Table of contents 目次

  1. About 199...993 199...993 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 199...993 199...993 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 199...993 199...993 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 199...993 199...993 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

19w3 = { 13, 193, 1993, 19993, 199993, 1999993, 19999993, 199999993, 1999999993, 19999999993, … }

1.3. General term 一般項

2×10n-7 (1≤n)

2. Prime numbers of the form 199...993 199...993 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 2×101-7 = 13 is prime. は素数です。
  2. 2×102-7 = 193 is prime. は素数です。
  3. 2×103-7 = 1993 is prime. は素数です。
  4. 2×104-7 = 19993 is prime. は素数です。
  5. 2×106-7 = 1999993 is prime. は素数です。
  6. 2×1016-7 = 1(9)153<17> is prime. は素数です。
  7. 2×1021-7 = 1(9)203<22> is prime. は素数です。
  8. 2×1028-7 = 1(9)273<29> is prime. は素数です。
  9. 2×1048-7 = 1(9)473<49> is prime. は素数です。
  10. 2×1082-7 = 1(9)813<83> is prime. は素数です。
  11. 2×10122-7 = 1(9)1213<123> is prime. は素数です。 (Makoto Kamada / PPSIQS / September 26, 2004 2004 年 9 月 26 日)
  12. 2×10130-7 = 1(9)1293<131> is prime. は素数です。 (Makoto Kamada / PPSIQS / September 26, 2004 2004 年 9 月 26 日)
  13. 2×10282-7 = 1(9)2813<283> is prime. は素数です。 (Makoto Kamada / PPSIQS / September 26, 2004 2004 年 9 月 26 日)
  14. 2×10304-7 = 1(9)3033<305> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / September 26, 2004 2004 年 9 月 26 日) (certified by: (証明: Julien Peter Benney / December 1, 2004 2004 年 12 月 1 日)
  15. 2×104602-7 = 1(9)46013<4603> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  16. 2×1012984-7 = 1(9)129833<12985> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / December 12, 2007 2007 年 12 月 12 日)
  17. 2×1013614-7 = 1(9)136133<13615> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / December 12, 2007 2007 年 12 月 12 日)
  18. 2×1042762-7 = 1(9)427613<42763> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  19. 2×1090597-7 = 1(9)905963<90598> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  20. 2×10109928-7 = 1(9)1099273<109929> is PRP. はおそらく素数です。 (Bob Price / October 26, 2015 2015 年 10 月 26 日)
  21. 2×10158242-7 = 1(9)1582413<158243> is PRP. はおそらく素数です。 (Bob Price / October 26, 2015 2015 年 10 月 26 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / October 26, 2015 2015 年 10 月 26 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 2×106k+1-7 = 13×(2×101-713+18×10×106-19×13×k-1Σm=0106m)
  2. 2×1015k+11-7 = 31×(2×1011-731+18×1011×1015-19×31×k-1Σm=01015m)
  3. 2×1016k+15-7 = 17×(2×1015-717+18×1015×1016-19×17×k-1Σm=01016m)
  4. 2×1018k+13-7 = 19×(2×1013-719+18×1013×1018-19×19×k-1Σm=01018m)
  5. 2×1021k+5-7 = 43×(2×105-743+18×105×1021-19×43×k-1Σm=01021m)
  6. 2×1022k+13-7 = 23×(2×1013-723+18×1013×1022-19×23×k-1Σm=01022m)
  7. 2×1028k+9-7 = 29×(2×109-729+18×109×1028-19×29×k-1Σm=01028m)
  8. 2×1032k+25-7 = 449×(2×1025-7449+18×1025×1032-19×449×k-1Σm=01032m)
  9. 2×1033k+22-7 = 67×(2×1022-767+18×1022×1033-19×67×k-1Σm=01033m)
  10. 2×1046k+8-7 = 47×(2×108-747+18×108×1046-19×47×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 29.08%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 29.08% です。

3. Factor table of 199...993 199...993 の素因数分解表

3.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=223, 224, 225, 227, 229, 230, 231, 235, 237, 239, 240, 241, 242, 244, 247, 248, 250, 254, 255, 256, 257, 258, 260, 261, 263, 266, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 283, 285, 286, 287, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300 (53/300)

3.4. Factor table 素因数分解表

2×101-7 = 13 = definitely prime number 素数
2×102-7 = 193 = definitely prime number 素数
2×103-7 = 1993 = definitely prime number 素数
2×104-7 = 19993 = definitely prime number 素数
2×105-7 = 199993 = 43 × 4651
2×106-7 = 1999993 = definitely prime number 素数
2×107-7 = 19999993 = 13 × 1538461
2×108-7 = 199999993 = 47 × 647 × 6577
2×109-7 = 1999999993<10> = 29 × 1327 × 51971
2×1010-7 = 19999999993<11> = 167 × 2399 × 49921
2×1011-7 = 199999999993<12> = 31 × 6451612903<10>
2×1012-7 = 1999999999993<13> = 151841 × 13171673
2×1013-7 = 19999999999993<14> = 13 × 19 × 23 × 3520506953<10>
2×1014-7 = 199999999999993<15> = 337 × 109597 × 5415037
2×1015-7 = 1999999999999993<16> = 17 × 2971 × 4523 × 8754913
2×1016-7 = 19999999999999993<17> = definitely prime number 素数
2×1017-7 = 199999999999999993<18> = 419 × 477326968973747<15>
2×1018-7 = 1999999999999999993<19> = 1992 × 293 × 196853 × 875617
2×1019-7 = 19999999999999999993<20> = 13 × 59 × 2909 × 8963774250931<13>
2×1020-7 = 199999999999999999993<21> = 113 × 1769911504424778761<19>
2×1021-7 = 1999999999999999999993<22> = definitely prime number 素数
2×1022-7 = 19999999999999999999993<23> = 67 × 435973 × 684692544461623<15>
2×1023-7 = 199999999999999999999993<24> = 11909 × 110989 × 151312484375993<15>
2×1024-7 = 1999999999999999999999993<25> = 3347 × 240631 × 2483262941251349<16>
2×1025-7 = 19999999999999999999999993<26> = 13 × 449 × 649392647 × 5276341972987<13>
2×1026-7 = 199999999999999999999999993<27> = 31 × 43 × 38609 × 50723 × 603257 × 127000079
2×1027-7 = 1999999999999999999999999993<28> = 14821 × 189892817689<12> × 710630673997<12>
2×1028-7 = 19999999999999999999999999993<29> = definitely prime number 素数
2×1029-7 = 199999999999999999999999999993<30> = 93157183543<11> × 2146909045480995151<19>
2×1030-7 = 1999999999999999999999999999993<31> = 233 × 542683 × 908543 × 17409342557850109<17>
2×1031-7 = 19999999999999999999999999999993<32> = 13 × 17 × 19 × 391711 × 3147649327<10> × 3863064958031<13>
2×1032-7 = 199999999999999999999999999999993<33> = 7937879 × 26255993 × 959615100108287719<18>
2×1033-7 = 1999999999999999999999999999999993<34> = 157 × 1235676094033<13> × 10309217411180659453<20>
2×1034-7 = 19999999999999999999999999999999993<35> = 107 × 2357 × 23220389 × 3415207884783397498163<22>
2×1035-7 = 199999999999999999999999999999999993<36> = 23 × 144103 × 60343311200412506875366019897<29>
2×1036-7 = 1999999999999999999999999999999999993<37> = 61 × 81777671 × 18409130083<11> × 21778710214599641<17>
2×1037-7 = 19999999999999999999999999999999999993<38> = 13 × 29 × 3847 × 13790069632956611614410346965047<32>
2×1038-7 = 199999999999999999999999999999999999993<39> = 4837731548147<13> × 41341690420297536424651619<26>
2×1039-7 = 1999999999999999999999999999999999999993<40> = 70896459831651473<17> × 28210153296076246315241<23>
2×1040-7 = 19999999999999999999999999999999999999993<41> = 547 × 750561847192290337<18> × 48714268430728997587<20>
2×1041-7 = 199999999999999999999999999999999999999993<42> = 31 × 863 × 86377036747<11> × 549246358123<12> × 157576706519201<15>
2×1042-7 = 1999999999999999999999999999999999999999993<43> = 1151 × 1291421 × 1345509683780863858672140671885683<34>
2×1043-7 = 19999999999999999999999999999999999999999993<44> = 13 × 3623 × 41764450260838073<17> × 10167438170778002415859<23>
2×1044-7 = 199999999999999999999999999999999999999999993<45> = 41879 × 3630951917<10> × 105160470244033<15> × 12507216728836747<17>
2×1045-7 = 1999999999999999999999999999999999999999999993<46> = 163 × 12269938650306748466257668711656441717791411<44>
2×1046-7 = 19999999999999999999999999999999999999999999993<47> = 1032571 × 14766109199887<14> × 1311728625703191116458701109<28>
2×1047-7 = 199999999999999999999999999999999999999999999993<48> = 17 × 43 × 773 × 9309826661<10> × 12056495332619<14> × 3153337441442253529<19>
2×1048-7 = 1999999999999999999999999999999999999999999999993<49> = definitely prime number 素数
2×1049-7 = 19999999999999999999999999999999999999999999999993<50> = 13 × 19 × 9545244125897069<16> × 8482932322217433539512787372651<31>
2×1050-7 = 199999999999999999999999999999999999999999999999993<51> = 2081 × 36786417670609769501<20> × 2612584933330129305356310253<28>
2×1051-7 = 1(9)503<52> = 1423 × 38237 × 36757103783553883001146215145834452510566243<44>
2×1052-7 = 1(9)513<53> = 176951 × 113025639866403693677910834072709394126057496143<48>
2×1053-7 = 1(9)523<54> = 7855261 × 61021733623<11> × 1809129579401<13> × 230629660624325766585731<24>
2×1054-7 = 1(9)533<55> = 47 × 234837181 × 10362105332993750440837<23> × 17487079185168694942727<23>
2×1055-7 = 1(9)543<56> = 13 × 67 × 7759699049<10> × 62740984027399<14> × 47164543662706357741988141633<29>
2×1056-7 = 1(9)553<57> = 31 × 311 × 1223 × 73161949661<11> × 231844173187091340053838446622292382291<39>
2×1057-7 = 1(9)563<58> = 23 × 449 × 138181 × 1401546423015370688843115208068322657909567287139<49>
2×1058-7 = 1(9)573<59> = 51197 × 1169627 × 11336795257<11> × 37915346681<11> × 978880078019<12> × 793785703346989<15>
2×1059-7 = 1(9)583<60> = 55797743 × 1086154177<10> × 4159426859767<13> × 107744249276441<15> × 7363669622653129<16>
2×1060-7 = 1(9)593<61> = 1723 × 1160766105629715612304120719674985490423679628554846198491<58>
2×1061-7 = 1(9)603<62> = 13 × 13837748592953<14> × 239978273036984901007<21> × 463286114349866817612216491<27>
2×1062-7 = 1(9)613<63> = 181 × 839 × 2519345707<10> × 380082979496658807194921<24> × 1375381796929438810472641<25>
2×1063-7 = 1(9)623<64> = 17 × 97 × 4001 × 303138284561667345443808847666797672928644733904455966057<57>
2×1064-7 = 1(9)633<65> = 4800571651090609<16> × 3209688485991065056339<22> × 1297998394247778069490950643<28>
2×1065-7 = 1(9)643<66> = 29 × 66468540181<11> × 103756629908795665152126753922302381133647017344719257<54>
2×1066-7 = 1(9)653<67> = 16067 × 2063501079919<13> × 6210803600511223789<19> × 9712761069592912353140239337969<31>
2×1067-7 = 1(9)663<68> = 13 × 19 × 347 × 31513843 × 46481145077<11> × 1931217153391151<16> × 82488664392429670874141785757<29>
2×1068-7 = 1(9)673<69> = 43 × 569 × 448667 × 179974897476082336759<21> × 101230926348508315776958916241515398543<39>
2×1069-7 = 1(9)683<70> = 149 × 138731 × 96754285573853779795663656753722463911739966665245991240157247<62>
2×1070-7 = 1(9)693<71> = 205171 × 403028728699<12> × 5196772968961478969033<22> × 46541917455697825452266829428849<32>
2×1071-7 = 1(9)703<72> = 31 × 28563576011<11> × 184769137331549<15> × 1222436454997462715380851481327065398310601177<46>
2×1072-7 = 1(9)713<73> = 8389 × 1979874160213757<16> × 120415450185144944447015050651629578269991888169463241<54>
2×1073-7 = 1(9)723<74> = 132 × 2423 × 4177 × 302229901289<12> × 5278588902221617<16> × 40954868886989507<17> × 178963552487045908277<21>
2×1074-7 = 1(9)733<75> = 99193367451504591449<20> × 2016263840400211623895282333747373490637583326845482657<55>
2×1075-7 = 1(9)743<76> = 8849 × 59385310320013<14> × 10361199952159009571957<23> × 367321809825673190371530366758115577<36>
2×1076-7 = 1(9)753<77> = 499 × 4079 × 9825977033743879030431542172356480551198007684896638091087789700509133<70>
2×1077-7 = 1(9)763<78> = 59 × 593 × 2568902239072704920989829<25> × 2225234135013198218408976924739964526754998274991<49>
2×1078-7 = 1(9)773<79> = 14319031 × 1299531836207022577165951926563<31> × 107480441801495541935408987337937770766181<42>
2×1079-7 = 1(9)783<80> = 13 × 17 × 23 × 38921 × 50077 × 2018773487323708397729762512010012421349432931027272014356778656063<67>
2×1080-7 = 1(9)793<81> = 62993136696825613669<20> × 102592076684005216955148944389<30> × 30947312505666226393648531337473<32>
2×1081-7 = 1(9)803<82> = 7723 × 2551665170547341<16> × 34575395983329773569<20> × 2935304176263322687941425774336903446769879<43>
2×1082-7 = 1(9)813<83> = definitely prime number 素数
2×1083-7 = 1(9)823<84> = 1613 × 514024781 × 1254505159<10> × 192282216577164757871280595661953469694403772059243755713816359<63>
2×1084-7 = 1(9)833<85> = 24608408490121<14> × 87007085632962855588872569<26> × 934096718674609800511446423601155904626918457<45>
2×1085-7 = 1(9)843<86> = 13 × 19 × 1312 × 7951 × 9973 × 59503550267393000718874778785827702559740414584511289882831854288561973<71>
2×1086-7 = 1(9)853<87> = 31 × 269 × 11131 × 12170131 × 91049244281584572288033572869160999<35> × 1944510267148908500377526352238332133<37>
2×1087-7 = 1(9)863<88> = 107 × 9071068898043051649<19> × 1683810587581360957969493<25> × 1223755104742012422652149843812561731543807<43>
2×1088-7 = 1(9)873<89> = 67 × 2597909 × 1124474096321<13> × 1892646585220527682785364373<28> × 53989869485252679629475976943443771123307<41>
2×1089-7 = 1(9)883<90> = 43 × 449 × 14920068221<11> × 548402366521<12> × 23991667984671088612631697253513<32> × 52769700249246093169246765951303<32>
2×1090-7 = 1(9)893<91> = 63373800942281<14> × 31558782497858087555674165032738956773709373152822746248213454810776339551153<77>
2×1091-7 = 1(9)903<92> = 13 × 2169796550879649778507707744167601704988667<43> × 709034926725197367140441293570392144363010637383<48> (Makoto Kamada / GGNFS 0.54.1-k1 for P43 x P48 / 0.21 hours)
2×1092-7 = 1(9)913<93> = 1567 × 5125903397<10> × 2355159393161644327<19> × 1741239126297957693925161111229<31> × 6071721736522523407197574175729<31>
2×1093-7 = 1(9)923<94> = 29 × 41018796821<11> × 12568015775520204714571<23> × 98988881578246142093031285079<29> × 1351437438360830648162572453453<31>
2×1094-7 = 1(9)933<95> = 4153 × 7142338848162559<16> × 674260338613948380045275496406430086695043247208035864460864173913405181759<75>
2×1095-7 = 1(9)943<96> = 17 × 1693 × 44741 × 584203 × 50225418203<11> × 1978638904462609<16> × 13199652759020524845751<23> × 202675864687676094763762469011943<33>
2×1096-7 = 1(9)953<97> = 61 × 1559 × 4561 × 18958937 × 20790974125423<14> × 11697825858067245376502041238481466095951628975464867400231487697037<68>
2×1097-7 = 1(9)963<98> = 13 × 6671309 × 93784608383<11> × 68426892338850109<17> × 35934962899509359252682618928308945958702231360421705906298907<62>
2×1098-7 = 1(9)973<99> = 2677 × 104677 × 284093 × 437785273 × 7378121133983<13> × 194786817290159<15> × 3993036991304348572159282909970579986022589299549<49>
2×1099-7 = 1(9)983<100> = 20859069935591<14> × 94071964066060573<17> × 1019236209365667062370786192292895721285075141580159510561316454649451<70>
2×10100-7 = 1(9)993<101> = 47 × 2693 × 5068439 × 345563949005939276661116437<27> × 90217986860562407076830116951480794287767716511624892678313881<62> (Makoto Kamada / GGNFS 0.54.1-k1 / 0.55 hours)
2×10101-7 = 1(9)1003<102> = 23 × 31 × 40817008110892419885360745295659<32> × 6872255508630705731993785461808742826606432539570772235049035346579<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P32 x P67 / 0.58 hours on Cygwin on AMD XP 2700+ / August 18, 2007 2007 年 8 月 18 日)
2×10102-7 = 1(9)1013<103> = 754377913 × 17569036382067671041<20> × 150901337468871212305910478200649431862776885393934911824002742511375488321<75>
2×10103-7 = 1(9)1023<104> = 13 × 19 × 109 × 27271 × 45843061261<11> × 1499785301098546070559433483576047617<37> × 396189332056518295199839376172030596884900883633<48> (Robert Backstrom / Msieve v. 1.25 for P37 x P48 / 23.15 minutes / August 18, 2007 2007 年 8 月 18 日)
2×10104-7 = 1(9)1033<105> = 450133363 × 26210111436324424372537<23> × 16951960238891106285996014320600431953988753994956664146366905164973918203<74>
2×10105-7 = 1(9)1043<106> = 249871 × 19798132157<11> × 3163117297741861192762916686673115456869<40> × 127812881122780074917861322196995275825625504898951<51> (Robert Backstrom / Msieve v. 1.25 for P40 x P51 / 1.3 hours / August 18, 2007 2007 年 8 月 18 日)
2×10106-7 = 1(9)1053<107> = 2057147 × 463223941 × 20988126437934572100650547240170911986268053432721891812141627052270619398535539962548072159<92>
2×10107-7 = 1(9)1063<108> = 82054863816299707259814398629080646350578566200027409<53> × 2437393601039298755451892933667568529233231518271465577<55> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P53 x P55 / 0.81 hours on Cygwin on AMD 64 3200+ / August 18, 2007 2007 年 8 月 18 日)
2×10108-7 = 1(9)1073<109> = 383 × 10287532817801<14> × 507598100279860370829957319017159200027537506053821866464990762062445311901786859913023017871<93>
2×10109-7 = 1(9)1083<110> = 13 × 9533 × 117617652727<12> × 32407405518947<14> × 253751673013933<15> × 166851979909646349546024558901926430803956994323790908730779109121<66>
2×10110-7 = 1(9)1093<111> = 43 × 2509654211<10> × 1931986832489347<16> × 959275805431305450241056654440200951385478670400365360106928139429946739919843802003<84>
2×10111-7 = 1(9)1103<112> = 17 × 157 × 439 × 5930190964349<13> × 2686413178267993<16> × 2274951685247824724863<22> × 47098083569034218414375212879774473362528057732894787553<56>
2×10112-7 = 1(9)1113<113> = 4933 × 436546025833<12> × 107910677472821<15> × 244947452135599<15> × 351359334449242268907513378628455296054937932244971512323571086623303<69>
2×10113-7 = 1(9)1123<114> = 433 × 193594939 × 6438265937<10> × 103768776474506761548880707440030104142231<42> × 3571186177883878701163022523856197962069162111081437<52> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P42 x P52 / 1.84 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 18, 2007 2007 年 8 月 18 日)
2×10114-7 = 1(9)1133<115> = 223 × 349 × 401 × 87913919539791743<17> × 55632596705348452969<20> × 678785125841080499365885889789<30> × 19303499176809380687282983046612803713593<41> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=738349150 for P30 x P41 / August 11, 2007 2007 年 8 月 11 日)
2×10115-7 = 1(9)1143<116> = 13 × 7727749272363769292153<22> × 199082745083802748961580242093329249137660270422339965290780770420651472692583128645150029637<93>
2×10116-7 = 1(9)1153<117> = 31 × 15287 × 57388723099<11> × 7056481988900947<16> × 53770152002195367607766769002285035703<38> × 19381615468650712446069311543584612837099830391<47> (Robert Backstrom / Msieve v. 1.25 for P38 x P47 / 31.2 minutes / August 18, 2007 2007 年 8 月 18 日)
2×10117-7 = 1(9)1163<118> = 199 × 1279 × 293763817948763<15> × 24049592745348234991<20> × 2844998987702608844764526103674599<34> × 390947309073851222871845565805012609316881499<45> (Makoto Kamada / Msieve 1.26 for P34 x P45 / 12 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / August 17, 2007 2007 年 8 月 17 日)
2×10118-7 = 1(9)1173<119> = 7603 × 15467 × 36691 × 560783 × 44963591969<11> × 228255834357666971162546058313791223921<39> × 805381494221740368380247875416367103097200384770669<51> (Robert Backstrom / Msieve v. 1.25 for P39 x P51 / 1.22 hours / August 18, 2007 2007 年 8 月 18 日)
2×10119-7 = 1(9)1183<120> = 3329 × 9601 × 37117 × 4643453 × 3737042927<10> × 9715333723167523461028173291357869258950428467850963095097444942905475932461446867274771871<91>
2×10120-7 = 1(9)1193<121> = 1612634484547<13> × 13953893991747473843<20> × 1741667320530491745304201<25> × 827419003560831791460803192987<30> × 61674826936885885970729973310901659<35> (Makoto Kamada / Msieve 1.26 for P30 x P35 / 35 seconds on Pentium 4 3.06GHz, Windows XP and Cygwin / August 17, 2007 2007 年 8 月 17 日)
2×10121-7 = 1(9)1203<122> = 13 × 192 × 29 × 67 × 449 × 105683783 × 560286053 × 84709044758553106779503153611219<32> × 973895486213706256874024049169829152280917871863189669742989003<63> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P32 x P63 / 2.15 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 18, 2007 2007 年 8 月 18 日)
2×10122-7 = 1(9)1213<123> = definitely prime number 素数
2×10123-7 = 1(9)1223<124> = 232 × 1901 × 2066521 × 53702948292907<14> × 9865966209767263<16> × 71002632147797699<17> × 25582335027864441645890689621535816313861898308916738571990501803<65>
2×10124-7 = 1(9)1233<125> = 1237 × 75739987021613441981<20> × 22558396289653158268549<23> × 30235527906754154539453<23> × 312974743516419780327444462580999969227258311974717645577<57>
2×10125-7 = 1(9)1243<126> = 165168634578001888654519<24> × 1210883655428832572540661468254176201720557233527728498589984267426032150685696194736029406246152970447<103>
2×10126-7 = 1(9)1253<127> = 163 × 2075421732715501633<19> × 5912021858927266533924640372035533659267984949341407619124044233483021470152077444181868324318074227054067<106>
2×10127-7 = 1(9)1263<128> = 13 × 17 × 24103 × 6730177 × 94316333 × 51803508177079056623<20> × 90156356392017166579<20> × 1266478159617222410568320386489185143728549629581477254952005916963<67>
2×10128-7 = 1(9)1273<129> = 179 × 2141 × 2199859 × 6588973 × 5693316319<10> × 177072611648613262411<21> × 9638041289150507104245734353393<31> × 3705460899359480965894476989489934602337872009893<49> (Makoto Kamada / Msieve 1.26 for P31 x P49 / 17 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / August 17, 2007 2007 年 8 月 17 日)
2×10129-7 = 1(9)1283<130> = 83639 × 3574169 × 129553992197347<15> × 261030882891310001<18> × 1486751042568008988903546205849<31> × 133065397594874242418254943012440252718810034095919697541<57> (Robert Backstrom / Msieve v. 1.25 for P31 x P57 / 44.45 minutes / August 18, 2007 2007 年 8 月 18 日)
2×10130-7 = 1(9)1293<131> = definitely prime number 素数
2×10131-7 = 1(9)1303<132> = 31 × 43 × 547 × 17191 × 336512056301210231838855734796868432039<39> × 47414453712323773154974881733917128690695953514154501437581484178811965886517575607<83> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P39 x P83 / 4.50 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 18, 2007 2007 年 8 月 18 日)
2×10132-7 = 1(9)1313<133> = 113 × 96910843004522017<17> × 182632969598891201651530364167093502463825371503560683347399958938846116566884483816068755087434286400403034726633<114>
2×10133-7 = 1(9)1323<134> = 13 × 8369 × 12491 × 256363 × 23413869901<11> × 2498095785529<13> × 4206989836184363<16> × 233295720151692482054315853848283013458362092712529745856574990403930760186551859<81>
2×10134-7 = 1(9)1333<135> = 2857 × 27927023 × 53144573565322907925832295743438999653609663807679<50> × 47166775363319527326178169171770117349576735102560712103900237618601981697<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P50 x P74 / 4.42 hours on Cygwin on AMD 64 3200+ / August 19, 2007 2007 年 8 月 19 日)
2×10135-7 = 1(9)1343<136> = 59 × 11961402170071789<17> × 3728219826744931882487<22> × 17961831456506031402449<23> × 42319815221256452785251590748815628863806445847929840602393773320844439361<74>
2×10136-7 = 1(9)1353<137> = 10313581 × 1238634939757<13> × 1565586923926093270009080464926344290000908750262257113653221576209837780946963430512262373065214952479869742276230929<118>
2×10137-7 = 1(9)1363<138> = 748003 × 33310522579<11> × 2390131300820543368485406409<28> × 3358330630726815585866665148198037542537791667019952702420547131059345414855706436951109119321<94> (JMB / GMP-ECM B1=1000000, sigma=1132383337 for P28 x P94 / August 18, 2007 2007 年 8 月 18 日)
2×10138-7 = 1(9)1373<139> = 658279 × 20210881938782879485293912186383278080876647<44> × 150326217455104768578918165545438708371606106048971235069662906160218582347415312161469961<90> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P44 x P90 / 6.57 hours on Cygwin on AMD 64 3200+ / August 19, 2007 2007 年 8 月 19 日)
2×10139-7 = 1(9)1383<140> = 13 × 19 × 1615266371<10> × 50128982669836280570328087341223016201190794133748693069876126281978008245781562129128447063404912500978663711046615926252289989<128>
2×10140-7 = 1(9)1393<141> = 107 × 4714823806387<13> × 397193297595629<15> × 12697513338376374603581<23> × 78606807990532772667474362080562709154103341010601231789893016605130785929620611510756273<89>
2×10141-7 = 1(9)1403<142> = 683 × 655920743 × 33288172475610100603<20> × 134112103288196833720208136909501775573256592141312090312010324478404085266453805915834636686637182699579723399<111>
2×10142-7 = 1(9)1413<143> = 3967 × 4673 × 766369 × 1407777712037398191486334558484748027029761901411084179955398364600765298056680579957269354985327154322524797193202410400319300967<130>
2×10143-7 = 1(9)1423<144> = 17 × 18470702189<11> × 228301394273106235780597543<27> × 22707141235023433297394936623127<32> × 122864563822659007223378498802742451249014598526543766623843802022535717101<75> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2721225050 for P32 x P75 / August 12, 2007 2007 年 8 月 12 日)
2×10144-7 = 1(9)1433<145> = 109583 × 18251006086710529917961727640236168018762034257138424755664656014162780723287371216338300648823266382559338583539417610395773066990317841271<140>
2×10145-7 = 1(9)1443<146> = 13 × 23 × 66889632107023411371237458193979933110367892976588628762541806020066889632107023411371237458193979933110367892976588628762541806020066889632107<143>
2×10146-7 = 1(9)1453<147> = 312 × 47 × 435789728193384491010265428807562407041323<42> × 7824864009218661541825600129317326360954459<43> × 1298538893538002080810765152446905474596595362243224337247<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P42 x P43 x P58 / 8.67 hours on Cygwin on AMD XP 2700+ / August 19, 2007 2007 年 8 月 19 日)
2×10147-7 = 1(9)1463<148> = 257 × 743 × 391695274303<12> × 522269290787574364079<21> × 390407817010847095598395909<27> × 131143488369150956117405221359726620382294733613082574937634241856250235881858308771<84>
2×10148-7 = 1(9)1473<149> = 727 × 55259 × 689461 × 71275313 × 116574430973904193855146706732208499099941411897<48> × 86904130976575581951526367276706846060506184025707483584177277127705512595780481<80> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P48 x P80 / 17.29 hours on Cygwin on AMD XP 2700+ / August 20, 2007 2007 年 8 月 20 日)
2×10149-7 = 1(9)1483<150> = 29 × 108949 × 8721993746773<13> × 12217002739326393689<20> × 178416584056560249225100104637<30> × 8179150902611192175056182508267<31> × 407084780721940591874246317159290533910006635665091<51> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3751227348 for P30 / August 12, 2007 2007 年 8 月 12 日) (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=276345269 for P31 x P51 / August 12, 2007 2007 年 8 月 12 日)
2×10150-7 = 1(9)1493<151> = 11952940053651615413333135761471<32> × 5135103254216728139255928526842762174060283210192549973<55> × 32584125786762908430335253253731098461829476256546485262340435371<65> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3165284130 for P32 / August 12, 2007 2007 年 8 月 12 日) (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P55 x P65 / 32.39 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 20, 2007 2007 年 8 月 20 日)
2×10151-7 = 1(9)1503<152> = 133 × 137867 × 4224067859430198256241<22> × 15631790533137119663544037514619281894548338951219182923056028287046339422175932739272100689010023394450055608937618634127<122>
2×10152-7 = 1(9)1513<153> = 43 × 204334865038223<15> × 16693847621802210188347<23> × 327984025003795812551523975755537204514529776773084171<54> × 4157286246714744149068820102379243249246807718475885348533501<61> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P54 x P61 / 15.90 hours on Core 2 Quad Q6600 / September 13, 2007 2007 年 9 月 13 日)
2×10153-7 = 1(9)1523<154> = 449 × 677 × 3762028438491263860353713420746250519837842493<46> × 1748931950489219682449972965472311190393808085080580038420592920946818270596715052250792592387757778537<103> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P46 x P103 / 26.79 hours on Cygwin on AMD 64 3200+ / August 20, 2007 2007 年 8 月 20 日)
2×10154-7 = 1(9)1533<155> = 672 × 229 × 55049 × 50009407956250793<17> × 61602475925415368717517641<26> × 351490277394110695323131847836679690401<39> × 326386567160734215007637212280611893892518870849999885489152869<63> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P39 x P63 / 12.31 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 20, 2007 2007 年 8 月 20 日)
2×10155-7 = 1(9)1543<156> = 4339 × 5303 × 1439617218001<13> × 961207979097509279<18> × 80965371749079875135193964006734647<35> × 77580934154601854923447083339687231799885525920119624203485250965115554274629179933<83> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P35 x P83 / 16.76 hours on Core 2 Quad Q6600 / September 17, 2007 2007 年 9 月 17 日)
2×10156-7 = 1(9)1553<157> = 61 × 379561891 × 591755936832544670700889<24> × 2996976568019324627915945752938287251955921580343264766897<58> × 48707023203560580789797226764686962335766992120048448009260900471<65> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P58 x P65 / 16.84 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
2×10157-7 = 1(9)1563<158> = 13 × 19 × 34394983393086726911525485365768764383612514728573<50> × 2354170635689371043056236203816500880637102917069176450408667904943221662630923232028232978839918295665403<106> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P50 x P106 / 31.86 hours on Cygwin on AMD 64 3200+ / August 19, 2007 2007 年 8 月 19 日)
2×10158-7 = 1(9)1573<159> = 953 × 25057 × 2414090848213589432916932990633<31> × 31571248495465350553236417278124057355578453451578557<53> × 109891134207565565423460471928953710097707635400211726467910976480493<69> (JMB / GMP-ECM B1=1000000, sigma=2790418531 for P31 / August 18, 2007 2007 年 8 月 18 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P53 x P69 / 34.21 hours on Core 2 Quad Q6600 / October 1, 2007 2007 年 10 月 1 日)
2×10159-7 = 1(9)1583<160> = 17 × 97 × 1747 × 634649251 × 2054299447149250297<19> × 148755245875612245393010321<27> × 3579699934594358473780712482108418449708789433457591275026055921063522065110954977534132123453806313<100>
2×10160-7 = 1(9)1593<161> = 9778720056013703211871<22> × 3697455345403613029511363255055491<34> × 88983955588580213717636993253398599<35> × 6216319634016996326346051640131835569522780364047133332828651637579787<70> (JMB / GMP-ECM B1=1000000, sigma=1044781805 for P34 / August 19, 2007 2007 年 8 月 19 日) (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P35 x P70 / 66.09 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 23, 2007 2007 年 8 月 23 日)
2×10161-7 = 1(9)1603<162> = 31 × 313 × 142448923 × 17325841849<11> × 15585783388091791295501248633<29> × 266553003634306871217586370997016387<36> × 2010287774860919418202526881731198334032989116402867831616415928274528790943<76> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P36 x P76 / 40.17 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 25, 2007 2007 年 8 月 25 日)
2×10162-7 = 1(9)1613<163> = 295873 × 4257253215102693503<19> × 1587797735643967851996922354673956638588050272861836975524878046750608199710403993510074840554538930662715515268938946398099780254929848647<139>
2×10163-7 = 1(9)1623<164> = 13 × 201757487 × 164834767007237<15> × 129162229318541414865248023<27> × 2870602702071050972528733922531425863733789921251<49> × 124766945602396491462945015979925208408928505160969226719559459403<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P49 x P66 / 21.80 hours on Core 2 Quad Q6600 / September 16, 2007 2007 年 9 月 16 日)
2×10164-7 = 1(9)1633<165> = 293 × 3809415392261<13> × 4410893217380666509<19> × 676677033748151222836658526167<30> × 60033831512034509037025711389917769139843957491414747524349277078754656354898546453859546428217503747<101> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3873787560 for P30 x P101 / August 13, 2007 2007 年 8 月 13 日)
2×10165-7 = 1(9)1643<166> = 59797 × 246613 × 23678089 × 41577973901<11> × 34612991488332463201<20> × 336810499334585532769<21> × 8373248538781344557355140845393442753439917323<46> × 1411256395841790563687916889769452582264264863948791<52> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P46 x P52 / 2.74 hours on Core 2 Quad Q6600 / August 24, 2007 2007 年 8 月 24 日)
2×10166-7 = 1(9)1653<167> = 1033 × 41203 × 692077355735784149<18> × 678963137729462657410685657192978487461888575468720960519435213449754200840707195568236829383038526395604243924830547951457240268495612424543<141>
2×10167-7 = 1(9)1663<168> = 23 × 817671420061668453239381786225641<33> × 10634653432374120218546314263462036182748850386624188463030773029103326239415114946154180410545538376172609896000131661254182519321751<134> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P33 x P134 / 93.38 hours on Cygwin on AMD 64 3200+ / September 27, 2007 2007 年 9 月 27 日)
2×10168-7 = 1(9)1673<169> = 8002843 × 679331923056720559092781<24> × 1743135735135318112931632042583008770405177795897939247<55> × 211043737325077621766641712794419286115201489247799793695341755432378145694998105193<84> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P55 x P84 / 53.77 hours on Cygwin on AMD 64 X2 6000+ / July 16, 2008 2008 年 7 月 16 日)
2×10169-7 = 1(9)1683<170> = 13 × 443 × 15077 × 1825739 × 39504457 × 1949984837<10> × 1637766406035841923061103686434301527772654718109886968037754032192230773053883334572322866141867180256790299413505934169213134132607507701<139>
2×10170-7 = 1(9)1693<171> = 12830114637211177323355529618441346334457779697621<50> × 21211698624128416961087313467823336589027450130654173021<56> × 734892831044394689750114258247584690226884187718469681813063218073<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P50 x P56 x P66 / 75.19 hours on Core 2 Quad Q6600 / August 28, 2007 2007 年 8 月 28 日)
2×10171-7 = 1(9)1703<172> = 69542053866301<14> × 2207526515260409521358128631916321637<37> × 13027964122020918758541442567091441481729149610702735659626025690125388966404642417856907478360011684956625601358894013289<122> (Robert Backstrom / GMP-ECM 6.2.1 B1=990000, sigma=38349962 for P37 x P122 / September 30, 2008 2008 年 9 月 30 日)
2×10172-7 = 1(9)1713<173> = 6719 × 38237 × 3949391 × 197016191436800221<18> × 100048248952355495152474670116547144719616987756281749923359264276401125197245775021877924918720295715153237108728265119172764087420438281921<141>
2×10173-7 = 1(9)1723<174> = 43 × 1250710471<10> × 1514098239145919982490997<25> × 15894919503175203181668247930707066682956960270677<50> × 154522728115553347368601457649406025114438915477574353415857930047125020474996771939154949<90> (Wataru Sakai / Msieve for P50 x P90 / May 8, 2010 2010 年 5 月 8 日)
2×10174-7 = 1(9)1733<175> = 45162104857<11> × 15567016412456914292718994439665667659340737216997<50> × 2844791473480904522073711775181098198268760967308959673803332033658988249807406032658488263343289877533029503274317<115> (matsui / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P115 / 243.25 hours / June 17, 2008 2008 年 6 月 17 日)
2×10175-7 = 1(9)1743<176> = 13 × 17 × 19 × 263 × 1061 × 2381 × 13441 × 4860859 × 226155589725368669<18> × 39446498300985945769793398333109<32> × 938415519872263667316969095279317859<36> × 13106840786581520901091016381324397299535250533490063320445846306169<68> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=3920449534 for P36, B1=1000000, sigma=23067176 for P32 x P68 / August 6, 2008 2008 年 8 月 6 日)
2×10176-7 = 1(9)1753<177> = 31 × 167 × 84349 × 762539 × 5303471 × 337158791033264179423030381537184109066737553257391166972636621<63> × 335903976890265082828384698860438605538743727883895495015727111914842671618296153307348566709<93> (Serge Batalov / Msieve-1.38 snfs for P63 x P93 / 60.00 hours on Opteron-2.6GHz; Linux x86_64 / October 11, 2008 2008 年 10 月 11 日)
2×10177-7 = 1(9)1763<178> = 29 × 479 × 33052481065539000156012288524293<32> × 4356045618511345699935803519008679131931227797613200925191035353279184874180578875926576944463882038583522121925336915254241598406087102573111<142> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2065128763 for P32 x P142 / August 15, 2007 2007 年 8 月 15 日)
2×10178-7 = 1(9)1773<179> = 43351031 × 2463944288063<13> × 187240452175519285137480908249758943184694743376955956025151384535709077334319019375211131284977012793840344216514584436654607197258954512966218466506902133681<159>
2×10179-7 = 1(9)1783<180> = 11345966389210162823753<23> × 6631044752755962993815356531776599345929052887359892199003659384708801<70> × 2658315625191136943216620194891487819974744893247130197356534955616248735511220311719281<88> (Dmitry Domanov / Msieve 1.50 snfs for P70 x P88 / May 17, 2013 2013 年 5 月 17 日)
2×10180-7 = 1(9)1793<181> = 434102901389<12> × 4607202563264598415779928677006486405960407963459800288720341188615524312353215631919029997874852559040333053506386132595819244295320463590084000990026379977773376337437<169>
2×10181-7 = 1(9)1803<182> = 13 × 25943 × 83653 × 2422412979800028060875855273385371436650307497481923996545305433879222350917<76> × 292642058061099792698815532391447578570153293300449978434095450619299934615417887567871388531427<96> (Robert Backstrom / Msieve 1.44 snfs for P76 x P96 / February 8, 2012 2012 年 2 月 8 日)
2×10182-7 = 1(9)1813<183> = 78697310957<11> × 210753864072825415151<21> × 332631886924111871687839925496075026080643<42> × 7189253698332573215851654569342616634944430083<46> × 5042511156504989445728859938967073888895074881492141751640099771<64> (Dmitry Domanov / Msieve 1.50 snfs for P42 x P46 x P64 / June 3, 2013 2013 年 6 月 3 日)
2×10183-7 = 1(9)1823<184> = 811 × 2624277319<10> × 2755493291<10> × 101591439292081<15> × 16322026806562391<17> × 6162314909610575169723533703783208734587<40> × 2296936960460684436839110679001518570233133723<46> × 14530343872204972792659597373865720056086160057<47> (Robert Backstrom / GMP-ECM 6.2.1 B1=4080000, sigma=3272438450 for P40, Msieve v. 1.36 for P46 x P47 / 1.24 hours / July 26, 2008 2008 年 7 月 26 日)
2×10184-7 = 1(9)1833<185> = 280009 × 632904603733<12> × 13233220466211157<17> × 8528137667029729926901914382130170705565152344920244120131396023894967075926978409235213124947201921250620099832410940247774726822828736679137633391417<151>
2×10185-7 = 1(9)1843<186> = 449 × 997793 × 1546333609<10> × 3189042656399<13> × 2373471436483366673<19> × 38141315571249794220796510204358690061656962379417820079548708887444336138795773645441671589771855580586555698222711950621198150820201743<137>
2×10186-7 = 1(9)1853<187> = 104207 × 70415806969873<14> × 272560515363191395824791506202205199222427524406848135211759341596752368261974741468507635187780688885659810754580125451879840238063293536493823224116692569011913568263<168>
2×10187-7 = 1(9)1863<188> = 13 × 67 × 195174169 × 15756276416074852403<20> × 7466823928975235055739813097331207672264389893453490358096543643190621791446429460377106436541738964274243987747227996322777639271584787422631526731011364269<157>
2×10188-7 = 1(9)1873<189> = 1053908083<10> × 39976478087318775733<20> × 4747038237777385196722326719361187184981071621031767204700395933051930856214894694847973331484509531920230013328025798071633949740232094248596917726801470476087<160>
2×10189-7 = 1(9)1883<190> = 23 × 157 × 1657 × 334256605787953960163631978797434981658504398900496320921104243437748968943717371332515630256707401962119701635868541556536078738823085833586671985803453438974019403930222596515341459<183>
2×10190-7 = 1(9)1893<191> = 23117 × 109469 × 109607066896757<15> × 5514863547934385326182003706806291125833169<43> × 13074769594178889835066566663305076443191466513833069728993153431618466065893407012020200037422413449469774764709939016395277<125> (Daniel Morel / GMP-ECM 7.0 for P43 x P125 / June 1, 2015 2015 年 6 月 1 日)
2×10191-7 = 1(9)1903<192> = 17 × 31 × 389 × 128310718329815993931447087546082492234669614032972499261568404331467602141<75> × 7603382568421390295289669853703818922067601220779471394301400646577106498502213407372609170471837455808074363591<112> (Wataru Sakai / Msieve for P75 x P112 / 339.94 hours / April 20, 2009 2009 年 4 月 20 日)
2×10192-7 = 1(9)1913<193> = 47 × 4973 × 14307167621<11> × 252778876181603<15> × 255209741776071592297<21> × 8010689782466906790070784539<28> × 1157316307058782100251640750432246209257840742262489843072055000717012814491437080981115392396246552777654513312207<115>
2×10193-7 = 1(9)1923<194> = 13 × 19 × 59 × 107 × 5988949810510825396976938071071359<34> × 124070608270505222179019502801661968966865805034849254749<57> × 17261465639867501280259295456410659213676051382576083857253088149320129699341641322879401065793693<98> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1667258712 for P34 / May 16, 2008 2008 年 5 月 16 日) (Daniel Morel / GGNFS-0.77.1 for P57 x P98 / June 16, 2015 2015 年 6 月 16 日)
2×10194-7 = 1(9)1933<195> = 43 × 193 × 72766711 × 1895782376707937<16> × 11667170358913398815665041955189471411552063<44> × 14973297877009564069163744169784144852622933059441535151380927290877909948076265128648906395015140182447429525730863799103027<125> (Daniel Morel / GMP-ECM 7.0 B1=6000000, sigma=1:861794138 for P44 x P125 / July 4, 2015 2015 年 7 月 4 日)
2×10195-7 = 1(9)1943<196> = 138488872329169049102015431<27> × 3939493125278773129225627445664670558259714669<46> × 3665850669598823943970838009400242967760461283974430488097122440569292074070628161860811556696784984740153989126088305178587<124> (Daniel Morel / GGNFS-0.77.1 for P46 x P124 / June 16, 2015 2015 年 6 月 16 日)
2×10196-7 = 1(9)1953<197> = 2223207383<10> × 326343496010216320121443477529<30> × 126737002744890618870302039798839111213<39> × 349349305959102081634428573472844496460375239564615937<54> × 622603762802314680120941252059936381513090474160173922851498446979<66> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3510189749 for P30 / August 16, 2007 2007 年 8 月 16 日) (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=3740239454 for P39 / October 12, 2010 2010 年 10 月 12 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P54 x P66 / October 25, 2010 2010 年 10 月 25 日)
2×10197-7 = 1(9)1963<198> = 90373 × 4777371493<10> × 5633626609872084437<19> × 15628987393184593934605494171555743583996691<44> × 162960238765577557032112322936927640177420983<45> × 32285069853985377998389155635761941760924446222323784266717240483831016985417<77> (Daniel Morel / GGNFS-0.77.1 for P44 x P45 x P77 / June 18, 2015 2015 年 6 月 18 日)
2×10198-7 = 1(9)1973<199> = 308140018813999791283<21> × 6490555844378151809433361551228165719141341752981958400145587449848540019913493332203750841186536936089953931115844842842246275951731770458994120860922129592026278914460019998371<178>
2×10199-7 = 1(9)1983<200> = 13 × 120293 × 6212400041<10> × 1615716253225561<16> × 24817609158174558917197904607264980906756073794789836905523464911626329277<74> × 51340706297559266823235813361364608664555095735080763741381574937237440167795530658147609004301<95> (Daniel Morel / GGNFS-0.77.1 for P74 x P95 / May 21, 2015 2015 年 5 月 21 日)
2×10200-7 = 1(9)1993<201> = 1301 × 77494184407<11> × 29804123292653<14> × 19122300006570627091<20> × 348311486605878509660662409<27> × 182349040760987799564918359076342409<36> × 54801926834354290860267834669391833266360484125455715191587135759479195271787329085245083573<92> (Robert Backstrom / GMP-ECM 6.0.1 B1=1296000, sigma=581816915 for P36 x P92 / January 29, 2008 2008 年 1 月 29 日)
2×10201-7 = 1(9)2003<202> = 2579 × 897906102091<12> × 217315238931361<15> × 495220348836253668680601407811123362533317851431<48> × 8025259180419582502638930669130988043226219390671506906639538434159445506068706463868470991982127096882189833004151537755407<124> (Morel Daniel / GGNFS-0.77.1 for P48 x P124 / March 23, 2016 2016 年 3 月 23 日)
2×10202-7 = 1(9)2013<203> = 68087 × 75573017392933908708954310964403573986467777419881206351603<59> × 3886861216326259176103665532740086371652640282755005080317353279164700510718056873710385318373827686634062439140662554978586836605269185013<139> (Daniel Morel / GGNFS-0.77.1 for P59 x P139 / July 12, 2015 2015 年 7 月 12 日)
2×10203-7 = 1(9)2023<204> = 6287 × 493111 × 78264919 × 6048944287<10> × 136268388524951902975220960161090418035856888952293534145751956624714605171045959482121987341312379780517028515344673462114374848953363821474757847381796133520144185289252397433<177>
2×10204-7 = 1(9)2033<205> = 9733 × 67261 × 496941478374579981667<21> × 63631539474391210837548310251468153368458938899<47> × 211874652819574347241947126206068252497934489454599<51> × 455998349100891713474098874919077637805662298768683197879609540765807283712583<78> (Daniel Morel / GGNFS-0.77.1 for P47 x P51 x P78 / June 5, 2015 2015 年 6 月 5 日)
2×10205-7 = 1(9)2043<206> = 13 × 29 × 883 × 60079725796131466455987094874898990961005253972020871696741576071446809916759539909459853225229880050827448023527220621765082264164546353010444860329657455443373356444001189578570763403035828544478523<200>
2×10206-7 = 1(9)2053<207> = 31 × 6451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903<205>
2×10207-7 = 1(9)2063<208> = 172 × 163 × 787245869 × 1089351624102875951732316642367<31> × 49506938774785305511922906402655388080430382636587538456826233610097327687207903813622562164697332961904816501203824892927100366409935793592924819892201261272306113<164> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2770326268 for P31 x P164 / March 23, 2013 2013 年 3 月 23 日)
2×10208-7 = 1(9)2073<209> = 321017 × 6194599 × 2132576489<10> × 11291709132323<14> × 17657566736983<14> × 23653401844825321369943569057488329656966143200546774410015566119799330382664411738550889368556681980140670797872335037750251004085288657127372903791611358225171<161>
2×10209-7 = 1(9)2083<210> = 1423 × 29383 × 11229931718155253<17> × 7717666694011373663<19> × 141420168136307449981<21> × 256756994434265267522753<24> × 1738451904378577847471622659992633<34> × 874318189582087327897257987811447112701839409576619018615966668233346462007702133698801447<90> (Dmitry Domanov / YAFU 1.34 for P34 x P90 / March 29, 2013 2013 年 3 月 29 日)
2×10210-7 = 1(9)2093<211> = 947 × 1621993 × 15529425808076993<17> × 1121306173515450146096889521<28> × 6561300053346042776381511509549131<34> × 4101635164121595296627540693962463211361336905053227227763963<61> × 2778462265801035024581360489130049006629101410458290591097195587<64> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3328619583 for P34 / March 27, 2013 2013 年 3 月 27 日) (Warut Roonguthai / Msieve 1.49 gnfs for P61 x P64 / March 28, 2013 2013 年 3 月 28 日)
2×10211-7 = 1(9)2103<212> = 13 × 19 × 23 × 109 × 311 × 2414588713992728980651670051508758469124841<43> × 423746010934509455375283712257130713091137733061<48> × 155136682134285264808823800400927613377652046570507433437<57> × 654267022995783335304371521995617311160633958768673838131<57> (Morel Daniel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P43 x P48 x P57 x P57 / June 7, 2016 2016 年 6 月 7 日)
2×10212-7 = 1(9)2113<213> = 1052658649517<13> × 47773527878341669<17> × 3976995677850555732436227573427554283738672570982593549150618112395349999020278411339973451116784671667396237268766372690210077008681275878411144341448685371745488047300655909946664441<184>
2×10213-7 = 1(9)2123<214> = 23686198451<11> × 160205564647<12> × 51352484252551185881<20> × 10263502134740103821185123723406247515265967576609923107437856704831688356256917435756416660997318205159016787701380349341659616965898955806573947489690576340164710631827949<173>
2×10214-7 = 1(9)2133<215> = 1039 × 127297 × 38258137757107<14> × 84538472615885839064303160269<29> × 5757182354334604525735035788035885183001<40> × 37915267463364641825268475216950690067594944691746212501<56> × 214187413373216827883351026724033380132095854996848849111459790977637<69> (Daniel Morel / GMP-ECM B1=3000000, sigma=1:2095095891 for P40, GGNFS-0.77.1/MSieve 1.52 for P56 x P69 / September 29, 2016 2016 年 9 月 29 日)
2×10215-7 = 1(9)2143<216> = 43 × 131 × 258810513191449<15> × 5166499554199002669677<22> × 18171785299605821393439605421967430068001<41> × 1461215725115906526682384678683926106497601869149469767258279144044226737102327975878397971547381186189800529662080973862934776147735077<136> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2342073198 for P41 x P136 / May 13, 2013 2013 年 5 月 13 日)
2×10216-7 = 1(9)2153<217> = 61 × 199 × 6841 × 585881 × 52829057 × 778117568603744198808271644525657165663123752695773631678452871831352849720389657903673351960231330622773981990102778723868953800260141227321171463641713376732527955558275779867098251727854587771<195>
2×10217-7 = 1(9)2163<218> = 13 × 149 × 449 × 11426927 × 28132724327<11> × 6498312612692668987<19> × 37600968623730420958331331576646257629<38> × 292760956680694939678912826943630570763258580222697584733678065870914437265997816894613343109849832560311178858581455801382200477033335183<138> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2359832667 for P38 x P138 / May 13, 2013 2013 年 5 月 13 日)
2×10218-7 = 1(9)2173<219> = 1019 × 4270397 × 1188126239<10> × 993306898127<12> × 54087598263118236581691449299990286772328406574183577098833<59> × 720018780637199399173799029981859801441239227430688616622135743402381821037828846562510891445221036617981191112997514978316331799<129> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P59 x P129 / June 24, 2016 2016 年 6 月 24 日)
2×10219-7 = 1(9)2183<220> = 30497 × 259949 × 86829409 × 611189897 × 934948519584200174480981<24> × 1856305663509949248392190102725066522025437<43> × 2739078790864066010111068926000107043910865336339459339204172179545280387091374206101642930932343284710038279499400473943461301<127> (Daniel Morel / GMP-ECM 7.0 B1=11000000, sigma=1:4174679908 for P43 x P127 / November 20, 2017 2017 年 11 月 20 日)
2×10220-7 = 1(9)2193<221> = 67 × 1619 × 52627 × 1207892117<10> × 2566797906744191053<19> × 842137203283503587081055794636579877769447083797168212430476488334331074126507769<81> × 1341828627918982490677338292481883112787410911488130261108100270584017669313069000933490450589783122307<103> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P81 x P103 / February 19, 2018 2018 年 2 月 19 日)
2×10221-7 = 1(9)2203<222> = 31 × 149552178436306232224152122705168572111477<42> × 43139544810933841400085700800317962954248357441228090012874503636849536797266678716668058912735869389394965179354205156943000806988479690298339434372064927541823893071020960568939<179> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3376252540 for P42 x P179 / May 13, 2013 2013 年 5 月 13 日)
2×10222-7 = 1(9)2213<223> = 547 × 5407 × 7043 × 9650548618896833396166647707999<31> × 9948935340642552888027897994501972381932930098931804985231357074477579166134657225387690484168854120744907682562636993369776537956501154136848764070762047861701047536429999259729681<181> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=810194632 for P31 x P181 / March 23, 2013 2013 年 3 月 23 日)
2×10223-7 = 1(9)2223<224> = 13 × 17 × 7211367617<10> × 39594920376109392639081376336557288986461<41> × [316942597371347987013623758207572643289769574257667616439509102323658630689835969710141312456684712935328233263181605882888390037239658685970458014797231223499945046519409<171>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=408208681 for P41 / May 13, 2013 2013 年 5 月 13 日) Free to factor
2×10224-7 = 1(9)2233<225> = 17033 × 86238427133<11> × 309534675387395901101803078189<30> × [439874427551264717187066247415074464110273859290574765066071004270803915825330184986902108771437176366137207956909800784202043179423235177736102751083983686054825079065431009419833<180>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1071482568 for P30 / March 23, 2013 2013 年 3 月 23 日) Free to factor
2×10225-7 = 1(9)2243<226> = 133108451148764784238591<24> × [15025341987976092074331889679526814592759736302333408151412366719384855480049838260790950441290370270827956135124334600735761456215639450018157586374619884696397624522943091720998708664109716403355836423<203>] Free to factor
2×10226-7 = 1(9)2253<227> = 12079120699<11> × 5700664232773865009087171<25> × 290448550060182660378490368109866403127891079941106657856171471110811264976579536928938222202340084996258502768608343346026566290011873814621460196911083291905981390607703378354156470602683017<192>
2×10227-7 = 1(9)2263<228> = 4783 × 6712666501<10> × 98478302914596938186377<23> × 42082744770570909618319387<26> × [1503107112467134947826577124240117172786036702357859296805596698478992847915658651915972801190228665319097119838175706500302490090155141960261527414585721152532138729<166>] Free to factor
2×10228-7 = 1(9)2273<229> = 775700470073<12> × 2862492438856283117<19> × 900723705664248000355319646907529318297737825101831005011276429668438479938338201346105968033597930839223572839407768546200296460341751036863884095421654799748506400735566933854644950213012657969573<198>
2×10229-7 = 1(9)2283<230> = 132 × 19 × 11833 × 384997148345090522747629<24> × 766953018564440589849104620165757048813<39> × [1782660131569880123548521174169338360463103937264171075200929548577984149341567864992100831489776322119009504998174494993754107003108035884420338888884930360043<160>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3089457064 for P39 / May 13, 2013 2013 年 5 月 13 日) Free to factor
2×10230-7 = 1(9)2293<231> = 349 × 33599 × 10428218558981<14> × 9839888810837862943<19> × [166217942136703540185086794586515646073683508567637614915794882040103564126429766882009844377057660172693773695386694286256426920079365194621096134610078923418663986317028321932177848380243721<192>] Free to factor
2×10231-7 = 1(9)2303<232> = 11453267669<11> × [174622654232844158634148481280901425163400675605043348786507785230737367830218305535351057200547471113154161629154883937952607366064693340574366698667609738895381088993214902223027753809845933148425748190727978349145486997<222>] Free to factor
2×10232-7 = 1(9)2313<233> = 323244767711<12> × 18220902843761<14> × 112409683941563506835261916816980555053<39> × 71948649970563713951671463969080175268883<41> × 32512460188778410157382208268950768149810346517<47> × 12913750458967576645103578312487453218593703561785926004306552900939104108444568701<83> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1529915388 for P39 / March 27, 2013 2013 年 3 月 27 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=247293913 for P41 / May 13, 2013 2013 年 5 月 13 日) (Dmitry Domanov / Msieve 1.50 gnfs for P47 x P83 / May 22, 2013 2013 年 5 月 22 日)
2×10233-7 = 1(9)2323<234> = 23 × 29 × 26099 × 29819 × 83449674743<11> × 427157582648621538072677<24> × 4902897233253093714829032083<28> × 2204558666930094348879202169934389714068628527523385281269849189343351259142264434498333305279695165821522630924333909848797967210482731297970149368411196283043<160>
2×10234-7 = 1(9)2333<235> = 825990867511<12> × 2421334277008050967286162445809187125299661913782241325989473298158609233921409304718329101439003960760099997633011239105542382246543462897654884674770083058548500339631135808246763098878070350956200161788691686982028758863<223>
2×10235-7 = 1(9)2343<236> = 13 × 294979221527<12> × 27188379165767<14> × [191827956463797275252317493428847656708664008798015687514388697354444261604066476361414498993693909822110986364921073111353889748410747061203063812961585761242471293155447244368662398150582122393684069208477629<210>] Free to factor
2×10236-7 = 1(9)2353<237> = 31 × 43 × 4990169671191823<16> × 244828009908643457<18> × 122807087427002026022714755411603391170405051153459955627395167599790090740685250520402178030911542952247440767976977306023926274282376908534788486040913012817591875139456981566432367753499735372802811<201>
2×10237-7 = 1(9)2363<238> = 86693 × 559826357 × 1673647475277761<16> × 1432537602009345522485591<25> × 1831055353741764620915482144839737<34> × [9386877098405564040189771530904017900010556750027540348292570824583879213916348388268332638692046111782960681034119260861364454064572033427416734551439<151>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2448096458 for P34 / March 27, 2013 2013 年 3 月 27 日) Free to factor
2×10238-7 = 1(9)2373<239> = 47 × 509 × 9599173 × 87424896850918997<17> × 131099304750415140487<21> × 3556568975609504861772967<25> × 7432615126008670947907293345326463621812867207<46> × 287456503636899163591794397674452412616798992290922505899189478263060723118346223176185302501694764571514772989985160237<120> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3094186989 for P46 x P120 / March 28, 2013 2013 年 3 月 28 日)
2×10239-7 = 1(9)2383<240> = 17 × 821 × 69199450292633830742649431<26> × [207078625019448600459136479734583644197116563345494981639932060906557683601335571643276612769532475404242413069331939220554460903674145398829598802967666800269444483219187574026214940307008543051827122916473379<210>] Free to factor
2×10240-7 = 1(9)2393<241> = 347 × 773 × 4263341 × 1422883568121667<16> × 27600520597937674531<20> × 278789131554995933557653217501819<33> × [159738087117153917002120949411071014990414793664154370795616289492855015933863966967403057152524452626476353742059180721956727576671309019162666387688465487093241<162>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2729158477 for P33 / March 27, 2013 2013 年 3 月 27 日) Free to factor
2×10241-7 = 1(9)2403<242> = 13 × 188170998517<12> × 702078776875841<15> × 100153071120725416638469<24> × [116274327882580195137139394634830135912594505610267629939369236255328386908901083537955512181099971527078996213405701887644675751609586061325706266668389774391814451652321256356849284689093877<192>] Free to factor
2×10242-7 = 1(9)2413<243> = 181 × 1427016016290433<16> × 48433163984466571<17> × [15987469620768051168327285269839171045654315055940347103091867558384017915557328836853044043096543886880160203407753312636326641968089801061393952998140603982923991278785817590900572869206077679346839576593471<209>] Free to factor
2×10243-7 = 1(9)2423<244> = 6271 × 836962215115286501220124866575077<33> × 83241064927272547299527767204925533014547573543<47> × 4577725164789672391489314479930830177483202913095405425159690159714951022926874845117690907558402773225156443329146202726252218940000083950663618064054744784653<160> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=234597203 for P33 / March 26, 2013 2013 年 3 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=411556554 for P47 x P160 / May 13, 2013 2013 年 5 月 13 日)
2×10244-7 = 1(9)2433<245> = 113 × [176991150442477876106194690265486725663716814159292035398230088495575221238938053097345132743362831858407079646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707964601769911504424778761<243>] Free to factor
2×10245-7 = 1(9)2443<246> = 10627 × 31990271 × 588303450946358716171699343174643219646815515570129397615567109383913830719579094618417895100637351172398767455173991183212199990483052137158164669089538542522416638296303153999497652925020652224317147020704319840814671284380910237229<234>
2×10246-7 = 1(9)2453<247> = 107 × 629193396671897<15> × 64393880534595932825570966838121<32> × 139651291555152492205584612365146717339<39> × 3303486282321415390162307015710761710505204168261682750705790206424254781270202594111184853500485483890070441062139214289829449262050822356857721087020471486193<160> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2855951021 for P32 / March 26, 2013 2013 年 3 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2382283764 for P39 x P160 / May 13, 2013 2013 年 5 月 13 日)
2×10247-7 = 1(9)2463<248> = 13 × 19 × 227707 × 30138393473<11> × [11798765300750649350062722282882404096141038331088432268912265097697175293065810676079592571635128087169118833073191557074680159378426644578735570629879515667194589042022690663342132004388589675948554808027342615842323152629084029<230>] Free to factor
2×10248-7 = 1(9)2473<249> = 34763 × [5753243390961654632799240571872393061588470500244512844115870321893967724304576705117509996260391795874924488680493628282944509967494174841066651324684290768920979202025141673618502430745332681299082357679141616086068521128786353306676638955211<244>] Free to factor
2×10249-7 = 1(9)2483<250> = 449 × 1303 × 2087377 × 95569210769<11> × 129747877233074502027339479<27> × 38438549030664578219960016679926806732903<41> × 20130791787936663348000804888507223514918678222653<50> × 170683775859919761600569051501705669193587655888432015346242235374764903731855975201446117111155540212181805883<111> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4138019169 for P41 / May 13, 2013 2013 年 5 月 13 日) (Erik Branger / GMP-ECM B1=43000000, sigma=1:495945495 for P50 x P111 / January 29, 2014 2014 年 1 月 29 日)
2×10250-7 = 1(9)2493<251> = 1162477020745976085257<22> × 1602891335725498166296939399<28> × [10733504372801434847424902007412252105893977027570950805679435539749343860241535080012732615154811394857850170845833727755068212197305319431496431208210680409919700962424974748123461696103741852423246151<203>] Free to factor
2×10251-7 = 1(9)2503<252> = 31 × 59 × 3253489 × 31935217 × 140141760314401375824683<24> × 234916725268432381998959652603235777<36> × 31968007571980843507513751845003505401302261888842548376013389802564078635605602823333781834663349731886178719122280553222421912930869933746264948361079394288454389722412220399<176> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3648907666 for P36 x P176 / January 6, 2016 2016 年 1 月 6 日)
2×10252-7 = 1(9)2513<253> = 547681 × 1649570933<10> × 4252546231<10> × 1259208510629<13> × 10124858432857381<17> × 40831531723345785020787306453097959988806070482085333959715718254618213933964590681566166971144134675538424674215896383998376116336459591211644118494961788057347084669331768858424355344221801077156939<200>
2×10253-7 = 1(9)2523<254> = 13 × 67 × 32655721157<11> × 703157416244326866067671794118219371852595489531567566723779622087950881400109430764192557415060196353837149247460386838702964350523988096304724682100257240851014487504082347919126641230954725088450232754800538895363445290432877224990342419<240>
2×10254-7 = 1(9)2533<255> = 80238773 × [2492560548003394817615169663673695508778530299809046182697733924719910659650790023920231182996778876466617952894170004319482801662483049186208268663330631937754083054086582306038004843369177641836571952564628574267953972825581467951908985447721141<247>] Free to factor
2×10255-7 = 1(9)2543<256> = 17 × 23 × 97 × 2207 × 8293 × 14641349819<11> × 1550136044203689782162153<25> × 11977104227234886048840875674357<32> × [10598996401122731583903010896565227164919698902790656550531263401893416736398467996547767675892912591749003336510641263725191781064878584899064594954112513751950142673714262375491<179>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1182254052 for P32 / January 6, 2016 2016 年 1 月 6 日) Free to factor
2×10256-7 = 1(9)2553<257> = 1792753 × [11156026513412611776413147823487117299482973951235892507222132664120489548755461572229972561752790261681335911862928133435001921625566935322378487164712595655954835942263100382484369012351394754324773128255816612773761918122574610110818389370984179081<251>] Free to factor
2×10257-7 = 1(9)2563<258> = 43 × 2069 × [2248024548428068834511672867467712747423201861364326098440994975665134263266154866411141209662009509143839850731169984376229388424921600143873571099396405408747063517933615835084919127316870300223678442568592849033911450313037418368608585205750446794879<253>] Free to factor
2×10258-7 = 1(9)2573<259> = 1563253 × 4078080217<10> × [313721989626282121566270142711543791999371410898373243342293072975752522478955675054195834027343253289912232097595420062507119980939963308447069864974195528374609797335847377251756128928989876382584778854965188816928117492897686406402247591293<243>] Free to factor
2×10259-7 = 1(9)2583<260> = 13 × 12073 × 15621507264898237<17> × 57297264174054342461<20> × 110581670342368281295097<24> × 132303002031813549742603422535524329176793<42> × 9731096457019019547353200377984200496674950056493037566862509528082534551926374584296600361896206931208696169743817974803041620257444031805298384668401181<154> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3970730514 for P42 x P154 / January 25, 2017 2017 年 1 月 25 日)
2×10260-7 = 1(9)2593<261> = 970532471 × 27846974581<11> × 1217849682841377934043541191<28> × [6076426090389141341366489256491843444534949384105468687100300754470200245804702284591672807447907662473564662138816205367047317005749809951163025337756816562216080899278924979747228522104548044255142897765013869173<214>] Free to factor
2×10261-7 = 1(9)2603<262> = 29 × 709 × 1607 × 98513153650957<14> × [614434600008809680084763642186940677509412571583734662404543028240463308870648706838804945056954617892292936709997037940279572980351023038883238964261555101512467552664485612363101414864104636728871578805492031598433787157180705385874056587<240>] Free to factor
2×10262-7 = 1(9)2613<263> = 233 × 1471277 × 2560612816561<13> × 17414378951443763<17> × 310284235991591775289463<24> × 682394433478716451859521<24> × 670421875312376358396871055873<30> × 9216889041914198760641860083797044538816883464211933905603729079893681741658515763262559338986008362179894797054365891786422900241586390651044627409<148> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3821810219 for P30 x P148 / January 6, 2016 2016 年 1 月 6 日)
2×10263-7 = 1(9)2623<264> = 18899 × 21328703489567238466549<23> × 259627683006319050749785913<27> × [1911066133485909876696562266397347204947264311162811704269299516354756649183225912540499082521626942095830494338996919748151786812134950674731277108735425470752744201615200545284749264859219617353926873164076111<211>] Free to factor
2×10264-7 = 1(9)2633<265> = 5934619331<10> × 2054625250781854357417110767743<31> × 164022908101578331360563916427092660640461544074387227960197119385679714300382972818560724568228244667590094045437972778689116897034765955650112450347355130025092433434884050394436478675568784802683598199289746341509544355821<225> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3917735577 for P31 x P225 / January 6, 2016 2016 年 1 月 6 日)
2×10265-7 = 1(9)2643<266> = 13 × 19 × 5393 × 1457345130993937<16> × 8825367618023289702964394587<28> × 311627391118921878696046512541<30> × 1453352603866405366584044607185243491<37> × 2577512534997659286880778305217389202965043013941439049684907439082599056227364511398586834210502130376335154610627610481067909685430076302042033522347<151> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1841644632 for P30, B1=1e6, sigma=1877911128 for P37 x P151 / January 6, 2016 2016 年 1 月 6 日)
2×10266-7 = 1(9)2653<267> = 31 × 827 × 968689 × 113209781 × 171487956023<12> × 19625918092657<14> × [21136392634017967706907737421459752758953605123533223817911698406345993582243649881519203096670072200884385921296014451231623427789346709045822595774950727991808892736874150339341258785188785368048303179169964469546310521111<224>] Free to factor
2×10267-7 = 1(9)2663<268> = 157 × 1709 × 34075153196866574895213463399<29> × 218751209769467685518882903030993567603910855519711860468670342752342163654209239638800801529838403542739523403602993211337610517781078966918220691549734258225385886139415905374366382474549520298471914649843295675436992213839162949239<234>
2×10268-7 = 1(9)2673<269> = 719 × 1163 × 19949 × 91489583 × 43355282263<11> × 40741423485529787576080378957<29> × 7419085825166379805863522506174758443370512715209628916062969808733175363463209138117871948496476069789941249446245655499011902803464465697489038227456557962013389593412983171597702248022097555924131200425155077<211>
2×10269-7 = 1(9)2683<270> = 577 × 675281732117<12> × [513297538080787259629397201886737112042773975800250418046607622750060374222661111526863164713940738596640643231476030984551490186004298988351559167414368939797698181239337492902204322081954925661408611747234643140659153890801654374736673993001153520608277<255>] Free to factor
2×10270-7 = 1(9)2693<271> = [1999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993<271>] Free to factor
2×10271-7 = 1(9)2703<272> = 13 × 17 × 28411 × [3185306309406958078661457841435770448352567540040494799111490658054023113538172949709906191136534810381104380735840795842410792709662037407918767044374979992294744037544568407717933481566871285435139120642043080949304098167318088351159634651736923640722293688108503<265>] Free to factor
2×10272-7 = 1(9)2713<273> = 415937 × 61273733 × 2236723633<10> × 139342124899097<15> × [25178702431651521852772945793597364887488374627562474955464994560411831117305748417836415459535640548955170184284808524224346138283133712679652716821759251906938264396934455216657798670746464718989776959877962240401303779278567619828733<236>] Free to factor
2×10273-7 = 1(9)2723<274> = 2083 × [960153624579932789246279404704752760441670667306769083053288526164186269803168506961113778204512722035525684109457513202112337974075852136341814690350456072971675468074891982717234757561209793566970715314450312049927988478156505040806529044647143542966874699951992318771<270>] Free to factor
2×10274-7 = 1(9)2733<275> = 101087353847403169<18> × [197848684714717948844363836573168525828338692793820031287192195759188433805318458830615625406081063473587986239894842829495356946666788798084357649068268696779103603651462842106770924281454697966383994774780059350964867266672699111600901124059621228940625497<258>] Free to factor
2×10275-7 = 1(9)2743<276> = 9269880408926913125964092878416060959<37> × [21575251370815917467704178599973611480779656465192903413803199230671540013260588141505529875133783426196934216377116445538964468583583806134757517673699098955987864217282502622553700258150163110753697933280017723755828140141514925955549927<239>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2312620866 for P37 / January 25, 2016 2016 年 1 月 25 日) Free to factor
2×10276-7 = 1(9)2753<277> = 61 × 96259 × 3403391 × 7172567 × 36440763439<11> × 297507442070207<15> × 1852816081596856949<19> × 2798440640334036269587<22> × [248221070099043322119402164693526825270872316771903230051826366434264774208852636596750964076287324648778315389651145337544306512980178657209352382256734388337545123532340553417139717508820969<192>] Free to factor
2×10277-7 = 1(9)2763<278> = 13 × 23 × 582917941 × [114749654114734841162209927921878687055830201281433245099830965779224300169733536150281635366913470815801100712692918519662687489696027197131863579768204865490997093762654266791518411386076281028413340411548779253324390709494724541225109363880389793370183028568029727<267>] Free to factor
2×10278-7 = 1(9)2773<279> = 43 × 347033 × 1406101139<10> × 14083575589540627<17> × [676801443595327211586775858411776891698272819619265116701342171559557690406915425133085094657406648245572777871408421464029239807750239778950043185034070974105248570108560756874937367755462161004798146530587433101861995512678737428483695362672299<246>] Free to factor
2×10279-7 = 1(9)2783<280> = 2577667458587201616384305163782232795838075757<46> × [775895274364127477280058214715910833558130873940820664646227733174617844214549709607649042241255093387294046399364566953119832653974792353566857540961534022482460677444701982594267208322424969707455741612644445190840375247362669394749<234>] (Dmitry Domanov / GMP-ECM B1=110000000, sigma=1873872909 for P46 / February 12, 2016 2016 年 2 月 12 日) Free to factor
2×10280-7 = 1(9)2793<281> = 379 × 4104697 × 147740253639059<15> × 15775349128937157191<20> × 77147072176723055335427<23> × [71501048967164182446588540306127854409972598857856626977862544503335772405526724512623276896013493162183324685778586540730146867731618163012378735649500453675173870424858834267466546245304014850009155615153278267997<215>] Free to factor
2×10281-7 = 1(9)2803<282> = 31 × 449 × 336871 × 26857560541509564225815387<26> × 75377870857315537681250373990626779<35> × 21069193202715503767262926615859639036747378429107368653784715360975195558464747747365339849203221627533901875078610399930438628959920438537146281684616914738204053406277242239964926977155421595969682881062160809<212> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3353960352 for P35 x P212 / February 2, 2016 2016 年 2 月 2 日)
2×10282-7 = 1(9)2813<283> = definitely prime number 素数
2×10283-7 = 1(9)2823<284> = 13 × 19 × 67679 × 65710193 × 1163683655081199737447<22> × [15646292041761399770417368655249210374137473835532134067565398266786774298807478666769073637239081597628143447866340889870751382046859599134511261312811031342043497804416868042096425527457619068147410730879318856620694771321523128615955951901343991<248>] Free to factor
2×10284-7 = 1(9)2833<285> = 47 × 9679 × 68891 × 817440934369637471<18> × 7806974794961338332657817623616288510139311726472892731681675320821824125762106908611181890460877323645766301841299898554635931946058819580273996341578454561436155461169044772609265720363531902960040700054599193826143309318522845407236028136125432489318501<256>
2×10285-7 = 1(9)2843<286> = 76753 × 361295500311525631<18> × 387103161837360472523879<24> × [186313946338375527043551142749888607837314855479925407047850228926030191848140921082117990809493847919858569973097581852558900806163321203668254148661684831919308299795094892084478051053745147591471025920478553683471192895091321119816186769<240>] Free to factor
2×10286-7 = 1(9)2853<287> = 67 × 4861 × 431037221 × 1634209138748636531<19> × [87178052517515332749143178478387931562255959221296539082992362407073247335349102698027740318985975717533319563453869437870120157721048115766594623327703481505069101577891814515958202556910242801963721734522973934338287537486733948271429389598108203377489<254>] Free to factor
2×10287-7 = 1(9)2863<288> = 17 × 2234681 × [5264601919626533351503229425271042107154812489752123325826976172964494971870837098291460312916882438569926693313800256317673660857029284637731028171227071046355688561628364537988933122366695475445804516328254984255286654020917368993079338577526146184781157210568572532408033919409<280>] Free to factor
2×10288-7 = 1(9)2873<289> = 163 × 5505821227<10> × 399069365463688310341<21> × 757107638785884426807672108654897599<36> × 7375887209736647184447321122868307941841941497057452421148765301553539856978649936649168636197530712982382337307206832890814269626799301445153010677452047819908924154687329512279109635110779391149073501121572738715244027<220> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=355884408 for P36 x P220 / January 8, 2016 2016 年 1 月 8 日)
2×10289-7 = 1(9)2883<290> = 13 × 29 × 20877611 × 19338895959570323641<20> × 131394191554471972588606104929128864433667950621212117322160222849979115043848446551972814167970226847008972773050594189172596248463124551124596050019707384726829948470991819621214296173475981399890651587838748779191399014173290001700743127366052543127566978459<261>
2×10290-7 = 1(9)2893<291> = 2134950388618838237933<22> × 165130688127155659514709833<27> × 330079449828166227331586407<27> × [1718683591668513431297695628891060776649366444441532371471600588843401485263521450017739250950063197942288801183349232364004658750992160703373104027637063407144504423777169184597909101924435435132680328118396816277091<217>] Free to factor
2×10291-7 = 1(9)2903<292> = 265957 × 834283 × 2213107709<10> × 24517105819<11> × 30171904130598691866834029730376693<35> × [5505930238184035764852579588909505724556031187109139614346268841347498858210491565706623511830621178393352530803118317713554510648442709664511582084233922279845671952725848792602789888692500417643596565848763560716371060909501<226>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1535800696 for P35 / January 8, 2016 2016 年 1 月 8 日) Free to factor
2×10292-7 = 1(9)2913<293> = [19999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993<293>] Free to factor
2×10293-7 = 1(9)2923<294> = 4231 × 38237 × 3645253 × 8312894987607023896048906741<28> × [40796526590791334455087061577099935651102317864874283216295909273877544698724264916372765742095105386872309985714647264091150910913053919741032284245041865337782128353900473827566543634510457429020202377524211339552125363681435312468395368736023670003<251>] Free to factor
2×10294-7 = 1(9)2933<295> = 1283 × 6884674188497641195566919421<28> × [226422690594235095882469889073872933779536641598146066309071338603029495082699646946318597882941343315805488427153011173085834722354402863431325696456325697989983132080832353096038475076150664537445493758467208697599506928963771707454279673666553825143841062679951<264>] Free to factor
2×10295-7 = 1(9)2943<296> = 13 × 39225768844367438993411<23> × [39220685375615049662355982453680203610566285386596626776173359201979120101981800082527065463627192856926824543394659910478641324959381620167701791943137770510583138496716397812222799767862657764233213381900421466093572854681261891708935442907431227321114391261869919779551<272>] Free to factor
2×10296-7 = 1(9)2953<297> = 31 × 25011551 × [257945335066418170213150844815919317154830814228658306844937623085145868235298627138445984675305138143004664189474024453999338661693783262445935608943501808940326243920323569826829469776300687062807564908838552493270525415469294631624533232923124715585443159906912739070298024017112165753<288>] Free to factor
2×10297-7 = 1(9)2963<298> = 11621 × 41457329 × 1895846385029<13> × [2189686957682093268586062757225957416565407048718607651981777239447579287807680287891553445155982363479477911137898061688294756885021432850865337231616690176129769399626575620396589221789347346119845401213313397710059775389666233357322625287622695488337847516049042899138513<274>] Free to factor
2×10298-7 = 1(9)2973<299> = 838657 × 457145654160525163<18> × [52166418831901831521316386779941993491329369026222855639802294343491817853044988353234326243677439525908633759345471217761810022087880308770668684125739864287682338361500232003071915934689218437415351939169176049816066284150607364281468157562715300751854303638428392014298923<275>] Free to factor
2×10299-7 = 1(9)2983<300> = 23 × 43 × 107 × 7202287 × 45983869 × 297559632589<12> × [19177852762466921873758810530129470265844420649848763354819545628620811786774017023291854958238750646443831703938754898380209124516554323616061524828276883965389180304044715986795377220034667775882313725533716212385312483581362690698372555072386810647437222933220001073<269>] Free to factor
2×10300-7 = 1(9)2993<301> = 5519 × 502303063122666389<18> × 17945946548485212851748901<26> × [40201050805689921460772727227774817762687024510054332922049531698423654417955405197893895984393680444343994276651732791176216374530238921311726252204855283515355524504195324939355659863975462496936319229136814759720411177867925943389706130053664244829823<254>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク