Table of contents 目次

  1. About 599...99 599...99 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 599...99 599...99 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 599...99 599...99 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 599...99 599...99 について

1.1. Classification 分類

Near-repdigit of the form ABB...BB ABB...BB の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

59w = { 5, 59, 599, 5999, 59999, 599999, 5999999, 59999999, 599999999, 5999999999, … }

1.3. General term 一般項

6×10n-1 (0≤n)

2. Prime numbers of the form 599...99 599...99 の形の素数

2.1. Last updated 最終更新日

April 24, 2023 2023 年 4 月 24 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 6×100-1 = 5 is prime. は素数です。
  2. 6×101-1 = 59 is prime. は素数です。
  3. 6×102-1 = 599 is prime. は素数です。
  4. 6×104-1 = 59999 is prime. は素数です。
  5. 6×105-1 = 599999 is prime. は素数です。
  6. 6×107-1 = 59999999 is prime. は素数です。
  7. 6×1010-1 = 5(9)10<11> is prime. は素数です。
  8. 6×1013-1 = 5(9)13<14> is prime. は素数です。
  9. 6×1022-1 = 5(9)22<23> is prime. は素数です。
  10. 6×1023-1 = 5(9)23<24> is prime. は素数です。
  11. 6×1028-1 = 5(9)28<29> is prime. は素数です。
  12. 6×1034-1 = 5(9)34<35> is prime. は素数です。
  13. 6×1040-1 = 5(9)40<41> is prime. は素数です。
  14. 6×1061-1 = 5(9)61<62> is prime. は素数です。
  15. 6×1073-1 = 5(9)73<74> is prime. は素数です。
  16. 6×10361-1 = 5(9)361<362> is prime. は素数です。
  17. 6×10490-1 = 5(9)490<491> is prime. は素数です。
  18. 6×10613-1 = 5(9)613<614> is prime. は素数です。
  19. 6×101624-1 = 5(9)1624<1625> is prime. は素数です。
  20. 6×102000-1 = 5(9)2000<2001> is prime. は素数です。
  21. 6×102994-1 = 5(9)2994<2995> is prime. は素数です。
  22. 6×104301-1 = 5(9)4301<4302> is prime. は素数です。 (Harvey Dubner / Cruncher / December 31, 1988 1988 年 12 月 31 日)
  23. 6×104332-1 = 5(9)4332<4333> is prime. は素数です。 (Harvey Dubner / Cruncher / December 31, 1988 1988 年 12 月 31 日)
  24. 6×1018668-1 = 5(9)18668<18669> is prime. は素数です。 (Ray Ballinger / OpenPFGW / February 22, 2000 2000 年 2 月 22 日)
  25. 6×1032544-1 = 5(9)32544<32545> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / September 26, 2001 2001 年 9 月 26 日)
  26. 6×1034936-1 = 5(9)34936<34937> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / September 30, 2001 2001 年 9 月 30 日)
  27. 6×10267598-1 = 5(9)267598<267599> is prime. は素数です。 (David Broadhurst / Srsieve, NewPGen, LLR, OpenPFGW / November 15, 2010 2010 年 11 月 15 日)
  28. 6×10270658-1 = 5(9)270658<270659> is prime. は素数です。 (David Broadhurst / Srsieve, NewPGen, LLR, OpenPFGW / November 19, 2010 2010 年 11 月 19 日)
  29. 6×10293134-1 = 5(9)293134<293135> is prime. は素数です。 (David Broadhurst / Srsieve, NewPGen, LLR, OpenPFGW / November 20, 2010 2010 年 11 月 20 日)
  30. 6×10319889-1 = 5(9)319889<319890> is prime. は素数です。 (David Broadhurst / Srsieve, NewPGen, LLR, OpenPFGW / November 19, 2010 2010 年 11 月 19 日)
  31. 6×10414508-1 = 5(9)414508<414509> is prime. は素数です。 (David Broadhurst / Srsieve, NewPGen, LLR, OpenPFGW / January 9, 2011 2011 年 1 月 9 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 30, 2010 2010 年 9 月 30 日
  2. n≤100000 / Completed 終了 / Gary Barnes / December 1, 2010 2010 年 12 月 1 日
  3. n≤135000 / Completed 終了 / Gary Barnes / January 3, 2010 2010 年 1 月 3 日
  4. n≤140000 / Completed 終了 / Gary Barnes / January 14, 2011 2011 年 1 月 14 日
  5. n≤145000 / Completed 終了 / Gary Barnes / January 16, 2011 2011 年 1 月 16 日
  6. n≤150000 / Completed 終了 / Gary Barnes / January 18, 2011 2011 年 1 月 18 日
  7. n≤155000 / Completed 終了 / Gary Barnes / January 20, 2011 2011 年 1 月 20 日
  8. n≤160000 / Completed 終了 / Gary Barnes / January 24, 2011 2011 年 1 月 24 日
  9. n≤165000 / Completed 終了 / Gary Barnes / January 25, 2011 2011 年 1 月 25 日
  10. n≤170000 / Completed 終了 / Gary Barnes / January 28, 2011 2011 年 1 月 28 日
  11. n≤175000 / Completed 終了 / Gary Barnes / January 31, 2011 2011 年 1 月 31 日
  12. n≤180000 / Completed 終了 / Gary Barnes / February 3, 2011 2011 年 2 月 3 日
  13. n≤185000 / Completed 終了 / Gary Barnes / February 7, 2011 2011 年 2 月 7 日
  14. n≤190000 / Completed 終了 / Gary Barnes / February 11, 2011 2011 年 2 月 11 日
  15. n≤195000 / Completed 終了 / Gary Barnes / February 17, 2011 2011 年 2 月 17 日
  16. n≤200000 / Completed 終了 / Gary Barnes / February 20, 2011 2011 年 2 月 20 日
  17. n≤205000 / Completed 終了 / Gary Barnes / February 27, 2011 2011 年 2 月 27 日
  18. n≤210000 / Completed 終了 / Gary Barnes / February 28, 2011 2011 年 2 月 28 日
  19. n≤215000 / Completed 終了 / Gary Barnes / March 5, 2011 2011 年 3 月 5 日
  20. n≤220000 / Completed 終了 / Gary Barnes / March 9, 2011 2011 年 3 月 9 日
  21. n≤225000 / Completed 終了 / Gary Barnes / March 15, 2011 2011 年 3 月 15 日
  22. n≤230000 / Completed 終了 / Gary Barnes / April 17, 2011 2011 年 4 月 17 日
  23. 1000001≤n≤1010000 / Completed 終了 / Predrag Kurtovic / September 18, 2016 2016 年 9 月 18 日
  24. 1010001≤n≤1015000 / Completed 終了 / Predrag Kurtovic / June 12, 2017 2017 年 6 月 12 日
  25. 1015001≤n≤1020000 / Completed 終了 / Predrag Kurtovic / November 8, 2017 2017 年 11 月 8 日
  26. 1020001≤n≤1030000 / Completed 終了 / Predrag Kurtovic / January 29, 2019 2019 年 1 月 29 日
  27. 1030001≤n≤1040000 / Completed 終了 / Predrag Kurtovic / January 10, 2021 2021 年 1 月 10 日
  28. 1040001≤n≤1050000 / Completed 終了 / Predrag Kurtovic / October 5, 2021 2021 年 10 月 5 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 6×106k+3-1 = 7×(6×103-17+54×103×106-19×7×k-1Σm=0106m)
  2. 6×1016k+11-1 = 17×(6×1011-117+54×1011×1016-19×17×k-1Σm=01016m)
  3. 6×1018k+14-1 = 19×(6×1014-119+54×1014×1018-19×19×k-1Σm=01018m)
  4. 6×1021k+14-1 = 43×(6×1014-143+54×1014×1021-19×43×k-1Σm=01021m)
  5. 6×1022k+16-1 = 23×(6×1016-123+54×1016×1022-19×23×k-1Σm=01022m)
  6. 6×1028k+18-1 = 29×(6×1018-129+54×1018×1028-19×29×k-1Σm=01028m)
  7. 6×1032k+19-1 = 353×(6×1019-1353+54×1019×1032-19×353×k-1Σm=01032m)
  8. 6×1033k+14-1 = 67×(6×1014-167+54×1014×1033-19×67×k-1Σm=01033m)
  9. 6×1035k+32-1 = 71×(6×1032-171+54×1032×1035-19×71×k-1Σm=01035m)
  10. 6×1043k+38-1 = 173×(6×1038-1173+54×1038×1043-19×173×k-1Σm=01043m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 27.43%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 27.43% です。

3. Factor table of 599...99 599...99 の素因数分解表

3.1. Last updated 最終更新日

February 3, 2024 2024 年 2 月 3 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=215, 227, 228, 236, 241, 244, 245, 249, 250, 257, 259, 260, 261, 263, 264, 265, 267, 268, 274, 276, 277, 279, 280, 282, 283, 287, 292, 295, 297, 299, 300 (31/300)

3.4. Factor table 素因数分解表

6×100-1 = 5 = definitely prime number 素数
6×101-1 = 59 = definitely prime number 素数
6×102-1 = 599 = definitely prime number 素数
6×103-1 = 5999 = 7 × 857
6×104-1 = 59999 = definitely prime number 素数
6×105-1 = 599999 = definitely prime number 素数
6×106-1 = 5999999 = 1013 × 5923
6×107-1 = 59999999 = definitely prime number 素数
6×108-1 = 599999999 = 97 × 6185567
6×109-1 = 5999999999<10> = 7 × 1483 × 577979
6×1010-1 = 59999999999<11> = definitely prime number 素数
6×1011-1 = 599999999999<12> = 17 × 35294117647<11>
6×1012-1 = 5999999999999<13> = 1823 × 3291278113<10>
6×1013-1 = 59999999999999<14> = definitely prime number 素数
6×1014-1 = 599999999999999<15> = 19 × 43 × 67 × 1153 × 9506597
6×1015-1 = 5999999999999999<16> = 7 × 541 × 1584367573277<13>
6×1016-1 = 59999999999999999<17> = 23 × 2608695652173913<16>
6×1017-1 = 599999999999999999<18> = 709 × 846262341325811<15>
6×1018-1 = 5999999999999999999<19> = 29 × 1411679 × 146560621589<12>
6×1019-1 = 59999999999999999999<20> = 353 × 8171 × 304021 × 68422313
6×1020-1 = 599999999999999999999<21> = 157197917 × 3816844468747<13>
6×1021-1 = 5999999999999999999999<22> = 7 × 6954153317<10> × 123256249621<12>
6×1022-1 = 59999999999999999999999<23> = definitely prime number 素数
6×1023-1 = 599999999999999999999999<24> = definitely prime number 素数
6×1024-1 = 5999999999999999999999999<25> = 163 × 2780353 × 13239259889273141<17>
6×1025-1 = 59999999999999999999999999<26> = 3757451 × 15968272107873129949<20>
6×1026-1 = 599999999999999999999999999<27> = 5179 × 115852481173971809229581<24>
6×1027-1 = 5999999999999999999999999999<28> = 72 × 17 × 7202881152460984393757503<25>
6×1028-1 = 59999999999999999999999999999<29> = definitely prime number 素数
6×1029-1 = 599999999999999999999999999999<30> = 1336429 × 448957632616472704498331<24>
6×1030-1 = 5999999999999999999999999999999<31> = 701 × 2420509718477<13> × 3536115172721687<16>
6×1031-1 = 59999999999999999999999999999999<32> = 61 × 22118294004137<14> × 44470272309115507<17>
6×1032-1 = 599999999999999999999999999999999<33> = 19 × 71 × 3359 × 57119 × 2318188256057723764531<22>
6×1033-1 = 5999999999999999999999999999999999<34> = 7 × 2075336443577<13> × 413013928317813530641<21>
6×1034-1 = 59999999999999999999999999999999999<35> = definitely prime number 素数
6×1035-1 = 599999999999999999999999999999999999<36> = 43 × 197 × 70829890213670168811238342580569<32>
6×1036-1 = 5999999999999999999999999999999999999<37> = 139 × 6711197 × 6431858225276248123179749953<28>
6×1037-1 = 59999999999999999999999999999999999999<38> = 283 × 212014134275618374558303886925795053<36>
6×1038-1 = 599999999999999999999999999999999999999<39> = 23 × 173 × 163993 × 10382260530139<14> × 88564582112771903<17>
6×1039-1 = 5999999999999999999999999999999999999999<40> = 7 × 13585514603343721<17> × 63092409979957161627617<23>
6×1040-1 = 59999999999999999999999999999999999999999<41> = definitely prime number 素数
6×1041-1 = 599999999999999999999999999999999999999999<42> = 2633 × 13757 × 1696097521<10> × 9766204963901981379423299<25>
6×1042-1 = 5999999999999999999999999999999999999999999<43> = 499 × 2971 × 4047138369637288714082490123296070431<37>
6×1043-1 = 59999999999999999999999999999999999999999999<44> = 17 × 349 × 1931 × 42257 × 49040897 × 236822219 × 10671245604213763<17>
6×1044-1 = 599999999999999999999999999999999999999999999<45> = 47 × 12765957446808510638297872340425531914893617<44>
6×1045-1 = 5999999999999999999999999999999999999999999999<46> = 7 × 2203 × 389079826211010959081771610142014136567019<42>
6×1046-1 = 59999999999999999999999999999999999999999999999<47> = 29 × 193 × 11833 × 3675671 × 246470216804503779155871608258069<33>
6×1047-1 = 599999999999999999999999999999999999999999999999<48> = 67 × 10594079 × 509629207 × 172126441013<12> × 9636322847872464473<19>
6×1048-1 = 5999999999999999999999999999999999999999999999999<49> = 14364664709266377269<20> × 417691614906229723147036723171<30>
6×1049-1 = 59999999999999999999999999999999999999999999999999<50> = 11411 × 153470661252539<15> × 34261169279554150649900389710431<32>
6×1050-1 = 5(9)50<51> = 19 × 31578947368421052631578947368421052631578947368421<50>
6×1051-1 = 5(9)51<52> = 7 × 131 × 353 × 2535223 × 7311240046555136784604228098129848554613<40>
6×1052-1 = 5(9)52<53> = 797 × 5129261 × 14677028261471875891777001595586464177906647<44>
6×1053-1 = 5(9)53<54> = 179 × 87977 × 38100359267337711360949278071217572546100323453<47>
6×1054-1 = 5(9)54<55> = 337 × 2663 × 177019 × 24641179 × 74613852559083283<17> × 20542313455702536763<20>
6×1055-1 = 5(9)55<56> = 15727 × 4032547 × 946075782737782847860688869654804161852628571<45>
6×1056-1 = 5(9)56<57> = 43 × 66721 × 15578587 × 60445750997<11> × 222088671514308544355119229159947<33>
6×1057-1 = 5(9)57<58> = 7 × 14863789 × 555149869 × 2666242199<10> × 23159937533<11> × 1682195456365039376531<22>
6×1058-1 = 5(9)58<59> = 619 × 3142949 × 276578971 × 63691243577507717<17> × 1750750997131002324416447<25>
6×1059-1 = 5(9)59<60> = 17 × 59 × 598205383848454636091724825523429710867397806580259222333<57>
6×1060-1 = 5(9)60<61> = 23 × 307 × 409 × 42996776323493<14> × 48319878684414627110100126971371116007007<41>
6×1061-1 = 5(9)61<62> = definitely prime number 素数
6×1062-1 = 5(9)62<63> = 481455309663211522505074333441<30> × 1246221586837858472996034981123839<34>
6×1063-1 = 5(9)63<64> = 7 × 182090291 × 4707240855268099620188661553310698717358537568281755027<55>
6×1064-1 = 5(9)64<65> = 149 × 922679 × 1076138510256801743<19> × 405551649875241548705630010965374800283<39>
6×1065-1 = 5(9)65<66> = 191 × 3769 × 833473403169143703316807407911607367349235079784241518366281<60>
6×1066-1 = 5(9)66<67> = 512086480243041716904352319029253<33> × 11716770958593431073689738064524083<35>
6×1067-1 = 5(9)67<68> = 71 × 223 × 419 × 1009 × 534789177407766941138934659<27> × 16761012100018487396746981330927<32>
6×1068-1 = 5(9)68<69> = 19 × 16103 × 410687 × 32575393559<11> × 146585235598193905479820633258368417722287457179<48>
6×1069-1 = 5(9)69<70> = 73 × 4363 × 14925243566839106351<20> × 268627512297654440079816502608191438902480261<45>
6×1070-1 = 5(9)70<71> = 269 × 83611765935126911<17> × 2667666740953734314255705828515187875516958950798661<52>
6×1071-1 = 5(9)71<72> = 8537523206038031<16> × 160536790774987307652150061<27> × 437768770113197664779845516789<30>
6×1072-1 = 5(9)72<73> = 191159277378239<15> × 1121444937597739<16> × 27988389907696451784860066243917985518945219<44>
6×1073-1 = 5(9)73<74> = definitely prime number 素数
6×1074-1 = 5(9)74<75> = 29 × 143257 × 1983714555547<13> × 72804499447593125523576754351902314776031760853484405689<56>
6×1075-1 = 5(9)75<76> = 7 × 17 × 324507460003408069339447<24> × 155374449840682749967187331577323990500818002732943<51>
6×1076-1 = 5(9)76<77> = 54798810369826641979919054039<29> × 1094914279982932632625619455096050588507603599641<49>
6×1077-1 = 5(9)77<78> = 43 × 113682574240013903791278929819755310803<39> × 122740784727776557547820060924937272431<39>
6×1078-1 = 5(9)78<79> = 329236493 × 68633373329249138786099613619<29> × 265526541278329254098319632359607855633497<42>
6×1079-1 = 5(9)79<80> = 11154494040315119399<20> × 10897822857471661965989099<26> × 493584633251858229744377239500181499<36>
6×1080-1 = 5(9)80<81> = 67 × 643 × 12099201990040870847<20> × 1151088586254657461985785604780115941561457524689802083257<58>
6×1081-1 = 5(9)81<82> = 7 × 173 × 99103 × 46338537573040032390121<23> × 24566875926013482922781177<26> × 43916533254733096516803059<26>
6×1082-1 = 5(9)82<83> = 232 × 139 × 1733 × 3616872907<10> × 15959181619<11> × 2287791772297<13> × 3565511619419132267898966591607687360212913<43>
6×1083-1 = 5(9)83<84> = 293 × 353 × 119983 × 70427657 × 15505451461<11> × 44275303996792920142579402320741662065023016421950874641<56>
6×1084-1 = 5(9)84<85> = 1901 × 51907 × 11049121 × 1101514496339484553<19> × 2587931299664311230903961<25> × 1930512039750799268342299849<28>
6×1085-1 = 5(9)85<86> = 92521827497544598437240105917<29> × 648495621226162195745665172860106182808755301191062640747<57>
6×1086-1 = 5(9)86<87> = 192 × 4229 × 47686553926173250937117<23> × 8241578965236278767565312866845070579477993756728009140663<58> (Tetsuya Kobayashi / GMP-ECM 5.0.1 / May 1, 2003 2003 年 5 月 1 日)
6×1087-1 = 5(9)87<88> = 7 × 4261 × 285528496020419<15> × 704518202567600678090787719212678342508784719362753529050477193164423<69>
6×1088-1 = 5(9)88<89> = 523 × 577 × 1873 × 171323443 × 120742693494479891477306458967<30> × 5131665238246009824632632073100623917188313<43>
6×1089-1 = 5(9)89<90> = 257 × 607 × 1232395141<10> × 7410777529<10> × 7937321699<10> × 25937084389<11> × 2045599199279662161477597924249094516075429019<46>
6×1090-1 = 5(9)90<91> = 47 × 359 × 6192047 × 322574521 × 286528840291<12> × 1052948450353<13> × 590091266338469332232898137792138863194191118763<48>
6×1091-1 = 5(9)91<92> = 17 × 61 × 62743 × 70997 × 176834701 × 42222391854265069913<20> × 63301975193223513127<20> × 27481449142179013026350133313987<32>
6×1092-1 = 5(9)92<93> = 178127 × 50954492803<11> × 32819397762694041878759<23> × 2014226967777106368216365252229371506902148482918071981<55>
6×1093-1 = 5(9)93<94> = 7 × 113 × 311 × 60972829549<11> × 187033703933281<15> × 7619712846828406201<19> × 280685222580723572304926112460115809083699971<45>
6×1094-1 = 5(9)94<95> = 83029447679<11> × 12275273393783982103943230116374643869<38> × 58869172066335929958071717527393677055287002549<47>
6×1095-1 = 5(9)95<96> = 109 × 5023 × 17550393529<11> × 174035923236994005541<21> × 16378905177749982130984433<26> × 21905387753381293140125274299091961<35>
6×1096-1 = 5(9)96<97> = 593934787367<12> × 9893298335444792119782551023860658801<37> × 1021107301677480201413825263694188987466034072697<49>
6×1097-1 = 5(9)97<98> = 1388489372339<13> × 82066776620057<14> × 526552058190132357546167752136946222702158138255650291528553002505281613<72>
6×1098-1 = 5(9)98<99> = 43 × 2504077131362617<16> × 4073304960137957<16> × 52056073425725141<17> × 330121506368824607<18> × 79605475764378461582094688536931<32>
6×1099-1 = 5(9)99<100> = 7 × 1018425725159<13> × 3590607182124377<16> × 18604859485320170130830237771<29> × 12598810968018677378492590536357526179792469<44>
6×10100-1 = 5(9)100<101> = 719 × 356604254034942391508138861<27> × 234010767130393864013951027837530020686026294818131076157212640347340661<72> (Tetsuya Kobayashi / GMP-ECM 5.0.1 / May 1, 2003 2003 年 5 月 1 日)
6×10101-1 = 5(9)101<102> = 391314156763852811<18> × 1533294897792525507891980519119037431688732503176657888199279564303972117562635887709<85>
6×10102-1 = 5(9)102<103> = 29 × 71 × 167 × 571 × 40709 × 750674891946992748873816237429457812962689622060880721390598122924679946232775547640621997<90>
6×10103-1 = 5(9)103<104> = 5039 × 66868801 × 93712667891<11> × 1539870184739<13> × 422065794502320883<18> × 2923619075427181525703434716264422110697393203508323<52>
6×10104-1 = 5(9)104<105> = 19 × 23 × 97 × 9791 × 69379 × 1182143 × 1222157 × 11354069 × 1270265342574280817617418160697432061114080650290968906813085331282447601<73>
6×10105-1 = 5(9)105<106> = 7 × 163 × 1277 × 223138130881<12> × 1311750790827327166963<22> × 6817618902475209118987<22> × 2063558865389558071204449760966444981523860687<46>
6×10106-1 = 5(9)106<107> = 40751 × 98999 × 28926391422069887<17> × 514147719118617305159840102080000885923166969806318421742664488657181009876012073<81>
6×10107-1 = 5(9)107<108> = 17 × 2213 × 15607 × 4372073 × 45875154537158388279688574953909<32> × 5094910270059673286797389445344151447772643625914936877707481<61>
6×10108-1 = 5(9)108<109> = 983 × 1319 × 2879 × 1377936220991900892143876049623<31> × 15727768119140553102115299513499<32> × 74167742155184056600770204460124004389<38> (Naoki Yamamoto)
6×10109-1 = 5(9)109<110> = 1097 × 177127 × 40526865419503344030560725081973<32> × 7619331015587068965128617236216530435918061305625862481832120448431677<70> (Tetsuya Kobayashi / GMP-ECM B1=1e6)
6×10110-1 = 5(9)110<111> = 10625306341368217<17> × 56468960114964384998464314775752258511396912074001628375906733059745552466884838958950545071447<95>
6×10111-1 = 5(9)111<112> = 72 × 10520047 × 1550892611<10> × 116729400829<12> × 64294749278994892575094959854622567772815734108995564474638032495541619431846705607<83>
6×10112-1 = 5(9)112<113> = 7873 × 627064686431686180556447069365942930637<39> × 12153424154991108248207141560671491643347371910061844293900500637895099<71> (Naoki Yamamoto / GGNFS / 13h)
6×10113-1 = 5(9)113<114> = 67 × 243080819 × 108302138014087<15> × 936262098457003<15> × 1177187532919133<16> × 346477659553285613<18> × 890779866920244911623406497394776949906827<42>
6×10114-1 = 5(9)114<115> = 6226439 × 74835913 × 12876607303113335013164833061010825997367725273981214767604030137507384634530120047380909809363069057<101>
6×10115-1 = 5(9)115<116> = 353 × 29753 × 98809 × 279777283 × 89915295521439214464304782013102496477<38> × 2298281675665954480084479869603733788667763610645868165769<58> (Naoki Yamamoto)
6×10116-1 = 5(9)116<117> = 2342090630142461438660076396094112368358070139<46> × 256181375852011342805382689051963508114368392834344932319990234698993741<72> (Naoki Yamamoto / GGNFS / 12h)
6×10117-1 = 5(9)117<118> = 7 × 59 × 319391 × 2936334949<10> × 5651209770127<13> × 3369183553139983757389434865413077244083459<43> × 813592300514340900565043243322628790619572629<45>
6×10118-1 = 5(9)118<119> = 3019 × 10685679670849<14> × 1859884548196575870380219728826844524032010008416743632214459452493243202834364855362915368168279083229<103>
6×10119-1 = 5(9)119<120> = 43 × 1549 × 10018997581702311832247721815336646001<38> × 899098152507238243502902200991643338169558507864629178588274218406618965304257<78> (Sander Hoogendoorn)
6×10120-1 = 5(9)120<121> = 431 × 3931 × 29179 × 22147367289078430552209050468690669789449<41> × 5479973071803456301883906240611609272432415855628157465355568241290929<70> (Sander Hoogendoorn)
6×10121-1 = 5(9)121<122> = 1783 × 432163 × 58395497057<11> × 529061209631<12> × 31111982718582936591461576351<29> × 81010135135456790395247016252114523867836377342910257137933843<62> (Naoki Yamamoto)
6×10122-1 = 5(9)122<123> = 19 × 653 × 2200147865988584750385205954057<31> × 21980248526216090623720530301482643199731747929704216226269719100413363351565439099025201<89> (Tetsuya Kobayashi / GMP-ECM B1=1e6)
6×10123-1 = 5(9)123<124> = 7 × 17 × 12377044669733<14> × 211603440423510579728862990143594923009829638741241111<54> × 19251501438454645628266285085602708447115558638247654467<56> (Chris Monico / GGNFS 0.40.2 / 9.3 hours)
6×10124-1 = 5(9)124<125> = 173 × 210286778212909799<18> × 2680700663279446705870372166126021<34> × 615240417485281966047467941003628382326281796114799379207812928823845897<72>
6×10125-1 = 5(9)125<126> = 421 × 93463 × 545647 × 3237911472911<13> × 87903574137334987<17> × 1658444746413726385553<22> × 1831826687633586168097385279<28> × 32319212686491550875095497235386081<35>
6×10126-1 = 5(9)126<127> = 23 × 424632893 × 1168198956047<13> × 10116059134928881453079<23> × 51985426169802477998413804892299376608244289290425763806142409661802290122180033557<83>
6×10127-1 = 5(9)127<128> = 39343 × 426514117910624699<18> × 43161036416394488654377663<26> × 1858121172649626356260472352927237318737<40> × 44584558418286167157075563948413243549997<41>
6×10128-1 = 5(9)128<129> = 139 × 743 × 22020630701<11> × 91724419654932457<17> × 2876291581328565542461701900337221763959410565493433936967839682687873274105449810769594852054991<97>
6×10129-1 = 5(9)129<130> = 7 × 1747 × 13862783757643<14> × 1505579896991409440084231<25> × 23507478592257788093192445838143633964055287587950570392419447047942786399533866299671807<89>
6×10130-1 = 5(9)130<131> = 29 × 6480249607560684673<19> × 319272503767055606099326097382575574190042520891734460613410728257546919444714797009986795710388683956004867147<111>
6×10131-1 = 5(9)131<132> = 1388709004444613171<19> × 298966101353909367241<21> × 96984510904556532020129445851<29> × 121692529420387560303432141445157<33> × 122448015979951131698680701904987<33>
6×10132-1 = 5(9)132<133> = 379 × 26813 × 30156062637902914306358977610009037869<38> × 19579067133088202404308295814147018632082970323640711916809910912410948535945312249307573<89> (Chris Monico / GGNFS / 16 hours)
6×10133-1 = 5(9)133<134> = 197 × 578160127 × 65175470809<11> × 8082630215244999152340847242434189096223119260881862086156094076747722368822747693816407490633125405113509456469<112>
6×10134-1 = 5(9)134<135> = 79801 × 240458481986789454962421757018820831<36> × 31268195286873997919154627378571722629648454815768807050327560441530709249665151616666073434729<95> (Chris Monico / GGNFS v.0.41.0 / 12 hours)
6×10135-1 = 5(9)135<136> = 7 × 11688976793526772140131<23> × 4288176377231874457726037<25> × 17100313560031931741036065867746303027971296631182315629673482459303226399101595569167831<89>
6×10136-1 = 5(9)136<137> = 47 × 179053661 × 7129682451345415740088035586396377516622582222028174975255519105990123951747936162829623294956063240990132620847656794576378597<127>
6×10137-1 = 5(9)137<138> = 71 × 2601072877662976526413355286135870141909302028099951147977<58> × 3248930200273718904077988718142805395852874875460986707043132492411918302127297<79> (Chris Monico / GGNFS v. 0.41.0 / 19.89333 hours on Athlon XP-M 2800+)
6×10138-1 = 5(9)138<139> = 72931 × 580886831186418963907<21> × 141627487536941694811168483282622959914177340130881863295802596764653763251418984688324886040944017302289396750247<114>
6×10139-1 = 5(9)139<140> = 17 × 2357 × 6709 × 496808164133221337<18> × 4275770358901813485322672221773875286668931<43> × 105070756286372434011307124537088529236674420342309905106523868789281077<72> (Chris Monico / GGNFS 0.41.2 / 19 hours)
6×10140-1 = 5(9)140<141> = 19 × 43 × 21817 × 33661554056332274097731497379812683550142727794328353536530556359848520762642901011075268413024350936512121048743669453862043394343591<134>
6×10141-1 = 5(9)141<142> = 7 × 479 × 35327731857341516423182890620321111244744477883437596583879711889<65> × 50652623205819106586824840511922265124168640897434731460921381256530991847<74> (Chris Monico / GGNFS 0.41.0 / 16.5 hours on Athlon XP 3200+)
6×10142-1 = 5(9)142<143> = 11068943 × 98206059170719810978229<23> × 1468792004739669205077337<25> × 549489536580391766082523326763<30> × 68389131518913373071500124393756924652992656485018622987807<59>
6×10143-1 = 5(9)143<144> = 101581 × 5906616394798239828314350124531162323662889713627548458865338990559258128980813341077563717624358886012147941051968379913566513422785757179<139>
6×10144-1 = 5(9)144<145> = 1291 × 22104893587736689<17> × 1035020246425345865929<22> × 203136391904765037948498779785962575934929809239303476956636924620782292248430861783440819582412600521669<105>
6×10145-1 = 5(9)145<146> = 195053 × 4434268676207479109989143296941<31> × 141166257655213649896544716751749<33> × 166472072107891429498688521947067<33> × 2951918244671889720741543537462059850380439361<46> (Tetsuya Kobayashi / GMP-ECM B1=1e6)
6×10146-1 = 5(9)146<147> = 67 × 2979863 × 4889321383997<13> × 614655206605470622752566652685516859447192545532431331873234070967718495888232984700558429661301018373969242601564198075860527<126>
6×10147-1 = 5(9)147<148> = 7 × 353 × 2428166734115742614326183731282881424524484014569000404694455685957102387697288547146904087414002428166734115742614326183731282881424524484014569<145>
6×10148-1 = 5(9)148<149> = 23 × 143623072438553111<18> × 70116191139095712136541<23> × 15621998636651197677331299592611109051271<41> × 16582281729960152020747008046431377081820647054098938825685245773453<68> (Chris Monico / GGNFS)
6×10149-1 = 5(9)149<150> = 1217 × 2089 × 58543 × 2467331209438569905957<22> × 10987226447999824436534198115279323138230080781<47> × 148707109019575208847647232019368309061651691482221984454276421168203433<72> (Chris Monico / GGNFS)
6×10150-1 = 5(9)150<151> = 93931177 × 651403633 × 136869075743<12> × 403194830459926779059034451<27> × 4233495431238640401985025576851<31> × 419731849111705803960797413538714348813708997815204603705035287073<66> (Naoki Yamamoto)
6×10151-1 = 5(9)151<152> = 61 × 129113 × 836660367018273797355323968615817<33> × 17524625066162102246330727763070206160904572767<47> × 519581298814572713681606589033971690588245769057952345724971828437<66> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 / 32.65 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 20, 2006 2006 年 6 月 20 日)
6×10152-1 = 5(9)152<153> = 389 × 601 × 3847686757744894459<19> × 170030504027123276489357<24> × 8502194575506696329598293<25> × 103242136299206509564777334525567603879<39> × 4469023146607202468521275116811326802475031<43> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=3722269730 for P39, ppmpqs 2.8 for P25 x P43 / May 8, 2005 2005 年 5 月 8 日)
6×10153-1 = 5(9)153<154> = 72 × 11923 × 10612859 × 331784113069<12> × 453413972988539<15> × 210419824853341366020370755446106047880424773709398731<54> × 30570327461743607247656827644966362380207522643930113459529683<62> (Sinkiti Sibata / GGNFS-0.77.1 gnfs for P54 x P62 / 74.60 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 18, 2006 2006 年 5 月 18 日)
6×10154-1 = 5(9)154<155> = 57413 × 33391993 × 394480713417379755453806059<27> × 5080508476226699401820394941107809615305588790497635369<55> × 15615853062739861486377064170042789464317919964935221145123641<62> (Sinkiti Sibata / GGNFS-0.77.1 gnfs for P55 x P62 / 71.45 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 25, 2006 2006 年 5 月 25 日)
6×10155-1 = 5(9)155<156> = 17 × 855694920236157839951575243<27> × 23563769814083175297504581851112348513<38> × 1750405235111493782019464819415041844908100509751846238928281927522333980653932785261889133<91> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=3537119689 for P27) (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 19.30 hours on Cygwin on AMD 64 3400+ / May 7, 2007 2007 年 5 月 7 日)
6×10156-1 = 5(9)156<157> = 1171 × 23536848583910572367<20> × 217693790723780714855550770914680773537247315790512529884482679993669479929372757734963455864410694483190035567035652576536759855876107<135>
6×10157-1 = 5(9)157<158> = 46111621 × 1301190430932801082833327416531290452790631671786164272993135504822092461247458639547718350651780383083908501069611063987535810116065969574134034455219<151>
6×10158-1 = 5(9)158<159> = 19 × 29 × 433 × 10723 × 234528404571366840872163621146147122281615806692876938358354929728373356887010580951057545820687042213282328648351838796444569243436332401437193346611<150>
6×10159-1 = 5(9)159<160> = 7 × 181 × 349 × 536923 × 293886441448867<15> × 498147933398573<15> × 2207463153780349797617<22> × 78199838124606128476117365352793388247663893417290287653603335351459518176210809117828458533023213<98>
6×10160-1 = 5(9)160<161> = 191 × 65357 × 111773 × 1983601 × 1571356525369<13> × 1763243682029<13> × 32747621227427948676885297484609<32> × 238928369616588467154945427484177889875796350816878145671110942435368430895342890353861<87> (Makoto Kamada / GMP-ECM 5.0.3 P-1 B1=50000000, B2=7260750615 for P32)
6×10161-1 = 5(9)161<162> = 43 × 836569 × 2898421 × 8293782204604425278695261694855447366239429<43> × 373661139043910874867543028013950188940119372163<48> × 1856902068363473523911678753942645197496692067981158293791<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 38.23 hours on Cygwin on AMD 64 3200+ / July 26, 2007 2007 年 7 月 26 日)
6×10162-1 = 5(9)162<163> = 33413 × 15377792567<11> × 8461863041793557423309640118101540415199<40> × 1379989523873218126548187496324337406517253315539049102957670242333680936574239687581847686601665035459375931<109> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 42.45 hours on Cygwin on AMD 64 3400+ / July 27, 2007 2007 年 7 月 27 日)
6×10163-1 = 5(9)163<164> = 13477488289<11> × 301878096961369<15> × 14747237813253598152914843598298806799935984989268911844549944519646669966415897649395885019660468821491089441178650256794887578292958522039<140>
6×10164-1 = 5(9)164<165> = 87666097 × 3885289277<10> × 44109614707809518761<20> × 21319013138093007519677927<26> × 965994679187553790395623209731067844315549634341<48> × 1939193395768352506478443961407393057426627632037135873<55> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=3040730748 for P26 / March 7, 2005 2005 年 3 月 7 日) (Anton Korobeynikov / GGNFS-0.73.3 gnfs / 24.63 hours for P48 x P55 / March 10, 2005 2005 年 3 月 10 日)
6×10165-1 = 5(9)165<166> = 7 × 49784269 × 58669747 × 73942442923807<14> × 2986756582631123759<19> × 37487702007109387889298593<26> × 35445770155145032934070897037423958625749385808048535416164437097147336566577935431625057711<92>
6×10166-1 = 5(9)166<167> = 1415744095201<13> × 12712979409464320156621733<26> × 37154591566665333519909747568949477<35> × 64960406415076577673529410226373905391<38> × 1381204303898828183886023860415270650257402155513930927929<58> (matsuix / GMP-ECM 6.0 B1=67108864, sigma=3825239593 for P26 / November 10, 2007 2007 年 11 月 10 日) (Robert Backstrom / GMP-ECM 6.1.3 B1=792000, sigma=1672330505 for P35, GGNFS-0.77.1-20051202-athlon gnfs for P38 x P58 / 6.46 hours on Cygwin on AMD 64 3400+ / February 1, 2008 2008 年 2 月 1 日)
6×10167-1 = 5(9)167<168> = 173 × 1559 × 8623 × 92761 × 1458366583<10> × 919553016868249730947567<24> × 7293628624498449156699219017293493<34> × 284346639497725940029917594329688361811266078086355525897345582582328575687665394870903<87> (JMB / GMP-ECM 6.1.3 B1=3000000, sigma=2910471932 for P34 / January 22, 2008 2008 年 1 月 22 日)
6×10168-1 = 5(9)168<169> = 4799 × 2017177 × 4202161651613<13> × 10503821362051<14> × 6720571008125216270124997913782507<34> × 2089441596792376491620750374295583364339925722989928143182632024080598639760461288200867439741680893<100> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3109165435 for P34 / October 31, 2008 2008 年 10 月 31 日)
6×10169-1 = 5(9)169<170> = 1091 × 1979 × 3171084870127<13> × 8763404132688650796165293000571668394740697642320804899959594531259036264646446586019807295045853801975757614166188519966258298147305507733521255756033<151>
6×10170-1 = 5(9)170<171> = 23 × 1779463768211281<16> × 708009551919839423207<21> × 20705949369879847314793453411381197872582205271858080798569388509550997952298538099335711008680823408881026826113308034411431175636239<134>
6×10171-1 = 5(9)171<172> = 7 × 17 × 233 × 1851058172908027<16> × 116903711763968455786358981349754710183298335233206279142305747091075085239506777038078929899851633101383722715996025923311042438218146255681384855658531<153>
6×10172-1 = 5(9)172<173> = 71 × 5333 × 10527309174692505715358220955631<32> × 309793385335839304094931297711583116445907393494103977206383<60> × 48588310663457887601219600419401179699521853543504679254780302170376409574341<77> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3257129926 for P32 / October 5, 2008 2008 年 10 月 5 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 36.38 hours on Core 2 Quad Q6700 / February 1, 2010 2010 年 2 月 1 日)
6×10173-1 = 5(9)173<174> = 446221 × 13201045994383692917<20> × 20546681584297179439544553169075952341<38> × 53428999410989900919046470530953734472804557616368781<53> × 92784230298861313197303857948581192121788284162444016808767<59> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1624081815 for P38 / November 7, 2008 2008 年 11 月 7 日) (Serge Batalov / Msieve-1.38+pol51 gnfs for P53 x P59 / 22.00 hours on Opteron-2.6GHz; Linux x86_64 / November 9, 2008 2008 年 11 月 9 日)
6×10174-1 = 5(9)174<175> = 139 × 2371 × 30091 × 1665313208678010547<19> × 4377830453093505504381429331801225862588053958648601821602876203502681051<73> × 82987639321330983463201182406477468083679082354734448996697936818652462173<74> (Sinkiti Sibata / Msieve 1.40 snfs / 62.19 hours / October 3, 2009 2009 年 10 月 3 日)
6×10175-1 = 5(9)175<176> = 59 × 33359 × 10379703007<11> × 7176556482829<13> × 2906450927886189094536119<25> × 6758107042624471507946638020763<31> × 20835173422357410987165752695962738961399561620993958049080814342037796143303160261337748469<92> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=2956035645 for P31)
6×10176-1 = 5(9)176<177> = 19 × 1103 × 1997 × 36996060425134747<17> × 1199957761620461468118405565148809667093672061199543170259030057791043<70> × 322940588839473726687584052243149346589728994478475409111736442256055691359527808711<84> (Sinkiti Sibata / Msieve 1.40 snfs / 70.81 hours / October 6, 2009 2009 年 10 月 6 日)
6×10177-1 = 5(9)177<178> = 7 × 20780271302226927560453<23> × 2134599379553078846457397762501<31> × 2612221635774246750954450916549<31> × 630726357249729854245007611079998752429959<42> × 11728287839848260529211822787806892333944451684664859<53> (Sinkiti Sibata / GMP-ECM 6.2.3 B1=11000000, sigma=3657672614 for P31(2134...) / October 3, 2009 2009 年 10 月 3 日) (Sinkiti Sibata / GMP-ECM B1=43000000, sigma=3697522187 for P42 / October 4, 2009 2009 年 10 月 4 日)
6×10178-1 = 5(9)178<179> = 283 × 22271 × 288697 × 8883239 × 165420461 × 1757045845068771165361<22> × 12771419170970104771477204754653297339574846413314204888150310697819871583068908082192775917272469509026773942146174088136665144001<131>
6×10179-1 = 5(9)179<180> = 67 × 353 × 125707 × 298716705932280059000729938505471<33> × 675589309562746723090472275034259356819506679454841812592974658819494178186471751132798670903173117107700007029230329053233402544370951617<138> (Sinkiti Sibata / GMP-ECM 6.2.3 B1=3000000, sigma=3490299074 for P33 / October 4, 2009 2009 年 10 月 4 日)
6×10180-1 = 5(9)180<181> = 937 × 6389 × 279187417 × 681683799034595926517755346160165173<36> × 1667981753435024562937155702752452827541348773356261947<55> × 3157247751124818590631287053704974634760019103743289190249887893957501686709<76> (Sinkiti Sibata / GMP-ECM6.2.3, GMP-ECM B1=3000000, sigma=3992605710 for P36 / October 4, 2009 2009 年 10 月 4 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 64.41 hours on Core 2 Quad Q6700 / February 4, 2010 2010 年 2 月 4 日)
6×10181-1 = 5(9)181<182> = 131 × 487 × 18181 × 674898763500069035186759<24> × 19628097687242489745811747<26> × 48674443951736616443332178819393<32> × 649358366409383652721618856006943917<36> × 123546641542522653581874320775628167353811065357396519639<57> (Makoto Kamada / GMP-ECM 5.0.3 P-1 B1=50000000, B2=7260750615 for P32) (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=1577663982 for P26 / March 7, 2005 2005 年 3 月 7 日) (Anton Korobeynikov / GGNFS-0.73.3 gnfs / 6.23 hours for P36 x P57 / March 17, 2005 2005 年 3 月 17 日)
6×10182-1 = 5(9)182<183> = 43 × 47 × 296882731321128154379020286986640277090549233052944087085601187530925284512617516081147946561108362196932211776348342404750123701138050470064324591786244433448787728847105393369619<180>
6×10183-1 = 5(9)183<184> = 7 × 2837 × 112649776609562047883105198303449664536396037482590034913768341<63> × 2682029434148964127373780620479656968569866368989364416202844775610580864046145940166851280210227212021563042712498321<118> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs / 571.11 hours / July 17, 2008 2008 年 7 月 17 日)
6×10184-1 = 5(9)184<185> = 57389 × 2377253 × 7655279 × 2288410247<10> × 82360343640220929920893969059811<32> × 304813453761071548648407916337418821605038270640791430280993090156171195734593548049006713443227437796116990523264844889914829<126> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=1428667152 for P32 / February 26, 2005 2005 年 2 月 26 日)
6×10185-1 = 5(9)185<186> = 415379 × 1913269 × 62531010235593733704349<23> × 12073556922214405108958201424621505278694418186302227933168205054778229129711573775526384793298392113271991843510286414751498138521027220461309483532901<152>
6×10186-1 = 5(9)186<187> = 29 × 163 × 9293 × 4470815127791<13> × 30550828985343982532579565717215293631437559405612284533238990625247538342732520887314352898351299630108221917796895029658790607129637539073830979352837334662178763699<167>
6×10187-1 = 5(9)187<188> = 17 × 643 × 60962916293<11> × 90037954869774033441994010979418657146032238626587449404797281849471129046167718224517296864491004456917910875540311535849055257008897752156807179815563243483100907506831553<173>
6×10188-1 = 5(9)188<189> = 21778727 × 185311002839<12> × 57117698157139964753400093009593909972789011805862001560536999047391<68> × 2602836306674356872625815446311670047901248629915432935538570606381323277317170808071072441498712577313<103> (Sinkiti Sibata / Msieve 1.40 snfs / 243.25 hours / October 20, 2009 2009 年 10 月 20 日)
6×10189-1 = 5(9)189<190> = 7 × 1741 × 139697 × 8022403 × 1035275921415119<16> × 476094473328492680632931<24> × 891278912958549965968383095535573633910160462305690675152897242758029326139418407283162448515143541256731825127936455935716950663768123<135>
6×10190-1 = 5(9)190<191> = 13109 × 8578966480482150503<19> × 1068669522076286577048636589543573089449403710797811316339675258967441<70> × 499233008223657734568358907858974997169170262219127947706464089319110649403939282546439796649891157<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 140.20 hours on Core 2 Quad Q6700 / February 8, 2010 2010 年 2 月 8 日)
6×10191-1 = 5(9)191<192> = 57977 × 7143820526785989427<19> × 2207258611302686915949133925125089382578399703<46> × 90556637017025738930921549143554338530296604123554437<53> × 7247554172838869372638671347348497446154983740920957897622309609160671<70> (Jo Yeong Uk / GMP-ECM v6.2.3 B1=11000000, sigma=4589964423 for P46, GGNFS/Msieve v1.39 gnfs for P53 x P70 / 41.23 hours on Core 2 Quad Q6700 / February 13, 2010 2010 年 2 月 13 日)
6×10192-1 = 5(9)192<193> = 23 × 267413 × 890232504322972376418629865797962384943059627593763817566906419095999519232749088479<84> × 1095815529709465005938774668510968742822557932763346596236533113736034194519679191569679150889348208619<103> (matsui / GGNFS-0.77.1-20060722-nocona / March 16, 2009 2009 年 3 月 16 日)
6×10193-1 = 5(9)193<194> = 9029707 × 1516632346151500277954536060378045125068422346041930999287498979457151018659890169586137<88> × 4381242358181442462982697544631107043610426689990288938779511626077241255277831936698304127384847461<100> (Robert Backstrom / Msieve 1.42 snfs / February 4, 2010 2010 年 2 月 4 日)
6×10194-1 = 5(9)194<195> = 19 × 552558220648518327302187386107<30> × 57150443497805430547760194830899991379283534240795388543593799035627131426642721828037543684764910233345763252213386580962086660768427630404724977220097501462854303<164> (matsuix / GMP-ECM 6.0 B1=6700417, sigma=3937428304 for P30 / November 12, 2007 2007 年 11 月 12 日)
6×10195-1 = 5(9)195<196> = 72 × 4441 × 50101 × 17253817355623566112321465041942476905270348174965261634057331856786187607700175849<83> × 31896483538988011753358606625205433955085150494886055908088192101333897750007664195410505024842869923539<104> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 203.15 hours on Core 2 Quad Q6700 / February 24, 2010 2010 年 2 月 24 日)
6×10196-1 = 5(9)196<197> = 2918889231513601040860699<25> × 131309971143989544560120036738503636759330165792703<51> × 156543821026546220303197668889119878375130371187317181411817012017399575242875657648645613675432644203068207458856937533267<123> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 228.57 hours on Core 2 Quad Q6700 / February 25, 2010 2010 年 2 月 25 日)
6×10197-1 = 5(9)197<198> = 1887671 × 21510659 × 29874643 × 51335819857675817<17> × 193601769040977856894563633949553<33> × 1977341005678468116703941828020617788403<40> × 25168487085362731602320955256733472748105735580583285164870970125177601063461429215617779<89> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=700259726 for P33) (Robert Backstrom / GMP-ECM 6.0.1 B1=2748000, sigma=1243328466 for P40 / April 30, 2008 2008 年 4 月 30 日)
6×10198-1 = 5(9)198<199> = 15209612701033<14> × 288967773607867<15> × 1365160403997191555550151142568146731506730750438226755732436993072562738845607331453801809998365852550737507550448475184701543652559418805186748347318261303141162891205509<172>
6×10199-1 = 5(9)199<200> = 119813 × 33033053847941390891<20> × 4569627889176439619692576134587600153187919483774016394308231<61> × 3317552055860241560640476484811440530702110848698129171915852300421896746179446222986050995219553739091890680282463<115> (Robert Backstrom / Msieve 1.42 snfs / February 11, 2010 2010 年 2 月 11 日)
6×10200-1 = 5(9)200<201> = 97 × 6869 × 987053 × 766069559 × 1190905556603421007771944188126767285541708326790013708666333595933475700804101980774978169443805587542546092080679221455958311038150203287279301660823867861016647772644965703389609<181>
6×10201-1 = 5(9)201<202> = 7 × 59227673 × 25979916021846896782074164160782347068653<41> × 557045663280142658585240275107499022021807235782016518250289379725592283375531987960885667753813815423522122262391664420235789546060985371239279918964053<153> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=2062803781 for P41 / June 17, 2010 2010 年 6 月 17 日)
6×10202-1 = 5(9)202<203> = 662546713984592207927223917<27> × 9458497013571805206312472074289<31> × 6857244838653541307367446307640270837266142611617471<52> × 1396249268818347388484412470486410372451859094204630565646796021457576761596952236490215893813<94> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1567127557 for P31 / March 4, 2010 2010 年 3 月 4 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P52 x P94 / November 12, 2019 2019 年 11 月 12 日)
6×10203-1 = 5(9)203<204> = 17 × 43 × 109 × 6285570077<10> × 15454800849579967<17> × 43720453106875646412797<23> × 348508196946509711809731889<27> × 1610766548946348154494700279849<31> × 3158413856675530449099129961091310985543903617451424371512095568181852408007845133780165995327<94> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2410648569 for P31 / March 4, 2010 2010 年 3 月 4 日)
6×10204-1 = 5(9)204<205> = 2495323487<10> × 73224616528411<14> × 6693058726486919<16> × 38827036331971058483068797055642994541603213026093291655975275940091<68> × 126359649415072819428606764246382440285778262086748543054001994784433642051818238643207513788005583<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P68 x P99 / January 5, 2020 2020 年 1 月 5 日)
6×10205-1 = 5(9)205<206> = 113 × 229 × 3988129 × 16786519019443<14> × 34634384987058122454172863950555658678559041103572530567675040054233843813587868650371673717533219088190406751342702294138622065119780632540632938293441991829743375547337406623362321<182>
6×10206-1 = 5(9)206<207> = 269953 × 456023 × 15386627309<11> × 2365962659573<13> × 20357165301236674225226860420466032151<38> × 6576695295431303396827155051737952392077868066586721437221422024529982619116579785029374901370573411254164625224795256265405312321289503<136> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2805086245 for P38 / June 13, 2010 2010 年 6 月 13 日)
6×10207-1 = 5(9)207<208> = 7 × 71 × 24049 × 46511 × 17007445745298900349<20> × 33439790985414426956681099553042701064884326736975946328486315720824817532777<77> × 18977522446956818363685981371711308645196440259906960638509851000714861373709971370177964383606936861<101> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P77 x P101 / February 9, 2020 2020 年 2 月 9 日)
6×10208-1 = 5(9)208<209> = 3259 × 9781779407<10> × 2013419107031<13> × 8879071197815324502399503382698892512006260905240555784439986328129103441853650264457<85> × 105280345416308996682161912741316471612862703931550928501142427831609650158912582580766317706361069<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P85 x P99 / April 1, 2020 2020 年 4 月 1 日)
6×10209-1 = 5(9)209<210> = 3730721189936412457667608016641977052431628979<46> × 5401215756031101285580828381790314639987119424431841404011<58> × 29776039411710570322573077770635483769624110219066115495318113771095002971574699039484723314844893404830671<107> (Robert Backstrom / Msieve 1.42 snfs / May 4, 2010 2010 年 5 月 4 日)
6×10210-1 = 5(9)210<211> = 173 × 1319011620917<13> × 17694558758472465160786084328071531751813395920671<50> × 27465531531312048384938130523453002899408056612897<50> × 54103925938902096535848864346422448534169928893420289079707154337891971498960737266494598784258097<98> (Grubix / GMP-ECM B1=110000000, sigma=449455868 for P50 / October 7, 2011 2011 年 10 月 7 日) (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=3962005472 for P50 x P98 / April 22, 2020 2020 年 4 月 22 日)
6×10211-1 = 5(9)211<212> = 61 × 353 × 16679657751371<14> × 38657938094474627651<20> × 337247410031350460101475287<27> × 878833892809803833923016736989572122829153738969<48> × 14580266698684083016630157180770980972183840538912535148372441369527988245282658184438162517147709781<101> (ebina / Msieve 1.54 for P48 x P101 / January 27, 2024 2024 年 1 月 27 日)
6×10212-1 = 5(9)212<213> = 19 × 67 × 149 × 4919 × 1065313 × 17583161312978265581<20> × 34330930019399058875550344831421230652426306647565253683735769777930077197617131355277501754883592332501599312911339900076979912856707498073405906390068835732254066775718300110641<179>
6×10213-1 = 5(9)213<214> = 7 × 307 × 7065388063991<13> × 197416591823257460057<21> × 2001682372066833107773402829449719416036364220544199341602767299690670042160416981199127440289303027462385512946544242773788845397762433038007156271649188802474331919450194311373<178>
6×10214-1 = 5(9)214<215> = 23 × 29 × 313301 × 4903288683893<13> × 88659437999438460289<20> × 34670811875939146887517441<26> × 282483875765482555193956473799179144460465924805428013424053<60> × 67436267274573816585070958097375566864626044615397226872722283112803904995413351966425857<89> (RSALS + Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve for P60 x P89 / July 29, 2012 2012 年 7 月 29 日)
6×10215-1 = 5(9)215<216> = 295556931653<12> × 22157457139232838815701102659238904908662617<44> × [91619978018718136332393616629267035761587257486443298446159364930331971928422491947865635292132367533272660554091383169684018646098263691225578437898094451305899<161>] (Dmitry Domanov / GMP-ECM B1=110000000, sigma=1609517965 for P44 / May 26, 2011 2011 年 5 月 26 日) Free to factor
6×10216-1 = 5(9)216<217> = 341687 × 11899843 × 735863567183<12> × 634255818314899730180735344081899371851349<42> × 24346044022872895626000971611806680259525862141587365727081400404174359<71> × 129864784383441268355673141997261254693360686748906392594452910668977047675271263<81> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=723172808 for P42 / June 11, 2010 2010 年 6 月 11 日) (NFS@Home + Carlos Pinho / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P71 x P81 / December 12, 2018 2018 年 12 月 12 日)
6×10217-1 = 5(9)217<218> = 599513 × 11304061104983935987790740185102037368860179019921467124564350834048506432073395536295502413646921<98> × 8853564366910146054111965956641927405840817926036297662985845982271364889370463684379291107465197654910509371978463<115> (RSALS + Mathew / ggnfs-lasieve4I14e on the RSALS grid / June 24, 2012 2012 年 6 月 24 日)
6×10218-1 = 5(9)218<219> = 96043 × 76268692740756720554081999294007804083732965834638619761685000781626671196747<77> × 81910434671275061437440282430584181127082928798515060309990291541627580588452556118977559628100780673046202639394178396564250666743845719<137> (RSALS + Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve SVN r719 for P77 x P137 / June 27, 2012 2012 年 6 月 27 日)
6×10219-1 = 5(9)219<220> = 7 × 17 × 3659 × 5107 × 5881 × 37483 × 1481357 × 303410514787643917312242223062701556575627650582655586429924794141668347908336568969911<87> × 27233291704949135946484841061567019985172194510283718269845499016041701903396453299480135046848560777926573177<110> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P87 x P110 / March 17, 2020 2020 年 3 月 17 日)
6×10220-1 = 5(9)220<221> = 139 × 8356507 × 2785055857<10> × 53063882731<11> × 93856970456654111182280277217906620490919201270726030817313<59> × 3724021697638042953982798668557406826997834646355391837556412955895917791132880744307036434483078665879615933634866217998494329276453<133> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P59 x P133 / September 10, 2017 2017 年 9 月 10 日)
6×10221-1 = 5(9)221<222> = 3181553572811<13> × 188587112009521068080345501655704887234010509521358289665844553970314244556142004094146001285578098999678312413863980232974154059304320605639072982055293775060518373828570439933811484854569309066766922995207709<210>
6×10222-1 = 5(9)222<223> = 21269 × 15384403 × 20107168579<11> × 119895129374318938673377<24> × 301006917921256660420511<24> × 1506667300339599547236805489<28> × 16771705653356868783017072553569575449293552778979232336757264567960928508763220984876835945077678558651825035433801142673090101<128> (Ignacio Santos / GMP-ECM 6.2.3 B1=3000000, sigma=1244649833 for P28 / March 15, 2010 2010 年 3 月 15 日)
6×10223-1 = 5(9)223<224> = 2702016138967<13> × 28720474547729331919119988718167<32> × 773164135243100504582170061538429980288959908976614368202225344771893725788639277023309615504644823756563476797199726170341846606777510510566234170535493454943651860282141884952591<180> (Serge Batalov / GMP-ECM B1=1000000, sigma=974660662 for P32 / March 19, 2010 2010 年 3 月 19 日)
6×10224-1 = 5(9)224<225> = 43 × 105116020583942511342885176898761927907189004109190530401<57> × 1426059807243826084017245666438603503793360364869025030507580931023978750559<76> × 93084237127002259679956520230759468590779235272795409083718349071592458482718710155281572227<92> (RSALS + Rich Dickerson / ggnfs-lasieve4I14e on the RSALS grid, msieve for P57 x P76 x P92 / April 20, 2012 2012 年 4 月 20 日)
6×10225-1 = 5(9)225<226> = 7 × 25969 × 1873433 × 17618130317888808278576022243005618067995127022911712063826055863170575649699453488421431743619476392041115397577281273824901555014145697710710769345203423338783237156461408482127292304690599043231185059998098776641<215>
6×10226-1 = 5(9)226<227> = 1877 × 799485050477868093041241481<27> × 39983115403664062736980601449798021131821733417892964879341247135211030292649071683893956601392230846885370184269720850851509354251131257221624158312077846890877183823035475952293032968834882141227<197>
6×10227-1 = 5(9)227<228> = 667389257879545346093305824371593430854894776677<48> × [899025558047402393833363811982758746577307238929235166211854640461366197528421527372565242103617203479670369463403614777641805760709297791115366281558757679322240244054659020138387<180>] (Serge Batalov / GMP-ECM 6.2.3 B1=43000000, sigma=1303631320 for P48 / June 10, 2010 2010 年 6 月 10 日) Free to factor
6×10228-1 = 5(9)228<229> = 47 × 9841112618206841285475531677<28> × [12972067226616707672204621498259677208757990799674391500925136091815599631013697061928584465782407346668828332739816333396998191910403693672878301029002459358936778761803637603693201181854950664909221<200>] Free to factor
6×10229-1 = 5(9)229<230> = 293 × 8755853 × 429810786768518641<18> × 53493887973697633134202619<26> × 67465772665261562167907701<26> × 29861045683925387221390283440982131577<38> × 5345948074757007387461416445652669373483<40> × 94447495760368427292942695952490869348684821314320885723641372689233621779<74> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3, GGNFS/msieve B1=11000000, sigma=570215541 gnfs for P38 x P40 x P74 / March 21, 2010 2010 年 3 月 21 日)
6×10230-1 = 5(9)230<231> = 19 × 7840859087<10> × 551950655882597<15> × 3574431934979137<16> × 4763906551756375387845339289880870905783058516179<49> × 428512486421334161322752090545508795731141580694901015388320578222316781631207570810375491229392262515493659777980798033839340844657585058293<141> (steinrar / GMP-ECM B1=110000000, sigma=3540827403 for P49 / October 14, 2011 2011 年 10 月 14 日)
6×10231-1 = 5(9)231<232> = 7 × 179 × 197 × 450533 × 2064590471<10> × 2570740220040647513<19> × 723439153359553223689<21> × 14051193863570178710479168976915113736357035777204881758925816236069396790217929616932877945530983329821956588439081339767876554587897243498896219474151861466204823341583389<173>
6×10232-1 = 5(9)232<233> = 1660523934390471375293122148061759777454186203134796869<55> × 36133173847942278388074413688383462522310986502255896424710199596414174404276753979932200556216217786367213858025866834788809229113618100290433245339952571776861397288839701606771<179> (Crunchers For More Power / GMP-ECM B1=110000000, sigma=2133991575 for P55 / October 12, 2010 2010 年 10 月 12 日)
6×10233-1 = 5(9)233<234> = 59 × 1069 × 25867 × 15844714270108739388713<23> × 123102208693232808861619498352748243629619506142659<51> × 130320039715713057322139942614341784752973412509711271<54> × 1446818355066071449887043465579765490290173561685029536270314654955005286705881184495350104264735551<100> (shauge / GMP-ECM B1=110000000, sigma=2846170231 for P54 / October 14, 2011 2011 年 10 月 14 日) (Meharts / GMP-ECM B1=110000000, sigma=1429579247 for P51 / February 8, 2012 2012 年 2 月 8 日)
6×10234-1 = 5(9)234<235> = 41491 × 79579 × 530501 × 139270405927002088329781933928934917053587476300573<51> × 24595396177664340526017825416757880287384892319756585409680296690929717151552305427825202961831414062264730719705257070642304820054374859117161130669576503765969861335567<170> (Jens / GMP-ECM B1=110000000, sigma=960106082 for P51 / October 13, 2011 2011 年 10 月 13 日)
6×10235-1 = 5(9)235<236> = 17 × 2153 × 7211 × 18533141991392122631869<23> × 166967071861587149904252463<27> × 73465412188435179242011183796631875850802962363621763156306956549845339696136565993299945458409714181900117476388926683602490556675852323400789354989150596390163762665496604594247<179>
6×10236-1 = 5(9)236<237> = 23 × 18230702059<11> × 115550049893983867<18> × [12383684630179569337394088694249350271748902897997080703613870582532730339815448808148826757455083549756097807945663686461901446868894897234953688182035635030971018151288504007710008042112835702163200129287921<209>] Free to factor
6×10237-1 = 5(9)237<238> = 72 × 491 × 1493 × 1248208113049<13> × 153282923086063<15> × 274292314654310390469897934973<30> × 809163492890221392896760174836171<33> × 154324731088430161182712455869046954369335916787<48> × 25488697728898600435095123985728524783540211865629688320991651366132041999654666415012469651051<95> (Serge Batalov / GMP-ECM B1=2000000, sigma=1363018546 for P30 / March 17, 2010 2010 年 3 月 17 日) (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=2064202222 for P33 / June 7, 2010 2010 年 6 月 7 日) (Wataru Sakai / GMP-ECM 6.2.3 B1=11000000, sigma=354338951 for P48 / July 7, 2010 2010 年 7 月 7 日)
6×10238-1 = 5(9)238<239> = 193 × 30317997519389856119<20> × 427458942327439624571134408529107<33> × 10731548370912742011309882412374043894391<41> × 2235304199431665416154469431018538695247299806298294808705904292663266370887391961952000604386055408372511514363410836227280941322027236146141781<145> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=3456964370 for P33 / June 7, 2010 2010 年 6 月 7 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3349828865 for P41 / April 26, 2011 2011 年 4 月 26 日)
6×10239-1 = 5(9)239<240> = 196519966691<12> × 3053124881419380598402953145755985813078218236425662716784039453285009919959268389595312380573275414793561934453259081536773595096639930154586981066241361364917085813266900845243233534535242223867205550543200096903378932193409589<229>
6×10240-1 = 5(9)240<241> = 5693 × 199055355451<12> × 15142875136590353074073723678992748157217373891592193<53> × 349645432067155481854938906067805529721754164829914939637398049608979344181029226807594008744880837969670984015535620347160166302152583232144679804473584455589407976871126801<174> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P53 x P174 / June 8, 2023 2023 年 6 月 8 日)
6×10241-1 = 5(9)241<242> = 467203313485133<15> × 4579263453178081<16> × [28044629455784530948203342965956354294014961258682153190662335574547457912230072056744462517231361271510154524137145727222813185665128282878124947611413241345547398722458851512382184646538350266064857542978899163<212>] Free to factor
6×10242-1 = 5(9)242<243> = 29 × 71 × 3782209901776123<16> × 34332264032154467048767143353597<32> × 1652025748205924877732404194288613<34> × 2300572539179876766754712549144308199797462140774086518332541985279680536837077<79> × 590464904166516031137173148336817668227805484019748834270299781130597574256395131<81> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2446789918 for P34 / March 10, 2010 2010 年 3 月 10 日) (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=640052616 for P32 / May 30, 2010 2010 年 5 月 30 日) (RSALS + Dmitry Domanov / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.48 for P79 x P81 / May 22, 2011 2011 年 5 月 22 日)
6×10243-1 = 5(9)243<244> = 7 × 353 × 3833 × 22277541119221<14> × 215397317050313<15> × 165443990844793512205981887109728319103093269<45> × 2126194822470901589472330700984239622414403364022147381<55> × 375299588659849178097505614884236430757405993428688703747934019242155590794274413384956807081853649808369277869<111> (Mitchell / GMP-ECM B1=110000000, sigma=3202372822 for P45 / October 13, 2011 2011 年 10 月 13 日) (John Black / GMP-ECM B1=110000000, sigma=350798261 for P55 / February 8, 2012 2012 年 2 月 8 日)
6×10244-1 = 5(9)244<245> = 419693 × 26004961 × [5497475693542599900137753904027046725317268295673352962101130025028826754645786928994063105034654118569051608470085336567414139237147238503964673271734154792435822221999158122618964401578798534528652817103833606709663981138504755963<232>] Free to factor
6×10245-1 = 5(9)245<246> = 43 × 67 × [208261020479000347101700798333911836167997223186393613328705310656022214508851093370357514751822283929191253037139881985421728566469975702880944116626171468240194376952447066990628254078444984380423464074973967372440124956612287400208261020479<243>] Free to factor
6×10246-1 = 5(9)246<247> = 21859094259785730538599244971029<32> × 274485297912742237150048735262794447536620567782014201577495849258086824129747373012542176472673010410776233628292606074709554098982050397227874094479379214907598756144193430945737490009574335167532750891460238068931<216> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=4146475113 / March 10, 2010 2010 年 3 月 10 日)
6×10247-1 = 5(9)247<248> = 4021 × 1204493 × 41659225207<11> × 297373119257145980251988018537082063670691800854993036587836023673051468117465889771078271622732372325072799816342548745900211057223667958916300747722161820676176509735201045165473115664386410710052721429837494121723338404188169<228>
6×10248-1 = 5(9)248<249> = 19 × 311 × 503 × 208142287262239214419<21> × 92421281870616722033207471<26> × 10493901050906788185232065556769232708707456173328533237008224104494909882062258082338327067961149539673075439810320643909657576327784852452634686503747959119934109677576826500908291905268887062713<197>
6×10249-1 = 5(9)249<250> = 7 × 187751 × 281746839681649<15> × [16203614346544402979985695501110435607544241636411078154408532301253215512755923494195394665015553771668363239777499639272528085635240641042126848563837529882196759778129157867502091890255883998734011581990609278384139774314177343<230>] Free to factor
6×10250-1 = 5(9)250<251> = 582096479 × 70410352313325553<17> × [1463928145621959978529642685071979539552935554680794053309210628380791601438709392055837236557988380914068801278837468166835700209452422818328861672218437793270368139740748653795666089023290825363947050957932714942936743672177<226>] Free to factor
6×10251-1 = 5(9)251<252> = 17 × 797 × 2699 × 6907 × 3136811566517<13> × 757291768739263508628328125003435565921021397756590171228246960495770017087916939351521098859285261645901305052856851998150704731500940394832405527701458466685943321222011195174398414558979870435724470097652180588998004613026071<228>
6×10252-1 = 5(9)252<253> = 557 × 18451 × 283213300972670675770266133095772891<36> × 30514803949072479916508407920138502406840761<44> × 67554131728675595877182191207565223678537892755650861861150769610108509817910435911572584907618296644927105042857152188326393729531239332305462078550451764683942840307<167> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=3257126238 for P36 / March 20, 2010 2010 年 3 月 20 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3250361696 for P44 / May 23, 2011 2011 年 5 月 23 日)
6×10253-1 = 5(9)253<254> = 173 × 88517538713036270036158457<26> × 2626427982298942622280758199235321253933<40> × 1491799031598580630145833953290610224178703088585124279116265169907502798088459708988102092921871699933351226503286142960784711756472443848902076996799117408694238040577985543372273205023<187> (Serge Batalov / GMP-ECM B1=2000000, sigma=3293726863 for P26 / March 17, 2010 2010 年 3 月 17 日)
6×10254-1 = 5(9)254<255> = 6883 × 93393494677771869725728274544160702387<38> × 49747434226336484812339320184963414661832327749<47> × 18762303974356694938799666015493808815655233051292039095524653962404928652777129876816130050223716108616075363205748114668749184615484394784838028920469164429302945931<167> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=3263518589 for P47 / March 20, 2010 2010 年 3 月 20 日) (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=2017306587 for P38 / March 22, 2010 2010 年 3 月 22 日)
6×10255-1 = 5(9)255<256> = 7 × 191 × 3512099 × 23571933931057619<17> × 2983186429460874154107417886518025439089<40> × 18170943742348118741172363863140141898597672778388569713317646113797239991889309439109299321947495677778086663489061996458662988293973972843560146303635123131197016580674299653268184852794303<191> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=2238900494 for P40 / April 27, 2010 2010 年 4 月 27 日)
6×10256-1 = 5(9)256<257> = 1483 × 196453704165432881259747930910080944542421404101686280860326900225833940560516077<81> × 205944347950156854634324788614536037232120920693573848063685999691957315716742495005134703737443437653650582959954669662935664897118898326637875961464257161974633164580495089<174> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs (without procrels.exe, matbuild.exe for "finalFF" calculation) / February 19, 2014 2014 年 2 月 19 日)
6×10257-1 = 5(9)257<258> = 22649581 × 685910044381<12> × [38621035641960859341470316163607528622265182013886880589091013525466679682989366299923947859093869719911045972596258428443930746705814911745243566652145678128818136132057618316506075929835387493517693232278805279601073679760012058317340759<239>] Free to factor
6×10258-1 = 5(9)258<259> = 23 × 263 × 991899487518598115390973714663580757149942139196561415109935526533311291122499586708546867250785253760952223508017854190775334766077037526863944453628698958505538105471978839477599603240204992560753843610514134567697140023144321375433956025789386675483551<255>
6×10259-1 = 5(9)259<260> = 1013 × 12499812793021<14> × [4738471755732062349603565310273515281657774069047444834067464611283268282781287744176116016243645259316705597523073134475937391344526017548427503253415414347133420381939100111595663628990265013157738080941106584259591982497925738700847031773663<244>] Free to factor
6×10260-1 = 5(9)260<261> = 7004828945153485399097323<25> × 48585435312386903981599114927200465460607<41> × [1762980942447611783185094479108384678581691713999666050185886907572569348064162719843109893622355527189022825710067240806033085089349377364455648412149008686349647980417265706683420649158834907459<196>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1909773740 for P41 / May 4, 2010 2010 年 5 月 4 日) Free to factor
6×10261-1 = 5(9)261<262> = 7 × 2417 × 1150663424447903634657889351514941903<37> × [308196889564409071426273007100505761487391054704281690544989136855979840821135569707428944878425593509925877111920480737560193584342813547425464666649037058647177332245842212193086338257327103815458400040860853644628786007<222>] (Ignacio Santos / GMP-ECM 6.2.3 B1=11000000, sigma=182893987 for P37 / March 18, 2010 2010 年 3 月 18 日) Free to factor
6×10262-1 = 5(9)262<263> = 22079 × 4527061127<10> × 600282236962218466465744285472622923737636181329430642077100198719214119008193970560757116177082256903990220465220947313928038006524634719561816142386257204018815720861086315411328194793967835926394244838746426348553540431456482652697377687461037303<249>
6×10263-1 = 5(9)263<264> = 2273 × 149101 × 15068897357732947447<20> × [117486991726359040894006642033797661314207600942375677570359528663649579734962797269096791363874265210313443968220823601577303431679681563623582549441677330078982957919092200081414619345739004226154197733273319512530068120175887538099229<237>] Free to factor
6×10264-1 = 5(9)264<265> = 409 × 2509951709<10> × [5844704739841968077585499356775265837436839698352976479321978240095206174791267418973325498117463157130936686618791537807128715278339851431140059443892632358405664272089875868952547095985535808006574307368345438812730061240496626903094126109979238640579<253>] Free to factor
6×10265-1 = 5(9)265<266> = 421 × 5657 × 11213 × 11383 × [197380578635573726882604648116664258701842339857780428553737238331038961790835448897528364219989635319690536340750430127682148333233374897883726296087793113168691057689866395181784629670490914538417149004358356323739392784394638333627607894761189670273<252>] Free to factor
6×10266-1 = 5(9)266<267> = 19 × 43 × 139 × 24627479347<11> × 152732412557<12> × 1683928009142167609121365057727<31> × 834141440053145559709745291417372082265712571739932418665339357818537722304867060748407947392952672655234821466084507275857254293679805591736590520096441607278882105596022776571351020744623701556460001395305381<210> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2178765741 for P31 / March 12, 2010 2010 年 3 月 12 日)
6×10267-1 = 5(9)267<268> = 7 × 172 × 163 × 351223 × 3681017 × 137193241 × 255165907 × 56029347157334742658536580029483583<35> × [7175399178549952862932806340963703619624179783748697327291857167625927648114519027247784432541564701480395590843947815389602967700639027127442267941609278067456007193175531965859405644527499772882041<199>] (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=2751191669 for P35 / May 4, 2010 2010 年 5 月 4 日) Free to factor
6×10268-1 = 5(9)268<269> = 167 × 1487 × 2061535787981578056287453<25> × [117201435824439485648993340765231525116224768351855468057303886305762229586941355679350309766687201204365549895462925650564437152046859279609108151389188587443397519879503043563509765547480680189375474055560329608976974792750728477044791027<240>] Free to factor
6×10269-1 = 5(9)269<270> = 359 × 135787 × 12308315171559553588075934017009640262205679208422711360593365822225301124469211600923476476235217892975219894717543962686275836769011469770172779820468042967425654135153875376626751552740115074131033461734360998329905228229703439556623306455323595555081731007803<263>
6×10270-1 = 5(9)270<271> = 29 × 1151 × 4531157 × 283871481081084755985865103<27> × 139748467764981246495504314987412425472808833507934275486683165910837389955404399206536065415204435555607800627637800413828444046890818137734920446508795726507863238201538286232086174129689144557372974206446389046461552997016180880911<234>
6×10271-1 = 5(9)271<272> = 61 × 11073090797<11> × 86499952941911<14> × 268126501992808919<18> × 45847835477844817579900401806451841451<38> × 83536851700143988426563784960370839587861505281447943940096542123264095698377320878659859850811183243724053900930994678397672017887593035739618928065706768690339369282493239070373908675784533<191> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=4273858582 for P38 / May 12, 2010 2010 年 5 月 12 日)
6×10272-1 = 5(9)272<273> = 2745049 × 212568427 × 143569700503777<15> × 7162087062994996417038222049868924026736844316583855885022861492934390967430129545242293191460088782890633168984040118939711315634888635452878459081072994412060268118261238234549573579006791633136465756736320893582375776401574706494015141919269<244>
6×10273-1 = 5(9)273<274> = 7 × 47581 × 169400417 × 65450633711340556552637<23> × 16820515220463436573659247<26> × 36417308494908972806713817524028419632728029<44> × 4995943974520811991153991145583446508944656599140557187621511248373214154213217191<82> × 530916979909626618287182629623272676839548273850603289351657990847647831673737910141421<87> (Dmitry Domanov / GMP-ECM B1=110000000, sigma=2218641354 for P44 / April 29, 2011 2011 年 4 月 29 日) (RSALS + Serge Batalov / ggnfs-lasieve4I14e on the RSALS grid + msieve for P82 x P87 / November 1, 2011 2011 年 11 月 1 日)
6×10274-1 = 5(9)274<275> = 47 × 8543 × 62879420519<11> × 70400057237<11> × 12617457787212507681132185204083<32> × [2675405297758583656370366581159717833313403103847349865672957660217539167026681736610472831661634556154820170451385080122806460932255061658191629446587842570622657633602648833782759668516576957495269024337601277148631<217>] (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=736451040 for P32 / March 13, 2010 2010 年 3 月 13 日) Free to factor
6×10275-1 = 5(9)275<276> = 349 × 353 × 3790266606557<13> × 727387555074154458693420440111<30> × 1766507527499763617709085969900301210478661993650708786807745733296175234216557514346495360446121962779806936153785247259768785873591169087318866015874731167191605617745834844589336898296201255827936257529220047389934597321237321<229> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=4100118993 for P30 / March 13, 2010 2010 年 3 月 13 日)
6×10276-1 = 5(9)276<277> = 2580187 × 8708069 × 5828474920030629324287<22> × [45816643935692331789707358907451645926393039624014430519769377030693765564512374182673257774443430755812155175967303137723464621639913582529849889655198810563019707842467042906363808631864092761232346933784704646091159826036204970021222137559<242>] Free to factor
6×10277-1 = 5(9)277<278> = 71 × 5225039 × 42811425691530651349<20> × 2398947958871880268440848253690187<34> × [1574790722859011552260684553920949638141510303619332224114608165088129357840447990319395083894630448707107717118806541814177468923028847824142184801545185293280508856456420281843698150643462474824173177219590698260417<217>] (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=3701687452 for P34 / May 12, 2010 2010 年 5 月 12 日) Free to factor
6×10278-1 = 5(9)278<279> = 67 × 10401080353<11> × 322014135991476770094014425489871<33> × 2673763923239297269993051591034330791481887977573524094316141919647521903387568822669423499958451137463419521734053279275651957000240757576452002572584822766481650317360718647300461354350009720056747019342419822019016069832093575386619<235> (Dmitry Domanov / ECMNET/GMP-ECM 6.2.3 B1=11000000, sigma=3059315824 for P33 / May 11, 2010 2010 年 5 月 11 日)
6×10279-1 = 5(9)279<280> = 72 × 152728712683509601<18> × [801741712087761055430855169128418129562655703862954643322025834536048649010649897343887067517341647108604096360975129500271326761370158385359758174307778286184756653480555879218059708852607189923782634719851608873349626831171546349481379850313533495187725047951<261>] Free to factor
6×10280-1 = 5(9)280<281> = 23 × 9362303 × 393482056547516748537855755302849<33> × [708134558370358855782439057086079600214300164401236869886042273984812880312595926679412773964336325541152669956873937661780069596592979160248650770303030633799331820533292457489684159059761678553916807269738596011031297365632658508829858279<240>] (Ignacio Santos / GMP-ECM 6.2.3 B1=3000000, sigma=2506241298 for P33 / March 18, 2010 2010 年 3 月 18 日) Free to factor
6×10281-1 = 5(9)281<282> = 59929 × 382363 × 26184142693463268735183615303676678118391518010200880017815701162289485432726425926067733262424836210747882844473810197102230804221233290666856138847163527727343786533118247632436680084448819463045183614065603131095803294648268936408970104131010542183728149083681996638837<272>
6×10282-1 = 5(9)282<283> = 239779 × 5401853 × 159364584338249911997305649281<30> × [29067356011259511609714387634190155557150041921888527206677569669646943411890435063968189574479786401512988553942548696602777831193068313518372703480305214200489012986029033697370222976269873025403344668112690327141646759445934647197331865817<242>] (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1800920480 for P30 / March 14, 2010 2010 年 3 月 14 日) Free to factor
6×10283-1 = 5(9)283<284> = 17 × 1019 × 3217544186278560498156381294688126037<37> × 7104061521791292583118594596432133014213881829<46> × [151529402736889448037220639820742260930802134322538284236227997526640611171709130066154731799963464743294956505532286305836817560822583193717794264074218287887624433331101707398584780098847420157781<198>] (Ignacio Santos / GMP-ECM 6.2.3 B1=11000000, sigma=156374929 for P37 / March 18, 2010 2010 年 3 月 18 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3837573086 for P46 / April 24, 2011 2011 年 4 月 24 日) Free to factor
6×10284-1 = 5(9)284<285> = 19 × 103393 × 238921 × 34100401 × 431256667 × 556162196727295858605323516617287047<36> × 4841158209618846567225556861477389232127784533<46> × 32285397601337144200587539897404241254691557064877391230728525698579930112393102682994855902202219079555931449284245151374564024250184818392599620478125791513646956210259059821<176> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3883854779 for P36 / May 20, 2010 2010 年 5 月 20 日) (Dmitry Domanov / GMP-ECM B1=110000000, sigma=544212202 for P46 / May 13, 2011 2011 年 5 月 13 日)
6×10285-1 = 5(9)285<286> = 7 × 153421123 × 3809227646296477528415961877567<31> × 1466665665721980410485158449576371664528915936442335179842460042755899207901352945808677059734942833338295685862350639783262052550568326181970099820927735323778096726985590518788956028267453277632533659394724760115465409695869345977218184373714877<247> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3413955817 for P31 / March 14, 2010 2010 年 3 月 14 日)
6×10286-1 = 5(9)286<287> = 2137 × 86606676397652643782466989<26> × 324186820989260789528427370696282134440030528771287145527354497632486746727156655271783757004141223501731736432525987231593919604465720226408539768731674487787340288153407646775577607248909567678682850698156579080536958884339763502283631230124282840998626643<258>
6×10287-1 = 5(9)287<288> = 43 × 30263957 × 93994485061<11> × 2775285139342682314066027034085611<34> × 21179280926625068226688124183291106745181237<44> × [83451834755680102378258541019769828520440319611941964327043376724659195127952722610299528014469744462718563545026713851078547042004109816350261833412129075913959863001382745012814736546318787<191>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2497408146 for P34 / May 20, 2010 2010 年 5 月 20 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=129982175 for P44 / April 22, 2011 2011 年 4 月 22 日) Free to factor
6×10288-1 = 5(9)288<289> = 8467 × 297386386529030701360583<24> × 2382871410612611401435491392033791581503774673710407241751695838782055631455609792475000363629106939040390080578448695466258085907702989104914797641038745578084785284495878398152695857562695710561756258397756459342658787685135583652079038946053966632056837084659<262>
6×10289-1 = 5(9)289<290> = 223 × 32203 × 37571 × 138239 × 259183087 × 89324425877<11> × 17227003822261<14> × 334721999602457<15> × 12050243370830162113522664260053459523605306584957164052795583301983622602561043405773697482868378029418980744893731278776082368178294238945605034123703447381570334760482107423248357974669212998017168883386511265536227959400833<227>
6×10290-1 = 5(9)290<291> = 4882057 × 90257317170098396333<20> × 28032948754713944758939<23> × 48573254308444742716491336613769491765082718710590496517291600282277532857819468411302520043128751319137539290197063119249854750484912451703360863654443807605791549987849679069949758211619540221981997916807604804397551851188908585000629104761<242>
6×10291-1 = 5(9)291<292> = 7 × 59 × 607 × 839 × 212587 × 34836611 × 1378525842709<13> × 122150338803529<15> × 22875382072670727602998965633497480410981049245476270434337222231717886460409593921671916029737377156444684580109052149527855800048154714393883860234485295032398175502453777660897075536861980413512810190983166237097251263152250774348625136043263<245>
6×10292-1 = 5(9)292<293> = 677 × 9749 × 59473 × 735673 × 12621887 × 14140393 × 6950310898786672007<19> × [167497314571773085834118152780907494899766245600701401412616730407542856642889190047009671564399173461374638380061150632539916802293980877865987233780325423151788026205350050277037673629518909179185741420785200543859793132307541215414366077231<243>] Free to factor
6×10293-1 = 5(9)293<294> = 592475674344684532201<21> × 261029442172146864963599401<27> × 3879638238437661061132394795102192102387648949464171473217430705652123276136698610773836487401885773531228063303790668912651194835388329736463230513411411014343420563570954699338405552026145381323013531472385052850075146640747037103467405850251599<247>
6×10294-1 = 5(9)294<295> = 313 × 643 × 4391 × 254161 × 618119 × 1650744472583779<16> × 7292451204363580487<19> × 34845651797495894449<20> × 2307297215502473529445531<25> × 58783413658555182138156994330212506016537038349917<50> × 759610882756970322767748897812674073469286982328357233052782336846309377908035223213665903347305773895766425496169545097628462792156026916282833111<147> (Serge Batalov / GMP-ECM B1=80000000, sigma=1267303577 for P50 / November 1, 2013 2013 年 11 月 1 日)
6×10295-1 = 5(9)295<296> = 2438288929502075398554800383517<31> × 9966145935742148686121304464262218766059<40> × [2469100919567940130856087756295447960636897488039693933489455241763557591746778945651557955224211904452173739348176767602961353139762484999513835982471260780307495717668623214565234617851931375351900704809539743790263328988833<226>] (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2842236958 for P31 / March 14, 2010 2010 年 3 月 14 日) (Dmitry Domanov / GMP-ECM B1=110000000, sigma=2142054988 for P40 / May 11, 2011 2011 年 5 月 11 日) Free to factor
6×10296-1 = 5(9)296<297> = 97 × 173 × 2011 × 200230314101<12> × 88795613822232004233355594831565887109939481544915754903785745117839210821078824084087917296940161420564060563978561965788682090917536770116792819787255346001349954336046832796665391892754339772790303816491570598298353993237005642577991767044976078634674806931715452961798382589<278>
6×10297-1 = 5(9)297<298> = 7 × 912049 × [939799130466517854695463573933919277206754085737561406083601711248910028800144353146439657142481223204956250000978957427569289431974441222847832580423702172643293131337085115884281280000150367860874642856751274171829427084353080653718009824973376273799825604608023096503430345142796995712793<291>] Free to factor
6×10298-1 = 5(9)298<299> = 29 × 10987 × 515351015996115671<18> × 365402059980547087817256231950005124372949599733969925427964954542690288679594664494431486453335889935878278591339719923843047760665911366297747646247637207097916090243984747940978470792809161250946580809392797910678053588716608412140336695843776089840945263818281812924799303<276>
6×10299-1 = 5(9)299<300> = 17 × 12401287 × [2846004422529599027053544096341158215367201048426287861707180780795526445336349554118147291534196030953694326953608074046242610331729374255316261553669199580561560216432754590902778169432784535612643885030547517319110887916903539219475413175688468273257350106437482231149263212856574530388281<292>] Free to factor
6×10300-1 = 5(9)300<301> = 2423 × 1612991 × 548795063002167004967703839<27> × [2797407251336091947402982730873504028452036737649233993329980551906229387957692180639290487777659381500612528123059131353091843776492854747088104593091806351689015675787086359771398674304959813347955517159002200849726911922701763214071818667923223465739317564266137<265>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク