Table of contents 目次

  1. About 100...003 100...003 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
    4. Related sequences 関連する数列
  2. Prime numbers of the form 100...003 100...003 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 100...003 100...003 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 100...003 100...003 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

10w3 = { 13, 103, 1003, 10003, 100003, 1000003, 10000003, 100000003, 1000000003, 10000000003, … }

1.3. General term 一般項

10n+3 (1≤n)

1.4. Related sequences 関連する数列

2. Prime numbers of the form 100...003 100...003 の形の素数

2.1. Last updated 最終更新日

April 22, 2024 2024 年 4 月 22 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 101+3 = 13 is prime. は素数です。
  2. 102+3 = 103 is prime. は素数です。
  3. 105+3 = 100003 is prime. は素数です。
  4. 106+3 = 1000003 is prime. は素数です。
  5. 1011+3 = 1(0)103<12> is prime. は素数です。
  6. 1017+3 = 1(0)163<18> is prime. は素数です。
  7. 1018+3 = 1(0)173<19> is prime. は素数です。
  8. 1039+3 = 1(0)383<40> is prime. は素数です。
  9. 1056+3 = 1(0)553<57> is prime. は素数です。
  10. 10101+3 = 1(0)1003<102> is prime. は素数です。 (Makoto Kamada / PPSIQS / August 18, 2003 2003 年 8 月 18 日)
  11. 10105+3 = 1(0)1043<106> is prime. は素数です。 (Makoto Kamada / PPSIQS / August 18, 2003 2003 年 8 月 18 日)
  12. 10107+3 = 1(0)1063<108> is prime. は素数です。 (Makoto Kamada / PPSIQS / August 18, 2003 2003 年 8 月 18 日)
  13. 10123+3 = 1(0)1223<124> is prime. は素数です。 (Makoto Kamada / PPSIQS / August 18, 2003 2003 年 8 月 18 日)
  14. 10413+3 = 1(0)4123<414> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 18, 2003 2003 年 8 月 18 日) (certified by:証明: Julien Peter Benney / December 6, 2004 2004 年 12 月 6 日)
  15. 10426+3 = 1(0)4253<427> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 18, 2003 2003 年 8 月 18 日) (certified by:証明: Julien Peter Benney / December 6, 2004 2004 年 12 月 6 日)
  16. 102607+3 = 1(0)26063<2608> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 18, 2003 2003 年 8 月 18 日) (certified by:証明: Markus Tervooren / Primo 4.0.0 (alpha 7 - transitional) LG32 / August 18, 2011 2011 年 8 月 18 日) [certificate証明]
  17. 107668+3 = 1(0)76673<7669> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 27, 2004 2004 年 12 月 27 日) (certified by:証明: Markus Tervooren / PRIMO 4.0.0 - alpha 16 - LG64 / September 27, 2012 2012 年 9 月 27 日)
  18. 1010470+3 = 1(0)104693<10471> is prime. は素数です。 (discovered by:発見: Milton L. Brown / April 2002 2002 年 4 月) (certified by:証明: Luminescence / CM 0.4.1dev / August 13, 2022 2022 年 8 月 13 日) [certificate証明]
  19. 1011021+3 = 1(0)110203<11022> is PRP. はおそらく素数です。 (Milton L. Brown / April 2002 2002 年 4 月)
  20. 1017753+3 = 1(0)177523<17754> is PRP. はおそらく素数です。 (Milton L. Brown / April 2002 2002 年 4 月)
  21. 1026927+3 = 1(0)269263<26928> is PRP. はおそらく素数です。 (Jason Earls / December 2007 2007 年 12 月)
  22. 1060776+3 = 1(0)607753<60777> is PRP. はおそらく素数です。 (Bob Price / PFGW / January 10, 2011 2011 年 1 月 10 日)
  23. 1098288+3 = 1(0)982873<98289> is PRP. はおそらく素数です。 (Bob Price / PFGW / March 4, 2011 2011 年 3 月 4 日)
  24. 10300476+3 = 1(0)3004753<300477> is PRP. はおそらく素数です。 (Edward A. Trice / October 21, 2012 2012 年 10 月 21 日)
  25. 10509546+3 = 1(0)5095453<509547> is PRP. はおそらく素数です。 (Paul Bourdelais / Jan, 28, 2021)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Bob Price / March 4, 2011 2011 年 3 月 4 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 106k+1+3 = 13×(101+313+9×10×106-19×13×k-1Σm=0106m)
  2. 106k+4+3 = 7×(104+37+9×104×106-19×7×k-1Σm=0106m)
  3. 1015k+14+3 = 31×(1014+331+9×1014×1015-19×31×k-1Σm=01015m)
  4. 1016k+3+3 = 17×(103+317+9×103×1016-19×17×k-1Σm=01016m)
  5. 1018k+14+3 = 19×(1014+319+9×1014×1018-19×19×k-1Σm=01018m)
  6. 1021k+19+3 = 43×(1019+343+9×1019×1021-19×43×k-1Σm=01021m)
  7. 1022k+9+3 = 23×(109+323+9×109×1022-19×23×k-1Σm=01022m)
  8. 1028k+13+3 = 29×(1013+329+9×1013×1028-19×29×k-1Σm=01028m)
  9. 1033k+21+3 = 67×(1021+367+9×1021×1033-19×67×k-1Σm=01033m)
  10. 1034k+2+3 = 103×(102+3103+9×102×1034-19×103×k-1Σm=01034m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 20.74%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 20.74% です。

3. Factor table of 100...003 100...003 の素因数分解表

3.1. Last updated 最終更新日

November 4, 2024 2024 年 11 月 4 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=257, 260, 262, 263, 264, 265, 266, 267, 269, 270, 271, 272, 274, 277, 278, 279, 280, 281, 282, 283, 286, 287, 288, 289, 290, 292, 295, 296, 297, 298, 299, 300 (32/300)

3.4. Factor table 素因数分解表

101+3 = 13 = definitely prime number 素数
102+3 = 103 = definitely prime number 素数
103+3 = 1003 = 17 × 59
104+3 = 10003 = 7 × 1429
105+3 = 100003 = definitely prime number 素数
106+3 = 1000003 = definitely prime number 素数
107+3 = 10000003 = 13 × 769231
108+3 = 100000003 = 643 × 155521
109+3 = 1000000003<10> = 23 × 307 × 141623
1010+3 = 10000000003<11> = 7 × 1428571429<10>
1011+3 = 100000000003<12> = definitely prime number 素数
1012+3 = 1000000000003<13> = 61 × 14221 × 1152763
1013+3 = 10000000000003<14> = 13 × 29 × 547 × 48492137
1014+3 = 100000000000003<15> = 19 × 31 × 613 × 276964579
1015+3 = 1000000000000003<16> = 14902357 × 67103479
1016+3 = 10000000000000003<17> = 7 × 1428571428571429<16>
1017+3 = 100000000000000003<18> = definitely prime number 素数
1018+3 = 1000000000000000003<19> = definitely prime number 素数
1019+3 = 10000000000000000003<20> = 13 × 17 × 43 × 18679 × 56335953419<11>
1020+3 = 100000000000000000003<21> = 373 × 155773 × 1721071782307<13>
1021+3 = 1000000000000000000003<22> = 67 × 14925373134328358209<20>
1022+3 = 10000000000000000000003<23> = 7 × 157 × 601 × 1031137 × 14682887281<11>
1023+3 = 100000000000000000000003<24> = 113 × 3049 × 290244589115247419<18>
1024+3 = 1000000000000000000000003<25> = 3529 × 821461 × 838069 × 411605923
1025+3 = 10000000000000000000000003<26> = 13 × 7668629 × 100308773475776339<18>
1026+3 = 100000000000000000000000003<27> = 223 × 161377320703<12> × 2778770221987<13>
1027+3 = 1000000000000000000000000003<28> = 813219713 × 1229679979486675331<19>
1028+3 = 10000000000000000000000000003<29> = 7 × 199 × 571 × 89779 × 140035456540965619<18>
1029+3 = 100000000000000000000000000003<30> = 31 × 10928153 × 295183134022089846821<21>
1030+3 = 1000000000000000000000000000003<31> = 1859827 × 537684419034673655130289<24>
1031+3 = 10000000000000000000000000000003<32> = 13 × 23 × 1453 × 17021 × 1352315810743633261969<22>
1032+3 = 100000000000000000000000000000003<33> = 19 × 6271 × 839285264668608213245600047<27>
1033+3 = 1000000000000000000000000000000003<34> = 151 × 439 × 66883 × 5338459457<10> × 42250012204817<14>
1034+3 = 10000000000000000000000000000000003<35> = 72 × 210019 × 971729379975436624732980913<27>
1035+3 = 100000000000000000000000000000000003<36> = 17 × 26793961 × 219540251670011409967913819<27>
1036+3 = 1000000000000000000000000000000000003<37> = 103 × 922639 × 3480881723167<13> × 3023024732613877<16>
1037+3 = 10000000000000000000000000000000000003<38> = 13 × 769230769230769230769230769230769231<36>
1038+3 = 100000000000000000000000000000000000003<39> = 76417717 × 50954499311257<14> × 25681678366581487<17>
1039+3 = 1000000000000000000000000000000000000003<40> = definitely prime number 素数
1040+3 = 10000000000000000000000000000000000000003<41> = 7 × 43 × 661 × 50261106447997346213579545740119923<35>
1041+3 = 100000000000000000000000000000000000000003<42> = 29 × 47 × 149 × 1046191 × 470659572629542911224468953859<30>
1042+3 = 1000000000000000000000000000000000000000003<43> = 9865301191<10> × 101365379590466879644202035797733<33>
1043+3 = 10000000000000000000000000000000000000000003<44> = 13 × 769230769230769230769230769230769230769231<42>
1044+3 = 100000000000000000000000000000000000000000003<45> = 31 × 2293 × 5113 × 275142993946312101483059532532768657<36>
1045+3 = 1000000000000000000000000000000000000000000003<46> = 2621 × 26190869 × 202758977 × 2039334898823<13> × 35230144787557<14>
1046+3 = 10000000000000000000000000000000000000000000003<47> = 7 × 44029 × 774717324390885241<18> × 41881272672179231514961<23>
1047+3 = 100000000000000000000000000000000000000000000003<48> = 397 × 198266889049<12> × 1270455041555076682580419086613351<34>
1048+3 = 1000000000000000000000000000000000000000000000003<49> = 4378837 × 69080527 × 1127952811<10> × 2930857126525877256434827<25>
1049+3 = 10000000000000000000000000000000000000000000000003<50> = 13 × 464459 × 551342479 × 5952808865209<13> × 504621641480758757819<21>
1050+3 = 100000000000000000000000000000000000000000000000003<51> = 19 × 97 × 283 × 994327748569<12> × 61236769827829<14> × 3148809563627188687<19>
1051+3 = 1(0)503<52> = 17 × 3187 × 1353383 × 13637925013200840085919638391816980569079<41>
1052+3 = 1(0)513<53> = 7 × 5290477824748729<16> × 270026919286686265519817460570276301<36>
1053+3 = 1(0)523<54> = 23 × 4116417953254772568899<22> × 1056215898465504263474971028839<31>
1054+3 = 1(0)533<55> = 67 × 14925373134328358208955223880597014925373134328358209<53>
1055+3 = 1(0)543<56> = 13 × 2290143001<10> × 3696549175591577<16> × 90865194024447148790098749503<29>
1056+3 = 1(0)553<57> = definitely prime number 素数
1057+3 = 1(0)563<58> = 2448952313317<13> × 113619994412549<15> × 3593891055967117960201170304091<31>
1058+3 = 1(0)573<59> = 7 × 1033 × 1382934587194025722583321808878440049785645138984926013<55>
1059+3 = 1(0)583<60> = 312 × 104058272632674297606659729448491155046826222684703433923<57>
1060+3 = 1(0)593<61> = 1932 × 3171548632838023<16> × 33362320576752631<17> × 253721783490136061838019<24>
1061+3 = 1(0)603<62> = 13 × 432 × 59 × 131 × 167 × 4656167 × 279376131961211<15> × 247777638479293206997639471109<30>
1062+3 = 1(0)613<63> = 163 × 9661 × 4092282467463097<16> × 120127553010300307<18> × 129176073645540570328399<24>
1063+3 = 1(0)623<64> = 99582738067633474259<20> × 2279800480953691053649<22> × 4404728007638875844033<22>
1064+3 = 1(0)633<65> = 7 × 5676423007<10> × 36627147032611375348033<23> × 6871065942231129106260647628859<31>
1065+3 = 1(0)643<66> = 613 × 34625917 × 168988305737<12> × 27879282336387712355695204432176867365129339<44>
1066+3 = 1(0)653<67> = 52234229988717651520074139707847<32> × 19144534153485086423317835475736549<35>
1067+3 = 1(0)663<68> = 132 × 17 × 18699520487<11> × 1300152148179033332753<22> × 143165945597753855112098594619101<33>
1068+3 = 1(0)673<69> = 19 × 8269 × 25867 × 1008934873<10> × 24388450615853296712957638559087522557098904525303<50>
1069+3 = 1(0)683<70> = 29 × 797489219 × 9278852153<10> × 56916658697<11> × 81873532684973362089980292505983625333<38>
1070+3 = 1(0)693<71> = 7 × 103 × 13869625520110957004160887656033287101248266296809986130374479889043<68>
1071+3 = 1(0)703<72> = 1398779 × 10900801759<11> × 6558317755506364692997595133084191555668163745537318023<55>
1072+3 = 1(0)713<73> = 61 × 72103 × 349051 × 14120947 × 928059349171<12> × 102778173667843<15> × 483601316311322078135288401<27>
1073+3 = 1(0)723<74> = 13 × 5527003 × 37830550701787<14> × 3678953376089882824379299271733196192314658634813671<52>
1074+3 = 1(0)733<75> = 31 × 9619 × 2600441047<10> × 227647200762466824679<21> × 566498878475024033576724763236475512079<39>
1075+3 = 1(0)743<76> = 23 × 1228340719<10> × 235122042143<12> × 231740870573890406759791<24> × 649616931789157865019702753163<30>
1076+3 = 1(0)753<77> = 72 × 657565957 × 4583778702733702837221245869057<31> × 67708151357480212958271175141825303<35>
1077+3 = 1(0)763<78> = 185554311496620532371770351611143673123<39> × 538925768921415130739706333069119686561<39>
1078+3 = 1(0)773<79> = 37657 × 82507 × 1174699424012203549<19> × 273991272661126875657939650707603352993489342536453<51>
1079+3 = 1(0)783<80> = 13 × 11273 × 68236562514926748050140226135968174467243038164709414598530184443428477847<74>
1080+3 = 1(0)793<81> = 130960381 × 87144781633537<14> × 3455312701687993075561<22> × 2535895350921026674019960278106110759<37>
1081+3 = 1(0)803<82> = 1759 × 28477 × 572435189 × 3777480038153<13> × 9232332226415328725291695187328474787743613722899413<52>
1082+3 = 1(0)813<83> = 7 × 43 × 109 × 12973 × 872912117122274214886393<24> × 26915104249006886077344416513524151206136145229903<50>
1083+3 = 1(0)823<84> = 17 × 6133 × 23823584851228754531<20> × 40259743299929784472838712049504899249693041902211136407533<59>
1084+3 = 1(0)833<85> = 29059 × 152199469 × 3464655614694615820134361459503031<34> × 65259858139040767607584620036276601603<38>
1085+3 = 1(0)843<86> = 13 × 19471 × 29063 × 1848031 × 735561004054368499805948808599092871902963794530535645906012138636137<69>
1086+3 = 1(0)853<87> = 19 × 997 × 967681309615663<15> × 5455303132259154458842540374893027723704662896639359296193937202067<67>
1087+3 = 1(0)863<88> = 47 × 67 × 824281 × 625148401 × 616267018056359185441747698615843643683296258084651274651119987076887<69>
1088+3 = 1(0)873<89> = 7 × 12097 × 15968813857743312100267<23> × 7395228897021612341523232889578455213960269146595764004311471<61>
1089+3 = 1(0)883<90> = 31 × 3253 × 8803 × 751414214574205487<18> × 149914670527656837997920618197642940784707574042657246252776461<63>
1090+3 = 1(0)893<91> = 166303 × 403895669461<12> × 8974986752701<13> × 1658810987591830795547164323164711490089752199766030492869341<61>
1091+3 = 1(0)903<92> = 13 × 1223 × 611557 × 53040230332956067<17> × 3920505864836767714747<22> × 4945904653788016124568903613721692237248629<43>
1092+3 = 1(0)913<93> = 841801 × 211480670972866622535223234753759<33> × 561719994649737610867659787910638005737532777151667317<54>
1093+3 = 1(0)923<94> = 419 × 5459780369426989258506416918868167807<37> × 437130192678284489192380500009849205232710912361559391<54>
1094+3 = 1(0)933<95> = 7 × 487606042003<12> × 2929765641752731346391547040207212875979805414190271980235225659141284583284855143<82>
1095+3 = 1(0)943<96> = 718809580057632062928074197<27> × 15232652842182146291582535453277<32> × 9132939882670122379669592086842575587<37>
1096+3 = 1(0)953<97> = 1861 × 537345513164965072541644277270284793121977431488447071466953250940354648038688876947877485223<93>
1097+3 = 1(0)963<98> = 13 × 232 × 29 × 24702593883547<14> × 441830682536309401<18> × 4594143404942642691414177378188955640856825123859977753777753<61>
1098+3 = 1(0)973<99> = 105199 × 135288787 × 5127030864793921<16> × 378919599206831707<18> × 3616709145802705022310102159175743619073157102612973<52>
1099+3 = 1(0)983<100> = 172 × 48012016357931<14> × 3591932541314891<16> × 20064301263767150482328850050963655988361397950026433927658752114587<68>
10100+3 = 1(0)993<101> = 7 × 157 × 769 × 2593 × 4888946572366141<16> × 220030935994058489226133<24> × 4242036622639156527888055237578804493024993216233097<52>
10101+3 = 1(0)1003<102> = definitely prime number 素数
10102+3 = 1(0)1013<103> = 3607 × 47195391205577821<17> × 45302831818536160855154483046504027523<38> × 129666837065959683061728546755551575657543763<45>
10103+3 = 1(0)1023<104> = 13 × 43 × 10239241 × 7613030996929<13> × 262672352803304881<18> × 3901043612090232438007885999<28> × 223958556307693271700171647119569787<36>
10104+3 = 1(0)1033<105> = 19 × 31 × 103 × 547 × 44938046971<11> × 715368493807944331<18> × 93738101034940412233498319251111560705584994159001501753738976257147<68>
10105+3 = 1(0)1043<106> = definitely prime number 素数
10106+3 = 1(0)1053<107> = 7 × 487 × 18217 × 3004695654536743<16> × 369038951254272125569<21> × 56380971921971609399701<23> × 2575673952122780047666529547878651245753<40>
10107+3 = 1(0)1063<108> = definitely prime number 素数
10108+3 = 1(0)1073<109> = 151 × 1025890507<10> × 15552298759<11> × 415075835864390811706575139824651136151900801150981162208964016615508906209576156217481<87>
10109+3 = 1(0)1083<110> = 13 × 636095471381<12> × 2307896264990110210061<22> × 45166631624534007464908544083639<32> × 11601131675497996544648457184208378700687769<44>
10110+3 = 1(0)1093<111> = 229 × 839917615309<12> × 519909589640850094073814039254973724161101539472144569857404667889667108322520021230643073367523<96>
10111+3 = 1(0)1103<112> = 22483 × 3811103616383696520035255018963138889550371472027<49> × 11670648336895389594887395705639732998619139278066767263683<59> (Makoto Kamada / GGNFS-0.77.1-20060513-pentium4 for P49 x P59 / 1.46 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / May 30, 2006 2006 年 5 月 30 日)
10112+3 = 1(0)1113<113> = 7 × 7759985029<10> × 772109420162542201<18> × 238430728361600896205676276007090671265907651946134091671888880076349641192040039401<84>
10113+3 = 1(0)1123<114> = 96377 × 884609083918355948907037<24> × 3775584003451138071930047<25> × 310664096228408853908793998882075472743889042019497036205801<60>
10114+3 = 1(0)1133<115> = 3134188330252503582947429542915803128154373300081462177<55> × 319061873323813867242565512269308619907572321217170192386339<60> (Wojciech Florek / GGNFS 0.77 for P55 x P60 / May 26, 2006 2006 年 5 月 26 日)
10115+3 = 1(0)1143<116> = 13 × 17 × 643 × 13188252227537<14> × 5335922447296667088377467035279126307518701118577120313195503748865958864729990739390888237574373<97>
10116+3 = 1(0)1153<117> = 613 × 5581 × 31409912863227233240324396659219<32> × 285562837995982349446361585842661944753<39> × 3258810312307206854209463561699139379393<40> (Makoto Kamada / GGNFS-0.77.1-20060513-pentium4 for P32 x P39 x P40 / 1.75 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / May 30, 2006 2006 年 5 月 30 日)
10117+3 = 1(0)1163<118> = 136817541953<12> × 12510399765769<14> × 298112920074737523999596067065580070878142999<45> × 1959775076019992331799342558898554074566826611021<49> (Wojciech Florek / for P45 x P49)
10118+3 = 1(0)1173<119> = 73 × 64141747 × 8460920724818143<16> × 37627526900440243622059<23> × 6147335446609049443147009<25> × 232249550665794760809639124801272942935386171<45>
10119+3 = 1(0)1183<120> = 23 × 31 × 59 × 248188250596361555852063<24> × 9578053105495890596842936195802739350968036547539923449027221708789738588593789339062558543<91>
10120+3 = 1(0)1193<121> = 67 × 39680844683922630781<20> × 376135469222398560079179371798099236539177092583429173601100734182099447630758605255815436349312789<99>
10121+3 = 1(0)1203<122> = 13 × 198529 × 11787899 × 328697413420232835842838763773057913404777878180108321518328556605098171968410977813814875910384258521686461<108>
10122+3 = 1(0)1213<123> = 19 × 749013296450169739<18> × 7026788335642034629781710534573805278538763744803035551030475665043109854334080750234026493336617617683<103>
10123+3 = 1(0)1223<124> = definitely prime number 素数
10124+3 = 1(0)1233<125> = 7 × 43 × 8179 × 23257479000261691<17> × 278215836815846300810499872638251601851541<42> × 627753020605636868785440299879864836902467148030812554348147<60> (Alexander Mkrtychyan / GGNFS-0.77.1-20060513-pentium4 for P42 x P60 / 2.02 hours on P4 3GHz Windows XP / May 30, 2006 2006 年 5 月 30 日)
10125+3 = 1(0)1243<126> = 29 × 134227 × 23220877 × 1106326971538334438867518468448025343661281698202433005785938239861995100495925767257721870777151883601441849433<112>
10126+3 = 1(0)1253<127> = 523 × 219931704421459<15> × 225003335227519500209690385071854069954197019410358111<54> × 38638611863595333536671213995256267949387191415100091789<56> (Alexander Mkrtychyan / GGNFS-0.77.1-20060513-pentium4 for P54 x P56 / 2.71 hours on P4 3GHz Windows XP / May 31, 2006 2006 年 5 月 31 日)
10127+3 = 1(0)1263<128> = 13 × 199 × 638775037 × 25596248216009142869<20> × 63794643459287914893525823561863799<35> × 3705912046848417713402452698842458642593478627187305412395727<61> (Wojciech Florek / for P35 x P61)
10128+3 = 1(0)1273<129> = 186343 × 4114753 × 8960737 × 37317079753<11> × 390024388698374486765920482240083068007743207676668137869753828120978424340683726317512954051205437<99>
10129+3 = 1(0)1283<130> = 461 × 1145215219399<13> × 4145408950427364383<19> × 456924644778583027708225854452808686591429254518198104098687511713953580652663014164092355599719<96>
10130+3 = 1(0)1293<131> = 7 × 1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429<130>
10131+3 = 1(0)1303<132> = 17 × 1217 × 4833486393735801633718401082700952196819565952921842525013292087582773454492725602977427618541253806370535066943786553240852627<127>
10132+3 = 1(0)1313<133> = 61 × 16393442622950819672131147540983606557377049180327868852459016393442622950819672131147540983606557377049180327868852459016393442623<131>
10133+3 = 1(0)1323<134> = 13 × 47 × 61703 × 72889247 × 3639058575109244558355057256396438365587852122206128077113294862579491665346223461086019747590875212236105731835236553<118>
10134+3 = 1(0)1333<135> = 31 × 4969 × 455811127 × 498011242961708985877<21> × 2859863067852942661391401933101049364560407006220687090992890725892249273035398773184745005105065863<100>
10135+3 = 1(0)1343<136> = 113 × 209694391 × 3187745395872205735627<22> × 4126491370074199286802782631529<31> × 3208264562687349553112271518304371303840051419576548379085824235751916727<73> (Alexander Mkrtychyan / GGNFS-0.77.1-20060513-pentium4 for P31 x P73 / 5.14 hours on Pentium 4 3GHz, Windows XP / June 1, 2006 2006 年 6 月 1 日)
10136+3 = 1(0)1353<137> = 7 × 937 × 13513 × 13696021 × 8237893614348792654198704368822657104312327012462025313705888966854598169349530317756164727430103513498190475893850493729<121>
10137+3 = 1(0)1363<138> = 485528403184829992818506125204327553<36> × 148422974169957271956708475508014083532747879<45> × 1387663704324682066869289940523411644503592736304905992069<58> (Makoto Kamada / GGNFS-0.77.1-20060513-pentium4 for P36 x P45 x P58 / 8.57 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / May 31, 2006 2006 年 5 月 31 日)
10138+3 = 1(0)1373<139> = 103 × 990513749998083607<18> × 34585142462197870945875655226509<32> × 515100320152004920978466573096213025512461<42> × 550200369707475541148787748643398354924032907<45> (Bryan Koen / GMP-ECM 6.1 for P32 / June 2, 2006 2006 年 6 月 2 日) (Bryan Koen / GGNFS-0.77.1-20060513-pentium3 for P42 x P45 / 21.08 hours on Pentium 3 - Fedora Core ? / June 4, 2006 2006 年 6 月 4 日)
10139+3 = 1(0)1383<140> = 13 × 327203583643<12> × 21557806404758500426320572531<29> × 1048720107311272779271661501804277089838257303<46> × 103985894904565220127485054041767990985479311662142569<54> (Wojciech Florek / Msieve v. 1.03 for P46 x P54 / 07:49:33 on Pentium III 936MHz (overclocked) cache 256 KB Linux (Fedora 2) / May 30, 2006 2006 年 5 月 30 日)
10140+3 = 1(0)1393<141> = 19 × 35053 × 12125477491<11> × 79437562891<11> × 95807951003203<14> × 3561333108430689643<19> × 456859116200220409626925655159773597547335323554537464425519463600293608389774021<81>
10141+3 = 1(0)1403<142> = 23 × 179 × 644783 × 1095239290136891<16> × 803739638634605270206280169488592754569025676064749<51> × 427938295026116307934098302562270778494869844206815199155275017447<66> (Bryan Koen / GGNFS-0.77.1-20060513-pentium3 for P51 x P66 / 21.59 hours on Pentium 3 Linux / June 5, 2006 2006 年 6 月 5 日)
10142+3 = 1(0)1413<143> = 7 × 541 × 43327067821748272353553<23> × 60946026465304974803790792681220945491909217668039734426659739308109065885791246440633099629575113608999707001563673<116>
10143+3 = 1(0)1423<144> = 163 × 27031 × 4715647356151<13> × 168558533183087<15> × 4147101487903858399083877<25> × 7345539743327053679573405567<28> × 937324228248119193845135214526987488784377088869505157197<57>
10144+3 = 1(0)1433<145> = 134060221 × 895346379774329815520794224163<30> × 3312794646750731247992525345573307418477327<43> × 2514863810750094284798767186768560521807692068531696374269371643<64> (Wojciech Florek / ECM for P30 / May 29, 2006 2006 年 5 月 29 日) (Alfred Reich / Msieve v. 1.06 for P43 x P64 / June 6, 2006 2006 年 6 月 6 日)
10145+3 = 1(0)1443<146> = 133 × 43 × 12075143 × 8766156200684878799008827009062597858947436856129052621658170468236243976055340649834199245133777974926097117235232911182743682616051<133>
10146+3 = 1(0)1453<147> = 97 × 337 × 397 × 1417693 × 620541979 × 21664970297659279<17> × 9150569570314205775583<22> × 44182295046517451060199140411491994133365784148518994793958755571258224952845933272129<86>
10147+3 = 1(0)1463<148> = 17 × 2797246489<10> × 33108811339229359436324412647303299386888839796775859569<56> × 635150657593861735194302722673849771111790656208078860699275923576820452341058299<81> (JMB / GGNFS-0.77.1-20060513-pentium4 for P56 x P81 / 49.41 hours on WinXP Pro, Cygwin / November 5, 2006 2006 年 11 月 5 日)
10148+3 = 1(0)1473<149> = 7 × 5107 × 2157481 × 330473699221<12> × 10179078449976201273125762528418361136218099<44> × 38542844162420837355114416087578812267010926136810640691082927212474664077128617153<83> (JMB / GGNFS-0.77.1-20060513-pentium4 for P44 x P83 / 57.98 hours on WinXP Pro, Cygwin / November 6, 2006 2006 年 11 月 6 日)
10149+3 = 1(0)1483<150> = 31 × 409 × 36299 × 68161 × 15786109931<11> × 384564861922004165543203544546821681061<39> × 525097150223725778038006971456374587050144448028021793732567240767742167666853365031593<87> (JMB / GMP-ECM 6.0.1 B1=11000000, sigma=1044949713 for P39 x P87 / November 6, 2006 2006 年 11 月 6 日)
10150+3 = 1(0)1493<151> = 4993 × 909599715918703<15> × 1312781142610220555791731442886796814088531285959604282653<58> × 167724222837335381788066096688395065923446964535816909617221682818743071569<75> (JMB / GGNFS-0.77.1-20060513-pentium4 for P58 x P75 / 48.22 hours on Stage-1 distributed across a half dozen systems with 6 hours total clock-time. Stage-2 run under WinXP Pro and Cygwin. / November 6, 2006 2006 年 11 月 6 日)
10151+3 = 1(0)1503<152> = 13 × 7331 × 1107763 × 2103712202632193<16> × 45025676505007510629727031974690465041769541917582329374100999739130510425052905532469926297575092762463387049217244630943239<125>
10152+3 = 1(0)1513<153> = 43613668999<11> × 12179717710063<14> × 128492693814335713<18> × 2456091372331436862367783336363<31> × 15820959142195526790315426273379632223<38> × 37703736485632074700837740810673485387490687<44> (Bryan Koen / GMP-ECM 6.1 B1=1000000, sigma=1029063430 for P31 / June 6, 2006 2006 年 6 月 6 日) (Wojciech Florek / Msieve v. 1.03 for P38 x P44 / June 6, 2006 2006 年 6 月 6 日)
10153+3 = 1(0)1523<154> = 29 × 67 × 376761827601512787036094285501223811506077<42> × 1366030211688845889671647585845412059913391266235993559996651995578056259930708624299661596143715652351500473<109> (JMB / GGNFS-0.77.1-20060513-pentium4 for P42 x P109 / 43.84 hours on Stage-1: distributed across a half dozen systems Stage-2: WinXP Pro + Cygwin / November 7, 2006 2006 年 11 月 7 日)
10154+3 = 1(0)1533<155> = 7 × 3963860422906687<16> × 149423443005462551721301379502643750647745574130417390277014997318813<69> × 2411930932482573111391518332280642017351271749416029057705410264299159<70> (JMB / GGNFS-0.77.1-20060513-athlon-xp for P69 x P70 / 45.44 hours on Stage-1 distributed across 7 systems Stage-2 WinXP Pro + Cygwin / November 7, 2006 2006 年 11 月 7 日)
10155+3 = 1(0)1543<156> = 82104127886814499369024993996312311665706556142420410416782489897012262753547<77> × 1217965558782331157844625900310263781587935921261132202891162537797114525084649<79> (Wojciech Florek / GGNFS-0.77.1 for P77 x P79 / 88.84 hours on Linux Fedora Core 2 / June 12, 2006 2006 年 6 月 12 日)
10156+3 = 1(0)1553<157> = 641511403098200562871<21> × 1558818744562398872697991402841893630143012651172541457423138666704986227205201971423330215046840119630888036798157768722999217670243093<136>
10157+3 = 1(0)1563<158> = 13 × 821 × 936943689684249976576407757893750585589806052656235360254848683594115993628782910147100159280427246322496017989318841937599550267028951560011243324276211<153>
10158+3 = 1(0)1573<159> = 19 × 181 × 42367021 × 56562887171939352687533078968873450917397<41> × 12134121153120891677860517234609605899226468109948574988494138769478971577913168918124640360449818429183421<107> (JMB / GGNFS-0.77.1-20060513-athlon-xp for P41 x P107 / 73.73 hours on Stage-1: Distributed sieving across a half dozen systems Stage-2: WinXP Pro + Cygwin / November 8, 2006 2006 年 11 月 8 日)
10159+3 = 1(0)1583<160> = 27481 × 21857807 × 50342736358471<14> × 365088561996659184739622906690610283957025786636979183011<57> × 90578648466036397927895461652215642063389691714124448760625362551232618315489<77> (JMB / GGNFS-0.77.1-20060513-athlon-xp for P57 x P77 / 67.02 hours on Stage-1: Distributed sieving Stage-2: WinXP Pro + Cygwin Total clock time to factor, 12 hours and 5 minutes. / November 8, 2006 2006 年 11 月 8 日)
10160+3 = 1(0)1593<161> = 72 × 823 × 2418343914073834818913548979<28> × 102538278668961192433911894438328850160845843852041786502290291129164567462464059585048892813551072785448461295685350000183704391<129>
10161+3 = 1(0)1603<162> = 13384170461<11> × 821803718884451141<18> × 55689458843269071823219640216823151<35> × 31215643436669954814773315727432097321<38> × 5229921251194894076800387430777663894801697083886414650870293<61> (JMB / GGNFS-0.77.1-20060513-athlon-xp for P35 x P38 x P61 / 72.01 hours on Stage-1 distributed sieving, stage-2 WinXP Pro + Cygwin / November 9, 2006 2006 年 11 月 9 日)
10162+3 = 1(0)1613<163> = 307 × 598650709 × 4476604141360639<16> × 1215456529967844490860002956956766684679615204826635405672103875715862231362250509284023146316779151931571158384340272772956845556391379<136>
10163+3 = 1(0)1623<164> = 13 × 17 × 23 × 1249 × 117231589899843222398103253015079733333423108013<48> × 13436086681281923664269307468592392032596002915199098937195994818328776362541162076537167449224244474925441693<110> (JMB / GGNFS-0.77.1-20060513-athlon-xp for P48 x P110 / 82.88 hours on Distributed stage-1 sieving, stage-2 on WinXP Pro + Cygwin / November 9, 2006 2006 年 11 月 9 日)
10164+3 = 1(0)1633<165> = 31 × 72661 × 34398655802053<14> × 4075389007177818510425958607451799493<37> × 316684198450990245853796446126980851388377309015444532754266605694332398770449162432993865124395996668140177<108> (JMB / GGNFS-0.77.1-20060513-athlon-xp for P37 x P108 / 100.00 hours on XP Pro + Cygwin / November 10, 2006 2006 年 11 月 10 日)
10165+3 = 1(0)1643<166> = 38239 × 1693194240447509<16> × 1588184880884744278485835046657<31> × 9724910962239622540990620193028590711568046948990342160048211399738346880582051939871864183726938718963260603503529<115> (Wojciech Florek / GMP-ECM 6.0.1 B1=250000, sigma=2303993114 for P31 x P115 / May 30, 2006 2006 年 5 月 30 日)
10166+3 = 1(0)1653<167> = 7 × 43 × 18427 × 954097 × 289958317933153<15> × 5657544674639745614620897<25> × 1151921209031995449835503865181231198407371624530198454905628788988143684273692588815971197309672350920721424851757<115>
10167+3 = 1(0)1663<168> = 613 × 3042701 × 5418606523951<13> × 210504879244969399<18> × 104420640192739457415377<24> × 12671007740661978399849262965676367229484426614023<50> × 35524907704428477072483751792823172988116747462504646589<56> (Alexander Mkrtychyan / Msieve v. 1.06 for P50 x P56 / 46:25:13 on Pentium 4 3GHz, Windows XP / June 4, 2006 2006 年 6 月 4 日)
10168+3 = 1(0)1673<169> = 2726503339299619443116347<25> × 366770135794837747000992668499668273784835901175430418496681764060260154921883996542610623298632476729065834630837706796434505670143580320217049<144>
10169+3 = 1(0)1683<170> = 13 × 3863 × 13619 × 180929343137<12> × 415945381776047083<18> × 1802869127948399869001169907<28> × 107764868788831277178037213842637374181092314877532084470985459283443200337152000576316948734185833115459<105>
10170+3 = 1(0)1693<171> = 1447 × 101377 × 5131069 × 10740883 × 91413901 × 1019392014671857<16> × 979614353591462245935054061765020517<36> × 135498841902904458414080769423196258648267894198367246061470273791512538221196685877755299<90> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=2556236900 for P36 x P90 / March 19, 2007 2007 年 3 月 19 日)
10171+3 = 1(0)1703<172> = 11766503516695099357653883<26> × 3324774752229019712326210320791873479173334110257<49> × 25561735879742056874997330779164365467172026436929398740217995340496906772469307561544143733079913<98> (matsui / GGNFS-0.77.1-20060513-prescott snfs for P49 x P98 / 141.52 hours / June 22, 2008 2008 年 6 月 22 日)
10172+3 = 1(0)1713<173> = 7 × 103 × 4840357 × 6217133466469352588076049198728375528009389334759580516393<58> × 460889856884875870260428947472281235450995348075280309946390712729504236795643811044642178283027609350143<105> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P58 x P105 / 103.49 hours / December 5, 2008 2008 年 12 月 5 日)
10173+3 = 1(0)1723<174> = 8753 × 14107 × 2625274331<10> × 4654165597283817538340682232414823<34> × 66281431794713202969955544003490886754601337940508012963182198582216786419780605860128839549004095099134596062756894253661<122> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=3230671133 for P34 x P122 / March 20, 2007 2007 年 3 月 20 日)
10174+3 = 1(0)1733<175> = 9701827 × 2365502310860023<16> × 27679823238177256411<20> × 291422925891151054317621660625168167319857245759119095307699<60> × 5401769776185501645973607904479822156071281325941785500003058562905410087<73> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P60 x P73 / 123.13 hours / December 3, 2008 2008 年 12 月 3 日)
10175+3 = 1(0)1743<176> = 13 × 1550513 × 84605989629414611161564159889389410528733<41> × 5863813190635906011331311978267233281067998931182925784006119151460092105536944514992383719950101352924989857277216412589708939<127> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P41 x P127 / 105.85 hours on Core 2 Quad Q6600 / April 20, 2008 2008 年 4 月 20 日)
10176+3 = 1(0)1753<177> = 192 × 44671609 × 2107261963<10> × 2551746123933673099873117<25> × 1153201532807390266144798059863797260784393582736510371997062309294014366485630695096794534723552052657014402203871380895801597441757<133>
10177+3 = 1(0)1763<178> = 59 × 135283639 × 125286048391800588361850640267227794445832959789325876768451615315095399585870049077693593464376410122429099263042518907194131758451689485688908015736365176891138065903<168>
10178+3 = 1(0)1773<179> = 7 × 157 × 24245477791<11> × 5078466902270143<16> × 4569709099059178801353087954144739<34> × 841050813852720381404892919400005717849954152346218888253<57> × 19227735730244777938096884405431184217580235872014168819807<59> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=2589698603 for P34 / February 25, 2007 2007 年 2 月 25 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs for P57 x P59 / 31.02 hours on Core 2 Duo E6300@2.33GHz / February 27, 2007 2007 年 2 月 27 日)
10179+3 = 1(0)1783<180> = 17 × 31 × 47 × 631 × 31333 × 95849950813<11> × 251303759561797<15> × 144295128397493551437767<24> × 15923517945400036446518209<26> × 3689594329477766500239026122115273231811086695605830223270786654498622945351784832023465257943<94>
10180+3 = 1(0)1793<181> = 28123846354801856041<20> × 846519155191153820587<21> × 77061435151581887669779157560546231<35> × 545068896844122913071888795078742584270297590744667404658731433888121502839542622364777079658746154067239<105> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=957255829 for P35 x P105 / February 24, 2007 2007 年 2 月 24 日)
10181+3 = 1(0)1803<182> = 13 × 29 × 9049 × 12637 × 401861 × 42761227 × 1663897541401<13> × 8112626410132975610523776098645246540649842833885955258262588867908596844334114037682190019238078715729021516276868996872278698943674339557232049<145>
10182+3 = 1(0)1813<183> = 406739627350936953562388377<27> × 245857529671480737053230473791951684664784508684537281437794354233101717382061812791982857492060102011506560855529194447399887136377222705239997696635282939<156>
10183+3 = 1(0)1823<184> = 151 × 6020764512776596637935748594527916970455883912337190641386916348913598221840340985957<85> × 1099946118510003646349468098078650177107070925385139448756306534652901227896353302429603211134929<97> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.33 for P85 x P97 / March 3, 2008 2008 年 3 月 3 日)
10184+3 = 1(0)1833<185> = 7 × 9818100172727968626557779746645595165748218531909597522519996742899<67> × 145503855474974097626225854491524811807124225128548763972026441569570512183910306970186124416727300719805279405934471<117> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.34 for P67 x P117 / April 23, 2008 2008 年 4 月 23 日)
10185+3 = 1(0)1843<186> = 23 × 503 × 1129 × 14664279305141722711057404987986284967512862293<47> × 522094974805393808120588312898179627396251001923170837778218768489811574700366797020490210824166469329055959469753995440922219261071<132> (Wataru Sakai / Msieve for P47 x P132 / 236.49 hours / December 3, 2008 2008 年 12 月 3 日)
10186+3 = 1(0)1853<187> = 67 × 236376199 × 8127551942626729<16> × 1722824519095740938809<22> × 261627697235382405889957<24> × 17236017886894906417062328512313986195825653145562258653640735221036113649521785485305122981525096369308707643251083<116>
10187+3 = 1(0)1863<188> = 13 × 43 × 2939 × 13313 × 457206792669032515006444892335628392543525556187910701183638017522665490557301184323562531729291290952147924028419653638904041607201091988424155137876697052520530222591269202231<177>
10188+3 = 1(0)1873<189> = 1128805098352015532983<22> × 68181059276881620949567<23> × 1299323500467930791396487288889578811241087525195872920484445906633755265625230556420310428586160342478651071536317223748214031066444183439575723<145>
10189+3 = 1(0)1883<190> = 149 × 2579 × 7541 × 18804384407<11> × 89411784830227<14> × 302326156316901099415054234018340088084227443035320038122354865868161<69> × 678896924250950617425559235848387983568344761375171256368612766118378019400194027494837<87> (Wataru Sakai / Msieve for P69 x P87 / 342.40 hours / January 6, 2009 2009 年 1 月 6 日)
10190+3 = 1(0)1893<191> = 7 × 109 × 1999 × 9733 × 3233311 × 754010347 × 2866919243941<13> × 17720582280902798851<20> × 655722163172284079918744219522347<33> × 623346172585568150454866799443866912070379169<45> × 13306031615599752194914775123337309874878370542863648083<56> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=3132901734 for P33 / February 27, 2007 2007 年 2 月 27 日) (Shaopu Lin / Msieve v. 1.16 for P45 x P56 / March 1, 2007 2007 年 3 月 1 日)
10191+3 = 1(0)1903<192> = 131 × 283 × 364918399 × 7391737031054034589007515021831787708398504680473196668794012823857987599608801925026887857796126260809187231355419555325617501980500742977895790062370774459036409973579412446189<178>
10192+3 = 1(0)1913<193> = 61 × 727 × 84691 × 24599628043<11> × 4365121677427437126043<22> × 157349786319867767245849<24> × 476691394985607038210799064159<30> × 22496929711071392186319135503334358049659922899<47> × 1469423149375244910983689431513647763628819868757679<52> (Makoto Kamada / GMP-ECM 5.0.3 B1=73580, sigma=1942214032 for P30 / May 29, 2006 2006 年 5 月 29 日) (Wojciech Florek / Msieve for P47 x P52 / May 29, 2006 2006 年 5 月 29 日)
10193+3 = 1(0)1923<194> = 13 × 15401293 × 49945856444051108615960411196044983415952853389047869602197086259625684075306584273850853351678379810758046793164104418425727682034928445992763774394186853712167593281341328339719968267<185>
10194+3 = 1(0)1933<195> = 19 × 31 × 12409 × 25729399 × 5851870639<10> × 104158554145423<15> × 209791664762566759429<21> × 7588861276621421644017922022901115597982312020844439616721880396337<67> × 547978823634499643594275398528213777607811823908668830812226219613837<69> (Tyler Cadigan / GGNFS, Msieve gnfs for P67 x P69 / 339.26 hours on C2Q Q660 2.4GHz, Windows Vista, 3 GB RAM / September 26, 2009 2009 年 9 月 26 日)
10195+3 = 1(0)1943<196> = 17 × 547 × 14549 × 3486070789921<13> × 5665894963755404087<19> × 20272161969880531371430224661237837143004245314829323956717291302611671<71> × 18459750205074881191572660444812378965121433733944512974732242794281011685914941573309<86> (Wataru Sakai / Msieve for P71 x P86 / 436.80 hours / December 28, 2008 2008 年 12 月 28 日)
10196+3 = 1(0)1953<197> = 7 × 2752508262761669324008667413574517577856587387092720436281875809<64> × 519007135382076014806320192315848747738324564942772903565586965269516034842355760568492424090789108493561735010406846967181255450181<132> (Wataru Sakai / Msieve for P64 x P132 / 642.69 hours / December 9, 2008 2008 年 12 月 9 日)
10197+3 = 1(0)1963<198> = 19106066785697<14> × 23966692732375924083199<23> × 1506740400796917587901655344160313161129<40> × 144937967623748042799512511778911106094684897095036555622767428355565706896710086626493506929331448785972737501085874126869<123> (suberi / GMP-ECM 6.1.2 B1=1000000, sigma=3094257630 for P40 x P123 / March 8, 2007 2007 年 3 月 8 日)
10198+3 = 1(0)1973<199> = 3109747 × 13549519 × 54410288483081773549<20> × 4956133022658714127085971<25> × 88008998979457790402824658115175615909999110544344527578514436111912717574548833639840144682338469377023785085552214836504669713133940860249<140>
10199+3 = 1(0)1983<200> = 13 × 4533299 × 259556761 × 111011352372742720485057131<27> × 505135145839533539009957298516389<33> × 16093036459190114862200718359175889466551<41> × 724430892695841602220008780254282449815290128891715782166558993784367540920500492781<84> (Wojciech Florek / GMP-ECM 6.0.1 B1=250000, sigma=582744240 for P33 / June 9, 2006 2006 年 6 月 9 日) (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=4230666473 for P41 x P84 / February 22, 2007 2007 年 2 月 22 日)
10200+3 = 1(0)1993<201> = 16892897616604738393032473779<29> × 142382085188774470405910710620318311201708781764203691159141491<63> × 41575789136886395098758671741723670103749259409601292912421292205993178486578323921284022171938244838107449227<110> (Tyler Cadigan / GGNFS, msieve snfs for P63 x P110 / 478.11 hours on C2Q Q6600 2.4GHz, 3 Gb or RAM, Windows Vista / October 8, 2009 2009 年 10 月 8 日)
10201+3 = 1(0)2003<202> = 180350791512060797653<21> × 1559209440913982454562887029869619018055889163293<49> × 96809897811758421955085530905865727493577389835463186563<56> × 36733112584125115601823581104037969696594279708082416983843406679278376763489<77> (Youcef Lemsafer / GGNFS (SVN 440), msieve 1.51 (SVN 845) for P49 x P56 x P77 / December 3, 2013 2013 年 12 月 3 日)
10202+3 = 1(0)2013<203> = 72 × 35851 × 24708272863<11> × 230388213518038281280308397750250698067300516270332244353847105419080821109260112675484948348030235670854091620187129933046797453834418163823612918388252157514593449879604998726468588519<186>
10203+3 = 1(0)2023<204> = 2789 × 12365896675697<14> × 1249127817911663<16> × 280868269889331617<18> × 55074051436426524245294788335740472290658242214637<50> × 150061501371933529609603999495255647135727438849802417383522605116922772437293654866115221871606646163933<105> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=11000000, sigma=3355128729 for P50 x P105 / October 27, 2013 2013 年 10 月 27 日)
10204+3 = 1(0)2033<205> = 499 × 773818009 × 2589766576538882449628428105053450892762607786935945217420437044156254155298033911234044725424437336349351151470740572779260729596869687415476774186025367485317809303990638221041572299159983833<193>
10205+3 = 1(0)2043<206> = 13 × 2085378790263289<16> × 25768370845254577096463990771<29> × 19039799146194219929680236981306119437<38> × 15143108594550198118899835285284064399180193739119563<53> × 49648637432202862502291365717484506948318948700540135668665997987802579<71> (Justin Card / gmp-ecm 6.2 B1=3000000, sigma=864795688 for P38 / June 23, 2010 2010 年 6 月 23 日) (Justin Card / cado-nfs for polynomial selection/sieving msieve for post-processing for P53 x P71 / July 1, 2010 2010 年 7 月 1 日)
10206+3 = 1(0)2053<207> = 103 × 373 × 29468191729<11> × 6646919103653342659<19> × 17692094238298162154533<23> × 93720538570023947313426016065577<32> × 8014308274577089789601337172685418232615549545999381100160003502568349148420305897095827092221852151620633092928048087<118> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=3601356340 for P32 x P118 / December 13, 2008 2008 年 12 月 13 日)
10207+3 = 1(0)2063<208> = 23 × 853 × 389057 × 7826504789<10> × 7801990472951771<16> × 50499679249372762502722933<26> × 42486211673325367821503552791240824628280281552789529384362715702057666500134064813701971917397118495584619798264663988718946274421350897994845483<146>
10208+3 = 1(0)2073<209> = 7 × 43 × 967 × 141499 × 1073113 × 9669619 × 23399083174595291571585540763318181518000029606069748374672603953939599936449125637342993978807955773645554918964774792743344473477336405258318950319194157646218615604643960459015756353<185>
10209+3 = 1(0)2083<210> = 29 × 31 × 233 × 3361 × 7027 × 20063 × 85331 × 2279750071<10> × 55935983459<11> × 3734180213376649<16> × 924753821124362413<18> × 26812869156941031792385719749731056724908259694748707340374608353214983347205952586373727159589844098323364647983582684450693915899543<134>
10210+3 = 1(0)2093<211> = 11827 × 2521321819<10> × 42100517827<11> × 337318192147392917977<21> × 2361401960141213721445664721995546690933838548779211101075787717531830278658343968881547748349899121983144250148825422692515984786932543925992047598708318835775630089<166>
10211+3 = 1(0)2103<212> = 13 × 17 × 2281 × 19837294510425490129954116337797385841329416128910674646549005060493829609542532151295077772113128123134054485113102334651190931975933394299951795374339666058984211497299152352405569518806747060608885917703<206>
10212+3 = 1(0)2113<213> = 19 × 313 × 72100344457846728686995566050906079023204339527194013<53> × 233219425899999887904779450574060410914770791909686397507236849819912243596530554293769515201797100091341545546091157355719851915551928373643299913434059373<156> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs for P53 x P156 / 65.90 hours, 30.68 hours, 30.68 hours / August 18, 2009 2009 年 8 月 18 日)
10213+3 = 1(0)2123<214> = 20773 × 48139411736388581331536128628508159630289317864535695373802532133057334039378038800365859529196553218119674577576662013190198815770471284840899244211235738699273094882780532421893804457709526789582631300245511<209>
10214+3 = 1(0)2133<215> = 7 × 3313 × 21247 × 433963 × 2633642358481<13> × 4261083787171<13> × 402649344791515198602193<24> × 10349665986183592203507564377602190498035757307891378512727117515014975715518581364695717327241765079209513469831768988636015360602261581856722417592971<152>
10215+3 = 1(0)2143<216> = 257 × 19231 × 6796788072622019335132886437<28> × 2976879670248594742448348755396019489898469503471809994832749203154525775113126992692494295087261699557091126287342131175807015931534020901393457152729290399319466690500273048661657<181>
10216+3 = 1(0)2153<217> = 4339 × 686773 × 722101747 × 939976523582499442974833074933764299448760369<45> × 494403725143241713582773693043764901339985288904544264718424321277808984728066387716324412658431236100024021167387125903615686474892750534462108440474543<153> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=11000000, sigma=1072290462 for P45 x P153 / October 31, 2013 2013 年 10 月 31 日)
10217+3 = 1(0)2163<218> = 13 × 1131961 × 302918571733<12> × 2243361607135013516033612468160994133520821988854484096188761034526238091015759811818218762313435162967346333163395042821032519932352203739203209570213285028436204037874151167194630586854493617942187<199>
10218+3 = 1(0)2173<219> = 613 × 2287 × 21067 × 31142611258687<14> × 108775703897191982457265044413552644954990051<45> × 999502163737399375656794117214590521270262077369393631965975172981692327091031470956101597383826544566005014164812623621716729926197306740975075482647<150> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=43000000, sigma=3975970246 for P45 x P150 / December 22, 2015 2015 年 12 月 22 日)
10219+3 = 1(0)2183<220> = 67 × 19801 × 153319 × 76814053 × 28930137529<11> × 16116614570482132249325369094738789713454819470901666001<56> × 137270462437742829221197428521955876085386934403491880104168514834893464344285170642047593766269386224904544243869366070220672988964203<135> (Daniel Morel / GGNFS-0.77.1 (relations) and msieve 1.52 (matrix) for P56 x P135 / September 9, 2016 2016 年 9 月 9 日)
10220+3 = 1(0)2193<221> = 7 × 1171 × 13903 × 38287 × 466273 × 911419733782919312617<21> × 7517990245089400883446743144051853006947808711804599069950817023411037445184749<79> × 717339507884653717689419152493345716752711611892007254175523332405851497449979703630314086475844340651<102> (Daniel Morel / GGNFS-0.77.1 (relations) and msieve 1.52 (matrix) for P79 x P102 / September 7, 2016 2016 年 9 月 7 日)
10221+3 = 1(0)2203<222> = 139628785837<12> × 7058034671236936808207<22> × 507543081922125325239624985987546989269140440948091085291423<60> × 199925567991640899618026549031642552703420824311209890294310809163191803436504703451572968795204054698674862375660930861134758079<129> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P60 x P129 / November 23, 2016 2016 年 11 月 23 日)
10222+3 = 1(0)2213<223> = 643 × 3148242305402789635024994608088558482102077976171949233030299168602906097691<76> × 493993092804439047817632866453697558737161041031127165407362194138422204047269326180080502984324531973469095663174106362848032678697926320138131<144> (Markus Tervooren / Msieve 1.44 for P76 x P144 / March 27, 2010 2010 年 3 月 27 日)
10223+3 = 1(0)2223<224> = 132 × 269 × 89724043 × 913035390674408170115298808706662287133<39> × 384661126691356660780331408224350136361923399807280371354103447<63> × 6980495788755706348355702290276263503078451510616540726774399977333855126304290888044409803850241650637759711<109> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=11000000, sigma=3166333973 for P39 / October 28, 2013 2013 年 10 月 28 日) (Youcef Lemsafer / GGNFS (SVN 440), msieve 1.51 for P63 x P109 / January 29, 2014 2014 年 1 月 29 日)
10224+3 = 1(0)2233<225> = 31 × 163 × 10375177 × 2147412247<10> × 2626740241<10> × 12990698891657411076992159311045314886517612608111711<53> × 26030955979807745884254818245405455117463020841137848235991631074036576683637020875736166767781501282998012566764565635316004963061923000498079<143> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P53 x P143 / February 10, 2017 2017 年 2 月 10 日)
10225+3 = 1(0)2243<226> = 47 × 55596542276628893687893904461674188425734045987539<50> × 5081699578026248101117725776351792155214522626704131970999327867748681087438765113013<85> × 75308738556551420873071265981065825474555301071112117762996787038235739437080945584086307<89> (Robert Backstrom / Msieve 1.42 for P50 x P85 x P89 / Sieving ~ 170 CPU days + 147 hrs Lanczos / October 12, 2009 2009 年 10 月 12 日)
10226+3 = 1(0)2253<227> = 7 × 199 × 86767 × 552146296783<12> × 46437523419624340982044974630626670929833772118148423590418685581135143231194671302115835591340473209<101> × 3226792864467518735501210746441067918371571938659326374471641706348941250858992315649693696803655304811979<106> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P101 x P106 / March 6, 2018 2018 年 3 月 6 日)
10227+3 = 1(0)2263<228> = 17 × 167 × 1571 × 2411 × 7131889 × 1751683558006458131843706379836092654766879310388483899256511916202732381916576921981257816418503173<100> × 744390776487878425198841289119468480830470328725117848541797491037565711718080518772968340566781185841295462561<111> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P100 x P111 / November 28, 2019 2019 年 11 月 28 日)
10228+3 = 1(0)2273<229> = 3187 × 5791 × 16153650765162590912003287909<29> × 18280536504154522938833644798694650223149<41> × 183486765404000377128641658552037408244939377334748204695593827970529162048666372445631007013282420737215114704493178191568823429827267948141302062345199<153> (Serge Batalov / GMP-ECM B1=2000000, sigma=3092122343 for P41 x P153 / March 20, 2011 2011 年 3 月 20 日)
10229+3 = 1(0)2283<230> = 13 × 23 × 43 × 12043 × 1014358410733<13> × 220535229192001<15> × 6903187661215142971687367557123<31> × 441443102327959808491392217234487702469085279<45> × 1786154442378392850030230903138274176856789626087550133<55> × 53041138430459914838989073642744926435565547785444912322629903381<65> (Wojciech Florek / for P31) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=31000000, sigma=328228008 for P45, Msieve 1.50 gnfs for P55 x P65 / November 4, 2013 2013 年 11 月 4 日)
10230+3 = 1(0)2293<231> = 19 × 5857 × 27099856425841234316222408671<29> × 41157710654623035998562470154261280015003<41> × 412674380143132505444100113292838737928002726481248634807206698959<66> × 1952295115488367785538426166213577040689756968158638608959545920438440798927174451426606323<91> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=31000000, sigma=4076306952 for P41 / November 4, 2013 2013 年 11 月 4 日) (Youcef Lemsafer / msieve 1.52 (SVN 942) win64 CUDA for polynomial selection, GGNFS (SVN 440), msieve 1.51 for P66 x P91 / January 21, 2014 2014 年 1 月 21 日)
10231+3 = 1(0)2303<232> = 5197 × 34428731 × 12903827855092916944581406171313332828848543559<47> × 1646502358783662877300335186189022490191089033283419825833451153418081<70> × 263054266374091304125227513423797730615422410884491073740903919535221704053759075354514460716206244241851<105> (ToolboxNL / GMP-ECM B1=110000000, sigma=2820601438 for P47 / August 31, 2011 2011 年 8 月 31 日) (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.53 (matrix) for P70 x P105 / December 17, 2019 2019 年 12 月 17 日)
10232+3 = 1(0)2313<233> = 7 × 433 × 3299241174529858132629495216100296931705707687231936654569449026723853513691850874298911250412405146816232266578686902012537116463213460903992081821181128340481689211481359287363906301550643352029033322335862751567139557901682613<229>
10233+3 = 1(0)2323<234> = 188707 × 15247972609<11> × 55417138419396958715017482081242017537998820375009883398270688357525993083791685527173409881803<95> × 627127420290566341997915513979757403642498669928593998989070937979630768653355505571304830101905497293941020106878359839427<123> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P95 x P123 / August 26, 2020 2020 年 8 月 26 日)
10234+3 = 1(0)2333<235> = 1621 × 104096557 × 48959841528727<14> × 145941119178487<15> × 7038734253953797<16> × 1218975121501029917998916947524792696247<40> × 96665952145703942307658434881018198753040197861750953231479525345251855474784654760227617109192554321152891469024928932751156412450342448689<140> (Justin Card / gmp-ecm 6.2 B1=1000000, sigma=2675825087 for P40 x P140 / June 9, 2010 2010 年 6 月 9 日)
10235+3 = 1(0)2343<236> = 13 × 59 × 13037809647979139504563233376792698826597131681877444589308996088657105606258148631029986962190352020860495436766623207301173402868318122555410691003911342894393741851368970013037809647979139504563233376792698826597131681877444589309<233>
10236+3 = 1(0)2353<237> = 1567 × 2289525577<10> × 1808336697172974184798635254548651594382866834034650792538315364330163648114890967789<85> × 15413675381903610726394856815299476646288761503323365877104089057195079896231224900791122763296415475756902144135723769525043539199035154153<140> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P85 x P140 / July 13, 2018 2018 年 7 月 13 日)
10237+3 = 1(0)2363<238> = 29 × 211441 × 74668721553328983891655399<26> × 2184107863269697164634863817969429339390371417576030873581131184573192864275673522038666949892294321925725084092466936789263876855204150665950023766356224261484119323171797449351661737248740230563772718873<205>
10238+3 = 1(0)2373<239> = 7 × 50375078683747<14> × 28358693741005359874527234090695717505740570191749001848310123942536153613326494579726067759629310670807622137991969254833383470771201199569995004795546997018797645493662458608467987730108673279472766270491195115946584571607<224>
10239+3 = 1(0)2383<240> = 31 × 6733 × 2627061299<10> × 4375003103<10> × 7207357400006705438305023872337314320838388848182874699116420639787731091244805557784499<88> × 5783690720187888623413341711371878563734815714863921910119873999682206113961953337161657899741762517160586218178205080970650487<127> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P88 x P127 / November 17, 2020 2020 年 11 月 17 日)
10240+3 = 1(0)2393<241> = 103 × 71479 × 622663699405724959<18> × 13386005861092876621843413272521831831633<41> × 652590986232543508590956970581844986222334437761286699810659<60> × 24971157734213509601561069407498257576547202042518282502990437589515285105258112290089993342182295975338992892296303<116> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=2093165441 for P41 / November 6, 2013 2013 年 11 月 6 日) (Youcef Lemsafer / GGNFS (SVN 440), msieve 1.51 for P60 x P116 / February 17, 2014 2014 年 2 月 17 日)
10241+3 = 1(0)2403<242> = 13 × 263 × 11339641 × 220989484351<12> × 16360448922352966372489253141<29> × 31632930374940593323074272949841989443991515433230297647171760808160114019<74> × 2255253385216709145951298498299331972297129957539313062633091219301680920208229129613811102340914334830248201752628833<118> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.53 (matrix) for P74 x P118 / December 7, 2020 2020 年 12 月 7 日)
10242+3 = 1(0)2413<243> = 97 × 21342443261576751763<20> × 10858856476501643070372061553561741256199971654012681482756102978745770368247729125897<86> × 4448361129775475786272237703331437573696528358259552332305475323152774725140807326583326405711120297807256463412968958035820556219149609<136> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P86 x P136 / February 8, 2021 2021 年 2 月 8 日)
10243+3 = 1(0)2423<244> = 17 × 52369 × 4655011481091210710085598203535811<34> × 274051689337602286205086721020192980998667058717536629897662423909176650317<75> × 880488235547929943994224513559289009448588303211875716959446351145834780527511433065043806973893876836453550725476652791658313253<129> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=1096397998 for P34 / December 14, 2008 2008 年 12 月 14 日) (Daniel Morel / GGNFS-0.77.1 (relations) and msieve 1.53 (matrix) for P75 x P129 / November 1, 2021 2021 年 11 月 1 日)
10244+3 = 1(0)2433<245> = 72 × 59720088627032414844300913484960240486992227836360956162494858291719661989419907354629477<89> × 3417302910040948508856235566952537608332675148550110614390522344520191507292744118335846577940572743077781819963576545606576724633145957142504470411800311<154> (RSALS + Jeff Gilchrist / ggnfs-lasieve4I14e on the RSALS grid + msieve for P89 x P154 / April 11, 2010 2010 年 4 月 11 日)
10245+3 = 1(0)2443<246> = 397 × 307895661467105921525359874359213<33> × 1523139408975506847609408057356772403<37> × 468968493051342834109651937816038667962541913371626125097716409<63> × 1145308813170128090217704265890946631702590426371667810688857388157424337742570543710919514262613514149582764849<112> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=1013441708 for P37 / December 16, 2008 2008 年 12 月 16 日) (Justin Card / gmp-ecm 6.2 B1=1000000, sigma=289105393 for P33 / June 10, 2010 2010 年 6 月 10 日) (Daniel Morel / GGNFS-0.77.1 (relations) and msieve 1.53 (matrix) for P63 x P112 / February 2, 2022 2022 年 2 月 2 日)
10246+3 = 1(0)2453<247> = 60978608737<11> × 68060845104702904056331<23> × 42784975460743105231651081<26> × 5631626760059490115054824756762336992201153454039842815684154697480791903279427651680087164409069575672319710307862577782114105687587260779733294624184690718923286589315825354526516646529<187>
10247+3 = 1(0)2463<248> = 13 × 113 × 3305917 × 2392144013153594271547687711<28> × 32480076544874262919055800155111318287240408671152992484386605492686390971<74> × 26502197899510973260081710574434078012832503154554105941724215095917198367735954068687225334501071291481015892886142037473099251625119631<137> (Daniel Morel / GGNFS-0.77.1 (relations) and msieve 1.53 (matrix) for P74 x P137 / September 5, 2022 2022 年 9 月 5 日)
10248+3 = 1(0)2473<249> = 19 × 223 × 126165718229274337<18> × 12824921391934305400334065366552991673187<41> × 16031381961952347637116191005607843989279<41> × 909859843782954803669485606744362871393328807169614827921227676725219063311610988441194226628043951030778661638644866053620575275871547399180001819<147> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=3741404180(1603...) for P41(1603...) / November 9, 2013 2013 年 11 月 9 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=1601899263 for P41(1282...) x P147 / November 9, 2013 2013 年 11 月 9 日)
10249+3 = 1(0)2483<250> = 991 × 22154567 × 3086546112618303871<19> × 179332695682933760279680634569<30> × 82286924880424274241316877946167051416509350505608337514256788439298742466059587864538831406417310935338262422018757408051895712218391317876837985010127481240018401095661243317289605161471901<191> (Wojciech Florek / for P30 x P191)
10250+3 = 1(0)2493<251> = 7 × 43 × 1012809912772949923378144696975861902413702431<46> × 1774117486132956141457234973491829250427156975510339<52> × 48125349750791910686580777709024796929599190379104252235040093941183527<71> × 384192856833907847524586566390613365418318013593453279573413992127914439985524621<81> (RSALS + Jeff Gilchrist / ggnfs-lasieve4I14e on the RSALS grid + msieve for P46 x P52 x P71 x P81 / May 8, 2010 2010 年 5 月 8 日)
10251+3 = 1(0)2503<252> = 23 × 6391117 × 20760168946860233529702113562874947266000631409669635443259903977<65> × 302942258250642518871762185905274913469773151622410648348363098207877<69> × 108169458070374855491959196780567097740102297211714720352145395214608966373198701345674357901343034195384389677<111> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.52 (matrix) for P65 x P69 x P111 / June 1, 2023 2023 年 6 月 1 日)
10252+3 = 1(0)2513<253> = 61 × 67 × 193 × 439 × 997 × 3343 × 1337834203<10> × 7645327111<10> × 164732068628938453462604287<27> × 5092667684251127548997448122748544636553736102912038811091061226041324302513<76> × 100976460073102903445013385129828635711798959967734564326572336787579197609376302295720996683040634298261778971355459<117> (Daniel Morel / GGNFS-0.77.1 (relations) and MSieve 1.53 (matrix) for P76 x P117 / November 1, 2024 2024 年 11 月 1 日)
10253+3 = 1(0)2523<254> = 13 × 17827 × 30985524077186171101023093715321<32> × 1392578023340788073845468225226870118191269503033738274505439653217873477536218809590883070197138513299391911313235570902708856605674946503671890849431542360443706599336897329797596852935560545863061233287927953084493<217> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=901707632 for P32 x P217 / October 17, 2015 2015 年 10 月 17 日)
10254+3 = 1(0)2533<255> = 31 × 1423369 × 525943460298350039298912829<27> × 583104656376449104921844721781<30> × 7389843384779165259184343484900665189741457227816319382195077492796825081557530996714897603930414648964714464481168961900458194873940599084794949331193378906091336321121722124732740281677973<190> (Makoto Kamada / GMP-ECM 6.4.4 B1=5e4, sigma=244314343 for P30 x P190 / October 16, 2015 2015 年 10 月 16 日)
10255+3 = 1(0)2543<256> = 8053 × 13367 × 1030949 × 57848390372558459<17> × 407118759708745126560066767<27> × 68260727528888621892447640410332197608478998197733481<53> × 5605158067991468201337573913589607826027281825774276530186924008244618487731341514738350310652046391047741345044007200372386129864544240324902929<145> (Thomas Kozlowski / GMP-ECM 7.0.6 B1=110000000 for P53 x P145 / October 6, 2024 2024 年 10 月 6 日)
10256+3 = 1(0)2553<257> = 7 × 157 × 9181 × 273922303 × 643447302419858875572567213797395987<36> × 5623049949451827059943450818634076603012266779725640933452028883416080829651857497824466143747445900901257205285418534645844788320104752869642739922070566069771185629094574183607489927842362720727452000017<205> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=2419869898 for P36 x P205 / December 22, 2015 2015 年 12 月 22 日)
10257+3 = 1(0)2563<258> = 620771 × 1530559 × [105249127522525431852139571518838755818770085738503643266564862142342784264235540604009430093060724660833574049071600882034195702236262368654705353173232155359493339066317609685601367856541994433373605338961450780673958555581027586522954157909727<246>] Reserved
10258+3 = 1(0)2573<259> = 151 × 1407252774691<13> × 196053689892084338357335001971<30> × 1183339045082885556179932515298411150825468742839<49> × 20284612885591445864090786380506126099278106029180177481441728621668554107644537153398708903682941558636750339098828897978046124483776561468345506156151912943438392907<167> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2884352058 for P30 / October 17, 2015 2015 年 10 月 17 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=11000000, sigma=4013136904 for P49 x P167 / February 14, 2016 2016 年 2 月 14 日)
10259+3 = 1(0)2583<260> = 13 × 17 × 7764826514902953002768120527781<31> × 21906548257883318866971762521107<32> × 321207791952386166404336509458436697<36> × 14261310922242533259898935119175189199<38> × 1146259849470101303306954506546214501099<40> × 50660960082597830822667625660349574999084364894672383447343618772783848931297683957<83> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=735754472 for P31, B1=3000000, sigma=61034328 for P36, B1=3000000, sigma=3659521199 for P32 / October 29, 2015 2015 年 10 月 29 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=11000000, sigma=4097678365 for P40, B1=20000000, sigma=871191811 for P38 x P83 / December 22, 2015 2015 年 12 月 22 日)
10260+3 = 1(0)2593<261> = 661 × 4222711242214572487<19> × 548116556876047056428611<24> × [65363339849303342463720406100482891401084001021088758236509656143928870206225819876801508459822105676794057134571420728722800912398559895793523200146858505364998457098826169349329660311675376310164694180320986669339<215>] Free to factor
10261+3 = 1(0)2603<262> = 196271987015449<15> × 167717353163258367596380103026684987<36> × 30378314982568454467245658543887935652763280013888567981728194223400079166345223093112013205669024099978419479466016843441669411886785799026582868179580926257220667235773265935576926908840479840092310418455135681<212> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=996451449 for P36 x P212 / December 22, 2015 2015 年 12 月 22 日)
10262+3 = 1(0)2613<263> = 7 × 17323177 × 2757937921<10> × [29901290399242464988453388113743059137797175105393599721089200206112929051904076877949844442838760371993437367818642629304836804014799846768364632685175226519837533664506260496101149428579141672657512613660459658658525163992568182169764886897437<245>] Free to factor
10263+3 = 1(0)2623<264> = 2819 × 368553932609751438291089707530126287<36> × [96250695081528540798495911429413275464463572375908501379360582490526984056497185020345586534745619997115135798286073022422784359138089694463053621682763830372012643360167832551100621487323807317657952066150171524129420463151<224>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=278783046 for P36 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10264+3 = 1(0)2633<265> = 1879 × 13201673827<11> × 94253002527899827<17> × 7946475508384792741<19> × [53823815146420193429492956206188293231065460732472487532720316355399921301470114588743301019982588170441499003511982083102950985407335657503309067868866901982663397905077258654215238025733548505631970939102352989913<215>] Free to factor
10265+3 = 1(0)2643<266> = 13 × 29 × 122891 × 2641469 × 4204363 × 2222024741<10> × [8746694492836249042478581618139792523590196230920013318159083219376366890914990439149629834105154094212983198571023606511830842145892856511623150733292762902292973699496945793986953325162306979472473638045791813102207120482456353900227<235>] Free to factor
10266+3 = 1(0)2653<267> = 19 × 670593090782294917<18> × 4411006487878245967<19> × 250689584037566914328863<24> × [7097629713205031521936850405701562584907884413898496940200273220009978430794037829566563804552975255103713678079101444553802348438150429117394130485112038131037288903715837942430693879451664344581556976141<205>] Free to factor
10267+3 = 1(0)2663<268> = 1097 × 7681 × 31782397 × 323217190989708629<18> × 965506975261612937<18> × [11965727047690023614453157389527754130489194792364798581486070357064177950566125249326305625495061146158433828116772981779957628310167803353246069651481986016664397399819478916957400057051958873005227428397351720475859<218>] Free to factor
10268+3 = 1(0)2673<269> = 7 × 4153 × 4643407 × 1181567628559<13> × 1790466326884582177035362116213<31> × 9607642090159879471182430976883576328471<40> × 1609764397387958423012122815642347053837531<43> × 96265821846864660402904255828317866513841670681043173<53> × 23519456324339921291692311238729141068837460081913157668731176914898962635659289<80> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=3278550941 for P31 / December 22, 2015 2015 年 12 月 22 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=3935785743 for P40 / January 7, 2016 2016 年 1 月 7 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=43000000, sigma=1679508834 for P43, Msieve 1.53 for P53 x P80 / January 11, 2016 2016 年 1 月 11 日)
10269+3 = 1(0)2683<270> = 31 × 613 × 3023 × 62343491783<11> × 89908968981924255076522619<26> × [310560018602146616997549633903546281958662475275337708136403868366351068489478902418258944353074776555725953565325762189804779425372352245859500887694577358448872364485948409651118591560369733892952898246797336715428072355331<225>] Free to factor
10270+3 = 1(0)2693<271> = 335283450850708832909329<24> × [2982551024999049307177362383289053851674303998074463715688917968169459315188560606933785358904681181982008851663483450367677288610814344738989070421060346862255836673068975360288401976677155033685062352946437529952523174020945270342186470050884307<247>] Free to factor
10271+3 = 1(0)2703<272> = 13 × 43 × 47 × [380618886309138659460282419213641380885319529555056521904616907090929851939253225745061469950138925893502835610703003083012979104023141628287595630495185171088189395957827427396947436531800707951128534997906596125299737372968446694324972405130742587447189129524607011<267>] Free to factor
10272+3 = 1(0)2713<273> = 111121 × 188491 × [4774338865666082647781547626885406762703027357203616016976872196030993071635033849012919172909284501057901371763190887683702009156345384691504507443464065591027309891445646663006302963146184441256160789983031775754929942530508198779465563439776270000515295826073<262>] Free to factor
10273+3 = 1(0)2723<274> = 23 × 1583 × 7042774119001<13> × 1521056404586021<16> × 344993155571457468539579245369064198677<39> × 7378825511604307474577990606090532426331817<43> × 1007173871837808568446453236697857967855955000828194304170674119999928128845252728740806611295651769086939900685051858710192206024902593334896538319088909342403<160> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=1527649566 for P39, B1=3000000, sigma=2828923556 for P43 x P160 / January 12, 2016 2016 年 1 月 12 日)
10274+3 = 1(0)2733<275> = 7 × 103 × 442489 × 154225863899011940440297<24> × [203238061895988855381896717816340357659839519229903472362870913000127420509981090380119267850388433538244763648832721537072642682756241946748385043583326715639165857842917714930833525621013849436205398582604895552020256414099517048379554859571<243>] Free to factor
10275+3 = 1(0)2743<276> = 17 × 41061547 × 143256973274203979412546101043077086782176320943433581616912204271997723176811800559378082169303214083798186572721876145925959561602087944026188440546405647514220256613666251957307490860287477865418780767720967459781632622050475193479967150431091964001660010233791097<267>
10276+3 = 1(0)2753<277> = 787 × 44839 × 421987 × 1953373 × 34378355381940320424092641865307209323907047888844773356370321469650014281349030525753079652132152207272313560904067559817205818477825560719538587851407099249275781764784086046933466656446440821257617412819893283246059047406675697159005530132710223272998321<257>
10277+3 = 1(0)2763<278> = 13 × 861451879 × 118257088379<12> × [7550895207265219613862025191937878987355984497280963283877005279324207368577587867135689772319338999582361910861264167750157729833285249718969139689588802822309388437912666241793210990965515249394587442020750853623844662504720806152469867045595106781186491<256>] Free to factor
10278+3 = 1(0)2773<279> = 6367 × 21589 × [727499373750351591353591373044706298790700343495376810592257021920349105415481330718283484433619512429483212890113263868249630614011726693355369192364314982988554768877341081162863807977762497542598052893031118356487540776612710972363077215554055920679812080800765544681<270>] Free to factor
10279+3 = 1(0)2783<280> = 12743 × 17569 × 704429339 × 334171952026926907237759<24> × [18974653013409799032946293624042577103713427908358119752292425979482635219041219547576610348063773566052391809861804028490153603484204492329974227342248941859105481644129652178531345568840090251106289446012552239822278363704277238134320609<239>] Free to factor
10280+3 = 1(0)2793<281> = 7 × 7761769 × 260074098758288707<18> × [707691768826074404961997494989165275954910296216840195295268994896498844720318823784954386876414401881239785985504002956306194726898430168698758708927999948393695100073943467109679001901868212467711627236771327877141009917835744063650627091834176901392863<255>] Free to factor
10281+3 = 1(0)2803<282> = 149787775769063092041357269057<30> × [667611221854152312759416263327214659534371838276411643558102417138665862040769461367021146067916589712074733424654260210511122817578188265325181678232060873148349583938077407620682074631743528872599580144943881429742191377643538491695780665714790688579<252>] (Makoto Kamada / GMP-ECM 6.4.4 B1=5e4, sigma=3229321654 for P30 / October 17, 2015 2015 年 10 月 17 日) Free to factor
10282+3 = 1(0)2813<283> = 367 × 108650557 × 120111283 × 32621205484207<14> × 192046559794532684738115806749<30> × 1722689845692146673036698224679144833917709<43> × [19346595034224453604739114321140447632824911378380711263241649360384355475801701474809598424049023418398482964283193128322654690768364810562327297737825239137821966942662345889997<179>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4098916484 for P30 / October 17, 2015 2015 年 10 月 17 日) (ebina / GMP-ECM 7.0 B1=11000000, sigma=1:1739111642 for P43 / November 15, 2021 2021 年 11 月 15 日) Free to factor
10283+3 = 1(0)2823<284> = 13 × 434372175623<12> × 11204353180167415343<20> × 11564692912024546944202440826731907405634153<44> × [13667017626075758504445629116608875485142681314009399640262796022489499845237919147941906189231665713598599031000313246812881687312096760371961206946840249350944020182597905107796222149633084705630739006458943<209>] (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P44 / September 24, 2024 2024 年 9 月 24 日) Free to factor
10284+3 = 1(0)2833<285> = 19 × 31 × 2478967441099<13> × 55537091190792859<17> × 47421280646712357762153085774346158035817<41> × 26005036926514891622419887004993122945074375850838364036752350069818845976585765949272510244715455941967276343092725734174074948119039534066121569397802439640936860807000345021818699674577477547458330959726620191<212> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=3660903374 for P41 x P212 / January 20, 2016 2016 年 1 月 20 日)
10285+3 = 1(0)2843<286> = 67 × 1204776509<10> × 42064791099713<14> × 145985815188458038125863<24> × 2017387430222108809949026041571354021840585750216313854924523042753887045325703908422412101798205091696517356399168046194061402474438191161735655593442892815787181334945726232179838455320807209745562634604188368823887783831372019059994979<238>
10286+3 = 1(0)2853<287> = 72 × 547 × 2634109 × 197886289 × 9046376246915873101339<22> × 21927556288137870341952310380229<32> × [3608296908767259132913010089242249026561677555489825314363595945467860280503193643790990816881621425850613239161641841063622566127820472165033116566887369831629830965444491429178235404669163306653262992911516179171<214>] (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=3999791038 for P32 / December 24, 2015 2015 年 12 月 24 日) Free to factor
10287+3 = 1(0)2863<288> = 34063788845851374656087366478010842180468143<44> × [2935668737630135636725108110293552403816428281983705422555525234223286031565507731530240944787750114653399380006451813855074690223765915429220673204112186654110794637323426011259730270500621451482758874237108025231911281127664334573959780183021<244>] (Dmitry Domanov / GMP-ECM B1=110000000, sigma=1289875938 for P44 / February 13, 2016 2016 年 2 月 13 日) Free to factor
10288+3 = 1(0)2873<289> = 619068001 × 2026028080265263<16> × 11413679848218580230561711823<29> × [69853874060327940537814672694750862708752687221840486731866220118269244086068735431631605302047448132874852038853843035174255144128575095216664455445101599422577762047734537390908726674855668563335080302649466582689668779648712079058147<236>] Free to factor
10289+3 = 1(0)2883<290> = 13 × 473531 × 72940009 × [22271138539868317151825162116883984098999547673048033648563062568619203080427413157533590298618558240074359223859125181343825747009166917655907464408583312808042765492527435846646531824377505628077331944603102154007826402538748815188205136235675487790588661014495179064227189<275>] Free to factor
10290+3 = 1(0)2893<291> = 10986339883821267003424329863740329496193719007689<50> × [9102212479996387640615453612595385198542660903953580529979513520477614916052969385814469228108016539324163775091839669100596909676194552894543150740941583844710690936656351364205527333829171050705825738343048239602690922364840634452598411627<241>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=143171089 for P50 / September 6, 2016 2016 年 9 月 6 日) Free to factor
10291+3 = 1(0)2903<292> = 17 × 5323 × 10963997923<11> × 1007919083108396889077041636607720329109598046466756935013149220800419871231528154626346079296808047706793098915772707604682375676082062334290455692126019160853337517077060572442796296972394440338157624320959727289246768934125687411790378371110361175162993458975100815809769171<277>
10292+3 = 1(0)2913<293> = 7 × 43 × 769 × 11226841 × 73215229 × [52559129962803191307370251164055319762679284505390049320908914811545327815295501972711563834787027465797410053531715685757972804640719743365191383468484404970556644467363866219316848342349594870978347477667309355373144663760720439682191355460927235808724806841110123808083<272>] Free to factor
10293+3 = 1(0)2923<294> = 29 × 592 × 43541 × 144619266307<12> × 10634915356253119<17> × 56833519850647987<17> × 353681784890155781<18> × 21553758536380357206674923497094609<35> × 34142799467954715923547179836825606099713901665054996112217182884995653362783402528612657081098105249614231417301314438320558153204950904974286082531379817013456837214436258651976047405113<188> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=1409078062 for P35 x P188 / December 24, 2015 2015 年 12 月 24 日)
10294+3 = 1(0)2933<295> = 207517 × 4818882308437381033843010452155727000679462405489670725771864473753957507095804199174043572333832890799308008500508392083540143699070437602702429198571683283779160261568931701981042516998607343012861596881219369979326994896803635364813485160251931167085106280449312586438701407595522294559<289>
10295+3 = 1(0)2943<296> = 13 × 23 × 1693 × 23021 × 780817729 × 604796572111<12> × [1817141228296895476487052195562025886373368023615688973804238799199499551955757442113725745625112029256865046342380513902935642109005746983097805214397708062206642664931874526975829429117746473633128920308851606929894839749928372236632299507596126762948785557902271<265>] Free to factor
10296+3 = 1(0)2953<297> = 63717002157641509<17> × [1569439813765737745685054818993990325942603248768769385536827391705776660662208859045635200897835197377100458244426530265141962099360089092642300104788781717166139170112219302463446880641603576927783324665944776790087274918277946287943881379534743835140599739767866508502490652167<280>] Free to factor
10297+3 = 1(0)2963<298> = 5657 × 10589 × [16693940949157050302833931697041097461013512860419472326896478017510374825216525004944327960616589373441839720371147040515677171434737216418564376836135263858504293339386333735618357679136879180924474724730686249683295072768304309442361773292509079792747394146767085618365191410306301597111<290>] Free to factor
10298+3 = 1(0)2973<299> = 7 × 109 × 5081855341<10> × 7173106034705419<16> × 20087724203194254045442860093151<32> × 143122375410536389278125931340393<33> × [125056894643562457110055211354063082034119576152825331720342254121774024585545247589821788664374158737007592685852325914740501158151894132068239343071566515865057668801437149617170093688356571482347215140673<207>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=853347737 for P33 / October 17, 2015 2015 年 10 月 17 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1388239131 for P32 / November 18, 2015 2015 年 11 月 18 日) Free to factor
10299+3 = 1(0)2983<300> = 31 × 1103 × 294383 × 42801439 × [232108848232713264078189872658269329048627979066222095073318293554144644927075187796740243871271214407796424698454521544740943902837148186016079873476451606780628033300701623686417270295555915431854649288465278222016051524356076089404296603047490797231842763422309868268605793412483<282>] Free to factor
10300+3 = 1(0)2993<301> = 406513 × 295282056924686380563583365091603977446117859823<48> × [8330834443543162382997222296063085092934412319013749139975990083643907345129623222160187447606180997711670058353800258390604398325249442113829680357790298365251314948718781432032155953211667926365699389092534509523569798900197781609982236745798397<247>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=546977595 for P48 / October 31, 2015 2015 年 10 月 31 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク