19w3 = { 13, 193, 1993, 19993, 199993, 1999993, 19999993, 199999993, 1999999993, 19999999993, … }
2×101-7 = 13 =
definitely prime number 素数
2×102-7 = 193 =
definitely prime number 素数
2×103-7 = 1993 =
definitely prime number 素数
2×104-7 = 19993 =
definitely prime number 素数
2×106-7 = 1999993 =
definitely prime number 素数
2×108-7 = 199999993 = 47 × 647 × 6577
2×109-7 = 1999999993
<10> = 29 × 1327 × 51971
2×1010-7 = 19999999993
<11> = 167 × 2399 × 49921
2×1011-7 = 199999999993
<12> = 31 × 6451612903
<10>
2×1012-7 = 1999999999993
<13> = 151841 × 13171673
2×1013-7 = 19999999999993
<14> = 13 × 19 × 23 × 3520506953
<10>
2×1014-7 = 199999999999993
<15> = 337 × 109597 × 5415037
2×1015-7 = 1999999999999993
<16> = 17 × 2971 × 4523 × 8754913
2×1016-7 = 19999999999999993
<17> =
definitely prime number 素数
2×1017-7 = 199999999999999993
<18> = 419 × 477326968973747
<15>
2×1018-7 = 1999999999999999993
<19> = 199
2 × 293 × 196853 × 875617
2×1019-7 = 19999999999999999993
<20> = 13 × 59 × 2909 × 8963774250931
<13>
2×1020-7 = 199999999999999999993
<21> = 113 × 1769911504424778761
<19>
2×1021-7 = 1999999999999999999993
<22> =
definitely prime number 素数
2×1022-7 = 19999999999999999999993
<23> = 67 × 435973 × 684692544461623
<15>
2×1023-7 = 199999999999999999999993
<24> = 11909 × 110989 × 151312484375993
<15>
2×1024-7 = 1999999999999999999999993
<25> = 3347 × 240631 × 2483262941251349
<16>
2×1025-7 = 19999999999999999999999993
<26> = 13 × 449 × 649392647 × 5276341972987
<13>
2×1026-7 = 199999999999999999999999993
<27> = 31 × 43 × 38609 × 50723 × 603257 × 127000079
2×1027-7 = 1999999999999999999999999993
<28> = 14821 × 189892817689
<12> × 710630673997
<12>
2×1028-7 = 19999999999999999999999999993
<29> =
definitely prime number 素数
2×1029-7 = 199999999999999999999999999993
<30> = 93157183543
<11> × 2146909045480995151
<19>
2×1030-7 = 1999999999999999999999999999993
<31> = 233 × 542683 × 908543 × 17409342557850109
<17>
2×1031-7 = 19999999999999999999999999999993
<32> = 13 × 17 × 19 × 391711 × 3147649327
<10> × 3863064958031
<13>
2×1032-7 = 199999999999999999999999999999993
<33> = 7937879 × 26255993 × 959615100108287719
<18>
2×1033-7 = 1999999999999999999999999999999993
<34> = 157 × 1235676094033
<13> × 10309217411180659453
<20>
2×1034-7 = 19999999999999999999999999999999993
<35> = 107 × 2357 × 23220389 × 3415207884783397498163
<22>
2×1035-7 = 199999999999999999999999999999999993
<36> = 23 × 144103 × 60343311200412506875366019897
<29>
2×1036-7 = 1999999999999999999999999999999999993
<37> = 61 × 81777671 × 18409130083
<11> × 21778710214599641
<17>
2×1037-7 = 19999999999999999999999999999999999993
<38> = 13 × 29 × 3847 × 13790069632956611614410346965047
<32>
2×1038-7 = 199999999999999999999999999999999999993
<39> = 4837731548147
<13> × 41341690420297536424651619
<26>
2×1039-7 = 1999999999999999999999999999999999999993
<40> = 70896459831651473
<17> × 28210153296076246315241
<23>
2×1040-7 = 19999999999999999999999999999999999999993
<41> = 547 × 750561847192290337
<18> × 48714268430728997587
<20>
2×1041-7 = 199999999999999999999999999999999999999993
<42> = 31 × 863 × 86377036747
<11> × 549246358123
<12> × 157576706519201
<15>
2×1042-7 = 1999999999999999999999999999999999999999993
<43> = 1151 × 1291421 × 1345509683780863858672140671885683
<34>
2×1043-7 = 19999999999999999999999999999999999999999993
<44> = 13 × 3623 × 41764450260838073
<17> × 10167438170778002415859
<23>
2×1044-7 = 199999999999999999999999999999999999999999993
<45> = 41879 × 3630951917
<10> × 105160470244033
<15> × 12507216728836747
<17>
2×1045-7 = 1999999999999999999999999999999999999999999993
<46> = 163 × 12269938650306748466257668711656441717791411
<44>
2×1046-7 = 19999999999999999999999999999999999999999999993
<47> = 1032571 × 14766109199887
<14> × 1311728625703191116458701109
<28>
2×1047-7 = 199999999999999999999999999999999999999999999993
<48> = 17 × 43 × 773 × 9309826661
<10> × 12056495332619
<14> × 3153337441442253529
<19>
2×1048-7 = 1999999999999999999999999999999999999999999999993
<49> =
definitely prime number 素数
2×1049-7 = 19999999999999999999999999999999999999999999999993
<50> = 13 × 19 × 9545244125897069
<16> × 8482932322217433539512787372651
<31>
2×1050-7 = 199999999999999999999999999999999999999999999999993
<51> = 2081 × 36786417670609769501
<20> × 2612584933330129305356310253
<28>
2×1051-7 = 1
(9
)503
<52> = 1423 × 38237 × 36757103783553883001146215145834452510566243
<44>
2×1052-7 = 1
(9
)513
<53> = 176951 × 113025639866403693677910834072709394126057496143
<48>
2×1053-7 = 1
(9
)523
<54> = 7855261 × 61021733623
<11> × 1809129579401
<13> × 230629660624325766585731
<24>
2×1054-7 = 1
(9
)533
<55> = 47 × 234837181 × 10362105332993750440837
<23> × 17487079185168694942727
<23>
2×1055-7 = 1
(9
)543
<56> = 13 × 67 × 7759699049
<10> × 62740984027399
<14> × 47164543662706357741988141633
<29>
2×1056-7 = 1
(9
)553
<57> = 31 × 311 × 1223 × 73161949661
<11> × 231844173187091340053838446622292382291
<39>
2×1057-7 = 1
(9
)563
<58> = 23 × 449 × 138181 × 1401546423015370688843115208068322657909567287139
<49>
2×1058-7 = 1
(9
)573
<59> = 51197 × 1169627 × 11336795257
<11> × 37915346681
<11> × 978880078019
<12> × 793785703346989
<15>
2×1059-7 = 1
(9
)583
<60> = 55797743 × 1086154177
<10> × 4159426859767
<13> × 107744249276441
<15> × 7363669622653129
<16>
2×1060-7 = 1
(9
)593
<61> = 1723 × 1160766105629715612304120719674985490423679628554846198491
<58>
2×1061-7 = 1
(9
)603
<62> = 13 × 13837748592953
<14> × 239978273036984901007
<21> × 463286114349866817612216491
<27>
2×1062-7 = 1
(9
)613
<63> = 181 × 839 × 2519345707
<10> × 380082979496658807194921
<24> × 1375381796929438810472641
<25>
2×1063-7 = 1
(9
)623
<64> = 17 × 97 × 4001 × 303138284561667345443808847666797672928644733904455966057
<57>
2×1064-7 = 1
(9
)633
<65> = 4800571651090609
<16> × 3209688485991065056339
<22> × 1297998394247778069490950643
<28>
2×1065-7 = 1
(9
)643
<66> = 29 × 66468540181
<11> × 103756629908795665152126753922302381133647017344719257
<54>
2×1066-7 = 1
(9
)653
<67> = 16067 × 2063501079919
<13> × 6210803600511223789
<19> × 9712761069592912353140239337969
<31>
2×1067-7 = 1
(9
)663
<68> = 13 × 19 × 347 × 31513843 × 46481145077
<11> × 1931217153391151
<16> × 82488664392429670874141785757
<29>
2×1068-7 = 1
(9
)673
<69> = 43 × 569 × 448667 × 179974897476082336759
<21> × 101230926348508315776958916241515398543
<39>
2×1069-7 = 1
(9
)683
<70> = 149 × 138731 × 96754285573853779795663656753722463911739966665245991240157247
<62>
2×1070-7 = 1
(9
)693
<71> = 205171 × 403028728699
<12> × 5196772968961478969033
<22> × 46541917455697825452266829428849
<32>
2×1071-7 = 1
(9
)703
<72> = 31 × 28563576011
<11> × 184769137331549
<15> × 1222436454997462715380851481327065398310601177
<46>
2×1072-7 = 1
(9
)713
<73> = 8389 × 1979874160213757
<16> × 120415450185144944447015050651629578269991888169463241
<54>
2×1073-7 = 1
(9
)723
<74> = 13
2 × 2423 × 4177 × 302229901289
<12> × 5278588902221617
<16> × 40954868886989507
<17> × 178963552487045908277
<21>
2×1074-7 = 1
(9
)733
<75> = 99193367451504591449
<20> × 2016263840400211623895282333747373490637583326845482657
<55>
2×1075-7 = 1
(9
)743
<76> = 8849 × 59385310320013
<14> × 10361199952159009571957
<23> × 367321809825673190371530366758115577
<36>
2×1076-7 = 1
(9
)753
<77> = 499 × 4079 × 9825977033743879030431542172356480551198007684896638091087789700509133
<70>
2×1077-7 = 1
(9
)763
<78> = 59 × 593 × 2568902239072704920989829
<25> × 2225234135013198218408976924739964526754998274991
<49>
2×1078-7 = 1
(9
)773
<79> = 14319031 × 1299531836207022577165951926563
<31> × 107480441801495541935408987337937770766181
<42>
2×1079-7 = 1
(9
)783
<80> = 13 × 17 × 23 × 38921 × 50077 × 2018773487323708397729762512010012421349432931027272014356778656063
<67>
2×1080-7 = 1
(9
)793
<81> = 62993136696825613669
<20> × 102592076684005216955148944389
<30> × 30947312505666226393648531337473
<32>
2×1081-7 = 1
(9
)803
<82> = 7723 × 2551665170547341
<16> × 34575395983329773569
<20> × 2935304176263322687941425774336903446769879
<43>
2×1082-7 = 1
(9
)813
<83> =
definitely prime number 素数
2×1083-7 = 1
(9
)823
<84> = 1613 × 514024781 × 1254505159
<10> × 192282216577164757871280595661953469694403772059243755713816359
<63>
2×1084-7 = 1
(9
)833
<85> = 24608408490121
<14> × 87007085632962855588872569
<26> × 934096718674609800511446423601155904626918457
<45>
2×1085-7 = 1
(9
)843
<86> = 13 × 19 × 131
2 × 7951 × 9973 × 59503550267393000718874778785827702559740414584511289882831854288561973
<71>
2×1086-7 = 1
(9
)853
<87> = 31 × 269 × 11131 × 12170131 × 91049244281584572288033572869160999
<35> × 1944510267148908500377526352238332133
<37>
2×1087-7 = 1
(9
)863
<88> = 107 × 9071068898043051649
<19> × 1683810587581360957969493
<25> × 1223755104742012422652149843812561731543807
<43>
2×1088-7 = 1
(9
)873
<89> = 67 × 2597909 × 1124474096321
<13> × 1892646585220527682785364373
<28> × 53989869485252679629475976943443771123307
<41>
2×1089-7 = 1
(9
)883
<90> = 43 × 449 × 14920068221
<11> × 548402366521
<12> × 23991667984671088612631697253513
<32> × 52769700249246093169246765951303
<32>
2×1090-7 = 1
(9
)893
<91> = 63373800942281
<14> × 31558782497858087555674165032738956773709373152822746248213454810776339551153
<77>
2×1091-7 = 1
(9
)903
<92> = 13 × 2169796550879649778507707744167601704988667
<43> × 709034926725197367140441293570392144363010637383
<48> (Makoto Kamada / GGNFS 0.54.1-k1 for P43 x P48 / 0.21 hours)
2×1092-7 = 1
(9
)913
<93> = 1567 × 5125903397
<10> × 2355159393161644327
<19> × 1741239126297957693925161111229
<31> × 6071721736522523407197574175729
<31>
2×1093-7 = 1
(9
)923
<94> = 29 × 41018796821
<11> × 12568015775520204714571
<23> × 98988881578246142093031285079
<29> × 1351437438360830648162572453453
<31>
2×1094-7 = 1
(9
)933
<95> = 4153 × 7142338848162559
<16> × 674260338613948380045275496406430086695043247208035864460864173913405181759
<75>
2×1095-7 = 1
(9
)943
<96> = 17 × 1693 × 44741 × 584203 × 50225418203
<11> × 1978638904462609
<16> × 13199652759020524845751
<23> × 202675864687676094763762469011943
<33>
2×1096-7 = 1
(9
)953
<97> = 61 × 1559 × 4561 × 18958937 × 20790974125423
<14> × 11697825858067245376502041238481466095951628975464867400231487697037
<68>
2×1097-7 = 1
(9
)963
<98> = 13 × 6671309 × 93784608383
<11> × 68426892338850109
<17> × 35934962899509359252682618928308945958702231360421705906298907
<62>
2×1098-7 = 1
(9
)973
<99> = 2677 × 104677 × 284093 × 437785273 × 7378121133983
<13> × 194786817290159
<15> × 3993036991304348572159282909970579986022589299549
<49>
2×1099-7 = 1
(9
)983
<100> = 20859069935591
<14> × 94071964066060573
<17> × 1019236209365667062370786192292895721285075141580159510561316454649451
<70>
2×10100-7 = 1
(9
)993
<101> = 47 × 2693 × 5068439 × 345563949005939276661116437
<27> × 90217986860562407076830116951480794287767716511624892678313881
<62>
2×10101-7 = 1
(9
)1003
<102> = 23 × 31 × 40817008110892419885360745295659
<32> × 6872255508630705731993785461808742826606432539570772235049035346579
<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P32 x P67 / 0.58 hours on Cygwin on AMD XP 2700+ /
August 18, 2007 2007 年 8 月 18 日)
2×10102-7 = 1
(9
)1013
<103> = 754377913 × 17569036382067671041
<20> × 150901337468871212305910478200649431862776885393934911824002742511375488321
<75>
2×10103-7 = 1
(9
)1023
<104> = 13 × 19 × 109 × 27271 × 45843061261
<11> × 1499785301098546070559433483576047617
<37> × 396189332056518295199839376172030596884900883633
<48> (Robert Backstrom / Msieve v. 1.25 for P37 x P48 / 23.15 minutes /
August 18, 2007 2007 年 8 月 18 日)
2×10104-7 = 1
(9
)1033
<105> = 450133363 × 26210111436324424372537
<23> × 16951960238891106285996014320600431953988753994956664146366905164973918203
<74>
2×10105-7 = 1
(9
)1043
<106> = 249871 × 19798132157
<11> × 3163117297741861192762916686673115456869
<40> × 127812881122780074917861322196995275825625504898951
<51> (Robert Backstrom / Msieve v. 1.25 for P40 x P51 / 1.3 hours /
August 18, 2007 2007 年 8 月 18 日)
2×10106-7 = 1
(9
)1053
<107> = 2057147 × 463223941 × 20988126437934572100650547240170911986268053432721891812141627052270619398535539962548072159
<92>
2×10107-7 = 1
(9
)1063
<108> = 82054863816299707259814398629080646350578566200027409
<53> × 2437393601039298755451892933667568529233231518271465577
<55> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P53 x P55 / 0.81 hours on Cygwin on AMD 64 3200+ /
August 18, 2007 2007 年 8 月 18 日)
2×10108-7 = 1
(9
)1073
<109> = 383 × 10287532817801
<14> × 507598100279860370829957319017159200027537506053821866464990762062445311901786859913023017871
<93>
2×10109-7 = 1
(9
)1083
<110> = 13 × 9533 × 117617652727
<12> × 32407405518947
<14> × 253751673013933
<15> × 166851979909646349546024558901926430803956994323790908730779109121
<66>
2×10110-7 = 1
(9
)1093
<111> = 43 × 2509654211
<10> × 1931986832489347
<16> × 959275805431305450241056654440200951385478670400365360106928139429946739919843802003
<84>
2×10111-7 = 1
(9
)1103
<112> = 17 × 157 × 439 × 5930190964349
<13> × 2686413178267993
<16> × 2274951685247824724863
<22> × 47098083569034218414375212879774473362528057732894787553
<56>
2×10112-7 = 1
(9
)1113
<113> = 4933 × 436546025833
<12> × 107910677472821
<15> × 244947452135599
<15> × 351359334449242268907513378628455296054937932244971512323571086623303
<69>
2×10113-7 = 1
(9
)1123
<114> = 433 × 193594939 × 6438265937
<10> × 103768776474506761548880707440030104142231
<42> × 3571186177883878701163022523856197962069162111081437
<52> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P42 x P52 / 1.84 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 18, 2007 2007 年 8 月 18 日)
2×10114-7 = 1
(9
)1133
<115> = 223 × 349 × 401 × 87913919539791743
<17> × 55632596705348452969
<20> × 678785125841080499365885889789
<30> × 19303499176809380687282983046612803713593
<41> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=738349150 for P30 x P41 /
August 11, 2007 2007 年 8 月 11 日)
2×10115-7 = 1
(9
)1143
<116> = 13 × 7727749272363769292153
<22> × 199082745083802748961580242093329249137660270422339965290780770420651472692583128645150029637
<93>
2×10116-7 = 1
(9
)1153
<117> = 31 × 15287 × 57388723099
<11> × 7056481988900947
<16> × 53770152002195367607766769002285035703
<38> × 19381615468650712446069311543584612837099830391
<47> (Robert Backstrom / Msieve v. 1.25 for P38 x P47 / 31.2 minutes /
August 18, 2007 2007 年 8 月 18 日)
2×10117-7 = 1
(9
)1163
<118> = 199 × 1279 × 293763817948763
<15> × 24049592745348234991
<20> × 2844998987702608844764526103674599
<34> × 390947309073851222871845565805012609316881499
<45> (Makoto Kamada / Msieve 1.26 for P34 x P45 / 12 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
August 17, 2007 2007 年 8 月 17 日)
2×10118-7 = 1
(9
)1173
<119> = 7603 × 15467 × 36691 × 560783 × 44963591969
<11> × 228255834357666971162546058313791223921
<39> × 805381494221740368380247875416367103097200384770669
<51> (Robert Backstrom / Msieve v. 1.25 for P39 x P51 / 1.22 hours /
August 18, 2007 2007 年 8 月 18 日)
2×10119-7 = 1
(9
)1183
<120> = 3329 × 9601 × 37117 × 4643453 × 3737042927
<10> × 9715333723167523461028173291357869258950428467850963095097444942905475932461446867274771871
<91>
2×10120-7 = 1
(9
)1193
<121> = 1612634484547
<13> × 13953893991747473843
<20> × 1741667320530491745304201
<25> × 827419003560831791460803192987
<30> × 61674826936885885970729973310901659
<35> (Makoto Kamada / Msieve 1.26 for P30 x P35 / 35 seconds on Pentium 4 3.06GHz, Windows XP and Cygwin /
August 17, 2007 2007 年 8 月 17 日)
2×10121-7 = 1
(9
)1203
<122> = 13 × 19
2 × 29 × 67 × 449 × 105683783 × 560286053 × 84709044758553106779503153611219
<32> × 973895486213706256874024049169829152280917871863189669742989003
<63> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P32 x P63 / 2.15 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 18, 2007 2007 年 8 月 18 日)
2×10122-7 = 1
(9
)1213
<123> =
definitely prime number 素数
2×10123-7 = 1
(9
)1223
<124> = 23
2 × 1901 × 2066521 × 53702948292907
<14> × 9865966209767263
<16> × 71002632147797699
<17> × 25582335027864441645890689621535816313861898308916738571990501803
<65>
2×10124-7 = 1
(9
)1233
<125> = 1237 × 75739987021613441981
<20> × 22558396289653158268549
<23> × 30235527906754154539453
<23> × 312974743516419780327444462580999969227258311974717645577
<57>
2×10125-7 = 1
(9
)1243
<126> = 165168634578001888654519
<24> ×
1210883655428832572540661468254176201720557233527728498589984267426032150685696194736029406246152970447<103>
2×10126-7 = 1
(9
)1253
<127> = 163 × 2075421732715501633
<19> ×
5912021858927266533924640372035533659267984949341407619124044233483021470152077444181868324318074227054067<106>
2×10127-7 = 1
(9
)1263
<128> = 13 × 17 × 24103 × 6730177 × 94316333 × 51803508177079056623
<20> × 90156356392017166579
<20> × 1266478159617222410568320386489185143728549629581477254952005916963
<67>
2×10128-7 = 1
(9
)1273
<129> = 179 × 2141 × 2199859 × 6588973 × 5693316319
<10> × 177072611648613262411
<21> × 9638041289150507104245734353393
<31> × 3705460899359480965894476989489934602337872009893
<49> (Makoto Kamada / Msieve 1.26 for P31 x P49 / 17 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
August 17, 2007 2007 年 8 月 17 日)
2×10129-7 = 1
(9
)1283
<130> = 83639 × 3574169 × 129553992197347
<15> × 261030882891310001
<18> × 1486751042568008988903546205849
<31> × 133065397594874242418254943012440252718810034095919697541
<57> (Robert Backstrom / Msieve v. 1.25 for P31 x P57 / 44.45 minutes /
August 18, 2007 2007 年 8 月 18 日)
2×10130-7 = 1
(9
)1293
<131> =
definitely prime number 素数
2×10131-7 = 1
(9
)1303
<132> = 31 × 43 × 547 × 17191 × 336512056301210231838855734796868432039
<39> × 47414453712323773154974881733917128690695953514154501437581484178811965886517575607
<83> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P39 x P83 / 4.50 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 18, 2007 2007 年 8 月 18 日)
2×10132-7 = 1
(9
)1313
<133> = 113 × 96910843004522017
<17> ×
182632969598891201651530364167093502463825371503560683347399958938846116566884483816068755087434286400403034726633<114>
2×10133-7 = 1
(9
)1323
<134> = 13 × 8369 × 12491 × 256363 × 23413869901
<11> × 2498095785529
<13> × 4206989836184363
<16> × 233295720151692482054315853848283013458362092712529745856574990403930760186551859
<81>
2×10134-7 = 1
(9
)1333
<135> = 2857 × 27927023 × 53144573565322907925832295743438999653609663807679
<50> × 47166775363319527326178169171770117349576735102560712103900237618601981697
<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P50 x P74 / 4.42 hours on Cygwin on AMD 64 3200+ /
August 19, 2007 2007 年 8 月 19 日)
2×10135-7 = 1
(9
)1343
<136> = 59 × 11961402170071789
<17> × 3728219826744931882487
<22> × 17961831456506031402449
<23> × 42319815221256452785251590748815628863806445847929840602393773320844439361
<74>
2×10136-7 = 1
(9
)1353
<137> = 10313581 × 1238634939757
<13> ×
1565586923926093270009080464926344290000908750262257113653221576209837780946963430512262373065214952479869742276230929<118>
2×10137-7 = 1
(9
)1363
<138> = 748003 × 33310522579
<11> × 2390131300820543368485406409
<28> × 3358330630726815585866665148198037542537791667019952702420547131059345414855706436951109119321
<94>
2×10138-7 = 1
(9
)1373
<139> = 658279 × 20210881938782879485293912186383278080876647
<44> × 150326217455104768578918165545438708371606106048971235069662906160218582347415312161469961
<90> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P44 x P90 / 6.57 hours on Cygwin on AMD 64 3200+ /
August 19, 2007 2007 年 8 月 19 日)
2×10139-7 = 1
(9
)1383
<140> = 13 × 19 × 1615266371
<10> ×
50128982669836280570328087341223016201190794133748693069876126281978008245781562129128447063404912500978663711046615926252289989<128>
2×10140-7 = 1
(9
)1393
<141> = 107 × 4714823806387
<13> × 397193297595629
<15> × 12697513338376374603581
<23> × 78606807990532772667474362080562709154103341010601231789893016605130785929620611510756273
<89>
2×10141-7 = 1
(9
)1403
<142> = 683 × 655920743 × 33288172475610100603
<20> ×
134112103288196833720208136909501775573256592141312090312010324478404085266453805915834636686637182699579723399<111>
2×10142-7 = 1
(9
)1413
<143> = 3967 × 4673 × 766369 ×
1407777712037398191486334558484748027029761901411084179955398364600765298056680579957269354985327154322524797193202410400319300967<130>
2×10143-7 = 1
(9
)1423
<144> = 17 × 18470702189
<11> × 228301394273106235780597543
<27> × 22707141235023433297394936623127
<32> × 122864563822659007223378498802742451249014598526543766623843802022535717101
<75> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2721225050 for P32 x P75 /
August 12, 2007 2007 年 8 月 12 日)
2×10144-7 = 1
(9
)1433
<145> = 109583 ×
18251006086710529917961727640236168018762034257138424755664656014162780723287371216338300648823266382559338583539417610395773066990317841271<140>
2×10145-7 = 1
(9
)1443
<146> = 13 × 23 ×
66889632107023411371237458193979933110367892976588628762541806020066889632107023411371237458193979933110367892976588628762541806020066889632107<143>
2×10146-7 = 1
(9
)1453
<147> = 31
2 × 47 × 435789728193384491010265428807562407041323
<42> × 7824864009218661541825600129317326360954459
<43> × 1298538893538002080810765152446905474596595362243224337247
<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P42 x P43 x P58 / 8.67 hours on Cygwin on AMD XP 2700+ /
August 19, 2007 2007 年 8 月 19 日)
2×10147-7 = 1
(9
)1463
<148> = 257 × 743 × 391695274303
<12> × 522269290787574364079
<21> × 390407817010847095598395909
<27> × 131143488369150956117405221359726620382294733613082574937634241856250235881858308771
<84>
2×10148-7 = 1
(9
)1473
<149> = 727 × 55259 × 689461 × 71275313 × 116574430973904193855146706732208499099941411897
<48> × 86904130976575581951526367276706846060506184025707483584177277127705512595780481
<80> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P48 x P80 / 17.29 hours on Cygwin on AMD XP 2700+ /
August 20, 2007 2007 年 8 月 20 日)
2×10149-7 = 1
(9
)1483
<150> = 29 × 108949 × 8721993746773
<13> × 12217002739326393689
<20> × 178416584056560249225100104637
<30> × 8179150902611192175056182508267
<31> × 407084780721940591874246317159290533910006635665091
<51> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3751227348 for P30 /
August 12, 2007 2007 年 8 月 12 日) (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=276345269 for P31 x P51 /
August 12, 2007 2007 年 8 月 12 日)
2×10150-7 = 1
(9
)1493
<151> = 11952940053651615413333135761471
<32> × 5135103254216728139255928526842762174060283210192549973
<55> × 32584125786762908430335253253731098461829476256546485262340435371
<65> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3165284130 for P32 /
August 12, 2007 2007 年 8 月 12 日) (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P55 x P65 / 32.39 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 20, 2007 2007 年 8 月 20 日)
2×10151-7 = 1
(9
)1503
<152> = 13
3 × 137867 × 4224067859430198256241
<22> ×
15631790533137119663544037514619281894548338951219182923056028287046339422175932739272100689010023394450055608937618634127<122>
2×10152-7 = 1
(9
)1513
<153> = 43 × 204334865038223
<15> × 16693847621802210188347
<23> × 327984025003795812551523975755537204514529776773084171
<54> × 4157286246714744149068820102379243249246807718475885348533501
<61> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P54 x P61 / 15.90 hours on Core 2 Quad Q6600 /
September 13, 2007 2007 年 9 月 13 日)
2×10153-7 = 1
(9
)1523
<154> = 449 × 677 × 3762028438491263860353713420746250519837842493
<46> ×
1748931950489219682449972965472311190393808085080580038420592920946818270596715052250792592387757778537<103> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P46 x P103 / 26.79 hours on Cygwin on AMD 64 3200+ /
August 20, 2007 2007 年 8 月 20 日)
2×10154-7 = 1
(9
)1533
<155> = 67
2 × 229 × 55049 × 50009407956250793
<17> × 61602475925415368717517641
<26> × 351490277394110695323131847836679690401
<39> × 326386567160734215007637212280611893892518870849999885489152869
<63> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P39 x P63 / 12.31 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 20, 2007 2007 年 8 月 20 日)
2×10155-7 = 1
(9
)1543
<156> = 4339 × 5303 × 1439617218001
<13> × 961207979097509279
<18> × 80965371749079875135193964006734647
<35> × 77580934154601854923447083339687231799885525920119624203485250965115554274629179933
<83> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P35 x P83 / 16.76 hours on Core 2 Quad Q6600 /
September 17, 2007 2007 年 9 月 17 日)
2×10156-7 = 1
(9
)1553
<157> = 61 × 379561891 × 591755936832544670700889
<24> × 2996976568019324627915945752938287251955921580343264766897
<58> × 48707023203560580789797226764686962335766992120048448009260900471
<65> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P58 x P65 / 16.84 hours on Core 2 Quad Q6600 /
September 19, 2007 2007 年 9 月 19 日)
2×10157-7 = 1
(9
)1563
<158> = 13 × 19 × 34394983393086726911525485365768764383612514728573
<50> ×
2354170635689371043056236203816500880637102917069176450408667904943221662630923232028232978839918295665403<106> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P50 x P106 / 31.86 hours on Cygwin on AMD 64 3200+ /
August 19, 2007 2007 年 8 月 19 日)
2×10158-7 = 1
(9
)1573
<159> = 953 × 25057 × 2414090848213589432916932990633
<31> × 31571248495465350553236417278124057355578453451578557
<53> × 109891134207565565423460471928953710097707635400211726467910976480493
<69> (JMB / GMP-ECM B1=1000000, sigma=2790418531 for P31 /
August 18, 2007 2007 年 8 月 18 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P53 x P69 / 34.21 hours on Core 2 Quad Q6600 /
October 1, 2007 2007 年 10 月 1 日)
2×10159-7 = 1
(9
)1583
<160> = 17 × 97 × 1747 × 634649251 × 2054299447149250297
<19> × 148755245875612245393010321
<27> ×
3579699934594358473780712482108418449708789433457591275026055921063522065110954977534132123453806313<100>
2×10160-7 = 1
(9
)1593
<161> = 9778720056013703211871
<22> × 3697455345403613029511363255055491
<34> × 88983955588580213717636993253398599
<35> × 6216319634016996326346051640131835569522780364047133332828651637579787
<70> (JMB / GMP-ECM B1=1000000, sigma=1044781805 for P34 /
August 19, 2007 2007 年 8 月 19 日) (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P35 x P70 / 66.09 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 23, 2007 2007 年 8 月 23 日)
2×10161-7 = 1
(9
)1603
<162> = 31 × 313 × 142448923 × 17325841849
<11> × 15585783388091791295501248633
<29> × 266553003634306871217586370997016387
<36> × 2010287774860919418202526881731198334032989116402867831616415928274528790943
<76> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P36 x P76 / 40.17 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
August 25, 2007 2007 年 8 月 25 日)
2×10162-7 = 1
(9
)1613
<163> = 295873 × 4257253215102693503
<19> ×
1587797735643967851996922354673956638588050272861836975524878046750608199710403993510074840554538930662715515268938946398099780254929848647<139>
2×10163-7 = 1
(9
)1623
<164> = 13 × 201757487 × 164834767007237
<15> × 129162229318541414865248023
<27> × 2870602702071050972528733922531425863733789921251
<49> × 124766945602396491462945015979925208408928505160969226719559459403
<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P49 x P66 / 21.80 hours on Core 2 Quad Q6600 /
September 16, 2007 2007 年 9 月 16 日)
2×10164-7 = 1
(9
)1633
<165> = 293 × 3809415392261
<13> × 4410893217380666509
<19> × 676677033748151222836658526167
<30> ×
60033831512034509037025711389917769139843957491414747524349277078754656354898546453859546428217503747<101> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3873787560 for P30 x P101 /
August 13, 2007 2007 年 8 月 13 日)
2×10165-7 = 1
(9
)1643
<166> = 59797 × 246613 × 23678089 × 41577973901
<11> × 34612991488332463201
<20> × 336810499334585532769
<21> × 8373248538781344557355140845393442753439917323
<46> × 1411256395841790563687916889769452582264264863948791
<52> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P46 x P52 / 2.74 hours on Core 2 Quad Q6600 /
August 24, 2007 2007 年 8 月 24 日)
2×10166-7 = 1
(9
)1653
<167> = 1033 × 41203 × 692077355735784149
<18> ×
678963137729462657410685657192978487461888575468720960519435213449754200840707195568236829383038526395604243924830547951457240268495612424543<141>
2×10167-7 = 1
(9
)1663
<168> = 23 × 817671420061668453239381786225641
<33> ×
10634653432374120218546314263462036182748850386624188463030773029103326239415114946154180410545538376172609896000131661254182519321751<134> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P33 x P134 / 93.38 hours on Cygwin on AMD 64 3200+ /
September 27, 2007 2007 年 9 月 27 日)
2×10168-7 = 1
(9
)1673
<169> = 8002843 × 679331923056720559092781
<24> × 1743135735135318112931632042583008770405177795897939247
<55> × 211043737325077621766641712794419286115201489247799793695341755432378145694998105193
<84> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P55 x P84 / 53.77 hours on Cygwin on AMD 64 X2 6000+ /
July 16, 2008 2008 年 7 月 16 日)
2×10169-7 = 1
(9
)1683
<170> = 13 × 443 × 15077 × 1825739 × 39504457 × 1949984837
<10> ×
1637766406035841923061103686434301527772654718109886968037754032192230773053883334572322866141867180256790299413505934169213134132607507701<139>
2×10170-7 = 1
(9
)1693
<171> = 12830114637211177323355529618441346334457779697621
<50> × 21211698624128416961087313467823336589027450130654173021
<56> × 734892831044394689750114258247584690226884187718469681813063218073
<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P50 x P56 x P66 / 75.19 hours on Core 2 Quad Q6600 /
August 28, 2007 2007 年 8 月 28 日)
2×10171-7 = 1
(9
)1703
<172> = 69542053866301
<14> × 2207526515260409521358128631916321637
<37> ×
13027964122020918758541442567091441481729149610702735659626025690125388966404642417856907478360011684956625601358894013289<122> (Robert Backstrom / GMP-ECM 6.2.1 B1=990000, sigma=38349962 for P37 x P122 /
September 30, 2008 2008 年 9 月 30 日)
2×10172-7 = 1
(9
)1713
<173> = 6719 × 38237 × 3949391 × 197016191436800221
<18> ×
100048248952355495152474670116547144719616987756281749923359264276401125197245775021877924918720295715153237108728265119172764087420438281921<141>
2×10173-7 = 1
(9
)1723
<174> = 43 × 1250710471
<10> × 1514098239145919982490997
<25> × 15894919503175203181668247930707066682956960270677
<50> × 154522728115553347368601457649406025114438915477574353415857930047125020474996771939154949
<90> (Wataru Sakai / Msieve for P50 x P90 /
May 8, 2010 2010 年 5 月 8 日)
2×10174-7 = 1
(9
)1733
<175> = 45162104857
<11> × 15567016412456914292718994439665667659340737216997
<50> ×
2844791473480904522073711775181098198268760967308959673803332033658988249807406032658488263343289877533029503274317<115> (matsui / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P115 / 243.25 hours /
June 17, 2008 2008 年 6 月 17 日)
2×10175-7 = 1
(9
)1743
<176> = 13 × 17 × 19 × 263 × 1061 × 2381 × 13441 × 4860859 × 226155589725368669
<18> × 39446498300985945769793398333109
<32> × 938415519872263667316969095279317859
<36> × 13106840786581520901091016381324397299535250533490063320445846306169
<68> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=3920449534 for P36, B1=1000000, sigma=23067176 for P32 x P68 /
August 6, 2008 2008 年 8 月 6 日)
2×10176-7 = 1
(9
)1753
<177> = 31 × 167 × 84349 × 762539 × 5303471 × 337158791033264179423030381537184109066737553257391166972636621
<63> × 335903976890265082828384698860438605538743727883895495015727111914842671618296153307348566709
<93> (Serge Batalov / Msieve-1.38 snfs for P63 x P93 / 60.00 hours on Opteron-2.6GHz; Linux x86_64 /
October 11, 2008 2008 年 10 月 11 日)
2×10177-7 = 1
(9
)1763
<178> = 29 × 479 × 33052481065539000156012288524293
<32> ×
4356045618511345699935803519008679131931227797613200925191035353279184874180578875926576944463882038583522121925336915254241598406087102573111<142> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2065128763 for P32 x P142 /
August 15, 2007 2007 年 8 月 15 日)
2×10178-7 = 1
(9
)1773
<179> = 43351031 × 2463944288063
<13> ×
187240452175519285137480908249758943184694743376955956025151384535709077334319019375211131284977012793840344216514584436654607197258954512966218466506902133681<159>
2×10179-7 = 1
(9
)1783
<180> = 11345966389210162823753
<23> × 6631044752755962993815356531776599345929052887359892199003659384708801
<70> × 2658315625191136943216620194891487819974744893247130197356534955616248735511220311719281
<88> (Dmitry Domanov / Msieve 1.50 snfs for P70 x P88 /
May 17, 2013 2013 年 5 月 17 日)
2×10180-7 = 1
(9
)1793
<181> = 434102901389
<12> ×
4607202563264598415779928677006486405960407963459800288720341188615524312353215631919029997874852559040333053506386132595819244295320463590084000990026379977773376337437<169>
2×10181-7 = 1
(9
)1803
<182> = 13 × 25943 × 83653 × 2422412979800028060875855273385371436650307497481923996545305433879222350917
<76> × 292642058061099792698815532391447578570153293300449978434095450619299934615417887567871388531427
<96> (Robert Backstrom / Msieve 1.44 snfs for P76 x P96 /
February 8, 2012 2012 年 2 月 8 日)
2×10182-7 = 1
(9
)1813
<183> = 78697310957
<11> × 210753864072825415151
<21> × 332631886924111871687839925496075026080643
<42> × 7189253698332573215851654569342616634944430083
<46> × 5042511156504989445728859938967073888895074881492141751640099771
<64> (Dmitry Domanov / Msieve 1.50 snfs for P42 x P46 x P64 /
June 3, 2013 2013 年 6 月 3 日)
2×10183-7 = 1
(9
)1823
<184> = 811 × 2624277319
<10> × 2755493291
<10> × 101591439292081
<15> × 16322026806562391
<17> × 6162314909610575169723533703783208734587
<40> × 2296936960460684436839110679001518570233133723
<46> × 14530343872204972792659597373865720056086160057
<47> (Robert Backstrom / GMP-ECM 6.2.1 B1=4080000, sigma=3272438450 for P40, Msieve v. 1.36 for P46 x P47 / 1.24 hours /
July 26, 2008 2008 年 7 月 26 日)
2×10184-7 = 1
(9
)1833
<185> = 280009 × 632904603733
<12> × 13233220466211157
<17> ×
8528137667029729926901914382130170705565152344920244120131396023894967075926978409235213124947201921250620099832410940247774726822828736679137633391417<151>
2×10185-7 = 1
(9
)1843
<186> = 449 × 997793 × 1546333609
<10> × 3189042656399
<13> × 2373471436483366673
<19> ×
38141315571249794220796510204358690061656962379417820079548708887444336138795773645441671589771855580586555698222711950621198150820201743<137>
2×10186-7 = 1
(9
)1853
<187> = 104207 × 70415806969873
<14> ×
272560515363191395824791506202205199222427524406848135211759341596752368261974741468507635187780688885659810754580125451879840238063293536493823224116692569011913568263<168>
2×10187-7 = 1
(9
)1863
<188> = 13 × 67 × 195174169 × 15756276416074852403
<20> ×
7466823928975235055739813097331207672264389893453490358096543643190621791446429460377106436541738964274243987747227996322777639271584787422631526731011364269<157>
2×10188-7 = 1
(9
)1873
<189> = 1053908083
<10> × 39976478087318775733
<20> ×
4747038237777385196722326719361187184981071621031767204700395933051930856214894694847973331484509531920230013328025798071633949740232094248596917726801470476087<160>
2×10189-7 = 1
(9
)1883
<190> = 23 × 157 × 1657 ×
334256605787953960163631978797434981658504398900496320921104243437748968943717371332515630256707401962119701635868541556536078738823085833586671985803453438974019403930222596515341459<183>
2×10190-7 = 1
(9
)1893
<191> = 23117 × 109469 × 109607066896757
<15> × 5514863547934385326182003706806291125833169
<43> ×
13074769594178889835066566663305076443191466513833069728993153431618466065893407012020200037422413449469774764709939016395277<125> (Daniel Morel / GMP-ECM 7.0 for P43 x P125 /
June 1, 2015 2015 年 6 月 1 日)
2×10191-7 = 1
(9
)1903
<192> = 17 × 31 × 389 × 128310718329815993931447087546082492234669614032972499261568404331467602141
<75> ×
7603382568421390295289669853703818922067601220779471394301400646577106498502213407372609170471837455808074363591<112> (Wataru Sakai / Msieve for P75 x P112 / 339.94 hours /
April 20, 2009 2009 年 4 月 20 日)
2×10192-7 = 1
(9
)1913
<193> = 47 × 4973 × 14307167621
<11> × 252778876181603
<15> × 255209741776071592297
<21> × 8010689782466906790070784539
<28> ×
1157316307058782100251640750432246209257840742262489843072055000717012814491437080981115392396246552777654513312207<115>
2×10193-7 = 1
(9
)1923
<194> = 13 × 19 × 59 × 107 × 5988949810510825396976938071071359
<34> × 124070608270505222179019502801661968966865805034849254749
<57> × 17261465639867501280259295456410659213676051382576083857253088149320129699341641322879401065793693
<98> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1667258712 for P34 /
May 16, 2008 2008 年 5 月 16 日) (Daniel Morel / GGNFS-0.77.1 for P57 x P98 /
June 16, 2015 2015 年 6 月 16 日)
2×10194-7 = 1
(9
)1933
<195> = 43 × 193 × 72766711 × 1895782376707937
<16> × 11667170358913398815665041955189471411552063
<44> ×
14973297877009564069163744169784144852622933059441535151380927290877909948076265128648906395015140182447429525730863799103027<125> (Daniel Morel / GMP-ECM 7.0 B1=6000000, sigma=1:861794138 for P44 x P125 /
July 4, 2015 2015 年 7 月 4 日)
2×10195-7 = 1
(9
)1943
<196> = 138488872329169049102015431
<27> × 3939493125278773129225627445664670558259714669
<46> ×
3665850669598823943970838009400242967760461283974430488097122440569292074070628161860811556696784984740153989126088305178587<124> (Daniel Morel / GGNFS-0.77.1 for P46 x P124 /
June 16, 2015 2015 年 6 月 16 日)
2×10196-7 = 1
(9
)1953
<197> = 2223207383
<10> × 326343496010216320121443477529
<30> × 126737002744890618870302039798839111213
<39> × 349349305959102081634428573472844496460375239564615937
<54> × 622603762802314680120941252059936381513090474160173922851498446979
<66> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3510189749 for P30 /
August 16, 2007 2007 年 8 月 16 日) (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=3740239454 for P39 /
October 12, 2010 2010 年 10 月 12 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P54 x P66 /
October 25, 2010 2010 年 10 月 25 日)
2×10197-7 = 1
(9
)1963
<198> = 90373 × 4777371493
<10> × 5633626609872084437
<19> × 15628987393184593934605494171555743583996691
<44> × 162960238765577557032112322936927640177420983
<45> × 32285069853985377998389155635761941760924446222323784266717240483831016985417
<77> (Daniel Morel / GGNFS-0.77.1 for P44 x P45 x P77 /
June 18, 2015 2015 年 6 月 18 日)
2×10198-7 = 1
(9
)1973
<199> = 308140018813999791283
<21> ×
6490555844378151809433361551228165719141341752981958400145587449848540019913493332203750841186536936089953931115844842842246275951731770458994120860922129592026278914460019998371<178>
2×10199-7 = 1
(9
)1983
<200> = 13 × 120293 × 6212400041
<10> × 1615716253225561
<16> × 24817609158174558917197904607264980906756073794789836905523464911626329277
<74> × 51340706297559266823235813361364608664555095735080763741381574937237440167795530658147609004301
<95> (Daniel Morel / GGNFS-0.77.1 for P74 x P95 /
May 21, 2015 2015 年 5 月 21 日)
2×10200-7 = 1
(9
)1993
<201> = 1301 × 77494184407
<11> × 29804123292653
<14> × 19122300006570627091
<20> × 348311486605878509660662409
<27> × 182349040760987799564918359076342409
<36> × 54801926834354290860267834669391833266360484125455715191587135759479195271787329085245083573
<92> (Robert Backstrom / GMP-ECM 6.0.1 B1=1296000, sigma=581816915 for P36 x P92 /
January 29, 2008 2008 年 1 月 29 日)
2×10201-7 = 1
(9
)2003
<202> = 2579 × 897906102091
<12> × 217315238931361
<15> × 495220348836253668680601407811123362533317851431
<48> ×
8025259180419582502638930669130988043226219390671506906639538434159445506068706463868470991982127096882189833004151537755407<124> (Morel Daniel / GGNFS-0.77.1 for P48 x P124 /
March 23, 2016 2016 年 3 月 23 日)
2×10202-7 = 1
(9
)2013
<203> = 68087 × 75573017392933908708954310964403573986467777419881206351603
<59> ×
3886861216326259176103665532740086371652640282755005080317353279164700510718056873710385318373827686634062439140662554978586836605269185013<139> (Daniel Morel / GGNFS-0.77.1 for P59 x P139 /
July 12, 2015 2015 年 7 月 12 日)
2×10203-7 = 1
(9
)2023
<204> = 6287 × 493111 × 78264919 × 6048944287
<10> ×
136268388524951902975220960161090418035856888952293534145751956624714605171045959482121987341312379780517028515344673462114374848953363821474757847381796133520144185289252397433<177>
2×10204-7 = 1
(9
)2033
<205> = 9733 × 67261 × 496941478374579981667
<21> × 63631539474391210837548310251468153368458938899
<47> × 211874652819574347241947126206068252497934489454599
<51> × 455998349100891713474098874919077637805662298768683197879609540765807283712583
<78> (Daniel Morel / GGNFS-0.77.1 for P47 x P51 x P78 /
June 5, 2015 2015 年 6 月 5 日)
2×10205-7 = 1
(9
)2043
<206> = 13 × 29 × 883 ×
60079725796131466455987094874898990961005253972020871696741576071446809916759539909459853225229880050827448023527220621765082264164546353010444860329657455443373356444001189578570763403035828544478523<200>
2×10206-7 = 1
(9
)2053
<207> = 31 ×
6451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903<205>
2×10207-7 = 1
(9
)2063
<208> = 17
2 × 163 × 787245869 × 1089351624102875951732316642367
<31> ×
49506938774785305511922906402655388080430382636587538456826233610097327687207903813622562164697332961904816501203824892927100366409935793592924819892201261272306113<164> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2770326268 for P31 x P164 /
March 23, 2013 2013 年 3 月 23 日)
2×10208-7 = 1
(9
)2073
<209> = 321017 × 6194599 × 2132576489
<10> × 11291709132323
<14> × 17657566736983
<14> ×
23653401844825321369943569057488329656966143200546774410015566119799330382664411738550889368556681980140670797872335037750251004085288657127372903791611358225171<161>
2×10209-7 = 1
(9
)2083
<210> = 1423 × 29383 × 11229931718155253
<17> × 7717666694011373663
<19> × 141420168136307449981
<21> × 256756994434265267522753
<24> × 1738451904378577847471622659992633
<34> × 874318189582087327897257987811447112701839409576619018615966668233346462007702133698801447
<90> (Dmitry Domanov / YAFU 1.34 for P34 x P90 /
March 29, 2013 2013 年 3 月 29 日)
2×10210-7 = 1
(9
)2093
<211> = 947 × 1621993 × 15529425808076993
<17> × 1121306173515450146096889521
<28> × 6561300053346042776381511509549131
<34> × 4101635164121595296627540693962463211361336905053227227763963
<61> × 2778462265801035024581360489130049006629101410458290591097195587
<64> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3328619583 for P34 /
March 27, 2013 2013 年 3 月 27 日) (Warut Roonguthai / Msieve 1.49 gnfs for P61 x P64 /
March 28, 2013 2013 年 3 月 28 日)
2×10211-7 = 1
(9
)2103
<212> = 13 × 19 × 23 × 109 × 311 × 2414588713992728980651670051508758469124841
<43> × 423746010934509455375283712257130713091137733061
<48> × 155136682134285264808823800400927613377652046570507433437
<57> × 654267022995783335304371521995617311160633958768673838131
<57> (Morel Daniel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P43 x P48 x P57(1551...) x P57(6542...) /
June 7, 2016 2016 年 6 月 7 日)
2×10212-7 = 1
(9
)2113
<213> = 1052658649517
<13> × 47773527878341669
<17> ×
3976995677850555732436227573427554283738672570982593549150618112395349999020278411339973451116784671667396237268766372690210077008681275878411144341448685371745488047300655909946664441<184>
2×10213-7 = 1
(9
)2123
<214> = 23686198451
<11> × 160205564647
<12> × 51352484252551185881
<20> ×
10263502134740103821185123723406247515265967576609923107437856704831688356256917435756416660997318205159016787701380349341659616965898955806573947489690576340164710631827949<173>
2×10214-7 = 1
(9
)2133
<215> = 1039 × 127297 × 38258137757107
<14> × 84538472615885839064303160269
<29> × 5757182354334604525735035788035885183001
<40> × 37915267463364641825268475216950690067594944691746212501
<56> × 214187413373216827883351026724033380132095854996848849111459790977637
<69> (Daniel Morel / GMP-ECM B1=3000000, sigma=1:2095095891 for P40, GGNFS-0.77.1/MSieve 1.52 for P56 x P69 /
September 29, 2016 2016 年 9 月 29 日)
2×10215-7 = 1
(9
)2143
<216> = 43 × 131 × 258810513191449
<15> × 5166499554199002669677
<22> × 18171785299605821393439605421967430068001
<41> ×
1461215725115906526682384678683926106497601869149469767258279144044226737102327975878397971547381186189800529662080973862934776147735077<136> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2342073198 for P41 x P136 /
May 13, 2013 2013 年 5 月 13 日)
2×10216-7 = 1
(9
)2153
<217> = 61 × 199 × 6841 × 585881 × 52829057 ×
778117568603744198808271644525657165663123752695773631678452871831352849720389657903673351960231330622773981990102778723868953800260141227321171463641713376732527955558275779867098251727854587771<195>
2×10217-7 = 1
(9
)2163
<218> = 13 × 149 × 449 × 11426927 × 28132724327
<11> × 6498312612692668987
<19> × 37600968623730420958331331576646257629
<38> ×
292760956680694939678912826943630570763258580222697584733678065870914437265997816894613343109849832560311178858581455801382200477033335183<138> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2359832667 for P38 x P138 /
May 13, 2013 2013 年 5 月 13 日)
2×10218-7 = 1
(9
)2173
<219> = 1019 × 4270397 × 1188126239
<10> × 993306898127
<12> × 54087598263118236581691449299990286772328406574183577098833
<59> ×
720018780637199399173799029981859801441239227430688616622135743402381821037828846562510891445221036617981191112997514978316331799<129> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P59 x P129 /
June 24, 2016 2016 年 6 月 24 日)
2×10219-7 = 1
(9
)2183
<220> = 30497 × 259949 × 86829409 × 611189897 × 934948519584200174480981
<24> × 1856305663509949248392190102725066522025437
<43> ×
2739078790864066010111068926000107043910865336339459339204172179545280387091374206101642930932343284710038279499400473943461301<127> (Daniel Morel / GMP-ECM 7.0 B1=11000000, sigma=1:4174679908 for P43 x P127 /
November 20, 2017 2017 年 11 月 20 日)
2×10220-7 = 1
(9
)2193
<221> = 67 × 1619 × 52627 × 1207892117
<10> × 2566797906744191053
<19> × 842137203283503587081055794636579877769447083797168212430476488334331074126507769
<81> ×
1341828627918982490677338292481883112787410911488130261108100270584017669313069000933490450589783122307<103> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P81 x P103 /
February 19, 2018 2018 年 2 月 19 日)
2×10221-7 = 1
(9
)2203
<222> = 31 × 149552178436306232224152122705168572111477
<42> ×
43139544810933841400085700800317962954248357441228090012874503636849536797266678716668058912735869389394965179354205156943000806988479690298339434372064927541823893071020960568939<179> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3376252540 for P42 x P179 /
May 13, 2013 2013 年 5 月 13 日)
2×10222-7 = 1
(9
)2213
<223> = 547 × 5407 × 7043 × 9650548618896833396166647707999
<31> ×
9948935340642552888027897994501972381932930098931804985231357074477579166134657225387690484168854120744907682562636993369776537956501154136848764070762047861701047536429999259729681<181> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=810194632 for P31 x P181 /
March 23, 2013 2013 年 3 月 23 日)
2×10223-7 = 1
(9
)2223
<224> = 13 × 17 × 7211367617
<10> × 39594920376109392639081376336557288986461
<41> ×
[316942597371347987013623758207572643289769574257667616439509102323658630689835969710141312456684712935328233263181605882888390037239658685970458014797231223499945046519409<171>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=408208681 for P41 /
May 13, 2013 2013 年 5 月 13 日)
Free to factor
2×10224-7 = 1
(9
)2233
<225> = 17033 × 86238427133
<11> × 309534675387395901101803078189
<30> × 475391804456505019314622730092665656230688026735797199519
<57> ×
925288201074804413506085894281653474146038217633296618273773644241954474119486192508363390636857503624844889973260099232807<123> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1071482568 for P30 /
March 23, 2013 2013 年 3 月 23 日) (Jason Parker-Burlingham / CADO-NFS-3.0.0-dev (git 2551f43ca06cb31d86fe39847033ac8dedca1938) for P57 x P123 /
October 9, 2024 2024 年 10 月 9 日)
2×10225-7 = 1
(9
)2243
<226> = 133108451148764784238591
<24> ×
[15025341987976092074331889679526814592759736302333408151412366719384855480049838260790950441290370270827956135124334600735761456215639450018157586374619884696397624522943091720998708664109716403355836423<203>]
Free to factor
2×10226-7 = 1
(9
)2253
<227> = 12079120699
<11> × 5700664232773865009087171
<25> ×
290448550060182660378490368109866403127891079941106657856171471110811264976579536928938222202340084996258502768608343346026566290011873814621460196911083291905981390607703378354156470602683017<192>
2×10227-7 = 1
(9
)2263
<228> = 4783 × 6712666501
<10> × 98478302914596938186377
<23> × 42082744770570909618319387
<26> ×
[1503107112467134947826577124240117172786036702357859296805596698478992847915658651915972801190228665319097119838175706500302490090155141960261527414585721152532138729<166>]
Free to factor
2×10228-7 = 1
(9
)2273
<229> = 775700470073
<12> × 2862492438856283117
<19> ×
900723705664248000355319646907529318297737825101831005011276429668438479938338201346105968033597930839223572839407768546200296460341751036863884095421654799748506400735566933854644950213012657969573<198>
2×10229-7 = 1
(9
)2283
<230> = 13
2 × 19 × 11833 × 384997148345090522747629
<24> × 766953018564440589849104620165757048813
<39> ×
[1782660131569880123548521174169338360463103937264171075200929548577984149341567864992100831489776322119009504998174494993754107003108035884420338888884930360043<160>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3089457064 for P39 /
May 13, 2013 2013 年 5 月 13 日)
Free to factor
2×10230-7 = 1
(9
)2293
<231> = 349 × 33599 × 10428218558981
<14> × 9839888810837862943
<19> ×
[166217942136703540185086794586515646073683508567637614915794882040103564126429766882009844377057660172693773695386694286256426920079365194621096134610078923418663986317028321932177848380243721<192>]
Free to factor
2×10231-7 = 1
(9
)2303
<232> = 11453267669
<11> ×
[174622654232844158634148481280901425163400675605043348786507785230737367830218305535351057200547471113154161629154883937952607366064693340574366698667609738895381088993214902223027753809845933148425748190727978349145486997<222>]
Free to factor
2×10232-7 = 1
(9
)2313
<233> = 323244767711
<12> × 18220902843761
<14> × 112409683941563506835261916816980555053
<39> × 71948649970563713951671463969080175268883
<41> × 32512460188778410157382208268950768149810346517
<47> × 12913750458967576645103578312487453218593703561785926004306552900939104108444568701
<83> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1529915388 for P39 /
March 27, 2013 2013 年 3 月 27 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=247293913 for P41 /
May 13, 2013 2013 年 5 月 13 日) (Dmitry Domanov / Msieve 1.50 gnfs for P47 x P83 /
May 22, 2013 2013 年 5 月 22 日)
2×10233-7 = 1
(9
)2323
<234> = 23 × 29 × 26099 × 29819 × 83449674743
<11> × 427157582648621538072677
<24> × 4902897233253093714829032083
<28> ×
2204558666930094348879202169934389714068628527523385281269849189343351259142264434498333305279695165821522630924333909848797967210482731297970149368411196283043<160>
2×10234-7 = 1
(9
)2333
<235> = 825990867511
<12> ×
2421334277008050967286162445809187125299661913782241325989473298158609233921409304718329101439003960760099997633011239105542382246543462897654884674770083058548500339631135808246763098878070350956200161788691686982028758863<223>
2×10235-7 = 1
(9
)2343
<236> = 13 × 294979221527
<12> × 27188379165767
<14> ×
[191827956463797275252317493428847656708664008798015687514388697354444261604066476361414498993693909822110986364921073111353889748410747061203063812961585761242471293155447244368662398150582122393684069208477629<210>]
Free to factor
2×10236-7 = 1
(9
)2353
<237> = 31 × 43 × 4990169671191823
<16> × 244828009908643457
<18> ×
122807087427002026022714755411603391170405051153459955627395167599790090740685250520402178030911542952247440767976977306023926274282376908534788486040913012817591875139456981566432367753499735372802811<201>
2×10237-7 = 1
(9
)2363
<238> = 86693 × 559826357 × 1673647475277761
<16> × 1432537602009345522485591
<25> × 1831055353741764620915482144839737
<34> × 13538233658251317307833233245359784922520313861223
<50> ×
693360547273789011308785731838513488620361168328779441497630249159898144325834820773191510741703459993<102> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2448096458 for P34 /
March 27, 2013 2013 年 3 月 27 日) (Ignacio Santos / GMP-ECM B1=43000000 for P50 x P102 /
January 22, 2024 2024 年 1 月 22 日)
2×10238-7 = 1
(9
)2373
<239> = 47 × 509 × 9599173 × 87424896850918997
<17> × 131099304750415140487
<21> × 3556568975609504861772967
<25> × 7432615126008670947907293345326463621812867207
<46> ×
287456503636899163591794397674452412616798992290922505899189478263060723118346223176185302501694764571514772989985160237<120> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3094186989 for P46 x P120 /
March 28, 2013 2013 年 3 月 28 日)
2×10239-7 = 1
(9
)2383
<240> = 17 × 821 × 69199450292633830742649431
<26> ×
[207078625019448600459136479734583644197116563345494981639932060906557683601335571643276612769532475404242413069331939220554460903674145398829598802967666800269444483219187574026214940307008543051827122916473379<210>]
Free to factor
2×10240-7 = 1
(9
)2393
<241> = 347 × 773 × 4263341 × 1422883568121667
<16> × 27600520597937674531
<20> × 278789131554995933557653217501819
<33> × 13130909142405448481407364018546381955852599290838943156705732200918693126974993
<80> × 12165043972567731167169898915843628426036660545587754470742558350300499748978354537
<83> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2729158477 for P33 /
March 27, 2013 2013 年 3 月 27 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P80 x P83 /
February 18, 2024 2024 年 2 月 18 日)
2×10241-7 = 1
(9
)2403
<242> = 13 × 188170998517
<12> × 702078776875841
<15> × 100153071120725416638469
<24> ×
[116274327882580195137139394634830135912594505610267629939369236255328386908901083537955512181099971527078996213405701887644675751609586061325706266668389774391814451652321256356849284689093877<192>]
Free to factor
2×10242-7 = 1
(9
)2413
<243> = 181 × 1427016016290433
<16> × 48433163984466571
<17> ×
[15987469620768051168327285269839171045654315055940347103091867558384017915557328836853044043096543886880160203407753312636326641968089801061393952998140603982923991278785817590900572869206077679346839576593471<209>]
Free to factor
2×10243-7 = 1
(9
)2423
<244> = 6271 × 836962215115286501220124866575077
<33> × 83241064927272547299527767204925533014547573543
<47> ×
4577725164789672391489314479930830177483202913095405425159690159714951022926874845117690907558402773225156443329146202726252218940000083950663618064054744784653<160> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=234597203 for P33 /
March 26, 2013 2013 年 3 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=411556554 for P47 x P160 /
May 13, 2013 2013 年 5 月 13 日)
2×10244-7 = 1
(9
)2433
<245> = 113 ×
[176991150442477876106194690265486725663716814159292035398230088495575221238938053097345132743362831858407079646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707964601769911504424778761<243>]
Free to factor
2×10245-7 = 1
(9
)2443
<246> = 10627 × 31990271 ×
588303450946358716171699343174643219646815515570129397615567109383913830719579094618417895100637351172398767455173991183212199990483052137158164669089538542522416638296303153999497652925020652224317147020704319840814671284380910237229<234>
2×10246-7 = 1
(9
)2453
<247> = 107 × 629193396671897
<15> × 64393880534595932825570966838121
<32> × 139651291555152492205584612365146717339
<39> ×
3303486282321415390162307015710761710505204168261682750705790206424254781270202594111184853500485483890070441062139214289829449262050822356857721087020471486193<160> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2855951021 for P32 /
March 26, 2013 2013 年 3 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2382283764 for P39 x P160 /
May 13, 2013 2013 年 5 月 13 日)
2×10247-7 = 1
(9
)2463
<248> = 13 × 19 × 227707 × 30138393473
<11> ×
[11798765300750649350062722282882404096141038331088432268912265097697175293065810676079592571635128087169118833073191557074680159378426644578735570629879515667194589042022690663342132004388589675948554808027342615842323152629084029<230>]
Free to factor
2×10248-7 = 1
(9
)2473
<249> = 34763 ×
[5753243390961654632799240571872393061588470500244512844115870321893967724304576705117509996260391795874924488680493628282944509967494174841066651324684290768920979202025141673618502430745332681299082357679141616086068521128786353306676638955211<244>]
Free to factor
2×10249-7 = 1
(9
)2483
<250> = 449 × 1303 × 2087377 × 95569210769
<11> × 129747877233074502027339479
<27> × 38438549030664578219960016679926806732903
<41> × 20130791787936663348000804888507223514918678222653
<50> ×
170683775859919761600569051501705669193587655888432015346242235374764903731855975201446117111155540212181805883<111> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4138019169 for P41 /
May 13, 2013 2013 年 5 月 13 日) (Erik Branger / GMP-ECM B1=43000000, sigma=1:495945495 for P50 x P111 /
January 29, 2014 2014 年 1 月 29 日)
2×10250-7 = 1
(9
)2493
<251> = 1162477020745976085257
<22> × 1602891335725498166296939399
<28> ×
[10733504372801434847424902007412252105893977027570950805679435539749343860241535080012732615154811394857850170845833727755068212197305319431496431208210680409919700962424974748123461696103741852423246151<203>]
Free to factor
2×10251-7 = 1
(9
)2503
<252> = 31 × 59 × 3253489 × 31935217 × 140141760314401375824683
<24> × 234916725268432381998959652603235777
<36> ×
31968007571980843507513751845003505401302261888842548376013389802564078635605602823333781834663349731886178719122280553222421912930869933746264948361079394288454389722412220399<176> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3648907666 for P36 x P176 /
January 6, 2016 2016 年 1 月 6 日)
2×10252-7 = 1
(9
)2513
<253> = 547681 × 1649570933
<10> × 4252546231
<10> × 1259208510629
<13> × 10124858432857381
<17> ×
40831531723345785020787306453097959988806070482085333959715718254618213933964590681566166971144134675538424674215896383998376116336459591211644118494961788057347084669331768858424355344221801077156939<200>
2×10253-7 = 1
(9
)2523
<254> = 13 × 67 × 32655721157
<11> ×
703157416244326866067671794118219371852595489531567566723779622087950881400109430764192557415060196353837149247460386838702964350523988096304724682100257240851014487504082347919126641230954725088450232754800538895363445290432877224990342419<240>
2×10254-7 = 1
(9
)2533
<255> = 80238773 ×
[2492560548003394817615169663673695508778530299809046182697733924719910659650790023920231182996778876466617952894170004319482801662483049186208268663330631937754083054086582306038004843369177641836571952564628574267953972825581467951908985447721141<247>]
Free to factor
2×10255-7 = 1
(9
)2543
<256> = 17 × 23 × 97 × 2207 × 8293 × 14641349819
<11> × 1550136044203689782162153
<25> × 11977104227234886048840875674357
<32> ×
[10598996401122731583903010896565227164919698902790656550531263401893416736398467996547767675892912591749003336510641263725191781064878584899064594954112513751950142673714262375491<179>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1182254052 for P32 /
January 6, 2016 2016 年 1 月 6 日)
Free to factor
2×10256-7 = 1
(9
)2553
<257> = 1792753 ×
[11156026513412611776413147823487117299482973951235892507222132664120489548755461572229972561752790261681335911862928133435001921625566935322378487164712595655954835942263100382484369012351394754324773128255816612773761918122574610110818389370984179081<251>]
Free to factor
2×10257-7 = 1
(9
)2563
<258> = 43 × 2069 ×
[2248024548428068834511672867467712747423201861364326098440994975665134263266154866411141209662009509143839850731169984376229388424921600143873571099396405408747063517933615835084919127316870300223678442568592849033911450313037418368608585205750446794879<253>]
Free to factor
2×10258-7 = 1
(9
)2573
<259> = 1563253 × 4078080217
<10> ×
[313721989626282121566270142711543791999371410898373243342293072975752522478955675054195834027343253289912232097595420062507119980939963308447069864974195528374609797335847377251756128928989876382584778854965188816928117492897686406402247591293<243>]
Free to factor
2×10259-7 = 1
(9
)2583
<260> = 13 × 12073 × 15621507264898237
<17> × 57297264174054342461
<20> × 110581670342368281295097
<24> × 132303002031813549742603422535524329176793
<42> ×
9731096457019019547353200377984200496674950056493037566862509528082534551926374584296600361896206931208696169743817974803041620257444031805298384668401181<154> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3970730514 for P42 x P154 /
January 25, 2017 2017 年 1 月 25 日)
2×10260-7 = 1
(9
)2593
<261> = 970532471 × 27846974581
<11> × 1217849682841377934043541191
<28> ×
[6076426090389141341366489256491843444534949384105468687100300754470200245804702284591672807447907662473564662138816205367047317005749809951163025337756816562216080899278924979747228522104548044255142897765013869173<214>]
Free to factor
2×10261-7 = 1
(9
)2603
<262> = 29 × 709 × 1607 × 98513153650957
<14> ×
[614434600008809680084763642186940677509412571583734662404543028240463308870648706838804945056954617892292936709997037940279572980351023038883238964261555101512467552664485612363101414864104636728871578805492031598433787157180705385874056587<240>]
Free to factor
2×10262-7 = 1
(9
)2613
<263> = 233 × 1471277 × 2560612816561
<13> × 17414378951443763
<17> × 310284235991591775289463
<24> × 682394433478716451859521
<24> × 670421875312376358396871055873
<30> ×
9216889041914198760641860083797044538816883464211933905603729079893681741658515763262559338986008362179894797054365891786422900241586390651044627409<148> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3821810219 for P30 x P148 /
January 6, 2016 2016 年 1 月 6 日)
2×10263-7 = 1
(9
)2623
<264> = 18899 × 21328703489567238466549
<23> × 259627683006319050749785913
<27> ×
[1911066133485909876696562266397347204947264311162811704269299516354756649183225912540499082521626942095830494338996919748151786812134950674731277108735425470752744201615200545284749264859219617353926873164076111<211>]
Free to factor
2×10264-7 = 1
(9
)2633
<265> = 5934619331
<10> × 2054625250781854357417110767743
<31> ×
164022908101578331360563916427092660640461544074387227960197119385679714300382972818560724568228244667590094045437972778689116897034765955650112450347355130025092433434884050394436478675568784802683598199289746341509544355821<225> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3917735577 for P31 x P225 /
January 6, 2016 2016 年 1 月 6 日)
2×10265-7 = 1
(9
)2643
<266> = 13 × 19 × 5393 × 1457345130993937
<16> × 8825367618023289702964394587
<28> × 311627391118921878696046512541
<30> × 1453352603866405366584044607185243491
<37> ×
2577512534997659286880778305217389202965043013941439049684907439082599056227364511398586834210502130376335154610627610481067909685430076302042033522347<151> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1841644632 for P30, B1=1e6, sigma=1877911128 for P37 x P151 /
January 6, 2016 2016 年 1 月 6 日)
2×10266-7 = 1
(9
)2653
<267> = 31 × 827 × 968689 × 113209781 × 171487956023
<12> × 19625918092657
<14> ×
[21136392634017967706907737421459752758953605123533223817911698406345993582243649881519203096670072200884385921296014451231623427789346709045822595774950727991808892736874150339341258785188785368048303179169964469546310521111<224>]
Free to factor
2×10267-7 = 1
(9
)2663
<268> = 157 × 1709 × 34075153196866574895213463399
<29> ×
218751209769467685518882903030993567603910855519711860468670342752342163654209239638800801529838403542739523403602993211337610517781078966918220691549734258225385886139415905374366382474549520298471914649843295675436992213839162949239<234>
2×10268-7 = 1
(9
)2673
<269> = 719 × 1163 × 19949 × 91489583 × 43355282263
<11> × 40741423485529787576080378957
<29> ×
7419085825166379805863522506174758443370512715209628916062969808733175363463209138117871948496476069789941249446245655499011902803464465697489038227456557962013389593412983171597702248022097555924131200425155077<211>
2×10269-7 = 1
(9
)2683
<270> = 577 × 675281732117
<12> ×
[513297538080787259629397201886737112042773975800250418046607622750060374222661111526863164713940738596640643231476030984551490186004298988351559167414368939797698181239337492902204322081954925661408611747234643140659153890801654374736673993001153520608277<255>]
Free to factor
2×10270-7 = 1
(9
)2693
<271> =
140518128155696298850428697100996504680597011978674134555547025786443312170142698370052486451804814540719188819343432877366237<126> ×
14233039012475091501104167946928328968420691228944042610288424817066636667142852995751422629784733683334091159482048277660774839317780468967747789<146> (NFS@home + Dmitry Domanov / Msieve 1.54 for P126 x P146 /
March 8, 2024 2024 年 3 月 8 日)
2×10271-7 = 1
(9
)2703
<272> = 13 × 17 × 28411 ×
[3185306309406958078661457841435770448352567540040494799111490658054023113538172949709906191136534810381104380735840795842410792709662037407918767044374979992294744037544568407717933481566871285435139120642043080949304098167318088351159634651736923640722293688108503<265>]
Free to factor
2×10272-7 = 1
(9
)2713
<273> = 415937 × 61273733 × 2236723633
<10> × 139342124899097
<15> ×
[25178702431651521852772945793597364887488374627562474955464994560411831117305748417836415459535640548955170184284808524224346138283133712679652716821759251906938264396934455216657798670746464718989776959877962240401303779278567619828733<236>]
Free to factor
2×10273-7 = 1
(9
)2723
<274> = 2083 ×
[960153624579932789246279404704752760441670667306769083053288526164186269803168506961113778204512722035525684109457513202112337974075852136341814690350456072971675468074891982717234757561209793566970715314450312049927988478156505040806529044647143542966874699951992318771<270>]
Free to factor
2×10274-7 = 1
(9
)2733
<275> = 101087353847403169
<18> ×
[197848684714717948844363836573168525828338692793820031287192195759188433805318458830615625406081063473587986239894842829495356946666788798084357649068268696779103603651462842106770924281454697966383994774780059350964867266672699111600901124059621228940625497<258>]
Free to factor
2×10275-7 = 1
(9
)2743
<276> = 9269880408926913125964092878416060959
<37> ×
[21575251370815917467704178599973611480779656465192903413803199230671540013260588141505529875133783426196934216377116445538964468583583806134757517673699098955987864217282502622553700258150163110753697933280017723755828140141514925955549927<239>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2312620866 for P37 /
January 25, 2016 2016 年 1 月 25 日)
Free to factor
2×10276-7 = 1
(9
)2753
<277> = 61 × 96259 × 3403391 × 7172567 × 36440763439
<11> × 297507442070207
<15> × 1852816081596856949
<19> × 2798440640334036269587
<22> ×
[248221070099043322119402164693526825270872316771903230051826366434264774208852636596750964076287324648778315389651145337544306512980178657209352382256734388337545123532340553417139717508820969<192>]
Free to factor
2×10277-7 = 1
(9
)2763
<278> = 13 × 23 × 582917941 × 16900233532867719811869383363311077589
<38> ×
[6789826536513162672509807279156809917933768995110975660499875604478298675741252642221589174323268714849078647819369963324336685992847762996856034687728839961062661693852857645776522787394454759786828946901856327029382365948260643<229>] (ebina / GMP-ECM 7.0 B1=3000000, sigma=1:965984237 for P38 /
December 13, 2022 2022 年 12 月 13 日)
Free to factor
2×10278-7 = 1
(9
)2773
<279> = 43 × 347033 × 1406101139
<10> × 14083575589540627
<17> ×
[676801443595327211586775858411776891698272819619265116701342171559557690406915425133085094657406648245572777871408421464029239807750239778950043185034070974105248570108560756874937367755462161004798146530587433101861995512678737428483695362672299<246>]
Free to factor
2×10279-7 = 1
(9
)2783
<280> = 2577667458587201616384305163782232795838075757
<46> ×
[775895274364127477280058214715910833558130873940820664646227733174617844214549709607649042241255093387294046399364566953119832653974792353566857540961534022482460677444701982594267208322424969707455741612644445190840375247362669394749<234>] (Dmitry Domanov / GMP-ECM B1=110000000, sigma=1873872909 for P46 /
February 12, 2016 2016 年 2 月 12 日)
Free to factor
2×10280-7 = 1
(9
)2793
<281> = 379 × 4104697 × 147740253639059
<15> × 15775349128937157191
<20> × 77147072176723055335427
<23> ×
[71501048967164182446588540306127854409972598857856626977862544503335772405526724512623276896013493162183324685778586540730146867731618163012378735649500453675173870424858834267466546245304014850009155615153278267997<215>]
Free to factor
2×10281-7 = 1
(9
)2803
<282> = 31 × 449 × 336871 × 26857560541509564225815387
<26> × 75377870857315537681250373990626779
<35> ×
21069193202715503767262926615859639036747378429107368653784715360975195558464747747365339849203221627533901875078610399930438628959920438537146281684616914738204053406277242239964926977155421595969682881062160809<212> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3353960352 for P35 x P212 /
February 2, 2016 2016 年 2 月 2 日)
2×10282-7 = 1
(9
)2813
<283> =
definitely prime number 素数
2×10283-7 = 1
(9
)2823
<284> = 13 × 19 × 67679 × 65710193 × 1163683655081199737447
<22> ×
[15646292041761399770417368655249210374137473835532134067565398266786774298807478666769073637239081597628143447866340889870751382046859599134511261312811031342043497804416868042096425527457619068147410730879318856620694771321523128615955951901343991<248>]
Free to factor
2×10284-7 = 1
(9
)2833
<285> = 47 × 9679 × 68891 × 817440934369637471
<18> ×
7806974794961338332657817623616288510139311726472892731681675320821824125762106908611181890460877323645766301841299898554635931946058819580273996341578454561436155461169044772609265720363531902960040700054599193826143309318522845407236028136125432489318501<256>
2×10285-7 = 1
(9
)2843
<286> = 76753 × 361295500311525631
<18> × 387103161837360472523879
<24> ×
[186313946338375527043551142749888607837314855479925407047850228926030191848140921082117990809493847919858569973097581852558900806163321203668254148661684831919308299795094892084478051053745147591471025920478553683471192895091321119816186769<240>]
Free to factor
2×10286-7 = 1
(9
)2853
<287> = 67 × 4861 × 431037221 × 1634209138748636531
<19> × 16163774259729916159476585087037273142563
<41> ×
[5393421803390862798610112804665140087666774845133313602331791959046285422291871418609774721567760252857392930950400835710629432445429646059240408168905676217740642301016361648831149520584935732074000252319116324603<214>] (Dmitry Domanov / GMP-ECM 7.0.5 B1=3000000 for P41 /
October 5, 2023 2023 年 10 月 5 日)
Free to factor
2×10287-7 = 1
(9
)2863
<288> = 17 × 2234681 ×
[5264601919626533351503229425271042107154812489752123325826976172964494971870837098291460312916882438569926693313800256317673660857029284637731028171227071046355688561628364537988933122366695475445804516328254984255286654020917368993079338577526146184781157210568572532408033919409<280>]
Free to factor
2×10288-7 = 1
(9
)2873
<289> = 163 × 5505821227
<10> × 399069365463688310341
<21> × 757107638785884426807672108654897599
<36> ×
7375887209736647184447321122868307941841941497057452421148765301553539856978649936649168636197530712982382337307206832890814269626799301445153010677452047819908924154687329512279109635110779391149073501121572738715244027<220> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=355884408 for P36 x P220 /
January 8, 2016 2016 年 1 月 8 日)
2×10289-7 = 1
(9
)2883
<290> = 13 × 29 × 20877611 × 19338895959570323641
<20> ×
131394191554471972588606104929128864433667950621212117322160222849979115043848446551972814167970226847008972773050594189172596248463124551124596050019707384726829948470991819621214296173475981399890651587838748779191399014173290001700743127366052543127566978459<261>
2×10290-7 = 1
(9
)2893
<291> = 2134950388618838237933
<22> × 165130688127155659514709833
<27> × 330079449828166227331586407
<27> ×
[1718683591668513431297695628891060776649366444441532371471600588843401485263521450017739250950063197942288801183349232364004658750992160703373104027637063407144504423777169184597909101924435435132680328118396816277091<217>]
Free to factor
2×10291-7 = 1
(9
)2903
<292> = 265957 × 834283 × 2213107709
<10> × 24517105819
<11> × 30171904130598691866834029730376693
<35> × 19419330092815569272969990796201586547196709
<44> ×
283528330373302908815070446066920369407636420265674291045193672320956317486876917225058347885506016614503972645863921207853142313984221329585693137996203302176117893238855512975253689<183> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1535800696 for P35 /
January 8, 2016 2016 年 1 月 8 日) (Dmitry Domanov / GMP-ECM 7.0.5 B1=3000000 for P44 x P183 /
October 5, 2023 2023 年 10 月 5 日)
2×10292-7 = 1
(9
)2913
<293> =
[19999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993<293>]
Free to factor
2×10293-7 = 1
(9
)2923
<294> = 4231 × 38237 × 3645253 × 8312894987607023896048906741
<28> ×
[40796526590791334455087061577099935651102317864874283216295909273877544698724264916372765742095105386872309985714647264091150910913053919741032284245041865337782128353900473827566543634510457429020202377524211339552125363681435312468395368736023670003<251>]
Free to factor
2×10294-7 = 1
(9
)2933
<295> = 1283 × 6884674188497641195566919421
<28> ×
[226422690594235095882469889073872933779536641598146066309071338603029495082699646946318597882941343315805488427153011173085834722354402863431325696456325697989983132080832353096038475076150664537445493758467208697599506928963771707454279673666553825143841062679951<264>]
Free to factor
2×10295-7 = 1
(9
)2943
<296> = 13 × 39225768844367438993411
<23> ×
[39220685375615049662355982453680203610566285386596626776173359201979120101981800082527065463627192856926824543394659910478641324959381620167701791943137770510583138496716397812222799767862657764233213381900421466093572854681261891708935442907431227321114391261869919779551<272>]
Free to factor
2×10296-7 = 1
(9
)2953
<297> = 31 × 25011551 ×
[257945335066418170213150844815919317154830814228658306844937623085145868235298627138445984675305138143004664189474024453999338661693783262445935608943501808940326243920323569826829469776300687062807564908838552493270525415469294631624533232923124715585443159906912739070298024017112165753<288>]
Free to factor
2×10297-7 = 1
(9
)2963
<298> = 11621 × 41457329 × 1895846385029
<13> ×
[2189686957682093268586062757225957416565407048718607651981777239447579287807680287891553445155982363479477911137898061688294756885021432850865337231616690176129769399626575620396589221789347346119845401213313397710059775389666233357322625287622695488337847516049042899138513<274>]
Free to factor
2×10298-7 = 1
(9
)2973
<299> = 838657 × 457145654160525163
<18> ×
[52166418831901831521316386779941993491329369026222855639802294343491817853044988353234326243677439525908633759345471217761810022087880308770668684125739864287682338361500232003071915934689218437415351939169176049816066284150607364281468157562715300751854303638428392014298923<275>]
Free to factor
2×10299-7 = 1
(9
)2983
<300> = 23 × 43 × 107 × 7202287 × 45983869 × 297559632589
<12> ×
[19177852762466921873758810530129470265844420649848763354819545628620811786774017023291854958238750646443831703938754898380209124516554323616061524828276883965389180304044715986795377220034667775882313725533716212385312483581362690698372555072386810647437222933220001073<269>]
Free to factor
2×10300-7 = 1
(9
)2993
<301> = 5519 × 502303063122666389
<18> × 17945946548485212851748901
<26> ×
[40201050805689921460772727227774817762687024510054332922049531698423654417955405197893895984393680444343994276651732791176216374530238921311726252204855283515355524504195324939355659863975462496936319229136814759720411177867925943389706130053664244829823<254>]
Free to factor