Table of contents 目次

  1. About 211...119 211...119 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 211...119 211...119 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 211...119 211...119 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 211...119 211...119 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

21w9 = { 29, 219, 2119, 21119, 211119, 2111119, 21111119, 211111119, 2111111119, 21111111119, … }

1.3. General term 一般項

19×10n+719 (1≤n)

2. Prime numbers of the form 211...119 211...119 の形の素数

2.1. Last updated 最終更新日

January 18, 2024 2024 年 1 月 18 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 19×101+719 = 29 is prime. は素数です。
  2. 19×10223+719 = 2(1)2229<224> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 1, 2004 2004 年 10 月 1 日)
  3. 19×10318+719 = 2(1)3179<319> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Julien Peter Benney / December 3, 2004 2004 年 12 月 3 日)
  4. 19×10427+719 = 2(1)4269<428> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Julien Peter Benney / December 3, 2004 2004 年 12 月 3 日)
  5. 19×103727+719 = 2(1)37269<3728> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Ray Chandler / Primo 4.0.2 - LX64 / April 15, 2013 2013 年 4 月 15 日) [certificate証明]
  6. 19×105227+719 = 2(1)52269<5228> is PRP. はおそらく素数です。 (Makoto Kamada / October 1, 2004 2004 年 10 月 1 日)
  7. 19×108779+719 = 2(1)87789<8780> is PRP. はおそらく素数です。 (Makoto Kamada / October 1, 2004 2004 年 10 月 1 日)
  8. 19×1011383+719 = 2(1)113829<11384> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  9. 19×1015415+719 = 2(1)154149<15416> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  10. 19×1026382+719 = 2(1)263819<26383> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / February 6, 2015 2015 年 2 月 6 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 19×103k+2+719 = 3×(19×102+719×3+19×102×103-19×3×k-1Σm=0103m)
  2. 19×106k+3+719 = 13×(19×103+719×13+19×103×106-19×13×k-1Σm=0106m)
  3. 19×106k+4+719 = 7×(19×104+719×7+19×104×106-19×7×k-1Σm=0106m)
  4. 19×108k+2+719 = 73×(19×102+719×73+19×102×108-19×73×k-1Σm=0108m)
  5. 19×1013k+7+719 = 53×(19×107+719×53+19×107×1013-19×53×k-1Σm=01013m)
  6. 19×1016k+9+719 = 17×(19×109+719×17+19×109×1016-19×17×k-1Σm=01016m)
  7. 19×1022k+14+719 = 23×(19×1014+719×23+19×1014×1022-19×23×k-1Σm=01022m)
  8. 19×1028k+1+719 = 29×(19×101+719×29+19×10×1028-19×29×k-1Σm=01028m)
  9. 19×1030k+23+719 = 211×(19×1023+719×211+19×1023×1030-19×211×k-1Σm=01030m)
  10. 19×1043k+6+719 = 173×(19×106+719×173+19×106×1043-19×173×k-1Σm=01043m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 10.11%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 10.11% です。

3. Factor table of 211...119 211...119 の素因数分解表

3.1. Last updated 最終更新日

December 2, 2023 2023 年 12 月 2 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=207, 212, 213, 214, 215, 217, 226, 227, 228, 229, 232, 233, 235, 236, 237, 238, 242, 244, 245, 248, 250, 251, 254, 257, 258, 259, 260, 261, 262, 264, 265, 267, 268, 271, 272, 273, 274, 279, 280, 281, 282, 285, 287, 288, 289, 290, 292, 295, 298, 299, 300 (51/300)

3.4. Factor table 素因数分解表

19×101+719 = 29 = definitely prime number 素数
19×102+719 = 219 = 3 × 73
19×103+719 = 2119 = 13 × 163
19×104+719 = 21119 = 72 × 431
19×105+719 = 211119 = 3 × 70373
19×106+719 = 2111119 = 173 × 12203
19×107+719 = 21111119 = 53 × 398323
19×108+719 = 211111119 = 32 × 821 × 28571
19×109+719 = 2111111119<10> = 13 × 17 × 61 × 149 × 1051
19×1010+719 = 21111111119<11> = 7 × 47 × 73 × 879007
19×1011+719 = 211111111119<12> = 3 × 1373 × 51253001
19×1012+719 = 2111111111119<13> = 181 × 1019 × 2113 × 5417
19×1013+719 = 21111111111119<14> = 157 × 4451 × 30210217
19×1014+719 = 211111111111119<15> = 3 × 23 × 80051 × 38220401
19×1015+719 = 2111111111111119<16> = 132 × 12491781722551<14>
19×1016+719 = 21111111111111119<17> = 7 × 3015873015873017<16>
19×1017+719 = 211111111111111119<18> = 32 × 4297 × 20219 × 269987437
19×1018+719 = 2111111111111111119<19> = 73 × 139 × 7253 × 54193 × 529313
19×1019+719 = 21111111111111111119<20> = 107 × 197300103842159917<18>
19×1020+719 = 211111111111111111119<21> = 3 × 53 × 5851 × 262261 × 865267031
19×1021+719 = 2111111111111111111119<22> = 13 × 19213679 × 8451955629797<13>
19×1022+719 = 21111111111111111111119<23> = 7 × 20640429911<11> × 146114835247<12>
19×1023+719 = 211111111111111111111119<24> = 3 × 211 × 333508864314551518343<21>
19×1024+719 = 2111111111111111111111119<25> = 631 × 3345659447085754534249<22>
19×1025+719 = 21111111111111111111111119<26> = 17 × 3889 × 9949 × 96053669 × 334141823
19×1026+719 = 211111111111111111111111119<27> = 33 × 73 × 167 × 641369046112071476867<21>
19×1027+719 = 2111111111111111111111111119<28> = 13 × 89521 × 1814023105116814972603<22>
19×1028+719 = 21111111111111111111111111119<29> = 7 × 21678211 × 139120013910419816147<21>
19×1029+719 = 211111111111111111111111111119<30> = 3 × 29 × 24061 × 100850525561282273030717<24>
19×1030+719 = 2111111111111111111111111111119<31> = 33493 × 136376447 × 462186941017070189<18>
19×1031+719 = 21111111111111111111111111111119<32> = 59 × 41612149 × 478022147 × 17988332925347<14>
19×1032+719 = 211111111111111111111111111111119<33> = 3 × 787 × 340787 × 262380820032318459221917<24>
19×1033+719 = 2111111111111111111111111111111119<34> = 13 × 53 × 419 × 7312701508225442120160001909<28>
19×1034+719 = 21111111111111111111111111111111119<35> = 7 × 73 × 187169819 × 8360023787<10> × 26402609828393<14>
19×1035+719 = 211111111111111111111111111111111119<36> = 32 × 131 × 27736663993<11> × 6455695848515274871877<22>
19×1036+719 = 2111111111111111111111111111111111119<37> = 23 × 54377 × 1351286093<10> × 1249167580778712535973<22>
19×1037+719 = 21111111111111111111111111111111111119<38> = 3851 × 1987247 × 211173719 × 13063088059115065333<20>
19×1038+719 = 211111111111111111111111111111111111119<39> = 3 × 378761 × 185790961504406130436793572649693<33>
19×1039+719 = 2111111111111111111111111111111111111119<40> = 13 × 162393162393162393162393162393162393163<39>
19×1040+719 = 21111111111111111111111111111111111111119<41> = 7 × 6781 × 214742893 × 2071097323992183107671603649<28>
19×1041+719 = 211111111111111111111111111111111111111119<42> = 3 × 17 × 4363 × 976541025067<12> × 971550119333661829624189<24>
19×1042+719 = 2111111111111111111111111111111111111111119<43> = 73 × 1559 × 18549923213081015325165509249089345217<38>
19×1043+719 = 21111111111111111111111111111111111111111119<44> = 57828421111<11> × 365064629217334799232836538909929<33>
19×1044+719 = 211111111111111111111111111111111111111111119<45> = 32 × 10243 × 687311 × 3331870511166275607166813096366867<34>
19×1045+719 = 2111111111111111111111111111111111111111111119<46> = 13 × 12458333 × 13034903015769637331286068721486445511<38>
19×1046+719 = 21111111111111111111111111111111111111111111119<47> = 73 × 53 × 97 × 6323 × 29169086173<11> × 5164305692659<13> × 12569309511233<14>
19×1047+719 = 211111111111111111111111111111111111111111111119<48> = 3 × 331 × 105023 × 284394275249023<15> × 7117976883311981163641327<25>
19×1048+719 = 2111111111111111111111111111111111111111111111119<49> = 229 × 204108959053<12> × 45166198757196478868133617107168687<35>
19×1049+719 = 21111111111111111111111111111111111111111111111119<50> = 173 × 2445073 × 15995461 × 37719809 × 4601355091813<13> × 17977163267603<14>
19×1050+719 = 211111111111111111111111111111111111111111111111119<51> = 3 × 73 × 1487 × 126943 × 5106781195419546807761651021485983176461<40>
19×1051+719 = 2(1)509<52> = 13 × 162393162393162393162393162393162393162393162393163<51>
19×1052+719 = 2(1)519<53> = 7 × 1669 × 507087033199350647<18> × 3563479047172498726473848742019<31>
19×1053+719 = 2(1)529<54> = 33 × 211 × 3061 × 523297 × 23134136698127258047967954956988775430931<41>
19×1054+719 = 2(1)539<55> = 223 × 1877 × 19745809 × 3187555398030823<16> × 80132608957864349962920827<26>
19×1055+719 = 2(1)549<56> = 159642667 × 4431324910267<13> × 29842041004599261655479956606065271<35>
19×1056+719 = 2(1)559<57> = 3 × 47 × 2806157 × 31539421 × 24813860011<11> × 412448847277<12> × 1652958214732790701<19>
19×1057+719 = 2(1)569<58> = 13 × 17 × 29 × 443 × 4834451 × 10204457267<11> × 76296912701092379<17> × 197548189918444759<18>
19×1058+719 = 2(1)579<59> = 7 × 23 × 73 × 593 × 6203 × 478571767 × 6350164999<10> × 17378356159<11> × 9246238748190137371<19>
19×1059+719 = 2(1)589<60> = 3 × 53 × 1717811882927507<16> × 772926797382522951887762429084303445159563<42>
19×1060+719 = 2(1)599<61> = 467 × 466117153 × 32886420317557<14> × 294905262599554945924820533104178817<36>
19×1061+719 = 2(1)609<62> = 151 × 139808682855040470934510669610007358351729212656364974245769<60>
19×1062+719 = 2(1)619<63> = 32 × 37593583 × 443623021 × 75392618364989<14> × 18655717677275150313774258536033<32>
19×1063+719 = 2(1)629<64> = 13 × 20549 × 1890677 × 158083157423<12> × 342255392819029<15> × 77254503281634885871841993<26>
19×1064+719 = 2(1)639<65> = 7 × 139 × 193 × 1013 × 14561 × 89888737 × 6901417427677<13> × 12285609878451440079386063227403<32>
19×1065+719 = 2(1)649<66> = 3 × 70370370370370370370370370370370370370370370370370370370370370373<65>
19×1066+719 = 2(1)659<67> = 73 × 14071 × 270421 × 19205740231850533<17> × 395723465229206707633651724848356859801<39>
19×1067+719 = 2(1)669<68> = 317 × 2699 × 16879 × 9399226773834923<16> × 155528543051899931157726926814014367245629<42>
19×1068+719 = 2(1)679<69> = 3 × 70370370370370370370370370370370370370370370370370370370370370370373<68>
19×1069+719 = 2(1)689<70> = 13 × 61 × 1268110624279<13> × 2539786231060591<16> × 826577536839584485510079862550480559647<39>
19×1070+719 = 2(1)699<71> = 7 × 141302173 × 30213496457282924029<20> × 706420386387522172504593044425412789074001<42>
19×1071+719 = 2(1)709<72> = 32 × 2957 × 33461 × 41687 × 11156413 × 509745166297879594743201761052204076154857129227493<51>
19×1072+719 = 2(1)719<73> = 53 × 107 × 65203 × 151451 × 446023994147<12> × 9345354822806158617709<22> × 9043940638373534917166431<25>
19×1073+719 = 2(1)729<74> = 17 × 1241830065359477124183006535947712418300653594771241830065359477124183007<73>
19×1074+719 = 2(1)739<75> = 3 × 73 × 963977676306443429731100963977676306443429731100963977676306443429731101<72>
19×1075+719 = 2(1)749<76> = 13 × 509 × 27920410720118957004480181<26> × 11426892829251009371015304521703616097032683947<47>
19×1076+719 = 2(1)759<77> = 7 × 93256522130561<14> × 32339539873154750588242135218398284859546601430468874269752697<62>
19×1077+719 = 2(1)769<78> = 3 × 20957029 × 20571092772655849<17> × 10400884863933412832119<23> × 15693957450012012783374269934927<32>
19×1078+719 = 2(1)779<79> = 661 × 14771 × 103451 × 124493 × 8916567978438790824664943<25> × 1882878876799838324383967915948233201<37>
19×1079+719 = 2(1)789<80> = 379007408867600131<18> × 1396756765500693809<19> × 2860535279281374632747<22> × 13941044063153848212863<23>
19×1080+719 = 2(1)799<81> = 34 × 23 × 72970856344417<14> × 571996888078634987763173537<27> × 2714908065073043640549275377761731897<37>
19×1081+719 = 2(1)809<82> = 13 × 3709 × 11914933 × 21247873 × 159874963 × 559406609 × 1933729797597322707064815801663414905098066169<46>
19×1082+719 = 2(1)819<83> = 7 × 73 × 601 × 11808569 × 223523175957937<15> × 483964409433581501991611<24> × 53812412578214207839416617970563<32>
19×1083+719 = 2(1)829<84> = 3 × 211 × 377827 × 28209049459621<14> × 2046686674870678315931472843613<31> × 15288841460527163140027386413533<32>
19×1084+719 = 2(1)839<85> = 163 × 1681869885581<13> × 7700715744834807796859230931460767666698019718214574872561848656287673<70>
19×1085+719 = 2(1)849<86> = 29 × 53 × 13735270729415166630521217378732017638979252512108725511458107424275283741776910287<83>
19×1086+719 = 2(1)859<87> = 3 × 659 × 819251 × 1551013 × 524067677333<12> × 4928029424074561500529<22> × 32539534601386677443239448661813883717<38>
19×1087+719 = 2(1)869<88> = 13 × 4549 × 5021 × 669901 × 16369703450188716391<20> × 3088568382886396012073<22> × 209919566899707071977059885887929<33>
19×1088+719 = 2(1)879<89> = 72 × 26881793442801164046980197<26> × 16027167353409995221651323018389210492560403205905300144024723<62>
19×1089+719 = 2(1)889<90> = 32 × 17 × 59 × 1043761 × 7641329 × 2932227650778587631440466304000286104138919949265721034601118714591786213<73>
19×1090+719 = 2(1)899<91> = 73 × 366869 × 790040641767650445431628943254677245331<39> × 99776388994966458324341899812551438152337977<44> (Makoto Kamada / GGNFS-0.54.5b for P39 x P44)
19×1091+719 = 2(1)909<92> = 157 × 24854981 × 101667449877260032267<21> × 53212795306405811118323055346058591574528013629787294141340221<62>
19×1092+719 = 2(1)919<93> = 3 × 173 × 7253 × 2021355859<10> × 987024690703<12> × 50651873828211707<17> × 554957525940735929615648769881465105201965825403<48>
19×1093+719 = 2(1)929<94> = 132 × 109 × 1109 × 103339496881651817243273048823707990733666970881828723584092659718847711743458545940071<87>
19×1094+719 = 2(1)939<95> = 7 × 599117 × 305642851 × 4811749200693187539350231595419887<34> × 3422820967062682210199750378885368032183325873<46> (Makoto Kamada / GGNFS-0.54.5b for P34 x P46)
19×1095+719 = 2(1)949<96> = 3 × 37199 × 166967 × 13571737 × 4408651893130409<16> × 73902417101175478111211<23> × 2562288582085253287132919768118189849287<40>
19×1096+719 = 2(1)959<97> = 127784201533112849177766091<27> × 979070960651701230670464843223457<33> × 16874066580408482836481536106263760237<38> (Makoto Kamada / GGNFS-0.54.5b for P33 x P38)
19×1097+719 = 2(1)969<98> = 526271807 × 46232282465752501<17> × 659307726319252513<18> × 1316035142276734994412873117896222564181903327845121709<55>
19×1098+719 = 2(1)979<99> = 32 × 53 × 73 × 179 × 198102517103366196367641337<27> × 170972722637283066610187567762527452497711422764787236754398556793<66>
19×1099+719 = 2(1)989<100> = 13 × 1301 × 10515829 × 327465869 × 189714770447<12> × 7811888719109<13> × 24458155022028620921779854009164917365975582356188445581<56>
19×10100+719 = 2(1)999<101> = 7 × 1543 × 17288325565711<14> × 453803007263050411300050612584327<33> × 249130456328647745178839684454319193083180004591527<51> (Makoto Kamada / GGNFS-0.54.5b for P33 x P51)
19×10101+719 = 2(1)1009<102> = 3 × 1984753 × 85307946671<11> × 415617552887391944990852631195188412467429733942774928919638994960884773772760286971<84>
19×10102+719 = 2(1)1019<103> = 23 × 47 × 101611 × 763513 × 100996333 × 980156943101230219900359753653<30> × 254288669710884780374892372181242723179308431072557<51> (Robert Backstrom / GMP-ECM 6.2.1 B1=298000, sigma=1582660929 for P30 x P51 / June 11, 2008 2008 年 6 月 11 日)
19×10103+719 = 2(1)1029<104> = 1549 × 4951 × 1074643 × 2561548205864772103845683520753875760742969097317354566459760048490975755179584716127674367<91>
19×10104+719 = 2(1)1039<105> = 3 × 543455115744577<15> × 129486995948059724101321422245111760074926871171433441038010973808961708870133806846169349<90>
19×10105+719 = 2(1)1049<106> = 13 × 17 × 2591 × 3686815501468031719808231261905745979576206379393883650700232987335400666615051249646114222589351429<100>
19×10106+719 = 2(1)1059<107> = 7 × 73 × 257 × 2818484479<10> × 57034996664325203489453388891052063475500069954482031315462014819758444975927143581515835343<92>
19×10107+719 = 2(1)1069<108> = 33 × 5684909 × 159307335780345792113<21> × 8633522705576999766143745545750195244814205130455257476317231173377273161072641<79>
19×10108+719 = 2(1)1079<109> = 8243 × 19120670782441660997<20> × 450603619990888308306431347840461433<36> × 29725419435685684489852635686211058845046578616633<50> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P36 x P50 / 0.73 hours on Cygwin on AMD 64 X2 6000+ / June 11, 2008 2008 年 6 月 11 日)
19×10109+719 = 2(1)1089<110> = 36181931 × 388681190201<12> × 417557704799<12> × 1241021433131<13> × 21171354333119<14> × 136830023624467058634674519967489767360820190411489759<54>
19×10110+719 = 2(1)1099<111> = 3 × 113 × 139 × 43787 × 2754995100719<13> × 3213745871194913413<19> × 298424173882153295162429<24> × 38724430452867227636693849809162304579332306819<47>
19×10111+719 = 2(1)1109<112> = 13 × 53 × 47589161 × 64384869738436032699694806552084172070901465413546106212696548097771712297701635547261107344595723111<101>
19×10112+719 = 2(1)1119<113> = 7 × 565391 × 192943753209624529109523104943977732198649113<45> × 27646072217246202886997945868549461853782928111418179513056399<62> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P45 x P62 / 2.53 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 11, 2008 2008 年 6 月 11 日)
19×10113+719 = 2(1)1129<114> = 3 × 292 × 211 × 263 × 1037479 × 38921602905247<14> × 132455474846512282031650275551<30> × 281913381612775088400192843639708817385200776694880393567<57> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=4098357019 for P30 x P57 / June 1, 2008 2008 年 6 月 1 日)
19×10114+719 = 2(1)1139<115> = 73 × 691 × 8668069487682906600652956127049454670277290771<46> × 4828228328398470071417068118715193261966974633062620905686001823<64> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P46 x P64 / 2.38 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 11, 2008 2008 年 6 月 11 日)
19×10115+719 = 2(1)1149<116> = 7177 × 8150921 × 360878875952683255963256493934883008819581340333403562127101492653063492467396655595830230143167819823007<105>
19×10116+719 = 2(1)1159<117> = 32 × 10939 × 2193374033<10> × 30557376601831<14> × 257836992779971440842101<24> × 124084338051257687442977825770784745439500451919086782974718431303<66>
19×10117+719 = 2(1)1169<118> = 13 × 283 × 1557118691<10> × 5855506103701<13> × 14148351101443337<17> × 4448251350105850545252146588724904518871165111107619918161116675810793580183<76>
19×10118+719 = 2(1)1179<119> = 7 × 110849944561530781157<21> × 2950323276292964136370931<25> × 9221635788859022461183531083854162951992122333111718881774295782604752551<73>
19×10119+719 = 2(1)1189<120> = 3 × 773 × 1093 × 83289485802715351212254355744210624555853337385586000492810736523224199120086035408639916451001694151977798705357<113>
19×10120+719 = 2(1)1199<121> = 1619424459641887<16> × 4167066977841481534421<22> × 312838299117761415693285574436931177372789870339638912869489484065865467734322989197<84>
19×10121+719 = 2(1)1209<122> = 173 × 25781218871<11> × 4650651913573<13> × 35838270767697671117109118757206563363314226433700200136744730449214871855058788302380748963461<95>
19×10122+719 = 2(1)1219<123> = 3 × 73 × 169868462779<12> × 584572627607173<15> × 948705134261336401<18> × 778464314723455755221119<24> × 13144551860554820168043222496120136447309914865345237<53>
19×10123+719 = 2(1)1229<124> = 13 × 20681 × 181461144045911<15> × 43272557130541909330923410526711319052422344209680954084942849451929426465062568136595875269406199629893<104>
19×10124+719 = 2(1)1239<125> = 7 × 23 × 53 × 545437 × 2033243 × 384102041 × 1253918638360010980630156828555485474091<40> × 4631903386600872960769452069902828289819525693679554924387983<61> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P40 x P61 / 4.21 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 11, 2008 2008 年 6 月 11 日)
19×10125+719 = 2(1)1249<126> = 32 × 107 × 1413942013724739012664646934719861<34> × 155043371987302231298493040834790288681640158330016874349793071994628235823840962820138833<90> (Robert Backstrom / GMP-ECM 6.2.1 B1=978000, sigma=492425792 for P34 x P90 / June 11, 2008 2008 年 6 月 11 日)
19×10126+719 = 2(1)1259<127> = 422096513 × 5145216763<10> × 3313220862453003712927<22> × 5784939440621316381615971654557277699<37> × 50716169772551226915531892187055375653717528087137<50> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P37 x P50 / 2.33 hours on Cygwin on AMD 64 X2 6000+ / June 11, 2008 2008 年 6 月 11 日)
19×10127+719 = 2(1)1269<128> = 13289999 × 276833662361<12> × 212972697850451408867<21> × 13920460151396737919015640650543<32> × 1935484604602913907474108258861135412917867783001118631341<58> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1334110189 for P32 x P58 / June 2, 2008 2008 年 6 月 2 日)
19×10128+719 = 2(1)1279<129> = 3 × 37493 × 1876893563341700327270967123739641276248109523654292011051939571929970137635568515999529788770447026654852115604789437238161<124>
19×10129+719 = 2(1)1289<130> = 13 × 61 × 2662182990051842510858904301527252346924478072019055625613002662182990051842510858904301527252346924478072019055625613002662183<127>
19×10130+719 = 2(1)1299<131> = 72 × 73 × 16673 × 1396607 × 559304873 × 453164189878837275581171993061295281708428497036110497771345635278723461873038921648212457268110188134496049<108>
19×10131+719 = 2(1)1309<132> = 3 × 17683 × 268817 × 821570089592439041<18> × 9933828715175100000962773<25> × 1813910574757506580138401032906056134677322752336853652690828119186833316288251<79>
19×10132+719 = 2(1)1319<133> = 5750351 × 3070993112983<13> × 345044156871461<15> × 24188464339752121280456516669389<32> × 14323690221972322118217528148496229598451511026018742414164385860167<68> (Sinkiti Sibata / Msieve v. 1.36 for P32 x P68 / 17.13 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 12, 2008 2008 年 6 月 12 日)
19×10133+719 = 2(1)1329<134> = 11321 × 774338621761<12> × 11439494876543<14> × 108512998653547<15> × 3114365482364206054637<22> × 453247124165964470191824697<27> × 1374365144409723008231100680673612701844271<43>
19×10134+719 = 2(1)1339<135> = 33 × 457257134670580393<18> × 10698206939899017923623609042878690937<38> × 1598364563201131516546710489349534778051921624547529288544666400228846159595517<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P38 x P79 / 9.94 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 11, 2008 2008 年 6 月 11 日)
19×10135+719 = 2(1)1349<136> = 13 × 173 × 21169 × 44342614198142390337488579355503860935923361156900111369742909154476456101118841405720709272063266903032871210244766352686184199<128>
19×10136+719 = 2(1)1359<137> = 7 × 151 × 5652617 × 847338798749<12> × 16543089495237673789393867<26> × 133603222497974916207566236359895495592119<42> × 1886669803486077342881805363901015169384078657663<49> (Sinkiti Sibata / Msieve v. 1.36 for P26 x P42 x P49 / 2.08 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 11, 2008 2008 年 6 月 11 日)
19×10137+719 = 2(1)1369<138> = 3 × 17 × 53 × 760317572544031769<18> × 6801356722860337047229446691<28> × 4250715591941833113363929326424495917<37> × 3553140787460875292162304042118460409815632172652911<52> (Sinkiti Sibata / Msieve v. 1.36 for P28 x P37 x P52 / 1.69 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 11, 2008 2008 年 6 月 11 日)
19×10138+719 = 2(1)1379<139> = 73 × 997 × 195919 × 66563467303261<14> × 1603870692511431841860591622009493<34> × 1386791687162605489137851193896744499618556517677168287616017596826355620762034277<82> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P34 x P82 / 17.15 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 11, 2008 2008 年 6 月 11 日)
19×10139+719 = 2(1)1389<140> = 155153 × 874121 × 3636247 × 886269097997<12> × 48301473251351989472437028815252704154181367542619599375584570624407783746277438704552154871186194572456967157<110>
19×10140+719 = 2(1)1399<141> = 3 × 2399 × 221951 × 10422762521<11> × 324482095004830291<18> × 97378598655275229371<20> × 117408740602065666219937183<27> × 3417944077491681036949100005432752035808374447077452321299<58>
19×10141+719 = 2(1)1409<142> = 13 × 29 × 347 × 941 × 8111 × 16967418035004781<17> × 650231791063999630808600501041274974102363870523<48> × 191642700766968311023323590286528352074786023369003402963652968777<66> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P48 x P66 / 18.56 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 12, 2008 2008 年 6 月 12 日)
19×10142+719 = 2(1)1419<143> = 7 × 97 × 2348733871051<13> × 16065327225299271269093343103523<32> × 35702000102923126067043311456968363449168793523<47> × 23079446206702040089175443834158184126317648059459<50> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P32 x P47 x P50 / 17.07 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 12, 2008 2008 年 6 月 12 日)
19×10143+719 = 2(1)1429<144> = 32 × 211 × 773537122612256721050443498792233896398463284176095668716900509<63> × 143715948709430888732671112113368641464136741032198092002947921700020431129809<78> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P63 x P78 / 22.98 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 13, 2008 2008 年 6 月 13 日)
19×10144+719 = 2(1)1439<145> = 1999 × 4507 × 279576733790481204623483289144205990927420007608424299189687<60> × 838126770218144510957697953206157504729388016127259238924760043036739444411909<78> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P60 x P78 / 24.32 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 13, 2008 2008 年 6 月 13 日)
19×10145+719 = 2(1)1449<146> = 1399 × 2368663421329147<16> × 6011346835645297<16> × 7099690249914766487<19> × 1351665731073016457831<22> × 138995805347932031751415783<27> × 794525497021550598868539110321321082019196909<45>
19×10146+719 = 2(1)1459<147> = 3 × 23 × 73 × 317 × 5693 × 1132738361<10> × 177877557891409601<18> × 33672122375149190107487271593<29> × 3423083055769169851977918336371532735259528896008388017184045076554256563655282099<82>
19×10147+719 = 2(1)1469<148> = 13 × 59 × 887 × 3726369897506049222488673132552815264516392147<46> × 832733708305847517955059751402619654460601103742913699994890502633673002797961698240750355056813<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P46 x P96 / 32.77 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 14, 2008 2008 年 6 月 14 日)
19×10148+719 = 2(1)1479<149> = 7 × 47 × 417006279637<12> × 1665401849509587677728439136819520339<37> × 396630940851504929651395216684056457143555288557<48> × 232952280196970654163617482290594633816545512331261<51> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P37 x P48 x P51 / 41.46 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 15, 2008 2008 年 6 月 15 日)
19×10149+719 = 2(1)1489<150> = 3 × 586853276221<12> × 8865336770783<13> × 6467812571586993535396387<25> × 2091258115012379064272305618223961993193756799237545956503929838177917652968182953936564413352407453<100>
19×10150+719 = 2(1)1499<151> = 53 × 313 × 127259696854006336193327573157580994099168793243179884930442528851112852559594376460974809277901688535240889210387070414799632956242757918567189771<147>
19×10151+719 = 2(1)1509<152> = 389 × 46451 × 38559392769341<14> × 123898729947282037215260261192283618233521<42> × 244550965417535587962509097180011853513331875232412883300691306397524357045415864687563861<90> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P42 x P90 / 35.56 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 16, 2008 2008 年 6 月 16 日)
19×10152+719 = 2(1)1519<153> = 32 × 5495167 × 4901819949628641796466086337480125061060531270983<49> × 870823883755497713499331899758122000845092549202887776729665908427056553088983618255881653274831<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P49 x P96 / 35.70 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 17, 2008 2008 年 6 月 17 日)
19×10153+719 = 2(1)1529<154> = 13 × 17 × 1931 × 17681 × 79167967819<11> × 2330871598302278901853376041628293375034044869755858891<55> × 1516218784411238460729939570299747737958774664936753931542252342962491493263081<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P55 x P79 / 55.24 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 20, 2008 2008 年 6 月 20 日)
19×10154+719 = 2(1)1539<155> = 7 × 73 × 4483 × 33487 × 83735683584829<14> × 1791677943138389668968679508662606052300273107<46> × 1834318275709524259788133515195304765934811811430526130176162937982551937357179892483<85> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P46 x P85 / 23.65 hours on Cygwin on AMD 64 X2 6000+ / June 19, 2008 2008 年 6 月 19 日)
19×10155+719 = 2(1)1549<156> = 3 × 1811 × 38857189602634108432010143771601529746201198437531954925660060944434218868233224942225494406609812462932286234329304456306112849459067018426488332617543<152>
19×10156+719 = 2(1)1559<157> = 139 × 37003 × 410449145210491607254692962112757163401511312637320892144485098352148214136849318480518128534223670978089295717440586892159650114138346377731206921607<150>
19×10157+719 = 2(1)1569<158> = 149 × 331 × 447977019071<12> × 77929169194250521052812225269081813650033303291080915556048887978241<68> × 12261427866582958791184193364468933936256879057608293595733557701239457191<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P68 x P74 / 35.86 hours on Cygwin on AMD 64 3400+ / June 18, 2008 2008 年 6 月 18 日)
19×10158+719 = 2(1)1579<159> = 3 × 5111043929<10> × 8586699613<10> × 1552232375168401888226285240732768948412176616299065734638659<61> × 1032992611981958171657311747096309357508297728486040740667074691813325998649211<79> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P61 x P79 / 48.30 hours on Cygwin on AMD 64 3200+ / June 19, 2008 2008 年 6 月 19 日)
19×10159+719 = 2(1)1589<160> = 13 × 21427248679<11> × 352051289081<12> × 250401041858585819131096746756630366154245800973610054933853193899<66> × 85972441214000396829052981243585775513440893313292234278082838842690863<71> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P66 x P71 / 32.37 hours on Cygwin on AMD 64 X2 6000+ / June 26, 2008 2008 年 6 月 26 日)
19×10160+719 = 2(1)1599<161> = 7 × 379 × 593389409 × 559762404127<12> × 3099176592679107542715695147437752731506212235694176436016316355489<67> × 7730080230344753874735172128135993331930898349569035397737365097724549<70> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P67 x P70 / 48.04 hours on Cygwin on AMD 64 3200+ / June 27, 2008 2008 年 6 月 27 日)
19×10161+719 = 2(1)1609<162> = 35 × 286786067147872235350150512053<30> × 112622410320040502526431761387219772249611150037774127671<57> × 26898121553328486879024622069541410307556323510188262663095503894721747591<74> (Robert Backstrom / GMP-ECM 6.2.1 B1=356000, sigma=2875533569 for P30, GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P57 x P74 / 47.58 hours on Cygwin on AMD 64 X2 6000+ / June 18, 2008 2008 年 6 月 18 日)
19×10162+719 = 2(1)1619<163> = 73 × 43940526090123600470562056510603<32> × 73998714678262655889943985399989215015429575850397477288273<59> × 8894034356803247423111327983734140548254674728357494938725391032087637<70> (Robert Backstrom / GMP-ECM 6.2.1 B1=974000, sigma=3220374105 for P32, GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P59 x P70 / 43.80 hours on Cygwin on AMD 64 X2 6000+ / June 24, 2008 2008 年 6 月 24 日)
19×10163+719 = 2(1)1629<164> = 53 × 62755516806818389237490084489<29> × 1702357182418622530789291597341299637631432288875092672261013494321<67> × 3728486921641779431391217242278242452352917616981245286538949510667<67> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.36 for P29 x P67(1702...) x P67(3728...) / 86.99 hours on Cygwin on AMD 64 3200+ / July 13, 2008 2008 年 7 月 13 日)
19×10164+719 = 2(1)1639<165> = 3 × 1547632204735021741335968620259<31> × 6742027040094211846211453572461118212957579443337461963393<58> × 6744217820260450083366667566814032486869788470472656779231418088265090202679<76> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2126097561 for P31 / June 5, 2008 2008 年 6 月 5 日) (Serge Batalov / Msieve 1.36 for P58 x P76 / 28.00 hours on Opteron-2.8GHz; Linux x86_64 / July 10, 2008 2008 年 7 月 10 日)
19×10165+719 = 2(1)1649<166> = 13 × 131 × 163 × 7605168472493906859101445342254596223593554179420334059026514419199287836013354675837699300444582138020999070968630281139062106607650559320113949440039450810771<160>
19×10166+719 = 2(1)1659<167> = 7 × 7253 × 54378083 × 50343939967158130056229<23> × 301435271504692523257664371180080720857128869883045784752185487<63> × 503883585883986267026777603663420832974904119028443835373022979452021<69> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P63 x P69 / 58.26 hours on Cygwin on AMD 64 X2 6000+ / July 20, 2008 2008 年 7 月 20 日)
19×10167+719 = 2(1)1669<168> = 3 × 2243 × 235493 × 10766075811599655430741404354340972913661347<44> × 12374427833338457331814433209166661760078812457314883748540314012065840097373485608599199199387260515247162077378041<116> (Robert Backstrom / GMP-ECM 6.2.1 B1=3266000, sigma=403620968 for P44 x P116 / June 16, 2008 2008 年 6 月 16 日)
19×10168+719 = 2(1)1679<169> = 232 × 665747 × 5320852123525651763249<22> × 2639990046020797751381939<25> × 426739380854946656102231352689506738123093957535732824017375714808344035489412164759118561054803003885298255221783<114>
19×10169+719 = 2(1)1689<170> = 17 × 29 × 157 × 401 × 1202690777<10> × 11917016737<11> × 5953901394817602332266795990080373<34> × 7970709470626566079289325522510715490264808474915393724092566519897218412184343046077211774275868043748116947<109> (Robert Backstrom / GMP-ECM 6.2.1 B1=1792000, sigma=4224226140 for P34 x P109 / June 22, 2009 2009 年 6 月 22 日)
19×10170+719 = 2(1)1699<171> = 32 × 73 × 1143526333241<13> × 26806091100941<14> × 1472916625511933818304086346266260652139237503<46> × 7116851409399948800992630964973514929835328139534602203013552485803304887760559036954951326947469<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P46 x P97 / 41.40 hours on Core 2 Quad Q6700 / September 11, 2009 2009 年 9 月 11 日)
19×10171+719 = 2(1)1709<172> = 132 × 66191 × 54788299 × 36770347511060861410054629572166650094512885628335317<53> × 93678492425462393852818727293289502166124539235947642213770088451030209181339994735034641839970928805567<104> (Markus Tervooren / Msieve 1.43 for P53 x P104 / 43 hours / November 4, 2009 2009 年 11 月 4 日)
19×10172+719 = 2(1)1719<173> = 72 × 8513 × 110527258301512944407034947393828659078821691<45> × 457891920936034296955040759482830030956478893226740620438124139533279660951936241323594087842050389692669698370301114641357<123> (Ignacio Santos / GGNFS, Msieve snfs for P45 x P123 / 79.89 hours / September 23, 2009 2009 年 9 月 23 日)
19×10173+719 = 2(1)1729<174> = 3 × 211 × 2857 × 38113 × 15362716725247171887277515077<29> × 199368243964382340931301671280754760797298139555077068763360398298257753848084753141078838335707320832370107953519656362647516995871299<135>
19×10174+719 = 2(1)1739<175> = 355501 × 9835962943<10> × 33977329380872301099366599<26> × 2556562396245684442736172507470817459031164911<46> × 6950367106849695902421377822824936071855557618967249762947389954560567149944529875236397<88> (Warut Roonguthai / Msieve 1.48 snfs for P46 x P88 / April 9, 2012 2012 年 4 月 9 日)
19×10175+719 = 2(1)1749<176> = 60850084350740294278005008684441134760052865768236487179773355418574426998451693<80> × 346936431335518371490342055169677665804525006321550138544617865907161312009720281338190068074283<96> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P80 x P96 / 155.75 hours on Core 2 Quad Q6700 / June 18, 2008 2008 年 6 月 18 日)
19×10176+719 = 2(1)1759<177> = 3 × 53 × 3677 × 9851 × 11827 × 164655451 × 178195310532364856525431123<27> × 5793640677168858673133913919<28> × 727149262026396852652840412222327<33> × 25073670448990976314223940375439147970922796183736640723823836768221<68> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=3631892357 for P33 x P68 / June 6, 2008 2008 年 6 月 6 日)
19×10177+719 = 2(1)1769<178> = 13 × 4164471303481<13> × 38994904889228346763486949065890866738360534571802517241011746167442792739026632472796891534487747090875748270627938452380867508837283281289466458857461606201865123<164>
19×10178+719 = 2(1)1779<179> = 7 × 73 × 107 × 173 × 35321990716170607082142191<26> × 27406547521000446067339104767<29> × 3823874316784361716576388467133<31> × 602916541684842867507687365160027289170544020368979297591614953242064948580130894740539<87> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=734803339 for P31 / January 21, 2008 2008 年 1 月 21 日) (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 gnfs for P29 x P87 / 73.94 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 16, 2008 2008 年 6 月 16 日)
19×10179+719 = 2(1)1789<180> = 32 × 461 × 200771 × 45217002637622872156093538297<29> × 188821310526469173483265722149679159878998320574419371504992219<63> × 29683417240496578178284222355374910098517427977881760797463492125768662262196827<80> (Dmitry Domanov / Msieve 1.50 snfs for P63 x P80 / May 14, 2013 2013 年 5 月 14 日)
19×10180+719 = 2(1)1799<181> = 8819 × 46028329 × 306714547 × 1734477077554090182747424647024150661537590084307037644116098441767050325787<76> × 9776054210451707895250834539334714982419914330290050550883269068969637375574523958221<85> (Dmitry Domanov / Msieve 1.50 snfs for P76 x P85 / May 20, 2013 2013 年 5 月 20 日)
19×10181+719 = 2(1)1809<182> = 36319 × 1246633953893<13> × 466270841986616614657363673562318422242560714240142310173794433578437826655857203865877960857350833992402516690967087665649371426100442546300155409815683219287556157<165>
19×10182+719 = 2(1)1819<183> = 3 × 3886159 × 74415381796309196485502340019663<32> × 6948819394157437393825958429058479<34> × 1627153350701634462616267706817492481038399771703643<52> × 21521227972927441350599549157181569499032957677991063995377<59> (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=3176273629 for P34, B1=3000000, sigma=3945054095 for P32 / June 19, 2010 2010 年 6 月 19 日) (Dmitry Domanov / Msieve 1.40 gnfs for P52 x P59 / June 20, 2010 2010 年 6 月 20 日)
19×10183+719 = 2(1)1829<184> = 13 × 9008239288889<13> × 9381451982380794915028506917<28> × 72264310593838026868032596337452082195968017<44> × 26590952936413661428440857358085084320493716447904343517681540606152120461627705709709185003269303<98> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4241193703 for P44 x P98 / April 30, 2013 2013 年 4 月 30 日)
19×10184+719 = 2(1)1839<185> = 7 × 38639 × 71549 × 26321089 × 4510328689824434017905022987<28> × 9189069987279930040105813411142849225493619475352690299142671079503580463443618427407568708187535088775612558813147503903558862104035595529<139>
19×10185+719 = 2(1)1849<186> = 3 × 17 × 12326868841128266538371<23> × 111808313062155714683573643800539<33> × 482174502305650264297079954469313345538367445471008584287<57> × 6228877708649201100219711169944315057659979549311545259418571137508544123<73> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1213718395 for P33 / June 7, 2008 2008 年 6 月 7 日) (Erik Branger / GGNFS, Msieve gnfs for P57 x P73 / September 13, 2010 2010 年 9 月 13 日)
19×10186+719 = 2(1)1859<187> = 73 × 90397 × 61720079 × 4358391731885958372452846415259<31> × 1189272778354217280100680800461327306153659321777062555627400822010045303127061915050255094519260110855028197455342436403552819687545468395959<142> (matsui / Msieve 1.48 snfs for P31 x P142 / October 8, 2010 2010 年 10 月 8 日)
19×10187+719 = 2(1)1869<188> = 53049454561774403299470763<26> × 397951520623607795674330756954744629699325792207236741120447403862546421841690245956602844697827445247709125723240062369233922097489083442095428265730135988322413<162>
19×10188+719 = 2(1)1879<189> = 33 × 134153 × 277049755823400582776180136301<30> × 22378598140131176913236372086855046704030679920093<50> × 9400615484413948698565350106934412028166998183269482179995658376561276695439592129518758309323062448893<103> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=652366169 for P30 / June 8, 2008 2008 年 6 月 8 日) (Jason Parker-Burlingham / CADO-NFS-3.0.0-dev for P50 x P103 / April 11, 2019 2019 年 4 月 11 日)
19×10189+719 = 2(1)1889<190> = 13 × 53 × 61 × 7621 × 31859 × 4963523 × 7414725739<10> × 11661101069<11> × 9202162680739434842989792001313844930972166894910140599973<58> × 52384564356415481607418624050044301087819165457458367401464522139276712875086453989050972341<92> (Eric Jeancolas / cado-nfs-3.0.0 for P58 x P92 / August 12, 2020 2020 年 8 月 12 日)
19×10190+719 = 2(1)1899<191> = 7 × 23 × 21061 × 120749 × 11941529719458997240938184391<29> × 4317801976144604731138420827006924688331509811873364913303159307722451080481670007773975042049631855059586095984376663212514102542161835999005447052921<151>
19×10191+719 = 2(1)1909<192> = 3 × 1095968468893137657217507<25> × 115146913363753188003211082949483349287447505127646888050633<60> × 557621456457329196907289141581271619028971754385008794669836770183195276650323070969491366035885839140717183<108> (Edwin Hall / CADO-NFS for P60 x P108 / December 19, 2020 2020 年 12 月 19 日)
19×10192+719 = 2(1)1919<193> = 167 × 181 × 3422623 × 1167113837<10> × 74687374008605975457491821<26> × 13649009742432174913951387280746213645181<41> × 17151236254119790076172375831225105360816640527466655798767013288374255403513127471161595493158130064748047<107> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1554634728 for P41 x P107 / March 29, 2013 2013 年 3 月 29 日)
19×10193+719 = 2(1)1929<194> = 3877 × 121487 × 277163 × 478453 × 32167063 × 426916388963<12> × 3504604336949<13> × 173325059279889877<18> × 23960945857071188113<20> × 1115574266139776274193337659009<31> × 1515841921407883395882859574984396044928950661259627251305886760315930884951<76> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=590886979 for P31 x P76 / June 8, 2008 2008 年 6 月 8 日)
19×10194+719 = 2(1)1939<195> = 3 × 47 × 73 × 584557 × 793493 × 315192737 × 2932216577<10> × 79477944427823535501100160487775523129166194933774196104063<59> × 601977530469930062917695742872616260189535389415814603321753987532445182250367216179930791327952098109<102> (Eric Jeancolas / cado-nfs-3.0.0 for P59 x P102 / January 6, 2021 2021 年 1 月 6 日)
19×10195+719 = 2(1)1949<196> = 13 × 9649 × 275190523201729<15> × 347325744226339287558671<24> × 955725333099847413516352312488165284859321105489610524437865588015327037531<75> × 184239135041813991465977458776315089205035002572068254703784364961095943093903<78> (Edwin Hall / CADO-NFS/Msieve for P75 x P78 / December 26, 2020 2020 年 12 月 26 日)
19×10196+719 = 2(1)1959<197> = 7 × 4024550742728356898279108029508093226251113429243623259829018016784236730049498559965681<88> × 749368863424609268346748573675398417191779704699583690103757751394161833140023105513882632166295016315653257<108> (Wataru Sakai / Msieve for P88 x P108 / 966.43 hours / January 19, 2009 2009 年 1 月 19 日)
19×10197+719 = 2(1)1969<198> = 32 × 29 × 755026668360273894569<21> × 1071293062535082094080102022846783239078945620348914490297090459007011055005548050793603549029650728117643236987694352955154266834859272854178553761862465981903942031344689291<175>
19×10198+719 = 2(1)1979<199> = 13040823075992633721439813<26> × 4394727076107188783035248450833056223<37> × 2630452988043677201659363270766094737295715765319670427641851<61> × 14003726970117012853372472596713525782915009679738029012517561969575483101831<77> (Eric Jeancolas / cado-nfs-3.0.0 for P37 x P61 x P77 / December 9, 2020 2020 年 12 月 9 日)
19×10199+719 = 2(1)1989<200> = 607 × 27851 × 1082012470751<13> × 94785538530797<14> × 15307963848554646115204212482276612646767064308767653958119917402172987735259<77> × 795407773580448103294342081562863654165342487966718397818263036890001846777292720435512179<90> (Eric Jeancolas / cado-nfs-3.0.0 for P77 x P90 / October 9, 2021 2021 年 10 月 9 日)
19×10200+719 = 2(1)1999<201> = 3 × 1429 × 77689 × 1466819746142023241<19> × 8284751973862666328776621046483070535592987<43> × 52160508641568171078210696852809116577452363304736199958247591752846576079643585260273558009679536177150706273663910679089888915299<131> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1461433979 for P43 x P131 / May 6, 2013 2013 年 5 月 6 日)
19×10201+719 = 2(1)2009<202> = 13 × 17 × 109 × 1073052433<10> × 1878950357<10> × 32295206929627<14> × 9088918026238801<16> × 148083207344006553169089759861844168340008152681498589367192585404256883048656713089993545301551459060779297122426748454972942241763621786793067658033<150>
19×10202+719 = 2(1)2019<203> = 7 × 53 × 73 × 139 × 37002938171<11> × 151552572107498450940268124681553114547080457700507430141073310796514716950873081329793420995308760516706083983086523045488108412464074011679603184314871730667859176571856092869964925797<186>
19×10203+719 = 2(1)2029<204> = 3 × 211 × 542034197 × 70042189380129082356765801457<29> × 563625760448768602274840695784136759252004906680466892137032510223100269489739<78> × 15585837622426824541286994475482393881184986379869807919838749615880458305322830629553<86> (Bob Backstrom / Msieve 1.44 snfs for P78 x P86 / September 11, 2023 2023 年 9 月 11 日)
19×10204+719 = 2(1)2039<205> = 95317 × 16368403634879<14> × 23476850157809094319959557<26> × 133002463799867588220167500173775320067795666609966504253<57> × 433346094093251420576861230841403292047063646124843521914056903880144605971256394266224019392190388714173<105> (Bob Backstrom / Msieve 1.44 snfs for P57 x P105 / November 27, 2023 2023 年 11 月 27 日)
19×10205+719 = 2(1)2049<206> = 59 × 499 × 1567 × 2794196985198953<16> × 1700617395618037896653<22> × 317119082843573652891558690473<30> × 303671143003193732677780030159605077587193361445955609152898163101930932333238111404458704638633986333486665557848687361161986413061<132> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2178343706 for P30 x P132 / March 25, 2013 2013 年 3 月 25 日)
19×10206+719 = 2(1)2059<207> = 32 × 77647957528317481<17> × 302091527840926389126982330178547985647787721039375551390272856759924624126035807423983168409915841092010669845819946111274219544406670654771898809019275485752013003757912428168152519304511<189>
19×10207+719 = 2(1)2069<208> = 13 × 731470558445279645420135791<27> × [222009157468107191055215787039294560539741190871217347103420544228040735010153663228375242439901973717898926484451630617583922939969276792118100956053842949919655497846637688190693<180>] Submitted
19×10208+719 = 2(1)2079<209> = 7 × 202262521 × 26744410233308133160155769<26> × 1565020757676074348378567050326349223<37> × 356241497745869676465360716314029132065130267824520997493461240559628907957190666681162641454484009515694231964472829117739451705628096271<138> (Bob Backstrom / GMP-ECM 7.0 B1=35230000, sigma=1:517483573 for P37 x P138 / July 26, 2021 2021 年 7 月 26 日)
19×10209+719 = 2(1)2089<210> = 3 × 627711199 × 1020534919<10> × 188152002046524623797965198982143346968948481140742837530905061027745907006496005230033<87> × 583839194323072357141045228292225332050238920277730761940946654666030159933127733254099738903653131951101<105> (Bob Backstrom / Msieve 1.54 snfs for P87 x P105 / July 17, 2021 2021 年 7 月 17 日)
19×10210+719 = 2(1)2099<211> = 73 × 13889417 × 5855791351987<13> × 376197572725395461<18> × 945154119282454077424349162994757340965516892463865578215102073634360799580917069593703917067144873720137037725106250792604436294466425622101906545495198237864656342968737<171>
19×10211+719 = 2(1)2109<212> = 151 × 21277 × 256222476227014515675343<24> × 25645225759130369694815232656732362563939488430021842223649696255975172264725657119378263386175585405928633287041236672018733612130209251789020675403814818304296373067386477926088979<182>
19×10212+719 = 2(1)2119<213> = 3 × 23 × 16038540279011<14> × 1083125832065828099<19> × [176123881440799892330959738211488921775097087867521398373288649687909849197290707840302093020850391893015983063482876937508232411532621349538301552682503491049401687349534541766859<180>] Free to factor
19×10213+719 = 2(1)2129<214> = 13 × 367 × 42251933 × 174313969 × 19586331338203283326126379386279321<35> × [3067395695812089226588829600480695158446987526316505962102864495877183317338292316551772095363911866310371418245635265193185015372562526417567389306264627829217<160>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1036892549 for P35 / March 25, 2013 2013 年 3 月 25 日) Free to factor
19×10214+719 = 2(1)2139<215> = 72 × 630507353773206443<18> × 342812080151117870291026895389438897<36> × [1993281967583614878753828640907985333719275948378236356590185566413652180200085970019916946743396511944887464386059092255714769004007596991254656467009230638861<160>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=671254953 for P36 / March 29, 2013 2013 年 3 月 29 日) Free to factor
19×10215+719 = 2(1)2149<216> = 33 × 53 × 57667 × 4458967 × 27904069006048197841<20> × [20560908647071608548273338774413077020044758283349972024271617927805764319874287569559736822427486577337113635733334433666554923154248434939441151202753109145475843474957341934137701<182>] Free to factor
19×10216+719 = 2(1)2159<217> = 278375199227<12> × 58015923321383<14> × 3188635737793909794830983828715681<34> × 40994767996921749010858278426575485126542454415395361556757521620989413531395342926071687356717857920301899705062360907062182696515811499843655965501375482139<158> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3184376941 for P34 x P158 / March 25, 2013 2013 年 3 月 25 日)
19×10217+719 = 2(1)2169<218> = 17 × 9946672048979<13> × 260733461217106223456046899<27> × [478836889673378152372702756527692756132055631960696962876098336894908549463880697063549258130590348136142644753650192549212244688411267059260239109870221599238901333741585564967<177>] Free to factor
19×10218+719 = 2(1)2179<219> = 3 × 73 × 55373 × 438401 × 555677 × 449150791071883<15> × 543983571590491<15> × 44479241752292917753328096843<29> × 2189725873107277675925282932780804651<37> × 3002962354395518067519834097005512424649486493016870093580376928529710475416891536757031324422326144955589<106> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3543440760 for P37 x P106 / March 29, 2013 2013 年 3 月 29 日)
19×10219+719 = 2(1)2189<220> = 13 × 431 × 479 × 5827 × 161662073 × 835029452921739418869086139680235733289315532900135412160570011578838454007079543684116659178015455101134924481706367242680102049559190797976915642511243237702143006453197977576454443181351160514554097<201>
19×10220+719 = 2(1)2199<221> = 7 × 233 × 43271 × 213542891 × 79814748343994757611166305741049305685281<41> × 2389222993390623827313229641185751889918078671702640522481<58> × 7345734818151944060940874703032757982662867345457643322110284557679514588170354353127266475555803595652069<106> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3217544157 for P41 / May 6, 2013 2013 年 5 月 6 日) (Erik Branger / GGNFS, NFS_Factory, Msieve snfs for P58 x P106 / November 29, 2018 2018 年 11 月 29 日)
19×10221+719 = 2(1)2209<222> = 3 × 173 × 1285814932009<13> × 29338429285693433925934140836846839<35> × 1248904345700532425845374482368685166792758527<46> × 3449824883542127499958764919282042398841605742422889<52> × 2502661903282804012003234964586773213808031803093982811988742110351227219617<76> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=450050019 for P35, B1=3000000, sigma=3944897845 for P46 / March 29, 2013 2013 年 3 月 29 日) (Dmitry Domanov / YAFU 1.33 for P52 x P76 / March 31, 2013 2013 年 3 月 31 日)
19×10222+719 = 2(1)2219<223> = 113 × 135237370325197715963<21> × 138145241721634690330536546804741922855705984881900977583296793221324379957451639677589642730951866719704382354986716848442245543168888508289923034687924104885573408775592427165954750844211389109986701<201>
19×10223+719 = 2(1)2229<224> = definitely prime number 素数
19×10224+719 = 2(1)2239<225> = 32 × 5519 × 163309 × 21024299 × 756848075021<12> × 1635565094861511778474581551298093028019795689220251610951915196709218014500380733409234790757679974608628512635685701694138487207598157241227640807437576240711054056059110465930543113239265183699<196>
19×10225+719 = 2(1)2249<226> = 13 × 29 × 317 × 1051050217143943<16> × 5733571438331491<16> × 1559926199677135331<19> × 383282591276822481913<21> × 4444692710947209289525091454575237582953389641202214946375811347<64> × 1103054314249309656255723389110369974683440590926814295761726950367081523893141659321527<88> (NFS@Home and Caleb Birtwistle / Msieve 1.53 for P64 x P88 / November 11, 2023 2023 年 11 月 11 日)
19×10226+719 = 2(1)2259<227> = 7 × 73 × 23269739 × 1531845795317<13> × [1159000518882060604359611302179716382828589377737167797120222327469532996509024148121459397804473872004569129648046413961896556181937533316635318163434748249760152898370688909646898347533160138628257628583<205>] Free to factor
19×10227+719 = 2(1)2269<228> = 3 × 4776637 × [14732199740187577655654044963092311676681809894779605477738913459484229253839127899057510623137234495811670505916687906234107881836189430004911482779698430165484706158406085781768715179815918683033768396126892282241746729<221>] Free to factor
19×10228+719 = 2(1)2279<229> = 53 × 557 × 21068829559<11> × [3394217098548161809626292131112526176770052125440651051848007094495705383869297519194208047189302597870237330712508469988943007982015039171866752547220315157781662583131634929510348268643673112638690060427002240921<214>] Free to factor
19×10229+719 = 2(1)2289<230> = 2341 × 1224171611683<13> × [7366604835356721890687407473667817100072525465269384731999035378699651373929606274125030636188056704590921048434081236503141218543011286359260929411306309891091297580555069376658622877960761123595383648720967569473<214>] Free to factor
19×10230+719 = 2(1)2299<231> = 3 × 513902185081<12> × 136933393967334008239362352006699523680421224424753615694327759083433011448690953596600106164261126406896322364170855313394962681439812117501982578363059074214604838387654215677192302462224000606127460464629170768626733<219>
19×10231+719 = 2(1)2309<232> = 13 × 107 × 834137 × 1819477024131711226243614348712707743109291146084089138032214394790886769685967141809885945945802717128712021480426285038324663945229490509211531304553765654896546694403383468523813530229529555667278914269236428714052792457<223>
19×10232+719 = 2(1)2319<233> = 7 × 1523 × 89809 × 1756483 × [12553052253971530050561180000119324405456114524809660718261224055343190126801598172549702315932647663947335494011283394853111408556702848336095240608427637083087949031936788980074529754195389923103273692148004108858257<218>] Free to factor
19×10233+719 = 2(1)2329<234> = 32 × 17 × 211 × 193215553 × [33845047123943253479326307720849105690652113951772023313552140828370765677655028821673249568356624765022330647429363494795736045355434523973152728112383447202618752559164210693773129600652142295933583158930589769101636381<221>] Free to factor
19×10234+719 = 2(1)2339<235> = 23 × 73 × 433 × 53110061 × 16866188947004676565872642243643<32> × 184072282092193832430840458178487<33> × 17611256436031419039547083161409142248327648758312331263325138279647901486388357056794775664467352356953498236078773249839176264510630555879787786724188643817<158> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2597463255 for P33, B1=1e6, sigma=1443307187 for P32 x P158 / March 26, 2013 2013 年 3 月 26 日)
19×10235+719 = 2(1)2349<236> = 10067 × 42280013 × 337015790257<12> × [147172159113435428507223676688833455122451575699790027749087432298358664016575560934121878488173368252004068409699979851614514230713134332316098615454070091760984469916157987371183285244696484928552968082988686777<213>] Free to factor
19×10236+719 = 2(1)2359<237> = 3 × 9803 × [7178452552317695641168047574249757254959743993713186817338607606892825703393896804077361049716451124183451022173862120817134588429090112248329120715124999527733384715941076238944238536200180594753684624132446227723183757050940566191<232>] Free to factor
19×10237+719 = 2(1)2369<238> = 13 × 709 × 108967 × 114084226866377188780645799<27> × [18424720400114484209392152271847421351267034576458711150126038505735306709394700560240220917417424730854653136798071302790904984622190259547687573299164697587645557113232701368234737830619451957770303679<203>] Free to factor
19×10238+719 = 2(1)2379<239> = 7 × 97 × 3802861 × 403119745753525586377<21> × 230224427736796332449924085644546700491<39> × [88093809736479817113625909543582617611270789958491135539054438115021358706100604322222928646921200729532278943374581729881064053469609563035615488182841135170801461687743<170>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3530944028 for P39 / May 6, 2013 2013 年 5 月 6 日) Free to factor
19×10239+719 = 2(1)2389<240> = 3 × 6143 × 1801988108377<13> × 28373480989506500331853<23> × 234940120659662939464346828371257622837<39> × 953646881702624760152676004251682085639152621932557136991193424957606902532600349501937705593660418358092846047549781369397935997307062906068561438949924266961763<162> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=519977547 for P39 x P162 / March 29, 2013 2013 年 3 月 29 日)
19×10240+719 = 2(1)2399<241> = 47 × 577 × 7253 × 58967 × 408769 × 39642871 × 1363921962412417473350459<25> × 8235275553207860309168600246590672328117725811194898442700522221040704252650670598296405097179959553478365984100450156026932296360520428618217688176397943115505635819041546156787400093958711<190>
19×10241+719 = 2(1)2409<242> = 53 × 1291 × 4327 × 49473709 × 8446967295599612371<19> × 170626625382955539880166990262526780429223700485695842239414870947145393373571163854397118158356623454690957199794197488097803596407482344404192437125778769201486213056451385697971990981285795212891666257401<207>
19×10242+719 = 2(1)2419<243> = 34 × 73 × 4274972576807<13> × 12796050252616457299166543<26> × 7580377919709847674928161143069052467<37> × [86099986719634695794415803280225787150026764308977792963193168913762664597621496286174658824292317238319409689034697421165425572117109775234522182943113298223658389<164>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2068783446 for P37 / May 6, 2013 2013 年 5 月 6 日) Free to factor
19×10243+719 = 2(1)2429<244> = 13 × 383 × 1531 × 667408190006404858589<21> × 1825663088028213005288541702265000973<37> × 227290669503248820051881947852889130506544447126074259910553633805727345500743144621196538046530280153662498145452559775823757291863406442968257749295098527880847936561312309782023<180> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=38542110 for P37 x P180 / March 29, 2013 2013 年 3 月 29 日)
19×10244+719 = 2(1)2439<245> = 7 × 3461 × 42179 × [20659279589171940819549034942382096140648276278540545074173896052369587091471989792577893870359528289831097544723267442319297095517090871434320895207790075626051493654296170688673769834337837469795563751278789426871719398076792672748343<236>] Free to factor
19×10245+719 = 2(1)2449<246> = 3 × 12889 × 671081 × [8135713942675363470535112483203412475467218180983872450147541363539695369409195822458037240522791175191769780004428241095014418707076947356378333120755970247695361966970136256321752216091680056616183946035737858207256210112009644806597<235>] Free to factor
19×10246+719 = 2(1)2459<247> = 163 × 269 × 30709423 × 22079923776012623161723<23> × 16482086925602967646920811692088920136007<41> × 4308139727667356248584931498048837022047492524021443957897590855028060380400260473367735480078305488813274745245465712393879124040113500000374997680540592706223500975937859<172> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2963972927 for P41 x P172 / May 6, 2013 2013 年 5 月 6 日)
19×10247+719 = 2(1)2469<248> = 157 × 1303 × 2268503885978419<16> × 70637303621513623<17> × 1312557389366862230223897512308976009<37> × 490653703874143013773453320544137343438327617395673781295538506403811714641381629806803667537281283371675453283358654676459712016627566687888078557761054023451742399255932833<174> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1190784039 for P37 x P174 / May 6, 2013 2013 年 5 月 6 日)
19×10248+719 = 2(1)2479<249> = 3 × 139 × 325733849987507050871<21> × [1554218750554204935187193712640793898830269515471663840677165456645212856708974347036378707791716317935318281685022673668090677207160792043610086046829222034909370452394535409093604335218323493326067017561339741582173333903817<226>] Free to factor
19×10249+719 = 2(1)2489<250> = 132 × 17 × 61 × 12046076878062635795741648423200236863911665484249120477886889874131176705169732393232133607476682916190371126948532185532408067828288880139633051138132363560744244669769482468837116118475068107884664519928966186662203278181321353192876076935123<245>
19×10250+719 = 2(1)2499<251> = 7 × 73 × 1571 × 40829 × 20683009 × 671378353237<12> × 5580882388154377<16> × 21647678229294853<17> × [383928200700181391241577627431163096733141374054644536744743754033100644976443705922879045606619095512288787581372628913894066405233594927423029312203192714221789294054095049781133172435047<189>] Free to factor
19×10251+719 = 2(1)2509<252> = 32 × 15767 × [1487714221060239114825698618853097616760118609973792739484796735171991509066835169877388857960093240531286238565154444311333172033791471012671410126009394523802253025736673016857368139582046264780245034362283469067680817960938888614836269219897473<247>] Free to factor
19×10252+719 = 2(1)2519<253> = 1087578335999404423668929563256008458146380105443318240076043946558020847414465430243724487924865350037<103> × 1941111772119987494251216830920448674800068100090322054144084579906696707336306917609394771450821350134036532554113939572978723617314751053647958936787<151> (NFS@home + Rich Dickerson / GGNFS-lasieve4I14e + Msieve for P103 x P151 / February 26, 2020 2020 年 2 月 26 日)
19×10253+719 = 2(1)2529<254> = 29 × 937 × 9445811 × 82249686472941445294162787051900960734029102859536254718585356828398602753474579911121846072834789082821238850314297417905941066793317119658081323472162237695246926197423612834999957346591794203764059767411535072258433537607551775813722061073<242>
19×10254+719 = 2(1)2539<255> = 3 × 53 × 2011 × [660240098049129508180201067434491151218959593653494181721009639157936728843909163472320823868444033010614923302687767940200316845748105892781873003859624615279832340714470134734154324520518003531242040197502137961685919615420567730035468793056776131<249>] Free to factor
19×10255+719 = 2(1)2549<256> = 13 × 133903283 × 14180287008283757<17> × 85524686937835465893712227541072953006597935105105923606844850418628362454571533201797879529573931440446811458696882698486833668252687031737483971625809743302716486044904069041477132828101848994847514230136280441341944681534655373<230>
19×10256+719 = 2(1)2559<257> = 72 × 23 × 193 × 51581 × 78811362229051359328225058148839807<35> × 23875433995127234200309671920102706130776416373908651484456871003797494926644050271207960080484321442402082919711545442664980526200575643890463330534007367395858222116856889102981984295910935214170526918317780787<212> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=336705702 for P35 x P212 / February 18, 2016 2016 年 2 月 18 日)
19×10257+719 = 2(1)2569<258> = 3 × 3061 × 213833 × 1185094618303<13> × [90719104015692196522280342908840008716560759401786907071581726768538673398322229872741447081502679787437262993605009674071524052115231246889415050481676064784286025352940434405684059713631285273570245884936730452443299276135078283534007<236>] Free to factor
19×10258+719 = 2(1)2579<259> = 73 × 283 × [102188446251566441314250985580672399976335307183847771485120824391844286321269718336372095024498335403993954746653328385261199046958280222232978900775018689728985483862293001167099622978416724483813887947679515519197982047103495382695731212116322721869941<255>] Free to factor
19×10259+719 = 2(1)2589<260> = 32579747 × [647982659629343073508554597158508048301023059237111666677801737107139325271958407507311554970365826079346506622998364938534087177261109827252836282341637309556489530477664885215686638423285211856037774360590065696676868335138118509978334426940488859877<252>] Free to factor
19×10260+719 = 2(1)2599<261> = 32 × [23456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456791<260>] Free to factor
19×10261+719 = 2(1)2609<262> = 13 × 15149 × 22783 × 7567421883263949399290148099077<31> × [62176306089796088624295459539973302922511088694196219071159397688637135763691981678650933265618152015036814482189201311621395915721082766776605791885111118464387520966095378515239668048555904725777482668744376097118934357<221>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4077150308 for P31 / February 2, 2016 2016 年 2 月 2 日) Free to factor
19×10262+719 = 2(1)2619<263> = 7 × 386809 × 23406389 × 10703240594851907<17> × 59716235568607533994382306573751223<35> × [521163932168356418092338486513913517927544401582230142931113778138680709258911363771765883062340521069640901780635388163945085466264470673329332750707583312504060672275416372846921281110968951239897<198>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3387484903 for P35 / February 15, 2016 2016 年 2 月 15 日) Free to factor
19×10263+719 = 2(1)2629<264> = 3 × 59 × 211 × 1123 × 3741668086386274247324990488254301<34> × 1345272776905271757818843687197206347670433531895644543077229809806809264571225037039647079643442328808264482310257552876978779213846289330234484343338575807679976652109321848584170347087691547944511189045106048502651772099<223> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2597250155 for P34 x P223 / February 16, 2016 2016 年 2 月 16 日)
19×10264+719 = 2(1)2639<265> = 173 × [12202954399486191393705844572896596017983301220295439948619139370584457289659601798330122029543994861913937058445728965960179833012202954399486191393705844572896596017983301220295439948619139370584457289659601798330122029543994861913937058445728965960179833012203<263>] Free to factor
19×10265+719 = 2(1)2649<266> = 17 × [1241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183007<265>] Free to factor
19×10266+719 = 2(1)2659<267> = 3 × 73 × 39659101 × 5098716286138164959<19> × 2129106056929307225742977<25> × 192411945438091783574253923350983361733<39> × 11636809869382351076446091858149882193178547676569688279674780992786131354804600745792208404274030411669269747156474006334629066091786001746360366527730455973495876198703031379<176> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4114774332 for P39 x P176 / February 15, 2016 2016 年 2 月 15 日)
19×10267+719 = 2(1)2669<268> = 13 × 53 × 331 × 361885656389<12> × [25579526790606242425065735420934561576414713561533533097442302569570097818651281478818978602525101911769233161415542109861371208041299983043374777083840927446924546596332411453300332049824470411197269995307886996531856887498137984930456820946807128569<251>] Free to factor
19×10268+719 = 2(1)2679<269> = 7 × 3407 × 260442239 × 4075995557516815868507739981221<31> × [833865096338805590845735440014155488936474552989234912874633258652275125750431714038308336574915315356051130896452854936776787563381181296039412603120631693348720572536860184083137135250627946980414258328999781703819623156949<225>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4229614997 for P31 / February 3, 2016 2016 年 2 月 3 日) Free to factor
19×10269+719 = 2(1)2689<270> = 33 × 1907 × 700643 × 5296607041967297401<19> × 135742431899734449215219021085563<33> × 8139288973780477324019750349787350019476272071400689734045745998972006046664398448925204471278121263410665133000846858741549929742522604113028658975621412119748623583148080934255796789396033338338920022948919<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=949040196 for P33 x P208 / February 3, 2016 2016 年 2 月 3 日)
19×10270+719 = 2(1)2699<271> = 185914019 × 471678258900226541<18> × 24074268141568064530747606062108606694172359565370412937172860747001204858420192555084366029819112968395818085610285920663130782706536954631197635118585733544108018916351775934511936968235955505903861005549175525039203597167372062057764718015961<245>
19×10271+719 = 2(1)2709<272> = 71741 × 101282785819<12> × 2322396353777623<16> × [1251041412859551283143561604076390448761972008466263775411903948450829677272725826378238633556425520656601949839962246072344219318603261292103154295807455042921515393982778351714847050357746921089878746280531300186515474834733548635868430407<241>] Free to factor
19×10272+719 = 2(1)2719<273> = 3 × 1153 × 8161 × 90019 × 2742556877<10> × 12858004927507021738438733<26> × [2355883099134822045479216505155331831727065182345855857054970261011594336525516059764034423646310692825781646591811199076373756422786606508513334528691610305442852726887763581458340401202717345266687823084855976679579303901439<226>] Free to factor
19×10273+719 = 2(1)2729<274> = 13 × 5791 × 10099 × 32248698367<11> × 37315190089<11> × 140346925825023559<18> × [16441258185049240825077440444036494881965550595299020514153177167027564614263618443535125092355571280731136491586179585369125929713996146022301291969402219914629723582075063208818209326624743479099254148692245997874439232803671<227>] Free to factor
19×10274+719 = 2(1)2739<275> = 7 × 73 × 8971 × 539293 × 10088093 × 124071473207453<15> × 372377948619066779<18> × 22878211724827402164956617<26> × 147442362537071797178302541204812003<36> × [5431442973718090361793127478348372712627004293594781587294317096691583562605062010707763470462320399284571560866572141280539795180739048483463409656769907263132623<163>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4015962571 for P36 / February 15, 2016 2016 年 2 月 15 日) Free to factor
19×10275+719 = 2(1)2749<276> = 3 × 2927 × 24002962091<11> × 1374100090296713695133148875947<31> × 728926781571711072579797996879821153182463288228997918293345716511933559097956995631153097503180971705594489362205219583693571571614345591599701387409277478563779252178503449686854817264408820560348129436078733152933742753094927587<231> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2552920942 for P31 x P231 / February 3, 2016 2016 年 2 月 3 日)
19×10276+719 = 2(1)2759<277> = 179 × 223 × 229 × 2347 × 2999 × 3074675779938036259<19> × 49517985905266444459<20> × 215509223003241734590890385132611661361082795605627760042798352289327199546258760195599882834237088566865813717352812410780356931738969222687028480254156874623759061481796307241490654076436554748269769746256802312051757674331<225>
19×10277+719 = 2(1)2769<278> = 3614987 × 31760428495837<14> × 693021592708204117<18> × 2637792939927375984101<22> × 100584377103288638407446007834849639014581585154489177161309673707920277597277302887735358405552230066410851267704658409187072712606010713070200572380190483640027595110679461855692832044178842425889985298487880408162153<219>
19×10278+719 = 2(1)2779<279> = 32 × 23 × 443 × 6679 × 491343123290714468808718513<27> × 39971528315690473946504461511333<32> × 17550518049736879699626155615626661806165656404064572471281733446059765791749225493190456884775329375164760678040301148468516913547148653728606462692819173841399030213708030145639184688356679507670035149352757809<212> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1704008926 for P32 x P212 / February 3, 2016 2016 年 2 月 3 日)
19×10279+719 = 2(1)2789<280> = 13 × 10903 × 16971013 × 14339753762844818694549073607327387<35> × [61202937509826070692461993327089740574741171121259277620288316230566100211178044556840531339556289441353618277700275227572852359065270759060522359962811264781615642976168980075558123281694571542550729699494740804354876126099744467691<233>] (ebina / GMP-ECM 7.0 B1=3000000, sigma=1:1562720211 for P35 / July 20, 2022 2022 年 7 月 20 日) Free to factor
19×10280+719 = 2(1)2799<281> = 7 × 53 × 886580741 × [64182833913413715530976633291884323794228673616920073100786318779603761276368687669546896275588908846455528413145482224262503730778139550520854685832115080939823014326491287672824005092621421014796427862779559913166783064920331219771056253143277374961334758423313871729<269>] Free to factor
19×10281+719 = 2(1)2809<282> = 3 × 17 × 29 × 32789 × 11144747 × [390611056293752539796933096688298244230611659477394542839030336013343739246151619001530589014464689204776612867941060157716591560683810589868249331244514045970597654442717634030193632660117754957150245683440179144231722799944062478661843333440803470714683375499749567<267>] Free to factor
19×10282+719 = 2(1)2819<283> = 73 × 72767 × 78919 × 8320747 × 772350413 × [783601912336907883092576275452832397462780269334243390794718578106668390754754375769949079598033225250541453385914662781854079331564071594990458056462732958881822579774763138922416232610894331136298408530827885584288457873868539109046312979999363059538401<255>] Free to factor
19×10283+719 = 2(1)2829<284> = 6451 × 994033804572931<15> × 18323648669140609<17> × 179668085269285674683854308377077088640560466576331698733058771332751354477692485570992814620882738340116930690068959038672865373728148523340095254169369278510201248144664102500222432611457263637904205443932673303222423502623623842123852703416444711<249>
19×10284+719 = 2(1)2839<285> = 3 × 107 × 234826751 × 202186523184918222804019<24> × 279351027145473704200669<24> × 9329983790382062237348833247797<31> × 22195969416768249929900111001614543<35> × 28933791515141440025475928688377697<35> × 8275526967870828670589119499525968184576759591637529240411371723648622789340807034194737988415957240928640187563303345057501477<127> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=238811939 for P31, B1=1e6, sigma=4005999950 for P35(2219...) / February 4, 2016 2016 年 2 月 4 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3528103366 for P35(2893...) x P127 / February 14, 2016 2016 年 2 月 14 日)
19×10285+719 = 2(1)2849<286> = 13 × 646957 × 1524013823<10> × 49560786844617353<17> × 550699033555529407<18> × [6034633644720782808024906844294786632314246545990688555451071509189701228019875081588871270749711087922269112622101542744533572714287982606769604519204017291021064961645101948239765390902077611789618590383350730564348056542989550190623<235>] Free to factor
19×10286+719 = 2(1)2859<287> = 7 × 47 × 151 × 337 × 1260980426749889251075651146897868357054731202875045991772288544151441041463113730870951813975760651101801226253025797197301101027714312301062501443905547867225158879717645510355181219578722765801018868202770457620482017466742487428705411060140291240154140389078961778004170221553<280>
19×10287+719 = 2(1)2869<288> = 32 × 82913 × 1545092149<10> × 62063581523<11> × [2950222243324164172989571964497829463807654069751946399031657456554150567016799188275780321305353268770115574000228806485613847143054653350743094617671504162213400967548863107802564571579491085024111749533501404395941631822457732370801117352983018627558144096441<262>] Free to factor
19×10288+719 = 2(1)2879<289> = 772518569 × [2732764228365248669007865765762727071886230751705220319579283939660369653989652009401875116753486233819074853993718189978047131073054000739639322651817203258852812263094107076552500463080921891873787581552762793344726851622269692149123099086452006192631870718321996880195524608951<280>] Free to factor
19×10289+719 = 2(1)2889<290> = 517831 × 6062807 × 4484231293<10> × 30581170847671<14> × [49035113862942988155856357509728839516524367713081745694478172457216968547841854398791932544930512394108816098778821368048839560699451329881606458329775250181121372158125047624761307012732903642545978912263591591369821946287664846193131434330394103068669<254>] Free to factor
19×10290+719 = 2(1)2899<291> = 3 × 73 × 11069 × 969809 × [89799181688861453427548374141562862165796047065777038232457481063450012680378494246589219588912494670892621963265049212339343933333278138757840637569488888433853059126552477595256400573668594193943895919818355468653267356106631281478576855497964269759448854705329458486447217681<278>] Free to factor
19×10291+719 = 2(1)2909<292> = 13 × 22853 × 7105988815173604916745861042014719868830926460121751768362716597084076189664077468742064199990949214245936776895513166462275988377594293666581768800295908334240281905796280276654844545274685737644648947322556914295416899013800952277301115528044158858493956730512106173944882210755400271<286>
19×10292+719 = 2(1)2919<293> = 7 × 732524599 × 2414790001171<13> × 268152629388958631<18> × [6358130088124684948600198382329024411121411591235926477068804206340549602042862135548276575225016569556035245884754789857693258216305426416194444964700824124857301699154350851691859250920455962719937774492935569423235905205207304565803091570089394066083<253>] Free to factor
19×10293+719 = 2(1)2929<294> = 3 × 53 × 211 × 467 × 541 × 550132519 × 1136895766131689646109962139443737<34> × 39822580577257637927190127220356238362670994958004008898401494917595815724091929022031611271154164743982730325867072203465568912338284097637904534097258020351913803085426375515906168983533051739829070693961293795055076645274047336032751659891<242> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2499715426 for P34 x P242 / February 4, 2016 2016 年 2 月 4 日)
19×10294+719 = 2(1)2939<295> = 139 × 15187849720223820943245403677058353317346123101518784972022382094324540367705835331734612310151878497202238209432454036770583533173461231015187849720223820943245403677058353317346123101518784972022382094324540367705835331734612310151878497202238209432454036770583533173461231015187849720223821<293>
19×10295+719 = 2(1)2949<296> = 131 × 2868343 × 119282980149895279<18> × [471010112390874446977493497494863797147401384880182237753119170216424551764889242344503434549593249097963750050003426572260104724057580651017283013836207757875207179862167286896993297716502318098338330009711787404278706821849764083562513983462091395395976617255871720717<270>] Free to factor
19×10296+719 = 2(1)2959<297> = 33 × 8741 × 739561277561075910435529<24> × 4798001177371658928357234691<28> × 252087721506051230584288041910012216091881262829658389770063709149680871398969038138652783708366343134293032774433356575038891793195522826980998026360750585539468143909562450476497113608402423923562234719631827783748641665795353804801616603<240>
19×10297+719 = 2(1)2969<298> = 13 × 17 × 668201 × 12402972563<11> × 6386316897973<13> × 6768000139318026761787753113<28> × 17767516690954544941427620561820267<35> × 39568932729043852050701825636175620790937360761811<50> × 37930976296781840283984013554810646237366493277696223036348733517056037146154325460232126783696169101483250189859808578503405435107511163363040439164002981<155> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2513223581 for P35 / February 4, 2016 2016 年 2 月 4 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3056604061 for P50 x P155 / February 20, 2016 2016 年 2 月 20 日)
19×10298+719 = 2(1)2979<299> = 72 × 73 × 661 × 149653199 × 1132586055026443<16> × 11877338455141444759933<23> × [4435211603085258151657468082504827419300140306524023525110746963334522901948266450768821006632296636892331251284635953954105197119156649605236382213322128652395043324697964277269479182244635389344364194478674631598915129820302464323397477155243067<247>] Free to factor
19×10299+719 = 2(1)2989<300> = 3 × 119881 × 4207780269868507<16> × 6943215035144863<16> × 1847022628601304976459540262653<31> × [10878113727116505201188613085257736682811915717670621072471023472546629983053710006055369353133660439536774084076305050581876858747451893027284782450216986820215653918840529428557946928551050951985269683646959199047014564574750666221<233>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3561701055 for P31 / February 5, 2016 2016 年 2 月 5 日) Free to factor
19×10300+719 = 2(1)2999<301> = 23 × 491 × 4460567567<10> × 5699955621763914233177390357<28> × [7352586909708464524648365421514981377864884259314247776020841696781027318761244979619200332855634214791113272245118373826942144699048982218724601566453975067214066244590440827403785662514956265309906607686403043100933500348193131257323168224022699138116588257<259>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク