30w7 = { 37, 307, 3007, 30007, 300007, 3000007, 30000007, 300000007, 3000000007, 30000000007, … }
3×101+7 = 37 =
definitely prime number 素数
3×102+7 = 307 =
definitely prime number 素数
3×105+7 = 300007 =
definitely prime number 素数
3×106+7 = 3000007 = 17 × 109 × 1619
3×107+7 = 30000007 = 29 × 37 × 73 × 383
3×108+7 = 300000007 =
definitely prime number 素数
3×109+7 = 3000000007
<10> = 439 × 6833713
3×1010+7 = 30000000007
<11> = 37 × 810810811
3×1011+7 = 300000000007
<12> = 61 × 277 × 17754631
3×1012+7 = 3000000000007
<13> = 23 × 139 × 257 × 367 × 9949
3×1013+7 = 30000000000007
<14> = 37 × 127 × 577 × 11064709
3×1014+7 = 300000000000007
<15> = 22691 × 13221100877
<11>
3×1015+7 = 3000000000000007
<16> = 73 × 17789 × 2310185531
<10>
3×1016+7 = 30000000000000007
<17> = 19 × 37 × 107 × 3299 × 120892633
3×1017+7 = 300000000000000007
<18> = 1213 × 4561 × 78691 × 689089
3×1018+7 = 3000000000000000007
<19> = 31 × 8747 × 809143 × 13673357
3×1019+7 = 30000000000000000007
<20> = 37 × 521 × 8677121 × 179351971
3×1020+7 = 300000000000000000007
<21> = 1291 × 379325719 × 612608083
3×1021+7 = 3000000000000000000007
<22> = 233 × 65413057 × 196834348847
<12>
3×1022+7 = 30000000000000000000007
<23> = 17 × 37 × 4236946003
<10> × 11256870761
<11>
3×1023+7 = 300000000000000000000007
<24> = 73 × 4109589041095890410959
<22>
3×1024+7 = 3000000000000000000000007
<25> =
definitely prime number 素数
3×1025+7 = 30000000000000000000000007
<26> = 37 × 71 × 58211 × 196180628657816431
<18>
3×1026+7 = 300000000000000000000000007
<27> = 89 × 3370786516853932584269663
<25>
3×1027+7 = 3000000000000000000000000007
<28> = 13339 × 3429403 × 65581215046280671
<17>
3×1028+7 = 30000000000000000000000000007
<29> = 37 × 810810810810810810810810811
<27>
3×1029+7 = 300000000000000000000000000007
<30> =
definitely prime number 素数
3×1030+7 = 3000000000000000000000000000007
<31> = 7481 × 25373 × 15804828241213478275339
<23>
3×1031+7 = 30000000000000000000000000000007
<32> = 37 × 73 × 97002180449987
<14> × 114502554033761
<15>
3×1032+7 = 300000000000000000000000000000007
<33> = 283 × 4917712573
<10> × 215561738438773101673
<21>
3×1033+7 = 3000000000000000000000000000000007
<34> = 31 × 34261 × 934366717 × 3023027973554365081
<19>
3×1034+7 = 30000000000000000000000000000000007
<35> = 19 × 23 × 37 × 41257393 × 44971390050462397330271
<23>
3×1035+7 = 300000000000000000000000000000000007
<36> = 29 × 167 × 3438397 × 18015684450198264652154617
<26>
3×1036+7 = 3000000000000000000000000000000000007
<37> = 494964632939586937
<18> × 6061039113407050111
<19>
3×1037+7 = 30000000000000000000000000000000000007
<38> = 37 × 181 × 4479617739286247573540391219949231
<34>
3×1038+7 = 300000000000000000000000000000000000007
<39> = 17 × 7669 × 966109 × 2381811937996778938635030551
<28>
3×1039+7 = 3000000000000000000000000000000000000007
<40> = 73 × 12203 × 12697 × 25117 × 10559975197250851647251897
<26>
3×1040+7 = 30000000000000000000000000000000000000007
<41> = 37 × 191 × 4245082779114192726758171784349794821
<37>
3×1041+7 = 300000000000000000000000000000000000000007
<42> = 59 × 677 × 2526823751
<10> × 2972388853179168412767713399
<28>
3×1042+7 = 3000000000000000000000000000000000000000007
<43> = 1439 × 4723 × 5108447 × 599857123 × 9720717983
<10> × 14818609697
<11>
3×1043+7 = 30000000000000000000000000000000000000000007
<44> = 37 × 47 × 164029508385733973
<18> × 105171892647938417827681
<24>
3×1044+7 = 300000000000000000000000000000000000000000007
<45> = 1350073 × 3982801 × 751262095538089
<15> × 74264954268615031
<17>
3×1045+7 = 3000000000000000000000000000000000000000000007
<46> = 23923484947967329
<17> × 125399790478890765348654497383
<30>
3×1046+7 = 30000000000000000000000000000000000000000000007
<47> = 37 × 246223 × 3292993793475064517980898660201568540757
<40>
3×1047+7 = 300000000000000000000000000000000000000000000007
<48> = 73 × 8731 × 33845659 × 379510763 × 109314123739
<12> × 335220876209903
<15>
3×1048+7 = 3000000000000000000000000000000000000000000000007
<49> = 31 × 96774193548387096774193548387096774193548387097
<47>
3×1049+7 = 30000000000000000000000000000000000000000000000007
<50> = 37 × 113 × 373 × 27382739 × 800068027857012989
<18> × 878068611972447209
<18>
3×1050+7 = 300000000000000000000000000000000000000000000000007
<51> = 416289971957
<12> × 720651517473949661346586161431491808651
<39>
3×1051+7 = 3
(0
)507
<52> = 55862579 × 11970569406041699
<17> × 4486270582333434712229720767
<28>
3×1052+7 = 3
(0
)517
<53> = 19 × 37 × 374557 × 113932600914063787468060277075502500400938317
<45>
3×1053+7 = 3
(0
)527
<54> = 8929 × 155377 × 58392533 × 801685817 × 7025543263
<10> × 657491696048499853
<18>
3×1054+7 = 3
(0
)537
<55> = 17 × 176470588235294117647058823529411764705882352941176471
<54>
3×1055+7 = 3
(0
)547
<56> = 37 × 73 × 127 × 87456672506828908511574890606278806041506936771741
<50>
3×1056+7 = 3
(0
)557
<57> = 23 × 2115660643
<10> × 4865734697
<10> × 163601709050232403
<18> × 7744816814619022993
<19>
3×1057+7 = 3
(0
)567
<58> = 25337833 × 929602302663456843877529
<24> × 127366318120422347627412551
<27>
3×1058+7 = 3
(0
)577
<59> = 37 × 139 × 761 × 11731 × 54443 × 12001706183556157265510919553109415378640873
<44>
3×1059+7 = 3
(0
)587
<60> = 25844353 × 11607951648083432384629632631933173177134672320874119
<53>
3×1060+7 = 3
(0
)597
<61> = 71 × 179 × 659 × 215243312633913318217
<21> × 1664158904458664023398585924083441
<34>
3×1061+7 = 3
(0
)607
<62> = 37 × 1604019283
<10> × 1014996059197106936561
<22> × 498018630459316095843098338697
<30>
3×1062+7 = 3
(0
)617
<63> = 866932563239
<12> × 1184380150589
<13> × 292176187908106405066152236398184564917
<39>
3×1063+7 = 3
(0
)627
<64> = 29 × 31 × 73 × 258362736189931
<15> × 176932994415494167247508849050708762654045711
<45>
3×1064+7 = 3
(0
)637
<65> = 37 × 810810810810810810810810810810810810810810810810810810810810811
<63>
3×1065+7 = 3
(0
)647
<66> = 11597 × 476766564965980967
<18> × 54258752737197570588646840676304118198649893
<44>
3×1066+7 = 3
(0
)657
<67> = 880413593 × 2768750173925419
<16> × 1230695874355229930412252183745242948470621
<43>
3×1067+7 = 3
(0
)667
<68> = 37 × 8789091672849499727036081
<25> × 92251946047564539252294359643557463628331
<41>
3×1068+7 = 3
(0
)677
<69> = 4219 × 50593 × 75810347 × 32098538872562066591712923
<26> × 577573885385671200291134941
<27>
3×1069+7 = 3
(0
)687
<70> = 107 × 18017693548490897
<17> × 89426539136530607339
<20> × 17400905858269130024753402397647
<32>
3×1070+7 = 3
(0
)697
<71> = 17 × 19 × 37 × 89 × 4217 × 934535879 × 7156940736968775637854219931676104798881872523864991
<52>
3×1071+7 = 3
(0
)707
<72> = 61 × 73 × 229 × 521 × 2277848267
<10> × 13173005009
<11> × 18818530431881587158932329574305765333752197
<44>
3×1072+7 = 3
(0
)717
<73> = 30931 × 7293569 × 8572474297
<10> × 246844426924254793
<18> × 6284311149248704160062154842197053
<34>
3×1073+7 = 3
(0
)727
<74> = 37 × 284741 × 485890311221409753395066599
<27> × 5860454325164264734412524615630507385129
<40>
3×1074+7 = 3
(0
)737
<75> = 23747641 × 91238521219
<11> × 268340845699
<12> × 65661498166169
<14> × 7858234242360731652028636150943
<31>
3×1075+7 = 3
(0
)747
<76> = 293 × 796384271 × 747149183367091843994819363
<27> × 17207732031763458234935687162445804263
<38>
3×1076+7 = 3
(0
)757
<77> = 37 × 347674709719261
<15> × 376029032094798769
<18> × 41335540481765452729
<20> × 150038057386969993657951
<24>
3×1077+7 = 3
(0
)767
<78> = 7103 × 310721 × 69392692739
<11> × 17815667421934982054968724377
<29> × 109949433731598778093224841163
<30>
3×1078+7 = 3
(0
)777
<79> = 23 × 31 × 4207573632538569424964936886395511921458625525946704067321178120617110799439
<76>
3×1079+7 = 3
(0
)787
<80> = 37 × 73 × 1039 × 1223 × 1847 × 572657 × 625955860492510637
<18> × 13202296647663702684922382029001071334833297
<44>
3×1080+7 = 3
(0
)797
<81> = 277 × 11411 × 94911269036432323361428123537773261407464518212997971746180691441249766281
<74>
3×1081+7 = 3
(0
)807
<82> = 1070683 × 157863750089668623431
<21> × 17749165225483606522027927538441692526936337438655527059
<56>
3×1082+7 = 3
(0
)817
<83> = 37 × 7333 × 7681 × 14395278802292036060417159795935809822275019391748117845247433324068803807
<74>
3×1083+7 = 3
(0
)827
<84> = 513769 × 902800583 × 2361932737
<10> × 33062619979
<11> × 99756304721
<11> × 83026433674730925599643777137972543227
<38>
3×1084+7 = 3
(0
)837
<85> =
definitely prime number 素数
3×1085+7 = 3
(0
)847
<86> = 37
2 × 67477 × 741163 × 9976434378762229507
<19> × 726728774267084507874023
<24> × 60436680681922112979298419173
<29>
3×1086+7 = 3
(0
)857
<87> = 17 × 1607 × 15733 × 33655393597439835659
<20> × 20739115961968251612049950865027079498714359321952033396999
<59>
3×1087+7 = 3
(0
)867
<88> = 73 × 199 × 359 × 14169341 × 31098751 × 1421270425501426514718779
<25> × 918505055963463910076241392500382916824591
<42>
3×1088+7 = 3
(0
)877
<89> = 19 × 37 × 8269 × 713857699000365908951
<21> × 183594440313011252445911
<24> × 39376921914948715310180926483901588941
<38>
3×1089+7 = 3
(0
)887
<90> = 47 × 2620085153369389
<16> × 2674430404638894104042554343
<28> × 910912558498503181307118855316906932618920203
<45>
3×1090+7 = 3
(0
)897
<91> = 263 × 310397 × 16150622431
<11> × 15740346658681
<14> × 144558766545391788172988240042912482282678808919745707117667
<60>
3×1091+7 = 3
(0
)907
<92> = 29 × 37 × 2368463 × 11122369031
<11> × 1061347564479302758227709668616387114551821907958905701434169873919038303
<73>
3×1092+7 = 3
(0
)917
<93> = 958393 × 495086659559
<12> × 2745914643721
<13> × 230255156259078301782490273594219252920268073364717458477983841
<63>
3×1093+7 = 3
(0
)927
<94> = 31 × 96774193548387096774193548387096774193548387096774193548387096774193548387096774193548387097
<92>
3×1094+7 = 3
(0
)937
<95> = 37 × 141061537 × 1240987674787980091256650071993361
<34> × 4631732303336888622217180085281253989404018318017323
<52> (Makoto Kamada / GGNFS-0.54.5b)
3×1095+7 = 3
(0
)947
<96> = 71 × 73 × 312929769011
<12> × 32838137201600323
<17> × 5632674477183462008448784970927863576084560908828308373300666593
<64>
3×1096+7 = 3
(0
)957
<97> = 121173603679670875523
<21> × 24757867298645882940751558153470261457888796078573314140899701373994659416109
<77>
3×1097+7 = 3
(0
)967
<98> = 37 × 127 × 1579 × 4497395087
<10> × 899026800639003032177953119210735756671288510422300183167912453887606833326312641
<81>
3×1098+7 = 3
(0
)977
<99> = 1959184687
<10> × 18358551180638802532928817679
<29> × 8340795484256794379858794115887051224428587896130311236194759
<61>
3×1099+7 = 3
(0
)987
<100> = 59 × 97 × 1279 × 81119024200702703
<17> × 2869617189581715235822903
<25> × 29092333577231525589382213
<26> × 60520390659918817871834263
<26>
3×10100+7 = 3
(0
)997
<101> = 23
2 × 37 × 7678967 × 1000866991
<10> × 46248401599818479379883
<23> × 4312091457950501485337287857027747282974290083457420899209
<58>
3×10101+7 = 3
(0
)1007
<102> = 1667 × 179964007198560287942411517696460707858428314337132573485302939412117576484703059388122375524895021
<99>
3×10102+7 = 3
(0
)1017
<103> = 17 × 31183 × 47147 × 1288933 × 1746463 × 53322517204295489809480305702983110188955975714888120860086581601244316863338449
<80>
3×10103+7 = 3
(0
)1027
<104> = 37 × 73 × 8131353049
<10> × 3500349912571
<13> × 5454615958313
<13> × 165556922073283387
<18> × 432126469624198278826666829300413256680789639643
<48>
3×10104+7 = 3
(0
)1037
<105> = 139 × 23743 × 90901460695571917145136605200108960550887092204684637077433197274046996661189348651643483259132491
<98>
3×10105+7 = 3
(0
)1047
<106> = 1993 × 4289 × 124776136970633
<15> × 4807194448933665149
<19> × 28860364448854363372017120293
<29> × 20273693351933343509455160294262628711
<38>
3×10106+7 = 3
(0
)1057
<107> = 19 × 37 × 223 × 2693 × 7883 × 13622737 × 6580345675035756693857460719
<28> × 100558805553383969719058940946122882365167575230597714732879
<60>
3×10107+7 = 3
(0
)1067
<108> = 131 × 713533 ×
3209489029768577760832151180455949212104142826626729782195622785459255895160029562817419133687660209<100>
3×10108+7 = 3
(0
)1077
<109> = 31 × 2797 × 115607210891348457052787
<24> × 433281452608477152130090427
<27> × 690735969625772006836944498829857936179847407952595549
<54>
3×10109+7 = 3
(0
)1087
<110> = 37 × 2845252117
<10> × 3713924441
<10> × 12504288313116615501097427
<26> × 19571965808741818874482698385709
<32> × 313525077971325739601067364163441
<33> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1340883278 for P32 x P33 /
August 27, 2007 2007 年 8 月 27 日)
3×10110+7 = 3
(0
)1097
<111> =
definitely prime number 素数
3×10111+7 = 3
(0
)1107
<112> = 73 × 15982711 × 8729351929
<10> × 673840872641
<12> × 29534344527152687
<17> × 6547792133200043993
<19> × 2260405600467595500562401249746577803868165431
<46>
3×10112+7 = 3
(0
)1117
<113> = 37 × 8287 × 86688607 × 7223154329
<10> × 51298510637495653901363
<23> × 3045990308019871902430191141160812557793618513008639223149911675777
<67>
3×10113+7 = 3
(0
)1127
<114> = 9958794049
<10> × 54305905957
<11> × 554711845956529035779901603384095911608092759418946322823072623936745821785747652491457474299
<93>
3×10114+7 = 3
(0
)1137
<115> = 89 × 109 × 2820563 × 432040087316862334144741897
<27> × 363408045426901508336853965827
<30> × 698313378637433319644312675482359830254117350331
<48> (Makoto Kamada / Msieve 1.26 for P30 x P48 / 11 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
September 3, 2007 2007 年 9 月 3 日)
3×10115+7 = 3
(0
)1147
<116> = 37 × 1202857 × 122658774730152389
<18> × 5495496158905196200091295440221378382924315504636677126346633227761598698101098371920658407
<91>
3×10116+7 = 3
(0
)1157
<117> = 941 × 7229 × 1005413 × 1768241 × 793456171721645674090119834605962552118405123
<45> × 31263997790510739426533319802087948467956549868101057
<53> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P45 x P53 / 2.15 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
September 3, 2007 2007 年 9 月 3 日)
3×10117+7 = 3
(0
)1167
<118> = 991608181877
<12> ×
3025388510128411573298005142434025047727354352215767200398654400825662500737167664466358369287197026599691<106>
3×10118+7 = 3
(0
)1177
<119> = 17 × 37 ×
47694753577106518282988871224165341812400635930047694753577106518282988871224165341812400635930047694753577106518283<116>
3×10119+7 = 3
(0
)1187
<120> = 29 × 73 ×
141709966934341048653755314123760037789324515824279641001417099669343410486537553141237600377893245158242796410014171<117>
3×10120+7 = 3
(0
)1197
<121> = 9746255741
<10> × 21886913773
<11> × 93792876069619
<14> × 1014838616150641
<16> × 147751564092636026549460363590839067806919556303848343368829011104122581
<72>
3×10121+7 = 3
(0
)1207
<122> = 37 × 2153 × 283193 × 45016298861
<11> × 24521474895583
<14> × 172367199446977
<15> × 1093269834500648855661843412047037
<34> × 6392851589358087090204524857849663762157
<40> (Makoto Kamada / msieve 0.81 for P34 x P40 / 5.8 minutes)
3×10122+7 = 3
(0
)1217
<123> = 23 × 107 × 105943 × 2044607702751648523
<19> × 6979230306835332966261470773
<28> × 80634305897026311868291137188315959326968015903591041646130428132371
<68>
3×10123+7 = 3
(0
)1227
<124> = 31 × 521 × 2657 × 144071 × 139782905835241
<15> × 528131554443915112320432461
<27> × 6572907672325994368234960644661984811352078028138564021130575701041131
<70>
3×10124+7 = 3
(0
)1237
<125> = 19 × 37 × 193 × 435811428691633
<15> × 416592103205978657
<18> × 2606793020110011769
<19> × 339553265471003892270018410791
<30> × 1375892525928161011267693952476821720167
<40> (Makoto Kamada / msieve 0.81 for P30 x P40 / 2.5 minutes)
3×10125+7 = 3
(0
)1247
<126> = 240353 × 967787 × 133187693714671747037424021997
<30> × 9683398946669705008572309264729499781958600622317451617147818679362578763890277809321
<85> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2528618589 for P30 x P85 /
August 28, 2007 2007 年 8 月 28 日)
3×10126+7 = 3
(0
)1257
<127> = 4720909 × 10534455986864899
<17> × 42697713463908436112197336349
<29> × 1412794170457977634954503119767881062698761257562555945470260957432227561173
<76>
3×10127+7 = 3
(0
)1267
<128> = 37 × 73 × 6762030461
<10> × 78363271672974846821
<20> × 41050596016202387245201
<23> × 510607889803239347870049292765825535164528782394367612040521179773646147
<72>
3×10128+7 = 3
(0
)1277
<129> = 2685101 × 33851255863
<11> × 12978558218195034379386149
<26> × 275313088291577407642928246977003907
<36> × 923703385381580265251720036954725538332661715176123
<51> (Sinkiti Sibata / Msieve v. 1.26 for P36 x P51 / 5.86 hours on Pentium 3 750MHz, Windows Me /
September 4, 2007 2007 年 9 月 4 日)
3×10129+7 = 3
(0
)1287
<130> =
definitely prime number 素数
3×10130+7 = 3
(0
)1297
<131> = 37 × 71 × 33810961 × 1648142131729004126563
<22> × 21200147141676683625158187167
<29> × 9666519480363108756410741342046902197031024406908628685646707177884961
<70>
3×10131+7 = 3
(0
)1307
<132> = 61 × 3889 × 16673127629
<11> × 654750113451724387
<18> × 367843730195277468720927798645873350770134361
<45> × 314917983297778113935616240983926140815612293301748461
<54> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P45 x P54 / 6.51 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
September 4, 2007 2007 年 9 月 4 日)
3×10132+7 = 3
(0
)1317
<133> = 20590611374091488546520676374415000816224551
<44> × 145697470827641601340741249542086188044830839410971692164392935223681417160709307626970657
<90> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P44 x P90 / 2.88 hours on Core 2 Quad Q6600 /
September 4, 2007 2007 年 9 月 4 日)
3×10133+7 = 3
(0
)1327
<134> = 37 × 29581 × 71206879090633339569010774993897538969
<38> × 384932630573456592303493441248187029453637827755687637553671267379325800269120529793395199
<90> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P38 x P90 / 2.83 hours on Core 2 Quad Q6600 /
September 5, 2007 2007 年 9 月 5 日)
3×10134+7 = 3
(0
)1337
<135> = 17 × 24547 × 515490719 × 30606905471
<11> × 93372706503094537
<17> × 7920075015505035621361
<22> × 61614708112120683019353383604747871764589775720558852796938289744784901
<71>
3×10135+7 = 3
(0
)1347
<136> = 47 × 73 × 191 × 153701 × 24308048293
<11> ×
1225294222783659149674745891790542477846384760640765453178552304749161043457493805781151039210462781583819589281719<115>
3×10136+7 = 3
(0
)1357
<137> = 37 × 6556535936327394866605979149660371778651962509
<46> × 123664511059628497811157288760274150729201758246527989892496823924203364385516946923141479
<90> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P46 x P90 / 4.25 hours on Core 2 Quad Q6600 /
September 5, 2007 2007 年 9 月 5 日)
3×10137+7 = 3
(0
)1367
<138> = 36225266507960712217403
<23> ×
8281512571731480890323903115149992908549080258941491179820186231956479289243636743385510859771195448631106956546469<115>
3×10138+7 = 3
(0
)1377
<139> = 31 × 30347 × 27582727203473715137972750799973321
<35> × 9338357328303256578758498008894337760073
<40> × 12380440690635148293553334360514326357608119969517531812347
<59> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P35 x P40 x P59 / 11.09 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
September 7, 2007 2007 年 9 月 7 日)
3×10139+7 = 3
(0
)1387
<140> = 37 × 127 × 433 × 599 ×
24615070895674894344095305163179405402499186034989389546512553042472690274217001507540991479613823309524129773696184760748399011379<131>
3×10140+7 = 3
(0
)1397
<141> = 886591 × 21345509 × 870020740547606992047908247418054629224598409723907992361
<57> × 18220563960260903608607526139448840316782587407515464316476336274810173
<71> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P57 x P71 / 12.05 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
September 7, 2007 2007 年 9 月 7 日)
3×10141+7 = 3
(0
)1407
<142> = 1159240267
<10> × 3355488484559
<13> × 689605891019146429
<18> × 16044985525176124301
<20> × 48029630362478262569811764243
<29> × 1451250916352368211846287345233501107250419128707398177
<55>
3×10142+7 = 3
(0
)1417
<143> = 19 × 37 × 415553 × 4356998080213
<13> × 4263373964673773
<16> ×
5528390479771761027088740445384511407888467191613266882495942970115243448045557566628782102388820352357577<106>
3×10143+7 = 3
(0
)1427
<144> = 73 × 347 × 7793 × 14087 × 20681 × 25999009 × 7420475865516949471
<19> × 472866768427802125793929
<24> × 57180355199406003395710694670294872255933992610016221680979619117994690260997
<77>
3×10144+7 = 3
(0
)1437
<145> = 23 × 459383 × 128248879471
<12> × 1352119565902402853
<19> × 412360496428279684134266762455314955302583
<42> × 3970752049300281989132003305040428926587105565745390502436467127587
<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P42 x P67 / 13.30 hours on Cygwin on AMD XP 2700+ /
September 9, 2007 2007 年 9 月 9 日)
3×10145+7 = 3
(0
)1447
<146> = 37 × 149 × 4548472797563
<13> × 77229184368528211553
<20> ×
15491241068552540105036234877156957913331632434707419884397089665026362420987079081715814031706642272209382301<110>
3×10146+7 = 3
(0
)1457
<147> = 4813 × 5413 × 28477 × 2544313 × 13055969 ×
12172884001913546407930227034471808163291537380024752217093389071137834033229275152059466733077673902911687232036254866987<122>
3×10147+7 = 3
(0
)1467
<148> = 29 × 2437 × 553525949 × 3997619504444745287
<19> × 6556640848925693764421202281051
<31> × 2925815201213225488015353783615323323721015839286569481343687648583824330951467747743
<85> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2420608976 for P31 x P85 /
August 29, 2007 2007 年 8 月 29 日)
3×10148+7 = 3
(0
)1477
<149> = 37 × 523 × 11819993 ×
131159762755336138006427200282890755609778787971735622504379717325360965624796738067777153954145101463965096328132385415307660841907961849<138>
3×10149+7 = 3
(0
)1487
<150> = 277 × 423242333 × 1269402691
<10> × 2842318663
<10> ×
709218743323941559738817511999175046691509040094900367572317654521204390728324360432435174823587866229394134765594867019<120>
3×10150+7 = 3
(0
)1497
<151> = 17
2 × 139 × 200475091 × 13089255395208126389
<20> × 18215291062445336232193
<23> × 99269467818197763097793
<23> × 14846281069698988924500032578739
<32> × 1060141324047330217134733111652288596956953
<43> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1447189635 for P32 x P43 /
August 29, 2007 2007 年 8 月 29 日)
3×10151+7 = 3
(0
)1507
<152> = 37 × 73 × 1244863 × 20628811590269
<14> × 1197832543309205649377891301884244716228803440401897936550987217
<64> × 361081131072503212385537651948543045335365693158346674560705560593
<66> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P64 x P66 / 27.46 hours on Cygwin on AMD XP 2700+ /
September 11, 2007 2007 年 9 月 11 日)
3×10152+7 = 3
(0
)1517
<153> = 8347351 × 7811046197
<10> × 858719673857
<12> × 250559653015574120385408539
<27> × 577938539278524803843369748270872920429
<39> × 37001485905141343750684997572615954124281964070904019247443
<59> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P27 x P39 x P59 / 36.57 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
September 5, 2007 2007 年 9 月 5 日)
3×10153+7 = 3
(0
)1527
<154> = 31 × 1960320883
<10> × 234995429723777
<15> × 12766708087797880775647643713694004841381361147278295433889
<59> × 16454854639373394037106403236176282020045812281709905847229481803749603
<71> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P59 x P71 / 16.75 hours on Core 2 Quad Q6600 /
September 15, 2007 2007 年 9 月 15 日)
3×10154+7 = 3
(0
)1537
<155> = 37 × 25735367917376428887903352224467
<32> ×
31505701158573848678701736130318189705992101267109759254218977833513289599982530505291377571538661224594650439297325530233<122> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=133750624 for P32 x P122 /
August 29, 2007 2007 年 8 月 29 日)
3×10155+7 = 3
(0
)1547
<156> = 307 × 947 × 17011 × 85013863614622230403517
<23> × 81026516161317424585126385687853691355677579362917
<50> × 8806151149339157734770802696564069152769229056077368044884311562147487877
<73> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P50 x P73 / 16.65 hours on Core 2 Quad Q6600 /
September 18, 2007 2007 年 9 月 18 日)
3×10156+7 = 3
(0
)1557
<157> = 1428660435500894737
<19> × 23751015386450850890960912782656510193131256880878674102473
<59> × 88411764036120295668516229411892223895453769985635566390071101529293788597427807
<80> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P59 x P80 / 24.47 hours on Core 2 Quad Q6600 /
September 19, 2007 2007 年 9 月 19 日)
3×10157+7 = 3
(0
)1567
<158> = 37 × 59 × 6271 × 119927861 ×
18273032659591471572351258393792764128146724729192556969491941599651410105396297348901809018790775415066902115813536137657291680668027377119459<143>
3×10158+7 = 3
(0
)1577
<159> = 89 × 2076619 × 259656955391
<12> × 252655059854571780687683274450095709673880513
<45> × 24742664377819752522172823349240990874103759568271850621675059742047926996980289580771977958019
<95> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P45 x P95 / 32.13 hours on Cygwin on AMD 64 3400+ /
September 25, 2007 2007 年 9 月 25 日)
3×10159+7 = 3
(0
)1587
<160> = 73 × 1843607 × 222421799613457
<15> ×
100219607114202835442269081027255566630476151518805879599117844637392912859235645420536824043996720508825277514316030576926119809262344441<138>
3×10160+7 = 3
(0
)1597
<161> = 19 × 37 × 5987 × 190783 × 2301583954628587
<16> × 30214589326193078803
<20> × 168821492926505124753835321037510889107
<39> × 3182333894509189879957908738033612846872644789961813377047250471481774358607
<76> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P39 x P76 / 62.61 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
September 10, 2007 2007 年 9 月 10 日)
3×10161+7 = 3
(0
)1607
<162> = 113 × 103559004733
<12> × 4634104042845913
<16> ×
5532089060402440837642968427106740040240958322867769746577136672372914761060455709275644038815423563734951865595093501849011518573691<133>
3×10162+7 = 3
(0
)1617
<163> = 3733216672222512252402080024047876262175838601063
<49> × 1801107624738145935914817354265795383914325232132040341
<55> × 446167973934504101158694839309139582095409259666991720176029
<60> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P49 x P55 x P60 / 43.21 hours on Core 2 Quad Q6600 /
September 14, 2007 2007 年 9 月 14 日)
3×10163+7 = 3
(0
)1627
<164> = 37 × 4361501 × 2951989138764677700040777
<25> × 242727769684516588041691481
<27> ×
259447406437644695945964880358107079598502865896649596963355067931719255377640092560152213601875749473303<105>
3×10164+7 = 3
(0
)1637
<165> = 93463 × 102367 × 5561993 × 2697746404826036755483
<22> × 4075016412566873951820653
<25> × 85121969595848139659769186241637634013
<38> × 6024471790877011640388025283913980838326383051453673075231227837
<64> (JMB / for P38 x P64 /
September 5, 2007 2007 年 9 月 5 日)
3×10165+7 = 3
(0
)1647
<166> = 71 × 739 × 24680319817
<11> × 12015226484473081913
<20> × 7814625344423111337812529497145365416512918941
<46> × 24673318295604171900567002523536315906661600240732917021551158395138773289853506329223
<86> (matsui / GGNFS-0.77.1-20060513-prescott snfs for P46 x P86 /
March 9, 2008 2008 年 3 月 9 日)
3×10166+7 = 3
(0
)1657
<167> = 17 × 23 × 37 × 19833927073
<11> × 8996469684187
<13> × 588640457649593408813104957
<27> × 10602713652271671635338735723
<29> × 1862064839791754846142240803810488476144261366504628162915046324765101490861512485961
<85>
3×10167+7 = 3
(0
)1667
<168> = 73 × 2820908683
<10> × 47840528956935069857729
<23> × 1357442863346680718028321638854705863851
<40> × 22433231368448594492739585313305402233259675370737675880559365524717784659590253895181940293287
<95> (Robert Backstrom / GMP-ECM 6.0 B1=2230000, sigma=3075737986 for P40 x P95 /
February 7, 2008 2008 年 2 月 7 日)
3×10168+7 = 3
(0
)1677
<169> = 31
2 × 220442934797851
<15> × 68134668790873592384459578322644469894232860523283147276193
<59> × 207842105702935771469899396383940505601339931626765063877009064283675813950588095504388659109
<93> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P59 x P93 / 52.57 hours on Cygwin on AMD 64 X2 6000+ /
July 7, 2008 2008 年 7 月 7 日)
3×10169+7 = 3
(0
)1687
<170> = 37 × 321485385345676762706421506544388644469
<39> ×
2522076734340466176982866611144735500345304211081851607078673956180783695480227990278425308960588927381717464690492823021851851119<130> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=769407356 for P39 x P130 /
September 23, 2007 2007 年 9 月 23 日)
3×10170+7 = 3
(0
)1697
<171> = 11900149 × 116810359621
<12> × 333724949161
<12> × 351770377281652245322691967098920378125785292375511986421626711343961
<69> × 1838398065903311066272707877014113500727599586799929165989126913413817423
<73> (Serge Batalov / Msieve-1.38 snfs for P69 x P73 / 35.00 hours on Opteron-2.6GHz; Linux x86_64 /
November 6, 2008 2008 年 11 月 6 日)
3×10171+7 = 3
(0
)1707
<172> = 31620332097111024989233352721851562907652707
<44> × 119542069001731768208656345412449977669924073427695871
<54> × 793659208661801859516537543036477671956372358203480550399351605739016658931
<75> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000, sigma=4020180606 for P44 /
September 7, 2007 2007 年 9 月 7 日) (Jeff Gilchrist / GGNFS & Msieve 1.41 snfs for P54 x P75 / 44.42 hours on Intel Core2 Q9550 @ 3.4GHz in Vista 64bit /
April 13, 2009 2009 年 4 月 13 日)
3×10172+7 = 3
(0
)1717
<173> = 37 × 337 × 114262317715380613
<18> ×
21056520170116679937455595003008874793699061658220099394077770991979796131391815754696100648637827420202655065065068813932148398207730911366301481522831<152>
3×10173+7 = 3
(0
)1727
<174> = 283 × 1913 × 12781 × 123368533577
<12> × 273075549184718167710054152780236687
<36> ×
1286968141075529714067699681620509401294955843542948675197022676011814934805266689072732719905213815274493968019250807<118> (Lionel Debroux / GMP-ECM 6.2.3 B1=1000000, sigma=4028931106 for P36 x P118 /
September 24, 2009 2009 年 9 月 24 日)
3×10174+7 = 3
(0
)1737
<175> = 2131 × 2539 × 388785044783
<12> × 372247744413533552867
<21> × 3918018457203894704610101
<25> × 83101205384307732797112639371594904845329
<41> × 11766835380003014836384610732539311187782328395943642994305646727529367
<71> (JMB / GGNFS-0.77.1-20060513-pentium4 gnfs for P41 x P71 / 48.39 hours /
September 6, 2007 2007 年 9 月 6 日)
3×10175+7 = 3
(0
)1747
<176> = 29
2 × 37 × 73 × 107 × 521 × 661 × 90911 × 51322051021
<11> × 828460334753
<12> ×
92722590232649274446142280534945064984657986755894010810494070455177597514980562558484084216931492824452182353744336309886774660549367<134>
3×10176+7 = 3
(0
)1757
<177> =
definitely prime number 素数
3×10177+7 = 3
(0
)1767
<178> = 6949 × 3054553 × 27056747 × 493404835963026012897437638151
<30> ×
10586984945347812569293655796156978605781927234580251298728859025464296926453574495799663305462065258099367037772156197388089569823<131> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1041251524 for P30 x P131 /
August 31, 2007 2007 年 8 月 31 日)
3×10178+7 = 3
(0
)1777
<179> = 19 × 37 × 877 × 2377 × 955091 × 1475151073734211096553921
<25> × 142740304627110833486422688998330293019789397894891
<51> × 101790977042959291906914808841036511141159577020041503769999368278340596550847833365932261
<90> (Youcef Lemsafer / GGNFS-SVN430, msieve 1.50 (SVN 408) snfs for P51 x P90 /
November 1, 2012 2012 年 11 月 1 日)
3×10179+7 = 3
(0
)1787
<180> = 724309 × 8113870839505271363511368113
<28> ×
51046889397874516674374640886900341936443838751528546555919718907710596677177554361021463321261206354156874905727408705794753863231816679987975771<146>
3×10180+7 = 3
(0
)1797
<181> = 139123445599
<12> × 3357886592224964813424893960925970858540249084816807
<52> ×
6421772340762707259521884513510240331991395754693705229521694663499363397052934796480061189870059727049936465643276799<118> (Robert Backstrom / Msieve 1.44 snfs for P52 x P118 /
February 8, 2012 2012 年 2 月 8 日)
3×10181+7 = 3
(0
)1807
<182> = 37 × 47 × 127 × 13725913 × 21623826491768316731972267
<26> ×
457661270578095137164137504134980583396871387947601110795572534703070051277670769241048807880195755464389757497291473633113527278035439907990089<144>
3×10182+7 = 3
(0
)1817
<183> = 17 × 79283 × 31405992767627
<14> × 269704249852213941977849110996392473758794465820651509487583869814723723
<72> × 26277977836457813672653924866477178778975794876037608850035378717787586434503082719743426997
<92> (Youcef Lemsafer / GGNFS-SVN430, msieve 1.50 (SVN 408). snfs for P72 x P92 /
May 8, 2013 2013 年 5 月 8 日)
3×10183+7 = 3
(0
)1827
<184> = 31 × 73 × 31387 × 18897703666390959239523719317917845075054654445979389633511
<59> ×
2235001705157404158463405732593419570696376461969687718092389576575647380791201282404260098119332443793067631748163077<118> (Wataru Sakai / for P59 x P118 /
June 27, 2010 2010 年 6 月 27 日)
3×10184+7 = 3
(0
)1837
<185> = 37 × 48825826060803420560275940333
<29> ×
16606187262476579971995760906943210586269694906092527719070492669074651946268267950831190725861763313025790106859512466549588197667323602041976271696074567<155>
3×10185+7 = 3
(0
)1847
<186> = 1053148237
<10> × 367359565561
<12> × 9079315667762293
<16> ×
85405783470340571065076845909287543052200952350363226757713830415120497877703268968962293157264152219723022901790644421184243671490216153670724604207<149>
3×10186+7 = 3
(0
)1857
<187> = 199 × 1483 × 61643 × 226307 × 3756989 × 409626733064891561693
<21> ×
473496810509582046821742464177596727335266811070198096053958472058069940681500075130313819549016230654385285739848949606960963289322741981781323<144>
3×10187+7 = 3
(0
)1867
<188> = 37 × 605922879342007975663171
<24> × 4806057246094980532459373243264236165811
<40> ×
278428212742383267914444914208047124305927368854314682108586270515137640422520152091667989368583141234316043633289010327731<123> (Youcef Lemsafer / GMP-ECM 6.4.2 B1=3000000, sigma=1133709058 for P40 x P123 /
February 4, 2013 2013 年 2 月 4 日)
3×10188+7 = 3
(0
)1877
<189> = 23 × 247068535739
<12> × 1356701864133060161
<19> × 2433152966732430024183070123007353531902806309832285192601048887931
<67> × 15992712967036895948718699514895828611711981478735377666486535908861535915202603440781142841
<92> (Youcef Lemsafer / GGNFS (SVN 430), msieve 1.50 (SVN 708) snfs for P67 x P92 /
May 10, 2013 2013 年 5 月 10 日)
3×10189+7 = 3
(0
)1887
<190> = 33521 × 8814854900159220551
<19> × 131252454624516158629116042379
<30> × 43954143253151000858584551069129739498328693
<44> × 1759875184287334760567985008578206708383415261155223604501023422877699018454009608577912043111
<94> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=791822475 for P30 /
September 1, 2007 2007 年 9 月 1 日) (Youcef Lemsafer / GMP-ECM 6.4.2 B1=11000000, sigma=71571980 for P44 x P94 /
February 11, 2013 2013 年 2 月 11 日)
3×10190+7 = 3
(0
)1897
<191> = 37 × 12023821039
<11> × 24740182686490123
<17> × 834345923564404036855216234597229
<33> × 1533754569246596800343579035700691859618492126401129432620297
<61> × 2129963233079639445425492414094497020193914553913848036384671909368451
<70> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=718876711 for P33 /
September 1, 2007 2007 年 9 月 1 日) (Erik Branger / GGNFS, Msieve gnfs for P61 x P70 /
September 27, 2010 2010 年 9 月 27 日)
3×10191+7 = 3
(0
)1907
<192> = 61 × 73 × 4768139 × 11421913 ×
1237031629937293209007439027146779589755228870871341611433436503570390796986837227129487100598490302577692315166847909176373244767505642951434728276295287500127591953321116217<175>
3×10192+7 = 3
(0
)1917
<193> = 22039 × 375097 × 1112059787454691
<16> × 642068743400393347285001478997421167763
<39> × 1681024249843140161747771597374151664910161406779701
<52> × 302344543644923459390790323502278773143278762026603255174869342665706773115613
<78> (Youcef Lemsafer / GMP-ECM 6.4 B1=3000000, sigma=484142988 for P39, Msieve 1.50 snfs for P52 x P78 /
February 10, 2013 2013 年 2 月 10 日)
3×10193+7 = 3
(0
)1927
<194> = 37 × 4957 × 374537 × 2347550130303692987846536043
<28> ×
186033436713641467706744823075248193665097195594585990256073158564928103657674858202179097657763773806147132076266602430334149993988521991536520679398302653<156>
3×10194+7 = 3
(0
)1937
<195> = 1734986326637479007
<19> × 431168604266382453431
<21> × 248787236500857218390561
<24> × 439982137238951968875436976379228563
<36> × 2181760916727482904956744337987008327579
<40> × 1679220662527382761557265816940310453170712534544646764943
<58> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=974592591 for P36 /
September 2, 2007 2007 年 9 月 2 日) (JMB / for P40 x P58 /
September 4, 2007 2007 年 9 月 4 日)
3×10195+7 = 3
(0
)1947
<196> = 97 × 48305287 × 2620757107
<10> × 51098821185311
<14> × 11924605305477772589540332494963999896302871
<44> ×
400934277057996480858505066557758567993715884073205231275836329565022162411055295222107073259669869072646637934767577539<120> (Youcef Lemsafer / GMP-ECM 6.4.2 B1=11000000, sigma=3479621926 for P44 x P120 /
February 13, 2013 2013 年 2 月 13 日)
3×10196+7 = 3
(0
)1957
<197> = 19
2 × 37
2 × 139 × 443 × 36091254020598556209326577995494244927464115130739574091707
<59> ×
27314301942871410508815654558572642467742232077001241089872808230959660848582635043807507801145627359640160760847685024248893757<128> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P59 x P128 /
September 10, 2012 2012 年 9 月 10 日)
3×10197+7 = 3
(0
)1967
<198> = 2357 × 8929 × 1802680774763383
<16> × 97148865973080265245073984193
<29> ×
81395854489413446318803739695291383680562514323245286068600107617125030508665056235124237334794958273834035260731457900762605517868916643151494701<146> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1336248685 for P29 x P146 /
October 21, 2008 2008 年 10 月 21 日)
3×10198+7 = 3
(0
)1977
<199> = 17 × 31 × 709 × 353042910133991541918917440370516843496015546212267909038130357
<63> ×
22742432269025299197225941631406058277981194146870968014849567950717154661158756620175583489442241367223874181066482274509852878657<131> (matsui / Msieve 1.43 snfs for P63 x P131 / 1205.18 hours /
October 22, 2009 2009 年 10 月 22 日)
3×10199+7 = 3
(0
)1987
<200> = 37 × 73 × 2753 × 6011 × 175837 × 11755019 × 2818428660441879356444251135174380528389149
<43> ×
115213424050479694234130033057298575833274994888455285113974117573080141096803655508144418190494874414193245252957994580865763147179507<135> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P43 x P135 /
September 11, 2012 2012 年 9 月 11 日)
3×10200+7 = 3
(0
)1997
<201> = 71 × 3881 × 15824563 × 1401171022897
<13> × 1108993863080776935793291
<25> × 28695538725855189461541207724094731927846842107655409102635929051
<65> × 1542953595882576632076367515659010122547109956089668180409524374435450128767744409278907
<88> (Youcef Lemsafer / GGNFS (SVN 430), msieve 1.50 (SVN 708) snfs for P65 x P88 /
May 16, 2013 2013 年 5 月 16 日)
3×10201+7 = 3
(0
)2007
<202> = 167 × 4480806397
<10> × 16098464849561
<14> × 20640840878222830361
<20> × 29822878112774732139151957
<26> ×
404563968552860957554114345693870272759057775354797298394146752092092648939324529196581084513766079411962916903089745735099544821169<132>
3×10202+7 = 3
(0
)2017
<203> = 37 × 89 × 10937 × 437647254442200871
<18> ×
1903299368935117038762202127087391621869007684158926911747066465339934583588913792176627834090520773155470988362511396812768681956921949456829734729902605268605974698021871538237<178>
3×10203+7 = 3
(0
)2027
<204> = 29 × 62057 × 43125287759
<11> × 35471066646755293
<17> ×
108974836411015028757750711986016543220783381879699504976036837048029909454657431752518292287872960388598846327069505280210618355440413981903551060820015690493149687203737<171>
3×10204+7 = 3
(0
)2037
<205> = 2111 × 12379 × 80141 × 360193 × 36529453 × 83762087274812203759
<20> × 4269986142493572515510539041322472993083083125849142037361
<58> ×
304396957359293809435131697777670257413950147980070263033236390457958665868388838721348354477163418973<102> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=260000000, sigma=2078429522 for P58 x P102 /
October 23, 2013 2013 年 10 月 23 日)
3×10205+7 = 3
(0
)2047
<206> = 37 × 3455209 × 3534497567
<10> × 324732461981
<12> × 39276464439197211640627
<23> ×
5205463783813303785261694765096463111777693694813810284172846250844767504076990057204611602468040887997483885901458999414284569067823119138298630819501051<154>
3×10206+7 = 3
(0
)2057
<207> = 57571187 × 15557878282469
<14> × 21651171190959241
<17> × 309862899046280533
<18> × 197694964518197399767
<21> × 3111798304100902138163965386768954663591679
<43> × 81153579522963849609520526889367170542293005842928107070828858437001152440449294513323461
<89> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=221886097 for P43 x P89 /
February 18, 2013 2013 年 2 月 18 日)
3×10207+7 = 3
(0
)2067
<208> = 73 × 12049 × 20401344697
<11> × 13517769210499
<14> × 1039453663496936952421
<22> × 9432433874058054019969977334241830982668833401295286097283153632918611
<70> × 1261405341237284280025488123184306749297634328292156828106939370955274955045833298797987
<88> (Youcef Lemsafer / GGNFS-SVN430, msieve1.50 (SVN708), Msieve 1.50 snfs for P70 x P88 /
May 6, 2013 2013 年 5 月 6 日)
3×10208+7 = 3
(0
)2077
<209> = 37 × 431 × 3930569 × 409705217 × 649507979 × 711991376789893
<15> × 56242836773569802705847085915084397458601445774440567551
<56> ×
44914741028155070837083211811236068646096217841251804128424917756221683102878724360237887538744878280394376101<110> (Bob Backstrom / YAFU, GMP-ECM B1=2000, sigma=3936454452 for P56 x P110 /
October 24, 2024 2024 年 10 月 24 日)
3×10209+7 = 3
(0
)2087
<210> = 269020061 × 473284516123
<12> × 32168106280008062849145337
<26> × 534085099279488122221029677918903579780585984478043131182848090921973
<69> × 137144480897207011618673834049679740733237533277501436901766300545838901510914796016536259313069
<96> (ebina / Msieve 1.54 snfs for P69 x P96 /
October 22, 2024 2024 年 10 月 22 日)
3×10210+7 = 3
(0
)2097
<211> = 23 × 5479 × 134649782557888060308791003
<27> ×
176801710292993682592052588384665813916031608791840858751299286523556560079735718717557026828145755403689403483862737142705560771737618552739822192858845571804783402701657709617157<180>
3×10211+7 = 3
(0
)2107
<212> = 37 × 953 × 175333 × 2383169 ×
[2036142295109864932825841359544354720031301730205960408838992758337733914959486494412302211704800888168388909197283925554541820786709309625846382028580199017846105544560821910089896952489781225431<196>]
Free to factor
3×10212+7 = 3
(0
)2117
<213> = 8387 × 6816599359
<10> × 2104478221463
<13> × 141130881727709
<15> × 291179699617744834032197
<24> × 105302178752345098917153823
<27> × 1175632029747201560722147952723780985322274976581
<49> × 490129103362120975472383181391068484852476506979787990886015367023341959567
<75> (Dmitry Domanov / for P49 x P75 /
February 17, 2013 2013 年 2 月 17 日)
3×10213+7 = 3
(0
)2127
<214> = 31 × 256138979 × 256466957 × 323739399756221177
<18> × 404606877942395817011766713
<27> ×
11246662164720455194679301275822197440489848222382329333154619499423570654618049078233015321537779978267971117327468717008177949096251531080632944709199<152>
3×10214+7 = 3
(0
)2137
<215> = 17 × 19 × 37 × 683 × 4203804056816289073472794303279470241000729095124703
<52> × 132529256046524403310704082852968707296003826722941373
<54> ×
6596933095852949776565774399108017101273378542196582965177686649514960025136222473057240305364592397641<103> (Bob Backstrom / GMP-ECM 6.2.3 B1=900100000, sigma=3738441443, Msieve 1.54 snfs for P52 x P54 x P103 /
November 28, 2019 2019 年 11 月 28 日)
3×10215+7 = 3
(0
)2147
<216> = 59 × 73 × 977 × 461467 × 1152677483046521
<16> × 15309508366871707406062728790691
<32> × 36984778148192734600624644012817451
<35> × 119170281303569645345574388800989299473635468109349386201137
<60> × 1986328771028970138601686290970375607792144439596114344242848927
<64> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1469045866 for P32 /
February 16, 2013 2013 年 2 月 16 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3311041823 for P35, Msieve 1.49 gnfs for P60 x P64 /
February 18, 2013 2013 年 2 月 18 日)
3×10216+7 = 3
(0
)2157
<217> = 492016580249
<12> × 6896459787426653543771836220821139
<34> ×
884128333165563487895755529159740581457857083087773846312080545210327786496677455819207427860083287674188394628305072186699618138489176451577048455649585476961328510842437<171> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=931395692 for P34 x P171 /
February 17, 2013 2013 年 2 月 17 日)
3×10217+7 = 3
(0
)2167
<218> = 37 × 181 × 1264997 × 225895062247
<12> × 307270178000367387812659
<24> ×
[51018103471605800367956575474397215392279971283523577894215462369142805159398799263389400274521100136221923061939892322343984851084475557057226939774919166562890444245464551<173>]
Free to factor
3×10218+7 = 3
(0
)2177
<219> = 277 × 2389 × 442475057 × 139697411283202441
<18> × 13790071564294055963
<20> × 50522099578618355254635154907
<29> ×
10526894566428900590332689956307222395822960377469595363110611604105377687280750588331237820655499100206812622234672040951724197041238309007<140> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2966099369 for P29 /
February 16, 2013 2013 年 2 月 16 日)
3×10219+7 = 3
(0
)2187
<220> = 1213 × 38726057603
<11> × 94687179317
<11> × 5147993858489
<13> × 3807784524128821
<16> × 1799238761569059182807683896651713913868734425786131807632242843
<64> ×
19123474636457497325474709993591955484189686213476891086121709092614837586069221001500251087622197290067<104> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P64 x P104 /
December 16, 2020 2020 年 12 月 16 日)
3×10220+7 = 3
(0
)2197
<221> = 37 × 11801 × 139024810376199218392715794966308012198369755129297552949636349522328522960053
<78> ×
494206449681261094435562424256838679222486167579750700800096967311654756544017661813095496416164047495382275165707303694647392488054138887<138> (Bob Backstrom / Msieve 1.53 snfs for P78 x P138 /
April 24, 2018 2018 年 4 月 24 日)
3×10221+7 = 3
(0
)2207
<222> = 293 × 10903 × 969497 × 2804383 × 5618707 × 83360122622417570220171590970859
<32> × 4750364721408905675428950139070656528735597436347
<49> ×
15523946656666842390118678740483270319932677240057492029640131258967469988699028608387495140465320370608660582368753<116> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1811546908 for P32 /
February 16, 2013 2013 年 2 月 16 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P49 x P116 /
June 17, 2021 2021 年 6 月 17 日)
3×10222+7 = 3
(0
)2217
<223> = 109 × 2826627203
<10> × 20977398881
<11> × 298009268733479068836827661738322101452083
<42> ×
1557560104054918098210221476103358154732756144608676124558729843062905037802321758707828086704645286945471069207955746633796104752130875535100550181090568989467<160> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=338538793 for P42 x P160 /
April 2, 2013 2013 年 4 月 2 日)
3×10223+7 = 3
(0
)2227
<224> = 37 × 73 × 127 × 313 × 51061 × 97790078124103
<14> × 5202357941686062457
<19> ×
[10756333845761009575202805557939182309032300414644855034455578374703369976350990972857893234381917274615022081844352184956122968220187330184669108504209735593653324693961964658847<179>]
Free to factor
3×10224+7 = 3
(0
)2237
<225> = 1627 × 8867493990672899
<16> × 262987182984499018299453599
<27> × 31154060880295010326525915046378405163979
<41> × 270373237759043910478489482172585012737937
<42> × 9386849390463998353709406138259548987924165849516805950312719296985314506515030586606522682014667
<97> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=68468456 for P42 /
April 2, 2013 2013 年 4 月 2 日) (Youcef Lemsafer / msieve 1.52 (SVN 942) win64 CUDA, GGNFS (SVN 440) for P41 x P97 /
December 1, 2013 2013 年 12 月 1 日)
3×10225+7 = 3
(0
)2247
<226> = 145243384103533
<15> ×
[20654985550746513734316195728027386828787606321917787006896546542973550153350320121797639380461728997051292964561390868585556497380504293102288562914788312944727462394387145619809544320065266779454014473545917379<212>]
Free to factor
3×10226+7 = 3
(0
)2257
<227> = 37 × 652699 × 5893973016991957
<16> × 21738226090892510077
<20> ×
9695592156476918686134016909974464954089776207237027055643355969088523619491245015339906451011641296076059350505551074675822667667138650594250260868247580253639927569282782617021839201<184>
3×10227+7 = 3
(0
)2267
<228> = 47 × 521 × 4942709 × 180612171151
<12> × 10626528255439
<14> × 583765589058891691564933
<24> × 175269876742234189806058709071
<30> ×
12622240301920220600381504470576698668348838195349861607167989349802977901999289110507155541966739340441634356097546975632991355540392697527<140> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=581379968 for P30 x P140 /
February 8, 2013 2013 年 2 月 8 日)
3×10228+7 = 3
(0
)2277
<229> = 31 × 107 × 439 × 3313 × 581639 × 4375141 × 40110514861
<11> × 580176994673
<12> ×
[10500875596903032763884309441558918803861922232986971594456955027000192790084387788630012678747486520874488888526565390910437999145099165518984335765125293067805513199192226682332790699<185>]
Free to factor
3×10229+7 = 3
(0
)2287
<230> = 37 × 1365583 × 206850031 ×
2870422586299533582937309773096125845159212328550355560364611294551480663564144413663132435769681046449694311253848007340443208597104106022609362352892027685456464819486489920093597248452694895716222828296087114107<214>
3×10230+7 = 3
(0
)2297
<231> = 17 × 191 × 598669 × 620010577 × 563583601417
<12> × 1478702394077
<13> × 1972153302189752657
<19> × 92601571170695111544465326458176329
<35> ×
1635516564225167887613216362315714885798530094290990438103212631946304042995363657738055469047619485256352962875229196631682016831961281<136> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3260755387 for P35 x P136 /
February 16, 2013 2013 年 2 月 16 日)
3×10231+7 = 3
(0
)2307
<232> = 29 × 73 × 2720562250019
<13> × 147308663712661707798483604427
<30> ×
3536009630961050321561175321710845883798072147904267883837873278552389154321443076151290248796229520373397347300565982396269373580965222236040192339552759496378349135801533008368681562267<187> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2914894320 for P30 x P187 /
February 8, 2013 2013 年 2 月 8 日)
3×10232+7 = 3
(0
)2317
<233> = 19 × 23 × 37 × 380867 × 29269541803
<11> × 353888218208284019133101279391804886403
<39> ×
[470308383715615733943781897782939854837085069873393126899110055781329611624299030798331809282032109410933458739331865208113536333669579466213146065729149581139706787118142501<174>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2091588175 for P39 /
April 2, 2013 2013 年 4 月 2 日)
Free to factor
3×10233+7 = 3
(0
)2327
<234> = 18199 × 85014889 ×
193900414561514676676875624465894072777130299574017010076799341892191441530045832787898951189182359636927827229667622161658129035825097782727387720753230531759016775547438793515504810453008425609857280394394799176646575337<222>
3×10234+7 = 3
(0
)2337
<235> = 322501 × 39564673 ×
[235116229497571765491837189764099880150451154319651287996106515301444788113703441822628944269215307480139661504806740339189429552617407273574123724292866428263559361437603507013122921773936065134872669967799761658051901659<222>]
Free to factor
3×10235+7 = 3
(0
)2347
<236> = 37 × 71 × 373 × 115477384313
<12> × 38070751597116457927
<20> ×
6964083364416778314475677207833974838706979363732012804227270812224380032996832530254802135966406639249095563973235561901406650427898722644618330987931148392791090353543589238750169764554347249950167<199>
3×10236+7 = 3
(0
)2357
<237> = 6737 × 41422096069617839
<17> × 6709529360460776329
<19> × 249729026332675607530766195161099
<33> ×
[641595861880340467557832794450234066553478993140900191782203091496087524716547162168227709617616084503209147064885363934543425447808732351348905841028018139062441619<165>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=246550503 for P33 /
February 17, 2013 2013 年 2 月 17 日)
Free to factor
3×10237+7 = 3
(0
)2367
<238> = 131 × 3527 × 14783513819749
<14> ×
[439204547145612724775767602345372509528084800543887024792429405359817538531480904703063835189737537116130038970692925243330701693708139282788719712088189908165391498299020354045893261565411074081151768133107457975895439<219>]
Free to factor
3×10238+7 = 3
(0
)2377
<239> = 37 × 179 × 46997 × 108949 × 4904225780431
<13> × 50895226174703
<14> ×
[3544260302883648546057867289912837191904022323016174724623091685649020528557556522763075295221426421013662644819611172164262559279096479853486764955259469200919259851913654232978022765854856341642721<199>]
Free to factor
3×10239+7 = 3
(0
)2387
<240> = 73 × 13873 × 8315833741
<10> × 83269011521
<11> × 459227736727
<12> ×
931559695519781173279123381638849077864286350874787269450679410022025725713780564128876058420926296806861407088459183320969921477610432687434745657413390133166077376123024277273278249480637914533488189<201>
3×10240+7 = 3
(0
)2397
<241> = 269 × 29272728393737
<14> × 1081913159420212215283775993
<28> ×
[352138385196499252842075374294924596067115522718400742704461702917624909200282156397884898904717952463358856842023616015231460012236807196525809123904101562529614779407876023179291638065701335522083<198>]
Free to factor
3×10241+7 = 3
(0
)2407
<242> = 37 ×
[810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811<240>]
Free to factor
3×10242+7 = 3
(0
)2417
<243> = 139 × 3371 ×
[640247220793522405451491669316578774950967733674229409115839929658172008818338387729448597751878592053678326991328918473053061555501964491889134791247393660272019702541141219329490427236970435517501157780390934953016524780768680813284703<237>]
Free to factor
3×10243+7 = 3
(0
)2427
<244> = 31 × 51421 × 18713437 × 515469167078298127
<18> ×
[195102480167271339396771789451034079470802404204563286852445183572712028526388109546180435103572178730015789391170008943408096471545442545383606054189027579470376051771099023667074096783449173813798172094794013343<213>]
Free to factor
3×10244+7 = 3
(0
)2437
<245> = 37 × 749249352958559349051537209085323256352699
<42> ×
[1082164178866706874308313035483424502524613749412168821147200771417651397116615857833095536061322955028770737458749922755480420258184823128017313369761534007405665329112903500002276317257541080584959489<202>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4055770585 for P42 /
March 7, 2013 2013 年 3 月 7 日)
Free to factor
3×10245+7 = 3
(0
)2447
<246> = 640223 × 108689465987
<12> × 1314689353188586192902247
<25> ×
[3279286655557191176518750077414630949464635348358714556483172448130202169366760858443908205213601085738984766391137067365196159761705682378702596557195509867997153459098634964706228747475768171513571400981<205>]
Free to factor
3×10246+7 = 3
(0
)2457
<247> = 17 × 89 ×
[1982815598149372108393919365499008592200925313945803040317250495703899537343027098479841374752148050231328486450760079312623925974884335756774619960343688037012557832121612690019828155981493721083939193654990085922009253139458030403172504957039<244>]
Free to factor
3×10247+7 = 3
(0
)2467
<248> = 37 × 73 × 3301546613865931
<16> ×
[3364180097206497791529406241910466126987742494793752636667413381438428315870225679099764080308465206325354032701903526666795836832930423204778704365020025273156797760832089138089438657865178020633066839508668533091351588156141897<229>]
Free to factor
3×10248+7 = 3
(0
)2477
<249> = 665796868817
<12> × 11993271422864609744246017402556166679877
<41> ×
[37570056131254015473810888385615588001199942971836739219168001628287912224313900119414207560912536255034332784614416687276365438702623251403496012548991074833244529912545359538287164535125897183723<197>] (Seth Troisi / GMP-ECM 7.0.6 dev B1=1e9 for P41 /
November 15, 2023 2023 年 11 月 15 日)
Free to factor
3×10249+7 = 3
(0
)2487
<250> = 40050167 × 1723638127
<10> ×
[43458109637678067108006543122258383638000416730645592232829359630649843948462669037381003301983672335902564281623142717357097280615906581045498742652651559132009939610549401190875297652331982685058476767159718036521226342632647393823<233>]
Free to factor
3×10250+7 = 3
(0
)2497
<251> = 19 × 37 × 1037860459249771
<16> ×
41117524827390138339408680524167213214423543414702156198476659514705797572953563533895846710592867544458111900404721106243630818626914552652522787693639199876254353073837717665072470108749354172531981713377631399345948395946322194539<233>
3×10251+7 = 3
(0
)2507
<252> = 61 × 1229434062673
<13> × 76923699133670093
<17> × 2697260391814113539312508557649147883769
<40> ×
[19279827445128695681286994521451236318215416880570383267836739361265782578450039505541555028812458950028197210747050397138014195768607928154496199928148470016095298203561016495471207<182>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=599025282 for P40 /
August 19, 2016 2016 年 8 月 19 日)
Free to factor
3×10252+7 = 3
(0
)2517
<253> = 702077 × 1021196959
<10> × 618151588361667754213
<21> × 335037618566124702952390519264883
<33> ×
[20204049947148368536599946042875025309903113153658015631269215564806420086114764670902028595324160215115074938857940320763235003141576630895008185178353341414410848001233374114542632531<185>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4281918355 for P33 /
February 7, 2016 2016 年 2 月 7 日)
Free to factor
3×10253+7 = 3
(0
)2527
<254> = 37 × 233 × 141631309721485840264479021442263641
<36> ×
[24569953715410791983447245767573831839016426209700744800742215982674684866498337635017193699322282945005788212942216911168204570590230200386185381968502569302287544702594927061739974196647613943634000240609821849787<215>] (Serge Batalov / GMP-ECM B1=6000000, sigma=3835349630 for P36 /
June 23, 2016 2016 年 6 月 23 日)
Free to factor
3×10254+7 = 3
(0
)2537
<255> = 23 × 4057 × 25639 × 3186899 × 41132400319
<11> ×
956610128475176482640016376848738637092598476905827475942525449408471212637644266962389630885943874589679501324023474107224975839102023489914629589595319527179401151200180614931817039421623050975282325263030028482337389988722043<228>
3×10255+7 = 3
(0
)2547
<256> = 73 × 344873 × 1064341 × 910116266999
<12> × 941066467036928077972288021
<27> ×
130719757106617003619853309832425031548680320426164533539282447472540056718316693079392649082372318233619259765962275272630810696130174057149080839559958235801437734444978187018142685267053572981060061897<204>
3×10256+7 = 3
(0
)2557
<257> = 37 × 1015812071
<10> × 6332218676621
<13> ×
[126052149829630259629864946918532697966993726830345426335058529514556952405250326551368722038097475124148104587915716501452166925374041308838731507307293953065443274607459418392803192055363404554449579931647204610487652068599607745921<234>]
Free to factor
3×10257+7 = 3
(0
)2567
<258> = 887 × 60307397 × 1210767970499
<13> × 150831343903573
<15> × 8766744791214661
<16> × 3705056361251938702181041943546677
<34> ×
[945456047275081639132979173684342256988899923093211164579300542107619127751519303548917351733143480301926761682802247286468152444839831295933982702716103054871628209691627<171>] (Serge Batalov / GMP-ECM B1=6000000, sigma=2305041146 for P34 /
June 23, 2016 2016 年 6 月 23 日)
Free to factor
3×10258+7 = 3
(0
)2577
<259> = 31 × 53681 × 3018307 × 12466331879
<11> × 297551552633
<12> ×
[161018081262837378916147323384926829237264948657931173003207125486558229677123713572399202506330878222472576251206905038592116258491476065270548287158228428590985371011842878365921488856853500794095690997034188597614626310413<225>]
Free to factor
3×10259+7 = 3
(0
)2587
<260> = 29 × 37 × 1346593 × 12290904793
<11> × 58016268703
<11> × 265747871780797246907771
<24> ×
109567495988151759082209987647312274703435291615914865616167938684308056228211916531921676726569676364932834906775580338996939133297976510229220365844506164365807269934498593848219733336828782529278411707907<207>
3×10260+7 = 3
(0
)2597
<261> = 16491841 ×
[18190813263358529833024705974305718809682921391250376474039496257573669307144059902105532062793959752583110642407964035064369102273057325740649573325379501294003501489009019672212459482237307526794613166595530480799566282502966163692701136277023286848327<254>]
Free to factor
3×10261+7 = 3
(0
)2607
<262> = 3361 × 4961621324557
<13> × 82504232317393
<14> × 15279115396065107591
<20> ×
[142710092693937874724248609065069421658618783172567577301943774000488282082277733404542484436605927733198750591768039737121492736373851913549795304985539248631199920291974530590063302198706299311729261834323524757<213>]
Free to factor
3×10262+7 = 3
(0
)2617
<263> = 17 × 37 × 18551821 × 40523387 ×
63442213460817740532760511695310159958981714159885652477154048600757364859305205812134233820410234007047829324311213547024576429429189237930767105585497608207075549486099240876692771474771092814304470368472684070961101145693019842172379125144629<245>
3×10263+7 = 3
(0
)2627
<264> = 73 ×
4109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410959<262>
3×10264+7 = 3
(0
)2637
<265> = 4365179173247
<13> ×
[687257013042256517193953596335710699521629797993668160455956606931098522880270020212655611194421426337859490125114437298974241666747126283036872678694486304963973097989006336899041059084136901797276623553631317113006180072573958815154970082749618761081<252>]
Free to factor
3×10265+7 = 3
(0
)2647
<266> = 37 × 127 × 41149 × 556279 ×
[278909854388298892825907541136820381044216272696253722269263026998561743476155492824024593735543257811734982716434386064478404218619547900097371727432418951100981355761763363293858054151107518038270911018487104631118386468881421146056103874297171538783<252>]
Free to factor
3×10266+7 = 3
(0
)2657
<267> = 359 × 1103 × 1783 × 3623 × 15881 × 40519 × 329961127 × 1677861288709
<13> × 2339255452643
<13> × 13687292579788837
<17> × 62344803742832881657
<20> × 25263508209260142365190782809
<29> × 321327234650634537440057132755759
<33> ×
20316063481433238395896661553423651239436992428274557399624017515398881588433186887457729395366864600560854102692971<116> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1568538400 for P33 x P116 /
May 27, 2016 2016 年 5 月 27 日)
3×10267+7 = 3
(0
)2667
<268> =
[3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007<268>]
Free to factor
3×10268+7 = 3
(0
)2677
<269> = 19 × 37 × 257 × 83497 × 638209971901628382001
<21> ×
[3116006456554113343538745764579030928085617578869576076562507969382286821143080546621842768294371280545910713303713095881618979511549819806083758880128498839342089484420432663770910643867243544533412742990785722126650344503794826627476961<238>]
Free to factor
3×10269+7 = 3
(0
)2687
<270> = 3673 × 8839 × 151289 × 190825846726078087743388244738449851329
<39> ×
320075654425433440208923621435842794289157885636758660222053416446596880545898542741307124099104882258955435487033289449721857725724779128579527169066547655746562690589942838803895900495764410290394466732423305849578801<219> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2841532960 for P39 x P219 /
September 26, 2016 2016 年 9 月 26 日)
3×10270+7 = 3
(0
)2697
<271> = 71 × 2927434787
<10> × 99857393665809931493
<20> × 15664445388958650492406787969625611
<35> ×
[9227422944002407612207340006688567333501321670635545219077585732393095367232330014972444411385236467800264647573530019718567955239973374831681064979145442815409333741401898828462934680492918762023989382317<205>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1279789687 for P35 /
May 27, 2016 2016 年 5 月 27 日)
Free to factor
3×10271+7 = 3
(0
)2707
<272> = 37 × 73 × 124161491 × 755252089 ×
[118445295604753296681667418798448369372924815553661925645014192009781705532748991818399151614734367469789991384602324525444039678251610851383433295895923360165579655124889930060218020265755689907725546444685047116912559822078746458949817438285115455993<252>]
Free to factor
3×10272+7 = 3
(0
)2717
<273> = 4026991337487226013
<19> × 1299568899013677342601983965238973
<34> ×
[57324628639882258030076295068523555632538186040130493015081667158751301350699039293943313274050352321415913123086656741965659393591901155114865847875697458799758326799960464207586698044123468997595072017893671981380984943<221>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2992273977 for P34 /
May 27, 2016 2016 年 5 月 27 日)
Free to factor
3×10273+7 = 3
(0
)2727
<274> = 31 × 47 × 59 × 113 × 1123696851473806795362713
<25> × 4349826818487243959492423
<25> ×
[63184436589732388746797983640510821526828326643937870782408073771720067619996644224829914071552550793437976319559115791898786067731980004206820971203097932012361453842325742089301019774620890785072341983492594592268747<218>]
Free to factor
3×10274+7 = 3
(0
)2737
<275> = 37 × 3461 × 302927 × 1905984383
<10> × 119062390104523
<15> × 79218769770939311
<17> × 124257586329525269160594214913349211
<36> ×
[346206331487231016938737441267310577042970079833363353680161914440283395400260021857386464238325531981080991519076399842311553482114330421378282048573012410510895061821129299714788855664217<189>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2695176849 for P36 /
August 19, 2016 2016 年 8 月 19 日)
Free to factor
3×10275+7 = 3
(0
)2747
<276> = 89653 ×
3346234928000178465862826676184846017422729858454262545592450894002431597381013463018526987384694321439327183697143430783130514316308433627430203116460129610832877873579244420153257559702408173736517461769265947597961027517205224588134250945311367160050416606248536022219<271>
3×10276+7 = 3
(0
)2757
<277> = 23 × 863 × 3503990729985156500420678576002843
<34> ×
[43133994085101951622405032530299490227961527942381117944375875531887983023084270316530196273113677148810954620207173345939414501671903374921490516789548575813479841636145244026592935960597203793981797201874176108877693453247557732785519901<239>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2747123316 for P34 /
May 28, 2016 2016 年 5 月 28 日)
Free to factor
3×10277+7 = 3
(0
)2767
<278> = 37 × 364806217 × 9874017767
<10> × 225740828026187947612124333
<27> × 3496762666350801742445833973
<28> ×
285159027512783623910591663485945944972928526750331733774825613612168015963735840190648268498852865887721735062752860792657083883136181420071683051223236876154711565972693058517998261520074466073423931861<204>
3×10278+7 = 3
(0
)2777
<279> = 17 × 4051 × 503778887191
<12> × 190006664231657346644267
<24> × 369398858104885345028116207
<27> ×
123198592240635516860765637170250283372621242182699122043619524367722198811529389640249034652346117508001208496250091935990078359327903850474176610278099922364360701997719264660039802682876664409651586705278515199<213>
3×10279+7 = 3
(0
)2787
<280> = 73 × 521 × 823 × 144282384927075270011
<21> × 10520540470064206663297
<23> ×
63140711633848032579269249078691081357882435202126243795083057991225888198540074806294445392285927533652507094788232809736980203034998026473652785749052107938057686777087912612671224375194200093208910133882787075144007197607484819<230>
3×10280+7 = 3
(0
)2797
<281> = 37 × 6642553 × 215194278389
<12> × 587186472265363
<15> ×
[966001366259251064324049703237781909018819406467320154843963866630472607182259827416140397612756705101731087062006625522586932619602661929299493071362488370156162969706380384515752709115532730060107692968768173202733092593764604903044836220448541<246>]
Free to factor
3×10281+7 = 3
(0
)2807
<282> = 107 × 114941 × 12422929 × 188497973 × 29547136911037
<14> ×
352546505084740468508197458015742688191867299448690121890878855330922711968473005490701559185962728248199339772415451942883177756878046380314654783256072136556933670776903030077009008390787221450174806842262448372243313170914098619692165510272009<246>
3×10282+7 = 3
(0
)2817
<283> = 1843489409
<10> × 1411015904372601479
<19> × 17250719192914733818653763
<26> × 1438596712461100071114039104563708057
<37> ×
46473184152315097314126930022150605313886357963854355344460183777400844779762272939860087248120258175965879592802985089454574125075907740251917807833037496463797539727670461850446093716202367907<194> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2700844742 for P37 x P194 /
August 18, 2016 2016 年 8 月 18 日)
3×10283+7 = 3
(0
)2827
<284> = 37 × 905448581 × 4599938112171007
<16> ×
[194672116004856139872267371403944512518539282031626150238770774136086555825098286332580856618481621896729270797248965130937799081484215242304434991363636410576947037928966314984780896745920351612162185185751888839503981060171974384665945778418853233723056833<258>]
Free to factor
3×10284+7 = 3
(0
)2837
<285> = 1301 × 1451848043
<10> × 6380463141675209
<16> ×
[24892618912750418467074266371643226652369935776851619341748239744395231279589260191014809993177011035455124453426989681963651680447219414638264245581202411188946719799051812482689044869202654105985714184463890414452010352219557032298949445302113198197231161<257>]
Free to factor
3×10285+7 = 3
(0
)2847
<286> = 199 × 647 × 114311 × 6729310166479
<13> × 111225410998772796659
<21> ×
[272333650878372694713618139852203602687674695852151204674941906684749652150406875418602610318863377208658138231059133218983641019657145107504911030827746624999413826756121566942773540535291840047037381335202998372260696676904530719204603297189<243>]
Free to factor
3×10286+7 = 3
(0
)2857
<287> = 19 × 37 × 1109 ×
[38479939766067619515486251758853913474007442020350757477614295041090162346865873039286735836496170604660946837397883859845798054710778359394941427118352750738494177343781064534706981672004689421992824773898287257881012330255365706934213412311271928755674187784671387727721076873941<281>]
Free to factor
3×10287+7 = 3
(0
)2867
<288> = 29 × 73 × 277 × 992371 × 1072084087
<10> × 1124454553
<10> × 1195220189
<10> × 6824349744047017807963103219393087378507
<40> ×
[52428400659218822652930178733613872592330711135932430857015848288249389397512516200115257087280942969879075645114550178071668552496486125957621667811114632789474773544323292326785905289134471765307504038666421<209>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=198430419 for P40 /
May 29, 2016 2016 年 5 月 29 日)
Free to factor
3×10288+7 = 3
(0
)2877
<289> = 31 × 139 × 1599540426834935527651991
<25> × 504453190959145816602697453002071635511849
<42> ×
[862836813243802398143140376176915697408440196752694486022926187106200263659383009220767493865971440243521152605332999490066846395550217581321691945019542786404683783424087282030103421054901065081891860075739801412113797<219>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2813357601 for P42 /
August 18, 2016 2016 年 8 月 18 日)
Free to factor
3×10289+7 = 3
(0
)2887
<290> = 37 × 44059 × 171513869 ×
[107296523580435316571409065941009188317022747956992407421342244372667549693524192098388513369330978665287578133766553098554898332557480508543250903934041969268109847872842511684952446578477710833800120296703022410480761759648719641600926318917057777026843185770643805081576741<276>]
Free to factor
3×10290+7 = 3
(0
)2897
<291> = 89 × 2441 × 133253728585989047269
<21> ×
10362966607931262445984029819259530929400614922123093203618749122401914124309838222544698580480763795115238950924728587117674797930012695478330378747752981216342841197347182888930971550463772325973655857614690363750933880420329837454387384864989703449299535170337947<266>
3×10291+7 = 3
(0
)2907
<292> = 97 × 986137 ×
[31362614983056504068478638959524757695311547278896413140312607283011815478389281746877582482658120451656363716594907783928184044271718211002425595096994584376824160763342631268407960170398941557742823818137228146370453180064094521736273255104587055296022366311600396711989443678331263<284>]
Free to factor
3×10292+7 = 3
(0
)2917
<293> = 37 × 57649 × 22066258049088175241797
<23> ×
637380921499746273124268393665777953900497174114228289505552325288534892076395269423543410527003065992821747442390109345308498008737778189366253948648573218961879633862814189381136292330734770265776587779072827437874403079874251669305174913404164117075775577584687<264>
3×10293+7 = 3
(0
)2927
<294> = 149 × 91099 × 35573705446289
<14> × 415285962254304033125953
<24> × 99265745061833633784662981
<26> × 1083142479345357705806747893605689
<34> ×
13914257157477870757791107158641632253455435362317046017596686555167276077023497257300709853316392697975686131299114310784391290398713204125095464725608089333627178797443190455728899595893269<191> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=820694423 for P34 x P191 /
May 29, 2016 2016 年 5 月 29 日)
3×10294+7 = 3
(0
)2937
<295> = 17 × 11549 × 4832462506098631133658654625059342021736433
<43> ×
3161982477193659420487258971220179921374004863731983590341137961805231982439385879964430302759999566464506759400696929532960326621362799827335650288728236575671226407362550329280549953816074629428501280585413097013018834113186003349647603593262963<247> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3489537725 for P43 x P247 /
August 18, 2016 2016 年 8 月 18 日)
3×10295+7 = 3
(0
)2947
<296> = 37 × 73 × 118203367 ×
[93965152518601871814446800885100069672900104190865451382686647761742438445996190686913947053386483542363123778626212652733546899796579156505499636968864079542432839244004842919646842812700673840424506760177748413630308068952116797750617120839772672536200016882514108984707756821101221<284>]
Free to factor
3×10296+7 = 3
(0
)2957
<297> = 5717 × 1133333 × 34243336633104945989779111896593444706229
<41> ×
[1352133125818668237879743406426035578779844426010402960327403237626482148981761008414693107782982058163940260661738631423180993261471189249836824835389520313503174508647731002291304299386282504882873282586831123088437834485646816610675238705384803<247>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3534511075 for P41 /
September 21, 2016 2016 年 9 月 21 日)
Free to factor
3×10297+7 = 3
(0
)2967
<298> = 3943 × 3044246551083349723
<19> × 97389270416524855425591316294261
<32> × 31417692299642771871271434525071454341
<38> ×
[81682544988242208349179357567028421014104056162801945379884908030750163000376057753869296768074206618996666668604450691505403562163962797550193089286136517939439458774276494253043695897304592900628431932763<206>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2111234914 for P32, B1=1e6, sigma=123853991 for P38 /
May 30, 2016 2016 年 5 月 30 日)
Free to factor
3×10298+7 = 3
(0
)2977
<299> = 23 × 37 × 756629 ×
[46591716611835023782019572903704446663269685315927380342730189392734421551312857585698097333602805327015463428881135692474567589228056620409670123828467010499764821321644270942206688902832616249800146772915059158613017959511764097056515654407550998994039799691090396023208135421880748908233<290>]
Free to factor
3×10299+7 = 3
(0
)2987
<300> = 229 × 983 ×
[1332699560653378171269662871434473383768607817615622792716352667842403834620869186653458133243302074124749563540893886018648909185409605209966815780939730883535385394501281612744161665341370992461362818570724144517940357252328892482241778354293735867831742238135642161283300830271826287054600701<295>]
Free to factor
3×10300+7 = 3
(0
)2997
<301> = 929 × 352911714248377
<15> ×
[9150387091231088261572462447630301419516835213519689892656289900600420515361826198650483228522170346015852211369076681201000614911948503249487488297073763624757914297405012425854207471382166610983670508452369239144366457854045170620952793811880524852974981362955807729997271411549279<283>]
Free to factor