Table of contents 目次

  1. About 811...11 811...11 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 811...11 811...11 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 811...11 811...11 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 811...11 811...11 について

1.1. Classification 分類

Near-repdigit of the form ABB...BB ABB...BB の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

81w = { 8, 81, 811, 8111, 81111, 811111, 8111111, 81111111, 811111111, 8111111111, … }

1.3. General term 一般項

73×10n-19 (0≤n)

2. Prime numbers of the form 811...11 811...11 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 73×102-19 = 811 is prime. は素数です。
  2. 73×103-19 = 8111 is prime. は素数です。
  3. 73×1026-19 = 8(1)26<27> is prime. は素数です。
  4. 73×10110-19 = 8(1)110<111> is prime. は素数です。 (Makoto Kamada / June 12, 2003 2003 年 6 月 12 日)
  5. 73×10141-19 = 8(1)141<142> is prime. は素数です。 (Makoto Kamada / June 12, 2003 2003 年 6 月 12 日)
  6. 73×10474-19 = 8(1)474<475> is prime. は素数です。 (discovered by:発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 28, 2006 2006 年 5 月 28 日)
  7. 73×10902-19 = 8(1)902<903> is prime. は素数です。 (discovered by:発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 28, 2006 2006 年 5 月 28 日)
  8. 73×101746-19 = 8(1)1746<1747> is prime. は素数です。 (discovered by:発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / July 31, 2006 2006 年 7 月 31 日) [certificate証明]
  9. 73×102997-19 = 8(1)2997<2998> is prime. は素数です。 (discovered by:発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by:証明: Maksym Voznyy / Primo 3.0.9 / December 30, 2010 2010 年 12 月 30 日) [certificate証明]
  10. 73×103627-19 = 8(1)3627<3628> is prime. は素数です。 (discovered by:発見: Makoto Kamada / January 26, 2004 2004 年 1 月 26 日) (certified by:証明: Maksym Voznyy / Primo 3.0.9 / January 4, 2011 2011 年 1 月 4 日) [certificate証明]
  11. 73×103788-19 = 8(1)3788<3789> is prime. は素数です。 (discovered by:発見: Makoto Kamada / January 26, 2004 2004 年 1 月 26 日) (certified by:証明: Ray Chandler / Primo 4.0.2 - LX64 / April 15, 2013 2013 年 4 月 15 日) [certificate証明]
  12. 73×1051162-19 = 8(1)51162<51163> is PRP. はおそらく素数です。 (Predrag Kurtovic / October 26, 2014 2014 年 10 月 26 日)
  13. 73×1071670-19 = 8(1)71670<71671> is PRP. はおそらく素数です。 (Predrag Kurtovic / October 26, 2014 2014 年 10 月 26 日)
  14. 73×1078576-19 = 8(1)78576<78577> is PRP. はおそらく素数です。 (Predrag Kurtovic / October 26, 2014 2014 年 10 月 26 日)
  15. 73×10104942-19 = 8(1)104942<104943> is PRP. はおそらく素数です。 (Predrag Kurtovic / November 2, 2014 2014 年 11 月 2 日)
  16. 73×10122592-19 = 8(1)122592<122593> is PRP. はおそらく素数です。 (Predrag Kurtovic / October 27, 2014 2014 年 10 月 27 日)
  17. 73×10248145-19 = 8(1)248145<248146> is PRP. はおそらく素数です。 (Predrag Kurtovic / November 3, 2014 2014 年 11 月 3 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / March 15, 2013 2013 年 3 月 15 日
  3. n≤100000 / Completed 終了 / Predrag Kurtovic / October 26, 2014 2014 年 10 月 26 日
  4. n≤250000 / Completed 終了 / Predrag Kurtovic / November 3, 2014 2014 年 11 月 3 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 73×103k+1-19 = 3×(73×101-19×3+73×10×103-19×3×k-1Σm=0103m)
  2. 73×106k+5-19 = 7×(73×105-19×7+73×105×106-19×7×k-1Σm=0106m)
  3. 73×1016k+9-19 = 17×(73×109-19×17+73×109×1016-19×17×k-1Σm=01016m)
  4. 73×1018k+4-19 = 19×(73×104-19×19+73×104×1018-19×19×k-1Σm=01018m)
  5. 73×1022k+6-19 = 23×(73×106-19×23+73×106×1022-19×23×k-1Σm=01022m)
  6. 73×1028k+11-19 = 29×(73×1011-19×29+73×1011×1028-19×29×k-1Σm=01028m)
  7. 73×1033k+14-19 = 67×(73×1014-19×67+73×1014×1033-19×67×k-1Σm=01033m)
  8. 73×1034k+31-19 = 103×(73×1031-19×103+73×1031×1034-19×103×k-1Σm=01034m)
  9. 73×1035k+6-19 = 71×(73×106-19×71+73×106×1035-19×71×k-1Σm=01035m)
  10. 73×1042k+34-19 = 127×(73×1034-19×127+73×1034×1042-19×127×k-1Σm=01042m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 19.80%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 19.80% です。

3. Factor table of 811...11 811...11 の素因数分解表

3.1. Last updated 最終更新日

August 13, 2024 2024 年 8 月 13 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=211, 212, 214, 225, 229, 231, 233, 234, 241, 242, 243, 244, 248, 251, 254, 256, 257, 259, 263, 265, 268, 269, 270, 272, 276, 277, 278, 280, 281, 282, 283, 285, 286, 290, 292, 293, 294, 295, 297, 298, 300 (41/300)

3.4. Factor table 素因数分解表

73×100-19 = 8 = 23
73×101-19 = 81 = 34
73×102-19 = 811 = definitely prime number 素数
73×103-19 = 8111 = definitely prime number 素数
73×104-19 = 81111 = 3 × 19 × 1423
73×105-19 = 811111 = 7 × 115873
73×106-19 = 8111111 = 23 × 71 × 4967
73×107-19 = 81111111 = 3 × 27037037
73×108-19 = 811111111 = 283 × 2866117
73×109-19 = 8111111111<10> = 17 × 2239 × 213097
73×1010-19 = 81111111111<11> = 32 × 89 × 7949 × 12739
73×1011-19 = 811111111111<12> = 7 × 29 × 233 × 1187 × 14447
73×1012-19 = 8111111111111<13> = 257 × 31560743623<11>
73×1013-19 = 81111111111111<14> = 3 × 47 × 227 × 911 × 2781743
73×1014-19 = 811111111111111<15> = 67 × 12106135986733<14>
73×1015-19 = 8111111111111111<16> = 1879 × 16411 × 263038019
73×1016-19 = 81111111111111111<17> = 3 × 27037037037037037<17>
73×1017-19 = 811111111111111111<18> = 7 × 115873015873015873<18>
73×1018-19 = 8111111111111111111<19> = 16183 × 21979151 × 22803967
73×1019-19 = 81111111111111111111<20> = 32 × 220403 × 40890304029493<14>
73×1020-19 = 811111111111111111111<21> = 1443139 × 562046421800749<15>
73×1021-19 = 8111111111111111111111<22> = 1783 × 4549136910325917617<19>
73×1022-19 = 81111111111111111111111<23> = 3 × 19 × 40357 × 35260350108227539<17>
73×1023-19 = 811111111111111111111111<24> = 72 × 2609 × 174423511 × 36375181361<11>
73×1024-19 = 8111111111111111111111111<25> = 14159 × 6222482177<10> × 92062784777<11>
73×1025-19 = 81111111111111111111111111<26> = 3 × 17 × 617 × 2577656310137957578133<22>
73×1026-19 = 811111111111111111111111111<27> = definitely prime number 素数
73×1027-19 = 8111111111111111111111111111<28> = 5119 × 6166782239<10> × 256942892136871<15>
73×1028-19 = 81111111111111111111111111111<29> = 33 × 23 × 109 × 5657 × 211824443359015372807<21>
73×1029-19 = 811111111111111111111111111111<30> = 7 × 3917 × 8354419 × 3540890416598808551<19>
73×1030-19 = 8111111111111111111111111111111<31> = 787 × 14723 × 15671 × 44669654727725979641<20>
73×1031-19 = 81111111111111111111111111111111<32> = 3 × 103 × 363056763520069<15> × 723015053262991<15>
73×1032-19 = 811111111111111111111111111111111<33> = 389 × 1006424211911<13> × 2071808798798143309<19>
73×1033-19 = 8111111111111111111111111111111111<34> = 31111013 × 260715107898000978338799547<27>
73×1034-19 = 81111111111111111111111111111111111<35> = 3 × 127 × 162283460909<12> × 1311840739760399591359<22>
73×1035-19 = 811111111111111111111111111111111111<36> = 7 × 115873015873015873015873015873015873<36>
73×1036-19 = 8111111111111111111111111111111111111<37> = 86699390969<11> × 93554418554235266615568319<26>
73×1037-19 = 81111111111111111111111111111111111111<38> = 32 × 9012345679012345679012345679012345679<37>
73×1038-19 = 811111111111111111111111111111111111111<39> = 210901 × 3845932978559187064599556716711211<34>
73×1039-19 = 8111111111111111111111111111111111111111<40> = 29 × 131 × 2135064783130063466994238249831827089<37>
73×1040-19 = 81111111111111111111111111111111111111111<41> = 3 × 19 × 6119317 × 2114669675479103<16> × 109966399547422973<18>
73×1041-19 = 811111111111111111111111111111111111111111<42> = 7 × 17 × 71 × 203657 × 1988523917<10> × 237052685509455945437131<24>
73×1042-19 = 8111111111111111111111111111111111111111111<43> = 419 × 25903 × 60876912585497<14> × 12276191185848220027259<23>
73×1043-19 = 81111111111111111111111111111111111111111111<44> = 3 × 125509 × 215419109681672525771355337362555968393<39>
73×1044-19 = 811111111111111111111111111111111111111111111<45> = 61 × 258282213554533508443<21> × 51482071792103442967657<23>
73×1045-19 = 8111111111111111111111111111111111111111111111<46> = 304489 × 1632473 × 9241261 × 15152964062381<14> × 116528969623343<15>
73×1046-19 = 81111111111111111111111111111111111111111111111<47> = 32 × 38794577 × 232309419922592420043975364881858247327<39>
73×1047-19 = 811111111111111111111111111111111111111111111111<48> = 7 × 59 × 67 × 7268585683<10> × 4032789763012031105182591819876427<34>
73×1048-19 = 8111111111111111111111111111111111111111111111111<49> = 619 × 305947 × 502441 × 85242942228918253574075778613878647<35>
73×1049-19 = 81111111111111111111111111111111111111111111111111<50> = 3 × 6827 × 14757689 × 1065904321<10> × 23199112588931<14> × 10852286331300629<17>
73×1050-19 = 8(1)50<51> = 23 × 5077580477<10> × 6945374995597886107047422888152937330341<40>
73×1051-19 = 8(1)51<52> = 1069 × 7587568859785885043134809271385510861656792433219<49>
73×1052-19 = 8(1)52<53> = 3 × 2477231 × 10914217138828408427408278451640980206140257827<47>
73×1053-19 = 8(1)53<54> = 7 × 3146072518418290871<19> × 36831006022477769034987178984421063<35>
73×1054-19 = 8(1)54<55> = 89 × 311 × 523 × 3199387 × 862625167 × 931437041594041<15> × 217964547778609847<18>
73×1055-19 = 8(1)55<56> = 33 × 32345253304157254931321<23> × 92876540433564547288591226812333<32>
73×1056-19 = 8(1)56<57> = 81971 × 1585484583581<13> × 66905363824253<14> × 93281851418368728491057237<26>
73×1057-19 = 8(1)57<58> = 17 × 6274972541520725051501<22> × 76036059098181489065831541643449683<35>
73×1058-19 = 8(1)58<59> = 3 × 19 × 24678421 × 2458793611<10> × 23451252905437305611053236276989181905833<41>
73×1059-19 = 8(1)59<60> = 7 × 47 × 1367 × 3805189471<10> × 42553206137671<14> × 11138003872652282858294463992497<32>
73×1060-19 = 8(1)60<61> = 18433 × 32327 × 936436931 × 14535848617462129845929414356057659085642091<44>
73×1061-19 = 8(1)61<62> = 3 × 53201 × 8464427575951<13> × 60040141475067594202718130294367810263835987<44>
73×1062-19 = 8(1)62<63> = 269 × 857 × 947 × 5087 × 542220001 × 9419045107<10> × 143005625514707748519484785329629<33>
73×1063-19 = 8(1)63<64> = 113 × 129553 × 222132263 × 415708947381145447<18> × 6000029973518031288747138090359<31>
73×1064-19 = 8(1)64<65> = 32 × 397 × 2647 × 37870732423<11> × 226459053950687580308941060109012808759348376747<48>
73×1065-19 = 8(1)65<66> = 72 × 103 × 212976014099<12> × 754599218528688271960516258148411982551444819710187<51>
73×1066-19 = 8(1)66<67> = 274401961 × 64996880867741<14> × 1756449433740352577<19> × 258919627012127108958019643<27>
73×1067-19 = 8(1)67<68> = 3 × 29 × 932311621966794380587484035759897828863346104725415070242656449553<66>
73×1068-19 = 8(1)68<69> = 366395594941<12> × 99836954102879288647969417<26> × 22173731493852253938653359210363<32>
73×1069-19 = 8(1)69<70> = 379 × 2659 × 8423 × 48533 × 315725294439302933<18> × 62360485589240632899500264525286628633<38>
73×1070-19 = 8(1)70<71> = 3 × 479 × 34036213 × 169119617 × 9805920394820881149042484174381589461047367061182343<52>
73×1071-19 = 8(1)71<72> = 7 × 1519178237<10> × 211491830938025578914258249089<30> × 360645056363769507922689334109461<33>
73×1072-19 = 8(1)72<73> = 23 × 20611 × 17110135598996549143473643476807679966398506308600749517693403714587<68>
73×1073-19 = 8(1)73<74> = 32 × 17 × 1047346453<10> × 180547673213617<15> × 2803539360199295132307934943038284817117553559187<49>
73×1074-19 = 8(1)74<75> = 187888541221<12> × 4316980193896223230878384313426480744474240537012334096688660091<64>
73×1075-19 = 8(1)75<76> = 13441 × 17107 × 1542473 × 22869535483184953130030268112401803245782278726626860547896661<62>
73×1076-19 = 8(1)76<77> = 3 × 19 × 71 × 97 × 127 × 149 × 6091 × 7447243 × 240713971481327144827456622918937055598014160897059561171<57>
73×1077-19 = 8(1)77<78> = 7 × 1889 × 2061323245566877<16> × 29758035115101434208538650257583395630678052575422275134741<59>
73×1078-19 = 8(1)78<79> = 167042989 × 6322481117790908663<19> × 7680059014386145108899481388777502021718245594151573<52>
73×1079-19 = 8(1)79<80> = 3 × 4263917527937<13> × 6340891178098910261394077409910181525879967365346160837155348744301<67>
73×1080-19 = 8(1)80<81> = 67 × 34088292317027158432394554171<29> × 355140582407114793953934001686735882269873911824823<51> (Robert Backstrom / GMP-ECM 5.1-beta for P29 x P51 / May 2, 2003 2003 年 5 月 2 日)
73×1081-19 = 8(1)81<82> = 565241 × 14349827969151408180070290568290536445712733349334374383866547386178835419071<77>
73×1082-19 = 8(1)82<83> = 34 × 383808049 × 424536874031209118465581434721<30> × 6145621876381168495805556156863328612579239<43>
73×1083-19 = 8(1)83<84> = 7 × 179 × 331 × 6357517633<10> × 544543768397<12> × 6101454544949335444946039<25> × 92586472898265518012305610295443<32>
73×1084-19 = 8(1)84<85> = 206383 × 1580957123075009<16> × 3271873489759572107<19> × 7597834600411468763459557692617712259395976859<46>
73×1085-19 = 8(1)85<86> = 3 × 19219 × 71208154035227549<17> × 2422717264594450901932433<25> × 8154472032212424031265566740354822472219<40>
73×1086-19 = 8(1)86<87> = 15641 × 393593 × 1349017 × 97667719245603382384330914443187952089185973129012627009021355136217391<71>
73×1087-19 = 8(1)87<88> = 2450387 × 3310134730192051749830174217832167372382856712474850344501138436953473517085713853<82>
73×1088-19 = 8(1)88<89> = 3 × 74143 × 137477 × 331063 × 2218861139629<13> × 3610922143521073708450738004741774455538531610856838523108421<61>
73×1089-19 = 8(1)89<90> = 7 × 17 × 9767 × 6862206259<10> × 9284040013<10> × 6312020111231<13> × 1735413839311572823150043908815794971781058911586191<52>
73×1090-19 = 8(1)90<91> = 44051431 × 34712240800313<14> × 239662103351384896957239012853<30> × 22132899571163794424108471874401454643429<41>
73×1091-19 = 8(1)91<92> = 32 × 322951 × 8335463 × 16110549102330846165677508079911433<35> × 207807461217547610956615681932600192203861351<45> (Tetsuya Kobayashi / GMP-ECM 5.0.1 / May 2, 2003 2003 年 5 月 2 日)
73×1092-19 = 8(1)92<93> = 347 × 4264847861<10> × 11928641171<11> × 45946915102519065009906513189076410909928595647677514347031886554672523<71>
73×1093-19 = 8(1)93<94> = 150804883 × 392207600293<12> × 137135199092952808513107948143188692551242205430907246654469776237859928569<75>
73×1094-19 = 8(1)94<95> = 3 × 19 × 23 × 6500093 × 4510929937598053637082517<25> × 2110046406154630054337638033750715143858993705227004401348121<61>
73×1095-19 = 8(1)95<96> = 7 × 29 × 167 × 977 × 18367 × 4274593 × 1740226175044233691<19> × 3484521720360838613<19> × 51438868757091239608430359964090476646491<41>
73×1096-19 = 8(1)96<97> = 1524655819673233623399160877<28> × 101460919977324628571151943856647<33> × 52433607525874180597154043481116464869<38>
73×1097-19 = 8(1)97<98> = 3 × 2143 × 5737 × 362208267449544719128474489<27> × 6071468080149965100570238042738816204409183665103098502219508563<64> (Robert Backstrom / NFSX v1.8 for P27 x P64 / June 10, 2003 2003 年 6 月 10 日)
73×1098-19 = 8(1)98<99> = 89 × 222127 × 57646163681616085485062496803237828249497<41> × 711735424921967055447003509194371706335747644545721<51> (Robert Backstrom / NFSX v1.8 for P41 x P51 / June 11, 2003 2003 年 6 月 11 日)
73×1099-19 = 8(1)99<100> = 103 × 433 × 1931 × 437397681218317<15> × 21625043187035881<17> × 9957251943419378233739219620819694954071010770267996039815847<61>
73×10100-19 = 8(1)100<101> = 32 × 7643033 × 481366909183<12> × 5250338414290400836613597<25> × 466561154953534888287534424908844933924063722808918420013<57> (Tetsuya Kobayashi / GMP-ECM 5.0.1 for P25 x P57 / May 1, 2003 2003 年 5 月 1 日)
73×10101-19 = 8(1)101<102> = 7 × 4073 × 9775163 × 6771891638427317<16> × 429767819155696680109549906236046587421401184520295772254012816746846582831<75>
73×10102-19 = 8(1)102<103> = 82499 × 3724223 × 1163579564173199059724679684177221<34> × 22688192758586223088483922926132667507709029773057024907383<59>
73×10103-19 = 8(1)103<104> = 3 × 691 × 4167551 × 9036999572502068018262623<25> × 1038905065193481203004030116166536759548751938486621965723811111381759<70>
73×10104-19 = 8(1)104<105> = 61 × 4111 × 3234469340996810281536186844216879587795682559431158750856802066870216696153507028767724781219164541<100>
73×10105-19 = 8(1)105<106> = 17 × 47 × 59 × 3533849233<10> × 12447116712071<14> × 68601215907811<14> × 342726615292289<15> × 166373876465003754009168638483759242328825774255743<51>
73×10106-19 = 8(1)106<107> = 3 × 13829 × 61812563 × 4559154559213<13> × 7027007605514266871<19> × 987272019540799106733802180655438874763103615438660562348852697<63>
73×10107-19 = 8(1)107<108> = 72 × 2341 × 14803241 × 153087577 × 10892192004899<14> × 286464499881018652408032027081849783094949880793677355209485240176195297753<75>
73×10108-19 = 8(1)108<109> = 2690331939121<13> × 6523639841423<13> × 462151648761101600073448997408984191504676826546842166384636463084300824113978885017<84>
73×10109-19 = 8(1)109<110> = 33 × 229 × 37081451852593<14> × 353772747465736646579217709019263579265935837312091645741429245798481005268804364798431166769<93>
73×10110-19 = 8(1)110<111> = definitely prime number 素数
73×10111-19 = 8(1)111<112> = 71 × 8125427 × 22491047 × 167630093023<12> × 379606114619<12> × 79883793071406816134287<23> × 1188182303014025299257859<25> × 103499724301241219252500109<27>
73×10112-19 = 8(1)112<113> = 3 × 19 × 9344879 × 10706904706214958746506351356519255053<38> × 14222235813687816531103133484794874356750365603892533502465656170229<68> (Sander Hoogendoorn / for P38 x P68 / June 28, 2004 2004 年 6 月 28 日)
73×10113-19 = 8(1)113<114> = 7 × 67 × 617 × 2053 × 4630723 × 12732080914894100599126485912790289<35> × 23157154936770838301766203436448068386765572609185635015995020877<65> (Sander Hoogendoorn / for P35 x P65 / June 28, 2004 2004 年 6 月 28 日)
73×10114-19 = 8(1)114<115> = 32391846670247<14> × 250405949178607322719337727168842352775325947477868991841707722868960138343433259927205104169786175713<102>
73×10115-19 = 8(1)115<116> = 3 × 337 × 80228596549071326519397736014946697439279041652928893284976371029783492691504560940762721178151445213759753819101<113>
73×10116-19 = 8(1)116<117> = 23 × 1531 × 328103 × 9869857 × 165220423474037603303412870061037663554883<42> × 43051920657988170527500532097758031147884924296223330528279<59> (Sander Hoogendoorn / for P42 x P59 / June 28, 2004 2004 年 6 月 28 日)
73×10117-19 = 8(1)117<118> = 3617 × 2242496851288667711117254938100943077442939206831935612693146560992842441556845759223420268485239455656928700887783<115>
73×10118-19 = 8(1)118<119> = 32 × 127 × 499 × 2141 × 33932022805727<14> × 7306159715232525717310261<25> × 267927934059588561497593280338713536900361125974813342501912153802312149<72>
73×10119-19 = 8(1)119<120> = 7 × 35843307395754477763182390342136107571429116643<47> × 3232765732069151961623791427793961705222005358158797460862734751550729611<73> (Naoki Yamamoto / GGNFS-0.41.4 for P47 x P73 / 3 hours / July 21, 2004 2004 年 7 月 21 日)
73×10120-19 = 8(1)120<121> = 293 × 887459 × 928762845661299740974009878361850251169<39> × 33586101702047225049369792987120908245818021888514043400038915625571527337<74> (Sander Hoogendoorn / for P39 x P74 / July 4, 2004 2004 年 7 月 4 日)
73×10121-19 = 8(1)121<122> = 3 × 172 × 19087 × 39659 × 675769774679<12> × 182887093209944129178006814044071436552347535840160296030322982410178316091255886010173003797747519<99>
73×10122-19 = 8(1)122<123> = 2495368867<10> × 30065207756281<14> × 8515739257988231976015260062769942210927451647629<49> × 1269576963874524821731547635872841891743206348166217<52> (Anton Korobeynikov / GGNFS-0.72.10 for P49 x P52 / 12.46 hours / February 27, 2005 2005 年 2 月 27 日)
73×10123-19 = 8(1)123<124> = 29 × 2927 × 144100861 × 63833739956555856215699127353593<32> × 16851944024522236784620221321632467021<38> × 616442760586388278887103869502804909104749<42> (Tetsuya Kobayashi / GMP-ECM 5.0.3 (B1=1000000) for P32 / August 14, 2004 2004 年 8 月 14 日) (Makoto Kamada / PPSIQS 1.1 for P38 x P42 / 0:24:38:06 / August 14, 2004 2004 年 8 月 14 日)
73×10124-19 = 8(1)124<125> = 3 × 4243 × 374572415829901<15> × 1670077844541193<16> × 2035262364127767174761<22> × 22069219422328296911644084326237703<35> × 226780747856176111888856562646752061<36>
73×10125-19 = 8(1)125<126> = 7 × 255971 × 323251463 × 52100898149<11> × 26878550001165584876495878722518085940871139789330612085115890428842259765808705044175651609470788249<101>
73×10126-19 = 8(1)126<127> = 227 × 2543 × 17825383 × 1571736491587<13> × 356111036786164433969537<24> × 317148627679164424985961170439297671323<39> × 4440595930489963139484168408979637548981<40>
73×10127-19 = 8(1)127<128> = 32 × 453754912159<12> × 19861703835074593681170960599333771936596194778148320539363687843126906606258771538361222201850040466158500218931281<116>
73×10128-19 = 8(1)128<129> = 3102850456730838869773<22> × 88145146788324786601066001277456606273526721<44> × 2965658229312711280672592315071466698732823072548484857611037667<64> (Greg Childers / GGNFS for P44 x P64 / April 30, 2005 2005 年 4 月 30 日)
73×10129-19 = 8(1)129<130> = 809 × 9723253213<10> × 848035601727306124412985569<27> × 1215923209499907110359099149008584747886873725147568593926890646948761420775922583207060507<91> (Tetsuya Kobayashi / GMP-ECM 5.0.3 B1=1000000 for P27 x P91 / August 14, 2004 2004 年 8 月 14 日)
73×10130-19 = 8(1)130<131> = 3 × 19 × 59149 × 254598585705273884063831377723487427452507796108582701051<57> × 94493536155070554478692693417661100838095436702079866563460853379777<68> (Greg Childers / GGNFS for P57 x P68 / May 1, 2005 2005 年 5 月 1 日)
73×10131-19 = 8(1)131<132> = 7 × 40004467198921<14> × 1616092848741263078629<22> × 1792286821778598146755897247960949877792187523551091683750151509887493452073367255431721912848197<97>
73×10132-19 = 8(1)132<133> = 140683 × 494951623619<12> × 14171748726323345149<20> × 8219635007645494099448108712297233399474042460826597749052996671436878654772498977528599951169907<97>
73×10133-19 = 8(1)133<134> = 3 × 103 × 262495505213951815893563466379000359582883854728514922689679971233369291621718806184825602301330456670262495505213951815893563466379<132>
73×10134-19 = 8(1)134<135> = 13881683 × 269001190545339915526867145161<30> × 18432819128434097282510480246554333039481218741<47> × 11783987259061293732004233277125153540987549016928417<53> (Tetsuya Kobayashi / GMP-ECM 5.0.3 B1=1000000 for P30 / August 14, 2004 2004 年 8 月 14 日) (Tyler Cadigan / PPSIQS for P47 x P53 / 69:36:55:49 / October 28, 2004 2004 年 10 月 28 日)
73×10135-19 = 8(1)135<136> = 13238732242399<14> × 464392982744711070908969<24> × 1319314402489247878092802310704532335777699961348403647275144418735320993663354629529552822784884081<100>
73×10136-19 = 8(1)136<137> = 33 × 109 × 383 × 352409 × 101120902619421911<18> × 1992483608146768443461<22> × 1013464705560193838253610586641670917451385549276930890619775672817860441219461262638821<88>
73×10137-19 = 8(1)137<138> = 7 × 17 × 48378607 × 9012162445972683674297<22> × 48820731231368639010942884607337751657342879753076971<53> × 320218735873811343082387627756574642406159808074947141<54> (Greg Childers / GGNFS for P53 x P54 / April 30, 2005 2005 年 4 月 30 日)
73×10138-19 = 8(1)138<139> = 23 × 5881 × 20550217848158827690765665105772045577<38> × 2917997430751884125589588635712543583560017000408897025617347496600801747875941371252636637049361<97> (Greg Childers / GGNFS for P38 x P97 / April 30, 2005 2005 年 4 月 30 日)
73×10139-19 = 8(1)139<140> = 3 × 783566963 × 4777344126483896523285239<25> × 13185889960268919788213995928494146586472528377<47> × 547755826727374398278194612196230511365536575392794718931233<60> (Tetsuya Kobayashi / GMP-ECM 5.0.3 B1=1000000) (Greg Childers / GGNFS for P47 x P60 / April 30, 2005 2005 年 4 月 30 日)
73×10140-19 = 8(1)140<141> = 385994293 × 4888084169<10> × 5710795637<10> × 357010929608951966599<21> × 210854396383999773667130825859021861050245589849635140615548643671427145510930426817801226241<93>
73×10141-19 = 8(1)141<142> = definitely prime number 素数
73×10142-19 = 8(1)142<143> = 3 × 89 × 110879 × 316896856426336397<18> × 128431369081220952707<21> × 29112024575477100392322967162534860141551931511<47> × 2312375378201714336124580223199023275409487476004683<52> (Tyler Cadigan / PPSIQS for P47 x P52 / 54:46:55:95 / October 20, 2004 2004 年 10 月 20 日)
73×10143-19 = 8(1)143<144> = 7 × 582319 × 223470319 × 56223336320445107851116811063<29> × 15837436546409483213789519639504868703318612432957682219628275351899328538773456582356006613264313511<101> (Tetsuya Kobayashi / GMP-ECM 5.0.3 B1=1000000 for P29 x P101 / August 14, 2004 2004 年 8 月 14 日)
73×10144-19 = 8(1)144<145> = 3444788492975729<16> × 2354603519969508819752171373638908652299861552925560428845222396148898626702432215097336556100641435423022292181775261510853803959<130>
73×10145-19 = 8(1)145<146> = 32 × 238883 × 1006217 × 1680051186743<13> × 1235297818504657131293541491<28> × 18066197686088571090001655796264940908621778045645096477457474802934457585774296892152716010153<95>
73×10146-19 = 8(1)146<147> = 67 × 71 × 2969 × 48107663 × 6019613513<10> × 2755148784627079<16> × 7367709020992366316984705878919<31> × 21877749817345977056648669895466859<35> × 446553974601218471591705123088806201505727<42> (Greg Childers / GGNFS for P31 x P35 x P42 / April 30, 2005 2005 年 4 月 30 日)
73×10147-19 = 8(1)147<148> = 4159 × 17747 × 1166927 × 5211981027531516487669631329999<31> × 18068411228607373367533120273425957835243258126098442269324290869126076885106512239894555942041618508259<104> (Tetsuya Kobayashi / GMP-ECM 5.0.3 B1=1000000 for P31 x P104 / August 14, 2004 2004 年 8 月 14 日)
73×10148-19 = 8(1)148<149> = 3 × 19 × 10391 × 3481496035449266759787839<25> × 1721182176943702807399847567750693189969<40> × 22853641213202227068523577883264239564991985988203049530701824462013653201542583<80> (Greg Childers / GGNFS for P40 x P80 / May 1, 2005 2005 年 5 月 1 日)
73×10149-19 = 8(1)149<150> = 72 × 283 × 446889809957966316653<21> × 4235873951025100034297<22> × 1266921784142905536406633<25> × 24389592902799800640423679178798171060946841191471464117352565965397179486057961<80> (Naoki Yamamoto / for P25 x P80 / June 19, 2004 2004 年 6 月 19 日)
73×10150-19 = 8(1)150<151> = 38453 × 253166339 × 4097889668405153<16> × 4905632859138073<16> × 127596517145897806619806932617<30> × 324825441761312052358153396692531436372789029566970256542211768234448190402521<78>
73×10151-19 = 8(1)151<152> = 3 × 29 × 47 × 193 × 457697 × 528012984669708627919758887087231<33> × 2640623962369281969675262349483603<34> × 161055923586852517269688910385341375145213411153442717701673814626750164283<75> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 for P33 x P34 x P75 / 44.55 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 18, 2006 2006 年 6 月 18 日)
73×10152-19 = 8(1)152<153> = 5231 × 1054888361<10> × 183000140980702502916941<24> × 24501822758582821147734188172261373770858670363<47> × 32782291808142593311323070496639770907390327179373591214478907883163487<71> (JMB / GGNFS-0.77.1 gnfs for P47 x P71 / 48.48 hours on WinXP Pro, Cygwin, AMD 3800+, 4gb DDR, 6-drive SCSI RAID / September 8, 2006 2006 年 9 月 8 日)
73×10153-19 = 8(1)153<154> = 17 × 10328453 × 18592921473246849727987<23> × 1354386586120344889166234909<28> × 30246149402982031141909663724477316618628087<44> × 60650694707134154017490513389643352218963482541379691<53> (Kenichiro Yamaguchi / msieve 0.88 for P44 x P53 / 14:51:49 on Pentium M 1.3GHz / May 11, 2005 2005 年 5 月 11 日)
73×10154-19 = 8(1)154<155> = 32 × 93458549042255332010768816824559015680981<41> × 96431474395537659290440617511664931557542477458136745046691918305873367117076472604700705384745959369588944243859<113> (Shusuke Kubota / GGNFS-0.77.0 for P41 x P113 / 56.41 hours on Celeron M 1.50GHz, Windows XP and Cygwin / February 14, 2007 2007 年 2 月 14 日)
73×10155-19 = 8(1)155<156> = 7 × 2381242217<10> × 15791022294533422641288302975988124695328339669549748081<56> × 3081544831696971298063038747475176795596646326721934407174520528715845529258633313218743849<91> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P56 x P91 / 26.00 hours on Cygwin on AMD 64 3200+ / April 4, 2007 2007 年 4 月 4 日)
73×10156-19 = 8(1)156<157> = 2897 × 40853 × 1024421 × 2011733 × 33255163603584191894418728064400403812811619439335374930361843425194475448734534621658538899577605355967391302232481996515558018850874147<137>
73×10157-19 = 8(1)157<158> = 3 × 557 × 12503 × 21121 × 198623 × 24027128221834955244829<23> × 709366404715725202134278510977230883791091516457<48> × 54296667246476640184537223444832866376469118179207748377776959859458053<71> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P48 x P71 / 81.74 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 26, 2007 2007 年 6 月 26 日)
73×10158-19 = 8(1)158<159> = 26530558669965200379377507<26> × 212107814191998704725420221052699981457889085100997601<54> × 144137600146936537044461384043301075248536512091523845543692062426638973343118573<81> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.26 for P54 x P81 / October 4, 2007 2007 年 10 月 4 日)
73×10159-19 = 8(1)159<160> = 2657 × 105091757 × 340002075499<12> × 85748085121300963152030695599342054561573492952495448497507158243159<68> × 996355092269813964638397829269428609707014906515819237429532829639679<69> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.28 for P68 x P69 / October 8, 2007 2007 年 10 月 8 日)
73×10160-19 = 8(1)160<161> = 3 × 23 × 127 × 181 × 1873 × 341702145931<12> × 196520583052887648152896073<27> × 406588823658878925710182884959535921409312138007842551118934570889993246860477298243599238133500844462716339929963<114>
73×10161-19 = 8(1)161<162> = 7 × 877 × 972781709963209<15> × 1220046924751153519859701<25> × 5029543735426300746878816161<28> × 6788653800472124624790258105180513809359727<43> × 3260457440326829073193239624460062903158668440263<49> (Makoto Kamada / GMP-ECM 6.0.1 B1=11000000, sigma=3322927241 for P28 / May 5, 2005 2005 年 5 月 5 日) (Kenichiro Yamaguchi / msieve 0.88 for P43 x P49 / 05:44:42 on Pentium M 1.3GHz / May 8, 2005 2005 年 5 月 8 日)
73×10162-19 = 8(1)162<163> = 1423 × 19441 × 543595994789336592839503974042022463653<39> × 3924592279844824544604200287483373227338892292932056637<55> × 137431427308481583890246932087896925834997509780593354650152457<63> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P39 x P55 x P63 / 69.55 hours on Cygwin on AMD 64 3400+ / July 23, 2007 2007 年 7 月 23 日)
73×10163-19 = 8(1)163<164> = 35 × 59 × 397 × 14753 × 965942369841535029670333930071542007833597147082620035004773817058077260770679402604226665906125087550734363587984462811471257774773572043738538308697283<153>
73×10164-19 = 8(1)164<165> = 61 × 373 × 3620158294151899<16> × 1043995987473037595727834603195896693955428946648402327832492964027<67> × 9432249792339282259291436913130955217924127892296499942188495834211334121986719<79> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.32 for P67 x P79 / January 9, 2008 2008 年 1 月 9 日)
73×10165-19 = 8(1)165<166> = 155795737 × 574116416509900350592619<24> × 994471380187019421379513<24> × 37991063393459232499277711<26> × 2400220143785557430462248015379629004598938288766878268020196956334767804744227594859<85>
73×10166-19 = 8(1)166<167> = 3 × 19 × 213287 × 4111361 × 5929768853<10> × 3669810243913628169910801<25> × 8223492567479697862048124640209449367402873621875410421<55> × 9068131722716584529229143545406928460604605774689721826341970753<64> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P55 x P64 / 38.36 hours on Core 2 Quad Q6600 / January 2, 2008 2008 年 1 月 2 日)
73×10167-19 = 8(1)167<168> = 7 × 103 × 44131 × 106921 × 562183469 × 424092150705620199652011483458345436156802232075618785121426416402258860392234068503420727984607974173312337686167793004281687652780577229179110889<147>
73×10168-19 = 8(1)168<169> = 42689 × 86945192996610461<17> × 2185338884498424939197082003926648257485827897927092915773591342216017313135363692273179738272346205357113265774152233932587042889421355317675507059<148>
73×10169-19 = 8(1)169<170> = 3 × 17 × 131 × 359 × 504857 × 66984766541010141433174680825076583619833814739179560921855886948131208898377552436641027096530779432520007299029217173721560077122224398003763568127559199537<158>
73×10170-19 = 8(1)170<171> = 1269333346793<13> × 3920916820766611879<19> × 162973514786298569761699241667804472556428044218436313077541095450983092464268954241288401232420753771723754709123447545056636914767132755513<141>
73×10171-19 = 8(1)171<172> = 14843 × 149813177 × 77738401102687189<17> × 42317321988221629976776621<26> × 14875811353000112379997549951<29> × 74537394406427505919087578364112995875027572863907758882633116392560035073094927981031779<89> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=3684541871 for P29 x P89 / May 10, 2005 2005 年 5 月 10 日)
73×10172-19 = 8(1)172<173> = 32 × 97 × 727 × 952238356228157<15> × 134210355029883177811807256463180809954641750776613454842010265851626465664264863056204641769222001105170653740039499885390212318716629818154132415158813<153>
73×10173-19 = 8(1)173<174> = 7 × 4943 × 1059933049229<13> × 64098166474883233335412841<26> × 5651544344073065353949288742526199989<37> × 460594228426107287120213438958014196056247359<45> × 132550700853026894371155963466907255560307901107449<51> (Dmitry Domanov / GMP-ECM 6.2.3 B1=3000000, sigma=460137404 for P26 / May 20, 2009 2009 年 5 月 20 日) (Dmitry Domanov / GMP-ECM 6.2.3 B1=11000000, sigma=1247506212 for P37, GGNFS/Msieve gnfs for P45 x P51 / 4.57 hours / May 22, 2009 2009 年 5 月 22 日)
73×10174-19 = 8(1)174<175> = 915068910732463<15> × 161168447478302252881<21> × 15151901726368547274161<23> × 67649257454768559012132169<26> × 769513822589732601146115104987191749621389<42> × 69726830360915374327489509960239980109132783684837<50> (Makoto Kamada / GGNFS-0.76.8-k1 gnfs for P42 x P50 / May 1, 2005 2005 年 5 月 1 日)
73×10175-19 = 8(1)175<176> = 3 × 113 × 89716878995408126827613<23> × 2666898549818027943336165866725326803462542269089129145970126805202083962374039063751421237031346343588119844879850379288255902316592931650408357784673<151>
73×10176-19 = 8(1)176<177> = 10618982128043<14> × 17654993676918821<17> × 71431147349183543<17> × 166027267619232299700152452871<30> × 364806735251104806751400307106467769746121733799677862971852843221757266008075673149024897485565842929<102> (Makoto Kamada / GMP-ECM 5.0.3 P-1 B1=50000000, B2=7260750615 for P30 x P102)
73×10177-19 = 8(1)177<178> = 177131 × 45791595548555086975803846368569652466881071698974832813630087963773202381915707081827072116744731927844991058093225415715550135837945425200055953566067549503537557576658581<173>
73×10178-19 = 8(1)178<179> = 3 × 1916119867312670924752148611535640415033386450801802237208935853302075657931<76> × 14110305674642407281721016340336939892095295727428257624280415428343597811358551505074904645162638085927<104> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp for P76 x P104 / 432.02 hours on Cygwin on AMD 64 3200+ / July 15, 2007 2007 年 7 月 15 日)
73×10179-19 = 8(1)179<180> = 7 × 29 × 67 × 21269 × 47141841003406331455972300887242733651907<41> × 59477937477999248614204295322005295328835826506670111421059365117724762292797146126309564949352193967528628063664436708337272494617<131> (Dmitry Domanov / GMP-ECM 6.2.3 B1=11000000, sigma=2284984890 for P41 x P131 / May 20, 2009 2009 年 5 月 20 日)
73×10180-19 = 8(1)180<181> = 4673 × 1612227817<10> × 8275752250900279273<19> × 130092026440289495747123197943753396962251496394104998042622792404382227953520015260762202907327341292697303211409130735859897109553531627392350072727<150>
73×10181-19 = 8(1)181<182> = 32 × 71 × 401 × 7607 × 72912676783<11> × 923219843886583<15> × 20361161670231525367845505082480057<35> × 1251616944363009719621705935812728955500311537<46> × 24257137178864474300374832376502570787961784406903986047306381280607<68> (Dmitry Domanov / GMP-ECM 6.2.3 B1=11000000 sigma=767694175 for P35, GGNFS/Msieve, gnfs for P46 x P68 / 17.82 hours / May 21, 2009 2009 年 5 月 21 日)
73×10182-19 = 8(1)182<183> = 232 × 12007 × 1020101 × 36529704311<11> × 235334006914555897<18> × 6911575182555256258229685019<28> × 2106876659524357527511718853651133404021461067935299797700868074474723328670394651587487839823774119279251714766169<115>
73×10183-19 = 8(1)183<184> = 439 × 89821 × 1982673705804954950498743<25> × 103749663679641938453211441612734293117185006392065772447772524994824181622247338891752629465902297816340381371389732308339792699256564492136862577380483<153>
73×10184-19 = 8(1)184<185> = 3 × 19 × 797 × 33151 × 35221 × 692265611 × 2208900226315064770696429778304665865285444771878910507385599976427031912855750010969507461136950462469942969921394707981708450677646174097587081366314163951764739<163>
73×10185-19 = 8(1)185<186> = 7 × 17 × 17327 × 18253 × 218447 × 231479 × 131118023033<12> × 2749140185877645281<19> × 15218784989649877213<20> × 77692450140944565618221216331673001169265976183733803772765573405643906195326452913372426407797966591738418977165927<116>
73×10186-19 = 8(1)186<187> = 89 × 1723050359071<13> × 52892290361879952070150253555535864225393904782186248197585742082572558176760172859975438965420124349331083989556169446535625780640960190098768872574160485527285969064851969<173>
73×10187-19 = 8(1)187<188> = 3 × 2013417203339758754699697149093409802311811<43> × 13428432513733026611376469936844319340401408181621142465772463805980046207426301273004696887406182311284638034277950590963617673065257314162498767<146> (Robert Backstrom / GMP-ECM 6.2.1 B1=5764000, sigma=2302872240 for P43 x P146 / September 5, 2008 2008 年 9 月 5 日)
73×10188-19 = 8(1)188<189> = 5573 × 472103 × 234454103535237016252918540091141055006742617547811119<54> × 1314912061327682535314023136231346559893566159178935752864166118319826746859887192420416772315214150514797650378047618025778851<127> (Dmitry Domanov / Msieve 1.40 snfs for P54 x P127 / March 22, 2011 2011 年 3 月 22 日)
73×10189-19 = 8(1)189<190> = 441499039 × 165208966805509439<18> × 111203120147993708772138633787842307913676731331548876028526068427880446391236155148139107806626455909989321179670289505994267545532858905646676702865036625095369191<165>
73×10190-19 = 8(1)190<191> = 33 × 766373 × 576849289308102433339<21> × 352770971508535022385843411436127<33> × 53018587549308860488727446119008638117<38> × 9830729640749698698057713596885562332720579109<46> × 36957899619439052588389493711338143513746251349<47> (Dmitry Domanov / GMP-ECM 6.2.3 B1=3000000, sigma=3579367891 for P33 / May 20, 2009 2009 年 5 月 20 日) (Dmitry Domanov / GMP-ECM 6.2.3 B1=11000000, sigma=1641020606 for P38, GGNFS/msieve gnfs for P46 x P47 / 3.56 hours / May 22, 2009 2009 年 5 月 22 日)
73×10191-19 = 8(1)191<192> = 72 × 2957 × 28391329 × 81902647 × 1197538717<10> × 4210320749<10> × 281150019363827276479091879<27> × 8296219599240900750125751408687469456539629<43> × 204703931305234648694421978445780610066516435471243580233881603596753881664430161943<84> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=244186619 for P27 / July 18, 2008 2008 年 7 月 18 日) (Ignacio Santos / GGNFS, Msieve gnfs for P43 x P84 / 82.49 hours / May 6, 2009 2009 年 5 月 6 日)
73×10192-19 = 8(1)192<193> = 73256271947274662782040893968743123700881<41> × 12514183981701174831234244754445618634782464551<47> × 267288759821310351191537888363735659318239313283<48> × 33101853000094382825599338798034443619214831850089105550107<59> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=11000000, sigma=1290718799 for P41 / September 16, 2007 2007 年 9 月 16 日) (Dmitry Domanov / GMP-ECM 6.2.3 for B1=43000000, sigma=1770093265 for P48, GGNFS/msieve gnfs for P47 x P59 / 8.29 hours / May 22, 2009 2009 年 5 月 22 日)
73×10193-19 = 8(1)193<194> = 3 × 331 × 13163 × 6205492011742389012926473394832819412336336204920511430129504962995248522772000762238435217693887686426049818998974062156979209332080708017056194325951424547622395063026164624001460891829<187>
73×10194-19 = 8(1)194<195> = 306560981981481704619439698696478142677609707817262304366101661349418983307<75> × 2645839355903771034479686515433710428643834762960463161678823519151880019097909680932155803208297225177206761675775557173<121> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P75 x P121 / 4907.46 hours / September 29, 2008 2008 年 9 月 29 日)
73×10195-19 = 8(1)195<196> = 1889 × 5995481 × 526311157 × 2594559816950732023358967808865860971980421569887691784103<58> × 524466915956193984096906146291773759080015670889429215008290511057073913158628411941805827427100161295797695723315203749<120> (Dmitry Domanov / Msieve 1.40 snfs for P58 x P120 / April 3, 2011 2011 年 4 月 3 日)
73×10196-19 = 8(1)196<197> = 3 × 9540660187<10> × 42180569700259<14> × 5530976833923933577<19> × 12146926053912611244914153673869920805812555808532618115292905352067145727421750365424974275625831793086825107448284639044857061169602608093826333548827157<155>
73×10197-19 = 8(1)197<198> = 7 × 47 × 93106199419<11> × 26479260584489503749145369607199977787818049488160180202608043668832100876768449434094390979079289401422047744541927946481407493269024772697938228108861244102204361866869844057391851261<185>
73×10198-19 = 8(1)198<199> = 8693 × 466121 × 82113665044383827<17> × 1152000760962805981<19> × 21161370879651571652293663928471802619188707380064899249785460379407816717631767409355258039464099952248849399484952109917027967605889999027315968826793301<155>
73×10199-19 = 8(1)199<200> = 32 × 4386230489<10> × 261738156131<12> × 2356059256180297974755710952450611393<37> × 762611104538115838295625174690852459537185780082552366819246252713<66> × 4369080226259517225258389801662046648450622820650843075008678616261606076709<76> (Dmitry Domanov / GMP-ECM 6.2.3 B1=11000000, sigma=1302500274 for P37 / May 23, 2009 2009 年 5 月 23 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P66 x P76 / May 22, 2018 2018 年 5 月 22 日)
73×10200-19 = 8(1)200<201> = 487 × 11672983409241212427902446489337<32> × 116587695911853113400792854475193411<36> × 1223817901682972590078897593614104522211348947372894663743325465175996595482769445074246418799630656219168527833192057498271145815779<133> (matsui / GMP-ECM 6.0 B1=63279776, sigma=2809071956 for P36 / January 13, 2008 2008 年 1 月 13 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2963421530 for P32 x P133 / March 16, 2011 2011 年 3 月 16 日)
73×10201-19 = 8(1)201<202> = 17 × 103 × 617 × 59179856585894381323879969<26> × 272807567720012173868983567585329720758147463731<48> × 465027588270289872854705263953702054681595657370682412446652044551041143663232032341068901522111864073636211188504846812947<123> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1550822083 for P48 x P123 / September 19, 2011 2011 年 9 月 19 日)
73×10202-19 = 8(1)202<203> = 3 × 19 × 127 × 1607 × 6972457845928682052550612474546588946111754917304405388938168883760216334163046265686728787063496559431124614374130645540616061732880994653013104199647944366128460735277008156925612958081764905207<196>
73×10203-19 = 8(1)203<204> = 7 × 1061 × 8069 × 15284434883795844061<20> × 1004656703646982105849<22> × 48158071963119055252342244890589685181194000814898417381<56> × 18302526630545960094991140224159436657570310407206157285635118392324453649915734010162957380380985633<101> (Bob Backstrom / GMP-ECM 7.0.4 B1=82210000 for P56 x P101 / January 24, 2024 2024 年 1 月 24 日)
73×10204-19 = 8(1)204<205> = 23 × 46521463 × 96947660150792693775276431312321285636118080736996767<53> × 168489181194533329563353768045126688977642748067530660745388813<63> × 464076737392571429046242491118584228828971792801309447291202391181431142624036109<81> (Bob Backstrom / Msieve 1.54 snfs for P53 x P63 x P81 / May 10, 2021 2021 年 5 月 10 日)
73×10205-19 = 8(1)205<206> = 3 × 160944067959786955237855375169<30> × 559707636599368929497997425255431732598470253069<48> × 65609371997985947283305232939825747116450121760029313483<56> × 4574640900653111165781412012084179066149833812043067572202624840490284099<73> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3037355994 for P30 / May 24, 2009 2009 年 5 月 24 日) (denjoR / GMP-ECM B1=110000000, sigma=3745079294 for P48 / May 15, 2012 2012 年 5 月 15 日) (Warut Roonguthai / Msieve 1.49 gnfs for P56 x P73 / June 30, 2012 2012 年 6 月 30 日)
73×10206-19 = 8(1)206<207> = 6053 × 8377 × 10883674889<11> × 1225001207348642375756636417<28> × 141463985725236817593556494528878668687847963656435007116646887<63> × 8481315015280902931906812992221836001589732335510467989430562063553128198119061597862790865940596301<100> (Mehrshad Alipour / yafu 2.11 for P63 x P100 / August 11, 2024 2024 年 8 月 11 日)
73×10207-19 = 8(1)207<208> = 29 × 16763589357458729<17> × 2690967288228078865943875744119319118327897237<46> × 2311369459566595725258604362719097653114977017432134196351070681<64> × 2682486530740784338441991541203429468233538147358605530649882342077783866859722343<82> ([P3D] Crashtest / GMP-ECM B1=110000000, sigma=440094880 for P46 / May 15, 2012 2012 年 5 月 15 日) (Eric Jeancolas / cado-nfs-3.0.0 for P64 x P82 / May 31, 2020 2020 年 5 月 31 日)
73×10208-19 = 8(1)208<209> = 32 × 23633 × 14898217727221<14> × 185556243524077<15> × 235375306498993<15> × 586068256235809194075574805638292350477555530549325188785771471154845771559728360347544757275464148438513443800440383205473119800343884467666025757927952374331423<162>
73×10209-19 = 8(1)209<210> = 7 × 311 × 127349788387611565177435929607081<33> × 2925658921974403652050541507246083369645835537303943058167158276529141068195238273381513055077103401488478360930485359358870199639345715220086707892903389897082594212843272303<175> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1288741294 for P33 x P175 / May 24, 2009 2009 年 5 月 24 日)
73×10210-19 = 8(1)210<211> = 4357 × 6105623 × 12874391 × 11467321500049<14> × 159146701132862403468910433<27> × 367493736339136226915303269<27> × 12392370343989197601343736809525428059573236538025297559799<59> × 2849522935605342113993399200607718801178141714271584088893272805324793<70> (Sinkiti Sibata / Msieve 1.40 gnfs for P59 x P70 / April 30, 2010 2010 年 4 月 30 日)
73×10211-19 = 8(1)211<212> = 3 × 1239443 × 12124327781269997<17> × [1799181048690032123073780432942837977523728759368683736311918117349597462503012648051967382121615634299199626745747712361576389588921600902359775051144873821818029952496987549022533082683547<190>] Free to factor
73×10212-19 = 8(1)212<213> = 67 × 223 × 1087 × 473981 × 539195680579805167188989309<27> × [195417657703067757160238478001620393385687025091705190387237355073635227490556439377459352957884971163443689181218787741106321657269117092337589009113661353923291992734797477<174>] Free to factor
73×10213-19 = 8(1)213<214> = 313 × 6829 × 55820046976405331370041050219668156283698269178137214317<56> × 417361586430572135388817591166577771565367490315708655750935633949<66> × 162883175765000584353350800609005593535549613422322671440032423380390026075507221733971<87> (Robert Backstrom / Msieve 1.42 snfs for P56 x P66 x P87 / June 26, 2010 2010 年 6 月 26 日)
73×10214-19 = 8(1)214<215> = 3 × 5813 × 780029 × 90036562853<11> × 160813905011<12> × 1452696489763<13> × [283485357169072209722010339569640863676629343738854305163460250977543454477918022758731632722106440696620508309074953802802202121900923613672247474076536214941185609785489<171>] Free to factor
73×10215-19 = 8(1)215<216> = 7 × 60703 × 46556683 × 42769781004910033224116582267943932716943347303<47> × 958634596824544529008193134509864386564273946541391296263934617094825625898223653338413676996260232559142887094635435022093775611951081166446862516425673659<156> (Bob Backstrom / GMP-ECM 6.2.3 B1=8050000, sigma=3639474129 for P47 x P156 / August 7, 2020 2020 年 8 月 7 日)
73×10216-19 = 8(1)216<217> = 71 × 28808051 × 3620576061701876499733072865659927<34> × 1095293345497329293397673211340210417659625724719865891699257885248592552342275988711289537372777550314530400518083640878622741178698608241670961162797540046118753399114398333<175> (Serge Batalov / GMP-ECM 6.2.3 B1=3000000, sigma=2394144579 for P34 x P175 / August 14, 2009 2009 年 8 月 14 日)
73×10217-19 = 8(1)217<218> = 33 × 17 × 3283051 × 4643297 × 162656367834251440036073<24> × 71267660478383116156710571466052034565083658526181629446512706541162478579718500638498724166844652112429128254022708706476797091612502294504143636104034563260159015195634627877159<179>
73×10218-19 = 8(1)218<219> = 1591428378077<13> × 20967915090247<14> × 5002497179422331219<19> × 8357770941727670041<19> × 5728563677905460899837529013706595216875716919848769320907<58> × 101488057820663236285240335401821142864553199193824356605959789915209760840862321222375846739564973<99> (JPascoa / ggnfs, Msieve 1.43 gnfs for P58 x P99 / 4868.06 hours on Windows 7 64 bit / February 4, 2010 2010 年 2 月 4 日)
73×10219-19 = 8(1)219<220> = 6155535227<10> × 7501925292428888626680918688714767051134645846819196495934867<61> × 175647427956145550250649966841753801060547783174208374029329307154626662257669779236911538573570352749871941757549178526046670844378697315780780971879<150> (Erik Branger / GGNFS; nfs_factory, Msieve snfs for P61 x P150 / March 22, 2020 2020 年 3 月 22 日)
73×10220-19 = 8(1)220<221> = 3 × 19 × 503 × 14671143776143319<17> × 13134608823008540042302570336206453913<38> × 14681025523274244294463620939870658694088414760127469698980868983555220349226911499239736479881366661412389984698026421350435742026621052934252393473239003188357703<164> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1426927569 for P38 x P164 / March 20, 2011 2011 年 3 月 20 日)
73×10221-19 = 8(1)221<222> = 7 × 59 × 587 × 5483 × 5567809619468389<16> × 2837610571495858281745380187212403314944742803<46> × 38622179814288165622926293566133397054942706759828948740053500459397825841728383586364213151150107140346478641251253068584715528444254219119219045260821<152> (Nitro / GMP-ECM B1=110000000, sigma=1506831060 for P46 x P152 / May 15, 2012 2012 年 5 月 15 日)
73×10222-19 = 8(1)222<223> = 127276957 × 1155787169<10> × 4606100528699276243713698251985574178922217482311741483847891518177308099352601727104881<88> × 11970692810189505132624871325541351979382746177297587707605053734122383190397148454001565605647208395225802113986571907<119> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P88 x P119 / August 28, 2019 2019 年 8 月 28 日)
73×10223-19 = 8(1)223<224> = 3 × 647 × 5026669704716622527797<22> × 8313319389702359995878028163364982893954846513584887539659137326941446992575185905164249828796891855369511105318263853748006551211220600416696380755236138165172668034235834248388768950095080702461343<199>
73×10224-19 = 8(1)224<225> = 61 × 149 × 42413189474688048664783433665897<32> × 3685163265214397477882184619731499451388557<43> × 962842911755032900309764415040228852201720575714475494144566055243843<69> × 592995153178114657799168703112988061059510388364196387740158977446319060253817<78> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=195978290 for P32 / May 25, 2009 2009 年 5 月 25 日) (Fragman / GMP-ECM B1=110000000, sigma=2662688579 for P43 / May 15, 2012 2012 年 5 月 15 日) (ebina / Msieve 1.53 gnfs for P69 x P78 / July 4, 2022 2022 年 7 月 4 日)
73×10225-19 = 8(1)225<226> = 8647229 × 8568716146187<13> × 49782506078237<14> × 2845798000117726513<19> × [772692699127824657759342992712827564671669358751743626824012809845486655732548144451663826983686178069437134076142318945688048331460945077344575546297062321937964508651427197<174>] Free to factor
73×10226-19 = 8(1)226<227> = 32 × 23 × 2333 × 4799 × 8681 × 236771 × 462569 × 19835188586767<14> × 1855809500270069082302579743513882588356829095978339508929946242825944958441862630736554014392862722138716664519880594652487761321720054572090499107432494578176982035426593918916350687035903<190>
73×10227-19 = 8(1)227<228> = 7 × 25247 × 3015815141<10> × 639055693476556840009<21> × 36279878564912877449080351436751977<35> × 804582565238400591334085307765100320091<39> × 202923652421443439098119173227185425623318025860916851<54> × 402031416563262224172587792188148330286134846511701209897525977923<66> (Serge Batalov / GMP-ECM 6.2.3 B1=3000000, sigma=1381633969 for P35 / May 27, 2009 2009 年 5 月 27 日) (yoyo@home / ECM B1=43000000, sigma=1947307490 for P39 / February 26, 2010 2010 年 2 月 26 日) (ruffenach timothee / Msieve 1.44 gnfs for P54 x P66 / March 1, 2010 2010 年 3 月 1 日)
73×10228-19 = 8(1)228<229> = 82040674460345276418092109635781689113066914859498489130035782209201051170000071099537504824993<95> × 98866948187166021079702228415749082839158698719028540432556084739146464048408908049274520025910320723752161628884636948875147203809127<134> (Robert Backstrom / Msieve 1.42 for P95 x P134 / Sieving ~ 240 CPU days + 203 hrs Lanczos / October 27, 2009 2009 年 10 月 27 日)
73×10229-19 = 8(1)229<230> = 3 × 165883 × 10288339 × 21427333 × 115313551 × 3886461679<10> × [1649715649386800831611820890049094745862013525150219223542046286452703198504444036569458696467398643988052445641144172197605603592688026409223546091323851334202520097361472221519959738624988393<193>] Free to factor
73×10230-19 = 8(1)230<231> = 89 × 1049 × 4283 × 388214834827<12> × 230916601713637398619<21> × 22627652307968037084777384640294277082241685772532841485785945333286011927814992405915894513431280146824212568877474036237317228340783466709769840346151322050547798880539776885025888066551469<191>
73×10231-19 = 8(1)231<232> = 29400073 × 7401353349929694697<19> × 16992780952010557741<20> × [2193594478790644544202754607587096269840676956388517903031759638815338581429443467394271417006072193152539696761772306722641100131781948200717247443083700359134884143251826364069031117491<187>] Free to factor
73×10232-19 = 8(1)232<233> = 3 × 12401 × 8128801 × 2086701922912273<16> × 128533247480409322585568045028872367222951828616632719985595077976898449558058880302092571327891853105888367568597478873468301819070124748974999240397906419152881126392590714583971169993878147853663231454669<207>
73×10233-19 = 8(1)233<234> = 73 × 17 × 84263 × 14972671958236447087346558694012378564397<41> × [110255708031383529220323591090676771019226409919751001821186119826330460347632859206387514592814851572020893304856087869566838151870514238249240222410570577500878080512851550321808434771<186>] (Dmitry Domanov / GMP-ECM B1=110000000, sigma=3823164346 for P41 / April 5, 2011 2011 年 4 月 5 日) Free to factor
73×10234-19 = 8(1)234<235> = 32911 × [246455929966002586099210328191519890343991708277205527365048497800465227769168700772116043605819060834101398046583546872204160041053480936802622561183528641217559816204646200696153599438215524022700954425909608067549181462462736201<231>] Free to factor
73×10235-19 = 8(1)235<236> = 32 × 29 × 103 × 2432113 × 2222309130255907575192061097020403937845293<43> × 558231576708283279731831283626212022753207955058936371438763933234778563035230120408165466315769448023971248621746543542957170050463007901341783168608389403665393853517763876518277713<183> (Dmitry Domanov / GMP-ECM B1=110000000, sigma=878018631 for P43 x P183 / April 2, 2011 2011 年 4 月 2 日)
73×10236-19 = 8(1)236<237> = 5969814386907649<16> × 135868732014508230033079412166135078849992702759384265459850553877964944777150749247612371361802837442011907723274136161390037679868595633253924781771903408197627127123202159606451756462780379116702567908987437327517367239<222>
73×10237-19 = 8(1)237<238> = 145757 × 180052104269<12> × 900201784540916233<18> × 64610324109634474497407470535473<32> × 60687853128869130628593177685389818707099<41> × 87560687905716177036346912340239830826609846158062663691981493729200375762792394886338228894937530365936173354107884482299637868437<131> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3790917017 for P32 / May 25, 2009 2009 年 5 月 25 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1324195766 for P41 x P131 / April 2, 2011 2011 年 4 月 2 日)
73×10238-19 = 8(1)238<239> = 3 × 19 × 461 × 509 × 16141 × 2564381 × 1008496197377027<16> × 8092832741907217369498217<25> × 15763324204260069686126647489<29> × 1138809710835755689330181443441829128808358798006572040231863130590540845458102366705177955818927790027732222236442841335489546151456119269106348536664637<154>
73×10239-19 = 8(1)239<240> = 7 × 227 × 16337918528969<14> × 7529672645076231655415858897232655237<37> × 4149384037379143567278495411791286694099973296395619304398324243167422800155829580159265351263609359751357291458341572923671862054965364012498727663693374393077802051839723879528884461783<187> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=2320253117 for P37 x P187 / September 12, 2010 2010 年 9 月 12 日)
73×10240-19 = 8(1)240<241> = 65141 × 14375837933<11> × 814095630093840119591820903531974394599<39> × 7860315225071415156115933772593307189222053<43> × 1353559572973997566518843842928429495815096905148266651107870648098066596862123731432826632334180429966508718464466298616576919177736668921484221<145> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4027445342 for P39 / March 20, 2011 2011 年 3 月 20 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=603873868 for P43 x P145 / April 6, 2011 2011 年 4 月 6 日)
73×10241-19 = 8(1)241<242> = 3 × 1553 × 3142163203150529<16> × 9738217033362438978257872010279769567827<40> × [568957009763349750886082427078689969120509026254399618771016802246504288678284189495990001284085372062009919964865734459369038780656037994148639766044103725733477699960823359523909263<183>] (Serge Batalov / GMP-ECM 6.2.3 B1=3000000, sigma=1553818478 for P40 / May 30, 2009 2009 年 5 月 30 日) Free to factor
73×10242-19 = 8(1)242<243> = 6661 × 5768443348883<13> × 2433133368010550753<19> × 146337898716429751088899432223507<33> × [59287011032147246415404357711918292857582091957106148141677454653007379683860195517172477070080575255441763542889691583392291227603304875315501329180227976487363263981212546307<176>] (Serge Batalov / GMP-ECM 6.2.3 B1=3000000, sigma=380702607 for P33 / August 14, 2009 2009 年 8 月 14 日) Free to factor
73×10243-19 = 8(1)243<244> = 47 × 233 × 183058675483063007543995243<27> × 1873106445888282133716880430689434121326097<43> × [2160099705074328254815063385053390172074520721555998720133267865010463266648624186651627894155638288745251488629369157617178789327437784886280460121834064590351125882966291<172>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1646536888 for P43 / September 11, 2011 2011 年 9 月 11 日) Free to factor
73×10244-19 = 8(1)244<245> = 34 × 109 × 127 × 207029 × 5725901661377<13> × 1202233649847480946865691043463355443281256297<46> × [50757609947741316745363445940303535286288441820982360522257421882789405958978062833785622228655170355856557572573801679529487202377314912584004824252185390776676526342100138417<176>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=342314283 for P46 / September 11, 2011 2011 年 9 月 11 日) Free to factor
73×10245-19 = 8(1)245<246> = 7 × 67 × 263 × 1976647 × 2125508335021<13> × 22167186871215509<17> × 34505429062474104122651<23> × 2046264712440212925083105690036957165569285590760041052398084770945901559071675734423610473506739035039759936049085466249891427956887136602644677634138186410867833880185874147091343761<184>
73×10246-19 = 8(1)246<247> = 839 × 7537 × 1836603283<10> × 8380671965231856573706217151153020289895918953091<49> × 83334661631822602100988654224197720328501740712494196557820705632452193765493935016097442292426618429927918710862477756851947842628018212209341781601316634402213814377565211511142809<182> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3586205393 for P49 x P182 / March 22, 2011 2011 年 3 月 22 日)
73×10247-19 = 8(1)247<248> = 3 × 7963 × 5495687 × 47368566757789<14> × 4560071856870160744649045362572290381<37> × 2860213548687335483978750495623252943917430238818948680762135967440163827475784888330321566505477001861891732580129197274060857003745066459973963481434235817905110937200122905171364648953<187> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3776235151 for P37 x P187 / May 26, 2009 2009 年 5 月 26 日)
73×10248-19 = 8(1)248<249> = 23 × 22996497833<11> × 1052234186110170683522888610546333813245660952522684119<55> × [1457398792544500673330087052900319422608636252493966374247697746639209097525904462951487552766176122241294905362672553844028074015172484739063483047631190088898699927409871940396227391<184>] (nisba / GMP-ECM B1=110000000, sigma=2054819751 for P55 / May 25, 2012 2012 年 5 月 25 日) Free to factor
73×10249-19 = 8(1)249<250> = 17 × 5443 × 15809 × 32607769874736976738779806206337465479<38> × 40205425134900824486036913580544781545361943<44> × 4229440692581997042732935855220449937977980524590670734943555977564469429532304617404862572162798327414691831558556499825777155689822889258801244288794480057597<160> (Serge Batalov / GMP-ECM 6.2.3 B1=1000000, sigma=3778736387 for P38 / August 15, 2009 2009 年 8 月 15 日) (yoyo@home / ECM B1=43000000, sigma=2004602217 for P44 x P160 / February 28, 2010 2010 年 2 月 28 日)
73×10250-19 = 8(1)250<251> = 3 × 3529 × 7661387655720327865411458497318514320497885247105989525938519987825740163512903665921518004260990942770483716927468698508653170030330699075385955521971390489384255323614915567310013328715510636734779551441495334949571277142827156995476632767650053<247>
73×10251-19 = 8(1)251<252> = 7 × 71 × 577 × 28211 × 249536713 × 189074849102796863204926349997457<33> × [2125012334890738112961137486952219835992629112721539820107616881306342112270417869837741193948090360777073876452258197104226498106308736846322013866637606363465769247001381182013494635932729815724084469<202>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1999960963 for P33 / October 5, 2015 2015 年 10 月 5 日) Free to factor
73×10252-19 = 8(1)252<253> = 14524227760645299240684500939<29> × 147006520829383683892869841712406462329<39> × 3798837361857453138741942176076756356684562887055313355066393258802147306826716541426438264606154218826995525406994187873206053363776579018396613817185889481753476394517196098720287138781<187> (Erik Branger / GPM-ECM, GMP-ECM 6.4.4 B1=3000000, sigma=1453692427 for P39 x P187 / October 6, 2015 2015 年 10 月 6 日)
73×10253-19 = 8(1)253<254> = 32 × 39367979944414526068420154559869<32> × 228925784145828510528525238670046484466737397660315532017503556910505154357831659357766344469187903801024742170833695650192488834463343633529269341024644855634408989581448118500126570889727669961250427930081715324770050491<222> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=866143964 for P32 x P222 / October 4, 2015 2015 年 10 月 4 日)
73×10254-19 = 8(1)254<255> = 32688673 × [24813216220527248417551581586414080226233445178735493824148539499021912303112185407805055626183146410106984493102889527241167333746191260535755339811778566572926074763301376936014230712611402460757924040266520183034383534354885287362723812958424807<248>] Free to factor
73×10255-19 = 8(1)255<256> = 566543 × 329453751795856728967<21> × 43456326886886316370149498038258460591034875918763101799196136948706853291901719956031170873109912034742407485038414232533085166958663682404777147118653827561318928846418289617254720516972596667435265836574184203486511696493059631<230>
73×10256-19 = 8(1)256<257> = 3 × 19 × 1701784023607050462572811391<28> × [836182458865483098364615214870759205219223777545579131585779895099458555210763945393696467111377824550417560016816507396096861026245682318106076678751935672930311099440123639159470402185127915881288891521179358243686795953754753<228>] Free to factor
73×10257-19 = 8(1)257<258> = 7 × 57468557 × [2016285459769172088588774133880129842408832639960245965735193522833988558576005586376840347946669617492150934220829937891356364070060361407993470514198153139913936169878354053954634981926131763076511837125401861332154483590320059991640574392982809989<250>] Free to factor
73×10258-19 = 8(1)258<259> = 1091 × 4004766636071<13> × 11221188010329931<17> × 6919370452742045355522911366443<31> × 23909635986907721565336778860158928010133160205995409275712926687282402004035243207804039042072880576574289100282882679343086047930754346159232974456000164978419144556779754604005092125494559710147<197> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3799178125 for P31 x P197 / October 5, 2015 2015 年 10 月 5 日)
73×10259-19 = 8(1)259<260> = 3 × 62574326137<11> × [432078756674778204923732186304103819086678038244665165031388583038621960718295685975595295399274161855718220006135437978133109001170881231331621667720478020959131835725022040871986658515105137855861733944748833357093560498202078098026215058352295701<249>] Free to factor
73×10260-19 = 8(1)260<261> = 450847 × 5373501439482927857918233702830401<34> × 4034927261384736576723598044402722691840353<43> × 22703547175022011137558762793516037912180174119<47> × 1210813044952363833927201870130219509713961522426826350435983039<64> × 3018472889293316982852436888269840514484871757182286648650699422258081<70> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3625845956 for P34 / October 6, 2015 2015 年 10 月 6 日) (Erik Branger / GMP-ECM B1=11000000, sigma=2443093540 for P47 / October 12, 2015 2015 年 10 月 12 日) (Erik Branger / GMP-ECM B1=43000000, sigma=1:1301290267 for P43 / October 25, 2015 2015 年 10 月 25 日) (Erik Branger / GGNFS, Msieve gnfs for P64 x P70 / November 20, 2015 2015 年 11 月 20 日)
73×10261-19 = 8(1)261<262> = 167 × 179 × 337051217509759189<18> × 20753528803251185191<20> × 38790287298371135080999431460528307319663999378290093479280867659348101337728127273596814999267537880401986829150116490944098157522402220336161273372604030406189717667176667943185403632208922129397092354903978821163609273<221>
73×10262-19 = 8(1)262<263> = 32 × 397 × 2680697 × 1269205304132064553<19> × 6672179596242590256637613635697036988224221232346367863262950169427104507450905702112436767481403006703005548900646159301365287762543758787176620853904138190697512619157515459752966981046157080747003438829058487228872976161440222390827<235>
73×10263-19 = 8(1)263<264> = 7 × 29 × 35569 × 153982841 × 3012560414419<13> × 216335623579136927<18> × 331866586244094457<18> × [3372974021905006242381535491857333413969083511757743276443920505996995657128048513818996403493401033318719289204431594046476208809330336556541078752814452437318756762681837288090366743835974758041763433<202>] Free to factor
73×10264-19 = 8(1)264<265> = 4211 × 139963387 × 1399817317<10> × 122361474409<12> × 1013869568361561773900938992449163177424367<43> × 79246942399833406843220835515103941294065320546809735220890405416667162791007227224724177704185504155072105771007033225359969237232798108439337155620578375925086258238013987122900417737454573<191> (Erik Branger / GMP-ECM B1=11000000, sigma=347847088 for P43 x P191 / October 12, 2015 2015 年 10 月 12 日)
73×10265-19 = 8(1)265<266> = 3 × 17 × 347 × 11093 × 21481 × 602821 × 4026152759203<13> × 279399039588793<15> × [28364403898396159556266856477696513581904730893530954765942464250515580590190578325580559249655706125909503416989098320361770870330558529471880883415707754577717798749312990123760901381510814627664620018539302961776333829<221>] Free to factor
73×10266-19 = 8(1)266<267> = 293 × 277183 × 102404250677<12> × 399369943832871538103839276800407<33> × 244204002730992302390851196285628884525800882171335347153605643077504244039358393792521690988482213552348273031272418941070880992256544484194271416519767745494162598226258280792134802301279331327613180155286370067671<216> (Erik Branger / GMP-ECM B1=3000000, sigma=3232478180 for P33 x P216 / October 7, 2015 2015 年 10 月 7 日)
73×10267-19 = 8(1)267<268> = 6577 × 726751 × 1696941499981116655823062871122606851152302092121542743234897159403365088129652700312558118335862304893434198116240336676580040605835598506910669068557369521883944979563358445164368342453789389379684551003739022467159632370597960460521184809428530871211305193<259>
73×10268-19 = 8(1)268<269> = 3 × 97 × 257 × 88379 × 145213 × 453908290853<12> × 12095168639450549<17> × [15392870439735630048282772832763085098044281678150310932696312503423380901077088978363442598385066410623324970727791045401656102393156402512231459079869602629841187198271501367160629672930887935319855314854884000844826003431787<227>] Free to factor
73×10269-19 = 8(1)269<270> = 7 × 103 × 3814168948519<13> × 51331004036111<14> × [5745997075342966038617805486623957276994182074637616505687020737360577909423675487215973478777690775476374383814857610205172705747705694606240913761013437142500333218443759792974854055560645030417048942122719285209241487736679323805086952799<241>] Free to factor
73×10270-19 = 8(1)270<271> = 23 × 8208051441536289629994187<25> × [42964765430967078686998069790813122994536771955445086195064206159604229062153724038122076260232369140337267811054939193883202179091569153178588444821601710251449607176434640665761730141793525509686084856291772942597580787153068321026093751241811<245>] Free to factor
73×10271-19 = 8(1)271<272> = 33 × 53089 × 9970881654133<13> × 22389937665936325179702542591376757<35> × 347267360195497205506860313362500662584779<42> × 729897086026403947369913879039295491510627267287314022407989023040442947875360332303261515744925441054373442444738984369566462241309590949122672587142423149838238456425570757063<177> (Erik Branger / GMP-ECM B1=3000000, sigma=874530738 for P35 / October 7, 2015 2015 年 10 月 7 日) (Erik Branger / GMP-ECM B1=11000000, sigma=1799487155 for P42 x P177 / October 12, 2015 2015 年 10 月 12 日)
73×10272-19 = 8(1)272<273> = 367 × 3881 × 67891933 × [8387885042107619784818523724600432259238526745295380914354046394885786032442178882521770500083820028321037557499843429549378958612883312365338232037469769042819747907661876394395923787575087166495207082620068130297524267741334740006970046601608052706736527221<259>] Free to factor
73×10273-19 = 8(1)273<274> = 2341873 × 65616445666411939503618803770919<32> × 1460927476302476316125074283996889860447<40> × 36130639819176241271210568590062124409525871626375720416740343799235339867534249674089008344349317645075694607944838250974622423440875997411147379531033203432063724889247620647640128416945335767599<197> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1571479114 for P32 / October 6, 2015 2015 年 10 月 6 日) (Erik Branger / GMP-ECM B1=11000000, sigma=1722644618 for P40 x P197 / October 12, 2015 2015 年 10 月 12 日)
73×10274-19 = 8(1)274<275> = 3 × 192 × 89 × 653 × 2043631 × 274425779563357<15> × 1276165068983515297<19> × 375133106643693650623050148783<30> × 219410293123542639790935030753038275433<39> × 21876209477944010392833877283747536790432955039706530362444928495934769493550916133088905610016616536595749378600931697483359626584494741595798888974224676915341<161> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=617034698 for P30 / October 2, 2015 2015 年 10 月 2 日) (Erik Branger / GMP-ECM B1=11000000, sigma=1781949439 for P39 x P161 / October 12, 2015 2015 年 10 月 12 日)
73×10275-19 = 8(1)275<276> = 72 × 16553287981859410430839002267573696145124716553287981859410430839002267573696145124716553287981859410430839002267573696145124716553287981859410430839002267573696145124716553287981859410430839002267573696145124716553287981859410430839002267573696145124716553287981859410430839<275>
73×10276-19 = 8(1)276<277> = [8111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<277>] Free to factor
73×10277-19 = 8(1)277<278> = 3 × 1153 × 3345176371<10> × 1697664738019<13> × [4129132699211352013242234593134470462864203688612697044903041206181505713691377613585964715285335944769233080268845808087615172753329298117052978769832948212037396781171858092959143094725250523846845876443852463445562226828675064194424576747685628228821<253>] Free to factor
73×10278-19 = 8(1)278<279> = 67 × 839268233 × [14424632686809917251300029490274907266907106601998193794131968713406678095948775177409073688486849843756848100234244965607786447876804251848749210315527782871180292739742165347431899830259383477881393976383217560674262259122946156967323384902539259648559571660983994501<269>] Free to factor
73×10279-19 = 8(1)279<280> = 59 × 746807 × 1645099 × 4714393 × 59742511 × 2220855527641<13> × 3387159566559858077500571010962677<34> × 52815658787847931107242346542040278843034562749773042535561248995588353865257000241530293160509889185584250083606527160484413699533899570762893388522343418708767262192672606055140457540881402264854242240123<206> (Erik Branger / GMP-ECM B1=3000000, sigma=2883993924 for P34 x P206 / October 7, 2015 2015 年 10 月 7 日)
73×10280-19 = 8(1)280<281> = 32 × 2776566479<10> × 64725152630639<14> × 35853469771730690051488635799<29> × [1398702948214264538968792885817476592073258658529646475587381389189416338692232448834897225560413199512259818792417140649351635244162081379923288782818466971692411397217016286691774453658669982651123204394738117534278635039328841<229>] Free to factor
73×10281-19 = 8(1)281<282> = 7 × 17 × 209273260151<12> × 2528490168217679<16> × [12881261001300158064389131509798763199779874367258289191721611085161110303945208851181019650129568345162693847686282762882613604379880646590307029978165256753154470082098888336919421994668668248724229909085264433470440743962142800349529457217748443695161<254>] Free to factor
73×10282-19 = 8(1)282<283> = 1217 × 24461053 × 5306606764785018691<19> × 3343104045173844335370230899144961954731<40> × [15358465427881604663567658616764049874725685769555482988902384429614501145124238781542436703324724422682687822685053774958331469778672071897506257873538468903672423635500387109921360556631183499306694770736350124691<215>] (Erik Branger / GMP-ECM B1=11000000, sigma=439315318 for P40 / October 12, 2015 2015 年 10 月 12 日) Free to factor
73×10283-19 = 8(1)283<284> = 3 × 3076945411<10> × 20456267329<11> × [429549199509908027957423810363196914818543983217407368366022337532797795246613247023851471998185276354318858407972810527165057756655382670629002860599441064430972488538063055831443432910811385406298435375351722975463433963805358664738952372876996465730981373019023<264>] Free to factor
73×10284-19 = 8(1)284<285> = 612 × 2292469 × 68591036505893273<17> × 1386276443021583804049697221035368738355066931304794417761729197856028320818370012693391683069808180361436748326223602835519223132599660600220111981609337866885064411249769854799367918900558810780494836916452226560525882294451898102210530498798835037535504043<259>
73×10285-19 = 8(1)285<286> = 32983 × 99370673 × 2815576954427400113816238271<28> × [878950794279860843210309111966704419137911834434883026332272719335651255195109587386753346960484185872526981809624071652792879852806179537867380368749485414055308166938380289190257434198771449335110370918600147043118092699494697647420369295554399<246>] Free to factor
73×10286-19 = 8(1)286<287> = 3 × 71 × 127 × [2998451484644231677613068319511704229459580463240217038597874796166911061000004107467787183879010428860711659868807478877346904406902188869583790289124657539873243544087505493738165358438176448601201845074530002998451484644231677613068319511704229459580463240217038597874796166911061<283>] Free to factor
73×10287-19 = 8(1)287<288> = 7 × 113 × 13961413079<11> × 26299326623684063<17> × 69561063344043971351<20> × 40147975394489343162277018352206811226478053631145928574468491655246515226740931790417084184664995109440267122288003338082243698078937113369963825598790374537651791610717636735192448497542926096133284440467746418780109419467912799619774623<239>
73×10288-19 = 8(1)288<289> = 2262585449<10> × 372974802239773<15> × 9611603979172629098198398303022069613954761065092495766377642514875934825897959996442534988422812333001918899073343379721448685384206447358259432854532590037557929834991346333674042822152595267956968518580327012606752528591251502354484909524778597556116057511984443<265>
73×10289-19 = 8(1)289<290> = 32 × 47 × 617 × 11821 × 73561 × 140436676187<12> × 9291078954515145143169459704389337<34> × 273908988804999180066449695702100296406446997285968279918760170037132137350620291343224263695959762404013448011596407542372904757408508676278869847512951123052516054857856207200415298551723048393009646456230952652097783210620701239<231> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=825265070 for P34 x P231 / October 2, 2015 2015 年 10 月 2 日)
73×10290-19 = 8(1)290<291> = 283 × 36850739497681<14> × 101077555075253<15> × 8626304243731556561<19> × 7688665625327633011705831<25> × [11601582530492813057704387649652137465537162690302031264901166296593105891128259406455269026063959824164645816431846025859370028362707239923917522979928821813247716449455827925686183607640267985164099886558880995749159<218>] Free to factor
73×10291-19 = 8(1)291<292> = 29 × 197699 × 9941369081719353797<19> × 5757991053605514440983246684037<31> × 24715004666613974283865873636215474118120785672667174825696588734827899752560946837144312475930906877834432926171316337193191041130273464756885376790941558221332645455761213857057820591832891927347535446980511731737952963856842224931769<236> (KTakahashi / GMP-ECM 6.4.4 B1=3000000, x0=2270268000 for P31 x P236 / October 4, 2015 2015 年 10 月 4 日)
73×10292-19 = 8(1)292<293> = 3 × 19 × 23 × [61869649970336469192304432579032121366217476057292990931434867361640817018391389100771251801000084752945164844478345622510382235782693448597338757521823883379947453173997796423425714043563013814730061869649970336469192304432579032121366217476057292990931434867361640817018391389100771251801<290>] Free to factor
73×10293-19 = 8(1)293<294> = 7 × 3761 × 58321 × 117223 × [4506518761823106963951579827353333058375214232410920467345003999976223039020873848869566401171464467942194970033962983654005579043810340105935616125483705679039062475857279833583105960087199654987165643841839400442777794789994516302795274219577154350497834183258979546458000059671<280>] Free to factor
73×10294-19 = 8(1)294<295> = 92429761 × [87754323102827357858375411260785485652301006286396338416488073696426750590766009998782871580844086690985938080172154844272626769110774949543698496754861360196648253922360689768646173510186952783650615640032987980041527004609598753707813991979391909399301715289636106611928933918925865351<287>] Free to factor
73×10295-19 = 8(1)295<296> = 3 × 540511 × 6111922357816052804461<22> × 684032358709332353739779<24> × [11964652340902446365945769825586515500341443296247627551737581483186017608464556832061566893267828294935506479494953490662995256841704103729252803087524639835344626391939342790009538389703928383071745014958897395658522129192925365482923005722293<245>] Free to factor
73×10296-19 = 8(1)296<297> = 10173133 × 440901089 × 180835818755972189255062421321468575539256520914042997761119519348811777490255381994350612195313280130888936898392810307840262090756539733651528064219206253926134285580316609160918826542304435929308807859416203593890853978054835431989970292795174123067371884336526943646599314068803<282>
73×10297-19 = 8(1)297<298> = 17 × 701 × 654029 × [1040678076888653776103608847102091012039694953911971643199692726847771706539001433973944111635003837094187680322550212878550619122605754072798609138973586908365261411219166981091260273876894336383061008867381858826862039321714719695527522893167534758541597533397378723583005170267297703727<289>] Free to factor
73×10298-19 = 8(1)298<299> = 33 × 20809 × 145960799777516436824444872573<30> × [989074811511495825058709781625827322191781021890732910516705926218030424665027980472675467008644926050743128672171581751010855141263016563446974546203041639734702202419838214497368116496164314852720172849793542605272033630808317000261076707049940565890536812690849<264>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2728803195 for P30 / October 2, 2015 2015 年 10 月 2 日) Free to factor
73×10299-19 = 8(1)299<300> = 7 × 1312 × 571 × 4276068180551710328981291<25> × 19929622052801797224232507<26> × 138758605641990705463029807987461678866547474063282909270365354622814214355350655528749914331561608229832791285604119677093102635093662849454687074386459994735512281440184238130390418851737554136770897504905180946999687999953592267305340673059<243>
73×10300-19 = 8(1)300<301> = 1801 × 2116255763<10> × 28421618871182491753<20> × 890188664743127180808844043<27> × [84113869601218284871139029656724037092932612523116484424803045469387130132015331998294986923014400961553566959159200443884492009261868341476487405860085039389010769626614352037472857397541292685145735503447814818406032881314417440794245923143<242>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1364453242 for P27 / October 4, 2015 2015 年 10 月 4 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク