53w9 = { 59, 539, 5339, 53339, 533339, 5333339, 53333339, 533333339, 5333333339, 53333333339, … }
16×1012+173 = 5333333333339
<13> = 11 × 2131 × 227521579
16×1013+173 = 53333333333339
<14> = 5659 × 9424515521
<10>
16×1014+173 = 533333333333339
<15> = 7 × 11 × 31 × 223432481497
<12>
16×1015+173 = 5333333333333339
<16> = 1103 × 1325803 × 3647071
16×1016+173 = 53333333333333339
<17> = 11
2 × 13 × 4781867 × 7090429
16×1017+173 = 533333333333333339
<18> = 3761 × 141806257201099
<15>
16×1018+173 = 5333333333333333339
<19> = 11 × 23 × 53 × 229 × 431 × 9391 × 429119
16×1019+173 = 53333333333333333339
<20> = 113 × 569 × 3613 × 229583174399
<12>
16×1020+173 = 533333333333333333339
<21> = 7 × 11 × 751 × 9222912019183657
<16>
16×1021+173 = 5333333333333333333339
<22> = 19 × 5813 × 276173 × 174849174569
<12>
16×1022+173 = 53333333333333333333339
<23> = 11 × 13
2 × 823 × 230863 × 150995904529
<12>
16×1023+173 = 533333333333333333333339
<24> = 112293947 × 4749439730115937
<16>
16×1024+173 = 5333333333333333333333339
<25> = 11 × 4451 × 123731 × 625763 × 1406889683
<10>
16×1025+173 = 53333333333333333333333339
<26> = 77926307 × 684407299493011177
<18>
16×1026+173 = 533333333333333333333333339
<27> = 7 × 11 × 87751 × 1288316737
<10> × 61267940161
<11>
16×1027+173 = 5333333333333333333333333339
<28> = 109 × 540823 × 90472601218074473777
<20>
16×1028+173 = 53333333333333333333333333339
<29> = 11 × 13 × 372960372960372960372960373
<27>
16×1029+173 = 533333333333333333333333333339
<30> = 31 × 4441 × 7561 × 366053 × 1399693843524673
<16>
16×1030+173 = 5333333333333333333333333333339
<31> = 11 × 6209527 × 15040303 × 5191477037143129
<16>
16×1031+173 = 53333333333333333333333333333339
<32> = 53 × 281 × 19919 × 5027115517
<10> × 35762687017501
<14>
16×1032+173 = 533333333333333333333333333333339
<33> = 7 × 11 × 2909 × 2381026788039507186980545523
<28>
16×1033+173 = 5333333333333333333333333333333339
<34> = 29 × 175003 × 7045673 × 149153261114362497389
<21>
16×1034+173 = 53333333333333333333333333333333339
<35> = 11 × 13 × 3339451 × 111683139821597310567803023
<27>
16×1035+173 = 533333333333333333333333333333333339
<36> = 647 × 2267 × 363615951559082933298971625911
<30>
16×1036+173 = 5333333333333333333333333333333333339
<37> = 11 × 3069119 × 157976437162744373380389774671
<30>
16×1037+173 = 53333333333333333333333333333333333339
<38> = 47 × 1134751773049645390070921985815602837
<37>
16×1038+173 = 533333333333333333333333333333333333339
<39> = 7 × 11
2 × 341370904115599
<15> × 1844543132864237536763
<22>
16×1039+173 = 5333333333333333333333333333333333333339
<40> = 19 × 293 × 6942857 × 46553799598517
<14> × 2964040637380393
<16>
16×1040+173 = 53333333333333333333333333333333333333339
<41> = 11 × 13 × 23 × 16215668389581433059693929259146650451
<38>
16×1041+173 = 533333333333333333333333333333333333333339
<42> = 531538583 × 1003376519392447064060697421344733
<34>
16×1042+173 = 5333333333333333333333333333333333333333339
<43> = 11 × 419 × 445142213 × 2599520455772198106462930711967
<31>
16×1043+173 = 53333333333333333333333333333333333333333339
<44> = 157 × 761 × 1090362016481
<13> × 409396103259767773392374447
<27>
16×1044+173 = 533333333333333333333333333333333333333333339
<45> = 7
2 × 11 × 31 × 53 × 602243885436651283099418044205453995907
<39>
16×1045+173 = 5333333333333333333333333333333333333333333339
<46> = 71 × 1619 × 46397387827065336221570725568150513126111
<41>
16×1046+173 = 53333333333333333333333333333333333333333333339
<47> = 11 × 13 × 331957 × 832079 × 1069745141
<10> × 6312000889
<10> × 199971877478059
<15>
16×1047+173 = 533333333333333333333333333333333333333333333339
<48> =
definitely prime number 素数
16×1048+173 = 5333333333333333333333333333333333333333333333339
<49> = 11 × 107 × 167 × 253732307 × 106937499718967612037627059699964503
<36>
16×1049+173 = 53333333333333333333333333333333333333333333333339
<50> = 797 × 66917607695524884985361773316603931409452112087
<47>
16×1050+173 = 533333333333333333333333333333333333333333333333339
<51> = 7 × 11 × 39667104884863185479
<20> × 174613371621431757830314066433
<30>
16×1051+173 = 5
(3
)509
<52> = 89 × 9803 × 6112934166373436855873440867486487550054424217
<46>
16×1052+173 = 5
(3
)519
<53> = 11 × 13 × 131 × 3533559571
<10> × 251055041165197
<15> × 3209297893776530416214609
<25>
16×1053+173 = 5
(3
)529
<54> = 535543217040146363261
<21> × 995873566060594193630198173340599
<33>
16×1054+173 = 5
(3
)539
<55> = 11 × 149 × 7951 × 14561 × 28106503311730410001710191716736120112361891
<44>
16×1055+173 = 5
(3
)549
<56> = 227 × 10729 × 794999 × 12078373 × 2280544788153415534425985256013505979
<37>
16×1056+173 = 5
(3
)559
<57> = 7 × 11 × 91415765737
<11> × 75768188020586731793514888756730892020820911
<44>
16×1057+173 = 5
(3
)569
<58> = 19 × 53 × 7985771 × 2016581509
<10> × 405339263919187399
<18> × 811368139631157482357
<21>
16×1058+173 = 5
(3
)579
<59> = 11 × 13 × 53375717189
<11> × 154340186746457
<15> × 45273070024441332871616001207001
<32>
16×1059+173 = 5
(3
)589
<60> = 31 × 59 × 163 × 281 × 424126254746981
<15> × 15010527022250079461945203420888770937
<38>
16×1060+173 = 5
(3
)599
<61> = 11
2 × 5479 × 5787485113
<10> × 588121051741
<12> × 2363499120713120204412389767651937
<34>
16×1061+173 = 5
(3
)609
<62> = 29 × 21881 × 111317 × 7726921 × 632980571519
<12> × 4895321876195539
<16> × 31535082060008903
<17>
16×1062+173 = 5
(3
)619
<63> = 7 × 11 × 23 × 130043 × 936713 × 240855337611797
<15> × 10264324279742493804782972912108383
<35>
16×1063+173 = 5
(3
)629
<64> = 547 × 249809158432121
<15> × 3999910722640193
<16> × 9757818757675554025297865543729
<31>
16×1064+173 = 5
(3
)639
<65> = 11 × 13 × 947 × 1889 × 205633 × 22765715516795179210983073
<26> × 44535531273117818620490359
<26>
16×1065+173 = 5
(3
)649
<66> = 2057777 × 85641013039
<11> × 29418027402485049917
<20> × 102873869364416692203334359689
<30>
16×1066+173 = 5
(3
)659
<67> = 11 × 389 × 1314480817969086157721
<22> × 948204885341967840803231068611987056998021
<42>
16×1067+173 = 5
(3
)669
<68> = 1721 × 10303 × 3007836033232753176279550837589280328043621292463759664576653
<61>
16×1068+173 = 5
(3
)679
<69> = 7 × 11 × 421 × 16452272984339492653031845430895312130466524765812176738542534267
<65>
16×1070+173 = 5
(3
)699
<71> = 11 × 13 × 53 × 3394231 × 2073220169476868475290564873498330685173512600736050015635911
<61>
16×1071+173 = 5
(3
)709
<72> = 61 × 1475098867359881
<16> × 5927175182878115581351912805940359904535901795955514879
<55>
16×1072+173 = 5
(3
)719
<73> = 11 × 184351 × 21686939 × 2674900861
<10> × 759326933041
<12> × 59707074476827880071094862806171697041
<38>
16×1073+173 = 5
(3
)729
<74> = 1187 × 44931199101376017972479640550407188991856220162875596742488065150238697
<71>
16×1074+173 = 5
(3
)739
<75> = 7 × 11 × 31 × 330787277 × 6237070277
<10> × 18833193848173
<14> × 5750331709066544235645846865961950546141
<40>
16×1075+173 = 5
(3
)749
<76> = 19 × 383 × 719 × 16841519 × 76766779 × 114541108240707879234204539
<27> × 6883376162141748328954494527
<28>
16×1076+173 = 5
(3
)759
<77> = 11 × 13 × 8581 × 20027827911199
<14> × 2170155917693545548938824838884707644611222323160623989167
<58>
16×1077+173 = 5
(3
)769
<78> = 23887 × 473407331 × 20206306951603397
<17> × 2334077076886480713391458220595903251255667793371
<49>
16×1078+173 = 5
(3
)779
<79> = 11 × 1166878847
<10> × 415508847465194343766220046020325920335111263567609130277471286484367
<69>
16×1079+173 = 5
(3
)789
<80> = 233 × 12597932329
<11> × 18169523406345249878638884209086187561268725872711364821775810318827
<68>
16×1080+173 = 5
(3
)799
<81> = 7 × 11 × 71 × 1249 × 763771 × 918657784768403946928815349805003
<33> × 111319255118559619593327269788852441
<36>
16×1081+173 = 5
(3
)809
<82> = 14506702835091317
<17> × 367646142197946318555455780063327172846529911418738092694397460367
<66>
16×1082+173 = 5
(3
)819
<83> = 11
2 × 13 × 134129 × 682450359243406173583
<21> × 370404497996263323664223549633037114938307224647196449
<54>
16×1083+173 = 5
(3
)829
<84> = 47 × 53 × 111893423 × 607543556327
<12> × 9560090897155291739020714351
<28> × 329443543039404135816045343459799
<33>
16×1084+173 = 5
(3
)839
<85> = 11 × 23 × 4201 × 14369 × 60147233 × 15359852870544180470507811726983
<32> × 378003892325183670854511855639157993
<36>
16×1085+173 = 5
(3
)849
<86> = 1217 × 64684246495877005345164037389188887
<35> × 677500509690015468075585872624816614317312605341
<48> (Makoto Kamada / GGNFS-0.70.3 / 0.13 hours)
16×1086+173 = 5
(3
)859
<87> = 7
2 × 11 × 199 × 61291 × 153421 × 3557791159129
<13> × 148626044046337861969818528393038809550610860482365066066721
<60>
16×1087+173 = 5
(3
)869
<88> = 281 × 1237 × 33232363111824744411326037673375221403
<38> × 461701710894075712253986755710007917311836229
<45> (Makoto Kamada / GGNFS-0.70.3 / 0.14 hours)
16×1088+173 = 5
(3
)879
<89> = 11 × 13 × 457 × 1094803 × 745436255589915300015997748312212384804116388906707117708423097995588471983263
<78>
16×1089+173 = 5
(3
)889
<90> = 29 × 31 × 575257 × 1031281255536509960753438074653481973009321160215724934172979069942596287777175473
<82>
16×1090+173 = 5
(3
)899
<91> = 11 × 409 × 411685979659549697
<18> × 8224627267477121151798281
<25> × 350106708564756528812542991592452650603369873
<45>
16×1091+173 = 5
(3
)909
<92> = 8933 × 612071 × 3228629771929267
<16> × 81223954963620341552817368644837
<32> × 37196083274516143513348660366282487
<35>
16×1092+173 = 5
(3
)919
<93> = 7 × 11 × 399792419506684256987244267313255099
<36> × 17325008150363695428055194817063799987932715114722577893
<56> (Makoto Kamada / GGNFS-0.70.7 / 0.45 hours)
16×1093+173 = 5
(3
)929
<94> = 19 × 193 × 673 × 7059195848330867641
<19> × 7830881885894110963
<19> × 134815245343864173917
<21> × 289979864669907562093466587639
<30>
16×1094+173 = 5
(3
)939
<95> = 11 × 13 × 3181 × 25471 × 35317 × 130337450064325352041503552307144662902922385107886245698728703758047254565553819
<81>
16×1095+173 = 5
(3
)949
<96> = 89 × 19447 × 84589 × 1997544907
<10> × 45992108629
<11> × 39651748541462990491006259591803671865588076748429367465012426399
<65>
16×1096+173 = 5
(3
)959
<97> = 11 × 53 × 661 × 13789 × 21107 × 1427939393303
<13> × 544118985492927609128953
<24> × 61202022955213578863232979801432266608184051329
<47>
16×1097+173 = 5
(3
)969
<98> = 6503373881
<10> × 14068204845217
<14> × 582936597978605371867655073953867978204814006745437502013922231884888820307
<75>
16×1098+173 = 5
(3
)979
<99> = 7 × 11 × 4903 × 565576313 × 23096205269849757966835249980011
<32> × 108146947651656929374533881573242467178726679115713083
<54> (Makoto Kamada / GGNFS-0.70.7 / 0.52 hours)
16×1099+173 = 5
(3
)989
<100> =
definitely prime number 素数
16×10100+173 = 5
(3
)999
<101> = 11 × 13
2 × 401279 × 12427192541
<11> × 4458659857220000024047956929
<28> × 1290314377189609481306866740211419961910059936707142691
<55>
16×10101+173 = 5
(3
)1009
<102> = 107 ×
4984423676012461059190031152647975077881619937694704049844236760124610591900311526479750778816199377<100>
16×10102+173 = 5
(3
)1019
<103> = 11 × 2216835011184651104357370439054681171
<37> × 218712029719066643999777936156525071087223952004261785269174040619
<66> (Ignacio Santos / GGNFS, Msieve snfs / 0.22 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10103+173 = 5
(3
)1029
<104> = 1277 × 1741 × 40849 × 586812855089
<12> × 2332726473478411
<16> × 129932239093086418867643181563
<30> × 3301773445257682771791050814757811899
<37> (Makoto Kamada / Msieve-1.39 for P30 x P37 /
March 19, 2009 2009 年 3 月 19 日)
16×10104+173 = 5
(3
)1039
<105> = 7 × 11
2 × 31 × 1021 × 404011 × 2987429 × 41635448887
<11> × 1164254081957
<13> × 11311801654544150387
<20> × 30060368305471369967964596256098014689379081
<44>
16×10105+173 = 5
(3
)1049
<106> = 331 × 134224835759221421
<18> × 19086871507193464509961
<23> × 4064991821309290524371546323
<28> × 1547189206253970086785961906426497663
<37>
16×10106+173 = 5
(3
)1059
<107> = 11 × 13 × 23 × 4211 × 41981 × 817183409587
<12> × 28497005331526748111
<20> × 38307476166279808095599
<23> × 102824008140493426545625804879240115534327
<42>
16×10107+173 = 5
(3
)1069
<108> = 97 × 2287 × 2610057143
<10> × 20307462907
<11> × 1340593106093
<13> × 162313790081067327092182473319
<30> × 208450405491239399655801989077503214027403
<42> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1026881981 for P30 /
March 16, 2009 2009 年 3 月 16 日)
16×10108+173 = 5
(3
)1079
<109> = 11 × 2011 × 159073 × 11545663 × 1579247647
<10> × 8962669014774316660532372292263505761
<37> × 9274511126652789047823710941853314756705925123
<46> (Makoto Kamada / Msieve-1.39 for P37 x P46 / 24 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin /
March 19, 2009 2009 年 3 月 19 日)
16×10109+173 = 5
(3
)1089
<110> = 53 × 439 × 42888239843
<11> × 53446603981042823860140150741150154925589704492441295404939791068262196134669759198686434834819
<95>
16×10110+173 = 5
(3
)1099
<111> = 7 × 11 × 135086690288448751461631065121489142470928690167339
<51> × 51273792492932242100515971807088862039055864903322893309013
<59> (Ignacio Santos / GGNFS, Msieve snfs / 0.60 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10111+173 = 5
(3
)1109
<112> = 19 × 478976327 × 5047774187
<10> × 17091848160683
<14> × 6792695289917707202156583412038626115973444592308785982255726257760373998281943
<79>
16×10112+173 = 5
(3
)1119
<113> = 11 × 13 × 991 × 5851 × 10052627114734674217024858005477241449308291
<44> × 6398517534744581605598630845005091076336770653616769994460283
<61> (Ignacio Santos / GGNFS, Msieve snfs / 0.55 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10113+173 = 5
(3
)1129
<114> = 215353 × 26620492499479799
<17> × 78913973370932127763
<20> × 1178902272502946069328819778505207427299862693400811389547413981810788199
<73>
16×10114+173 = 5
(3
)1139
<115> = 11 × 571 × 9603425289909833
<16> × 47879271474541502441
<20> × 1846699530611392018669439569557103803695685736617411366439773261482862878323
<76>
16×10115+173 = 5
(3
)1149
<116> = 71 × 281 × 25506191 × 105355994332536217
<18> × 994784939188511717381942811727769897509954534261201739356635646215595820430605221104787
<87>
16×10116+173 = 5
(3
)1159
<117> = 7 × 11 × 599353 × 849254857947611
<15> × 177007098645584560967212363729
<30> × 76877029837883806950299140519056366638329225185471983037090713501
<65> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3112279535 for P30 /
March 16, 2009 2009 年 3 月 16 日)
16×10117+173 = 5
(3
)1169
<118> = 29 × 59 × 220889 × 399245177 ×
35345566840539122105617503217971681780511544617419689304529702833291035042859502184918894526705707333<101>
16×10118+173 = 5
(3
)1179
<119> = 11 × 13 × 283 × 364415983 × 2517482123877466831458022023288845848163
<40> × 1436522534239865706135598288861372125341339035520699265067882825739
<67> (Ignacio Santos / GGNFS, Msieve snfs / 0.85 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10119+173 = 5
(3
)1189
<120> = 31 × 7079 × 7507 × 32909 × 4977605857740139864313943677940325771
<37> × 1976348440568735697281734967191062750712135499265960643476367149133007
<70> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 2.22 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
March 20, 2009 2009 年 3 月 20 日)
16×10120+173 = 5
(3
)1199
<121> = 11 × 924024509 × 544197219960851
<15> × 1385739132029137
<16> × 189156258191547887
<18> × 1557947106874062450702679468291
<31> × 2361083403958175481870119073871859
<34> (Makoto Kamada / msieve 0.88 / 48 seconds)
16×10121+173 = 5
(3
)1209
<122> = 157 × 355753 × 109930207 × 8288134679832509
<16> × 95813489553227621411
<20> × 10938304308684720881922187871188355577064371457525597746972073806835463
<71>
16×10122+173 = 5
(3
)1219
<123> = 7 × 11 × 53 × 557 × 9126197 × 10213691 × 287945598630842425163580029
<27> × 712358242851714498778583437
<27> × 12271438787420117058360010446671532651056033802377
<50>
16×10123+173 = 5
(3
)1229
<124> = 678615683 × 15632010699053203839120696541
<29> × 502759160314514269977487791043166281612741210621506381121567728239448887179912173483613
<87>
16×10124+173 = 5
(3
)1239
<125> = 11 × 13 × 4344103805341820701058553135691460443
<37> × 85854387849055129411080779368254210843202081626934091049880827926685804285234450918511
<86> (Ignacio Santos / GGNFS, Msieve snfs / 2.03 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10125+173 = 5
(3
)1249
<126> = 59221 × 4743971 × 3030831473
<10> ×
626353022417679868415975566145155706622205868469175203265587458197994823718738247227747332872332043917973<105>
16×10126+173 = 5
(3
)1259
<127> = 11
2 × 937 × 1537258295437
<13> × 9025370693297974973
<19> × 77645603363146301434635923149259748641629
<41> × 43666160215801579806770536601220923608024965501583
<50> (Robert Backstrom / Msieve 1.39 for P41 x P50 / 0.98 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10127+173 = 5
(3
)1269
<128> = 5246909 × 4320900800743087688077
<22> × 9558968044013240910768539170267
<31> × 246099023374013580364688187219244824856754420286164173821931207411369
<69> (Sinkiti Sibata / Msieve 1.39 for P31 x P69 / 12.73 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10128+173 = 5
(3
)1279
<129> = 7
2 × 11 × 23 × 4007183 × 30336391159
<11> × 13571938434812141600017
<23> × 1423558089684163875615089340331837
<34> × 18317321175692551580491850093549452867392867639887899
<53> (Makoto Kamada / Msieve-1.39 for P34 x P53 / 35 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin /
March 19, 2009 2009 年 3 月 19 日)
16×10129+173 = 5
(3
)1289
<130> = 19 × 47 × 485858449 × 623219998062802938785799973843610813257
<39> × 19724051551602642903450015600131998699589330106576447898110400616964952612756111
<80> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 3.40 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
March 22, 2009 2009 年 3 月 22 日)
16×10130+173 = 5
(3
)1299
<131> = 11 × 13 × 499 × 32102129 × 275816506470850227753681936494105767780247
<42> × 84412751354152141283549803205638828396580374356093958903094653958614394263729
<77> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 3.44 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
March 20, 2009 2009 年 3 月 20 日)
16×10131+173 = 5
(3
)1309
<132> = 61 × 113 × 1171 × 1184923 × 754627619 × 7329756391
<10> × 1715422178096007542208514188552440247371207737
<46> × 5876925256617012992829424695030398752503942555565595747
<55> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 3.88 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
March 20, 2009 2009 年 3 月 20 日)
16×10132+173 = 5
(3
)1319
<133> = 11 × 4581090461
<10> ×
105836915681129757215865745561509628631812447601541664576365256989952473345155470146147120251081303598052841088581264068709<123>
16×10133+173 = 5
(3
)1329
<134> = 16932787 × 2443598369
<10> × 42676230844241
<14> × 221436851625203181271
<21> × 16933386843442661522215523900347799
<35> × 8054909630283795410286938926238595405030885578617
<49> (Makoto Kamada / Msieve-1.39 for P35 x P49 / 24 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin /
March 19, 2009 2009 年 3 月 19 日)
16×10134+173 = 5
(3
)1339
<135> = 7 × 11 × 31 × 4163857 × 129955037024232517
<18> × 7099268159581713691554413997525083
<34> × 4760738577651298269591554866833674069
<37> × 12217137744962110664685060042692824819
<38> (Sinkiti Sibata / Msieve / 2.82 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10135+173 = 5
(3
)1349
<136> = 53 × 109 × 39983 × 133371437502545860492092625754017350087647
<42> × 173124348209509979320647923853723089400683536821989636733066792235614750308712167807707
<87> (Sinkiti Sibata / Msieve / 2.81 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10136+173 = 5
(3
)1359
<137> = 11 × 13 × 347897551 × 2941447767611012578678018619
<28> × 771382818250946354031587328347
<30> × 472476504763422496979618639544003838355917850725179339642495333077011
<69> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1151270288 for P30 /
March 20, 2009 2009 年 3 月 20 日)
16×10137+173 = 5
(3
)1369
<138> = 2087 × 7759 × 28201 × 792993427 × 20925773837827387826419
<23> × 7354562144409310904345832577230403
<34> × 9569694675376026666594225015995206118078921791743315366068497
<61> (Robert Backstrom / Msieve 1.39 for P34 x P61 / 3.25 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10138+173 = 5
(3
)1379
<139> = 11 × 9187 × 15215909 × 454899394030094871696840828218919010961
<39> × 7624635131405306021976110358540209676561181550632754418412763175674346292489709058390223
<88> (Sinkiti Sibata / Msieve / 4.22 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10139+173 = 5
(3
)1389
<140> = 89 × 1259 × 1297 × 3807379 × 1066215803
<10> × 3927232953924541
<16> × 23609968978520831
<17> × 1473645024646363449024795775720253093
<37> × 661602028039129307408879986401594613779931124167
<48> (Makoto Kamada / Msieve-1.39 for P37 x P48 / 26 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin /
March 19, 2009 2009 年 3 月 19 日)
16×10140+173 = 5
(3
)1399
<141> = 7 × 11 × 163 × 437137 × 263847823747351043
<18> × 4151676741677406023252547875833
<31> × 2737585535359402041636298522487839663
<37> × 32415900148860714720420562762529298185266886201
<47> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2747878098 for P31 /
March 17, 2009 2009 年 3 月 17 日) (Makoto Kamada / Msieve-1.39 for P37 x P47 / 23 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin /
March 19, 2009 2009 年 3 月 19 日)
16×10141+173 = 5
(3
)1409
<142> = 627491 × 98531454093262507723164589411652625162805522024873067
<53> × 86261366709419004879256051310572074798571199905749754449998290361726951365465220987
<83> (Erik Branger / GGNFS, Msieve snfs / 7.22 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10142+173 = 5
(3
)1419
<143> = 11 × 13 × 9116352353
<10> × 23234036801
<11> × 80224395341
<11> ×
21948783894283659724234519764740434605593113394700229625552760126349140437853527142251628884009984989437404201<110>
16×10143+173 = 5
(3
)1429
<144> = 281 × 391718549 × 3821472829
<10> × 4036539211199745001
<19> × 212252217624164231321
<21> × 1443013518692157476137
<22> × 1025547270351448412159089363210911790315743196169202259396180507
<64>
16×10144+173 = 5
(3
)1439
<145> = 11 × 12771226294956041440899989
<26> ×
37964129179981278916104833145158282275079179562207655314114714624752326770674354383880011070971403206222415612378037741<119>
16×10145+173 = 5
(3
)1449
<146> = 29 × 751 × 750670353889
<12> × 1017920604757100124175506379483305391
<37> × 3204775581603897617400152633317975172533435467301482055633599256186949556972877362944784052759
<94> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs / 17.11 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin /
March 20, 2009 2009 年 3 月 20 日)
16×10146+173 = 5
(3
)1459
<147> = 7 × 11 × 114391987 × 10724771108770309319
<20> × 86647924148580878037180406898757962104657
<41> × 65157768781765977762053170572689023638293806097473705832942639134885363376267
<77> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 13.73 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
March 21, 2009 2009 年 3 月 21 日)
16×10147+173 = 5
(3
)1469
<148> = 19
2 × 844735909 × 1027482580059048117497952822277
<31> × 9409699702063826388217071571541161674436721450537
<49> × 1808924074299550618481698414759567874414711834398853215939
<58> (Erik Branger / GGNFS, Msieve snfs / 9.11 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10148+173 = 5
(3
)1479
<149> = 11
3 × 13 × 53 × 8387 × 1970805129651612702855917094141798731030723421241267
<52> × 3518447892045144824283402589333190568229454329679224368597593827794731475863057750227249
<88> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs / 23.56 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin /
March 21, 2009 2009 年 3 月 21 日)
16×10149+173 = 5
(3
)1489
<150> = 31 × 25633 × 620736494637280038381448163
<27> ×
1081260448502426672218972908550403764599168813963584864888382960257378031423854697629240622783988424162866730588554711<118>
16×10150+173 = 5
(3
)1499
<151> = 11 × 23 × 71 × 367 × 1884713 × 8359999321
<10> × 112285641133334884584504726279527
<33> × 457275678039997192769248668205985006301054489756729230979356661455180455592881418246018010183529
<96> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3759522386 for P33 /
March 17, 2009 2009 年 3 月 17 日)
16×10151+173 = 5
(3
)1509
<152> = 263 × 23957 ×
8464680038004297200629793356527614722469858200209045854388563624741053534181145105089796235576912648681443564417511243343521104801573880282866329<145>
16×10152+173 = 5
(3
)1519
<153> = 7 × 11 × 7927 × 850653453563072123871033962658041
<33> ×
1027179811454478563266248765311304584721329924747341416918736899827702901198963336607158371538079442364457188062201<115> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=691741177 for P33 /
March 17, 2009 2009 年 3 月 17 日)
16×10153+173 = 5
(3
)1529
<154> = 181 × 35354371022851
<14> × 7978261056929857142957
<22> × 264723415122518858514699565296543054555719138609
<48> × 394617588357467205736723452214598506058331081720963009624925936387913
<69> (Erik Branger / GGNFS, Msieve snfs / 26.42 hours /
March 24, 2009 2009 年 3 月 24 日)
16×10154+173 = 5
(3
)1539
<155> = 11 × 13 × 107 × 547 × 64609 × 55542653 × 9434582747
<10> ×
188212840613992424796677603400325256446382715522218946301220653974656283417202828933948219387389712555772021167448482119855323<126>
16×10155+173 = 5
(3
)1549
<156> = 269 × 857 × 5345787068339760725287117
<25> × 133580396914047305026081348186586773
<36> × 1641967491171100517839361762257277209237
<40> × 1973089047991938179155944152604719461286180910126899
<52> (Erik Branger / GGNFS, Msieve snfs / 19.87 hours /
March 23, 2009 2009 年 3 月 23 日)
16×10156+173 = 5
(3
)1559
<157> = 11 × 320923 × 52837844864107556609
<20> ×
28593025001582710808963429377421212466600525466774399801643002006847699722828743906844782395582017998745268143690580638418490206307<131>
16×10157+173 = 5
(3
)1569
<158> = 17169989 × 6719426025889
<13> × 151415726802733836070298952223999025939393684802019324559
<57> × 3052991170776104521524354567572988782090802728355355198184479556190327131801237201
<82> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 17.44 hours, 0.75 hours /
March 31, 2009 2009 年 3 月 31 日)
16×10158+173 = 5
(3
)1579
<159> = 7 × 11 × 839 × 687258800663443
<15> × 53088599074462524169
<20> ×
226268692307447761634333442511388393943939825599268879462435126602568669464298464555770185460824908301875797259076331139<120>
16×10159+173 = 5
(3
)1589
<160> = 4201 × 11369 × 16433336450614236706160575327
<29> × 20060626646968543458887062589
<29> × 181460042160288350794014941791
<30> × 1866691415650896562187704322494751573492502375255655246746456677447
<67> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1862731850 for P30 /
March 20, 2009 2009 年 3 月 20 日) (Sinkiti Sibata / Msieve 1.39 for P29(1643...) x P67 / 3.84 hours /
March 21, 2009 2009 年 3 月 21 日)
16×10160+173 = 5
(3
)1599
<161> = 11 × 13 × 1170139 × 4803677 × 3122873329
<10> × 741660750050951
<15> × 113414302700756111
<18> ×
252594533076178610071534235728627169617808892659443253873539467514724150410070289087220739031060994153139<105>
16×10161+173 = 5
(3
)1609
<162> = 53 × 311 × 4078073 × 270585397 × 1011552929
<10> × 324228801887
<12> × 3163136667118281002802364642599093883066161549419
<49> × 28264737660333454210808193745298846039677110745960392543532282451321424089
<74> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 12.35 hours on Core 2 Quad Q6700 /
April 3, 2009 2009 年 4 月 3 日)
16×10162+173 = 5
(3
)1619
<163> = 11 × 128934707059768151160147271273
<30> × 88786862660586663244640643872864911682545620326200986806441777
<62> × 42353323427847191474859755218340012612106669231687179673124239284988569
<71> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=217957312 for P30 /
March 17, 2009 2009 年 3 月 17 日) (Ignacio Santos / GGNFS, Msieve snfs / 26.45 hours /
April 3, 2009 2009 年 4 月 3 日)
16×10163+173 = 5
(3
)1629
<164> = 489977 × 1818023 × 404670141371483587
<18> × 27301446782712309048436486454571303733558437148082226127
<56> × 5419220686700744836266372750790973569994429238428190314031647706010711660202441
<79> (Ignacio Santos / GGNFS, Msieve snfs / 28.82 hours /
April 2, 2009 2009 年 4 月 2 日)
16×10164+173 = 5
(3
)1639
<165> = 7 × 11 × 31 × 47940839077
<11> × 842314039257867811
<18> × 2649677219441206617450398015543024233
<37> × 77491984690871110773116882178649397417
<38> × 26947400854473157601390674819569193818375636070543656911591
<59> (Ignacio Santos / GGNFS, Msieve snfs / 27.26 hours /
April 4, 2009 2009 年 4 月 4 日)
16×10165+173 = 5
(3
)1649
<166> = 19 × 3527 × 14731 × 415998187758484049
<18> × 17341860308469023779168462781855560492984381719029
<50> × 748893938640871307834077166117365969021084229218403936692626349730095244157941293835195353
<90> (Ignacio Santos / GGNFS, Msieve snfs / 26.23 hours /
April 4, 2009 2009 年 4 月 4 日)
16×10166+173 = 5
(3
)1659
<167> = 11 × 13 × 18446113805573149007822003131717
<32> ×
20218913148399309160757726082320481802184037361213630414348530230821676575403409534317023506556541934147864836343737525024390817510769<134> (Ignacio Santos / GGNFS, Msieve snfs / 26.55 hours /
March 20, 2009 2009 年 3 月 20 日)
16×10167+173 = 5
(3
)1669
<168> = 179 × 2621 × 592276029652711918458654917
<27> ×
1919351513953383899015162034508915801712760154758814215865033297276479253811365614693461420952778991056351513322443096332485119078410313<136>
16×10168+173 = 5
(3
)1679
<169> = 11 × 227 × 5715255044861
<13> × 237162299947870602923360845817776486574128966845412187779
<57> × 1575792091453108964971588622205552962509706167218824000441526861593990073743591728636132377122173
<97> (Ignacio Santos / GGNFS, Msieve snfs / 42.58 hours /
March 22, 2009 2009 年 3 月 22 日)
16×10169+173 = 5
(3
)1689
<170> = 25717 × 4507879 × 117980842480867583939408945317682323
<36> ×
3899372097972789414698208696244062153377248699113952186123882034637330975141875979630721018894931532069809165030022672431651<124> (Ignacio Santos / GGNFS, Msieve snfs / 42.98 hours /
March 24, 2009 2009 年 3 月 24 日)
16×10170+173 = 5
(3
)1699
<171> = 7
4 × 11
2 × 3277640053
<10> × 132352806904194982440252584077327919
<36> ×
4231816069054994431419448863751815900867250965737302061112758210469770212260400845121738062490712318340173811038583094537<121> (Ignacio Santos / GGNFS, Msieve snfs / 36.83 hours /
March 26, 2009 2009 年 3 月 26 日)
16×10171+173 = 5
(3
)1709
<172> = 281 × 502064489 × 5715042589
<10> ×
6614749955664989424713019805847965677306836981576889278739501583333097639357898763428857936107445877150363248964449878957557008186898553073481136425239<151>
16×10172+173 = 5
(3
)1719
<173> = 11 × 13 × 23 × 8534483697059
<13> × 7475142851726469782122926936014282587045881755315097380812193130494855004509
<76> × 254178085831847506586371995486904416355932332421745267965622162250179955540826821
<81> (Dmitry Domanov / GGNFS/msieve snfs /
April 29, 2010 2010 年 4 月 29 日)
16×10173+173 = 5
(3
)1729
<174> = 29 × 11613951857677695313
<20> × 566248869944799179121838889
<27> × 144049431048128367586385287983065321099991763
<45> × 19413409387566207804936323300645004363743948867033226497003080564976254075337377301
<83> (ruffenach timothee / Msieve 1.44 snfs /
July 8, 2010 2010 年 7 月 8 日)
16×10174+173 = 5
(3
)1739
<175> = 11 × 53 × 18041 × 74866791167961347
<17> × 385545523502209088320480087422335615031306396577012834518164491
<63> × 17567286423941589543244105368512637919253171647277396459339365886408020840649624703731669
<89> (Warut Roonguthai / Msieve 1.48 snfs /
October 5, 2011 2011 年 10 月 5 日)
16×10175+173 = 5
(3
)1749
<176> = 47 × 59 × 7716053 × 664254673847652263
<18> ×
3752485626570579564073116184448753581811967169780062324201960799896294046829358037619327643669206368093906101440297004923537513225331271082880262037<148>
16×10176+173 = 5
(3
)1759
<177> = 7 × 11 × 17623 × 20407 × 6063988877
<10> × 2805953973327545641
<19> × 59054424039730788910008465375997802486775518568846042209856986046893
<68> × 19167153457656796612220368944427452642345819029796719445025969838501287
<71> (Warut Roonguthai / Msieve 1.48 snfs /
January 28, 2012 2012 年 1 月 28 日)
16×10177+173 = 5
(3
)1769
<178> = 4415624813
<10> × 23481819631
<11> × 172364139089129736821
<21> × 285663998530781523284461
<24> ×
1044653802917069736725389996297850287565310164337349399224620662635728372265215318028398231310513642083387819878073<115>
16×10178+173 = 5
(3
)1779
<179> = 11 × 13
2 × 347 × 32983 × 12815736715308752903
<20> × 8027904486080268433980556857271
<31> ×
24364299818203828966518485563165406695156284904992604114161373746380016498564692263558254965206297584342752781795141517<119> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1159831445 for P31 /
March 20, 2009 2009 年 3 月 20 日)
16×10179+173 = 5
(3
)1789
<180> = 31 × 4352766929105745465096103339
<28> × 14128103810528889021503484074802867683
<38> × 11921434964334620606230387696275557297228184691490293
<53> × 23467088413775638106815440619794729381929381523807685830980209
<62> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1608146848 for P28 /
March 20, 2009 2009 年 3 月 20 日) (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=290697744 for P38 /
March 11, 2011 2011 年 3 月 11 日) (Dmitry Domanov / Msieve 1.40 gnfs for P53 x P62 /
March 14, 2011 2011 年 3 月 14 日)
16×10180+173 = 5
(3
)1799
<181> = 11 × 61587619391
<11> ×
7872499207516654578671673353500815923181402075059219891853482875085218740580439670537237968312891577090262928374543588932027153256661341707823838377147914145211784434639<169>
16×10181+173 = 5
(3
)1809
<182> = 1038061023919290001
<19> × 119121484621689498602410926670199765568953092881832918066700236210702171
<72> × 431306244161972548846783226466005345607492202238907702659205853876310957790012287683022877809
<93> (Ben Meekins / Msieve 1.52 snfs /
March 19, 2014 2014 年 3 月 19 日)
16×10182+173 = 5
(3
)1819
<183> = 7 × 11 × 131 × 1889 × 112157527 × 464361671 × 5715682823
<10> × 650301550208451541624673689
<27> ×
144589597580155477441087126851267025222738071179100703521374878477549892116580029086895092395700063872155321428899782097827<123>
16×10183+173 = 5
(3
)1829
<184> = 19 × 89 × 73573396007
<11> × 28516611720150209
<17> × 8337820849242166144931
<22> × 11712938251550298216591144343199
<32> ×
15392812600536190329397225157527098648806512221238076118266203960105096458190669312234136635648609507<101> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2483843845 for P32 /
March 17, 2009 2009 年 3 月 17 日)
16×10184+173 = 5
(3
)1839
<185> = 11 × 13 × 6803327 × 370105597 × 3966890117165612042543
<22> × 612515855190950858054702203609992517384182431666834477417161
<60> × 60960453080062542536930184185020434764252912947411731186409540043998389616046631793729
<86> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
August 14, 2014 2014 年 8 月 14 日)
16×10185+173 = 5
(3
)1849
<186> = 71 × 199 × 293 × 479 × 941 × 5864241681694430178417576410972317
<34> × 27081108992429861195459928877120613131307857106593251658343
<59> × 1799766815990392043297318226198560493747963664052930873186835402544448139601194943
<82> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=585391338 for P34 /
March 17, 2009 2009 年 3 月 17 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs /
October 17, 2014 2014 年 10 月 17 日)
16×10186+173 = 5
(3
)1859
<187> = 11 × 1777 × 857074603933
<12> × 3471319553856449
<16> × 14547715754309334227
<20> ×
6303918456704632816004649117769565290428813199817892469277133974582241197657012872363271441987955649905469882895277200221424296664299543<136>
16×10187+173 = 5
(3
)1869
<188> = 53 × 362801 × 469757 × 56120957759
<11> × 521227202780397685977677145725137291703
<39> × 30484131410450284153418840291351454536082817
<44> × 6621481193764342907827199662605256187096339129590593810981850302713032429597880851
<82> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=1677220840 for P39 /
March 13, 2011 2011 年 3 月 13 日) (Erik Branger / GGNFS, Msieve gnfs for P44 x P82 /
May 17, 2011 2011 年 5 月 17 日)
16×10188+173 = 5
(3
)1879
<189> = 7 × 11 × 2573095297
<10> × 6463151237
<10> × 112172586377
<12> × 153919425029
<12> × 739577730207584794588676369285460608213
<39> × 331326619534903578434889075049880328482829709703983
<51> × 98443601200985474160782608484365833182349565889311371109
<56> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=3982855263 for P39 /
March 13, 2011 2011 年 3 月 13 日) (Dmitry Domanov / Msieve 1.47 gnfs for P51 x P56 /
March 14, 2011 2011 年 3 月 14 日)
16×10189+173 = 5
(3
)1889
<190> = 1699 × 11243 × 516151 × 4136537 × 4923334337
<10> × 92464913719
<11> × 443990742740834678476881886198658257
<36> × 4925848027676212865789857064262673383039420410149
<49> × 131346417000547579070086383872104205431423103506962953557552731799
<66> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=3000000, sigma=1024742655 for P36 /
March 13, 2011 2011 年 3 月 13 日) (Dmitry Domanov / Msieve 1.40 gnfs for P49 x P66 /
March 14, 2011 2011 年 3 月 14 日)
16×10190+173 = 5
(3
)1899
<191> = 11 × 13 × 373 × 10253 × 80495343013
<11> × 406210149427
<12> × 945919570571
<12> × 2106927752681669
<16> ×
1496502755883401746464419027289523437801750286207507813882672391424083378627885151619557978502609049276916321861647757544619956559933<133>
16×10191+173 = 5
(3
)1909
<192> = 61 × 13567 × 222397474102234103
<18> × 49283399667976094829223746033453347565837086347
<47> ×
58796917577246755875839888726504348201342301268727605790163976482817750587256305633860593126333391878137810040529908762717<122> (Robert Balfour / GMP-ECM 7.0.5 B1=11000000, sigma=1:839212009 for P47 x P122 /
April 18, 2020 2020 年 4 月 18 日)
16×10192+173 = 5
(3
)1919
<193> = 11
2 × 6807641 × 1032396785516376356107
<22> × 3040724202950414715084797
<25> × 71390352947565225881588227528522695736264442449
<47> × 28890396930122168070466037404558715491514527880269725906250822374442936190408105195970399269
<92> (Eric Jeancolas / cado-nfs-2.3.0 for P47 x P92 /
April 5, 2019 2019 年 4 月 5 日)
16×10193+173 = 5
(3
)1929
<194> = 26513 × 50023 × 2101717849035273779
<19> × 30071047709254340291
<20> × 1967786130729617339487631
<25> × 28908882578973117144496171187035193
<35> × 57749307267023763311033988438420401
<35> × 193682851615402438266837470310134941116692660151926803
<54> (Erik Branger / GMP-ECM B1=3000000, sigma=1898868028 for P35(2890...), Msieve for P35(5774...) x P54 / 0.93 hours /
April 3, 2009 2009 年 4 月 3 日)
16×10194+173 = 5
(3
)1939
<195> = 7 × 11 × 23 × 31 × 10767257 × 101133894289
<12> × 19555797212707219
<17> ×
456185143902086084802549969985891258228940858855311380055749536658436485494817418243301763115833438126840205587859686128794649242303896264964434012855830797<156>
16×10195+173 = 5
(3
)1949
<196> = 7351 × 564897941 × 3377404589183
<13> ×
380276268982783654066274135954722763495279036088575534131823822007159672005582309653345235101630395162193839491587374821993497866525612882654643500238077742126241231511863<171>
16×10196+173 = 5
(3
)1959
<197> = 11 × 13 × 16943 × 19973 × 175964633947
<12> × 3611596784433871
<16> × 10701824438029691
<17> ×
162049094041814109449952529207055298900616494799865429931167543761211671007608176603991011610928233860920432142074680053649465366638046269640121<144>
16×10197+173 = 5
(3
)1969
<198> = 8330730914910739494869962789866397
<34> ×
64019992817046568864072386610912369178865900873939871107157058564192119869482424687933582394044661175526797445218338045141217468977459877568210571489380832289734487<164> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=3000000, sigma=4195428485 for P34 /
March 30, 2009 2009 年 3 月 30 日)
16×10198+173 = 5
(3
)1979
<199> = 11 × 785468738335223
<15> × 10809721554503831623054520711
<29> × 12789625341336043348347687224900930303
<38> ×
4464828773593632207206961727773999752061913422109724587805707442420022099921447832800655781057547392849430315178815311<118> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=2135270727 for P29 /
March 20, 2009 2009 年 3 月 20 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=9994890 for P38 /
November 13, 2013 2013 年 11 月 13 日)
16×10199+173 = 5
(3
)1989
<200> = 157 × 281 × 372817 × 18686520369022621346701711395151571417791
<41> ×
173527619713167044517175963578586473866520069765043370480944101489777704712803638807673455774376521593912311825542707917603841791271895841665340146561<150> (matsui / Msieve 1.49 snfs /
June 29, 2011 2011 年 6 月 29 日)
16×10200+173 = 5
(3
)1999
<201> = 7 × 11 × 53 × 1867 × 2162879 × 6576017627
<10> × 49830784277
<11> × 16059890440978574700941544301
<29> × 5465589490197817703795797688544120931163749
<43> × 298131801644473477455962103738371299534531237091
<48> × 3774044422137398794264282715509644849768141470003
<49> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=1866420656 for P43, Msieve v. 1.42 for P48 x P49 / 9.31 hours /
August 24, 2009 2009 年 8 月 24 日)
16×10201+173 = 5
(3
)2009
<202> = 19 × 29 × 313 × 1901 × 94360271 × 2501174201872189797561830194829
<31> × 3285209923372858582051789182457782975939359300113704058399
<58> × 20980915208869547094789255386000193552797907226683334270499197236705904905461853676595267482739933
<98> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1396396328 for P31 /
March 20, 2009 2009 年 3 月 20 日) (ebina / Msieve 1.53 for P58 x P98 /
February 15, 2022 2022 年 2 月 15 日)
16×10202+173 = 5
(3
)2019
<203> = 11 × 13 × 149 × 18251 × 60081712959211
<14> × 1010373965505359421790357
<25> × 801471947457237058326646014683
<30> ×
2818882526794195779347703065304890490201892666165177265763109650987050885292975881464368581102021828991420369612940706754656447<127> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=619086222 for P30 /
March 24, 2011 2011 年 3 月 24 日)
16×10203+173 = 5
(3
)2029
<204> = 97 × 12577 × 10278854720536660230594129123827
<32> ×
42530961886174933008238620627741152638837422882525075288178641963980853034656498740217947859028321094148319034847230588311147083792008916705642850004061340518797989753<167> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=286418165 for P32 /
March 18, 2009 2009 年 3 月 18 日)
16×10204+173 = 5
(3
)2039
<205> = 11 × 839641651 × 1960587907
<10> × 110576797141469
<15> × 136167892696391850439
<21> × 31110583363500679685586106994813398860541089369479
<50> ×
628751264693474606586084010934177017559348666593532349541198394242530624901900103099251102101255610813<102> (Thomas Kozlowski / CADO-NFS latest development version https://cado-nfs.gitlabpages.inria.fr/index.html for P50 x P102 /
June 17, 2024 2024 年 6 月 17 日)
16×10205+173 = 5
(3
)2049
<206> = 541 × 1327 × 1523 × 31048169 × 15626675996425603926755662661496678629
<38> ×
100537489273889255097346117794195671777146570043639614872522302009816104836711791006940864662587053251684324965834579609004989183982802161348797927453999<153> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=302035261 for P38 /
November 13, 2013 2013 年 11 月 13 日)
16×10206+173 = 5
(3
)2059
<207> = 7 × 11 × 3004153 × 1521682520963873525649147494623266941057062649071010986540302503723262111136384872036397
<88> ×
1515171886031061806448239085710574891280150214664901738165684737727838969361306948827617852375905604767100278427<112> (Bob Backstrom / Msieve 1.54 snfs for P88 x P112 /
April 21, 2021 2021 年 4 月 21 日)
16×10207+173 = 5
(3
)2069
<208> = 107 × 34231 × 4286167 × 21248991003612923
<17> × 51620201203322040714115209432924803406066119604459701
<53> ×
309719300591021155571887039993579435465214351502778317497907429469969448090288338720019062678662242876888150234766888189422887<126> (Bob Backstrom / Msieve 1.44 snfs for P53 x P126 /
September 2, 2024 2024 年 9 月 2 日)
16×10208+173 = 5
(3
)2079
<209> = 11 × 13 × 421 × 147308771 × 12854303191
<11> × 572354548581640418897796763936151
<33> × 217329667283791742261049081199227007
<36> × 24961675910842060596149422380741873311892567589314263339
<56> × 150676510965501462118753873338097895827730169696102638519515871
<63> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3591757485 for P33, B1=3000000, sigma=3048309242 for P36 /
November 13, 2013 2013 年 11 月 13 日) (Dmitry Domanov / Msieve 1.50 gnfs for P56 x P63 /
November 14, 2013 2013 年 11 月 14 日)
16×10209+173 = 5
(3
)2089
<210> = 31 ×
17204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075268817204301075269<209>
16×10210+173 = 5
(3
)2099
<211> = 11 × 524593627 × 78400327259
<11> × 157083635346060463595269870369
<30> ×
75047151628525964547925794591536202947308589132029815252439268554306727589839437353575121634228553308881772647693444859582215294191190072962735893785493908352697<161> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=710092507 for P30 /
October 1, 2013 2013 年 10 月 1 日)
16×10211+173 = 5
(3
)2109
<212> = 211970665993112603753811925859
<30> × 4104095467972276860028623445022664889
<37> ×
61306356875383563964963967460546822209051486282938801915033929101877609845552054645701815972854367068076471422817718859104361587402732501535269489<146> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=933234028 for P30, B1=1e6, sigma=1643796934 for P37 /
October 1, 2013 2013 年 10 月 1 日)
16×10212+173 = 5
(3
)2119
<213> = 7
2 × 11 × 11509351813
<11> × 68590428997
<11> × 10349210027489
<14> × 632280560461801703443670618032797325498817
<42> × 168411000120519485114292967607370661536385413617640887
<54> × 1137386561973144545163203872204580114637354030030586332693829858876097556201246911
<82> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=204347399 for P54 /
December 25, 2013 2013 年 12 月 25 日) (Dmitry Domanov / Msieve 1.50 gnfs for P42 x P82 /
December 26, 2013 2013 年 12 月 26 日)
16×10213+173 = 5
(3
)2129
<214> = 53 × 1319 × 1399 × 4519 × 10463 × 74723877461
<11> ×
[15434848892001350874797231132343156547163166592101162420442961139048693526577728622378363797836704838006905159157731087675809287421611314887318538063995336937595376212970301557674066100619<188>]
Free to factor
16×10214+173 = 5
(3
)2139
<215> = 11
2 × 13 × 167 × 269312321 ×
[753871476053835908407467164238560947510905200054127942053852497576505168386900923671009779549727207090722629643183548546865564280579084741759689793818081324418988525386029076149840256170129191190852649<201>]
Free to factor
16×10215+173 = 5
(3
)2149
<216> = 331 × 383439109 × 222123879647
<12> × 12750851863650388437601
<23> × 1430338006021925376917423
<25> × 546638060656672057951222241817333019
<36> ×
1897585404443394559278961991052617024478237746552123052330061931914042158065983354758970650389344572947221826519<112> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:1648394517 for P36 /
October 6, 2013 2013 年 10 月 6 日)
16×10216+173 = 5
(3
)2159
<217> = 11 × 23 × 503 × 787 × 9601 × 14281 × 285539 × 3600203 × 11384552873
<11> × 32440499659998113
<17> × 74722197500931587
<17> × 1859778869036879554519471744253
<31> × 13917398664769627441652243440125482260272307848713
<50> × 528926652255653835841510592051042218169806850993307672876554932997
<66> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2875839269 for P31 /
October 1, 2013 2013 年 10 月 1 日) (Dmitry Domanov / Msieve 1.50 gnfs for P50 x P66 /
October 7, 2013 2013 年 10 月 7 日)
16×10217+173 = 5
(3
)2169
<218> = 105359 × 2085921366746684875206771390441479726423291185924849683288355129147163
<70> ×
242677300489970666643343117389960742656600552467101864192499264236761958510146693004526423516367470081210659245395513336706268153246093881045167<144> (Bob Backstrom / Msieve 1.53 snfs for P70 x P144 /
October 31, 2017 2017 年 10 月 31 日)
16×10218+173 = 5
(3
)2179
<219> = 7 × 11 × 180423913309073263
<18> × 505899358502572574307293
<24> × 115143078231384571321755506154144185081
<39> ×
659040251184780979493133059024684664786356471863497330894274478105173059374810507140327507067353869988552283822273024801621616044567551333<138> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=568832821 for P39 /
November 13, 2013 2013 年 11 月 13 日)
16×10219+173 = 5
(3
)2189
<220> = 19 × 12389794937987
<14> × 2008524089513842573960810941134683706851
<40> × 6800991978638293823731832147273068112730195511
<46> ×
1658561962388781623684608584277934714392025630865985740389836533421817395471796523591577266549731587060440935804266568983<121> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3610098266 for P40 /
November 13, 2013 2013 年 11 月 13 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=3634303422 for P46 /
May 27, 2014 2014 年 5 月 27 日)
16×10220+173 = 5
(3
)2199
<221> = 11 × 13 × 71 × 3790903741453646681018325497599
<31> ×
1385675648263120992421637851060419740114931690091346206270410120881732896158402618946288217763993977434947959016568754191899552581410239992028111235699965103009860818397149648194990478237<187> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3806425635 for P31 /
October 1, 2013 2013 年 10 月 1 日)
16×10221+173 = 5
(3
)2209
<222> = 47 × 163 × 6079597080070425013001626039
<28> × 15612324359574449131002674299
<29> ×
733450657622840526413410460023751390579725819151447748880066973780209474826537315197369251561351617546183464232968449178738739889614653528739872612447381571873059<162>
16×10222+173 = 5
(3
)2219
<223> = 11 × 33191 × 173752004731984493817721469
<27> × 8209968015027270164309317765069468101809
<40> × 826332116876597909521859167622411149350318285151034797921
<57> × 12392524422101761762948351578568640662028516893826573883750988051497830752614305232645272950979
<95> (Serge Batalov / GMP-ECM B1=11000000, sigma=3694975663 for P40 /
May 19, 2014 2014 年 5 月 19 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P57 x P95 /
September 30, 2018 2018 年 9 月 30 日)
16×10223+173 = 5
(3
)2229
<224> = 39341 × 236021 ×
[5743844670703692927816324332251672141715381849417160107142509321009627112912791436872372271454541557092288720547252994595717102515661830741938020312243162695428122786895414348738643415842774244999966601876676755499<214>]
Free to factor
16×10224+173 = 5
(3
)2239
<225> = 7 × 11 × 31 × 501131 × 723287 ×
[616430871474752908084304151350254452310053217031213200220927008044409614681718600997678811442600683629957177781320447429364416578541521023899967745079508087692710604141927625886741827666245938478369374162058701<210>]
Free to factor
16×10225+173 = 5
(3
)2249
<226> = 1163 ×
4585841215247922040699340785325308111206649469762109486959014044138721696761249641731155058756090570364001146460303811980510174835196331327027801662367440527371739753511034680424190312410432788764689022642591000286615075953<223>
16×10226+173 = 5
(3
)2259
<227> = 11 × 13 × 53 × 1973 × 767957 × 824647 × 728165833319671157
<18> × 876801155268226078025621092186375787
<36> ×
8821112038910426472035009339658783868944545955978012361854228025819678264824626365039957955645569413100321763189119085413629962310715949976492646754865497<154> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2509134725 for P36 /
November 13, 2013 2013 年 11 月 13 日)
16×10227+173 = 5
(3
)2269
<228> = 89 × 281 × 1733 × 9623 × 375647 × 31140799 × 123473254987
<12> × 65326995788372452363
<20> ×
13552458715329620021223800428569208589845463114336857363486131392607149574048822131113137903145809798876722271257756865375513647439699234117565207161192372955018491688018033<173>
16×10228+173 = 5
(3
)2279
<229> = 11 × 71333 × 2042538601984222472359
<22> × 3180150585984170246269007
<25> ×
[1046399673399058489507409212406949655401594818581128574799251365993465135986452412046608447872374202958759978223197698002045589539157249887766739573294341080054797299264114435381<178>]
Free to factor
16×10229+173 = 5
(3
)2289
<230> = 29 × 118583 × 1986443 × 4026383 × 119511524436302003413469
<24> × 36906912601104895211443880659
<29> ×
439612064882566034033955705090431633291509794793280449870698882984133332022601526835850177719231764308591473855315821558950017476058665362384037326046206906923<159>
16×10230+173 = 5
(3
)2299
<231> = 7 × 11 × 5257830673
<10> × 22416815761247
<14> ×
[58766183195401078632083313468535257856706066821410030805631173374991262870016910610601648020636580537795805848081525465744444528436071836693712364953465904698853654588399105765632207338261469677399337961097<206>]
Free to factor
16×10231+173 = 5
(3
)2309
<232> = 223 × 228231678821
<12> × 44197594667780497728230849458823
<32> × 5810955560276998167193188451723706745899366471
<46> ×
408010886632621220749961001017814349943462870906066441525971552692631161889125804870399104705154567478041297962900995389429014205443019457201<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3911461889 for P32 /
November 13, 2013 2013 年 11 月 13 日) (Bob Backstrom / GMP-ECM 6.2.3 B1=58860000 for P46 x P141 /
February 26, 2024 2024 年 2 月 26 日)
16×10232+173 = 5
(3
)2319
<233> = 11 × 13 × 1615049 × 7045090393171221478843369
<25> × 73008875178340180051734938618933837
<35> ×
448967350857943777080133536782986203274301368025562210215432115889059073303551058939023138988723861957244286757507431046576151931601901401384188329247365041686955609<165> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3842151773 for P35 /
November 13, 2013 2013 年 11 月 13 日)
16×10233+173 = 5
(3
)2329
<234> = 59 × 431 ×
[20973429286772320316698782230262036782151611676956755410489336322047006698388978462909801145673574789937997299670979328063759225031787853762764297979996591817740899497948536447887582419022900363102494527245795482847667361411511791<230>]
Free to factor
16×10234+173 = 5
(3
)2339
<235> = 11 × 4201 ×
115412636241010437630290046381453189356069622672812389546500472470479611636479048999877374073993926410017816825719705986309176025910136836106843248000115412636241010437630290046381453189356069622672812389546500472470479611636479049<231>
16×10235+173 = 5
(3
)2349
<236> = 12107 × 7285679 × 21778918714393831883647691182091
<32> ×
[27762325308156293567104553375228952946480776074171985596011778690593790246939743885695756485827795841642576128834285302751667217652736326614292759354941333626597779832161265859092975992670908093<194>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=362241193 for P32 /
October 1, 2013 2013 年 10 月 1 日)
Free to factor
16×10236+173 = 5
(3
)2359
<237> = 7 × 11
2 × 2111 × 2663 × 13397 × 49081 × 17590107986475259
<17> ×
[9684260255730445689890059506320873084862316020614138457653136865835206609533069542279374358733693623421213422002938326929658910228108515896436266469581422026493281623330957757901471485233328821862239843<202>]
Free to factor
16×10237+173 = 5
(3
)2369
<238> = 19 × 1280453 × 356629963219
<12> × 8370857731923718711
<19> × 266102264394708948645127603
<27> ×
[275959357504759324045129772860666168558848054047394363162684456991229908900294435704545321587838904165434542182877072139407562084299937082467640440638491182926547067410647051<174>]
Free to factor
16×10238+173 = 5
(3
)2379
<239> = 11 × 13 × 23 × 38532811411
<11> × 5615318324017
<13> ×
[74942776120464813766581325415506433036185134849491430898137284056370451095492723203145349203634663500440797084897761841488402792290050772853699746766069794639011366583188669401867775128378492542904550336937760273<212>]
Free to factor
16×10239+173 = 5
(3
)2389
<240> = 31 × 53 × 504372970799
<12> × 67386382497716449
<17> ×
[9550744277355213292071677004419723555617242113951457900364924054386929846731865770916504327692450391646104051344300087554753077727358905925277595000471276137560007908285964675124390819422255791402346271270623<208>]
Free to factor
16×10240+173 = 5
(3
)2399
<241> = 11 × 457 × 11774359 ×
90105763176338334194195938623842841226168774487129072110430398193338891710410729522150622999976441752480172967665447390513611501328399371106017211522088855060053466339740672455033602331619221828844696767420090635212363852265469823<230>
16×10241+173 = 5
(3
)2409
<242> = 8188467866601798236627914608010238839227191971318591
<52> ×
6513224964936766112562219894838143932059477903774693304505056345936162525516633602519191112646717573616809317333052364898780713558566468204863070787292469460213616508395186787045884803136229<190> (yoyo@Home / GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] B1=110000000, sigma=0:4276977157286878502 for P52 x P190 /
May 9, 2020 2020 年 5 月 9 日)
16×10242+173 = 5
(3
)2419
<243> = 7 × 11 × 112418737 × 861284162443
<12> × 1231881178673
<13> × 1625273634613193
<16> × 7925186775798282244309753051129003325784683
<43> ×
4508354139198352568334688752531418713660656800909869562253670222818041525890235959732797179015593152814923478926308922999089326977914045066035752131271<151> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3984328117 for P43 /
November 13, 2013 2013 年 11 月 13 日)
16×10243+173 = 5
(3
)2429
<244> = 109 × 113 × 661981349 × 28501139276419
<14> ×
[22950165014744594415476690605434258690129702814502581172745694811001765229755280724254621341469687582949440371562365851092869671730179817620804100940448352109175498408383367772752510929948352561479018262333591449407257<218>]
Free to factor
16×10244+173 = 5
(3
)2439
<245> = 11 × 13 × 8753 ×
[42609433675353931266189920365631550368212084195175706657484333709627894478802738827873067562316962522606301881978792752241855406484676449260020606987361243045008611100236828558546826569218891851132225860890318790467310974565630112299825541<239>]
Free to factor
16×10245+173 = 5
(3
)2449
<246> = 547 × 2609 × 9533 × 2833132843310753
<16> × 70942854822576343
<17> × 6636898260320974259
<19> × 7258093314058231949686567
<25> ×
4048968724137792147295047693230441364174252199479473104342055275259838907154707316206821547552876844190656921593904417762405188147053554531345277008174425027583<160>
16×10246+173 = 5
(3
)2459
<247> = 11 × 229 × 55633 × 36834409 ×
1033199945334020531991849803995123100728891182716228421610229395599265140931489908256369761428730932516369531654617636429177999889906153741927163518286684820516022823676821173848007529957979664148707519641418398024304622279188211973<232>
16×10247+173 = 5
(3
)2469
<248> = 96518527836180785122229755416705689207
<38> ×
552570936679173871615506749017360084997791674587496339603253961249238324746644670503120104633988843677666735817225718005820128773802127052030800075362653183976033218460452948189034152996697670013983882674089277<210> (Serge Batalov / GMP-ECM B1=11000000, sigma=1098256901 for P38 /
November 8, 2013 2013 年 11 月 8 日)
16×10248+173 = 5
(3
)2479
<249> = 7 × 11 × 797 × 15359441 × 107495441 × 6135171477105335231522089
<25> × 4030474197907392498388686319835901151
<37> ×
212863586219622058000496316110713954511344963033945243032236849144238253703214294206450651156006347340113341227943141661939800685263747289608450997604917852901348786309<168> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3344690597 for P37 /
November 13, 2013 2013 年 11 月 13 日)
16×10249+173 = 5
(3
)2489
<250> = 347851279062457
<15> × 13944793881172713271627
<23> × 248537128246163615165221
<24> × 45722171685527410665345781141
<29> × 989017379839953429992165899063
<30> × 6835145309800262474093614142138727423556244070257011
<52> × 14312754523111552481401904677764903058869231070713314880603773023352647577089037
<80> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1596755602 for P30 /
October 1, 2013 2013 年 10 月 1 日) (Cyp / yafu v1.34.3 /
February 2, 2014 2014 年 2 月 2 日)
16×10250+173 = 5
(3
)2499
<251> = 11 × 13 × 261241 × 16246031306143157412001
<23> ×
[87876766268455062232584768498315062319462648482216047888447632184266094728435092782554651147904908963086629176225317841689756704843461962344855369220227826662697124795054845541769825127255593368589377800822636713697534653<221>]
Free to factor
16×10251+173 = 5
(3
)2509
<252> = 61 × 87476897 × 1702101904140307865816129
<25> ×
[58720529910220015399339458682333971641477226769981749396119644379907958909396342649168802066363908749615962664898460272773979469538089570455007926502892631273807510004315386688894763607394473982696435133012007045640023<218>]
Free to factor
16×10252+173 = 5
(3
)2519
<253> = 11 × 53 × 1788472823
<10> × 2566993824969311093
<19> × 536559476135467851969813979
<27> ×
3713685609370265702110567452857211462660510421282186440020463624219846086642864473541428494434057194891187969883797567755023217138045754863225954351741110712886432091263383610917545109108212310493<196>
16×10253+173 = 5
(3
)2529
<254> = 2221 × 598489 × 1494210845126117
<16> × 39135811579131767
<17> × 5914889142811490234348143
<25> ×
116000846542613714772520861281176840146573459049935964817366999441076629410059167060529329184214222583061627463286667522309693543166264742253928136777354682207645846483658744781553591819403<189>
16×10254+173 = 5
(3
)2539
<255> = 7
2 × 11 × 31
2 × 1342316410456625246033
<22> ×
[767064131716384402276527873825762452102366056470431837081549921878642793995404183386339889856123616562438893004770807557879637828866959591942572744326133131796517174349207996038006058178211732767759888969574814813136229701600177<228>]
Free to factor
16×10255+173 = 5
(3
)2549
<256> = 19 × 71 × 281 ×
14069558136733242057074921276425488059781552522979545500511340503531898766011816670140088831672685799507037856784209031425237445777241962105403853476104174525833907107501096985860973419966637560268271299772161092923276061438242993579884752731912483831<251>
16×10256+173 = 5
(3
)2559
<257> = 11 × 13
2 × 433 × 461 ×
[143724404014218651696016550856820624975851493008345363807028281632795212726225389575125159635032392664564763730495575461738834018040436305933889912735132080719638798367291848331506223373139702390649126429014358311394229742387273363558629394175021117<249>]
Free to factor
16×10257+173 = 5
(3
)2569
<258> = 29 × 213989 × 12524977 × 49991741 × 88648040120946639761
<20> × 240060288529991071621
<21> × 540690298355813694658343
<24> × 13613522329702896343020226870722020416433
<41> × 2065346472774742591313801967196222329696235884947082077
<55> × 424260517682488282547332958124227858678078138257750789666937460498975644959489
<78> (Ignacio Santos / GMP-ECM B1=3000000, sigma=1:2884100629 for P41 /
March 2, 2021 2021 年 3 月 2 日) (Eric Jeancolas / cado-nfs-3.0.0 for P55 x P78 /
March 3, 2021 2021 年 3 月 3 日)
16×10258+173 = 5
(3
)2579
<259> = 11
2 × 7860992513054801
<16> × 463689658186086498853
<21> × 22238127036548091500371297451557
<32> ×
[543763883166056887920514279196720265870679367202800001004617861459019457586378260831319207441671097954341142127333037312039131405530813505798346209888343457398771396280182189051727837643579<189>] (Jason Parker-Burlingham / GMP-ECM for P32 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
16×10259+173 = 5
(3
)2589
<260> = 283 × 5003 × 15101 × 19899252023767945436875491043
<29> ×
[125354326994228754718550794564864017071552559582747584428632772898189838577286927886987059507148665428924014719175053463972436985213239225205890533266744421070752361495765861809749435541261787720092863252020435163212312277<222>]
Free to factor
16×10260+173 = 5
(3
)2599
<261> = 7 × 11 × 23 × 107 × 2617 × 2648319050281
<13> × 12154172997761
<14> × 86326157648230933768231789
<26> ×
[387038829132462554749015529167721321623715007175643033036745732421730654234416993011267641943146372539778181978328351278849119651106804997208070712746287700486466825899451513217857585910245623389960639<201>]
Free to factor
16×10261+173 = 5
(3
)2609
<262> = 1193 × 1352803 × 1033725142273
<13> ×
[3196823413012460912050549314298159257262515802587932552156201003746605632867220390116430026445887436222600088724455445311674281671472046803022843519666320393127731133052351599249004891714097573606117420811829590311628629105808977792926492417<241>]
Free to factor
16×10262+173 = 5
(3
)2619
<263> = 11 × 13 × 28871 × 445566829 × 57971309734470128618177
<23> × 1247331941149968757501306446133114009517
<40> × 11899031169717085153622203077029727954826905253
<47> × 33624837786061537450499999024817438034794016153
<47> × 1002123060348759516252020409858133625228384912947590881974648714345454748441668163657785502887
<94> (Jason Parker-Burlingham / GMP-ECM for P40 /
January 2, 2021 2021 年 1 月 2 日) (Seth Troisi / GMP-ECM 7.0.6 for P47 /
November 30, 2023 2023 年 11 月 30 日) (Dylan Delgado / yafu-git r598, GGNFS for P47 x P94 /
April 20, 2024 2024 年 4 月 20 日)
16×10263+173 = 5
(3
)2629
<264> =
[533333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339<264>]
Free to factor
16×10264+173 = 5
(3
)2639
<265> = 11 × 257 × 23260673 × 82322173359655207202717
<23> × 74963131955274035833947163929719
<32> ×
[13142745338212844270731396882003070085873205264869585926410360563150896964923967653908413025314882551979691368180443511272544580515540709281100455713587964452906810113494319579131847591790760319527683<200>] (Jason Parker-Burlingham / GMP-ECM for P32 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
16×10265+173 = 5
(3
)2649
<266> = 53 × 6326712661788386687
<19> × 11720353528262065811
<20> ×
13570755807625156536056852557150856487725767205924019136403180312349733595531378867761558737792123713587738007696624329883260473711407638789404537193309170138540307188767110694029762635520555061576726750166320150987073150988459<227>
16×10266+173 = 5
(3
)2659
<267> = 7 × 11 × 13613 × 637573187724286505551891030193
<30> ×
[798038995201788764533293787700674397930999473156660081567176802275968568901772689065133304150048032410835053659843216547246055816466522437723754193256991538230994541735172660138490953576805179253437099005376625768385189520930668723<231>] (Jason Parker-Burlingham / GMP-ECM for P30 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
16×10267+173 = 5
(3
)2669
<268> = 47 × 863 × 4294157207
<10> × 19433868732794011981384197448523557
<35> ×
[1575625024047525763972371660125977263204757992275833368856516214922583234669210731489778371418162707235616880615379035423002926862189519000045870616913162655886187095286919783395876211377976611794406892034818946105815401<220>] (Jason Parker-Burlingham / GMP-ECM for P35 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
16×10268+173 = 5
(3
)2679
<269> = 11 × 13 × 164999 × 34380186241
<11> × 3094899820063781
<16> ×
[21243523801201708267945559854345051623240355668496279600143304492129126804195087846321382915112040877222897933742288858260539702082332544783691683268678123014189225490662069551406355287173018381892503207525994723207192772635542998408487<236>]
Free to factor
16×10269+173 = 5
(3
)2689
<270> = 31 × 1310293 × 68178571337
<11> × 131113165312141682443
<21> × 55043596777392308219701944226418623
<35> ×
[26685024741470279831461843423910157646169227018411391158090521979722891541486620919018383492902600233618191150487769618689577925136989634083416749090447622704271394708246371424479311451242799084581<197>] (Ignacio Santos / GMP-ECM B1=1000000, sigma=1:766996999 for P35 /
May 13, 2021 2021 年 5 月 13 日)
Free to factor
16×10270+173 = 5
(3
)2699
<271> = 11 × 577 × 751 × 2381 × 1133159 × 6633372947
<10> ×
[62518079655349907454621988674090026157843200997187738196072468107705790194741135344301657408801023929989870439076287211141754664317795412546125491274284365891490126753001976290518754484282985664735670160312351338996027422345919977980133558387199<245>]
Free to factor
16×10271+173 = 5
(3
)2709
<272> = 89 × 10567566735464147
<17> ×
[56706614808358511855455836876484708966744505520240918667089627623360396314024686161623415943086978699743740603384121046688476252339776027337439810760219495085432843721626465516816133006711712283607974107683476425868001819369417797436217878372424832799233<254>]
Free to factor
16×10272+173 = 5
(3
)2719
<273> = 7 × 11 × 889997 × 8528599 ×
[912518682817435082107829319778251406832275010445113180927336781547889665387467748691894426939258178962391868112782388406088360679797064509712800049513420266322693447845826455586838715189449999120095488390246175385678704334814439095939333715776445134805598869<258>]
Free to factor
16×10273+173 = 5
(3
)2729
<274> = 19 × 491 × 89012981 ×
[6422591338515887374683687654907109380762666409327195345573499109735249477183259714909598039041137349162121348167382755563053615808124510885958243079718671648762352500279905133794326293148474977259330814102499701858967792229733341453491509761547691514125270038911<262>]
Free to factor
16×10274+173 = 5
(3
)2739
<275> = 11 × 13 × 1831 × 3761713 × 91527136879
<11> ×
[591614501924637434591000844420911399380225335754090562500274712833204460617577105651719168908973054263523963446486371782015139161659482791405247814467715751470144755501336336966481797026310296664943282725080292069953871445075790867608766166567307239229<252>]
Free to factor
16×10275+173 = 5
(3
)2749
<276> = 1895233733486797313888534346341404159
<37> × 838797116364516785411977862589346561777
<39> ×
[335489568722723680753521761823108681471188176662772962484707623288234945516788054867968485080186039139241493415862772364130259947659066629970024787777669085866424477597563352541223921731057793916105973<201>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1:4239971597 for P37 /
February 27, 2021 2021 年 2 月 27 日) (Ignacio Santos / GMP-ECM B1=3000000 for P39 /
June 9, 2024 2024 年 6 月 9 日)
Free to factor
16×10276+173 = 5
(3
)2759
<277> = 11 × 104837156871346002193615363
<27> × 6231572827994213741450494409741
<31> ×
742152463222239558836923308251794369357111676302998932102403868490723245475073478622901504042422596889320534322013313089263325016145600005278013083628713289869679833936474263558466051498257328010766267128848277470539303<219> (Jason Parker-Burlingham / GMP-ECM for P31 x P219 /
January 2, 2021 2021 年 1 月 2 日)
16×10277+173 = 5
(3
)2769
<278> = 157 × 8069188942030537
<16> × 88134164157779657443
<20> ×
[477666628199263948366021471467857833843132941799861578501027094996792807307553376647530062998560732867888169305002001358604432471252804417859335930259909628019214509535387897831342223172855058427846334133993745067974978795818580415827406997<240>]
Free to factor
16×10278+173 = 5
(3
)2779
<279> = 7 × 11 × 53 × 6173 × 54151 × 314303851 ×
1243883402283070855034312847392919366832514489901454716595188607191413627671286279732170283207457317618802863951892296189626041391120271176134008429482502165722299068593560657223472062112048020193957863743827430171032831665607873626326599991660785976216505603<259>
16×10279+173 = 5
(3
)2789
<280> = 827 × 3294401215433
<13> × 51544801765732494114521
<23> ×
[37977979449588526643892992100948828734439362334623865019578925396115846989577814026145754850223748551960444528914952697216509310819995397997623635311286682667969056837007029497791422833708387067353464411672083164828487403788904661809850325249<242>]
Free to factor
16×10280+173 = 5
(3
)2799
<281> = 11
2 × 13 ×
[33905488450942996397541852087306632761178215723670269124814579360033905488450942996397541852087306632761178215723670269124814579360033905488450942996397541852087306632761178215723670269124814579360033905488450942996397541852087306632761178215723670269124814579360033905488450943<278>]
Free to factor
16×10281+173 = 5
(3
)2809
<282> = 227 × 1621 ×
[1449405336166920765539663429963375338911732120905769629704112959404874168969862333669414195657038085842842791156090990043491218868358666220974525795338531263220161952928749951309039488142505532651931649667859708433999063321801502127455269992508386168687228293116864646376803717<277>]
Free to factor
16×10282+173 = 5
(3
)2819
<283> = 11 × 23 × 30600808816649
<14> ×
[688882736164367469372298226291040138023352930228853497793118719504676843962146879197905995094840556412100366984605474844111377837059350887474102414489818027593960532970437331930455137177760185570764775040888583186965423627242478397356159910473611316429956708285882687<267>]
Free to factor
16×10283+173 = 5
(3
)2829
<284> = 281 × 3458739083
<10> ×
[54875009276474942284607331861863901668136654740254099936655436750285021240354546535821996359378037373439521945003268069274727984312366839728424228001428957268789565668486650150494896823458926603287519457542861189432771696818362746500541773984256159885706475055107396615193<272>]
Free to factor
16×10284+173 = 5
(3
)2839
<285> = 7 × 11 × 31 × 199 × 4909 × 32468709472062233
<17> ×
[7044256692726842771821551918820536745538750098207297303920336200381592534682685359732550512061078278354597002819608819710248223049693649157380802120586353381745962425769949428750013271812420131656147492347004526527298324703253465926979997169619682167177539699<259>]
Free to factor
16×10285+173 = 5
(3
)2849
<286> = 29 × 193 × 95467 ×
[9981369791998303526464672800339427958352163109466486632949262638065917411524983764413067567659465297383930326640195437665962925822632542277275482082584385149963315627562371635022676989067425005728230144176326407091775214858545053517381782248523971722761911871670112494410643461<277>]
Free to factor
16×10286+173 = 5
(3
)2859
<287> = 11 × 13 × 664708106357
<12> × 42446515375307
<14> ×
13218728187668591407074117592496450199547406735141828264294319244589441147187692596729002693017411501679630191341417309628846328285509746304901788591345733265005190093040241526538975566189591905225468167467858609323213137168686286596917039287422957446195737827<260>
16×10287+173 = 5
(3
)2869
<288> = 66265423687
<11> × 1291431117653
<13> ×
[6232187373321795483891892649806644150533852570841870098218005411686347309124788773447461577270232375565381533156910750993873234488627719022610882349687525873662482938736587028998807279415937185297107768662016267213821686688543639076306499285335351724500575450855449<265>]
Free to factor
16×10288+173 = 5
(3
)2879
<289> = 11 × 1249 × 1481 × 105754934579839
<15> × 3590829612861334567
<19> × 9261170904398097938382394947001
<31> ×
[74529328482034061092105569244499296161403118684464162739818290455540184578381233285955353603604569548882718160917365429605139887720361890416614492003438203153838391510627349283907715175273389388870142556665445555183417<218>] (Jason Parker-Burlingham / GMP-ECM for P31 /
January 2, 2021 2021 年 1 月 2 日)
Free to factor
16×10289+173 = 5
(3
)2889
<290> = 3192777443
<10> ×
[16704369247616653665181050746146020467651284810625409236622865145108497727924261501158862119076094128285074248231380195620272469249380541095652351529512272783033857500644254374147848592568916283631277625927944559627525949460089985148812432690859916393280949815747408903669498060073<281>]
Free to factor
16×10290+173 = 5
(3
)2899
<291> = 7 × 11 × 71 × 4159 × 37003312057
<11> × 140707596523181081657
<21> × 20656781691291726063277
<23> × 290283557116094495923573
<24> × 8007267286327574111290685477
<28> × 15326318097054387552979642666557071
<35> ×
6122028314811441649015565678042560473768930475437208445392456457436859618776101421693576636633186599285028717282033298472221849902427881308287741<145> (Jason Parker-Burlingham / GMP-ECM for P35 x P145 /
January 2, 2021 2021 年 1 月 2 日)
16×10291+173 = 5
(3
)2909
<292> = 19 × 53 × 59 × 2146560767021659995195169163398147519
<37> ×
[41819039941445630449389640298080987253434458368316878092666882091016418498199256407315051712709340716101893652391689829615801584453814506729513771669932790890045323122284850760282539894450015101587380306942721214722672769559820838896197799940459435537<251>] (Ignacio Santos / GMP-ECM B1=1000000, sigma=1:1431899475 for P37 /
May 13, 2021 2021 年 5 月 13 日)
Free to factor
16×10292+173 = 5
(3
)2919
<293> = 11 × 13 ×
[372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960372960373<291>]
Free to factor
16×10293+173 = 5
(3
)2929
<294> = 1237 × 117204567052684953741301204395900222677777
<42> ×
[3678616320972243845208460880599724459423431652849667879278843172254765590026779546075467418762447521834997673863734448502971346916556930720998166950162350828743247041218249900080062726533297047353731621614385774054148378531381168066071797812622173311<250>] (Ignacio Santos / GMP-ECM B1=3000000 for P42 /
June 10, 2024 2024 年 6 月 10 日)
Free to factor
16×10294+173 = 5
(3
)2939
<295> = 11 × 409 × 1301 × 1439 × 390848617 × 439587763 ×
[3685449549180399158993201260693085769382242764144841761700979033686737113837502043735739014546631280723652802791037050624903019000127720462530718472765886469466431532820564506821904506418421640333128044153683146102351960303174654355442437674595430368129750127300989569<268>]
Free to factor
16×10295+173 = 5
(3
)2949
<296> =
[53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333339<296>]
Free to factor
16×10296+173 = 5
(3
)2959
<297> = 7
2 × 11 × 109832488277
<12> ×
9009052961423494183415347541098310059141782375943537346451609904136476323063093442010642636692564113582604851710616051886528825759808145627650734757866844477125924298802267466940604402183668318992768665627225713130937917341435942239295267801600980705795518637421868796164161257178813<283>
16×10297+173 = 5
(3
)2969
<298> = 16553 × 8312633506627
<13> × 394214615593357134607251971
<27> ×
98321989483466016218338477687820718320498488539514903837252658849550557007034669138828813405018650924108762668710942964542083014884963951844305010222963777698032198541920192534621487810509512807171605037244566276207102392453797105700556376567919736488139<254>
16×10298+173 = 5
(3
)2979
<299> = 11 × 13 × 683 × 37496803 ×
[14562895921379208740481595326045046026715746379896399396222875346649448984829307798154999688460131176896609239276189506032017416910613393739754971543904055582915861570437128352757917652092537030133140349794705513010366510851267786025800581093513233572476461685635939677973362178073896277<287>]
Free to factor
16×10299+173 = 5
(3
)2989
<300> = 31 × 97 × 3947 × 53569 × 100354439 × 5794907177377909
<16> × 8589509326311437
<16> × 794928774008860147209986121945446180357
<39> ×
211254023837225008885647058614901287693273548168250184640392945839786278406006014007342647455698407055997468334359107069591489998296965761832464431875088967438433142609777549750715280549635113889690386323454421<210> (Marlon Trifunovic / GMP-ECM 7.0.5-dev B1=3000000, sigma=1:3136361455 for P39 x P210 /
April 15, 2022 2022 年 4 月 15 日)
16×10300+173 = 5
(3
)2999
<301> = 11 × 1889 × 3260669 ×
[78716789032856621841125138357525449391522276709362548098768718926308949761838397540513629480689774586491885641248222381869162241827538099760498957824119821484656997556037437307009695640032058175296108560207605407701505769580115674519554903209721008098547513040004254017042337034364652285989<290>]
Free to factor