(19*10^1+71)/9 = 29 (19*10^2+71)/9 = 3 * 73 (19*10^3+71)/9 = 13 * 163 (19*10^4+71)/9 = 7^2 * 431 (19*10^5+71)/9 = 3 * 70373 (19*10^6+71)/9 = 173 * 12203 (19*10^7+71)/9 = 53 * 398323 (19*10^8+71)/9 = 3^2 * 821 * 28571 (19*10^9+71)/9 = 13 * 17 * 61 * 149 * 1051 (19*10^10+71)/9 = 7 * 47 * 73 * 879007 (19*10^11+71)/9 = 3 * 1373 * 51253001 (19*10^12+71)/9 = 181 * 1019 * 2113 * 5417 (19*10^13+71)/9 = 157 * 4451 * 30210217 (19*10^14+71)/9 = 3 * 23 * 80051 * 38220401 (19*10^15+71)/9 = 13^2 * 12491781722551<14> (19*10^16+71)/9 = 7 * 3015873015873017<16> (19*10^17+71)/9 = 3^2 * 4297 * 20219 * 269987437 (19*10^18+71)/9 = 73 * 139 * 7253 * 54193 * 529313 (19*10^19+71)/9 = 107 * 197300103842159917<18> (19*10^20+71)/9 = 3 * 53 * 5851 * 262261 * 865267031 (19*10^21+71)/9 = 13 * 19213679 * 8451955629797<13> (19*10^22+71)/9 = 7 * 20640429911<11> * 146114835247<12> (19*10^23+71)/9 = 3 * 211 * 333508864314551518343<21> (19*10^24+71)/9 = 631 * 3345659447085754534249<22> (19*10^25+71)/9 = 17 * 3889 * 9949 * 96053669 * 334141823 (19*10^26+71)/9 = 3^3 * 73 * 167 * 641369046112071476867<21> (19*10^27+71)/9 = 13 * 89521 * 1814023105116814972603<22> (19*10^28+71)/9 = 7 * 21678211 * 139120013910419816147<21> (19*10^29+71)/9 = 3 * 29 * 24061 * 100850525561282273030717<24> (19*10^30+71)/9 = 33493 * 136376447 * 462186941017070189<18> (19*10^31+71)/9 = 59 * 41612149 * 478022147 * 17988332925347<14> (19*10^32+71)/9 = 3 * 787 * 340787 * 262380820032318459221917<24> (19*10^33+71)/9 = 13 * 53 * 419 * 7312701508225442120160001909<28> (19*10^34+71)/9 = 7 * 73 * 187169819 * 8360023787<10> * 26402609828393<14> (19*10^35+71)/9 = 3^2 * 131 * 27736663993<11> * 6455695848515274871877<22> (19*10^36+71)/9 = 23 * 54377 * 1351286093<10> * 1249167580778712535973<22> (19*10^37+71)/9 = 3851 * 1987247 * 211173719 * 13063088059115065333<20> (19*10^38+71)/9 = 3 * 378761 * 185790961504406130436793572649693<33> (19*10^39+71)/9 = 13 * 162393162393162393162393162393162393163<39> (19*10^40+71)/9 = 7 * 6781 * 214742893 * 2071097323992183107671603649<28> (19*10^41+71)/9 = 3 * 17 * 4363 * 976541025067<12> * 971550119333661829624189<24> (19*10^42+71)/9 = 73 * 1559 * 18549923213081015325165509249089345217<38> (19*10^43+71)/9 = 57828421111<11> * 365064629217334799232836538909929<33> (19*10^44+71)/9 = 3^2 * 10243 * 687311 * 3331870511166275607166813096366867<34> (19*10^45+71)/9 = 13 * 12458333 * 13034903015769637331286068721486445511<38> (19*10^46+71)/9 = 7^3 * 53 * 97 * 6323 * 29169086173<11> * 5164305692659<13> * 12569309511233<14> (19*10^47+71)/9 = 3 * 331 * 105023 * 284394275249023<15> * 7117976883311981163641327<25> (19*10^48+71)/9 = 229 * 204108959053<12> * 45166198757196478868133617107168687<35> (19*10^49+71)/9 = 173 * 2445073 * 15995461 * 37719809 * 4601355091813<13> * 17977163267603<14> (19*10^50+71)/9 = 3 * 73 * 1487 * 126943 * 5106781195419546807761651021485983176461<40> (19*10^51+71)/9 = 13 * 162393162393162393162393162393162393162393162393163<51> (19*10^52+71)/9 = 7 * 1669 * 507087033199350647<18> * 3563479047172498726473848742019<31> (19*10^53+71)/9 = 3^3 * 211 * 3061 * 523297 * 23134136698127258047967954956988775430931<41> (19*10^54+71)/9 = 223 * 1877 * 19745809 * 3187555398030823<16> * 80132608957864349962920827<26> (19*10^55+71)/9 = 159642667 * 4431324910267<13> * 29842041004599261655479956606065271<35> (19*10^56+71)/9 = 3 * 47 * 2806157 * 31539421 * 24813860011<11> * 412448847277<12> * 1652958214732790701<19> (19*10^57+71)/9 = 13 * 17 * 29 * 443 * 4834451 * 10204457267<11> * 76296912701092379<17> * 197548189918444759<18> (19*10^58+71)/9 = 7 * 23 * 73 * 593 * 6203 * 478571767 * 6350164999<10> * 17378356159<11> * 9246238748190137371<19> (19*10^59+71)/9 = 3 * 53 * 1717811882927507<16> * 772926797382522951887762429084303445159563<42> (19*10^60+71)/9 = 467 * 466117153 * 32886420317557<14> * 294905262599554945924820533104178817<36> (19*10^61+71)/9 = 151 * 139808682855040470934510669610007358351729212656364974245769<60> (19*10^62+71)/9 = 3^2 * 37593583 * 443623021 * 75392618364989<14> * 18655717677275150313774258536033<32> (19*10^63+71)/9 = 13 * 20549 * 1890677 * 158083157423<12> * 342255392819029<15> * 77254503281634885871841993<26> (19*10^64+71)/9 = 7 * 139 * 193 * 1013 * 14561 * 89888737 * 6901417427677<13> * 12285609878451440079386063227403<32> (19*10^65+71)/9 = 3 * 70370370370370370370370370370370370370370370370370370370370370373<65> (19*10^66+71)/9 = 73 * 14071 * 270421 * 19205740231850533<17> * 395723465229206707633651724848356859801<39> (19*10^67+71)/9 = 317 * 2699 * 16879 * 9399226773834923<16> * 155528543051899931157726926814014367245629<42> (19*10^68+71)/9 = 3 * 70370370370370370370370370370370370370370370370370370370370370370373<68> (19*10^69+71)/9 = 13 * 61 * 1268110624279<13> * 2539786231060591<16> * 826577536839584485510079862550480559647<39> (19*10^70+71)/9 = 7 * 141302173 * 30213496457282924029<20> * 706420386387522172504593044425412789074001<42> (19*10^71+71)/9 = 3^2 * 2957 * 33461 * 41687 * 11156413 * 509745166297879594743201761052204076154857129227493<51> (19*10^72+71)/9 = 53 * 107 * 65203 * 151451 * 446023994147<12> * 9345354822806158617709<22> * 9043940638373534917166431<25> (19*10^73+71)/9 = 17 * 1241830065359477124183006535947712418300653594771241830065359477124183007<73> (19*10^74+71)/9 = 3 * 73 * 963977676306443429731100963977676306443429731100963977676306443429731101<72> (19*10^75+71)/9 = 13 * 509 * 27920410720118957004480181<26> * 11426892829251009371015304521703616097032683947<47> (19*10^76+71)/9 = 7 * 93256522130561<14> * 32339539873154750588242135218398284859546601430468874269752697<62> (19*10^77+71)/9 = 3 * 20957029 * 20571092772655849<17> * 10400884863933412832119<23> * 15693957450012012783374269934927<32> (19*10^78+71)/9 = 661 * 14771 * 103451 * 124493 * 8916567978438790824664943<25> * 1882878876799838324383967915948233201<37> (19*10^79+71)/9 = 379007408867600131<18> * 1396756765500693809<19> * 2860535279281374632747<22> * 13941044063153848212863<23> (19*10^80+71)/9 = 3^4 * 23 * 72970856344417<14> * 571996888078634987763173537<27> * 2714908065073043640549275377761731897<37> (19*10^81+71)/9 = 13 * 3709 * 11914933 * 21247873 * 159874963 * 559406609 * 1933729797597322707064815801663414905098066169<46> (19*10^82+71)/9 = 7 * 73 * 601 * 11808569 * 223523175957937<15> * 483964409433581501991611<24> * 53812412578214207839416617970563<32> (19*10^83+71)/9 = 3 * 211 * 377827 * 28209049459621<14> * 2046686674870678315931472843613<31> * 15288841460527163140027386413533<32> (19*10^84+71)/9 = 163 * 1681869885581<13> * 7700715744834807796859230931460767666698019718214574872561848656287673<70> (19*10^85+71)/9 = 29 * 53 * 13735270729415166630521217378732017638979252512108725511458107424275283741776910287<83> (19*10^86+71)/9 = 3 * 659 * 819251 * 1551013 * 524067677333<12> * 4928029424074561500529<22> * 32539534601386677443239448661813883717<38> (19*10^87+71)/9 = 13 * 4549 * 5021 * 669901 * 16369703450188716391<20> * 3088568382886396012073<22> * 209919566899707071977059885887929<33> (19*10^88+71)/9 = 7^2 * 26881793442801164046980197<26> * 16027167353409995221651323018389210492560403205905300144024723<62> (19*10^89+71)/9 = 3^2 * 17 * 59 * 1043761 * 7641329 * 2932227650778587631440466304000286104138919949265721034601118714591786213<73> (19*10^90+71)/9 = 73 * 366869 * 790040641767650445431628943254677245331<39> * 99776388994966458324341899812551438152337977<44> (Makoto Kamada / GGNFS-0.54.5b for P39 x P44) (19*10^91+71)/9 = 157 * 24854981 * 101667449877260032267<21> * 53212795306405811118323055346058591574528013629787294141340221<62> (19*10^92+71)/9 = 3 * 173 * 7253 * 2021355859<10> * 987024690703<12> * 50651873828211707<17> * 554957525940735929615648769881465105201965825403<48> (19*10^93+71)/9 = 13^2 * 109 * 1109 * 103339496881651817243273048823707990733666970881828723584092659718847711743458545940071<87> (19*10^94+71)/9 = 7 * 599117 * 305642851 * 4811749200693187539350231595419887<34> * 3422820967062682210199750378885368032183325873<46> (Makoto Kamada / GGNFS-0.54.5b for P34 x P46) (19*10^95+71)/9 = 3 * 37199 * 166967 * 13571737 * 4408651893130409<16> * 73902417101175478111211<23> * 2562288582085253287132919768118189849287<40> (19*10^96+71)/9 = 127784201533112849177766091<27> * 979070960651701230670464843223457<33> * 16874066580408482836481536106263760237<38> (Makoto Kamada / GGNFS-0.54.5b for P33 x P38) (19*10^97+71)/9 = 526271807 * 46232282465752501<17> * 659307726319252513<18> * 1316035142276734994412873117896222564181903327845121709<55> (19*10^98+71)/9 = 3^2 * 53 * 73 * 179 * 198102517103366196367641337<27> * 170972722637283066610187567762527452497711422764787236754398556793<66> (19*10^99+71)/9 = 13 * 1301 * 10515829 * 327465869 * 189714770447<12> * 7811888719109<13> * 24458155022028620921779854009164917365975582356188445581<56> (19*10^100+71)/9 = 7 * 1543 * 17288325565711<14> * 453803007263050411300050612584327<33> * 249130456328647745178839684454319193083180004591527<51> (Makoto Kamada / GGNFS-0.54.5b for P33 x P51) (19*10^101+71)/9 = 3 * 1984753 * 85307946671<11> * 415617552887391944990852631195188412467429733942774928919638994960884773772760286971<84> (19*10^102+71)/9 = 23 * 47 * 101611 * 763513 * 100996333 * 980156943101230219900359753653<30> * 254288669710884780374892372181242723179308431072557<51> (Robert Backstrom / GMP-ECM 6.2.1 B1=298000, sigma=1582660929 for P30 x P51 / Jun 11, 2008) (19*10^103+71)/9 = 1549 * 4951 * 1074643 * 2561548205864772103845683520753875760742969097317354566459760048490975755179584716127674367<91> (19*10^104+71)/9 = 3 * 543455115744577<15> * 129486995948059724101321422245111760074926871171433441038010973808961708870133806846169349<90> (19*10^105+71)/9 = 13 * 17 * 2591 * 3686815501468031719808231261905745979576206379393883650700232987335400666615051249646114222589351429<100> (19*10^106+71)/9 = 7 * 73 * 257 * 2818484479<10> * 57034996664325203489453388891052063475500069954482031315462014819758444975927143581515835343<92> (19*10^107+71)/9 = 3^3 * 5684909 * 159307335780345792113<21> * 8633522705576999766143745545750195244814205130455257476317231173377273161072641<79> (19*10^108+71)/9 = 8243 * 19120670782441660997<20> * 450603619990888308306431347840461433<36> * 29725419435685684489852635686211058845046578616633<50> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P36 x P50 / 0.73 hours on Cygwin on AMD 64 X2 6000+ / Jun 11, 2008) (19*10^109+71)/9 = 36181931 * 388681190201<12> * 417557704799<12> * 1241021433131<13> * 21171354333119<14> * 136830023624467058634674519967489767360820190411489759<54> (19*10^110+71)/9 = 3 * 113 * 139 * 43787 * 2754995100719<13> * 3213745871194913413<19> * 298424173882153295162429<24> * 38724430452867227636693849809162304579332306819<47> (19*10^111+71)/9 = 13 * 53 * 47589161 * 64384869738436032699694806552084172070901465413546106212696548097771712297701635547261107344595723111<101> (19*10^112+71)/9 = 7 * 565391 * 192943753209624529109523104943977732198649113<45> * 27646072217246202886997945868549461853782928111418179513056399<62> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P45 x P62 / 2.53 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 11, 2008) (19*10^113+71)/9 = 3 * 29^2 * 211 * 263 * 1037479 * 38921602905247<14> * 132455474846512282031650275551<30> * 281913381612775088400192843639708817385200776694880393567<57> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=4098357019 for P30 x P57 / Jun 1, 2008) (19*10^114+71)/9 = 73 * 691 * 8668069487682906600652956127049454670277290771<46> * 4828228328398470071417068118715193261966974633062620905686001823<64> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P46 x P64 / 2.38 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 11, 2008) (19*10^115+71)/9 = 7177 * 8150921 * 360878875952683255963256493934883008819581340333403562127101492653063492467396655595830230143167819823007<105> (19*10^116+71)/9 = 3^2 * 10939 * 2193374033<10> * 30557376601831<14> * 257836992779971440842101<24> * 124084338051257687442977825770784745439500451919086782974718431303<66> (19*10^117+71)/9 = 13 * 283 * 1557118691<10> * 5855506103701<13> * 14148351101443337<17> * 4448251350105850545252146588724904518871165111107619918161116675810793580183<76> (19*10^118+71)/9 = 7 * 110849944561530781157<21> * 2950323276292964136370931<25> * 9221635788859022461183531083854162951992122333111718881774295782604752551<73> (19*10^119+71)/9 = 3 * 773 * 1093 * 83289485802715351212254355744210624555853337385586000492810736523224199120086035408639916451001694151977798705357<113> (19*10^120+71)/9 = 1619424459641887<16> * 4167066977841481534421<22> * 312838299117761415693285574436931177372789870339638912869489484065865467734322989197<84> (19*10^121+71)/9 = 17^3 * 25781218871<11> * 4650651913573<13> * 35838270767697671117109118757206563363314226433700200136744730449214871855058788302380748963461<95> (19*10^122+71)/9 = 3 * 73 * 169868462779<12> * 584572627607173<15> * 948705134261336401<18> * 778464314723455755221119<24> * 13144551860554820168043222496120136447309914865345237<53> (19*10^123+71)/9 = 13 * 20681 * 181461144045911<15> * 43272557130541909330923410526711319052422344209680954084942849451929426465062568136595875269406199629893<104> (19*10^124+71)/9 = 7 * 23 * 53 * 545437 * 2033243 * 384102041 * 1253918638360010980630156828555485474091<40> * 4631903386600872960769452069902828289819525693679554924387983<61> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P40 x P61 / 4.21 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 11, 2008) (19*10^125+71)/9 = 3^2 * 107 * 1413942013724739012664646934719861<34> * 155043371987302231298493040834790288681640158330016874349793071994628235823840962820138833<90> (Robert Backstrom / GMP-ECM 6.2.1 B1=978000, sigma=492425792 for P34 x P90 / Jun 11, 2008) (19*10^126+71)/9 = 422096513 * 5145216763<10> * 3313220862453003712927<22> * 5784939440621316381615971654557277699<37> * 50716169772551226915531892187055375653717528087137<50> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P37 x P50 / 2.33 hours on Cygwin on AMD 64 X2 6000+ / Jun 11, 2008) (19*10^127+71)/9 = 13289999 * 276833662361<12> * 212972697850451408867<21> * 13920460151396737919015640650543<32> * 1935484604602913907474108258861135412917867783001118631341<58> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1334110189 for P32 x P58 / Jun 2, 2008) (19*10^128+71)/9 = 3 * 37493 * 1876893563341700327270967123739641276248109523654292011051939571929970137635568515999529788770447026654852115604789437238161<124> (19*10^129+71)/9 = 13 * 61 * 2662182990051842510858904301527252346924478072019055625613002662182990051842510858904301527252346924478072019055625613002662183<127> (19*10^130+71)/9 = 7^2 * 73 * 16673 * 1396607 * 559304873 * 453164189878837275581171993061295281708428497036110497771345635278723461873038921648212457268110188134496049<108> (19*10^131+71)/9 = 3 * 17683 * 268817 * 821570089592439041<18> * 9933828715175100000962773<25> * 1813910574757506580138401032906056134677322752336853652690828119186833316288251<79> (19*10^132+71)/9 = 5750351 * 3070993112983<13> * 345044156871461<15> * 24188464339752121280456516669389<32> * 14323690221972322118217528148496229598451511026018742414164385860167<68> (Sinkiti Sibata / Msieve v. 1.36 for P32 x P68 / 17.13 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 12, 2008) (19*10^133+71)/9 = 11321 * 774338621761<12> * 11439494876543<14> * 108512998653547<15> * 3114365482364206054637<22> * 453247124165964470191824697<27> * 1374365144409723008231100680673612701844271<43> (19*10^134+71)/9 = 3^3 * 457257134670580393<18> * 10698206939899017923623609042878690937<38> * 1598364563201131516546710489349534778051921624547529288544666400228846159595517<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P38 x P79 / 9.94 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 11, 2008) (19*10^135+71)/9 = 13 * 173 * 21169 * 44342614198142390337488579355503860935923361156900111369742909154476456101118841405720709272063266903032871210244766352686184199<128> (19*10^136+71)/9 = 7 * 151 * 5652617 * 847338798749<12> * 16543089495237673789393867<26> * 133603222497974916207566236359895495592119<42> * 1886669803486077342881805363901015169384078657663<49> (Sinkiti Sibata / Msieve v. 1.36 for P26 x P42 x P49 / 2.08 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 11, 2008) (19*10^137+71)/9 = 3 * 17 * 53 * 760317572544031769<18> * 6801356722860337047229446691<28> * 4250715591941833113363929326424495917<37> * 3553140787460875292162304042118460409815632172652911<52> (Sinkiti Sibata / Msieve v. 1.36 for P28 x P37 x P52 / 1.69 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 11, 2008) (19*10^138+71)/9 = 73 * 997 * 195919 * 66563467303261<14> * 1603870692511431841860591622009493<34> * 1386791687162605489137851193896744499618556517677168287616017596826355620762034277<82> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P34 x P82 / 17.15 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 11, 2008) (19*10^139+71)/9 = 155153 * 874121 * 3636247 * 886269097997<12> * 48301473251351989472437028815252704154181367542619599375584570624407783746277438704552154871186194572456967157<110> (19*10^140+71)/9 = 3 * 2399 * 221951 * 10422762521<11> * 324482095004830291<18> * 97378598655275229371<20> * 117408740602065666219937183<27> * 3417944077491681036949100005432752035808374447077452321299<58> (19*10^141+71)/9 = 13 * 29 * 347 * 941 * 8111 * 16967418035004781<17> * 650231791063999630808600501041274974102363870523<48> * 191642700766968311023323590286528352074786023369003402963652968777<66> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P48 x P66 / 18.56 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 12, 2008) (19*10^142+71)/9 = 7 * 97 * 2348733871051<13> * 16065327225299271269093343103523<32> * 35702000102923126067043311456968363449168793523<47> * 23079446206702040089175443834158184126317648059459<50> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P32 x P47 x P50 / 17.07 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 12, 2008) (19*10^143+71)/9 = 3^2 * 211 * 773537122612256721050443498792233896398463284176095668716900509<63> * 143715948709430888732671112113368641464136741032198092002947921700020431129809<78> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P63 x P78 / 22.98 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 13, 2008) (19*10^144+71)/9 = 1999 * 4507 * 279576733790481204623483289144205990927420007608424299189687<60> * 838126770218144510957697953206157504729388016127259238924760043036739444411909<78> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P60 x P78 / 24.32 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 13, 2008) (19*10^145+71)/9 = 1399 * 2368663421329147<16> * 6011346835645297<16> * 7099690249914766487<19> * 1351665731073016457831<22> * 138995805347932031751415783<27> * 794525497021550598868539110321321082019196909<45> (19*10^146+71)/9 = 3 * 23 * 73 * 317 * 5693 * 1132738361<10> * 177877557891409601<18> * 33672122375149190107487271593<29> * 3423083055769169851977918336371532735259528896008388017184045076554256563655282099<82> (19*10^147+71)/9 = 13 * 59 * 887 * 3726369897506049222488673132552815264516392147<46> * 832733708305847517955059751402619654460601103742913699994890502633673002797961698240750355056813<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P46 x P96 / 32.77 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 14, 2008) (19*10^148+71)/9 = 7 * 47 * 417006279637<12> * 1665401849509587677728439136819520339<37> * 396630940851504929651395216684056457143555288557<48> * 232952280196970654163617482290594633816545512331261<51> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P37 x P48 x P51 / 41.46 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 15, 2008) (19*10^149+71)/9 = 3 * 586853276221<12> * 8865336770783<13> * 6467812571586993535396387<25> * 2091258115012379064272305618223961993193756799237545956503929838177917652968182953936564413352407453<100> (19*10^150+71)/9 = 53 * 313 * 127259696854006336193327573157580994099168793243179884930442528851112852559594376460974809277901688535240889210387070414799632956242757918567189771<147> (19*10^151+71)/9 = 389 * 46451 * 38559392769341<14> * 123898729947282037215260261192283618233521<42> * 244550965417535587962509097180011853513331875232412883300691306397524357045415864687563861<90> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P42 x P90 / 35.56 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 16, 2008) (19*10^152+71)/9 = 3^2 * 5495167 * 4901819949628641796466086337480125061060531270983<49> * 870823883755497713499331899758122000845092549202887776729665908427056553088983618255881653274831<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P49 x P96 / 35.70 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / Jun 17, 2008) (19*10^153+71)/9 = 13 * 17 * 1931 * 17681 * 79167967819<11> * 2330871598302278901853376041628293375034044869755858891<55> * 1516218784411238460729939570299747737958774664936753931542252342962491493263081<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P55 x P79 / 55.24 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 20, 2008) (19*10^154+71)/9 = 7 * 73 * 4483 * 33487 * 83735683584829<14> * 1791677943138389668968679508662606052300273107<46> * 1834318275709524259788133515195304765934811811430526130176162937982551937357179892483<85> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P46 x P85 / 23.65 hours on Cygwin on AMD 64 X2 6000+ / Jun 19, 2008) (19*10^155+71)/9 = 3 * 1811 * 38857189602634108432010143771601529746201198437531954925660060944434218868233224942225494406609812462932286234329304456306112849459067018426488332617543<152> (19*10^156+71)/9 = 139 * 37003 * 410449145210491607254692962112757163401511312637320892144485098352148214136849318480518128534223670978089295717440586892159650114138346377731206921607<150> (19*10^157+71)/9 = 149 * 331 * 447977019071<12> * 77929169194250521052812225269081813650033303291080915556048887978241<68> * 12261427866582958791184193364468933936256879057608293595733557701239457191<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P68 x P74 / 35.86 hours on Cygwin on AMD 64 3400+ / Jun 18, 2008) (19*10^158+71)/9 = 3 * 5111043929<10> * 8586699613<10> * 1552232375168401888226285240732768948412176616299065734638659<61> * 1032992611981958171657311747096309357508297728486040740667074691813325998649211<79> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P61 x P79 / 48.30 hours on Cygwin on AMD 64 3200+ / Jun 19, 2008) (19*10^159+71)/9 = 13 * 21427248679<11> * 352051289081<12> * 250401041858585819131096746756630366154245800973610054933853193899<66> * 85972441214000396829052981243585775513440893313292234278082838842690863<71> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P66 x P71 / 32.37 hours on Cygwin on AMD 64 X2 6000+ / Jun 26, 2008) (19*10^160+71)/9 = 7 * 379 * 593389409 * 559762404127<12> * 3099176592679107542715695147437752731506212235694176436016316355489<67> * 7730080230344753874735172128135993331930898349569035397737365097724549<70> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P67 x P70 / 48.04 hours on Cygwin on AMD 64 3200+ / Jun 27, 2008) (19*10^161+71)/9 = 3^5 * 286786067147872235350150512053<30> * 112622410320040502526431761387219772249611150037774127671<57> * 26898121553328486879024622069541410307556323510188262663095503894721747591<74> (Robert Backstrom / GMP-ECM 6.2.1 B1=356000, sigma=2875533569 for P30, GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P57 x P74 / 47.58 hours on Cygwin on AMD 64 X2 6000+ / Jun 18, 2008) (19*10^162+71)/9 = 73 * 43940526090123600470562056510603<32> * 73998714678262655889943985399989215015429575850397477288273<59> * 8894034356803247423111327983734140548254674728357494938725391032087637<70> (Robert Backstrom / GMP-ECM 6.2.1 B1=974000, sigma=3220374105 for P32, GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P59 x P70 / 43.80 hours on Cygwin on AMD 64 X2 6000+ / Jun 24, 2008) (19*10^163+71)/9 = 53 * 62755516806818389237490084489<29> * 1702357182418622530789291597341299637631432288875092672261013494321<67> * 3728486921641779431391217242278242452352917616981245286538949510667<67> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.36 for P29 x P67(1702...) x P67(3728...) / 86.99 hours on Cygwin on AMD 64 3200+ / Jul 13, 2008) (19*10^164+71)/9 = 3 * 1547632204735021741335968620259<31> * 6742027040094211846211453572461118212957579443337461963393<58> * 6744217820260450083366667566814032486869788470472656779231418088265090202679<76> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2126097561 for P31 / Jun 5, 2008) (Serge Batalov / Msieve 1.36 for P58 x P76 / 28.00 hours on Opteron-2.8GHz; Linux x86_64 / Jul 10, 2008) (19*10^165+71)/9 = 13 * 131 * 163 * 7605168472493906859101445342254596223593554179420334059026514419199287836013354675837699300444582138020999070968630281139062106607650559320113949440039450810771<160> (19*10^166+71)/9 = 7 * 7253 * 54378083 * 50343939967158130056229<23> * 301435271504692523257664371180080720857128869883045784752185487<63> * 503883585883986267026777603663420832974904119028443835373022979452021<69> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P63 x P69 / 58.26 hours on Cygwin on AMD 64 X2 6000+ / Jul 20, 2008) (19*10^167+71)/9 = 3 * 2243 * 235493 * 10766075811599655430741404354340972913661347<44> * 12374427833338457331814433209166661760078812457314883748540314012065840097373485608599199199387260515247162077378041<116> (Robert Backstrom / GMP-ECM 6.2.1 B1=3266000, sigma=403620968 for P44 x P116 / Jun 16, 2008) (19*10^168+71)/9 = 23^2 * 665747 * 5320852123525651763249<22> * 2639990046020797751381939<25> * 426739380854946656102231352689506738123093957535732824017375714808344035489412164759118561054803003885298255221783<114> (19*10^169+71)/9 = 17 * 29 * 157 * 401 * 1202690777<10> * 11917016737<11> * 5953901394817602332266795990080373<34> * 7970709470626566079289325522510715490264808474915393724092566519897218412184343046077211774275868043748116947<109> (Robert Backstrom / GMP-ECM 6.2.1 B1=1792000, sigma=4224226140 for P34 x P109 / Jun 22, 2009) (19*10^170+71)/9 = 3^2 * 73 * 1143526333241<13> * 26806091100941<14> * 1472916625511933818304086346266260652139237503<46> * 7116851409399948800992630964973514929835328139534602203013552485803304887760559036954951326947469<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P46 x P97 / 41.40 hours on Core 2 Quad Q6700 / Sep 11, 2009) (19*10^171+71)/9 = 13^2 * 66191 * 54788299 * 36770347511060861410054629572166650094512885628335317<53> * 93678492425462393852818727293289502166124539235947642213770088451030209181339994735034641839970928805567<104> (Markus Tervooren / Msieve 1.43 for P53 x P104 / 43 hours / Nov 4, 2009) (19*10^172+71)/9 = 7^2 * 8513 * 110527258301512944407034947393828659078821691<45> * 457891920936034296955040759482830030956478893226740620438124139533279660951936241323594087842050389692669698370301114641357<123> (Ignacio Santos / GGNFS, Msieve snfs for P45 x P123 / 79.89 hours / Sep 23, 2009) (19*10^173+71)/9 = 3 * 211 * 2857 * 38113 * 15362716725247171887277515077<29> * 199368243964382340931301671280754760797298139555077068763360398298257753848084753141078838335707320832370107953519656362647516995871299<135> (19*10^174+71)/9 = 355501 * 9835962943<10> * 33977329380872301099366599<26> * 2556562396245684442736172507470817459031164911<46> * 6950367106849695902421377822824936071855557618967249762947389954560567149944529875236397<88> (Warut Roonguthai / Msieve 1.48 snfs for P46 x P88 / Apr 9, 2012) (19*10^175+71)/9 = 60850084350740294278005008684441134760052865768236487179773355418574426998451693<80> * 346936431335518371490342055169677665804525006321550138544617865907161312009720281338190068074283<96> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P80 x P96 / 155.75 hours on Core 2 Quad Q6700 / Jun 18, 2008) (19*10^176+71)/9 = 3 * 53 * 3677 * 9851 * 11827 * 164655451 * 178195310532364856525431123<27> * 5793640677168858673133913919<28> * 727149262026396852652840412222327<33> * 25073670448990976314223940375439147970922796183736640723823836768221<68> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=3631892357 for P33 x P68 / Jun 6, 2008) (19*10^177+71)/9 = 13 * 4164471303481<13> * 38994904889228346763486949065890866738360534571802517241011746167442792739026632472796891534487747090875748270627938452380867508837283281289466458857461606201865123<164> (19*10^178+71)/9 = 7 * 73 * 107 * 173 * 35321990716170607082142191<26> * 27406547521000446067339104767<29> * 3823874316784361716576388467133<31> * 602916541684842867507687365160027289170544020368979297591614953242064948580130894740539<87> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=734803339 for P31 / Jan 21, 2008) (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 gnfs for P29 x P87 / 73.94 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / Jun 16, 2008) (19*10^179+71)/9 = 3^2 * 461 * 200771 * 45217002637622872156093538297<29> * 188821310526469173483265722149679159878998320574419371504992219<63> * 29683417240496578178284222355374910098517427977881760797463492125768662262196827<80> (Dmitry Domanov / Msieve 1.50 snfs for P63 x P80 / May 14, 2013) (19*10^180+71)/9 = 8819 * 46028329 * 306714547 * 1734477077554090182747424647024150661537590084307037644116098441767050325787<76> * 9776054210451707895250834539334714982419914330290050550883269068969637375574523958221<85> (Dmitry Domanov / Msieve 1.50 snfs for P76 x P85 / May 20, 2013) (19*10^181+71)/9 = 36319 * 1246633953893<13> * 466270841986616614657363673562318422242560714240142310173794433578437826655857203865877960857350833992402516690967087665649371426100442546300155409815683219287556157<165> (19*10^182+71)/9 = 3 * 3886159 * 74415381796309196485502340019663<32> * 6948819394157437393825958429058479<34> * 1627153350701634462616267706817492481038399771703643<52> * 21521227972927441350599549157181569499032957677991063995377<59> (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=3176273629 for P34, B1=3000000, sigma=3945054095 for P32 / Jun 19, 2010) (Dmitry Domanov / Msieve 1.40 gnfs for P52 x P59 / Jun 20, 2010) (19*10^183+71)/9 = 13 * 9008239288889<13> * 9381451982380794915028506917<28> * 72264310593838026868032596337452082195968017<44> * 26590952936413661428440857358085084320493716447904343517681540606152120461627705709709185003269303<98> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4241193703 for P44 x P98 / Apr 30, 2013) (19*10^184+71)/9 = 7 * 38639 * 71549 * 26321089 * 4510328689824434017905022987<28> * 9189069987279930040105813411142849225493619475352690299142671079503580463443618427407568708187535088775612558813147503903558862104035595529<139> (19*10^185+71)/9 = 3 * 17 * 12326868841128266538371<23> * 111808313062155714683573643800539<33> * 482174502305650264297079954469313345538367445471008584287<57> * 6228877708649201100219711169944315057659979549311545259418571137508544123<73> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1213718395 for P33 / Jun 7, 2008) (Erik Branger / GGNFS, Msieve gnfs for P57 x P73 / Sep 13, 2010) (19*10^186+71)/9 = 73 * 90397 * 61720079 * 4358391731885958372452846415259<31> * 1189272778354217280100680800461327306153659321777062555627400822010045303127061915050255094519260110855028197455342436403552819687545468395959<142> (matsui / Msieve 1.48 snfs for P31 x P142 / Oct 8, 2010) (19*10^187+71)/9 = 53049454561774403299470763<26> * 397951520623607795674330756954744629699325792207236741120447403862546421841690245956602844697827445247709125723240062369233922097489083442095428265730135988322413<162> (19*10^188+71)/9 = 3^3 * 134153 * 277049755823400582776180136301<30> * 22378598140131176913236372086855046704030679920093<50> * 9400615484413948698565350106934412028166998183269482179995658376561276695439592129518758309323062448893<103> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=652366169 for P30 / Jun 8, 2008) (Jason Parker-Burlingham / CADO-NFS-3.0.0-dev for P50 x P103 / Apr 11, 2019) (19*10^189+71)/9 = 13 * 53 * 61 * 7621 * 31859 * 4963523 * 7414725739<10> * 11661101069<11> * 9202162680739434842989792001313844930972166894910140599973<58> * 52384564356415481607418624050044301087819165457458367401464522139276712875086453989050972341<92> (Eric Jeancolas / cado-nfs-3.0.0 for P58 x P92 / Aug 12, 2020) (19*10^190+71)/9 = 7 * 23 * 21061 * 120749 * 11941529719458997240938184391<29> * 4317801976144604731138420827006924688331509811873364913303159307722451080481670007773975042049631855059586095984376663212514102542161835999005447052921<151> (19*10^191+71)/9 = 3 * 1095968468893137657217507<25> * 115146913363753188003211082949483349287447505127646888050633<60> * 557621456457329196907289141581271619028971754385008794669836770183195276650323070969491366035885839140717183<108> (Edwin Hall / CADO-NFS for P60 x P108 / Dec 19, 2020) (19*10^192+71)/9 = 167 * 181 * 3422623 * 1167113837<10> * 74687374008605975457491821<26> * 13649009742432174913951387280746213645181<41> * 17151236254119790076172375831225105360816640527466655798767013288374255403513127471161595493158130064748047<107> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1554634728 for P41 x P107 / Mar 29, 2013) (19*10^193+71)/9 = 3877 * 121487 * 277163 * 478453 * 32167063 * 426916388963<12> * 3504604336949<13> * 173325059279889877<18> * 23960945857071188113<20> * 1115574266139776274193337659009<31> * 1515841921407883395882859574984396044928950661259627251305886760315930884951<76> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=590886979 for P31 x P76 / Jun 8, 2008) (19*10^194+71)/9 = 3 * 47 * 73 * 584557 * 793493 * 315192737 * 2932216577<10> * 79477944427823535501100160487775523129166194933774196104063<59> * 601977530469930062917695742872616260189535389415814603321753987532445182250367216179930791327952098109<102> (Eric Jeancolas / cado-nfs-3.0.0 for P59 x P102 / Jan 6, 2021) (19*10^195+71)/9 = 13 * 9649 * 275190523201729<15> * 347325744226339287558671<24> * 955725333099847413516352312488165284859321105489610524437865588015327037531<75> * 184239135041813991465977458776315089205035002572068254703784364961095943093903<78> (Edwin Hall / CADO-NFS/Msieve for P75 x P78 / Dec 26, 2020) (19*10^196+71)/9 = 7 * 4024550742728356898279108029508093226251113429243623259829018016784236730049498559965681<88> * 749368863424609268346748573675398417191779704699583690103757751394161833140023105513882632166295016315653257<108> (Wataru Sakai / Msieve for P88 x P108 / 966.43 hours / Jan 19, 2009) (19*10^197+71)/9 = 3^2 * 29 * 755026668360273894569<21> * 1071293062535082094080102022846783239078945620348914490297090459007011055005548050793603549029650728117643236987694352955154266834859272854178553761862465981903942031344689291<175> (19*10^198+71)/9 = 13040823075992633721439813<26> * 4394727076107188783035248450833056223<37> * 2630452988043677201659363270766094737295715765319670427641851<61> * 14003726970117012853372472596713525782915009679738029012517561969575483101831<77> (Eric Jeancolas / cado-nfs-3.0.0 for P37 x P61 x P77 / Dec 9, 2020) (19*10^199+71)/9 = 607 * 27851 * 1082012470751<13> * 94785538530797<14> * 15307963848554646115204212482276612646767064308767653958119917402172987735259<77> * 795407773580448103294342081562863654165342487966718397818263036890001846777292720435512179<90> (Eric Jeancolas / cado-nfs-3.0.0 for P77 x P90 / Oct 9, 2021) (19*10^200+71)/9 = 3 * 1429 * 77689 * 1466819746142023241<19> * 8284751973862666328776621046483070535592987<43> * 52160508641568171078210696852809116577452363304736199958247591752846576079643585260273558009679536177150706273663910679089888915299<131> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1461433979 for P43 x P131 / May 6, 2013) (19*10^201+71)/9 = 13 * 17 * 109 * 1073052433<10> * 1878950357<10> * 32295206929627<14> * 9088918026238801<16> * 148083207344006553169089759861844168340008152681498589367192585404256883048656713089993545301551459060779297122426748454972942241763621786793067658033<150> (19*10^202+71)/9 = 7 * 53 * 73 * 139 * 37002938171<11> * 151552572107498450940268124681553114547080457700507430141073310796514716950873081329793420995308760516706083983086523045488108412464074011679603184314871730667859176571856092869964925797<186> (19*10^203+71)/9 = 3 * 211 * 542034197 * 70042189380129082356765801457<29> * 563625760448768602274840695784136759252004906680466892137032510223100269489739<78> * 15585837622426824541286994475482393881184986379869807919838749615880458305322830629553<86> (Bob Backstrom / Msieve 1.44 snfs for P78 x P86 / Sep 11, 2023) (19*10^204+71)/9 = 95317 * 16368403634879<14> * 23476850157809094319959557<26> * 133002463799867588220167500173775320067795666609966504253<57> * 433346094093251420576861230841403292047063646124843521914056903880144605971256394266224019392190388714173<105> (Bob Backstrom / Msieve 1.44 snfs for P57 x P105 / Nov 27, 2023) (19*10^205+71)/9 = 59 * 499 * 1567 * 2794196985198953<16> * 1700617395618037896653<22> * 317119082843573652891558690473<30> * 303671143003193732677780030159605077587193361445955609152898163101930932333238111404458704638633986333486665557848687361161986413061<132> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2178343706 for P30 x P132 / Mar 25, 2013) (19*10^206+71)/9 = 3^2 * 77647957528317481<17> * 302091527840926389126982330178547985647787721039375551390272856759924624126035807423983168409915841092010669845819946111274219544406670654771898809019275485752013003757912428168152519304511<189> (19*10^207+71)/9 = 13 * 731470558445279645420135791<27> * 61296761908577159279011736562666987124590406282564354086264284413220923553<74> * 3621874150533909354476865363787817519417133697261915130593334891651323831107396454895067160125756761789381<106> (Bob Backstrom / Msieve 1.44 snfs for P74 x P106 / Sep 10, 2024) (19*10^208+71)/9 = 7 * 202262521 * 26744410233308133160155769<26> * 1565020757676074348378567050326349223<37> * 356241497745869676465360716314029132065130267824520997493461240559628907957190666681162641454484009515694231964472829117739451705628096271<138> (Bob Backstrom / GMP-ECM 7.0 B1=35230000, sigma=1:517483573 for P37 x P138 / Jul 26, 2021) (19*10^209+71)/9 = 3 * 627711199 * 1020534919<10> * 188152002046524623797965198982143346968948481140742837530905061027745907006496005230033<87> * 583839194323072357141045228292225332050238920277730761940946654666030159933127733254099738903653131951101<105> (Bob Backstrom / Msieve 1.54 snfs for P87 x P105 / Jul 17, 2021) (19*10^210+71)/9 = 73 * 13889417 * 5855791351987<13> * 376197572725395461<18> * 945154119282454077424349162994757340965516892463865578215102073634360799580917069593703917067144873720137037725106250792604436294466425622101906545495198237864656342968737<171> (19*10^211+71)/9 = 151 * 21277 * 256222476227014515675343<24> * 25645225759130369694815232656732362563939488430021842223649696255975172264725657119378263386175585405928633287041236672018733612130209251789020675403814818304296373067386477926088979<182> (19*10^212+71)/9 = 3 * 23 * 16038540279011<14> * 1083125832065828099<19> * [176123881440799892330959738211488921775097087867521398373288649687909849197290707840302093020850391893015983063482876937508232411532621349538301552682503491049401687349534541766859<180>] (19*10^213+71)/9 = 13 * 367 * 42251933 * 174313969 * 19586331338203283326126379386279321<35> * [3067395695812089226588829600480695158446987526316505962102864495877183317338292316551772095363911866310371418245635265193185015372562526417567389306264627829217<160>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1036892549 for P35 / Mar 25, 2013) (19*10^214+71)/9 = 7^2 * 630507353773206443<18> * 342812080151117870291026895389438897<36> * [1993281967583614878753828640907985333719275948378236356590185566413652180200085970019916946743396511944887464386059092255714769004007596991254656467009230638861<160>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=671254953 for P36 / Mar 29, 2013) (19*10^215+71)/9 = 3^3 * 53 * 57667 * 4458967 * 27904069006048197841<20> * [20560908647071608548273338774413077020044758283349972024271617927805764319874287569559736822427486577337113635733334433666554923154248434939441151202753109145475843474957341934137701<182>] (19*10^216+71)/9 = 278375199227<12> * 58015923321383<14> * 3188635737793909794830983828715681<34> * 40994767996921749010858278426575485126542454415395361556757521620989413531395342926071687356717857920301899705062360907062182696515811499843655965501375482139<158> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3184376941 for P34 x P158 / Mar 25, 2013) (19*10^217+71)/9 = 17 * 9946672048979<13> * 260733461217106223456046899<27> * [478836889673378152372702756527692756132055631960696962876098336894908549463880697063549258130590348136142644753650192549212244688411267059260239109870221599238901333741585564967<177>] (19*10^218+71)/9 = 3 * 73 * 55373 * 438401 * 555677 * 449150791071883<15> * 543983571590491<15> * 44479241752292917753328096843<29> * 2189725873107277675925282932780804651<37> * 3002962354395518067519834097005512424649486493016870093580376928529710475416891536757031324422326144955589<106> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3543440760 for P37 x P106 / Mar 29, 2013) (19*10^219+71)/9 = 13 * 431 * 479 * 5827 * 161662073 * 835029452921739418869086139680235733289315532900135412160570011578838454007079543684116659178015455101134924481706367242680102049559190797976915642511243237702143006453197977576454443181351160514554097<201> (19*10^220+71)/9 = 7 * 233 * 43271 * 213542891 * 79814748343994757611166305741049305685281<41> * 2389222993390623827313229641185751889918078671702640522481<58> * 7345734818151944060940874703032757982662867345457643322110284557679514588170354353127266475555803595652069<106> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3217544157 for P41 / May 6, 2013) (Erik Branger / GGNFS, NFS_Factory, Msieve snfs for P58 x P106 / Nov 29, 2018) (19*10^221+71)/9 = 3 * 173 * 1285814932009<13> * 29338429285693433925934140836846839<35> * 1248904345700532425845374482368685166792758527<46> * 3449824883542127499958764919282042398841605742422889<52> * 2502661903282804012003234964586773213808031803093982811988742110351227219617<76> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=450050019 for P35, B1=3000000, sigma=3944897845 for P46 / Mar 29, 2013) (Dmitry Domanov / YAFU 1.33 for P52 x P76 / Mar 31, 2013) (19*10^222+71)/9 = 113 * 135237370325197715963<21> * 138145241721634690330536546804741922855705984881900977583296793221324379957451639677589642730951866719704382354986716848442245543168888508289923034687924104885573408775592427165954750844211389109986701<201> (19*10^223+71)/9 = 21111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119<224> (19*10^224+71)/9 = 3^2 * 5519 * 163309 * 21024299 * 756848075021<12> * 1635565094861511778474581551298093028019795689220251610951915196709218014500380733409234790757679974608628512635685701694138487207598157241227640807437576240711054056059110465930543113239265183699<196> (19*10^225+71)/9 = 13 * 29 * 317 * 1051050217143943<16> * 5733571438331491<16> * 1559926199677135331<19> * 383282591276822481913<21> * 4444692710947209289525091454575237582953389641202214946375811347<64> * 1103054314249309656255723389110369974683440590926814295761726950367081523893141659321527<88> (NFS@Home and Caleb Birtwistle / Msieve 1.53 for P64 x P88 / Nov 11, 2023) (19*10^226+71)/9 = 7 * 73 * 23269739 * 1531845795317<13> * [1159000518882060604359611302179716382828589377737167797120222327469532996509024148121459397804473872004569129648046413961896556181937533316635318163434748249760152898370688909646898347533160138628257628583<205>] (19*10^227+71)/9 = 3 * 4776637 * [14732199740187577655654044963092311676681809894779605477738913459484229253839127899057510623137234495811670505916687906234107881836189430004911482779698430165484706158406085781768715179815918683033768396126892282241746729<221>] (19*10^228+71)/9 = 53 * 557 * 21068829559<11> * [3394217098548161809626292131112526176770052125440651051848007094495705383869297519194208047189302597870237330712508469988943007982015039171866752547220315157781662583131634929510348268643673112638690060427002240921<214>] (19*10^229+71)/9 = 2341 * 1224171611683<13> * [7366604835356721890687407473667817100072525465269384731999035378699651373929606274125030636188056704590921048434081236503141218543011286359260929411306309891091297580555069376658622877960761123595383648720967569473<214>] (19*10^230+71)/9 = 3 * 513902185081<12> * 136933393967334008239362352006699523680421224424753615694327759083433011448690953596600106164261126406896322364170855313394962681439812117501982578363059074214604838387654215677192302462224000606127460464629170768626733<219> (19*10^231+71)/9 = 13 * 107 * 834137 * 1819477024131711226243614348712707743109291146084089138032214394790886769685967141809885945945802717128712021480426285038324663945229490509211531304553765654896546694403383468523813530229529555667278914269236428714052792457<223> (19*10^232+71)/9 = 7 * 1523 * 89809 * 1756483 * [12553052253971530050561180000119324405456114524809660718261224055343190126801598172549702315932647663947335494011283394853111408556702848336095240608427637083087949031936788980074529754195389923103273692148004108858257<218>] (19*10^233+71)/9 = 3^2 * 17 * 211 * 193215553 * [33845047123943253479326307720849105690652113951772023313552140828370765677655028821673249568356624765022330647429363494795736045355434523973152728112383447202618752559164210693773129600652142295933583158930589769101636381<221>] (19*10^234+71)/9 = 23 * 73 * 433 * 53110061 * 16866188947004676565872642243643<32> * 184072282092193832430840458178487<33> * 17611256436031419039547083161409142248327648758312331263325138279647901486388357056794775664467352356953498236078773249839176264510630555879787786724188643817<158> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2597463255 for P33, B1=1e6, sigma=1443307187 for P32 x P158 / Mar 26, 2013) (19*10^235+71)/9 = 10067 * 42280013 * 337015790257<12> * [147172159113435428507223676688833455122451575699790027749087432298358664016575560934121878488173368252004068409699979851614514230713134332316098615454070091760984469916157987371183285244696484928552968082988686777<213>] (19*10^236+71)/9 = 3 * 9803 * [7178452552317695641168047574249757254959743993713186817338607606892825703393896804077361049716451124183451022173862120817134588429090112248329120715124999527733384715941076238944238536200180594753684624132446227723183757050940566191<232>] (19*10^237+71)/9 = 13 * 709 * 108967 * 114084226866377188780645799<27> * [18424720400114484209392152271847421351267034576458711150126038505735306709394700560240220917417424730854653136798071302790904984622190259547687573299164697587645557113232701368234737830619451957770303679<203>] (19*10^238+71)/9 = 7 * 97 * 3802861 * 403119745753525586377<21> * 230224427736796332449924085644546700491<39> * [88093809736479817113625909543582617611270789958491135539054438115021358706100604322222928646921200729532278943374581729881064053469609563035615488182841135170801461687743<170>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3530944028 for P39 / May 6, 2013) (19*10^239+71)/9 = 3 * 6143 * 1801988108377<13> * 28373480989506500331853<23> * 234940120659662939464346828371257622837<39> * 953646881702624760152676004251682085639152621932557136991193424957606902532600349501937705593660418358092846047549781369397935997307062906068561438949924266961763<162> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=519977547 for P39 x P162 / Mar 29, 2013) (19*10^240+71)/9 = 47 * 577 * 7253 * 58967 * 408769 * 39642871 * 1363921962412417473350459<25> * 8235275553207860309168600246590672328117725811194898442700522221040704252650670598296405097179959553478365984100450156026932296360520428618217688176397943115505635819041546156787400093958711<190> (19*10^241+71)/9 = 53 * 1291 * 4327 * 49473709 * 8446967295599612371<19> * 170626625382955539880166990262526780429223700485695842239414870947145393373571163854397118158356623454690957199794197488097803596407482344404192437125778769201486213056451385697971990981285795212891666257401<207> (19*10^242+71)/9 = 3^4 * 73 * 4274972576807<13> * 12796050252616457299166543<26> * 7580377919709847674928161143069052467<37> * [86099986719634695794415803280225787150026764308977792963193168913762664597621496286174658824292317238319409689034697421165425572117109775234522182943113298223658389<164>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2068783446 for P37 / May 6, 2013) (19*10^243+71)/9 = 13 * 383 * 1531 * 667408190006404858589<21> * 1825663088028213005288541702265000973<37> * 227290669503248820051881947852889130506544447126074259910553633805727345500743144621196538046530280153662498145452559775823757291863406442968257749295098527880847936561312309782023<180> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=38542110 for P37 x P180 / Mar 29, 2013) (19*10^244+71)/9 = 7 * 3461 * 42179 * [20659279589171940819549034942382096140648276278540545074173896052369587091471989792577893870359528289831097544723267442319297095517090871434320895207790075626051493654296170688673769834337837469795563751278789426871719398076792672748343<236>] (19*10^245+71)/9 = 3 * 12889 * 671081 * [8135713942675363470535112483203412475467218180983872450147541363539695369409195822458037240522791175191769780004428241095014418707076947356378333120755970247695361966970136256321752216091680056616183946035737858207256210112009644806597<235>] (19*10^246+71)/9 = 163 * 269 * 30709423 * 22079923776012623161723<23> * 16482086925602967646920811692088920136007<41> * 4308139727667356248584931498048837022047492524021443957897590855028060380400260473367735480078305488813274745245465712393879124040113500000374997680540592706223500975937859<172> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2963972927 for P41 x P172 / May 6, 2013) (19*10^247+71)/9 = 157 * 1303 * 2268503885978419<16> * 70637303621513623<17> * 1312557389366862230223897512308976009<37> * 490653703874143013773453320544137343438327617395673781295538506403811714641381629806803667537281283371675453283358654676459712016627566687888078557761054023451742399255932833<174> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1190784039 for P37 x P174 / May 6, 2013) (19*10^248+71)/9 = 3 * 139 * 325733849987507050871<21> * [1554218750554204935187193712640793898830269515471663840677165456645212856708974347036378707791716317935318281685022673668090677207160792043610086046829222034909370452394535409093604335218323493326067017561339741582173333903817<226>] (19*10^249+71)/9 = 13^2 * 17 * 61 * 12046076878062635795741648423200236863911665484249120477886889874131176705169732393232133607476682916190371126948532185532408067828288880139633051138132363560744244669769482468837116118475068107884664519928966186662203278181321353192876076935123<245> (19*10^250+71)/9 = 7 * 73 * 1571 * 40829 * 20683009 * 671378353237<12> * 5580882388154377<16> * 21647678229294853<17> * [383928200700181391241577627431163096733141374054644536744743754033100644976443705922879045606619095512288787581372628913894066405233594927423029312203192714221789294054095049781133172435047<189>] (19*10^251+71)/9 = 3^2 * 15767 * [1487714221060239114825698618853097616760118609973792739484796735171991509066835169877388857960093240531286238565154444311333172033791471012671410126009394523802253025736673016857368139582046264780245034362283469067680817960938888614836269219897473<247>] (19*10^252+71)/9 = 1087578335999404423668929563256008458146380105443318240076043946558020847414465430243724487924865350037<103> * 1941111772119987494251216830920448674800068100090322054144084579906696707336306917609394771450821350134036532554113939572978723617314751053647958936787<151> (NFS@home + Rich Dickerson / GGNFS-lasieve4I14e + Msieve for P103 x P151 / Feb 26, 2020) (19*10^253+71)/9 = 29 * 937 * 9445811 * 82249686472941445294162787051900960734029102859536254718585356828398602753474579911121846072834789082821238850314297417905941066793317119658081323472162237695246926197423612834999957346591794203764059767411535072258433537607551775813722061073<242> (19*10^254+71)/9 = 3 * 53 * 2011 * [660240098049129508180201067434491151218959593653494181721009639157936728843909163472320823868444033010614923302687767940200316845748105892781873003859624615279832340714470134734154324520518003531242040197502137961685919615420567730035468793056776131<249>] (19*10^255+71)/9 = 13 * 133903283 * 14180287008283757<17> * 85524686937835465893712227541072953006597935105105923606844850418628362454571533201797879529573931440446811458696882698486833668252687031737483971625809743302716486044904069041477132828101848994847514230136280441341944681534655373<230> (19*10^256+71)/9 = 7^2 * 23 * 193 * 51581 * 78811362229051359328225058148839807<35> * 23875433995127234200309671920102706130776416373908651484456871003797494926644050271207960080484321442402082919711545442664980526200575643890463330534007367395858222116856889102981984295910935214170526918317780787<212> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=336705702 for P35 x P212 / Feb 18, 2016) (19*10^257+71)/9 = 3 * 3061 * 213833 * 1185094618303<13> * [90719104015692196522280342908840008716560759401786907071581726768538673398322229872741447081502679787437262993605009674071524052115231246889415050481676064784286025352940434405684059713631285273570245884936730452443299276135078283534007<236>] (19*10^258+71)/9 = 73 * 283 * [102188446251566441314250985580672399976335307183847771485120824391844286321269718336372095024498335403993954746653328385261199046958280222232978900775018689728985483862293001167099622978416724483813887947679515519197982047103495382695731212116322721869941<255>] (19*10^259+71)/9 = 32579747 * [647982659629343073508554597158508048301023059237111666677801737107139325271958407507311554970365826079346506622998364938534087177261109827252836282341637309556489530477664885215686638423285211856037774360590065696676868335138118509978334426940488859877<252>] (19*10^260+71)/9 = 3^2 * [23456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456791<260>] (19*10^261+71)/9 = 13 * 15149 * 22783 * 7567421883263949399290148099077<31> * [62176306089796088624295459539973302922511088694196219071159397688637135763691981678650933265618152015036814482189201311621395915721082766776605791885111118464387520966095378515239668048555904725777482668744376097118934357<221>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4077150308 for P31 / Feb 2, 2016) (19*10^262+71)/9 = 7 * 386809 * 23406389 * 10703240594851907<17> * 59716235568607533994382306573751223<35> * [521163932168356418092338486513913517927544401582230142931113778138680709258911363771765883062340521069640901780635388163945085466264470673329332750707583312504060672275416372846921281110968951239897<198>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3387484903 for P35 / Feb 15, 2016) (19*10^263+71)/9 = 3 * 59 * 211 * 1123 * 3741668086386274247324990488254301<34> * 1345272776905271757818843687197206347670433531895644543077229809806809264571225037039647079643442328808264482310257552876978779213846289330234484343338575807679976652109321848584170347087691547944511189045106048502651772099<223> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2597250155 for P34 x P223 / Feb 16, 2016) (19*10^264+71)/9 = 173 * [12202954399486191393705844572896596017983301220295439948619139370584457289659601798330122029543994861913937058445728965960179833012202954399486191393705844572896596017983301220295439948619139370584457289659601798330122029543994861913937058445728965960179833012203<263>] (19*10^265+71)/9 = 17 * [1241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183007<265>] (19*10^266+71)/9 = 3 * 73 * 39659101 * 5098716286138164959<19> * 2129106056929307225742977<25> * 192411945438091783574253923350983361733<39> * 11636809869382351076446091858149882193178547676569688279674780992786131354804600745792208404274030411669269747156474006334629066091786001746360366527730455973495876198703031379<176> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4114774332 for P39 x P176 / Feb 15, 2016) (19*10^267+71)/9 = 13 * 53 * 331 * 361885656389<12> * [25579526790606242425065735420934561576414713561533533097442302569570097818651281478818978602525101911769233161415542109861371208041299983043374777083840927446924546596332411453300332049824470411197269995307886996531856887498137984930456820946807128569<251>] (19*10^268+71)/9 = 7 * 3407 * 260442239 * 4075995557516815868507739981221<31> * [833865096338805590845735440014155488936474552989234912874633258652275125750431714038308336574915315356051130896452854936776787563381181296039412603120631693348720572536860184083137135250627946980414258328999781703819623156949<225>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4229614997 for P31 / Feb 3, 2016) (19*10^269+71)/9 = 3^3 * 1907 * 700643 * 5296607041967297401<19> * 135742431899734449215219021085563<33> * 8139288973780477324019750349787350019476272071400689734045745998972006046664398448925204471278121263410665133000846858741549929742522604113028658975621412119748623583148080934255796789396033338338920022948919<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=949040196 for P33 x P208 / Feb 3, 2016) (19*10^270+71)/9 = 185914019 * 471678258900226541<18> * 24074268141568064530747606062108606694172359565370412937172860747001204858420192555084366029819112968395818085610285920663130782706536954631197635118585733544108018916351775934511936968235955505903861005549175525039203597167372062057764718015961<245> (19*10^271+71)/9 = 71741 * 101282785819<12> * 2322396353777623<16> * [1251041412859551283143561604076390448761972008466263775411903948450829677272725826378238633556425520656601949839962246072344219318603261292103154295807455042921515393982778351714847050357746921089878746280531300186515474834733548635868430407<241>] (19*10^272+71)/9 = 3 * 1153 * 8161 * 90019 * 2742556877<10> * 12858004927507021738438733<26> * [2355883099134822045479216505155331831727065182345855857054970261011594336525516059764034423646310692825781646591811199076373756422786606508513334528691610305442852726887763581458340401202717345266687823084855976679579303901439<226>] (19*10^273+71)/9 = 13 * 5791 * 10099 * 32248698367<11> * 37315190089<11> * 140346925825023559<18> * [16441258185049240825077440444036494881965550595299020514153177167027564614263618443535125092355571280731136491586179585369125929713996146022301291969402219914629723582075063208818209326624743479099254148692245997874439232803671<227>] (19*10^274+71)/9 = 7 * 73 * 8971 * 539293 * 10088093 * 124071473207453<15> * 372377948619066779<18> * 22878211724827402164956617<26> * 147442362537071797178302541204812003<36> * [5431442973718090361793127478348372712627004293594781587294317096691583562605062010707763470462320399284571560866572141280539795180739048483463409656769907263132623<163>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4015962571 for P36 / Feb 15, 2016) (19*10^275+71)/9 = 3 * 2927 * 24002962091<11> * 1374100090296713695133148875947<31> * 728926781571711072579797996879821153182463288228997918293345716511933559097956995631153097503180971705594489362205219583693571571614345591599701387409277478563779252178503449686854817264408820560348129436078733152933742753094927587<231> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2552920942 for P31 x P231 / Feb 3, 2016) (19*10^276+71)/9 = 179 * 223 * 229 * 2347 * 2999 * 3074675779938036259<19> * 49517985905266444459<20> * 215509223003241734590890385132611661361082795605627760042798352289327199546258760195599882834237088566865813717352812410780356931738969222687028480254156874623759061481796307241490654076436554748269769746256802312051757674331<225> (19*10^277+71)/9 = 3614987 * 31760428495837<14> * 693021592708204117<18> * 2637792939927375984101<22> * 100584377103288638407446007834849639014581585154489177161309673707920277597277302887735358405552230066410851267704658409187072712606010713070200572380190483640027595110679461855692832044178842425889985298487880408162153<219> (19*10^278+71)/9 = 3^2 * 23 * 443 * 6679 * 491343123290714468808718513<27> * 39971528315690473946504461511333<32> * 17550518049736879699626155615626661806165656404064572471281733446059765791749225493190456884775329375164760678040301148468516913547148653728606462692819173841399030213708030145639184688356679507670035149352757809<212> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1704008926 for P32 x P212 / Feb 3, 2016) (19*10^279+71)/9 = 13 * 10903 * 16971013 * 14339753762844818694549073607327387<35> * [61202937509826070692461993327089740574741171121259277620288316230566100211178044556840531339556289441353618277700275227572852359065270759060522359962811264781615642976168980075558123281694571542550729699494740804354876126099744467691<233>] (ebina / GMP-ECM 7.0 B1=3000000, sigma=1:1562720211 for P35 / Jul 20, 2022) (19*10^280+71)/9 = 7 * 53 * 886580741 * [64182833913413715530976633291884323794228673616920073100786318779603761276368687669546896275588908846455528413145482224262503730778139550520854685832115080939823014326491287672824005092621421014796427862779559913166783064920331219771056253143277374961334758423313871729<269>] (19*10^281+71)/9 = 3 * 17 * 29 * 32789 * 11144747 * [390611056293752539796933096688298244230611659477394542839030336013343739246151619001530589014464689204776612867941060157716591560683810589868249331244514045970597654442717634030193632660117754957150245683440179144231722799944062478661843333440803470714683375499749567<267>] (19*10^282+71)/9 = 73 * 72767 * 78919 * 8320747 * 772350413 * [783601912336907883092576275452832397462780269334243390794718578106668390754754375769949079598033225250541453385914662781854079331564071594990458056462732958881822579774763138922416232610894331136298408530827885584288457873868539109046312979999363059538401<255>] (19*10^283+71)/9 = 6451 * 994033804572931<15> * 18323648669140609<17> * 179668085269285674683854308377077088640560466576331698733058771332751354477692485570992814620882738340116930690068959038672865373728148523340095254169369278510201248144664102500222432611457263637904205443932673303222423502623623842123852703416444711<249> (19*10^284+71)/9 = 3 * 107 * 234826751 * 202186523184918222804019<24> * 279351027145473704200669<24> * 9329983790382062237348833247797<31> * 22195969416768249929900111001614543<35> * 28933791515141440025475928688377697<35> * 8275526967870828670589119499525968184576759591637529240411371723648622789340807034194737988415957240928640187563303345057501477<127> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=238811939 for P31, B1=1e6, sigma=4005999950 for P35(2219...) / Feb 4, 2016) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3528103366 for P35(2893...) x P127 / Feb 14, 2016) (19*10^285+71)/9 = 13 * 646957 * 1524013823<10> * 49560786844617353<17> * 550699033555529407<18> * [6034633644720782808024906844294786632314246545990688555451071509189701228019875081588871270749711087922269112622101542744533572714287982606769604519204017291021064961645101948239765390902077611789618590383350730564348056542989550190623<235>] (19*10^286+71)/9 = 7 * 47 * 151 * 337 * 1260980426749889251075651146897868357054731202875045991772288544151441041463113730870951813975760651101801226253025797197301101027714312301062501443905547867225158879717645510355181219578722765801018868202770457620482017466742487428705411060140291240154140389078961778004170221553<280> (19*10^287+71)/9 = 3^2 * 82913 * 1545092149<10> * 62063581523<11> * [2950222243324164172989571964497829463807654069751946399031657456554150567016799188275780321305353268770115574000228806485613847143054653350743094617671504162213400967548863107802564571579491085024111749533501404395941631822457732370801117352983018627558144096441<262>] (19*10^288+71)/9 = 772518569 * [2732764228365248669007865765762727071886230751705220319579283939660369653989652009401875116753486233819074853993718189978047131073054000739639322651817203258852812263094107076552500463080921891873787581552762793344726851622269692149123099086452006192631870718321996880195524608951<280>] (19*10^289+71)/9 = 517831 * 6062807 * 4484231293<10> * 30581170847671<14> * [49035113862942988155856357509728839516524367713081745694478172457216968547841854398791932544930512394108816098778821368048839560699451329881606458329775250181121372158125047624761307012732903642545978912263591591369821946287664846193131434330394103068669<254>] (19*10^290+71)/9 = 3 * 73 * 11069 * 969809 * [89799181688861453427548374141562862165796047065777038232457481063450012680378494246589219588912494670892621963265049212339343933333278138757840637569488888433853059126552477595256400573668594193943895919818355468653267356106631281478576855497964269759448854705329458486447217681<278>] (19*10^291+71)/9 = 13 * 22853 * 7105988815173604916745861042014719868830926460121751768362716597084076189664077468742064199990949214245936776895513166462275988377594293666581768800295908334240281905796280276654844545274685737644648947322556914295416899013800952277301115528044158858493956730512106173944882210755400271<286> (19*10^292+71)/9 = 7 * 732524599 * 2414790001171<13> * 268152629388958631<18> * [6358130088124684948600198382329024411121411591235926477068804206340549602042862135548276575225016569556035245884754789857693258216305426416194444964700824124857301699154350851691859250920455962719937774492935569423235905205207304565803091570089394066083<253>] (19*10^293+71)/9 = 3 * 53 * 211 * 467 * 541 * 550132519 * 1136895766131689646109962139443737<34> * 39822580577257637927190127220356238362670994958004008898401494917595815724091929022031611271154164743982730325867072203465568912338284097637904534097258020351913803085426375515906168983533051739829070693961293795055076645274047336032751659891<242> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2499715426 for P34 x P242 / Feb 4, 2016) (19*10^294+71)/9 = 139 * 15187849720223820943245403677058353317346123101518784972022382094324540367705835331734612310151878497202238209432454036770583533173461231015187849720223820943245403677058353317346123101518784972022382094324540367705835331734612310151878497202238209432454036770583533173461231015187849720223821<293> (19*10^295+71)/9 = 131 * 2868343 * 119282980149895279<18> * [471010112390874446977493497494863797147401384880182237753119170216424551764889242344503434549593249097963750050003426572260104724057580651017283013836207757875207179862167286896993297716502318098338330009711787404278706821849764083562513983462091395395976617255871720717<270>] (19*10^296+71)/9 = 3^3 * 8741 * 739561277561075910435529<24> * 4798001177371658928357234691<28> * 252087721506051230584288041910012216091881262829658389770063709149680871398969038138652783708366343134293032774433356575038891793195522826980998026360750585539468143909562450476497113608402423923562234719631827783748641665795353804801616603<240> (19*10^297+71)/9 = 13 * 17 * 668201 * 12402972563<11> * 6386316897973<13> * 6768000139318026761787753113<28> * 17767516690954544941427620561820267<35> * 39568932729043852050701825636175620790937360761811<50> * 37930976296781840283984013554810646237366493277696223036348733517056037146154325460232126783696169101483250189859808578503405435107511163363040439164002981<155> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2513223581 for P35 / Feb 4, 2016) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3056604061 for P50 x P155 / Feb 20, 2016) (19*10^298+71)/9 = 7^2 * 73 * 661 * 149653199 * 1132586055026443<16> * 11877338455141444759933<23> * [4435211603085258151657468082504827419300140306524023525110746963334522901948266450768821006632296636892331251284635953954105197119156649605236382213322128652395043324697964277269479182244635389344364194478674631598915129820302464323397477155243067<247>] (19*10^299+71)/9 = 3 * 119881 * 4207780269868507<16> * 6943215035144863<16> * 1847022628601304976459540262653<31> * [10878113727116505201188613085257736682811915717670621072471023472546629983053710006055369353133660439536774084076305050581876858747451893027284782450216986820215653918840529428557946928551050951985269683646959199047014564574750666221<233>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3561701055 for P31 / Feb 5, 2016) (19*10^300+71)/9 = 23 * 491 * 4460567567<10> * 5699955621763914233177390357<28> * [7352586909708464524648365421514981377864884259314247776020841696781027318761244979619200332855634214791113272245118373826942144699048982218724601566453975067214066244590440827403785662514956265309906607686403043100933500348193131257323168224022699138116588257<259>]