Table of contents 目次

  1. About 700...009 700...009 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 700...009 700...009 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 700...009 700...009 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 700...009 700...009 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

70w9 = { 79, 709, 7009, 70009, 700009, 7000009, 70000009, 700000009, 7000000009, 70000000009, … }

1.3. General term 一般項

7×10n+9 (1≤n)

2. Prime numbers of the form 700...009 700...009 の形の素数

2.1. Last updated 最終更新日

October 21, 2023 2023 年 10 月 21 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 7×101+9 = 79 is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  2. 7×102+9 = 709 is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  3. 7×104+9 = 70009 is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  4. 7×106+9 = 7000009 is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  5. 7×1011+9 = 7(0)109<12> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  6. 7×1012+9 = 7(0)119<13> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  7. 7×1013+9 = 7(0)129<14> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  8. 7×1035+9 = 7(0)349<36> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  9. 7×1046+9 = 7(0)459<47> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  10. 7×1057+9 = 7(0)569<58> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  11. 7×10128+9 = 7(0)1279<129> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  12. 7×10156+9 = 7(0)1559<157> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  13. 7×10263+9 = 7(0)2629<264> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  14. 7×10353+9 = 7(0)3529<354> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  15. 7×10396+9 = 7(0)3959<397> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  16. 7×10429+9 = 7(0)4289<430> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  17. 7×10783+9 = 7(0)7829<784> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  18. 7×10982+9 = 7(0)9819<983> is prime. は素数です。 (Julien Peter Benney / September 5, 2004 2004 年 9 月 5 日)
  19. 7×101058+9 = 7(0)10579<1059> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 14, 2006 2006 年 9 月 14 日) [certificate証明]
  20. 7×101563+9 = 7(0)15629<1564> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 4, 2006 2006 年 9 月 4 日) [certificate証明]
  21. 7×101695+9 = 7(0)16949<1696> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / August 21, 2006 2006 年 8 月 21 日) [certificate証明]
  22. 7×101816+9 = 7(0)18159<1817> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / July 18, 2006 2006 年 7 月 18 日) [certificate証明]
  23. 7×101937+9 = 7(0)19369<1938> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 11, 2006 2006 年 6 月 11 日) [certificate証明]
  24. 7×104236+9 = 7(0)42359<4237> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 19, 2004 2004 年 12 月 19 日)
  25. 7×104431+9 = 7(0)44309<4432> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 19, 2004 2004 年 12 月 19 日)
  26. 7×106858+9 = 7(0)68579<6859> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 24, 2004 2004 年 12 月 24 日)
  27. 7×109898+9 = 7(0)98979<9899> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / January 6, 2005 2005 年 1 月 6 日)
  28. 7×1013145+9 = 7(0)131449<13146> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / January 12, 2008 2008 年 1 月 12 日)
  29. 7×1016646+9 = 7(0)166459<16647> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / January 12, 2008 2008 年 1 月 12 日)
  30. 7×1020891+9 = 7(0)208909<20892> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / January 12, 2008 2008 年 1 月 12 日)
  31. 7×1063351+9 = 7(0)633509<63352> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  32. 7×10105296+9 = 7(0)1052959<105297> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)
  33. 7×10113693+9 = 7(0)1136929<113694> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)
  34. 7×10121144+9 = 7(0)1211439<121145> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)
  35. 7×10163780+9 = 7(0)1637799<163781> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)
  36. 7×10234915+9 = 7(0)2349149<234916> is PRP. はおそらく素数です。 (Bob Price / October 19, 2023 2023 年 10 月 19 日)
  37. 7×10284751+9 = 7(0)2847509<284752> is PRP. はおそらく素数です。 (Bob Price / October 19, 2023 2023 年 10 月 19 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / September 8, 2015 2015 年 9 月 8 日
  3. n≤300000 / Completed 終了 / Bob Price / October 19, 2023 2023 年 10 月 19 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 7×1013k+1+9 = 79×(7×101+979+63×10×1013-19×79×k-1Σm=01013m)
  2. 7×1016k+5+9 = 17×(7×105+917+63×105×1016-19×17×k-1Σm=01016m)
  3. 7×1018k+7+9 = 19×(7×107+919+63×107×1018-19×19×k-1Σm=01018m)
  4. 7×1021k+3+9 = 43×(7×103+943+63×103×1021-19×43×k-1Σm=01021m)
  5. 7×1022k+8+9 = 23×(7×108+923+63×108×1022-19×23×k-1Σm=01022m)
  6. 7×1026k+19+9 = 859×(7×1019+9859+63×1019×1026-19×859×k-1Σm=01026m)
  7. 7×1028k+20+9 = 29×(7×1020+929+63×1020×1028-19×29×k-1Σm=01028m)
  8. 7×1028k+20+9 = 281×(7×1020+9281+63×1020×1028-19×281×k-1Σm=01028m)
  9. 7×1032k+21+9 = 449×(7×1021+9449+63×1021×1032-19×449×k-1Σm=01032m)
  10. 7×1033k+22+9 = 67×(7×1022+967+63×1022×1033-19×67×k-1Σm=01033m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 30.71%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 30.71% です。

3. Factor table of 700...009 700...009 の素因数分解表

3.1. Last updated 最終更新日

September 8, 2023 2023 年 9 月 8 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=210, 224, 226, 232, 234, 236, 237, 241, 242, 243, 245, 246, 248, 249, 250, 251, 254, 256, 257, 258, 259, 260, 261, 265, 266, 270, 273, 274, 275, 276, 277, 278, 279, 282, 283, 286, 287, 289, 290, 291, 293, 294, 295, 296, 297, 300 (46/300)

3.4. Factor table 素因数分解表

7×101+9 = 79 = definitely prime number 素数
7×102+9 = 709 = definitely prime number 素数
7×103+9 = 7009 = 43 × 163
7×104+9 = 70009 = definitely prime number 素数
7×105+9 = 700009 = 17 × 41177
7×106+9 = 7000009 = definitely prime number 素数
7×107+9 = 70000009 = 19 × 3684211
7×108+9 = 700000009 = 23 × 30434783
7×109+9 = 7000000009<10> = 20441 × 342449
7×1010+9 = 70000000009<11> = 151 × 4027 × 115117
7×1011+9 = 700000000009<12> = definitely prime number 素数
7×1012+9 = 7000000000009<13> = definitely prime number 素数
7×1013+9 = 70000000000009<14> = definitely prime number 素数
7×1014+9 = 700000000000009<15> = 79 × 16657 × 531954103
7×1015+9 = 7000000000000009<16> = 877 × 1439 × 8539 × 649577
7×1016+9 = 70000000000000009<17> = 27799 × 2518076189791<13>
7×1017+9 = 700000000000000009<18> = 1193 × 3202429 × 183222197
7×1018+9 = 7000000000000000009<19> = 659 × 3287033 × 3231532747<10>
7×1019+9 = 70000000000000000009<20> = 71 × 131 × 859 × 28813 × 304079227
7×1020+9 = 700000000000000000009<21> = 29 × 263 × 281 × 541 × 10691 × 56470597
7×1021+9 = 7000000000000000000009<22> = 17 × 47 × 449 × 32323 × 434827 × 1388279
7×1022+9 = 70000000000000000000009<23> = 67 × 109 × 9585102012871422703<19>
7×1023+9 = 700000000000000000000009<24> = 107 × 1481 × 55949 × 78952679772623<14>
7×1024+9 = 7000000000000000000000009<25> = 43 × 162790697674418604651163<24>
7×1025+9 = 70000000000000000000000009<26> = 19 × 352907 × 20050867 × 520656158819<12>
7×1026+9 = 700000000000000000000000009<27> = 204210427 × 3427836718641208267<19>
7×1027+9 = 7000000000000000000000000009<28> = 79 × 7933 × 77069 × 3450841 × 41998020503<11>
7×1028+9 = 70000000000000000000000000009<29> = 457 × 23535344681<11> × 6508205789925977<16>
7×1029+9 = 700000000000000000000000000009<30> = 9479 × 8239503005911<13> × 8962610027561<13>
7×1030+9 = 7000000000000000000000000000009<31> = 23 × 113 × 16829 × 160041808407503756809979<24>
7×1031+9 = 70000000000000000000000000000009<32> = 61 × 181 × 223 × 1447 × 19647904383246525977329<23>
7×1032+9 = 700000000000000000000000000000009<33> = 193 × 3626943005181347150259067357513<31>
7×1033+9 = 7000000000000000000000000000000009<34> = 20327 × 143529639109<12> × 2399292298572378563<19>
7×1034+9 = 70000000000000000000000000000000009<35> = 191 × 126562013 × 11818712641<11> × 245014127010403<15>
7×1035+9 = 700000000000000000000000000000000009<36> = definitely prime number 素数
7×1036+9 = 7000000000000000000000000000000000009<37> = 1873 × 12956687 × 288447178495164798949064759<27>
7×1037+9 = 70000000000000000000000000000000000009<38> = 17 × 1949 × 9769 × 216265463285713707093831902917<30>
7×1038+9 = 700000000000000000000000000000000000009<39> = 487 × 967681051 × 6963480427<10> × 213309639997050391<18>
7×1039+9 = 7000000000000000000000000000000000000009<40> = 101419 × 171673 × 252139 × 1594544681637890958259513<25>
7×1040+9 = 70000000000000000000000000000000000000009<41> = 79 × 886075949367088607594936708860759493671<39>
7×1041+9 = 700000000000000000000000000000000000000009<42> = 120519401 × 85926268743971<14> × 67595085558292172779<20>
7×1042+9 = 7000000000000000000000000000000000000000009<43> = 48157 × 145357891895259256182901758830491932637<39>
7×1043+9 = 70000000000000000000000000000000000000000009<44> = 19 × 919 × 51234396154499<14> × 78246929740708200446966231<26>
7×1044+9 = 700000000000000000000000000000000000000000009<45> = 840473 × 257786505651938167<18> × 3230829904291494662999<22>
7×1045+9 = 7000000000000000000000000000000000000000000009<46> = 43 × 859 × 189511871565097327882610932127676855185857<42>
7×1046+9 = 70000000000000000000000000000000000000000000009<47> = definitely prime number 素数
7×1047+9 = 700000000000000000000000000000000000000000000009<48> = 4701007 × 1623191192171<13> × 1847877476171<13> × 49643717185908607<17>
7×1048+9 = 7000000000000000000000000000000000000000000000009<49> = 29 × 281 × 569 × 17255659 × 11344175797103<14> × 7712176460324353310857<22>
7×1049+9 = 70000000000000000000000000000000000000000000000009<50> = 59 × 827 × 443308743433<12> × 19644238664903<14> × 164739984164352419087<21>
7×1050+9 = 700000000000000000000000000000000000000000000000009<51> = 242197 × 61186913 × 25649334250026967<17> × 1841597177856907728707<22>
7×1051+9 = 7(0)509<52> = 1217 × 855495572903<12> × 6723411541485294002391022082642690959<37>
7×1052+9 = 7(0)519<53> = 23 × 131013823553<12> × 23230207151677885641986293215851481626911<41>
7×1053+9 = 7(0)529<54> = 17 × 79 × 449 × 21764804308696842811289<23> × 53336058646330967457968783<26>
7×1054+9 = 7(0)539<55> = 71 × 3719 × 26510231055599528875322383345515415699358831126041<50>
7×1055+9 = 7(0)549<56> = 67 × 10931185103<11> × 9572476459174557929933<22> × 9984623239965226716673<22>
7×1056+9 = 7(0)559<57> = 78467 × 143788273087061<15> × 62042247729925794011845520259480946807<38>
7×1057+9 = 7(0)569<58> = definitely prime number 素数
7×1058+9 = 7(0)579<59> = 5903 × 91701241993<11> × 129315337924178525525579656283170740212188271<45>
7×1059+9 = 7(0)589<60> = 557 × 22905803 × 54865245087092980712655831162258303308562443028679<50>
7×1060+9 = 7(0)599<61> = 211241 × 741089340342522979900849807<27> × 44714590598028517313544881807<29>
7×1061+9 = 7(0)609<62> = 19 × 31081 × 118535778331321047382137335552774668565496944316971444731<57>
7×1062+9 = 7(0)619<63> = 863 × 5187529 × 690502741961<12> × 226444251005424783577586635968702145187047<42>
7×1063+9 = 7(0)629<64> = 277 × 32237 × 783905392026047160420303194448068451514723591039244655641<57>
7×1064+9 = 7(0)639<65> = 373 × 237563 × 305243 × 985951 × 12645444346367557<17> × 207575105615882143938301319191<30>
7×1065+9 = 7(0)649<66> = 6048417516291349105982927<25> × 115732751271643755748964426131477664985767<42>
7×1066+9 = 7(0)659<67> = 43 × 79 × 2641153 × 6526006592636621707<19> × 119553260452091513680556641268385281407<39>
7×1067+9 = 7(0)669<68> = 47 × 69954188648521<14> × 21290529286399611001458883063668216977532204028481807<53>
7×1068+9 = 7(0)679<69> = 5651 × 43607 × 44805762988967<14> × 2972925572809123<16> × 21325469868482152381698160379057<32>
7×1069+9 = 7(0)689<70> = 17 × 349 × 61609 × 5640659 × 59036293414333007761<20> × 57508309817395078703586803119119703<35>
7×1070+9 = 7(0)699<71> = 465019 × 434399235662192417854645016863<30> × 346527966216006934093866590901664597<36>
7×1071+9 = 7(0)709<72> = 197 × 859 × 4136553541776236090838715777406144554818198471838934423807638441583<67>
7×1072+9 = 7(0)719<73> = 233 × 1801 × 5527 × 3018136945101827846640550851280594492575016842573094354013427599<64>
7×1073+9 = 7(0)729<74> = 937 × 250574420293<12> × 298141007575255871954857510732803333529062791498708743837549<60>
7×1074+9 = 7(0)739<75> = 23 × 91499 × 1119607768190851<16> × 297089944930600386230116362839754953499166365277988767<54>
7×1075+9 = 7(0)749<76> = 257 × 983 × 28663 × 9071071 × 2122034614317923<16> × 50220233216195766083476502047338857210480141<44>
7×1076+9 = 7(0)759<77> = 292 × 107 × 281 × 723305758989896028503<21> × 60360623105619331704941<23> × 63406869117783782665959889<26>
7×1077+9 = 7(0)769<78> = 1642401418519<13> × 60628024151059741601<20> × 7029837945564956563717259084559392532426890111<46>
7×1078+9 = 7(0)779<79> = 2293 × 13618138913222419<17> × 2526130236518567157139686491<28> × 88740217368567791577354562795397<32>
7×1079+9 = 7(0)789<80> = 19 × 79 × 46635576282478347768154563624250499666888740839440373084610259826782145236509<77>
7×1080+9 = 7(0)799<81> = 359 × 499 × 617 × 7596987486736183<16> × 833636018515171588630689394493964996535303849494737014459<57>
7×1081+9 = 7(0)809<82> = 27281 × 40823 × 10454893 × 24740579 × 50937592817389633<17> × 477051173441630706632964254786706507175193<42>
7×1082+9 = 7(0)819<83> = 167075853715073150370580900627412736733<39> × 418971374040537262136509954808509552383244573<45> (Makoto Kamada / GGNFS-0.70.1 / 0.15 hours)
7×1083+9 = 7(0)829<84> = 79907 × 4063888531<10> × 20184857747309<14> × 106793724692631639049251839062069047292711422225874728853<57>
7×1084+9 = 7(0)839<85> = 163 × 6977699 × 6710484539084048227<19> × 917158350067645905221635199150479267975606220368681639691<57>
7×1085+9 = 7(0)849<86> = 173 × 151 × 449 × 55717 × 138661 × 801379 × 798786683301854780536807<24> × 42492977321077180098864565258718106187<38>
7×1086+9 = 7(0)859<87> = 2797 × 444481759 × 1019874043991659763<19> × 30273181587465751433<20> × 18236732420087682636477399670087316377<38>
7×1087+9 = 7(0)869<88> = 43 × 367 × 631 × 2333 × 379675468104975569507851287583455701<36> × 793609549572695958809463246839215205709043<42> (Makoto Kamada / GGNFS-0.70.3 / 0.14 hours)
7×1088+9 = 7(0)879<89> = 67 × 3813320430482584897<19> × 273980678636745492968436892543646981886844336400770545036172697817091<69>
7×1089+9 = 7(0)889<90> = 71 × 5144137 × 14970301720602258659<20> × 128025538581723488113085667389823716643949805042499130142979613<63>
7×1090+9 = 7(0)899<91> = 1171 × 78943097 × 955925779 × 553136106177407<15> × 9928364066843041<16> × 538389234192706733<18> × 26791482260390335623923<23>
7×1091+9 = 7(0)909<92> = 61 × 974525312202979<15> × 1177538406891109882999970487095363870360161132049811419623539214338249266911<76>
7×1092+9 = 7(0)919<93> = 79 × 804794537 × 281820921747467<15> × 48419090909979409<17> × 1150331627039384939<19> × 701411700975700891542634958748599<33>
7×1093+9 = 7(0)929<94> = 1931525560532379611828597<25> × 8493504453105943675344690947<28> × 426688228328632219731864821441872241107351<42>
7×1094+9 = 7(0)939<95> = 1184143 × 28797097911635416843<20> × 2707792052020081837937001065947<31> × 758105863780678661696468308653728625103<39>
7×1095+9 = 7(0)949<96> = 97 × 7883 × 284495767 × 3649441712383<13> × 881723749110778547745463173920442011351761043891808817415911865261219<69>
7×1096+9 = 7(0)959<97> = 23 × 261681017142371<15> × 1163048926553858826590890999869650281547675018433814099782884404607443543593842773<82>
7×1097+9 = 7(0)969<98> = 19 × 811 × 859 × 1644778867728908218920884538694016635939<40> × 3215310387189339704401643466305177773889152018717801<52> (Makoto Kamada / GGNFS-0.71.1 / 0.39 hours)
7×1098+9 = 7(0)979<99> = 90134957097298412415517939703042550426093953<44> × 7766132281445118550469665335727565287093245925905148553<55> (Makoto Kamada / GGNFS-0.71.1 / 0.45 hours)
7×1099+9 = 7(0)989<100> = 347 × 5399 × 4424297 × 94319243 × 5460926309<10> × 1639624284375011250725028184720090108366648651284148654987640513234627<70>
7×10100+9 = 7(0)999<101> = 2807407 × 2696521381<10> × 9246743131131275525268956831069119650598215051337680630206052050681917897719449485627<85>
7×10101+9 = 7(0)1009<102> = 17 × 1195171 × 10093073041<11> × 1141491062093<13> × 6816843339359<13> × 222425583223705217<18> × 1972218775775487346053182910564062535425233<43>
7×10102+9 = 7(0)1019<103> = 74327033867<11> × 94178384846161427409298611934881128007061199629452986792359388959120832556873865437227376827<92>
7×10103+9 = 7(0)1029<104> = 1322303 × 175413060197<12> × 18601207415083382495673520849507<32> × 16224226329602992494408594220167485034345604456610538457<56> (Makoto Kamada / Msieve 1.32 for P32 x P56 / 58 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10104+9 = 7(0)1039<105> = 29 × 281 × 10789 × 30826441 × 856947697688560950353963<24> × 301394155000477856124869466782953046791096870630788358403760016043<66>
7×10105+9 = 7(0)1049<106> = 79 × 10637261 × 8318791270504038195969629396222311<34> × 1001338480283179533185354391486823283844709104688443364311218501<64> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 snfs / 0.96 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10106+9 = 7(0)1059<107> = 3055942594605966133736882793338027745532585094621291<52> × 22906189443334688813980345055166133027697472308319774299<56> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 snfs / 1.05 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10107+9 = 7(0)1069<108> = 59 × 11864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983051<107>
7×10108+9 = 7(0)1079<109> = 43 × 29624633747<11> × 5495112583152321415640109135343985341613991052818995528579712407365368184391974439324122075117529<97>
7×10109+9 = 7(0)1089<110> = 167 × 689474766488007339917729573565184093250917<42> × 607943462212256967518618419108981506387824206870207220703099799331<66> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 snfs / 1.39 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10110+9 = 7(0)1099<111> = 401 × 31847 × 1145049561023<13> × 210598051874168955747255536849189109823183669<45> × 227303700174261265553544983598627974278125627581<48> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 snfs / 1.22 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10111+9 = 7(0)1109<112> = 8192033 × 854488745345630321557542553844692764299167251889732377787052371493132412918746787274904776384567786775273<105>
7×10112+9 = 7(0)1119<113> = 2081 × 5471 × 1890970043<10> × 26137512744487<14> × 12033699318825066693133<23> × 15172434208128482381235449<26> × 681327502420718963509996982034018247<36>
7×10113+9 = 7(0)1129<114> = 47 × 918812327 × 96193579270450910483<20> × 52972221804582579460070691716612125905947<41> × 3181112991886897109528469647934159070520161<43> (Makoto Kamada / Msieve 1.32 for P41 x P43 / 38 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10114+9 = 7(0)1139<115> = 265918555732093741<18> × 26323849348265579485823544929727015576308945639294381000089820785032927715276157170532516051468749<98>
7×10115+9 = 7(0)1149<116> = 19 × 3848793703<10> × 22718594123<11> × 42134549317349897382661678156789375957626069434286139808865537518561548586622530239389366306719<95>
7×10116+9 = 7(0)1159<117> = 683 × 597137 × 36633169203506429<17> × 40722886099870003<17> × 1150509775039024620821675894957570948124222731345574845542966465101696516317<76>
7×10117+9 = 7(0)1169<118> = 17 × 269 × 449 × 691 × 797389 × 97401611 × 63523741519969156716166795276148230096370614792801038748363658566448104482809372090562263749153<95>
7×10118+9 = 7(0)1179<119> = 23 × 79 × 149 × 2713 × 79319 × 747651240743549<15> × 67591756259427614816000513<26> × 235466010043096976935626907487<30> × 100973824529377105037750972102831761<36> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3819840460 for P30 / December 28, 2007 2007 年 12 月 28 日)
7×10119+9 = 7(0)1189<120> = 31991 × 12429111900259089222404905377487364334851383<44> × 1760476070227298881000250830892187832585839053412152708131162759974648953<73> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 2.00 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / January 5, 2008 2008 年 1 月 5 日)
7×10120+9 = 7(0)1199<121> = 3613 × 830640561618524856111311045749<30> × 5267270292924611350420925089608485692597297<43> × 442824191940348923348965981442994565437113881<45> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 2.11 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / January 4, 2008 2008 年 1 月 4 日)
7×10121+9 = 7(0)1209<122> = 67 × 1063 × 62507028574734784595273767<26> × 15723930611805160752293811016664911057972345180103273670981993934786275952563229397366124787<92>
7×10122+9 = 7(0)1219<123> = 87179 × 123439 × 554527 × 164369179661<12> × 273825479892090078485953471<27> × 2606254487973654963171477979173205792689002582949465678312185811021097<70>
7×10123+9 = 7(0)1229<124> = 859 × 20663801 × 10860068597895821<17> × 36312997263151221901506074558449674061127712919587681483014218304201727637133304165767330397975631<98>
7×10124+9 = 7(0)1239<125> = 71 × 6867389 × 143564823975712818783563802286388365339309441998620551236051192993025893624425425117850159256151597349710491995646811<117>
7×10125+9 = 7(0)1249<126> = 46843261 × 30873920868103<14> × 802439867811739<15> × 603179585769476283982063925179760724065756281261547407313423206662142270781691683133224257<90>
7×10126+9 = 7(0)1259<127> = 836913659 × 6676794511<10> × 8671293773<10> × 144465942054496596212657878227307793932065643543016424926404678047828730999686852633105748942584217<99>
7×10127+9 = 7(0)1269<128> = 44879 × 75697857002716999529892478650803<32> × 1098672696747497143987400806595400953<37> × 18754390384244538050938832102972339330160248332842058469<56> (Robert Backstrom / GMP-ECM 6.0 B1=626000, sigma=1697096860 for P32, B1=2756000, sigma=3947222449 for P37 / January 4, 2008 2008 年 1 月 4 日)
7×10128+9 = 7(0)1279<129> = definitely prime number 素数
7×10129+9 = 7(0)1289<130> = 43 × 107 × 191 × 7229 × 699241 × 2574380605603<13> × 255221918974453<15> × 308342584759392862036453747<27> × 7778271465326660913214674200274889474203347580057631509049967<61>
7×10130+9 = 7(0)1299<131> = 109 × 2153 × 16075963 × 18554553774144733187485658851058097717848981212266801773770776268929708770376618105889569332314186005642270456365376959<119>
7×10131+9 = 7(0)1309<132> = 79 × 46171 × 83437 × 46351461007<11> × 44519105586677<14> × 1114636162879757586755221514757452602325633713603668167515291529644081338501631064948805993601307<97>
7×10132+9 = 7(0)1319<133> = 29 × 277 × 281 × 23143 × 62017307414858777<17> × 128517687838903751356475185571<30> × 16811965400595332065282963065436715677021291606151005539614353407277695244693<77> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2369677643 for P30 / December 28, 2007 2007 年 12 月 28 日)
7×10133+9 = 7(0)1329<134> = 17 × 19 × 392269 × 15449237851049<14> × 2736740504065453<16> × 126571874058624293363<21> × 46786065581227008609821<23> × 2206566977135876099659928408739433995708313390025106997<55>
7×10134+9 = 7(0)1339<135> = 1373 × 5167 × 3601349599733<13> × 1439181583139272216526486427199<31> × 19037423273913052788182876625430173418517933868978126334120252095713816138227879752697<86> (Robert Backstrom / GMP-ECM 6.0 B1=976000, sigma=1922583022 for P31 / January 4, 2008 2008 年 1 月 4 日)
7×10135+9 = 7(0)1349<136> = 4561 × 1534751151063363297522473141854856391142293356720017540013155009866257399693049769787327340495505371629028721771541328655996491997369<133>
7×10136+9 = 7(0)1359<137> = 481303 × 845173643211181<15> × 13772576661929880407<20> × 11995838575241364936886371631<29> × 2659661121428801865051098355091<31> × 391616886211150417683056473821096660929<39> (Makoto Kamada / Msieve 1.32 for P31 x P39 / 1.7 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10137+9 = 7(0)1369<138> = 260202808401992767<18> × 1529173935702381764254152743534663932887976167416684647<55> × 1759256536718344842192906040610542540050982219751847395727987528241<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 4.64 hours on Cygwin on AMD 64 X2 6000+ / January 5, 2008 2008 年 1 月 5 日)
7×10138+9 = 7(0)1379<139> = 676171493 × 151987251808412359267847<24> × 68113629159543835717741991362501454154601263201021584703769368524863650434279355420348719954394931779606979<107>
7×10139+9 = 7(0)1389<140> = 509 × 19489 × 24029 × 197610691 × 1501691507248612030381521479<28> × 989609471436117422777116454131427754420931074987748124173413583538157133251025063502211219389<93>
7×10140+9 = 7(0)1399<141> = 23 × 2466103546576433<16> × 12341242788019474576387723863144700549249890309610732000511335650088588794325175568963992363820087487644897494721309089959951<125>
7×10141+9 = 7(0)1409<142> = 17627 × 98299 × 101414229444075792057935393801590219007<39> × 39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119<95> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 6.92 hours on Core 2 Quad Q6600 / January 5, 2008 2008 年 1 月 5 日)
7×10142+9 = 7(0)1419<143> = 113 × 337 × 614934441575413662824970403<27> × 19435116457349819947354128996919945157<38> × 153806160331310217740660239181144108766898224889935222716697800849639765959<75> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 7.54 hours on Core 2 Quad Q6600 / January 5, 2008 2008 年 1 月 5 日)
7×10143+9 = 7(0)1429<144> = 148855001 × 576069287 × 431432946998059166527<21> × 76550132736403441672891<23> × 1886024310292141058362137589430541297859<40> × 131054925076915984865071132119449367149123689<45> (Makoto Kamada / Msieve 1.32 for P40 x P45 / 37 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10144+9 = 7(0)1439<145> = 79 × 86171 × 55752769 × 4065672800573689<16> × 602777249516653608831361267<27> × 7525824686499701579284824444322150479179705286009515139208934081592108074236976147712383<88>
7×10145+9 = 7(0)1449<146> = 313 × 1738784731<10> × 618843692040698995798198826407<30> × 2671818585703516715456275921793<31> × 77789315436009950011616945270888354577852828523595846614428994001941208453<74> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=149974761 for P30 / December 29, 2007 2007 年 12 月 29 日) (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2856103157 for P31 / December 29, 2007 2007 年 12 月 29 日)
7×10146+9 = 7(0)1459<147> = 1904249 × 29348460735839486849597048687491482266220440029873<50> × 12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817<92> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs / 11.17 hours on Cygwin on AMD 64 3200+ / January 6, 2008 2008 年 1 月 6 日)
7×10147+9 = 7(0)1469<148> = 7491534878133961<16> × 934387961061405934009488969728074307194897029181776759936454240113617562675937885113103078177027690071755038502044283386065768744769<132>
7×10148+9 = 7(0)1479<149> = 854417 × 1403083059087052553974969<25> × 47025413165450464962041376031<29> × 9370251329536055623552717563916135025857<40> × 132513742186678071112443165485840454095701370690399<51> (Sinkiti Sibata / Msieve v. 1.30 / 4.1 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 4, 2008 2008 年 1 月 4 日)
7×10149+9 = 7(0)1489<150> = 17 × 131 × 449 × 619 × 859 × 907 × 3347 × 43481 × 3089727089<10> × 1140505032437<13> × 3687919471679<13> × 239837507703455294015342234963512005413275037<45> × 3200142279977988684517610934831971048558705274893<49> (Sinkiti Sibata / Msieve v. 1.30 for P45 x P49 / 7.53 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 5, 2008 2008 年 1 月 5 日)
7×10150+9 = 7(0)1499<151> = 43 × 111217 × 125728016429089<15> × 33786359773616532101819<23> × 11559667911157981594606538536727<32> × 29808463073978020665483666536761504804931521794584562189885964378638993423127<77> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1162147315 for P32 / December 29, 2007 2007 年 12 月 29 日)
7×10151+9 = 7(0)1509<152> = 192 × 61 × 3203 × 152754016254043<15> × 6496978457849333260398133650827107243910226652877719980865332182467375344002527605029583480779945275975131867477041453727298675301<130>
7×10152+9 = 7(0)1519<153> = 1926832847437<13> × 6720374834881<13> × 63639889190749<14> × 77865850690669784859431617592698851037196011<44> × 10908977710449886619312815188508141739609220654946251183378377187561523<71> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 17.38 hours on Core 2 Quad Q6600 / January 6, 2008 2008 年 1 月 6 日)
7×10153+9 = 7(0)1529<154> = 229 × 383 × 8814412231<10> × 659762031526680767195090417<27> × 104956686158012241596645982785813<33> × 130759423488435528873829580092903272449089541268530772072226531544627524905762137<81> (Robert Backstrom / GMP-ECM 6.0.1 B1=1260000, sigma=161872807 for P33 / January 5, 2008 2008 年 1 月 5 日)
7×10154+9 = 7(0)1539<155> = 67 × 1044776119402985074626865671641791044776119402985074626865671641791044776119402985074626865671641791044776119402985074626865671641791044776119402985074627<154>
7×10155+9 = 7(0)1549<156> = 5569 × 99733 × 3748141 × 3151948403<10> × 14119511683<11> × 7555570155167426623306199240601715709655205791193679947336950353243688915057676838443965445826163274301754382290735301313<121>
7×10156+9 = 7(0)1559<157> = definitely prime number 素数
7×10157+9 = 7(0)1569<158> = 79 × 96857225721671<14> × 643687030404506197051806584898109829074806677658713563<54> × 14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627<89> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.32 / January 6, 2008 2008 年 1 月 6 日)
7×10158+9 = 7(0)1579<159> = 47513 × 14951059 × 26611373797<11> × 1196154600657451<16> × 580205641660540932281813<24> × 53355239548808620638485322682507706693015897069674534295059139204137161596644379095706526655768057<98>
7×10159+9 = 7(0)1589<160> = 47 × 71 × 92371871 × 102843119 × 4231538071496958890327182029936342614194854003919814193922731887<64> × 52182946885757635675346604057724856979445602984378050368353799424430749322239<77> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.32 / January 7, 2008 2008 年 1 月 7 日)
7×10160+9 = 7(0)1599<161> = 29 × 151 × 281 × 389 × 2107292713698510309679<22> × 4005955274492353897497031<25> × 818071830041244038278171651<27> × 156525586549686160778371318880236339<36> × 135288048995867650067993024697181507446419879<45> (Makoto Kamada / Msieve 1.32 for P36 x P45 / 15 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 3, 2008 2008 年 1 月 3 日)
7×10161+9 = 7(0)1609<162> = 15371116800042997500203<23> × 57118997757210264206905876447<29> × 139490464604623382674750512013106688318266001541875221<54> × 5715674892138940064628738708170977544099888345108701283569<58> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 89.61 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 9, 2008 2008 年 1 月 9 日)
7×10162+9 = 7(0)1619<163> = 23 × 39293 × 296777596371098420029084738265707<33> × 26099002118993499083959038032360499646655560409399625783207929493736469419962227821932572864657403345682890557765228381684833<125> (Robert Backstrom / GMP-ECM 6.0 B1=322000, sigma=4004011612 for P33 / January 5, 2008 2008 年 1 月 5 日)
7×10163+9 = 7(0)1629<164> = 10463 × 17394388742849265431<20> × 21685605887741051661689<23> × 18751242705828780547597219322844983<35> × 945869076252608429463531219474556440073685963101828788499278956282259958157147275519<84> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs / 38.06 hours on Core 2 Quad Q6600 / January 7, 2008 2008 年 1 月 7 日)
7×10164+9 = 7(0)1639<165> = 4967 × 340656502544310619<18> × 12939677343964955884740014469294611585657994552577<50> × 31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029<95> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.33 / January 17, 2008 2008 年 1 月 17 日)
7×10165+9 = 7(0)1649<166> = 17 × 59 × 163 × 31741 × 1348928397570076690061564165158585112695998474765890051287103646423648989950579597427269725936824215356885786696416406313963143501876729103752939274751333341<157>
7×10166+9 = 7(0)1659<167> = 21991 × 972833 × 1082531 × 21801158658206841112555253752829902500472040092585365034962893355053<68> × 138642011235137555584320880412798358499970719485097366270743949931671229392787022521<84> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.32 / January 8, 2008 2008 年 1 月 8 日)
7×10167+9 = 7(0)1669<168> = 178069 × 501731 × 865342599239164691599085917<27> × 6790719988452911272645568689691193108538390322657<49> × 1333321487905646787354335377158150700210766538153045388940264597308992314691236899<82> (matsui / GGNFS-0.77.1-20060722-nocona / May 10, 2009 2009 年 5 月 10 日)
7×10168+9 = 7(0)1679<169> = 617 × 354105555240029147<18> × 32039087308184090531813174707032004415451327683935362690157535423432806424109640178725080909689686586732654368778527017342521460251616278224749936691<149>
7×10169+9 = 7(0)1689<170> = 19 × 197 × 1218731 × 76893204345311<14> × 5094367215912347<16> × 14895146820296515742340476222921748580100430093472165449145387<62> × 2629949201635387234251242596490670534870085851462962353425228926560387<70> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 34.98 hours on Core 2 Quad Q6700 / August 22, 2009 2009 年 8 月 22 日)
7×10170+9 = 7(0)1699<171> = 79 × 179 × 12098804288573<14> × 10605719526241907<17> × 6305477331586176696191<22> × 61181111066611056958672253771983320473384404676056354643267118949561430337698029764099505675945782693653764989402949<116>
7×10171+9 = 7(0)1709<172> = 43 × 26241733044707218954226737<26> × 892956312875936356694927582581<30> × 6947152932113987643168726079313288806195709735263116059377754498727500706839406301199909770493327424580956167098879<115> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3052894968 for P30 / December 31, 2007 2007 年 12 月 31 日)
7×10172+9 = 7(0)1719<173> = 431 × 743 × 327553 × 667344944316443213443062560632124828734985207240947811846317701084320872259237691024104607508124407337884614801068064941445989735074968100876626064437784152903841<162>
7×10173+9 = 7(0)1729<174> = 727 × 46703390984381129306990060832824441396119105760387<50> × 803575513133626214041688443279256687479553115056384050651<57> × 25655974804389045502754045805223424190216260512796697773191686191<65> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 / 143.54 hours on Cygwin on AMD 64 X2 6000+ / July 1, 2008 2008 年 7 月 1 日)
7×10174+9 = 7(0)1739<175> = 2417 × 62141 × 24597884160931<14> × 238162287627716653181<21> × 1927956018365591441032402945607921<34> × 4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387<100> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3558391417 for P34 / November 25, 2008 2008 年 11 月 25 日)
7×10175+9 = 7(0)1749<176> = 599 × 859 × 1065471780120055445682973<25> × 127683889078669709401901622404709319129188098244756014687415669097114501244582299996393116498380376480996964348653214582227671328278397114348379313<147>
7×10176+9 = 7(0)1759<177> = 47903 × 1614281 × 156109928311<12> × 7084333593269<13> × 8185150411515423181467395851425156883178652315181688251186165230818672740668650357802907179857227493795153329552398571363487809278874496899157<142>
7×10177+9 = 7(0)1769<178> = 9817 × 161281 × 3612668986837843<16> × 360806277573921837093521<24> × 3391827722433078860833664230640567403705289955625369519161422663146641412864457239530044665614899164261948678794569855146449834939<130>
7×10178+9 = 7(0)1779<179> = 2521 × 956113 × 1743745060873<13> × 425228655272117<15> × 1456142266504809349962840467<28> × 13724946734647014417463514389532708012499306431<47> × 1959728831003640657417517089713455927810208846008120710768293127210569<70> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P47 x P70 / 46.23 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / January 6, 2008 2008 年 1 月 6 日)
7×10179+9 = 7(0)1789<180> = 63353 × 1008001 × 978044581 × 14592795907<11> × 227237230215172850503<21> × 3379817460050069942799231285190680234283226509373517109363185455110526961447324134288801765351497728695578075994840579088005394953<130>
7×10180+9 = 7(0)1799<181> = 457 × 10529 × 1161717801790034418750773470371703452693891867991269877836662145444170819572499<79> × 1252258735325612009550476834654012397263074865238067762790885431533794609601067164264750550906747<97> (Wataru Sakai / Msieve / 217.89 hours / February 8, 2009 2009 年 2 月 8 日)
7×10181+9 = 7(0)1809<182> = 17 × 449 × 10303823 × 890029472009866311755181459551478291801154166872557873139990952961543556642744316648182030030019845129923560713021757866870587750945164861986775908309186883451017847512951<171>
7×10182+9 = 7(0)1819<183> = 107 × 379 × 17261361674845264222129065667151628732769462185288388035410450521539713461396197568613912657509925282963036026927724212758612186521342440756540823120361009049885335240302813601953<179>
7×10183+9 = 7(0)1829<184> = 79 × 69172788077<11> × 133818982259225767835521221337<30> × 13214865621025845082848623280537933590284273<44> × 724361224454199379440128440125992163708369782380051341613073328396889213781158264106704866584123723<99> (Serge Batalov / GMP-ECM 6.2.1 B1=2000000, sigma=1992546363 for P30 / July 13, 2008 2008 年 7 月 13 日) (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=8090215246 for P44 / April 29, 2014 2014 年 4 月 29 日)
7×10184+9 = 7(0)1839<185> = 23 × 549739 × 5682687979593600917<19> × 7976489749171399842255223<25> × 2811978150847997307845419151<28> × 2531387735627039925793230455227259<34> × 17158424976522700557620195582007809385643845583276601461057699635251373763<74> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=4266431120 for P34 / January 1, 2008 2008 年 1 月 1 日)
7×10185+9 = 7(0)1849<186> = 349 × 947 × 1553 × 869777 × 5734136217899<13> × 5904578958612263<16> × 6226948870897014750254616144888930511934539593221295631<55> × 7437226689443207894215947465210640762035529884807643889746758266570488755348062040969029<88> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / October 9, 2014 2014 年 10 月 9 日)
7×10186+9 = 7(0)1859<187> = 1741994345836830894659<22> × 315900163684744874477268938933266937598119304608097157297190535189644975009<75> × 12720419913555991712888486982641819432280759769248922538842247908857705164883938974958208739<92> (Erik Branger / GGNFS, Msieve snfs for P75 x P92 / January 24, 2017 2017 年 1 月 24 日)
7×10187+9 = 7(0)1869<188> = 19 × 67 × 4955013379635043<16> × 68970718303915998934002290925451<32> × 160901486293538691375676951174860596918880834707333671424148474663474471897205211287469746278752120732468094799900744324922272656224406481<138> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=247337051 for P32 / January 1, 2008 2008 年 1 月 1 日)
7×10188+9 = 7(0)1879<189> = 29 × 281 × 390755155423951786421642709723832482956478913627<48> × 219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383<138> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs / 1450.14 hours / October 18, 2008 2008 年 10 月 18 日)
7×10189+9 = 7(0)1889<190> = 113462389 × 405615163 × 3254693699<10> × 35159652802791549778007<23> × 1329159910247839703971285091975193743459794765885873739612614452446549639707890329644707826631497113936735611510540299580771412321843350377459<142>
7×10190+9 = 7(0)1899<191> = 56893 × 4978723 × 2927496542390393545039100405013873875990737<43> × 92395453258952757747894839893424342277180056322275209<53> × 913638200471210666520399982328575328819892169827426647111007849466561325954281393207<84> (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=2953621787 for P43 / November 6, 2010 2010 年 11 月 6 日) (Eric Jeancolas / cado-nfs-2.3.0 for P53 x P84 / February 22, 2019 2019 年 2 月 22 日)
7×10191+9 = 7(0)1909<192> = 97 × 234464897294589778294207283924185372179122521034823214261<57> × 37245591958990518315896750106678790768293832822047005717210831897<65> × 826368192949751598558367932833322291039122696920944478534061838111341<69> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.36 / 167.63 hours on Cygwin on AMD 64 3200+ / August 14, 2008 2008 年 8 月 14 日)
7×10192+9 = 7(0)1919<193> = 43 × 7193 × 6405617586808848307<19> × 2188775240319923103953459833<28> × 1614200022352963498443368243866657344806878021480211611819195602908675234157919268749826297429953209877294640914474167976011072126569565438761<142>
7×10193+9 = 7(0)1929<194> = 2744781851639<13> × 2543717477743427269722428833<28> × 2665128364816742128138476637<28> × 65784275817411879643104829802279958915138729043<47> × 57184865352249835245518591011633288175983574082732971807733160734211631478699977<80> (Sinkiti Sibata / Msieve 1.40 gnfs for P47 x P80 / April 9, 2010 2010 年 4 月 9 日)
7×10194+9 = 7(0)1939<195> = 71 × 2437 × 12149 × 9381289 × 294188784163<12> × 451462144164584668642700987597608659866621015435277338723771480368676282376719<78> × 267259815175318060555841769299453098326361199201134619213710918934100569942291460025879451<90> (Eric Jeancolas / cado-nfs-3.0.0 for P78 x P90 / November 8, 2020 2020 年 11 月 8 日)
7×10195+9 = 7(0)1949<196> = 661 × 13620225779<11> × 117984862337<12> × 1997874098431<13> × 3630360012707<13> × 36718268622560124359<20> × 390156172288543581749<21> × 256480842670036268358911<24> × 247282033620957517888874069599300623022732694201793777356282888135241001720688437759<84>
7×10196+9 = 7(0)1959<197> = 79 × 4081613 × 4666663 × 41830650439474256147<20> × 67999711209012687474433673<26> × 16354263791844238652894177002153278529123955576949979134968962961449504704991928422874737100122112449141916280562486482480717684755901839<137>
7×10197+9 = 7(0)1969<198> = 17 × 5209 × 259657 × 79392305215248577<17> × 7732381304521247951012533502107123<34> × 54628030277043788643629951448648724452709<41> × 907794423069912523436799088645668400584031242930677594738332639048048170311106001749926560583111<96> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=543349924 for P34 / November 6, 2010 2010 年 11 月 6 日) (Ignacio Santos / GMP-ECM 6.3 B1=43000000, sigma=4067166299 for P41 / November 17, 2010 2010 年 11 月 17 日)
7×10198+9 = 7(0)1979<199> = 443 × 37447 × 51772459 × 9792736651324038104465656852532086056747357956501<49> × 416294859713813506942716572578719377463304059673169<51> × 1999278825428789818667079365278666011171847023909742578034210180520905913798775559499<85> (Bob Backstrom / Msieve 1.54 snfs for P49 x P51 x P85 / March 17, 2021 2021 年 3 月 17 日)
7×10199+9 = 7(0)1989<200> = 64997 × 143322857 × 7514312831199227102709863661207283284869401533983911611252572287628535583119327732917319147966125172623038053061648996958623594488764752527730453070803637090989032936849974408235493915021<187>
7×10200+9 = 7(0)1999<201> = 14470510511<11> × 8952148648493828905980569817199393252132348406550134419764886269092725633117<76> × 5403646148713208269984988884486031786938037268833851952980769893580564243632401909511799179017395455509757738811507<115> (matsui / Msieve 1.50 snfs / October 30, 2011 2011 年 10 月 30 日)
7×10201+9 = 7(0)2009<202> = 277 × 859 × 6581851 × 7336933 × 102499628879<12> × 362595712125988916234431<24> × 6434286193237284201012977680809404310797436209020529104237408781<64> × 2547517501508912825342232467008094346478680906523822338178570832805714957060680440669<85> (Eric Jeancolas / cado-nfs-3.0.0 for P64 x P85 / January 4, 2022 2022 年 1 月 4 日)
7×10202+9 = 7(0)2019<203> = 79699 × 162609804274329791<18> × 138169397596582173452736423203<30> × 9066795815764899736644415283767<31> × 4311543191294301177435369236845644263398874665878177734323712681874114913640389757906935322233729111309082688927693556201<121> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2465968468 for P31, B1=1000000, sigma=828881802 for P30 / December 17, 2012 2012 年 12 月 17 日)
7×10203+9 = 7(0)2029<204> = 911 × 679763651776544579<18> × 1130372867945815967838229882770956546621005797787687795744122599855438032431715246518368645610982136255428615644330043013019184384097234776155037485142450012063409378693894729232651661<184>
7×10204+9 = 7(0)2039<205> = 14207 × 2741657 × 275475520340130119591<21> × 254503251176113708125450442124258009797222269700582313<54> × 2563339867831535622663819528145859021272487991080059737180509619183941751390577241296692459493891872005750328575335072177<121> (Youcef Lemsafer / Msieve 1.50 snfs / July 31, 2013 2013 年 7 月 31 日)
7×10205+9 = 7(0)2049<206> = 19 × 47 × 415879 × 188486213554228333173842582297530458746066868279239643491036418291050054999334684056056478461396301507900209808581829540731772466971675236950798530864134137000132643133798497741721095134950837827547<198>
7×10206+9 = 7(0)2059<207> = 23 × 606772709 × 27672761187297811393<20> × 479720368613773140485004180039150937<36> × 132998646312357931234997537091755389333<39> × 28409022469621881079609147112589322036819312393566846943601826277800471758011094100771555411566224878079<104> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=800261510 for P36 / December 17, 2012 2012 年 12 月 17 日) (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=4210819280 for P39 / December 18, 2012 2012 年 12 月 18 日)
7×10207+9 = 7(0)2069<208> = 19597 × 26776712219<11> × 717768875379772031<18> × 19846514879268003855940513706959713209654648811380854942747410176082204440717<77> × 936445097032427421471563210248844054890360036326208561892963039718200512781183046516769555804411469<99> (ebina / Msieve 1.54 snfs for P77 x P99 / September 3, 2023 2023 年 9 月 3 日)
7×10208+9 = 7(0)2079<209> = 7583 × 3172144837921186904035874500592333023568227061344555521649133215883773<70> × 2910073615286952322318900278402900094322195103652463975869918241957123677181287168267792794142849556258545864656592435480292701278119651<136> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / February 13, 2014 2014 年 2 月 13 日)
7×10209+9 = 7(0)2089<210> = 79 × 1055526727<10> × 40484770454032418593704902197<29> × 207352861452149232636813184543439934301975106659483972404739088979847481047527137473910067469856135954743881481856729029243471045123906234703990805805931344012464767845309<171>
7×10210+9 = 7(0)2099<211> = 38996301483204146096369<23> × 234488334836968001955296310839018389139<39> × [765514423867453579361195765961872644450104210556408155241065789314317758732688395301378785612982957290747401048569743524839288528410190190696407739299<150>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2970912462 for P39 / December 17, 2012 2012 年 12 月 17 日) Submitted
7×10211+9 = 7(0)2109<212> = 61 × 181 × 470618909 × 13471633444907697597187917175251419522635803540195497436169254162661789767203345587755102278858911225153572720363220575569383132363339301300486738151289341041755642188608954385914838666215671096998461<200>
7×10212+9 = 7(0)2119<213> = 653 × 43793 × 815813681 × 897117517 × 150426892432247<15> × 12086601177543021294807981593<29> × 4977421307868413978190512924607468562715457643<46> × 3695777034581030875614362890745951898993861563489513363549590257035726892088519929850626146715460541<100> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=879787549 for P46 / December 18, 2012 2012 年 12 月 18 日)
7×10213+9 = 7(0)2129<214> = 17 × 43 × 449 × 48379033 × 161119033 × 5525535993559<13> × 23835152213323277<17> × 27787335118565487929349797<26> × 747637456301041987459812934356094867623831505798135293478714349115259316949764262049885476580977642076101476956509796753756717051155405469<138>
7×10214+9 = 7(0)2139<215> = 6113 × 14281 × 801835029246875417849120374945390738963488247211879282178495968940484860249260957244632754001033656990988279199369556062776030992894103606455793752360330274932163897416754432283445292222075359136468576262753<207>
7×10215+9 = 7(0)2149<216> = 577 × 2669507 × 4083853 × 111281010783363031962638582434210818708920595750173798020886629814676169850454334209930104351954975789977728128424460835055583659411618714237599613523721273039063898156116982569645770262087770970126927<201>
7×10216+9 = 7(0)2159<217> = 29 × 281 × 3319 × 100570277118767<15> × 2573456448813997184656163882120603151368795418193732550174167498748051836831907254482425724985006301959105990134420488205992133378486803021735320469190791757205144541156927954588860723413137511917<196>
7×10217+9 = 7(0)2169<218> = 4217 × 13851768210347<14> × 1198365295320998757958194726539696784863701190551469518476068937299555554157812251147204466028740706460991777311969727279237345380924039865340836895128100310874289674665542297873929510739961673699690291<202>
7×10218+9 = 7(0)2179<219> = 481847 × 20809271854679483220654541909<29> × 69812308106166522022504891878755563013451693341744076047511658213238986329960049320055116496895846555284144056951061325675385753017949006773392713103872828940517942427959615897628370883<185>
7×10219+9 = 7(0)2189<220> = 139271459 × 102465718395637<15> × 20456313149872704163484387<26> × 23978938957984442029305462401888606704653557263320112228879735341298889586815514761503317428137106418857540748829760833587222814130464339060978114765004922317234222897249629<173>
7×10220+9 = 7(0)2199<221> = 67 × 64171 × 81077137 × 200810318855415085144143896016642811031213953019869930785498863849797261695579851227246250767990198783776787434487203842853531588223519118516307523419227361719039590364960914254745696200836530130437068780601<207>
7×10221+9 = 7(0)2209<222> = 9907 × 129953 × 101329141457<12> × 404900030231<12> × 105834860348796534797<21> × 6266006603278579403994911189791724299890236781841553383963<58> × 19983327493766900600338882724638959518830492396385707305343551692570848192958530654480359781560054586626738292267<113> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P58 x P113 / January 11, 2022 2022 年 1 月 11 日)
7×10222+9 = 7(0)2219<223> = 79 × 7109 × 96769 × 472742411 × 272459286881422380855381582418287543323142737315129800766467634251332055919993755027958922968734102444890286204283173822873092744517464609385222908347650767473682582994862377918994552781423447256755257041<204>
7×10223+9 = 7(0)2229<224> = 19 × 59 × 714282992711508254249996799553629976699397664821109329592257519<63> × 61111644927281007312979125903065928159333889949792380228189953367077409457<74> × 1430533867857244264890371296128967304678422502231069482601590859533054268189392055063<85> (Bob Backstrom / Msieve 1.54 snfs for P63 x P74 x P85 / April 30, 2019 2019 年 4 月 30 日)
7×10224+9 = 7(0)2239<225> = 191 × 193 × 7530534281<10> × 42403507175137242420664999797287304827<38> × [59467515643821217886975696945391033387600364037750310311713882090670933794659337686108758809276899491688457429198571575123732672822702686852358198646787513738429675541283789<173>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=354081159 for P38 / December 17, 2012 2012 年 12 月 17 日) Free to factor
7×10225+9 = 7(0)2249<226> = 28631459 × 2783765549<10> × 4215971950574457514849<22> × 20831675030348565021477920794517668148968953510681611277708303258059765788525145050561183106270347150662828361958736134116217424157024349491785194699607733357362144388613838896104485346351<188>
7×10226+9 = 7(0)2259<227> = 18433 × 34421 × [110326167920339425453438146618222488361861975555557387320184836111730544385735915249568674724229065286145030370453537621419483805830969029107326088925227106377261815878603250477157130057213432747444695040528105013641413<219>] Free to factor
7×10227+9 = 7(0)2269<228> = 859 × 429794539 × 260127609417278255869<21> × 7288825170652932896319614184192794694589559923324567283131406876592254295708906543090835944786676526758751372576808803074684677099577059127158205762940944464173727696024235381138840329792076719061<196>
7×10228+9 = 7(0)2279<229> = 23 × 36055263983621189858032243115514731044831546039<47> × 62706443359659759464314475064721791689594478503219<50> × 2697875229135304613488854551280691099396022928929894714976463<61> × 49896202654896904474939701875302608977837238325646448204204673437401101<71> (matsui / Msieve 1.51 snfs / February 24, 2013 2013 年 2 月 24 日)
7×10229+9 = 7(0)2289<230> = 17 × 71 × 852769 × 5232683 × 147983610144781<15> × 87825639721792770065256726891098035394744146802298681633714556630158304962447174562824082344350853363183479018124755852139858848786370654471577749893651257362001255943116845003782582451174676433928401<200>
7×10230+9 = 7(0)2299<231> = 14426749577<11> × 15815000362614276776159<23> × 3068035217710528783827683452556582708692823106593385055689553096185064680824699824006278576950937438103399829083099671335584710251430422931689255872200312413219641895081839058127650016226066160898463<199>
7×10231+9 = 7(0)2309<232> = 6011 × 1053583 × 32217801571821666617<20> × 139269694121856855079103552367473358691601<42> × 152290506857301918343142836856302329695780639<45> × 4208458143495672063597255874974469203081736811189359300327<58> × 384356463890623016674515103897702873084553398599375771711493<60> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=2334626980 for P45 / January 28, 2014 2014 年 1 月 28 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=31000000, sigma=4016893388 for P42 / January 28, 2014 2014 年 1 月 28 日) (Youcef Lemsafer / Msieve 1.51 gnfs for P58 x P60 / January 29, 2014 2014 年 1 月 29 日)
7×10232+9 = 7(0)2319<233> = 633991 × [110411661995201824631579943563867625881124495458137418354519228190936464397759589647171647547047197830884034631406439523589451585274869832537054942420318269502248454631059431443033102993575618581336328118222498426633816568373999<228>] Free to factor
7×10233+9 = 7(0)2329<234> = 24407 × 11957653 × 6381326268834967875571788474956533<34> × 375860547744171069571451470511022770490162344239084610116302676550031636215371301390030313958267240151658681486750900746834806431882118561178656033449089882108591692172322831151319482230263<189> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3604464390 for P34 / December 17, 2012 2012 年 12 月 17 日)
7×10234+9 = 7(0)2339<235> = 43 × 4099 × 28030523456799818765513387699786558131<38> × [1416838854085166844165897177499624592105295966254851797910569259785597350128021784596710469867436071367017990303653125589072932486340360935505386699198615151694261306014535484086257035066851027<193>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2005355187 for P38 / December 29, 2012 2012 年 12 月 29 日) Free to factor
7×10235+9 = 7(0)2349<236> = 79 × 107 × 151 × 1527833364245053141<19> × 152253858781110260373426040213<30> × 1093180458934333024832056915864043674826596171<46> × 66009548658807131689203375478647378030310475749311647980915697429<65> × 3267136672353349266424259451095918061973037047001751108459493575366936349<73> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=725133479 for P30 / December 13, 2012 2012 年 12 月 13 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=31000000, sigma=1884930792 for P46 / February 5, 2014 2014 年 2 月 5 日) (Youcef Lemsafer / Msieve 1.51 gnfs for P65 x P73 / February 11, 2014 2014 年 2 月 11 日)
7×10236+9 = 7(0)2359<237> = 1009 × 34358153 × 53293058714045020778091133423357264840061<41> × [378884132431626751755649328115837205325842087191958584921877565066112853405523781977455284490210520449996693310067135286694694384834480454540765953882716024993058306907792202565498360997<186>] (Youcef Lemsafer / GMP-ECM 6.4.4 B1=31000000, sigma=2831009954 for P41 / March 3, 2014 2014 年 3 月 3 日) Free to factor
7×10237+9 = 7(0)2369<238> = 593 × 2334863 × 4673863 × [1081697847157823960199830383417255960085600840463653411080670198797821899698941204789305025083041156063228540722125229197726513458028056278323758069234401561329744514137082184893444760553304098992427994026564366402832700177<223>] Free to factor
7×10238+9 = 7(0)2379<239> = 109 × 11369 × 8347964473<10> × 18548235721<11> × 267897221330610538735516793<27> × 86079585006520066805517731395009193<35> × 15819680325891205492700905306300290239905297519461823517568321923049832862135390001891635331895404921955079140320483022321519558546035039059921152398437<152> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2502520157 for P35 / December 18, 2012 2012 年 12 月 18 日)
7×10239+9 = 7(0)2389<240> = 857 × 10401887 × 47812049953<11> × 461807192017<12> × 1293177924937891<16> × 4428018492881088067<19> × 621068240586012650991893098474247299567682467201851824562067664373781809272344965882721979535397710415298152765056433985282558241959962926013925161376441820429180485512733383<174>
7×10240+9 = 7(0)2399<241> = 2027951 × 12103184715113<14> × 1152108307610169983621<22> × 80488374550053164414584897<26> × 3075490969596554444385602800644770824389057043069406522743804399412738626457161742268745715564948612487808392438984176769023931485418602681525345764797859064009536723667891939<175>
7×10241+9 = 7(0)2409<242> = 19 × 4321256809189<13> × [852578471726430583109534221183587033112271707399366951390490750280929837206792767377900506687934577357299997155452749869976289103901070109983405856271492567280594961046781394415300532689547568870524212738127325582414284990820599<228>] Free to factor
7×10242+9 = 7(0)2419<243> = 9227 × 43133545053561946547453<23> × 893625308919995152437000309785219891<36> × [1968189478569428676883505847570702524755417176906581844034679299313421008678161974170208915280249726461506241487144076702143705988795261574337697746623472508245555361607786540178829<181>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=353979350 for P36 / December 18, 2012 2012 年 12 月 18 日) Free to factor
7×10243+9 = 7(0)2429<244> = 1157969 × 200323477 × 6780037698430314663744508825956863803335481<43> × [4450790462258888990611934144237934301853206674417978263372241842760493899449490453879658554387061823436166020957523240739769711193284583197347463197746344209643013724832084219205385157053<187>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=204252887 for P43 / January 7, 2014 2014 年 1 月 7 日) Free to factor
7×10244+9 = 7(0)2439<245> = 29 × 281 × 3697 × 65018227849<11> × 703721180367275232863<21> × 3220431422580709871714023<25> × 15768648251533692529599056943958529021443611173469000106861755949797094058746183868061202745948972974533348346275960076846052126634767870218302578957559589193029532055724500362035253<182>
7×10245+9 = 7(0)2449<246> = 17 × 449 × 464663 × 36500027 × 463198794198316041401<21> × [11673580425056427261818733225583703333776141732581958589378358679411058684911133838503988011747251430364329548323222020647077801983677213869996855764163977427483423514352441903430502099836007373038657934448773<209>] Free to factor
7×10246+9 = 7(0)2459<247> = 163 × 2143 × 856277 × 649516261 × 671965565653<12> × [53621250612635630878858806022656161973913145054062798464555941512837402473114420865953108233843858987757277093791985847065106839948459422426359550004076397657255772602248719252414058619174693175443123194294917720961<215>] Free to factor
7×10247+9 = 7(0)2469<248> = 6781 × 14621 × 1054091 × 1218859 × 358441418267<12> × 2090812427964717683<19> × 405037606949782366967543<24> × 1810368716473570328507835894829462944201521176098087806979696830646381224400485789757087869930437670404602282872970101997450691118379643244983139016819068021430148429236141407<175>
7×10248+9 = 7(0)2479<249> = 79 × 85595659577<11> × 41629372621452398224728717741923765223437<41> × [2486676785627058303666145110095492012392912022588776912426333767047555310916020924139552108889253274915417330756159401501103817990704624801097234133096376805012399356876148980556684603540730257179<196>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4201177542 for P41 / March 10, 2014 2014 年 3 月 10 日) Free to factor
7×10249+9 = 7(0)2489<250> = 108023 × [64801014598742860316784388509854382862908824972459568795534284365366634883311887283263749386704683261897929144719180174592447904612906510650509613693380113494348425798209640539514732973533414180313451764901919035760902770706238486248298973366783<245>] Free to factor
7×10250+9 = 7(0)2499<251> = 232 × 373 × 28751 × 1047197 × 13225334329<11> × 7935103143668151719676506963<28> × 3363934732412756978578038165379417<34> × [33376853718668395548242824460326859943721379933418476440457902637857926932107893738392471889822646851845864205703875623554525476286969790759756043917009752908037949<164>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2561419392 for P34 / December 17, 2012 2012 年 12 月 17 日) Free to factor
7×10251+9 = 7(0)2509<252> = 47 × 343569270091<12> × 363319168081<12> × 6122444862635781292650290926589351<34> × [19488242545522892672829881944012844390174358920672227810595626472919999219435989979646250709905588862325788003560214906679482530947312609550161176803059846876187473616893634563087090010291829907<194>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3012992506 for P34 / April 23, 2019 2019 年 4 月 23 日) Free to factor
7×10252+9 = 7(0)2519<253> = 72871 × 57972484385656211949215179453<29> × 1656995764880151522377594980809555894871697636289768608603348979717847276722831880754757675971014636905676112704026548480260848958577656044878627050828573545545278549173877345419677388700570565691236157689172883445067643<220>
7×10253+9 = 7(0)2529<254> = 67 × 223 × 859 × 2621 × 5208019345393825091<19> × 278639945319453569033826703<27> × 1433977128416025996793009750494374655734401355595638217515145714147819950797866988439650145572924276518746138459776867719073039342202313629254330222737350704682588396840193050775896174817401181558367<199>
7×10254+9 = 7(0)2539<255> = 113 × 54193234789<11> × 12094475898103049464690862033<29> × [9451211204097671027935643636725134721699399152137730641382325075997024689475236286651918127122347208895609457630265741626032109857062607731708778705621642474521017622781942566210779987472014441454552901316736963989<214>] Free to factor
7×10255+9 = 7(0)2549<256> = 43 × 3023 × 6691 × 8048230525292174366629753304062785055749845653047043578003040366248573009923897093397527277060021952192616176428958931982517095571262362164006338055122489532842172282770408223234009227450363374676361536030504099803696873979538263793791300407552391<247>
7×10256+9 = 7(0)2559<257> = 617 × 555070987320122348148131<24> × [204392213965693124389342529406513090274483007144739245084063514504306970228043071276799181932577283871366996446318706184098124833436193086378429554494552959505941410022986166865844222485611578962575546902118170511519092841516613867<231>] Free to factor
7×10257+9 = 7(0)2569<258> = 285497027 × 9899160808971055216226954197<28> × [247684067215226038715102656083619388657697837224443688506756104924461884464224597959347158968269690538315831672363754071754505930673064926447125208358875182526742129992065368271240209331998334498440558758761767527661155511<222>] Free to factor
7×10258+9 = 7(0)2579<259> = [7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<259>] Free to factor
7×10259+9 = 7(0)2589<260> = 19 × 359 × 26489 × 350717960951<12> × [1104654381888515055653006077895526754888376175812359281394352147387475687224606348529985742225217001164566575019587572594229960750920437487173956765731145982599892966026146154169840200872211320347751172315039320822041358859978504974217111211<241>] Free to factor
7×10260+9 = 7(0)2599<261> = 2715547 × 2006971591<10> × 610797675474841859<18> × 229973254212934664697555187855577<33> × [914375929303066719065659509622844540521797115027457069580368946136884872334564904676990156605303450074746752161208591936194812920400574989333543683736455622240730726697088914359754972579765680919<195>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:832643288 for P33 / April 23, 2019 2019 年 4 月 23 日) Free to factor
7×10261+9 = 7(0)2609<262> = 17 × 79 × 9004301 × 1836091769<10> × 1323694255333<13> × 772398410088234851561177<24> × [308353288226076287474149539784100788172989408769046447216527464448951711149700690157778950466290037753306653841961987671345525847847256616910737080359934496158097823458321359015073327352185926291780836236647<207>] Free to factor
7×10262+9 = 7(0)2619<263> = 4057 × 5483 × 218503192141406285233<21> × 11986646091759760349673508031<29> × 1201487667828936980605519785593163111470205968874087719392117245196408287073925101285171505556453726354072430823675932531244308160017091663543917282771312875033323598672950171910863661450133564775940323207293<208>
7×10263+9 = 7(0)2629<264> = definitely prime number 素数
7×10264+9 = 7(0)2639<265> = 71 × 17189 × 2306333 × 2486950072757155209707078306985406413975155737489084363594502580373133320239881817685923731835764118418337679274513391783407306839066319493627793034911465506660516353154584373042348278407437756429455020693471796912887397778134695865250780504682000483167<253>
7×10265+9 = 7(0)2649<266> = 26801237 × 69016437505783870214091124159063207397903<41> × [37843444835373516676994877009355068044849252310745053511522371157051636959710692464621798191378972881670737415011923115192546722635270061812397150743408454275982648822626108188638306364986024275988307798765432926607819<218>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1720203755 for P41 / April 23, 2019 2019 年 4 月 23 日) Free to factor
7×10266+9 = 7(0)2659<267> = 149 × 6577 × 176857 × 651996641297<12> × 27754651414517693831761<23> × [223192984837802616414927477297649769783089933836744890011908983600791879831330620541158107916309593272112759371712659164963057837642797283758708737776032580941707132900115488094521950866952117721407701343229350039778824157<222>] Free to factor
7×10267+9 = 7(0)2669<268> = 197 × 35532994923857868020304568527918781725888324873096446700507614213197969543147208121827411167512690355329949238578680203045685279187817258883248730964467005076142131979695431472081218274111675126903553299492385786802030456852791878172588832487309644670050761421319797<266>
7×10268+9 = 7(0)2679<269> = 1431287410668136171386079<25> × 47948607926644210850796530188447<32> × 1019988289628720037237884879596011203832078794359497021779890485068656498952250071730768720800041437083437314959049022570532848479830011004253260447100552761699380215971996452694759519319568474709915293528850560393<214> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1266706063 for P32 x P214 / April 23, 2019 2019 年 4 月 23 日)
7×10269+9 = 7(0)2689<270> = 1747 × 6427 × 10357 × 54150709250011447<17> × 111162603482805555096206816774262994388997085283139428525234638127578295545109450427693875517847913510637293904465098031649484159033493855696808894380625324338616243568222508599428192341606673957027392091505921939428627966222724637988417025059<243>
7×10270+9 = 7(0)2699<271> = 277 × 2557 × 1329618672881<13> × [7432936751337704516045891962651430972057761685193599116503402176679255982082542365603787087834185667613549830788636087801071382370754198443953400385931934328618565060127728032036357578377849017479078525844744085139895009137153430363107626016858199536601<253>] Free to factor
7×10271+9 = 7(0)2709<272> = 61 × 1565428607803<13> × 733052263058532703697536662430323479507515917382500943407113097419633260432305068418356110258894138029221942098669244918121096604155335206489200281401286946745543934209117874196488025826145977552703448970194396945368276156915725251478264798447301116973502823<258>
7×10272+9 = 7(0)2719<273> = 23 × 29 × 281 × 347 × 226657 × 161427652117<12> × 780222955034979032621689<24> × 3137656505471492617070593<25> × 422167350820868575550813658240527999<36> × 284629939602615337140376048863670464353948865686682971842302195464634464154839778825885195195179991212532571010159399254267678262791407919292143140560322209450700803<165> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3803913015 for P36 x P165 / April 23, 2019 2019 年 4 月 23 日)
7×10273+9 = 7(0)2729<274> = 5216441911<10> × [1341910850236629808413484315324526576521480601224316020184663377151522161366976257315021790913603446815033458924297029328119743342810512895597353082458201267986860172284203549717243271339861758119364975710164675118530232972817628295449066297481482680311974818806719<265>] Free to factor
7×10274+9 = 7(0)2739<275> = 79 × 12049 × 123396457 × 49783187371<11> × [11971113686092278770483247667816974758359973161671524075421126252731692349788313751869023655557601376979496871341131543414193425915235165345716850157436810288744357694273116828232286775283533632867667181615875949306640317368527239949610231760074795357<251>] Free to factor
7×10275+9 = 7(0)2749<276> = 167 × 16097341635527439711544660477537<32> × [260391862294579726084458104391573676538579370964645387419029761727735931063790862934595230054805765291184742334339396044113738999194108028661478128718777504103448545768363880052511118057159063640652104771059445285488902813031146886724819252271<243>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1100509428 for P32 / April 23, 2019 2019 年 4 月 23 日) Free to factor
7×10276+9 = 7(0)2759<277> = 43 × 6197 × 38459 × [683046233146737647720126736390991168612372927272896563518475571046969096657956272125454964252190407955811679110298371008239477520629826073101060417967666249954243586649291478401288360087587990353617903068147750330601719590027348926254331775655928763451079809050120381<267>] Free to factor
7×10277+9 = 7(0)2769<278> = 17 × 19 × 449 × 883 × 3798343 × 1383217457<10> × 4228119101<10> × [24606883852320035718195745720209872198738871694684881654185158695337198713395020253472129974524160496047278795664736545059492757683813558431682808643288796659864687709778136683288171777227971800848247187262720686427618344132371862544507511557699<245>] Free to factor
7×10278+9 = 7(0)2779<279> = 2963 × 40639 × 48904295717<11> × 1160550091649713<16> × [102426533936953321973839588947055874473081501962957562975611264098417508595390527554285142847210014502106008849643208295608149088931905912490567446767134608071430255944844449545767569556548247886235803385998398090149185174576797882486012102075097<246>] Free to factor
7×10279+9 = 7(0)2789<280> = 131 × 859 × 104043067 × 2020553204876335829558099<25> × [295903528480068724555309990637000248968786489694973949116839152447987447424425892744643396141894675233293595310431847432985580697266052991119311957094064009617131066002769265445071311617610758138729186340121207578487927029148871741438741630937<243>] Free to factor
7×10280+9 = 7(0)2799<281> = 1019 × 20399 × 3367557175468154190436609079675007640746691338994132801349101134044122022760741653473459632442680207966860928211330184603230324409771861952670330921665280115089634028799637612361551906973061130158923201463482618906880357091914249871106749108956398361038787475439082550420389<274>
7×10281+9 = 7(0)2809<282> = 59 × 47543 × 1601443484456248564989470259271748111<37> × 155828836835345309656669522222917004543940686309174174083638059793984772829883220674672870985686565307316406287666393003455586250700510911078819329004521331858500903487492344955020393666423130820201161834107969724795876995288128021903705187<240> (Erik Branger / GMP-ECM B1=3e6, sigma=3:565307321 for P37 x P240 / April 23, 2019 2019 年 4 月 23 日)
7×10282+9 = 7(0)2819<283> = 263 × 14939 × 7214598343<10> × [246949758936087054172016468258403936407481024261718528527767537529361678744323117367312514622452113466451899972666583825566082170784735251573890043012500154796971887858245892280009672460705365496130834990260316664293214563604179070590926561290439314500900975893423259<267>] Free to factor
7×10283+9 = 7(0)2829<284> = 4517 × 14657 × 1407937 × 281829839 × [2664603947182388291489692468097254529616798112928122047299031500321247832875312426931235093059192324176083847046911055973612602059906085678376832282186367978070312471917133999234759830061185116336356137100984467203074101755979383987641549687682277343889955688027<262>] Free to factor
7×10284+9 = 7(0)2839<285> = 392233 × 1784653509521126473295209735029943936384750900612646054768466702189769856182422182733222344881741209944089355051716709200908643586847613535832018213663817169896464601397638648456402189514905681062021808465886348165503667462962065914902621656005486534789270663100758987642549199073<280>
7×10285+9 = 7(0)2849<286> = 180617 × 635983 × 3650167333<10> × 516945565552974395261525740821258077<36> × 32295076693137258864177005947303703561434659745301390037003822316468417941793959923088329189985276142159085864974402775259599807541424844910576047130432614269475041132323151644181478155161661656975151976949547558217630533113318559<230> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3236465852 for P36 x P230 / April 23, 2019 2019 年 4 月 23 日)
7×10286+9 = 7(0)2859<287> = 67 × 10193 × 3204848001332482698798118540520020338407<40> × [31982600728353987380761047882919781818426492455369853763298209901615378592726952877969111584862229839056529487424367549559478206641144001842018238136101542228056367031707149336512344631461802943988575464798012562243518995826329229243440708277<242>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1:3965363723 for P40 / May 24, 2019 2019 年 5 月 24 日) Free to factor
7×10287+9 = 7(0)2869<288> = 79 × 97 × 3049 × 2824356168299090915091872861<28> × [10607726826389192933123640228853812214573724764382910792693463916732741840790059410587970611258306638449234534326527272780821322086570929734240793973044617782398807548588976684062702157652578603434391031698074481373485514892019487314414897813812515404987<254>] Free to factor
7×10288+9 = 7(0)2879<289> = 107 × 97735691 × 819343546589<12> × 142286936857883021<18> × 739224004673682221382555259<27> × 12335536823738648871359088593<29> × 629645192580498176726012054524700344238900158849722595655616915339852165791292483107404657266166495295450793015182878311993221957864548942402789709698951355085298003194780652829288976436701227819<195>
7×10289+9 = 7(0)2889<290> = 1283 × 14346247 × 15868609 × 99708758313260399<17> × [2403592900247123591638609706645353031639580952080377221331398230578136236858403028142087557211470242186035176855371765713223128131385702715928805995482526291477828436581080614200646176686570817326079151549458377775180051971747537083375653112396364196289899<256>] Free to factor
7×10290+9 = 7(0)2899<291> = 155387 × 120764239 × 35100556747<11> × 37572918438645353<17> × [28284992908264294148900882415490937997963923862777891067380364609089355777044952173828087007965395182142908711117892696460430947384377474730812454100676534225935014770417405289747486124499628049370063837656013102405545183596938935106883846041212627543<251>] Free to factor
7×10291+9 = 7(0)2909<292> = 4957 × 7518323 × 9618138340427<13> × 975533853592677581<18> × [20018188607868207232681584971865374356068043170971286525390832184855259694486415590415763126623573785256317574271109824489876425530102529694038303776103969018238296663146048884573361511515462524286172534614339660011797082411254159764603754637726135137<251>] Free to factor
7×10292+9 = 7(0)2919<293> = 823 × 9525483715084371997<19> × 120382515870992075895771787002415459<36> × 74173325472963371532038757044056716785665396077345655072603656738913917478337865951340673279596260761350497297322033124794311401239028351265061961026930293257034282280558040651571240891636164178202781785266288610223747498475505071739321<236> (Erik Branger / GMP-ECM B1=3e6, sigma=3:661014757 for P36 x P236 / April 23, 2019 2019 年 4 月 23 日)
7×10293+9 = 7(0)2929<294> = 17 × 122828813687<12> × [335234619241408045674101983265289303589151600668761871134819399618367390076505358960079865599434503284331865023869654880246792148697378519218075472842457073915760366966433612148249557374090287961802926146299922764368095655280248043497350634321415975984580414501280852247179709136271<282>] Free to factor
7×10294+9 = 7(0)2939<295> = 23 × 12539 × 1750700431<10> × 5770585337981<13> × 93286266331361120627<20> × [25754782327146312993119272583047628017233939008539781435292156779313999993171620711812247737222005506995147530848645545062660125138705734033323759152208006532705544917286897988444232487398304927766431211582566281624241420855488410845666783962983301<248>] Free to factor
7×10295+9 = 7(0)2949<296> = 19 × 54481600421<11> × 35458735599695743<17> × 619228025876187583858099973<27> × [3079787365822274148251354875514583832406136283533456738273418590243599450207249755257759059650112208375786464222405412072932090161383429100285000093644939769837355979945672280679990740301287197824060920920141713843877589308176894602392314869<241>] Free to factor
7×10296+9 = 7(0)2959<297> = 318970803708797<15> × [2194558222448039282151780835340795123661993724026677872429166515456350596904272351115604992681140561954774315529254975339578843033581775176853219697264794603278486838746862872451494679890804693423420656202065331810149090695808151952024490846144613937361646467184261592115680055811197<283>] Free to factor
7×10297+9 = 7(0)2969<298> = 43 × 47 × 9151 × 4243126739<10> × 1135293652482746627365066995277<31> × [78572207962542391913257767659651405523982249044328079854865214353312911405427515593284375816044295330752819124666517835784176665647318407579011275502508767732934351982122612291031493203629725663792274072082428645306998086163427761613378174227319752493<251>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:451001825 for P31 / April 23, 2019 2019 年 4 月 23 日) Free to factor
7×10298+9 = 7(0)2979<299> = 10300291 × 856166161 × 3200380713454983886533533<25> × 241608983220647058872348459084124073<36> × 10265397349409973435078634588568400046598758093194735811125641732757630773210079314818422607139583400485814291014298800651278583049058067462101628050589591534753206387543585919229986921338839599816958938551620703587156518551<224> (Erik Branger / GMP-ECM B1=3e6, sigma=3:500008405 for P36 x P224 / April 23, 2019 2019 年 4 月 23 日)
7×10299+9 = 7(0)2989<300> = 71 × 5279 × 41657711 × 411766543 × 347185070167078929935876417987<30> × 313603231465555478057404630783965418650740348220870275695227148999957910364646223514767838950502832965853408343251106669638061539268503232436140318712518663238032735721871073375978217667061242175108828042053650486896432272909330245172215942503336251<249> (Erik Branger / GMP-ECM B1=3e6, sigma=3:955095496 for P30 x P249 / April 23, 2019 2019 年 4 月 23 日)
7×10300+9 = 7(0)2999<301> = 29 × 79 × 281 × 907 × 118043 × 970201 × 59002969508582446594227228705415291939447<41> × [1774122150299848402639087655283933528703287925372867489403802872065501872117343527787053348851094699085262803045341634631872539652210325856192691165736839520519853816318098011579137135490194170638133286961444837300874313409614796349785879757<241>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3324387149 for P41 / April 23, 2019 2019 年 4 月 23 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク