Table of contents 目次

  1. About 499...991 499...991 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 499...991 499...991 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 499...991 499...991 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 499...991 499...991 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

49w1 = { 41, 491, 4991, 49991, 499991, 4999991, 49999991, 499999991, 4999999991, 49999999991, … }

1.3. General term 一般項

5×10n-9 (1≤n)

2. Prime numbers of the form 499...991 499...991 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 5×101-9 = 41 is prime. は素数です。
  2. 5×102-9 = 491 is prime. は素数です。
  3. 5×104-9 = 49991 is prime. は素数です。
  4. 5×107-9 = 49999991 is prime. は素数です。
  5. 5×1024-9 = 4(9)231<25> is prime. は素数です。
  6. 5×10172-9 = 4(9)1711<173> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  7. 5×10173-9 = 4(9)1721<174> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PFGW / January 2, 2005 2005 年 1 月 2 日)
  8. 5×10218-9 = 4(9)2171<219> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  9. 5×10439-9 = 4(9)4381<440> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PFGW / January 2, 2005 2005 年 1 月 2 日)
  10. 5×102563-9 = 4(9)25621<2564> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / December 20, 2012 2012 年 12 月 20 日)
  11. 5×102782-9 = 4(9)27811<2783> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / January 1, 2013 2013 年 1 月 1 日)
  12. 5×102880-9 = 4(9)28791<2881> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Youcef L / Primo 4.0.0 - alpha 14 - LG64 / October 14, 2012 2012 年 10 月 14 日)
  13. 5×103715-9 = 4(9)37141<3716> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 4.0.2 - LX64 / April 15, 2013 2013 年 4 月 15 日)
  14. 5×104392-9 = 4(9)43911<4393> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  15. 5×1010820-9 = 4(9)108191<10821> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / December 6, 2007 2007 年 12 月 6 日)
  16. 5×1014592-9 = 4(9)145911<14593> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / December 6, 2007 2007 年 12 月 6 日)
  17. 5×1025054-9 = 4(9)250531<25055> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 3, 2010 2010 年 9 月 3 日)
  18. 5×1027769-9 = 4(9)277681<27770> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 3, 2010 2010 年 9 月 3 日)
  19. 5×1040168-9 = 4(9)401671<40169> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 5, 2010 2010 年 9 月 5 日)
  20. 5×10180992-9 = 4(9)1809911<180993> is PRP. はおそらく素数です。 (Bob Price / PFGW / May 31, 2015 2015 年 5 月 31 日)
  21. 5×10193907-9 = 4(9)1939061<193908> is PRP. はおそらく素数です。 (Bob Price / PFGW / May 31, 2015 2015 年 5 月 31 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 3, 2010 2010 年 9 月 3 日
  2. n≤50000 / Completed 終了 / Ray Chandler / September 5, 2010 2010 年 9 月 5 日
  3. n≤200000 / Completed 終了 / Bob Price / May 31, 2015 2015 年 5 月 31 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 5×105k+1-9 = 41×(5×101-941+45×10×105-19×41×k-1Σm=0105m)
  2. 5×106k+3-9 = 7×(5×103-97+45×103×106-19×7×k-1Σm=0106m)
  3. 5×1013k+5-9 = 79×(5×105-979+45×105×1013-19×79×k-1Σm=01013m)
  4. 5×1015k+3-9 = 31×(5×103-931+45×103×1015-19×31×k-1Σm=01015m)
  5. 5×1016k+15-9 = 17×(5×1015-917+45×1015×1016-19×17×k-1Σm=01016m)
  6. 5×1018k+8-9 = 19×(5×108-919+45×108×1018-19×19×k-1Σm=01018m)
  7. 5×1022k+3-9 = 23×(5×103-923+45×103×1022-19×23×k-1Σm=01022m)
  8. 5×1028k+8-9 = 29×(5×108-929+45×108×1028-19×29×k-1Σm=01028m)
  9. 5×1035k+11-9 = 71×(5×1011-971+45×1011×1035-19×71×k-1Σm=01035m)
  10. 5×1044k+34-9 = 89×(5×1034-989+45×1034×1044-19×89×k-1Σm=01044m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 21.43%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 21.43% です。

3. Factor table of 499...991 499...991 の素因数分解表

3.1. Last updated 最終更新日

February 2, 2021 2021 年 2 月 2 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=196, 202, 208, 210, 213, 214, 216, 217, 226, 231, 232, 233, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 250, 251, 252, 254, 255, 258, 259, 262, 263, 265, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 284, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300 (59/300)

3.4. Factor table 素因数分解表

5×101-9 = 41 = definitely prime number 素数
5×102-9 = 491 = definitely prime number 素数
5×103-9 = 4991 = 7 × 23 × 31
5×104-9 = 49991 = definitely prime number 素数
5×105-9 = 499991 = 79 × 6329
5×106-9 = 4999991 = 41 × 121951
5×107-9 = 49999991 = definitely prime number 素数
5×108-9 = 499999991 = 19 × 29 × 191 × 4751
5×109-9 = 4999999991<10> = 7 × 6271 × 113903
5×1010-9 = 49999999991<11> = 61 × 819672131
5×1011-9 = 499999999991<12> = 41 × 71 × 171762281
5×1012-9 = 4999999999991<13> = 599 × 21529 × 387721
5×1013-9 = 49999999999991<14> = 3617639 × 13821169
5×1014-9 = 499999999999991<15> = 1381 × 62071 × 5832941
5×1015-9 = 4999999999999991<16> = 7 × 17 × 2153 × 10529 × 1853497
5×1016-9 = 49999999999999991<17> = 41 × 829 × 7151 × 8011 × 25679
5×1017-9 = 499999999999999991<18> = 8999 × 55561729081009<14>
5×1018-9 = 4999999999999999991<19> = 31 × 79 × 229 × 269 × 2551 × 12992209
5×1019-9 = 49999999999999999991<20> = 47 × 601 × 4159 × 174583 × 2437849
5×1020-9 = 499999999999999999991<21> = 544861 × 917665239391331<15>
5×1021-9 = 4999999999999999999991<22> = 7 × 41 × 401 × 43445393484928793<17>
5×1022-9 = 49999999999999999999991<23> = 619 × 1061 × 76131427205413249<17>
5×1023-9 = 499999999999999999999991<24> = 58129 × 8601558602418758279<19>
5×1024-9 = 4999999999999999999999991<25> = definitely prime number 素数
5×1025-9 = 49999999999999999999999991<26> = 23 × 151 × 2663 × 154727 × 34940406194167<14>
5×1026-9 = 499999999999999999999999991<27> = 19 × 41 × 641848523748395378690629<24>
5×1027-9 = 4999999999999999999999999991<28> = 72 × 2113 × 37607 × 1284120375664002049<19>
5×1028-9 = 49999999999999999999999999991<29> = 331 × 338625971 × 509395589 × 875722619
5×1029-9 = 499999999999999999999999999991<30> = 232217 × 2153158468156939414427023<25>
5×1030-9 = 4999999999999999999999999999991<31> = 59 × 19991 × 30809 × 1425237929<10> × 96542490899<11>
5×1031-9 = 49999999999999999999999999999991<32> = 17 × 41 × 79 × 7759 × 19777 × 23071 × 256494200780369<15>
5×1032-9 = 499999999999999999999999999999991<33> = 1198819 × 417077140085367349032672989<27>
5×1033-9 = 4999999999999999999999999999999991<34> = 7 × 31 × 189127 × 121830699235846178410971449<27>
5×1034-9 = 49999999999999999999999999999999991<35> = 89 × 423443789 × 1326735135578972358111371<25>
5×1035-9 = 499999999999999999999999999999999991<36> = 521 × 2777329 × 10649005205687<14> × 32448596183177<14>
5×1036-9 = 4999999999999999999999999999999999991<37> = 29 × 41 × 15061 × 279212168244987904249659458879<30>
5×1037-9 = 49999999999999999999999999999999999991<38> = 463 × 4007 × 145665511 × 185017553598741356460841<24>
5×1038-9 = 499999999999999999999999999999999999991<39> = 47569 × 7945929179<10> × 1322821645364321125915141<25>
5×1039-9 = 4999999999999999999999999999999999999991<40> = 7 × 311 × 2081 × 7361359 × 149927568276670622397029177<27>
5×1040-9 = 49999999999999999999999999999999999999991<41> = 109 × 379 × 1091 × 24268890431<11> × 45711937043896336314461<23>
5×1041-9 = 499999999999999999999999999999999999999991<42> = 41 × 167 × 2885771201281<13> × 25305083892380656195296713<26>
5×1042-9 = 4999999999999999999999999999999999999999991<43> = 11008411 × 454198158117461275746336142427821781<36>
5×1043-9 = 49999999999999999999999999999999999999999991<44> = 15737 × 52376783 × 60660954426418649577290418519521<32>
5×1044-9 = 499999999999999999999999999999999999999999991<45> = 19 × 79 × 431 × 772879951648630224861693132652477621261<39>
5×1045-9 = 4999999999999999999999999999999999999999999991<46> = 7 × 714285714285714285714285714285714285714285713<45>
5×1046-9 = 49999999999999999999999999999999999999999999991<47> = 41 × 71 × 62020586501<11> × 276943980528662497012615361205781<33>
5×1047-9 = 499999999999999999999999999999999999999999999991<48> = 17 × 23 × 22777 × 121581736271639792119<21> × 461772838408986007727<21>
5×1048-9 = 4999999999999999999999999999999999999999999999991<49> = 31 × 161290322580645161290322580645161290322580645161<48>
5×1049-9 = 49999999999999999999999999999999999999999999999991<50> = 24439 × 12260450030546096531623<23> × 166870728265443558084503<24>
5×1050-9 = 499999999999999999999999999999999999999999999999991<51> = 149 × 637384449769832657611<21> × 5264804780220733821900366769<28>
5×1051-9 = 4(9)501<52> = 7 × 41 × 129919 × 134095881183325348817581407530980238477724247<45>
5×1052-9 = 4(9)511<53> = 549089 × 12742197029<11> × 233757135379<12> × 30571592930054181006072809<26>
5×1053-9 = 4(9)521<54> = 199 × 1993 × 414199 × 20180057 × 47804654743<11> × 71016494537<11> × 44427183071801<14>
5×1054-9 = 4(9)531<55> = 7079 × 100129 × 1997999 × 39709421 × 12509825847019<14> × 7107193311435838801<19>
5×1055-9 = 4(9)541<56> = 2999 × 15641 × 201306887 × 43857279649<11> × 120733752630563945454866475823<30>
5×1056-9 = 4(9)551<57> = 41 × 17509 × 12363824906258279<17> × 56334177630343702305475113126739541<35>
5×1057-9 = 4(9)561<58> = 7 × 79 × 4466637257<10> × 1288159942439<13> × 1571427680825815323155962866210689<34>
5×1058-9 = 4(9)571<59> = 1396495527548746489<19> × 4382833055786544389<19> × 8169124721997798758371<22>
5×1059-9 = 4(9)581<60> = 65006863 × 2236667561<10> × 5428004061793<13> × 633532927818506070264373294609<30>
5×1060-9 = 4(9)591<61> = 1171529 × 1699066094861950824806669<25> × 2511925109436962005789137652091<31>
5×1061-9 = 4(9)601<62> = 41 × 3094417 × 92707116473579561801<20> × 4251030648903640135155251567995703<34>
5×1062-9 = 4(9)611<63> = 19 × 23459 × 1121777973216429111484538534195157957556408605383188137871<58>
5×1063-9 = 4(9)621<64> = 7 × 17 × 31 × 490765528129<12> × 31280262227654641<17> × 88291097249089268102425706697871<32>
5×1064-9 = 4(9)631<65> = 29 × 187339 × 411702391 × 940852863616859<15> × 23759577218193789673324679961674669<35>
5×1065-9 = 4(9)641<66> = 47 × 2887 × 11551 × 319011088288852270003055788074053618563223071210614075169<57>
5×1066-9 = 4(9)651<67> = 41 × 359069 × 179979169 × 4796935108879675430256241<25> × 393388943545375634474798651<27>
5×1067-9 = 4(9)661<68> = 2287 × 48843778924739079644993759<26> × 447604643033102840986143863255700623527<39>
5×1068-9 = 4(9)671<69> = 89724180473953501961166239<26> × 5572633791234767478478503545072671249190569<43>
5×1069-9 = 4(9)681<70> = 72 × 23 × 223 × 20681 × 76454969 × 10828012799<11> × 1162024309652366037990389610090744014425361<43>
5×1070-9 = 4(9)691<71> = 61 × 79 × 3623719499<10> × 64168731989718407410739<23> × 44620563201936028457693760244206749<35>
5×1071-9 = 4(9)701<72> = 41 × 9479 × 549017249391938094972540451516001<33> × 2343352566089217438111477266676169<34>
5×1072-9 = 4(9)711<73> = 17715307175611063320729971<26> × 282241789568491204828205756224138149480262528621<48>
5×1073-9 = 4(9)721<74> = 313 × 3714647 × 15450425391217<14> × 2783349069877057829224343724139757685935082915881593<52>
5×1074-9 = 4(9)731<75> = 131 × 96203766740447713421<20> × 2492920273639109160859<22> × 15914692164168616736029771611299<32>
5×1075-9 = 4(9)741<76> = 7 × 460114769 × 7340301278034167<16> × 7933915019337796534184801<25> × 26656575782332427679443431<26>
5×1076-9 = 4(9)751<77> = 41 × 359 × 6308461 × 6627169 × 327670061552940761<18> × 247972470068959647976828665325015956492661<42>
5×1077-9 = 4(9)761<78> = 326681 × 1530545088327757047394859205157324729629210146901717577698121408958586511<73>
5×1078-9 = 4(9)771<79> = 31 × 89 × 516521 × 571110241901<12> × 6143422332392510504875978178352734448925897331764713020269<58>
5×1079-9 = 4(9)781<80> = 17 × 951943 × 82143703 × 3234727729<10> × 11627815444654599020788123095584012034297042060009246103<56>
5×1080-9 = 4(9)791<81> = 19 × 220841 × 119161702191550529685682411661259505826888075464629351100184247823928575429<75>
5×1081-9 = 4(9)801<82> = 7 × 41 × 71 × 245374687147273887225793787112921431025175442901310300829366442557785738823183<78>
5×1082-9 = 4(9)811<83> = 6659 × 22131731 × 63478861727348092590329<23> × 5344615611541518519142092345809918284921565490151<49>
5×1083-9 = 4(9)821<84> = 79 × 727 × 110961527 × 37749747697<11> × 2078365976193740441100062383336673872912944560743978936605433<61>
5×1084-9 = 4(9)831<85> = 1489 × 8110231 × 113104291 × 298174041702579883781<21> × 12277025800877865993414587167160955843749649919<47>
5×1085-9 = 4(9)841<86> = 6959 × 106753075163519063<18> × 91917188697810839039<20> × 732227508649851536452807324744918339291975057<45>
5×1086-9 = 4(9)851<87> = 41 × 151378134371<12> × 3509141872475244419710606441<28> × 22957366748691638034956244776056368083486004941<47>
5×1087-9 = 4(9)861<88> = 7 × 521 × 58376773691476430072524031586215161<35> × 23485193990349848636446526295866157622335926315473<50> (Makoto Kamada / GGNFS-0.70.3 / 0.12 hours)
5×1088-9 = 4(9)871<89> = 59 × 181 × 1471 × 3182927489919827785798401393765752706013549467690389513297920930861149308009283199<82>
5×1089-9 = 4(9)881<90> = 97 × 162413565831250443780051749375048671<36> × 31737737847671303122440366540440230001658401277094793<53> (Makoto Kamada / GGNFS-0.70.3 / 0.14 hours)
5×1090-9 = 4(9)891<91> = 86711 × 908010539 × 740344089739<12> × 532071932018171<15> × 5152716318356261<16> × 31287057758007623228017094199756431<35>
5×1091-9 = 4(9)901<92> = 23 × 41 × 81228024841<11> × 652758323951824353727357556240818253342335707674908612053157983231715722567857<78>
5×1092-9 = 4(9)911<93> = 29 × 8349124216319561<16> × 2065052437074068004782822877341142946714121539837655502163671817046124918539<76>
5×1093-9 = 4(9)921<94> = 7 × 31 × 21247 × 27767 × 30097 × 214631 × 1761165288936560670600673<25> × 3432953475170947224886585769912556978116484943457<49>
5×1094-9 = 4(9)931<95> = 354696143709150183229548791015245060881149<42> × 140965727670836636058767414943093593415177914282457859<54> (Makoto Kamada / GGNFS-0.70.7 / 0.37 hours)
5×1095-9 = 4(9)941<96> = 17 × 1685231 × 155880737 × 111961624982374121819217599431267378423627164448240506788598481186180861404932809<81>
5×1096-9 = 4(9)951<97> = 41 × 79 × 30169 × 36902830344221207221157752203260132993840861<44> × 1386559352954163391377635360968508726958495341<46> (Makoto Kamada / GGNFS-0.70.7 / 0.48 hours)
5×1097-9 = 4(9)961<98> = 113 × 911 × 1913 × 1457647 × 30909890314819640226001<23> × 5635187705408439312296494744030631542542216201939715292501167<61>
5×1098-9 = 4(9)971<99> = 19 × 684956563753379<15> × 1752415652149854896509<22> × 21923821026948839537792119463652728421315234989731018068712699<62>
5×1099-9 = 4(9)981<100> = 7 × 569 × 26879 × 977771908449855577<18> × 47764917820607985314346638631541977861910406735675432336768597198678137919<74>
5×10100-9 = 4(9)991<101> = 151 × 821 × 303148141000827874088970753549381250007681051411<48> × 1330439071767005564762632148365651514262767648111<49> (Makoto Kamada / GGNFS-0.70.7 / 0.55 hours)
5×10101-9 = 4(9)1001<102> = 41 × 1278769 × 9536610561578762227675171371461299986120416988678269453841555585975224000200345114677646636879<94>
5×10102-9 = 4(9)1011<103> = 340939 × 1212439 × 2261569525362799<16> × 332447192238965018667251<24> × 16087953817037230843971556060391133987658470029730079<53>
5×10103-9 = 4(9)1021<104> = 191 × 6529 × 87559 × 36377798371166695460613531366826622119<38> × 12587884925952537232455953649996438854574145010709106489<56> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 snfs / 0.56 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10104-9 = 4(9)1031<105> = 4088154397648246001<19> × 58311730260939623902609240315143265561771<41> × 2097426672871599146777887291075113076484000821<46> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 snfs / 0.63 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10105-9 = 4(9)1041<106> = 7 × 4463 × 14282576012519071<17> × 11205688185000965834059749841522083253650340258447830506595340171819736421834304594081<86>
5×10106-9 = 4(9)1051<107> = 41 × 4129 × 747199 × 1322983546008437477531<22> × 3722086387584572571968151273864809<34> × 80272001392005121869217070307656968966939<41> (Makoto Kamada / Msieve 1.30 for P34 x P41 / 5 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10107-9 = 4(9)1061<108> = 6967 × 263191 × 5850527 × 18785681 × 564995839 × 1501336423<10> × 22324567030078923249500163072103<32> × 131016174149586867588671541571567559<36> (Makoto Kamada / msieve 0.81 / 1.1 minutes)
5×10108-9 = 4(9)1071<109> = 31 × 2411 × 16369 × 26701 × 153059899788869732376402463256579131325569208425838543091562375153813326542355885760074594006679<96>
5×10109-9 = 4(9)1081<110> = 79 × 193 × 6388411279<10> × 26057487655486109671<20> × 19699726448573631295069843301451379889117550434592936302700773592523342396817<77>
5×10110-9 = 4(9)1091<111> = 276781 × 212343421 × 8507362144162377542449666290405608521176499443953741971027532656581764243047919043410679880110191<97>
5×10111-9 = 4(9)1101<112> = 72 × 17 × 41 × 47 × 18289 × 108346937 × 2067944075203009<16> × 488503384541287898001242635350862627183<39> × 1556074276623079077887957445224758966631<40> (Makoto Kamada / Msieve 1.30 for P39 x P40 / 11 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10112-9 = 4(9)1111<113> = 2269 × 96688519 × 128213419 × 530747994990693305737111<24> × 3349182063673997843536821433241374853654780685942215145513932434976009<70>
5×10113-9 = 4(9)1121<114> = 23 × 263 × 200041 × 2035289 × 443952373522730358003023095039<30> × 457303931730390724716183370178707280616570660476664818059347925723369<69> (Robert Backstrom / GMP-ECM 6.0.1 B1=679000, sigma=1080636449 for P30 / December 4, 2007 2007 年 12 月 4 日)
5×10114-9 = 4(9)1131<115> = 2939 × 127667899 × 44008602089<11> × 14871633626749<14> × 986121964590449054101<21> × 20647231313678306986236008420106045486323509728283055958071<59>
5×10115-9 = 4(9)1141<116> = 59751585534873732921143<23> × 836797878289233584999382844332269816242318659475841300779242302391096039780507002127866223937<93>
5×10116-9 = 4(9)1151<117> = 19 × 412 × 71 × 514219 × 1565741 × 2129830909<10> × 377734842071<12> × 1085667354480396543467281<25> × 313540284136752558930150297045571940657055536442015199<54>
5×10117-9 = 4(9)1161<118> = 7 × 714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285713<117>
5×10118-9 = 4(9)1171<119> = 113451761893099661361741916560523265424931846016438394824059<60> × 440715940992725025596348804318707127294139212236448645152949<60> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 0.74 hours on Core 2 Quad Q6600 / December 4, 2007 2007 年 12 月 4 日)
5×10119-9 = 4(9)1181<120> = 40268313409<11> × 52156789809091053638464115390287<32> × 238065087895546991903658534383205586414208105093747838087878738808741055111577<78> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=855499073 for P32 / November 27, 2007 2007 年 11 月 27 日)
5×10120-9 = 4(9)1191<121> = 29 × 196547651 × 1653356002261<13> × 16602045739944391<17> × 9794996808112422730576317751584611<34> × 3262660367109691796049236751255917325373032321289<49> (Makoto Kamada / Msieve 1.30 for P34 x P49 / 30 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10121-9 = 4(9)1201<122> = 41 × 1219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951<121>
5×10122-9 = 4(9)1211<123> = 79 × 89 × 49227481 × 274458391549<12> × 2309294952302291<16> × 1795009917884048712971<22> × 4541192255176016497353041<25> × 279609956560408339088431886390319692669<39>
5×10123-9 = 4(9)1221<124> = 7 × 31 × 103668634195146479<18> × 529652772019323584350569475910017<33> × 419634942345057429532843777824194673588852290057980851002408093562224161<72> (Robert Backstrom / GMP-ECM 6.0.1 B1=1994000, sigma=2017283081 for P33 / December 5, 2007 2007 年 12 月 5 日)
5×10124-9 = 4(9)1231<125> = 112834510063289823811<21> × 449489779543195000651111258759942012797389869<45> × 985844086264210902762592892891295128151928079697441377159249<60> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 1.96 hours on Cygwin on AMD 64 3200+ / December 5, 2007 2007 年 12 月 5 日)
5×10125-9 = 4(9)1241<126> = 50591 × 873629041 × 32879992741646331241539718817<29> × 1860428797851768428374686311931858938663<40> × 184937469846679383998774640793643608738860991<45> (Makoto Kamada / Msieve 1.30 for P40 x P45 / 46 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10126-9 = 4(9)1251<127> = 41 × 6581 × 418085353489<12> × 44323015863720339833268476933555568552511055171817825815069204459776855565619386326097274027061523325297584339<110>
5×10127-9 = 4(9)1261<128> = 17 × 325231 × 37000461073<11> × 248600828255012949297775593198871<33> × 295870235108268158213148914611133301239<39> × 3322906830428230988417416103454155117609<40> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2313170033 for P33 / November 27, 2007 2007 年 11 月 27 日) (Makoto Kamada / Msieve 1.30 for P39 x P40 / 10 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / December 4, 2007 2007 年 12 月 4 日)
5×10128-9 = 4(9)1271<129> = 17981 × 3843931457165509<16> × 942477006562110761447064968719904363145782491<45> × 7675554588296651640866311850875593032012524032228064348193639269<64> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 3.04 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 5, 2007 2007 年 12 月 5 日)
5×10129-9 = 4(9)1281<130> = 7 × 399271 × 1719378230348833617587044366277777273<37> × 1040477691594168476615746126692780490295108691699389255395317590980581957687501917021311<88> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 3.02 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 5, 2007 2007 年 12 月 5 日)
5×10130-9 = 4(9)1291<131> = 61 × 819672131147540983606557377049180327868852459016393442622950819672131147540983606557377049180327868852459016393442622950819672131<129>
5×10131-9 = 4(9)1301<132> = 41 × 5547391 × 331708005539959846200945699830264904120183676134446346135329<60> × 6627373043733457754101972925473022695394088807721914419175039809<64> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 4.40 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 5, 2007 2007 年 12 月 5 日)
5×10132-9 = 4(9)1311<133> = 24997909 × 72046589 × 12260029361<11> × 1015960288572250664223007601<28> × 222886956658594907746383862055089167317440828789119815095415440728680831080111831<81>
5×10133-9 = 4(9)1321<134> = 1388981393<10> × 4580943858133272901234098370518760018593679951<46> × 7858119105566310646465581070947787541968136461241464994014105774627915529998537<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 4.68 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 5, 2007 2007 年 12 月 5 日)
5×10134-9 = 4(9)1331<135> = 19 × 4294946301634720547509<22> × 7661951585715267309757814664269644345249<40> × 799685573994862057768981025766325851378881906722550433228529476184746329<72> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 5.82 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 5, 2007 2007 年 12 月 5 日)
5×10135-9 = 4(9)1341<136> = 7 × 23 × 79 × 17536644897128650802233<23> × 1719936531432379284578110469620659745107108719<46> × 13033411521941582112132234407177385128654436282436915981843640207<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 5.81 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 6, 2007 2007 年 12 月 6 日)
5×10136-9 = 4(9)1351<137> = 41 × 1219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951<136>
5×10137-9 = 4(9)1361<138> = 2586391 × 67013239 × 283277999 × 12781463012399<14> × 234675897030933031<18> × 9765700208842306517146009<25> × 347656157860758632788253323926488240156475456022690145059721<60>
5×10138-9 = 4(9)1371<139> = 31 × 331 × 47544701778085020275810154894971<32> × 10248922027224896426596642095888916302984899684654067207671023535691685726894787458331153439255454505761<104> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=3996350149 for P32 / November 26, 2007 2007 年 11 月 26 日)
5×10139-9 = 4(9)1381<140> = 521 × 577 × 661844711151372897439201<24> × 4902389661419145802057025993<28> × 1234666770227248156342072090871<31> × 41518607355450620807985444070002441367509581972786641<53> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1283802494 for P31 / November 28, 2007 2007 年 11 月 28 日)
5×10140-9 = 4(9)1391<141> = 1557091 × 1642825231<10> × 195463038473167587940520662222486883264308800428740761022878500965139300897802840088840116411739344785400265425162655408015571<126>
5×10141-9 = 4(9)1401<142> = 7 × 41 × 839 × 1201 × 1274671 × 45795007 × 98583161 × 172604959 × 2048640593<10> × 588228411963279153217919<24> × 14444387296375705826010716452904106251340034821926807224988063489538487<71>
5×10142-9 = 4(9)1411<143> = 2339 × 7678802901535212851801<22> × 117630389300918643864328074179<30> × 13290764272933581140590846123083681578082559<44> × 1780642654590329845797643787582718386220435529<46> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 15.52 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 6, 2007 2007 年 12 月 6 日)
5×10143-9 = 4(9)1421<144> = 17 × 285720265191441664337755675562698371459936363289423581013937<60> × 102939022145228428989427304065983196665834399279521532082685405829806319911074359479<84> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 11.80 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 6, 2007 2007 年 12 月 6 日)
5×10144-9 = 4(9)1431<145> = 11821 × 422976059555029185348109297013789019541493951442348363082649522037052702817020556636494374418407918111834870146349716606040098130445816766771<141>
5×10145-9 = 4(9)1441<146> = 761 × 722311211811443489<18> × 90962207514756273437470627999534055252957719010504306563992622925395959061556261858830936389824667546819826986872709453371279<125>
5×10146-9 = 4(9)1451<147> = 41 × 59 × 5970268730389741<16> × 89514634314987140562070529941642327551603414368208045052321<59> × 386764152467374483050690533716910166621405836972248541038074724385249<69> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 8.86 hours on Cygwin on AMD 64 3400+ / December 10, 2007 2007 年 12 月 10 日)
5×10147-9 = 4(9)1461<148> = 7 × 30804104085199<14> × 23188004829165602812995486582609636182325813508087665872012530202343126909481075791876176931561694373372765096407267708124588991446687<134>
5×10148-9 = 4(9)1471<149> = 29 × 792 × 109 × 752100379 × 3528305141284807144178302848697901<34> × 955101178320483387652564653901091192062550077009781733001890240341202021273986351553940732976675729<99> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 10.19 hours on Core 2 Quad Q6600 / December 7, 2007 2007 年 12 月 7 日)
5×10149-9 = 4(9)1481<150> = 8204938527134416079<19> × 60938908725087737739078226900423525825859334463132261253554202452331623580046524674061851568548120203201586029319066409546270090329<131>
5×10150-9 = 4(9)1491<151> = 279919 × 1396178096581<13> × 5250464615140839671<19> × 4663917461528399663647104379<28> × 522454186926086380723528288345256744208246073787532985011208416725624653541884566138841<87>
5×10151-9 = 4(9)1501<152> = 41 × 71 × 5849 × 301673 × 2377056670405894456247259031<28> × 7216593624182899656979319751461431<34> × 567463522224990994815587976391783657930851218965846028456860191438113244343673<78> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 12.78 hours on Core 2 Quad Q6600 / December 8, 2007 2007 年 12 月 8 日)
5×10152-9 = 4(9)1511<153> = 19 × 199 × 1451 × 94201 × 2456042554669170698593684758425118153245909492210089<52> × 393916809814646016551948100067256455621282070935459752206741992118247884075792950119651649<90> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.30 / December 14, 2007 2007 年 12 月 14 日)
5×10153-9 = 4(9)1521<154> = 72 × 31 × 233 × 367 × 190668767 × 15049933389679<14> × 394436722224962502210435443374249441<36> × 34009384186180731129927406696605787600972387399376193654041569409619395347174902797719823<89> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=914284303 for P36 / December 5, 2007 2007 年 12 月 5 日)
5×10154-9 = 4(9)1531<155> = 20431 × 52699109 × 32997845429069<14> × 307535008641326161<18> × 29858758013316752254424575775237339<35> × 153258730444147188544171970047926818140030968120876657797177159787574781970379<78> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 16.32 hours on Core 2 Quad Q6600 / December 9, 2007 2007 年 12 月 9 日)
5×10155-9 = 4(9)1541<156> = 52249831 × 12577330540482969770037590027834896246509937898150565038352486568081<68> × 760845786107138460535930299805308106874138122028043088814610693093595148504742881<81> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.30 / December 11, 2007 2007 年 12 月 11 日)
5×10156-9 = 4(9)1551<157> = 41 × 3331 × 35969 × 1017848523704938603825921317057295144713386404779138047350667126900583686640549559755179247859037923439803191138293835308463745407841774837909510709<148>
5×10157-9 = 4(9)1561<158> = 23 × 47 × 32993 × 64414577002263313514982818321328963237311<41> × 21763981302826500962913776820417810329105314486317929333032864905086682541577240814547337472885523445053489457<110> (Robert Backstrom / GMP-ECM 6.0.1 B1=3594000, sigma=500330710 for P41 / December 8, 2007 2007 年 12 月 8 日)
5×10158-9 = 4(9)1571<159> = 192370543578919<15> × 255761895497279<15> × 6553146809446631<16> × 916954738515527411860196269384889891<36> × 1691210995646724198680462578472437912581425581533448011756847939729769453981971<79> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 25.62 hours on Core 2 Quad Q6600 / December 14, 2007 2007 年 12 月 14 日)
5×10159-9 = 4(9)1581<160> = 7 × 17 × 857 × 49027779139660531657236990478805291077924752164576449016012472667013129639253601090377808066050224056950668248629673573046488140180226116117392114372003177<155>
5×10160-9 = 4(9)1591<161> = 1301 × 16619 × 21101 × 1275702177331<13> × 85908371335931054388345480279856770371684771325906425791310657684001908497784611102498140601439381805555342897809038594301742061297659319<137>
5×10161-9 = 4(9)1601<162> = 41 × 79 × 673 × 4447 × 32719 × 80681 × 5680586536857751<16> × 796598644754494734847207<24> × 4317902435662047712886370329571397735002934322367992697539788730875847585558966813303092015376850978713<103>
5×10162-9 = 4(9)1611<163> = 68385977371361886229008858431010504877885471<44> × 10358845079111018892823016494495871163939965326959587059<56> × 7058161771042422170571387133040680162138563583374078964992316019<64> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 48.82 hours on Core 2 Quad Q6600 / December 8, 2007 2007 年 12 月 8 日)
5×10163-9 = 4(9)1621<164> = 7859233 × 6361943970868404079634742983189326490256746428054747836080187468675378373436695412898434236521553693598344774865435342100176951109605733791070960741334427927<157>
5×10164-9 = 4(9)1631<165> = 2671 × 77632909 × 12338521168499<14> × 4339455695928017012813559346271651<34> × 2130438876068504052547916867650293287718131453411<49> × 21138920651137598568207584663615217929520666173979820026871<59> (Robert Backstrom / GMP-ECM 6.1.3 B1=1740000, sigma=266170674 for P34, GGNFS-0.77.1-20050930-k8 gnfs, Msieve 1.33 for P49 x P59 / January 28, 2008 2008 年 1 月 28 日)
5×10165-9 = 4(9)1641<166> = 7 × 13217 × 336823 × 1342533894911660570883052922081<31> × 119512154447369993096909044394391318996270357547417000595464931160151177572348506968462422136153224479859451686838281653482103<126> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1298044432 for P31 / November 30, 2007 2007 年 11 月 30 日)
5×10166-9 = 4(9)1651<167> = 41 × 89 × 809 × 16811 × 1289694079831<13> × 47803986587156910009154269051461<32> × 423642819486377500810088159556192139680472557229<48> × 38574774798609590656685912133706632252046886635615382500322326219<65> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3081156423 for P32 / November 30, 2007 2007 年 11 月 30 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P48 x P65 / 20.00 hours on Core 2 Quad Q6600 / December 10, 2007 2007 年 12 月 10 日)
5×10167-9 = 4(9)1661<168> = 487 × 222337 × 23014727 × 5713048030476121<16> × 6789977630872169<16> × 15940947410658887<17> × 149782322840456863<18> × 7822504642349087095520767<25> × 276927914605709354554139056324848980453331776912673738691936609<63>
5×10168-9 = 4(9)1671<169> = 31 × 29150029 × 97690322401972470211<20> × 285672459115302906984888083354597717349768178359030194770540009<63> × 198266528819518056600744503449893297480133294347181748253063893651091266424791<78> (Dmitry Domanov / GGNFS-0.77.1-VC8 snfs / 52.63 hours / May 15, 2009 2009 年 5 月 15 日)
5×10169-9 = 4(9)1681<170> = 103867969519<12> × 481380354613110765223449327761764542557332592232975929577341524309190534798366110727051845335110887467891563415130208115915138264040218606403351771292075911289<159>
5×10170-9 = 4(9)1691<171> = 19 × 1319 × 586499 × 4253651 × 287762731 × 1571627699671<13> × 17683094034770883331648607350013031106409399535639596526876536282293288877417087935971065596970377855594766306964692797065815656183519<134>
5×10171-9 = 4(9)1701<172> = 7 × 41 × 1363684689367687199660001585916252959225073<43> × 12775389298778802140820274185385735600606854567622114532762344954306460995067145385939039085787137146377153359945100703455866041<128> (Robert Backstrom / GMP-ECM 6.1.3 B1=6672000, sigma=1353186009 for P43 / December 27, 2007 2007 年 12 月 27 日)
5×10172-9 = 4(9)1711<173> = definitely prime number 素数
5×10173-9 = 4(9)1721<174> = definitely prime number 素数
5×10174-9 = 4(9)1731<175> = 79 × 20231 × 380865912571<12> × 4898129851235367957577260784211<31> × 25158602557607514185108391856771<32> × 66655601088375936617029929517464180898864177819526417473641257139155693161396991319152846401109<95> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3973875319 for P31 / November 30, 2007 2007 年 11 月 30 日) (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1681252270 for P32 / November 30, 2007 2007 年 11 月 30 日)
5×10175-9 = 4(9)1741<176> = 17 × 151 × 20047 × 4522729 × 263806054829311<15> × 5527783877567354879114187218091240688817<40> × 12611585228798916490707296465532656680368007<44> × 11681232988785132136583412787907066881320914122423005884237019119<65> (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=2620444012 for P40 / September 18, 2011 2011 年 9 月 18 日) (Warut Roonguthai / Msieve 1.48 gnfs for P44 x P65 / September 18, 2011 2011 年 9 月 18 日)
5×10176-9 = 4(9)1751<177> = 29 × 41 × 179 × 152816237805229<15> × 473714134180151<15> × 2405177340503399638708691672551518337870846459<46> × 13492802660033984006612359816895332257537361895695968364623139879859593986052892810542871592481601<98> (Warut Roonguthai / Msieve 1.48 snfs / October 17, 2011 2011 年 10 月 17 日)
5×10177-9 = 4(9)1761<178> = 7 × 177059483635231<15> × 3106048752128519385508195503158167772519<40> × 1298806647983785596528523979146652933866457893477761801393520649313857242439698327529459742393360224736155505255204495187417<124> (Serge Batalov / GMP-ECM B1=11000000, sigma=2193548319 for P40 / October 12, 2011 2011 年 10 月 12 日)
5×10178-9 = 4(9)1771<179> = 782577620029453544339<21> × 1345913935872960548390358124629459656000261160856127000840812914157594141<73> × 47470662254184020881014826579875844426717829023263974921910560557458960669934650620209<86> (Dmitry Domanov / Msieve 1.40 snfs / December 14, 2012 2012 年 12 月 14 日)
5×10179-9 = 4(9)1781<180> = 23 × 113846311 × 6556836617<10> × 3117103844759<13> × 35206166371893958756001<23> × 744371522380443488711993<24> × 1236102068207771676626761<25> × 288412947506411033293333096187578610444338168455276636082084550125168338792313<78>
5×10180-9 = 4(9)1791<181> = 701 × 7132667617689015691868758915834522111269614835948644793152639087018544935805991440798858773181169757489300998573466476462196861626248216833095577746077032810271041369472182596291<178>
5×10181-9 = 4(9)1801<182> = 41 × 716537413383839293779526153751<30> × 1492967389047169323869609972472013006063<40> × 1139979271315610522600095730084012387501182101110914555891037280480043011173458096504960591380017667046403421527<112> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3230981753 for P30 / December 1, 2007 2007 年 12 月 1 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=244070835 for P40 / December 14, 2012 2012 年 12 月 14 日)
5×10182-9 = 4(9)1811<183> = 709 × 543567301 × 54571508805559<14> × 75730195413089804249820480694771<32> × 512529666008525734935878960871640359760624350739<48> × 612514534835576326617008267764327259199181374791989667327652670231175206473569<78> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=45527799 for P32 / December 1, 2007 2007 年 12 月 1 日) (Sinkiti Sibata / Msieve 1.42 gnfs for P48 x P78 / January 29, 2010 2010 年 1 月 29 日)
5×10183-9 = 4(9)1821<184> = 7 × 31 × 3165713 × 77472287910551479367<20> × 195504673910242933017463257227303<33> × 291008170645721972448641263648457<33> × 112239363256296068454677594340791669205919<42> × 14712444159598157908571341216817428295929086252137<50> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1488224249 for P33(2910...) / May 13, 2011 2011 年 5 月 13 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=829974605 for P33(1955...), Msieve 1.48 for P42 x P50 / May 14, 2011 2011 年 5 月 14 日)
5×10184-9 = 4(9)1831<185> = 144289 × 39454991 × 214759040851<12> × 40896239592928633574423963215552117749878587355705556108081210811099980402990371487759127277796426148224218730825458530393823684794729659162029232896117162707459<161>
5×10185-9 = 4(9)1841<186> = 97 × 2087 × 17261800756543759374730765771639<32> × 143083554866769401592781288644870597012520617279293001268536643044307613502662804771215116961137718816005034379913868957907183654172777638690597726071<150> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2991607952 for P32 / December 2, 2007 2007 年 12 月 2 日)
5×10186-9 = 4(9)1851<187> = 41 × 71 × 331249799 × 2021736601<10> × 1789102729291124948044349702266201164169636186245050771<55> × 1433548279136874640910543281949644884577370261766670767200051771583586600892181744029840964925338025008287376989<112> (Andreas Tete / factmsieve.py v0.76 via msieve 1.52 (SVN 927) for P55 x P112 / August 12, 2013 2013 年 8 月 12 日)
5×10187-9 = 4(9)1861<188> = 79 × 383 × 503 × 35673353 × 4091947081<10> × 15811261488761<14> × 45965797331571209<17> × 114797559829036670510462101248717556392985309259377<51> × 269754214382556229385406517510681575920015777195740966100164836361559106388730982289<84> (Robert Backstrom / Msieve 1.44 gnfs for P51 x P84 / May 1, 2012 2012 年 5 月 1 日)
5×10188-9 = 4(9)1871<189> = 19 × 13802153877821<14> × 3150749030563853522210430614191637955029256134898597237886651<61> × 605139813544285082631620014759031682025155066443297582752364276388607781348352883428475711921927225782270483185059<114> (Robert Backstrom / Msieve 1.44 snfs / March 4, 2012 2012 年 3 月 4 日)
5×10189-9 = 4(9)1881<190> = 7 × 714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285713<189>
5×10190-9 = 4(9)1891<191> = 61 × 409 × 47568134021252279670958230004481<32> × 42130900895096262260841447387806243682255781771378005956259860699611715275397274609349024640992587587106601079256289499605009903500893334162184491530113339<155> (matsui / GMP-ECM 6.0 B1=63126276, sigma=2608118781 for P32 / January 14, 2008 2008 年 1 月 14 日)
5×10191-9 = 4(9)1901<192> = 17 × 41 × 463 × 521 × 2879 × 63103 × 1040153 × 2819407 × 400251252776317417351<21> × 13945662184552357230979445734626185709010400411628693696698655581165879801135419531638886682970117406072033057150211745934996040242532071392793<143>
5×10192-9 = 4(9)1911<193> = 3001 × 81839 × 32917561 × 525862408336157891<18> × 2277197690146213337256074473639429293641<40> × 516467722975921274380928102845908475672012633537619596630928796946742526268351615828312646941332008361647102792650598059<120> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2226941130 for P40 / December 14, 2012 2012 年 12 月 14 日)
5×10193-9 = 4(9)1921<194> = 2111 × 46280192363403452945907094423911587820648171502970737<53> × 511783895437135635957154567370339647742796615436941073014585973056439262887348563848497984154002794113583812498276542761057932913246823513<138> (Wataru Sakai / Msieve / 514.11 hours / February 22, 2009 2009 年 2 月 22 日)
5×10194-9 = 4(9)1931<195> = 311 × 568077914109210905300509346220531359<36> × 132431729646308774647525574567728230397013165316585384835709<60> × 21370252768992179896389372845940321522055761100150580614076984207751248231030310254841786517307851<98> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs / 2068.37 hours / October 18, 2008 2008 年 10 月 18 日)
5×10195-9 = 4(9)1941<196> = 73 × 670130221721<12> × 121197506550469543<18> × 17419805216903852207<20> × 182889568870203650794071284414362631529537215860200743756745794054183<69> × 56336617018895558480557743311920865759410306893049338916891863488753333291959<77> (Eric Jeancolas / cado-nfs-3.0.0 for P69 x P77 / December 14, 2020 2020 年 12 月 14 日)
5×10196-9 = 4(9)1951<197> = 41 × 9401854351<10> × 113326059632188225855489<24> × [1144571269004122015126473162021665822069630855800863769491401872727303882051673618016074293866198362055689086153303887844158212852243278051450551173504713329853809<163>] Free to factor
5×10197-9 = 4(9)1961<198> = 823 × 3257 × 34031 × 6940928766071<13> × 76433656928038861510273<23> × 2168632766838689918632576115783405377195649<43> × 4764194222655886177034856326166901781481228840032171605198783310162696238849016167824739197316648246761058353<109> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3644175409 for P43 / October 22, 2008 2008 年 10 月 22 日)
5×10198-9 = 4(9)1971<199> = 312 × 149 × 191 × 32159 × 73121 × 5383451 × 7870321 × 76463397682249<14> × 277157198615736049907561<24> × 55365484228668070084645651<26> × 1266723745657829018111835301<28> × 1234605886084633425685302685824646300558581673365398822043899334171647853679199<79>
5×10199-9 = 4(9)1981<200> = 1224112416041742410052808832168959<34> × 40845921783620723265274965609618243098936302659169196754666765677273901878095642440080026040452661066087357309697423682859960350348666458327845592281510888305426519049<167> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=3000000, sigma=3511593206 for P34 / December 6, 2007 2007 年 12 月 6 日)
5×10200-9 = 4(9)1991<201> = 79 × 4565579173849692757873296750073841<34> × 2583225704384937328000587461759654291646576490909<49> × 536642026677566434273779623461759618234774141258822558765719076659916305356675307903158678217707488179925008893306941<117> (matsui / GMP-ECM 6.0 B1=61403276, sigma=1148756598 for P34 / January 12, 2008 2008 年 1 月 12 日) (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / November 11, 2012 2012 年 11 月 11 日)
5×10201-9 = 4(9)2001<202> = 7 × 23 × 41 × 4111 × 524201 × 351491599239480716505408856367695683943660571752657413968157933697041017672665355226779002107170087036998525714552986906222025494747742843604979879430416887579937515834331130678391923922281<189>
5×10202-9 = 4(9)2011<203> = 620039591386186673742100511722553839<36> × [80640011855078302654973137159272851607192266102361698416396047391880102092340562254252944759447900373598888552931727121158419490893228552070627559022401517438419470969<167>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1418237307 for P36 / December 4, 2012 2012 年 12 月 4 日) Free to factor
5×10203-9 = 4(9)2021<204> = 47 × 6311 × 3532232180645247866178503<25> × 477226688622846597352784630392093393618543946940609795264451402687415897846269189430456029041032544560353048931173930388590342560485659844114119215613744884900257290107041641<174>
5×10204-9 = 4(9)2031<205> = 29 × 59 × 131 × 131549237628728791<18> × 646250207564486619089<21> × 64521926329539054530400461<26> × 4066795581604006870147094986330574831551403343009871125287663557417028761643387403040078810887964430866629647767942801726921045628101609<136>
5×10205-9 = 4(9)2041<206> = 2788493537<10> × 109932504953<12> × 4186642417283322650114215290660828889<37> × 38959050949382317718621391195540168759093141935912319020331005599315998217943691344299652671473113722689050447544516080459409109604241858417999899879<149> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3413262303 for P37 / December 14, 2012 2012 年 12 月 14 日)
5×10206-9 = 4(9)2051<207> = 19 × 41 × 1039 × 42179 × 25064218649<11> × 584341255810512879944766700394141381604319106940566523946165218163568894872715782013581994035319590743956971579508264598960034813380447788463625692573565604420281323889024937589821943841<186>
5×10207-9 = 4(9)2061<208> = 7 × 17 × 167 × 4894639 × 22680457 × 6117025789609527198945500209<28> × 4620066213700775648313410861612521773887<40> × 3781795272529984440068829006591316779698834950543<49> × 21205454170246584261926717590226248591789493403457997615569769301720091441<74> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=3436708405 for P28 / December 4, 2012 2012 年 12 月 4 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3091862823 for P40, GNFS for P49 x P74 / December 20, 2012 2012 年 12 月 20 日)
5×10208-9 = 4(9)2071<209> = 94899933524815260035997515965203932136517069<44> × [526870758944478766272574841095793155974221776958428610951897891518075072046221943673516627957136196567298452038010395199111496384380258423680634581871501699772694739<165>] (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=6667949318 for P44 / January 28, 2013 2013 年 1 月 28 日) Free to factor
5×10209-9 = 4(9)2081<210> = 113 × 1354326731862442939561<22> × 23332615414616667152087<23> × 258417551878354448445564512701023764401<39> × 541854493863304841510492309540467813106028824211620389481943637343834342881296917314395862586437146477400919219916778190733401<126> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2457127502 for P39 / December 19, 2012 2012 年 12 月 19 日)
5×10210-9 = 4(9)2091<211> = 89 × 571 × 1579 × 2372873091899629546001<22> × [26259548091976884317484381231270781965992449456452996216101959459619913443601282392024713418297005674630732066613804320218496684440206999549345129594916057202602373174889799615142791<182>] Free to factor
5×10211-9 = 4(9)2101<212> = 41 × 1219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951<211>
5×10212-9 = 4(9)2111<213> = 37748692873579<14> × 13245491749198000376472912733537081686152455764364599595189614788079319491241078185202023954880373484717250907506640745890116771358797835780713816958738715900460638540575017655261184989789560862257829<200>
5×10213-9 = 4(9)2121<214> = 7 × 31 × 79 × 1065927449<10> × 32182505829633006791<20> × [8502285352582156300448131603577557449937405676437925320062292042410128256827530851439694468204013013341458620102722436893184539064434156790185679592791529670913128892297493379628943<181>] Free to factor
5×10214-9 = 4(9)2131<215> = 27191 × 614418444707256811<18> × [2992819878536560353405086623379482337638003242938429222128088423189546775161142704891802592405782099476108063779191232375917868175414807472405513120261218815934431224458700703288512737000841091<193>] Free to factor
5×10215-9 = 4(9)2141<216> = 439 × 3099041329<10> × 367517578210752418562557638268430005550115712143556270649955305746182441272012479364972243013428514766442332836015667274126853266174126303587846743750953669301006673743080031633188004239838589111416879761<204>
5×10216-9 = 4(9)2151<217> = 41 × 55387445609955656346169<23> × [2201784504939778484236854508404341851468264324912421499997415123250118039497401524119240859866777577613793934211704315647915697832337985159026500642523598008710543974665490640540254214157203479<193>] Free to factor
5×10217-9 = 4(9)2161<218> = 15718912000201<14> × 534932025262111550959<21> × 32325250189330428157662391<26> × [183953064769185429107956089693577688386887659785154297658387221525077883669466381125607423882703812496022798578747455899704229449364963443054533677854394174039<159>] Free to factor
5×10218-9 = 4(9)2171<219> = definitely prime number 素数
5×10219-9 = 4(9)2181<220> = 7 × 12343 × 813383 × 426592316934271<15> × 5458266930972239134549031<25> × 15574282183561793844557028916165575071386284168291483196699289<62> × 1961915529627615224097326188676591420419208033521883896632499890805015560445818727900325529147292925604328993<109> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P62 x P109 / February 2, 2021 2021 年 2 月 2 日)
5×10220-9 = 4(9)2191<221> = 747611 × 355178231 × 1649377646878650691<19> × 1643785755581691552264629328800100849767554161799363881028224047514337530113163569233564091<91> × 69451665439581573585051950465413153328097479209545149951454519439279614377080813396586069044922371<98> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P91 x P98 / December 10, 2018 2018 年 12 月 10 日)
5×10221-9 = 4(9)2201<222> = 41 × 71 × 401 × 1567 × 583108247 × 468775867350347482214946867551258596471817685520182272174822884985202951522610984499233519134987893412410058860439827601804221013593923946633554260595766787620619773478267445290481036592829772305364455569<204>
5×10222-9 = 4(9)2211<223> = 135070244265841<15> × 644004839377421<15> × 114013426019258225012871773423352688509269<42> × 2196261205011495299922971104808002817334769652382972569299<58> × 229552063913934255756320670600649025649127986081183905318604624040659610676590821430931211282701<96> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1214421351 for P58 / December 31, 2012 2012 年 12 月 31 日) (Andreas Tete / factmsieve.py via msieve v.1.52 (SVN 927) for P42 x P96 / August 5, 2013 2013 年 8 月 5 日)
5×10223-9 = 4(9)2221<224> = 17 × 23 × 7442231 × 41224668145860684097741684780079627347379493920249<50> × 277139342800788716480013969306510955775257870864917533592729184187605934651633<78> × 1503954681405809497659653289964597932384550491770415811579439497939380498389745021863263<88> (Bob Backstrom / Msieve 1.54 snfs for P50 x P78 x P88 / June 5, 2020 2020 年 6 月 5 日)
5×10224-9 = 4(9)2231<225> = 19 × 8369 × 3326284165636101568150024312068118507126391261327493376651460909614388415198180197831126131<91> × 945330101649196762437636845806375265187590177382438477190397987835347978791158933908584954499326289129793560037813746228785301551<129> (Bob Backstrom / Msieve 1.54 snfs for P91 x P129 / October 26, 2019 2019 年 10 月 26 日)
5×10225-9 = 4(9)2241<226> = 7 × 739075591 × 837743306711<12> × 12537204844873<14> × 12816461717177072437057657<26> × 239133455405500486719938191<27> × 308920966558508340816749170157147470997859479736879019489360513<63> × 97188649543352110351360227686855138652311602652684051438814999043240760879551<77> (Markus Tervooren / ggnfs-sievers (14e, 64 bit asm), Msieve 1.51 for P63 x P77 / December 8, 2012 2012 年 12 月 8 日)
5×10226-9 = 4(9)2251<227> = 41 × 79 × 110951 × 64041641821489<14> × [2172527978546517976572120868116487381236564222143282177012778700139193550399803147536757946923878499491108555167689637644630464814768087285568584824226940675156532021583856179958814540028766802542983613271<205>] Free to factor
5×10227-9 = 4(9)2261<228> = 15633449716361<14> × 5436565219856525446057<22> × 6268842553904273209537330999834824409<37> × 1962761629217768326622346970986505310441640875119<49> × 25740202510416078025170231924406096461928656749407<50> × 18574780905248720218969658238934342277262356698494301817839<59> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=561206546 for P37 / December 3, 2012 2012 年 12 月 3 日) (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:4148416314 for P49 / January 7, 2016 2016 年 1 月 7 日) (Serge Batalov / Msieve 1.53 gnfs for P50 x P59 / January 11, 2016 2016 年 1 月 11 日)
5×10228-9 = 4(9)2271<229> = 31 × 479 × 170027411 × 660440489 × 2992007807179<13> × 17878588291541<14> × 407335751924989197536537863095902439379<39> × 137616874179087862465961512339763747191725783010520108133352762612906512773132804346215459260328931272267691488669567936883551208314843981062241<144> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3476326912 for P39 / December 14, 2012 2012 年 12 月 14 日)
5×10229-9 = 4(9)2281<230> = 8968525039<10> × 160565100445927<15> × 38034982545772192327<20> × 40084491344491141528577<23> × 131398847781994019375479673<27> × 1232449586749178606231971510912508953<37> × 113962613007990367575269430012170429358541958081<48> × 1233999849772612864563794650723622175485009816390277337<55> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2024149181 for P37, Msieve 1.48 gnfs for P48 x P55 / December 5, 2012 2012 年 12 月 5 日)
5×10230-9 = 4(9)2291<231> = 881 × 1753849 × 59446661 × 78844559 × 13363795169507715299<20> × 5166219941063676021780835668355624545483754819000193674192077789012106984000898486687685818052370330209029328738407475364732039920271717854496643519990289466956118989102360420501254963039<187>
5×10231-9 = 4(9)2301<232> = 7 × 41 × 5351 × 306742439 × [10614005056016225533796308698928198913582067079776363083751410010237491831667548492370200975504535382190485696373546999267992807793387093972399152025764110822176726044231738060119964553783557820541654839337251882841337<218>] Free to factor
5×10232-9 = 4(9)2311<233> = 29 × 3314479655559993251920284699461<31> × 277113702649196393504243705628575071669<39> × [1877148572886480496630622396615270196560801969561583666624859532780322749559604814103234997521774997746378594843755749779344199236840109919255490826638689299304331<163>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2155262415 for P31 / December 5, 2012 2012 年 12 月 5 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2051468764 for P39 / December 14, 2012 2012 年 12 月 14 日) Free to factor
5×10233-9 = 4(9)2321<234> = 9887 × 27076377137<11> × [1867733530727717911495805507705604140597828907617433781042829276911400496424890587550916729786923641478563180220950453000426648633717476868941363951981364114379981175847751044703225286490789366756699717646721434560407289<220>] Free to factor
5×10234-9 = 4(9)2331<235> = 419 × 1061 × 1481 × 1531 × 816103513276795015169<21> × 7013814453128966028986429848933289<34> × 866584322962240366223956886391171421369346029904632400891906041773200619440444542740323091656381414646191591352008364740719215848386650720301625413783294016695567765099<168> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1191349640 for P34 / December 5, 2012 2012 年 12 月 5 日)
5×10235-9 = 4(9)2341<236> = 386159 × 14865699555073<14> × 8710006758131599907915087459772432802386731504930418455561920729005537797785943279904425539563674193735590109143838847137970326759769122589318382509633871396440989606828550295828714854311912839552102944543081183224313<217>
5×10236-9 = 4(9)2351<237> = 41 × 3691 × 5501 × 248144362978055894821638721656649573049<39> × [2420449597904680846280853366005023217858990744874698304486668044916874404625524254428038004274474295637247362937096709023883216852077787788628306467693502798705926733067364716243221523602089<190>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=81727846 for P39 / December 5, 2012 2012 年 12 月 5 日) Free to factor
5×10237-9 = 4(9)2361<238> = 72 × 3943 × 160687 × [161052104651146487355666605219888128344979961603863421784305454486309653413655035876968737232426305646132580733352394174170367217753471018803205602697726779682139931746528409606769779918274946321511482348515281224848491810054799<228>] Free to factor
5×10238-9 = 4(9)2371<239> = 1871 × 2659 × 33619 × 4663403887166422769174841329<28> × 547862493653528098063906852199<30> × [117008789937859567923219107920260985472659742639060659982743486135605070068937269407914558148543676016228583780659219493614533218571945859622909499784155220658983396372231<171>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1041607766 for P30 / December 3, 2012 2012 年 12 月 3 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3265132218 for P28 / December 5, 2012 2012 年 12 月 5 日) Free to factor
5×10239-9 = 4(9)2381<240> = 172 × 79 × 3527 × 7180185993393040627484018978791<31> × [864776573863547094135536138065181720412177705953631448108629608996403755555007725894791828128274943171237978340412277753787340968831881968568870035379408525496907173719554480615362836752729738042754473<201>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1107527957 for P31 / December 5, 2012 2012 年 12 月 5 日) Free to factor
5×10240-9 = 4(9)2391<241> = 56591 × 326941 × 18266434376522593380011<23> × [14794471938981704351450955505068780167513909857611661655750852211247430837871855120393584335166609767764154234478515203613770583074275723089038392047825235568251480702366864104893581979383867452776398140908551<209>] Free to factor
5×10241-9 = 4(9)2401<242> = 41 × 7235951 × 77257540670295239<17> × [2181472040859007101851921199097633501737760418881017744630839702970992206236945720150025660477313617610798188960090238645946606335063425441041394798294069715721546400504612339661945969404877861567864514779525913637159<217>] Free to factor
5×10242-9 = 4(9)2411<243> = 19 × 65651 × 398056320856679304361<21> × [1007002463742479211055963640699792743244521004078686363192654365034571434648914223907255493252639152960576000023973692704962869757234861234947313525264396306700418877166054023913608913671056615647659962742939422701799<217>] Free to factor
5×10243-9 = 4(9)2421<244> = 7 × 31 × 521 × 32865167 × 54246727 × 728172863324056581391882604327<30> × [34066590781100810050966838221876781450544264096138340899981309389882829172230778018650979025365568735172677357210229344926798984511487699204872143857546869078064787372560275905699450889762489641<194>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4274702915 for P30 / December 5, 2012 2012 年 12 月 5 日) Free to factor
5×10244-9 = 4(9)2431<245> = 18092311085010007397019439362300305549<38> × [2763604923940668772130017142350081438595441911655789707491226882227017518192053820372669804439577170090764624697875244079842359817999532803064425867243084978227362559701137753418270662197513119397939903597459<208>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1538564130 for P38 / December 14, 2012 2012 年 12 月 14 日) Free to factor
5×10245-9 = 4(9)2441<246> = 23 × 194339017 × 9119845048159<13> × 12265766904179222622756773088472583955785027982450737695172690164327627785445049673958688490153021828193736566732049881596015444797735820504674305953859325206998000448837531938308249552558146652948812170947332535189894725639<224>
5×10246-9 = 4(9)2451<247> = 41 × 229 × 775639 × 2181486179<10> × 3169426181459<13> × 56299518510191446619<20> × [1763815845694559393251471373107374335358626640076486802733191555939711355916392525141275234499193973800705616774414885506415247644999344000708049465543306563127695537499319670384472796590616518519<196>] Free to factor
5×10247-9 = 4(9)2461<248> = 180315996631<12> × 401449315639<12> × [690724762602303343413258213302280640350540049226169109016881240307400963544410806707232821525274834679772615569869662202669571234824498697954403073925087464165627448291107431246741876714864098018301466052081782587310043205799<225>] Free to factor
5×10248-9 = 4(9)2471<249> = 331 × 222492896097089<15> × 3266330779901478259<19> × 36863961608046298935862800529<29> × 56385014040707863774691584411253864742875496970237807338171662195684982422086472665810461285633971021682186722972563710352409251218272259837125646604421274614638569342402800122674275959<185>
5×10249-9 = 4(9)2481<250> = 7 × 47 × 3792161 × 571141873 × 7205625704529587664236512023079<31> × 973804189196456165664928885362812239437360254461429470054450792428846812905563515248931083502330265127514799712653773895016256595204314117661304124175755820578861750681525774609325562668939827557496217<201> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1978561176 for P31 / December 4, 2012 2012 年 12 月 4 日)
5×10250-9 = 4(9)2491<251> = 61 × 151 × 168631 × 10073884729279153556681<23> × [3195426477595973612524279216840522261444905523821594008059958918149227293847442993861904064549611539899506843805011074075401548925721705248394743317016361852141936489352149251302317439386162102486500389623809148056276571<220>] Free to factor
5×10251-9 = 4(9)2501<252> = 41 × 199 × 8623 × 8944073 × 9248081 × [85918705488258504143195334569844705874466678499755975478665937433793247383825124764304905904703206612985631149312082039237727811018791534646786716859522615304435633262714386225941831605791659272624748427589488769868617832440013951<230>] Free to factor
5×10252-9 = 4(9)2511<253> = 79 × [63291139240506329113924050632911392405063291139240506329113924050632911392405063291139240506329113924050632911392405063291139240506329113924050632911392405063291139240506329113924050632911392405063291139240506329113924050632911392405063291139240506329<251>] Free to factor
5×10253-9 = 4(9)2521<254> = 257 × 194552529182879377431906614785992217898832684824902723735408560311284046692607003891050583657587548638132295719844357976653696498054474708171206225680933852140077821011673151750972762645914396887159533073929961089494163424124513618677042801556420233463<252>
5×10254-9 = 4(9)2531<255> = 892 × 12941 × 13165109305834980089<20> × 2034464873449214995355185785217286496691<40> × [182115742462644890752345048841840399256825959335659214870654382865370421283523790544556954947877721162122158729611226401167108224085645293871575255108565969466126588387561191288106755694969<189>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3417571828 for P40 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10255-9 = 4(9)2541<256> = 7 × 17 × 359 × 2903 × 60350129263<11> × 192805147719216669824599<24> × [3464852321581827179502243214491197370068962662227326114641429002813167131283147443454061180559811756007625280596281857760324746081193676459735780226469231779648364193772452989168396176145657605779663234975515364361<214>] Free to factor
5×10256-9 = 4(9)2551<257> = 41 × 71 × 109 × 509 × 1811 × 1933860682639<13> × 16183395841651<14> × 842222538043109<15> × 207125022889378104395895481189<30> × 2940718906767623510461990845776881<34> × 10647736258279579467498794510987508675847410246902654916458900598487550197897375818269204993898005578716987582978870902162032503016607278773199<143> (Erik Branger / GMP-ECM B1=3e6, sigma=3:691247406 for P30, B1=3e6, sigma=3:691246930 for P34 x P143 / March 18, 2019 2019 年 3 月 18 日)
5×10257-9 = 4(9)2561<258> = 36554606131201<14> × 37741839502379934026470168121<29> × 362413888171358735291391477653869779163149594528870849683267066796237072927814920714058238832894974966188467320328103436320199392889413701424332726154519758718703192712489321826430602105020229573768312523719535460271<216>
5×10258-9 = 4(9)2571<259> = 31 × 1789 × 788189 × 843540140228389031<18> × 10892539048107919451<20> × [12448949964228718782740274907637532932827903666019892064844675234710099216500898978467155181656518795219727457986597957770559045915574007395815849383172111781985025906186478173720355293630019413842760091800033461<212>] Free to factor
5×10259-9 = 4(9)2581<260> = 337 × 431 × 631 × 20352503 × 18775871944850267106591341702951<32> × [1427629560906289008288830924493736075099156382978103945586707369979068251696971658377648196282480484714901620239604061525091812414440547991877955149455042497793896176202323087789803263191284319790542632173729499071<214>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2273824481 for P32 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10260-9 = 4(9)2591<261> = 192 × 29 × 4728181 × 228667891 × 160451318818630079<18> × 45848496628793705904442582786021<32> × 6004780461336272695647427965044540539555674698950098294538958927177368644803086693569188755456906829401431911571952060318652455908757998408782078264300118701024184319996116487391530764964090751<193> (Erik Branger / GMP-ECM B1=3e6, sigma=3:4091409326 for P32 x P193 / March 18, 2019 2019 年 3 月 18 日)
5×10261-9 = 4(9)2601<262> = 7 × 41 × 10111 × 47353 × 2902519 × 215640407 × 19255101672565321<17> × 546751347791359121<18> × 5522117026384886180119188799088926025116440075744566554835855017125101616656512066111050374878066819881368776840794200571847209706321365194712056027444325161159283941159612688619426540542612717096046807<202>
5×10262-9 = 4(9)2611<263> = 59 × 10092942875335505259509<23> × [83965364471605933507257292596951200641888176961317447079865595754266288112168044092886639983917673239303739628387269818177786228968519407363879023054028349577176225243051281113474316622412564355428516157315040396734116780093120277241804161<239>] Free to factor
5×10263-9 = 4(9)2621<264> = 9098911 × 130814071 × 195601681337<12> × 7189412284903<13> × [298717147162481235953737699514747164918185730216367629487582569409707104809209244668985918475278945576608819216884477522160101605849429497013670685503017783578309336970597874710519584574238998520615107914403641199980176829201<225>] Free to factor
5×10264-9 = 4(9)2631<265> = 1439 × 18701 × 185799431223349161834611825412895573027556025124393648201188380594081790173060650619813896600907169438936626749640728929814970893218502843790354475215266292018216222155772087864253746431861272928996858837655851814400191685557204504863281532328041976104781069<258>
5×10265-9 = 4(9)2641<266> = 79 × 983 × 1068020739877670399404681<25> × [602850615814210695264393421448810003660212576730702290398533324896400846353225527750931123351963994577039054115236515111035236185638929953244807507009023627796520755098990455607628199677995765762563326602415018424794013139421370878243223<237>] Free to factor
5×10266-9 = 4(9)2651<267> = 41 × 81929 × 529819 × 1927768135705081<16> × 101960304982996284688177289<27> × 38959646285432371565381393976124709<35> × 36687662006411889746589425544649505860681776022500326263124625873947511292332975219291487748434440959581260349664847328606871211193043544244947404834617049660000861584040191635521<179> (Erik Branger / GMP-ECM B1=3e6, sigma=3:883384504 for P35 x P179 / March 18, 2019 2019 年 3 月 18 日)
5×10267-9 = 4(9)2661<268> = 7 × 232 × 23201 × 4732650127<10> × 238719001872937<15> × 347050689123701630333561<24> × 3842546774148045831676969<25> × 19799760587462133373421954345995683140194399<44> × 2388307036157731379512323383577716367902119012486917338028015425736167<70> × 816875795850586670664221667787020898958501559574447404665882336414226419599<75> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2312474809 for P44 / March 18, 2019 2019 年 3 月 18 日) (Robert Balfour / CADO-NFS for P70 x P75 / March 31, 2020 2020 年 3 月 31 日)
5×10268-9 = 4(9)2671<269> = 181 × 5839 × 1355749 × 2078431 × [16789511107024760465106010042065653297397714123251551792272692501736456110174931229812937578651928439508029868246059598551890217128444721626320961129167855137789480781567883578738249053221229468014487909027186280011742618392631614220677070544456545071<251>] Free to factor
5×10269-9 = 4(9)2681<270> = 19031 × 1953911 × 2184352162058497<16> × 59625121972250844263<20> × [103240875780394157766221385138527815416569919109768377049043053765733147074046355518195080251005228841273214038418972641203908846268840056938889254090284401621202507781866807524975197266394544696114613829818200510910694272641<225>] Free to factor
5×10270-9 = 4(9)2691<271> = 2711 × 404600722445325139<18> × [4558414704633507792683576093087692688420473682008239449005377523819225907350988409719022251054832350991774227359962727073961257128217666129997452478266531162436755051476892121963708065585110311263180843854968838667017356473622315224162505725333179579<250>] Free to factor
5×10271-9 = 4(9)2701<272> = 17 × 41 × 2560057 × 2224386497<10> × 2069097946944076250947982868065394769967<40> × [6088303466559739907397231217864294002008977700212168483484388883596553371751149949030993831035294776847089574719493176516462660511060314310647346192240123607557879305505718563352202645999430253185216656259371150921<214>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1677004517 for P40 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10272-9 = 4(9)2711<273> = 4772241987374977617368494339880489<34> × 104772557913608716562333957988174842445671867816164115301359865591288360276533789172644107903021649083355727997896297404787053543818182574869399446439703728607711871286907207008076294268098748652756172693277321112108532463222311179532716319<240> (Erik Branger / GMP-ECM B1=3e6, sigma=3:4216900385 for P34 x P240 / March 18, 2019 2019 年 3 月 18 日)
5×10273-9 = 4(9)2721<274> = 7 × 31 × [23041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023041474654377880184331797235023<272>] Free to factor
5×10274-9 = 4(9)2731<275> = 991 × 45274531 × 660183547499309<15> × 524089122913748558276555653992440369<36> × 1850774003817930258679248541904975879581<40> × [1740280106167861952552638101680378788706280395827139208467897023610247213392742576436580392250841277114601982767186015703945440890087458373835794506452429981515337276880968171<175>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2286737862 for P36, B1=3e6, sigma=3:2286737946 for P40 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10275-9 = 4(9)2741<276> = 126199 × 7728095737<10> × 70561924067017<14> × [7265594949577486529511758283153501973838316961364666404986681069311734724450638519469415059904355733666808459448691602475741335690011684105651804852842274760676373013203688343632150153735114290399378956571461708708083553461506586563594948221000321<247>] Free to factor
5×10276-9 = 4(9)2751<277> = 41 × [121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951219512195121951<276>] Free to factor
5×10277-9 = 4(9)2761<278> = 10607 × 3710687046191925873458971754007841<34> × [1270349167570653780439793762650686595623269846655046376553794999227217134234418363148536777384779822663045244286450390111285646568132148064898321852832048893333581883069032217442610748757649998581639398410803472607557617053918605234713247193<241>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:274988133 for P34 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10278-9 = 4(9)2771<279> = 19 × 79 × 3889 × 839532511 × 3791953537557765527231052427273709<34> × [26906105621361195422399072582179262992833469087390411115931909150803579387754576283524176522312276958389674655342655919900144989048190737067648068309621840291721750473402687938633936857537548420780534125966172827367282375434750881<230>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3670096289 for P34 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10279-9 = 4(9)2781<280> = 72 × 1240071219151<13> × 714136299625961383<18> × 131485702598087981199961838043217<33> × 494249755213363095755636011477686191<36> × [1773050858270490111505071937294496743083299571810511385545623029799837682291432355304189158705280649246161062251596234050407707803223003448518161806531880278236288699227068061429809<181>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2393288398 for P33, B1=3e6, sigma=3:2037244515 for P36 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10280-9 = 4(9)2791<281> = 5479 × 8930837051<10> × [1021825034148431861566721960240338977591875990353933526697582258226286691274754761417396162569541574284356019276853917068306682674027564527010149345898371367414820715188939893410938757952804561622583882338848939476999454725762542643182911735471044999628297486012918979<268>] Free to factor
5×10281-9 = 4(9)2801<282> = 41 × 97 × 593 × 1673069521<10> × 660519068239<12> × 12859673179376063<17> × 14918681471273189939793021125118577150266014711062865950398713128077394838659841458932511166773715978974868921742203968895426836573475837132763946576370128300437919160834028238594919960097936784210226094484252461536606900848115803457089423<239>
5×10282-9 = 4(9)2811<283> = 7107025556219<13> × 2764889122080126059<19> × 813598351952995728804773971<27> × 3136923592785891334592999839301<31> × [99698909165416688003352891663930370453085634083270117991423963779772193968237155231559257121664106086886638373804066212827614659027051573995355434473062246402202394504633625106920990331275190401<194>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:8993171 for P31 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10283-9 = 4(9)2821<284> = 124035841 × 403109291611930135580731056598390782870573675555600094653286544814091275440297937754942944273663609859347025348907014707144203585478168362642859010404903853556328126158309355116155498957756895444438515154664045854294646980303056114240399272981105517718866436355278955217468151<276>
5×10284-9 = 4(9)2831<285> = 15114056330012724052105590302677734707140271<44> × [33081787515051498131601340802880334963651422818040294633680980580709942102864764184766809014307813996925257480709795679000794379055520062854263994693918879774373970460573159606079900874640492797863062783138717891449392301169044286619937963321<242>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1:4224871630 for P44 / March 23, 2019 2019 年 3 月 23 日) Free to factor
5×10285-9 = 4(9)2841<286> = 7 × 11088344233<11> × 215278204457<12> × 299230047725990414359938430469668582590621801002087427108730473703938080443257592076540060320259905642906890873993605866243224236341659089259816486455105202612013929671343521684882665705881894593584691924751549479367021611626495536643704331923059986259792014284673<264>
5×10286-9 = 4(9)2851<287> = 41 × 269 × 961610751227579<15> × 11041736311375333258342953929699<32> × 685364917241947398498429584423175899<36> × 622981738022587735576057300409134611060442193048679739052115250474094586226035534090531313485220531610604999678111010419581776602984631703466592202752375016052306290610946071595860184971627842718058801<201> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2762956854 for P32, B1=3e6, sigma=3:2762957114 for P36 x P201 / March 18, 2019 2019 年 3 月 18 日)
5×10287-9 = 4(9)2861<288> = 17 × 16937 × 237920049444291160889<21> × 14045250610125106477253514897281<32> × [519665710342777310861561708552363955904881287872519389308705412324114238502112953508219131565052770048853882110423328882737758761473931116924112707433047816501477631893152579356669210238491252522499234494604687328138206009254894631<231>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3126907763 for P32 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10288-9 = 4(9)2871<289> = 29 × 31 × 32939 × 156090623368104869<18> × [1081740493768364045426167670813643375683491306782497055320258690369482121333455173612878670349956332025361428476390567760706251588627270630339693618004195867920281967409437620073154510201968785656202901452077628951596391881017019794582899548107016189601640719269099<265>] Free to factor
5×10289-9 = 4(9)2881<290> = 23 × 433 × 647 × 929 × 294446497 × 156986105537<12> × 180703543790059900012551474664415947475565974606401193619997915367723432311932788905317213304756912059468439562244446881159585098671750897737664730740145225628883077921644896328083782455671277174373823500144391221821099187915744604655916046057227361500802440007<261>
5×10290-9 = 4(9)2891<291> = 215281085550959<15> × 446677527960717956862003194393081<33> × [5199601084783547979107362047725184419440298524535839140794954728415970258030973180802080173941750587876507415918112041345949630627049958828445459895593800733733796726494824991693199995553985418694160399651982194831737462254303250339879598281729<244>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1354333201 for P33 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10291-9 = 4(9)2901<292> = 7 × 41 × 71 × 79 × 223 × 1511 × 7151 × 63487 × 6614266793209<13> × [3069729077558100108889590086573266628884020844481217620284638629614110667101610405867739791561158431601395096188261380427145369609349725890775162349610857725284626043362228345176718757573491008594477458170288284822352820930746361008308363591495771312369140673<259>] Free to factor
5×10292-9 = 4(9)2911<293> = 829 × 373334613492049669<18> × 166291593898619718763331<24> × [971509206659838254694874139087868115363845042791529416029967802195882621443542919248962868085993807739609380396881848112873309787425400728257429161339101064259714710925815156067428177012443693645399286840312242032714363739719572919225627948322381261<249>] Free to factor
5×10293-9 = 4(9)2921<294> = 191 × 356327 × 26062782041<11> × 2194329351438217665137<22> × [128459232007307244268536621851329897839493993030052385074112413550118327748321663269168887422178264175785520674229160360413317393956611501428025761181839576505324400746889912794005547233063161876518634289987761159848314753077409662234154393844547701578839<255>] Free to factor
5×10294-9 = 4(9)2931<295> = 36061 × 1147754486149511<16> × 4661283462048476802538097431<28> × [25916582075653750571489084996246748896362754882910820832809496890974088637754098915492865254792572487673869731126700681648696066337233727674725639706539987025618868649766265634016416829762655256617134621642060770726071085268105221915707719057500291<248>] Free to factor
5×10295-9 = 4(9)2941<296> = 47 × 521 × 1223 × 2269217 × 2016798645975689<16> × [364812236121002820827096134824181930298113949446747183183219258288561495184207299488061800061682840676995444364616972295627419304811339930638963835685918052713565723508792088763584980132379881682002125998605929040976894641617325842205354057954511308286339027229994607<267>] Free to factor
5×10296-9 = 4(9)2951<297> = 19 × 41 × 4639 × [138359242023797236191125029435928740562861999661850012493839554748890428058590158064365272826438569465056128193711793824805653690691273212184136227402822694568375892174982379950528269421971060227501334474889319524343063400908909532702728803986738543370503082505553048178625102074530803056411<291>] Free to factor
5×10297-9 = 4(9)2961<298> = 7 × 1487 × 27409 × 4347799 × 8142556633<10> × 40464595889<11> × 5593194212976957483723583<25> × 87990617804211045981179807<26> × [24857994327650335870134067246051950636961573018648956537627008061176247153341009825844196014612955538297010330388808761022250286135290418299269134408043480279087339023221121143656449983236762673404791846773668737<212>] Free to factor
5×10298-9 = 4(9)2971<299> = 89 × 8039 × 4258781 × 1059388613509<13> × 2401243173649951439<19> × 19220539071656100499<20> × 335610587596391259818469448563800687845458990313251051910745427325859591568381698789924969229703714379307917046673192307565196225243170112136298232544333095737802390827159787584775562875336790987265694724596235816557372768990461872609309<237>
5×10299-9 = 4(9)2981<300> = 30271 × 32033866927<11> × 37106396304398940552156200201<29> × [13895849138460029251663049048436124891268266358556357460034103667619249516938033573074389019352512217724223188470888193831294537184415932217259609939027486799995502021659171503288535416850815231126682678238703727513902386655043807831188261693654127035057423<257>] Free to factor
5×10300-9 = 4(9)2991<301> = 338578921 × 16126229020690741<17> × 570426880607485115059856026321<30> × [1605377905551969650906938506001307800870261682927660132250842033281115328258951102520181165640940218077742088805869306321024165998278940022654993394897714436866096312322820966311266573082965999612967441432666744045961221151044043577376319855360211<247>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3407686931 for P30 / March 18, 2019 2019 年 3 月 18 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク