19:39 2009 sparse part has weight 6119422 (70.03/col) Mon Feb 09 18:19:40 2009 filtering completed in 3 passes Mon Feb 09 18:19:40 2009 matrix is 83556 x 83620 (23.7 MB) with weight 5876520 (70.28/col) Mon Feb 09 18:19:40 2009 sparse part has weight 5876520 (70.28/col) Mon Feb 09 18:19:40 2009 saving the first 48 matrix rows for later Mon Feb 09 18:19:40 2009 matrix is 83508 x 83620 (17.8 MB) with weight 4998471 (59.78/col) Mon Feb 09 18:19:40 2009 sparse part has weight 4156746 (49.71/col) Mon Feb 09 18:19:40 2009 matrix includes 64 packed rows Mon Feb 09 18:19:40 2009 using block size 33448 for processor cache size 1024 kB Mon Feb 09 18:19:41 2009 commencing Lanczos iteration Mon Feb 09 18:19:41 2009 memory use: 15.5 MB Mon Feb 09 18:20:36 2009 lanczos halted after 1322 iterations (dim = 83508) Mon Feb 09 18:20:36 2009 recovered 17 nontrivial dependencies Mon Feb 09 18:20:38 2009 prp44 factor: 55689754421731528313630528731556321420638201 Mon Feb 09 18:20:38 2009 prp53 factor: 67723232865001450904226740152972125229116778491836821 Mon Feb 09 18:20:38 2009 elapsed time 06:11:10
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Feb 9, 2009
(10207+53)/9 = (1)2067<207> = 3 · 133 · 283 · 349 · 551849 · 1122179 · 6118409299921<13> · 339049922873154043<18> · 685413813735893660349622719120345198553<39> · C117
C117 = P57 · P60
P57 = 327597678480587299287372122181103817091004565322392430599<57>
P60 = 591719762991577707223700158132962999415974935538273550337851<60>
Number: 11117_207 N=193846020667124193274134252463231803230311020333243374266479905607388867655634000609161657914215087575387961520302749 ( 117 digits) Divisors found: r1=327597678480587299287372122181103817091004565322392430599 r2=591719762991577707223700158132962999415974935538273550337851 Version: Total time: 19.55 hours. Scaled time: 46.28 units (timescale=2.367). Factorization parameters were as follows: name: 11117_207 n: 193846020667124193274134252463231803230311020333243374266479905607388867655634000609161657914215087575387961520302749 skew: 107858.03 # norm 2.21e+16 c5: 15840 c4: 4785890814 c3: -627266472330572 c2: -53548644060612055049 c1: 2253751019221062026198932 c0: 103688977492581055389939665580 # alpha -6.50 Y1: 4068156942829 Y0: -26153888062927757184623 # Murphy_E 4.29e-10 # M 92835809245172179468634018042921575755769658885494068594739687015821530467670081734141198875134486549057400035496978 type: gnfs rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1650000, 3075001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8802597 Max relations in full relation-set: Initial matrix: Pruned matrix : 586758 x 587006 Polynomial selection time: 1.74 hours. Total sieving time: 15.84 hours. Total relation processing time: 0.79 hours. Matrix solve time: 0.78 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3300000,3300000,27,27,52,52,2.4,2.4,75000 total time: 19.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(14·10184-11)/3 = 4(6)1833<185> = C185
C185 = P34 · C151
P34 = 4668890605796314894638351907992049<34>
C151 = [9995236686147910038267303546468007143025885328917020162545384580246400396068697926861790973608564543295543608436375160287050653974281499069764351921687<151>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 (185 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3831152227 Step 1 took 6335ms Step 2 took 3490ms ********** Factor found in step 2: 4668890605796314894638351907992049 Found probable prime factor of 34 digits: 4668890605796314894638351907992049 Composite cofactor 9995236686147910038267303546468007143025885328917020162545384580246400396068697926861790973608564543295543608436375160287050653974281499069764351921687 has 151 digits
(41·10164+31)/9 = 4(5)1639<165> = 33 · 113 · 6295483 · C155
C155 = P53 · P102
P53 = 24644657017319536075637648204817074896826094722424223<53>
P102 = 962381588209100952662270281234582209105507926978236055510596512465101473662453819049646267537489907601<102>
Number: 45559_164 N=23717564161196539892251867407341411144763331780835323870934055365940487933694852897012184070156437658761039170173770543157049325016555122847010362994219023 ( 155 digits) SNFS difficulty: 166 digits. Divisors found: r1=24644657017319536075637648204817074896826094722424223 r2=962381588209100952662270281234582209105507926978236055510596512465101473662453819049646267537489907601 Version: Total time: 29.63 hours. Scaled time: 70.72 units (timescale=2.387). Factorization parameters were as follows: n: 23717564161196539892251867407341411144763331780835323870934055365940487933694852897012184070156437658761039170173770543157049325016555122847010362994219023 m: 1000000000000000000000000000000000 deg: 5 c5: 41 c0: 310 skew: 1.50 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 4800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9931917 Max relations in full relation-set: Initial matrix: Pruned matrix : 850619 x 850867 Total sieving time: 26.82 hours. Total relation processing time: 1.16 hours. Matrix solve time: 1.55 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 29.63 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Erik Branger / GGNFS, Msieve / Feb 9, 2009
(14·10112-11)/3 = 4(6)1113<113> = 2771442762173<13> · C101
C101 = P45 · P56
P45 = 333728983045174223839178403845903215232489713<45>
P56 = 50455317365568699719447303521559444723728810119559570787<56>
Number: 46663_112 N=16838401753632761174552519581665125790188915294280208670878619634506695061919163828271280503672814131 ( 101 digits) SNFS difficulty: 113 digits. Divisors found: r1=333728983045174223839178403845903215232489713 r2=50455317365568699719447303521559444723728810119559570787 Version: Total time: 1.63 hours. Scaled time: 1.59 units (timescale=0.974). Factorization parameters were as follows: n: 16838401753632761174552519581665125790188915294280208670878619634506695061919163828271280503672814131 m: 20000000000000000000000 deg: 5 c5: 175 c0: -44 skew: 0.76 type: snfs lss: 1 rlim: 550000 alim: 550000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [275000, 475001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61692 x 61912 Total sieving time: 1.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,50000 total time: 1.63 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Feb 9, 2009
(64·10297-1)/9 = 7(1)297<298> = 13 · 293 · 26665813 · 9021099883<10> · 189256500952289<15> · 24044752429310032168540061230181910195509606708410951093861793321486277261565258129<83> · C181
C181 = P47 · P135
P47 = 16442043085323670784303794624712073185907565987<47>
P135 = 103725436973974982201757157777695270482997614883091416586064114895967077526909040887938629134734812311918176371422582980975507023006683<135>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3599812418 Step 1 took 233912ms ********** Factor found in step 1: 16442043085323670784303794624712073185907565987 Found probable prime factor of 47 digits: 16442043085323670784303794624712073185907565987 Probable prime cofactor 103725436973974982201757157777695270482997614883091416586064114895967077526909040887938629134734812311918176371422582980975507023006683 has 135 digits
(14·10101-11)/3 = 4(6)1003<102> = 36876819092879<14> · C89
C89 = P29 · P60
P29 = 36013266440688616345295431069<29>
P60 = 351391145736525018235906374578142388376586965484659934737213<60>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4220053992 Step 1 took 6870ms ********** Factor found in step 1: 36013266440688616345295431069 Found probable prime factor of 29 digits: 36013266440688616345295431069 Probable prime cofactor 351391145736525018235906374578142388376586965484659934737213 has 60 digits
(14·10157-17)/3 = 4(6)1561<158> = 263 · 787 · 240308225105553793<18> · C135
C135 = P40 · P96
P40 = 6364827987763412741265319171442647020667<40>
P96 = 147407979413118889989841788857004121650104020896717420967838755485153730188771108947439999704851<96>
SNFS difficulty: 158 digits. Divisors found: r1=6364827987763412741265319171442647020667 (pp40) r2=147407979413118889989841788857004121650104020896717420967838755485153730188771108947439999704851 (pp96) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 938226432988272075613869989547150629966908036890822199766480366690506401506901213714078973070685006525883063074112294164616654497155617 m: 20000000000000000000000000000000 deg: 5 c5: 175 c0: -68 skew: 0.83 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1550000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 524520 x 524768 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,52,52,2.4,2.4,200000 total time: 22.00 hours.
(14·10140-11)/3 = 4(6)1393<141> = 37189 · 252319 · 22400846957<11> · 4769457958706308051<19> · C102
C102 = P31 · P72
P31 = 1452696818449679082915802292831<31>
P72 = 320430521352587908644960768758778465953139301183716248884263546526306429<72>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2525157069 Step 1 took 8338ms Step 2 took 8976ms ********** Factor found in step 2: 1452696818449679082915802292831 Found probable prime factor of 31 digits: 1452696818449679082915802292831 Probable prime cofactor 320430521352587908644960768758778465953139301183716248884263546526306429 has 72 digits
(14·10142-11)/3 = 4(6)1413<143> = 109 · 919249 · 73606566395819363416676910463121<32> · C103
C103 = P31 · P73
P31 = 3462877103033302539607363495213<31>
P73 = 1827231102064920444057882406957079321514533690060753527648703282452182191<73>
) Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3838477871 Step 1 took 8269ms Step 2 took 8915ms ********** Factor found in step 2: 3462877103033302539607363495213 Found probable prime factor of 31 digits: 3462877103033302539607363495213 Probable prime cofactor 1827231102064920444057882406957079321514533690060753527648703282452182191 has 73 digits
(14·10162-11)/3 = 4(6)1613<163> = 503 · 374518897483<12> · 189621156269036017<18> · 7990768929294686986643119<25> · C107
C107 = P32 · P75
P32 = 34829683178143719100208863012159<32>
P75 = 469396852263803644050747678050048937489138627551650080432575631558714868691<75>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1341912022 Step 1 took 8205ms Step 2 took 8827ms ********** Factor found in step 2: 34829683178143719100208863012159 Found probable prime factor of 32 digits: 34829683178143719100208863012159 Probable prime cofactor has 75 digits
(14·10131-11)/3 = 4(6)1303<132> = 421 · 6653 · 25669853931265529<17> · C109
C109 = P28 · P82
P28 = 5441001506811607664968380853<28>
P82 = 1192902415759760041155529560368665943663030476585120252386859746571997424266723923<82>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1710825438 Step 1 took 8241ms Step 2 took 9259ms ********** Factor found in step 2: 5441001506811607664968380853 Found probable prime factor of 28 digits: 5441001506811607664968380853 Probable prime cofactor has 82 digits
(14·10128-11)/3 = 4(6)1273<129> = 23 · 631 · 8627 · C121
C121 = P32 · P90
P32 = 18204393101316710103977304775103<32>
P90 = 204745130990860189227208339461806475665544579666634988381174275691813652333618575353392371<90>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3648609508 Step 1 took 10038ms Step 2 took 10265ms ********** Factor found in step 2: 18204393101316710103977304775103 Found probable prime factor of 32 digits: 18204393101316710103977304775103 Probable prime cofactor has 90 digits
(14·10126-11)/3 = 4(6)1253<127> = 8297 · C123
C123 = P30 · C94
P30 = 158364175209281901057565131239<30>
C94 = [3551638438742829478396902688411967033383524043930677957142978601586957545196084433786091271961<94>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1792202309 Step 1 took 9786ms ********** Factor found in step 1: 158364175209281901057565131239 Found probable prime factor of 30 digits: 158364175209281901057565131239 Composite cofactor has 94 digits
(14·10123-11)/3 = 4(6)1223<124> = C124
C124 = P36 · P89
P36 = 139976468207411466690992179483251259<36>
P89 = 33338937082994470387437373381084003444503733868280889830350658073276061742343159749441157<89>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3143898098 Step 1 took 9739ms Step 2 took 10298ms ********** Factor found in step 2: 139976468207411466690992179483251259 Found probable prime factor of 36 digits: 139976468207411466690992179483251259 Probable prime cofactor has 89 digits
(14·10138-11)/3 = 4(6)1373<139> = 17 · 2549 · 3021473437<10> · C125
C125 = P33 · P93
P33 = 169383648259152212642177349998479<33>
P93 = 210425205953249123792514702887199157100147468023394362068500007475951252567608738084988271257<93>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3300486010 Step 1 took 9925ms Step 2 took 10356ms ********** Factor found in step 2: 169383648259152212642177349998479 Found probable prime factor of 33 digits: 169383648259152212642177349998479 Probable prime cofactor has 93 digits
(14·10143-11)/3 = 4(6)1423<144> = 47 · 727 · 8713 · C136
C136 = P31 · P105
P31 = 3245984688652840477417892491523<31>
P105 = 482903475654005879880195721922667663804795587529937577601033996124366227516537727443752024883915447773773<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3298060385 Step 1 took 12686ms Step 2 took 11105ms ********** Factor found in step 2: 3245984688652840477417892491523 Found probable prime factor of 31 digits: 3245984688652840477417892491523 Probable prime cofactor has 105 digits
(14·10146-11)/3 = 4(6)1453<147> = 6607 · 15496067 · C136
C136 = P34 · P102
P34 = 7427355865375387772385083366322131<34>
P102 = 613686763280137392811487951105655467824258493297675528637383799033626156222044909139765480052040935217<102>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1885434380 Step 1 took 12242ms Step 2 took 11012ms ********** Factor found in step 2: 7427355865375387772385083366322131 Found probable prime factor of 34 digits: 7427355865375387772385083366322131 Probable prime cofactor has 102 digits
(14·10166-11)/3 = 4(6)1653<167> = 149 · 185903 · 368231 · 9731163539<10> · C144
C144 = P31 · C114
P31 = 1043796167165768018697691187783<31>
C114 = [450436212392205245158977097476905739315982037445676265753566615858125703057142741445006681401990315834878238498807<114>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2756841653 Step 1 took 11783ms Step 2 took 11432ms ********** Factor found in step 2: 1043796167165768018697691187783 Found probable prime factor of 31 digits: 1043796167165768018697691187783 Composite cofactor has 114 digits
(14·10161-11)/3 = 4(6)1603<162> = C162
C162 = P34 · C129
P34 = 2875802551489229275389845286190879<34>
C129 = [162273542189120096933435105385323543745120089475806304724912872877238918245061625164527994822545703074883859629274728091025656697<129>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1917313492 Step 1 took 13819ms Step 2 took 13032ms ********** Factor found in step 2: 2875802551489229275389845286190879 Found probable prime factor of 34 digits: 2875802551489229275389845286190879 Composite cofactor has 129 digits
(14·10197-11)/3 = 4(6)1963<198> = 8641 · 3267760391131588957807<22> · C173
C173 = P42 · P45 · P86
P42 = 390172050462673323748290444226800413632453<42>
P45 = 450278405481663845043229149162313921029509993<45>
P86 = 94070899340616556671932508249628020480735055023855761777736156380149259767518266558381<86>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4276860758 Step 1 took 13941ms ********** Factor found in step 1: 450278405481663845043229149162313921029509993 Found probable prime factor of 45 digits: 450278405481663845043229149162313921029509993 Composite cofactor has 128 digits Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=188301114 Step 1 took 13717ms Step 2 took 13368ms ********** Factor found in step 2: 390172050462673323748290444226800413632453 Found probable prime factor of 42 digits: 390172050462673323748290444226800413632453
(14·10117-11)/3 = 4(6)1163<118> = 16879 · 478517553659149<15> · C99
C99 = P36 · P64
P36 = 401939126226079394957983105887462761<36>
P64 = 1437480327483622902238400805844525586589744752604432045435492773<64>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3372623027 Step 1 took 8298ms Step 2 took 8669ms ********** Factor found in step 2: 401939126226079394957983105887462761 Found probable prime factor of 36 digits: 401939126226079394957983105887462761 Probable prime cofactor has 64 digits
(14·10160-11)/3 = 4(6)1593<161> = 29 · 2689 · 1202104864181153<16> · 158067366782897648179<21> · 1220582996606484482685652906127<31> · C91
C91 = P41 · P51
P41 = 13430269913018161973891911460679331665677<41>
P51 = 192123881081759972441577844435514524860830594438251<51>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2182111048 Step 1 took 6910ms ********** Factor found in step 1: 13430269913018161973891911460679331665677 Found probable prime factor of 41 digits: 13430269913018161973891911460679331665677 Probable prime cofactor has 51 digits
(14·10167-11)/3 = 4(6)1663<168> = C168
C168 = P35 · C134
P35 = 19011604170792844575925477496114081<35>
C134 = [24546411890039112735283532246090593965242266454661597228757806133149530566680832089355587701794240785601818656426814464057750533738823<134>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1597030230 Step 1 took 13734ms Step 2 took 13471ms ********** Factor found in step 2: 19011604170792844575925477496114081 Found probable prime factor of 35 digits: 19011604170792844575925477496114081 Composite cofactor has 134 digits
(14·10135-11)/3 = 4(6)1343<136> = 97 · C134
C134 = P54 · P81
P54 = 216325011683394660532029937394768546868919821917193331<54>
P81 = 222396685715430861931979051153696150459754279890786849159256645176706568853454109<81>
SNFS difficulty: 136 digits. Divisors found: r1=216325011683394660532029937394768546868919821917193331 (pp54) r2=222396685715430861931979051153696150459754279890786849159256645176706568853454109 (pp81) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 48109965635738831615120274914089347079037800687285223367697594501718213058419243986254295532646048109965635738831615120274914089347079 m: 1000000000000000000000000000 deg: 5 c5: 14 c0: -11 skew: 0.95 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [650000, 1250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 152434 x 152682 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,49,49,2.3,2.3,75000 total time: 4.4 hours.
(14·10149-11)/3 = 4(6)1483<150> = 6883 · 17477 · C142
C142 = P45 · P97
P45 = 790201431747591512328248467805173945915034069<45>
P97 = 4909353592223147287834320869080266584236486513036668945791681139340268204613391366624894381757797<97>
SNFS difficulty: 150 digits. Divisors found: r1=790201431747591512328248467805173945915034069 (pp45) r2=4909353592223147287834320869080266584236486513036668945791681139340268204613391366624894381757797 (pp97) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 3879378237529912534734671158532224275623306421061235339840031566168200646252874061613388020263311523219493339180997249207708347834241361385993 m: 1000000000000000000000000000000 deg: 5 c5: 7 c0: -55 skew: 1.51 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 331160 x 331408 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,52,52,2.4,2.4,100000 total time: 12.00 hours.
Factorizations of 466...663 have been extended up to n=205. I ran experimentally ECM B1=1e6 118 times. I hoped unknown factors have at least 30 digits. However, it seems that too many composite numbers are remaining.
By Wataru Sakai / Msieve / Feb 8, 2009
(13·10203+17)/3 = 4(3)2029<204> = C204
C204 = P79 · P126
P79 = 2396922217925402921268172480416775195264378139564695797430089284426611931793187<79>
P126 = 180787398978843102854779581501356388765373471532135050456200490221538733081519619337690684251051702407065124758455082706286697<126>
Number: 43339_203 N=433333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 ( 204 digits) SNFS difficulty: 205 digits. Divisors found: r1=2396922217925402921268172480416775195264378139564695797430089284426611931793187 r2=180787398978843102854779581501356388765373471532135050456200490221538733081519619337690684251051702407065124758455082706286697 Version: Total time: 1546.99 hours. Scaled time: 2936.18 units (timescale=1.898). Factorization parameters were as follows: n: 433333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 m: 50000000000000000000000000000000000000000 deg: 5 c5: 104 c0: 425 skew: 1.33 type: snfs lss: 1 rlim: 18600000 alim: 18600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 18600000/18600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9300000, 25500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3847609 x 3847857 Total sieving time: 1546.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18600000,18600000,29,29,56,56,2.6,2.6,100000 total time: 1546.99 hours. --------- CPU info (if available) ----------
7·10180+9 = 7(0)1799<181> = 457 · 10529 · C175
C175 = P79 · P97
P79 = 1161717801790034418750773470371703452693891867991269877836662145444170819572499<79>
P97 = 1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747<97>
Number: 70009_180 N=1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753 ( 175 digits) SNFS difficulty: 180 digits. Divisors found: r1=1161717801790034418750773470371703452693891867991269877836662145444170819572499 r2=1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747 Version: Total time: 217.89 hours. Scaled time: 380.44 units (timescale=1.746). Factorization parameters were as follows: n: 1454771265274838504802719507838411489534063780913110045341063849287359513258473575015176381663813583116174084579985714146175001085882837294433026799172775493671433259354750753 m: 1000000000000000000000000000000000000 deg: 5 c5: 7 c0: 9 skew: 1.05 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3600000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 942311 x 942559 Total sieving time: 217.89 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000 total time: 217.89 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 7, 2009
(41·10167+31)/9 = 4(5)1669<168> = 3 · 13 · 146417 · 3749386087<10> · 7098948666829<13> · 3133780391015160839802677<25> · C114
C114 = P45 · P70
P45 = 101472537403836748368128744496067715026029073<45>
P70 = 9425707481952324684742027744584472179540783842426196428244301764446471<70>
Number: 45559_167 N=956450455020031159389268098812021233312805198791307521949393569028884562027532289831015426464963301244570998251383 ( 114 digits) Divisors found: r1=101472537403836748368128744496067715026029073 r2=9425707481952324684742027744584472179540783842426196428244301764446471 Version: Total time: 13.43 hours. Scaled time: 32.08 units (timescale=2.388). Factorization parameters were as follows: name: 45559_167 n: 956450455020031159389268098812021233312805198791307521949393569028884562027532289831015426464963301244570998251383 skew: 30481.77 # norm 1.70e+15 c5: 43680 c4: 1742174970 c3: -91384218325573 c2: -1454084337276899623 c1: 53164942488116076744005 c0: -63484431654432790325108940 # alpha -5.75 Y1: 1747376151809 Y0: -7380319266821848992667 # Murphy_E 6.77e-10 # M 101155875623595634141182088016873264147289890902546611979436826875341583844862873953881230937014456091194334254487 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2310001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9302131 Max relations in full relation-set: Initial matrix: Pruned matrix : 450298 x 450546 Polynomial selection time: 1.16 hours. Total sieving time: 11.15 hours. Total relation processing time: 0.60 hours. Matrix solve time: 0.45 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 13.43 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 8, 2009
(41·10161+31)/9 = 4(5)1609<162> = 3 · 13 · 151 · 211 · 132211512885134352891187<24> · C133
C133 = P45 · P88
P45 = 738981477450049648950797460130140636375735769<45>
P88 = 3752446506855152964198148192252292656497302159234075473588209776069104121023725885264007<88>
Number: 45559_161 N=2772988463688098795660883458291110182748717211815370475266497074618030888415888309341225266286540888669696576874059611633329438166383 ( 133 digits) SNFS difficulty: 162 digits. Divisors found: r1=738981477450049648950797460130140636375735769 r2=3752446506855152964198148192252292656497302159234075473588209776069104121023725885264007 Version: Total time: 20.57 hours. Scaled time: 49.11 units (timescale=2.387). Factorization parameters were as follows: n: 2772988463688098795660883458291110182748717211815370475266497074618030888415888309341225266286540888669696576874059611633329438166383 m: 100000000000000000000000000000000 deg: 5 c5: 410 c0: 31 skew: 0.60 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9550539 Max relations in full relation-set: Initial matrix: Pruned matrix : 718232 x 718480 Total sieving time: 18.44 hours. Total relation processing time: 0.79 hours. Matrix solve time: 1.10 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 20.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 7, 2009
(14·10163-17)/3 = 4(6)1621<164> = 1168831 · 6733721 · 1301355036901<13> · 2440717223838173782958585557<28> · C112
C112 = P45 · P67
P45 = 533378067555167994638532653261545026277626203<45>
P67 = 3499866867258391013568251576377228303516047175484132830549381462241<67>
Number: 46661_163 N=1866752226358640258544889293860773927262146021843474161287748794725834827673734517799791108691807542626556700923 ( 112 digits) Divisors found: r1=533378067555167994638532653261545026277626203 r2=3499866867258391013568251576377228303516047175484132830549381462241 Version: Total time: 12.19 hours. Scaled time: 29.10 units (timescale=2.388). Factorization parameters were as follows: name: 46661_163 n: 1866752226358640258544889293860773927262146021843474161287748794725834827673734517799791108691807542626556700923 skew: 23720.01 # norm 2.55e+15 c5: 14400 c4: -2094460356 c3: -15775499728857 c2: -1176969688500835859 c1: 2468827411660161501747 c0: 67206418064965898205875705 # alpha -5.63 Y1: 154891682693 Y0: -2645730334848852522966 # Murphy_E 7.89e-10 # M 1361559699571845916487310165643954984042140026411175833540923279969064349616331700765422401167513410905746795998 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8502252 Max relations in full relation-set: Initial matrix: Pruned matrix : 409481 x 409729 Polynomial selection time: 0.87 hours. Total sieving time: 10.17 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.38 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 12.19 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(41·10166+31)/9 = 4(5)1659<167> = 3727 · 6079 · 446523649107241<15> · 282439056897102489148533809233561<33> · C113
C113 = P48 · P66
P48 = 144729762785463117546069830118601103140161870319<48>
P66 = 110159699597928074202809633863893697276737851710914857601435993817<66>
Number: 45559_166 N=15943387191326006946618098390931334098583772565115458602425948433791571117252421966012384908580203304557239817623 ( 113 digits) Divisors found: r1=144729762785463117546069830118601103140161870319 r2=110159699597928074202809633863893697276737851710914857601435993817 Version: Total time: 12.11 hours. Scaled time: 28.76 units (timescale=2.375). Factorization parameters were as follows: name: 45559_166 n: 15943387191326006946618098390931334098583772565115458602425948433791571117252421966012384908580203304557239817623 skew: 66609.94 # norm 6.86e+15 c5: 10620 c4: -637189443 c3: -279914786507971 c2: 2532966587926767017 c1: 333602027686008373998116 c0: -4735595543010627300655644864 # alpha -6.53 Y1: 410884714789 Y0: -4318090211932266210077 # Murphy_E 7.61e-10 # M 11050356650595640620372840521874159368328391234008289347464790086922844142246216431649260467707320208882737639920 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2040001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8427716 Max relations in full relation-set: Initial matrix: Pruned matrix : 397846 x 398094 Polynomial selection time: 1.00 hours. Total sieving time: 9.72 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.35 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 12.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Erik Branger / GGNFS, Msieve / Feb 7, 2009
(41·10159+31)/9 = 4(5)1589<160> = 4057 · C157
C157 = P37 · P120
P37 = 1731585413574630738720683078158942651<37>
P120 = 648473780046223736657506407721592954100495580810060166742346782078054396205770239313450393164960173160241188816269253837<120>
Number: 45559_159 N=1122887738613644455399446772382439131268315394517021334867033659244652589488675266343494097992495823405362473639525648399200284830060526387861857420644701887 ( 157 digits) SNFS difficulty: 161 digits. Divisors found: r1=1731585413574630738720683078158942651 r2=648473780046223736657506407721592954100495580810060166742346782078054396205770239313450393164960173160241188816269253837 Version: Total time: 59.12 hours. Scaled time: 46.88 units (timescale=0.793). Factorization parameters were as follows: n: 1122887738613644455399446772382439131268315394517021334867033659244652589488675266343494097992495823405362473639525648399200284830060526387861857420644701887 m: 100000000000000000000000000000000 deg: 5 c5: 41 c0: 310 skew: 1.50 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 660055 x 660303 Total sieving time: 59.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 59.12 hours. --------- CPU info (if available) ----------
(13·10170+17)/3 = 4(3)1699<171> = 23 · 93239 · 36247012699501949<17> · 111749476448043512309014281079<30> · C119
C119 = P52 · P67
P52 = 9982224044582916016268575585641683162100429624915229<52>
P67 = 4997486439806848026678176052097065941998066363081734935397254369093<67>
Number: 43339_170 N=49886029301916991974609276945844526763522100914866945557848915315097860285142484809452828704329455042175060930002617297 ( 119 digits) Divisors found: r1=9982224044582916016268575585641683162100429624915229 r2=4997486439806848026678176052097065941998066363081734935397254369093 Version: Total time: 47.19 hours. Scaled time: 47.95 units (timescale=1.016). Factorization parameters were as follows: name: 43339_170 n: 49886029301916991974609276945844526763522100914866945557848915315097860285142484809452828704329455042175060930002617297 skew: 66614.94 # norm 1.39e+016 c5: 5940 c4: -9717206 c3: 271066779631260 c2: -16839166633651307384 c1: -809108711192551559580945 c0: -3794215600553577222149750975 # alpha -6.07 Y1: 4103857232819 Y0: -96569171293182790941618 # Murphy_E 3.57e-010 # M 12916932973635699386178460139706812150626101346765211629154440786058901502475079559245375928187080673077840138975882646 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3990001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 618297 x 618545 Polynomial selection time: 4.58 hours. Total sieving time: 42.61 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 47.19 hours. --------- CPU info (if available) ----------
By Andreas Tete / Msieve v 1.39 / Feb 6, 2009
(14·10155-17)/3 = 4(6)1541<156> = 13 · 11093 · 28109 · 611467 · 181767269 · 4633157982779<13> · 6977436007721<13> · C107
C107 = P42 · P66
P42 = 140562441090611118741109961262705922783769<42>
P66 = 227949189434413385400660055310324153026565342740516563531969876557<66>
Thu Feb 05 23:23:07 2009 Thu Feb 05 23:23:07 2009 Thu Feb 05 23:23:07 2009 Msieve v. 1.39 Thu Feb 05 23:23:07 2009 random seeds: 1e3e56b4 f2204d78 Thu Feb 05 23:23:07 2009 factoring 32041094511527285925771939862536179270622749029683467024592163859076668364555480887662733657021368733203333 (107 digits) Thu Feb 05 23:23:08 2009 searching for 15-digit factors Thu Feb 05 23:23:10 2009 commencing number field sieve (107-digit input) Thu Feb 05 23:23:10 2009 R0: -417696951770538278410 Thu Feb 05 23:23:10 2009 R1: 109521462829 Thu Feb 05 23:23:10 2009 A0: -65569852078498172292350013 Thu Feb 05 23:23:10 2009 A1: 6114587653619319208227 Thu Feb 05 23:23:10 2009 A2: 16211690701126034 Thu Feb 05 23:23:10 2009 A3: -7509391818145 Thu Feb 05 23:23:10 2009 A4: 6034581 Thu Feb 05 23:23:10 2009 A5: 2520 Thu Feb 05 23:23:10 2009 skew 34711.60, size 7.223162e-011, alpha -5.300903, combined = 4.227773e-010 Thu Feb 05 23:23:11 2009 Thu Feb 05 23:23:11 2009 commencing relation filtering Thu Feb 05 23:23:11 2009 commencing duplicate removal, pass 1 Thu Feb 05 23:23:46 2009 error -15 reading relation 2573525 Thu Feb 05 23:23:53 2009 error -15 reading relation 3299075 Thu Feb 05 23:24:07 2009 found 321328 hash collisions in 4785439 relations Thu Feb 05 23:24:21 2009 added 31972 free relations Thu Feb 05 23:24:21 2009 commencing duplicate removal, pass 2 Thu Feb 05 23:24:27 2009 found 295093 duplicates and 4522317 unique relations Thu Feb 05 23:24:27 2009 memory use: 43.3 MB Thu Feb 05 23:24:27 2009 reading rational ideals above 2949120 Thu Feb 05 23:24:27 2009 reading algebraic ideals above 2949120 Thu Feb 05 23:24:27 2009 commencing singleton removal, pass 1 Thu Feb 05 23:25:15 2009 relations with 0 large ideals: 114789 Thu Feb 05 23:25:15 2009 relations with 1 large ideals: 709847 Thu Feb 05 23:25:15 2009 relations with 2 large ideals: 1600072 Thu Feb 05 23:25:15 2009 relations with 3 large ideals: 1520566 Thu Feb 05 23:25:15 2009 relations with 4 large ideals: 521434 Thu Feb 05 23:25:15 2009 relations with 5 large ideals: 25444 Thu Feb 05 23:25:15 2009 relations with 6 large ideals: 30165 Thu Feb 05 23:25:15 2009 relations with 7+ large ideals: 0 Thu Feb 05 23:25:15 2009 4522317 relations and about 4381735 large ideals Thu Feb 05 23:25:15 2009 commencing singleton removal, pass 2 Thu Feb 05 23:26:04 2009 found 1977858 singletons Thu Feb 05 23:26:04 2009 current dataset: 2544459 relations and about 2016860 large ideals Thu Feb 05 23:26:04 2009 commencing singleton removal, pass 3 Thu Feb 05 23:26:37 2009 found 454942 singletons Thu Feb 05 23:26:37 2009 current dataset: 2089517 relations and about 1529923 large ideals Thu Feb 05 23:26:37 2009 commencing singleton removal, final pass Thu Feb 05 23:27:05 2009 memory use: 37.3 MB Thu Feb 05 23:27:05 2009 commencing in-memory singleton removal Thu Feb 05 23:27:05 2009 begin with 2089517 relations and 1573278 unique ideals Thu Feb 05 23:27:07 2009 reduce to 1778301 relations and 1253915 ideals in 16 passes Thu Feb 05 23:27:07 2009 max relations containing the same ideal: 50 Thu Feb 05 23:27:08 2009 reading rational ideals above 720000 Thu Feb 05 23:27:08 2009 reading algebraic ideals above 720000 Thu Feb 05 23:27:08 2009 commencing singleton removal, final pass Thu Feb 05 23:27:32 2009 keeping 1516991 ideals with weight <= 20, new excess is 189911 Thu Feb 05 23:27:34 2009 memory use: 47.1 MB Thu Feb 05 23:27:34 2009 commencing in-memory singleton removal Thu Feb 05 23:27:34 2009 begin with 1782859 relations and 1516991 unique ideals Thu Feb 05 23:27:36 2009 reduce to 1767800 relations and 1479938 ideals in 9 passes Thu Feb 05 23:27:36 2009 max relations containing the same ideal: 20 Thu Feb 05 23:27:37 2009 removing 259209 relations and 225427 ideals in 33783 cliques Thu Feb 05 23:27:37 2009 commencing in-memory singleton removal Thu Feb 05 23:27:37 2009 begin with 1508591 relations and 1479938 unique ideals Thu Feb 05 23:27:38 2009 reduce to 1483922 relations and 1229289 ideals in 8 passes Thu Feb 05 23:27:38 2009 max relations containing the same ideal: 20 Thu Feb 05 23:27:39 2009 removing 192769 relations and 158986 ideals in 33783 cliques Thu Feb 05 23:27:39 2009 commencing in-memory singleton removal Thu Feb 05 23:27:39 2009 begin with 1291153 relations and 1229289 unique ideals Thu Feb 05 23:27:40 2009 reduce to 1273620 relations and 1052357 ideals in 8 passes Thu Feb 05 23:27:40 2009 max relations containing the same ideal: 20 Thu Feb 05 23:27:41 2009 relations with 0 large ideals: 17696 Thu Feb 05 23:27:41 2009 relations with 1 large ideals: 115178 Thu Feb 05 23:27:41 2009 relations with 2 large ideals: 305321 Thu Feb 05 23:27:41 2009 relations with 3 large ideals: 409159 Thu Feb 05 23:27:41 2009 relations with 4 large ideals: 288047 Thu Feb 05 23:27:41 2009 relations with 5 large ideals: 110539 Thu Feb 05 23:27:41 2009 relations with 6 large ideals: 24923 Thu Feb 05 23:27:41 2009 relations with 7+ large ideals: 2757 Thu Feb 05 23:27:41 2009 commencing 2-way merge Thu Feb 05 23:27:42 2009 reduce to 773554 relation sets and 552291 unique ideals Thu Feb 05 23:27:42 2009 commencing full merge Thu Feb 05 23:27:51 2009 memory use: 41.2 MB Thu Feb 05 23:27:51 2009 found 360431 cycles, need 332491 Thu Feb 05 23:27:51 2009 weight of 332491 cycles is about 23593800 (70.96/cycle) Thu Feb 05 23:27:51 2009 distribution of cycle lengths: Thu Feb 05 23:27:51 2009 1 relations: 35680 Thu Feb 05 23:27:51 2009 2 relations: 32523 Thu Feb 05 23:27:51 2009 3 relations: 32986 Thu Feb 05 23:27:51 2009 4 relations: 30726 Thu Feb 05 23:27:51 2009 5 relations: 28831 Thu Feb 05 23:27:51 2009 6 relations: 26149 Thu Feb 05 23:27:51 2009 7 relations: 23584 Thu Feb 05 23:27:51 2009 8 relations: 21305 Thu Feb 05 23:27:51 2009 9 relations: 18931 Thu Feb 05 23:27:51 2009 10+ relations: 81776 Thu Feb 05 23:27:51 2009 heaviest cycle: 19 relations Thu Feb 05 23:27:51 2009 commencing cycle optimization Thu Feb 05 23:27:52 2009 start with 2159557 relations Thu Feb 05 23:27:58 2009 pruned 72796 relations Thu Feb 05 23:27:58 2009 memory use: 54.5 MB Thu Feb 05 23:27:58 2009 distribution of cycle lengths: Thu Feb 05 23:27:58 2009 1 relations: 35680 Thu Feb 05 23:27:58 2009 2 relations: 33458 Thu Feb 05 23:27:58 2009 3 relations: 34546 Thu Feb 05 23:27:58 2009 4 relations: 31823 Thu Feb 05 23:27:58 2009 5 relations: 30091 Thu Feb 05 23:27:58 2009 6 relations: 26865 Thu Feb 05 23:27:58 2009 7 relations: 24369 Thu Feb 05 23:27:58 2009 8 relations: 21642 Thu Feb 05 23:27:58 2009 9 relations: 19118 Thu Feb 05 23:27:58 2009 10+ relations: 74899 Thu Feb 05 23:27:58 2009 heaviest cycle: 18 relations Thu Feb 05 23:27:58 2009 Thu Feb 05 23:27:58 2009 commencing linear algebra Thu Feb 05 23:27:58 2009 read 332491 cycles Thu Feb 05 23:27:59 2009 cycles contain 1110974 unique relations Thu Feb 05 23:28:13 2009 read 1110974 relations Thu Feb 05 23:28:14 2009 using 20 quadratic characters above 67107810 Thu Feb 05 23:28:21 2009 building initial matrix Thu Feb 05 23:28:35 2009 memory use: 130.5 MB Thu Feb 05 23:28:35 2009 read 332491 cycles Thu Feb 05 23:28:36 2009 matrix is 332253 x 332491 (93.9 MB) with weight 31306746 (94.16/col) Thu Feb 05 23:28:36 2009 sparse part has weight 22286145 (67.03/col) Thu Feb 05 23:28:40 2009 filtering completed in 3 passes Thu Feb 05 23:28:41 2009 matrix is 330616 x 330816 (93.6 MB) with weight 31190739 (94.28/col) Thu Feb 05 23:28:41 2009 sparse part has weight 22219842 (67.17/col) Thu Feb 05 23:28:42 2009 read 330816 cycles Thu Feb 05 23:28:42 2009 matrix is 330616 x 330816 (93.6 MB) with weight 31190739 (94.28/col) Thu Feb 05 23:28:42 2009 sparse part has weight 22219842 (67.17/col) Thu Feb 05 23:28:42 2009 saving the first 48 matrix rows for later Thu Feb 05 23:28:43 2009 matrix is 330568 x 330816 (89.5 MB) with weight 24527269 (74.14/col) Thu Feb 05 23:28:43 2009 sparse part has weight 21468133 (64.89/col) Thu Feb 05 23:28:43 2009 matrix includes 64 packed rows Thu Feb 05 23:28:43 2009 using block size 65536 for processor cache size 3072 kB Thu Feb 05 23:28:45 2009 commencing Lanczos iteration Thu Feb 05 23:28:45 2009 memory use: 87.5 MB Thu Feb 05 23:43:59 2009 lanczos halted after 5229 iterations (dim = 330567) Thu Feb 05 23:44:00 2009 recovered 30 nontrivial dependencies Thu Feb 05 23:44:00 2009 Thu Feb 05 23:44:00 2009 commencing square root phase Thu Feb 05 23:44:00 2009 reading relations for dependency 1 Thu Feb 05 23:44:00 2009 read 165222 cycles Thu Feb 05 23:44:01 2009 cycles contain 686041 unique relations Thu Feb 05 23:44:16 2009 read 686041 relations Thu Feb 05 23:44:19 2009 multiplying 553752 relations Thu Feb 05 23:45:48 2009 multiply complete, coefficients have about 21.63 million bits Thu Feb 05 23:45:49 2009 initial square root is modulo 1629293 Thu Feb 05 23:47:56 2009 reading relations for dependency 2 Thu Feb 05 23:47:56 2009 read 164877 cycles Thu Feb 05 23:47:56 2009 cycles contain 686198 unique relations Thu Feb 05 23:48:11 2009 read 686198 relations Thu Feb 05 23:48:15 2009 multiplying 553800 relations Thu Feb 05 23:49:43 2009 multiply complete, coefficients have about 21.63 million bits Thu Feb 05 23:49:44 2009 initial square root is modulo 1629581 Thu Feb 05 23:51:48 2009 reading relations for dependency 3 Thu Feb 05 23:51:49 2009 read 164910 cycles Thu Feb 05 23:51:49 2009 cycles contain 684575 unique relations Thu Feb 05 23:51:58 2009 read 684575 relations Thu Feb 05 23:52:01 2009 multiplying 552312 relations Thu Feb 05 23:53:30 2009 multiply complete, coefficients have about 21.57 million bits Thu Feb 05 23:53:31 2009 initial square root is modulo 1571417 Thu Feb 05 23:55:35 2009 prp42 factor: 140562441090611118741109961262705922783769 Thu Feb 05 23:55:35 2009 prp66 factor: 227949189434413385400660055310324153026565342740516563531969876557 Thu Feb 05 23:55:35 2009 elapsed time 00:32:28
By Sinkiti Sibata / Msieve / Feb 6, 2009
(14·10142-17)/3 = 4(6)1411<143> = 232 · 1927327249<10> · 8660199409527959<16> · 399129679764332149<18> · C98
C98 = P38 · P60
P38 = 79231793353124078236648743941235412967<38>
P60 = 167129935477735101894427739732000701586771138451062866657553<60>
Thu Feb 05 22:04:54 2009 Msieve v. 1.39 Thu Feb 05 22:04:54 2009 random seeds: 985e3b90 8cf72a5a Thu Feb 05 22:04:54 2009 factoring 13242004510892868113458993218395334183291843600653289491957333697295603953723418924379752924689751 (98 digits) Thu Feb 05 22:04:55 2009 searching for 15-digit factors Thu Feb 05 22:04:56 2009 commencing quadratic sieve (98-digit input) Thu Feb 05 22:04:57 2009 using multiplier of 19 Thu Feb 05 22:04:57 2009 using 32kb Intel Core sieve core Thu Feb 05 22:04:57 2009 sieve interval: 36 blocks of size 32768 Thu Feb 05 22:04:57 2009 processing polynomials in batches of 6 Thu Feb 05 22:04:57 2009 using a sieve bound of 2439067 (89290 primes) Thu Feb 05 22:04:57 2009 using large prime bound of 365860050 (28 bits) Thu Feb 05 22:04:57 2009 using double large prime bound of 2593981779484650 (43-52 bits) Thu Feb 05 22:04:57 2009 using trial factoring cutoff of 52 bits Thu Feb 05 22:04:57 2009 polynomial 'A' values have 13 factors Fri Feb 06 04:46:34 2009 89401 relations (21588 full + 67813 combined from 1343759 partial), need 89386 Fri Feb 06 04:46:35 2009 begin with 1365347 relations Fri Feb 06 04:46:37 2009 reduce to 234933 relations in 11 passes Fri Feb 06 04:46:37 2009 attempting to read 234933 relations Fri Feb 06 04:46:41 2009 recovered 234933 relations Fri Feb 06 04:46:41 2009 recovered 223383 polynomials Fri Feb 06 04:46:41 2009 attempting to build 89401 cycles Fri Feb 06 04:46:41 2009 found 89401 cycles in 6 passes Fri Feb 06 04:46:41 2009 distribution of cycle lengths: Fri Feb 06 04:46:41 2009 length 1 : 21588 Fri Feb 06 04:46:41 2009 length 2 : 15332 Fri Feb 06 04:46:41 2009 length 3 : 15003 Fri Feb 06 04:46:41 2009 length 4 : 12199 Fri Feb 06 04:46:41 2009 length 5 : 9254 Fri Feb 06 04:46:41 2009 length 6 : 6387 Fri Feb 06 04:46:41 2009 length 7 : 4096 Fri Feb 06 04:46:41 2009 length 9+: 5542 Fri Feb 06 04:46:41 2009 largest cycle: 20 relations Fri Feb 06 04:46:42 2009 matrix is 89290 x 89401 (24.5 MB) with weight 6054518 (67.72/col) Fri Feb 06 04:46:42 2009 sparse part has weight 6054518 (67.72/col) Fri Feb 06 04:46:43 2009 filtering completed in 3 passes Fri Feb 06 04:46:43 2009 matrix is 85516 x 85580 (23.6 MB) with weight 5838893 (68.23/col) Fri Feb 06 04:46:43 2009 sparse part has weight 5838893 (68.23/col) Fri Feb 06 04:46:43 2009 saving the first 48 matrix rows for later Fri Feb 06 04:46:43 2009 matrix is 85468 x 85580 (14.8 MB) with weight 4648295 (54.32/col) Fri Feb 06 04:46:43 2009 sparse part has weight 3377193 (39.46/col) Fri Feb 06 04:46:43 2009 matrix includes 64 packed rows Fri Feb 06 04:46:43 2009 using block size 34232 for processor cache size 1024 kB Fri Feb 06 04:46:44 2009 commencing Lanczos iteration Fri Feb 06 04:46:44 2009 memory use: 14.2 MB Fri Feb 06 04:47:32 2009 lanczos halted after 1354 iterations (dim = 85466) Fri Feb 06 04:47:32 2009 recovered 17 nontrivial dependencies Fri Feb 06 04:47:33 2009 prp38 factor: 79231793353124078236648743941235412967 Fri Feb 06 04:47:33 2009 prp60 factor: 167129935477735101894427739732000701586771138451062866657553 Fri Feb 06 04:47:33 2009 elapsed time 06:42:39
(14·10127-17)/3 = 4(6)1261<128> = 167 · 7670628211<10> · 8705215404553<13> · 2725762211620447<16> · C88
C88 = P43 · P45
P43 = 5261974045839364868774416996076713797221377<43>
P45 = 291771713889094533014889494807646277268465479<45>
Fri Feb 06 07:38:10 2009 Msieve v. 1.39 Fri Feb 06 07:38:10 2009 random seeds: d1fb9c90 fabe24e3 Fri Feb 06 07:38:10 2009 factoring 1535295185794484367616350693774708322882980721452664621333563416031092169180374845344583 (88 digits) Fri Feb 06 07:38:11 2009 searching for 15-digit factors Fri Feb 06 07:38:12 2009 commencing quadratic sieve (88-digit input) Fri Feb 06 07:38:12 2009 using multiplier of 7 Fri Feb 06 07:38:12 2009 using 32kb Intel Core sieve core Fri Feb 06 07:38:12 2009 sieve interval: 24 blocks of size 32768 Fri Feb 06 07:38:12 2009 processing polynomials in batches of 9 Fri Feb 06 07:38:12 2009 using a sieve bound of 1508383 (57325 primes) Fri Feb 06 07:38:12 2009 using large prime bound of 120670640 (26 bits) Fri Feb 06 07:38:12 2009 using double large prime bound of 352275850752880 (42-49 bits) Fri Feb 06 07:38:12 2009 using trial factoring cutoff of 49 bits Fri Feb 06 07:38:12 2009 polynomial 'A' values have 11 factors Fri Feb 06 08:28:48 2009 57685 relations (15938 full + 41747 combined from 607295 partial), need 57421 Fri Feb 06 08:28:49 2009 begin with 623233 relations Fri Feb 06 08:28:50 2009 reduce to 138855 relations in 10 passes Fri Feb 06 08:28:50 2009 attempting to read 138855 relations Fri Feb 06 08:28:51 2009 recovered 138855 relations Fri Feb 06 08:28:51 2009 recovered 116994 polynomials Fri Feb 06 08:28:52 2009 attempting to build 57685 cycles Fri Feb 06 08:28:52 2009 found 57685 cycles in 5 passes Fri Feb 06 08:28:52 2009 distribution of cycle lengths: Fri Feb 06 08:28:52 2009 length 1 : 15938 Fri Feb 06 08:28:52 2009 length 2 : 11180 Fri Feb 06 08:28:52 2009 length 3 : 10089 Fri Feb 06 08:28:52 2009 length 4 : 7707 Fri Feb 06 08:28:52 2009 length 5 : 5129 Fri Feb 06 08:28:52 2009 length 6 : 3437 Fri Feb 06 08:28:52 2009 length 7 : 1986 Fri Feb 06 08:28:52 2009 length 9+: 2219 Fri Feb 06 08:28:52 2009 largest cycle: 18 relations Fri Feb 06 08:28:52 2009 matrix is 57325 x 57685 (13.7 MB) with weight 3362837 (58.30/col) Fri Feb 06 08:28:52 2009 sparse part has weight 3362837 (58.30/col) Fri Feb 06 08:28:53 2009 filtering completed in 3 passes Fri Feb 06 08:28:53 2009 matrix is 53023 x 53087 (12.7 MB) with weight 3111841 (58.62/col) Fri Feb 06 08:28:53 2009 sparse part has weight 3111841 (58.62/col) Fri Feb 06 08:28:53 2009 saving the first 48 matrix rows for later Fri Feb 06 08:28:53 2009 matrix is 52975 x 53087 (8.8 MB) with weight 2527280 (47.61/col) Fri Feb 06 08:28:53 2009 sparse part has weight 1998012 (37.64/col) Fri Feb 06 08:28:53 2009 matrix includes 64 packed rows Fri Feb 06 08:28:53 2009 using block size 21234 for processor cache size 1024 kB Fri Feb 06 08:28:53 2009 commencing Lanczos iteration Fri Feb 06 08:28:53 2009 memory use: 8.2 MB Fri Feb 06 08:29:11 2009 lanczos halted after 840 iterations (dim = 52971) Fri Feb 06 08:29:11 2009 recovered 15 nontrivial dependencies Fri Feb 06 08:29:11 2009 prp43 factor: 5261974045839364868774416996076713797221377 Fri Feb 06 08:29:11 2009 prp45 factor: 291771713889094533014889494807646277268465479 Fri Feb 06 08:29:11 2009 elapsed time 00:51:01
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Feb 6, 2009
(14·10180-17)/3 = 4(6)1791<181> = 1060606468531<13> · 2463919773272663639<19> · 434405729906257285262769119<27> · C124
C124 = P39 · P86
P39 = 161485093949478888156665341696665738479<39>
P86 = 25456457124730078165396640183259087880093460044467293671285886996120689261101704351329<86>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=21286820 Step 1 took 7797ms Step 2 took 8008ms ********** Factor found in step 2: 161485093949478888156665341696665738479 Found probable prime factor of 39 digits: 161485093949478888156665341696665738479 Probable prime cofactor 25456457124730078165396640183259087880093460044467293671285886996120689261101704351329 has 86 digits
(14·10129-17)/3 = 4(6)1281<130> = C130
C130 = P41 · P44 · P46
P41 = 30756232585203612651027937491020501863669<41>
P44 = 21962830987637620960120313531065216680029647<44>
P46 = 6908524863886151706440987531973173393945771327<46>
SNFS difficulty: 130 digits. Divisors found: r1=30756232585203612651027937491020501863669 (pp41) r2=21962830987637620960120313531065216680029647 (pp44) r3=6908524863886151706440987531973173393945771327 (pp46) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.541). Factorization parameters were as follows: n: 4666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 100000000000000000000000000 deg: 5 c5: 7 c0: -85 skew: 1.65 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [530000, 1030001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130792 x 131040 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,49,49,2.3,2.3,50000 total time: 2.00 hours.
(14·10128-17)/3 = 4(6)1271<129> = C129
C129 = P41 · P89
P41 = 34738831090628376848964014280911856883289<41>
P89 = 13433574245754085320082529574069024061482425726692517836889920164527496860879649497269549<89>
SNFS difficulty: 130 digits. Divisors found: r1=34738831090628376848964014280911856883289 (pp41) r2=13433574245754085320082529574069024061482425726692517836889920164527496860879649497269549 (pp89) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.530). Factorization parameters were as follows: n: 466666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 50000000000000000000000000 deg: 5 c5: 112 c0: -425 skew: 1.31 type: snfs lss: 1 rlim: 1050000 alim: 1050000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1050000/1050000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [525000, 1025001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 124141 x 124389 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1050000,1050000,26,26,49,49,2.3,2.3,50000 total time: 2.00 hours.
(14·10131-17)/3 = 4(6)1301<132> = 13 · 41 · C129
C129 = P45 · P85
P45 = 288828715094532057700386432700031725817336707<45>
P85 = 3031371782837000235560081497627944101257914587605168405618276781202903817139350539931<85>
SNFS difficulty: 133 digits. Divisors found: r1=288828715094532057700386432700031725817336707 (pp45) r2=3031371782837000235560081497627944101257914587605168405618276781202903817139350539931 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.714). Factorization parameters were as follows: n: 875547217010631644777986241400875547217010631644777986241400875547217010631644777986241400875547217010631644777986241400875547217 m: 200000000000000000000000000 deg: 5 c5: 35 c0: -136 skew: 1.31 type: snfs lss: 1 rlim: 1160000 alim: 1160000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1160000/1160000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [580000, 1130001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 137843 x 138091 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1160000,1160000,26,26,49,49,2.3,2.3,50000 total time: 2.00 hours.
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Feb 6, 2009
(14·10137-17)/3 = 4(6)1361<138> = 13 · 7603 · 304459 · C128
C128 = P55 · P73
P55 = 2818644549300440001732463462728060471607712298207676717<55>
P73 = 5501857144976582782595579223104339161632838489649970345026741343782422733<73>
Number: 46661_137 N=15507779652717925762978812460724967482128140727375939557997598641655050637148977744817023024039883436393222293563772349495607561 ( 128 digits) SNFS difficulty: 138 digits. Divisors found: r1=2818644549300440001732463462728060471607712298207676717 r2=5501857144976582782595579223104339161632838489649970345026741343782422733 Version: Total time: 3.11 hours. Scaled time: 7.42 units (timescale=2.384). Factorization parameters were as follows: n: 15507779652717925762978812460724967482128140727375939557997598641655050637148977744817023024039883436393222293563772349495607561 m: 2000000000000000000000000000 deg: 5 c5: 175 c0: -68 skew: 0.83 type: snfs lss: 1 rlim: 1700000 alim: 1700000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1700000/1700000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [850000, 1600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3895980 Max relations in full relation-set: Initial matrix: Pruned matrix : 244627 x 244875 Total sieving time: 2.70 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1700000,1700000,26,26,48,48,2.3,2.3,50000 total time: 3.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(14·10132-17)/3 = 4(6)1311<133> = 43 · 242477283479484920079946834362098068307<39> · C93
C93 = P44 · P49
P44 = 92660912312177449516990491215937950320787587<44>
P49 = 4830262083843456169427769670141277271595721208103<49>
Fri Feb 06 00:12:50 2009 Fri Feb 06 00:12:50 2009 Fri Feb 06 00:12:50 2009 Msieve v. 1.39 Fri Feb 06 00:12:50 2009 random seeds: 660a05d0 5cd60cef Fri Feb 06 00:12:50 2009 factoring 447576491395854011724077485504451312282020626085064397979685957809662700075420254722086217461 (93 digits) Fri Feb 06 00:12:51 2009 searching for 15-digit factors Fri Feb 06 00:12:52 2009 commencing quadratic sieve (93-digit input) Fri Feb 06 00:12:53 2009 using multiplier of 1 Fri Feb 06 00:12:53 2009 using VC8 32kb sieve core Fri Feb 06 00:12:53 2009 sieve interval: 36 blocks of size 32768 Fri Feb 06 00:12:53 2009 processing polynomials in batches of 6 Fri Feb 06 00:12:53 2009 using a sieve bound of 1921417 (71765 primes) Fri Feb 06 00:12:53 2009 using large prime bound of 232491457 (27 bits) Fri Feb 06 00:12:53 2009 using double large prime bound of 1146918485979948 (42-51 bits) Fri Feb 06 00:12:53 2009 using trial factoring cutoff of 51 bits Fri Feb 06 00:12:53 2009 polynomial 'A' values have 12 factors Fri Feb 06 02:14:34 2009 72152 relations (18323 full + 53829 combined from 965521 partial), need 71861 Fri Feb 06 02:14:40 2009 begin with 983844 relations Fri Feb 06 02:14:41 2009 reduce to 184485 relations in 11 passes Fri Feb 06 02:14:41 2009 attempting to read 184485 relations Fri Feb 06 02:14:43 2009 recovered 184485 relations Fri Feb 06 02:14:43 2009 recovered 164103 polynomials Fri Feb 06 02:14:43 2009 attempting to build 72152 cycles Fri Feb 06 02:14:43 2009 found 72152 cycles in 6 passes Fri Feb 06 02:14:43 2009 distribution of cycle lengths: Fri Feb 06 02:14:43 2009 length 1 : 18323 Fri Feb 06 02:14:43 2009 length 2 : 12755 Fri Feb 06 02:14:43 2009 length 3 : 12311 Fri Feb 06 02:14:43 2009 length 4 : 9774 Fri Feb 06 02:14:43 2009 length 5 : 7136 Fri Feb 06 02:14:43 2009 length 6 : 4780 Fri Feb 06 02:14:43 2009 length 7 : 3028 Fri Feb 06 02:14:43 2009 length 9+: 4045 Fri Feb 06 02:14:43 2009 largest cycle: 23 relations Fri Feb 06 02:14:44 2009 matrix is 71765 x 72152 (18.7 MB) with weight 4323305 (59.92/col) Fri Feb 06 02:14:44 2009 sparse part has weight 4323305 (59.92/col) Fri Feb 06 02:14:45 2009 filtering completed in 3 passes Fri Feb 06 02:14:45 2009 matrix is 67870 x 67934 (17.6 MB) with weight 4081009 (60.07/col) Fri Feb 06 02:14:45 2009 sparse part has weight 4081009 (60.07/col) Fri Feb 06 02:14:45 2009 saving the first 48 matrix rows for later Fri Feb 06 02:14:45 2009 matrix is 67822 x 67934 (10.4 MB) with weight 3095781 (45.57/col) Fri Feb 06 02:14:45 2009 sparse part has weight 2042670 (30.07/col) Fri Feb 06 02:14:45 2009 matrix includes 64 packed rows Fri Feb 06 02:14:45 2009 using block size 27173 for processor cache size 4096 kB Fri Feb 06 02:14:45 2009 commencing Lanczos iteration Fri Feb 06 02:14:45 2009 memory use: 9.8 MB Fri Feb 06 02:15:08 2009 lanczos halted after 1074 iterations (dim = 67818) Fri Feb 06 02:15:08 2009 recovered 14 nontrivial dependencies Fri Feb 06 02:15:08 2009 prp44 factor: 92660912312177449516990491215937950320787587 Fri Feb 06 02:15:08 2009 prp49 factor: 4830262083843456169427769670141277271595721208103 Fri Feb 06 02:15:08 2009 elapsed time 02:02:18
(14·10139-17)/3 = 4(6)1381<140> = 110772383 · C132
C132 = P45 · P87
P45 = 867544928525630775815933587141684050103818013<45>
P87 = 485605175809815527350504843798878617019451230961361043265636180271974040650810199695159<87>
Number: 46661_139 N=421284307539602778669721916758499875069643185943437423989214592112428119079704791280572763941231332602699958767400234286434613099067 ( 132 digits) SNFS difficulty: 140 digits. Divisors found: r1=867544928525630775815933587141684050103818013 r2=485605175809815527350504843798878617019451230961361043265636180271974040650810199695159 Version: Total time: 3.57 hours. Scaled time: 8.49 units (timescale=2.380). Factorization parameters were as follows: n: 421284307539602778669721916758499875069643185943437423989214592112428119079704791280572763941231332602699958767400234286434613099067 m: 10000000000000000000000000000 deg: 5 c5: 7 c0: -85 skew: 1.65 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2811844 Max relations in full relation-set: Initial matrix: Pruned matrix : 186156 x 186404 Total sieving time: 3.32 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.07 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,48,48,2.3,2.3,50000 total time: 3.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(41·10162+31)/9 = 4(5)1619<163> = 17 · 1291 · 52027 · 826867 · 546491484953<12> · 22764025382123370395299679<26> · C111
C111 = P41 · P71
P41 = 25996216458010873554969888938827763682619<41>
P71 = 14919667159164842307233929961510023909214702259020600485547130499361161<71>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 387854896951125408943277008177821207312190067820682958920140801813820386612531689968710232347976385056259360659 (111 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=274949117 Step 1 took 3300ms Step 2 took 2073ms ********** Factor found in step 2: 25996216458010873554969888938827763682619 Found probable prime factor of 41 digits: 25996216458010873554969888938827763682619 Probable prime cofactor 14919667159164842307233929961510023909214702259020600485547130499361161 has 71 digits
(14·10161-17)/3 = 4(6)1601<162> = 13 · 41 · 400827176682167<15> · 450713539888987849<18> · 589985397401568359<18> · C109
C109 = P42 · P68
P42 = 250324450930278353820829206543780882674057<42>
P68 = 32815367512362198271629357660350079777521673182900499191564513469473<68>
Number: 46661_161 N=8214488854607361552562394585386053901344629054961773047084840017735290069003506936168427706337309270878561961 ( 109 digits) Divisors found: r1=250324450930278353820829206543780882674057 r2=32815367512362198271629357660350079777521673182900499191564513469473 Version: Total time: 8.58 hours. Scaled time: 20.50 units (timescale=2.388). Factorization parameters were as follows: name: 46661_161 n: 8214488854607361552562394585386053901344629054961773047084840017735290069003506936168427706337309270878561961 skew: 18354.32 # norm 1.68e+15 c5: 22440 c4: 91497934 c3: -98957537020339 c2: -142166828582838284 c1: 5528770218687941854244 c0: 17899750049926615259981280 # alpha -5.65 Y1: 90997625029 Y0: -817921264128797702543 # Murphy_E 1.11e-09 # M 5826943395806438051439883087651505012647109574972570195839436233128308131774899666095698190388894654990385360 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 51/51 Sieved algebraic special-q in [900000, 1550001) Primes: rational ideals reading, algebraic ideals reading, Relations: 5462762 Max relations in full relation-set: Initial matrix: Pruned matrix : 317048 x 317296 Polynomial selection time: 0.58 hours. Total sieving time: 7.37 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.22 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,51,51,2.6,2.6,50000 total time: 8.58 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(41·10172+31)/9 = 4(5)1719<173> = 29 · 557 · 521539 · 44450561224585183<17> · 51805289001007337<17> · 9858668244709752623<19> · C111
C111 = P49 · P62
P49 = 4328914463841173098664599202895716455251590868607<49>
P62 = 55024075942331598058118325165702275379523661514693064001296867<62>
Number: 45559_172 N=238194518206254381237258429068330575418003725742747954852656581645557520590732261056020564376931006742997754269 ( 111 digits) Divisors found: r1=4328914463841173098664599202895716455251590868607 r2=55024075942331598058118325165702275379523661514693064001296867 Version: Total time: 9.71 hours. Scaled time: 23.17 units (timescale=2.387). Factorization parameters were as follows: name: 45559_172 n: 238194518206254381237258429068330575418003725742747954852656581645557520590732261056020564376931006742997754269 skew: 29654.94 # norm 2.17e+15 c5: 11400 c4: -4564535842 c3: -33787724348993 c2: 4155617604175931241 c1: 23211893197472624221503 c0: -43709897113678688254743969 # alpha -6.34 Y1: 603982391419 Y0: -1836609473063635500152 # Murphy_E 9.27e-10 # M 94084022461141940107718860003564971933967674203863533458747794154722012115069391269788586720547840715494287834 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8270726 Max relations in full relation-set: Initial matrix: Pruned matrix : 356337 x 356585 Polynomial selection time: 0.78 hours. Total sieving time: 8.03 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.26 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 9.71 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Sinkiti Sibata / Msieve / Feb 5, 2009
(14·10108-17)/3 = 4(6)1071<109> = 533723 · 18179547451229<14> · C90
C90 = P35 · P55
P35 = 69465947887975644559852068056851351<35>
P55 = 6923661521546369811565028929358579000131701666180044333<55>
Thu Feb 05 16:45:53 2009 Msieve v. 1.39 Thu Feb 05 16:45:53 2009 random seeds: 37737dfc 756aaded Thu Feb 05 16:45:53 2009 factoring 480958710449722285681960117310286212508354971043812209689150467311885349813017173570943883 (90 digits) Thu Feb 05 16:45:54 2009 searching for 15-digit factors Thu Feb 05 16:45:56 2009 commencing quadratic sieve (90-digit input) Thu Feb 05 16:45:56 2009 using multiplier of 3 Thu Feb 05 16:45:56 2009 using 32kb Intel Core sieve core Thu Feb 05 16:45:56 2009 sieve interval: 36 blocks of size 32768 Thu Feb 05 16:45:56 2009 processing polynomials in batches of 6 Thu Feb 05 16:45:56 2009 using a sieve bound of 1583807 (60000 primes) Thu Feb 05 16:45:56 2009 using large prime bound of 126704560 (26 bits) Thu Feb 05 16:45:56 2009 using double large prime bound of 384614732789440 (42-49 bits) Thu Feb 05 16:45:56 2009 using trial factoring cutoff of 49 bits Thu Feb 05 16:45:56 2009 polynomial 'A' values have 12 factors Thu Feb 05 18:07:35 2009 60536 relations (16049 full + 44487 combined from 637026 partial), need 60096 Thu Feb 05 18:07:36 2009 begin with 653075 relations Thu Feb 05 18:07:36 2009 reduce to 147583 relations in 10 passes Thu Feb 05 18:07:37 2009 attempting to read 147583 relations Thu Feb 05 18:07:38 2009 recovered 147583 relations Thu Feb 05 18:07:38 2009 recovered 127631 polynomials Thu Feb 05 18:07:39 2009 attempting to build 60536 cycles Thu Feb 05 18:07:39 2009 found 60536 cycles in 5 passes Thu Feb 05 18:07:39 2009 distribution of cycle lengths: Thu Feb 05 18:07:39 2009 length 1 : 16049 Thu Feb 05 18:07:39 2009 length 2 : 11747 Thu Feb 05 18:07:39 2009 length 3 : 10567 Thu Feb 05 18:07:39 2009 length 4 : 8067 Thu Feb 05 18:07:39 2009 length 5 : 5731 Thu Feb 05 18:07:39 2009 length 6 : 3589 Thu Feb 05 18:07:39 2009 length 7 : 2197 Thu Feb 05 18:07:39 2009 length 9+: 2589 Thu Feb 05 18:07:39 2009 largest cycle: 17 relations Thu Feb 05 18:07:39 2009 matrix is 60000 x 60536 (14.8 MB) with weight 3627676 (59.93/col) Thu Feb 05 18:07:39 2009 sparse part has weight 3627676 (59.93/col) Thu Feb 05 18:07:40 2009 filtering completed in 3 passes Thu Feb 05 18:07:40 2009 matrix is 56066 x 56128 (13.7 MB) with weight 3361309 (59.89/col) Thu Feb 05 18:07:40 2009 sparse part has weight 3361309 (59.89/col) Thu Feb 05 18:07:40 2009 saving the first 48 matrix rows for later Thu Feb 05 18:07:40 2009 matrix is 56018 x 56128 (8.6 MB) with weight 2637423 (46.99/col) Thu Feb 05 18:07:40 2009 sparse part has weight 1924355 (34.29/col) Thu Feb 05 18:07:40 2009 matrix includes 64 packed rows Thu Feb 05 18:07:40 2009 using block size 22451 for processor cache size 1024 kB Thu Feb 05 18:07:40 2009 commencing Lanczos iteration Thu Feb 05 18:07:40 2009 memory use: 8.4 MB Thu Feb 05 18:07:59 2009 lanczos halted after 887 iterations (dim = 56014) Thu Feb 05 18:07:59 2009 recovered 14 nontrivial dependencies Thu Feb 05 18:08:00 2009 prp35 factor: 69465947887975644559852068056851351 Thu Feb 05 18:08:00 2009 prp55 factor: 6923661521546369811565028929358579000131701666180044333 Thu Feb 05 18:08:00 2009 elapsed time 01:22:07
(14·10119-17)/3 = 4(6)1181<120> = 13 · 59 · 7283 · 4132797668804504093<19> · C95
C95 = P35 · P60
P35 = 44357599571637221207700789302449841<35>
P60 = 455710386511529836317128544802766863224130000687759052360477<60>
Thu Feb 05 18:19:03 2009 Msieve v. 1.39 Thu Feb 05 18:19:03 2009 random seeds: f5622540 4dc7e8cd Thu Feb 05 18:19:03 2009 factoring 20214218845514468376829031884492141202780645129534194815969814747284526402923001349089943334157 (95 digits) Thu Feb 05 18:19:04 2009 searching for 15-digit factors Thu Feb 05 18:19:06 2009 commencing quadratic sieve (95-digit input) Thu Feb 05 18:19:06 2009 using multiplier of 37 Thu Feb 05 18:19:06 2009 using 32kb Intel Core sieve core Thu Feb 05 18:19:06 2009 sieve interval: 36 blocks of size 32768 Thu Feb 05 18:19:06 2009 processing polynomials in batches of 6 Thu Feb 05 18:19:06 2009 using a sieve bound of 2128183 (78772 primes) Thu Feb 05 18:19:06 2009 using large prime bound of 310714718 (28 bits) Thu Feb 05 18:19:06 2009 using double large prime bound of 1933086450144842 (43-51 bits) Thu Feb 05 18:19:06 2009 using trial factoring cutoff of 51 bits Thu Feb 05 18:19:06 2009 polynomial 'A' values have 12 factors Thu Feb 05 21:54:39 2009 78919 relations (19582 full + 59337 combined from 1161867 partial), need 78868 Thu Feb 05 21:54:42 2009 begin with 1181449 relations Thu Feb 05 21:54:43 2009 reduce to 204186 relations in 10 passes Thu Feb 05 21:54:43 2009 attempting to read 204186 relations Thu Feb 05 21:54:46 2009 recovered 204186 relations Thu Feb 05 21:54:46 2009 recovered 188215 polynomials Thu Feb 05 21:54:46 2009 attempting to build 78919 cycles Thu Feb 05 21:54:46 2009 found 78919 cycles in 6 passes Thu Feb 05 21:54:46 2009 distribution of cycle lengths: Thu Feb 05 21:54:46 2009 length 1 : 19582 Thu Feb 05 21:54:46 2009 length 2 : 14025 Thu Feb 05 21:54:46 2009 length 3 : 13434 Thu Feb 05 21:54:46 2009 length 4 : 10578 Thu Feb 05 21:54:46 2009 length 5 : 7884 Thu Feb 05 21:54:46 2009 length 6 : 5442 Thu Feb 05 21:54:46 2009 length 7 : 3407 Thu Feb 05 21:54:46 2009 length 9+: 4567 Thu Feb 05 21:54:46 2009 largest cycle: 21 relations Thu Feb 05 21:54:46 2009 matrix is 78772 x 78919 (21.5 MB) with weight 5330814 (67.55/col) Thu Feb 05 21:54:46 2009 sparse part has weight 5330814 (67.55/col) Thu Feb 05 21:54:48 2009 filtering completed in 3 passes Thu Feb 05 21:54:48 2009 matrix is 74850 x 74914 (20.6 MB) with weight 5106202 (68.16/col) Thu Feb 05 21:54:48 2009 sparse part has weight 5106202 (68.16/col) Thu Feb 05 21:54:48 2009 saving the first 48 matrix rows for later Thu Feb 05 21:54:48 2009 matrix is 74802 x 74914 (14.8 MB) with weight 4233713 (56.51/col) Thu Feb 05 21:54:48 2009 sparse part has weight 3424377 (45.71/col) Thu Feb 05 21:54:48 2009 matrix includes 64 packed rows Thu Feb 05 21:54:48 2009 using block size 29965 for processor cache size 1024 kB Thu Feb 05 21:54:49 2009 commencing Lanczos iteration Thu Feb 05 21:54:49 2009 memory use: 13.2 MB Thu Feb 05 21:55:29 2009 lanczos halted after 1184 iterations (dim = 74800) Thu Feb 05 21:55:29 2009 recovered 17 nontrivial dependencies Thu Feb 05 21:55:33 2009 prp35 factor: 44357599571637221207700789302449841 Thu Feb 05 21:55:33 2009 prp60 factor: 455710386511529836317128544802766863224130000687759052360477 Thu Feb 05 21:55:33 2009 elapsed time 03:36:30
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 5, 2009
(41·10171+31)/9 = 4(5)1709<172> = 2345953 · 225083257862155001821<21> · 87966517951616456089657749134835387907<38> · C107
C107 = P47 · P61
P47 = 97527605102358392635059652231653292903706452529<47>
P61 = 1005619964341110324977300989851086904195026065037215955093281<61>
Number: 45559_171 N=98075706765307536187489902095252886657188662798627501819296576957833560811191731511967177870879541793357649 ( 107 digits) Divisors found: r1=97527605102358392635059652231653292903706452529 r2=1005619964341110324977300989851086904195026065037215955093281 Version: Total time: 7.61 hours. Scaled time: 18.18 units (timescale=2.388). Factorization parameters were as follows: name: 45559_171 n: 98075706765307536187489902095252886657188662798627501819296576957833560811191731511967177870879541793357649 skew: 3694.36 # norm 6.81e+14 c5: 262080 c4: 74249556 c3: -78205127191976 c2: -9335641545687925 c1: 102035892536425629126 c0: 59977709598120917721174 # alpha -5.38 Y1: 151806050231 Y0: -206359988591435496625 # Murphy_E 1.41e-09 # M 69217724840439548628410125642110719760392330332550285062401846730483530177346371570195000966628927571656931 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 51/51 Sieved algebraic special-q in [900000, 1450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 5355063 Max relations in full relation-set: Initial matrix: Pruned matrix : 299146 x 299394 Polynomial selection time: 0.43 hours. Total sieving time: 6.26 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.20 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,51,51,2.6,2.6,50000 total time: 7.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(14·10109-17)/3 = 4(6)1081<110> = C110
C110 = P47 · P64
P47 = 20787052726234940370216484139571950095666873157<47>
P64 = 2244987169718849182365886078043557243840241223173465926322376673<64>
Number: 46661_109 N=46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 110 digits) SNFS difficulty: 110 digits. Divisors found: r1=20787052726234940370216484139571950095666873157 r2=2244987169718849182365886078043557243840241223173465926322376673 Version: Total time: 0.35 hours. Scaled time: 0.82 units (timescale=2.357). Factorization parameters were as follows: n: 46666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 10000000000000000000000 deg: 5 c5: 7 c0: -85 skew: 1.65 type: snfs lss: 1 rlim: 320000 alim: 320000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 320000/320000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [160000, 280001) Primes: rational ideals reading, algebraic ideals reading, Relations: 943417 Max relations in full relation-set: Initial matrix: Pruned matrix : 42297 x 42527 Total sieving time: 0.31 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,320000,320000,25,25,44,44,2.2,2.2,20000 total time: 0.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(41·10158+31)/9 = 4(5)1579<159> = 3 · 313 · 2171717 · 362805067747<12> · 35153901082644763763<20> · C119
C119 = P39 · P80
P39 = 221173944223763048794372321041180140113<39>
P80 = 79193892564994506212021420437914729233141839242031716913696415972933097456063401<80>
Number: 45559_158 N=17515625577032778123482422833133199922476087253746096807624813956948927100810670967169644831409843544339495714591304313 ( 119 digits) SNFS difficulty: 161 digits. Divisors found: r1=221173944223763048794372321041180140113 r2=79193892564994506212021420437914729233141839242031716913696415972933097456063401 Version: Total time: 23.05 hours. Scaled time: 55.08 units (timescale=2.390). Factorization parameters were as follows: n: 17515625577032778123482422833133199922476087253746096807624813956948927100810670967169644831409843544339495714591304313 m: 100000000000000000000000000000000 deg: 5 c5: 41 c0: 3100 skew: 2.38 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9853177 Max relations in full relation-set: Initial matrix: Pruned matrix : 686884 x 687132 Total sieving time: 20.86 hours. Total relation processing time: 0.95 hours. Matrix solve time: 1.01 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 23.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By Serge Batalov / GMP-ECM 6.2.1 / Feb 5, 2009
(14·10133-17)/3 = 4(6)1321<134> = 71 · 79 · 37447 · 1134660619<10> · 1073535220299519023701001<25> · C93
C93 = P33 · P61
P33 = 115751464003827661828457840765689<33>
P61 = 1575779834591580964906843212112016937196963642469575467360977<61>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=805836458 Step 1 took 1800ms ********** Factor found in step 1: 115751464003827661828457840765689 Found probable prime factor of 33 digits: 115751464003827661828457840765689 Probable prime cofactor 1575779834591580964906843212112016937196963642469575467360977 has 61 digits
(14·10174-17)/3 = 4(6)1731<175> = 43 · 5581 · 2169822149101<13> · 65388310432339<14> · 1153785311426014376606166601<28> · C117
C117 = P30 · P87
P30 = 424978918630483693742771562901<30>
P87 = 279517920157753837998752384235868465539820566237989946548788294559504855551561157233553<87>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1507051256 Step 1 took 2796ms ********** Factor found in step 1: 424978918630483693742771562901 Found probable prime factor of 30 digits: 424978918630483693742771562901 Probable prime cofactor has 87 digits
(14·10169-17)/3 = 4(6)1681<170> = C170
C170 = P30 · C141
P30 = 215880244364499579382801212799<30>
C141 = [216169232177971192501955249216876153564299586479509590522860815653381675214844760678296009204006289701356974365633658790823919329922476632539<141>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3927306547 Step 1 took 3572ms Step 2 took 3373ms ********** Factor found in step 2: 215880244364499579382801212799 Found probable prime factor of 30 digits: 215880244364499579382801212799 Composite cofactor has 141 digits
(14·10182-17)/3 = 4(6)1811<183> = 19445673994992446629<20> · C164
C164 = P35 · P129
P35 = 40139161552591513443366540237002969<35>
P129 = 597882007272101010985678287128299619443541305065912651420531019621137283657335574509787903281386890063449376162669440326865485161<129>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3815980854 Step 1 took 4532ms Step 2 took 4245ms ********** Factor found in step 2: 40139161552591513443366540237002969 Found probable prime factor of 35 digits: 40139161552591513443366540237002969 Probable prime cofactor 597882007272101010985678287128299619443541305065912651420531019621137283657335574509787903281386890063449376162669440326865485161 has 129 digits
(14·10104-17)/3 = 4(6)1031<105> = 3315197839<10> · C96
C96 = P37 · P60
P37 = 1048186020905847339687889653549342847<37>
P60 = 134294728908693501313898247253393131921162318436945997859317<60>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1343043597 Step 1 took 5472ms Step 2 took 6340ms ********** Factor found in step 2: 1048186020905847339687889653549342847 Found probable prime factor of 37 digits: 1048186020905847339687889653549342847 Probable prime cofactor has 60 digits
(14·10145-17)/3 = 4(6)1441<146> = 149 · 17159 · 113217659 · 23804775121<11> · 10255604759491163<17> · C105
C105 = P39 · P67
P39 = 153263613785359808010712420969640040613<39>
P67 = 4308736618824956231372711263088119074543145711353357387045343555331<67>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=746015315 Step 1 took 8338ms Step 2 took 9009ms ********** Factor found in step 2: 153263613785359808010712420969640040613 Found probable prime factor of 39 digits: 153263613785359808010712420969640040613 Probable prime cofactor 4308736618824956231372711263088119074543145711353357387045343555331 has 67 digits
(14·10173-17)/3 = 4(6)1721<174> = 13 · 859 · 5998697 · 13845991 · C156
C156 = P33 · C124
P33 = 409103341929942277576340139824293<33>
C124 = [1229861670861254617548494925913918290044304120418280776400992158432398260682671962391119989681635502520909226281982831769953<124>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1580869394 Step 1 took 10961ms Step 2 took 10200ms ********** Factor found in step 2: 409103341929942277576340139824293 Found probable prime factor of 33 digits: 409103341929942277576340139824293 Composite cofactor has 124 digits
(14·10132-17)/3 = 4(6)1311<133> = 43 · C132
C132 = P39 · C93
P39 = 242477283479484920079946834362098068307<39>
C93 = [447576491395854011724077485504451312282020626085064397979685957809662700075420254722086217461<93>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=456477673 Step 1 took 9730ms Step 2 took 10894ms ********** Factor found in step 2: 242477283479484920079946834362098068307 Found probable prime factor of 39 digits: 242477283479484920079946834362098068307 Composite cofactor has 93 digits
(14·10164-17)/3 = 4(6)1631<165> = 23 · 109 · 520607 · 105002844451<12> · C145
C145 = P34 · P111
P34 = 7375632163441432727253479391156161<34>
P111 = 461681136379374003491287880045920544178410299268405105269544565799988405783938430548888977576093818499029824699<111>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2326954712 Step 1 took 9217ms Step 2 took 9096ms ********** Factor found in step 2: 7375632163441432727253479391156161 Found probable prime factor of 34 digits: 7375632163441432727253479391156161 Probable prime cofactor 461681136379374003491287880045920544178410299268405105269544565799988405783938430548888977576093818499029824699 has 111 digits
By Erik Branger / GGNFS, Msieve / Feb 5, 2009
(13·10176+17)/3 = 4(3)1759<177> = 97 · 109 · 901097 · 451257280864272805261<21> · 3965646214566007961499170761<28> · C119
C119 = P56 · P63
P56 = 59185885698644238019123758994034774471830972650680846983<56>
P63 = 429433559966094613538911133005929578976819079364002591855166933<63>
Number: 43339_176 N=25416405595315161978385298359847677774018773093491295116086851158718087605127154500811030786194342648976153229294413139 ( 119 digits) Divisors found: r1=59185885698644238019123758994034774471830972650680846983 r2=429433559966094613538911133005929578976819079364002591855166933 Version: Total time: 46.43 hours. Scaled time: 48.89 units (timescale=1.053). Factorization parameters were as follows: name: 43339_176 n: 25416405595315161978385298359847677774018773093491295116086851158718087605127154500811030786194342648976153229294413139 skew: 207459.67 Y0: -70807329228647219464816 Y1: 5649748224103 c0: -3986302978437759696767634254043 c1: 48211596676827722611050315 c2: 160152199119492675151 c3: -1985529414860945 c4: -2119259958 c5: 14280 type: gnfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4230001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 606781 x 607029 Total sieving time: 46.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 46.43 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Feb 5, 2009
(41·10149+31)/9 = 4(5)1489<150> = 3 · 13 · 89 · 2681561 · 7209187 · 198035972315986749236495057<27> · C107
C107 = P42 · P65
P42 = 742595156508827118542839675104487894660931<42>
P65 = 46165395947484115517095878930268133102823135966773754229187847641<65>
Number: n N=34282199428913939966287465267724872592788642827752255150950681745921588947521176996927132361852311383213771 ( 107 digits) SNFS difficulty: 151 digits. Divisors found: r1=742595156508827118542839675104487894660931 (pp42) r2=46165395947484115517095878930268133102823135966773754229187847641 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.56 hours. Scaled time: 30.28 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_5_148_9 n: 34282199428913939966287465267724872592788642827752255150950681745921588947521176996927132361852311383213771 deg: 5 c5: 41 c0: 310 m: 1000000000000000000000000000000 skew: 1.50 type: snfs rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [1100000, 1920001) Primes: RFBsize:162662, AFBsize:163117, largePrimes:14471590 encountered Relations: rels:13542748, finalFF:378681 Max relations in full relation-set: 48 Initial matrix: 325844 x 378681 with sparse part having weight 60399318. Pruned matrix : 311607 x 313300 with weight 44312611. Total sieving time: 14.53 hours. Total relation processing time: 0.41 hours. Matrix solve time: 1.46 hours. Total square root time: 0.15 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,56,56,2.5,2.5,100000 total time: 16.56 hours. --------- CPU info (if available) ----------
(41·10147+31)/9 = 4(5)1469<148> = 139 · 587 · 6902943828894011321<19> · C124
C124 = P44 · P81
P44 = 15790481464166446594690651815180971019684223<44>
P81 = 512222597526685881224335243996449802720016005174732892674800648867239124059296361<81>
Number: n N=8088241431772323359905288451844054603516404793649864842836942168315351908932187004288549805467603217715112449054385793012503 ( 124 digits) SNFS difficulty: 148 digits. Divisors found: Thu Feb 05 15:47:15 2009 prp44 factor: 15790481464166446594690651815180971019684223 Thu Feb 05 15:47:15 2009 prp81 factor: 512222597526685881224335243996449802720016005174732892674800648867239124059296361 Thu Feb 05 15:47:15 2009 elapsed time 01:37:26 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.78 hours. Scaled time: 31.14 units (timescale=1.751). Factorization parameters were as follows: name: KA_4_5_146_9 n: 8088241431772323359905288451844054603516404793649864842836942168315351908932187004288549805467603217715112449054385793012503 deg: 5 c5: 4100 c0: 31 m: 100000000000000000000000000000 skew: 0.38 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2750357) Primes: RFBsize:148933, AFBsize:148687, largePrimes:14081621 encountered Relations: rels:13256340, finalFF:301266 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1857315 hash collisions in 14938253 relations Msieve: matrix is 390722 x 390970 (102.5 MB) Total sieving time: 17.15 hours. Total relation processing time: 0.63 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.5,2.5,100000 total time: 17.78 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 5, 2009
(41·10160+31)/9 = 4(5)1599<161> = 19081 · 121814779271<12> · 246290541059<12> · 2928052299134664302694239<25> · C110
C110 = P48 · P62
P48 = 417031829818786514625003110149835023357335429041<48>
P62 = 65169511730006841092794775676897877056841471574689193783777149<62>
Number: 45559_160 N=27177760725161624492666122154903250925655192592760208327964201536452894271617890829840465084241824723446784109 ( 110 digits) Divisors found: r1=417031829818786514625003110149835023357335429041 r2=65169511730006841092794775676897877056841471574689193783777149 Version: Total time: 9.18 hours. Scaled time: 21.90 units (timescale=2.386). Factorization parameters were as follows: name: 45559_160 n: 27177760725161624492666122154903250925655192592760208327964201536452894271617890829840465084241824723446784109 skew: 33792.95 # norm 2.92e+15 c5: 18240 c4: -2426298761 c3: -129766364201011 c2: 2159625987619716429 c1: 30758043909317759146504 c0: -322864991197159729721686960 # alpha -6.42 Y1: 509338277569 Y0: -1083036769604062843989 # Murphy_E 1.06e-09 # M 4069870747139864016425162783638635230370222738182267958161246223817949573585473063739648028664842912771748600 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8114328 Max relations in full relation-set: Initial matrix: Pruned matrix : 357183 x 357431 Polynomial selection time: 0.66 hours. Total sieving time: 7.64 hours. Total relation processing time: 0.52 hours. Matrix solve time: 0.28 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 9.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672353)
Factorizations of 466...661 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Robert Backstrom / GGNFS, Msieve / Feb 5, 2009
(37·10204+17)/9 = 4(1)2033<205> = 3 · C205
C205 = P102 · P103
P102 = 153309913352856585802120594537109285957749031611920050232775437965114309133133655034055113177052274147<102>
P103 = 8938563334885849358263822539007719875728625710335868949963740586159114978519165202551819473673605180193<103>
Number: n N=1370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 ( 205 digits) SNFS difficulty: 206 digits. Divisors found: Wed Feb 4 22:20:50 2009 prp102 factor: 153309913352856585802120594537109285957749031611920050232775437965114309133133655034055113177052274147 Wed Feb 4 22:20:50 2009 prp103 factor: 8938563334885849358263822539007719875728625710335868949963740586159114978519165202551819473673605180193 Wed Feb 4 22:20:50 2009 elapsed time 24:31:38 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 151.50 hours. Scaled time: 304.66 units (timescale=2.011). Factorization parameters were as follows: name: KA_4_1_203_3 n: 1370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 deg: 5 c5: 37 c0: 170 m: 100000000000000000000000000000000000000000 skew: 1.36 type: snfs rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 42599990) Primes: RFBsize:664579, AFBsize:664455, largePrimes:36623236 encountered Relations: rels:31037462, finalFF:48980 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8849123 hash collisions in 45406511 relations Msieve: matrix is 3743033 x 3743281 (1019.2 MB) Total sieving time: 150.22 hours. Total relation processing time: 1.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 151.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830483) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.68 BogoMIPS).
P102 is the largest prime factor which was found in our tables so far. Congratulations!
By Jo Yeong Uk / GGNFS, MSieve v1.39 / Feb 4, 2009
(41·10154+31)/9 = 4(5)1539<155> = 1283 · 1871 · 987869 · 7992647567<10> · 17891718779497<14> · 45579564781601<14> · C106
C106 = P47 · P60
P47 = 12777040938465543273078312549300380272022438917<47>
P60 = 230673847391265473660109691575737534480723477975666285649269<60>
Number: 45559_154 N=2947329191551552118509279124099511833564446263428751552985788903463748077941107615863485422624550238201673 ( 106 digits) Divisors found: r1=12777040938465543273078312549300380272022438917 r2=230673847391265473660109691575737534480723477975666285649269 Version: Total time: 5.69 hours. Scaled time: 13.60 units (timescale=2.391). Factorization parameters were as follows: name: 45559_154 n: 2947329191551552118509279124099511833564446263428751552985788903463748077941107615863485422624550238201673 skew: 9152.16 # norm 7.12e+14 c5: 45720 c4: -1680847446 c3: 28490701205429 c2: 459015295180056074 c1: -856933538753681074326 c0: 316787297664447954662535 # alpha -6.42 Y1: 133171513343 Y0: -145166836990382843528 # Murphy_E 1.77e-09 # M 1114897154838392718458649305345136319880261944443620690400281399038725591199716555678089018166755566500259 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1150001) Primes: rational ideals reading, algebraic ideals reading, Relations: 4842124 Max relations in full relation-set: Initial matrix: Pruned matrix : 255636 x 255884 Polynomial selection time: 0.38 hours. Total sieving time: 4.60 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.14 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 5.69 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672353)
(13·10177+17)/3 = 4(3)1769<178> = C178
C178 = P62 · P117
P62 = 12864649056903134634243503707994331842134704910686309339021097<62>
P117 = 336840384387172910065381478083455265403401238630972549534291262928443204454411404621225093869459778485857538625090787<117>
Number: 43339_177 N=4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 ( 178 digits) SNFS difficulty: 178 digits. Divisors found: r1=12864649056903134634243503707994331842134704910686309339021097 r2=336840384387172910065381478083455265403401238630972549534291262928443204454411404621225093869459778485857538625090787 Version: Total time: 88.51 hours. Scaled time: 211.28 units (timescale=2.387). Factorization parameters were as follows: n: 4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 m: 100000000000000000000000000000000000 deg: 5 c5: 1300 c0: 17 skew: 0.42 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18243247 Max relations in full relation-set: Initial matrix: Pruned matrix : 1291523 x 1291771 Total sieving time: 82.00 hours. Total relation processing time: 2.39 hours. Matrix solve time: 3.79 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,53,53,2.5,2.5,100000 total time: 88.51 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672353)
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Feb 4, 2009
(41·10191+31)/9 = 4(5)1909<192> = 33 · 13 · 109 · 211 · 15573491 · 19169933 · C171
C171 = P32 · P139
P32 = 39851434970484144828435349156003<32>
P139 = 4743236095339451124911657751165018729393994052130281112840738761497417153390871883429816815069838248761715721446026550938237187794672084099<139>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2412366714 Step 1 took 13613ms Step 2 took 16052ms ********** Factor found in step 2: 39851434970484144828435349156003 Found probable prime factor of 32 digits: 39851434970484144828435349156003 Probable prime cofactor has 139 digits
(41·10171+31)/9 = 4(5)1709<172> = 2345953 · 225083257862155001821<21> · C145
C145 = P38 · C107
P38 = 87966517951616456089657749134835387907<38>
C107 = [98075706765307536187489902095252886657188662798627501819296576957833560811191731511967177870879541793357649<107>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3230988224 Step 1 took 11699ms Step 2 took 14113ms ********** Factor found in step 2: 87966517951616456089657749134835387907 Found probable prime factor of 38 digits: 87966517951616456089657749134835387907 Composite cofactor has 107 digits
(41·10137+31)/9 = 4(5)1369<138> = 34 · 13 · 32410105898003833122953056363<29> · C107
C107 = P48 · P59
P48 = 252393054615440922847616237510590238393523348029<48>
P59 = 52887754263971463652272433280462875253408094097265038159789<59>
SNFS difficulty: 139 digits. Divisors found: r1=252393054615440922847616237510590238393523348029 (pp48) r2=52887754263971463652272433280462875253408094097265038159789 (pp59) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 13348501850434568171603581727123465106200956285391267018621817037449652422929632858882357728590612360205881 m: 2000000000000000000000000000 deg: 5 c5: 1025 c0: 248 skew: 0.75 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [740000, 1790001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 248108 x 248356 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,49,49,2.3,2.3,75000 total time: 4.00 hours.
(41·10144+31)/9 = 4(5)1439<145> = 29 · 3583 · 31883 · C136
C136 = P44 · P92
P44 = 43891407210223167991938940264408438234274231<44>
P92 = 31329816916985703162968325139908103167161980429416652592213407347484770038268189526368100369<92>
SNFS difficulty: 146 digits. Divisors found: r1=43891407210223167991938940264408438234274231 (pp44) r2=31329816916985703162968325139908103167161980429416652592213407347484770038268189526368100369 (pp92) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.301). Factorization parameters were as follows: n: 1375109752125158075603206090777891282120476954822609292629635110157496109652935842053098044646592473679160655521538764646654558878291239 m: 100000000000000000000000000000 deg: 5 c5: 41 c0: 310 skew: 1.50 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2470001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 323468 x 323716 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 7.00 hours.
By Robert Backstrom / Msieve, GMP-ECM / Feb 3, 2009
(41·10152+31)/9 = 4(5)1519<153> = 3 · 17226924482964131660780603123<29> · 8255403602793355396207431453373333<34> · C91
C91 = P38 · P53
P38 = 64454058946572661063597653904314564797<38>
P53 = 16566232802982385348636217381941028289030910679890111<53>
Tue Feb 03 15:06:21 2009 Tue Feb 03 15:06:21 2009 Tue Feb 03 15:06:21 2009 Msieve v. 1.39 Tue Feb 03 15:06:21 2009 random seeds: 618d5abc 61d4c648 Tue Feb 03 15:06:21 2009 factoring 1067760945606072306357447751924608914188862999876886904348598844862669877874888108749022467 (91 digits) Tue Feb 03 15:06:22 2009 searching for 15-digit factors Tue Feb 03 15:06:23 2009 commencing quadratic sieve (91-digit input) Tue Feb 03 15:06:23 2009 using multiplier of 3 Tue Feb 03 15:06:23 2009 using 64kb Opteron sieve core Tue Feb 03 15:06:23 2009 sieve interval: 18 blocks of size 65536 Tue Feb 03 15:06:23 2009 processing polynomials in batches of 6 Tue Feb 03 15:06:23 2009 using a sieve bound of 1651693 (62353 primes) Tue Feb 03 15:06:23 2009 using large prime bound of 145348984 (27 bits) Tue Feb 03 15:06:23 2009 using double large prime bound of 492426660101728 (42-49 bits) Tue Feb 03 15:06:23 2009 using trial factoring cutoff of 49 bits Tue Feb 03 15:06:23 2009 polynomial 'A' values have 12 factors Tue Feb 03 16:39:43 2009 62529 relations (16520 full + 46009 combined from 694872 partial), need 62449 Tue Feb 03 16:39:43 2009 begin with 711392 relations Tue Feb 03 16:39:44 2009 reduce to 153393 relations in 9 passes Tue Feb 03 16:39:44 2009 attempting to read 153393 relations Tue Feb 03 16:39:46 2009 recovered 153393 relations Tue Feb 03 16:39:46 2009 recovered 132684 polynomials Tue Feb 03 16:39:46 2009 attempting to build 62529 cycles Tue Feb 03 16:39:46 2009 found 62529 cycles in 6 passes Tue Feb 03 16:39:47 2009 distribution of cycle lengths: Tue Feb 03 16:39:47 2009 length 1 : 16520 Tue Feb 03 16:39:47 2009 length 2 : 11962 Tue Feb 03 16:39:47 2009 length 3 : 11103 Tue Feb 03 16:39:47 2009 length 4 : 8367 Tue Feb 03 16:39:47 2009 length 5 : 5935 Tue Feb 03 16:39:47 2009 length 6 : 3722 Tue Feb 03 16:39:47 2009 length 7 : 2242 Tue Feb 03 16:39:47 2009 length 9+: 2678 Tue Feb 03 16:39:47 2009 largest cycle: 20 relations Tue Feb 03 16:39:47 2009 matrix is 62353 x 62529 (15.3 MB) with weight 3758775 (60.11/col) Tue Feb 03 16:39:47 2009 sparse part has weight 3758775 (60.11/col) Tue Feb 03 16:39:49 2009 filtering completed in 3 passes Tue Feb 03 16:39:49 2009 matrix is 58603 x 58667 (14.5 MB) with weight 3556923 (60.63/col) Tue Feb 03 16:39:49 2009 sparse part has weight 3556923 (60.63/col) Tue Feb 03 16:39:49 2009 saving the first 48 matrix rows for later Tue Feb 03 16:39:49 2009 matrix is 58555 x 58667 (9.2 MB) with weight 2801740 (47.76/col) Tue Feb 03 16:39:49 2009 sparse part has weight 2052873 (34.99/col) Tue Feb 03 16:39:49 2009 matrix includes 64 packed rows Tue Feb 03 16:39:49 2009 using block size 21845 for processor cache size 512 kB Tue Feb 03 16:39:49 2009 commencing Lanczos iteration Tue Feb 03 16:39:49 2009 memory use: 8.9 MB Tue Feb 03 16:40:21 2009 lanczos halted after 928 iterations (dim = 58551) Tue Feb 03 16:40:22 2009 recovered 15 nontrivial dependencies Tue Feb 03 16:40:22 2009 prp38 factor: 64454058946572661063597653904314564797 Tue Feb 03 16:40:22 2009 prp53 factor: 16566232802982385348636217381941028289030910679890111 Tue Feb 03 16:40:22 2009 elapsed time 01:34:01
(41·10140+31)/9 = 4(5)1399<141> = 3 · C141
C141 = P34 · P108
P34 = 1199724753870660251498367251866019<34>
P108 = 126572241976281397788306276290203483556777976494085693561461616930615405285457813403487508172685964660247887<108>
GMP-ECM 6.2.1 [powered by GMP 4.1.4] [ECM] Input number is 151851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 (141 digits) Using B1=298000, B2=172085560, polynomial Dickson(3), sigma=3207482358 Step 1 took 4359ms Step 2 took 2203ms ********** Factor found in step 2: 1199724753870660251498367251866019 Found probable prime factor of 34 digits: 1199724753870660251498367251866019 Probable prime cofactor 126572241976281397788306276290203483556777976494085693561461616930615405285457813403487508172685964660247887 has 108 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Feb 3, 2009
(41·10117+31)/9 = 4(5)1169<118> = 2579 · 45449651019682374295796358109<29> · C86
C86 = P35 · P51
P35 = 66632079996950000918850156270835181<35>
P51 = 583278652312656861739409130860545541746824360450149<51>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=2416555942 Step 1 took 2262ms Step 2 took 3014ms ********** Factor found in step 2: 66632079996950000918850156270835181 Found probable prime factor of 35 digits: 66632079996950000918850156270835181 Probable prime cofactor 583278652312656861739409130860545541746824360450149 has 51 digits
(41·10135+31)/9 = 4(5)1349<136> = 3023 · 478444886724083<15> · C118
C118 = P37 · P38 · P44
P37 = 3556372132455003504299125348332795791<37>
P38 = 81764998487587515297393502595915397367<38>
P44 = 10831700697889374875547086213253766769996683<44>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=4009176397 Step 1 took 3337ms Step 2 took 3839ms ********** Factor found in step 2: 3556372132455003504299125348332795791 Found probable prime factor of 37 digits: 3556372132455003504299125348332795791 Composite cofactor has 81 digits Mon Feb 2 10:54:20 2009 Msieve v. 1.39 Mon Feb 2 10:54:20 2009 random seeds: c823d20b 086b9660 Mon Feb 2 10:54:20 2009 factoring 885653991180925370649281203219902274025329631298217788923412812505979443216933661 (81 digits) Mon Feb 2 10:54:21 2009 searching for 15-digit factors Mon Feb 2 10:54:21 2009 commencing quadratic sieve (81-digit input) Mon Feb 2 10:54:22 2009 using multiplier of 1 Mon Feb 2 10:54:22 2009 using 64kb Opteron sieve core Mon Feb 2 10:54:22 2009 sieve interval: 6 blocks of size 65536 Mon Feb 2 10:54:22 2009 processing polynomials in batches of 17 Mon Feb 2 10:54:22 2009 using a sieve bound of 1325939 (50860 primes) Mon Feb 2 10:54:22 2009 using large prime bound of 127290144 (26 bits) Mon Feb 2 10:54:22 2009 using trial factoring cutoff of 27 bits Mon Feb 2 10:54:22 2009 polynomial 'A' values have 10 factors Mon Feb 2 11:09:51 2009 50979 relations (26425 full + 24554 combined from 272911 partial), need 50956 Mon Feb 2 11:09:51 2009 begin with 299336 relations Mon Feb 2 11:09:51 2009 reduce to 72500 relations in 2 passes Mon Feb 2 11:09:51 2009 attempting to read 72500 relations Mon Feb 2 11:09:51 2009 recovered 72500 relations Mon Feb 2 11:09:51 2009 recovered 62259 polynomials Mon Feb 2 11:09:52 2009 attempting to build 50979 cycles Mon Feb 2 11:09:52 2009 found 50979 cycles in 1 passes Mon Feb 2 11:09:52 2009 distribution of cycle lengths: Mon Feb 2 11:09:52 2009 length 1 : 26425 Mon Feb 2 11:09:52 2009 length 2 : 24554 Mon Feb 2 11:09:52 2009 largest cycle: 2 relations Mon Feb 2 11:09:52 2009 matrix is 50860 x 50979 (7.4 MB) with weight 1539782 (30.20/col) Mon Feb 2 11:09:52 2009 sparse part has weight 1539782 (30.20/col) Mon Feb 2 11:09:52 2009 filtering completed in 3 passes Mon Feb 2 11:09:52 2009 matrix is 36210 x 36273 (5.8 MB) with weight 1231213 (33.94/col) Mon Feb 2 11:09:52 2009 sparse part has weight 1231213 (33.94/col) Mon Feb 2 11:09:52 2009 saving the first 48 matrix rows for later Mon Feb 2 11:09:52 2009 matrix is 36162 x 36273 (4.4 MB) with weight 976497 (26.92/col) Mon Feb 2 11:09:52 2009 sparse part has weight 791496 (21.82/col) Mon Feb 2 11:09:52 2009 matrix includes 64 packed rows Mon Feb 2 11:09:52 2009 using block size 14509 for processor cache size 1024 kB Mon Feb 2 11:09:52 2009 commencing Lanczos iteration Mon Feb 2 11:09:52 2009 memory use: 4.2 MB Mon Feb 2 11:09:59 2009 lanczos halted after 574 iterations (dim = 36159) Mon Feb 2 11:09:59 2009 recovered 15 nontrivial dependencies Mon Feb 2 11:09:59 2009 prp38 factor: 81764998487587515297393502595915397367 Mon Feb 2 11:09:59 2009 prp44 factor: 10831700697889374875547086213253766769996683 Mon Feb 2 11:09:59 2009 elapsed time 00:15:39
(41·10204+31)/9 = 4(5)2039<205> = 107 · 131 · 31277 · C197
C197 = P30 · P167
P30 = 230454230267348953158887518549<30>
P167 = 45089612115818448155796470649616724336674999001543316720183911839357510803560451459077985696357661739476679106474543100464107779255828793471990363456921813665099755799<167>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3108296035 Step 1 took 6098ms ********** Factor found in step 1: 230454230267348953158887518549 Found probable prime factor of 30 digits: 230454230267348953158887518549 Probable prime cofactor has 167 digits
(41·10198+31)/9 = 4(5)1979<199> = 11491 · 17387 · 56369 · 263821 · 767587 · 1785217112626973<16> · 9504219627715347490470906977<28> · C132
C132 = P34 · P37 · P62
P34 = 1177579993328123065167747303985169<34>
P37 = 5156157608132315031396242239112911579<37>
P62 = 19389091393505217028537474507543121002110687928310985249625999<62>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1851117601 Step 1 took 9840ms Step 2 took 12537ms ********** Factor found in step 2: 1177579993328123065167747303985169 Found probable prime factor of 34 digits: 1177579993328123065167747303985169 Composite cofactor has 98 digits 45559_198 Found extra factor Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=515529071 Step 1 took 9976ms Step 2 took 2325ms ********** Factor found in step 2: 5156157608132315031396242239112911579 Found probable prime factor of 37 digits: 5156157608132315031396242239112911579 Probable prime cofactor.
(41·10185+31)/9 = 4(5)1849<186> = 3 · 13 · 23 · 431 · 32561 · 1733946335992663789331<22> · C155
C155 = P29 · P126
P29 = 34008497648100591013052154037<29>
P126 = 613692478267694301112861462527973809965834124804709250280401185930469290003364382565567322986277018807383528660445164767960311<126>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2010483597 Step 1 took 14823ms Step 2 took 15166ms ********** Factor found in step 2: 34008497648100591013052154037 Found probable prime factor of 29 digits: 34008497648100591013052154037 Probable prime cofactor has 126 digits
(41·10120+31)/9 = 4(5)1199<121> = 212243 · C116
C116 = P33 · P39 · P45
P33 = 340372629305350493038858258580227<33>
P39 = 142707570407913263217126244735561659953<39>
P45 = 441882019100876445682608173027102980374694223<45>
SNFS difficulty: 121 digits. Divisors found: r1=340372629305350493038858258580227 (pp33) r2=142707570407913263217126244735561659953 (pp39) r3=441882019100876445682608173027102980374694223 (pp45) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 21463867150179537396076928593902062991738505183000407813475853411210525461643284139196843031598477007748456041214813 m: 1000000000000000000000000 deg: 5 c5: 41 c0: 31 skew: 0.95 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 49 mfba: 49 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 49/49 Sieved rational special-q in [370000, 720001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76551 x 76794 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,49,49,2.2,2.2,50000 total time: 1.00 hours.
(41·10150+31)/9 = 4(5)1499<151> = 59 · C149
C149 = P46 · P49 · P56
P46 = 1834886255558059164439981705268639491756411363<46>
P49 = 2810565013910426340429576863390187630819434313763<49>
P56 = 14972232145499087168765999273668718924452898779323137629<56>
SNFS difficulty: 151 digits. Divisors found: r1=1834886255558059164439981705268639491756411363 (pp46) r2=2810565013910426340429576863390187630819434313763 (pp49) r3=14972232145499087168765999273668718924452898779323137629 (pp56) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.900). Factorization parameters were as follows: n: 77212806026365348399246704331450094161958568738229755178907721280602636534839924670433145009416195856873822975517890772128060263653483992467043314501 m: 1000000000000000000000000000000 deg: 5 c5: 41 c0: 31 skew: 0.95 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1200000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 486507 x 486755 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,52,52,2.4,2.4,200000 total time: 12.00 hours.
(41·10166+31)/9 = 4(5)1659<167> = 3727 · 6079 · 446523649107241<15> · C145
C145 = P33 · C113
P33 = 282439056897102489148533809233561<33>
C113 = [15943387191326006946618098390931334098583772565115458602425948433791571117252421966012384908580203304557239817623<113>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2537698185 Step 1 took 11804ms Step 2 took 13768ms ********** Factor found in step 2: 282439056897102489148533809233561 Found probable prime factor of 33 digits: 282439056897102489148533809233561 Composite cofactor has 113 digits
(41·10146+31)/9 = 4(5)1459<147> = 32 · 172 · 327834257 · C135
C135 = P63 · P73
P63 = 168438529842683148308054615040993794916373972406674183409321003<63>
P73 = 3171795800429727056384870508088370966952792701950555965163582644756292829<73>
SNFS difficulty: 147 digits. Divisors found: r1=168438529842683148308054615040993794916373972406674183409321003 (pp63) r2=3171795800429727056384870508088370966952792701950555965163582644756292829 (pp73) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 534252621585579664145356129183084336477260959704351426118664324429932031453629717985356037374518157303450315183482115567372178327987487 m: 100000000000000000000000000000 deg: 5 c5: 410 c0: 31 skew: 0.60 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 336386 x 336634 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,200000 total time: 9.00 hours.
By Erik Branger / GGNFS, Msieve / Feb 3, 2009
(41·10109+31)/9 = 4(5)1089<110> = 7 · C109
C109 = P55 · P55
P55 = 1609234307804789928170154494737947503033525274455224753<55>
P55 = 4044119912416110926650212851123881732754785808323471729<55>
Number: 45559_109 N=6507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 ( 109 digits) SNFS difficulty: 111 digits. Divisors found: r1=1609234307804789928170154494737947503033525274455224753 r2=4044119912416110926650212851123881732754785808323471729 Version: Total time: 0.81 hours. Scaled time: 0.74 units (timescale=0.919). Factorization parameters were as follows: n: 6507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 m: 10000000000000000000000 deg: 5 c5: 41 c0: 310 skew: 1.50 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 56531 x 56768 Total sieving time: 0.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.81 hours. --------- CPU info (if available) ----------
(41·10121+31)/9 = 4(5)1209<122> = 7 · 3705469 · 520867280357<12> · C103
C103 = P50 · P54
P50 = 25085893303696860441801815651838721304018746730029<50>
P54 = 134413681174714126884752061671698555522359697260204341<54>
Number: 45559_121 N=3371887264506005865805313674602489526825146226501314368068657627613618458765311747507547885746100855889 ( 103 digits) SNFS difficulty: 122 digits. Divisors found: r1=25085893303696860441801815651838721304018746730029 r2=134413681174714126884752061671698555522359697260204341 Version: Total time: 1.97 hours. Scaled time: 1.88 units (timescale=0.957). Factorization parameters were as follows: n: 3371887264506005865805313674602489526825146226501314368068657627613618458765311747507547885746100855889 m: 1000000000000000000000000 deg: 5 c5: 410 c0: 31 skew: 0.60 type: snfs lss: 1 rlim: 770000 alim: 770000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 770000/770000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [385000, 735001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 89947 x 90180 Total sieving time: 1.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,770000,770000,25,25,46,46,2.2,2.2,50000 total time: 1.97 hours. --------- CPU info (if available) ----------
(41·10142+31)/9 = 4(5)1419<143> = 153990042194763251<18> · C126
C126 = P42 · P85
P42 = 187207276255012422729752934399155835081317<42>
P85 = 1580250675639547341201881408748595868779650270106661112293742173219702816098552534777<85>
Number: 45559_142 N=295834424786622768934616718704627647167534159440814108027259696373751625241655417932525050790318493612028538924965970265461309 ( 126 digits) SNFS difficulty: 144 digits. Divisors found: r1=187207276255012422729752934399155835081317 r2=1580250675639547341201881408748595868779650270106661112293742173219702816098552534777 Version: Total time: 10.13 hours. Scaled time: 10.48 units (timescale=1.034). Factorization parameters were as follows: n: 295834424786622768934616718704627647167534159440814108027259696373751625241655417932525050790318493612028538924965970265461309 m: 20000000000000000000000000000 deg: 5 c5: 1025 c0: 248 skew: 0.75 type: snfs lss: 1 rlim: 1790000 alim: 1790000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3Factor base limits: 1790000/1790000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [895000, 2495001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 315955 x 316199 Total sieving time: 10.13 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1790000,1790000,26,26,49,49,2.3,2.3,100000 total time: 10.13 hours. --------- CPU info (if available) ----------
(41·10134+31)/9 = 4(5)1339<135> = 3 · 883 · 32377 · C127
C127 = P40 · P42 · P46
P40 = 3355064599436787641763869624679045857743<40>
P42 = 368969902060043715953543653361241381955493<42>
P46 = 4290727720963025960639081602634475180502286117<46>
Number: 45559_134 N=5311568463843240783696431311443730078646697133227443199942657861469752424179442702126915376040709373856154541001672707481092983 ( 127 digits) SNFS difficulty: 136 digits. Divisors found: r1=3355064599436787641763869624679045857743 r2=368969902060043715953543653361241381955493 r3=4290727720963025960639081602634475180502286117 Version: Total time: 7.52 hours. Scaled time: 5.93 units (timescale=0.789). Factorization parameters were as follows: n: 5311568463843240783696431311443730078646697133227443199942657861469752424179442702126915376040709373856154541001672707481092983 m: 1000000000000000000000000000 deg: 5 c5: 41 c0: 310 skew: 1.50 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1410001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 197763 x 198002 Total sieving time: 7.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 7.52 hours. --------- CPU info (if available) ----------
(41·10148+31)/9 = 4(5)1479<149> = 383 · 1433 · 808173809 · 8477228183791<13> · 927160788567923339<18> · C104
C104 = P42 · P62
P42 = 993961156893056416607626915683869223442657<42>
P62 = 13146594532571871522060287814049648829068446860402530335788413<62>
Number: 45559_148 N=13067204310799067675002578708822192265309826867751678543454220556585403784206054853790648961562190533341 ( 104 digits) Divisors found: r1=993961156893056416607626915683869223442657 r2=13146594532571871522060287814049648829068446860402530335788413 Version: Total time: 6.90 hours. Scaled time: 6.80 units (timescale=0.986). Factorization parameters were as follows: name: 45559_148 n: 13067204310799067675002578708822192265309826867751678543454220556585403784206054853790648961562190533341 skew: 9512.93 # norm 5.22e+014 c5: 135240 c4: -1395252628 c3: -24330005753916 c2: -61135301664736594 c1: -851727712597451983479 c0: 1781714010621733225497320 # alpha -6.83 Y1: 26281209977 Y0: -39538127680531691007 # Murphy_E 2.28e-009 # M 1140871152934581302784860955381968303936443731707518166701881245649768293362391649966531840834781000646 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 239666 x 239914 Total sieving time: 6.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 6.90 hours. --------- CPU info (if available) ----------
Factorizations of 455...559 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Serge Batalov / GMP-ECM 6.2.1 / Feb 2, 2009
(10236+53)/9 = (1)2357<236> = 674701 · 5882643317337888139541<22> · C208
C208 = P37 · P171
P37 = 6441578044112823884570058936524253053<37>
P171 = 434591619408805768143625917498820920011217018449056507968046547524309851912068932987925474120037566751443665167098712448762668941244063377529397213814853294257863694748929<171>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3597231909 Step 1 took 18287ms Step 2 took 19995ms ********** Factor found in step 2: 6441578044112823884570058936524253053 Found probable prime factor of 37 digits: 6441578044112823884570058936524253053 Probable prime cofactor 434591619408805768143625917498820920011217018449056507968046547524309851912068932987925474120037566751443665167098712448762668941244063377529397213814853294257863694748929 has 171 digits
(10218+53)/9 = (1)2177<218> = 12011 · C213
C213 = P33 · C181
P33 = 512897387066005167185285145268987<33>
C181 = [1803631605744975289400475808506029437291090273290543686553003525106616277961259899167998057470194014633619515672877514719326520302185737901874383150102742811832669066034475554442181<181>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2633345069 Step 1 took 22257ms Step 2 took 21658ms ********** Factor found in step 2: 512897387066005167185285145268987 Found probable prime factor of 33 digits: 512897387066005167185285145268987 Composite cofactor has 181 digits
By Erik Branger / GMP-ECM / Feb 2, 2009
(34·10164-61)/9 = 3(7)1631<165> = 7 · 23 · 353 · 1011600001<10> · 1844691721343774408357773<25> · C127
C127 = P38 · P90
P38 = 10238952342665722552924471286551411529<38>
P90 = 347894597654053818724629590777249720177493714919264286922036675658099324234379842682033311<90>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 3562076205650723332723478089195457228089971102211463041322115816197812550131136868037166251702503830534612839535087394847442519 (127 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3670331619 Step 1 took 40404ms Step 2 took 13244ms ********** Factor found in step 2: 10238952342665722552924471286551411529 Found probable prime factor of 38 digits: 10238952342665722552924471286551411529 Probable prime cofactor 347894597654053818724629590777249720177493714919264286922036675658099324234379842682033311 has 90 digits
By Ignacio Santos / GGNFS, Msieve / Feb 1, 2009
(35·10190+1)/9 = 3(8)1899<191> = 3 · 18133 · 387285994369780603<18> · 209624376426807196690783<24> · 3919701941592254012158021<25> · C121
C121 = P50 · P71
P50 = 63257351576766423947399512515745629216260427114779<50>
P71 = 35513787691764778266303377928648484869380394953958769263504184367442221<71>
Number: 38889_190 N=2246508153840604716035067114927749010950257513841294239081602295716965799348681521884485308054931395687535388799017684159 ( 121 digits) Divisors found: r1=63257351576766423947399512515745629216260427114779 (pp50) r2=35513787691764778266303377928648484869380394953958769263504184367442221 (pp71) Version: Msieve-1.39 Total time: 47.85 hours. Scaled time: 123.21 units (timescale=2.575). Factorization parameters were as follows: name: 38889_190 n: 2246508153840604716035067114927749010950257513841294239081602295716965799348681521884485308054931395687535388799017684159 skew: 89795.70 # norm 4.84e+016 c5: 57960 c4: 15793821326 c3: -1353809886740391 c2: -110952005119332163476 c1: 4885296725903794475561744 c0: 65659481591859212307474820632 # alpha -6.57 Y1: 3293507150791 Y0: -131121929075933727303169 # Murphy_E 2.78e-010 # M 1162552003123135492243094452700316052253313243880108098060031554406446515399379307476238877588418167574564767225395438595 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 4540001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 625638 x 625886 Polynomial selection time: 5.97 hours. Total sieving time: 41.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 47.85 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Feb 1, 2009
(41·10170-23)/9 = 4(5)1693<171> = 3 · 7741 · 852757 · 1413377533<10> · 148750380557<12> · 180901800576639967975769<24> · C117
C117 = P57 · P61
P57 = 192901592601939758636554313145335370935170023200299215809<57>
P61 = 3135470797399039833359351146040596545713359677745700369560123<61>
Number: 45553_170 N=604837310375148778124776070708546525562586241475263243320444004969928838465156382209315580150383458737203131177584507 ( 117 digits) Divisors found: r1=192901592601939758636554313145335370935170023200299215809 r2=3135470797399039833359351146040596545713359677745700369560123 Version: Total time: 20.73 hours. Scaled time: 49.11 units (timescale=2.369). Factorization parameters were as follows: name: 45553_170 n: 604837310375148778124776070708546525562586241475263243320444004969928838465156382209315580150383458737203131177584507 skew: 85070.85 # norm 1.56e+16 c5: 15720 c4: 354141478 c3: 288449499827863 c2: -2433438192573369533 c1: -1708571568065724032767647 c0: 32726708019292214323410349959 # alpha -6.24 Y1: 2798172666233 Y0: -32887967898160717062940 # Murphy_E 3.92e-10 # M 414115915751592902022938657497943809537832392809746713569400063865266331813947822522717002899585836852504694144087261 type: gnfs rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1650000, 3225001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9178307 Max relations in full relation-set: Initial matrix: Pruned matrix : 578724 x 578972 Polynomial selection time: 1.74 hours. Total sieving time: 17.26 hours. Total relation processing time: 0.89 hours. Matrix solve time: 0.71 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3300000,3300000,27,27,52,52,2.4,2.4,75000 total time: 20.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672340) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672353)
By Serge Batalov / GMP-ECM 6.2.1 / Feb 1, 2009
(10207+53)/9 = (1)2067<207> = 3 · 133 · 283 · 349 · 551849 · 1122179 · 6118409299921<13> · 339049922873154043<18> · C156
C156 = P39 · C117
P39 = 685413813735893660349622719120345198553<39>
C117 = [193846020667124193274134252463231803230311020333243374266479905607388867655634000609161657914215087575387961520302749<117>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2452372186 Step 1 took 15004ms Step 2 took 3165ms ********** Factor found in step 2: 685413813735893660349622719120345198553 Found probable prime factor of 39 digits: 685413813735893660349622719120345198553 Composite cofactor has 117 digits
(10250+53)/9 = (1)2497<250> = 19 · 16744799 · 1282670489<10> · 1282892248388561<16> · 316506541719636211<18> · 24198990469696224316973<23> · C177
C177 = P31 · P147
P31 = 1952336428161608917887269931907<31>
P147 = 141933224730094412121746955107189516661928241972823958395563629646112650310877205015050914315308289712595775165605200513388474099048767270249187173<147>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=617356213 Step 1 took 15993ms ********** Factor found in step 1: 1952336428161608917887269931907 Found probable prime factor of 31 digits: 1952336428161608917887269931907 Probable prime cofactor has 147 digits
(10217+53)/9 = (1)2167<217> = 7 · 281 · 14563 · 1305599 · C203
C203 = P32 · C172
P32 = 18593651670229859248063017074413<32>
C172 = [1597819737685561365333130675782680514858164472226776884815071261197870477464151112602423542579571993529313203161064470366587111467303582456055977186951165047742572925518971<172>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=747078882 Step 1 took 18290ms Step 2 took 220ms ********** Factor found in step 2: 18593651670229859248063017074413 Found probable prime factor of 32 digits: 18593651670229859248063017074413 Composite cofactor has 172 digits
(10222+53)/9 = (1)2217<222> = 3 · 71 · 151 · 4289 · 60737 · 94781 · C204
C204 = P32 · C172
P32 = 38038740024260123690761310466913<32>
C172 = [3678274590709306140246941889232418903617930778762751714691175028205559197443108836905780275024765880645406906569791283872756506787257452163015607432724671749967545265118171<172>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2504251202 Step 1 took 18432ms Step 2 took 16653ms ********** Factor found in step 2: 38038740024260123690761310466913 Found probable prime factor of 32 digits: 38038740024260123690761310466913 Composite cofactor has 172 digits
(10223+53)/9 = (1)2227<223> = 7 · 31 · 47103143 · C213
C213 = P30 · P183
P30 = 832177666653514566119777542327<30>
P183 = 130626657316830411812762093162086307095861313693375756369803147844839177447021792293586324665117396046889406586142681119113736143908559800043999461524339507535727217655605059442783541<183>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3480091773 Step 1 took 22570ms ********** Factor found in step 1: 832177666653514566119777542327 Found probable prime factor of 30 digits: 832177666653514566119777542327 Probable prime cofactor has 183 digits
(10225+53)/9 = (1)2247<225> = 3 · 13 · C223
C223 = P32 · P191
P32 = 31435107881709275231021785937689<32>
P191 = 90631241340849989373993210775096622109323257490044296493338670472548365542130633364114358541105166361984056494877293836718094400774895621031251966312312387413255954176898968368530708788862627<191>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=262501054 Step 1 took 22143ms Step 2 took 18592ms ********** Factor found in step 2: 31435107881709275231021785937689 Found probable prime factor of 32 digits: 31435107881709275231021785937689 Probable prime cofactor has 191 digits
By Serge Batalov / GMP-ECM 6.2.1 / Feb 1, 2009
(4·10241-1)/3 = 1(3)241<242> = 13 · 3784757 · 4646801 · 183261467 · 52651626410827<14> · 3917565792818569<16> · 9984057494986111353041<22> · C168
C168 = P42 · C126
P42 = 423978422171785937525330791300274672892443<42>
C126 = [364462821471541316916182370125769150792316542042148094133332048440810743632250528660469332549245321864282313669340167794844431<126>]
# no GNFS-168 here! :-) # Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=1678757752 Step 1 took 50833ms Step 2 took 34740ms ********** Factor found in step 2: 423978422171785937525330791300274672892443 Found probable prime factor of 42 digits: 423978422171785937525330791300274672892443 Composite cofactor has 126 digits
By anonymous / Msieve ecm / Feb 1, 2009
(5·10199-17)/3 = 1(6)1981<200> = 11 · 216509 · C193
C193 = P33 · P161
P33 = 309043692410763708504054591900071<33>
P161 = 22644369155569801482004116295604415131414902032878438050293139566303788227904437910339217278579371739796569961741957220320246133261615506936781044026479149468109<161>
Sat Jan 31 22:37:44 2009 Msieve v. 1.39 Sat Jan 31 22:37:44 2009 random seeds: de90e960 74083f1a Sat Jan 31 22:37:44 2009 factoring 6998099456149698864782302422308149552744465658016595852898269887863853934548455330501342445418673196733231189073671372328702970847177323582461475112588923100264430186050072521304664079329335739 (193 digits) Sat Jan 31 22:37:46 2009 searching for 15-digit factors Sat Jan 31 22:37:50 2009 searching for 20-digit factors Sat Jan 31 22:38:31 2009 searching for 25-digit factors Sat Jan 31 22:46:43 2009 searching for 30-digit factors Sun Feb 01 00:04:39 2009 searching for 35-digit factors Sun Feb 01 00:27:05 2009 ECM stage 2 factor found Sun Feb 01 00:27:05 2009 prp33 factor: 309043692410763708504054591900071 Sun Feb 01 00:27:05 2009 prp161 factor: 22644369155569801482004116295604415131414902032878438050293139566303788227904437910339217278579371739796569961741957220320246133261615506936781044026479149468109 Sun Feb 01 00:27:05 2009 elapsed time 01:49:21
Factorizations of 11...117 have been extended up to n=250. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 31, 2009
(41·10161-23)/9 = 4(5)1603<162> = 3 · 7 · 131 · 1123943 · 309453852605561<15> · C138
C138 = P44 · P94
P44 = 48715522449375037037112608816998451240059843<44>
P94 = 9773344594347818728692771659151250188561551518867168822085057404744657355124995709625315835227<94>
Number: 45553_161 N=476113587991429327991160095841723465002630865947020881182067571272286331325153049728211155687436532750693507773602785210557141607007489361 ( 138 digits) SNFS difficulty: 162 digits. Divisors found: r1=48715522449375037037112608816998451240059843 r2=9773344594347818728692771659151250188561551518867168822085057404744657355124995709625315835227 Version: Total time: 19.15 hours. Scaled time: 45.82 units (timescale=2.393). Factorization parameters were as follows: n: 476113587991429327991160095841723465002630865947020881182067571272286331325153049728211155687436532750693507773602785210557141607007489361 m: 100000000000000000000000000000000 deg: 5 c5: 410 c0: -23 skew: 0.56 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 3600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9381225 Max relations in full relation-set: Initial matrix: Pruned matrix : 740977 x 741225 Total sieving time: 17.03 hours. Total relation processing time: 0.72 hours. Matrix solve time: 1.11 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 19.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047104k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5604.08 BogoMIPS (lpj=2802042) Calibrating delay using timer specific routine.. 5344.75 BogoMIPS (lpj=2672376) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672350)
By Serge Batalov / Msieve-1.39 / Jan 31, 2009
(41·10165-23)/9 = 4(5)1643<166> = C166
C166 = P43 · P48 · P76
P43 = 7048830044955730285803652614749917171590703<43>
P48 = 217664130389283169762486791539612080217356148339<48>
P76 = 2969186257631440708130691194440226995175932326438344612604677326089467529109<76>
SNFS difficulty: 166 digits. Divisors found: r1=7048830044955730285803652614749917171590703 (pp43) r2=217664130389283169762486791539612080217356148339 (pp48) r3=2969186257631440708130691194440226995175932326438344612604677326089467529109 (pp76) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.294). Factorization parameters were as follows: n: 4555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 1000000000000000000000000000000000 deg: 5 c5: 41 c0: -23 skew: 0.89 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 773789 x 774037 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,100000 total time: 37.00 hours.
(41·10171+13)/9 = 4(5)1707<172> = 3 · 72 · 17 · 50513 · 40344357139<11> · C153
C153 = P62 · P92
P62 = 13545655697291753895167415183155062115257968864458197026561047<62>
P92 = 66037267802058900270285640006155171253032916972658859255631851488321722456468401221793505867<92>
SNFS difficulty: 172 digits. Divisors found: r1=13545655697291753895167415183155062115257968864458197026561047 (pp62) r2=66037267802058900270285640006155171253032916972658859255631851488321722456468401221793505867 (pp92) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.302). Factorization parameters were as follows: n: 894518092836540440883213933824080875780792388807894997431695313391332454085486399914701232771571225453111058182290877031803884777922102962656532628162749 m: 10000000000000000000000000000000000 deg: 5 c5: 410 c0: 13 skew: 0.50 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 6600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 982605 x 982853 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 50.00 hours.
By Sinkiti Sibata / GGNFS / Jan 30, 2009
(35·10164+1)/9 = 3(8)1639<165> = 282833 · 347981 · 1195263561592703068137949500679<31> · C124
C124 = P50 · P74
P50 = 39575882037420828963570411917339240644716762775903<50>
P74 = 83530607544231245392846006539898621111183905857449706817593594044549213589<74>
Number: 38889_164 N=3305797470684590126516118944166244859718767479459168848484632525243758609790874378955530593175883268566507494694347289345867 ( 124 digits) SNFS difficulty: 165 digits. Divisors found: r1=39575882037420828963570411917339240644716762775903 (pp50) r2=83530607544231245392846006539898621111183905857449706817593594044549213589 (pp74) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 79.80 hours. Scaled time: 37.75 units (timescale=0.473). Factorization parameters were as follows: name: 38889_164 n: 3305797470684590126516118944166244859718767479459168848484632525243758609790874378955530593175883268566507494694347289345867 m: 1000000000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3650001) Primes: RFBsize:289774, AFBsize:289257, largePrimes:9034055 encountered Relations: rels:9241991, finalFF:676064 Max relations in full relation-set: 28 Initial matrix: 579096 x 676064 with sparse part having weight 68165626. Pruned matrix : 516684 x 519643 with weight 51138428. Total sieving time: 64.49 hours. Total relation processing time: 0.50 hours. Matrix solve time: 14.61 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 79.80 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Jan 30, 2009
(43·10206-7)/9 = 4(7)206<207> = 3 · 73 · 1197999487<10> · 919272050133022870840781<24> · 227091512033988664050765336907<30> · 9979120019997928268416395684139<31> · C111
C111 = P43 · P69
P43 = 2075634083079828998567220764778928732800821<43>
P69 = 421150384930020461727145617061926763309795192374704172359381305111733<69>
Number: 47777_206 N=874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793 ( 111 digits) Divisors found: r1=2075634083079828998567220764778928732800821 r2=421150384930020461727145617061926763309795192374704172359381305111733 Version: Total time: 10.14 hours. Scaled time: 24.15 units (timescale=2.382). Factorization parameters were as follows: name: 47777_206 n: 874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793 skew: 30687.16 # norm 3.99e+15 c5: 113400 c4: 2920482650 c3: -302366368859399 c2: -2625363309198789138 c1: 137037003928894478826152 c0: 801887937814693936058974480 # alpha -6.60 Y1: 274783993297 Y0: -1504508271055678830873 # Murphy_E 8.66e-10 # M 33913588752037023001154899934271482323043432368019170082195613568306518138961385112480392869526368209010001248 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8166464 Max relations in full relation-set: Initial matrix: Pruned matrix : 386617 x 386865 Polynomial selection time: 0.76 hours. Total sieving time: 8.40 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.31 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 10.14 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912)
(43·10202-7)/9 = 4(7)202<203> = 7331 · 2224447 · 4264331689<10> · 3282544923857<13> · 129162515387784254409797833<27> · 894140490812561508197748839283473<33> · C112
C112 = P50 · P63
P50 = 12468621839237019750134274632920275340919814102191<50>
P63 = 145351091738832752462107761351113457049563025712898988930667003<63>
Number: 47777_202 N=1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573 ( 112 digits) Divisors found: r1=12468621839237019750134274632920275340919814102191 r2=145351091738832752462107761351113457049563025712898988930667003 Version: Total time: 11.29 hours. Scaled time: 26.94 units (timescale=2.387). Factorization parameters were as follows: name: 47777_202 n: 1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573 skew: 54094.49 # norm 4.44e+15 c5: 7680 c4: 3175216088 c3: -75687149631190 c2: -7247399479012978327 c1: 75161386214624790981960 c0: 3589599881379885118000877349 # alpha -6.21 Y1: 937728520817 Y0: -2982385752308822800816 # Murphy_E 7.94e-10 # M 452990686981099005718217834527867984953168050273452541942955949321535635220026936614575740434782683652135110614 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2040001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8532087 Max relations in full relation-set: Initial matrix: Pruned matrix : 384054 x 384302 Polynomial selection time: 0.87 hours. Total sieving time: 9.47 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.30 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 11.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912)
(41·10183-23)/9 = 4(5)1823<184> = C184
C184 = P35 · P150
P35 = 14589501503902084137302513137370873<35>
P150 = 312248883509634249005847902099113991658769635405891185299817342330275330744748507088676770238588018801904100842443828422508631356486325904946577765161<150>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 4555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 (184 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3268419040 Step 1 took 6263ms Step 2 took 3376ms ********** Factor found in step 2: 14589501503902084137302513137370873 Found probable prime factor of 35 digits: 14589501503902084137302513137370873 Probable prime cofactor 312248883509634249005847902099113991658769635405891185299817342330275330744748507088676770238588018801904100842443828422508631356486325904946577765161 has 150 digits
By Erik Branger / GGNFS, Msieve / Jan 30, 2009
(41·10151-23)/9 = 4(5)1503<152> = 383 · 8447 · 19571 · 9230748389<10> · C131
C131 = P42 · P90
P42 = 124434346315030176296076825378828222961733<42>
P90 = 626397301816530774964119179790139452924785821296333787068498699938708732827425248548556339<90>
Number: 45553_151 N=77945338785038671394181877897307420049103361412246789040632117018754521459012051523341323925873080957218788678619520132547991575487 ( 131 digits) SNFS difficulty: 152 digits. Divisors found: r1=124434346315030176296076825378828222961733 r2=626397301816530774964119179790139452924785821296333787068498699938708732827425248548556339 Version: Total time: 22.11 hours. Scaled time: 43.01 units (timescale=1.945). Factorization parameters were as follows: n: 77945338785038671394181877897307420049103361412246789040632117018754521459012051523341323925873080957218788678619520132547991575487 m: 1000000000000000000000000000000 deg: 5 c5: 410 c0: -23 skew: 0.56 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 484391 x 484639 Total sieving time: 22.11 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 22.11 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1 / Jan 30, 2009
(41·10163-23)/9 = 4(5)1623<164> = 389 · 45851195581<11> · C151
C151 = P68 · P83
P68 = 29133329337945510299957110140657349252840116046675345541662393249319<68>
P83 = 87669991230507932658083828877276980219124823060697439168343320477973842654932855143<83>
SNFS difficulty: 166 digits. Divisors found: r1=29133329337945510299957110140657349252840116046675345541662393249319 (pp68) r2=87669991230507932658083828877276980219124823060697439168343320477973842654932855143 (pp83) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 2554118727573182363624568773003137949230779989157913559867837585944130801792176347437384308522371049214854200576158632139427275758913382964941710397617 m: 500000000000000000000000000000000 deg: 5 c5: 328 c0: -575 skew: 1.12 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 782389 x 782637 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.4,2.4,200000 total time: 42.00 hours.
(13·10169+17)/3 = 4(3)1689<170> = 72 · 113 · 6143 · 165463 · C157
C157 = P35 · C123
P35 = 64817842125068594359353753328875377<35>
C123 = [118787733468585373018803001626199942041486879025646793084250872377023430370450048163478120248088756637535072725204319132979<123>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=746734294 Step 1 took 13951ms Step 2 took 13265ms ********** Factor found in step 2: 64817842125068594359353753328875377 Found probable prime factor of 35 digits: 64817842125068594359353753328875377 Composite cofactor has 123 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 29, 2009
(13·10162+17)/3 = 4(3)1619<163> = 71143 · 1199953693995273725407<22> · C137
C137 = P52 · P85
P52 = 7529261953382445456022978831409101175220907433308991<52>
P85 = 6741755973701705171652646158601204512690915622307800010016289079913328347215654722829<85>
Number: 43339_162 N=50760446751781071257905593169998899590553675465934743310278919667953736415005326576711409469460862032185500165163685445643993256418655539 ( 137 digits) SNFS difficulty: 163 digits. Divisors found: r1=7529261953382445456022978831409101175220907433308991 r2=6741755973701705171652646158601204512690915622307800010016289079913328347215654722829 Version: Total time: 23.65 hours. Scaled time: 56.53 units (timescale=2.390). Factorization parameters were as follows: n: 50760446751781071257905593169998899590553675465934743310278919667953736415005326576711409469460862032185500165163685445643993256418655539 m: 100000000000000000000000000000000 deg: 5 c5: 1300 c0: 17 skew: 0.42 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9731766 Max relations in full relation-set: Initial matrix: Pruned matrix : 779314 x 779562 Total sieving time: 21.33 hours. Total relation processing time: 0.94 hours. Matrix solve time: 1.28 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 23.65 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912)
(35·10164-17)/9 = 3(8)1637<165> = 32 · 227 · 283 · 607 · 721641441052677560056142789<27> · C130
C130 = P43 · P87
P43 = 2164226505067740336545299545138264786212773<43>
P87 = 709508928632527276438580379581169517506057775727086708484652773434018533527897889599737<87>
Number: 38887_164 N=1535538028928731310411299976352496883335984799898135849679037491841562148763146925000134438926258136116973870389355679625086840701 ( 130 digits) SNFS difficulty: 165 digits. Divisors found: r1=2164226505067740336545299545138264786212773 r2=709508928632527276438580379581169517506057775727086708484652773434018533527897889599737 Version: Total time: 20.65 hours. Scaled time: 49.29 units (timescale=2.387). Factorization parameters were as follows: n: 1535538028928731310411299976352496883335984799898135849679037491841562148763146925000134438926258136116973870389355679625086840701 m: 1000000000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9680389 Max relations in full relation-set: Initial matrix: Pruned matrix : 723944 x 724192 Total sieving time: 18.70 hours. Total relation processing time: 0.80 hours. Matrix solve time: 1.08 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 20.65 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912)
By Serge Batalov / Msieve-1.39, pol51 / Jan 29, 2009
(41·10158-23)/9 = 4(5)1573<159> = 32 · 89 · C156
C156 = P65 · P92
P65 = 28850941907203007847401689552967354640673245661890210464614317293<65>
P92 = 19712823566187765936501050571307241754800318770326492415189741533994996509543568798904090021<92>
SNFS difficulty: 161 digits. Divisors found: r1=28850941907203007847401689552967354640673245661890210464614317293 (pp65) r2=19712823566187765936501050571307241754800318770326492415189741533994996509543568798904090021 (pp92) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 568733527535025662366486336523789707310306561242890830905812179220418920793452628658621167984463864613677347759744763490081842141767235400194201692329033153 m: 50000000000000000000000000000000 c5: 328 c0: -575 skew: 1.12 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 613407 x 613655 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,200000 total time: 27.00 hours.
(41·10178-23)/9 = 4(5)1773<179> = 1183943 · 189287933041368939698424948529<30> · 1208868416299919985898567336255445891869<40> · C105
C105 = P48 · P57
P48 = 481911941006296666803436041025635734292586173461<48>
P57 = 348932085078507959564569166156418142784583065154844041511<57>
Divisors found: r1=481911941006296666803436041025635734292586173461 (pp48) r2=348932085078507959564569166156418142784583065154844041511 (pp57) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.528). Factorization parameters were as follows: name: 45553_178 n: 168154538399558017254478603113207313708895276072507757115220953746111331152469234868619217627939730539571 skew: 9723.82 # norm 1.94e+14 c5: 45840 c4: 436103556 c3: -14526373230872 c2: -44181904912960523 c1: -101954573143161400030 c0: 412019275248612995904320 # alpha -5.43 Y1: 16582549357 Y0: -81826246411099303959 # Murphy_E 1.94e-09 # M 114387187697216149807785384983138201125110014197248308094008292071209457371172444703697085321264377513011 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 275264 x 275512 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 6.00 hours.
By Erik Branger / GGNFS, Msieve / Jan 29, 2009
(41·10139-23)/9 = 4(5)1383<140> = 4007 · 324829275755121868009<21> · C116
C116 = P45 · P71
P45 = 773862830377449253413698674936532384941341169<45>
P71 = 45227528252266932279145332153783269490963211018115404781446254785187599<71>
Number: 45553_139 N=34999903024275338901522874375799121511839485670661437667979695890714240654775511337191106823261682968866354326963231 ( 116 digits) SNFS difficulty: 141 digits. Divisors found: r1=773862830377449253413698674936532384941341169 r2=45227528252266932279145332153783269490963211018115404781446254785187599 Version: Total time: 9.89 hours. Scaled time: 20.66 units (timescale=2.088). Factorization parameters were as follows: n: 34999903024275338901522874375799121511839485670661437667979695890714240654775511337191106823261682968866354326963231 m: 10000000000000000000000000000 deg: 5 c5: 41 c0: -230 skew: 1.41 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 284118 x 284366 Total sieving time: 9.89 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 9.89 hours. --------- CPU info (if available) ----------
(41·10131-23)/9 = 4(5)1303<132> = 32 · 72 · 311 · 43711 · C122
C122 = P40 · P83
P40 = 1801364495446163282257831597361756468273<40>
P83 = 42184220455933837447552299166930194478197239547739286056819295000322534357624766001<83>
Number: 45553_131 N=75989156997392977105229538608994471183862080258012139504286349375102219420870458470076856934080344251900169694479805586273 ( 122 digits) SNFS difficulty: 132 digits. Divisors found: r1=1801364495446163282257831597361756468273 r2=42184220455933837447552299166930194478197239547739286056819295000322534357624766001 Version: Total time: 4.54 hours. Scaled time: 3.58 units (timescale=0.789). Factorization parameters were as follows: n: 75989156997392977105229538608994471183862080258012139504286349375102219420870458470076856934080344251900169694479805586273 m: 100000000000000000000000000 deg: 5 c5: 410 c0: -23 skew: 0.56 type: snfs lss: 1 rlim: 1140000 alim: 1140000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1140000/1140000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [570000, 1020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 180838 x 181086 Total sieving time: 4.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1140000,1140000,26,26,47,47,2.3,2.3,50000 total time: 4.54 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve / Jan 29, 2009
(43·10178-7)/9 = 4(7)178<179> = 383 · 4354027 · 249604739031097<15> · C156
C156 = P37 · P49 · P70
P37 = 3673652886587821683140672767941328687<37>
P49 = 6902107741445885438068266121725096751735112138723<49>
P70 = 4526925785659940824204341239430806891307484383858194682858972240819401<70>
Number: 47777_178 N=114784494947366634262426183006958123861511699275635538429018736808936826291842714776329045547599116455771782266887863028084494441647275112045251159350246101 ( 156 digits) SNFS difficulty: 181 digits. Divisors found: r1=3673652886587821683140672767941328687 (pp37) r2=6902107741445885438068266121725096751735112138723 (pp49) r3=4526925785659940824204341239430806891307484383858194682858972240819401 (pp70) Version: Msieve-1.39 Total time: 265.08 hours. Scaled time: 678.60 units (timescale=2.560). Factorization parameters were as follows: n: 114784494947366634262426183006958123861511699275635538429018736808936826291842714776329045547599116455771782266887863028084494441647275112045251159350246101 m: 500000000000000000000000000000000000 deg: 5 c5: 344 c0: -175 skew: 0.87 type: snfs lss: 1 rlim: 7300000 alim: 7300000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 7300000/7300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3650000, 7650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1044036 x 1044284 Total sieving time: 265.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7300000,7300000,28,28,53,53,2.5,2.5,100000 total time: 265.08 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 29, 2009
(41·10103-23)/9 = 4(5)1023<104> = 7990030831<10> · C94
C94 = P46 · P49
P46 = 1880920131093652155510042425842068306778985389<46>
P49 = 3031255455185522651922420611150645662026396145867<49>
Number: 45553_103 N=5701549408145901503037085784626249029245523765558490565924019718661277785944948321258305737263 ( 94 digits) SNFS difficulty: 106 digits. Divisors found: r1=1880920131093652155510042425842068306778985389 (pp46) r2=3031255455185522651922420611150645662026396145867 (pp49) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.47 hours. Scaled time: 1.13 units (timescale=2.392). Factorization parameters were as follows: n: 5701549408145901503037085784626249029245523765558490565924019718661277785944948321258305737263 m: 1000000000000000000000 deg: 5 c5: 41 c0: -2300 skew: 2.24 type: snfs lss: 1 rlim: 240000 alim: 240000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 240000/240000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [120000, 260001) Primes: RFBsize:21221, AFBsize:21090, largePrimes:852509 encountered Relations: rels:745091, finalFF:50700 Max relations in full relation-set: 28 Initial matrix: 42378 x 50700 with sparse part having weight 2823579. Pruned matrix : 40967 x 41242 with weight 1775227. Total sieving time: 0.45 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,240000,240000,25,25,44,44,2.2,2.2,20000 total time: 0.47 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912)
(41·10129-23)/9 = 4(5)1283<130> = 44029 · 1333136341721<13> · C113
C113 = P33 · P81
P33 = 245833508742300870269048663236781<33>
P81 = 315708938586453576137949202042096617259121045616596246935483076636501414393941457<81>
Number: 45553_129 N=77611836114015463765579271944208630546320167838921160599412055952667076355928840955602283169533935707733843129917 ( 113 digits) SNFS difficulty: 131 digits. Divisors found: r1=245833508742300870269048663236781 r2=315708938586453576137949202042096617259121045616596246935483076636501414393941457 Version: Total time: 1.96 hours. Scaled time: 4.67 units (timescale=2.389). Factorization parameters were as follows: n: 77611836114015463765579271944208630546320167838921160599412055952667076355928840955602283169533935707733843129917 m: 100000000000000000000000000 deg: 5 c5: 41 c0: -230 skew: 1.41 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3173600 Max relations in full relation-set: Initial matrix: Pruned matrix : 166118 x 166366 Total sieving time: 1.72 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 1.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672360) Calibrating delay using timer specific routine.. 5344.08 BogoMIPS (lpj=2672043) Calibrating delay using timer specific routine.. 5237.82 BogoMIPS (lpj=2618912)
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39, pol51 / Jan 29, 2009
(43·10213-7)/9 = 4(7)213<214> = 29 · 3461 · 47701 · 316223 · 600109 · 13162957 · 39284608416614303<17> · 75505295088633637<17> · C153
C153 = P37 · P116
P37 = 3526680938895455431728898504444220551<37>
P116 = 38190540064821716358063950502102091512430090081925348378008427894317449358648344734268599001413164789278233232637447<116>
Using B1=5000000, B2=11416314010, polynomial Dickson(12), sigma=2511989336 Step 1 took 15349ms Step 2 took 9332ms ********** Factor found in step 2: 3526680938895455431728898504444220551 Found probable prime factor of 37 digits: 3526680938895455431728898504444220551 Probable prime cofactor 38190540064821716358063950502102091512430090081925348378008427894317449358648344734268599001413164789278233232637447 has 116 digits
(43·10203-7)/9 = 4(7)203<204> = 3 · 67 · 547 · 2838580823343361<16> · 70019741574365087<17> · C167
C167 = P43 · C124
P43 = 2334561165143153784276485597559959244336157<43>
C124 = [9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209<124>]
Using B1=5000000, B2=23417929090, polynomial Dickson(12), sigma=3473665096 Step 1 took 22798ms Step 2 took 19003ms ********** Factor found in step 2: 2334561165143153784276485597559959244336157 Found probable prime factor of 43 digits: 2334561165143153784276485597559959244336157 Composite cofactor 9365167244931605937271157091977652941532850887100421862106964322653891953074392906416380032956187565261989128184595620958209 has 124 digits
(43·10234-7)/9 = 4(7)234<235> = 8821 · 576493 · 63521290844627070769256161<26> · 192264712908627279576854165210309221783217<42> · C158
C158 = P38 · P121
P38 = 41012255466950321646301229829861542741<38>
P121 = 1875778410670032148125989730595334818323781272326288536827048138746736685097497248156417793124849522779165277155797324877<121>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=227219622 Step 1 took 50881ms Step 2 took 33448ms ********** Factor found in step 2: 41012255466950321646301229829861542741 Found probable prime factor of 38 digits: 41012255466950321646301229829861542741 Probable prime cofactor 1875778410670032148125989730595334818323781272326288536827048138746736685097497248156417793124849522779165277155797324877 has 121 digits
(41·10154-23)/9 = 4(5)1533<155> = 293099 · 105043513 · 152505329 · 27447127457<11> · 142320476143<12> · C112
C112 = P32 · P81
P32 = 19133469743565591575826954988903<32>
P81 = 129811967521642553356376795770261489514163544206752823212917396577776180348802387<81>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2312512268 Step 1 took 2290ms ********** Factor found in step 1: 19133469743565591575826954988903 Found probable prime factor of 32 digits: 19133469743565591575826954988903 Probable prime cofactor has 81 digits
(41·10178-23)/9 = 4(5)1773<179> = 1183943 · 189287933041368939698424948529<30> · C144
C144 = P40 · C105
P40 = 1208868416299919985898567336255445891869<40>
C105 = [168154538399558017254478603113207313708895276072507757115220953746111331152469234868619217627939730539571<105>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=744591357 Step 1 took 3877ms Step 2 took 3636ms ********** Factor found in step 2: 1208868416299919985898567336255445891869 Found probable prime factor of 40 digits: 1208868416299919985898567336255445891869
(41·10196-23)/9 = 4(5)1953<197> = 17188148844872638761949<23> · C175
C175 = P33 · C142
P33 = 292583499806596595725013018613757<33>
C142 = [9058627697344100435072959011588414226107521095119906981620337036029788299086931609550622788224999995837661941137272253328636031596381018952121<142>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3690523421 Step 1 took 4610ms Step 2 took 2451ms ********** Factor found in step 2: 292583499806596595725013018613757 Found probable prime factor of 33 digits: 292583499806596595725013018613757
(43·10249-7)/9 = 4(7)249<250> = 53 · 1103 · 801179 · C240
C240 = P41 · C199
P41 = 25422133258858709804303131627232676780973<41>
C199 = [4012666034857030268082611148502973012917801084731203623422488400448065571628447168512039491797916152679691062964730175869111228899299131087507442826326840156446022996606392734495211546245324030097309<199>]
Using B1=5000000, B2=23417929090, polynomial Dickson(12), sigma=907905841 Step 1 took 40103ms Step 2 took 28475ms ********** Factor found in step 2: 25422133258858709804303131627232676780973 Found probable prime factor of 41 digits: 25422133258858709804303131627232676780973 Composite cofactor has 199 digits
(41·10128-23)/9 = 4(5)1273<129> = 3 · 967 · 1217 · 1987 · 4421 · 1581473 · 99039401 · C101
C101 = P32 · P70
P32 = 36815704935774161283902098630699<32>
P70 = 2547309708588572668816893086055764752839607538779524027891261431143921<70>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3995894486 Step 1 took 8241ms Step 2 took 8956ms ********** Factor found in step 2: 36815704935774161283902098630699 Found probable prime factor of 32 digits: 36815704935774161283902098630699 Probable prime cofactor 2547309708588572668816893086055764752839607538779524027891261431143921 has 70 digits
(41·10171-23)/9 = 4(5)1703<172> = 29 · 1253249 · 5380782097<10> · C155
C155 = P31 · P125
P31 = 1463794900797595489324207413307<31>
P125 = 15914036422945819678315903115949927673919089268637693940382042994674920656345122295731706640532780037792152348394058778535167<125>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1832035179 Step 1 took 4149ms Step 2 took 3431ms ********** Factor found in step 2: 1463794900797595489324207413307 Found probable prime factor of 31 digits: 1463794900797595489324207413307
(41·10180-23)/9 = 4(5)1793<181> = 283 · 52385059 · 1021842427<10> · 5329217405573587<16> · C146
C146 = P31 · P116
P31 = 1236015933287564641565112604157<31>
P116 = 45653705905749501607668550745050362451412108047028724874923313666054388301773089959197844701598951814422751612491493<116>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1040011698 Step 1 took 3317ms Step 2 took 3189ms ********** Factor found in step 2: 1236015933287564641565112604157 Found probable prime factor of 31 digits: 1236015933287564641565112604157
(41·10124-23)/9 = 4(5)1233<125> = 17 · 105603271 · C116
C116 = P29 · P43 · P45
P29 = 65888693420744699362403856113<29>
P43 = 2542943309278235960488509909300823318289419<43>
P45 = 151449373643723932213841050457974953231496357<45>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2501097197 Step 1 took 8922ms Step 2 took 8826ms ********** Factor found in step 2: 65888693420744699362403856113 Found probable prime factor of 29 digits: 65888693420744699362403856113 Composite cofactor has 87 digits Wed Jan 28 11:15:04 2009 Msieve v. 1.39 Wed Jan 28 11:15:04 2009 random seeds: 275c7966 7c142380 Wed Jan 28 11:15:04 2009 factoring 385127171401687385207501402488493862650469459394203243914566369266391722206958970146583 (87 digits) Wed Jan 28 11:15:04 2009 searching for 15-digit factors Wed Jan 28 11:15:05 2009 commencing quadratic sieve (87-digit input) Wed Jan 28 11:15:05 2009 using multiplier of 3 Wed Jan 28 11:15:05 2009 using 64kb Opteron sieve core Wed Jan 28 11:15:05 2009 sieve interval: 10 blocks of size 65536 Wed Jan 28 11:15:05 2009 processing polynomials in batches of 11 Wed Jan 28 11:15:05 2009 using a sieve bound of 1483927 (56667 primes) Wed Jan 28 11:15:05 2009 using large prime bound of 118714160 (26 bits) Wed Jan 28 11:15:05 2009 using double large prime bound of 342061674768240 (42-49 bits) Wed Jan 28 11:15:05 2009 using trial factoring cutoff of 49 bits Wed Jan 28 11:15:05 2009 polynomial 'A' values have 11 factors Wed Jan 28 11:55:01 2009 56875 relations (15830 full + 41045 combined from 594180 partial), need 56763 Wed Jan 28 11:55:01 2009 begin with 610010 relations Wed Jan 28 11:55:02 2009 reduce to 136243 relations in 9 passes Wed Jan 28 11:55:02 2009 attempting to read 136243 relations Wed Jan 28 11:55:03 2009 recovered 136243 relations Wed Jan 28 11:55:03 2009 recovered 116276 polynomials Wed Jan 28 11:55:03 2009 attempting to build 56875 cycles Wed Jan 28 11:55:03 2009 found 56875 cycles in 5 passes Wed Jan 28 11:55:03 2009 distribution of cycle lengths: Wed Jan 28 11:55:03 2009 length 1 : 15830 Wed Jan 28 11:55:03 2009 length 2 : 11102 Wed Jan 28 11:55:03 2009 length 3 : 10213 Wed Jan 28 11:55:03 2009 length 4 : 7378 Wed Jan 28 11:55:03 2009 length 5 : 5089 Wed Jan 28 11:55:03 2009 length 6 : 3212 Wed Jan 28 11:55:03 2009 length 7 : 1901 Wed Jan 28 11:55:03 2009 length 9+: 2150 Wed Jan 28 11:55:03 2009 largest cycle: 18 relations Wed Jan 28 11:55:03 2009 matrix is 56667 x 56875 (14.0 MB) with weight 3216000 (56.55/col) Wed Jan 28 11:55:03 2009 sparse part has weight 3216000 (56.55/col) Wed Jan 28 11:55:04 2009 filtering completed in 3 passes Wed Jan 28 11:55:04 2009 matrix is 52253 x 52317 (13.0 MB) with weight 2983093 (57.02/col) Wed Jan 28 11:55:04 2009 sparse part has weight 2983093 (57.02/col) Wed Jan 28 11:55:04 2009 saving the first 48 matrix rows for later Wed Jan 28 11:55:04 2009 matrix is 52205 x 52317 (8.6 MB) with weight 2356656 (45.05/col) Wed Jan 28 11:55:04 2009 sparse part has weight 1732285 (33.11/col) Wed Jan 28 11:55:04 2009 matrix includes 64 packed rows Wed Jan 28 11:55:04 2009 using block size 20926 for processor cache size 1024 kB Wed Jan 28 11:55:04 2009 commencing Lanczos iteration Wed Jan 28 11:55:04 2009 memory use: 7.7 MB Wed Jan 28 11:55:18 2009 lanczos halted after 827 iterations (dim = 52203) Wed Jan 28 11:55:18 2009 recovered 16 nontrivial dependencies Wed Jan 28 11:55:19 2009 prp43 factor: 2542943309278235960488509909300823318289419 Wed Jan 28 11:55:19 2009 prp45 factor: 151449373643723932213841050457974953231496357 Wed Jan 28 11:55:19 2009 elapsed time 00:40:15
(41·10140-23)/9 = 4(5)1393<141> = 32 · 17 · 877 · 19246389499<11> · 32476760901407<14> · C112
C112 = P38 · P75
P38 = 23113065209519892999049301512692497833<38>
P75 = 235001589601884725897441826945509931421660229052691677615339453591200234977<75>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1100794531 Step 1 took 8421ms Step 2 took 9318ms ********** Factor found in step 2: 23113065209519892999049301512692497833 Found probable prime factor of 38 digits: 23113065209519892999049301512692497833 Probable prime cofactor has 75 digits
(41·10150-23)/9 = 4(5)1493<151> = 71 · 181 · 461 · 467 · 56663 · C137
C137 = P32 · P49 · P57
P32 = 33408920017609314616108752626191<32>
P49 = 2321894412504908509073233224243572594876465727407<49>
P57 = 374612401179637846452271743435694521178321815681110300299<57>
# I am very grateful to Mr.Erik Branger who kindly released this number # after the factor was found # # When I run ECM, I remove numbers (which are reserved by others) periodically - # but sometimes an overlap happens: a number is cracked and turns out to be reserved. I usually dismiss such factors. This p49 was a quite a bit lucky... # Thank you, Erik! Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4014584566 Step 1 took 11854ms Step 2 took 11645ms ********** Factor found in step 2: 2321894412504908509073233224243572594876465727407 Found probable prime factor of 49 digits: 2321894412504908509073233224243572594876465727407 Composite cofactor has 89 digits Wed Jan 28 15:13:15 2009 Msieve v. 1.39 Wed Jan 28 15:13:15 2009 random seeds: dcc1d19f 8003f6d6 Wed Jan 28 15:13:15 2009 factoring 12515395748615094072564422948254398042726817026678117369398473451436798060732256902531109 (89 digits) Wed Jan 28 15:13:15 2009 searching for 15-digit factors Wed Jan 28 15:13:16 2009 commencing quadratic sieve (89-digit input) Wed Jan 28 15:13:16 2009 using multiplier of 1 Wed Jan 28 15:13:16 2009 using 64kb Opteron sieve core Wed Jan 28 15:13:16 2009 sieve interval: 14 blocks of size 65536 Wed Jan 28 15:13:16 2009 processing polynomials in batches of 8 Wed Jan 28 15:13:16 2009 using a sieve bound of 1537153 (58332 primes) Wed Jan 28 15:13:16 2009 using large prime bound of 122972240 (26 bits) Wed Jan 28 15:13:16 2009 using double large prime bound of 364462296550480 (42-49 bits) Wed Jan 28 15:13:16 2009 using trial factoring cutoff of 49 bits Wed Jan 28 15:13:16 2009 polynomial 'A' values have 11 factors Wed Jan 28 15:51:53 2009 58627 relations (16387 full + 42240 combined from 612438 partial), need 58428 Wed Jan 28 15:51:53 2009 begin with 628825 relations Wed Jan 28 15:51:54 2009 reduce to 140159 relations in 10 passes Wed Jan 28 15:51:54 2009 attempting to read 140159 relations Wed Jan 28 15:51:55 2009 recovered 140159 relations Wed Jan 28 15:51:55 2009 recovered 112789 polynomials Wed Jan 28 15:51:55 2009 attempting to build 58627 cycles Wed Jan 28 15:51:55 2009 found 58627 cycles in 5 passes Wed Jan 28 15:51:55 2009 distribution of cycle lengths: Wed Jan 28 15:51:55 2009 length 1 : 16387 Wed Jan 28 15:51:55 2009 length 2 : 11480 Wed Jan 28 15:51:55 2009 length 3 : 10452 Wed Jan 28 15:51:55 2009 length 4 : 7680 Wed Jan 28 15:51:55 2009 length 5 : 5251 Wed Jan 28 15:51:55 2009 length 6 : 3344 Wed Jan 28 15:51:55 2009 length 7 : 1897 Wed Jan 28 15:51:55 2009 length 9+: 2136 Wed Jan 28 15:51:55 2009 largest cycle: 20 relations Wed Jan 28 15:51:55 2009 matrix is 58332 x 58627 (14.7 MB) with weight 3371755 (57.51/col) Wed Jan 28 15:51:55 2009 sparse part has weight 3371755 (57.51/col) Wed Jan 28 15:51:56 2009 filtering completed in 3 passes Wed Jan 28 15:51:56 2009 matrix is 53667 x 53731 (13.5 MB) with weight 3121580 (58.10/col) Wed Jan 28 15:51:56 2009 sparse part has weight 3121580 (58.10/col) Wed Jan 28 15:51:56 2009 saving the first 48 matrix rows for later Wed Jan 28 15:51:56 2009 matrix is 53619 x 53731 (9.6 MB) with weight 2500423 (46.54/col) Wed Jan 28 15:51:56 2009 sparse part has weight 1968488 (36.64/col) Wed Jan 28 15:51:56 2009 matrix includes 64 packed rows Wed Jan 28 15:51:56 2009 using block size 21492 for processor cache size 1024 kB Wed Jan 28 15:51:57 2009 commencing Lanczos iteration Wed Jan 28 15:51:57 2009 memory use: 8.2 MB Wed Jan 28 15:52:15 2009 lanczos halted after 849 iterations (dim = 53619) Wed Jan 28 15:52:15 2009 recovered 17 nontrivial dependencies Wed Jan 28 15:52:16 2009 prp32 factor: 33408920017609314616108752626191 Wed Jan 28 15:52:16 2009 prp57 factor: 374612401179637846452271743435694521178321815681110300299 Wed Jan 28 15:52:16 2009 elapsed time 00:39:01
(41·10197-23)/9 = 4(5)1963<198> = 3 · 7 · 107 · 13177 · 23081 · 7187963 · C179
C179 = P34 · P146
P34 = 2099403606495907277667888894462749<34>
P146 = 44173858540728534572528842326705003005252228743462183058663832241052976873235501629877640848318099432460716303937164016586774713227903561777753721<146>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2823049403 Step 1 took 15948ms ********** Factor found in step 1: 2099403606495907277667888894462749 Found probable prime factor of 34 digits: 2099403606495907277667888894462749 Probable prime cofactor has 146 digits
(41·10149-23)/9 = 4(5)1483<150> = 35 · 7 · 6345629 · 325563926267<12> · 39321173758731261670625114839<29> · C100
C100 = P40 · P61
P40 = 2906390360860183929041325401980600571603<40>
P61 = 1134346306261106620176688918771075343769204867780752154765463<61>
Divisors found: r1=2906390360860183929041325401980600571603 (pp40) r2=1134346306261106620176688918771075343769204867780752154765463 (pp61) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.884). Factorization parameters were as follows: n: 3296853170394634386426903479758021052421717743274532650918450384213305617576039420469949938202947189 skew: 5917.96 # norm 5.93e+13 c5: 57120 c4: -320192048 c3: -593092523794 c2: -5737521223828465 c1: -90444080558235915828 c0: -4032485409702275555140 # alpha -5.83 Y1: 5964523141 Y0: -8959063309188302307 # Murphy_E 3.41e-09 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 183693 x 183941 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.50 hours.
(41·10138-23)/9 = 4(5)1373<139> = 5783 · C135
C135 = P65 · P71
P65 = 31826703588216506921591134020605913404953501401931568298791155907<65>
P71 = 24751213454811777993464835171415082026382268067334361474439281562727213<71>
SNFS difficulty: 141 digits. Divisors found: r1=31826703588216506921591134020605913404953501401931568298791155907 (pp65) r2=24751213454811777993464835171415082026382268067334361474439281562727213 (pp71) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.301). Factorization parameters were as follows: n: 787749534074970699560013065114223682440870751436201894441562433953926258958249274694026552923319307548946144830633850173881299594597191 m: 5000000000000000000000000000 deg: 5 c5: 328 c0: -575 skew: 1.12 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [800000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 277212 x 277460 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,49,49,2.4,2.4,100000 total time: 10.00 hours.
By Erik Branger / Msieve, GGNFS / Jan 29, 2009
(41·10130-23)/9 = 4(5)1293<131> = 313 · 36847 · 9836292279467<13> · 86954811961293481335701497<26> · C85
C85 = P42 · P43
P42 = 881390449722686422846375486232579191674737<42>
P43 = 5239640491095494706973558926511971332248621<43>
Wed Jan 28 16:28:26 2009 Msieve v. 1.38 Wed Jan 28 16:28:26 2009 random seeds: 9bceceb0 5c6c8cd8 Wed Jan 28 16:28:26 2009 factoring 4618169088831855625167377731803863520723223439399359351692257045372290483853048787677 (85 digits) Wed Jan 28 16:28:27 2009 searching for 15-digit factors Wed Jan 28 16:28:28 2009 commencing quadratic sieve (85-digit input) Wed Jan 28 16:28:28 2009 using multiplier of 5 Wed Jan 28 16:28:28 2009 using 64kb Pentium 4 sieve core Wed Jan 28 16:28:28 2009 sieve interval: 6 blocks of size 65536 Wed Jan 28 16:28:28 2009 processing polynomials in batches of 17 Wed Jan 28 16:28:28 2009 using a sieve bound of 1429849 (54706 primes) Wed Jan 28 16:28:28 2009 using large prime bound of 115817769 (26 bits) Wed Jan 28 16:28:29 2009 using double large prime bound of 327186471420459 (41-49 bits) Wed Jan 28 16:28:29 2009 using trial factoring cutoff of 49 bits Wed Jan 28 16:28:29 2009 polynomial 'A' values have 11 factors Wed Jan 28 17:11:40 2009 54993 relations (16294 full + 38699 combined from 569218 partial), need 54802 Wed Jan 28 17:11:43 2009 begin with 585512 relations Wed Jan 28 17:11:43 2009 reduce to 127938 relations in 10 passes Wed Jan 28 17:11:43 2009 attempting to read 127938 relations Wed Jan 28 17:11:48 2009 recovered 127938 relations Wed Jan 28 17:11:48 2009 recovered 105631 polynomials Wed Jan 28 17:11:48 2009 attempting to build 54993 cycles Wed Jan 28 17:11:48 2009 found 54993 cycles in 5 passes Wed Jan 28 17:11:48 2009 distribution of cycle lengths: Wed Jan 28 17:11:48 2009 length 1 : 16294 Wed Jan 28 17:11:48 2009 length 2 : 11182 Wed Jan 28 17:11:48 2009 length 3 : 9843 Wed Jan 28 17:11:48 2009 length 4 : 7059 Wed Jan 28 17:11:48 2009 length 5 : 4643 Wed Jan 28 17:11:48 2009 length 6 : 2735 Wed Jan 28 17:11:48 2009 length 7 : 1552 Wed Jan 28 17:11:48 2009 length 9+: 1685 Wed Jan 28 17:11:48 2009 largest cycle: 17 relations Wed Jan 28 17:11:48 2009 matrix is 54706 x 54993 (11.6 MB) with weight 2819163 (51.26/col) Wed Jan 28 17:11:48 2009 sparse part has weight 2819163 (51.26/col) Wed Jan 28 17:11:49 2009 filtering completed in 3 passes Wed Jan 28 17:11:49 2009 matrix is 49283 x 49347 (10.5 MB) with weight 2553042 (51.74/col) Wed Jan 28 17:11:49 2009 sparse part has weight 2553042 (51.74/col) Wed Jan 28 17:11:49 2009 saving the first 48 matrix rows for later Wed Jan 28 17:11:49 2009 matrix is 49235 x 49347 (5.8 MB) with weight 1870616 (37.91/col) Wed Jan 28 17:11:49 2009 sparse part has weight 1212608 (24.57/col) Wed Jan 28 17:11:49 2009 matrix includes 64 packed rows Wed Jan 28 17:11:49 2009 using block size 19738 for processor cache size 512 kB Wed Jan 28 17:11:50 2009 commencing Lanczos iteration Wed Jan 28 17:11:50 2009 memory use: 6.3 MB Wed Jan 28 17:12:10 2009 lanczos halted after 780 iterations (dim = 49234) Wed Jan 28 17:12:10 2009 recovered 17 nontrivial dependencies Wed Jan 28 17:12:11 2009 prp42 factor: 881390449722686422846375486232579191674737 Wed Jan 28 17:12:11 2009 prp43 factor: 5239640491095494706973558926511971332248621 Wed Jan 28 17:12:11 2009 elapsed time 00:43:45
(41·10148-23)/9 = 4(5)1473<149> = 43 · 251 · 568693575908293016347929797<27> · 74447260787252610730701827479<29> · C89
C89 = P42 · P48
P42 = 148975555407778170069581589916437657429373<42>
P48 = 669201817267739198737277759103990448518471426079<48>
Wed Jan 28 16:28:55 2009 Msieve v. 1.39 Wed Jan 28 16:28:55 2009 random seeds: b9762c40 a5997af9 Wed Jan 28 16:28:55 2009 factoring 99694712407355923179818470270485392821917098122466030908415422358077625320009088532818467 (89 digits) Wed Jan 28 16:28:56 2009 searching for 15-digit factors Wed Jan 28 16:28:57 2009 commencing quadratic sieve (89-digit input) Wed Jan 28 16:28:57 2009 using multiplier of 3 Wed Jan 28 16:28:57 2009 using 32kb Intel Core sieve core Wed Jan 28 16:28:57 2009 sieve interval: 33 blocks of size 32768 Wed Jan 28 16:28:57 2009 processing polynomials in batches of 7 Wed Jan 28 16:28:57 2009 using a sieve bound of 1558267 (59333 primes) Wed Jan 28 16:28:57 2009 using large prime bound of 124661360 (26 bits) Wed Jan 28 16:28:57 2009 using double large prime bound of 373522957629360 (42-49 bits) Wed Jan 28 16:28:57 2009 using trial factoring cutoff of 49 bits Wed Jan 28 16:28:57 2009 polynomial 'A' values have 11 factors Wed Jan 28 17:37:37 2009 59692 relations (16146 full + 43546 combined from 629922 partial), need 59429 Wed Jan 28 17:37:38 2009 begin with 646068 relations Wed Jan 28 17:37:38 2009 reduce to 145663 relations in 10 passes Wed Jan 28 17:37:38 2009 attempting to read 145663 relations Wed Jan 28 17:37:40 2009 recovered 145663 relations Wed Jan 28 17:37:40 2009 recovered 124755 polynomials Wed Jan 28 17:37:40 2009 attempting to build 59692 cycles Wed Jan 28 17:37:40 2009 found 59692 cycles in 6 passes Wed Jan 28 17:37:40 2009 distribution of cycle lengths: Wed Jan 28 17:37:40 2009 length 1 : 16146 Wed Jan 28 17:37:40 2009 length 2 : 11175 Wed Jan 28 17:37:40 2009 length 3 : 10326 Wed Jan 28 17:37:40 2009 length 4 : 7991 Wed Jan 28 17:37:40 2009 length 5 : 5681 Wed Jan 28 17:37:40 2009 length 6 : 3608 Wed Jan 28 17:37:40 2009 length 7 : 2154 Wed Jan 28 17:37:40 2009 length 9+: 2611 Wed Jan 28 17:37:40 2009 largest cycle: 20 relations Wed Jan 28 17:37:40 2009 matrix is 59333 x 59692 (14.8 MB) with weight 3634461 (60.89/col) Wed Jan 28 17:37:40 2009 sparse part has weight 3634461 (60.89/col) Wed Jan 28 17:37:41 2009 filtering completed in 3 passes Wed Jan 28 17:37:41 2009 matrix is 55373 x 55437 (13.8 MB) with weight 3393295 (61.21/col) Wed Jan 28 17:37:41 2009 sparse part has weight 3393295 (61.21/col) Wed Jan 28 17:37:41 2009 saving the first 48 matrix rows for later Wed Jan 28 17:37:41 2009 matrix is 55325 x 55437 (10.4 MB) with weight 2859681 (51.58/col) Wed Jan 28 17:37:41 2009 sparse part has weight 2396355 (43.23/col) Wed Jan 28 17:37:41 2009 matrix includes 64 packed rows Wed Jan 28 17:37:41 2009 using block size 22174 for processor cache size 2048 kB Wed Jan 28 17:37:42 2009 commencing Lanczos iteration Wed Jan 28 17:37:42 2009 memory use: 9.3 MB Wed Jan 28 17:37:59 2009 lanczos halted after 876 iterations (dim = 55325) Wed Jan 28 17:37:59 2009 recovered 18 nontrivial dependencies Wed Jan 28 17:38:00 2009 prp42 factor: 148975555407778170069581589916437657429373 Wed Jan 28 17:38:00 2009 prp48 factor: 669201817267739198737277759103990448518471426079 Wed Jan 28 17:38:00 2009 elapsed time 01:09:05
(41·10119-23)/9 = 4(5)1183<120> = 3 · 7 · 19 · C118
C118 = P44 · P74
P44 = 13204137097414283580303342290636923082729711<44>
P74 = 86468599847390874149233253667621779699370576402751798197713344576119700577<74>
Number: 45553_119 N=1141743247006404901141743247006404901141743247006404901141743247006404901141743247006404901141743247006404901141743247 ( 118 digits) SNFS difficulty: 121 digits. Divisors found: r1=13204137097414283580303342290636923082729711 r2=86468599847390874149233253667621779699370576402751798197713344576119700577 Version: Total time: 2.59 hours. Scaled time: 5.48 units (timescale=2.116). Factorization parameters were as follows: n: 1141743247006404901141743247006404901141743247006404901141743247006404901141743247006404901141743247006404901141743247 m: 1000000000000000000000000 deg: 5 c5: 41 c0: -230 skew: 1.41 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 720001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 88538 x 88786 Total sieving time: 2.59 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 2.59 hours. --------- CPU info (if available) ----------
(41·10121-23)/9 = 4(5)1203<122> = 193 · 3535877 · 746305381 · C104
C104 = P49 · P56
P49 = 6424734750718627625220006148533474581870541453749<49>
P56 = 13922432274087936529154302972714446189901873148104111717<56>
Number: 45553_121 N=89447934445859334817066221992763935132167607196659414011628506260431975722429438832612506174321484477033 ( 104 digits) SNFS difficulty: 122 digits. Divisors found: r1=6424734750718627625220006148533474581870541453749 r2=13922432274087936529154302972714446189901873148104111717 Version: Total time: 2.23 hours. Scaled time: 4.46 units (timescale=2.003). Factorization parameters were as follows: n: 89447934445859334817066221992763935132167607196659414011628506260431975722429438832612506174321484477033 m: 1000000000000000000000000 deg: 5 c5: 410 c0: -23 skew: 0.56 type: snfs lss: 1 rlim: 770000 alim: 770000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2Factor base limits: 770000/770000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [385000, 685001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 95980 x 96228 Total sieving time: 2.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,770000,770000,25,25,46,46,2.2,2.2,50000 total time: 2.23 hours. --------- CPU info (if available) ----------
(41·10118-23)/9 = 4(5)1173<119> = 449153 · 5529329228987<13> · C101
C101 = P32 · P69
P32 = 21601921391699076224361216972323<32>
P69 = 849145693764416742375873463293188330565808251248427942826893089602001<69>
Number: 45553_118 N=18343178526798706907297331767407580668174940804953852814701597268572385811455413189451069954302418323 ( 101 digits) SNFS difficulty: 121 digits. Divisors found: r1=21601921391699076224361216972323 r2=849145693764416742375873463293188330565808251248427942826893089602001 Version: Total time: 2.91 hours. Scaled time: 2.30 units (timescale=0.790). Factorization parameters were as follows: n: 18343178526798706907297331767407580668174940804953852814701597268572385811455413189451069954302418323 m: 500000000000000000000000 deg: 5 c5: 328 c0: -575 skew: 1.12 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 715001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 88452 x 88688 Total sieving time: 2.91 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.91 hours. --------- CPU info (if available) ----------
(41·10125-23)/9 = 4(5)1243<126> = 3 · 7 · C125
C125 = P50 · P76
P50 = 18865962222763737173683333927093976699335628416363<50>
P76 = 1149855037181548856673552853646671174178134269707019655492195514770948005911<76>
Number: 45553_125 N=21693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693 ( 125 digits) SNFS difficulty: 126 digits. Divisors found: r1=18865962222763737173683333927093976699335628416363 r2=1149855037181548856673552853646671174178134269707019655492195514770948005911 Version: Total time: 2.71 hours. Scaled time: 5.46 units (timescale=2.016). Factorization parameters were as follows: n: 21693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693121693 m: 10000000000000000000000000 deg: 5 c5: 41 c0: -23 skew: 0.89 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 110535 x 110774 Total sieving time: 2.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.71 hours. --------- CPU info (if available) ----------
By Ignacio Santos / Msieve 1.39, Yafu 1.06 / Jan 29, 2009
(41·10105-23)/9 = 4(5)1043<106> = 953 · 9595367 · 702317546407<12> · C84
C84 = P42 · P43
P42 = 367779635852490880335270511439720960675651<42>
P43 = 1928704346839101571853571281460612074420179<43>
Wed Jan 28 16:29:33 2009 Wed Jan 28 16:29:33 2009 Wed Jan 28 16:29:33 2009 Msieve v. 1.39 Wed Jan 28 16:29:33 2009 random seeds: 8259fdd8 6aed4e44 Wed Jan 28 16:29:33 2009 factoring 709338182347601046367561329521658935509574931985120281467871275483245561945908361529 (84 digits) Wed Jan 28 16:29:34 2009 searching for 15-digit factors Wed Jan 28 16:29:35 2009 commencing quadratic sieve (84-digit input) Wed Jan 28 16:29:35 2009 using multiplier of 1 Wed Jan 28 16:29:35 2009 using 32kb Intel Core sieve core Wed Jan 28 16:29:35 2009 sieve interval: 12 blocks of size 32768 Wed Jan 28 16:29:35 2009 processing polynomials in batches of 17 Wed Jan 28 16:29:35 2009 using a sieve bound of 1401437 (53824 primes) Wed Jan 28 16:29:35 2009 using large prime bound of 119122145 (26 bits) Wed Jan 28 16:29:35 2009 using trial factoring cutoff of 27 bits Wed Jan 28 16:29:35 2009 polynomial 'A' values have 11 factors Wed Jan 28 16:52:29 2009 54034 relations (27656 full + 26378 combined from 277915 partial), need 53920 Wed Jan 28 16:52:29 2009 begin with 305571 relations Wed Jan 28 16:52:29 2009 reduce to 77053 relations in 2 passes Wed Jan 28 16:52:29 2009 attempting to read 77053 relations Wed Jan 28 16:52:30 2009 recovered 77053 relations Wed Jan 28 16:52:30 2009 recovered 70831 polynomials Wed Jan 28 16:52:30 2009 attempting to build 54034 cycles Wed Jan 28 16:52:30 2009 found 54034 cycles in 1 passes Wed Jan 28 16:52:30 2009 distribution of cycle lengths: Wed Jan 28 16:52:30 2009 length 1 : 27656 Wed Jan 28 16:52:30 2009 length 2 : 26378 Wed Jan 28 16:52:30 2009 largest cycle: 2 relations Wed Jan 28 16:52:30 2009 matrix is 53824 x 54034 (7.4 MB) with weight 1717018 (31.78/col) Wed Jan 28 16:52:30 2009 sparse part has weight 1717018 (31.78/col) Wed Jan 28 16:52:30 2009 filtering completed in 3 passes Wed Jan 28 16:52:30 2009 matrix is 39180 x 39243 (5.9 MB) with weight 1381772 (35.21/col) Wed Jan 28 16:52:30 2009 sparse part has weight 1381772 (35.21/col) Wed Jan 28 16:52:30 2009 saving the first 48 matrix rows for later Wed Jan 28 16:52:30 2009 matrix is 39132 x 39243 (3.7 MB) with weight 1032357 (26.31/col) Wed Jan 28 16:52:30 2009 sparse part has weight 734730 (18.72/col) Wed Jan 28 16:52:30 2009 matrix includes 64 packed rows Wed Jan 28 16:52:30 2009 using block size 15697 for processor cache size 4096 kB Wed Jan 28 16:52:30 2009 commencing Lanczos iteration Wed Jan 28 16:52:30 2009 memory use: 4.3 MB Wed Jan 28 16:52:35 2009 lanczos halted after 621 iterations (dim = 39131) Wed Jan 28 16:52:35 2009 recovered 16 nontrivial dependencies Wed Jan 28 16:52:35 2009 prp42 factor: 367779635852490880335270511439720960675651 Wed Jan 28 16:52:35 2009 prp43 factor: 1928704346839101571853571281460612074420179 Wed Jan 28 16:52:35 2009 elapsed time 00:23:02
(41·10122-23)/9 = 4(5)1213<123> = 33 · 409 · 32987 · 467868311 · 2534846137715117<16> · C91
C91 = P39 · P52
P39 = 458015487802174727396287622703879436789<39>
P52 = 2302268949633360740904310241142947031318315208517831<52>
01/28/09 17:21:40 v1.06 @ IGNACIO1, starting SIQS on c91: 1054474836018124158257047066798769193462469896437805554332753148131097644739785979743884659 01/28/09 17:21:40 v1.06 @ IGNACIO1, ==== sieve params ==== 01/28/09 17:21:40 v1.06 @ IGNACIO1, n = 91 digits, 304 bits 01/28/09 17:21:40 v1.06 @ IGNACIO1, factor base: 67412 primes (max prime = 1794517) 01/28/09 17:21:40 v1.06 @ IGNACIO1, single large prime cutoff: 215342040 (120 * pmax) 01/28/09 17:21:40 v1.06 @ IGNACIO1, double large prime range from 43 to 50 bits 01/28/09 17:21:40 v1.06 @ IGNACIO1, double large prime cutoff: 999152734477817 01/28/09 17:21:40 v1.06 @ IGNACIO1, using 10 large prime slices of factor base 01/28/09 17:21:40 v1.06 @ IGNACIO1, buckets hold 1024 elements 01/28/09 17:21:40 v1.06 @ IGNACIO1, sieve interval: 22 blocks of size 32768 01/28/09 17:21:40 v1.06 @ IGNACIO1, polynomial A has ~ 12 factors 01/28/09 17:21:40 v1.06 @ IGNACIO1, using multiplier of 29 01/28/09 17:21:40 v1.06 @ IGNACIO1, using small prime variation correction of 22 bits 01/28/09 17:21:40 v1.06 @ IGNACIO1, trial factoring cutoff at 97 bits 01/28/09 17:21:40 v1.06 @ IGNACIO1, ==== sieving started ==== 01/28/09 18:22:30 v1.06 @ IGNACIO1, sieve time = 1199.1730, relation time = 820.1540, poly_time = 1601.3640 01/28/09 18:22:30 v1.06 @ IGNACIO1, 67481 relations found: 19365 full + 48116 from 818643 partial, using 428968 polys (209 A polys) 01/28/09 18:22:30 v1.06 @ IGNACIO1, trial division touched 28729166 sieve locations out of 618482630656 01/28/09 18:22:30 v1.06 @ IGNACIO1, ==== post processing stage (msieve-1.38) ==== 01/28/09 18:22:31 v1.06 @ IGNACIO1, begin with 838008 relations 01/28/09 18:22:31 v1.06 @ IGNACIO1, reduce to 157869 relations in 10 passes 01/28/09 18:22:33 v1.06 @ IGNACIO1, recovered 157869 relations 01/28/09 18:22:33 v1.06 @ IGNACIO1, recovered 132185 polynomials 01/28/09 18:22:33 v1.06 @ IGNACIO1, attempting to build 67481 cycles 01/28/09 18:22:33 v1.06 @ IGNACIO1, found 67481 cycles in 5 passes 01/28/09 18:22:33 v1.06 @ IGNACIO1, distribution of cycle lengths: 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 1 : 19365 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 2 : 14696 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 3 : 12271 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 4 : 8498 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 5 : 5579 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 6 : 3334 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 7 : 1819 01/28/09 18:22:33 v1.06 @ IGNACIO1, length 9+: 1919 01/28/09 18:22:33 v1.06 @ IGNACIO1, largest cycle: 18 relations 01/28/09 18:22:34 v1.06 @ IGNACIO1, matrix is 67412 x 67481 (16.1 MB) with weight 3938485 (58.36/col) 01/28/09 18:22:34 v1.06 @ IGNACIO1, sparse part has weight 3938485 (58.36/col) 01/28/09 18:22:34 v1.06 @ IGNACIO1, filtering completed in 3 passes 01/28/09 18:22:34 v1.06 @ IGNACIO1, matrix is 62217 x 62281 (15.0 MB) with weight 3685912 (59.18/col) 01/28/09 18:22:34 v1.06 @ IGNACIO1, sparse part has weight 3685912 (59.18/col) 01/28/09 18:22:34 v1.06 @ IGNACIO1, saving the first 48 matrix rows for later 01/28/09 18:22:34 v1.06 @ IGNACIO1, matrix is 62169 x 62281 (10.0 MB) with weight 2926881 (46.99/col) 01/28/09 18:22:34 v1.06 @ IGNACIO1, sparse part has weight 2258498 (36.26/col) 01/28/09 18:22:34 v1.06 @ IGNACIO1, matrix includes 64 packed rows 01/28/09 18:22:34 v1.06 @ IGNACIO1, using block size 24912 for processor cache size 4096 kB 01/28/09 18:22:35 v1.06 @ IGNACIO1, commencing Lanczos iteration 01/28/09 18:22:35 v1.06 @ IGNACIO1, memory use: 9.5 MB 01/28/09 18:22:53 v1.06 @ IGNACIO1, lanczos halted after 985 iterations (dim = 62167) 01/28/09 18:22:53 v1.06 @ IGNACIO1, recovered 18 nontrivial dependencies 01/28/09 18:22:54 v1.06 @ IGNACIO1, prp52 = 2302268949633360740904310241142947031318315208517831 01/28/09 18:22:55 v1.06 @ IGNACIO1, prp39 = 458015487802174727396287622703879436789 01/28/09 18:22:55 v1.06 @ IGNACIO1, Lanczos elapsed time = 23.3690 seconds. 01/28/09 18:22:55 v1.06 @ IGNACIO1, Sqrt elapsed time = 2.2310 seconds. 01/28/09 18:22:55 v1.06 @ IGNACIO1, Total elapsed time = 3675.7900 seconds. 01/28/09 18:22:55 v1.06 @ IGNACIO1, 01/28/09 18:22:55 v1.06 @ IGNACIO1,
Factorizations of 455...553 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Robert Backstrom / GGNFS, Msieve / Jan 28, 2009
(64·10267-1)/9 = 7(1)267<268> = 13 · 4391 · 23929 · 36083 · 418460458963<12> · 41647180748521<14> · 1015426835807649035390773<25> · 48287267091784318382365068194688977337835393445648868307<56> · C150
C150 = P52 · P98
P52 = 2046177675001671248721526888669069941138882384733693<52>
P98 = 82516129198420259258519024832071643294533917541647385866698598950636164516855352871556074606688239<98>
Number: n N=168842661393361084737921889601152067797799178106973990993993426212219306097598366298890372513822132593172970190424243529986838118573215023486690136627 ( 150 digits) SNFS difficulty: 180 digits. Divisors found: Wed Jan 28 04:20:25 2009 prp52 factor: 2046177675001671248721526888669069941138882384733693 Wed Jan 28 04:20:25 2009 prp98 factor: 82516129198420259258519024832071643294533917541647385866698598950636164516855352871556074606688239 Wed Jan 28 04:20:25 2009 elapsed time 02:30:29 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 9.30 hours. Scaled time: 16.27 units (timescale=1.750). Factorization parameters were as follows: name: KA_7_1_267 n: 168842661393361084737921889601152067797799178106973990993993426212219306097598366298890372513822132593172970190424243529986838118573215023486690136627 deg: 6 c6: 4 c3: 10 c0: 25 m: 1000000000000000000000000000000 skew: 1.36 type: snfs rlim: 7500000 alim: 7500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 8250001) Primes: RFBsize:508261, AFBsize:507810, largePrimes:37433789 encountered Relations: rels:37525126, finalFF:1242382 Max relations in full relation-set: 28 Initial matrix: 1016137 x 1242382 with sparse part having weight 155967976. Pruned matrix : 849553 x 854697 with weight 135481370. Msieve: found 4171754 hash collisions in 39575190 relations Msieve: matrix is 1148262 x 1148510 (307.2 MB) Total sieving time: 8.33 hours. Total relation processing time: 0.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,180,6,0,0,0,0,0,0,0,0,7500000,7500000,29,29,58,58,2.5,2.5,100000 total time: 9.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830483) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830446) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Total of 4 processors activated (22643.68 BogoMIPS).
By Serge Batalov / GMP-ECM 6.2.1 / Jan 28, 2009
(43·10202-7)/9 = 4(7)202<203> = 7331 · 2224447 · 4264331689<10> · 3282544923857<13> · 129162515387784254409797833<27> · C145
C145 = P33 · C112
P33 = 894140490812561508197748839283473<33>
C112 = [1812327796811753621163200021922067097052888721647496808031500412932013350729735549051173339843739136511233703573<112>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=209624069 Step 1 took 3916ms Step 2 took 3799ms ********** Factor found in step 2: 894140490812561508197748839283473 Found probable prime factor of 33 digits: 894140490812561508197748839283473 Composite cofactor has 112 digits
(43·10238-7)/9 = 4(7)238<239> = 73 · 89 · 109 · 997 · 122701 · C225
C225 = P32 · P194
P32 = 16019823933833801017304935568263<32>
P194 = 34425922146851837576638249702876396349794779344942534097092159794838474557251330373243197269039118582961540438685946281867896688525526005977130309937227882149560857611922657828168430494238139459<194>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1194573843 Step 1 took 7395ms Step 2 took 5997ms ********** Factor found in step 2: 16019823933833801017304935568263 Found probable prime factor of 32 digits: 16019823933833801017304935568263 Probable prime cofactor has 194 digits
(43·10220-7)/9 = 4(7)220<221> = 523 · 4057 · 656879521 · C206
C206 = P31 · P175
P31 = 3502562889301427433586357821611<31>
P175 = 9786954860237792671607046950183269287102623628043042827218853752548798081325699178457017851643964035536282843620014130674361843688073589623733707551549094537798547254146976097<175>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3982886919 Step 1 took 6067ms Step 2 took 5661ms ********** Factor found in step 2: 3502562889301427433586357821611 Found probable prime factor of 31 digits: 3502562889301427433586357821611 Probable prime cofactor has 175 digits
(43·10204-7)/9 = 4(7)204<205> = 1040355723593<13> · 92650128269537<14> · 717267726581621<15> · C164
C164 = P33 · P131
P33 = 707556978655308658653936630923687<33>
P131 = 97668687460140583325533653402275318211878194887345665390224627878545528890196304695329982444456944390617538106202072842223345362611<131>
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=4048053174 Step 1 took 900ms Step 2 took 592ms ********** Factor found in step 2: 707556978655308658653936630923687 Found probable prime factor of 33 digits: 707556978655308658653936630923687 Probable prime cofactor has 131 digits
(43·10206-7)/9 = 4(7)206<207> = 3 · 73 · 1197999487<10> · 919272050133022870840781<24> · 227091512033988664050765336907<30> · C142
C142 = P31 · C111
P31 = 9979120019997928268416395684139<31>
C111 = [874154093062940053723423566083923324074453222353223316638756093434022663299154755490033595932211400153439132793<111>]
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=748490644 Step 1 took 1189ms Step 2 took 740ms ********** Factor found in step 2: 9979120019997928268416395684139 Found probable prime factor of 31 digits: 9979120019997928268416395684139
(43·10230-7)/9 = 4(7)230<231> = 3 · 73 · C229
C229 = P27 · C202
P27 = 692730088823719508465086751<27>
C202 = [3149327167508337424894687917653959013981952149120694102773275999128510834233614653207416330576776052801668066525911784723885214992039134786270169083745020741277257567117346186246575033521599505550100733<202>]
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=3170109874 Step 1 took 1812ms ********** Factor found in step 1: 692730088823719508465086751 Found probable prime factor of 27 digits: 692730088823719508465086751
(43·10250-7)/9 = 4(7)250<251> = C251
C251 = P42 · C210
P42 = 382055559643912628237678729323622320324517<42>
C210 = [125054528253189447289899294516188810544311061053758161563935547216828629946964499418093698568954568490304175173591891013243054655738225373622583204023990174911869851275001232783069648585566026456246963123490781<210>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2259809016 Step 1 took 79929ms Step 2 took 29982ms ********** Factor found in step 2: 382055559643912628237678729323622320324517 Found probable prime factor of 42 digits: 382055559643912628237678729323622320324517 Composite cofactor has 210 digits
(43·10245-7)/9 = 4(7)245<246> = 32 · C245
C245 = P38 · P47 · C161
P38 = 53598747618551486853933977572595599339<38>
P47 = 27976147881343907065273464547470440058178217281<47>
C161 = [35403066396506894069278844750214201009889285722256175087036574343440723864063382620752845855264935086210428287407910294761124301971887380413930153470653666732667<161>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=45451499 Step 1 took 24228ms Step 2 took 20220ms ********** Factor found in step 2: 27976147881343907065273464547470440058178217281 Found probable prime factor of 47 digits: 27976147881343907065273464547470440058178217281 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2389133407 Step 1 took 24160ms Step 2 took 20492ms ********** Factor found in step 2: 53598747618551486853933977572595599339 Found probable prime factor of 38 digits: 53598747618551486853933977572595599339 Composite cofactor ...
(43·10234-7)/9 = 4(7)234<235> = 8821 · 576493 · 63521290844627070769256161<26> · C200
C200 = P42 · C158
P42 = 192264712908627279576854165210309221783217<42>
C158 = [76929903377789411516700093310652483045899848288680400340995715116837047878585117428117743576767502256527687059432257791095117914169589812646186467347998067857<158>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3778725536 Step 1 took 14404ms Step 2 took 2805ms ********** Factor found in step 2: 192264712908627279576854165210309221783217 Found probable prime factor of 42 digits: 192264712908627279576854165210309221783217 Composite cofactor has 158 digits
By Jo Yeong Uk / GMP-ECM / Jan 27, 2009
(8·10191+1)/9 = (8)1909<191> = 2609 · C188
C188 = P38 · P151
P38 = 19309596681702726210004771712508766867<38>
P151 = 1764412783486459285717951078009843334141086331932434701677798688195359927405853534975872523428117711532280972811375506792046840790602551996700236286963<151>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 34070099229164004940164388228780716323836293173203866956262510114560708658063966611302755419275158638899535794898002640432690260210382862740087730505515097312720923299689110344533878454921 (188 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3327473856 Step 1 took 19035ms Step 2 took 8027ms ********** Factor found in step 2: 19309596681702726210004771712508766867 Found probable prime factor of 38 digits: 19309596681702726210004771712508766867 Probable prime cofactor 1764412783486459285717951078009843334141086331932434701677798688195359927405853534975872523428117711532280972811375506792046840790602551996700236286963 has 151 digits
By Jo Yeong Uk / GMP-ECM / Jan 28, 2009
(13·10163+17)/3 = 4(3)1629<164> = 7 · 241 · 317 · 8795430941251<13> · 1985156050719971<16> · C130
C130 = P39 · P92
P39 = 385707927893908191275285558306356222409<39>
P92 = 12031988618847673970003210390549269057789807769464350948317521072724086706486418168409870769<92>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 4640833398618822639460743910642182851226314326510127202032591287609238917161096442916131510784187204116371553691206889178711862521 (130 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=615671262 Step 1 took 11700ms Step 2 took 5511ms ********** Factor found in step 2: 385707927893908191275285558306356222409 Found probable prime factor of 39 digits: 385707927893908191275285558306356222409 Probable prime cofactor 12031988618847673970003210390549269057789807769464350948317521072724086706486418168409870769 has 92 digits
Factorizations of 477...77 have been extended up to n=250. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Erik Branger / GGNFS, Msieve / Jan 27, 2009
(13·10164+11)/3 = 4(3)1637<165> = 19 · 41 · 796379 · C156
C156 = P72 · P85
P72 = 598661797073473238145780382200311271428592944554907156282580452950134593<72>
P85 = 1166764738184177016523443436582987050721413715803341695737452720587804424134807603249<85>
Number: 43337_164 N=698497474923299913146728475612118899596341156962299667492151519836772445023403568936203868454930027765602384708635557541702678174128868592063887794294092657 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: r1=598661797073473238145780382200311271428592944554907156282580452950134593 r2=1166764738184177016523443436582987050721413715803341695737452720587804424134807603249 Version: Total time: 69.52 hours. Scaled time: 54.99 units (timescale=0.791). Factorization parameters were as follows: n: 698497474923299913146728475612118899596341156962299667492151519836772445023403568936203868454930027765602384708635557541702678174128868592063887794294092657 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: 110 skew: 1.53 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2050000, 3950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 707150 x 707398 Total sieving time: 69.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 69.52 hours. --------- CPU info (if available) ----------
(41·10172+13)/9 = 4(5)1717<173> = C173
C173 = P66 · P107
P66 = 846809775727438855533422032738541504094448048857030030647203344013<66>
P107 = 53796681216181945160186440747727142358218300032577430895455479542146640352712930288135316333731693886056889<107>
Number: 45557_172 N=45555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 173 digits) SNFS difficulty: 174 digits. Divisors found: r1=846809775727438855533422032738541504094448048857030030647203344013 r2=53796681216181945160186440747727142358218300032577430895455479542146640352712930288135316333731693886056889 Version: Total time: 153.02 hours. Scaled time: 301.75 units (timescale=1.972). Factorization parameters were as follows: n: 45555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 20000000000000000000000000000000000 deg: 5 c5: 1025 c0: 104 skew: 0.63 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 7850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1140833 x 1141081 Total sieving time: 153.02 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 153.02 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Jan 26, 2009
(38·10203+61)/9 = 4(2)2029<204> = 3 · C204
C204 = P40 · P164
P40 = 6856113896741631556597576234948868923421<40>
P164 = 20527771688219442244535154146181623000054303924350561860790279591622429058862241151966970921841993193628897638361564188894699065035168720938479822972805057054160883<164>
Number: 42229_203 N=140740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 ( 204 digits) SNFS difficulty: 205 digits. Divisors found: r1=6856113896741631556597576234948868923421 r2=20527771688219442244535154146181623000054303924350561860790279591622429058862241151966970921841993193628897638361564188894699065035168720938479822972805057054160883 Version: Total time: 1090.97 hours. Scaled time: 2159.02 units (timescale=1.979). Factorization parameters were as follows: n: 140740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 m: 50000000000000000000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 19000000 alim: 19000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 19000000/19000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9500000, 20100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3217971 x 3218219 Total sieving time: 1090.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,19000000,19000000,29,29,56,56,2.6,2.6,100000 total time: 1090.97 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39 / Jan 26, 2009
(43·10179-7)/9 = 4(7)179<180> = 3 · 172 · 16363 · 37418617 · C165
C165 = P68 · P98
P68 = 14145656150669491298815154320590745375349211707577628084877873514139<68>
P98 = 63625775577778579433341123264082604872882905945721415160648453020214286335148354296475720079558299<98>
SNFS difficulty: 181 digits. Divisors found: r1=14145656150669491298815154320590745375349211707577628084877873514139 (pp68) r2=63625775577778579433341123264082604872882905945721415160648453020214286335148354296475720079558299 (pp98) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 900028343642920268629193882313065164523095389608686033709901992697050423470050911286995509976226984775059263572750134624657136766028945840031740266801444602051289561 m: 1000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 skew: 1.10 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [4000000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1586574 x 1586822 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,55,55,2.5,2.5,100000 total time: 200.00 hours.
By Ignacio Santos / GGNFS, Msieve / Jan 25, 2009
(38·10171+61)/9 = 4(2)1709<172> = 131 · C170
C170 = P56 · P115
P56 = 19656586353109644988628428880782557935174813548674463961<56>
P115 = 1639689791881402852262937784707669473345717597586097018290930889928565528828480997000727743404647721038578540516319<115>
Number: 42229_171 N=32230703986429177268871925360474978795589482612383375742154368108566581849024597116200169635284139100932994062765055131467345207803223070398642917726887192536047497879559 ( 170 digits) SNFS difficulty: 172 digits. Divisors found: r1=19656586353109644988628428880782557935174813548674463961 (pp56) r2=1639689791881402852262937784707669473345717597586097018290930889928565528828480997000727743404647721038578540516319 (pp115) Version: Msieve-1.39 Total time: 69.27 hours. Scaled time: 178.36 units (timescale=2.575). Factorization parameters were as follows: n: 32230703986429177268871925360474978795589482612383375742154368108566581849024597116200169635284139100932994062765055131467345207803223070398642917726887192536047497879559 m: 10000000000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 984707 x 984955 Total sieving time: 69.27 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 69.27 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM / Jan 25, 2009
(41·10161+13)/9 = 4(5)1607<162> = 19 · 313 · 224473 · 112463872818618759244091017<27> · C127
C127 = P39 · P88
P39 = 424001769125093094621543918688662607163<39>
P88 = 7156465706183242170212634190189296953128191851050556387767311790646055779703262249922957<88>
GMP-ECM 6.1.3 [powered by GMP 4.2.2] [ECM] Input number is 3034354120104753360064970435795476897443162060598250583531604564172670129454802230625243157344730258350741251453786863506340991 (127 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3609433657 Step 1 took 75297ms Step 2 took 31281ms ********** Factor found in step 2: 424001769125093094621543918688662607163 Found probable prime factor of 39 digits: 424001769125093094621543918688662607163 Probable prime cofactor 7156465706183242170212634190189296953128191851050556387767311790646055779703262249922957 has 88 digits
By Sinkiti Sibata / GGNFS / Jan 24, 2009
(41·10141+13)/9 = 4(5)1407<142> = 32 · 7 · 293 · 331 · 22391 · 24847 · 178807 · 3914509373<10> · C112
C112 = P48 · P65
P48 = 152943647887036111477247610987697036703626392511<48>
P65 = 12518849987703023951410464231756309915231977459305480342194679649<65>
Number: 45557_141 N=1914678584469877649316146631311483016914465974441251203654318046447997277245008118142822154997288621883177708639 ( 112 digits) SNFS difficulty: 143 digits. Divisors found: r1=152943647887036111477247610987697036703626392511 (pp48) r2=12518849987703023951410464231756309915231977459305480342194679649 (pp65) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 16.53 hours. Scaled time: 7.82 units (timescale=0.473). Factorization parameters were as follows: name: 45557_141 n: 1914678584469877649316146631311483016914465974441251203654318046447997277245008118142822154997288621883177708639 m: 20000000000000000000000000000 deg: 5 c5: 205 c0: 208 skew: 1.00 type: snfs lss: 1 rlim: 1750000 alim: 1750000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1750000/1750000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [875000, 2175001) Primes: RFBsize:131608, AFBsize:131343, largePrimes:3922682 encountered Relations: rels:4027274, finalFF:349003 Max relations in full relation-set: 28 Initial matrix: 263018 x 349003 with sparse part having weight 34653347. Pruned matrix : 235041 x 236420 with weight 20618698. Total sieving time: 14.73 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.50 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000 total time: 16.53 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, polysel+Msieve-1.39/gnfs! / Jan 24, 2009
(64·10285-1)/9 = 7(1)285<286> = 13 · 1009 · 1759 · 5119 · 19009 · 13785887359<11> · 125860098473209<15> · 133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<96> · C152
C152 = P42 · P110
P42 = 177742283449499822370246322633403703464107<42>
P110 = 77026545609119905247041531218744494750493316082997162603430569339652310526470544011921085948181440727270755427<110>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1333131140 Step 1 took 11737ms Step 2 took 11965ms ********** Factor found in step 2: 177742283449499822370246322633403703464107 Found probable prime factor of 42 digits: 177742283449499822370246322633403703464107 Probable prime cofactor has 110 digits
(64·10273-1)/9 = 7(1)273<274> = 13 · 163 · 631 · 641 · 18119 · 21757 · 114089 · 119293 · 191360089 · 2202499141477<13> · 350952042286768401725818393576681<33> · 13530815674137173613152643233624800312250837<44> · C150
C150 = P35 · P116
P35 = 65255421091265276492416239359633917<35>
P116 = 11840544870401401854493322096167872823649699908568717703660676711510644450076098392953725282422610395748825819895357<116>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1822787502 Step 1 took 11772ms Step 2 took 11985ms ********** Factor found in step 2: 65255421091265276492416239359633917 Found probable prime factor of 35 digits: 65255421091265276492416239359633917 Probable prime cofactor has 116 digits
(64·10279-1)/9 = 7(1)279<280> = 13 · 31 · 1733 · 128599 · 105929849 · 18488064997<11> · 2021725114081<13> · 7281843828283<13> · 2014918111668095329<19> · 79803629814813067027<20> · 250196468209067786071679820818025320428585440233101327018900387<63> · C125
C125 = P33 · P45 · P48
P33 = 420292438080787921643359451399119<33>
P45 = 730419717857197262419827344582992970030619307<45>
P48 = 222350289638073289421082995769845047699481936533<48>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2662482447 Step 1 took 3322ms Step 2 took 3339ms ********** Factor found in step 2: 420292438080787921643359451399119 Found probable prime factor of 33 digits: 420292438080787921643359451399119 Composite cofactor has 93 digits N=162409035822907584060218661916820012041441209756152258900415577554695186850665254165658442631 ( 93 digits) Divisors found: r1=730419717857197262419827344582992970030619307 (pp45) r2=222350289638073289421082995769845047699481936533 (pp48) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.543). Factorization parameters were as follows: name: t n: 162409035822907584060218661916820012041441209756152258900415577554695186850665254165658442631 Y0: -1489330692417092566815 Y1: 1 c4: 33010008 c3: -38756776794 c2: -162401737450122205 c1: 177686061167819334 c0: 55176205140900388442296 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.898 # E(F1,F2) = 7.827023e-05 # GGNFS version 0.77.1-20060722-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1232767725. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [600000, 1080001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 171122 x 171358 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,92,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,46,46,2.4,2.4,60000 total time: 2.20 hours.
(64·10253-1)/9 = 7(1)253<254> = 35911 · 4101165361<10> · 2654271168150479<16> · C225
C225 = P37 · P189
P37 = 1503012251188960478291218182835329853<37>
P189 = 121030513207473234467027754682031508099466504424023458323380931963655790995763624722806664691911530138966994414975832462847883393471773674247745852259859301419652934790614763057188332045643<189>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=358141635 Step 1 took 22129ms Step 2 took 18756ms ********** Factor found in step 2: 1503012251188960478291218182835329853 Found probable prime factor of 37 digits: 1503012251188960478291218182835329853 Probable prime cofactor has 189 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 24, 2009
(41·10156+13)/9 = 4(5)1557<157> = 3 · 97 · 70406513304649986892243<23> · C132
C132 = P56 · P77
P56 = 14434671320601927444899804781903476800304653989688760687<56>
P77 = 15403826606643878294130122774708818300656217739989908114754788714590290120547<77>
Number: 45557_156 N=222349174146447297456867387484271193909218826076840028739075777284927827966982782165223823799367958189327915307092989558940264535789 ( 132 digits) SNFS difficulty: 157 digits. Divisors found: r1=14434671320601927444899804781903476800304653989688760687 r2=15403826606643878294130122774708818300656217739989908114754788714590290120547 Version: Total time: 14.63 hours. Scaled time: 35.00 units (timescale=2.392). Factorization parameters were as follows: n: 222349174146447297456867387484271193909218826076840028739075777284927827966982782165223823799367958189327915307092989558940264535789 m: 10000000000000000000000000000000 deg: 5 c5: 410 c0: 13 skew: 0.5 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8452545 Max relations in full relation-set: Initial matrix: Pruned matrix : 548700 x 548948 Total sieving time: 13.28 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.66 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 14.63 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Serge Batalov / PFGW / Jan 24, 2009
(16·1040889-1)/3 = 5(3)40889<40890> is PRP.
Factorizations of 711...11 have been experimentally-extended up to n=300.
By Serge Batalov / PFGW / Jan 23, 2009
(16·1035753-1)/3 = 5(3)35753<35754> is PRP.
By Serge Batalov / PFGW / Jan 23, 2009
(16·1013993-1)/3 = 5(3)13993<13994> is PRP.
By Tyler Cadigan / GGNFS, Msieve / Jan 23, 2009
(10183+53)/9 = (1)1827<183> = 33 · 13 · 67 · 479 · C175
C175 = P87 · P89
P87 = 814456279501350377438980191700008354472608345334231988740752857383691177765970748860053<87>
P89 = 12110784655000342767971716456433469345944334541188468092672320809287673550525096267604723<89>
Number: 11117_183 N=9863704611953624372393435913691282636397008863140279821660669682218168042352617043532681072192976831233010323639294304409923253769436910793454449564989419647929464885048830319 ( 175 digits) SNFS difficulty: 183 digits. Divisors found: r1=814456279501350377438980191700008354472608345334231988740752857383691177765970748860053 (pp87) r2=12110784655000342767971716456433469345944334541188468092672320809287673550525096267604723 (pp89) Version: Msieve-1.39 Total time: 206.87 hours. Scaled time: 516.77 units (timescale=2.498). Factorization parameters were as follows: n: 9863704611953624372393435913691282636397008863140279821660669682218168042352617043532681072192976831233010323639294304409923253769436910793454449564989419647929464885048830319 m: 2000000000000000000000000000000000000 deg: 5 c5: 125 c0: 212 skew: 1.11 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4000000, 7000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1216132 x 1216380 Total sieving time: 206.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000 total time: 206.87 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jan 23, 2009
(13·10148+17)/3 = 4(3)1479<149> = 19 · 23 · 797 · 9203 · 3277258151<10> · 176436198027869291<18> · C113
C113 = P48 · P65
P48 = 362219108729606434290438856179997703092034416009<48>
P65 = 64548063349944856972207822649011628277742635258341188381686224693<65>
Number: n N=23380541976839200282767325190671790730362187880117941372803799512694979321700372600589803038261427659300210310237 ( 113 digits) Divisors found: Fri Jan 23 18:09:16 2009 prp48 factor: 362219108729606434290438856179997703092034416009 Fri Jan 23 18:09:16 2009 prp65 factor: 64548063349944856972207822649011628277742635258341188381686224693 Fri Jan 23 18:09:16 2009 elapsed time 03:32:35 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-VC8(Wed Total time: 30.15 hours. Scaled time: 27.13 units (timescale=0.900). Factorization parameters were as follows: name: KA_4_3_147_9 n: 23380541976839200282767325190671790730362187880117941372803799512694979321700372600589803038261427659300210310237 skew: 28708.99 # norm 6.29e+014 c5: 2460 c4: -633951779 c3: -20695688236272 c2: 108160939099036276 c1: 5953456783481487169340 c0: -34441072704534910994164809 # alpha -4.20 Y1: 4810509227 Y0: -6245740134592778442020 # Murphy_E 6.93e-010 # M 1477219687526669108968129462520479885433990903110149087199378865914741253162073845052820046771899641015823549705 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2650211) Primes: RFBsize:250150, AFBsize:249326, largePrimes:16923260 encountered Relations: rels:14857181, finalFF:506906 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 988439 hash collisions in 15497920 relations Msieve: matrix is 611376 x 611624 (169.8 MB) Total sieving time: 28.28 hours. Total relation processing time: 1.87 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,56,56,2.6,2.6,100000 total time: 30.15 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 22, 2009
(41·10169+13)/9 = 4(5)1687<170> = C170
C170 = P76 · P94
P76 = 8672165459367014932964431677102992882630879566220195983511869288408607879899<76>
P94 = 5253077304509902079900327279449122912774951534438747747863906866303207485311500450868544270143<94>
Number: 45557_169 N=45555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 170 digits) SNFS difficulty: 171 digits. Divisors found: r1=8672165459367014932964431677102992882630879566220195983511869288408607879899 r2=5253077304509902079900327279449122912774951534438747747863906866303207485311500450868544270143 Version: Total time: 46.93 hours. Scaled time: 112.17 units (timescale=2.390). Factorization parameters were as follows: n: 45555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 10000000000000000000000000000000000 deg: 5 c5: 41 c0: 130 skew: 1.26 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3100000, 6600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11408430 Max relations in full relation-set: Initial matrix: Pruned matrix : 1056408 x 1056656 Total sieving time: 42.17 hours. Total relation processing time: 1.99 hours. Matrix solve time: 2.65 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.4,2.4,100000 total time: 46.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 23, 2009
(41·10148+13)/9 = 4(5)1477<149> = 191 · 131310209 · 14599739933<11> · C129
C129 = P64 · P65
P64 = 1800637357783759974901763552956102654092167352953638442460850199<64>
P65 = 69093646156740776157080773778646968153929769992325516238093404609<65>
Number: 45557_148 N=124412600455319753291293023822905556467418502777629884221966937651002000356694604848608553625643657312604663420905456072645167191 ( 129 digits) SNFS difficulty: 151 digits. Divisors found: r1=1800637357783759974901763552956102654092167352953638442460850199 r2=69093646156740776157080773778646968153929769992325516238093404609 Version: Total time: 8.40 hours. Scaled time: 20.02 units (timescale=2.383). Factorization parameters were as follows: n: 124412600455319753291293023822905556467418502777629884221966937651002000356694604848608553625643657312604663420905456072645167191 m: 1000000000000000000000000000000 deg: 5 c5: 41 c0: 1300 skew: 2.00 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7444421 Max relations in full relation-set: Initial matrix: Pruned matrix : 326553 x 326801 Total sieving time: 7.79 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.24 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 8.40 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
(13·10154+17)/3 = 4(3)1539<155> = 47 · 1289401 · 17252447681025828391281179<26> · C122
C122 = P45 · P78
P45 = 146931176976577432525516072501443271640471689<45>
P78 = 282079522909008801832802122354881453999237337536406519426672216146977851866127<78>
Number: 43339_154 N=41446276302012100498146879584396609173055097640213325449671826370659005132758983843586432026920587622476154011707161578503 ( 122 digits) SNFS difficulty: 156 digits. Divisors found: r1=146931176976577432525516072501443271640471689 r2=282079522909008801832802122354881453999237337536406519426672216146977851866127 Version: Total time: 9.31 hours. Scaled time: 22.19 units (timescale=2.384). Factorization parameters were as follows: n: 41446276302012100498146879584396609173055097640213325449671826370659005132758983843586432026920587622476154011707161578503 m: 10000000000000000000000000000000 deg: 5 c5: 13 c0: 170 skew: 1.67 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7954348 Max relations in full relation-set: Initial matrix: Pruned matrix : 449296 x 449544 Total sieving time: 8.41 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.45 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 9.31 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Sinkiti Sibata / Msieve / Jan 22, 2009
(41·10147+13)/9 = 4(5)1467<148> = 3 · 7 · 484727 · 25526615366041<14> · 1937528314189504345464269<25> · C103
C103 = P41 · P63
P41 = 29355415641012754416171952787119471143967<41>
P63 = 308244485008190237669046414380908430812930699613696887061598997<63>
Wed Jan 21 17:08:16 2009 Wed Jan 21 17:08:16 2009 Wed Jan 21 17:08:16 2009 Msieve v. 1.39 Wed Jan 21 17:08:16 2009 random seeds: f2c9dc98 27ac341f Wed Jan 21 17:08:16 2009 factoring 9048644976465349194417936214282020920405826876717322267545304616149531433795128952289790672367809801099 (103 digits) Wed Jan 21 17:08:17 2009 searching for 15-digit factors Wed Jan 21 17:08:19 2009 commencing quadratic sieve (103-digit input) Wed Jan 21 17:08:19 2009 using multiplier of 1 Wed Jan 21 17:08:19 2009 using 32kb Intel Core sieve core Wed Jan 21 17:08:19 2009 sieve interval: 36 blocks of size 32768 Wed Jan 21 17:08:19 2009 processing polynomials in batches of 6 Wed Jan 21 17:08:19 2009 using a sieve bound of 3560659 (127500 primes) Wed Jan 21 17:08:19 2009 using large prime bound of 534098850 (28 bits) Wed Jan 21 17:08:19 2009 using double large prime bound of 5125295884020600 (44-53 bits) Wed Jan 21 17:08:19 2009 using trial factoring cutoff of 53 bits Wed Jan 21 17:08:19 2009 polynomial 'A' values have 13 factors Thu Jan 22 09:07:44 2009 127765 relations (31985 full + 95780 combined from 1881547 partial), need 127596 Thu Jan 22 09:07:46 2009 begin with 1913532 relations Thu Jan 22 09:07:48 2009 reduce to 330770 relations in 11 passes Thu Jan 22 09:07:48 2009 attempting to read 330770 relations Thu Jan 22 09:07:54 2009 recovered 330770 relations Thu Jan 22 09:07:54 2009 recovered 319137 polynomials Thu Jan 22 09:07:55 2009 attempting to build 127765 cycles Thu Jan 22 09:07:55 2009 found 127765 cycles in 6 passes Thu Jan 22 09:07:55 2009 distribution of cycle lengths: Thu Jan 22 09:07:55 2009 length 1 : 31985 Thu Jan 22 09:07:55 2009 length 2 : 22531 Thu Jan 22 09:07:55 2009 length 3 : 21549 Thu Jan 22 09:07:55 2009 length 4 : 17313 Thu Jan 22 09:07:55 2009 length 5 : 12810 Thu Jan 22 09:07:55 2009 length 6 : 8530 Thu Jan 22 09:07:55 2009 length 7 : 5448 Thu Jan 22 09:07:55 2009 length 9+: 7599 Thu Jan 22 09:07:55 2009 largest cycle: 19 relations Thu Jan 22 09:07:56 2009 matrix is 127500 x 127765 (37.4 MB) with weight 9284987 (72.67/col) Thu Jan 22 09:07:56 2009 sparse part has weight 9284987 (72.67/col) Thu Jan 22 09:07:59 2009 filtering completed in 4 passes Thu Jan 22 09:07:59 2009 matrix is 121328 x 121392 (35.7 MB) with weight 8883191 (73.18/col) Thu Jan 22 09:07:59 2009 sparse part has weight 8883191 (73.18/col) Thu Jan 22 09:07:59 2009 saving the first 48 matrix rows for later Thu Jan 22 09:07:59 2009 matrix is 121280 x 121392 (26.3 MB) with weight 7483600 (61.65/col) Thu Jan 22 09:07:59 2009 sparse part has weight 6170468 (50.83/col) Thu Jan 22 09:07:59 2009 matrix includes 64 packed rows Thu Jan 22 09:07:59 2009 using block size 43690 for processor cache size 1024 kB Thu Jan 22 09:08:01 2009 commencing Lanczos iteration Thu Jan 22 09:08:01 2009 memory use: 22.9 MB Thu Jan 22 09:10:18 2009 lanczos halted after 1920 iterations (dim = 121278) Thu Jan 22 09:10:18 2009 recovered 16 nontrivial dependencies Thu Jan 22 09:10:19 2009 prp41 factor: 29355415641012754416171952787119471143967 Thu Jan 22 09:10:19 2009 prp63 factor: 308244485008190237669046414380908430812930699613696887061598997 Thu Jan 22 09:10:19 2009 elapsed time 16:02:03
By Serge Batalov / Msieve-1.39 / Jan 22, 2009
(13·10143+17)/3 = 4(3)1429<144> = 595261 · 2447584577<10> · C129
C129 = P51 · P78
P51 = 305898875245419918219285872629868213926480602328937<51>
P78 = 972297300424393795140250280951268596451060292444954962055583775858618087659551<78>
SNFS difficulty: 145 digits. Divisors found: r1=305898875245419918219285872629868213926480602328937 (pp51) r2=972297300424393795140250280951268596451060292444954962055583775858618087659551 (pp78) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.733). Factorization parameters were as follows: n: 297424650603980208445370180543684343390316432002990258734180559806241331564648089739012138500185960159673853974878839430171727287 m: 50000000000000000000000000000 deg: 5 c5: 104 c0: 425 skew: 1.33 type: snfs lss: 1 rlim: 1860000 alim: 1860000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1860000/1860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [930000, 2230001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 383995 x 384243 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1860000,1860000,26,26,49,49,2.4,2.4,100000 total time: 6.00 hours.
By Erik Branger / GGNFS, Msieve / Jan 22, 2009
(13·10139+17)/3 = 4(3)1389<140> = 7 · 322587019395677<15> · C125
C125 = P54 · P72
P54 = 190816151611739294445911252917288917593300029648364203<54>
P72 = 100568514927274055488494266292260629800808063776522036000875666030563667<72>
Number: 43339_139 N=19190096991730192555558625223758369283698411644425946513238187529045129212903903609655206267406975666951436025446928595212401 ( 125 digits) SNFS difficulty: 141 digits. Divisors found: r1=190816151611739294445911252917288917593300029648364203 r2=100568514927274055488494266292260629800808063776522036000875666030563667 Version: Total time: 7.90 hours. Scaled time: 6.19 units (timescale=0.784). Factorization parameters were as follows: n: 19190096991730192555558625223758369283698411644425946513238187529045129212903903609655206267406975666951436025446928595212401 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: 170 skew: 1.67 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1485001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 208419 x 208667 Total sieving time: 7.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 7.90 hours. --------- CPU info (if available) ----------
(43·10168-7)/9 = 4(7)168<169> = 530723676086574731102103897057683<33> · C136
C136 = P55 · P82
P55 = 1308979129371218843055335143575659161498651650606112393<55>
P82 = 6877407559410922828407190093693313130619469297610260690908537887846523454630592083<82>
Number: 47777_168 N=9002382959448748794439199014832033133711285895903932632389666139902386003239170475300347336941766288329532183182089193481662048433984619 ( 136 digits) SNFS difficulty: 171 digits. Divisors found: r1=1308979129371218843055335143575659161498651650606112393 r2=6877407559410922828407190093693313130619469297610260690908537887846523454630592083 Version: Total time: 116.36 hours. Scaled time: 242.96 units (timescale=2.088). Factorization parameters were as follows: n: 9002382959448748794439199014832033133711285895903932632389666139902386003239170475300347336941766288329532183182089193481662048433984619 m: 5000000000000000000000000000000000 deg: 5 c5: 344 c0: -175 skew: 0.87 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 998810 x 999058 Total sieving time: 116.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 116.36 hours. --------- CPU info (if available) ----------
By Markus Tervooren / Msieve / Jan 21, 2009
(13·10194+17)/3 = 4(3)1939<195> = 59 · 83 · 157 · 607 · 1361 · 6311 · 164321 · 1786969867<10> · 19193147198594868597439948288841<32> · 466809015184227886664481474387139<33> · C101
C101 = P49 · P52
P49 = 6923543614221823683435637142856143697121804494349<49>
P52 = 5935033643361588312921134997404606384549571877425379<52>
Msieve v. 1.38 Tue Jan 20 22:17:21 2009 random seeds: 00f89e0f 4841fd03 factoring 41091464281687809280907055016363623012787750287324348861042488523828133080766450467340391897074683271 (101 digits) searching for 15-digit factors commencing quadratic sieve (101-digit input) using multiplier of 1 using 32kb Intel Core sieve core sieve interval: 36 blocks of size 32768 processing polynomials in batches of 6 using a sieve bound of 2974639 (107321 primes) using large prime bound of 446195850 (28 bits) using double large prime bound of 3708053052160350 (44-52 bits) using trial factoring cutoff of 52 bits polynomial 'A' values have 13 factors sieving in progress (press Ctrl-C to pause) 107596 relations (26016 full + 81580 combined from 1604242 partial), need 107417 107596 relations (26016 full + 81580 combined from 1604242 partial), need 107417 sieving complete, commencing postprocessing begin with 1630258 relations reduce to 281849 relations in 12 passes attempting to read 281849 relations recovered 281849 relations recovered 271135 polynomials attempting to build 107596 cycles found 107596 cycles in 6 passes distribution of cycle lengths: length 1 : 26016 length 2 : 18625 length 3 : 18195 length 4 : 14748 length 5 : 11084 length 6 : 7312 length 7 : 4885 length 9+: 6731 largest cycle: 21 relations matrix is 107321 x 107596 (31.7 MB) with weight 7446349 (69.21/col) sparse part has weight 7446349 (69.21/col) filtering completed in 3 passes matrix is 102535 x 102599 (30.4 MB) with weight 7138488 (69.58/col) sparse part has weight 7138488 (69.58/col) saving the first 48 matrix rows for later matrix is 102487 x 102599 (19.6 MB) with weight 5683979 (55.40/col) sparse part has weight 4114878 (40.11/col) matrix includes 64 packed rows using block size 41039 for processor cache size 4096 kB commencing Lanczos iteration memory use: 17.3 MB linear algebra completed 101083 of 102599 dimensions (98.5%, ETA 0h 0m) lanczos halted after 1624 iterations (dim = 102485) recovered 17 nontrivial dependencies prp49 factor: 6923543614221823683435637142856143697121804494349 prp52 factor: 5935033643361588312921134997404606384549571877425379 elapsed time 08:45:07
By Sinkiti Sibata / Msieve / Jan 21, 2009
(41·10131+13)/9 = 4(5)1307<132> = 2744051 · 403261362516720769854631<24> · C102
C102 = P35 · P67
P35 = 79005309736995305131116060227523937<35>
P67 = 5210822446986772338468650809121467546078389156874394153991712631681<67>
Tue Jan 20 22:13:49 2009 Msieve v. 1.39 Tue Jan 20 22:13:49 2009 random seeds: f46ffff0 52d14748 Tue Jan 20 22:13:49 2009 factoring 411682641408677746814453464337059397301767786709657824132464450814076300835690663029222620192692048097 (102 digits) Tue Jan 20 22:13:50 2009 searching for 15-digit factors Tue Jan 20 22:13:52 2009 commencing quadratic sieve (102-digit input) Tue Jan 20 22:13:52 2009 using multiplier of 2 Tue Jan 20 22:13:52 2009 using 32kb Intel Core sieve core Tue Jan 20 22:13:52 2009 sieve interval: 36 blocks of size 32768 Tue Jan 20 22:13:52 2009 processing polynomials in batches of 6 Tue Jan 20 22:13:52 2009 using a sieve bound of 3198409 (114826 primes) Tue Jan 20 22:13:52 2009 using large prime bound of 479761350 (28 bits) Tue Jan 20 22:13:52 2009 using double large prime bound of 4225182407156700 (44-52 bits) Tue Jan 20 22:13:52 2009 using trial factoring cutoff of 52 bits Tue Jan 20 22:13:52 2009 polynomial 'A' values have 13 factors Wed Jan 21 13:03:10 2009 115071 relations (27861 full + 87210 combined from 1710804 partial), need 114922 Wed Jan 21 13:03:12 2009 begin with 1738665 relations Wed Jan 21 13:03:14 2009 reduce to 301395 relations in 10 passes Wed Jan 21 13:03:14 2009 attempting to read 301395 relations Wed Jan 21 13:03:19 2009 recovered 301395 relations Wed Jan 21 13:03:19 2009 recovered 291722 polynomials Wed Jan 21 13:03:20 2009 attempting to build 115071 cycles Wed Jan 21 13:03:20 2009 found 115071 cycles in 6 passes Wed Jan 21 13:03:20 2009 distribution of cycle lengths: Wed Jan 21 13:03:20 2009 length 1 : 27861 Wed Jan 21 13:03:20 2009 length 2 : 19785 Wed Jan 21 13:03:20 2009 length 3 : 19653 Wed Jan 21 13:03:20 2009 length 4 : 15587 Wed Jan 21 13:03:20 2009 length 5 : 11674 Wed Jan 21 13:03:20 2009 length 6 : 8109 Wed Jan 21 13:03:20 2009 length 7 : 5129 Wed Jan 21 13:03:20 2009 length 9+: 7273 Wed Jan 21 13:03:20 2009 largest cycle: 21 relations Wed Jan 21 13:03:20 2009 matrix is 114826 x 115071 (33.4 MB) with weight 8294028 (72.08/col) Wed Jan 21 13:03:20 2009 sparse part has weight 8294028 (72.08/col) Wed Jan 21 13:03:23 2009 filtering completed in 3 passes Wed Jan 21 13:03:23 2009 matrix is 109772 x 109836 (32.1 MB) with weight 7970453 (72.57/col) Wed Jan 21 13:03:23 2009 sparse part has weight 7970453 (72.57/col) Wed Jan 21 13:03:23 2009 saving the first 48 matrix rows for later Wed Jan 21 13:03:23 2009 matrix is 109724 x 109836 (21.8 MB) with weight 6540242 (59.55/col) Wed Jan 21 13:03:23 2009 sparse part has weight 5054683 (46.02/col) Wed Jan 21 13:03:23 2009 matrix includes 64 packed rows Wed Jan 21 13:03:23 2009 using block size 43690 for processor cache size 1024 kB Wed Jan 21 13:03:24 2009 commencing Lanczos iteration Wed Jan 21 13:03:24 2009 memory use: 19.8 MB Wed Jan 21 13:04:57 2009 lanczos halted after 1737 iterations (dim = 109721) Wed Jan 21 13:04:57 2009 recovered 16 nontrivial dependencies Wed Jan 21 13:04:59 2009 prp35 factor: 79005309736995305131116060227523937 Wed Jan 21 13:04:59 2009 prp67 factor: 5210822446986772338468650809121467546078389156874394153991712631681 Wed Jan 21 13:04:59 2009 elapsed time 14:51:10
(13·10146+17)/3 = 4(3)1459<147> = 12071 · 29378177 · 84570591056004857773<20> · 792811709540546005601<21> · C95
C95 = P41 · P55
P41 = 18207354784516050172954138782410783675017<41>
P55 = 1000962316970499262148043364808414101538921611237419737<55>
Wed Jan 21 13:23:17 2009 Msieve v. 1.39 Wed Jan 21 13:23:17 2009 random seeds: 932fa8c0 871e53d0 Wed Jan 21 13:23:17 2009 factoring 18224876031013090904332849103994615678017092717370950399562413140608318359411130578473429610529 (95 digits) Wed Jan 21 13:23:18 2009 searching for 15-digit factors Wed Jan 21 13:23:19 2009 commencing quadratic sieve (95-digit input) Wed Jan 21 13:23:19 2009 using multiplier of 41 Wed Jan 21 13:23:19 2009 using 32kb Intel Core sieve core Wed Jan 21 13:23:19 2009 sieve interval: 36 blocks of size 32768 Wed Jan 21 13:23:19 2009 processing polynomials in batches of 6 Wed Jan 21 13:23:19 2009 using a sieve bound of 2128183 (78718 primes) Wed Jan 21 13:23:19 2009 using large prime bound of 310714718 (28 bits) Wed Jan 21 13:23:19 2009 using double large prime bound of 1933086450144842 (43-51 bits) Wed Jan 21 13:23:19 2009 using trial factoring cutoff of 51 bits Wed Jan 21 13:23:19 2009 polynomial 'A' values have 12 factors Wed Jan 21 16:29:21 2009 79005 relations (20068 full + 58937 combined from 1155124 partial), need 78814 Wed Jan 21 16:29:22 2009 begin with 1175192 relations Wed Jan 21 16:29:23 2009 reduce to 203036 relations in 11 passes Wed Jan 21 16:29:23 2009 attempting to read 203036 relations Wed Jan 21 16:29:26 2009 recovered 203036 relations Wed Jan 21 16:29:26 2009 recovered 184685 polynomials Wed Jan 21 16:29:26 2009 attempting to build 79005 cycles Wed Jan 21 16:29:26 2009 found 79005 cycles in 6 passes Wed Jan 21 16:29:26 2009 distribution of cycle lengths: Wed Jan 21 16:29:26 2009 length 1 : 20068 Wed Jan 21 16:29:26 2009 length 2 : 14388 Wed Jan 21 16:29:26 2009 length 3 : 13331 Wed Jan 21 16:29:26 2009 length 4 : 10426 Wed Jan 21 16:29:26 2009 length 5 : 7737 Wed Jan 21 16:29:26 2009 length 6 : 5229 Wed Jan 21 16:29:26 2009 length 7 : 3324 Wed Jan 21 16:29:26 2009 length 9+: 4502 Wed Jan 21 16:29:26 2009 largest cycle: 21 relations Wed Jan 21 16:29:27 2009 matrix is 78718 x 79005 (21.4 MB) with weight 5297899 (67.06/col) Wed Jan 21 16:29:27 2009 sparse part has weight 5297899 (67.06/col) Wed Jan 21 16:29:28 2009 filtering completed in 3 passes Wed Jan 21 16:29:28 2009 matrix is 74535 x 74599 (20.3 MB) with weight 5026664 (67.38/col) Wed Jan 21 16:29:28 2009 sparse part has weight 5026664 (67.38/col) Wed Jan 21 16:29:28 2009 saving the first 48 matrix rows for later Wed Jan 21 16:29:28 2009 matrix is 74487 x 74599 (14.4 MB) with weight 4141954 (55.52/col) Wed Jan 21 16:29:28 2009 sparse part has weight 3326541 (44.59/col) Wed Jan 21 16:29:28 2009 matrix includes 64 packed rows Wed Jan 21 16:29:28 2009 using block size 29839 for processor cache size 1024 kB Wed Jan 21 16:29:29 2009 commencing Lanczos iteration Wed Jan 21 16:29:29 2009 memory use: 12.9 MB Wed Jan 21 16:30:08 2009 lanczos halted after 1180 iterations (dim = 74485) Wed Jan 21 16:30:08 2009 recovered 17 nontrivial dependencies Wed Jan 21 16:30:09 2009 prp41 factor: 18207354784516050172954138782410783675017 Wed Jan 21 16:30:09 2009 prp55 factor: 1000962316970499262148043364808414101538921611237419737 Wed Jan 21 16:30:09 2009 elapsed time 03:06:52
By Erik Branger / GGNFS, Msieve / Jan 21, 2009
(13·10131+17)/3 = 4(3)1309<132> = 29 · 904733 · 29957120117<11> · C114
C114 = P56 · P58
P56 = 75290545150991448414835552655069190513078881893534153027<56>
P58 = 7322563824738082008971167079472877712083747265515945444253<58>
Number: 43339_131 N=551319822267459194717415093064116246005032550795737682772740698942815633285096006269830717449494717586743599703831 ( 114 digits) SNFS difficulty: 132 digits. Divisors found: r1=75290545150991448414835552655069190513078881893534153027 r2=7322563824738082008971167079472877712083747265515945444253 Version: Total time: 4.98 hours. Scaled time: 3.94 units (timescale=0.792). Factorization parameters were as follows: n: 551319822267459194717415093064116246005032550795737682772740698942815633285096006269830717449494717586743599703831 m: 100000000000000000000000000 deg: 5 c5: 130 c0: 17 skew: 0.67 type: snfs lss: 1 rlim: 1110000 alim: 1110000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1110000/1110000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [555000, 1055001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167053 x 167297 Total sieving time: 4.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1110000,1110000,26,26,47,47,2.3,2.3,50000 total time: 4.98 hours. --------- CPU info (if available) ----------
(13·10134+17)/3 = 4(3)1339<135> = 6673369 · C128
C128 = P46 · P83
P46 = 5170562015966718933706945307187386252346192839<46>
P83 = 12558541543619291989344514474085687960032747195815838307724371092633277051867902229<83>
Number: 43339_134 N=64934717881377956671260548207859228724401922527187292255730701139609293796481707115751179551637760977001771269254455033631938131 ( 128 digits) SNFS difficulty: 136 digits. Divisors found: r1=5170562015966718933706945307187386252346192839 r2=12558541543619291989344514474085687960032747195815838307724371092633277051867902229 Version: Total time: 4.95 hours. Scaled time: 3.91 units (timescale=0.790). Factorization parameters were as follows: n: 64934717881377956671260548207859228724401922527187292255730701139609293796481707115751179551637760977001771269254455033631938131 m: 1000000000000000000000000000 deg: 5 c5: 13 c0: 170 skew: 1.67 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 192101 x 192349 Total sieving time: 4.95 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 4.95 hours. --------- CPU info (if available) ----------
By Ignacio Santos / GGNFS, Msieve / Jan 21, 2009
(13·10156+17)/3 = 4(3)1559<157> = 107 · 347 · C153
C153 = P61 · P92
P61 = 7848665944310548658605692434612903025770055432499188163240129<61>
P92 = 14870069560900029332823369079022256333783852292742853847835506034728760020780350557624843779<92>
Number: 43339_156 N=116710208552164974368642660274538321348092685861007119322721682063436487202276746837602233653837521434278686022605869625719338881557093736252884088807491 ( 153 digits) SNFS difficulty: 157 digits. Divisors found: r1=7848665944310548658605692434612903025770055432499188163240129 (pp61) r2=14870069560900029332823369079022256333783852292742853847835506034728760020780350557624843779 (pp92) Version: Msieve-1.39 Total time: 22.70 hours. Scaled time: 58.42 units (timescale=2.574). Factorization parameters were as follows: n: 116710208552164974368642660274538321348092685861007119322721682063436487202276746837602233653837521434278686022605869625719338881557093736252884088807491 m: 10000000000000000000000000000000 deg: 5 c5: 130 c0: 17 skew: 0.67 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1450000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 536829 x 537077 Total sieving time: 22.70 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 22.70 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39 / Jan 21, 2009
(41·10164+13)/9 = 4(5)1637<165> = C165
C165 = P50 · P115
P50 = 59246473337858590252923330703876400107515991544467<50>
P115 = 7689159031588380373504633593943740054484463334271016968033626444748578728860063210957751627326841633237210040015271<115>
SNFS difficulty: 166 digits. Divisors found: r1=59246473337858590252923330703876400107515991544467 (pp50) r2=7689159031588380373504633593943740054484463334271016968033626444748578728860063210957751627326841633237210040015271 (pp115) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.277). Factorization parameters were as follows: n: 455555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 1000000000000000000000000000000000 deg: 5 c5: 41 c0: 130 skew: 1.26 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 4500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 873659 x 873907 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,100000 total time: 52.00 hours.
(41·10165+13)/9 = 4(5)1647<166> = 3 · 7 · 35042011 · C157
C157 = P56 · P101
P56 = 66025287958999438614254821967763657340307943048925364047<56>
P101 = 93761107149891665630911409876334871598782580112338751013349869153898971358258464100313470301176153101<101>
SNFS difficulty: 166 digits. Divisors found: r1=66025287958999438614254821967763657340307943048925364047 (pp56) r2=93761107149891665630911409876334871598782580112338751013349869153898971358258464100313470301176153101 (pp101) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 6190604098926198362786063189444719117773555202959582748174219137458090838934192930058064624685244717582473540600487139029119396627414360757347265741432959747 m: 1000000000000000000000000000000000 deg: 5 c5: 41 c0: 13 skew: 0.79 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 3900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 708729 x 708977 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,200000 total time: 33.00 hours.
(13·10152+17)/3 = 4(3)1519<153> = C153
C153 = P51 · P102
P51 = 670399596905264032667430020408189520755253035738719<51>
P102 = 646380659137790069915295704552388520173975520084757105896768093685063584412243426921222988426638350981<102>
SNFS difficulty: 154 digits. Divisors found: r1=670399596905264032667430020408189520755253035738719 (pp51) r2=646380659137790069915295704552388520173975520084757105896768093685063584412243426921222988426638350981 (pp102) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.733). Factorization parameters were as follows: n: 433333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339 m: 2000000000000000000000000000000 deg: 5 c5: 325 c0: 136 skew: 0.84 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 510307 x 510555 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 13.00 hours.
By Ignacio Santos / GGNFS-Msieve / Jan 20, 2009
(13·10130+17)/3 = 4(3)1299<131> = 19 · 640307 · 38351513 · 285733361 · 222209824020355909<18> · C91
C91 = P43 · P48
P43 = 1570644324244675277406232203685467558728651<43>
P48 = 931313054549234693627071365157441701143203771309<48>
Tue Jan 20 13:42:23 2009 Tue Jan 20 13:42:23 2009 Tue Jan 20 13:42:23 2009 Msieve v. 1.39 Tue Jan 20 13:42:23 2009 random seeds: b379af00 0c33bebd Tue Jan 20 13:42:23 2009 factoring 1462761563222727130063118075699260662700284657246345663740202539793096014122267264590074159 (91 digits) Tue Jan 20 13:42:23 2009 searching for 15-digit factors Tue Jan 20 13:42:25 2009 commencing quadratic sieve (91-digit input) Tue Jan 20 13:42:25 2009 using multiplier of 5 Tue Jan 20 13:42:25 2009 using 32kb Intel Core sieve core Tue Jan 20 13:42:25 2009 sieve interval: 36 blocks of size 32768 Tue Jan 20 13:42:25 2009 processing polynomials in batches of 6 Tue Jan 20 13:42:25 2009 using a sieve bound of 1652509 (62283 primes) Tue Jan 20 13:42:25 2009 using large prime bound of 145420792 (27 bits) Tue Jan 20 13:42:25 2009 using double large prime bound of 492864656290952 (42-49 bits) Tue Jan 20 13:42:25 2009 using trial factoring cutoff of 49 bits Tue Jan 20 13:42:25 2009 polynomial 'A' values have 12 factors Tue Jan 20 14:50:04 2009 62440 relations (16596 full + 45844 combined from 698216 partial), need 62379 Tue Jan 20 14:50:05 2009 begin with 714812 relations Tue Jan 20 14:50:05 2009 reduce to 153177 relations in 10 passes Tue Jan 20 14:50:05 2009 attempting to read 153177 relations Tue Jan 20 14:50:07 2009 recovered 153177 relations Tue Jan 20 14:50:07 2009 recovered 132766 polynomials Tue Jan 20 14:50:07 2009 attempting to build 62440 cycles Tue Jan 20 14:50:07 2009 found 62440 cycles in 5 passes Tue Jan 20 14:50:07 2009 distribution of cycle lengths: Tue Jan 20 14:50:07 2009 length 1 : 16596 Tue Jan 20 14:50:07 2009 length 2 : 11960 Tue Jan 20 14:50:07 2009 length 3 : 10999 Tue Jan 20 14:50:07 2009 length 4 : 8205 Tue Jan 20 14:50:07 2009 length 5 : 5901 Tue Jan 20 14:50:07 2009 length 6 : 3759 Tue Jan 20 14:50:07 2009 length 7 : 2267 Tue Jan 20 14:50:07 2009 length 9+: 2753 Tue Jan 20 14:50:07 2009 largest cycle: 20 relations Tue Jan 20 14:50:07 2009 matrix is 62283 x 62440 (15.4 MB) with weight 3790272 (60.70/col) Tue Jan 20 14:50:07 2009 sparse part has weight 3790272 (60.70/col) Tue Jan 20 14:50:08 2009 filtering completed in 3 passes Tue Jan 20 14:50:08 2009 matrix is 58355 x 58418 (14.5 MB) with weight 3572990 (61.16/col) Tue Jan 20 14:50:08 2009 sparse part has weight 3572990 (61.16/col) Tue Jan 20 14:50:08 2009 saving the first 48 matrix rows for later Tue Jan 20 14:50:08 2009 matrix is 58307 x 58418 (9.1 MB) with weight 2792706 (47.81/col) Tue Jan 20 14:50:08 2009 sparse part has weight 2023535 (34.64/col) Tue Jan 20 14:50:08 2009 matrix includes 64 packed rows Tue Jan 20 14:50:08 2009 using block size 23367 for processor cache size 4096 kB Tue Jan 20 14:50:08 2009 commencing Lanczos iteration Tue Jan 20 14:50:08 2009 memory use: 8.8 MB Tue Jan 20 14:50:22 2009 lanczos halted after 924 iterations (dim = 58307) Tue Jan 20 14:50:23 2009 recovered 19 nontrivial dependencies Tue Jan 20 14:50:24 2009 prp43 factor: 1570644324244675277406232203685467558728651 Tue Jan 20 14:50:24 2009 prp48 factor: 931313054549234693627071365157441701143203771309 Tue Jan 20 14:50:24 2009 elapsed time 01:08:01
By Ignacio Santos / GGNFS-Msieve / Jan 21, 2009
(13·10140+17)/3 = 4(3)1399<141> = 53 · 863 · 929 · 140261005451431<15> · 2990564816106821799383922547<28> · C92
C92 = P39 · P53
P39 = 243818690817952710890544697736647626133<39>
P53 = 99715473523447511465699370816219356662567860601605449<53>
Tue Jan 20 22:10:54 2009 Tue Jan 20 22:10:54 2009 Tue Jan 20 22:10:54 2009 Msieve v. 1.39 Tue Jan 20 22:10:54 2009 random seeds: a8b04c68 749e672b Tue Jan 20 22:10:54 2009 factoring 24312496208779198415565027300964960051932497256644440241028331720996824305447064254527598717 (92 digits) Tue Jan 20 22:10:55 2009 searching for 15-digit factors Tue Jan 20 22:10:56 2009 commencing quadratic sieve (92-digit input) Tue Jan 20 22:10:56 2009 using multiplier of 53 Tue Jan 20 22:10:56 2009 using 32kb Intel Core sieve core Tue Jan 20 22:10:56 2009 sieve interval: 36 blocks of size 32768 Tue Jan 20 22:10:56 2009 processing polynomials in batches of 6 Tue Jan 20 22:10:56 2009 using a sieve bound of 1779137 (67059 primes) Tue Jan 20 22:10:56 2009 using large prime bound of 186809385 (27 bits) Tue Jan 20 22:10:56 2009 using double large prime bound of 773601948505050 (42-50 bits) Tue Jan 20 22:10:56 2009 using trial factoring cutoff of 50 bits Tue Jan 20 22:10:56 2009 polynomial 'A' values have 12 factors Tue Jan 20 23:37:05 2009 67588 relations (17425 full + 50163 combined from 823918 partial), need 67155 Tue Jan 20 23:37:05 2009 begin with 841343 relations Tue Jan 20 23:37:06 2009 reduce to 168962 relations in 10 passes Tue Jan 20 23:37:06 2009 attempting to read 168962 relations Tue Jan 20 23:37:08 2009 recovered 168962 relations Tue Jan 20 23:37:08 2009 recovered 149354 polynomials Tue Jan 20 23:37:08 2009 attempting to build 67588 cycles Tue Jan 20 23:37:08 2009 found 67588 cycles in 6 passes Tue Jan 20 23:37:08 2009 distribution of cycle lengths: Tue Jan 20 23:37:08 2009 length 1 : 17425 Tue Jan 20 23:37:08 2009 length 2 : 12637 Tue Jan 20 23:37:08 2009 length 3 : 11786 Tue Jan 20 23:37:08 2009 length 4 : 9225 Tue Jan 20 23:37:08 2009 length 5 : 6455 Tue Jan 20 23:37:08 2009 length 6 : 4251 Tue Jan 20 23:37:08 2009 length 7 : 2534 Tue Jan 20 23:37:08 2009 length 9+: 3275 Tue Jan 20 23:37:08 2009 largest cycle: 19 relations Tue Jan 20 23:37:08 2009 matrix is 67059 x 67588 (16.2 MB) with weight 3965480 (58.67/col) Tue Jan 20 23:37:08 2009 sparse part has weight 3965480 (58.67/col) Tue Jan 20 23:37:09 2009 filtering completed in 3 passes Tue Jan 20 23:37:09 2009 matrix is 63057 x 63121 (15.1 MB) with weight 3704002 (58.68/col) Tue Jan 20 23:37:09 2009 sparse part has weight 3704002 (58.68/col) Tue Jan 20 23:37:09 2009 saving the first 48 matrix rows for later Tue Jan 20 23:37:09 2009 matrix is 63009 x 63121 (8.3 MB) with weight 2741154 (43.43/col) Tue Jan 20 23:37:09 2009 sparse part has weight 1801245 (28.54/col) Tue Jan 20 23:37:09 2009 matrix includes 64 packed rows Tue Jan 20 23:37:09 2009 using block size 25248 for processor cache size 4096 kB Tue Jan 20 23:37:09 2009 commencing Lanczos iteration Tue Jan 20 23:37:09 2009 memory use: 8.9 MB Tue Jan 20 23:37:25 2009 lanczos halted after 998 iterations (dim = 63007) Tue Jan 20 23:37:25 2009 recovered 16 nontrivial dependencies Tue Jan 20 23:37:25 2009 prp39 factor: 243818690817952710890544697736647626133 Tue Jan 20 23:37:25 2009 prp53 factor: 99715473523447511465699370816219356662567860601605449 Tue Jan 20 23:37:25 2009 elapsed time 01:26:31
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 20, 2009
(37·10163+71)/9 = 4(1)1629<164> = 7 · 83 · 119267 · 880091 · 55050071 · C143
C143 = P68 · P76
P68 = 10612384575172811246762013681618992864158685725196076097302274309919<68>
P76 = 1153889825563011219897015674381343240915397462487267551725993237549611584283<76>
Number: 41119_163 N=12245522586253746099968568685920140593209283041694339776310908812238990592165703272639528019191995298183689750221363386742366663616632131403077 ( 143 digits) SNFS difficulty: 166 digits. Divisors found: r1=10612384575172811246762013681618992864158685725196076097302274309919 r2=1153889825563011219897015674381343240915397462487267551725993237549611584283 Version: Total time: 28.05 hours. Scaled time: 66.29 units (timescale=2.363). Factorization parameters were as follows: n: 12245522586253746099968568685920140593209283041694339776310908812238990592165703272639528019191995298183689750221363386742366663616632131403077 m: 1000000000000000000000000000000000 deg: 5 c5: 37 c0: 7100 skew: 2.86 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9817186 Max relations in full relation-set: Initial matrix: Pruned matrix : 822349 x 822597 Total sieving time: 24.80 hours. Total relation processing time: 1.08 hours. Matrix solve time: 1.58 hours. Time per square root: 0.60 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 28.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
(13·10119+17)/3 = 4(3)1189<120> = 61 · 39409 · C114
C114 = P38 · P76
P38 = 53174504914257053921908157404715782721<38>
P76 = 3389950781078697275386436001539122062289866786416933540275567164715600727591<76>
Number: 43339_119 N=180258954467558726634106353060457328060342932954623136070413030115586201426624829949942088344358941613708665755111 ( 114 digits) SNFS difficulty: 121 digits. Divisors found: r1=53174504914257053921908157404715782721 r2=3389950781078697275386436001539122062289866786416933540275567164715600727591 Version: Total time: 0.62 hours. Scaled time: 1.48 units (timescale=2.373). Factorization parameters were as follows: n: 180258954467558726634106353060457328060342932954623136070413030115586201426624829949942088344358941613708665755111 m: 1000000000000000000000000 deg: 5 c5: 13 c0: 170 skew: 1.67 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [270000, 480001) Primes: rational ideals reading, algebraic ideals reading, Relations: 1248902 Max relations in full relation-set: Initial matrix: Pruned matrix : 65852 x 66093 Total sieving time: 0.57 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,540000,540000,25,25,46,46,2.2,2.2,30000 total time: 0.62 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Jan 21, 2009
(13·10127+17)/3 = 4(3)1269<128> = 72 · 53 · C125
C125 = P42 · P83
P42 = 592752898039573593951004187883726962059169<42>
P83 = 28149874435139797345546297898982553764803447148584606253445998984051523023986318623<83>
Number: 43339_127 N=16685919650879219612373251187267359774098318572712103709408291618534206135284302400205365164933898087536901553074059812604287 ( 125 digits) SNFS difficulty: 128 digits. Divisors found: r1=592752898039573593951004187883726962059169 r2=28149874435139797345546297898982553764803447148584606253445998984051523023986318623 Version: Total time: 1.46 hours. Scaled time: 3.47 units (timescale=2.379). Factorization parameters were as follows: n: 16685919650879219612373251187267359774098318572712103709408291618534206135284302400205365164933898087536901553074059812604287 m: 10000000000000000000000000 deg: 5 c5: 1300 c0: 17 skew: 0.42 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2874650 Max relations in full relation-set: Initial matrix: Pruned matrix : 141134 x 141381 Total sieving time: 1.29 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.46 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
(64·10227-1)/9 = 7(1)227<228> = 32 · 751 · 997 · 1987 · C218
C218 = P47 · P172
P47 = 12580688216946651173211552347847284253008814449<47>
P172 = 4221410569361183158650323193996802358668505850306228952322782128251492447111964495002825468261701293097419367623912143526832225354450880609164265860377163061432183372371039<172>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 53108250208856290879943190686286926212622109904300816889872200157247472868266848651592384100132642859519384361664694008385611426285586037047629303279747426443337256605822525091167881691151711478666627465243279532342511 (218 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2234649575 Step 1 took 140027ms Step 2 took 75208ms ********** Factor found in step 2: 12580688216946651173211552347847284253008814449 Found probable prime factor of 47 digits: 12580688216946651173211552347847284253008814449 Probable prime cofactor 4221410569361183158650323193996802358668505850306228952322782128251492447111964495002825468261701293097419367623912143526832225354450880609164265860377163061432183372371039 has 172 digits
By Ignacio Santos / GGNFS, Msieve / Jan 20, 2009
(41·10149+13)/9 = 4(5)1487<150> = 2841789641<10> · 296843519425519604081<21> · C120
C120 = P45 · P76
P45 = 154871027594058166313738937531850792514615903<45>
P76 = 3486997760676672775521582454506981045875820749167242223488415063348339937939<76>
Number: 45557_149 N=540034926414176023335666056013800139388078340991658921250077831465701719953890647536283401844391126584896158401442443917 ( 120 digits) SNFS difficulty: 151 digits. Divisors found: r1=154871027594058166313738937531850792514615903 (pp45) r2=3486997760676672775521582454506981045875820749167242223488415063348339937939 (pp76) Version: Msieve-1.39 Total time: 16.88 hours. Scaled time: 43.46 units (timescale=2.575). Factorization parameters were as follows: n: 540034926414176023335666056013800139388078340991658921250077831465701719953890647536283401844391126584896158401442443917 m: 1000000000000000000000000000000 deg: 5 c5: 41 c0: 130 skew: 1.26 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 383145 x 383393 Total sieving time: 16.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 16.88 hours. --------- CPU info (if available) ----------
(13·10117+17)/3 = 4(3)1169<118> = 7411 · 17471 · 6436039448261<13> · C97
C97 = P33 · P65
P33 = 297261112967139716914723682939401<33>
P65 = 17493258901169028703409497802873699639804029532490523703990738179<65>
Number: 43339_117 N=5200065610383829033928010205144895632219547651445470984420115504287281256542233743045458514090779 ( 97 digits) SNFS difficulty: 119 digits. Divisors found: r1=297261112967139716914723682939401 (pp33) r2=17493258901169028703409497802873699639804029532490523703990738179 (pp65) Version: Msieve-1.39 Total time: 1.46 hours. Scaled time: 3.77 units (timescale=2.585). Factorization parameters were as follows: n: 5200065610383829033928010205144895632219547651445470984420115504287281256542233743045458514090779 m: 200000000000000000000000 deg: 5 c5: 325 c0: 136 skew: 0.84 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 635001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79175 x 79416 Total sieving time: 1.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 1.46 hours. --------- CPU info (if available) ----------
By Markus Tervooren / ggnfs, msieve / Jan 20, 2009
(11·10165+1)/3 = 3(6)1647<166> = 19 · 61 · 887 · 10713254678080769<17> · 12402765290298822972283<23> · C122
C122 = P47 · P76
P47 = 26797762685568259691978304690654738199883649061<47>
P76 = 1001672806023220538619289663280526288901729658106205228988334013295716045117<76>
Msieve v. 1.38 Tue Jan 20 12:57:22 2009 random seeds: 42e45458 9525d86b factoring 26842590144397512873551401406599563534311210783367865165259740185669640725921314367074253535437723207328428322873270685137 (122 digits) searching for 15-digit factors commencing number field sieve (122-digit input) R0: -1000000000000000000000000000000000 R1: 1 A0: 1 A1: 0 A2: 0 A3: 0 A4: 0 A5: 11 size score = 3.209221e-11, Murphy alpha = 0.588883, combined = 2.637243e-11 commencing relation filtering commencing duplicate removal, pass 1 found 634771 hash collisions in 10563124 relations added 10658 free relations commencing duplicate removal, pass 2 found 474889 duplicates and 10098893 unique relations memory use: 50.6 MB reading rational ideals above 7536640 reading algebraic ideals above 7536640 commencing singleton removal, pass 1 relations with 0 large ideals: 363104 relations with 1 large ideals: 1861795 relations with 2 large ideals: 3640577 relations with 3 large ideals: 2962077 relations with 4 large ideals: 896083 relations with 5 large ideals: 32823 relations with 6 large ideals: 342434 relations with 7+ large ideals: 0 10098893 relations and about 9260856 large ideals commencing singleton removal, pass 2 found 3703655 singletons current dataset: 6395238 relations and about 4652025 large ideals commencing singleton removal, pass 3 found 904831 singletons current dataset: 5490407 relations and about 3697823 large ideals commencing singleton removal, pass 4 found 218819 singletons current dataset: 5271588 relations and about 3475326 large ideals commencing singleton removal, final pass memory use: 80.9 MB commencing in-memory singleton removal begin with 5271588 relations and 3675324 unique ideals reduce to 4793006 relations and 3188955 ideals in 11 passes max relations containing the same ideal: 67 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 3867001 ideals with weight <= 20, new excess is 405067 memory use: 128.4 MB commencing in-memory singleton removal begin with 4803664 relations and 3867001 unique ideals reduce to 4780621 relations and 3791720 ideals in 9 passes max relations containing the same ideal: 20 removing 1185259 relations and 925747 ideals in 259512 cliques commencing in-memory singleton removal begin with 3595362 relations and 3791720 unique ideals reduce to 3415831 relations and 2674760 ideals in 8 passes max relations containing the same ideal: 20 removing 914096 relations and 654584 ideals in 259512 cliques commencing in-memory singleton removal begin with 2501735 relations and 2674760 unique ideals reduce to 2345224 relations and 1852304 ideals in 9 passes max relations containing the same ideal: 19 removing 135512 relations and 112470 ideals in 23042 cliques commencing in-memory singleton removal begin with 2209712 relations and 1852304 unique ideals reduce to 2204720 relations and 1734792 ideals in 5 passes max relations containing the same ideal: 19 relations with 0 large ideals: 47447 relations with 1 large ideals: 256449 relations with 2 large ideals: 603335 relations with 3 large ideals: 695913 relations with 4 large ideals: 423179 relations with 5 large ideals: 141638 relations with 6 large ideals: 34263 relations with 7+ large ideals: 2496 commencing 2-way merge reduce to 1440888 relation sets and 970960 unique ideals commencing full merge memory use: 88.6 MB found 700024 cycles, need 637160 weight of 637160 cycles is about 44625763 (70.04/cycle) distribution of cycle lengths: 1 relations: 71310 2 relations: 62858 3 relations: 65299 4 relations: 63476 5 relations: 60549 6 relations: 55936 7 relations: 50741 8 relations: 44766 9 relations: 39151 10+ relations: 123074 heaviest cycle: 17 relations commencing cycle optimization start with 3795715 relations pruned 140533 relations memory use: 119.7 MB distribution of cycle lengths: 1 relations: 71310 2 relations: 64873 3 relations: 68577 4 relations: 66515 5 relations: 63668 6 relations: 58180 7 relations: 52654 8 relations: 45831 9 relations: 39129 10+ relations: 106423 heaviest cycle: 16 relations commencing linear algebra read 637160 cycles cycles contain 1947546 unique relations read 1947546 relations using 32 quadratic characters above 134205218 building initial matrix memory use: 241.3 MB read 637160 cycles matrix is 636905 x 637160 (187.8 MB) with weight 60278730 (94.61/col) sparse part has weight 42210821 (66.25/col) filtering completed in 3 passes matrix is 634790 x 634990 (187.4 MB) with weight 60136200 (94.70/col) sparse part has weight 42132219 (66.35/col) read 634990 cycles matrix is 634790 x 634990 (187.4 MB) with weight 60136200 (94.70/col) sparse part has weight 42132219 (66.35/col) saving the first 48 matrix rows for later matrix is 634742 x 634990 (179.4 MB) with weight 46027776 (72.49/col) sparse part has weight 40680313 (64.06/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 183.7 MB linear algebra completed 634480 of 634990 dimensions (99.9%, ETA 0h 0m) lanczos halted after 10041 iterations (dim = 634740) recovered 48 nontrivial dependencies commencing square root phase reading relations for dependency 1 read 317703 cycles cycles contain 1209362 unique relations read 1209362 relations multiplying 973474 relations multiply complete, coefficients have about 24.43 million bits initial square root is modulo 10385591 prp47 factor: 26797762685568259691978304690654738199883649061 prp76 factor: 1001672806023220538619289663280526288901729658106205228988334013295716045117 elapsed time 00:40:42
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39 / Jan 20, 2009
(13·10108+17)/3 = 4(3)1079<109> = 47 · 67 · C106
C106 = P31 · P75
P31 = 7431209624337076058856861590161<31>
P75 = 185178228284173749097301724961131305298759518123588151656392167131675512151<75>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3907866496 Step 1 took 2766ms Step 2 took 2914ms ********** Factor found in step 2: 7431209624337076058856861590161 Found probable prime factor of 31 digits: 7431209624337076058856861590161 Probable prime cofactor 185178228284173749097301724961131305298759518123588151656392167131675512151 has 75 digits
(41·10150+13)/9 = 4(5)1497<151> = 33 · C150
C150 = P73 · P77
P73 = 8088307089484207164003143469452132928076569867478172561362749573329874913<73>
P77 = 20860271249437751623432586664881731562191259384907030463575987885758254647007<77>
SNFS difficulty: 151 digits. Divisors found: r1=8088307089484207164003143469452132928076569867478172561362749573329874913 (pp73) r2=20860271249437751623432586664881731562191259384907030463575987885758254647007 (pp77) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835391 m: 1000000000000000000000000000000 deg: 5 c5: 41 c0: 13 skew: 0.79 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1200000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 378707 x 378955 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,52,52,2.5,2.5,100000 total time: 10.00 hours.
(13·10194+17)/3 = 4(3)1939<195> = 59 · 83 · 157 · 607 · 1361 · 6311 · 164321 · 1786969867<10> · 19193147198594868597439948288841<32> · C134
C134 = P33 · C101
P33 = 466809015184227886664481474387139<33>
C101 = [41091464281687809280907055016363623012787750287324348861042488523828133080766450467340391897074683271<101>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2675547875 Step 1 took 9760ms Step 2 took 11062ms ********** Factor found in step 2: 466809015184227886664481474387139 Found probable prime factor of 33 digits: 466809015184227886664481474387139 Composite cofactor 41091464281687809280907055016363623012787750287324348861042488523828133080766450467340391897074683271 has 101 digits
(41·10151+13)/9 = 4(5)1507<152> = 23 · 2089 · C147
C147 = P63 · P85
P63 = 412965781222919059431588990535944176008086436258231823868137137<63>
P85 = 2295942483708757462905739091602534375427222462948952894327050495097814781823941499163<85>
SNFS difficulty: 153 digits. Divisors found: r1=412965781222919059431588990535944176008086436258231823868137137 (pp63) r2=2295942483708757462905739091602534375427222462948952894327050495097814781823941499163 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 948145681427676141185829615908497004090901732794046570140811196444222439601963817835776542875841479292267062575302423784118791091130675287854716331 m: 2000000000000000000000000000000 deg: 5 c5: 205 c0: 208 skew: 1.00 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 484451 x 484699 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.5,2.5,100000 total time: 13.00 hours.
(13·10126+17)/3 = 4(3)1259<127> = 23 · 823 · C123
C123 = P55 · P69
P55 = 1235037569989934703742707811318505240683506061828378703<55>
P69 = 185359247322344949939888900134497341086497558276887388854316050833797<69>
SNFS difficulty: 127 digits. Divisors found: r1=1235037569989934703742707811318505240683506061828378703 (pp55) r2=185359247322344949939888900134497341086497558276887388854316050833797 (pp69) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.724). Factorization parameters were as follows: n: 228925634388152217937203937520911476218148519907725359677390952154542412876186451124377058129501470406959339285399827425291 m: 10000000000000000000000000 deg: 5 c5: 130 c0: 17 skew: 0.67 type: snfs lss: 1 rlim: 920000 alim: 920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 920000/920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [460000, 810001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 129016 x 129264 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,920000,920000,26,26,49,49,2.3,2.3,50000 total time: 1.50 hours.
(13·10132+17)/3 = 4(3)1319<133> = 1135151837<10> · C124
C124 = P34 · P91
P34 = 3063094933197206012414663895563111<34>
P91 = 1246257211466193660946936592331668212340483802847166733457467467560945277322505374209706577<91>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1063295750 Step 1 took 12889ms Step 2 took 13509ms ********** Factor found in step 2: 3063094933197206012414663895563111 Found probable prime factor of 34 digits: 3063094933197206012414663895563111 Probable prime cofactor has 91 digits
(13·10183+17)/3 = 4(3)1829<184> = 167 · 283 · 7810225216444802043127<22> · C158
C158 = P35 · P123
P35 = 22638610072965845146515798122211221<35>
P123 = 518568191759354873354028254138933705605045125722879355590156955694954110429162407309398276854625923840716391560430712626397<123>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3656209356 Step 1 took 13866ms Step 2 took 13377ms ********** Factor found in step 2: 22638610072965845146515798122211221 Found probable prime factor of 35 digits: 22638610072965845146515798122211221 Probable prime cofactor has 123 digits
(13·10178+17)/3 = 4(3)1779<179> = 87187 · C174
C174 = P35 · P140
P35 = 46094114770989559758421799869715111<35>
P140 = 10782634505829926227561117112188195458713080853422097707679005993454827268815418489695411040739292454281066567653882306406788594214781617727<140>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3477417042 Step 1 took 17027ms Step 2 took 15009ms ********** Factor found in step 2: 46094114770989559758421799869715111 Found probable prime factor of 35 digits: 46094114770989559758421799869715111 Probable prime cofactor has 140 digits
(13·10201+17)/3 = 4(3)2009<202> = 28642351 · C195
C195 = P36 · C159
P36 = 173639839240963617425889116964808219<36>
C159 = [871292669082763675347013625435710106348585444590009214661633110386569980384531612332002172240517268624619132084082982641718821475559431420128713888427596047631<159>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1427935662 Step 1 took 18469ms Step 2 took 16307ms ********** Factor found in step 2: 173639839240963617425889116964808219 Found probable prime factor of 36 digits: 173639839240963617425889116964808219 Composite cofactor has 159 digits
(13·10186+17)/3 = 4(3)1859<187> = 11747995868131<14> · C174
C174 = P35 · P140
P35 = 12190831134079793452119572575592669<35>
P140 = 30256939506703801770545513093878737710316949009172144340244948068423985584761342197461324879123655207269042321468266519932875399349228090301<140>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2865496216 Step 1 took 16810ms ********** Factor found in step 1: 12190831134079793452119572575592669 Found probable prime factor of 35 digits: 12190831134079793452119572575592669 Probable prime cofactor has 140 digits
(13·10133+17)/3 = 4(3)1329<134> = 7 · 241 · 75644713537<11> · 29460856715745037847399<23> · C98
C98 = P33 · P65
P33 = 698481296045572507449739791354539<33>
P65 = 16501684500894512039853388964984732166859460649662542459577659921<65>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1123134991 Step 1 took 8855ms Step 2 took 8967ms ********** Factor found in step 2: 698481296045572507449739791354539 Found probable prime factor of 33 digits: 698481296045572507449739791354539 Probable prime cofactor has 65 digits
(13·10147+17)/3 = 4(3)1469<148> = 179 · 313 · 242726741 · C135
C135 = P48 · P88
P48 = 317051071730800217076386361855545345075517377299<48>
P88 = 1005027345848835841745604832051900561300662136688387005636253807451532975144833420805423<88>
SNFS difficulty: 148 digits. Divisors found: r1=317051071730800217076386361855545345075517377299 (pp48) r2=1005027345848835841745604832051900561300662136688387005636253807451532975144833420805423 (pp88) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 318644997120135010242664186404623364057545817118496018099156617192090829733657448410476343054352884472704599346161173015402965156292477 m: 100000000000000000000000000000 deg: 5 c5: 1300 c0: 17 skew: 0.42 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved rational special-q in [1050000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 373103 x 373351 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,50,50,2.3,2.3,100000 total time: 8.00 hours.
(13·10129+17)/3 = 4(3)1289<130> = 11131 · 1176499763<10> · 616446635683<12> · C105
C105 = P37 · P69
P37 = 5084951887576689955930793519093430503<37>
P69 = 105563489060486885995991940896116891423985958592255758808200677488687<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2005348329 Step 1 took 8262ms Step 2 took 9276ms ********** Factor found in step 2: 5084951887576689955930793519093430503 Found probable prime factor of 37 digits: 5084951887576689955930793519093430503 Probable prime cofactor has 69 digits
By Sinkiti Sibata / Msieve / Jan 20, 2009
(41·10121+13)/9 = 4(5)1207<122> = 5399 · 644341 · 8206170209<10> · C103
C103 = P44 · P60
P44 = 10400541347880596513151322002253490415160669<44>
P60 = 153431943934224431017641592298558521171642330516337258884163<60>
Mon Jan 19 20:01:43 2009 Msieve v. 1.39 Mon Jan 19 20:01:43 2009 random seeds: 5b18ff20 202f51b7 Mon Jan 19 20:01:43 2009 factoring 1595775276973598678011037831407391019992414694887644832555308608201214056077442928890564306845304585047 (103 digits) Mon Jan 19 20:01:44 2009 searching for 15-digit factors Mon Jan 19 20:01:46 2009 commencing quadratic sieve (103-digit input) Mon Jan 19 20:01:46 2009 using multiplier of 2 Mon Jan 19 20:01:46 2009 using 32kb Intel Core sieve core Mon Jan 19 20:01:46 2009 sieve interval: 36 blocks of size 32768 Mon Jan 19 20:01:46 2009 processing polynomials in batches of 6 Mon Jan 19 20:01:46 2009 using a sieve bound of 3340487 (120000 primes) Mon Jan 19 20:01:46 2009 using large prime bound of 501073050 (28 bits) Mon Jan 19 20:01:46 2009 using double large prime bound of 4569007548480300 (44-53 bits) Mon Jan 19 20:01:46 2009 using trial factoring cutoff of 53 bits Mon Jan 19 20:01:46 2009 polynomial 'A' values have 13 factors Tue Jan 20 14:14:09 2009 120145 relations (28740 full + 91405 combined from 1795883 partial), need 120096 Tue Jan 20 14:14:11 2009 begin with 1824623 relations Tue Jan 20 14:14:12 2009 reduce to 317252 relations in 11 passes Tue Jan 20 14:14:12 2009 attempting to read 317252 relations Tue Jan 20 14:14:19 2009 recovered 317252 relations Tue Jan 20 14:14:19 2009 recovered 308230 polynomials Tue Jan 20 14:14:19 2009 attempting to build 120145 cycles Tue Jan 20 14:14:19 2009 found 120145 cycles in 6 passes Tue Jan 20 14:14:19 2009 distribution of cycle lengths: Tue Jan 20 14:14:19 2009 length 1 : 28740 Tue Jan 20 14:14:19 2009 length 2 : 20336 Tue Jan 20 14:14:19 2009 length 3 : 20009 Tue Jan 20 14:14:19 2009 length 4 : 16310 Tue Jan 20 14:14:19 2009 length 5 : 12547 Tue Jan 20 14:14:19 2009 length 6 : 8606 Tue Jan 20 14:14:19 2009 length 7 : 5637 Tue Jan 20 14:14:19 2009 length 9+: 7960 Tue Jan 20 14:14:19 2009 largest cycle: 20 relations Tue Jan 20 14:14:20 2009 matrix is 120000 x 120145 (35.6 MB) with weight 8849223 (73.65/col) Tue Jan 20 14:14:20 2009 sparse part has weight 8849223 (73.65/col) Tue Jan 20 14:14:22 2009 filtering completed in 3 passes Tue Jan 20 14:14:22 2009 matrix is 115104 x 115168 (34.3 MB) with weight 8541239 (74.16/col) Tue Jan 20 14:14:22 2009 sparse part has weight 8541239 (74.16/col) Tue Jan 20 14:14:22 2009 saving the first 48 matrix rows for later Tue Jan 20 14:14:23 2009 matrix is 115056 x 115168 (24.4 MB) with weight 7127639 (61.89/col) Tue Jan 20 14:14:23 2009 sparse part has weight 5695827 (49.46/col) Tue Jan 20 14:14:23 2009 matrix includes 64 packed rows Tue Jan 20 14:14:23 2009 using block size 43690 for processor cache size 1024 kB Tue Jan 20 14:14:24 2009 commencing Lanczos iteration Tue Jan 20 14:14:24 2009 memory use: 21.6 MB Tue Jan 20 14:16:15 2009 lanczos halted after 1820 iterations (dim = 115054) Tue Jan 20 14:16:16 2009 recovered 17 nontrivial dependencies Tue Jan 20 14:16:17 2009 prp44 factor: 10400541347880596513151322002253490415160669 Tue Jan 20 14:16:17 2009 prp60 factor: 153431943934224431017641592298558521171642330516337258884163 Tue Jan 20 14:16:17 2009 elapsed time 18:14:34
(41·10176+13)/9 = 4(5)1757<177> = 15661 · 8878663815812143<16> · 15515053871634353<17> · 115993927151348881399<21> · 1966833408789686089783313<25> · C96
C96 = P41 · P56
P41 = 19615475179920945071617458596234333359193<41>
P56 = 47186666258012252043256895418049868713349346463656125033<56>
Tue Jan 20 16:17:26 2009 Msieve v. 1.39 Tue Jan 20 16:17:26 2009 random seeds: ca946258 b74f2676 Tue Jan 20 16:17:26 2009 factoring 925588880807252467568771876878853373863714814721869609944208374600859523491636368735392507978369 (96 digits) Tue Jan 20 16:17:27 2009 searching for 15-digit factors Tue Jan 20 16:17:28 2009 commencing quadratic sieve (96-digit input) Tue Jan 20 16:17:29 2009 using multiplier of 1 Tue Jan 20 16:17:29 2009 using 32kb Intel Core sieve core Tue Jan 20 16:17:29 2009 sieve interval: 36 blocks of size 32768 Tue Jan 20 16:17:29 2009 processing polynomials in batches of 6 Tue Jan 20 16:17:29 2009 using a sieve bound of 2299939 (84689 primes) Tue Jan 20 16:17:29 2009 using large prime bound of 344990850 (28 bits) Tue Jan 20 16:17:29 2009 using double large prime bound of 2333746148351850 (43-52 bits) Tue Jan 20 16:17:29 2009 using trial factoring cutoff of 52 bits Tue Jan 20 16:17:29 2009 polynomial 'A' values have 12 factors Tue Jan 20 21:50:47 2009 84787 relations (20045 full + 64742 combined from 1295802 partial), need 84785 Tue Jan 20 21:50:48 2009 begin with 1315847 relations Tue Jan 20 21:50:49 2009 reduce to 225957 relations in 11 passes Tue Jan 20 21:50:49 2009 attempting to read 225957 relations Tue Jan 20 21:50:53 2009 recovered 225957 relations Tue Jan 20 21:50:53 2009 recovered 213085 polynomials Tue Jan 20 21:50:53 2009 attempting to build 84787 cycles Tue Jan 20 21:50:54 2009 found 84787 cycles in 6 passes Tue Jan 20 21:50:54 2009 distribution of cycle lengths: Tue Jan 20 21:50:54 2009 length 1 : 20045 Tue Jan 20 21:50:54 2009 length 2 : 14023 Tue Jan 20 21:50:54 2009 length 3 : 14055 Tue Jan 20 21:50:54 2009 length 4 : 11596 Tue Jan 20 21:50:54 2009 length 5 : 8962 Tue Jan 20 21:50:54 2009 length 6 : 6115 Tue Jan 20 21:50:54 2009 length 7 : 4087 Tue Jan 20 21:50:54 2009 length 9+: 5904 Tue Jan 20 21:50:54 2009 largest cycle: 18 relations Tue Jan 20 21:50:54 2009 matrix is 84689 x 84787 (23.6 MB) with weight 5858158 (69.09/col) Tue Jan 20 21:50:54 2009 sparse part has weight 5858158 (69.09/col) Tue Jan 20 21:50:55 2009 filtering completed in 3 passes Tue Jan 20 21:50:55 2009 matrix is 81312 x 81376 (22.9 MB) with weight 5667944 (69.65/col) Tue Jan 20 21:50:55 2009 sparse part has weight 5667944 (69.65/col) Tue Jan 20 21:50:55 2009 saving the first 48 matrix rows for later Tue Jan 20 21:50:56 2009 matrix is 81264 x 81376 (16.5 MB) with weight 4721586 (58.02/col) Tue Jan 20 21:50:56 2009 sparse part has weight 3829854 (47.06/col) Tue Jan 20 21:50:56 2009 matrix includes 64 packed rows Tue Jan 20 21:50:56 2009 using block size 32550 for processor cache size 1024 kB Tue Jan 20 21:50:57 2009 commencing Lanczos iteration Tue Jan 20 21:50:57 2009 memory use: 14.7 MB Tue Jan 20 21:51:46 2009 lanczos halted after 1286 iterations (dim = 81263) Tue Jan 20 21:51:46 2009 recovered 16 nontrivial dependencies Tue Jan 20 21:51:47 2009 prp41 factor: 19615475179920945071617458596234333359193 Tue Jan 20 21:51:47 2009 prp56 factor: 47186666258012252043256895418049868713349346463656125033 Tue Jan 20 21:51:47 2009 elapsed time 05:34:21
By Erik Branger / GGNFS, Msieve / Jan 20, 2009
(43·10170-7)/9 = 4(7)170<171> = 3 · 67 · 823 · 400427303 · 5932620495103062443<19> · C139
C139 = P56 · P83
P56 = 19724348612725122674663619250491107143649597908233700859<56>
P83 = 61639219937700802753408962418792264762496168162642674184908540680230576705040487009<83>
Number: 47777_170 N=1215793462267647551285892538593877354317166737178594605321560408370658353862767905904353311381922334245683040902952768797380928615781640731 ( 139 digits) SNFS difficulty: 171 digits. Divisors found: r1=19724348612725122674663619250491107143649597908233700859 r2=61639219937700802753408962418792264762496168162642674184908540680230576705040487009 Version: Total time: 109.07 hours. Scaled time: 86.17 units (timescale=0.790). Factorization parameters were as follows: n: 1215793462267647551285892538593877354317166737178594605321560408370658353862767905904353311381922334245683040902952768797380928615781640731 m: 10000000000000000000000000000000000 deg: 5 c5: 43 c0: -7 skew: 0.70 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 915262 x 915510 Total sieving time: 109.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 109.07 hours. --------- CPU info (if available) ----------
By Markus Tervooren / ggnfs,msieve / Jan 20, 2009
(41·10145+13)/9 = 4(5)1447<146> = 311 · 749129 · 967664057 · C129
C129 = P47 · P83
P47 = 10653204168755044912086128475047056724667021761<47>
P83 = 18967910352320338815022238253260155162161188295244766291718453109239753146705462339<83>
Msieve v. 1.38 Tue Jan 20 02:57:00 2009 random seeds: 4f200b6f 822e0064 factoring 202069021637911006139792365982193405950417196982994491279558455816628051731372278017796256873175681136201678990699486273678958979 (129 digits) searching for 15-digit factors commencing number field sieve (129-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 13 A1: 0 A2: 0 A3: 0 A4: 0 A5: 41 size score = 3.775105e-10, Murphy alpha = 0.741107, combined = 2.948783e-10 commencing relation filtering commencing duplicate removal, pass 1 found 843687 hash collisions in 4404710 relations commencing duplicate removal, pass 2 found 995671 duplicates and 3409039 unique relations memory use: 50.6 MB reading rational ideals above 3080192 reading algebraic ideals above 3080192 commencing singleton removal, pass 1 relations with 0 large ideals: 144617 relations with 1 large ideals: 792976 relations with 2 large ideals: 1430566 relations with 3 large ideals: 787622 relations with 4 large ideals: 99293 relations with 5 large ideals: 2793 relations with 6 large ideals: 151172 relations with 7+ large ideals: 0 3409039 relations and about 3584453 large ideals commencing singleton removal, pass 2 found 1701329 singletons current dataset: 1707710 relations and about 1248457 large ideals commencing singleton removal, pass 3 found 371483 singletons current dataset: 1336227 relations and about 845846 large ideals commencing singleton removal, final pass memory use: 22.6 MB commencing in-memory singleton removal begin with 1336227 relations and 865908 unique ideals reduce to 1165662 relations and 690763 ideals in 12 passes max relations containing the same ideal: 28 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 999380 ideals with weight <= 20, new excess is 134647 memory use: 33.2 MB commencing in-memory singleton removal begin with 1166216 relations and 999380 unique ideals reduce to 1132823 relations and 962999 ideals in 10 passes max relations containing the same ideal: 20 relations with 0 large ideals: 7191 relations with 1 large ideals: 39881 relations with 2 large ideals: 156236 relations with 3 large ideals: 315706 relations with 4 large ideals: 342583 relations with 5 large ideals: 195715 relations with 6 large ideals: 66642 relations with 7+ large ideals: 8869 commencing 2-way merge reduce to 681219 relation sets and 511407 unique ideals ignored 12 oversize relation sets commencing full merge memory use: 51.5 MB found 312399 cycles, need 285607 weight of 285607 cycles is about 20278239 (71.00/cycle) distribution of cycle lengths: 1 relations: 29107 2 relations: 28315 3 relations: 29668 4 relations: 27878 5 relations: 26181 6 relations: 23644 7 relations: 20696 8 relations: 18433 9 relations: 15797 10+ relations: 65888 heaviest cycle: 19 relations commencing cycle optimization start with 1823210 relations pruned 67262 relations memory use: 56.6 MB distribution of cycle lengths: 1 relations: 29107 2 relations: 29151 3 relations: 31160 4 relations: 29052 5 relations: 27443 6 relations: 24372 7 relations: 21373 8 relations: 18600 9 relations: 15958 10+ relations: 59391 heaviest cycle: 19 relations commencing linear algebra read 285607 cycles cycles contain 910667 unique relations read 910667 relations using 32 quadratic characters above 67108748 building initial matrix memory use: 113.4 MB read 285607 cycles matrix is 285292 x 285607 (84.8 MB) with weight 26928793 (94.29/col) sparse part has weight 19096573 (66.86/col) filtering completed in 3 passes matrix is 283618 x 283818 (84.4 MB) with weight 26775760 (94.34/col) sparse part has weight 18996642 (66.93/col) read 283818 cycles matrix is 283618 x 283818 (84.4 MB) with weight 26775760 (94.34/col) sparse part has weight 18996642 (66.93/col) saving the first 48 matrix rows for later matrix is 283570 x 283818 (80.1 MB) with weight 20525132 (72.32/col) sparse part has weight 18169096 (64.02/col) matrix includes 64 packed rows using block size 65536 for processor cache size 4096 kB commencing Lanczos iteration (4 threads) memory use: 80.8 MB linear algebra completed 283258 of 283818 dimensions (99.8%, ETA 0h 0m) lanczos halted after 4486 iterations (dim = 283568) recovered 47 nontrivial dependencies commencing square root phase reading relations for dependency 1 read 141763 cycles cycles contain 560270 unique relations read 560270 relations multiplying 453468 relations multiply complete, coefficients have about 11.50 million bits initial square root is modulo 4054321 prp47 factor: 10653204168755044912086128475047056724667021761 prp83 factor: 18967910352320338815022238253260155162161188295244766291718453109239753146705462339 elapsed time 00:09:19
By Robert Backstrom / GGNFS / Jan 20, 2009
(41·10112+13)/9 = 4(5)1117<113> = 49448381 · 3789741401<10> · C96
C96 = P43 · P54
P43 = 1756133435352425513182738620900779191051907<43>
P54 = 138427438493586209714463563564622332183967287880120571<54>
Number: n N=243097053108778136984165373438571844484903522635059863349607568848040049721944322939831479478897 ( 96 digits) SNFS difficulty: 113 digits. Divisors found: r1=1756133435352425513182738620900779191051907 (pp43) r2=138427438493586209714463563564622332183967287880120571 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.06 hours. Scaled time: 1.94 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_5_111_7 n: 243097053108778136984165373438571844484903522635059863349607568848040049721944322939831479478897 deg: 5 c5: 4100 c0: 13 m: 10000000000000000000000 skew: 0.32 type: snfs rlim: 480000 alim: 480000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 5000 Factor base limits: 480000/480000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [240000, 345001) Primes: RFBsize:40005, AFBsize:39921, largePrimes:4792058 encountered Relations: rels:4122235, finalFF:101596 Max relations in full relation-set: 48 Initial matrix: 79993 x 101596 with sparse part having weight 13695970. Pruned matrix : 76115 x 76578 with weight 7943284. Total sieving time: 0.95 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,480000,480000,28,28,56,56,2.5,2.5,50000 total time: 1.06 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1 / Jan 20, 2009
(41·10186+13)/9 = 4(5)1857<187> = 32 · 182687 · 442938256226497<15> · C166
C166 = P33 · C134
P33 = 475477038574083556369929814369943<33>
C134 = [13155836064426885594128471441995840999104018528889838729522538451337386795995418446303058262145873857043472284395328315703288515892949<134>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3142684540 Step 1 took 13757ms Step 2 took 15719ms ********** Factor found in step 2: 475477038574083556369929814369943 Found probable prime factor of 33 digits: 475477038574083556369929814369943 Composite cofactor has 134 digits
(41·10181+13)/9 = 4(5)1807<182> = 12659 · 147554087 · C170
C170 = P32 · P138
P32 = 78477341455780825551529021820629<32>
P138 = 310775248202494631264165765244128945187442184025682887089121058958659378801935873806320769270522775359779824792305932238101974779883118301<138>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2007374422 Step 1 took 9165ms Step 2 took 7552ms ********** Factor found in step 2: 78477341455780825551529021820629 Found probable prime factor of 32 digits: 78477341455780825551529021820629 Probable prime cofactor has 138 digits
(41·10187+13)/9 = 4(5)1867<188> = 17 · 21997 · C183
C183 = P32 · P151
P32 = 13310078697652045224417963250807<32>
P151 = 9152681457356347479687513555964152495625936597914799763119468328723604835282886894235884214798391401198686408741531567478099493735823168035935778356799<151>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=2991966525 Step 1 took 10725ms Step 2 took 8230ms ********** Factor found in step 2: 13310078697652045224417963250807 Found probable prime factor of 32 digits: 13310078697652045224417963250807 Probable prime cofactor has 151 digits
(41·10199+13)/9 = 4(5)1987<200> = 83 · 1237 · 3527 · 983947660636931<15> · C177
C177 = P35 · C142
P35 = 58353764412673836663918994118972963<35>
C142 = [2191024432013634960794090277665614347010855183558630212912013314951732600038683331878702811507365885655845895638870854178571130009885108643157<142>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2107319941 Step 1 took 16034ms Step 2 took 17177ms ********** Factor found in step 2: 58353764412673836663918994118972963 Found probable prime factor of 35 digits: 58353764412673836663918994118972963 Composite cofactor has 142 digits
Factorizations of 433...339 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Robert Backstrom / GGNFS, Msieve / Jan 19, 2009
(41·10108+13)/9 = 4(5)1077<109> = 3 · 31 · 59 · C105
C105 = P37 · P69
P37 = 6977028609160864473596822556661339871<37>
P69 = 118996964553052701797392385505489843383257279117694713186886257581941<69>
Number: n N=830245226089949982787598971305914990988801814389567259988255067533361683170321770649818763542109632869611 ( 105 digits) SNFS difficulty: 111 digits. Divisors found: Tue Jan 20 00:07:32 2009 prp37 factor: 6977028609160864473596822556661339871 Tue Jan 20 00:07:32 2009 prp69 factor: 118996964553052701797392385505489843383257279117694713186886257581941 Tue Jan 20 00:07:32 2009 elapsed time 00:06:34 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.69 hours. Scaled time: 1.27 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_5_107_7 n: 830245226089949982787598971305914990988801814389567259988255067533361683170321770649818763542109632869611 deg: 5 c5: 41 c0: 1300 m: 10000000000000000000000 skew: 1.99 type: snfs rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 5000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 290141) Primes: RFBsize:37706, AFBsize:37795, largePrimes:4122943 encountered Relations: rels:3438265, finalFF:80821 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 112338 hash collisions in 3530633 relations Msieve: matrix is 89236 x 89484 (23.8 MB) Total sieving time: 0.65 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.69 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Jan 20, 2009
(41·10109+13)/9 = 4(5)1087<110> = 89 · C108
C108 = P43 · P66
P43 = 2390184965030426407296407175875310828352169<43>
P66 = 214150863749160623946326406200826672877838975845177529655688925477<66>
Number: n N=511860174781523096129837702871410736579275905118601747815230961298377028714107365792759051186017478152309613 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: Tue Jan 20 02:34:57 2009 prp43 factor: 2390184965030426407296407175875310828352169 Tue Jan 20 02:34:57 2009 prp66 factor: 214150863749160623946326406200826672877838975845177529655688925477 Tue Jan 20 02:34:57 2009 elapsed time 00:05:39 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.77 hours. Scaled time: 1.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_5_108_7 n: 511860174781523096129837702871410736579275905118601747815230961298377028714107365792759051186017478152309613 deg: 5 c5: 41 c0: 130 m: 10000000000000000000000 skew: 1.99 type: snfs rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 5000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 300191) Primes: RFBsize:37706, AFBsize:37735, largePrimes:4200323 encountered Relations: rels:3518037, finalFF:79232 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 132689 hash collisions in 3630178 relations Msieve: matrix is 94444 x 94692 (24.7 MB) Total sieving time: 0.72 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.77 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Jan 19, 2009
(19·10196+71)/9 = 2(1)1959<197> = 7 · C196
C196 = P88 · P108
P88 = 4024550742728356898279108029508093226251113429243623259829018016784236730049498559965681<88>
P108 = 749368863424609268346748573675398417191779704699583690103757751394161833140023105513882632166295016315653257<108>
Number: 21119_196 N=3015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873017 ( 196 digits) SNFS difficulty: 197 digits. Divisors found: r1=4024550742728356898279108029508093226251113429243623259829018016784236730049498559965681 r2=749368863424609268346748573675398417191779704699583690103757751394161833140023105513882632166295016315653257 Version: Total time: 966.43 hours. Scaled time: 1823.66 units (timescale=1.887). Factorization parameters were as follows: n: 3015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873017 m: 1000000000000000000000000000000000000000 deg: 5 c5: 190 c0: 71 skew: 0.82 type: snfs lss: 1 rlim: 13600000 alim: 13600000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13600000/13600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6800000, 17400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2466460 x 2466708 Total sieving time: 966.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13600000,13600000,28,28,55,55,2.5,2.5,100000 total time: 966.43 hours. --------- CPU info (if available) ----------
By Markus Tervooren / ggnfs-lasieve4I12e, msieve / Jan 19, 2009
(41·10125+13)/9 = 4(5)1247<126> = 19 · 30809 · C120
C120 = P59 · P62
P59 = 20243241615867601351382161917901417424745360191571433538399<59>
P62 = 38444134271346041617717354848500875864662068641723260690270433<62>
Number: 125 N=778233898767714074587834989358125967216612294690983249179675036097715048329274179205248561263806296443717839721399856767 ( 120 digits) SNFS difficulty: 126 digits. Divisors found: r1=20243241615867601351382161917901417424745360191571433538399 r2=38444134271346041617717354848500875864662068641723260690270433 Version: Total time: 1.52 hours. Scaled time: 3.09 units (timescale=2.031). Factorization parameters were as follows: n: 778233898767714074587834989358125967216612294690983249179675036097715048329274179205248561263806296443717839721399856767 m: 10000000000000000000000000 deg: 5 c5: 41 c0: 13 skew: 0.79 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 109798 x 110038 Total sieving time: 1.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 1.52 hours.
By Sinkiti Sibata / Msieve / Jan 19, 2009
(41·10120+13)/9 = 4(5)1197<121> = 3 · C121
C121 = P35 · P86
P35 = 41942095426732369193715236502410893<35>
P86 = 36205118105536280255069438315208949195889419727129346127774643983566290888742102900883<86>
Number: 45557_120 N=1518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 ( 121 digits) SNFS difficulty: 121 digits. Divisors found: r1=41942095426732369193715236502410893 r2=36205118105536280255069438315208949195889419727129346127774643983566290888742102900883 Version: Total time: 1.59 hours. Scaled time: 3.17 units (timescale=1.991). Factorization parameters were as follows: name: 45557_120 n: 1518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 m: 1000000000000000000000000 deg: 5 c5: 41 c0: 13 skew: 0.79 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 570001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 84577 x 84825 Total sieving time: 1.59 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.59 hours. --------- CPU info (if available) ----------
(41·10159+13)/9 = 4(5)1587<160> = 32 · 7 · 23071 · 591164084701<12> · 964350536796688660109<21> · 301356908876733753686272429<27> · C95
C95 = P46 · P50
P46 = 1323084657260748762081931294088186861983105043<46>
P50 = 13788677845491133788833382578002306992383451342683<50>
Mon Jan 19 16:58:58 2009 Msieve v. 1.39 Mon Jan 19 16:58:58 2009 random seeds: b244ea38 8f6c6e48 Mon Jan 19 16:58:58 2009 factoring 18243588101280516424498091055426832910648896917003601129649960924737111973905782692799778450369 (95 digits) Mon Jan 19 16:58:59 2009 searching for 15-digit factors Mon Jan 19 16:59:01 2009 commencing quadratic sieve (95-digit input) Mon Jan 19 16:59:01 2009 using multiplier of 1 Mon Jan 19 16:59:01 2009 using 32kb Intel Core sieve core Mon Jan 19 16:59:01 2009 sieve interval: 36 blocks of size 32768 Mon Jan 19 16:59:01 2009 processing polynomials in batches of 6 Mon Jan 19 16:59:01 2009 using a sieve bound of 2128183 (78513 primes) Mon Jan 19 16:59:01 2009 using large prime bound of 310714718 (28 bits) Mon Jan 19 16:59:01 2009 using double large prime bound of 1933086450144842 (43-51 bits) Mon Jan 19 16:59:01 2009 using trial factoring cutoff of 51 bits Mon Jan 19 16:59:01 2009 polynomial 'A' values have 12 factors Mon Jan 19 19:52:38 2009 78710 relations (19906 full + 58804 combined from 1154571 partial), need 78609 Mon Jan 19 19:52:39 2009 begin with 1174477 relations Mon Jan 19 19:52:41 2009 reduce to 201809 relations in 11 passes Mon Jan 19 19:52:41 2009 attempting to read 201809 relations Mon Jan 19 19:52:44 2009 recovered 201809 relations Mon Jan 19 19:52:44 2009 recovered 181459 polynomials Mon Jan 19 19:52:44 2009 attempting to build 78710 cycles Mon Jan 19 19:52:44 2009 found 78710 cycles in 6 passes Mon Jan 19 19:52:44 2009 distribution of cycle lengths: Mon Jan 19 19:52:44 2009 length 1 : 19906 Mon Jan 19 19:52:44 2009 length 2 : 14145 Mon Jan 19 19:52:44 2009 length 3 : 13515 Mon Jan 19 19:52:44 2009 length 4 : 10573 Mon Jan 19 19:52:44 2009 length 5 : 7714 Mon Jan 19 19:52:44 2009 length 6 : 5210 Mon Jan 19 19:52:44 2009 length 7 : 3266 Mon Jan 19 19:52:44 2009 length 9+: 4381 Mon Jan 19 19:52:44 2009 largest cycle: 20 relations Mon Jan 19 19:52:45 2009 matrix is 78513 x 78710 (19.9 MB) with weight 4897447 (62.22/col) Mon Jan 19 19:52:45 2009 sparse part has weight 4897447 (62.22/col) Mon Jan 19 19:52:46 2009 filtering completed in 3 passes Mon Jan 19 19:52:46 2009 matrix is 74338 x 74402 (18.9 MB) with weight 4664277 (62.69/col) Mon Jan 19 19:52:46 2009 sparse part has weight 4664277 (62.69/col) Mon Jan 19 19:52:46 2009 saving the first 48 matrix rows for later Mon Jan 19 19:52:46 2009 matrix is 74290 x 74402 (11.7 MB) with weight 3587319 (48.22/col) Mon Jan 19 19:52:46 2009 sparse part has weight 2609601 (35.07/col) Mon Jan 19 19:52:46 2009 matrix includes 64 packed rows Mon Jan 19 19:52:46 2009 using block size 29760 for processor cache size 1024 kB Mon Jan 19 19:52:47 2009 commencing Lanczos iteration Mon Jan 19 19:52:47 2009 memory use: 11.5 MB Mon Jan 19 19:53:24 2009 lanczos halted after 1176 iterations (dim = 74290) Mon Jan 19 19:53:24 2009 recovered 17 nontrivial dependencies Mon Jan 19 19:53:25 2009 prp46 factor: 1323084657260748762081931294088186861983105043 Mon Jan 19 19:53:25 2009 prp50 factor: 13788677845491133788833382578002306992383451342683 Mon Jan 19 19:53:25 2009 elapsed time 02:54:27
By Robert Backstrom / GGNFS, GMP-ECM / Jan 19, 2009
(41·10101+13)/9 = 4(5)1007<102> = 1349637629<10> · C93
C93 = P45 · P49
P45 = 191496859003974475105682158910488587574696781<45>
P49 = 1762635505817914536013970629736936246987392363693<49>
Number: n N=337539162933012410515382537215517688826646930689241738350758117129791107473305010789348372233 ( 93 digits) SNFS difficulty: 102 digits. Divisors found: r1=191496859003974475105682158910488587574696781 (pp45) r2=1762635505817914536013970629736936246987392363693 (pp49) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.53 hours. Scaled time: 0.97 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_5_100_7 n: 337539162933012410515382537215517688826646930689241738350758117129791107473305010789348372233 deg: 5 c5: 410 c0: 13 m: 100000000000000000000 skew: 0.50 type: snfs rlim: 320000 alim: 320000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 5000 Factor base limits: 320000/320000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [160000, 205001) Primes: RFBsize:27608, AFBsize:27356, largePrimes:3421418 encountered Relations: rels:2947643, finalFF:110338 Max relations in full relation-set: 48 Initial matrix: 55031 x 110338 with sparse part having weight 13990398. Pruned matrix : 47933 x 48272 with weight 3369240. Total sieving time: 0.47 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,320000,320000,28,28,56,56,2.5,2.5,20000 total time: 0.53 hours. --------- CPU info (if available) ----------
(41·10107+13)/9 = 4(5)1067<108> = 17 · 19 · 23 · 29 · 1039 · 824837579 · C91
C91 = P33 · P58
P33 = 541569653892075251734476295882633<33>
P58 = 4555905249401482963380109946391715265753948941966190484649<58>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2467340029083449908401427777071389719828177794433844854548394187576771140822696501492200817 (91 digits) Using B1=998000, B2=1045563762, polynomial Dickson(6), sigma=3539449428 Step 1 took 6203ms Step 2 took 3703ms ********** Factor found in step 2: 541569653892075251734476295882633 Found probable prime factor of 33 digits: 541569653892075251734476295882633 Probable prime cofactor 4555905249401482963380109946391715265753948941966190484649 has 58 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 19, 2009
(37·10163+17)/9 = 4(1)1623<164> = 68483 · 6032309821<10> · 52051080620258933<17> · C133
C133 = P39 · P45 · P50
P39 = 201971245076419635985427244193183158857<39>
P45 = 766865902905323843944912313206274717756086063<45>
P50 = 12343947829085375388272773864904907879747898874597<50>
Number: 41113_163 N=1911890646370876376235553188966780688265478666291531097174081860068199318204711570672140611944772184016625969886744063563671797998627 ( 133 digits) SNFS difficulty: 166 digits. Divisors found: r1=201971245076419635985427244193183158857 r2=766865902905323843944912313206274717756086063 r3=12343947829085375388272773864904907879747898874597 Version: Total time: 31.70 hours. Scaled time: 75.68 units (timescale=2.387). Factorization parameters were as follows: n: 1911890646370876376235553188966780688265478666291531097174081860068199318204711570672140611944772184016625969886744063563671797998627 m: 1000000000000000000000000000000000 deg: 5 c5: 37 c0: 1700 skew: 2.15 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2400000, 4900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9945719 Max relations in full relation-set: Initial matrix: Pruned matrix : 872346 x 872593 Total sieving time: 28.46 hours. Total relation processing time: 1.22 hours. Matrix solve time: 1.80 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,51,51,2.4,2.4,100000 total time: 31.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Serge Batalov / GMP-ECM 6.2.1 / Jan 19, 2009
(41·10114+13)/9 = 4(5)1137<115> = 32 · 1463386738819003634121253<25> · C90
C90 = P34 · P56
P34 = 3930355513162091606821126039498691<34>
P56 = 88005109415345588123073252123601333380510933225681922451<56>
Factor found in step 2: 3930355513162091606821126039498691
(41·10139+13)/9 = 4(5)1387<140> = 17 · 47 · 607 · 1741 · 2374277 · 429292313655220207781<21> · C104
C104 = P29 · P76
P29 = 21801657963205126583049668893<29>
P76 = 2427912805886171394548275652570474227869473125503474032897907815700875098229<76>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3728230061 Step 1 took 7005ms ********** Factor found in step 1: 21801657963205126583049668893 Found probable prime factor of 29 digits: 21801657963205126583049668893 Probable prime cofactor has 76 digits
(41·10134+13)/9 = 4(5)1337<135> = 177797 · 290827 · C124
C124 = P31 · P94
P31 = 1137775100406018011521513383173<31>
P94 = 7743294372051181915320432604097700365171873233887895228198421676496704674483207801736789446311<94>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=207593391 Step 1 took 2720ms Step 2 took 2063ms ********** Factor found in step 2: 1137775100406018011521513383173 Found probable prime factor of 31 digits: 1137775100406018011521513383173 Probable prime cofactor has 94 digits
(41·10130+13)/9 = 4(5)1297<131> = 547 · 1567 · C125
C125 = P29 · P97
P29 = 30674541940541323556463883511<29>
P97 = 1732634422343984716886855445721622722403019886436256791707786647044682028108458886668414627731263<97>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=855165405 Step 1 took 2745ms Step 2 took 2061ms ********** Factor found in step 2: 30674541940541323556463883511 Found probable prime factor of 29 digits: 30674541940541323556463883511 Probable prime cofactor has 97 digits
(41·10124+13)/9 = 4(5)1237<125> = 109 · 2459 · C120
C120 = P32 · P88
P32 = 27552660149342947824495408694073<32>
P88 = 6168687718140127868368841956002554606415386279442679587977932353995948714156451167473139<88>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4175459408 Step 1 took 9950ms Step 2 took 12236ms ********** Factor found in step 2: 27552660149342947824495408694073 Found probable prime factor of 32 digits: 27552660149342947824495408694073 Probable prime cofactor has 88 digits
(41·10185+13)/9 = 4(5)1847<186> = 47 · 1051 · 25204917910717160308267<23> · C159
C159 = P32 · P128
P32 = 28892316820112975460853426075387<32>
P128 = 12664064608002915777788152889905085475736571681017867784965528678359881731741429305462714381414364105333224200043928341290790089<128>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1958335583 Step 1 took 11805ms Step 2 took 12660ms ********** Factor found in step 2: 28892316820112975460853426075387 Found probable prime factor of 32 digits: 28892316820112975460853426075387 Probable prime cofactor has 128 digits
Factorizations of 455...557 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
433...339 and 455...553 will be extended later.
By Serge Batalov / GMP-ECM 6.2.1 / Jan 19, 2009
(38·10172+43)/9 = 4(2)1717<173> = 78904708409084059771<20> · 203557052143526710221580765970953<33> · C121
C121 = P36 · P85
P36 = 420734513010606963946049354023057901<36>
P85 = 6248041078509551353101256469453718149726177872481573643816712145739964244757462590629<85>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3144912507 Step 1 took 9919ms Step 2 took 12237ms ********** Factor found in step 2: 420734513010606963946049354023057901 Found probable prime factor of 36 digits: 420734513010606963946049354023057901 Probable prime cofactor has 85 digits
(31·10173+23)/9 = 3(4)1727<174> = 9492103471<10> · 27069297163<11> · 92908475405229428506788810564397<32> · C122
C122 = P37 · P86
P37 = 1271867235151492354244516276979799369<37>
P86 = 11344428648092218894095486717270656404383494382905349632292223973872748424954682767623<86>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2246719298 Step 1 took 9904ms Step 2 took 11833ms ********** Factor found in step 2: 1271867235151492354244516276979799369 Found probable prime factor of 37 digits: 1271867235151492354244516276979799369 Probable prime cofactor has 86 digits
(35·10178+1)/9 = 3(8)1779<179> = 3 · 723328843723621<15> · 1604042672514887393<19> · 113924427578431510728409<24> · C122
C122 = P38 · P85
P38 = 52353651649346759585876888758979954129<38>
P85 = 1873219822685721131438109990191872553706066300586969533989207471921093745994540622111<85>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4024858816 Step 1 took 10025ms Step 2 took 12274ms ********** Factor found in step 2: 52353651649346759585876888758979954129 Found probable prime factor of 38 digits: 52353651649346759585876888758979954129 Probable prime cofactor has 85 digits
By Erik Branger / GGNFS, Msieve / Jan 19, 2009
(43·10172-7)/9 = 4(7)172<173> = 19 · 223 · 273842461 · C161
C161 = P70 · P91
P70 = 6941291317736286782073303602411662044216942598401706881620737753047439<70>
P91 = 5932345295064880058048049218132535850826803648773363051774178987910528595746827458377686199<91>
Number: 47777_172 N=41178136890447562326026403306646311339851781446200174720208011694883423225884632443497443169775352122387018738833041769196401751763481244442735023304349902594361 ( 161 digits) SNFS difficulty: 175 digits. Divisors found: r1=6941291317736286782073303602411662044216942598401706881620737753047439 r2=5932345295064880058048049218132535850826803648773363051774178987910528595746827458377686199 Version: Total time: 126.49 hours. Scaled time: 254.24 units (timescale=2.010). Factorization parameters were as follows: n: 41178136890447562326026403306646311339851781446200174720208011694883423225884632443497443169775352122387018738833041769196401751763481244442735023304349902594361 m: 50000000000000000000000000000000000 deg: 5 c5: 172 c0: -875 skew: 1.38 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2950000, 6850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1176953 x 1177201 Total sieving time: 126.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000 total time: 126.49 hours. --------- CPU info (if available) ----------
By Markus Tervooren / PRIMO / Jan 15, 2009
(13·102743+11)/3 = 4(3)27427<2744> is prime.
List of near-repdigit-related prime numbers is available.
By Tyler Cadigan / GGNFS msieve / Jan 19, 2009
(43·10181-7)/9 = 4(7)181<182> = 941 · 394782412033130453791<21> · C159
C159 = P50 · P110
P50 = 11762494900496736764278874195216335838416155314149<50>
P110 = 10934000222758789623278936927899822714858830939221261071656118922521895869107432990306817336243775060012500783<110>
Number: 47777_181 N=128611121862230446765269107714484784834155430912953973027917455389262678968963120276135652426748429840669621417121389597978273948148186906111154745216473478667 ( 159 digits) SNFS difficulty: 183 digits. Divisors found: r1=11762494900496736764278874195216335838416155314149 (pp50) r2=10934000222758789623278936927899822714858830939221261071656118922521895869107432990306817336243775060012500783 (pp110) Version: Msieve-1.39 Total time: 208.06 hours. Scaled time: 469.38 units (timescale=2.256). Factorization parameters were as follows: n: 128611121862230446765269107714484784834155430912953973027917455389262678968963120276135652426748429840669621417121389597978273948148186906111154745216473478667 m: 2000000000000000000000000000000000000 deg: 5 c5: 215 c0: -112 skew: 0.88 type: snfs lss: 1 rlim: 8100000 alim: 8100000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 8100000/8100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4050000, 7050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1150786 x 1151034 Total sieving time: 208.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8100000,8100000,28,28,53,53,2.5,2.5,100000 total time: 208.06 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 18, 2009
(13·10176+11)/3 = 4(3)1757<177> = 1627 · 3244693 · 9839424687175087<16> · 7214678530365912514392376942580747<34> · C118
C118 = P55 · P63
P55 = 2647921762108576264092059984134504698004998754236125413<55>
P63 = 436685823521850048650697860974923802737776010762066685670397031<63>
Number: 43337_176 N=1156309895307811941622908693198246922243653991539782167408598606417694458851169627709353999330698718727763054818848803 ( 118 digits) Divisors found: r1=2647921762108576264092059984134504698004998754236125413 r2=436685823521850048650697860974923802737776010762066685670397031 Version: Total time: 20.45 hours. Scaled time: 48.82 units (timescale=2.387). Factorization parameters were as follows: name: 43337_176 n: 1156309895307811941622908693198246922243653991539782167408598606417694458851169627709353999330698718727763054818848803 skew: 86938.81 # norm 1.35e+16 c5: 6300 c4: 4926644502 c3: -246507659994353 c2: -32087229166127883695 c1: 545959753297972335924309 c0: 16408727250791251967319716217 # alpha -6.33 Y1: 6224387125139 Y0: -44950790497788532043480 # Murphy_E 4.23e-10 # M 491803742154308281868070421448617208199764438528474791943785419864700658290962699773504730358650003601248810959189583 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9094056 Max relations in full relation-set: Initial matrix: Pruned matrix : 641503 x 641751 Polynomial selection time: 2.00 hours. Total sieving time: 16.72 hours. Total relation processing time: 0.64 hours. Matrix solve time: 0.95 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 20.45 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Serge Batalov / Msieve-1.39 / Jan 18, 2009
(13·10169+11)/3 = 4(3)1687<170> = 17 · 41 · 8599 · C163
C163 = P44 · P120
P44 = 22087011810801629543251722041130620916073931<44>
P120 = 327344016680742970688278759292115174513035620073606621698749651782305565580130278811022668813825639938252180855560809909<120>
SNFS difficulty: 171 digits. Divisors found: r1=22087011810801629543251722041130620916073931 (pp44) r2=327344016680742970688278759292115174513035620073606621698749651782305565580130278811022668813825639938252180855560809909 (pp120) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.288). Factorization parameters were as follows: n: 7230051162622815627744464853581175037925789531319719591920339963679559905673415585732306020925214074862952989818030179234636794764820061545532442935847922881382279 m: 10000000000000000000000000000000000 deg: 5 c5: 13 c0: 110 skew: 1.53 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 901506 x 901754 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 60.00 hours.
By Serge Batalov / PFGW / Jan 18, 2009
(7·1018536+11)/9 = (7)185359<18536> is PRP.
(25·1043753-1)/3 = 8(3)43753<43754> is PRP.
By Serge Batalov / PFGW / Jan 17, 2009
(25·1019573-1)/3 = 8(3)19573<19574> is PRP.
By Sinkiti Sibata / Msieve / Jan 17, 2009
(13·10162+11)/3 = 4(3)1617<163> = C163
C163 = P32 · P132
P32 = 34524487186108164589266926227963<32>
P132 = 125514777669947954110061487216222423812216625154435593299309682944607690319606094120290179827989603346109673239467770114779667655099<132>
Number: 43337_162 N=4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 ( 163 digits) SNFS difficulty: 164 digits. Divisors found: r1=34524487186108164589266926227963 r2=125514777669947954110061487216222423812216625154435593299309682944607690319606094120290179827989603346109673239467770114779667655099 Version: Total time: 60.01 hours. Scaled time: 118.05 units (timescale=1.967). Factorization parameters were as follows: name: 43337_162 n: 4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 m: 200000000000000000000000000000000 deg: 5 c5: 325 c0: 88 skew: 0.77 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 721900 x 722148 Total sieving time: 60.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 60.01 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39 / Jan 17, 2009
(13·10167+11)/3 = 4(3)1667<168> = 53 · 59 · 463 · 2873041 · C156
C156 = P51 · P105
P51 = 194455719932452560733660170761976392451739776790187<51>
P105 = 535735812999399153606191070676975358670063586820885715143607054168922311995203320428355887483546091708211<105>
SNFS difficulty: 169 digits. Divisors found: r1=194455719932452560733660170761976392451739776790187 (pp51) r2=535735812999399153606191070676975358670063586820885715143607054168922311995203320428355887483546091708211 (pp105) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 104176893210395939690502374790242590846413000580702197124951516286550964995388752088010593638802767954770278632816407445627521800813303371615530069372125457 m: 2000000000000000000000000000000000 deg: 5 c5: 325 c0: 88 skew: 0.77 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 964562 x 964810 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.5,2.5,200000 total time: 48.00 hours.
By Sinkiti Sibata / Msieve / Jan 16, 2009
(13·10168+11)/3 = 4(3)1677<169> = C169
C169 = P31 · P38 · P100
P31 = 5846472133582342637694713367859<31>
P38 = 74900637750264860219951078932462865953<38>
P100 = 9895612898452368895553154031861840324724793753937589708723250272302747379331205428168055115630613731<100>
Number: 43337_168 N=4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 ( 169 digits) SNFS difficulty: 170 digits. Divisors found: r1=5846472133582342637694713367859 r2=74900637750264860219951078932462865953 r3=9895612898452368895553154031861840324724793753937589708723250272302747379331205428168055115630613731 Version: Total time: 66.86 hours. Scaled time: 172.16 units (timescale=2.575). Factorization parameters were as follows: name: 43337_168 n: 4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 m: 5000000000000000000000000000000000 deg: 5 c5: 104 c0: 275 skew: 1.21 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 912020 x 912268 Total sieving time: 66.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000 total time: 66.86 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 16, 2009
(13·10161+11)/3 = 4(3)1607<162> = 109496623 · 14378378550629<14> · C141
C141 = P49 · P92
P49 = 5715212407053093801499963783289143078633450460831<49>
P92 = 48159179955016448416285230370078531173553150252889640143095600012242736469510165425171816181<92>
Number: 43337_161 N=275239942792412661818761527536279723042021475242063102757272718266105632150916056789799483048330444045627931665600434601838675125207672506411 ( 141 digits) SNFS difficulty: 162 digits. Divisors found: r1=5715212407053093801499963783289143078633450460831 r2=48159179955016448416285230370078531173553150252889640143095600012242736469510165425171816181 Version: Total time: 18.32 hours. Scaled time: 43.67 units (timescale=2.384). Factorization parameters were as follows: n: 275239942792412661818761527536279723042021475242063102757272718266105632150916056789799483048330444045627931665600434601838675125207672506411 m: 100000000000000000000000000000000 deg: 5 c5: 130 c0: 11 skew: 0.61 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1900000, 3400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9505448 Max relations in full relation-set: Initial matrix: Pruned matrix : 669558 x 669806 Total sieving time: 16.36 hours. Total relation processing time: 0.70 hours. Matrix solve time: 1.01 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 18.32 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Jo Yeong Uk / GGNFS / Msieve v1.39 / Jan 15, 2009
(13·10160+11)/3 = 4(3)1597<161> = 7 · 179 · 3764899 · 1327389905836927<16> · C136
C136 = P62 · P75
P62 = 23089315162879420588279523578469903211678270597405443440485281<62>
P75 = 299714762079039746128520371602155646310929719488958029620447471553499575433<75>
Number: 43337_160 N=6920208600610370385069482795491829542945590344404204683796070425699101258300635541173618459414190728743093248609380824846048836985701673 ( 136 digits) SNFS difficulty: 161 digits. Divisors found: r1=23089315162879420588279523578469903211678270597405443440485281 r2=299714762079039746128520371602155646310929719488958029620447471553499575433 Version: Total time: 14.39 hours. Scaled time: 34.33 units (timescale=2.386). Factorization parameters were as follows: n: 6920208600610370385069482795491829542945590344404204683796070425699101258300635541173618459414190728743093248609380824846048836985701673 m: 100000000000000000000000000000000 deg: 5 c5: 13 c0: 11 skew: 0.97 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9337232 Max relations in full relation-set: Initial matrix: Pruned matrix : 582785 x 583033 Total sieving time: 13.00 hours. Total relation processing time: 0.56 hours. Matrix solve time: 0.77 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 14.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Serge Batalov / Msieve-1.39 gnfs, GMP-ECM 6.2.1 / Jan 15, 2009
(13·10157+11)/3 = 4(3)1567<158> = 102880669 · 369766790874394873<18> · 139134154642600968853<21> · C112
C112 = P45 · P68
P45 = 216208054409157593062352088920460849768841063<45>
P68 = 37866467412705690316757476796901761998436087074646294065413033980759<68>
#borderline gnfs/snfs; found good polynomial => gnfs was faster # N=8187035246648864842469428858836938255001110448154352590335554145448569846238531738387635346650027384212871106817 ( 112 digits) Divisors found: r1=216208054409157593062352088920460849768841063 (pp45) r2=37866467412705690316757476796901761998436087074646294065413033980759 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.710). Factorization parameters were as follows: name: 43337_157 n: 8187035246648864842469428858836938255001110448154352590335554145448569846238531738387635346650027384212871106817 skew: 61167.96 # norm 4.07e+15 c5: 6660 c4: 1079689452 c3: 25319299532829 c2: 863041214119956334 c1: -120283268263238551988060 c0: -871283991612239151823826625 # alpha -6.23 Y1: 31108648087 Y0: -4148875289325198945706 # Murphy_E 7.77e-10 # M 3263885175971627639211022329669223352106913257185713554496169784071687074017242523197383252707752474719357954621 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1750000, 3450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 518623 x 518869 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,52,52,2.4,2.4,100000 total time: 13.00 hours.
(64·10221+53)/9 = 7(1)2207<222> = 32 · 11 · 128239 · 503398933 · 1004825417137<13> · 27740572834433626007911111<26> · 38068287072532520234581880952761336179<38> · C132
C132 = P42 · P90
P42 = 363210988727484372496492328545443062110799<42>
P90 = 288696490555827973898065260140780868120540968915440564796920084345573963153343559060691847<90>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3349363715 Step 1 took 141507ms Step 2 took 59822ms ********** Factor found in step 2: 363210988727484372496492328545443062110799 Found probable prime factor of 42 digits: 363210988727484372496492328545443062110799 Probable prime cofactor has 90 digits
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 14, 2009
(13·10156+11)/3 = 4(3)1557<157> = 23 · 461 · 142142397253024033<18> · 315050806155779087190431<24> · C112
C112 = P50 · P62
P50 = 94337234232523356167988582191740606707889003037461<50>
P62 = 96739973889631009267195768717081156635720572453826531736908193<62>
Number: 43337_156 N=9126181576474314099316202688733744758158416274557063351600048441236717182538166050024590943065552750697896817973 ( 112 digits) Divisors found: r1=94337234232523356167988582191740606707889003037461 r2=96739973889631009267195768717081156635720572453826531736908193 Version: Total time: 12.22 hours. Scaled time: 29.16 units (timescale=2.386). Factorization parameters were as follows: name: 43337_156 n: 9126181576474314099316202688733744758158416274557063351600048441236717182538166050024590943065552750697896817973 skew: 18641.35 # norm 1.12e+16 c5: 51300 c4: 9553100985 c3: -245158431981470 c2: -9997132154517714014 c1: -29187811733112763484300 c0: 864894561673356993925839 # alpha -6.16 Y1: 252042445787 Y0: -2818596457005864723910 # Murphy_E 7.05e-10 # M 3166073086433628145140272011787914321793077868154941162459374115294849123320903337401078096742166896587091018999 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8304063 Max relations in full relation-set: Initial matrix: Pruned matrix : 434330 x 434578 Polynomial selection time: 0.87 hours. Total sieving time: 10.15 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.42 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 12.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Sinkiti Sibata / Msieve / Jan 14, 2009
(13·10133+11)/3 = 4(3)1327<134> = 2179 · 10910803 · 921578036018367563267<21> · C103
C103 = P50 · P53
P50 = 38536635444786366417186177412639724374473793960999<50>
P53 = 51321842865559002570186158967759114685637664711207997<53>
Tue Jan 13 14:36:39 2009 Msieve v. 1.39 Tue Jan 13 14:36:39 2009 random seeds: 56a1c8f0 8269d6a3 Tue Jan 13 14:36:39 2009 factoring 1977771148864657359017104644824987705954905186916919276490415161915497019205156970524246398328794909003 (103 digits) Tue Jan 13 14:36:40 2009 searching for 15-digit factors Tue Jan 13 14:36:42 2009 commencing quadratic sieve (103-digit input) Tue Jan 13 14:36:42 2009 using multiplier of 43 Tue Jan 13 14:36:42 2009 using 32kb Intel Core sieve core Tue Jan 13 14:36:42 2009 sieve interval: 36 blocks of size 32768 Tue Jan 13 14:36:42 2009 processing polynomials in batches of 6 Tue Jan 13 14:36:42 2009 using a sieve bound of 3327859 (120000 primes) Tue Jan 13 14:36:42 2009 using large prime bound of 499178850 (28 bits) Tue Jan 13 14:36:42 2009 using double large prime bound of 4537964541132150 (44-53 bits) Tue Jan 13 14:36:42 2009 using trial factoring cutoff of 53 bits Tue Jan 13 14:36:42 2009 polynomial 'A' values have 14 factors Wed Jan 14 07:35:42 2009 120314 relations (29962 full + 90352 combined from 1763406 partial), need 120096 Wed Jan 14 07:35:46 2009 begin with 1793368 relations Wed Jan 14 07:35:47 2009 reduce to 310748 relations in 11 passes Wed Jan 14 07:35:47 2009 attempting to read 310748 relations Wed Jan 14 07:35:54 2009 recovered 310748 relations Wed Jan 14 07:35:54 2009 recovered 301487 polynomials Wed Jan 14 07:35:54 2009 attempting to build 120314 cycles Wed Jan 14 07:35:54 2009 found 120314 cycles in 5 passes Wed Jan 14 07:35:54 2009 distribution of cycle lengths: Wed Jan 14 07:35:54 2009 length 1 : 29962 Wed Jan 14 07:35:54 2009 length 2 : 21154 Wed Jan 14 07:35:54 2009 length 3 : 20471 Wed Jan 14 07:35:54 2009 length 4 : 16386 Wed Jan 14 07:35:54 2009 length 5 : 12141 Wed Jan 14 07:35:54 2009 length 6 : 8168 Wed Jan 14 07:35:54 2009 length 7 : 5007 Wed Jan 14 07:35:54 2009 length 9+: 7025 Wed Jan 14 07:35:54 2009 largest cycle: 18 relations Wed Jan 14 07:35:55 2009 matrix is 120000 x 120314 (34.0 MB) with weight 8436990 (70.12/col) Wed Jan 14 07:35:55 2009 sparse part has weight 8436990 (70.12/col) Wed Jan 14 07:35:57 2009 filtering completed in 3 passes Wed Jan 14 07:35:57 2009 matrix is 114543 x 114607 (32.6 MB) with weight 8076914 (70.47/col) Wed Jan 14 07:35:57 2009 sparse part has weight 8076914 (70.47/col) Wed Jan 14 07:35:57 2009 saving the first 48 matrix rows for later Wed Jan 14 07:35:58 2009 matrix is 114495 x 114607 (20.7 MB) with weight 6465094 (56.41/col) Wed Jan 14 07:35:58 2009 sparse part has weight 4740334 (41.36/col) Wed Jan 14 07:35:58 2009 matrix includes 64 packed rows Wed Jan 14 07:35:58 2009 using block size 43690 for processor cache size 1024 kB Wed Jan 14 07:35:59 2009 commencing Lanczos iteration Wed Jan 14 07:35:59 2009 memory use: 19.6 MB Wed Jan 14 07:37:31 2009 lanczos halted after 1812 iterations (dim = 114493) Wed Jan 14 07:37:32 2009 recovered 16 nontrivial dependencies Wed Jan 14 07:37:33 2009 prp50 factor: 38536635444786366417186177412639724374473793960999 Wed Jan 14 07:37:33 2009 prp53 factor: 51321842865559002570186158967759114685637664711207997 Wed Jan 14 07:37:33 2009 elapsed time 17:00:54
By Erik Branger / Msieve, GGNFS / Jan 14, 2009
(13·10152+11)/3 = 4(3)1517<153> = 686270785677248325068309143<27> · 2641783753842599494853063694281<31> · C96
C96 = P48 · P49
P48 = 120905449768733457519894583951105281814559946607<48>
P49 = 1976894276472640254386872707511473139863658297177<49>
Tue Jan 13 16:04:46 2009 Msieve v. 1.38 Tue Jan 13 16:04:46 2009 random seeds: 5ea5d600 8195fe1a Tue Jan 13 16:04:46 2009 factoring 239017291642159478476222200461765008396478220370329255792346259720554607262768237545189658828439 (96 digits) Tue Jan 13 16:04:47 2009 searching for 15-digit factors Tue Jan 13 16:04:49 2009 commencing quadratic sieve (96-digit input) Tue Jan 13 16:04:49 2009 using multiplier of 1 Tue Jan 13 16:04:49 2009 using 64kb Pentium 4 sieve core Tue Jan 13 16:04:49 2009 sieve interval: 18 blocks of size 65536 Tue Jan 13 16:04:49 2009 processing polynomials in batches of 6 Tue Jan 13 16:04:49 2009 using a sieve bound of 2229089 (82353 primes) Tue Jan 13 16:04:49 2009 using large prime bound of 334363350 (28 bits) Tue Jan 13 16:04:49 2009 using double large prime bound of 2205939464917200 (43-51 bits) Tue Jan 13 16:04:49 2009 using trial factoring cutoff of 51 bits Tue Jan 13 16:04:49 2009 polynomial 'A' values have 12 factors Tue Jan 13 22:46:03 2009 82620 relations (19831 full + 62789 combined from 1238445 partial), need 82449 Tue Jan 13 22:46:09 2009 begin with 1258276 relations Tue Jan 13 22:46:10 2009 reduce to 216862 relations in 11 passes Tue Jan 13 22:46:10 2009 attempting to read 216862 relations Tue Jan 13 22:46:19 2009 recovered 216862 relations Tue Jan 13 22:46:19 2009 recovered 202259 polynomials Tue Jan 13 22:46:20 2009 attempting to build 82620 cycles Tue Jan 13 22:46:20 2009 found 82620 cycles in 5 passes Tue Jan 13 22:46:20 2009 distribution of cycle lengths: Tue Jan 13 22:46:20 2009 length 1 : 19831 Tue Jan 13 22:46:20 2009 length 2 : 14384 Tue Jan 13 22:46:20 2009 length 3 : 13780 Tue Jan 13 22:46:20 2009 length 4 : 11180 Tue Jan 13 22:46:20 2009 length 5 : 8539 Tue Jan 13 22:46:20 2009 length 6 : 5941 Tue Jan 13 22:46:20 2009 length 7 : 3722 Tue Jan 13 22:46:20 2009 length 9+: 5243 Tue Jan 13 22:46:20 2009 largest cycle: 21 relations Tue Jan 13 22:46:20 2009 matrix is 82353 x 82620 (22.5 MB) with weight 5571702 (67.44/col) Tue Jan 13 22:46:20 2009 sparse part has weight 5571702 (67.44/col) Tue Jan 13 22:46:22 2009 filtering completed in 3 passes Tue Jan 13 22:46:22 2009 matrix is 78709 x 78773 (21.6 MB) with weight 5338672 (67.77/col) Tue Jan 13 22:46:22 2009 sparse part has weight 5338672 (67.77/col) Tue Jan 13 22:46:23 2009 saving the first 48 matrix rows for later Tue Jan 13 22:46:23 2009 matrix is 78661 x 78773 (14.5 MB) with weight 4301329 (54.60/col) Tue Jan 13 22:46:23 2009 sparse part has weight 3319361 (42.14/col) Tue Jan 13 22:46:23 2009 matrix includes 64 packed rows Tue Jan 13 22:46:23 2009 using block size 21845 for processor cache size 512 kB Tue Jan 13 22:46:24 2009 commencing Lanczos iteration Tue Jan 13 22:46:24 2009 memory use: 13.4 MB Tue Jan 13 22:47:36 2009 lanczos halted after 1245 iterations (dim = 78659) Tue Jan 13 22:47:36 2009 recovered 17 nontrivial dependencies Tue Jan 13 22:47:37 2009 prp48 factor: 120905449768733457519894583951105281814559946607 Tue Jan 13 22:47:37 2009 prp49 factor: 1976894276472640254386872707511473139863658297177 Tue Jan 13 22:47:37 2009 elapsed time 06:42:51
(13·10153+11)/3 = 4(3)1527<154> = 17 · 847373 · 12196369 · C140
C140 = P62 · P78
P62 = 65584580921735305097374227398029523494342491423519119650530487<62>
P78 = 376067887997921142110137083688739434973552935635838676784563793032808788990219<78>
Number: 43337_153 N=24664254832465748459502657707992646079096609823530663662827043415488430096613894185804502758072751671330661198306629868323758976748404306653 ( 140 digits) SNFS difficulty: 155 digits. Divisors found: r1=65584580921735305097374227398029523494342491423519119650530487 r2=376067887997921142110137083688739434973552935635838676784563793032808788990219 Version: Total time: 26.20 hours. Scaled time: 55.80 units (timescale=2.130). Factorization parameters were as follows: n: 24664254832465748459502657707992646079096609823530663662827043415488430096613894185804502758072751671330661198306629868323758976748404306653 m: 5000000000000000000000000000000 deg: 5 c5: 104 c0: 275 skew: 1.21 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 489813 x 490061 Total sieving time: 26.20 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 26.20 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39 / Jan 14, 2009
(13·10149+11)/3 = 4(3)1487<150> = 41 · C149
C149 = P37 · P49 · P63
P37 = 5774320557453509533551655639465224157<37>
P49 = 5039432299373936049812725523191262751395620895863<49>
P63 = 363208276154368335977320655706641846126561844130682961655421827<63>
SNFS difficulty: 151 digits. Divisors found: r1=5774320557453509533551655639465224157 (pp37) r2=5039432299373936049812725523191262751395620895863 (pp49) r3=363208276154368335977320655706641846126561844130682961655421827 (pp63) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.558). Factorization parameters were as follows: n: 10569105691056910569105691056910569105691056910569105691056910569105691056910569105691056910569105691056910569105691056910569105691056910569105691057 m: 1000000000000000000000000000000 deg: 5 c5: 13 c0: 110 skew: 1.53 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 440738 x 440986 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,52,52,2.4,2.4,100000 total time: 8.50 hours.
By Sinkiti Sibata / Msieve / Jan 13, 2009
(13·10119+11)/3 = 4(3)1187<120> = 29 · 41 · 4236371 · 1843458323135467<16> · C95
C95 = P34 · P62
P34 = 1878925753271548350891453683398909<34>
P62 = 24837238859994793450933098574132030571190107627519248166255641<62>
ue Jan 13 08:53:45 2009 Msieve v. 1.39 Tue Jan 13 08:53:45 2009 random seeds: 4b861124 0f720d93 Tue Jan 13 08:53:45 2009 factoring 46667327734201090114002656028416818839645552235174196745415465210051218566528013255728674495669 (95 digits) Tue Jan 13 08:53:46 2009 searching for 15-digit factors Tue Jan 13 08:53:48 2009 commencing quadratic sieve (95-digit input) Tue Jan 13 08:53:48 2009 using multiplier of 1 Tue Jan 13 08:53:48 2009 using 32kb Intel Core sieve core Tue Jan 13 08:53:48 2009 sieve interval: 36 blocks of size 32768 Tue Jan 13 08:53:48 2009 processing polynomials in batches of 6 Tue Jan 13 08:53:48 2009 using a sieve bound of 2154241 (80000 primes) Tue Jan 13 08:53:48 2009 using large prime bound of 323136150 (28 bits) Tue Jan 13 08:53:48 2009 using double large prime bound of 2074406767356900 (43-51 bits) Tue Jan 13 08:53:48 2009 using trial factoring cutoff of 51 bits Tue Jan 13 08:53:48 2009 polynomial 'A' values have 12 factors Tue Jan 13 12:43:20 2009 80203 relations (19438 full + 60765 combined from 1206755 partial), need 80096 Tue Jan 13 12:43:22 2009 begin with 1226193 relations Tue Jan 13 12:43:23 2009 reduce to 210402 relations in 12 passes Tue Jan 13 12:43:23 2009 attempting to read 210402 relations Tue Jan 13 12:43:26 2009 recovered 210402 relations Tue Jan 13 12:43:26 2009 recovered 194756 polynomials Tue Jan 13 12:43:26 2009 attempting to build 80203 cycles Tue Jan 13 12:43:26 2009 found 80203 cycles in 6 passes Tue Jan 13 12:43:26 2009 distribution of cycle lengths: Tue Jan 13 12:43:26 2009 length 1 : 19438 Tue Jan 13 12:43:26 2009 length 2 : 13891 Tue Jan 13 12:43:26 2009 length 3 : 13446 Tue Jan 13 12:43:26 2009 length 4 : 11032 Tue Jan 13 12:43:26 2009 length 5 : 8138 Tue Jan 13 12:43:26 2009 length 6 : 5435 Tue Jan 13 12:43:26 2009 length 7 : 3618 Tue Jan 13 12:43:26 2009 length 9+: 5205 Tue Jan 13 12:43:26 2009 largest cycle: 19 relations Tue Jan 13 12:43:27 2009 matrix is 80000 x 80203 (21.4 MB) with weight 5300120 (66.08/col) Tue Jan 13 12:43:27 2009 sparse part has weight 5300120 (66.08/col) Tue Jan 13 12:43:28 2009 filtering completed in 3 passes Tue Jan 13 12:43:28 2009 matrix is 76294 x 76358 (20.5 MB) with weight 5073539 (66.44/col) Tue Jan 13 12:43:28 2009 sparse part has weight 5073539 (66.44/col) Tue Jan 13 12:43:28 2009 saving the first 48 matrix rows for later Tue Jan 13 12:43:28 2009 matrix is 76246 x 76358 (13.6 MB) with weight 4108305 (53.80/col) Tue Jan 13 12:43:28 2009 sparse part has weight 3104632 (40.66/col) Tue Jan 13 12:43:28 2009 matrix includes 64 packed rows Tue Jan 13 12:43:28 2009 using block size 30543 for processor cache size 1024 kB Tue Jan 13 12:43:29 2009 commencing Lanczos iteration Tue Jan 13 12:43:29 2009 memory use: 12.7 MB Tue Jan 13 12:44:08 2009 lanczos halted after 1206 iterations (dim = 76244) Tue Jan 13 12:44:08 2009 recovered 16 nontrivial dependencies Tue Jan 13 12:44:09 2009 prp34 factor: 1878925753271548350891453683398909 Tue Jan 13 12:44:09 2009 prp62 factor: 24837238859994793450933098574132030571190107627519248166255641 Tue Jan 13 12:44:09 2009 elapsed time 03:50:24
By Tyler Cadigan / GGNFS, msieve / Jan 13, 2009
(43·10182-7)/9 = 4(7)182<183> = 32 · 73 · 1181 · 433373007451<12> · C166
C166 = P52 · P114
P52 = 9186931074291987184692831511277158395546328415501621<52>
P114 = 154660127199746895179494726776156683293322589732934675735755785599291749630480175689205742714029631751147398445811<114>
Number: 47777_182 N=1420851928525306131384810224137335708768862208498603709062388536173963432978334067142466657738746292096501148717730968627053157488992019955679761766260696175351159631 ( 166 digits) SNFS difficulty: 185 digits. Divisors found: r1=9186931074291987184692831511277158395546328415501621 r2=154660127199746895179494726776156683293322589732934675735755785599291749630480175689205742714029631751147398445811 Version: Total time: 273.73 hours. Scaled time: 702.12 units (timescale=2.565). Factorization parameters were as follows: n: 1420851928525306131384810224137335708768862208498603709062388536173963432978334067142466657738746292096501148717730968627053157488992019955679761766260696175351159631 m: 5000000000000000000000000000000000000 deg: 5 c5: 172 c0: -875 skew: 1.38 type: snfs lss: 1 rlim: 8700000 alim: 8700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 8700000/8700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4350000, 8350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1267000 x 1267248 Total sieving time: 273.73 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8700000,8700000,28,28,54,54,2.5,2.5,100000 total time: 273.73 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve v1.39 / Jan 13, 2009
(13·10155+11)/3 = 4(3)1547<156> = 15047321 · 49563511001<11> · 3135915200879<13> · 202634515218602715532928720597<30> · C96
C96 = P42 · P55
P42 = 441057055858236537663291454087634300850011<42>
P55 = 2073138620268022456807154469119127942872134591485365329<55>
Number: 43337_155 N=914372416241420607028108988210983881684880008198519659068075381745308228072890313094251568668619 ( 96 digits) Divisors found: r1=441057055858236537663291454087634300850011 r2=2073138620268022456807154469119127942872134591485365329 Version: Total time: 1.74 hours. Scaled time: 4.08 units (timescale=2.344). Factorization parameters were as follows: name: 43337_155 n: 914372416241420607028108988210983881684880008198519659068075381745308228072890313094251568668619 skew: 850.27 # norm 1.28e+13 c5: 1722240 c4: 2528621504 c3: -3201503230244 c2: -1551922914281701 c1: -56054921225939732 c0: 163929427857595464981 # alpha -5.18 Y1: 6580789747 Y0: -881058887475319886 # Murphy_E 5.08e-09 # M 757439245795757934347877784253836113424870900628781300281117679238811095220990558846603867178560 type: gnfs rlim: 800000 alim: 800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 40000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [400000, 760001) Primes: rational ideals reading, algebraic ideals reading, Relations: 3487001 Max relations in full relation-set: Initial matrix: Pruned matrix : 164098 x 164346 Polynomial selection time: 0.10 hours. Total sieving time: 1.41 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,95,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,26,26,48,48,2.5,2.5,40000 total time: 1.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
(35·10162-17)/9 = 3(8)1617<163> = 2589231713141<13> · 12349029638342801933<20> · C132
C132 = P59 · P74
P59 = 11781950893253965807469256867841699660786517244589420402301<59>
P74 = 10322967879635049910907388130429762547909825198231377987413088190570273779<74>
Number: 38887_162 N=121624700630498173684945589913751429441110900948082268499060929326699912364448415246381069923413339739090111816543268001429891565479 ( 132 digits) SNFS difficulty: 164 digits. Divisors found: r1=11781950893253965807469256867841699660786517244589420402301 r2=10322967879635049910907388130429762547909825198231377987413088190570273779 Version: Total time: 23.59 hours. Scaled time: 56.16 units (timescale=2.381). Factorization parameters were as follows: n: 121624700630498173684945589913751429441110900948082268499060929326699912364448415246381069923413339739090111816543268001429891565479 m: 500000000000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2200000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9656646 Max relations in full relation-set: Initial matrix: Pruned matrix : 787435 x 787683 Total sieving time: 21.02 hours. Total relation processing time: 0.90 hours. Matrix solve time: 1.42 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000 total time: 23.59 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Erik Branger / Msieve, GGNFS, GMP-ECM / Jan 13, 2009
(13·10109+11)/3 = 4(3)1087<110> = 41 · 59 · 9733 · 1865681 · 676804619 · C88
C88 = P39 · P49
P39 = 256520167070456431216017369001734033877<39>
P49 = 5682210117085333630347759668811604515091349537777<49>
Mon Jan 12 21:26:42 2009 Mon Jan 12 21:26:42 2009 Mon Jan 12 21:26:42 2009 Msieve v. 1.38 Mon Jan 12 21:26:42 2009 random seeds: 69bc3878 fadd585e Mon Jan 12 21:26:42 2009 factoring 1457601488564167582376904387965802781013594372918615550739594838256848206561153609271429 (88 digits) Mon Jan 12 21:26:43 2009 searching for 15-digit factors Mon Jan 12 21:26:45 2009 commencing quadratic sieve (88-digit input) Mon Jan 12 21:26:45 2009 using multiplier of 5 Mon Jan 12 21:26:45 2009 using 64kb Pentium 4 sieve core Mon Jan 12 21:26:45 2009 sieve interval: 12 blocks of size 65536 Mon Jan 12 21:26:45 2009 processing polynomials in batches of 9 Mon Jan 12 21:26:45 2009 using a sieve bound of 1508323 (57218 primes) Mon Jan 12 21:26:45 2009 using large prime bound of 120665840 (26 bits) Mon Jan 12 21:26:45 2009 using double large prime bound of 352250616108160 (42-49 bits) Mon Jan 12 21:26:45 2009 using trial factoring cutoff of 49 bits Mon Jan 12 21:26:45 2009 polynomial 'A' values have 11 factors Mon Jan 12 22:23:31 2009 57690 relations (16809 full + 40881 combined from 591692 partial), need 57314 Mon Jan 12 22:23:33 2009 begin with 608501 relations Mon Jan 12 22:23:34 2009 reduce to 134916 relations in 10 passes Mon Jan 12 22:23:34 2009 attempting to read 134916 relations Mon Jan 12 22:23:36 2009 recovered 134916 relations Mon Jan 12 22:23:36 2009 recovered 105504 polynomials Mon Jan 12 22:23:36 2009 attempting to build 57690 cycles Mon Jan 12 22:23:36 2009 found 57690 cycles in 7 passes Mon Jan 12 22:23:36 2009 distribution of cycle lengths: Mon Jan 12 22:23:36 2009 length 1 : 16809 Mon Jan 12 22:23:36 2009 length 2 : 11829 Mon Jan 12 22:23:36 2009 length 3 : 10374 Mon Jan 12 22:23:36 2009 length 4 : 7297 Mon Jan 12 22:23:36 2009 length 5 : 4893 Mon Jan 12 22:23:36 2009 length 6 : 2942 Mon Jan 12 22:23:36 2009 length 7 : 1710 Mon Jan 12 22:23:36 2009 length 9+: 1836 Mon Jan 12 22:23:36 2009 largest cycle: 19 relations Mon Jan 12 22:23:36 2009 matrix is 57218 x 57690 (13.2 MB) with weight 3227221 (55.94/col) Mon Jan 12 22:23:36 2009 sparse part has weight 3227221 (55.94/col) Mon Jan 12 22:23:37 2009 filtering completed in 3 passes Mon Jan 12 22:23:37 2009 matrix is 51828 x 51892 (11.9 MB) with weight 2919739 (56.27/col) Mon Jan 12 22:23:37 2009 sparse part has weight 2919739 (56.27/col) Mon Jan 12 22:23:38 2009 saving the first 48 matrix rows for later Mon Jan 12 22:23:38 2009 matrix is 51780 x 51892 (7.8 MB) with weight 2281073 (43.96/col) Mon Jan 12 22:23:38 2009 sparse part has weight 1732802 (33.39/col) Mon Jan 12 22:23:38 2009 matrix includes 64 packed rows Mon Jan 12 22:23:38 2009 using block size 20756 for processor cache size 512 kB Mon Jan 12 22:23:38 2009 commencing Lanczos iteration Mon Jan 12 22:23:38 2009 memory use: 7.6 MB Mon Jan 12 22:24:04 2009 lanczos halted after 821 iterations (dim = 51779) Mon Jan 12 22:24:05 2009 recovered 17 nontrivial dependencies Mon Jan 12 22:24:05 2009 prp39 factor: 256520167070456431216017369001734033877 Mon Jan 12 22:24:05 2009 prp49 factor: 5682210117085333630347759668811604515091349537777 Mon Jan 12 22:24:05 2009 elapsed time 00:57:23
(13·10118+11)/3 = 4(3)1177<119> = 7 · 3907 · 46993697 · 260909002660049647<18> · C90
C90 = P45 · P45
P45 = 168029835493934377112414378163671931047062153<45>
P45 = 769069462436099182225717832905662638971957219<45>
Total time: 1h10min Mon Jan 12 21:24:41 2009 Mon Jan 12 21:24:41 2009 Msieve v. 1.39 Mon Jan 12 21:24:41 2009 random seeds: f2f3bb18 d32cd53b Mon Jan 12 21:24:41 2009 factoring 129226615256546289517576317486989013308626224249216040685175451358625604564801902350032507 (90 digits) Mon Jan 12 21:24:43 2009 searching for 15-digit factors Mon Jan 12 21:24:45 2009 commencing quadratic sieve (90-digit input) Mon Jan 12 21:24:45 2009 using multiplier of 3 Mon Jan 12 21:24:45 2009 using 32kb Intel Core sieve core Mon Jan 12 21:24:45 2009 sieve interval: 35 blocks of size 32768 Mon Jan 12 21:24:45 2009 processing polynomials in batches of 6 Mon Jan 12 21:24:45 2009 using a sieve bound of 1575269 (59667 primes) Mon Jan 12 21:24:45 2009 using large prime bound of 126021520 (26 bits) Mon Jan 12 21:24:45 2009 using double large prime bound of 380890718607520 (42-49 bits) Mon Jan 12 21:24:45 2009 using trial factoring cutoff of 49 bits Mon Jan 12 21:24:45 2009 polynomial 'A' values have 11 factors Mon Jan 12 22:26:09 2009 59944 relations (16389 full + 43555 combined from 627938 partial), need 59763 Mon Jan 12 22:32:22 2009 Mon Jan 12 22:32:22 2009 Msieve v. 1.39 Mon Jan 12 22:32:22 2009 random seeds: 22ab1b00 118d0d91 Mon Jan 12 22:32:22 2009 factoring 129226615256546289517576317486989013308626224249216040685175451358625604564801902350032507 (90 digits) Mon Jan 12 22:32:23 2009 searching for 15-digit factors Mon Jan 12 22:32:24 2009 commencing quadratic sieve (90-digit input) Mon Jan 12 22:32:25 2009 using multiplier of 3 Mon Jan 12 22:32:25 2009 using 32kb Intel Core sieve core Mon Jan 12 22:32:25 2009 sieve interval: 35 blocks of size 32768 Mon Jan 12 22:32:25 2009 processing polynomials in batches of 6 Mon Jan 12 22:32:25 2009 using a sieve bound of 1575269 (59667 primes) Mon Jan 12 22:32:25 2009 using large prime bound of 126021520 (26 bits) Mon Jan 12 22:32:25 2009 using double large prime bound of 380890718607520 (42-49 bits) Mon Jan 12 22:32:25 2009 using trial factoring cutoff of 49 bits Mon Jan 12 22:32:25 2009 polynomial 'A' values have 11 factors Mon Jan 12 22:32:25 2009 restarting with 17385 full and 660657 partial relations Mon Jan 12 22:32:25 2009 67663 relations (17385 full + 50278 combined from 660657 partial), need 59763 Mon Jan 12 22:32:26 2009 begin with 678042 relations Mon Jan 12 22:32:26 2009 reduce to 163919 relations in 11 passes Mon Jan 12 22:32:26 2009 attempting to read 163919 relations Mon Jan 12 22:32:33 2009 recovered 162520 relations Mon Jan 12 22:32:33 2009 recovered 132645 polynomials Mon Jan 12 22:32:33 2009 attempting to build 66275 cycles Mon Jan 12 22:32:33 2009 found 66275 cycles in 5 passes Mon Jan 12 22:32:33 2009 distribution of cycle lengths: Mon Jan 12 22:32:33 2009 length 1 : 17235 Mon Jan 12 22:32:33 2009 length 2 : 12652 Mon Jan 12 22:32:33 2009 length 3 : 11758 Mon Jan 12 22:32:33 2009 length 4 : 9057 Mon Jan 12 22:32:33 2009 length 5 : 6448 Mon Jan 12 22:32:33 2009 length 6 : 4039 Mon Jan 12 22:32:33 2009 length 7 : 2302 Mon Jan 12 22:32:33 2009 length 9+: 2784 Mon Jan 12 22:32:33 2009 largest cycle: 19 relations Mon Jan 12 22:32:34 2009 matrix is 59667 x 66275 (16.6 MB) with weight 4087103 (61.67/col) Mon Jan 12 22:32:34 2009 sparse part has weight 4087103 (61.67/col) Mon Jan 12 22:32:34 2009 filtering completed in 4 passes Mon Jan 12 22:32:34 2009 matrix is 54146 x 54210 (12.4 MB) with weight 3023133 (55.77/col) Mon Jan 12 22:32:34 2009 sparse part has weight 3023133 (55.77/col) Mon Jan 12 22:32:34 2009 saving the first 48 matrix rows for later Mon Jan 12 22:32:34 2009 matrix is 54098 x 54210 (9.3 MB) with weight 2525714 (46.59/col) Mon Jan 12 22:32:34 2009 sparse part has weight 2115653 (39.03/col) Mon Jan 12 22:32:34 2009 matrix includes 64 packed rows Mon Jan 12 22:32:35 2009 using block size 21684 for processor cache size 2048 kB Mon Jan 12 22:32:35 2009 commencing Lanczos iteration Mon Jan 12 22:32:35 2009 memory use: 8.5 MB Mon Jan 12 22:32:51 2009 lanczos halted after 857 iterations (dim = 54096) Mon Jan 12 22:32:51 2009 recovered 17 nontrivial dependencies Mon Jan 12 22:32:52 2009 prp45 factor: 168029835493934377112414378163671931047062153 Mon Jan 12 22:32:52 2009 prp45 factor: 769069462436099182225717832905662638971957219 Mon Jan 12 22:32:52 2009 elapsed time 00:00:30
(13·10120+11)/3 = 4(3)1197<121> = 409 · 324949958126413<15> · C104
C104 = P48 · P57
P48 = 227050036432175964827663796653111153454106407169<48>
P57 = 143602079285817911224220194059875432673371152120802566469<57>
Number: 43337_120 N=32604857333581178199511028593996626669495904955556867346769957950556347799824542384755536881031900616261 ( 104 digits) SNFS difficulty: 121 digits. Divisors found: r1=227050036432175964827663796653111153454106407169 r2=143602079285817911224220194059875432673371152120802566469 Version: Total time: 2.10 hours. Scaled time: 4.40 units (timescale=2.095). Factorization parameters were as follows: n: 32604857333581178199511028593996626669495904955556867346769957950556347799824542384755536881031900616261 m: 1000000000000000000000000 deg: 5 c5: 13 c0: 11 skew: 0.97 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 615001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73952 x 74184 Total sieving time: 2.10 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.10 hours. --------- CPU info (if available) ----------
(13·10144+11)/3 = 4(3)1437<145> = 41 · 647 · 1109 · 7561082407<10> · C128
C128 = P38 · P42 · P49
P38 = 24353796243374302911046568308905788143<38>
P42 = 451509433028751312085588314867466560521161<42>
P49 = 1771678628451735717484316845181719869224421486619<49>
Number: 43337_144 N=19481322805051481457546269534110260714900539419098714595161198172145325771983636749495559156356002297169680525224476574968078237 ( 128 digits) SNFS difficulty: 146 digits. Divisors found: r1=24353796243374302911046568308905788143 r2=451509433028751312085588314867466560521161 r3=1771678628451735717484316845181719869224421486619 Version: Total time: 10.80 hours. Scaled time: 23.40 units (timescale=2.166). Factorization parameters were as follows: n: 19481322805051481457546269534110260714900539419098714595161198172145325771983636749495559156356002297169680525224476574968078237 m: 100000000000000000000000000000 deg: 5 c5: 13 c0: 110 skew: 1.53 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2055001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 304445 x 304693 Total sieving time: 10.80 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 10.80 hours. --------- CPU info (if available) ----------
(13·10138+11)/3 = 4(3)1377<139> = 1023833 · 42538632981937<14> · C119
C119 = P36 · P84
P36 = 447180441827714627908526856724608823<36>
P84 = 222498272794804930710956102860230693645267326212839296532940428281757809275112947639<84>
Number: 43337_138 N=99496875934284246500941660778777866839855336465972506147730272280918518895060912149506031717411859566251369164756418897 ( 119 digits) SNFS difficulty: 140 digits. Divisors found: r1=447180441827714627908526856724608823 r2=222498272794804930710956102860230693645267326212839296532940428281757809275112947639 Version: Total time: 8.45 hours. Scaled time: 6.65 units (timescale=0.788). Factorization parameters were as follows: n: 99496875934284246500941660778777866839855336465972506147730272280918518895060912149506031717411859566251369164756418897 m: 5000000000000000000000000000 deg: 5 c5: 104 c0: 275 skew: 1.21 type: snfs lss: 1 rlim: 1540000 alim: 1540000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1540000/1540000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [770000, 1570001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 237133 x 237381 Total sieving time: 8.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1540000,1540000,26,26,48,48,2.3,2.3,100000 total time: 8.45 hours. --------- CPU info (if available) ----------
(13·10146+11)/3 = 4(3)1457<147> = 19 · 83 · 2061038947620030393512130854959<31> · C114
C114 = P36 · P78
P36 = 163493563027500334028675025536906033<36>
P78 = 815461660049604937978163799568239320621530827894288671469726321744430193811023<78>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 133322732313830136091385992077768305157424353549583445582707356592375648731047454889267483803451585005072510601759 (114 digits) Using B1=3000000, B2=3000000-5706890290, polynomial Dickson(6), sigma=303601485 Step 1 took 31122ms Step 2 took 11638ms ********** Factor found in step 2: 163493563027500334028675025536906033 Found probable prime factor of 36 digits: 163493563027500334028675025536906033 Probable prime cofactor 815461660049604937978163799568239320621530827894288671469726321744430193811023 has 78 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(13·10135+11)/3 = 4(3)1347<136> = 383 · 6895616658353<13> · C121
C121 = P31 · P91
P31 = 1179740285286225325598394472151<31>
P91 = 1390797187214783276169378207767343950303330104479721308431542522056108887221238741129373313<91>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=362790999 Step 1 took 3304ms Step 2 took 2472ms ********** Factor found in step 2: 1179740285286225325598394472151 Found probable prime factor of 31 digits: 1179740285286225325598394472151 Probable prime cofactor has 91 digits
(13·10141+11)/3 = 4(3)1407<142> = 53 · 486667 · 402091448583563<15> · C120
C120 = P33 · P87
P33 = 734205875738359990609171143110293<33>
P87 = 569077790659862392446982150080883761511884714960641444153678930769424205644134611144393<87>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3488388741 Step 1 took 3303ms ********** Factor found in step 1: 734205875738359990609171143110293 Found probable prime factor of 33 digits: 734205875738359990609171143110293 Probable prime cofactor has 87 digits
(13·10101+11)/3 = 4(3)1007<102> = 1871 · C99
C99 = P39 · P60
P39 = 287901958827662472078564273285171611759<39>
P60 = 804458584277280715235351680045826648501228131747829929796633<60>
SNFS difficulty: 103 digits. Divisors found: r1=287901958827662472078564273285171611759 (pp39) r2=804458584277280715235351680045826648501228131747829929796633 (pp60) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: n: 231605202209157313379654373775164796009264208088366292535186174951006591840370568323534651701407447 m: 20000000000000000000000000 deg: 4 c4: 65 c0: 88 skew: 1.08 type: snfs lss: 1 rlim: 360000 alim: 360000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [180000, 220001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 35265 x 35500 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,360000,360000,25,25,46,46,2.3,2.3,20000 total time: 0.50 hours.
(13·10116+11)/3 = 4(3)1157<117> = 2243 · C114
C114 = P56 · P58
P56 = 24723085706747411858193701032591750746561027082019126789<56>
P58 = 7814301247122253025846086919338828487274309830393265849431<58>
SNFS difficulty: 117 digits. Divisors found: r1=24723085706747411858193701032591750746561027082019126789 (pp56) r2=7814301247122253025846086919338828487274309830393265849431 (pp58) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.297). Factorization parameters were as follows: n: 193193639470946648833407638579283697429038490117402288601575271214147718828949323822261851686729083073264972507059 m: 100000000000000000000000 deg: 5 c5: 130 c0: 11 skew: 0.61 type: snfs lss: 1 rlim: 630000 alim: 630000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 630000/630000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [315000, 515001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65631 x 65861 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,630000,630000,25,25,48,48,2.2,2.2,50000 total time: 0.90 hours.
(13·10198+11)/3 = 4(3)1977<199> = 228521 · C194
C194 = P28 · C166
P28 = 7398690232181262061837908593<28>
C166 = [2562955921056643657369718794314123503026583369057025549235277178026716563560559650778997176320033555655178458140715495725060185839224317583375229287594620326583476929<166>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=643488791 Step 1 took 6296ms Step 2 took 3919ms ********** Factor found in step 2: 7398690232181262061837908593 Found probable prime factor of 28 digits: 7398690232181262061837908593 Composite cofactor has 166 digits
(13·10171+11)/3 = 4(3)1707<172> = 197 · 493457 · 218656623667<12> · 9240619543413967<16> · 181007105164409904932089<24> · C114
C114 = P35 · P79
P35 = 42437908770327161353502748258707797<35>
P79 = 2872058172684506346630550954044468196069561799481335826483411687432830745426269<79>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1644727183 Step 1 took 8191ms Step 2 took 9318ms ********** Factor found in step 2: 42437908770327161353502748258707797 Found probable prime factor of 35 digits: 42437908770327161353502748258707797 Probable prime cofactor has 79 digits
(13·10145+11)/3 = 4(3)1447<146> = 1259 · 1072826963357<13> · 2036616450721<13> · C119
C119 = P33 · P34 · P53
P33 = 478862024668223181910294165350637<33>
P34 = 2090097750097179593328371828976553<34>
P53 = 15739119933263023002620364116075849632754645511358379<53>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2413085966 Step 1 took 9950ms Step 2 took 2478ms ********** Factor found in step 2: 2090097750097179593328371828976553 Found probable prime factor of 34 digits: 2090097750097179593328371828976553 Composite cofactor has 85 digits Mon Jan 12 14:39:25 2009 Msieve v. 1.39 Mon Jan 12 14:39:25 2009 random seeds: bad1e317 a2e5f3cc Mon Jan 12 14:39:25 2009 factoring 7536866837738320921666098847731440383268647485457604604108798019696763265724702937423 (85 digits) Mon Jan 12 14:39:26 2009 searching for 15-digit factors Mon Jan 12 14:39:26 2009 commencing quadratic sieve (85-digit input) Mon Jan 12 14:39:26 2009 using multiplier of 5 Mon Jan 12 14:39:26 2009 using 64kb Opteron sieve core Mon Jan 12 14:39:26 2009 sieve interval: 6 blocks of size 65536 Mon Jan 12 14:39:26 2009 processing polynomials in batches of 17 Mon Jan 12 14:39:26 2009 using a sieve bound of 1426393 (54706 primes) Mon Jan 12 14:39:26 2009 using large prime bound of 115537833 (26 bits) Mon Jan 12 14:39:26 2009 using double large prime bound of 325764350421651 (41-49 bits) Mon Jan 12 14:39:26 2009 using trial factoring cutoff of 49 bits Mon Jan 12 14:39:26 2009 polynomial 'A' values have 11 factors Mon Jan 12 14:39:26 2009 restarting with 2034 full and 73370 partial relations Mon Jan 12 15:10:08 2009 54908 relations (15814 full + 39094 combined from 574147 partial), need 54802 Mon Jan 12 15:10:08 2009 begin with 589961 relations Mon Jan 12 15:10:09 2009 reduce to 129977 relations in 9 passes Mon Jan 12 15:10:09 2009 attempting to read 129977 relations Mon Jan 12 15:10:10 2009 recovered 129977 relations Mon Jan 12 15:10:10 2009 recovered 112279 polynomials Mon Jan 12 15:10:10 2009 attempting to build 54908 cycles Mon Jan 12 15:10:10 2009 found 54908 cycles in 5 passes Mon Jan 12 15:10:10 2009 distribution of cycle lengths: Mon Jan 12 15:10:10 2009 length 1 : 15814 Mon Jan 12 15:10:10 2009 length 2 : 10905 Mon Jan 12 15:10:10 2009 length 3 : 9701 Mon Jan 12 15:10:10 2009 length 4 : 7053 Mon Jan 12 15:10:10 2009 length 5 : 4821 Mon Jan 12 15:10:10 2009 length 6 : 2985 Mon Jan 12 15:10:10 2009 length 7 : 1681 Mon Jan 12 15:10:10 2009 length 9+: 1948 Mon Jan 12 15:10:10 2009 largest cycle: 19 relations Mon Jan 12 15:10:10 2009 matrix is 54706 x 54908 (13.0 MB) with weight 2967305 (54.04/col) Mon Jan 12 15:10:10 2009 sparse part has weight 2967305 (54.04/col) Mon Jan 12 15:10:11 2009 filtering completed in 3 passes Mon Jan 12 15:10:11 2009 matrix is 50009 x 50073 (12.0 MB) with weight 2733224 (54.58/col) Mon Jan 12 15:10:11 2009 sparse part has weight 2733224 (54.58/col) Mon Jan 12 15:10:11 2009 saving the first 48 matrix rows for later Mon Jan 12 15:10:11 2009 matrix is 49961 x 50073 (7.3 MB) with weight 2067954 (41.30/col) Mon Jan 12 15:10:11 2009 sparse part has weight 1414146 (28.24/col) Mon Jan 12 15:10:11 2009 matrix includes 64 packed rows Mon Jan 12 15:10:11 2009 using block size 20029 for processor cache size 1024 kB Mon Jan 12 15:10:11 2009 commencing Lanczos iteration Mon Jan 12 15:10:11 2009 memory use: 6.8 MB Mon Jan 12 15:10:23 2009 lanczos halted after 791 iterations (dim = 49957) Mon Jan 12 15:10:24 2009 recovered 16 nontrivial dependencies Mon Jan 12 15:10:24 2009 prp33 factor: 478862024668223181910294165350637 Mon Jan 12 15:10:24 2009 prp53 factor: 15739119933263023002620364116075849632754645511358379 Mon Jan 12 15:10:24 2009 elapsed time 00:30:59
(13·10177+11)/3 = 4(3)1767<178> = 139 · 79801 · 379612468397<12> · 466858693163647<15> · C145
C145 = P33 · P112
P33 = 517032018136409059571353874400367<33>
P112 = 4263395347163435754605167105549384651423460652755404927762370848388609390026405509148863593252815692516229219711<112>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=593251309 Step 1 took 11725ms Step 2 took 11716ms ********** Factor found in step 2: 517032018136409059571353874400367 Found probable prime factor of 33 digits: 517032018136409059571353874400367 Probable prime cofactor has 112 digits
(13·10152+11)/3 = 4(3)1517<153> = 686270785677248325068309143<27> · C126
C126 = P31 · C96
P31 = 2641783753842599494853063694281<31>
C96 = [239017291642159478476222200461765008396478220370329255792346259720554607262768237545189658828439<96>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1460152651 Step 1 took 9733ms Step 2 took 10264ms ********** Factor found in step 2: 2641783753842599494853063694281 Found probable prime factor of 31 digits: 2641783753842599494853063694281 Composite cofactor has 96 digits
(13·10176+11)/3 = 4(3)1757<177> = 1627 · 3244693 · 9839424687175087<16> · C151
C151 = P34 · C118
P34 = 7214678530365912514392376942580747<34>
C118 = [1156309895307811941622908693198246922243653991539782167408598606417694458851169627709353999330698718727763054818848803<118>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1504423703 Step 1 took 11712ms Step 2 took 12076ms ********** Factor found in step 2: 7214678530365912514392376942580747 Found probable prime factor of 34 digits: 7214678530365912514392376942580747 Composite cofactor has 118 digits
(13·10170+11)/3 = 4(3)1697<171> = 1499 · 567902254172162219<18> · C150
C150 = P28 · C123
P28 = 1373651784966490440402937717<28>
C123 = [370569965767644980357356235399428856137811078710645235253822530344840763763076823444886948979877902193136601912075023451181<123>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2409739674 Step 1 took 11736ms ********** Factor found in step 1: 1373651784966490440402937717 Found probable prime factor of 28 digits: 1373651784966490440402937717 Composite cofactor has 123 digits
(13·10194+11)/3 = 4(3)1937<195> = 41 · 135721 · 1536617 · 2790600979<10> · 1239946990790578721657<22> · C152
C152 = P31 · P121
P31 = 6080092611502949989510099120823<31>
P121 = 2408876310650925262480767490286417447634363404060717087626403216670946806218350381194813011157655867258367905899750623429<121>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3066536428 Step 1 took 11722ms Step 2 took 12009ms ********** Factor found in step 2: 6080092611502949989510099120823 Found probable prime factor of 31 digits: 6080092611502949989510099120823 Probable prime cofactor has 121 digits
(13·10188+11)/3 = 4(3)1877<189> = 1543 · 142860607 · 255207723123768259319<21> · C157
C157 = P33 · C125
P33 = 106516169444251311571441538317907<33>
C125 = [72315988608969549766354716564088708863361398791668800127495140769387943021448338653197888223981621630401019958904218407786589<125>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2305462360 Step 1 took 13810ms Step 2 took 13184ms ********** Factor found in step 2: 106516169444251311571441538317907 Found probable prime factor of 33 digits: 106516169444251311571441538317907 Composite cofactor has 125 digits
(13·10193+11)/3 = 4(3)1927<194> = 53 · 401393 · 411072007 · 274601721738892619<18> · C161
C161 = P30 · P131
P30 = 528939695216908001586855390299<30>
P131 = 34115293629840614800212793487061778880381322301987682674528561980984797481451268135182069095737192125952710750608718824379108161659<131>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2053943442 Step 1 took 14717ms Step 2 took 13078ms ********** Factor found in step 2: 528939695216908001586855390299 Found probable prime factor of 30 digits: 528939695216908001586855390299 Probable prime cofactor has 131 digits
(13·10137+11)/3 = 4(3)1367<138> = 17 · C137
C137 = P66 · P71
P66 = 807637985960916768831740876387492333779169190633031900872576802793<66>
P71 = 31561413060708730150872571599062549070601558958879766962070075808593377<71>
SNFS difficulty: 139 digits. Divisors found: r1=807637985960916768831740876387492333779169190633031900872576802793 (pp66) r2=31561413060708730150872571599062549070601558958879766962070075808593377 (pp71) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.294). Factorization parameters were as follows: n: 25490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901961 m: 2000000000000000000000000000 deg: 5 c5: 325 c0: 88 skew: 0.77 type: snfs lss: 1 rlim: 1450000 alim: 1450000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1450000/1450000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [725000, 1550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 246638 x 246886 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1450000,1450000,26,26,49,49,2.3,2.3,75000 total time: 5.00 hours.
(13·10129+11)/3 = 4(3)1287<130> = 41 · 2389 · 1249529719<10> · C116
C116 = P31 · P85
P31 = 9281663010039532950468760843457<31>
P85 = 3814606151552466573303099303750536701596970698329405314826953837863735073362736633211<85>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4061892878 Step 1 took 9167ms Step 2 took 8799ms ********** Factor found in step 2: 9281663010039532950468760843457 Found probable prime factor of 31 digits: 9281663010039532950468760843457 Probable prime cofactor has 85 digits
(13·10134+11)/3 = 4(3)1337<135> = 23 · 41 · 2545227932836422739<19> · C114
C114 = P41 · P74
P41 = 11958553032490865212908609128910029714171<41>
P74 = 15097501805726385936048310070893266742178719854170264340828668499522481111<74>
SNFS difficulty: 136 digits. Divisors found: r1=11958553032490865212908609128910029714171 (pp41) r2=15097501805726385936048310070893266742178719854170264340828668499522481111 (pp74) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.304). Factorization parameters were as follows: n: 180544276001905585936188669707667634298162509150541346315109038714131653485746682884521027430565136143432076523981 m: 1000000000000000000000000000 deg: 5 c5: 13 c0: 110 skew: 1.53 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [650000, 1175001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 184954 x 185202 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,49,49,2.3,2.3,75000 total time: 4.00 hours.
(13·10163+11)/3 = 4(3)1627<164> = 6481 · 8345621 · 5396446101430979761<19> · 1657874515633727895602144651126113<34> · C101
C101 = P48 · P54
P48 = 125111068703916647393850098641471129981479630019<48>
P54 = 715757956709940897574201232426194262350826823645064711<54>
Number: 43337_163 N=89549242897312413145121015477987605938666360001715878782232515183403517627085365493127792527593159509 ( 101 digits) Divisors found: r1=125111068703916647393850098641471129981479630019 (pp48) r2=715757956709940897574201232426194262350826823645064711 (pp54) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.530). Factorization parameters were as follows: name: 43337_163 n: 89549242897312413145121015477987605938666360001715878782232515183403517627085365493127792527593159509 skew: 14219.20 # norm 4.72e+13 c5: 6720 c4: 1607219 c3: -3781792674674 c2: -20391760325156031 c1: 389716915741807259611 c0: -741615802863451244838340 # alpha -5.31 Y1: 21711660839 Y0: -26603483783377273221 # Murphy_E 2.92e-09 # M 18256076264919045554073716051401304772283243952469251928239199987692922377652841597411127307286087277 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 203363 x 203611 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.00 hours.
(13·10172+11)/3 = 4(3)1717<173> = 7 · 124683707642868001<18> · 19261998159045934249641919<26> · 1025177561752975972475736113<28> · C103
C103 = P46 · P57
P46 = 7484592628038052621285087704880092637265857489<46>
P57 = 335927650726956320807691331130396826552727400188028875777<57>
Number: 43337_172 N=2514281618185119047267551628988833847305791628965405631217338056079108891052479407838212838722566143953 ( 103 digits) Divisors found: r1=7484592628038052621285087704880092637265857489 (pp46) r2=335927650726956320807691331130396826552727400188028875777 (pp57) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.724). Factorization parameters were as follows: name: 43337_172 n: 2514281618185119047267551628988833847305791628965405631217338056079108891052479407838212838722566143953 skew: 15171.04 # norm 3.51e+14 c5: 22680 c4: -124055346 c3: -30204415768669 c2: 1652155236686905 c1: 1833485328963513386013 c0: -2986641083616374487288735 # alpha -6.05 Y1: 8174481641 Y0: -40640053367376438856 # Murphy_E 2.35e-09 # M 984034130476818682388074087529638493249314732894513911123846271023921439173263023879179576856922289270 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 289389 x 289636 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.00 hours.
(13·10147+11)/3 = 4(3)1467<148> = 29 · 34632467242938281<17> · 666707790664577506063621777<27> · C103
C103 = P46 · P58
P46 = 1632689107448837283748587003497437630804378717<46>
P58 = 3963707899643478820787903054646032550519819003208303853657<58>
Number: 43337_147 N=6471502712856816941534410396616323458062704121632605765152696107776979645565714978126919250460773418069 ( 103 digits) Divisors found: r1=1632689107448837283748587003497437630804378717 (pp46) r2=3963707899643478820787903054646032550519819003208303853657 (pp58) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: name: 43337_147 n: 6471502712856816941534410396616323458062704121632605765152696107776979645565714978126919250460773418069 skew: 12803.66 # norm 1.56e+14 c5: 25200 c4: 6526908 c3: -16208983640194 c2: 36664277029938906 c1: 1517588518650563580273 c0: 4101674119551640223937604 # alpha -5.86 Y1: 12176988151 Y0: -48075179412327603905 # Murphy_E 2.43e-09 # M 765771848902745999549250401080960786347242002138049323590434441771344197826450219537382559039935974 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 219161 x 219409 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.00 hours.
Factorizations of 433...337 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / Msieve / Jan 12, 2009
(37·10162+53)/9 = 4(1)1617<163> = 43 · 769 · 6888289 · 49682126487359<14> · C138
C138 = P50 · P88
P50 = 42028157780136442442379542414682359487864735723991<50>
P88 = 8643955636962190706372478541886100514006131870100713909201584397138993894515028748366511<88>
Number: 41117_162 N=363289531354746753320799714164560359754424340577689448833156203649841655419145956572610748257666769704275970426653960602488750448203665401 ( 138 digits) SNFS difficulty: 163 digits. Divisors found: r1=42028157780136442442379542414682359487864735723991 r2=8643955636962190706372478541886100514006131870100713909201584397138993894515028748366511 Version: Total time: 25.85 hours. Scaled time: 61.62 units (timescale=2.384). Factorization parameters were as follows: n: 363289531354746753320799714164560359754424340577689448833156203649841655419145956572610748257666769704275970426653960602488750448203665401 m: 100000000000000000000000000000000 deg: 5 c5: 3700 c0: 53 skew: 0.43 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2300000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9823817 Max relations in full relation-set: Initial matrix: Pruned matrix : 794867 x 795114 Total sieving time: 23.16 hours. Total relation processing time: 1.02 hours. Matrix solve time: 1.41 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,51,51,2.4,2.4,100000 total time: 25.85 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Sinkiti Sibata / Msieve / Jan 12, 2009
(38·10186+61)/9 = 4(2)1859<187> = 11 · C186
C186 = P83 · P104
P83 = 13933545557012191347373389258569209249638126493880758322318981598763635852951224089<83>
P104 = 27547789775963625085903934524733271215585771546540325688065243371806745946230760472112031271164240237751<104>
Number: 42229_186 N=383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383839 ( 186 digits) SNFS difficulty: 187 digits. Divisors found: r1=13933545557012191347373389258569209249638126493880758322318981598763635852951224089 r2=27547789775963625085903934524733271215585771546540325688065243371806745946230760472112031271164240237751 Version: Total time: 289.16 hours. Scaled time: 729.85 units (timescale=2.524). Factorization parameters were as follows: name: 42229_186 n: 383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383838383839 m: 10000000000000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 9400000 alim: 9400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9400000/9400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4700000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1786141 x 1786389 Total sieving time: 289.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9400000,9400000,28,28,54,54,2.5,2.5,100000 total time: 289.16 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS,Msieve v1.39 / Jan 11, 2009
(38·10187+61)/9 = 4(2)1869<188> = 7 · 23 · 4133 · 339381782281<12> · 14075029066853<14> · 144197773736360629<18> · 45994881214842165755089<23> · C118
C118 = P41 · P77
P41 = 50967802797581625985097478423989003403541<41>
P77 = 39295969740735967852621112679477369452786973644518223666651441987423587742861<77>
Number: 42229_187 N=2002829236485565584268140691732974433612639511098407138412154547996959651462215442914520265753338661383557778924870801 ( 118 digits) Divisors found: r1=50967802797581625985097478423989003403541 r2=39295969740735967852621112679477369452786973644518223666651441987423587742861 Version: Total time: 20.95 hours. Scaled time: 50.10 units (timescale=2.392). Factorization parameters were as follows: name: 42229_187 n: 2002829236485565584268140691732974433612639511098407138412154547996959651462215442914520265753338661383557778924870801 skew: 50181.87 # norm 2.28e+16 c5: 50940 c4: 19532943756 c3: -146582757507473 c2: -47355629610985993948 c1: 532654329772897813291676 c0: -41567750101170860235893120 # alpha -6.32 Y1: 7973840395103 Y0: -33030029096995216166631 # Murphy_E 3.85e-10 # M 316121329102452193654767749257544142231626197662659818279564247885496932610354662673936415656052558511673138286534187 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9431831 Max relations in full relation-set: Initial matrix: Pruned matrix : 581575 x 581823 Polynomial selection time: 1.99 hours. Total sieving time: 17.45 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.69 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 20.95 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
The maintenance system is currently running with the new machine. The latest factor table of repunit numbers is available.
By Jo Yeong Uk / GGNFS / Msieve v1.39 / Jan 10, 2009
(38·10176+43)/9 = 4(2)1757<177> = 7 · 953 · 18013 · 276447312401475563<18> · 178756426448137413914826142437964919<36> · C116
C116 = P56 · P61
P56 = 30482242843051625212413261317342328142108260988731555571<56>
P61 = 2332615422504949792148260086568871957753601757513041367550327<61>
Number: 42227_176 N=71103349768243348700450905945142994417179643820598258646824953982535526988209326934630523825762360058327976339721717 ( 116 digits) Divisors found: r1=30482242843051625212413261317342328142108260988731555571 r2=2332615422504949792148260086568871957753601757513041367550327 Version: Total time: 17.83 hours. Scaled time: 42.64 units (timescale=2.392). Factorization parameters were as follows: name: 42227_176 n: 71103349768243348700450905945142994417179643820598258646824953982535526988209326934630523825762360058327976339721717 skew: 26032.75 # norm 4.33e+15 c5: 108180 c4: 4459312752 c3: -46190052771889 c2: -6904408880014373882 c1: -13229336043547270296464 c0: 539733616727763783241807616 # alpha -5.62 Y1: 929245002037 Y0: -14572980660116137675005 # Murphy_E 4.64e-10 # M 57258185201645401085393804515614427325718700776340221333725020184573222142112606157960434857721364147424672513767023 type: gnfs rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1650000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8772174 Max relations in full relation-set: Initial matrix: Pruned matrix : 554186 x 554434 Polynomial selection time: 1.51 hours. Total sieving time: 14.83 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.64 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3300000,3300000,27,27,52,52,2.4,2.4,75000 total time: 17.83 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Serge Batalov / GMP-ECM 6.2.1 / Jan 10, 2009
(4·10245-1)/3 = 1(3)245<246> = 293 · 4428013 · 436570924477<12> · 197820650760877883<18> · 1940832977077439598289<22> · 245134337177055685486188936209<30> · 1675203063576126721567576664071<31> · C127
C127 = P43 · P84
P43 = 6790775658469834479820078727143989820043129<43>
P84 = 219865273571187201579781503790690827059370707506151263702320080862487340541571697173<84>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2724191139 Step 1 took 36312ms Step 2 took 25686ms ********** Factor found in step 2: 6790775658469834479820078727143989820043129 Found probable prime factor of 43 digits: 6790775658469834479820078727143989820043129 Probable prime cofactor has 84 digits
By Sinkiti Sibata / Msieve / Jan 10, 2009
10213-9 = (9)2121<213> = 2671 · 832477 · 3405841 · 5328359 · 5607750409<10> · 24831611120690827<17> · 489257181515888972676839<24> · 2732757469571315596232602778709665753077<40> · C102
C102 = P42 · P60
P42 = 582858443410441071978771347365210311353479<42>
P60 = 228371053847304148819820096048179809718818515793823952998837<60>
Fri Jan 09 16:34:18 2009 Msieve v. 1.39 Fri Jan 09 16:34:18 2009 random seeds: 70bd276c 631bbe8b Fri Jan 09 16:34:18 2009 factoring 133107996965441716078569858100441760864844458768441551457233330059494248457182487821678740490382903923 (102 digits) Fri Jan 09 16:34:19 2009 searching for 15-digit factors Fri Jan 09 16:34:21 2009 commencing quadratic sieve (102-digit input) Fri Jan 09 16:34:21 2009 using multiplier of 43 Fri Jan 09 16:34:21 2009 using 32kb Intel Core sieve core Fri Jan 09 16:34:21 2009 sieve interval: 36 blocks of size 32768 Fri Jan 09 16:34:21 2009 processing polynomials in batches of 6 Fri Jan 09 16:34:21 2009 using a sieve bound of 3041849 (110000 primes) Fri Jan 09 16:34:21 2009 using large prime bound of 456277350 (28 bits) Fri Jan 09 16:34:21 2009 using double large prime bound of 3860219537782800 (44-52 bits) Fri Jan 09 16:34:21 2009 using trial factoring cutoff of 52 bits Fri Jan 09 16:34:21 2009 polynomial 'A' values have 13 factors Sat Jan 10 09:09:01 2009 110123 relations (26170 full + 83953 combined from 1641709 partial), need 110096 Sat Jan 10 09:09:03 2009 begin with 1667879 relations Sat Jan 10 09:09:04 2009 reduce to 289724 relations in 11 passes Sat Jan 10 09:09:04 2009 attempting to read 289724 relations Sat Jan 10 09:09:10 2009 recovered 289724 relations Sat Jan 10 09:09:10 2009 recovered 281939 polynomials Sat Jan 10 09:09:10 2009 attempting to build 110123 cycles Sat Jan 10 09:09:11 2009 found 110123 cycles in 6 passes Sat Jan 10 09:09:11 2009 distribution of cycle lengths: Sat Jan 10 09:09:11 2009 length 1 : 26170 Sat Jan 10 09:09:11 2009 length 2 : 18921 Sat Jan 10 09:09:11 2009 length 3 : 18607 Sat Jan 10 09:09:11 2009 length 4 : 14860 Sat Jan 10 09:09:11 2009 length 5 : 11537 Sat Jan 10 09:09:11 2009 length 6 : 7928 Sat Jan 10 09:09:11 2009 length 7 : 5001 Sat Jan 10 09:09:11 2009 length 9+: 7099 Sat Jan 10 09:09:11 2009 largest cycle: 20 relations Sat Jan 10 09:09:11 2009 matrix is 110000 x 110123 (32.4 MB) with weight 8061711 (73.21/col) Sat Jan 10 09:09:11 2009 sparse part has weight 8061711 (73.21/col) Sat Jan 10 09:09:13 2009 filtering completed in 3 passes Sat Jan 10 09:09:13 2009 matrix is 105828 x 105892 (31.4 MB) with weight 7802831 (73.69/col) Sat Jan 10 09:09:13 2009 sparse part has weight 7802831 (73.69/col) Sat Jan 10 09:09:13 2009 saving the first 48 matrix rows for later Sat Jan 10 09:09:13 2009 matrix is 105780 x 105892 (22.7 MB) with weight 6525771 (61.63/col) Sat Jan 10 09:09:13 2009 sparse part has weight 5323421 (50.27/col) Sat Jan 10 09:09:13 2009 matrix includes 64 packed rows Sat Jan 10 09:09:13 2009 using block size 42356 for processor cache size 1024 kB Sat Jan 10 09:09:15 2009 commencing Lanczos iteration Sat Jan 10 09:09:15 2009 memory use: 20.0 MB Sat Jan 10 09:10:45 2009 lanczos halted after 1674 iterations (dim = 105780) Sat Jan 10 09:10:45 2009 recovered 18 nontrivial dependencies Sat Jan 10 09:10:46 2009 prp42 factor: 582858443410441071978771347365210311353479 Sat Jan 10 09:10:46 2009 prp60 factor: 228371053847304148819820096048179809718818515793823952998837 Sat Jan 10 09:10:46 2009 elapsed time 16:36:28
By Jo Yeong Uk / GGNFS / Msieve v1.39 / Jan 9, 2009
(38·10174+61)/9 = 4(2)1739<175> = 11 · 557 · 23333 · 59218732301<11> · 262088313569048659823633945899080702035203<42> · C115
C115 = P33 · P40 · P43
P33 = 225417303760371613051787015751701<33>
P40 = 3509660100567937909308937499352854860151<40>
P43 = 2405268446283875882037061284565419763257923<43>
Number: 42229_174 N=1902899549437374369035951375932780225773552267114939321874434723505133347794160411662937567103887497100312817310473 ( 115 digits) Divisors found: r1=225417303760371613051787015751701 r2=3509660100567937909308937499352854860151 r3=2405268446283875882037061284565419763257923 Version: Total time: 15.58 hours. Scaled time: 37.20 units (timescale=2.388). Factorization parameters were as follows: name: 42229_174 n: 1902899549437374369035951375932780225773552267114939321874434723505133347794160411662937567103887497100312817310473 skew: 13305.32 # norm 1.25e+15 c5: 34380 c4: -7761979098 c3: -40170364027258 c2: 1216859679370801634 c1: 2137936139042537055913 c0: -37443904713974567970199586 # alpha -5.26 Y1: 2839122733007 Y0: -8884403306900197748349 # Murphy_E 6.23e-10 # M 1013688461298236633418369179942359190638312815538318044515649165909945628291609200031522087797218085581150778639140 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2450001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9217367 Max relations in full relation-set: Initial matrix: Pruned matrix : 514466 x 514714 Polynomial selection time: 1.35 hours. Total sieving time: 12.39 hours. Total relation processing time: 0.66 hours. Matrix solve time: 0.56 hours. Time per square root: 0.61 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 15.58 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8046968k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.84 BogoMIPS (lpj=2672421) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672207) Calibrating delay using timer specific routine.. 5291.27 BogoMIPS (lpj=2645639)
By Serge Batalov / GMP-ECM 6.2.1 / Jan 9, 2009
10213-9 = (9)2121<213> = 2671 · 832477 · 3405841 · 5328359 · 5607750409<10> · 24831611120690827<17> · 489257181515888972676839<24> · C141
C141 = P40 · C102
P40 = 2732757469571315596232602778709665753077<40>
C102 = [133107996965441716078569858100441760864844458768441551457233330059494248457182487821678740490382903923<102>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1234666248 Step 1 took 43505ms Step 2 took 20647ms ********** Factor found in step 2: 2732757469571315596232602778709665753077 Found probable prime factor of 40 digits: 2732757469571315596232602778709665753077 Composite cofactor 133107996965441716078569858100441760864844458768441551457233330059494248457182487821678740490382903923 has 102 digits
By Wataru Sakai / Msieve / Jan 9, 2009
(10189+53)/9 = (1)1887<189> = 3 · 13 · 281 · 15696287951<11> · C174
C174 = P43 · P132
P43 = 2966053554214492112333066088061367989981783<43>
P132 = 217776301578075309920820042799517030257727277508499057170455912299319301245210201540772768640946562600901533506129647135786653246811<132>
Number: 11117_189 N=645936173319337380411863953498993104769684528176623414613699613686861428843235993970593716471912306280514580984750785536925480164420937113239219942611158442079139517692844013 ( 174 digits) SNFS difficulty: 189 digits. Divisors found: r1=2966053554214492112333066088061367989981783 r2=217776301578075309920820042799517030257727277508499057170455912299319301245210201540772768640946562600901533506129647135786653246811 Version: Total time: 388.16 hours. Scaled time: 780.19 units (timescale=2.010). Factorization parameters were as follows: n: 645936173319337380411863953498993104769684528176623414613699613686861428843235993970593716471912306280514580984750785536925480164420937113239219942611158442079139517692844013 m: 50000000000000000000000000000000000000 deg: 5 c5: 16 c0: 265 skew: 1.75 type: snfs lss: 1 rlim: 10200000 alim: 10200000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 10200000/10200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5100000, 8700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1819800 x 1820048 Total sieving time: 388.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,10200000,10200000,28,28,54,54,2.5,2.5,100000 total time: 388.16 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve v1.39 / Jan 8, 2009
(38·10193+43)/9 = 4(2)1927<194> = C194
C194 = P90 · P105
P90 = 152784569578034018071739097799518165623885883503374346108642124458545616770104505255344901<90>
P105 = 276351351048296902131663932803456124639908210818778760937627498047154906872033486981422679102588102399927<105>
Number: 42227_193 N=42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 194 digits) SNFS difficulty: 196 digits. Divisors found: r1=152784569578034018071739097799518165623885883503374346108642124458545616770104505255344901 r2=276351351048296902131663932803456124639908210818778760937627498047154906872033486981422679102588102399927 Version: Total time: 392.71 hours. Scaled time: 938.57 units (timescale=2.390). Factorization parameters were as follows: n: 42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 m: 1000000000000000000000000000000000000000 deg: 5 c5: 19 c0: 2150 skew: 2.57 type: snfs lss: 1 rlim: 16000000 alim: 16000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [8000000, 17100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 24324690 Max relations in full relation-set: Initial matrix: Pruned matrix : 2685234 x 2685482 Total sieving time: 359.53 hours. Total relation processing time: 12.20 hours. Matrix solve time: 20.58 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,16000000,16000000,28,28,55,55,2.5,2.5,100000 total time: 392.71 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047064k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.80 BogoMIPS (lpj=2672401) Calibrating delay using timer specific routine.. 5344.34 BogoMIPS (lpj=2672172) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve / Jan 8, 2009
(29·10186+43)/9 = 3(2)1857<187> = 4703 · C183
C183 = P69 · P115
P69 = 555923217597268132599534094433976495047551289000224776872217296769257<69>
P115 = 1232439750546506891785593310267887304617348141319633071530047011017494600720295029123922027255808926803985878794437<115>
Number: n N=685141871618588607744465707468046400642615824414676211401705767004512486119970704278592860349186098707680676636662177806128475913719375339617738086800387459541191201833345146124223309 ( 183 digits) SNFS difficulty: 187 digits. Divisors found: Thu Jan 08 04:20:59 2009 prp69 factor: 555923217597268132599534094433976495047551289000224776872217296769257 Thu Jan 08 04:20:59 2009 prp115 factor: 1232439750546506891785593310267887304617348141319633071530047011017494600720295029123922027255808926803985878794437 Thu Jan 08 04:20:59 2009 elapsed time 06:18:34 (Msieve 1.39 - dependency 3) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.95 hours. Scaled time: 61.25 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_2_185_7 n: 685141871618588607744465707468046400642615824414676211401705767004512486119970704278592860349186098707680676636662177806128475913719375339617738086800387459541191201833345146124223309 deg: 5 c5: 290 c0: 43 m: 10000000000000000000000000000000000000 skew: 0.68 type: snfs rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 10294351) Primes: RFBsize:571119, AFBsize:569357, largePrimes:21303335 encountered Relations: rels:21658760, finalFF:1003877 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2773120 hash collisions in 23837692 relations Msieve: matrix is 1553711 x 1553959 (416.7 MB) Total sieving time: 28.98 hours. Total relation processing time: 0.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,56,56,2.5,2.5,100000 total time: 29.95 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Jan 6, 2009
(38·10195+61)/9 = 4(2)1949<196> = C196
C196 = P63 · P134
P63 = 115667220018910122248194085154980724584857915458079192026711121<63>
P134 = 36503187519609639479341262940543033550745399336765316360179329732149272103637012814543123192279806906800310222096607380858092086521349<134>
Number: 42229_195 N=4222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 196 digits) SNFS difficulty: 196 digits. Divisors found: r1=115667220018910122248194085154980724584857915458079192026711121 r2=36503187519609639479341262940543033550745399336765316360179329732149272103637012814543123192279806906800310222096607380858092086521349 Version: Total time: 671.52 hours. Scaled time: 1286.64 units (timescale=1.916). Factorization parameters were as follows: n: 4222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 m: 1000000000000000000000000000000000000000 deg: 5 c5: 38 c0: 61 skew: 1.10 type: snfs lss: 1 rlim: 13200000 alim: 13200000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13200000/13200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6600000, 13100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2267319 x 2267567 Total sieving time: 671.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13200000,13200000,28,28,55,55,2.5,2.5,100000 total time: 671.52 hours. --------- CPU info (if available) ----------
10189+3 = 1(0)1883<190> = 149 · 2579 · 7541 · 18804384407<11> · 89411784830227<14> · C156
C156 = P69 · P87
P69 = 302326156316901099415054234018340088084227443035320038122354865868161<69>
P87 = 678896924250950617425559235848387983568344761375171256368612766118378019400194027494837<87>
Number: 10003_189 N=205248297644156261196720985253614172077029245438613226830452987675960883098054087210769404046438306485121986264348749244919350699056988552234916435950184757 ( 156 digits) SNFS difficulty: 189 digits. Divisors found: r1=302326156316901099415054234018340088084227443035320038122354865868161 r2=678896924250950617425559235848387983568344761375171256368612766118378019400194027494837 Version: Total time: 342.40 hours. Scaled time: 599.54 units (timescale=1.751). Factorization parameters were as follows: n: 205248297644156261196720985253614172077029245438613226830452987675960883098054087210769404046438306485121986264348749244919350699056988552234916435950184757 m: 50000000000000000000000000000000000000 deg: 5 c5: 16 c0: 15 skew: 0.99 type: snfs lss: 1 rlim: 10200000 alim: 10200000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5Factor base limits: 10200000/10200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5100000, 8700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1273208 x 1273456 Total sieving time: 342.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,10200000,10200000,28,28,54,54,2.5,2.5,100000 total time: 342.40 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW / Jan 6, 2009
(5·1038690+31)/9 = (5)386899<38690> is PRP.
(5·1039464+31)/9 = (5)394639<39464> is PRP.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve / Jan 6, 2009
4·10207+1 = 4(0)2061<208> = C208
C208 = P43 · P46 · P55 · P66
P43 = 2137537151086140780378598137246884887064851<43>
P46 = 2812726946992196303955780250469663669810710081<46>
P55 = 4510386964277796118081223118223701478503227449062032837<55>
P66 = 147504388817832250629782059406052001349839987803889705588283463583<66>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (208 digits) Using B1=3628000, B2=8561127130, polynomial Dickson(6), sigma=3845259699 Step 1 took 70828ms Step 2 took 27344ms ********** Factor found in step 2: 2137537151086140780378598137246884887064851 Found probable prime factor of 43 digits: 2137537151086140780378598137246884887064851 Composite cofactor 1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 has 166 digits Number: n N=1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 ( 166 digits) SNFS difficulty: 207 digits. Divisors found: Tue Jan 6 12:17:23 2009 prp46 factor: 2812726946992196303955780250469663669810710081 Tue Jan 6 12:17:23 2009 prp55 factor: 4510386964277796118081223118223701478503227449062032837 Tue Jan 6 12:17:23 2009 prp66 factor: 147504388817832250629782059406052001349839987803889705588283463583 Tue Jan 6 12:17:23 2009 elapsed time 17:15:12 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 101.97 hours. Scaled time: 204.97 units (timescale=2.010). Factorization parameters were as follows: name: KA_4_0_206_1 n: 1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 # n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 deg: 5 c5: 25 c0: 2 m: 200000000000000000000000000000000000000000 skew: 0.60 type: snfs rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 30599990) Primes: RFBsize:664579, AFBsize:664295, largePrimes:36509320 encountered Relations: rels:31588687, finalFF:75919 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7840833 hash collisions in 43268992 relations Msieve: matrix is 3150865 x 3151113 (859.6 MB) Total sieving time: 100.96 hours. Total relation processing time: 1.01 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 101.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830481) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.69 BogoMIPS).
By Justin Card / ggnfs,msieve / Jan 6, 2009
(29·10112+43)/9 = 3(2)1117<113> = 13 · 37 · 103 · 43239121 · C101
C101 = P29 · P72
P29 = 45090396972221616172354904437<29>
P72 = 333589422784143321541957121594048625347148135316145689550420073192386257<72>
Sun Dec 7 00:36:59 2008 Msieve v. 1.39 Sun Dec 7 00:36:59 2008 random seeds: 760852d7 bc69bd5e Sun Dec 7 00:36:59 2008 factoring 15041679499071292646284989557979980982308780587943355373610269065634432656659938885011590841227122309 (101 digits) Sun Dec 7 00:37:00 2008 searching for 15-digit factors Sun Dec 7 00:37:00 2008 commencing number field sieve (101-digit input) Sun Dec 7 00:37:00 2008 R0: -20000000000000000000000 Sun Dec 7 00:37:00 2008 R1: 1 Sun Dec 7 00:37:00 2008 A0: 344 Sun Dec 7 00:37:00 2008 A1: 0 Sun Dec 7 00:37:00 2008 A2: 0 Sun Dec 7 00:37:00 2008 A3: 0 Sun Dec 7 00:37:00 2008 A4: 0 Sun Dec 7 00:37:00 2008 A5: 725 Sun Dec 7 00:37:00 2008 skew 1.00, size 2.348152e-08, alpha 0.523263, combined = 1.972314e-08 Sun Dec 7 00:37:00 2008 Sun Dec 7 00:37:00 2008 commencing relation filtering Sun Dec 7 00:37:00 2008 commencing duplicate removal, pass 1 Sun Dec 7 00:37:00 2008 error -9 reading relation 57 Sun Dec 7 00:37:00 2008 error -9 reading relation 600 Sun Dec 7 00:37:01 2008 error -9 reading relation 6662 Sun Dec 7 00:37:16 2008 found 62189 hash collisions in 1229541 relations Sun Dec 7 00:37:20 2008 added 7524 free relations Sun Dec 7 00:37:20 2008 commencing duplicate removal, pass 2 Sun Dec 7 00:37:21 2008 found 62231 duplicates and 1174834 unique relations Sun Dec 7 00:37:21 2008 memory use: 36.9 MB Sun Dec 7 00:37:21 2008 reading rational ideals above 458752 Sun Dec 7 00:37:21 2008 reading algebraic ideals above 458752 Sun Dec 7 00:37:21 2008 commencing singleton removal, pass 1 Sun Dec 7 00:37:37 2008 relations with 0 large ideals: 17359 Sun Dec 7 00:37:37 2008 relations with 1 large ideals: 170040 Sun Dec 7 00:37:37 2008 relations with 2 large ideals: 503738 Sun Dec 7 00:37:37 2008 relations with 3 large ideals: 322915 Sun Dec 7 00:37:37 2008 relations with 4 large ideals: 78947 Sun Dec 7 00:37:37 2008 relations with 5 large ideals: 9452 Sun Dec 7 00:37:37 2008 relations with 6 large ideals: 72368 Sun Dec 7 00:37:37 2008 relations with 7+ large ideals: 15 Sun Dec 7 00:37:37 2008 1174834 relations and about 1430364 large ideals Sun Dec 7 00:37:37 2008 commencing singleton removal, pass 2 Sun Dec 7 00:37:53 2008 found 678514 singletons Sun Dec 7 00:37:53 2008 current dataset: 496320 relations and about 407268 large ideals Sun Dec 7 00:37:53 2008 commencing singleton removal, pass 3 Sun Dec 7 00:37:59 2008 found 143234 singletons Sun Dec 7 00:37:59 2008 current dataset: 353086 relations and about 251585 large ideals Sun Dec 7 00:37:59 2008 commencing singleton removal, final pass Sun Dec 7 00:38:03 2008 memory use: 11.7 MB Sun Dec 7 00:38:03 2008 commencing in-memory singleton removal Sun Dec 7 00:38:03 2008 begin with 353086 relations and 253896 unique ideals Sun Dec 7 00:38:04 2008 reduce to 310065 relations and 209765 ideals in 10 passes Sun Dec 7 00:38:04 2008 max relations containing the same ideal: 38 Sun Dec 7 00:38:04 2008 reading rational ideals above 229376 Sun Dec 7 00:38:04 2008 reading algebraic ideals above 229376 Sun Dec 7 00:38:04 2008 commencing singleton removal, final pass Sun Dec 7 00:38:08 2008 keeping 280459 ideals with weight <= 20, new excess is 51103 Sun Dec 7 00:38:09 2008 memory use: 11.7 MB Sun Dec 7 00:38:09 2008 commencing in-memory singleton removal Sun Dec 7 00:38:09 2008 begin with 317593 relations and 280459 unique ideals Sun Dec 7 00:38:09 2008 reduce to 309989 relations and 235373 ideals in 4 passes Sun Dec 7 00:38:09 2008 max relations containing the same ideal: 20 Sun Dec 7 00:38:09 2008 relations with 0 large ideals: 5366 Sun Dec 7 00:38:09 2008 relations with 1 large ideals: 31032 Sun Dec 7 00:38:09 2008 relations with 2 large ideals: 79805 Sun Dec 7 00:38:09 2008 relations with 3 large ideals: 98556 Sun Dec 7 00:38:09 2008 relations with 4 large ideals: 62857 Sun Dec 7 00:38:09 2008 relations with 5 large ideals: 23612 Sun Dec 7 00:38:09 2008 relations with 6 large ideals: 8091 Sun Dec 7 00:38:09 2008 relations with 7+ large ideals: 670 Sun Dec 7 00:38:09 2008 commencing 2-way merge Sun Dec 7 00:38:09 2008 reduce to 194123 relation sets and 119507 unique ideals Sun Dec 7 00:38:09 2008 commencing full merge Sun Dec 7 00:38:12 2008 memory use: 9.9 MB Sun Dec 7 00:38:12 2008 found 80647 cycles, need 65707 Sun Dec 7 00:38:12 2008 weight of 65707 cycles is about 5097139 (77.57/cycle) Sun Dec 7 00:38:12 2008 distribution of cycle lengths: Sun Dec 7 00:38:12 2008 1 relations: 6358 Sun Dec 7 00:38:12 2008 2 relations: 5050 Sun Dec 7 00:38:12 2008 3 relations: 5181 Sun Dec 7 00:38:12 2008 4 relations: 5044 Sun Dec 7 00:38:12 2008 5 relations: 4944 Sun Dec 7 00:38:12 2008 6 relations: 4810 Sun Dec 7 00:38:12 2008 7 relations: 4483 Sun Dec 7 00:38:12 2008 8 relations: 4259 Sun Dec 7 00:38:12 2008 9 relations: 3928 Sun Dec 7 00:38:12 2008 10+ relations: 21650 Sun Dec 7 00:38:12 2008 heaviest cycle: 20 relations Sun Dec 7 00:38:12 2008 commencing cycle optimization Sun Dec 7 00:38:13 2008 start with 486593 relations Sun Dec 7 00:38:14 2008 pruned 33805 relations Sun Dec 7 00:38:14 2008 memory use: 13.5 MB Sun Dec 7 00:38:14 2008 distribution of cycle lengths: Sun Dec 7 00:38:14 2008 1 relations: 6358 Sun Dec 7 00:38:14 2008 2 relations: 5301 Sun Dec 7 00:38:14 2008 3 relations: 5583 Sun Dec 7 00:38:14 2008 4 relations: 5487 Sun Dec 7 00:38:14 2008 5 relations: 5416 Sun Dec 7 00:38:14 2008 6 relations: 5327 Sun Dec 7 00:38:14 2008 7 relations: 4957 Sun Dec 7 00:38:14 2008 8 relations: 4627 Sun Dec 7 00:38:14 2008 9 relations: 4289 Sun Dec 7 00:38:14 2008 10+ relations: 18362 Sun Dec 7 00:38:14 2008 heaviest cycle: 19 relations Sun Dec 7 00:38:14 2008 elapsed time 00:01:15 Sun Dec 7 00:38:14 2008 Sun Dec 7 00:38:14 2008 Sun Dec 7 00:38:14 2008 Msieve v. 1.39 Sun Dec 7 00:38:14 2008 random seeds: 1b990db7 ba65cf40 Sun Dec 7 00:38:14 2008 factoring 15041679499071292646284989557979980982308780587943355373610269065634432656659938885011590841227122309 (101 digits) Sun Dec 7 00:38:15 2008 searching for 15-digit factors Sun Dec 7 00:38:16 2008 commencing number field sieve (101-digit input) Sun Dec 7 00:38:16 2008 R0: -20000000000000000000000 Sun Dec 7 00:38:16 2008 R1: 1 Sun Dec 7 00:38:16 2008 A0: 344 Sun Dec 7 00:38:16 2008 A1: 0 Sun Dec 7 00:38:16 2008 A2: 0Sun Dec 7 00:38:16 2008 A3: 0 Sun Dec 7 00:38:16 2008 A4: 0 Sun Dec 7 00:38:16 2008 A5: 725 Sun Dec 7 00:38:16 2008 skew 1.00, size 2.348152e-08, alpha 0.523263, combined = 1.972314e-08 Sun Dec 7 00:38:16 2008 Sun Dec 7 00:38:16 2008 commencing linear algebra Sun Dec 7 00:38:16 2008 read 65707 cycles Sun Dec 7 00:38:16 2008 cycles contain 206245 unique relations Sun Dec 7 00:38:18 2008 read 206245 relations Sun Dec 7 00:38:19 2008 using 20 quadratic characters above 33552150 Sun Dec 7 00:38:21 2008 building initial matrix Sun Dec 7 00:38:23 2008 memory use: 32.0 MB Sun Dec 7 00:38:23 2008 read 65707 cycles Sun Dec 7 00:38:24 2008 matrix is 65498 x 65707 (20.1 MB) with weight 6006938 (91.42/col) Sun Dec 7 00:38:24 2008 sparse part has weight 4541869 (69.12/col) Sun Dec 7 00:38:25 2008 filtering completed in 2 passes Sun Dec 7 00:38:25 2008 matrix is 65276 x 65476 (20.0 MB) with weight 5989908 (91.48/col) Sun Dec 7 00:38:25 2008 sparse part has weight 4530167 (69.19/col) Sun Dec 7 00:38:25 2008 read 65476 cyclesSun Dec 7 00:38:25 2008 matrix is 65276 x 65476 (20.0 MB) with weight 5989908 (91.48/col) Sun Dec 7 00:38:25 2008 sparse part has weight 4530167 (69.19/col) Sun Dec 7 00:38:25 2008 saving the first 48 matrix rows for later Sun Dec 7 00:38:25 2008 matrix is 65228 x 65476 (18.6 MB) with weight 4719058 (72.07/col) Sun Dec 7 00:38:25 2008 sparse part has weight 4224151 (64.51/col) Sun Dec 7 00:38:25 2008 matrix includes 64 packed rows Sun Dec 7 00:38:25 2008 using block size 10922 for processor cache size 256 kB Sun Dec 7 00:38:26 2008 commencing Lanczos iteration Sun Dec 7 00:38:26 2008 memory use: 16.7 MB Sun Dec 7 00:39:09 2008 lanczos halted after 1033 iterations (dim = 65228) Sun Dec 7 00:39:09 2008 recovered 39 nontrivial dependencies Sun Dec 7 00:39:09 2008 elapsed time 00:00:55 Sun Dec 7 00:39:09 2008 Sun Dec 7 00:39:09 2008 Sun Dec 7 00:39:09 2008 Msieve v. 1.39 Sun Dec 7 00:39:09 2008 random seeds: 226198c7 36d1bb1e Sun Dec 7 00:39:09 2008 factoring 15041679499071292646284989557979980982308780587943355373610269065634432656659938885011590841227122309 (101 digits) Sun Dec 7 00:39:10 2008 searching for 15-digit factors Sun Dec 7 00:39:11 2008 commencing number field sieve (101-digit input) Sun Dec 7 00:39:11 2008 R0: -20000000000000000000000 Sun Dec 7 00:39:11 2008 R1: 1 Sun Dec 7 00:39:11 2008 A0: 344 Sun Dec 7 00:39:11 2008 A1: 0 Sun Dec 7 00:39:11 2008 A2: 0 Sun Dec 7 00:39:11 2008 A3: 0 Sun Dec 7 00:39:11 2008 A4: 0 Sun Dec 7 00:39:11 2008 A5: 725 Sun Dec 7 00:39:11 2008 skew 1.00, size 2.348152e-08, alpha 0.523263, combined = 1.972314e-08 Sun Dec 7 00:39:11 2008 Sun Dec 7 00:39:11 2008 commencing square root phase Sun Dec 7 00:39:11 2008 reading relations for dependency 1 Sun Dec 7 00:39:11 2008 read 32712 cycles Sun Dec 7 00:39:11 2008 cycles contain 128877 unique relations Sun Dec 7 00:39:13 2008 read 128877 relations Sun Dec 7 00:39:13 2008 multiplying 102694 relations Sun Dec 7 00:39:22 2008 multiply complete, coefficients have about 2.89 million bits Sun Dec 7 00:39:22 2008 initial square root is modulo 4567151 Sun Dec 7 00:39:38 2008 prp29 factor: 45090396972221616172354904437 Sun Dec 7 00:39:38 2008 prp72 factor: 333589422784143321541957121594048625347148135316145689550420073192386257 Sun Dec 7 00:39:38 2008 elapsed time 00:00:29
By Tyler Cadigan / ggnfs, msieve / Jan 6, 2009
(43·10184-7)/9 = 4(7)184<185> = 53 · 26287823 · 4895902625197<13> · C163
C163 = P81 · P83
P81 = 100986265192381720719980286210366635840357108525083480574351389325029919037606947<81>
P83 = 69358608608073139344127843528616553111361386937716623546623185659992381518608784037<83>
Number: 47777_184 N=7004266842269483659952767910075690687168034383305029594855242179827887829067467896729417906148100412760492466019505809155804252673388696948980973408703058013905039 ( 163 digits) SNFS difficulty: 186 digits. Divisors found: r1=100986265192381720719980286210366635840357108525083480574351389325029919037606947 r2=69358608608073139344127843528616553111361386937716623546623185659992381518608784037 Version: Total time: 347.18 hours. Scaled time: 889.14 units (timescale=2.561). Factorization parameters were as follows: n: 7004266842269483659952767910075690687168034383305029594855242179827887829067467896729417906148100412760492466019505809155804252673388696948980973408703058013905039 m: 10000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 skew: 1.10 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 9500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1331819 x 1332067 Total sieving time: 347.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 347.18 hours. --------- CPU info (if available) ----------
By Luigi Morelli / GGNFS 0.77.1, msieve / Jan 4, 2009
(38·10174-11)/9 = 4(2)1731<175> = 33 · 7629737812981<13> · 31668315658185358241<20> · 64583320974668012969282589628685014327<38> · C104
C104 = P44 · P60
P44 = 13572177173944141379230865642040566250314827<44>
P60 = 738367971619864478723854016085408967268073560203846001125847<60>
Sat Jan 3 17:34:21 2009 Msieve v. 1.39 Sat Jan 3 17:34:21 2009 random seeds: 811586e7 042c0979 Sat Jan 3 17:34:21 2009 factoring 10021260930390560266594511156264428707661578748567959642375971936717369835041789453030241615860197033469 (104 digits) Sat Jan 3 17:34:24 2009 searching for 15-digit factors Sat Jan 3 17:34:26 2009 commencing number field sieve (104-digit input) Sat Jan 3 17:34:26 2009 R0: -41755367312430798657 Sat Jan 3 17:34:26 2009 R1: 129924582887 Sat Jan 3 17:34:26 2009 A0: -12813572907496742341700 Sat Jan 3 17:34:26 2009 A1: 688027892716311984598 Sat Jan 3 17:34:26 2009 A2: 343348771692294918 Sat Jan 3 17:34:26 2009 A3: -3426111865027 Sat Jan 3 17:34:26 2009 A4: -2705875132 Sat Jan 3 17:34:26 2009 A5: 78960 Sat Jan 3 17:34:26 2009 skew 1.00, size 1.020312e-10, alpha -6.266562, combined = 8.239688e-10 Sat Jan 3 17:34:26 2009 Sat Jan 3 17:34:26 2009 commencing relation filtering Sat Jan 3 17:34:26 2009 commencing duplicate removal, pass 1 Sat Jan 3 17:36:04 2009 found 333597 hash collisions in 4633238 relations Sat Jan 3 17:36:40 2009 added 31398 free relations Sat Jan 3 17:36:40 2009 commencing duplicate removal, pass 2 Sat Jan 3 17:36:47 2009 found 311101 duplicates and 4353535 unique relations Sat Jan 3 17:36:47 2009 memory use: 43.3 MB Sat Jan 3 17:36:47 2009 reading rational ideals above 1900544 Sat Jan 3 17:36:47 2009 reading algebraic ideals above 1900544 Sat Jan 3 17:36:47 2009 commencing singleton removal, pass 1 Sat Jan 3 17:38:25 2009 relations with 0 large ideals: 66751 Sat Jan 3 17:38:25 2009 relations with 1 large ideals: 508305 Sat Jan 3 17:38:25 2009 relations with 2 large ideals: 1420633 Sat Jan 3 17:38:25 2009 relations with 3 large ideals: 1653235 Sat Jan 3 17:38:25 2009 relations with 4 large ideals: 658720 Sat Jan 3 17:38:25 2009 relations with 5 large ideals: 15644 Sat Jan 3 17:38:25 2009 relations with 6 large ideals: 30247 Sat Jan 3 17:38:25 2009 relations with 7+ large ideals: 0 Sat Jan 3 17:38:25 2009 4353535 relations and about 4377821 large ideals Sat Jan 3 17:38:25 2009 commencing singleton removal, pass 2 Sat Jan 3 17:40:01 2009 found 1971537 singletons Sat Jan 3 17:40:01 2009 current dataset: 2381998 relations and about 1995952 large ideals Sat Jan 3 17:40:01 2009 commencing singleton removal, pass 3 Sat Jan 3 17:40:56 2009 found 459886 singletons Sat Jan 3 17:40:56 2009 current dataset: 1922112 relations and about 1500649 large ideals Sat Jan 3 17:40:56 2009 commencing singleton removal, final pass Sat Jan 3 17:41:44 2009 memory use: 37.3 MB Sat Jan 3 17:41:44 2009 commencing in-memory singleton removal Sat Jan 3 17:41:45 2009 begin with 1922112 relations and 1542283 unique ideals Sat Jan 3 17:41:51 2009 reduce to 1596578 relations and 1207151 ideals in 15 passes Sat Jan 3 17:41:51 2009 max relations containing the same ideal: 18 Sat Jan 3 17:41:53 2009 reading rational ideals above 720000 Sat Jan 3 17:41:53 2009 reading algebraic ideals above 720000 Sat Jan 3 17:41:53 2009 commencing singleton removal, final pass Sat Jan 3 17:42:38 2009 keeping 1386175 ideals with weight <= 20, new excess is 174884 Sat Jan 3 17:42:39 2009 memory use: 46.5 MB Sat Jan 3 17:42:40 2009 commencing in-memory singleton removal Sat Jan 3 17:42:40 2009 begin with 1608672 relations and 1386175 unique ideals Sat Jan 3 17:42:45 2009 reduce to 1594481 relations and 1314144 ideals in 12 passes Sat Jan 3 17:42:45 2009 max relations containing the same ideal: 20 Sat Jan 3 17:42:48 2009 removing 283569 relations and 244833 ideals in 38736 cliques Sat Jan 3 17:42:48 2009 commencing in-memory singleton removal Sat Jan 3 17:42:49 2009 begin with 1310912 relations and 1314144 unique ideals Sat Jan 3 17:42:52 2009 reduce to 1278048 relations and 1035423 ideals in 10 passes Sat Jan 3 17:42:52 2009 max relations containing the same ideal: 20 Sat Jan 3 17:42:54 2009 removing 211724 relations and 172988 ideals in 38736 cliques Sat Jan 3 17:42:54 2009 commencing in-memory singleton removal Sat Jan 3 17:42:55 2009 begin with 1066324 relations and 1035423 unique ideals Sat Jan 3 17:42:57 2009 reduce to 1040992 relations and 836386 ideals in 8 passes Sat Jan 3 17:42:57 2009 max relations containing the same ideal: 20 Sat Jan 3 17:42:59 2009 relations with 0 large ideals: 23367 Sat Jan 3 17:42:59 2009 relations with 1 large ideals: 137128 Sat Jan 3 17:42:59 2009 relations with 2 large ideals: 316252 Sat Jan 3 17:42:59 2009 relations with 3 large ideals: 342472 Sat Jan 3 17:42:59 2009 relations with 4 large ideals: 175722 Sat Jan 3 17:42:59 2009 relations with 5 large ideals: 40480 Sat Jan 3 17:42:59 2009 relations with 6 large ideals: 5342 Sat Jan 3 17:42:59 2009 relations with 7+ large ideals: 229 Sat Jan 3 17:42:59 2009 commencing 2-way merge Sat Jan 3 17:43:01 2009 reduce to 620654 relation sets and 416048 unique ideals Sat Jan 3 17:43:01 2009 commencing full merge Sat Jan 3 17:43:15 2009 memory use: 35.2 MB Sat Jan 3 17:43:15 2009 found 281974 cycles, need 256248 Sat Jan 3 17:43:15 2009 weight of 256248 cycles is about 18213555 (71.08/cycle) Sat Jan 3 17:43:15 2009 distribution of cycle lengths: Sat Jan 3 17:43:15 2009 1 relations: 31071 Sat Jan 3 17:43:15 2009 2 relations: 24040 Sat Jan 3 17:43:15 2009 3 relations: 23564 Sat Jan 3 17:43:15 2009 4 relations: 22461 Sat Jan 3 17:43:15 2009 5 relations: 21110 Sat Jan 3 17:43:15 2009 6 relations: 19272 Sat Jan 3 17:43:15 2009 7 relations: 17944 Sat Jan 3 17:43:15 2009 8 relations: 16146 Sat Jan 3 17:43:15 2009 9 relations: 14902 Sat Jan 3 17:43:15 2009 10+ relations: 65738 Sat Jan 3 17:43:15 2009 heaviest cycle: 18 relations Sat Jan 3 17:43:15 2009 commencing cycle optimization Sat Jan 3 17:43:17 2009 start with 1677773 relations Sat Jan 3 17:43:25 2009 pruned 57629 relations Sat Jan 3 17:43:25 2009 memory use: 53.4 MB Sat Jan 3 17:43:25 2009 distribution of cycle lengths: Sat Jan 3 17:43:25 2009 1 relations: 31071 Sat Jan 3 17:43:25 2009 2 relations: 24750 Sat Jan 3 17:43:25 2009 3 relations: 24618 Sat Jan 3 17:43:25 2009 4 relations: 23440 Sat Jan 3 17:43:25 2009 5 relations: 21963 Sat Jan 3 17:43:25 2009 6 relations: 19954 Sat Jan 3 17:43:25 2009 7 relations: 18480 Sat Jan 3 17:43:25 2009 8 relations: 16597 Sat Jan 3 17:43:25 2009 9 relations: 15206 Sat Jan 3 17:43:25 2009 10+ relations: 60169 Sat Jan 3 17:43:25 2009 heaviest cycle: 18 relations Sat Jan 3 17:43:27 2009 Sat Jan 3 17:43:27 2009 commencing linear algebra Sat Jan 3 17:43:27 2009 read 256248 cycles Sat Jan 3 17:43:28 2009 cycles contain 881602 unique relations Sat Jan 3 17:43:49 2009 read 881602 relations Sat Jan 3 17:43:52 2009 using 20 quadratic characters above 67108004 Sat Jan 3 17:44:06 2009 building initial matrix Sat Jan 3 17:44:32 2009 memory use: 113.5 MB Sat Jan 3 17:44:32 2009 read 256248 cycles Sat Jan 3 17:44:33 2009 matrix is 255986 x 256248 (76.0 MB) with weight 24294011 (94.81/col) Sat Jan 3 17:44:33 2009 sparse part has weight 17112766 (66.78/col) Sat Jan 3 17:44:47 2009 filtering completed in 3 passes Sat Jan 3 17:44:47 2009 matrix is 254372 x 254572 (75.7 MB) with weight 24167826 (94.94/col) Sat Jan 3 17:44:47 2009 sparse part has weight 17038763 (66.93/col) Sat Jan 3 17:44:49 2009 read 254572 cycles Sat Jan 3 17:44:50 2009 matrix is 254372 x 254572 (75.7 MB) with weight 24167826 (94.94/col) Sat Jan 3 17:44:50 2009 sparse part has weight 17038763 (66.93/col) Sat Jan 3 17:44:50 2009 saving the first 48 matrix rows for later Sat Jan 3 17:44:50 2009 matrix is 254324 x 254572 (73.0 MB) with weight 19149842 (75.22/col) Sat Jan 3 17:44:50 2009 sparse part has weight 16585514 (65.15/col) Sat Jan 3 17:44:50 2009 matrix includes 64 packed rows Sat Jan 3 17:44:50 2009 using block size 65536 for processor cache size 2048 kB Sat Jan 3 17:44:57 2009 commencing Lanczos iteration Sat Jan 3 17:44:57 2009 memory use: 66.9 MB Sat Jan 3 18:15:46 2009 lanczos halted after 4023 iterations (dim = 254323) Sat Jan 3 18:15:48 2009 recovered 28 nontrivial dependencies Sat Jan 3 18:15:48 2009 Sat Jan 3 18:15:48 2009 commencing square root phase Sat Jan 3 18:15:48 2009 reading relations for dependency 1 Sat Jan 3 18:15:48 2009 read 127522 cycles Sat Jan 3 18:15:49 2009 cycles contain 543861 unique relations Sat Jan 3 18:16:02 2009 read 543861 relations Sat Jan 3 18:16:09 2009 multiplying 439974 relations Sat Jan 3 18:18:40 2009 multiply complete, coefficients have about 19.10 million bits Sat Jan 3 18:18:42 2009 initial square root is modulo 306049 Sat Jan 3 18:23:57 2009 prp44 factor: 13572177173944141379230865642040566250314827 Sat Jan 3 18:23:57 2009 prp60 factor: 738367971619864478723854016085408967268073560203846001125847 Sat Jan 3 18:23:57 2009 elapsed time 00:49:36
By matsui / GMP-ECM / Jan 3, 2009
(38·10177+7)/9 = 4(2)1763<178> = 16831 · C174
C174 = P33 · P141
P33 = 808020975537356813887688012648849<33>
P141 = 310462058233838072707345486814826980908540325495516767238876034746810469799572718449241791002063641759970155278075383181344441444526372947617<141>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 250859855161441519946659272902514539969236659867044276764435994428270585361667293816304570270466533314848922953016589758316334277358577756652737343130070834901207428092342833 = 808020975537356813887688012648849* 310462058233838072707345486814826980908540325495516767238876034746810469799572718449241791002063641759970155278075383181344441444526372947617
By Wataru Sakai / Msieve / Dec 28, 2008
(37·10196+53)/9 = 4(1)1957<197> = C197
C197 = P57 · P66 · P74
P57 = 787928319933580324079324593875726511993688471405608499053<57>
P66 = 706012788310465914244833920240020167224475218813102557627242440651<66>
P74 = 73902637246869378978147840235120773789941657681890367360187082285806641539<74>
Number: 41117_196 N=41111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: r1=787928319933580324079324593875726511993688471405608499053 r2=706012788310465914244833920240020167224475218813102557627242440651 r3=73902637246869378978147840235120773789941657681890367360187082285806641539 Version: Total time: 1131.63 hours. Scaled time: 2058.43 units (timescale=1.819). Factorization parameters were as follows: n: 41111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 1000000000000000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 13700000 alim: 13700000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13700000/13700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6850000, 19550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2616836 x 2617084 Total sieving time: 1131.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13700000,13700000,28,28,55,55,2.5,2.5,100000 total time: 1131.63 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Dec 28, 2008
10195+3 = 1(0)1943<196> = 17 · 547 · 14549 · 3486070789921<13> · 5665894963755404087<19> · C156
C156 = P71 · P86
P71 = 20272161969880531371430224661237837143004245314829323956717291302611671<71>
P86 = 18459750205074881191572660444812378965121433733944512974732242794281011685914941573309<86>
Number: 10003_195 N=374219046080813346453326646441267156034345085487650370040062476729896969884729327545583720587165323414765099952683896438559950257399288091712019285405489339 ( 156 digits) SNFS difficulty: 195 digits. Divisors found: r1=20272161969880531371430224661237837143004245314829323956717291302611671 r2=18459750205074881191572660444812378965121433733944512974732242794281011685914941573309 Version: Total time: 436.80 hours. Scaled time: 880.16 units (timescale=2.015). Factorization parameters were as follows: n: 374219046080813346453326646441267156034345085487650370040062476729896969884729327545583720587165323414765099952683896438559950257399288091712019285405489339 m: 1000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 3 skew: 1.25 type: snfs lss: 1 rlim: 12400000 alim: 12400000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12400000/12400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6200000, 10500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2156382 x 2156628 Total sieving time: 436.80 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12400000,12400000,28,28,55,55,2.5,2.5,100000 total time: 436.80 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Dec 28, 2008
(28·10198+53)/9 = 3(1)1977<199> = 32 · C198
C198 = P40 · P158
P40 = 3649332252990078880852899480628274961427<40>
P158 = 94723907932046213585023172949738787991480229480739179737363021751442282548661569399706013860101034321205826303279398761288808502140485924795670612716211919719<158>
Number: 31117_198 N=345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679013 ( 198 digits) SNFS difficulty: 199 digits. Divisors found: r1=3649332252990078880852899480628274961427 r2=94723907932046213585023172949738787991480229480739179737363021751442282548661569399706013860101034321205826303279398761288808502140485924795670612716211919719 Version: Total time: 1064.77 hours. Scaled time: 2123.15 units (timescale=1.994). Factorization parameters were as follows: n: 345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679013 m: 2000000000000000000000000000000000000000 deg: 5 c5: 875 c0: 53 skew: 0.57 type: snfs lss: 1 rlim: 14800000 alim: 14800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14800000/14800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [7400000, 19400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2649513 x 2649761 Total sieving time: 1064.77 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,14800000,14800000,28,28,55,55,2.5,2.5,100000 total time: 1064.77 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve / Jan 4, 2009
(10184+53)/9 = (1)1837<184> = 25931 · C179
C179 = P66 · P113
P66 = 792056942417260752013943287577332059199532709715550910871166602123<66>
P113 = 54098076096087152994248770015733377320347175047305220233121079901747953425719984522642163758267738475346218307509<113>
Number: 11117_184 N=42848756743323092480471679114230500602025032243689449350627091554938533458451703023836763376310636346886395091246427484906525437164440673753851032012306162936682392160391466241607 ( 179 digits) SNFS difficulty: 184 digits. Divisors found: r1=792056942417260752013943287577332059199532709715550910871166602123 r2=54098076096087152994248770015733377320347175047305220233121079901747953425719984522642163758267738475346218307509 Version: Total time: 323.64 hours. Scaled time: 626.89 units (timescale=1.937). Factorization parameters were as follows: n: 42848756743323092480471679114230500602025032243689449350627091554938533458451703023836763376310636346886395091246427484906525437164440673753851032012306162936682392160391466241607 m: 5000000000000000000000000000000000000 deg: 5 c5: 16 c0: 265 skew: 1.75 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4200000, 7500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1177876 x 1178124 Total sieving time: 323.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000 total time: 323.64 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS / Msieve v1.39 / Dec 27, 2008
(13·10180-7)/3 = 4(3)1791<181> = C181
C181 = P45 · P137
P45 = 133183810233677421714973688754211562543765317<45>
P137 = 32536487173105281333067272791516917637471199207130413085188359827144021898760251672172023912689675343132715372285707394906776189397129143<137>
Number: 43331_180 N=4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 ( 181 digits) SNFS difficulty: 181 digits. Divisors found: r1=133183810233677421714973688754211562543765317 r2=32536487173105281333067272791516917637471199207130413085188359827144021898760251672172023912689675343132715372285707394906776189397129143 Version: Total time: 91.31 hours. Scaled time: 218.15 units (timescale=2.389). Factorization parameters were as follows: n: 4333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331 m: 1000000000000000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3200000, 5700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18375208 Max relations in full relation-set: Initial matrix: Pruned matrix : 1307433 x 1307681 Total sieving time: 84.50 hours. Total relation processing time: 2.37 hours. Matrix solve time: 4.11 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,53,53,2.5,2.5,100000 total time: 91.31 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Jo Yeong Uk / GMP-ECM / Jan 3, 2008
(64·10233-1)/9 = 7(1)233<234> = 3 · 99315959 · 8290079151717433488691043<25> · C201
C201 = P39 · C163
P39 = 244999355897374262095731654588996987803<39>
C163 = [1175096545584055105250951509988618729791632937145951352860247520445895686478618432283375088249068144836193263705482510866613839205023692202682641801126636599436267<163>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 287897896785322994555674978735968899193228526507440203019621524304219703606465390376414637835676262450237955603657481790170414110522262553993340237389283920579700454909980877098926836312194350874851401 (201 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3210162980 Step 1 took 22449ms Step 2 took 8672ms ********** Factor found in step 2: 244999355897374262095731654588996987803 Found probable prime factor of 39 digits: 244999355897374262095731654588996987803 Composite cofactor 1175096545584055105250951509988618729791632937145951352860247520445895686478618432283375088249068144836193263705482510866613839205023692202682641801126636599436267 has 163 digits
By Jo Yeong Uk / GMP-ECM / Jan 3, 2008
(64·10205-1)/9 = 7(1)205<206> = 431 · 37940267 · 45453581976434362961<20> · C176
C176 = P40 · C137
P40 = 3413498540067034957579963393050135213037<40>
C137 = [28027991462592126727645456941213879374870484455341245911407229100340608719858666765731412775742675529856705668542399476690203589001246999<137>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 95673507938569544419059184259217858706183654907488877608498088047569608854258353672123533863115165791173052496922107368259780351867183146813879315893305406356587115353521925963 (176 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=27677106 Step 1 took 18946ms Step 2 took 7711ms ********** Factor found in step 2: 3413498540067034957579963393050135213037 Found probable prime factor of 40 digits: 3413498540067034957579963393050135213037 Composite cofactor 28027991462592126727645456941213879374870484455341245911407229100340608719858666765731412775742675529856705668542399476690203589001246999 has 137 digits
By Sinkiti Sibata / GGNFS, Msieve / Dec 26, 2008
(13·10156-7)/3 = 4(3)1551<157> = 41 · 373 · 2143 · 11719 · 9094703 · 185189431516811<15> · C124
C124 = P57 · P68
P57 = 324398260686691813162866343117371269663267936287799013143<57>
P68 = 20650636734644430907618223992790982393292044921765406119716528349629<68>
Number: 43331_156 N=6699030638791358287402250465874032297664402985450649877562708199444280779852023252445956714120090595355942969673208670173947 ( 124 digits) SNFS difficulty: 158 digits. Divisors found: r1=324398260686691813162866343117371269663267936287799013143 r2=20650636734644430907618223992790982393292044921765406119716528349629 Version: Total time: 30.15 hours. Scaled time: 76.99 units (timescale=2.554). Factorization parameters were as follows: name: 43331_156 n: 6699030638791358287402250465874032297664402985450649877562708199444280779852023252445956714120090595355942969673208670173947 m: 20000000000000000000000000000000 deg: 5 c5: 65 c0: -112 skew: 1.11 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 510325 x 510573 Total sieving time: 30.15 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 30.15 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 26, 2008
(38·10156+61)/9 = 4(2)1559<157> = 11 · 139277740661<12> · 30738460965305809<17> · C128
C128 = P57 · P72
P57 = 260143260050233689064483536734775966389994188398184680541<57>
P72 = 344645007197955662990211669087773268820445474115533760904170023354945071<72>
Number: 42229_156 N=89657075732512441634943806879080168667130713554798202567148299186828703838676016744071926873134410604543640813584660148737563411 ( 128 digits) SNFS difficulty: 157 digits. Divisors found: r1=260143260050233689064483536734775966389994188398184680541 r2=344645007197955662990211669087773268820445474115533760904170023354945071 Version: Total time: 30.26 hours. Scaled time: 64.45 units (timescale=2.130). Factorization parameters were as follows: name: 42229_156 n: 89657075732512441634943806879080168667130713554798202567148299186828703838676016744071926873134410604543640813584660148737563411 m: 10000000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 502089 x 502337 Total sieving time: 30.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 30.26 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 26, 2008
(38·10158+43)/9 = 4(2)1577<159> = 7 · 23914675839563<14> · 27158072252539381<17> · C128
C128 = P46 · P83
P46 = 2144079130668631481647808214278063607290278667<46>
P83 = 43315047967083261756515628744608261986207073370289699235452899200702857612505217961<83>
Number: 42227_158 N=92870890390133953204349065543637257872814042586690164133184967513777941557759002933246154398397579798202131837405662527263537987 ( 128 digits) SNFS difficulty: 160 digits. Divisors found: r1=2144079130668631481647808214278063607290278667 (pp46) r2=43315047967083261756515628744608261986207073370289699235452899200702857612505217961 (pp83) Version: GGNFS-0.77.1-20060513-k8 Total time: 68.70 hours. Scaled time: 135.14 units (timescale=1.967). Factorization parameters were as follows: name: 42227_158 n: 92870890390133953204349065543637257872814042586690164133184967513777941557759002933246154398397579798202131837405662527263537987 m: 50000000000000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3800001) Primes: RFBsize:243539, AFBsize:244049, largePrimes:9512566 encountered Relations: rels:10279905, finalFF:737657 Max relations in full relation-set: 28 Initial matrix: 487655 x 737657 with sparse part having weight 92990337. Pruned matrix : 406380 x 408882 with weight 56550234. Total sieving time: 64.49 hours. Total relation processing time: 0.38 hours. Matrix solve time: 3.58 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 68.70 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 30, 2008
(13·10159-7)/3 = 4(3)1581<160> = 261962465293<12> · C149
C149 = P46 · P104
P46 = 1421529768278761348094525780374224513736072633<46>
P104 = 11636625830464664858325647743978813807681829947015823061574324087054803749479569252497826886832945914199<104>
Number: 43331_159 N=16541810020327083872025321485770544028139924294453159596961944801609205755724722039495199343773314721281738282611533742164756110685780090298050015967 ( 149 digits) SNFS difficulty: 161 digits. Divisors found: r1=1421529768278761348094525780374224513736072633 r2=11636625830464664858325647743978813807681829947015823061574324087054803749479569252497826886832945914199 Version: Total time: 44.58 hours. Scaled time: 63.93 units (timescale=1.434). Factorization parameters were as follows: namee: 43331_159 n: 16541810020327083872025321485770544028139924294453159596961944801609205755724722039495199343773314721281738282611533742164756110685780090298050015967 m: 100000000000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 631769 x 632017 Total sieving time: 44.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 44.58 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 30, 2008
(38·10160+61)/9 = 4(2)1599<161> = 11 · 43 · 18869 · 569843 · 110972517492503<15> · C134
C134 = P57 · P78
P57 = 297509719742290474139330475588728831273006432555451274399<57>
P78 = 251454404374289030062001456994792487277578746400523774726284481964757292298427<78>
Number: 42229_160 N=74810129373359309205942545336184834206171738221787981982172320932093334776011501165482249537046287347382671874753603894353824973070373 ( 134 digits) SNFS difficulty: 161 digits. Divisors found: r1=297509719742290474139330475588728831273006432555451274399 r2=251454404374289030062001456994792487277578746400523774726284481964757292298427 Version: Total time: 31.41 hours. Scaled time: 80.23 units (timescale=2.554). Factorization parameters were as follows: name: 42229_160 n: 74810129373359309205942545336184834206171738221787981982172320932093334776011501165482249537046287347382671874753603894353824973070373 m: 100000000000000000000000000000000 deg: 5 c5: 38 c0: 61 skew: 1.10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 678025 x 678273 Total sieving time: 31.41 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 31.41 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 30, 2008
(37·10159+71)/9 = 4(1)1589<160> = 32 · 13670221 · 5103671884417057976104111<25> · C127
C127 = P63 · P64
P63 = 917687983434563639100375508394927657132123814900083265245269181<63>
P64 = 7134497314764989439544865488949314528152762596050336212692706881<64>
Number: 41119_159 N=6547242453605992394048359084317174514160950780412212530466243101929843173758215174684602594958675707590649982800228486375934461 ( 127 digits) SNFS difficulty: 161 digits. Divisors found: r1=917687983434563639100375508394927657132123814900083265245269181 r2=7134497314764989439544865488949314528152762596050336212692706881 Version: Total time: 46.32 hours. Scaled time: 119.27 units (timescale=2.575). Factorization parameters were as follows: name: 41119_159 n: 6547242453605992394048359084317174514160950780412212530466243101929843173758215174684602594958675707590649982800228486375934461 m: 50000000000000000000000000000000 deg: 5 c5: 592 c0: 355 skew: 0.90 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 731975 x 732223 Total sieving time: 46.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 46.32 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 30, 2008
(37·10160+53)/9 = 4(1)1597<161> = 15982877657<11> · 14936450870732756397871099<26> · C126
C126 = P51 · P76
P51 = 102923831468505464693908978527655484175650802069673<51>
P76 = 1673173123475487703089313710784677360787957797984518357283275857504571559703<76>
Number: 41117_160 N=172209388578223980722585214247740618263420413262660881975294049842946008295376192901434462909969745146634753200138846085187119 ( 126 digits) SNFS difficulty: 161 digits. Divisors found: r1=102923831468505464693908978527655484175650802069673 r2=1673173123475487703089313710784677360787957797984518357283275857504571559703 Version: Total time: 38.38 hours. Scaled time: 76.64 units (timescale=1.997). Factorization parameters were as follows: name: 41117_160 n: 172209388578223980722585214247740618263420413262660881975294049842946008295376192901434462909969745146634753200138846085187119 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 616277 x 616525 Total sieving time: 38.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 38.38 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 30, 2008
(37·10161+71)/9 = 4(1)1609<162> = 1546639 · 1977323 · 5775877879819762789365782923<28> · C122
C122 = P37 · P40 · P46
P37 = 3626670489409865161778772779661790717<37>
P40 = 1094056547819889305859449209860307372049<40>
P46 = 5865793487276188965814571253468258105175479053<46>
Number: 41119_161 N=23274193308925800580091780365675474451842556430851579470279177765428849475396951101054084520978737639545301630498743571049 ( 122 digits) SNFS difficulty: 162 digits. Divisors found: r1=3626670489409865161778772779661790717 r2=1094056547819889305859449209860307372049 r3=5865793487276188965814571253468258105175479053 Version: Total time: 64.26 hours. Scaled time: 127.17 units (timescale=1.979). Factorization parameters were as follows: name: 41119_161 n: 23274193308925800580091780365675474451842556430851579470279177765428849475396951101054084520978737639545301630498743571049 m: 100000000000000000000000000000000 deg: 5 c5: 370 c0: 71 skew: 0.72 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 715677 x 715925 Total sieving time: 64.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 64.26 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Dec 31, 2008
(13·10161-7)/3 = 4(3)1601<162> = 19 · 41 · 127 · 383 · C155
C155 = P73 · P82
P73 = 5999983234384257158361269946239766294623194084668988312408091792411844581<73>
P82 = 1906040428688038075255133580167729965232323806993136811044332942461242515795310309<82>
Number: 43331_161 N=11436210616186810746733794056033051070940864173032611313454331432661520178353510635592300745384936999279263615712639063331420759064052429852989183975085529 ( 155 digits) SNFS difficulty: 163 digits. Divisors found: r1=5999983234384257158361269946239766294623194084668988312408091792411844581 r2=1906040428688038075255133580167729965232323806993136811044332942461242515795310309 Version: Total time: 44.13 hours. Scaled time: 86.81 units (timescale=1.967). Factorization parameters were as follows: name: 43331_161 n: 11436210616186810746733794056033051070940864173032611313454331432661520178353510635592300745384936999279263615712639063331420759064052429852989183975085529 m: 200000000000000000000000000000000 deg: 5 c5: 65 c0: -112 skew: 1.11 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 649756 x 650004 Total sieving time: 44.13 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 44.13 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve / Jan 3, 2009
(5·10173+1)/3 = 1(6)1727<174> = 455993 · C168
C168 = P58 · P110
P58 = 8500219598995303344027766550865967186625673657927778414937<58>
P110 = 42999205203292853731733914136598157388065261036006538544990100819846053226208104949425880113589933879959187387<110>
Number: 16667_173 N=365502686810250742153205568214131942083906258794908401371658483061508985152549856393994352252483408005532248667559955233230919480489101075382005133119733563161422799619 ( 168 digits) SNFS difficulty: 174 digits. Divisors found: r1=8500219598995303344027766550865967186625673657927778414937 r2=42999205203292853731733914136598157388065261036006538544990100819846053226208104949425880113589933879959187387 Version: Total time: 87.96 hours. Scaled time: 173.45 units (timescale=1.972). Factorization parameters were as follows: name: 16667_173 n: 365502686810250742153205568214131942083906258794908401371658483061508985152549856393994352252483408005532248667559955233230919480489101075382005133119733563161422799619 m: 50000000000000000000000000000000000 deg: 5 c5: 8 c0: 5 skew: 0.91 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1014593 x 1014841 Total sieving time: 87.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 87.96 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Dec 26, 2008
(11·10162+1)/3 = 3(6)1617<163> = 23 · 2700321752101367<16> · C146
C146 = P43 · P45 · P59
P43 = 3601311424601619332921505797693916788527063<43>
P45 = 219006581842685263283316360850027272068270597<45>
P59 = 74853176309569178742912503139634782903946826824956002337017<59>
Number: n N=59037516448183619208320517613893472549936809145932271117752682219909838415162857923435452340460243053973274572185905190972203813950494013678239387 ( 146 digits) SNFS difficulty: 163 digits. Divisors found: Fri Dec 26 18:44:36 2008 prp43 factor: 3601311424601619332921505797693916788527063 Fri Dec 26 18:44:36 2008 prp45 factor: 219006581842685263283316360850027272068270597 Fri Dec 26 18:44:36 2008 prp59 factor: 74853176309569178742912503139634782903946826824956002337017 Fri Dec 26 18:44:36 2008 elapsed time 01:33:44 (Msieve 1.38 - dependency 5) Version: GGNFS-0.77.1-20050930-k8 Total time: 16.79 hours. Scaled time: 14.12 units (timescale=0.841). Factorization parameters were as follows: name: KA_3_6_161_7 n: 59037516448183619208320517613893472549936809145932271117752682219909838415162857923435452340460243053973274572185905190972203813950494013678239387 type: snfs skew: 0.25 deg: 5 c5: 1100 c0: 1 m: 100000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1600001) Primes: RFBsize:348513, AFBsize:348887, largePrimes:14234355 encountered Relations: rels:12742718, finalFF:710763 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2543311 hash collisions in 15298059 relations Msieve: matrix is 698438 x 698686 (188.0 MB) Total sieving time: 16.44 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 16.79 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Dec 26, 2008
(26·10188-71)/9 = 2(8)1871<189> = 1063 · C186
C186 = P63 · P123
P63 = 551630183606680962183180226091792336239549492768560137458052747<63>
P123 = 492662552392220576655684845632298686292166468106550344307131322364753054986270108272824989428881410922859811571673578121621<123>
Number: n N=271767534232256715793874777882303752482491899236960384655586913347966969791993310337618898296226612313159820215323507891711090205916170168286819274589735549283997073272708268004599142887 ( 186 digits) SNFS difficulty: 189 digits. Divisors found: Fri Dec 26 23:41:20 2008 prp63 factor: 551630183606680962183180226091792336239549492768560137458052747 Fri Dec 26 23:41:20 2008 prp123 factor: 492662552392220576655684845632298686292166468106550344307131322364753054986270108272824989428881410922859811571673578121621 Fri Dec 26 23:41:20 2008 elapsed time 10:55:00 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 92.37 hours. Scaled time: 189.45 units (timescale=2.051). Factorization parameters were as follows: name: KA_2_8_187_1 n: 271767534232256715793874777882303752482491899236960384655586913347966969791993310337618898296226612313159820215323507891711090205916170168286819274589735549283997073272708268004599142887 type: snfs skew: 0.61 deg: 5 c5: 1625 c0: -142 m: 20000000000000000000000000000000000000 rlim: 8800000 alim: 8800000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 9699990) Primes: RFBsize:590006, AFBsize:589311, largePrimes:36356992 encountered Relations: rels:29641144, finalFF:377841 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4667599 hash collisions in 36683233 relations Msieve: matrix is 2002203 x 2002451 (546.7 MB) Total sieving time: 90.20 hours. Total relation processing time: 2.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,8800000,8800000,29,29,58,58,2.5,2.5,100000 total time: 92.37 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve / Dec 26, 2008
(34·10184-61)/9 = 3(7)1831<185> = 53 · 311 · C181
C181 = P47 · P134
P47 = 23615038763529760781379918751679533732906278799<47>
P134 = 97053563553730131755939148516339510463922823914532883145382285182480013642372594307251426540528959234992499729986560196434786562183063<134>
Number: n N=2291923665460036266321529926456214146561777454212083830478540179444141101606368851409196006660060533748575973899034021584528167067753308122173013272934403796504142314977721153781337 ( 181 digits) SNFS difficulty: 186 digits. Divisors found: Mon Dec 29 07:37:41 2008 prp47 factor: 23615038763529760781379918751679533732906278799 Mon Dec 29 07:37:41 2008 prp134 factor: 97053563553730131755939148516339510463922823914532883145382285182480013642372594307251426540528959234992499729986560196434786562183063 Mon Dec 29 07:37:41 2008 elapsed time 32:08:32 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 79.46 hours. Scaled time: 103.62 units (timescale=1.304). Factorization parameters were as follows: name: KA_3_7_183_1 n: 2291923665460036266321529926456214146561777454212083830478540179444141101606368851409196006660060533748575973899034021584528167067753308122173013272934403796504142314977721153781337 type: snfs skew: 1.78 deg: 5 c5: 17 c0: -305 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 7799990) Primes: RFBsize:571119, AFBsize:572228, largePrimes:34514831 encountered Relations: rels:29065709, finalFF:470198 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7201702 hash collisions in 38453133 relations Msieve: matrix is 1922225 x 1922472 (523.8 MB) Total sieving time: 77.83 hours. Total relation processing time: 1.64 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 79.46 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39 / Dec 26, 2008
(37·10167+71)/9 = 4(1)1669<168> = 192917 · 536917 · C157
C157 = P36 · P121
P36 = 671579014769319852470480752727399003<36>
P121 = 5909958659554640741535007471124761361498957478297418163309912416636857421100154094569113223106541752187868302557801388357<121>
SNFS difficulty: 169 digits. Divisors found: r1=671579014769319852470480752727399003 (pp36) r2=5909958659554640741535007471124761361498957478297418163309912416636857421100154094569113223106541752187868302557801388357 (pp121) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.593). Factorization parameters were as follows: n: 3969004213911115832399525563866560304543853158222744089491700975143688785806496283323827500714309382345887375134863665890445083117888155800692484226897608071 m: 2000000000000000000000000000000000 deg: 5 c5: 925 c0: 568 skew: 0.91 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 916149 x 916397 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000 total time: 50.00 hours.
By Serge Batalov / GMP-ECM 6.2.1 / Dec 31, 2008
(64·10230+53)/9 = 7(1)2297<231> = 34 · 17 · C228
C228 = P40 · C189
P40 = 3232206055590841780396196269472673101807<40>
C189 = [159773402781755490907447637584752460118703047764753337154560922740787663830010334120610537832830875279251407218065664853653746287567720114801810544062706842945696047019376975588206911877603<189>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=951095515 Step 1 took 81562ms Step 2 took 33204ms ********** Factor found in step 2: 3232206055590841780396196269472673101807 Found probable prime factor of 40 digits: 3232206055590841780396196269472673101807 Composite cofactor 159773402781755490907447637584752460118703047764753337154560922740787663830010334120610537832830875279251407218065664853653746287567720114801810544062706842945696047019376975588206911877603 has 189 digits
By Serge Batalov / GMP-ECM 6.2.1 / Jan 1, 2009
(16·10243-1)/3 = 5(3)243<244> = 185849 · C239
C239 = P39 · P201
P39 = 142418441176840492033032134216942205277<39>
P201 = 201498710578279266127850534345602794151552427229210220839574119308833713179199126509670068269959423304410557453149770591553404877715402614939279778740096562086248467773700074883514599656144871992813921<201>
Run 1107 out of 4410: Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=969687583 Step 1 took 88244ms Step 2 took 49818ms ********** Factor found in step 2: 142418441176840492033032134216942205277 Found probable prime factor of 39 digits: 142418441176840492033032134216942205277 Probable prime cofactor 201498710578279266127850534345602794151552427229210220839574119308833713179199126509670068269959423304410557453149770591553404877715402614939279778740096562086248467773700074883514599656144871992813921 has 201 digits
I'm sorry to have kept you waiting. The maintenance system is currently running with an old unstable machine. Some features of tables were changed.