82w1 = { 81, 821, 8221, 82221, 822221, 8222221, 82222221, 822222221, 8222222221, 82222222221, … }
74×1013-119 = 82222222222221
<14> = 3 × 27407407407407
<14>
74×1014-119 = 822222222222221
<15> = 857 × 274019 × 3501287
74×1015-119 = 8222222222222221
<16> = 4391 × 121949 × 15354919
74×1016-119 = 82222222222222221
<17> = 3 × 19 × 127 × 11358229344139
<14>
74×1017-119 = 822222222222222221
<18> =
definitely prime number 素数
74×1018-119 = 8222222222222222221
<19> = 7
2 × 173 × 3796307 × 255496939
74×1019-119 = 82222222222222222221
<20> = 3
2 × 47 × 151 × 863 × 983 × 1517426213
<10>
74×1020-119 = 822222222222222222221
<21> = 3119 × 263617256243097859
<18>
74×1021-119 = 8222222222222222222221
<22> = 156289829 × 52608811941449
<14>
74×1022-119 = 82222222222222222222221
<23> = 3 × 187633 × 146069227733966879
<18>
74×1023-119 = 822222222222222222222221
<24> = 313 × 2521 × 4695799 × 221902670123
<12>
74×1024-119 = 8222222222222222222222221
<25> = 7 × 17 × 1013 × 4562731 × 14948855305453
<14>
74×1025-119 = 82222222222222222222222221
<26> = 3 × 61 × 710763083 × 632139979584689
<15>
74×1026-119 = 822222222222222222222222221
<27> = 31 × 6899 × 534913 × 7187174987272993
<16>
74×1027-119 = 8222222222222222222222222221
<28> = 67 × 734688062233
<12> × 167036516541511
<15>
74×1028-119 = 82222222222222222222222222221
<29> = 3
3 × 1699 × 543790493 × 3296100587503489
<16>
74×1029-119 = 822222222222222222222222222221
<30> = 43 × 19121447028423772609819121447
<29>
74×1030-119 = 8222222222222222222222222222221
<31> = 7 × 23203 × 3790127278109
<13> × 13356517446989
<14>
74×1031-119 = 82222222222222222222222222222221
<32> = 3 × 3431717943727301
<16> × 7986497683326307
<16>
74×1032-119 = 822222222222222222222222222222221
<33> = 23 × 35748792270531400966183574879227
<32>
74×1033-119 = 8222222222222222222222222222222221
<34> = 223 × 13807 × 696203349631
<12> × 3835737813548131
<16>
74×1034-119 = 82222222222222222222222222222222221
<35> = 3 × 19
2 × 4562009321963
<13> × 16641964271509777349
<20>
74×1035-119 = 822222222222222222222222222222222221
<36> = 29 × 28352490421455938697318007662835249
<35>
74×1036-119 = 8222222222222222222222222222222222221
<37> = 7 × 199 × 731639 × 8067542210836002765035838923
<28>
74×1037-119 = 82222222222222222222222222222222222221
<38> = 3
2 × 59 × 3943 × 12069011 × 33925823 × 95910429779932429
<17>
74×1038-119 = 822222222222222222222222222222222222221
<39> = 661 × 1488433 × 835715506787408778644140666217
<30>
74×1039-119 = 8222222222222222222222222222222222222221
<40> = 7331 × 49864510807504493
<17> × 22492329031369854187
<20>
74×1040-119 = 82222222222222222222222222222222222222221
<41> = 3 × 17 × 1612200435729847494553376906318082788671
<40>
74×1041-119 = 822222222222222222222222222222222222222221
<42> = 31 × 2328849033789975617
<19> × 11389015391811523259923
<23>
74×1042-119 = 8222222222222222222222222222222222222222221
<43> = 7 × 11519 × 75181 × 1356339138508633909771563458468777
<34>
74×1043-119 = 82222222222222222222222222222222222222222221
<44> = 3 × 610339 × 44905220553507816815585121395498907013
<38>
74×1044-119 = 822222222222222222222222222222222222222222221
<45> = 430589 × 33370607 × 3072323618803
<13> × 18624954196159077509
<20>
74×1045-119 = 8222222222222222222222222222222222222222222221
<46> = 5511997 × 138427128949
<12> × 10776035818468100946911360557
<29>
74×1046-119 = 82222222222222222222222222222222222222222222221
<47> = 3
2 × 14159 × 40823 × 372038659103543
<15> × 42483582446621501177819
<23>
74×1047-119 = 822222222222222222222222222222222222222222222221
<48> =
definitely prime number 素数
74×1048-119 = 8222222222222222222222222222222222222222222222221
<49> = 7 × 193 × 28826443 × 211126527522504682651337930721983464897
<39>
74×1049-119 = 82222222222222222222222222222222222222222222222221
<50> = 3 × 2333 × 631208371 × 3628944217
<10> × 5128615901442840248285728897
<28>
74×1050-119 = 822222222222222222222222222222222222222222222222221
<51> = 43 × 2389 × 6881803 × 355809301 × 1303670261
<10> × 2507363581176568307881
<22>
74×1051-119 = 8
(2
)501
<52> = 97 × 1434445438709
<13> × 3025815376121
<13> × 19529495152381220807917537
<26>
74×1052-119 = 8
(2
)511
<53> = 3 × 19 × 124577 × 11579144839783050012783219428190219875598987989
<47>
74×1053-119 = 8
(2
)521
<54> = 113 × 207551 × 13474811190801171721
<20> × 2601736130378142182475234827
<28>
74×1054-119 = 8
(2
)531
<55> = 7 × 23 × 23981 × 1520483 × 1400601142803995890563989091620760361696907
<43>
74×1055-119 = 8
(2
)541
<56> = 3
3 × 337 × 249037 × 4704264163
<10> × 437850540089
<12> × 17616274883591448370143881
<26>
74×1056-119 = 8
(2
)551
<57> = 17 × 31 × 28771 × 1597147 × 33953046480968464078055355173313533729996179
<44>
74×1057-119 = 8
(2
)561
<58> = 109 × 55673 × 1354933835010402687617459259931843532313972665454953
<52>
74×1058-119 = 8
(2
)571
<59> = 3 × 127 × 6271 × 44900483 × 766436927232106956687164910252990473110987237
<45>
74×1059-119 = 8
(2
)581
<60> = 449441737 × 1829430056297201926803300473676796559332944688717733
<52>
74×1060-119 = 8
(2
)591
<61> = 7
2 × 67 × 9817 × 32173 × 73111250062216255303
<20> × 108458543518566768024943054069
<30>
74×1061-119 = 8
(2
)601
<62> = 3 × 173 × 13567 × 381481 × 599681180892291958633
<21> × 51043999406808083216816250149
<29>
74×1062-119 = 8
(2
)611
<63> = 10091 × 50683746209017
<14> × 1607630720205088183840764535586308572881042143
<46>
74×1063-119 = 8
(2
)621
<64> = 29 × 167 × 653 × 1873 × 8706625339453189
<16> × 159431424376588155937539216945512120567
<39>
74×1064-119 = 8
(2
)631
<65> = 3
2 × 457 × 19990815030931734068130858794607882864629764702704162952157117
<62>
74×1065-119 = 8
(2
)641
<66> = 47 × 19457 × 18182137 × 174658667 × 15802811483
<11> × 3770576140547701
<16> × 4751583132946142807
<19>
74×1066-119 = 8
(2
)651
<67> = 7 × 8367773 × 52447206579171619
<17> × 2676448666438172590653003637248391261685069
<43>
74×1067-119 = 8
(2
)661
<68> = 3 × 9949 × 13967 × 881784647 × 431663940898986581801
<21> × 518175753139868389707312994507
<30>
74×1068-119 = 8
(2
)671
<69> = 149 × 1146133 × 185860189 × 25904877941052700638224737333741285082908787137111417
<53>
74×1069-119 = 8
(2
)681
<70> = 191 × 30851 × 1382767 × 347218129 × 2906264909833994575788585376145387017554148313167
<49>
74×1070-119 = 8
(2
)691
<71> = 3 × 19 × 1442495126705653021442495126705653021442495126705653021442495126705653
<70>
74×1071-119 = 8
(2
)701
<72> = 31 × 43 × 15527 × 473933951 × 60318499711
<11> × 5546277361041494303
<19> × 250554133342480095873329857
<27>
74×1072-119 = 8
(2
)711
<73> = 7 × 17
3 × 1297 × 102768639409
<12> × 1793675281793961625283470297133407845319800634359444347
<55>
74×1073-119 = 8
(2
)721
<74> = 3
2 × 1436371795273866812204447205761432851
<37> × 6360332679321316270826873911430673319
<37> (Makoto Kamada / GGNFS-0.70.1 / 0.13 hours)
74×1074-119 = 8
(2
)731
<75> = 3730319 × 220416061527773421581967178201709350385911291292305623787730277818659
<69>
74×1075-119 = 8
(2
)741
<76> = 45543126212654068414952838353534173519
<38> × 180537062471958586854045247123125583459
<39> (Makoto Kamada / GGNFS-0.70.1 / 0.07 hours)
74×1076-119 = 8
(2
)751
<77> = 3 × 23 × 2729 × 6121 × 418343 × 1117553 × 21654473 × 226297398492943
<15> × 31137689884014602457883882852461721
<35>
74×1077-119 = 8
(2
)761
<78> = 12799 × 52850396764166374043505210598689133
<35> × 1215527865118037825947802269370420199263
<40> (Makoto Kamada / msieve 0.83)
74×1078-119 = 8
(2
)771
<79> = 7 × 48502851953
<11> × 24217198109121148469852806855280520934579015240761271512248041325051
<68>
74×1079-119 = 8
(2
)781
<80> = 3 × 359 × 598841 × 6243817 × 5930690487488041970097287
<25> × 3442758464146115338221081390830303335007
<40>
74×1080-119 = 8
(2
)791
<81> = 192948158052388332517087
<24> × 383927305488113727341111959
<27> × 11099401779212878264664674974437
<32>
74×1081-119 = 8
(2
)801
<82> = 2135340083
<10> × 48738181321931
<14> × 79004683677249713498904969528461947911082675674215023264477
<59>
74×1082-119 = 8
(2
)811
<83> = 3
5 × 293 × 13667122742210231283599227
<26> × 84496403016754467151999333812365015115498771264522377
<53>
74×1083-119 = 8
(2
)821
<84> = 2693 × 5855341 × 570665165913477857225737
<24> × 91373298116233182071248507207533793471201637654341
<50>
74×1084-119 = 8
(2
)831
<85> = 7 × 283 × 8387 × 894776297 × 38351854169609
<14> × 14421062381364920899684599277298428627138425919692343691
<56>
74×1085-119 = 8
(2
)841
<86> = 3 × 61 × 101449 × 255014411 × 17367032889343189252966236366046282982576273416842046307019159212998633
<71>
74×1086-119 = 8
(2
)851
<87> = 31 × 1820293 × 99769699153298454097
<20> × 146045289796739253593055583281947582186196179329408181625671
<60>
74×1087-119 = 8
(2
)861
<88> = 74345744827
<11> × 2345957202220769
<16> × 382126353623540548157987714539
<30> × 123368992610730019130913300135653
<33> (Makoto Kamada / msieve 0.81 / 36 seconds)
74×1088-119 = 8
(2
)871
<89> = 3 × 17 × 19 × 2914214692494076769783022325865638353371
<40> × 29116816523726212104702858897227554025586481279
<47> (Makoto Kamada / GGNFS-0.70.3 / 0.15 hours)
74×1089-119 = 8
(2
)881
<90> = 7187 × 9783887629
<10> × 4838812812813070505345562630653
<31> × 2416524971988021016873355187409200737187575159
<46> (Makoto Kamada / GGNFS-0.70.3 / 0.21 hours)
74×1090-119 = 8
(2
)891
<91> = 7 × 227 × 1129 × 54347 × 45441002778495645809
<20> × 1855871441474754501784437501070545017965228099854055067123267
<61>
74×1091-119 = 8
(2
)901
<92> = 3
2 × 29 × 2175693111800041
<16> × 38379221085426395339248899067082459
<35> × 3772722913894208357714849880906899771219
<40> (Makoto Kamada / msieve 0.83)
74×1092-119 = 8
(2
)911
<93> = 43 × 727 × 79816467822023
<14> × 329529150770657833374020167635032292317701648465018657625138142767649998407
<75>
74×1093-119 = 8
(2
)921
<94> = 67 × 247009666274733545897050304309
<30> × 496821588040767647267740550784012411818336563924823869403577107
<63> (Makoto Kamada / GGNFS-0.71.4 / 0.33 hours)
74×1094-119 = 8
(2
)931
<95> = 3 × 151 × 197 × 547537 × 13584607 × 24726787 × 180995205918857843
<18> × 1175731829242549421
<19> × 23540798834328235298289033844560319
<35>
74×1095-119 = 8
(2
)941
<96> = 59 × 13935969868173258003766478342749529190207156308851224105461393596986817325800376647834274952919
<95>
74×1096-119 = 8
(2
)951
<97> = 7 × 617 × 37153867 × 30278041483
<11> × 795539625432745777
<18> × 2127219904004590335740782417171880476123374940481350949147
<58>
74×1097-119 = 8
(2
)961
<98> = 3 × 269 × 6311 × 4377851819844336265870118351964152399
<37> × 3687707255563311234037949345883352458334203951623051027
<55> (Makoto Kamada / GGNFS-0.71.4 / 0.45 hours)
74×1098-119 = 8
(2
)971
<99> = 23 × 311 × 520031 × 221040447808397725721678779211703395422095930810159423437500919586136648830318812127742147
<90>
74×1099-119 = 8
(2
)981
<100> = 554633 × 22831485557
<11> × 904521424619207701
<18> × 717844663104292103804507390555017504863899287822604368607287645741
<66>
74×10100-119 = 8
(2
)991
<101> = 3
2 × 127 × 71935452512880334402644113930203169048313405268785846213667735977447263536502381646738602119179547
<98>
74×10101-119 = 8
(2
)1001
<102> = 31 × 160343 × 526657 × 1269953 × 9867467 × 12342653 × 154810573 × 2118304627
<10> × 98270278824169
<14> × 63013931848173194979693448727993184053
<38>
74×10102-119 = 8
(2
)1011
<103> = 7
2 × 32429 × 5174394940168960776617944144364500042618834000445697207414012918785983459137558422589897944849201
<97>
74×10103-119 = 8
(2
)1021
<104> = 3 × 898232023331789
<15> × 30512614442030038350459370132194500318562708759284353449145746010514690238698769758512363
<89>
74×10104-119 = 8
(2
)1031
<105> = 17 × 173 × 1381 × 2237 × 17271013 × 81299832209
<11> × 172400927709872250049248655689028460099
<39> × 373841460142723027327820118934403025631
<39> (Makoto Kamada / Msieve 1.44 for P39 x P39 /
December 31, 2009 2009 年 12 月 31 日)
74×10105-119 = 8
(2
)1041
<106> = 1093 × 8893 × 1288284636143
<13> × 656612170922063547834682631134612458136827378851249772773511016854980854621569178175603
<87>
74×10106-119 = 8
(2
)1051
<107> = 3 × 19 × 421 × 140975435717
<12> × 9756804236041
<13> × 2491042986627975356473461233356051836984666549307723418232967463471993749391669
<79>
74×10107-119 = 8
(2
)1061
<108> = 25819 × 44131 × 80239 × 257459 × 34931114199688354405149440335920986618584717987544136452934162770657597152676593444620289
<89>
74×10108-119 = 8
(2
)1071
<109> = 7 × 2467 × 492905477 × 280004806321731330653399192607151
<33> × 3449791841190017557092461644422967826444086977263646737250524267
<64> (shyguy7129 / Msieve 1.43 snfs / 1.45 hours /
January 2, 2010 2010 年 1 月 2 日)
74×10109-119 = 8
(2
)1081
<110> = 3
3 × 509 × 15913 ×
375972085161979629211563913041068902742149405513624836898038226485188822816723204408903112258358428619<102>
74×10110-119 = 8
(2
)1091
<111> = 1087 × 96763 × 136111 × 16832437 × 22574400398747
<14> × 151145038449719525188946595822794064783227187320485311478845144822109310460529
<78>
74×10111-119 = 8
(2
)1101
<112> = 47 × 3587611 × 1733247428900258652383
<22> × 98497340864381971899209
<23> × 285628102517256960430169260026905377880782077777846748156079
<60>
74×10112-119 = 8
(2
)1111
<113> = 3 × 1858531 ×
14746812082987804565760489013854171605105003579390070656560158214959775977590584933696240421821001321692997<107>
74×10113-119 = 8
(2
)1121
<114> = 43 × 179 × 70327 × 1150537 × 6673514037470993699331018077083
<31> × 197829231547639824992485686472168257393106666913709688939566227967529
<69> (Dmitry Domanov / GGNFS/msieve snfs / 1.41 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10114-119 = 8
(2
)1131
<115> = 7 × 379 × 11846789 × 1181001568097894163972473995712254191971378231
<46> × 221513823100220872937462949328412865729151478395929586802923
<60> (shyguy7129 / GGNFS + Msieve v1.43 snfs / 1.63 hours on Pentium 4 Windows Vista and Cygwin /
January 2, 2010 2010 年 1 月 2 日)
74×10115-119 = 8
(2
)1141
<116> = 3 × 7894818673626140933
<19> × 12154798857102922188148501854223812533
<38> × 285613031950672848878992014562017580106502054929170643951863
<60> (shyguy7129 / GGNFS + Msieve snfs / 1.73 hours /
January 2, 2010 2010 年 1 月 2 日)
74×10116-119 = 8
(2
)1151
<117> = 31 × 18666065688943
<14> ×
1420936684410723114663999951434134872915306877782383763852242510868893838839530200171733288703797526237<103>
74×10117-119 = 8
(2
)1161
<118> = 324523 × 181471620106739437
<18> × 5897430045317147801
<19> × 23674031095486219763513104975767284103046917170182277826499926357293090721371
<77>
74×10118-119 = 8
(2
)1171
<119> = 3
2 × 133801411 × 90606763628555004238936708249
<29> × 753573103742114723561060111267404223793416060179842542787573234584274439847454671
<81>
74×10119-119 = 8
(2
)1181
<120> = 29 × 659 × 3156563467
<10> × 870130675635869377849091365342454625217975699
<45> × 15664148525282684063173194554626061122889997334428522821899067
<62> (Serge Batalov / Msieve 1.44 snfs / 0.99 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10120-119 = 8
(2
)1191
<121> = 7 × 17 × 23 × 8557388225736037
<16> × 3701589132341670213686873653
<28> × 19180488208414822410267389381765377
<35> × 4944533333182252779704643770844697879189
<40> (Makoto Kamada / Msieve 1.44 for P35 x P40 /
December 31, 2009 2009 年 12 月 31 日)
74×10121-119 = 8
(2
)1201
<122> = 3 × 551543792457467
<15> × 7106028033204610610559171631753
<31> × 98735646101573691729907701103956499
<35> × 70825078681952061269481089265797276597143
<41> (Serge Batalov / GMP-ECM B1=2000000, sigma=2516828111, Msieve 1.38 for P31 x P35 x P41 /
December 31, 2009 2009 年 12 月 31 日)
74×10122-119 = 8
(2
)1211
<123> = 131 × 3853 × 54547 × 105495900813031
<15> × 283082127385153318625802757938949231542718961332007045347303500579894621060812035259953429694966671
<99>
74×10123-119 = 8
(2
)1221
<124> = 27628151231
<11> × 184703744985701
<15> ×
1611245378120732528605107510334988369338790304717060157402477795348282899553091520972959502236545591<100>
74×10124-119 = 8
(2
)1231
<125> = 3 × 19 × 16377257528968729112537
<23> ×
88079162469913636235641507029739453146901408326704278485882732884017145042766098660867428339011903869<101>
74×10125-119 = 8
(2
)1241
<126> = 16413014131556387118061
<23> ×
50095748144235213982655986940336876482647837571861727741617359577333293010370917243226924301038613590561<104>
74×10126-119 = 8
(2
)1251
<127> = 7 × 67 × 487 × 83901351554154155265144877
<26> × 7873774553675642667619778637788378119
<37> × 54492342023335052426405252922981566988128597856530657520589
<59> (shyguy7129 / GGNFS + Msieve snfs / 3.86 hours /
January 2, 2010 2010 年 1 月 2 日)
74×10127-119 = 8
(2
)1261
<128> = 3
2 × 367 × 4091 × 20521 ×
296519075049133510149784468022072153476526433929526486179777394152460243513986102312572172475173344805814031020002537<117>
74×10128-119 = 8
(2
)1271
<129> = 26138653 × 466509553 × 58983807621961245761
<20> × 1143174849076172530919121463077302594911793027586227040091640919750282011076947321416931651329
<94>
74×10129-119 = 8
(2
)1281
<130> = 563 × 504799 × 153117737 × 347737140546679251437
<21> × 3680919197919452573873
<22> × 166402277517063710704469
<24> × 887095137908166584994825254349101189855264681561
<48>
74×10130-119 = 8
(2
)1291
<131> = 3 × 2179 × 2640512101
<10> × 1670963041543
<13> ×
2850727589992909271087219028828733010132205785434177942246670552685196489053798082498552514242928344331831<106>
74×10131-119 = 8
(2
)1301
<132> = 31 × 281381 × 179508389227
<12> × 39445685005397683
<17> × 37317144512271336788956213169659307
<35> × 356730375613496541028190518809648354289407778804538819681193653
<63> (Sinkiti Sibata / Msieve 1.40 snfs / 4.04 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10132-119 = 8
(2
)1311
<133> = 7 × 2749 × 6793 × 14081 × 7308013 × 556532447 × 12920062291
<11> × 426719836843
<12> × 101407815164896128630059
<24> × 1964502793491534488509218772266708169738055046496776883354607
<61>
74×10133-119 = 8
(2
)1321
<134> = 3 × 880500255505631351042341007438609866227248606054946936229
<57> × 31127086262648017888891124845598357440730217956374972076658366365436016847683
<77> (Dmitry Domanov / GGNFS/msieve snfs / 6.15 hours /
January 1, 2010 2010 年 1 月 1 日)
74×10134-119 = 8
(2
)1331
<135> = 43 × 619 × 222913 × 247229 × 5809576072418362926193
<22> × 96483012246853113591373600204650167633650658144418846007950510588176388087371532690152913768008233
<98>
74×10135-119 = 8
(2
)1341
<136> = 199 × 93307 × 412033 × 13527611645651
<14> ×
79445404451492773411121431727788671143217123455498534786052057089224621588175853726416684548454354265101790059<110>
74×10136-119 = 8
(2
)1351
<137> = 3
3 × 17 × 107058927221624561
<18> × 21124502625736158893
<20> × 79207653050353894496497264244724637094742844075814013342977592591325234114445452038717455796753203
<98>
74×10137-119 = 8
(2
)1361
<138> = 3989171378492494644064663177060991
<34> × 1089248565930454992062793436775327135330341494729973
<52> × 189225437950633518121508016978459022362313769834648647
<54> (Dmitry Domanov / Msieve 1.40 snfs / 6.99 hours /
January 1, 2010 2010 年 1 月 1 日)
74×10138-119 = 8
(2
)1371
<139> = 7 × 52295002623713023
<17> ×
22461097918954001000799162651331449419276623841310056243562926235867006752882070198633602444199706211908874695769976977461<122>
74×10139-119 = 8
(2
)1381
<140> = 3 × 1390989293249408221
<19> ×
19703535850648121116405701781898710425032380201150784554631915544789447952680413172639204043445140775843303443321162444667<122>
74×10140-119 = 8
(2
)1391
<141> = 827 × 11020411 × 98799528137
<11> × 38285853729972773
<17> × 105813751664226519031
<21> × 200257418771463518302181025169
<30> × 1125542701602002917087529733394743103351330712689111087
<55> (Lionel Debroux / msieve 1.44 SVN for P30 x P55 / 0.66 hours on Core 2 Duo T7200, 2 GB RAM /
December 31, 2009 2009 年 12 月 31 日)
74×10141-119 = 8
(2
)1401
<142> = 1478744121682625200691
<22> × 346961166726588428603553629940752629665932831213
<48> × 16025637306101605074011516528621808555300601471924584871978040633271684187
<74> (Sinkiti Sibata / Msieve 1.42 snfs / 5 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10142-119 = 8
(2
)1411
<143> = 3 × 19 × 23 × 127 × 78193 × 45198241259068957
<17> × 71298462826498960655810060026806761
<35> × 774595524037916813898173100038859037
<36> × 2530103200471536162763457256235524766757391949
<46> (Sinkiti Sibata / Msieve 1.40 snfs / 10.68 hours /
January 1, 2010 2010 年 1 月 1 日)
74×10143-119 = 8
(2
)1421
<144> = 161639 × 27236617 × 54159308149
<11> × 30634022220979
<14> × 2262186114862823704055353056311
<31> × 216181815780095593847187248030695664551
<39> × 230178771527478244556192643189440449757
<39> (Sinkiti Sibata / Msieve 1.40 snfs / 10.11 hours on Core i7 2.93GHz,Windows 7 64bit,and Cygwin /
January 1, 2010 2010 年 1 月 1 日)
74×10144-119 = 8
(2
)1431
<145> = 7
2 × 25469 × 201729463964793341
<18> × 65644949779495998548605311089108603
<35> × 497520043661715039805263208424745950040244210144960573160946521007641532742073922489167
<87> (Dmitry Domanov / GGNFS/msieve snfs / 12.08 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10145-119 = 8
(2
)1441
<146> = 3
2 × 61 × 443 × 406851935143300793
<18> × 9385585018407741942569
<22> ×
88535084381984424938901183484440612795513971496811151298157443874781003684309996310945308433373358059<101>
74×10146-119 = 8
(2
)1451
<147> = 31 × 61381 × 58694717626579
<14> × 54572860795979851879
<20> ×
134901822982442020564403826473576091878279383661920551303979980803036230096980941466714148780807386012670571<108>
74×10147-119 = 8
(2
)1461
<148> = 29 × 97 × 173 × 4373 × 3104347 × 1065853867902678542719
<22> × 9838877317465773619080151
<25> × 6059250855559037367807815011
<28> × 19586710023264538530528106826150348836134844962812199493001
<59>
74×10148-119 = 8
(2
)1471
<149> = 3 × 4605547 × 1635046939529218928623021
<25> × 1652226931504055043981744630497738767
<37> × 2202859583619704595242235350795898265270657599159433528988900238195692457468325583
<82> (Dmitry Domanov / ggnfs/msieve snfs / 18.33 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10149-119 = 8
(2
)1481
<150> = 769 × 15761 × 2363639 × 45401989 × 152792537 × 158883606291621792462187
<24> × 2002006950457821097108221216415097
<34> × 13006973738168303497417536218328529592769241244640693733861208573
<65> (Sinkiti Sibata / Msieve 1.40 gnfs for P34 x P65 / 4.48 hours /
December 31, 2009 2009 年 12 月 31 日)
74×10150-119 = 8
(2
)1491
<151> = 7 × 991 × 11177 × 25951373243086722517
<20> ×
4086315744068978394502803572432313301576137121598158063111556584614370458253838094707111202071632494044151022576182416590937<124>
74×10151-119 = 8
(2
)1501
<152> = 3 × 347 × 4583 × 251491 × 797509 × 1488439283
<10> × 269858496578815618905990641246812425718599511
<45> × 213925897649769268746380868356663648378505071057529604075790650063805388002123681
<81> (Sinkiti Sibata / Msieve 1.42 snfs /
March 21, 2010 2010 年 3 月 21 日)
74×10152-119 = 8
(2
)1511
<153> = 17 × 14286850692116470323239
<23> ×
3385351615565209536639200174762164484588269704777361608807717006953177826210327154982153189902849845972819663513363252322391731067<130>
74×10153-119 = 8
(2
)1521
<154> = 59 × 809 × 2243 × 14228569717
<11> × 288550312869179
<15> × 4364508568833193383190234511213155623593299055249
<49> × 4285892337400358198507082891195773419354473434555068841583347567499689891
<73> (Sinkiti Sibata / Msieve 1.40 snfs /
March 22, 2010 2010 年 3 月 22 日)
74×10154-119 = 8
(2
)1531
<155> = 3
2 × 1259 × 1020869203
<10> × 1663329439
<10> × 32860176801258077
<17> × 600449252149105602494374889
<27> × 153300831171188817008778420890659773169
<39> × 1412803885420486914510831729333904595361386414293439
<52> (Lionel Debroux / yafu 1.17 for 64-bit Linux /
March 20, 2010 2010 年 3 月 20 日)
74×10155-119 = 8
(2
)1541
<156> = 43 × 181 × 2069 × 3607 × 248707254879138449
<18> × 306636173696352117023713199
<27> ×
185619545893850720864950165953787401522572160479150201280932290363906919990905483719480269536249544839<102>
74×10156-119 = 8
(2
)1551
<157> = 7 × 253993 ×
4624549395468279059559134206860719008691590613139632207086821977783539716348888255200633888235515052002120543379554454662823791106854025910850311522771<151>
74×10157-119 = 8
(2
)1561
<158> = 3 × 47 × 3701627341
<10> × 7843658716081
<13> × 94012530547379
<14> × 1399704968268939120263928176007738833
<37> × 152628792190893330512667317957150843600083059023378801527717334912563497995221384423
<84> (Sinkiti Sibata / Msieve 1.42 snfs /
March 26, 2010 2010 年 3 月 26 日)
74×10158-119 = 8
(2
)1571
<159> = 677 × 26862457890701
<14> × 282742674260479
<15> ×
159905511355483993336355275751214098669749411354931055293669492312506435592098579699720846482460881902515377982774168469199410387<129>
74×10159-119 = 8
(2
)1581
<160> = 67 × 1985887 ×
61795930312265082301185345902481925064082024824759664499572744190441208253369921434349413669064877368510763532886396605574266319403935228809423715028849<152>
74×10160-119 = 8
(2
)1591
<161> = 3 × 19 × 5729046479796293
<16> ×
251786249560492943143605716160048942571034999990080521773926061698604717497933931562902008230762199383712609849929699177506524728500273633409521<144>
74×10161-119 = 8
(2
)1601
<162> = 31 × 65701 × 5688738949
<10> × 7014784271037275424457
<22> ×
10116381817143985658810064355450416917844038404408431967427225899444257667855571170832136468134153807240104269436693488429587<125>
74×10162-119 = 8
(2
)1611
<163> = 7 × 13043 × 64817 × 4761797025653378663
<19> × 2524244312951149382620003
<25> × 9928758151182349614392176102307
<31> × 646973397690287943358592112168152017
<36> × 17994555703348915014344984809530464652187543
<44> (Ignacio Santos / GMP-ECM 6.2.3, Msieve 1.43 B1=3000000, sigma=2376824820 for P31 x P36 x P44 /
March 20, 2010 2010 年 3 月 20 日)
74×10163-119 = 8
(2
)1621
<164> = 3
4 × 1777 × 67043 × 848713 × 5109590179624581315980947
<25> × 833830366505211225148680705559944708138076331191751
<51> × 2356344005077417461565121433927426696829996416546269623051686666558934571
<73> (Sinkiti Sibata / Msieve 1.40 snfs /
March 27, 2010 2010 年 3 月 27 日)
74×10164-119 = 8
(2
)1631
<165> = 23 × 191 × 16105553 × 24555719619863487936632295570896281462931182241979329985754797804419
<68> × 473259891448595216624590487319071293153837430045954623523588969167582431254727772912871
<87> (Sinkiti Sibata / Msieve 1.40 snfs /
March 27, 2010 2010 年 3 月 27 日)
74×10165-119 = 8
(2
)1641
<166> = 109 × 113 × 37717 × 2082593 × 68945697823
<11> × 180713013971834527756830766838376923
<36> × 356242719370455749525160381595966174395472218397
<48> × 1914697299043800920925499202383539019779299123770031911421
<58> (Serge Batalov / GMP-ECM B1=1000000, sigma=3785405668 for P36 /
March 22, 2010 2010 年 3 月 22 日) (shyguy7129 / GGNFS + Msieve gnfs for P48 x P58 /
March 25, 2010 2010 年 3 月 25 日)
74×10166-119 = 8
(2
)1651
<167> = 3 × 3499 × 12282174341422190513664184756456656787463150544675585342339203224117
<68> × 637747486051687477232218813972543723400921248158345089102984928372672952637450985536658998171129
<96> (Dmitry Domanov / GGNFS/msieve snfs /
March 28, 2010 2010 年 3 月 28 日)
74×10167-119 = 8
(2
)1661
<168> = 569 × 1483813 × 108719993 × 5288798452829100800287
<22> ×
1693679922687813111894467645157768683940108790171886910350187130291129924528041527429254517066534024330292831714926405914413020423<130>
74×10168-119 = 8
(2
)1671
<169> = 7 × 17 × 548927 × 29446801 × 11558091137
<11> × 19273339835578487317333932518589315811
<38> × 4236873921842034033888528072830141515403
<40> × 4528985185710485490486844809814969681777929605709982517062963747477
<67> (Sinkiti Sibata / Msieve 1.40 snfs /
April 1, 2010 2010 年 4 月 1 日)
74×10169-119 = 8
(2
)1681
<170> = 3 × 151 × 3905403470064160658934033671
<28> × 3724986102552462090360727850182111
<34> × 369702866884187823765956204346621087517362556639381
<51> × 33747967743149322002135075523923362873346571673703540237
<56> (Ignacio Santos / GMP-ECM 6.2.3 B1=3000000, sigma=2817275447 for P34 /
March 22, 2010 2010 年 3 月 22 日) (Dmitry Domanov / Msieve 1.40 gnfs for P51 x P56 /
March 24, 2010 2010 年 3 月 24 日)
74×10170-119 = 8
(2
)1691
<171> = 951828673 ×
863834265079154872467497333127956970279484554067664887651711057691810280464436294852216773072796707209746162187974160999268638571704618339672797629854781882812877<162>
74×10171-119 = 8
(2
)1701
<172> = 1459 × 23671 × 33175572550367487582780446274973792799767240848337234673
<56> ×
7176271916640286879787534791761697858202366352193795565654648510709777155677511378141138569325514724227757193<109> (Ignacio Santos / GGNFS, Msieve snfs /
April 28, 2010 2010 年 4 月 28 日)
74×10172-119 = 8
(2
)1711
<173> = 3
2 × 743 × 65519 × 4029239 × 324321443 ×
143612398075142160042881589202260074266471918045089387860542931597737044006164597459979507825799802458821113049223223721670126721899951931403719730041<150>
74×10173-119 = 8
(2
)1721
<174> = 5209 × 5273010631303635707
<19> × 465864815687590278594880579
<27> × 3625479745310971943185628615381832662068860013400999
<52> × 17723553927647448118604796519069501505697101868155336210793511704671681427
<74> (Andreas Tete / GGNFS+Msieve v.1.45 via factmsieve.py for P52 x P74 /
May 3, 2010 2010 年 5 月 3 日)
74×10174-119 = 8
(2
)1731
<175> = 7 ×
1174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603<175>
74×10175-119 = 8
(2
)1741
<176> = 3 × 29 × 373 × 26416829 × 1123681624054039444425235751709152415870271505876203037
<55> × 2577914786593590937285150419613043381121396563670288397
<55> × 33110718467170786514730681727982203149191265328615603891
<56> (Dmitry Domanov / Msieve 1.40 snfs /
September 4, 2011 2011 年 9 月 4 日)
74×10176-119 = 8
(2
)1751
<177> = 31 × 43 × 835937 × 26875337726624354285586117910672522936375451339160329576263
<59> ×
27455640658270546684696473217978741004958623464951810685842841118601048180406013992733247195520004974614557727<110> (Dmitry Domanov / Msieve 1.40 snfs /
November 29, 2011 2011 年 11 月 29 日)
74×10178-119 = 8
(2
)1771
<179> = 3 × 19 × 98641883 × 129795838541
<12> × 5962602404064179
<16> × 52473986183159093893303341107
<29> ×
360091047860134233475885996380826155872176233488253934279287800043748202464373794455960743133711230070125525026867<114> (Serge Batalov / GMP-ECM B1=1000000, sigma=3301844711 for P29 /
March 22, 2010 2010 年 3 月 22 日)
74×10179-119 = 8
(2
)1781
<180> = 18609511 × 1989955907
<10> × 851463458539
<12> × 15173505779854109192343024157362098893199662490581336163
<56> × 1718536839989051782956656388221083221546957050680324342095803346816830931640692467888349560928089
<97> (Dmitry Domanov / Msieve 1.50 snfs /
January 13, 2014 2014 年 1 月 13 日)
74×10180-119 = 8
(2
)1791
<181> = 7 × 71069 × 108717307 × 3749740187639189377617400832337164810567
<40> ×
40542553852224618920841908123336437501385662026556112782212252024734800308124806823956695576898244458840679853807507818449931123<128> (Serge Batalov / GMP-ECM B1=3000000, sigma=204474299 for P40 /
October 11, 2011 2011 年 10 月 11 日)
74×10181-119 = 8
(2
)1801
<182> = 3
2 × 409 × 2879687 × 106559512621751076467818638513936341098500379
<45> × 21887010453632632534383998258394452140723679984543408506450231
<62> × 3325825326637022206762760327546664871718899852918725439224034944407
<67> (matsui / Msieve 1.47 snfs /
September 20, 2010 2010 年 9 月 20 日)
74×10182-119 = 8
(2
)1811
<183> = 9929 × 13873 × 121291189629401643217
<21> ×
49213477911537494772898321930909456656882201296057291459772329452926375979022203982760227311618255865870699631777927250233470107191633011639164351288129189<155>
74×10183-119 = 8
(2
)1821
<184> = 4931149 × 2901634151419
<13> × 2042540421554494049
<19> × 638444488001306066296334959548881569014125515307739154108940878524679
<69> × 440661013529675720132202846855506503361322660034149940725475295390301462814421
<78> (Dmitry Domanov / Msieve 1.50 snfs /
January 21, 2014 2014 年 1 月 21 日)
74×10184-119 = 8
(2
)1831
<185> = 3 × 17 × 127 × 617 × 2259137 × 3150193 × 20625172945280599683464444041446470669183506045016590928644977503534737553909201
<80> × 140169272643119263109493413921521354973467154963696154002380988219516801498863721872409
<87> (Dmitry Domanov / Msieve 1.50 snfs /
January 23, 2014 2014 年 1 月 23 日)
74×10185-119 = 8
(2
)1841
<186> = 491 × 680857 × 688973771 × 1562001982963
<13> × 19128838068814841
<17> × 285347548503722489814564179
<27> ×
418701778020650226210330057953873457062825485275435081330456555184099498397577810523193359798899334391315788786589<114>
74×10186-119 = 8
(2
)1851
<187> = 7
2 × 23 × 23966937062586226320818306407
<29> × 60631936082903196349034971367939609
<35> × 897520211181128104755412777226663047795996735378657
<51> × 5593801942198113853460228027993321678668122837178397727837143694664453
<70> (Ignacio Santos / GMP-ECM 6.3 B1=3000000, sigma=3669048825 for P35 /
October 22, 2010 2010 年 10 月 22 日) (Robert Backstrom / Msieve 1.44 gnfs for P51 x P70 /
October 28, 2010 2010 年 10 月 28 日)
74×10187-119 = 8
(2
)1861
<188> = 3 × 364186253 × 17727888576091
<14> × 667712975842473304385474631817761955790964121
<45> ×
6357664084988518201507110701763020351810274844838750084075348729643983584081067831723150506303869017779510832400264027929<121> (Serge Batalov / GMP-ECM B1=3000000, sigma=3457639258 for P45 /
January 9, 2014 2014 年 1 月 9 日)
74×10188-119 = 8
(2
)1871
<189> = 420898417 × 55846949209
<11> × 220660619551
<12> × 18994885767141254212117425278481927025771
<41> × 946294890447780254424142129234097592372745611737
<48> × 8819103712013972924412540637389838170907191021012502767042910440753241
<70> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1966098360 for P41 /
April 4, 2014 2014 年 4 月 4 日) (Dmitry Domanov / Msieve 1.50 for P48 x P70 /
April 5, 2014 2014 年 4 月 5 日)
74×10189-119 = 8
(2
)1881
<190> = 3666790820477
<13> × 960893284419822639653008696349
<30> ×
2333608063014461277455171028569744154127122645244188266020883756703033023747035760610488122954892144351793914524964752707413419209745868913825812677<148> (Serge Batalov / GMP-ECM B1=1000000, sigma=3014225849 for P30 /
March 22, 2010 2010 年 3 月 22 日)
74×10190-119 = 8
(2
)1891
<191> = 3
3 × 173 × 1019 × 1069 × 6067130819
<10> × 48393172549636816917169340428579
<32> × 158387925059504374853808121365331899196220789498717310442301
<60> × 347486495149498351903968263790005992228836873240692901021666891349108827771640841
<81> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=793268665 for P32 /
March 18, 2010 2010 年 3 月 18 日) (Jason Parker-Burlingham / CADO-NFS-3.0.0-dev for P60 x P81 /
October 8, 2019 2019 年 10 月 8 日)
74×10191-119 = 8
(2
)1901
<192> = 31 × 20322697 × 272150729 ×
4795530664154662858105186063916453132885598934122508887702278060722264154224175797811759834635638576408768499567854112821860503586818559656439135590900528283913722115447471907<175>
74×10192-119 = 8
(2
)1911
<193> = 7 × 67 × 197 × 27017 ×
3293919783486393682184154376150243938202438167088776989635403955286947810199165636061817658304584850537656927153060948299709207833987874788118125854566842413351651474691766325089949341<184>
74×10193-119 = 8
(2
)1921
<194> = 3 × 12614699014912646460647478505012749385388312741972514364796396433899
<68> ×
2172656468062166970353972117383232688510501427203546481493670278118588680767239315345086197908316870713483725673491196875225293<127> (Dmitry Domanov / GGNFS/msieve snfs /
April 20, 2010 2010 年 4 月 20 日)
74×10194-119 = 8
(2
)1931
<195> = 13487 × 5864513497
<10> × 4359172206788072337611519388962108135669579977
<46> ×
2384722430827060538085204845228113289563909754564707397339679300981398663244691172405528487360173910521306441282981714986506797251537507<136> (Edwin Hall / CADO-NFS/Msieve for P46 x P136 /
January 2, 2021 2021 年 1 月 2 日)
74×10195-119 = 8
(2
)1941
<196> = 227858854967336423
<18> × 23190502429742554349073742535217081195110322001
<47> ×
1556012715947527487535405973126479945243652170583066234122574569891198290203133728111763983175707140939809506450281355024608508901627<133> (Bob Backstrom / Msieve 1.54 snfs for P47 x P133 /
March 1, 2021 2021 年 3 月 1 日)
74×10196-119 = 8
(2
)1951
<197> = 3 × 19 × 34322633885459
<14> × 304830817379100492203028748794499290689
<39> × 40586742521398004289262334559286347957696857
<44> × 202552590734191542474356834525899702835434117457
<48> × 16770765155460183061341139328866397959936384432067647
<53> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3428003461 for P39 /
March 21, 2010 2010 年 3 月 21 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2803682720 for P44, Msieve 1.50 gnfs for P48 x P53 /
February 25, 2014 2014 年 2 月 25 日)
74×10197-119 = 8
(2
)1961
<198> = 43 × 1223 × 2647 × 10052427377
<11> × 530374569610220459
<18> ×
1107864687600629703524225516989387733144331837898619109140358867315997088156274981953811254950166033138428366215725506370731597873711367854959578013347806537615909<163>
74×10198-119 = 8
(2
)1971
<199> = 7 × 3681865417
<10> × 113288139722503892579821992686772502735339
<42> × 1131457124934169101535280773854632500453595237906859838003015091637881
<70> × 2488861407560170228678899580611205401065823080345951787908303469200750807197601
<79> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2177920630 for P42 /
March 21, 2010 2010 年 3 月 21 日) (Eric Jeancolas / cado-nfs-3.0.0 for P70 x P79 /
January 11, 2021 2021 年 1 月 11 日)
74×10199-119 = 8
(2
)1981
<200> = 3
2 × 607 × 1470709 × 134505215810737
<15> × 17321054010489174341890354792856927
<35> ×
4392561170237580091522830632770265109295747331344726399150251093351764158423680839068667334221350911164779734422541424766334577227020913683137<142> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1018910344 for P35 /
March 20, 2010 2010 年 3 月 20 日)
74×10200-119 = 8
(2
)1991
<201> = 17 × 2203049869
<10> × 55400706968984816861
<20> × 4731086064664542591171262261018628098072315164897384353667156253
<64> ×
83760604986020740712563797907790795834566130727601897759310865724825142324505268509492051576124220391558569<107> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs /
October 18, 2012 2012 年 10 月 18 日)
74×10201-119 = 8
(2
)2001
<202> = 5158531964051785263215826460434653482273548126165007116819953837679363974374476512925568007
<91> ×
1593907390614296348374358888412772898099030967775414750120598856636801905906014990914725955540789062984024102603<112> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
December 9, 2013 2013 年 12 月 9 日)
74×10202-119 = 8
(2
)2011
<203> = 3 × 263 × 881 × 2579 × 828899 × 6839264177
<10> × 1264107271462054912584134855094180859981
<40> ×
6400148221943500847632449949985416497858910432555305505541411575755185581821463118010808267246131752979679731416377395728123343687721176997<139> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3916506628 for P40 /
April 2, 2014 2014 年 4 月 2 日)
74×10203-119 = 8
(2
)2021
<204> = 29 × 47 × 227 × 2992626424679337167
<19> × 4357404033205195489060153
<25> ×
[203792013297623110458705955173351275914673800255140966130888725295553243902249786904477202560383331191069313252839136996010469829219064429958102769958254771<156>]
Free to factor
74×10204-119 = 8
(2
)2031
<205> = 7 × 263537 ×
4457071206711674653557577018039875247781537979878250883840231825524213310368575094211342631868022989573284218817863049982259049676528057172900212018058847915756053892254881110335942105295175262580219<199>
74×10205-119 = 8
(2
)2041
<206> = 3 × 61 × 258025352451635705909263141786379
<33> × 426043258138002760923530588633232071594227144849223406363751
<60> ×
4087163801878237606001300652871781971712440757448969355253607482340593692560321568822375143258537776933790457703<112> (Serge Batalov / GMP-ECM B1=3000000, sigma=1560849506 for P33 /
December 4, 2013 2013 年 12 月 4 日) (Bob Backstrom / Msieve 1.44 snfs for P60 x P112 /
May 1, 2024 2024 年 5 月 1 日)
74×10206-119 = 8
(2
)2051
<207> = 31 × 13679 × 4465024295363
<13> × 13509154242433898359
<20> ×
32145573644592076893411814825443675876829426191127705137539100508296183023242206768970858457747171067514006767834843981549691277576028082204235380643869576530661364696537<170>
74×10207-119 = 8
(2
)2061
<208> = 1181 × 8973551 × 700402026731107865489754486155382413006668166411101995102187107032510362991
<75> ×
1107713843166049930043089697185943113888467531024956391149428040323314476261545441964038589892442833458672917583178864086801<124> (Bob Backstrom / Msieve 1.54 snfs for P75 x P124 /
June 2, 2021 2021 年 6 月 2 日)
74×10208-119 = 8
(2
)2071
<209> = 3
2 × 23 ×
397208803005904455179817498658078368223295759527643585614600107353730542136339237788513150831991411701556629092860976918947933440687063875469672571121846484165324745034889962426194310252281266774020397208803<207>
74×10209-119 = 8
(2
)2081
<210> = 233 × 499 × 62897 × 2645146117
<10> × 6530896624975093828482417563799995879
<37> ×
[6508491401121299514022214817742737461076317612155463677926267404628282596531595364287838858343310121716023685026718336562639445255291790912171458096292253<154>] (Serge Batalov / GMP-ECM B1=1000000, sigma=1612575244 for P37 /
November 26, 2013 2013 年 11 月 26 日)
Free to factor
74×10210-119 = 8
(2
)2091
<211> = 7 × 829 × 145696573367
<12> × 37318752127373562308160429695959
<32> ×
[260591465777527125609683736375115019503589811929244788496603332411612618282813362663138654231736053218723367267183120761304275493343123031381552340619752100680245719<165>] (Serge Batalov / GMP-ECM B1=1000000, sigma=4077204076 for P32 /
November 26, 2013 2013 年 11 月 26 日)
Free to factor
74×10211-119 = 8
(2
)2101
<212> = 3 × 59 × 84649 × 483115187026075328887271
<24> ×
11359086898580256469443545710180357884739669251050253273973427465385767823692207311767157594784691968569116890764149130663427167393996480422063053657388869095134597202747403886159587<182>
74×10212-119 = 8
(2
)2111
<213> = 365333 × 2157413 × 2322883117
<10> × 31244247369836503
<17> × 176503565168562601
<18> ×
[81435939046478709683119705259064749387125617274666064964190175631133206604033783886346912392967489134842649877808297675641171483019861494332148301867255894199<158>]
Free to factor
74×10213-119 = 8
(2
)2121
<214> = 161377439 × 52743208803691300728690413
<26> ×
[966006043017180653606024484783911181703180931903832444527089891060697133949154185738218759009317997063263198122551087811264262578106592777704254326312440561648062784838751317667903<180>]
Free to factor
74×10214-119 = 8
(2
)2131
<215> = 3 × 19 × 46817 × 34134662879156453
<17> × 458789652944571442099760881815815348952367
<42> ×
1967440199863389175531867357499233904178766419273179532737604519130501711288918248174891826663817128669604033948410260094543815819195254894838267592159<151> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3001367868 for P42 /
January 5, 2014 2014 年 1 月 5 日)
74×10215-119 = 8
(2
)2141
<216> = 503 × 884827 × 1518347710217354795298308494693484323
<37> ×
[1216722726216838388381461862420427723029740336043181619323120781995406320510582123635459087167922356907910890897703380812121881933708810742280130294837561803674270152849867<172>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3369276501 for P37 /
January 6, 2014 2014 年 1 月 6 日)
Free to factor
74×10216-119 = 8
(2
)2151
<217> = 7 × 17 × 149 × 457 × 2832701 × 4425671953
<10> × 11325698229155677
<17> ×
[7146523719790203789318325130128767911308210728895241150518018556914354185736573580373845367016318830452202893773362162739640840076129309834827272328206743233709849827750531467823<178>]
Free to factor
74×10217-119 = 8
(2
)2161
<218> = 3
3 × 5763047 × 48076404401
<11> ×
[10991103690679124794198745445178090610141785695216308014047164912414005864072309506406619704502436958272085034568727999262319525769598138962144712396339612708817624031331503971318119451625377222412609<200>]
Free to factor
74×10218-119 = 8
(2
)2171
<219> = 43 × 3307 × 4020190431730863296727062587
<28> ×
1438268385001572168739352540216954359589671974967224578164281587900171268568194505543949949487793992405722777840531533637464367591676145885730162977530315118836285210274666965807732299983<187>
74×10219-119 = 8
(2
)2181
<220> = 160341713957303
<15> × 55645744954446421
<17> × 75586278939024843800663697564614888699285439828365181118369950490374724936918718441
<83> ×
12191798097920814903151280128398192658138672972939392347951329611992375063126843628024809140625444118491287<107> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P83 x P107 /
September 19, 2020 2020 年 9 月 19 日)
74×10220-119 = 8
(2
)2191
<221> = 3 × 12497 ×
2193118941138465824390446299704521677795263455821989870161431336113259774938577851276899048364200000592734848956342114700120621541762615620341474546483748692278739490070209442858878723486229287621621781820229447660031<217>
74×10221-119 = 8
(2
)2201
<222> = 31 × 523 × 871571 × 41774813220273659
<17> × 2105308813969214975286115516695182781209
<40> ×
661595786573175213988678444724132975209360550296350480019334351988673120648850563900436908444301298042021535967750239349851391558607259747784243181808624417<156> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3491688330 for P40 /
January 2, 2014 2014 年 1 月 2 日)
74×10222-119 = 8
(2
)2211
<223> = 7 × 2221 × 207295878766517756639
<21> × 2204266914208395446607221
<25> × 101787997205349547614273633941039
<33> ×
11370804495274142073364771415842265447407827099437088815249996029865447533107398234841178160473623547985544278973721527680083408484218922795723<143> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=470292829 for P33 /
December 31, 2013 2013 年 12 月 31 日)
74×10223-119 = 8
(2
)2221
<224> = 3 × 257 × 3883266889
<10> × 993962400552552442087
<21> × 259550140260274031849852214193
<30> × 3498435454605133470064354888771963
<34> × 4806688036453244757669646285249437346093078165147
<49> × 6330333145184292931202943758232944343040210581570968517341280508065199882980809
<79> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3924301535 for P34, B1=1e6, sigma=3057414178 for P30 /
November 12, 2013 2013 年 11 月 12 日) (Cyp / yafu 1.34.3 /
December 26, 2013 2013 年 12 月 26 日)
74×10224-119 = 8
(2
)2231
<225> = 62476657 × 4724908869184340372866611343
<28> × 134604171866457593767805963032295128190903
<42> × 109452430974696505967662334874660048357522816094669321
<54> × 189057564205091510186564650828858502886196577354944294057711545590272062103644947275448837213917
<96> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2056877356 for P42 /
April 4, 2014 2014 年 4 月 4 日) (ebina / Msieve 1.53 gnfs for P54 x P96 /
September 22, 2022 2022 年 9 月 22 日)
74×10225-119 = 8
(2
)2241
<226> = 67 × 283 × 104682607 × 34685635012809966397157518669
<29> ×
[119427349114854719859235976152349614523287274162294611808987508255289577849281557344585332724420867557050851907024489847372947084131671184242952771534401715298883448112121862388558332767<186>]
Free to factor
74×10226-119 = 8
(2
)2251
<227> = 3
2 × 127 × 1511 × 4931 ×
[9654805141244385545363087232558905087200508683469985899881332068507986458863941404853369902292878923192916084533990623981558353985926032441650354326383634889894716285723160795127117379027935268084548436508750839493967<217>]
Free to factor
74×10227-119 = 8
(2
)2261
<228> = 611949134471
<12> × 2277458063574160013
<19> × 60702838337106107371
<20> × 231731072079520134144403
<24> × 47666245689410393113922887730310148746974909
<44> ×
879871560265762272218237838810378660105890311546009166973945283767386205084597121314816895604899392655982740531<111> (Serge Batalov / GMP-ECM B1=11000000, sigma=2075730781 for P44 /
January 4, 2014 2014 年 1 月 4 日)
74×10228-119 = 8
(2
)2271
<229> = 7
2 × 293 × 558192643 × 5955819427
<10> × 46900012596634643
<17> × 54966444713205941826270463
<26> ×
66823508348942555416098680542825347652708324431797217542459564081266458211552677479800062787410575739993839398698186215668259883099421393705163120643244827213443797<164>
74×10229-119 = 8
(2
)2281
<230> = 3 × 167 × 4757881 × 50165123 × 18636226547853289
<17> × 1366718925805516734432034248990246536101
<40> ×
26995963838020893973127289309799747171083304047386331335658801986295536828525087976466770804480594745902327193511255984923108237352119595715913593633213907703<158> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=142107342 for P40 /
February 25, 2014 2014 年 2 月 25 日)
74×10230-119 = 8
(2
)2291
<231> = 23 × 10351590217
<11> × 71971520016275617368383
<23> × 639432784768588356176683170919
<30> × 1216166069166007268515930453126083761
<37> × 730502339434273861394883704157190406382916686397598910553691
<60> × 84466448626482597852910111314830220847987491324495001992439588047404753
<71> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3659450183 for P30 /
November 12, 2013 2013 年 11 月 12 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=208411837 for P37 /
January 9, 2014 2014 年 1 月 9 日) (Cyp / yafu v1.34.3 /
February 1, 2014 2014 年 2 月 1 日)
74×10231-119 = 8
(2
)2301
<232> = 29 × 12022358238586121068729649
<26> ×
[23583135570239261601743266928353015291270861972360746559884209683946858327410952998795059048541215347845411879101764538818626566894162595323353828162461947696469176624792959658687990955692440173724718854401<206>]
Free to factor
74×10232-119 = 8
(2
)2311
<233> = 3 × 17 × 19 × 74917566056200639
<17> × 29762248338619999883071
<23> ×
[38055377784555553754190724745925033020093789830969206646400474952943024294600335758176710721624351964753317688160964111065403239220113294974250701474688869039330909390295081557605902435793061<191>]
Free to factor
74×10233-119 = 8
(2
)2321
<234> = 173 × 526509580339
<12> × 1119966275064225375025258919
<28> ×
[8059941394616207156166118003225227053797296247809016596855434480184168533674429913862692504506528225211781527877194220856865413413971688026366910909176650325709812940584411251326049150817989997<193>]
Free to factor
74×10234-119 = 8
(2
)2331
<235> = 7 × 199 × 1471 × 283276509272572511
<18> ×
[14164943906100540927956357531034614168421023293041038731963556378823429405628477314034459421818655483852313469618956541736368344514001899607416664826599619653115635536583642687972925157604740668593951995565920637<212>]
Free to factor
74×10235-119 = 8
(2
)2341
<236> = 3
2 × 229 × 1151 × 20219 × 44531 × 1682827 × 2846957 × 526576313 ×
[15259210928660276088862590841086616152988939032049271028167690607222939990447317241181460119407729333610523839193280280755667823664138784916317532370245215442871883850639874392233077614158264985844857<200>]
Free to factor
74×10236-119 = 8
(2
)2351
<237> = 31 × 23581 × 65496569 × 2172461839
<10> ×
[7904867438570846148740588857541737708232188538883504698633946344475867732048958518972211363984697609157843268588486796618055730429803879274784476880842753401105196459242960308065961283116885349558762540283241290921<214>]
Free to factor
74×10237-119 = 8
(2
)2361
<238> = 86341 × 1963152743986808189
<19> × 16184330116266697267110393507887862890309750071
<47> ×
[2997252397629948723721177509732814543743562961887953952872972710459209948921998323624159947930079002663884070266930851243821071945061519291932697595656727148702647901899<169>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3081978365 for P47 /
February 26, 2014 2014 年 2 月 26 日)
Free to factor
74×10238-119 = 8
(2
)2371
<239> = 3 × 140407 × 298171 ×
654656966267100197095197579321355613344133995495777877509952205853701508916815385728647609610890941284553601271146123502370440157945970119490696197685022341045227790784859304319876468765863361387683537377685636585842339476158731<228>
74×10239-119 = 8
(2
)2381
<240> = 43 × 89102477792019563
<17> ×
214600620569233814757425253599061263043418426578317415115923942537734071281211659957141398182103229915947505505708425840971047069069144207149237816237147212295839240929298734623881736524002994844071926717362854905455593269<222>
74×10240-119 = 8
(2
)2391
<241> = 7 × 193 × 320839 × 325201 × 7561172302414657
<16> ×
[7714462993255639513626353212908767999554643272575989013027356769700750415262821357758478343420713664494736672851784934385547116688947134227961863844651138701758613907275168836224946721441021669451830890293952077<211>]
Free to factor
74×10241-119 = 8
(2
)2401
<242> = 3 × 22809499 ×
1201578667177538945831620738684677265704407072132860410805489739489999644771128353472709216778825672909668353847114634451524227139202286179429342459797446993790061211226402097100309279366785189249768590156557467895608202854758335876093<235>
74×10242-119 = 8
(2
)2411
<243> = 31513 × 19473570502849753
<17> ×
[1339842882652447328624460925142033394382330767741834188277747471893580254237772872369320298623606017972022808271867912978875224455952178825008696121946612638903663869476882355006493129701501217171927049350418090436371202589<223>]
Free to factor
74×10243-119 = 8
(2
)2421
<244> = 97 × 967 × 24481 × 1906527463
<10> × 2143230976284185387
<19> × 17927282546668810257897169
<26> × 55337274975613041185434884290866841
<35> ×
883319001115719628039218725884938541913992720770805554932309345598362168881405777645106659300129381327489178479526673698755216677812890496116604191<147> (Serge Batalov / GMP-ECM B1=1000000, sigma=1067153682 for P35 /
November 26, 2013 2013 年 11 月 26 日)
74×10244-119 = 8
(2
)2431
<245> = 3
4 × 151 × 20747 × 62057 × 18616892342838613
<17> × 173280142017380323
<18> ×
1618546488220702124829757512763266745198602574059171560129531468144573043040617104924867615193497835384606364695434771585677440242736088631659542537039187150190199429172960830470496215703682097974471<199>
74×10245-119 = 8
(2
)2441
<246> = 811 × 2467 ×
[410959672471805250876163244955345066454122766871518956375686670573004958783799281076034592363825041583287669604861719567450505599797585700780373543460345973619832202944326126933336176729986111229123179219568700045144475371936552491517986733<240>]
Free to factor
74×10246-119 = 8
(2
)2451
<247> = 7 × 421 × 98621 × 476027 × 12135377008758560234089177
<26> × 475314669568838562916403147047439959
<36> × 57493571193083191043106950278752458493424722157
<47> × 82901565639740154805913038546344275036041078766065898533
<56> × 2161680858831969775719428293628268667567170082230184210983414151012063
<70> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=1168680303 for P36 /
January 4, 2014 2014 年 1 月 4 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2217841949 for P47 /
April 4, 2014 2014 年 4 月 4 日) (Cyp / yafu v1.34.3 /
April 5, 2014 2014 年 4 月 5 日)
74×10247-119 = 8
(2
)2461
<248> = 3 × 40467547667
<11> × 117110325438904183591
<21> ×
[5783168960330135534711097988920721540971770206440514260554066563864949124457353942130591870700461425885882122772858667658179929950277211043882561858857115591132017562715191075021899752086951895667948879600378146156931<217>]
Free to factor
74×10248-119 = 8
(2
)2471
<249> = 17 ×
[48366013071895424836601307189542483660130718954248366013071895424836601307189542483660130718954248366013071895424836601307189542483660130718954248366013071895424836601307189542483660130718954248366013071895424836601307189542483660130718954248366013<248>]
Free to factor
74×10249-119 = 8
(2
)2481
<250> = 47 × 179197568271616909827312752977257011
<36> × 185703955755630563407831623835194895417
<39> × 728991219565582952787902075264495598397896937901
<48> × 522815361325356888510064702566422343351766891733804569
<54> × 13793276702852227088285943351178071832599862656402316053657700570615550981
<74> (Serge Batalov / GMP-ECM B1=3000000, sigma=3655576666 for P36 /
December 4, 2013 2013 年 12 月 4 日) (Cyp / GMP-ECM 6.4.4 B1=43000000, sigma=346530548 for P39 /
January 10, 2014 2014 年 1 月 10 日) (Cyp / GMP-ECM 6.4.4 B1=43000000, sigma=2336616283 for P48 /
February 14, 2014 2014 年 2 月 14 日) (Erik Branger / GGNFS, Msieve gnfs for P54 x P74 /
March 1, 2014 2014 年 3 月 1 日)
74×10250-119 = 8
(2
)2491
<251> = 3 × 19 × 470227 × 3794701394720981
<16> × 22471974146522167
<17> × 52136890214082151617859
<23> ×
[689990061734639397152304918103249665483277022461148897150994315468571447934146777698106546895374430786268321546249331492998688307956987009670940672312536430409317471654103702446621372481823<189>]
Free to factor
74×10251-119 = 8
(2
)2501
<252> = 31 × 7853 × 227791140762268203234187800653949432172561
<42> ×
[14827061518652746522309029424432866467282969268862377132164907946775214391887920050330649836580851435594085416530021086050014115043372287950267190380647495599915486088619140305603092222871947513778032771727<206>] (Ignacio Santos / GMP-ECM B1=3000000 for P42 /
August 6, 2024 2024 年 8 月 6 日)
Free to factor
74×10252-119 = 8
(2
)2511
<253> = 7 × 23 × 131 × 52951 × 8158669 ×
902398902093919377058329343179235710369024911201187139419737747777490137472774583673966492208829793573450201921376700864392273223262945353237520516412505198598498357458471821843117582356335703325814751315656471116630213441845697812682349<237>
74×10253-119 = 8
(2
)2521
<254> = 3
2 × 311 × 4853557721
<10> × 5136954516846075507361471
<25> ×
[1178203727893657296778510152046037399308259417216031734630657582593846318773998889816096556177171141702789445718647698269102306431876475048020957094827186452497412638170771349639274158797363450765049552900572511507269<217>]
Free to factor
74×10254-119 = 8
(2
)2531
<255> = 1837657 ×
447429646676296078224729763074514026405483842861982525695612523023731970777039579324227656315744571605159299163131216664601839310721327332697136746532253963727845959404950010922725090820660342067220499920399847317656245002316657690865173545564935253<249>
74×10255-119 = 8
(2
)2541
<256> = 223 × 236968378493555354171549
<24> ×
[155594395773614570935276891802586849920523461868208936586721071821613726418427409878130305070731397515843015625128624243591593934271276597550681514689758566903094567660540222864261538755050144300727163619596134543942769040650106223<231>]
Free to factor
74×10256-119 = 8
(2
)2551
<257> = 3 ×
27407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407<257>
74×10257-119 = 8
(2
)2561
<258> = 6959 × 154631579 ×
764089414548409818941451309640442036627563411590214064316119501681410383252314238730837628804084683271032722504451361881907811242471623583559789889856167392320201310342662537561862318119481613665646509773279092366931285971325553665819555884690361<246>
74×10258-119 = 8
(2
)2571
<259> = 7 × 67 × 359 × 661 × 95617 × 187145635175298414265830441643870297
<36> × 644476296209157972074107093893274535491
<39> ×
[6406173474793186201421289469706504540564859090935216153340947778731365031877120833924931558790028032016199146994042163269989860329354267603090497324513064238031430729729449<172>] (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:2039345176 for P36 /
May 9, 2021 2021 年 5 月 9 日) (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:3190319306 for P39 /
May 9, 2021 2021 年 5 月 9 日)
Free to factor
74×10259-119 = 8
(2
)2581
<260> = 3 × 29 × 191 × 1663 × 43969762872481
<14> ×
[67669071535448680883889895394675093406593892172525251919762775464355022156051213303899180476821786576804134696602891927532997648441156084865859331237284039568260709774959290975892928591496573233032750204537158530730461278266655949319836571<239>]
Free to factor
74×10260-119 = 8
(2
)2591
<261> = 43 × 190369 × 5307745027813
<13> × 18930529959270953479
<20> × 27271082177860808802970824212166397
<35> × 991278218743043912482534995724258367
<36> ×
36978881093584824698925610818018619854849588418903065580313525314703404957494572728172190740486647239090784264292760782488910912768770808996509887092431<152> (Jason Parker-Burlingham / GMP-ECM for P36 /
January 2, 2021 2021 年 1 月 2 日) (Ignacio Santos / GMP-ECM B1=3000000 for P35 x P152 /
August 6, 2024 2024 年 8 月 6 日)
74×10261-119 = 8
(2
)2601
<262> = 3001 × 88188059 × 1939847164226795833
<19> × 640395885691016295629446172427881
<33> ×
[25009060866366415413058322383414794978577262682381723702098466998785098675965046070890021607132783436063486653584866276901341867316721466505783181238171849208791699668016362724692691144865806085417103<200>] (Jason Parker-Burlingham / GMP-ECM for P33 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
74×10262-119 = 8
(2
)2611
<263> = 3
2 × 183996631443504811543
<21> ×
[49652009373556939796279000332388083856120120913455026881680011624616702652181291839903690159462934066944575075843177554146407583744358316412841514069137655316323646394435658390091452368309030477087439435109879428181680579299847546203534470883<242>]
Free to factor
74×10263-119 = 8
(2
)2621
<264> = 284051137 × 369505529781458201
<18> ×
[7833786588512405105276655227167139927816531619063469450393864577459229745726365717132799592458618795870454824105538439887176410753562695559046545460095478947557414110803327230500263390266035517919068059543447203423592935913922176245112533<238>]
Free to factor
74×10264-119 = 8
(2
)2631
<265> = 7 × 17 × 9719 × 102017005009
<12> × 70651535875831
<14> × 111155794887890226223
<21> × 49924242304176656769967961806170373
<35> ×
177739068160817729008400153110713566453372705838161333403269764431291974465383439403569866257619886985691658655326067176897621498725096818872205337253787785338043265546186291569521<180> (Jason Parker-Burlingham / GMP-ECM for P35 x P180 /
January 2, 2021 2021 年 1 月 2 日)
74×10265-119 = 8
(2
)2641
<266> = 3 × 61 × 2767 × 1617980761040524067771
<22> ×
[100358834296740865524436704887848411419909327416665298209516630542113702002523927326903828856568995890528547855471678970485039728388409478120712146072311850486401280628946912592883550234633361588837878435922460579366810335447517972417738191<240>]
Free to factor
74×10266-119 = 8
(2
)2651
<267> = 31 ×
26523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491<266>
74×10267-119 = 8
(2
)2661
<268> = 99610187 ×
[82543989423714486372987355422013435455373878800390388005417781438581399533184514774801318485851474430242985310550839767244109502798365615177714928114954971645844036235191710083048255116941224316968928310738159965729431089434881014953041120404906199224605634183<260>]
Free to factor
74×10268-119 = 8
(2
)2671
<269> = 3 × 19 × 127 × 383 ×
[29655951290180157098795154842738698247209044359812771559846531253585514718909872878963282445724699876763492145360809331750026139316525702712794174513170508535042894728626605243580959324338042097264066168358518649966518831749485118583529172819775614255904329580533<263>]
Free to factor
74×10269-119 = 8
(2
)2681
<270> = 59 × 3793 × 10155637 × 24396248441
<11> × 49757889743
<11> × 37950845307176733897713849
<26> × 22435520658500705463856380220024257979
<38> ×
350029445206802412247529612570789916167142007365133771580312369054107462311603280252767016748228310815097894057071141314342875254564973109228567700607118994464165593260139983<174> (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:3615835134 for P38 x P174 /
May 10, 2021 2021 年 5 月 10 日)
74×10270-119 = 8
(2
)2691
<271> = 7
3 × 11503 × 1164828328640208019
<19> × 41582345637233554821642661
<26> × 92083002485425910435259751905329
<32> ×
[467233088155027204236823590994771544687850799105340213524386943798810480105923518099870650558014039366534164271334540866576235740676863354767208447820548659346017105464495186056599163456059<189>] (Jason Parker-Burlingham / GMP-ECM for P32 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
74×10271-119 = 8
(2
)2701
<272> = 3
3 ×
3045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823045267489711934156378600823<271>
74×10272-119 = 8
(2
)2711
<273> = 617 ×
[1332613001980911219160813974428236989014946875562758869079776697280749144606518998739420133261300198091121916081397442823698901494687556275886907977669728074914460651899873942013326130019809112191608139744282369890149468755627588690797766972807491446065189987394201332613<271>]
Free to factor
74×10273-119 = 8
(2
)2721
<274> = 109 × 46049 × 2673164992996798151
<19> × 3168010509381821112797
<22> × 13744740778121820532384593682099
<32> × 145693586979029241662090074653028403
<36> ×
96594665028692395420662122248656553983866571308693821937906816688972672333682755811358129061479471781193812941614906658517584589094246230863062227265234563623659<161> (Jason Parker-Burlingham / GMP-ECM for P32 /
January 2, 2021 2021 年 1 月 2 日) (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:60635475 for P36 x P161 /
May 10, 2021 2021 年 5 月 10 日)
74×10274-119 = 8
(2
)2731
<275> = 3 × 23 × 433 × 74573 ×
[36903759260079096219199894802901876381708320606255332146565387006317991258840833066421034766280108720124477971832889469553781943630515202856980684498944845695503048165760911097530916688972582914540833281993845784582688756253376977919296273892373139116899351449140701<266>]
Free to factor
74×10275-119 = 8
(2
)2741
<276> = 111751 × 3503188667577942731
<19> × 806427148247652787221818323621
<30> × 518016981034698009352180505006667103
<36> ×
5027651064361550892227762224421114760552403786285705871988178022804422197482355397191079305896738217550313673990402234902440426581151601087673573739735828987819339324874096150598529685107<187> (Jason Parker-Burlingham / GMP-ECM for P30 /
January 2, 2021 2021 年 1 月 2 日) (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:1300043333 for P36 x P187 /
May 10, 2021 2021 年 5 月 10 日)
74×10276-119 = 8
(2
)2751
<277> = 7 × 173 × 134293 × 11838494758957
<14> ×
4270662044164217305353937083794728720235414637745764962285376047318976220150803152325117836951034080525394382004542786395066184937629859235076540361337603640702335399658445200230532266224307317842696668480606394806045090302314148205907021330709125235893511<256>
74×10277-119 = 8
(2
)2761
<278> = 3 × 113 × 1013 × 413812888901399696178100412809912219
<36> ×
578596834575785837297611343296435018335659148565478393504069340197613043690207836108152200068563445003722736643641911786834345961170521691591524992430629867816850154396275590208973191533988044911732416367627427854394274643056591479878137<237> (Jason Parker-Burlingham / GMP-ECM for P36 x P237 /
January 2, 2021 2021 年 1 月 2 日)
74×10278-119 = 8
(2
)2771
<279> = 9558827639
<10> ×
86017057036111520393345406384539394059705172828278698312265092849240591084814540426951014951993970379218616458015853362561318825577604101228445868645317271446013801507172695890287537197658871001452756943285042763414370445289940667610171794020589120722215610840791123739<269>
74×10279-119 = 8
(2
)2781
<280> = 5104747 × 26615718463
<11> × 2330760325227221
<16> × 7431393441189338231749764220120667
<34> ×
3493887541102306105796901617474533825926197332193215154570248910586779542625116632714878309341633381061058682480558185527367185424455026646865718930550679871494073872981789213672714844659643831158137538513613338223<214> (Jason Parker-Burlingham / GMP-ECM for P34 x P214 /
January 2, 2021 2021 年 1 月 2 日)
74×10280-119 = 8
(2
)2791
<281> = 3
2 × 17 × 8839 × 67590024287609
<14> ×
[899522525124705113131867511301118952504831323025647544383624391719964357794757740743530022799345154067937586945841647230235468010225948977300610198224961178300452416233651009405204764540613716182032426846345145770070367480958679013390616971578067615254235442907<261>]
Free to factor
74×10281-119 = 8
(2
)2801
<282> = 31 × 43 × 2341 × 17601692188939
<14> × 95839291778119847
<17> ×
[156192303355534950865739260926607377340903734730121799014542486924263609717417502221115264291167076111543551855331117821265290861908794305727335466076020899694082454881639756291221422688019561547218397622377616143802340603351669315146574900587129<246>]
Free to factor
74×10282-119 = 8
(2
)2811
<283> = 7 × 4193421458733861151444556222801
<31> ×
[280106158219981993371241088848099936154495094562462308932203958488948588627725142717820168927518976756082194309038818722524243294911176192392803192441128443179474067122218958569484138357686836561197871414967541708511079551290572005483451746290361146203<252>] (Jason Parker-Burlingham / GMP-ECM for P31 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
74×10283-119 = 8
(2
)2821
<284> = 3 × 51785943352992337
<17> ×
[529244146825486583799541258326820448218976095717780935897068098017528579909318770557595649273296540518613514013384502741227720912575212800386976688374565310388359001868329128291021795756172820981540901036612404439711992905957035958700453958185113704441837474423434111<267>]
Free to factor
74×10284-119 = 8
(2
)2831
<285> = 1748699 × 135316591 × 2855116813079
<13> × 9093469961321
<13> × 42501957523826580838696219
<26> × 347313119065171421874231745213
<30> ×
[9066495728124405374046040063374604815950903686572218908356347258509082268659363915296520579241658595923843115553602748840139862299749536833554452170818233736805959038424493590296948120627353<190>] (Jason Parker-Burlingham / GMP-ECM for P30 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
74×10285-119 = 8
(2
)2841
<286> = 6637 × 6765569 × 150231619 × 5723884905589798601
<19> × 5626781935195722492508243
<25> × 500478609170376395760285110706343399
<36> ×
75616264722356182453553055968865992963930583163984413291180520757198830526625943396547694427929111687067536538286061761906219581162177613313092598829092725727569325253444146109333929925879<188> (Jason Parker-Burlingham / GMP-ECM for P36 x P188 /
January 2, 2021 2021 年 1 月 2 日)
74×10286-119 = 8
(2
)2851
<287> = 3 × 19 × 2891460683334011
<16> ×
[498881113971218830397582256851917282061527994640555171064246718468456833850065320488592254422426790858689267745783650932879061530975435533746936044515732690835373551816859600105833550635271472433085054235295487710712946031569388569850015646753489705615915042709999129423<270>]
Free to factor
74×10287-119 = 8
(2
)2861
<288> = 29 × 38231 × 63709 × 816346745551
<12> ×
[14259362195159201557705630071831962783473207226645340344908309677192108169007099012522140263593551567821365617183157569230422559892323218555315052471110462079873354938553954498204678808630049447101414340467854072200901688352625965555743877465268842136445068709574381<266>]
Free to factor
74×10288-119 = 8
(2
)2871
<289> = 7 × 13411 × 13967783 × 266333703765557253814100467
<27> ×
[23543791323236363685004742206051738325531874772145627106029166423451792749133218272034555157467006448176567733356852616716756520473510321928277413538933121415498372631121446660078164947967484228754433029915542569426342474309076755429607648701549704293<251>]
Free to factor
74×10289-119 = 8
(2
)2881
<290> = 3
2 × 631 × 22291 × 28453927 × 17831687055204739140930904062094999
<35> ×
[1280127251721510092988402125235974839407010942964909081950566062771528844397344936103700614224811448212264582193934095305423752823456431183927396427527087736785630780184063440098467918704349526194893601954351872419480914762557140350773344593<241>] (Jason Parker-Burlingham / GMP-ECM for P35 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
74×10290-119 = 8
(2
)2891
<291> = 197 ×
4173716864072194021432600112803158488437676254935138183869148336153412295544275239706711787930062041737168640721940214326001128031584884376762549351381838691483361534122955442752397067117879300620417371686407219402143260011280315848843767625493513818386914833615341229554427523970671178793<289>
74×10291-119 = 8
(2
)2901
<292> = 67 × 179 ×
[685585109832587527909799234738782808490137765548421764547838090738115752707597950656401419346470626383909132178956242993598117420347054300193631470209474045044794648730277847262755125675162363230402920221981340967416177955659319788395082316536498142434938899543252082233154525324958077397<288>]
Free to factor
74×10292-119 = 8
(2
)2911
<293> = 3 × 23187896438329307
<17> × 81409458618215269
<17> ×
14518833901895824634491953996803847222327517922428994403789470633885184293792718628480905505567591898605981328707345137379134085742597621916282760606871964142501431994229723601285019703800508742929825059004085142486417331277641828041051743070730439205572609529<260>
74×10293-119 = 8
(2
)2921
<294> = 1107583 × 4371680462323
<13> × 720040161731992876918102317943710649
<36> ×
[235834749590461439961359997361901332644631261488403424075671298467078263446386889939030465635028406424884735384324268065613270775035582790958940505539717458513322330132227335637479769704849628427407064439227847678794123559473128578318137481<240>] (Jason Parker-Burlingham / GMP-ECM for P36 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
74×10294-119 = 8
(2
)2931
<295> = 7 × 2613713 × 106091759 × 277833432321106868370393373
<27> ×
15246393276456552510003497702890403936435833390904614844476066047081403436012035459514894059332975538341354208457234190949600413614405552851291913579364061231263384908438735731695908088694903313435207491101473047846041062681865927483607389747207415147033<254>
74×10295-119 = 8
(2
)2941
<296> = 3 × 47 × 2879 × 5303 × 8663 × 15394909 ×
[286392318373765547036180776875491292483877726136566079947266723629285134500734354483290648765235502334029916521596006522506119452823909918645787630826662819962843702323950735545721602972419481955652533179928327744682196194831610989239811605109694086266163919885854830830356539<276>]
Free to factor
74×10296-119 = 8
(2
)2951
<297> = 17 × 23 × 31 × 61813 × 422258687051
<12> × 7411153714338133
<16> × 13087556288000123
<17> × 49446291167707556529024511
<26> ×
541893870543370973359729351786084760668170627892031909556916217570958565416443295302586168870072830062795575581248375420188185189040528680095394896833974831721688665301478780903642583732123682482617035968940216284818123<219>
74×10297-119 = 8
(2
)2961
<298> = 50966966673261310868732933
<26> × 589209056351018214567965053
<27> ×
[273798465448243735480589639133947807753767915398392460404514477379153916482809435334117671196645459407471268700425304284853461004885592477362460824435806226799737617170614944225871456647879957056747883241470139350711076114236294348737820618660829<246>]
Free to factor
74×10298-119 = 8
(2
)2971
<299> = 3
3 × 419 × 8783 × 17239 × 16915517 × 101830995088179373
<18> × 7141187040920425778474427945003554021
<37> ×
[3902301302720770412007407294460615826947021420684938288962647342335145218531848955771728929887519202662529306689378474172874982708156021882478759688449448404539129649307012454963348839179259957959108324857543899675495165468681<226>] (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:1604161917 for P37 /
May 12, 2021 2021 年 5 月 12 日)
Free to factor
74×10299-119 = 8
(2
)2981
<300> = 237071 × 423662951 × 1465345879
<10> ×
[5586633026184676524170732800274588000580213223416396761951635088298745340162444346016646719813554039951215692233955986956264250165734895525018778588666689077831751758696562833102905574383451376706479337902804511141762277296983233983815165005482859279654451997075046725513690019<277>]
Free to factor
74×10300-119 = 8
(2
)2991
<301> = 7 × 435847 × 201376139 × 98931978927698537476187789
<26> ×
[135273399145572994726824081510838583062384207370962192151654241374205068012771153424736960048304009882586805065078843918965001106288318543240968995123209450500758366457207965372978020861163445081376869908979227618142396749934360487638828288357079786855407033619<261>]
Free to factor