Table of contents 目次

  1. About 599...993 599...993 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 599...993 599...993 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 599...993 599...993 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 599...993 599...993 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

59w3 = { 53, 593, 5993, 59993, 599993, 5999993, 59999993, 599999993, 5999999993, 59999999993, … }

1.3. General term 一般項

6×10n-7 (1≤n)

2. Prime numbers of the form 599...993 599...993 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 6×101-7 = 53 is prime. は素数です。
  2. 6×102-7 = 593 is prime. は素数です。
  3. 6×105-7 = 599993 is prime. は素数です。
  4. 6×106-7 = 5999993 is prime. は素数です。
  5. 6×107-7 = 59999993 is prime. は素数です。
  6. 6×1011-7 = 5(9)103<12> is prime. は素数です。
  7. 6×1017-7 = 5(9)163<18> is prime. は素数です。
  8. 6×1029-7 = 5(9)283<30> is prime. は素数です。
  9. 6×1042-7 = 5(9)413<43> is prime. は素数です。
  10. 6×1047-7 = 5(9)463<48> is prime. は素数です。
  11. 6×1096-7 = 5(9)953<97> is prime. は素数です。
  12. 6×10108-7 = 5(9)1073<109> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by:証明: Makoto Kamada / PFGW / January 4, 2005 2005 年 1 月 4 日)
  13. 6×10166-7 = 5(9)1653<167> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by:証明: Makoto Kamada / PFGW / January 4, 2005 2005 年 1 月 4 日)
  14. 6×10210-7 = 5(9)2093<211> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by:証明: Makoto Kamada / PFGW / January 4, 2005 2005 年 1 月 4 日)
  15. 6×10331-7 = 5(9)3303<332> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by:証明: Makoto Kamada / PFGW / January 4, 2005 2005 年 1 月 4 日)
  16. 6×101022-7 = 5(9)10213<1023> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 14, 2006 2006 年 9 月 14 日) [certificate証明]
  17. 6×103593-7 = 5(9)35923<3594> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by:証明: Ray Chandler / Primo 4.0.1 - LX64 / March 22, 2013 2013 年 3 月 22 日) [certificate証明]
  18. 6×104426-7 = 5(9)44253<4427> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  19. 6×105704-7 = 5(9)57033<5705> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  20. 6×1013936-7 = 5(9)139353<13937> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  21. 6×1016486-7 = 5(9)164853<16487> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  22. 6×1085910-7 = 5(9)859093<85911> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / August 10, 2015 2015 年 8 月 10 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 6×106k+3-7 = 13×(6×103-713+54×103×106-19×13×k-1Σm=0106m)
  2. 6×1013k+1-7 = 53×(6×101-753+54×10×1013-19×53×k-1Σm=01013m)
  3. 6×1013k+9-7 = 79×(6×109-779+54×109×1013-19×79×k-1Σm=01013m)
  4. 6×1016k+4-7 = 17×(6×104-717+54×104×1016-19×17×k-1Σm=01016m)
  5. 6×1018k+8-7 = 19×(6×108-719+54×108×1018-19×19×k-1Σm=01018m)
  6. 6×1022k+15-7 = 23×(6×1015-723+54×1015×1022-19×23×k-1Σm=01022m)
  7. 6×1028k+10-7 = 29×(6×1010-729+54×1010×1028-19×29×k-1Σm=01028m)
  8. 6×1032k+14-7 = 353×(6×1014-7353+54×1014×1032-19×353×k-1Σm=01032m)
  9. 6×1042k+28-7 = 127×(6×1028-7127+54×1028×1042-19×127×k-1Σm=01042m)
  10. 6×1044k+12-7 = 89×(6×1012-789+54×1012×1044-19×89×k-1Σm=01044m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 23.73%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 23.73% です。

3. Factor table of 599...993 599...993 の素因数分解表

3.1. Last updated 最終更新日

September 19, 2024 2024 年 9 月 19 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=212, 213, 216, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 243, 244, 247, 248, 252, 253, 254, 255, 256, 258, 259, 261, 262, 263, 264, 265, 267, 268, 270, 272, 273, 274, 275, 277, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 299 (54/300)

3.4. Factor table 素因数分解表

6×101-7 = 53 = definitely prime number 素数
6×102-7 = 593 = definitely prime number 素数
6×103-7 = 5993 = 13 × 461
6×104-7 = 59993 = 17 × 3529
6×105-7 = 599993 = definitely prime number 素数
6×106-7 = 5999993 = definitely prime number 素数
6×107-7 = 59999993 = definitely prime number 素数
6×108-7 = 599999993 = 19 × 31578947
6×109-7 = 5999999993<10> = 13 × 79 × 541 × 10799
6×1010-7 = 59999999993<11> = 29 × 2068965517<10>
6×1011-7 = 599999999993<12> = definitely prime number 素数
6×1012-7 = 5999999999993<13> = 89 × 67415730337<11>
6×1013-7 = 59999999999993<14> = 787973 × 76144741
6×1014-7 = 599999999999993<15> = 53 × 353 × 32070126677<11>
6×1015-7 = 5999999999999993<16> = 13 × 23 × 571 × 35143414417<11>
6×1016-7 = 59999999999999993<17> = 4583 × 13091861226271<14>
6×1017-7 = 599999999999999993<18> = definitely prime number 素数
6×1018-7 = 5999999999999999993<19> = 1699 × 3531489111241907<16>
6×1019-7 = 59999999999999999993<20> = 11028463 × 5440467996311<13>
6×1020-7 = 599999999999999999993<21> = 17 × 10781 × 4752599 × 688830091
6×1021-7 = 5999999999999999999993<22> = 13 × 617 × 733 × 1020513512194201<16>
6×1022-7 = 59999999999999999999993<23> = 79 × 759493670886075949367<21>
6×1023-7 = 599999999999999999999993<24> = 59892607 × 10017930927601799<17>
6×1024-7 = 5999999999999999999999993<25> = 179591 × 206641 × 161677724003503<15>
6×1025-7 = 59999999999999999999999993<26> = 4357 × 13770943309616708744549<23>
6×1026-7 = 599999999999999999999999993<27> = 19 × 5983037 × 397483403 × 13278742877<11>
6×1027-7 = 5999999999999999999999999993<28> = 13 × 53 × 25919 × 3261851539<10> × 103002934157<12>
6×1028-7 = 59999999999999999999999999993<29> = 127 × 7541 × 211481209 × 296242118034211<15>
6×1029-7 = 599999999999999999999999999993<30> = definitely prime number 素数
6×1030-7 = 5999999999999999999999999999993<31> = 12107 × 495581068803171718840340299<27>
6×1031-7 = 59999999999999999999999999999993<32> = 61504211 × 975542959164210723717763<24>
6×1032-7 = 599999999999999999999999999999993<33> = 167 × 37243 × 294029 × 328095259370923855457<21>
6×1033-7 = 5999999999999999999999999999999993<34> = 13 × 461538461538461538461538461538461<33>
6×1034-7 = 59999999999999999999999999999999993<35> = 2172239 × 3532183 × 94169147 × 83040854829587<14>
6×1035-7 = 599999999999999999999999999999999993<36> = 79 × 22483 × 700871 × 481983097186913223857419<24>
6×1036-7 = 5999999999999999999999999999999999993<37> = 17 × 47 × 337 × 6102269495239<13> × 3651599901328828049<19>
6×1037-7 = 59999999999999999999999999999999999993<38> = 23 × 5223744154822723<16> × 499391925572289775717<21>
6×1038-7 = 599999999999999999999999999999999999993<39> = 29 × 193 × 77863 × 23210699 × 37243027 × 1592691342175931<16>
6×1039-7 = 5999999999999999999999999999999999999993<40> = 13 × 421 × 138118875509<12> × 192456702329<12> × 41242000985981<14>
6×1040-7 = 59999999999999999999999999999999999999993<41> = 53 × 17807 × 181387 × 439966736712977<15> × 796633601687617<15>
6×1041-7 = 599999999999999999999999999999999999999993<42> = 577 × 227233 × 471943 × 505429 × 29589091921<11> × 648369672179<12>
6×1042-7 = 5999999999999999999999999999999999999999993<43> = definitely prime number 素数
6×1043-7 = 59999999999999999999999999999999999999999993<44> = 6707662624991<13> × 8944993711588245680946765597223<31>
6×1044-7 = 599999999999999999999999999999999999999999993<45> = 19 × 943120875845659116601<21> × 33483457080838616678747<23>
6×1045-7 = 5999999999999999999999999999999999999999999993<46> = 132 × 59 × 331765243 × 15911180617093<14> × 113993278070931991717<21>
6×1046-7 = 59999999999999999999999999999999999999999999993<47> = 353 × 479 × 1249063 × 289496054091492737<18> × 981327657887931169<18>
6×1047-7 = 599999999999999999999999999999999999999999999993<48> = definitely prime number 素数
6×1048-7 = 5999999999999999999999999999999999999999999999993<49> = 79 × 107 × 839 × 444723031 × 1902342890195876285162353169075909<34>
6×1049-7 = 59999999999999999999999999999999999999999999999993<50> = 1123120133<10> × 59253379363694237609<20> × 901595870063025752669<21>
6×1050-7 = 599999999999999999999999999999999999999999999999993<51> = 157 × 3713334933874823550473<22> × 1029170844809185738010448613<28>
6×1051-7 = 5(9)503<52> = 13 × 120199 × 150727387 × 25475039918952119710550901041803854497<38>
6×1052-7 = 5(9)513<53> = 17 × 3307 × 1067254842668848609900567423824685604510930468347<49>
6×1053-7 = 5(9)523<54> = 53 × 113 × 100183670061779929871430956754049089998330272165637<51>
6×1054-7 = 5(9)533<55> = 61 × 9779113 × 36515383 × 41355563 × 743840813 × 8954310493272385470413<22>
6×1055-7 = 5(9)543<56> = 20420843800163<14> × 2938174376492761654473439528014059309191411<43>
6×1056-7 = 5(9)553<57> = 89 × 5246013757<10> × 225615555791401931<18> × 5695905540104608779668243711<28>
6×1057-7 = 5(9)563<58> = 13 × 461538461538461538461538461538461538461538461538461538461<57>
6×1058-7 = 5(9)573<59> = 2928421 × 7952483675593<13> × 2576409854015445608619897621459009274781<40>
6×1059-7 = 5(9)583<60> = 23 × 143927654539<12> × 131211841839534252299<21> × 1381357641316319359046283431<28>
6×1060-7 = 5(9)593<61> = 257 × 389 × 15649 × 18082937 × 228238416673<12> × 929232134463477429690580356717709<33>
6×1061-7 = 5(9)603<62> = 79 × 97 × 709 × 37691 × 1720231 × 308729321 × 62210962859849<14> × 8868230220130330872631<22>
6×1062-7 = 5(9)613<63> = 19 × 42689 × 686941191841<12> × 1076867099819280665122599520532038198135002403<46>
6×1063-7 = 5(9)623<64> = 13 × 151 × 5089667027<10> × 79733482865083991<17> × 7531835819146768420930087182568223<34>
6×1064-7 = 5(9)633<65> = 6746715929785906064539<22> × 8893215695521952048032623930037059283700987<43>
6×1065-7 = 5(9)643<66> = 263 × 49893101 × 45725135851803953123684165145923396131358259735190467611<56>
6×1066-7 = 5(9)653<67> = 29 × 532 × 47497 × 202129 × 10708659223166552125013<23> × 716426444185010831665780775177<30>
6×1067-7 = 5(9)663<68> = 12410449 × 6868215083<10> × 340149389641199<15> × 2069427296217476295655514098086442421<37>
6×1068-7 = 5(9)673<69> = 17 × 1682159 × 20981439713522219676862748828072942534669119023965804729307431<62>
6×1069-7 = 5(9)683<70> = 13 × 418321 × 1103311718843810228177735426953132973151093207222352065666171341<64>
6×1070-7 = 5(9)693<71> = 127 × 4353546599<10> × 108518637423200753427729087012149404177359644345670843683041<60>
6×1071-7 = 5(9)703<72> = 307 × 4723 × 413804233355241968577085866447442379484689588202717176530954970513<66>
6×1072-7 = 5(9)713<73> = 3863 × 1177997 × 77385009980876688613<20> × 17038270736430096249995806775275075220318351<44>
6×1073-7 = 5(9)723<74> = 317 × 977 × 3259 × 445567 × 15833678293<11> × 1027286954904019972769<22> × 8202126362716378888276701877<28>
6×1074-7 = 5(9)733<75> = 79 × 13619 × 55891523 × 9977758663436087187396682050902141237225555135061908258494991<61>
6×1075-7 = 5(9)743<76> = 13 × 109 × 299113 × 8047969961<10> × 102827194159<12> × 17106130440255041907459336964671942378864235567<47>
6×1076-7 = 5(9)753<77> = 179 × 167099 × 7779662134301<13> × 34104537161662112693<20> × 7560516616634808271172063301615895481<37>
6×1077-7 = 5(9)763<78> = 499693 × 396414534293<12> × 13086705576913<14> × 22866224637016451<17> × 10122169792405575112700655406739<32>
6×1078-7 = 5(9)773<79> = 197 × 311 × 353 × 7988689 × 45293345509<11> × 766725690311303173598777759085217324145084131274657143<54>
6×1079-7 = 5(9)783<80> = 53 × 204811627337<12> × 3924570577317372502823<22> × 14175611298520669342327<23> × 99354337713712656745453<23>
6×1080-7 = 5(9)793<81> = 19 × 69501930604321331501675717487202266937<38> × 454360721980543218616150259333703349104731<42> (Makoto Kamada / GGNFS-0.53.3 / Total time: 0.07 hours (actual time: 0.08 hours))
6×1081-7 = 5(9)803<82> = 13 × 23 × 1137655667<10> × 93986773157<11> × 187673299011464102388470681233312263461137981427807182016053<60>
6×1082-7 = 5(9)813<83> = 47 × 733 × 811 × 18133 × 707261 × 167447701809177747290119092004032248171355813501841318464502481801<66>
6×1083-7 = 5(9)823<84> = 991 × 4423 × 397427 × 82916335393<11> × 685794567481<12> × 6057161426354690884931169911389799482137238622611<49>
6×1084-7 = 5(9)833<85> = 17 × 397 × 2717892555035173<16> × 327099242387929503597640877668019558820442269784453410057728838409<66>
6×1085-7 = 5(9)843<86> = 302971 × 62498969161713311<17> × 50619901800183738474287243<26> × 62597362864944743362791052328893290671<38>
6×1086-7 = 5(9)853<87> = 1009 × 6737 × 139313 × 53900849909<11> × 28910737266247857069650888186027<32> × 406581030346648230077642932666319<33>
6×1087-7 = 5(9)863<88> = 13 × 79 × 164371 × 7497758617920354748847<22> × 4740500042281690780620871768186874114056158237170936593807<58>
6×1088-7 = 5(9)873<89> = 653 × 1291 × 446444391006469307<18> × 159420606068774454623706208888808490578045136413190158606991332213<66>
6×1089-7 = 5(9)883<90> = 131 × 339799421699161<15> × 13478989013144144684757486136354602127885293567608789502133524085236806923<74>
6×1090-7 = 5(9)893<91> = 11503 × 628519201 × 33601549875579349<17> × 24698027571562520235735271547575309100395349666476963268125019<62>
6×1091-7 = 5(9)903<92> = 1372253 × 4026616229<10> × 13434390155286137<17> × 808274476858898984704569092359923971802604447013853685738897<60>
6×1092-7 = 5(9)913<93> = 53 × 751 × 39085888659081420614820026023<29> × 385669640688227698803269382322173544328576797594929575071597<60>
6×1093-7 = 5(9)923<94> = 13 × 1129 × 2269 × 3572127060048996983<19> × 50437385015205303151936282489569259124396402756103198694736730624367<68>
6×1094-7 = 5(9)933<95> = 29 × 1163 × 20353 × 540167 × 8178091 × 19786324063484928566272938558101267446830074482364122493086497476257832899<74>
6×1095-7 = 5(9)943<96> = 1831 × 20219 × 393961 × 68576495502083<14> × 599894272158983596864192997890678581160727536221040324517852737687799<69>
6×1096-7 = 5(9)953<97> = definitely prime number 素数
6×1097-7 = 5(9)963<98> = 433 × 1667 × 60637 × 249195080297<12> × 251380720343<12> × 7303789595573<13> × 2996196990512185696660813913673711696682046814751853<52>
6×1098-7 = 5(9)973<99> = 19 × 2619961 × 6787711080643<13> × 83104907321671597<17> × 131167970392945099177<21> × 162901471172176909606279107940964828904581<42>
6×1099-7 = 5(9)983<100> = 13 × 52497155915713<14> × 83017070658428291602967<23> × 7707701688573333854348563309<28> × 13739781293076109085120238929482999<35>
6×10100-7 = 5(9)993<101> = 17 × 79 × 89 × 608016077 × 58466178659350499505991669<26> × 14121000187830375009994250404234995383958769423023504491556943<62>
6×10101-7 = 5(9)1003<102> = 107 × 523 × 59281470893<11> × 39101687483500877<17> × 4625421477732431920499444514607301794201058267502404507376631964366233<70>
6×10102-7 = 5(9)1013<103> = 149 × 37705024561<11> × 3455086153784503531<19> × 309105599760194613060791354692455989080729326579362497278361740290876527<72>
6×10103-7 = 5(9)1023<104> = 23 × 59 × 607 × 7043 × 57836890240488071<17> × 455611765884354977<18> × 1661830791998517788929<22> × 236177410565507222451113420231797598743<39>
6×10104-7 = 5(9)1033<105> = 81569 × 109006504868011378062133<24> × 67479786126230237956432354635166810225860910287753152878019857479485640018709<77>
6×10105-7 = 5(9)1043<106> = 13 × 53 × 313 × 17929 × 3662807761<10> × 253220998039<12> × 576086807303963<15> × 2904222274759595803411467386527002809596770354939999516712253<61>
6×10106-7 = 5(9)1053<107> = 1124627111<10> × 184078410373292339529731080747<30> × 1119316525956373525686456756941<31> × 258932718251596645678784825625075332369<39> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=86730895 for P31 / September 26, 2007 2007 年 9 月 26 日) (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=958631770 for P30 / September 26, 2007 2007 年 9 月 26 日)
6×10107-7 = 5(9)1063<108> = 379 × 10749510567199881531917<23> × 147273073184834497939913721250170064335915439224845813681562310241916960025216254151<84>
6×10108-7 = 5(9)1073<109> = definitely prime number 素数
6×10109-7 = 5(9)1083<110> = 617 × 5827831 × 72461533456742440402283266699<29> × 230277558689234035900346548448323906245379348528513323165051812972894341<72>
6×10110-7 = 5(9)1093<111> = 353 × 106759 × 153701 × 64633081 × 1074775952736096208001<22> × 1491154196419896789782389609903281880135220085611569353402319057118539<70>
6×10111-7 = 5(9)1103<112> = 13 × 2423 × 360964079692659801539218828060656161476910423250161<51> × 527704135252280213728502010679882140961843051369612566587<57> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 0.71 hours on Core 2 Quad Q6600 / October 3, 2007 2007 年 10 月 3 日)
6×10112-7 = 5(9)1113<113> = 127 × 487 × 207401 × 464857 × 10667725681<11> × 18344060431<11> × 66443858721896295507904689871<29> × 773866753583804618938410752591273893044927528721<48>
6×10113-7 = 5(9)1123<114> = 79 × 105614943166633<15> × 71911573127279142012631496709310754420849481453580381295468873279305605513966680182063811197451999<98>
6×10114-7 = 5(9)1133<115> = 61 × 491 × 64059407 × 3127209733538776477486495910036933724556736784923494006511191969940454292704562853356016082152802016649<103>
6×10115-7 = 5(9)1143<116> = 25496579 × 2819633340617<13> × 519432918805997720613883831<27> × 1606746012772716014597182054356403125182075074501778807395696024305821<70>
6×10116-7 = 5(9)1153<117> = 17 × 192 × 30697 × 32867539 × 96901836056854760343912098197508520000372817661943912105170045636417720857913456505199937289230123683<101>
6×10117-7 = 5(9)1163<118> = 13 × 3803203 × 121355200218989503968507192894636846484802010710041388393293353401977632658982037387555052533756010798913846687<111>
6×10118-7 = 5(9)1173<119> = 53 × 1559 × 11981 × 8485946222117664387824703457<28> × 7142264381977907092610341781026191409378859879465277041650654040138463117260366527<82>
6×10119-7 = 5(9)1183<120> = 283 × 2120141342756183745583038869257950530035335689045936395759717314487632508833922261484098939929328621908127208480565371<118>
6×10120-7 = 5(9)1193<121> = 289207631 × 49024345096702353041<20> × 241665252940084537523929<24> × 1751118314981544157663810148257122216524428361952777415447268088311327<70>
6×10121-7 = 5(9)1203<122> = 499 × 457433 × 752268062006394721<18> × 349422276339628684393974732831398295995344761493709560454552536915434102111713414330762590187899<96>
6×10122-7 = 5(9)1213<123> = 29 × 68004493287578401111324018574258290351<38> × 304239531422152873078652750157120871113171209374964566110469309352350285844274312067<84> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 1.52 hours on Core 2 Quad Q6600 / October 3, 2007 2007 年 10 月 3 日)
6×10123-7 = 5(9)1223<124> = 132 × 1660493 × 419726743015322283340796841866026105998611897<45> × 50940224585810878707118381444742680923300871417714179798205170107648957<71> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 3.06 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 4, 2007 2007 年 10 月 4 日)
6×10124-7 = 5(9)1233<125> = 1451 × 8977597 × 4605997858542474090302654727964332548507864742917177209511203763801406129881057466455384867248609260343018853598919<115>
6×10125-7 = 5(9)1243<126> = 23 × 3623 × 10966621 × 50636596327829583320839536142290785563<38> × 12966349985343467300064590701602747532440337222241547532187032604088384653879<77> (Robert Backstrom / GMP-ECM 6.0.1 B1=1280000, sigma=459190221 for P38 / October 3, 2007 2007 年 10 月 3 日)
6×10126-7 = 5(9)1253<127> = 79 × 74441 × 388673 × 411071938344907579<18> × 139356463122719506567<21> × 45822907472291109719909385368586583997713707828487206775657055632255640508683<77>
6×10127-7 = 5(9)1263<128> = 343127 × 582525896334758811474813322548179<33> × 538379064288744086953750328027856177081161<42> × 557561730154771569560097260837268094018249256461<48> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1815745257 for P33 / September 27, 2007 2007 年 9 月 27 日) (Sinkiti Sibata / Msieve v. 1.26 for P42 x P48 / 9.79 hours on Pentium3 750MHz, Windows Me / October 4, 2007 2007 年 10 月 4 日)
6×10128-7 = 5(9)1273<129> = 47 × 157 × 8893 × 45062760365254252417196977668457049<35> × 107331866482129355939909099089742932497167<42> × 1890422922086710862023492300837255153472513593<46> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 5.27 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 4, 2007 2007 年 10 月 4 日)
6×10129-7 = 5(9)1283<130> = 13 × 787 × 230759966824487<15> × 1091704250793523974001601<25> × 2327918097250184290514671633978308070351165605191467423373801850031901189016537328495769<88>
6×10130-7 = 5(9)1293<131> = 3581 × 11927683 × 77492399487775327777<20> × 41741913374238084153759348799228096820219<41> × 434269551129510598310111242531747787622152307167204480286557<60> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 2.61 hours on Core 2 Quad Q6600 / October 3, 2007 2007 年 10 月 3 日)
6×10131-7 = 5(9)1303<132> = 53 × 169607 × 12872498163753083570298872692434111691304047437203023579603<59> × 5185238891853061753866196726218370889062130742679403097113868915761<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 2.84 hours on Core 2 Quad Q6600 / October 4, 2007 2007 年 10 月 4 日)
6×10132-7 = 5(9)1313<133> = 17 × 31397 × 60607 × 17658261422573<14> × 157220545256202605499721340161299887750890477<45> × 66808873437291415726408144788722762650560407722248850407211168531<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 8.23 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 4, 2007 2007 年 10 月 4 日)
6×10133-7 = 5(9)1323<134> = 419 × 803784771613572434432727851402219930947<39> × 8211994164161688590117664996602372379877<40> × 21694458850171435203820744840123411555745339465862013<53> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 4.50 hours on Cygwin on AMD 64 3400+ / October 4, 2007 2007 年 10 月 4 日)
6×10134-7 = 5(9)1333<135> = 19 × 29567 × 45971 × 78819112594656149<17> × 34093879209387559643<20> × 9540549791643398673017<22> × 906202123635015452740024191712681618079001335487006593463795536209<66>
6×10135-7 = 5(9)1343<136> = 13 × 414413481743<12> × 36564792200396563<17> × 1126059761985818701739729351936313997694323<43> × 27048891575232108774848633209666793723302095208678124558846257723<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 7.79 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 4, 2007 2007 年 10 月 4 日)
6×10136-7 = 5(9)1353<137> = 72883 × 375559 × 4647871 × 471620603651378896369815298342803355838453516753326231175606603813513005275479964381951231884801830548744749448237156539<120>
6×10137-7 = 5(9)1363<138> = 11930304707794017951010060929038611787637529<44> × 50292093512751817677191069598755399434481984540235534607565516222232375080068547729293970178017<95> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 4.81 hours on Core 2 Quad Q6600 / October 3, 2007 2007 年 10 月 3 日)
6×10138-7 = 5(9)1373<139> = 151 × 734810098575024052571<21> × 54075331047850853524344611604354849548078566410628943552535026044008616193228839408063723014262536908251680388404733<116>
6×10139-7 = 5(9)1383<140> = 79 × 21237841 × 32717317 × 1093040142883501386489376179771257545308342322226134020494881510932970685488517038050121776320118984420578091500117378336411<124>
6×10140-7 = 5(9)1393<141> = 118447393 × 488302592269751645844131141513207371459<39> × 10373772369705551105830529941865993946904275182321723727108870993322153016866124697921503890739<95> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 7.15 hours on Cygwin on AMD 64 3200+ / October 4, 2007 2007 年 10 月 4 日)
6×10141-7 = 5(9)1403<142> = 13 × 1447583 × 84331879 × 6476031936152650611823116269070611627<37> × 583799427952449996104077409330623614593075799711097271574870756751412606331718775669681999<90> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=3000000, sigma=3326569211 for P37 / October 4, 2007 2007 年 10 月 4 日)
6×10142-7 = 5(9)1413<143> = 353 × 85223 × 1064743 × 17170804432778660568577<23> × 42191759522915775604583057626823<32> × 2585572109501371476246882696300039865583164290410873961325438433783561473999<76> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 17.01 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 5, 2007 2007 年 10 月 5 日)
6×10143-7 = 5(9)1423<144> = 509 × 733 × 29587 × 40699 × 52813 × 25287388758311535507074304028925147055557213524322989587565329782256251042504668520842268959533529979284814417223093452680501<125>
6×10144-7 = 5(9)1433<145> = 53 × 89 × 578031563 × 78317566279<11> × 1254324247513<13> × 8687286395376410807206553<25> × 2578580419213485258784033863827766442844633512809337456466716558518826587681085556993<85>
6×10145-7 = 5(9)1443<146> = 1766550377<10> × 157012037513<12> × 4348276733443<13> × 208622310195879907337278472254444759<36> × 238459345830976112102219160803088310324167412809493635059788300420093626611189<78> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 10.31 hours on Core 2 Quad Q6600 / October 4, 2007 2007 年 10 月 4 日)
6×10146-7 = 5(9)1453<147> = 5039 × 594569 × 799647361 × 839700913626501649<18> × 354555023913840387697765253<27> × 841197265982834435250443360760069689712522343823862409496564765687187171170691637219<84>
6×10147-7 = 5(9)1463<148> = 13 × 23 × 1447 × 8923 × 715492813777151850227<21> × 1051633235233452391090903<25> × 2065527868436617072036666575240277340895812226031409111034815812132269936436696913254639800587<94>
6×10148-7 = 5(9)1473<149> = 17 × 5261 × 7069 × 20877877 × 4124979457<10> × 2202754157836179317307651152968047629805882079<46> × 500267040879752050179524392513061490125276212618093746534715313369595549802451<78> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 38.13 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 6, 2007 2007 年 10 月 6 日)
6×10149-7 = 5(9)1483<150> = 192519472477<12> × 40653929264339<14> × 76660925883410876598879512060259213999749427830914170198257939150576777044570409910670659719757237020280921658248324299630431<125>
6×10150-7 = 5(9)1493<151> = 29 × 2311 × 1488427 × 2621987 × 20671223477<11> × 681329504326085520982013141<27> × 1628815356375786068731892561567331281180770885529773816382126960199203367547234463573865230977379<97>
6×10151-7 = 5(9)1503<152> = 38049083 × 163890451242523530323685961374784914589069397<45> × 9621735296463067319406359609200658570446718765888423723850749029550679811036943776234172558145948143<100> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.26 / October 5, 2007 2007 年 10 月 5 日)
6×10152-7 = 5(9)1513<153> = 19 × 79 × 317 × 683 × 194723 × 2422519199645591483038400362598333261141854085321449290981587<61> × 3913867442685506786621678329983313608259562954908441460080566565534765765237163<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 30.48 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 5, 2007 2007 年 10 月 5 日)
6×10153-7 = 5(9)1523<154> = 13 × 139747 × 41191413729044567<17> × 28576336929599376517741<23> × 1025244729230700913218569<25> × 356746994819799697074718391780142365509993<42> × 7671217220429161293573234558957602035904237<43> (Sinkiti Sibata / Msieve v. 1.26 for P42 x P43 / 4.64 hours on 04:38:29 / October 3, 2007 2007 年 10 月 3 日)
6×10154-7 = 5(9)1533<155> = 107 × 127 × 18393799 × 1955163178879<13> × 7703802161617<13> × 2520882476066236099<19> × 172724374438795287487<21> × 25123119165077134405874587653763<32> × 1456882069665536858778538228284737883240041799739<49> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=409472312 for P32 / September 28, 2007 2007 年 9 月 28 日)
6×10155-7 = 5(9)1543<156> = 9151759 × 44509450084691841113<20> × 1276610766484719268151<22> × 1340426558177838497399939<25> × 217264834889735630458321389261532721<36> × 3961899731258636703690742682913482426977474823891<49> (Robert Backstrom / Msieve v. 1.26 for P36 x P49 / October 4, 2007 2007 年 10 月 4 日)
6×10156-7 = 5(9)1553<157> = 4067263 × 3771671892797<13> × 391124561357841028211985296052172825523341495770768087714782840008457374109592390497796175365521430732791917076426995248440451327213764563<138>
6×10157-7 = 5(9)1563<158> = 53 × 97 × 739 × 1091 × 519487 × 709369890512947561<18> × 1398747574182377711176049107<28> × 22320341571287862440791180961911537<35> × 1258191770139023959637271001787399781177095229292345787867966729<64> (Robert Backstrom / Msieve v. 1.26 for P35 x P64 / October 3, 2007 2007 年 10 月 3 日)
6×10158-7 = 5(9)1573<159> = 229 × 3146866820428986633571<22> × 832601913508168862619840687842101063641252846454205813717638749305907823406643122868304575939842084616892068736561887962171890037889527<135>
6×10159-7 = 5(9)1583<160> = 13 × 46099251251888935727327<23> × 17014311483120697384989356382969398497597<41> × 24879066220185916328457524320554279793687<41> × 23651874787979709585009977994193399030605069949949286937<56> (Jo Yeong Uk / GMP-ECM B1=1000000, sigma=2232240277 for P41(2487...) / October 4, 2007 2007 年 10 月 4 日) (Jo Yeong Uk / Msieve v. 1.28 for P41(1701...) x P56 / 4.47 hours on Core 2 Quad Q6600 / October 5, 2007 2007 年 10 月 5 日)
6×10160-7 = 5(9)1593<161> = 110893837864780114169227<24> × 53482456690377432712639319435401<32> × 125543951754463483312651367167081146619879782542807<51> × 80581749745901679359607613279455998414547734638470247237<56> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=1211627566 for P32 / September 20, 2007 2007 年 9 月 20 日) (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P51 x P56 / 16.09 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 6, 2007 2007 年 10 月 6 日)
6×10161-7 = 5(9)1603<162> = 59 × 4889 × 22063 × 61949 × 56338169 × 5137570679<10> × 25632208522320555148392302355173<32> × 205132168410612051871480238620927190554253620898540807301677670565578241342961193951890988344739443<99> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 67.83 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 7, 2007 2007 年 10 月 7 日)
6×10162-7 = 5(9)1613<163> = 5175578203<10> × 8983299164419145064801872197<28> × 129049555294105785119125517220627617353716848908600790989497238111164744527117131643670366872123218165471599815618433029956223<126>
6×10163-7 = 5(9)1623<164> = 30339296027748931253<20> × 15909833358959093262353180001154624082529476187767<50> × 124302573471643865966793637908816400185876720580733444177989495780776161055978026073936417281843<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 95.21 hours on Core 2 Duo E6300 1.86GHz, Windowa Vista / October 9, 2007 2007 年 10 月 9 日)
6×10164-7 = 5(9)1633<165> = 17 × 302404974167609<15> × 604857162810389628774661784293336029351376392407791<51> × 192957014318376632131120220747611805227589329088927241976832631934622388748514730334494973730320991<99> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.28 / October 8, 2007 2007 年 10 月 8 日)
6×10165-7 = 5(9)1643<166> = 13 × 79 × 113 × 7235159683<10> × 782556346460516558455522307<27> × 89114521059015530309415870009443429755507579670159234491<56> × 102468445422444548672703238249307270954451352766414703365751873047633<69> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.34 / May 4, 2008 2008 年 5 月 4 日)
6×10166-7 = 5(9)1653<167> = definitely prime number 素数
6×10167-7 = 5(9)1663<168> = 86004929922823687<17> × 117124643630091042473553137641<30> × 1422924018199617086667469983408773956446337923324187259<55> × 41859873490837916408900575837828799444368507615420908476733092182981<68> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1060709564 for P30 / September 29, 2007 2007 年 9 月 29 日) (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 154.80 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 13, 2007 2007 年 10 月 13 日)
6×10168-7 = 5(9)1673<169> = 23321029517<11> × 1946093975321<13> × 949728193553251598869208949731525903<36> × 139200371060752713488619708492242929677851594313512689917170481207624637214984355584834412229638130149588591883<111> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=507378531 for P36 / September 29, 2007 2007 年 9 月 29 日)
6×10169-7 = 5(9)1683<170> = 23 × 233 × 953 × 6917 × 31153 × 128429681465951<15> × 9251319662603903631647249201<28> × 45886808094922831130066415324310174992733935939017221438770830231630561151558742747972248194486088111977804664509<113>
6×10170-7 = 5(9)1693<171> = 19 × 53 × 919 × 22820467 × 22795072861193<14> × 3926779758432979034119147<25> × 317398019474385596418507534899916490737317279223727984256485884035662720568594476699866336705664397533018285127480666153<120>
6×10171-7 = 5(9)1703<172> = 13 × 347 × 280561 × 3619261 × 104668478321136247869629778050319602787493232821426679133681787<63> × 12514552052547785247649358827497335463132200483914345373302430877998388248495950980295389454969<95> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs / 7.18 hours, 2.96 hours / October 18, 2008 2008 年 10 月 18 日)
6×10172-7 = 5(9)1713<173> = 13690517 × 4382595631706238705229320412077936866810800497892081066040091838752327614800814315485675230526356309261366827856099225471178334609277355997585774153014089971912675029<166>
6×10173-7 = 5(9)1723<174> = 13413022373<11> × 254106107960663411887642298189807618950496854389331792179242251<63> × 176039244907150995933870857374771574815002400239328663586454894500763717483116064141859499252833070191<102> (matsui / GGNFS-0.77.1-20060722-nocona / April 29, 2009 2009 年 4 月 29 日)
6×10174-7 = 5(9)1733<175> = 47 × 61 × 181 × 353 × 1087 × 208065115903<12> × 53498614775444400440722161697184497031848799093664707502336807437<65> × 2707066492448308746177376337283838766946249819732813277565648978401357591107953204777779<88> (Warut Roonguthai / Msieve 1.47 snfs / September 22, 2011 2011 年 9 月 22 日)
6×10175-7 = 5(9)1743<176> = 3457 × 240996865670919031<18> × 109751512809701851935244709<27> × 656190534268642783995141509463735363036328390877322117079760075938076227795602720881144770826922165183134370139739378121621610531<129>
6×10176-7 = 5(9)1753<177> = 197 × 790812963581<12> × 12815977898860751<17> × 629823745637566725798931571<27> × 918226296942461704458972289181<30> × 519625837824018561400408914463969961854205081288415860377809697716089682349383075235628449<90> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3558571253 for P30 / September 30, 2007 2007 年 9 月 30 日)
6×10177-7 = 5(9)1763<178> = 13 × 1879847 × 12888596406220343627017425991<29> × 7611452462480719754698423408128729268753947354423248202476309<61> × 2502719806947767495392444807342013129478911402644681738926239081377202015355223577<82> (Warut Roonguthai / Msieve 1.48 snfs / March 22, 2012 2012 年 3 月 22 日)
6×10178-7 = 5(9)1773<179> = 29 × 79 × 245126150692993267<18> × 25555014258829643658277421177<29> × 4180809586358446140257910806830493899106225043016968016645041153773105641974794136065662144907018301006224616025086293137262447897<130> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=421405069 for P29 / May 30, 2011 2011 年 5 月 30 日)
6×10179-7 = 5(9)1783<180> = 421 × 1987 × 36579579556932487<17> × 61950404263093349<17> × 32214719309713242013252446127<29> × 9825034445152901935961343941427051693447911717439515033411367593262448843290849917926006685974339035210804587059<112>
6×10180-7 = 5(9)1793<181> = 17 × 5791 × 4830487850130825355136992625082278853531328717363811995759451<61> × 12617048427077972576764760920138324767170820384685368004188695290274577720048489648872812603297601032348850349016469<116> (Hugo Platzer / Msieve-1.36 optimized 64-bit linux lattice siever from Greg Childers for P61 x P116 / 0.01 hours, 1.21 hours, 0.41 hours on ubuntu-8.0.4 64-bit(hardy) Intel Core 2 Quad Q6600 @2.4Ghz / August 26, 2008 2008 年 8 月 26 日)
6×10181-7 = 5(9)1803<182> = 15193 × 11600213 × 89899333984936105365387819186986113099<38> × 1289747829959069521869855916958833257526365034799135453<55> × 2936165076289167327584889888926912970057218559655263629096011171234579616000291<79> (Robert Backstrom / Msieve 1.44 snfs / February 9, 2012 2012 年 2 月 9 日)
6×10182-7 = 5(9)1813<183> = 15857351 × 240859602451503853093<21> × 1896512920414855022583134389866614561<37> × 119444117471123006175538348935209835922752509<45> × 693483406943763074018225167605758299531812440746406449298386871209348597999<75> (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:3339309730 for P37 / October 1, 2013 2013 年 10 月 1 日) (Erik Branger / GGNFS, Msieve gnfs for P45 x P75 / October 22, 2013 2013 年 10 月 22 日)
6×10183-7 = 5(9)1823<184> = 13 × 53 × 109 × 397 × 56713 × 116089 × 86358396697<11> × 167062327021<12> × 364234075092111249972929<24> × 5816713354557213625453542174512517276122938904574512368047812505002891284399601944804366375585300564197585531063177512429<121>
6×10184-7 = 5(9)1833<185> = 3917 × 510007 × 13732841 × 129569543 × 221000107 × 436097591 × 175138671672033494856167263877176421238275666199833551112474737373388758190280314444550065746329079020754848246932160145666307158157535718770937<144>
6×10185-7 = 5(9)1843<186> = 1259 × 105094819 × 18234595094684519<17> × 496645177774564607081<21> × 91097916289552225379407273<26> × 1567828725851495950483147060696472797473131<43> × 3505861909643653215337674382799814173297028903124851463841838321295469<70> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P43 x P70 / 17.45 hours on Core 2 Quad Q6600 / October 5, 2007 2007 年 10 月 5 日)
6×10186-7 = 5(9)1853<187> = 228587 × 16688590792387<14> × 818096521418063<15> × 412259044618623205200217317135691<33> × 621191601891255108800185779424397210713201773373<48> × 7507230359669973183883611707232379215093016535627310059290977680619000233<73> (Serge Batalov / GMP-ECM B1=3000000, sigma=3176142533 for P33 / January 9, 2014 2014 年 1 月 9 日) (Cyp / yafu v1.34.3 / January 14, 2014 2014 年 1 月 14 日)
6×10187-7 = 5(9)1863<188> = 3413 × 2142945331<10> × 1070743067526137353<19> × 107377163645117440961264816108776747<36> × 1018854502130800326093309116539494197433692748956528407153<58> × 70031673128309529021204141202795641424718070146335772581779425197<65> (Serge Batalov / GMP-ECM B1=3000000, sigma=1869756375 for P36 / January 9, 2014 2014 年 1 月 9 日) (Cyp / yafu v1.34.3 / January 15, 2014 2014 年 1 月 15 日)
6×10188-7 = 5(9)1873<189> = 19 × 89 × 2897 × 6343 × 3478641632839<13> × 17774070976058545812562727183<29> × 1037060249318566926853395903833359908179576427623996733169<58> × 301136811546965926765661306873457648000605131623211291420171151020499225193725221<81> (LegionMammal978 / GGNFS/Msieve v1.53 for P58 x P81 / January 25, 2017 2017 年 1 月 25 日)
6×10189-7 = 5(9)1883<190> = 13 × 3428293517807<13> × 58104992324235497<17> × 2316948882965912445982408095286355295372861475017817680878788370237541967640759683677477341155594712026149003207352234868421960590023192852019457668882786947259<160>
6×10190-7 = 5(9)1893<191> = 631 × 1997 × 338369 × 580529 × 67169196321839<14> × 55383570834314372861<20> × 203384538156280093871<21> × 395663753293191304390177<24> × 809718447072690922173550260073122489971426984525475152823927288616958390733368072118035468152343<96>
6×10191-7 = 5(9)1903<192> = 23 × 79 × 55691 × 16868993 × 69029399079521<14> × 15113395120605769321211905289426490021569<41> × 336919400681420253618112131228090053850596762515131939852238806800442702391926508897453516033380232251466104732033697303267<123> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2478669635 for P41 / May 6, 2014 2014 年 5 月 6 日)
6×10192-7 = 5(9)1913<193> = 389467697 × 34217793173<11> × 30671745863061668663336097476492388567179413<44> × 608765517104044942714078957191991636251607038515911844503627<60> × 24112335041961995467396440677190800432169351528616583827146263861824403<71> (Lionel Debroux / GMP-ECM 7.0.4 B1=11000000, sigma=1:223758800 for P44 / June 6, 2020 2020 年 6 月 6 日) (Dmitry Domanov / YAFU v1.34.5 for P60 x P71 / June 12, 2020 2020 年 6 月 12 日)
6×10193-7 = 5(9)1923<194> = 839777971 × 1799006831<10> × 39714944493875702499084737589598462134236723698227268245732384619493309363206167886956323135974260364137045461721471694308353077002618021345646983193101321456435684197407169293<176>
6×10194-7 = 5(9)1933<195> = 39178985617<11> × 4802722265791<13> × 33229090813218236420754331<26> × 95960418093149798803738851779500576003383774326454468744975283854576978015524483968631589720492689785093964655507341059710475881897504365459484149<146>
6×10195-7 = 5(9)1943<196> = 13 × 1377071 × 64013653213<11> × 19036488880378127<17> × 954703029198365683<18> × 398532447094954651352220190753475613562819050521<48> × 722869859392254312525995523744823006798692506836530940804590673515729655350716853217241820943987<96> (Eric Jeancolas / cado-nfs-3.0.0 for P48 x P96 / May 15, 2020 2020 年 5 月 15 日)
6×10196-7 = 5(9)1953<197> = 17 × 53 × 127 × 7699 × 68106477480735677043478924364842935514813168500477652861177580542200956827221062080719427064973612434752618255056131525540270155217261575820456060428961406423641543631359715186339101041241<188>
6×10197-7 = 5(9)1963<198> = 617 × 853 × 227103908519<12> × 690809699389309765793069<24> × 7266646270112464720379091068090141639978546837804692873269703375702331675850492604266385119234685079291977236562040031042775533872144523120984370132737091063<157>
6×10198-7 = 5(9)1973<199> = 167 × 265447401151<12> × 1599529266754550409912307759727<31> × 69647709971114263612182443608905343<35> × 45610601668477793926926081388624380347<38> × 26637377659692163602198554600522012531276958722024202122767771088922418156704594787<83> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1986207576 for P31 / October 21, 2008 2008 年 10 月 21 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3216924143 for P35, Msieve 1.48 gnfs for P38 x P83 / May 31, 2011 2011 年 5 月 31 日)
6×10199-7 = 5(9)1983<200> = 223 × 6846603257419<13> × 704494201038456318318171509<27> × 6568656595375631798967539511461676337751901004941745455934803284595356131<73> × 8492141940198216441557390024319366734169358903258047004748665152153638593326039752491<85> (Eric Jeancolas / cado-nfs-3.0.0 for P73 x P85 / January 19, 2021 2021 年 1 月 19 日)
6×10200-7 = 5(9)1993<201> = 1206683 × 1041234439966907<16> × 167324979574126408639391483449<30> × 119767253465264908945335997836315181102526958786596546745759805691<66> × 23829265748290073580832841134032587831644531175979526975178257287814960876567123033867<86> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2585676987 for P30 / October 3, 2007 2007 年 10 月 3 日) (Eric Jeancolas / cado-nfs-3.0.0 for P66 x P86 / February 18, 2021 2021 年 2 月 18 日)
6×10201-7 = 5(9)2003<202> = 132 × 2383 × 147058957 × 8735222287173061<16> × 3547211439276896118449457056186959<34> × 41017411253768868150792082436333055868981909173917<50> × 79711271633670150707407854142000413708937270806044717273827983205626316567082134798383589<89> (Serge Batalov / GMP-ECM B1=1000000, sigma=1424310787 for P34 / January 6, 2014 2014 年 1 月 6 日) (Erik Branger / GGNFS, Msieve gnfs for P50 x P89 / March 1, 2014 2014 年 3 月 1 日)
6×10202-7 = 5(9)2013<203> = 46691 × 29304115601019678532608859128163658159<38> × 59276867876185391385707246327277191523238281310618224702395727147373<68> × 739782763097059871738869536865950516118527937092620845674643802278481742722463938764431329489<93> (Serge Batalov / GMP-ECM B1=43000000, sigma=1727713119 for P38 / November 1, 2013 2013 年 11 月 1 日) (Bob Backstrom / Msieve 1.44 snfs for P68 x P93 / December 25, 2023 2023 年 12 月 25 日)
6×10203-7 = 5(9)2023<204> = 2600093137<10> × 9603173731507<13> × 167791428673670049774888278616583016267<39> × 143211465104442004734481009448674696921951321929459102946061535463538092109500235693148022731218565893444196925501975577958224570303403358743481<144> (Serge Batalov / GMP-ECM B1=3000000, sigma=1457802403 for P39 / January 9, 2014 2014 年 1 月 9 日)
6×10204-7 = 5(9)2033<205> = 79 × 733 × 7090805166007035877<19> × 14612503628760280110971509736382323188211519675310994031845357162477760593071126358352419536004316148549871138233795097514780880015561235130682122719862939670348215147254805634909287<182>
6×10205-7 = 5(9)2043<206> = 601949 × 6388352751007096117<19> × 390085971323808813266453279210716512053<39> × 39998373558100342327028989787796471745273789074830656541819642477023721331560391949595021507575595149074059178377577889481861688780612719968757<143> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2078481920 for P39 / October 16, 2013 2013 年 10 月 16 日)
6×10206-7 = 5(9)2053<207> = 19 × 29 × 157 × 353 × 1468677267597767<16> × 75106505321649353<17> × 1449903040801717991637054416254215406303664486114313917158009120216147499219933<79> × 122852049287965444249532433636590967703352515289247660728838386188979385774979130309244601<90> (Bob Backstrom / Msieve 1.44 snfs for P79 x P90 / April 9, 2024 2024 年 4 月 9 日)
6×10207-7 = 5(9)2063<208> = 13 × 107 × 743 × 52196483629372861<17> × 111222860456833380572013890510100366035224533667032722203269568834938183800272259842739199900510351577932212835664742415220272352728952305867989988224978718167406836338054683797782680101<186>
6×10208-7 = 5(9)2073<209> = 719 × 5701 × 6781 × 2158626849530862851157100221456877962699408622397623819771404115637785820817981316642026851999878655382005841981857624999571067353580407983582264454120134243324360635425702161862548430947049221242087<199>
6×10209-7 = 5(9)2083<210> = 53 × 93607 × 2593563313129727<16> × 57774473857977965388169<23> × 29818570845730039581013555121715014175341<41> × 572878463648348306656074070951385245275469072538326476371<57> × 47248157781490066772756840926150893802416713080370380842024732687731<68> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=700051721 for P41 / February 11, 2014 2014 年 2 月 11 日) (Cyp / yafu v1.34.3 / February 16, 2014 2014 年 2 月 16 日)
6×10210-7 = 5(9)2093<211> = definitely prime number 素数
6×10211-7 = 5(9)2103<212> = 11839901 × 311958711826380670228583913287291701<36> × 540295561894246901892033834785571035329<39> × 30065931305828818608073114054487705118744870955170156239926997271894378170487281692260457713367886980427662145483223502717158751417<131> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2097797404 for P39 / October 16, 2013 2013 年 10 月 16 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3418943530 for P36 / November 1, 2013 2013 年 11 月 1 日)
6×10212-7 = 5(9)2113<213> = 17 × 57839 × 12924133 × 2567787514036924791971049057952647914417<40> × [18387430828133090868280056066109722518592936333816776513918926624256868385201688498654044065320973694986233174625657861815034078415761034580043831311471916410251<161>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=471481761 for P40 / February 12, 2014 2014 年 2 月 12 日) Free to factor
6×10213-7 = 5(9)2123<214> = 13 × 23 × 151 × 557 × 218339827 × 708415319 × [1542506539062523362845414743045369564363500714752145151633197224103144130400509376378453467840314567926737851205599392882547784895024772119112244288458203605525624748217619919285029152966877<190>] Free to factor
6×10214-7 = 5(9)2133<215> = 29221 × 1073725612028483<16> × 1912330111505253842838083196241794291204474366442364387724560773184917205213518938889331649782203735812043174650854008481139219232658680845146376713215705024240360558665678654704990447665214337751<196>
6×10215-7 = 5(9)2143<216> = 104053 × 19922718389775742247992321<26> × 289433001320939120285436519276811071967857861705238433543624451155121791783670507290754995230410485082059179335033606379545803318767206564675461509468265270463074030782821496974480969461<186>
6×10216-7 = 5(9)2153<217> = 53353980108984857633773997<26> × 1636852446870939868159467990675221188181<40> × [68702872562604922118392274357662248085852479607754285781352251160416812924309302732545610041144363075011136560007506457381706401625884135072465280163849<152>] (Cyp / GMP-ECM 6.4.4 B1=43000000, sigma=2040720261 for P40 / January 11, 2014 2014 年 1 月 11 日) Free to factor
6×10217-7 = 5(9)2163<218> = 79 × 443 × 751 × 761 × 331613 × 36879348118343310258789707<26> × 66137465709238095020620052739931682981289137<44> × 270763510062916212845166504900234502345652383277735171<54> × 13697565027108932915992113586640126341512930270793847307919847440870910357137247<80> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=224963540 for P44 / January 4, 2014 2014 年 1 月 4 日) (Serge Batalov / Msieve 1.51 gnfs for P54 x P80 / August 21, 2015 2015 年 8 月 21 日)
6×10218-7 = 5(9)2173<219> = 863917 × 2866961 × 4608861457159<13> × 155710312583703372263<21> × 17320503841926041544281148769<29> × 76360588735912612431535891627398748029297349<44> × 255221129250219321357137589287407489493572776856499734241329483025399088846767307115109714780001644057<102> (Serge Batalov / GMP-ECM B1=11000000, sigma=3392657045 for P44 / May 24, 2014 2014 年 5 月 24 日)
6×10219-7 = 5(9)2183<220> = 13 × 59 × 131 × 9371 × 233782872875344382907556209066067<33> × 27257496291977767419291463544724027669713232457928056354148101588477554127056125940713011435036808374406145447997833319235111178347889133973204785673891249671276965840694309120237<179> (Serge Batalov / GMP-ECM B1=3000000, sigma=2898156848 for P33 / November 1, 2013 2013 年 11 月 1 日)
6×10220-7 = 5(9)2193<221> = 47 × 1393367 × 19307126483492120896971149479692957629<38> × 48985923933948334929852088813345089055715877400004811188377757793577<68> × 968721472437726245022408988034421710710860860788557536720550978920910873988994236421551359991115050425436429<108> (Serge Batalov / GMP-ECM B1=3000000, sigma=2150748137 for P38 / November 2, 2013 2013 年 11 月 2 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P68 x P108 / December 17, 2018 2018 年 12 月 17 日)
6×10221-7 = 5(9)2203<222> = 12541 × 33961 × 78515986552644657732082603<26> × 17942399436346699248638301263456087589490030254846950943537808509885130244327437175135384951376294443540528200972698748182045205324931825173072779327973465655917063606342446499438628861231<188>
6×10222-7 = 5(9)2213<223> = 53 × 1123 × 12263 × 1305983892932987<16> × 167305860942123330847117343726028946790408797787<48> × 37622696610740827755974969366436129155230788686205485615619721625099548199323905918163513006447739826015134599828294413238428758739140887651733270170601<152> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P48 x P152 / February 1, 2022 2022 年 2 月 1 日)
6×10223-7 = 5(9)2223<224> = 1049 × 8089012646558754461347<22> × 2071725456229675594259859746057768800247147<43> × 3413092396702055919068854952954541528828992148410843161911584687304886078005444720867110672897268283675367444060018598151246111262783360773098625212178919873<157> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2336274041 for P43 / May 19, 2014 2014 年 5 月 19 日)
6×10224-7 = 5(9)2233<225> = 19 × 307 × 7411 × 36930067 × 1310998092960072791489<22> × 130910239426479561478221478228124361171329<42> × 30567829833603084236704826086123006360099231193<47> × 71641072857280879561358142856547995575956976728762722111538799112654979777206772239778163629801230801<101> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=2627541283 for P47 / January 2, 2014 2014 年 1 月 2 日) (Serge Batalov / GMP-ECM B1=43000000, sigma=3612403732 for P42 / January 5, 2014 2014 年 1 月 5 日)
6×10225-7 = 5(9)2243<226> = 13 × 230607964319<12> × 668317376035047279103<21> × 2994682903245513953312188422459576231596906430654699489559864503703485486373462547321771514117273223523428514911103900936381455835567283953391506990439357972386857494497569125421759836453443773<193>
6×10226-7 = 5(9)2253<227> = 30593 × 96589 × 163819689037942547<18> × 897910314739238731057<21> × 25746420231816094764579034463<29> × 3833388626898552652550445185856511363<37> × 105777202952677195457902263238307515780543849<45> × 13222411647535062273267472723169276613120149337477547880080120454825491<71> (Serge Batalov / GMP-ECM B1=3000000, sigma=1909057767 for P29 / November 1, 2013 2013 年 11 月 1 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=2973114681 for P45, B1=11000000, sigma=2014910838 for P37 / November 8, 2013 2013 年 11 月 8 日)
6×10227-7 = 5(9)2263<228> = 827 × 189502793 × 57300766427<11> × 871609707939043<15> × 249413848406718040007<21> × 17304493378854491115157<23> × 298284815694203150657662861008473<33> × 3789188942877255212214488172331067<34> × 15714145718504179822763169201172156470076284685051829424071607056339193193508832587<83> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1020382870 for P34 / October 17, 2013 2013 年 10 月 17 日) (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:24939721 for P33 / October 21, 2013 2013 年 10 月 21 日)
6×10228-7 = 5(9)2273<229> = 17 × 1867 × 394411 × 53078923801<11> × 1862422854759261789565021115101<31> × 114893172391293634859321757591092614451571239<45> × 62354198385784078652543639394712953073286592013441715910118636939<65> × 676781797388640941520194795527082530187599398601858376197776967247777<69> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2729384233 for P31 / October 17, 2013 2013 年 10 月 17 日) (Cyp / GMP-ECM 6.4.4 B1=43000000, sigma=3666709892 for P45 / February 10, 2014 2014 年 2 月 10 日) (Erik Branger / GGNFS, Msieve gnfs for P65 x P69 / May 16, 2014 2014 年 5 月 16 日)
6×10229-7 = 5(9)2283<230> = 26357 × 3572020174117<13> × 9272430881029<13> × [68730225070670497357059716220057026366619836411460698684787677130507632166166884235704939944122507213652488645758057955092957188834881023504194714739669829658466126049239760389453568516080001487752093<200>] Free to factor
6×10230-7 = 5(9)2293<231> = 79 × 193 × 868949909 × 231639324823358891484883<24> × [195505877266486447481417749933187996985323275675386920032342318511821762072103081403771151087045133360303742195689858698366066826882936773930223558900661920615371100794393472088696515358956588377<195>] Free to factor
6×10231-7 = 5(9)2303<232> = 13 × 317 × 456400245053322088038849472838330849<36> × [3190088760248879437217194233654760707531334742989936335944033255204184170059787798211275548868164687763031097604042014067854869277249706205899430465006089855975341482211332036652051725497180417<193>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2062602482 for P36 / October 17, 2013 2013 年 10 月 17 日) Free to factor
6×10232-7 = 5(9)2313<233> = 89 × 2503 × 94873 × 558473 × 3253799 × 2680631763990407<16> × 22959090971763588806138577180481<32> × [25384756932687219930453518491249876151812998558356222673663613374518774284411564972964658099752552521270073374713652965116597216285816352805048553746849223166183047<164>] (Serge Batalov / GMP-ECM B1=3000000, sigma=691027848 for P32 / November 1, 2013 2013 年 11 月 1 日) Free to factor
6×10233-7 = 5(9)2323<234> = 311 × 9181296079<10> × 409328505527<12> × 6986715030303458445187<22> × [73475381355484171885510211354239615179915676591677408806043118597449168167827921687455453432863510422818693246019800376170370142897873779365096641008262271955886373485395088512459706503853<188>] Free to factor
6×10234-7 = 5(9)2333<235> = 29 × 61 × 1627 × 812759 × 5759252780179237635923525639895493<34> × [445356644953027901331247310741740642869010445393480147283961861498034854521409795693118571063181259880481998367355453802637935024930174156525318073927379485466089114967695978220510146501553<189>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3830289319 for P34 / February 13, 2014 2014 年 2 月 13 日) Free to factor
6×10235-7 = 5(9)2343<236> = 23 × 53 × 16389915209<11> × 1205696042827<13> × [2490766422300790450197470703432246339565085409157833753806477540766249083044480399062552468822763200633862377673362008317034526664976236134451248072366853148479868880600543478686725386119318762576718014360077329<211>] Free to factor
6×10236-7 = 5(9)2353<237> = 1327 × 6089 × 30364627 × 352057016606387<15> × 6946297802442785155237128884587200442259215613206811956112315345125012634907875861963557996088809744016236632042498790364458491732260879133192831575975020218470410994460831520107708374764327309085805811599719<208>
6×10237-7 = 5(9)2363<238> = 13 × 3547 × 7797487 × [16687529645358346552099176076114322971671123374471549998510559130574193252037689866599837034602311092770469784559189635204361289192520301321344860431755239050322231258360282886984414332476128448646227852000304871254228087648649<227>] Free to factor
6×10238-7 = 5(9)2373<239> = 127 × 353 × 1787 × 1861 × 7057 × [57027164867933544667929347729146291294810744149638049391136144462923224011955488128053643628268072148485237256951395587889834353401428283180534388230028587582994178514620079680124151687902301218223810730913217354561420443697<224>] Free to factor
6×10239-7 = 5(9)2383<240> = 367 × 669847613 × 107171318134399301<18> × 617921244619796462417<21> × 32171290787250322311661<23> × [1145589400607813183439206502949792919389991135109531260911262874682046042097739557031246776452129457702678681528962513018633468046934458590775164481767798028553497311059<169>] Free to factor
6×10240-7 = 5(9)2393<241> = 659 × [9104704097116843702579666160849772382397572078907435508345978755690440060698027314112291350531107738998482549317147192716236722306525037936267071320182094081942336874051593323216995447647951441578148710166919575113808801213960546282245827<238>] Free to factor
6×10241-7 = 5(9)2403<242> = 7840006908796231670556778759<28> × 9365535225043372970562338374352940781<37> × [817150787065562740799608135512986065617721357546705538848641321766113003200265160987715166767242153549914911779324553709434089761265652106304676156159209153543466721939449738267<177>] (Serge Batalov / GMP-ECM B1=3000000, sigma=3759282747 for P37 / November 1, 2013 2013 年 11 月 1 日) Free to factor
6×10242-7 = 5(9)2413<243> = 19 × 161087 × 4869283411<10> × 974635549277568843306743<24> × 11308512835624223767543421314805572991<38> × 359268505810217724534014033961759422250623<42> × 18805445164525970963694641657320827008628539<44> × 540656705166826678404710296075078464976448561036780676408732753726278823803489611<81> (Cyp / GMP-ECM 6.4.4 B1=43000000, sigma=3115601812 for P38, B1=43000000, sigma=3255574250 for P42 / February 8, 2014 2014 年 2 月 8 日) (Cyp / yafu v1.34.3 / February 9, 2014 2014 年 2 月 9 日)
6×10243-7 = 5(9)2423<244> = 13 × 79 × 7136771 × 335659407653527<15> × 7792988669269528060665151<25> × [312950879596415799099005083174760562747134402736702187008162740637278798980656639697261626915894019421610871338664434126671474091039035435089989630818322819569919279489401727498147077876041293577<195>] Free to factor
6×10244-7 = 5(9)2433<245> = 172 × 8581 × 21557 × [1122347087572990657127375888503857579883196168736497915398825712181935757807338343134786115601450390757225281380618744114296481457295895922104932352234048235087550039706710456631023549395180788218161627778064588483876750810897215793361<235>] Free to factor
6×10245-7 = 5(9)2443<246> = 162583019404032247<18> × 3690422297478375566214018243028522716570996148947611133437926801413729433842584262717761662718936401354510438206608182533684195901968219333776724984946594010724985041949812695135326005696500597278908098296296708199583679814795919<229>
6×10246-7 = 5(9)2453<247> = 12668941 × 79185560280536316602920477227070112291<38> × 5980877989249031763041421765607091778713546104697997874426092659332549200886077790772981180182234410914727167204088189403564435292415014525748979304104736690734722714371543319564592527691886707137533503<202> (Serge Batalov / GMP-ECM 6.4.4 B1=200000000, x0=2495813513 for P38 / October 28, 2013 2013 年 10 月 28 日)
6×10247-7 = 5(9)2463<248> = 683453 × 418521620954797466015933<24> × [209760977173013735042998766615537461465941170778509768895677680487683174944700801995830534159648803229237492628038850152147309751027419851636672667813361186868419085566429269410363660897288200354184493351643605605379057<219>] Free to factor
6×10248-7 = 5(9)2473<249> = 53 × 317831 × 4618703 × [7711859169501601495312292096347070111007827151664349779971007965693955497397806893166936656559318631070994871987879771781145164363631613854356745563186050408441197824774239249731053004683909769562050479422125119639526901830536495663917<235>] Free to factor
6×10249-7 = 5(9)2483<250> = 13 × 3469 × 12017381 × 3759625901<10> × 267192145523<12> × 6837114297083333388507144355550317<34> × 1611953863856460489751940106720545763960009598534595440622470584793666191691439561200746490581611219354395861044760899077664711187949329497235732601318715162216637236775541681785632439<184> (Serge Batalov / GMP-ECM B1=3000000, sigma=3058474683 for P34 / November 2, 2013 2013 年 11 月 2 日)
6×10250-7 = 5(9)2493<251> = 149 × 8231 × 475378418423613293<18> × 457243100175300144353938200139543487<36> × 10641006840191269172806186347061341221712871<44> × 6615856868936033452057657907503613366845660444064514737741<58> × 3197105259498453370744122138815922795759667311438269813261257852011016237744004551677535747<91> (Serge Batalov / GMP-ECM B1=3000000, sigma=4277155030 for P36 / January 9, 2014 2014 年 1 月 9 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2398104050 for P44 / March 4, 2014 2014 年 3 月 4 日) (Thomas Kozlowski / cado-nfs for P58 x P91 / August 18, 2024 2024 年 8 月 18 日)
6×10251-7 = 5(9)2503<252> = 232350683105746112770709151339707709930636889163488057552108911395236389495916717<81> × 2582303576559451881554996886679465754203241259986571893097310300520915264736107327736845477232306671460860551567715077817919752896447719728354148426932013239111238294405629<172> (NFS@Home + Greg Childers / GGNFS + Msieve for P81 x P172 / July 22, 2022 2022 年 7 月 22 日)
6×10252-7 = 5(9)2513<253> = 231442357929733<15> × [25924381576779599351712326175171314247285549770513544999937631410195957069795492298878668775770541617395155677723890991495276108012166754201886075311693501039800014643661847020095547957392716627619711769757177668080652735153273998967013221<239>] Free to factor
6×10253-7 = 5(9)2523<254> = 97 × 5029084301<10> × [122995890307094662291592870984680938556338760800458779841592691600607244147337156096801800486267215300096245280227019910198111546295113025361469155743090210941398365008955980796290177831149866147085033926323883877870670784879595039349265022269<243>] Free to factor
6×10254-7 = 5(9)2533<255> = 179 × 61469 × 10330523627<11> × 65447585508843001<17> × [80654036411457774575788531093004971418097736278069662664234118224481375414463207440096977236140660002908719950460489741766198949194520882349213852156002578102224988266821234854614016486350633493849140569752291027332889509<221>] Free to factor
6×10255-7 = 5(9)2543<256> = 13 × 3334667191<10> × 39366485581669<14> × 15647132771961907529<20> × [224695300144447328137734440409916037196974181544079132527305637403842823261102646918735662267799087455710724493811898816040290456709047776870276944862545864670598940724495208403059080155783948717885450633115358071<213>] Free to factor
6×10256-7 = 5(9)2553<257> = 79 × 6198142583<10> × [122535688831874029408253225334835235890338906337302966163366024102900979796459896878379199118199660668988452493737809961493373874854590347698138391621557967757305087295065207661275353335145550791011787485832685296482649277510971500808528511011649<246>] Free to factor
6×10257-7 = 5(9)2563<258> = 23 × 28868881186785632761461495879551<32> × 903635868427076649236190718744140367685220867192420057767451491203134001877373949760741007183953732554678193455702901418539395544071876260236792187173999210979401874504940320499327947487459787642883295438702868562671974765841<225> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3598702053 for P32 x P225 / April 15, 2019 2019 年 4 月 15 日)
6×10258-7 = 5(9)2573<259> = 9052033 × 45214944890767<14> × 60077604999356090740193<23> × 6719603944933255873472710996739<31> × [36313392887398138627408668626073405325803828606791131780678026624591180682709953596851350508853479171779996144303218865109652574446214206485591291837453475444913220895345786329272400669<185>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3553426022 for P31 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10259-7 = 5(9)2583<260> = 42407 × 515075111 × [2746901808891289927570927454156029356891476409607366167352730368352445876512761132112548746268437765396862074096429724522976957129962748551656584599404616235564889662687349591615321754571162428834925426669098554362730445319683675803860367786675209<247>] Free to factor
6×10260-7 = 5(9)2593<261> = 17 × 19 × 107 × 283 × 16711001 × 18815986547<11> × 700790884608044173<18> × 300539151514557343479600159143<30> × 5085481229440760018708558641189<31> × 182149297204223537267422940261040679533622182135752568229975750742141125840641267614373104154949181092129579554679270746871247862406008685420945269139388461303<159> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2593303082 for P30, B1=3e6, sigma=3:2593303079 for P31 x P159 / April 15, 2019 2019 年 4 月 15 日)
6×10261-7 = 5(9)2603<262> = 13 × 53 × [8708272859216255442670537010159651669085631349782293178519593613933236574746008708272859216255442670537010159651669085631349782293178519593613933236574746008708272859216255442670537010159651669085631349782293178519593613933236574746008708272859216255442670537<259>] Free to factor
6×10262-7 = 5(9)2613<263> = 29 × 21557323017820847<17> × [95975066826758699519897962105212299014833690053856911534214330546916467467663938947352250653716876873107406866461173505530818156248626910275075227433275005970122156890465269563491907209703114039896826977225831267844363573647352530591563358324611<245>] Free to factor
6×10263-7 = 5(9)2623<264> = 1274055259580364739<19> × [470937186976977630759665643604025402027309380780202501680695278810458741000837454499122609828803611427742285526314782160682438515387565704584205908461020868808141493492794978568495390420569331927119480964924878040926406160826431603202523257514387<246>] Free to factor
6×10264-7 = 5(9)2633<265> = 5478518303<10> × 786441166100744761647097<24> × [1392585583811589904239522247295934588359534429762654306696415314410677520637280941047140438433941462427985985092917424012838689373563783103980534973281557327898548962373221640445895402060947574669886525624538513029007912049891053023<232>] Free to factor
6×10265-7 = 5(9)2643<266> = 269 × 733 × 1928947 × 90514507 × 5209923276945075844669617292811<31> × [334522383547700366667883195181827738808459297266347414307880046162824810655377776759035637517273738492282510895739694245480405155174067137709362048102955559659000437744182475095780881048924396475627836996499185494611<216>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1655640948 for P31 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10266-7 = 5(9)2653<267> = 47 × 58613 × 35161613 × 1309632637<10> × 4729782420875553213800826212044514508484007815367500111184409754982682863012219389088678149926967376890320872479863503766757101789083680504372225827579408345035362647760371080431688769778474178783958512665467135328084682624512907838308724155923<244>
6×10267-7 = 5(9)2663<268> = 13 × 4357 × 22963 × 31746791 × [145308787678146574236721585836039244136921261139018369275488950673225572094830431584964469768133551566213967765465984210353418415587865496028619685923593546213367477924739534494466099632406436554979545865363100138291928024622684639490224682408139689381<252>] Free to factor
6×10268-7 = 5(9)2673<269> = 1118982578629<13> × 469230753591253<15> × [114272428510520504704102686757547311497195878060625323443652334336440714947519895895321525189403378183959975429659535752901752712915690358857507444009572414678793516843357008280954525744564690545468549865857769853586427129930783890795750105489<243>] Free to factor
6×10269-7 = 5(9)2683<270> = 79 × 7594936708860759493670886075949367088607594936708860759493670886075949367088607594936708860759493670886075949367088607594936708860759493670886075949367088607594936708860759493670886075949367088607594936708860759493670886075949367088607594936708860759493670886075949367<268>
6×10270-7 = 5(9)2693<271> = 353 × 12824135647<11> × 43168818641887<14> × 46068351860287<14> × [666462323301471577130288582335166637951805313645533844775094620060312466065242039522803881855499575185990342335929378826020896301409958238693723910921815061541607399392940252852926708394680139718635691218545135770794660700730840167<231>] Free to factor
6×10271-7 = 5(9)2703<272> = 3821 × 3748897 × 7256908316831<13> × 43770340200221<14> × 143894176217410589<18> × 19067183671831752925689447915479803<35> × 68634416041868218782954466988242229<35> × 11621140739432079137931178188430601920063089913<47> × 6025854968194434540212066832241832745873127925887012823737736441686208831185562307288322258862518153621<103> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3734927587 for P35(1906...), B1=3e6, sigma=3:2873985396 for P35(6863...) / April 15, 2019 2019 年 4 月 15 日) (Thomas Kozlowski / cado-nfs for P47 x P103 / September 17, 2024 2024 年 9 月 17 日)
6×10272-7 = 5(9)2713<273> = 4999 × 5693 × 5979886391222923073<19> × [3525607786688638053330969782932580572198836499620810010414910095856949323566853850407048507976500185524833859300768072182640847011945223973645406806564350194898376606164665924812239536814215285501957682908740522718452774719985986370449681225333163<247>] Free to factor
6×10273-7 = 5(9)2723<274> = 13 × 881 × 108581115274937<15> × 8112892136779436226592355261<28> × 1073811330552959349173251542573312613<37> × [553826850626553457722502836270312769637740715686265976804468339295646079995671784028415155719151131592525458613150719158112730338781050005345893452360134435945291971901243789525432038473083141<192>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3432911110 for P37 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10274-7 = 5(9)2733<275> = 53 × 197 × 288332713 × 4561941139748453133052841<25> × 2961971685575471646537157159817<31> × [1474974988969315084136374745171026742281985427069803978630832027473732081625409398232219163913208847364794509367529001270533698998459956547224883393745575536562270310559822253493915763744668565339887208107993<208>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:113723038 for P31 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10275-7 = 5(9)2743<276> = 2707 × 381239 × 8107787 × 529173251 × 926085779 × [146323554944038181496893660242212959538158831431288354806714112181200060926789644844605396582218666512170819562635304982593778023369941214826676573047335898740725678268699364415580376390544424831055450129665171673924124247624490872869327103767<243>] Free to factor
6×10276-7 = 5(9)2753<277> = 17 × 89 × 1283 × 207923 × 14865623636471816745743028023560662981362950623338615646219822433471071839379377979381422071062857752423993838347639097965161761216653523636769440653287648443036346858271257478855334212502153690393256593328780635124044628619154234637639760266032257403027926215059129<266>
6×10277-7 = 5(9)2763<278> = 59 × 113 × 586037 × [15356624278840542587323304911836571925569414139145321685586007729272073314651711534845688381221504281580799099138649785175325551777414482306495370460617791276954648539992659876559323114748710577139285149636350824425070977146474199726247236031900509107901372507483301567<269>] Free to factor
6×10278-7 = 5(9)2773<279> = 19 × 45376348985784239<17> × 8707034862791452541887887020003<31> × 115145748676747029396245991891358675289<39> × 694144535067654965264511533785071554350375787211053078234789247460214388758456890609173178499642233129611246036156529689370210369473768364399704885352040978835411632992368940821867687986757319<192> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1547579174 for P31, B1=3e6, sigma=3:1547578976 for P39 x P192 / April 15, 2019 2019 年 4 月 15 日)
6×10279-7 = 5(9)2783<280> = 132 × 233 × 369283 × 1807357 × 4371976077638122485107233997361198063893386578849949206826220089932056359268514431385679053550520613954070244100800172108631664659474074880212533513091351798916519524924837847881433399550663719359787883265778498194693757033234003034304512425051297982797418342161<262>
6×10280-7 = 5(9)2793<281> = 127 × 77369 × 288213911 × 63164087030142732665188159<26> × 3166596001178686971818792160424487<34> × [105926037110616399667841128233714401363786050128511583762558379747214136083368525596982599060750443101118868953008079499029779629455949177696911972967774223625728685622633351495412091166326088075586056359297<207>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:4076906749 for P34 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10281-7 = 5(9)2803<282> = 1078706765415588653<19> × 157780098141139469091556391669<30> × [3525296306574364126344892262838735065055782873330736105160669776650098750426276181143160676246523014662433519475950224551321207708366525021462270958869548678682033988150716658681900341869808958461494835087003112757025394924292746227049<235>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:4172422210 for P30 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10282-7 = 5(9)2813<283> = 79 × 397 × 2568125023<10> × 74493347375610424545748086783529565403870462064262615502032845966748743734252497932015087593912407685380990103760256377456836329467082370487276265419069702284705420149257571041843252062822530674331932697728686866736414155658110950720684872083596102528144041299060306957<269>
6×10283-7 = 5(9)2823<284> = 30591593 × 589293838873<12> × 83816063124290757257<20> × 445466974729143978503<21> × 380352522531287163468847<24> × [234362534366691845732810479310295169334442061470259296110224069546460033180384589231605538614226343628924784763889958754225153839964547477065457001464944949340401973140495478593774470365005953954377001<201>] Free to factor
6×10284-7 = 5(9)2833<285> = 157 × [3821656050955414012738853503184713375796178343949044585987261146496815286624203821656050955414012738853503184713375796178343949044585987261146496815286624203821656050955414012738853503184713375796178343949044585987261146496815286624203821656050955414012738853503184713375796178343949<283>] Free to factor
6×10285-7 = 5(9)2843<286> = 13 × 479 × 617 × 85236747188407<14> × 249883553189932331<18> × 24382314697629149746283<23> × 329422726408054326601737885791<30> × 7093755403827560610404280766186747046129<40> × [1286820529515952434840307849859247523540977614385340551277832846199846072651991117356805673802731949340827323098739919192495754384760495257075914700964860763<157>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1227920072 for P30 / April 15, 2019 2019 年 4 月 15 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1:1294301738 for P40 / April 17, 2019 2019 年 4 月 17 日) Free to factor
6×10286-7 = 5(9)2853<287> = 196232769379<12> × 75319747826516472976847<23> × [4059484243744915043835488125051295403139046431449063740983535519574700432894934381027486382020460485246592564028540251186948999357094377637925438373107811280459471100417110801958394296614607913738326998770382971422416406917476083690992445128594854242461<253>] Free to factor
6×10287-7 = 5(9)2863<288> = 53 × 133193993 × 12143032386730760635857020900612922017<38> × [6999444732462793566401469447973831858399068687513871979144077263259609268480057274720632432278852148569322961524096793988829397261352401020523956980088622329569520966815155230064703768014330581380743024604861822613995148858726560191070685101<241>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:294790160 for P38 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10288-7 = 5(9)2873<289> = 151 × 3943 × 12344900755544301597044243317985933<35> × [816319034299488779375512252298423713164891151353104108562492718080690132845960521636504840843730426232427703809735780507128007841029311326918808390365778741394799157298009210760807801327988256550821472194329388576693642025194190512736901195826779997<249>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:4203548720 for P35 / April 15, 2019 2019 年 4 月 15 日) Free to factor
6×10289-7 = 5(9)2883<290> = 2633 × 289243 × 378953 × 1720250760971747<16> × 17933111843897476947397<23> × [6739144502115668893316382355368022871256186552767855392180833056416776322226944624223576226632867004448986836730327931722823899153035862195233204503914334808829581120549871613039512235008290213964026995878568791353020169207875616974890661<238>] Free to factor
6×10290-7 = 5(9)2893<291> = 29 × 983 × 60272521 × 230318909 × [1516180068079328999413090623377344131499722763904287086370991266676112956623787749535096601977479169069114436963985665461030309171235578528663689500253428081050018521573907117602500652839040210700592356273065673193559800543932228135395184645499185057830611290133915236191<271>] Free to factor
6×10291-7 = 5(9)2903<292> = 13 × 109 × 1319 × 2407781 × 12132709 × 3369253339<10> × 3168277375091<13> × 4496667950113<13> × 2289360355126326753773536102105850451063080137053279382936407095863434716627024133814288574134023075759616147534316667930101395564409504730699420467466396613832944034992155903150114261044234775537322605812659398732491217246770732199901567<238>
6×10292-7 = 5(9)2913<293> = 17 × 95681879 × 1269727095671<13> × 1067174855456144778834279769<28> × [27222415740209994673671107643460526434057965778274143518792100823411087574242622895839854440314072667315060630304558045953283607316469224419017295577669863219300811448524466304465302786443261493043091726358833521378583687160091198165179066223649<245>] Free to factor
6×10293-7 = 5(9)2923<294> = 7907 × 360439 × 2719627922350036592749259<25> × [77410209720969567825600060119643972802045584305364171237794503114012663024757746276195985089760817846839017907674084412704954148020465384838610933152624572158733412041665185384206867242731473398110699269750891439323463837356355872260790943739918683469573824399<260>] Free to factor
6×10294-7 = 5(9)2933<295> = 61 × 74476136333<11> × 34378946107670733301<20> × [38415962424845389982953304088541698135341042780183139385861248450028764731634442997868981220787041540534012849901358009228776094116740005096806821715790577360612207676827122579308260657756943079698181198280936926105366389866439880372085259429236880988973125216061<263>] Free to factor
6×10295-7 = 5(9)2943<296> = 79 × 19360669333<11> × 1058247443807<13> × [37069485932111723861656332022127341928942181458443259920657165735198106143704042975953156696867327004875741805212857411049938950457992067327175233930481571868889407348135383575935044772400913522517500473588211550759597353207082387070428370711914104261339714056324318226757<272>] Free to factor
6×10296-7 = 5(9)2953<297> = 19 × 1999 × 15797372370395724177878412890655854242910929148784918775177062215318185408493720544482767699639293330875964297938442905663357994786867117769411021300123746083568099839393380900976804191569468944998815197072220320686659119033200810931781680313841131091861720333851136094362970959163792422527053<293>
6×10297-7 = 5(9)2963<298> = 13 × 28669 × 11121527 × 61243657 × 6603919038315359<16> × 12456577485062497<17> × 8510363206209295463<19> × 14010387515034463429<20> × 2409745068656613375895128043361027182756920507874752757806309678033055438072937962918619720321889715495226336649679856307656992126035674210252459575836351943453655085867711486879628666324220590832159524921051<208>
6×10298-7 = 5(9)2973<299> = 13997 × 195229 × 1937059 × 147552225784641207993273106261386985643<39> × 76821599266986125562882470925750216918467394087799050532436171730753120715804492480006481799137971567747511258793467183760484553832131332777372423130145125964212122749667382416183110033576071620346860481741492058625291830855792593136841164401153<245> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3574103583 for P39 x P245 / April 15, 2019 2019 年 4 月 15 日)
6×10299-7 = 5(9)2983<300> = 15552186404320160339<20> × [38579784501125137306165021333204736708093981737947466975519857574935369048678293757305524253457853528209306800705458048580828668417501011365741490675892065481884450360006736710272751379282872125221865240928944640898600202301026310062855830757721219370518634605406147197238546979587<281>] Free to factor
6×10300-7 = 5(9)2993<301> = 53 × 1697 × 12743 × 2274541 × 56513183 × 10384513759<11> × 3921860581067138499808005411796364642287761182329714086728883297572439198146550908237163816979438682187806849593455636999871557180679319367705926688800378772895769270127907037692596516286125125659121246087166390098213284255321999529056417527656156615878528026123122543<268>
plain text versionプレーンテキスト版

4. Related links 関連リンク