Table of contents 目次

  1. About 322...221 322...221 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 322...221 322...221 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 322...221 322...221 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 322...221 322...221 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

32w1 = { 31, 321, 3221, 32221, 322221, 3222221, 32222221, 322222221, 3222222221, 32222222221, … }

1.3. General term 一般項

29×10n-119 (1≤n)

2. Prime numbers of the form 322...221 322...221 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 29×101-119 = 31 is prime. は素数です。 (Makoto Kamada / December 1, 2004 2004 年 12 月 1 日)
  2. 29×103-119 = 3221 is prime. は素数です。 (Makoto Kamada / December 1, 2004 2004 年 12 月 1 日)
  3. 29×106-119 = 3222221 is prime. は素数です。 (Makoto Kamada / December 1, 2004 2004 年 12 月 1 日)
  4. 29×1012-119 = 3(2)111<13> is prime. は素数です。 (Makoto Kamada / December 1, 2004 2004 年 12 月 1 日)
  5. 29×10408-119 = 3(2)4071<409> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  6. 29×10649-119 = 3(2)6481<650> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  7. 29×10949-119 = 3(2)9481<950> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  8. 29×10963-119 = 3(2)9621<964> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  9. 29×101005-119 = 3(2)10041<1006> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 14, 2006 2006 年 9 月 14 日) [certificate証明]
  10. 29×102700-119 = 3(2)26991<2701> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Youcef L / Primo 3.0.9 / July 24, 2012 2012 年 7 月 24 日) [certificate証明]
  11. 29×1019779-119 = 3(2)197781<19780> is PRP. はおそらく素数です。 (Erik Branger / PFGW / June 10, 2010 2010 年 6 月 10 日)
  12. 29×1022518-119 = 3(2)225171<22519> is PRP. はおそらく素数です。 (Erik Branger / PFGW / June 10, 2010 2010 年 6 月 10 日)
  13. 29×1022611-119 = 3(2)226101<22612> is PRP. はおそらく素数です。 (Erik Branger / PFGW / June 10, 2010 2010 年 6 月 10 日)
  14. 29×1040584-119 = 3(2)405831<40585> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)
  15. 29×1055362-119 = 3(2)553611<55363> is PRP. はおそらく素数です。 (Bob Price / PFGW / April 15, 2015 2015 年 4 月 15 日)
  16. 29×1070194-119 = 3(2)701931<70195> is PRP. はおそらく素数です。 (Bob Price / PFGW / April 15, 2015 2015 年 4 月 15 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / April 15, 2015 2015 年 4 月 15 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 29×103k+2-119 = 3×(29×102-119×3+29×102×103-19×3×k-1Σm=0103m)
  2. 29×106k+4-119 = 7×(29×104-119×7+29×104×106-19×7×k-1Σm=0106m)
  3. 29×1013k+10-119 = 53×(29×1010-119×53+29×1010×1013-19×53×k-1Σm=01013m)
  4. 29×1015k+1-119 = 31×(29×101-119×31+29×10×1015-19×31×k-1Σm=01015m)
  5. 29×1016k+14-119 = 17×(29×1014-119×17+29×1014×1016-19×17×k-1Σm=01016m)
  6. 29×1018k+5-119 = 19×(29×105-119×19+29×105×1018-19×19×k-1Σm=01018m)
  7. 29×1022k+19-119 = 23×(29×1019-119×23+29×1019×1022-19×23×k-1Σm=01022m)
  8. 29×1041k+18-119 = 83×(29×1018-119×83+29×1018×1041-19×83×k-1Σm=01041m)
  9. 29×1042k+33-119 = 127×(29×1033-119×127+29×1033×1042-19×127×k-1Σm=01042m)
  10. 29×1046k+22-119 = 139×(29×1022-119×139+29×1022×1046-19×139×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 15.93%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 15.93% です。

3. Factor table of 322...221 322...221 の素因数分解表

3.1. Last updated 最終更新日

September 15, 2024 2024 年 9 月 15 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=210, 211, 216, 225, 226, 230, 231, 232, 233, 237, 239, 242, 243, 246, 247, 248, 249, 251, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 269, 270, 272, 273, 276, 277, 278, 279, 280, 282, 284, 285, 286, 287, 288, 290, 291, 292, 293, 296, 297, 300 (52/300)

3.4. Factor table 素因数分解表

29×101-119 = 31 = definitely prime number 素数
29×102-119 = 321 = 3 × 107
29×103-119 = 3221 = definitely prime number 素数
29×104-119 = 32221 = 7 × 4603
29×105-119 = 322221 = 3 × 19 × 5653
29×106-119 = 3222221 = definitely prime number 素数
29×107-119 = 32222221 = 1567 × 20563
29×108-119 = 322222221 = 32 × 35802469
29×109-119 = 3222222221<10> = 223 × 347 × 41641
29×1010-119 = 32222222221<11> = 7 × 53 × 86852351
29×1011-119 = 322222222221<12> = 3 × 673 × 159594959
29×1012-119 = 3222222222221<13> = definitely prime number 素数
29×1013-119 = 32222222222221<14> = 233 × 138292799237<12>
29×1014-119 = 322222222222221<15> = 3 × 17 × 733 × 8619485387<10>
29×1015-119 = 3222222222222221<16> = 1487 × 2129 × 3181 × 319967
29×1016-119 = 32222222222222221<17> = 7 × 31 × 5927 × 25053062819<11>
29×1017-119 = 322222222222222221<18> = 33 × 11934156378600823<17>
29×1018-119 = 3222222222222222221<19> = 83 × 311 × 151531 × 823788107
29×1019-119 = 32222222222222222221<20> = 23 × 751 × 9791 × 432557 × 440471
29×1020-119 = 322222222222222222221<21> = 3 × 61 × 1760777170613236187<19>
29×1021-119 = 3222222222222222222221<22> = 1613 × 1997657918302679617<19>
29×1022-119 = 32222222222222222222221<23> = 7 × 139 × 6857 × 26633 × 181337828017<12>
29×1023-119 = 322222222222222222222221<24> = 3 × 19 × 53 × 4657 × 596341 × 38406422573<11>
29×1024-119 = 3222222222222222222222221<25> = 160483 × 2716709 × 7390661859043<13>
29×1025-119 = 32222222222222222222222221<26> = 131 × 787 × 312542772556158008693<21>
29×1026-119 = 322222222222222222222222221<27> = 32 × 839 × 1249 × 1662949051<10> × 20545165129<11>
29×1027-119 = 3222222222222222222222222221<28> = 131797 × 267781 × 646913 × 141131619781<12>
29×1028-119 = 32222222222222222222222222221<29> = 7 × 1297 × 220111352129<12> × 16124083210331<14>
29×1029-119 = 322222222222222222222222222221<30> = 3 × 1151 × 106083259 × 879654354335809123<18>
29×1030-119 = 3222222222222222222222222222221<31> = 17 × 47 × 443 × 28099 × 37219463 × 8704503730469<13>
29×1031-119 = 32222222222222222222222222222221<32> = 31 × 164701 × 6310990967252724873719791<25>
29×1032-119 = 322222222222222222222222222222221<33> = 3 × 9341 × 1085832080761<13> × 10589566768537907<17>
29×1033-119 = 3222222222222222222222222222222221<34> = 127 × 499 × 3701959 × 3945101 × 3481460652346003<16>
29×1034-119 = 32222222222222222222222222222222221<35> = 72 × 2229598813913<13> × 294939326204604757733<21>
29×1035-119 = 322222222222222222222222222222222221<36> = 32 × 97 × 6143 × 60084261754310025384357468539<29>
29×1036-119 = 3222222222222222222222222222222222221<37> = 53 × 1033 × 4523 × 14417878157<11> × 902508619847078239<18>
29×1037-119 = 32222222222222222222222222222222222221<38> = 9950320307021<13> × 3238310047113362509691201<25>
29×1038-119 = 322222222222222222222222222222222222221<39> = 3 × 10403467 × 606810447543841<15> × 17013869224984781<17>
29×1039-119 = 3222222222222222222222222222222222222221<40> = 28679433546840319<17> × 112353063632151900108659<24>
29×1040-119 = 32222222222222222222222222222222222222221<41> = 7 × 6607 × 7667561843<10> × 12422943073<11> × 7314276250515911<16>
29×1041-119 = 322222222222222222222222222222222222222221<42> = 3 × 19 × 23 × 59 × 401 × 12421 × 66949 × 12492684044671528862375201<26>
29×1042-119 = 3222222222222222222222222222222222222222221<43> = 397 × 8116428771340610131542121466554715924993<40>
29×1043-119 = 32222222222222222222222222222222222222222221<44> = 191 × 84713 × 12804132283<11> × 155532770062016732004521089<27>
29×1044-119 = 322222222222222222222222222222222222222222221<45> = 34 × 1223 × 2909 × 2346203 × 476578784772501010739437300021<30>
29×1045-119 = 3222222222222222222222222222222222222222222221<46> = 149 × 1543 × 8011 × 341729 × 6278663 × 1792970089<10> × 454772828221891<15>
29×1046-119 = 32222222222222222222222222222222222222222222221<47> = 7 × 17 × 31 × 283 × 3491 × 741137 × 11929220156868344140287778407749<32>
29×1047-119 = 322222222222222222222222222222222222222222222221<48> = 3 × 113 × 3607 × 1419843226135586723<19> × 185596274410309377606899<24>
29×1048-119 = 3222222222222222222222222222222222222222222222221<49> = 1468666375489801044595873<25> × 2193978343888760534580077<25>
29×1049-119 = 32222222222222222222222222222222222222222222222221<50> = 53 × 677 × 48847 × 49549289 × 371035639182326815444445964983027<33>
29×1050-119 = 322222222222222222222222222222222222222222222222221<51> = 3 × 227291578159<12> × 7773283575478139<16> × 60791992545054549174707<23>
29×1051-119 = 3(2)501<52> = 1070921 × 14899831631<11> × 11506548156060911<17> × 17549778251266089061<20>
29×1052-119 = 3(2)511<53> = 7 × 769 × 34301 × 49212661 × 3546071421906271267443640848710281067<37>
29×1053-119 = 3(2)521<54> = 32 × 4159 × 156434130639391289<18> × 55029117191277686777459898074419<32>
29×1054-119 = 3(2)531<55> = 25841 × 425562174838349735779727<24> × 293010479207437795864178003<27>
29×1055-119 = 3(2)541<56> = 107 × 4354099 × 69162934457642370785030622593977573995296815997<47>
29×1056-119 = 3(2)551<57> = 3 × 97025135747<11> × 1107005999841937097283919220893841058811287781<46>
29×1057-119 = 3(2)561<58> = 163 × 497659 × 39722449492847255910112523796195655817867133948413<50>
29×1058-119 = 3(2)571<59> = 7 × 2751246427<10> × 1673123337117414518900590871416914765012132663889<49>
29×1059-119 = 3(2)581<60> = 3 × 19 × 83 × 49553769708217888969553<23> × 1374440178401998381990408281260647<34>
29×1060-119 = 3(2)591<61> = 4289 × 4397 × 461691787 × 679740343 × 298084650191<12> × 1826451601922384917576027<25>
29×1061-119 = 3(2)601<62> = 31 × 31259 × 538777796399389<15> × 61717599297821741754619139562959740991741<41>
29×1062-119 = 3(2)611<63> = 32 × 17 × 53 × 181 × 17183 × 51516113258560530206353<23> × 248009052835931466093597152051<30>
29×1063-119 = 3(2)621<64> = 23 × 3347 × 4801 × 44257 × 1081027 × 33794508898741<14> × 5392319066867887749340099749959<31>
29×1064-119 = 3(2)631<65> = 7 × 12972293 × 6903120356891669798687<22> × 51403803370260524171630796994438033<35>
29×1065-119 = 3(2)641<66> = 3 × 151 × 4099 × 173531918473747283552291719362027254923115486748354722937443<60>
29×1066-119 = 3(2)651<67> = 29837 × 77977 × 11989284267683527227091<23> × 115515577611379002325834869465388819<36>
29×1067-119 = 3(2)661<68> = 17839 × 167429 × 8083919 × 18748051168009<14> × 71182988337554039095715623072360141921<38>
29×1068-119 = 3(2)671<69> = 3 × 139 × 1711218890994555488823838988543<31> × 451558339655349417183534881380051091<36>
29×1069-119 = 3(2)681<70> = 183397 × 3651463 × 5937499 × 364996737623799097<18> × 2220259948491349040098448959556837<34>
29×1070-119 = 3(2)691<71> = 7 × 14341230401<11> × 320974872759427134079356780231021627988917392693564548123403<60>
29×1071-119 = 3(2)701<72> = 33 × 49325467545029808980376721151<29> × 241947151696149438848068715610313999636873<42>
29×1072-119 = 3(2)711<73> = 2023148542081<13> × 28714239193489<14> × 55466454280435391475866521909683750843640167869<47>
29×1073-119 = 3(2)721<74> = 80387 × 92396561 × 48348094199028551<17> × 5183547282976858307<19> × 17310413256908669235390979<26>
29×1074-119 = 3(2)731<75> = 3 × 100495089413<12> × 1226836685601697<16> × 871169453030919469054910739358702685662542971587<48>
29×1075-119 = 3(2)741<76> = 53 × 127 × 733 × 857 × 3603883 × 98302413008092576693313<23> × 2151078401656642268384722853410612609<37>
29×1076-119 = 3(2)751<77> = 72 × 31 × 47 × 409 × 11197 × 51676673 × 5086306025473<13> × 374953868144454259909244042025560419322154841<45>
29×1077-119 = 3(2)761<78> = 3 × 19 × 227 × 11933071 × 15515966407<11> × 29455340271150080891<20> × 4566249905197515121255166219976662557<37>
29×1078-119 = 3(2)771<79> = 17 × 167 × 3133750862278532623<19> × 70806340710097669139<20> × 5115092348819243348890570243992176887<37>
29×1079-119 = 3(2)781<80> = 9479 × 6588374855106224071559<22> × 515958372499488430115015865875726609043325051984840861<54>
29×1080-119 = 3(2)791<81> = 32 × 61 × 1531 × 1313748487<10> × 20512418862137<14> × 14225870411760168760904538148724348610050773759451461<53>
29×1081-119 = 3(2)801<82> = 829 × 104809559325580735711<21> × 37085151960729000515420146641725289705675368011695283708559<59>
29×1082-119 = 3(2)811<83> = 7 × 1693 × 33029031199<11> × 328332298512686789<18> × 250721194433571986508092561044140616608702256088261<51>
29×1083-119 = 3(2)821<84> = 3 × 781681 × 348360336262189<15> × 24803042028231428921606164871<29> × 15902705911024494211814152338549613<35>
29×1084-119 = 3(2)831<85> = 193 × 287497589 × 833217734102777<15> × 115265504571675466206941<24> × 604652860668627977019025278414249589<36>
29×1085-119 = 3(2)841<86> = 23 × 5471 × 450752165071326709<18> × 11900426170121004296956028527<29> × 47737602283364893678297499296139359<35>
29×1086-119 = 3(2)851<87> = 3 × 528980889250777051221915871<27> × 203045912602880729368266711509583920614364589102885164765617<60>
29×1087-119 = 3(2)861<88> = 13209461 × 370652371 × 658117757041398938602280588964632685694107690863052604614793404307895491<72>
29×1088-119 = 3(2)871<89> = 7 × 53 × 63299 × 37240568920648730209090439<26> × 36844139904565802894999323622061199434758607874021714691<56>
29×1089-119 = 3(2)881<90> = 32 × 1093 × 68209 × 3429503239175469086689236949<28> × 140029622242903735784034652713505005894713131812722413<54>
29×1090-119 = 3(2)891<91> = 267971871467<12> × 7431073221123742408753<22> × 1618134951052348807326201787726699497800685559716741026071<58>
29×1091-119 = 3(2)901<92> = 31 × 853 × 319687 × 95724308488487641349<20> × 39819660195955263875463835025070576375463310640354177409555469<62>
29×1092-119 = 3(2)911<93> = 3 × 41704739 × 5734354240211<13> × 496966920655743793324750482757660403<36> × 903726102212955014944268840235194461<36> (Makoto Kamada / msieve 0.81 for P36(4969...) x P36(9037...) / 4.2 minutes)
29×1093-119 = 3(2)921<94> = 4615636086617<13> × 698110111315974377174991614255537821927531265534207332520542283076570875385078613<81>
29×1094-119 = 3(2)931<95> = 7 × 17 × 189169 × 52392133 × 2888044267<10> × 9459945479626598870098412191145512620018520985110472300622180610163501<70>
29×1095-119 = 3(2)941<96> = 3 × 19 × 5653021442495126705653021442495126705653021442495126705653021442495126705653021442495126705653<94>
29×1096-119 = 3(2)951<97> = 2027 × 1589650824973962615797840267499862961135778106671051910321767253193005536370114564490489502823<94>
29×1097-119 = 3(2)961<98> = 109 × 295616717635066258919469928644240570846075433231396534148827726809378185524974515800203873598369<96>
29×1098-119 = 3(2)971<99> = 33 × 139301 × 4148279 × 8640337 × 3906798899<10> × 247027701133<12> × 12471867868221397211830217<26> × 198582345534910397996342020175059<33>
29×1099-119 = 3(2)981<100> = 59 × 21922007 × 90381880877848391498090380734527<32> × 27563971349023048747865349137504401298853184807681372571071<59> (Makoto Kamada / GGNFS-0.70.5 for P32 x P59 / 0.80 hours)
29×10100-119 = 3(2)991<101> = 7 × 83 × 1527709 × 1080746880089991089<19> × 89467492418656667405707968122851<32> × 375447713052945036770851672798904542422991<42> (Makoto Kamada / msieve 0.81 for P32 x P42 / 7.7 minutes)
29×10101-119 = 3(2)1001<102> = 3 × 53 × 7717 × 57467 × 88312819321<11> × 580434932953<12> × 89148501259005491791876490042366683720259503745055363043065848066117<68>
29×10102-119 = 3(2)1011<103> = 2086989367377430338068718358517067554766449659<46> × 1543957181857307441236327584868144774614328996585231159319<58> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P46 x P58 / 0.32 hours on Core 2 Quad Q6700 / November 13, 2008 2008 年 11 月 13 日)
29×10103-119 = 3(2)1021<104> = 26042266802856807831656958190462844209<38> × 1237304819359560517371280897725082910678283633399794566410902570269<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P38 x P67 / 0.49 hours on Core 2 Quad Q6700 / November 13, 2008 2008 年 11 月 13 日)
29×10104-119 = 3(2)1031<105> = 3 × 3449 × 31141608410381967934881822965325429807888491564919515049987650741492434736853408932272370950248595943<101>
29×10105-119 = 3(2)1041<106> = 18899 × 355001715228109644473216777<27> × 87730364161858872409543212197<29> × 5474396886068017081148851763893906001291822491<46>
29×10106-119 = 3(2)1051<107> = 7 × 31 × 2389068916130485424117<22> × 62153712823285861233049416977816653218620766915430043031176609830847042850938555489<83>
29×10107-119 = 3(2)1061<108> = 32 × 23 × 4219 × 1416497 × 34630753 × 11367101891<11> × 101089234693<12> × 5691672463549114241<19> × 1150014886639259970569337501930796469831695142279<49>
29×10108-119 = 3(2)1071<109> = 107 × 1229 × 2214589411<10> × 6689543074515545450861<22> × 1653979621408021762804986411955364745957600391335979496482596877204978117<73>
29×10109-119 = 3(2)1081<110> = 293 × 691 × 1117 × 142480899301742825033712614391999863764677222132191489834126139555661298000629066927193678878727637551<102>
29×10110-119 = 3(2)1091<111> = 3 × 17 × 6056305198193<13> × 883580235428526698762899<24> × 6077733234543766266418632947<28> × 194262929225445441098295529189270826565486199<45>
29×10111-119 = 3(2)1101<112> = 577 × 35339 × 6075794047<10> × 31180577689<11> × 834138598770194258235184466888871503830071483605061549841855752663361987304957519329<84>
29×10112-119 = 3(2)1111<113> = 7 × 25183 × 42623589369304135120774617930199<32> × 4288446176859474104734338555208678726328744931833395919458818562976729123059<76> (Serge Batalov / Msieve-1.38 snfs for P32 x P76 / 0.40 hours on Opteron-2.6GHz; Linux x86_64 / November 13, 2008 2008 年 11 月 13 日)
29×10113-119 = 3(2)1121<114> = 3 × 19 × 5474585923<10> × 43577516506859775073<20> × 23695554733129681181336411091482792277760492144246472476797048968324242678607256007<83>
29×10114-119 = 3(2)1131<115> = 53 × 139 × 57030829 × 821726051706199<15> × 32795524606340009<17> × 320824206376952800064488471<27> × 887046460177182158238777392171980132662432527<45>
29×10115-119 = 3(2)1141<116> = 491 × 49464953330747879<17> × 521485095599320202335987001799276507049523<42> × 2544101840587878969578582280072469936142006701535179643<55> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P42 x P55 / 0.82 hours / November 13, 2008 2008 年 11 月 13 日)
29×10116-119 = 3(2)1151<117> = 32 × 9688360407028247869586928337915901923<37> × 3695410537146224236337805119314202453465253249831680260806032183583448457242903<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P37 x P79 / 2.34 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 13, 2008 2008 年 11 月 13 日)
29×10117-119 = 3(2)1161<118> = 127 × 1782527232461<13> × 4553468733578991760986408024122748403<37> × 3125886718200121590683661018583279104542738986002111542287194104581<67> (Serge Batalov / Msieve-1.38 snfs for P37 x P67 / 0.90 hours on Opteron-2.6GHz; Linux x86_64 / November 14, 2008 2008 年 11 月 14 日)
29×10118-119 = 3(2)1171<119> = 72 × 1783 × 8791755381953<13> × 16265156725388180254811666957299274188190461943863<50> × 2579135842593250281246313099668077876980060807295117<52> (Robert Backstrom / GGNFS+Msieve for P50 x P52 / 1.25 hours / November 14, 2008 2008 年 11 月 14 日)
29×10119-119 = 3(2)1181<120> = 3 × 383 × 967 × 1181 × 245560827422210665926460979259557654615605043224189676994594262980831399793093850795170249052008890507402318227<111>
29×10120-119 = 3(2)1191<121> = 929 × 3529 × 93603969731<11> × 15773947874373735667035781810915813703050741501<47> × 665661512203010225589354648368830774478561194130089746851<57> (Serge Batalov / Msieve-1.38 snfs for P47 x P57 / 1.10 hours on Opteron-2.6GHz; Linux x86_64 / November 13, 2008 2008 年 11 月 13 日)
29×10121-119 = 3(2)1201<122> = 31 × 1039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491039426523297491<121>
29×10122-119 = 3(2)1211<123> = 3 × 47 × 811 × 3944881 × 714301586369749882182859824139553897474836437061245665455633170535833711765018723629240328263424704169181298291<111>
29×10123-119 = 3(2)1221<124> = 44531 × 55416121147<11> × 1152039134417275495691<22> × 1239353561830811759723<22> × 231866904578853852784139<24> × 3944170684864417195865959774442156709011039<43>
29×10124-119 = 3(2)1231<125> = 7 × 50091271 × 40363075974930714377108729<26> × 18249620940906744369260499117790083340667<41> × 124754808339746480688040731128208190032343004178751<51> (Sinkiti Sibata / Msieve 1.38 for P41 x P51 / 1.08 hours, 1.51 hours / November 13, 2008 2008 年 11 月 13 日)
29×10125-119 = 3(2)1241<126> = 34 × 61774771229<11> × 64396064073690789975527479757859821581807917553513069559689545921015258249089029645074108611075279849863911029729<113>
29×10126-119 = 3(2)1251<127> = 17 × 68821 × 138251 × 5328914699623381<16> × 233996403336017578180230354403<30> × 15976047985794772532160692539579394636482979566634985771183646594254821<71> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=2411069237 for P30 x P71 / November 7, 2008 2008 年 11 月 7 日)
29×10127-119 = 3(2)1261<128> = 53 × 2070737 × 87683177 × 110869756429<12> × 84607104219193<14> × 95070682214954468326311130551196839108947<41> × 3754670784430775196082684395797432868827232127<46> (Robert Backstrom / Msieve 1.38 for P41 x P46 / 0.46 hours / November 13, 2008 2008 年 11 月 13 日)
29×10128-119 = 3(2)1271<129> = 3 × 2560764391879<13> × 195630407555737641475441597959544100446483683136103342557<57> × 214401713467205088259322269652181056024814754718303452106669<60> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P57 x P60 / 7.51 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 13, 2008 2008 年 11 月 13 日)
29×10129-119 = 3(2)1281<130> = 23 × 1213 × 1447 × 723389347 × 14136908388814870635901620792537073<35> × 7804979522579487282216412714267347177075015773931605314775746515999118728496747<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P35 x P79 / 4.61 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 14, 2008 2008 年 11 月 14 日)
29×10130-119 = 3(2)1291<131> = 7 × 661 × 12490000153<11> × 84078455171865397847467760865288765955666013538007<50> × 6631454921038865667129918457268982086762167608648817336351681684513<67> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P50 x P67 / 4.00 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 14, 2008 2008 年 11 月 14 日)
29×10131-119 = 3(2)1301<132> = 3 × 192 × 97 × 269 × 1523 × 56817259 × 17995042551372841939533353574619370418923120791<47> × 7322678345243243790674472867484716011829823748915723894088465209557<67> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P47 x P67 / 5.68 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 14, 2008 2008 年 11 月 14 日)
29×10132-119 = 3(2)1311<133> = 1104974417<10> × 832689448153946153171357026481<30> × 80414506743700883354190522171791<32> × 43549763580334770575095184643964731287732358444855048847732003<62> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=3245482761 for P30 / November 7, 2008 2008 年 11 月 7 日) (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1855890600 for P32 x P62 / November 13, 2008 2008 年 11 月 13 日)
29×10133-119 = 3(2)1321<134> = 863 × 170987851 × 8577735603257086524693823847<28> × 25456974239387198592787952114117648678056301080850549719902210561172396702056073351493049317311<95>
29×10134-119 = 3(2)1331<135> = 32 × 1087 × 80093771 × 4010408513071<13> × 102540653214598694715477349022662035052431934428761380361038950383716797640979052081120620560059330267721992607<111>
29×10135-119 = 3(2)1341<136> = 179 × 659 × 31316843 × 253369663 × 434835223 × 1266707812350199<16> × 25391483595754174360559<23> × 246147376887285627582609306223694520864823555547046879441085005171503<69>
29×10136-119 = 3(2)1351<137> = 7 × 31 × 733 × 1356610666818420157<19> × 778269330892328300242922841001<30> × 191869805722451403831695560200269209191516270374138539136535159919522979621293290373<84> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=2088296788 for P30 x P84 / November 7, 2008 2008 年 11 月 7 日)
29×10137-119 = 3(2)1361<138> = 3 × 720703 × 175418193893329959997<21> × 833113457520160415741<21> × 4775676152509569129014103327365320999<37> × 213532630462205808407077683016256587935549400085341903<54> (Sinkiti Sibata / Msieve 1.38 for P37 x P54 / 2.66 hours / November 13, 2008 2008 年 11 月 13 日)
29×10138-119 = 3(2)1371<139> = 163 × 191 × 53591 × 15463122908501011867111<23> × 37790779259699711501744662535598103375993317541545193<53> × 3304909721696979379133654104517864011655110436713126409<55> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P53 x P55 / 16.18 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 14, 2008 2008 年 11 月 14 日)
29×10139-119 = 3(2)1381<140> = 60577859 × 281767272770529021750867390333886008734104756792620853<54> × 1887778432180578846158888755050078279456816964415040725088239206457139407989523<79> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P54 x P79 / 14.17 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 14, 2008 2008 年 11 月 14 日)
29×10140-119 = 3(2)1391<141> = 3 × 53 × 61 × 151 × 220014640836340895540007348489003933785911036245439532731388449428610597680393228374210915593962525133827698644580838348339469845134729<135>
29×10141-119 = 3(2)1401<142> = 83 × 263 × 397 × 12804731909514238216319764752004572447961<41> × 29037595469567804574615307737073820889361614690525154000942625597804357574692524096735208662997<95> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P41 x P95 / 16.98 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 14, 2008 2008 年 11 月 14 日)
29×10142-119 = 3(2)1411<143> = 7 × 17 × 351229883 × 5178567259<10> × 255467237901787825132567<24> × 45143496014853321725780216738462753<35> × 12908537643623924412394518260364827954583231327679114647926028197<65> (Sinkiti Sibata / Msieve 1.38 for P35 x P65 / 15.56 hours / November 15, 2008 2008 年 11 月 15 日)
29×10143-119 = 3(2)1421<144> = 32 × 55609 × 650194896647<12> × 49601553764603257081180178639<29> × 19963149370395087218618406884095522956660197163751691004313055465057107836836733450054143544625477<98>
29×10144-119 = 3(2)1431<145> = 751 × 215399 × 6960341 × 902050381 × 1305368815753<13> × 2430397578926771630920233798878046678934801292734094775281986566148136569274649704511764052420636050407553933<109>
29×10145-119 = 3(2)1441<146> = 503 × 5701 × 17491 × 33713 × 221709130896523847<18> × 135401502323718758207541890954286813529<39> × 634771412258360352784225937469269688580613867062470480811701781026293841083<75> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P39 x P75 / 18.25 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 14, 2008 2008 年 11 月 14 日)
29×10146-119 = 3(2)1451<147> = 3 × 50273 × 138763 × 36977657 × 9004587732482969505971<22> × 638118635528783892084664827691<30> × 72463799162852949598093697721204060087373758930124068836329063741683457726309<77> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=3893756692 for P30 x P77 / November 8, 2008 2008 年 11 月 8 日)
29×10147-119 = 3(2)1461<148> = 15227 × 1590949 × 16431167000761097086608455694019255023550612169609099680183<59> × 8094992916345143796027360708747750051847185126894636439636003383767537995429069<79> (Serge Batalov / Msieve-1.38 snfs for P59 x P79 / 10.00 hours on Opteron-2.8GHz; Linux x86_64 / November 13, 2008 2008 年 11 月 13 日)
29×10148-119 = 3(2)1471<149> = 7 × 2411 × 22063 × 568250231 × 152284622875230074741065355820202392300794935843720255415401328753261354219277984246433325097258373345772466426686704742540378108041<132>
29×10149-119 = 3(2)1481<150> = 3 × 19 × 896682499 × 1924236157<10> × 5248520098513<13> × 12691370501347<14> × 157903305917839733740017637<27> × 129195030083248913958986076687342108857<39> × 2411021876521509839452958184061867819829<40> (Makoto Kamada / Msieve 1.38 for P39 x P40 / 9.9 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / November 10, 2008 2008 年 11 月 10 日)
29×10150-119 = 3(2)1491<151> = 947819 × 46909028923<11> × 72472565517041652254416679532358886330173787696979965940278168561141835632621651800817755247748696257278055847045078359112782193892933<134>
29×10151-119 = 3(2)1501<152> = 23 × 31 × 5783540629<10> × 6030710732056972996146796583655799<34> × 1295697647062495140482578388904535513056221855990277044863111841403601357591160208257520544152967493582327<106> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1393290503 for P34 x P106 / November 13, 2008 2008 年 11 月 13 日)
29×10152-119 = 3(2)1511<153> = 33 × 977 × 1307 × 94219 × 548062798963<12> × 22854258046007<14> × 4717553768781855497144740383059502295079<40> × 1678683310635184185657719324978438526481246512191333254586664692875578138677<76> (Sinkiti Sibata / Msieve for P40 x P76 / 27.99 hours / November 16, 2008 2008 年 11 月 16 日)
29×10153-119 = 3(2)1521<154> = 53 × 1916921 × 794286653 × 179960253364535182856090133804477727808273167171138429030663<60> × 221881729778503414210444550530112268200498799466442770208768757814706434720003<78> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P60 x P78 / 42.37 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 16, 2008 2008 年 11 月 16 日)
29×10154-119 = 3(2)1531<155> = 7 × 8807 × 522672261062178173566841671758215416668919564343658813966523742838038284841963733754354851209625820730623728239261337932849230680501260721540044805629<150>
29×10155-119 = 3(2)1541<156> = 3 × 131 × 1006525331129<13> × 344455311610031123<18> × 14147373572305076507<20> × 167158906402976522496454151210227606324251566514690219474473868981510447323490561819775400157566506345613<105>
29×10156-119 = 3(2)1551<157> = 595877 × 33067975599667<14> × 583036481857549<15> × 44705744025044195944187429<26> × 1841104617768553066539921824820814632819354673<46> × 3407640197035790755600685336333428103580485026012643<52> (Jo Yeong Uk / Msieve 1.32 for P46 x P52 / 4.01 hours on Core 2 Quad Q6600,Windows Vista(tm) Ultimate K x64 / November 14, 2008 2008 年 11 月 14 日)
29×10157-119 = 3(2)1561<158> = 59 × 32933 × 3817778803<10> × 4343715977685104751918479433532137897673810556507675104888975455752998585831878525331655315895235793043641631092373160670771707169218570142281<142>
29×10158-119 = 3(2)1571<159> = 3 × 17 × 599 × 3320365643961975314499641<25> × 3113310324647811275855004400415874517<37> × 1020352344078143226664091214916101776213040500244838288298165298571081699060386378588779843357<94> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2684999099 for P37 x P94 / November 21, 2008 2008 年 11 月 21 日)
29×10159-119 = 3(2)1581<160> = 113 × 127 × 439 × 647 × 2930064630617<13> × 19376489485924470209262041162989<32> × 13923622050520029560513560197456375374993934656664684892227903781263511730077220792928335238140859671738599<107> (Robert Backstrom / GMP-ECM 6.2.1 B1=800000, sigma=2305516098 for P32 x P107 / November 21, 2008 2008 年 11 月 21 日)
29×10160-119 = 3(2)1591<161> = 72 × 139 × 40847 × 18253128602341254198842821893661<32> × 6345226497718938510286061285419885351058760601004217059723600188850418274067433346695714840225752101329620685997274617133<121> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=1339839377 for P32 x P121 / November 8, 2008 2008 年 11 月 8 日)
29×10161-119 = 3(2)1601<162> = 32 × 107 × 12829059953513<14> × 378530381329301986746325121<27> × 2546623150563877412685398371793679334001<40> × 27056333382115000182457185576833611392251799115728017548960989369903042621465479<80> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P27 x P40 x P80 / 55.10 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 29, 2008 2008 年 11 月 29 日)
29×10162-119 = 3(2)1611<163> = 893147 × 19471057 × 746734138448512777471322756059<30> × 46463222638182568129303288420608644739547623874362397<53> × 5340324918609786317635870057618451405996157273164823665163903114313<67> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3179040063 for P30 / November 13, 2008 2008 年 11 月 13 日) (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs for P53 x P67 / 42.18 hours, 2.54 hours / November 27, 2008 2008 年 11 月 27 日)
29×10163-119 = 3(2)1621<164> = 229 × 4889505560917949<16> × 28777632468238108489285358594874003328599294113620228803638651319434158129607020268090998618490675668832153179609466324780658927114753336932563901<146>
29×10164-119 = 3(2)1631<165> = 3 × 5119 × 21263916287<11> × 338244286409<12> × 2917261637997288707425194293131820715754108730184759615146297434534357059905386301885970892574998142957614579137426985833234843024489972791<139>
29×10165-119 = 3(2)1641<166> = 3882227429<10> × 13190161793297<14> × 62925169208238643986767525134425745658714395924900471987046854272349884587007449108958903309801711676988594969297013965159160126341153755463417<143>
29×10166-119 = 3(2)1651<167> = 7 × 31 × 53 × 35251 × 497346601 × 213701737408337603<18> × 18906556686684146433835881345695559366409569958898328591881699<62> × 39552031510187221770337793580470173334223496149600838342975909506856043<71> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.38 snfs for P62 x P71 / 44.06 hours, 2.78 hours / November 28, 2008 2008 年 11 月 28 日)
29×10167-119 = 3(2)1661<168> = 3 × 19 × 1217 × 545375959 × 20778919487<11> × 45602021140493<14> × 227175975763318381887575509543877<33> × 14614344872681959582619366399806329959<38> × 2707355331188622324443371660128309350699561584856921482876427<61> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2608115933 for P38 / November 14, 2008 2008 年 11 月 14 日) (Sinkiti Sibata / Msieve 1.38 for P33 x P61 / 2.48 hours on Binary, Widows Vista / November 15, 2008 2008 年 11 月 15 日)
29×10168-119 = 3(2)1671<169> = 47 × 1354711 × 33098700893973541<17> × 80197477465388443<17> × 1100732423272300277487241527837358243053560351<46> × 17320385646653016613128923249554916759743959254925800399695761532181811650257807901<83> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P46 x P83 / 45.11 hours on Core 2 Quad Q6700 / August 1, 2009 2009 年 8 月 1 日)
29×10169-119 = 3(2)1681<170> = 739 × 20375213 × 761841315115219<15> × 30185337815716905249692358934686648943<38> × 93056846468806542487059667457037413274973699346875535788608105484856824239552996076515719745447019284007559<107> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs for P38 x P107 / 65.82 hours, 1.98 hours / May 26, 2009 2009 年 5 月 26 日)
29×10170-119 = 3(2)1691<171> = 32 × 257 × 3307 × 22121849 × 12128123182634994286036427814173335412207095123621<50> × 157011201819375816815738752111265025210257283065238438120187834665257869938723695758458452814451628310344539<108> (Jeff Gilchrist / GGNFS & Msieve 1.41 snfs for P50 x P108 / 34.88 hours on Core2 Q9550 @ 3.4GHz in Vista 64bit / April 14, 2009 2009 年 4 月 14 日)
29×10171-119 = 3(2)1701<172> = 77378189879<11> × 1373059027510165266686030191368009754437222748912948998947<58> × 30328275365755465480725921312582058358200443978085503922256042894999692403183763300297990866427565037417<104> (Ignacio Santos / GGNFS, Msieve snfs for P58 x P104 / 72.57 hours / September 11, 2009 2009 年 9 月 11 日)
29×10172-119 = 3(2)1711<173> = 7 × 911 × 2137 × 51674677 × 686837002770721101814315002743<30> × 66619764671176635087249126590613431344175126180553448850764036499467766258915040323962972670825895791557302195078744381102836239<128> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=321248721 for P30 x P128 / November 14, 2008 2008 年 11 月 14 日)
29×10173-119 = 3(2)1721<174> = 3 × 23 × 311 × 49098152499471616656660919351<29> × 14838186516210305046557845480672097150896353660413<50> × 20611045989668552636538978944680578087310037532962233082698707362774555716491533288790480013<92> (Ray Chandler / yafu v1.28.5, GMP-ECM B1=250000, sigma=1233271169 for P50 x P92 / November 11, 2011 2011 年 11 月 11 日)
29×10174-119 = 3(2)1731<175> = 17 × 27953 × 304777269877<12> × 147339662694402555925025782895458006626217284707365606196648711101<66> × 150999634772200393043628344411432190706356025888901650649778237578958078998346970187191665773<93> (Ignacio Santos / GGNFS, Msieve snfs for P66 x P93 / September 3, 2010 2010 年 9 月 3 日)
29×10175-119 = 3(2)1741<176> = 5245397 × 605143759404058532506311519976226929098111859199798817724597307641243224574079011<81> × 10151227618955447437999153936623580796330632494425722667552767229477201591584429892849363<89> (Wataru Sakai / for P81 x P89 / July 4, 2010 2010 年 7 月 4 日)
29×10176-119 = 3(2)1751<177> = 3 × 173207 × 391908835013291807753389<24> × 1582281462185314790465686917516312943778245182697521956263289939928030762819376908195220049309020707467828932037636870570979915513353787899637500909<148>
29×10177-119 = 3(2)1761<178> = 4238791109846768319832989175973237807031692293<46> × 9122678024342822606413342521202266190898888619350609<52> × 83328032289291372193606565637887001304378576354453021528093000914205072237905433<80> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P46 x P52 x P80 / 216.80 hours / November 22, 2008 2008 年 11 月 22 日)
29×10178-119 = 3(2)1771<179> = 7 × 461 × 199450159 × 1216159340323225603<19> × 41165335243089306620282524665077716012509865763150799614264800705734324143694920496017269849464909186157134400059673190274970074958088744995121303699<149>
29×10179-119 = 3(2)1781<180> = 33 × 53 × 3549619 × 13310355728458018191436051090311587<35> × 4765894801948423367811395504889628582659434826497324644479808786421859894569556486917950969689887532292510529531422667771365530802998547<136> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=4238845314 for P35 x P136 / November 14, 2008 2008 年 11 月 14 日)
29×10180-119 = 3(2)1791<181> = 1221716782838003<16> × 943860986399045267189494283027216704036368730846564532215746571<63> × 2794324980797420592824178269219224216788216189475714595155016649428458473043276267969061075235883114717<103> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs for P63 x P103 / October 14, 2013 2013 年 10 月 14 日)
29×10181-119 = 3(2)1801<182> = 31 × 3307135195813<13> × 1923356496455197516762559<25> × 460561125376459794444845824109078897158463<42> × 354809123784104645319050609505833917020788138206086948735434575900763240916706950054544212550186158871<102> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4152840460 for P42 x P102 / May 16, 2011 2011 年 5 月 16 日)
29×10182-119 = 3(2)1811<183> = 3 × 83 × 347 × 6091 × 806671 × 892161314309<12> × 850742707983861150006686181126451375548871611977383718249982557996530942225801067674478926750099752304098724222828293243741621287288948245667716405419632743<156>
29×10183-119 = 3(2)1821<184> = 16357829 × 32147821 × 6127428935001921334873906642294411072222047243328681308458603486029040552830779022756956127490914401363382213239733770089615457668955658498164491491372955392448629037869<169>
29×10184-119 = 3(2)1831<185> = 7 × 3547253 × 22124567 × 4554039086972747233<19> × 1125483683198753328964583<25> × 165817841505380960130068854852193229715240461276206379249562721<63> × 69011789571079973587519952848989453455506844456394532251953780287<65> (Sinkiti Sibata / Msieve 1.40 gnfs for P63 x P65 / April 14, 2010 2010 年 4 月 14 日)
29×10185-119 = 3(2)1841<186> = 3 × 19 × 66747564203<11> × 84692550357381416692669021657229547871371354085772206252220134554939553913912004308816271271912161083466027400032424858059905519051760782275429060618741729503748399923037151<173>
29×10186-119 = 3(2)1851<187> = 137519 × 836063 × 5665817540948423<16> × 4064218077645265877744840537946744998262517022915518037791<58> × 1217066170105841147332725047074735347792528056687071815603583499768956502146723688175074342976542748901<103> (LegionMammal978 / Msieve 1.53 snfs for P58 x P103 / February 21, 2017 2017 年 2 月 21 日)
29×10187-119 = 3(2)1861<188> = 283 × 11648845163<11> × 41886268280264208532681669<26> × 18691020012823047651323126666788651983704864303<47> × 12484797648073890310622594805353794553117848607300148289275732109002531562563873727709983907156714970607<104> (Rich Dickerson / GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] B1=11000000, sigma=4175479658 for P47 x P104 / April 23, 2014 2014 年 4 月 23 日)
29×10188-119 = 3(2)1871<189> = 32 × 541 × 1399 × 21157 × 9080488010543021<16> × 520813296500721066890414839227493019544887049193709869620473<60> × 472772994113023070815974531575038267430682526295297562936663978964980382867384408267489308226338103511<102> (Dylan Delgado / CADO-NFS commit 50ad0f1fd for P60 x P102 / May 28, 2019 2019 年 5 月 28 日)
29×10189-119 = 3(2)1881<190> = 3115352841186552944395468249<28> × 231793294881344278818104261148917703964650919<45> × 4462183008092066078397849842370171318398782110531142177219756444237125997504573380759220649278869598677168768281638691<118> (Eric Jeancolas / cado-nfs-3.0.0 for P45 x P118 / August 19, 2020 2020 年 8 月 19 日)
29×10190-119 = 3(2)1891<191> = 7 × 17 × 227 × 7583 × 40751 × 15738819149<11> × 767679927278402269<18> × 8796792628942521842371<22> × 36318395940976932919748973005725981503363286255460365526578886569153249361662500800404314512784600263988017189134572049272163499<128>
29×10191-119 = 3(2)1901<192> = 3 × 234962048155245284311390320134874392608349302915475444887775014352507137133437<78> × 457126622153211121929472840043706090744226808049801534743653872091775669361431051141638973630223980189775046870811<114> (Kenji Ibusuki / GGNFS-0.77.1 snfs for P78 x P114 / 665.59 hours on Core 2 Quad Q6700 (2.66GHz), Windows XP, MinGW-3.1.0 + MSYS (procrels.exe, matbuild.exe, matsolve.exe, sqrt.exe) and Cygwin (Others) / November 23, 2008 2008 年 11 月 23 日)
29×10192-119 = 3(2)1911<193> = 53 × 48137164183796206652071787<26> × 2943888419481544006309315000087<31> × 429020230421450285311212434859658639064539373449782866826090896704656190488554204941205949491030215568909552910984558484099860072701453<135> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=3413202675 for P31 x P135 / November 9, 2008 2008 年 11 月 9 日)
29×10193-119 = 3(2)1921<194> = 149 × 86384299619992327<17> × 336985849772319899<18> × 6352277888151731480027739119<28> × 36114926622068922279828150503<29> × 32382212113866347652762306965318019891018429768753436705348834258291035243947909895061722463838619589<101>
29×10194-119 = 3(2)1931<195> = 3 × 571 × 24413 × 13013808637<11> × 2099885755515756163850216432792813<34> × 144840519680930382124491046945074833<36> × 1946645257855331482078239265320378617465788916608379860801359205388076343673770496219252929965618695490853433<109> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=917491355 for P34 / May 17, 2011 2011 年 5 月 17 日) (matsui / Msieve 1.49 snfs for P36 x P109 / May 22, 2011 2011 年 5 月 22 日)
29×10195-119 = 3(2)1941<196> = 23 × 30269 × 288930338469005353599485580369275166695378337711935311389042956166151<69> × 16019038041812382906620435052163734761724146976630407409562843071091912461755043398419988334138406202497057347875424597233<122> (Robert Backstrom / Msieve 1.42 snfs for P69 x P122 / March 2, 2010 2010 年 3 月 2 日)
29×10196-119 = 3(2)1951<197> = 7 × 31 × 708371 × 534129205272832149282411490205968060351076946498323493064736782303<66> × 392453906308692227003873196717037062967634370763395029129466310609175856590024905364835717566665093166345409659891013994601<123> (Robert Backstrom / Msieve 1.44 snfs for P66 x P123 / November 18, 2010 2010 年 11 月 18 日)
29×10197-119 = 3(2)1961<198> = 32 × 733 × 30284446744765948586739033517173142430691492465852128082919<59> × 1612832849085320294181719309575580712666520201872565523809488530494958784866435031325234430059760446218728851046460531872792697903080047<136> (Robert Backstrom / Msieve 1.42 snfs for P59 x P136 / March 26, 2010 2010 年 3 月 26 日)
29×10198-119 = 3(2)1971<199> = 467 × 675253 × 188635419335562239<18> × 54168753718332294531584334759794098673381646781779427475706094703277836322575895195705182049874876450183416463198562362330856420730474336278117804458063319173870695234593789<173>
29×10199-119 = 3(2)1981<200> = 12983 × 135123913 × 784830287 × 2800975366074227639275163<25> × 59042658088541072222079473718797<32> × 155050675604209896581134157847019089481518228889<48> × 912690668714493907373500136316795190459438996987480098514102369812675642763<75> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=3273618220 for P32 / November 9, 2008 2008 年 11 月 9 日) (Andreas Tete / Msieve v1.40, GGNFS for P48 x P75 / 67 hours on Intel Core 2 Duo T8100 Windows Vista Home Premium 32bit / April 1, 2009 2009 年 4 月 1 日)
29×10200-119 = 3(2)1991<201> = 3 × 61 × 431 × 523 × 646513092399479<15> × 5784831283304282435593532332527307<34> × 106697238767939187418181198107960671299051298712629256083437399<63> × 19575111210909860807801139346100344497060241638811816496418459751726103497404079117<83> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=73107423 for P34 / November 9, 2008 2008 年 11 月 9 日) (Eric Jeancolas / cado-nfs-3.0.0 for P63 x P83 / May 20, 2020 2020 年 5 月 20 日)
29×10201-119 = 3(2)2001<202> = 127 × 5521 × 211681 × 23792010541736034756794179<26> × 912475049958948841114868245330809008746132374480055849487044289107936530221824019210393976784525387125473931048308668280908551047043705236510967399223542975538575137<165>
29×10202-119 = 3(2)2011<203> = 72 × 25639 × 20967671 × 747395325508673<15> × 6117662000982517919383<22> × 12161117955951318771617154325824297162316773348980705987<56> × 21998789072883190820258037385587139237451199958092335940849314108047483270208873475075809415122777<98> (Thomas Kozlowski / cado-nfs for P56 x P98 / September 6, 2024 2024 年 9 月 6 日)
29×10203-119 = 3(2)2021<204> = 3 × 19 × 32119 × 95443 × 16488133661<11> × 188709448679623<15> × 2050947003247254507479846008565303931301073372495575593908499080327<67> × 288971459947968905392639418792291792478919189879402063685266978970161385624369644210140212466947237989<102> (Bob Backstrom / Msieve 1.54 snfs for P67 x P102 / February 14, 2022 2022 年 2 月 14 日)
29×10204-119 = 3(2)2031<205> = 17203155434383<14> × 94199451551152187041<20> × 5434608651830780384761<22> × 365873306344060151774527266419637389186385194187339917924372327256610465182168531930646658135387101127978305220609898092631155377129528490090865320987<150>
29×10205-119 = 3(2)2041<206> = 53 × 109 × 50909 × 17810166706889567659252372411<29> × 41098350376292807538356274626944191602393<41> × 149680828961130993451293783013206839990155926303277956958091002873162905851903798236906554383942990058679330526804519592835528139<129> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2241855718 for P41 x P129 / June 13, 2013 2013 年 6 月 13 日)
29×10206-119 = 3(2)2051<207> = 36 × 17 × 139 × 569 × 1145533 × 577489204775050262843<21> × 1071589279009006493215107000294224788963401538064247032570617<61> × 463737415514302325942083149407669506777896556636333406534750692958904681801875744181780993784060974085159353329<111> (Bob Backstrom / Msieve 1.44 snfs for P61 x P111 / July 7, 2024 2024 年 7 月 7 日)
29×10207-119 = 3(2)2061<208> = 301331 × 226058819884735186081903103<27> × 47303167143723065473563440300773185452236131580819565895606652518472290240352688908936045247203916244148283810606339667719717007611754991667331717102839982790015555215402462497<176>
29×10208-119 = 3(2)2071<209> = 7 × 4092859 × 1775262031<10> × 5482501628557<13> × 54755141524819<14> × 263062212555343914111232237378449706991845973<45> × 200583757747080449330454992818371014768151678917620776011<57> × 39995422938919461414405305604067259383438133107732449368189642143<65> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1224574265 for P45 / June 13, 2013 2013 年 6 月 13 日) (Erik Branger / GGNFS, Msieve gnfs for P57 x P65 / June 15, 2013 2013 年 6 月 15 日)
29×10209-119 = 3(2)2081<210> = 3 × 24859622469920138241965957442357548163488504207397930034149247992654049858364782141<83> × 4320556659191794019947405650852279820343131070210644449842256936500061883406898693858152165529169048568247285517477224696305627<127> (Serge Batalov / for P83 x P127 / December 11, 2014 2014 年 12 月 11 日)
29×10210-119 = 3(2)2091<211> = 56169097 × 27183469123<11> × 149930232867366499<18> × [14075503879619406217158389397781491424668955939787427603985877586266911837244499789554848061144997789809766323067337265007838665723129292274983311146436841895766462973946186909<176>] Free to factor
29×10211-119 = 3(2)2101<212> = 31 × 2658683 × 2762233 × 15001447 × 917223548309<12> × 244503687738659<15> × [42070063232821548088118875508093472332821484656797202171465928358099632178558259126731394398459803482301778379068631585719651942332429979929227016655501690676734617<164>] Free to factor
29×10212-119 = 3(2)2111<213> = 3 × 15208637 × 41429886086890489472212081<26> × 170463028614640632334478024192508674576758552510908391097582671097943754321409170716827145741662287485230862708622530319696869252727771900305193414241036651275355997545796154254731<180>
29×10213-119 = 3(2)2121<214> = 601 × 2445366134391887873<19> × 2192487485025924159939322344546640630787783382839309526907235341820521600071968998209767363564524864925965053169888199672740401878096771979185959275120651724597803446451716034745160830912545877<193>
29×10214-119 = 3(2)2131<215> = 7 × 47 × 107 × 53411 × 542379217 × 2895018403<10> × 32478293051<11> × 336045078121773854207284631881224851928861444796211562330409501831664870431992980358421647507612466352368590790208979588390252053025498141702704543315591770582657130688605846437<177>
29×10215-119 = 3(2)2141<216> = 32 × 59 × 151 × 334963 × 31406873 × 31145628691<11> × 1282939663971262870247<22> × 3385550089488430606832902541<28> × 38915715847203488245202431985389259<35> × 72561271279534368974461704106125304922389446271331152532936700106020584086227303660160250129191718355793<104> (Ignacio Santos / GMP-ECM 7.0 B1=1000000, sigma=1 for P35 x P104 / May 21, 2013 2013 年 5 月 21 日)
29×10216-119 = 3(2)2151<217> = 2410507949<10> × 398262369186220054883<21> × 2268947406439140742673<22> × [1479289648927169433564138784310815949701010283810260587745903694626391221756464955964663603762717474477142432356799159580651865639496402675994802123240726042017708731<166>] Free to factor
29×10217-119 = 3(2)2161<218> = 23 × 717103987 × 5594232094913200531561<22> × 46944822908563426612702557800717<32> × 7439047464127144181179525563886213165234903697841759791338719610537019646847660458092525454475461485636252534534454827728905448329291359670172266224934133<154> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=488044007 for P32 x P154 / May 22, 2013 2013 年 5 月 22 日)
29×10218-119 = 3(2)2171<219> = 3 × 532 × 1208399 × 41207279 × 767888562980011228721357958741242309325373367379430324095116796267852750591120444133510113458372198626383431277091520253661471795972019371457963844965215535656689308236147851311557218049486725332801063<201>
29×10219-119 = 3(2)2181<220> = 163 × 433 × 11119 × 13367 × 466513832149<12> × 97424752076290199558011912351<29> × 6758440193648614297863254519848910047995652888579062466440452719389765210428967072828681543648059902526884421793650494156625153633208329777539259122148288107437302437<166>
29×10220-119 = 3(2)2191<221> = 7 × 626051 × 2729117 × 22230990182030523136813351<26> × 837744034971882952950001347900406027<36> × 1279618641363002637027214395394250695549<40> × 113051120414808106954277150463206108236217704907487258943137136996430654920374243859402285126688211812965333<108> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=274516876 for P36 / May 22, 2013 2013 年 5 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=382650418 for P40 x P108 / June 3, 2013 2013 年 6 月 3 日)
29×10221-119 = 3(2)2201<222> = 3 × 19 × 4685431 × 76121803 × 28893784715219<14> × 548551727743264913163290168608460777583978383666422274923801508643684115574383920422126891056774321993780483485118590027605848700878676280975663221433438745020981864737213463343251305988621059<192>
29×10222-119 = 3(2)2211<223> = 17 × 53017259 × 3575109072691417693891877096344643079809852133381500210783438101146538872671879772121467777149836990676633436117830124872468662929093049427570504720783163462500370949927192823602884201097633266735696080782499882807<214>
29×10223-119 = 3(2)2221<224> = 83 × 9437 × 1023935782099955395587550633717<31> × 23752456446509870770726648993728526577721618293<47> × 1691461786461676461688527532076898886483703869279096587809690417688653130835559077270111494182782743124425746592157738605821397153622067480771<142> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1577237299 for P31 / May 17, 2013 2013 年 5 月 17 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3560740859 for P47 x P142 / January 7, 2014 2014 年 1 月 7 日)
29×10224-119 = 3(2)2231<225> = 32 × 230554033277<12> × 427497198446317215444770052551<30> × 363251136665446532359782416865069682556031025304872011755004864828543493273812541471354036239226962831476383160263358283854607534760969245121321496880638522790447100287656778073520047<183> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=48443552 for P30 x P183 / May 22, 2013 2013 年 5 月 22 日)
29×10225-119 = 3(2)2241<226> = 11855303 × 5555960601466073<16> × 25206836780185036219<20> × [1940730912974717878329295537906510520501357092758606671078955362575202520741351733615844672945162843076645741018760612088002595568898246803548555954947642728072312626768405956467833561<184>] Free to factor
29×10226-119 = 3(2)2251<227> = 7 × 31 × 24533 × 8801707 × 607452046522291<15> × 13159698196793807<17> × [86024124167578476175926074982890631456533895656559279111059821145440172588229683507443804175574021030002092471402655709145515733302420946998670438225150126107428883793642787925030079<182>] Free to factor
29×10227-119 = 3(2)2261<228> = 3 × 97 × 156665519201<12> × 9046866930091897<16> × 9639425847114942010548126834479<31> × 81047515844712419491469721397875560244523270294444401720379835510828259563792346003255091357868531290544965249987563872148599318607912729561782897061011337011628374537<167> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1941273015 for P31 x P167 / May 17, 2013 2013 年 5 月 17 日)
29×10228-119 = 3(2)2271<229> = 130379 × 78237260813189<14> × 1904509167369637<16> × 165863619519233337807736015288428011323208880277244747856526148815333443935012553653427818026838421878289801970513337710689190545389774064263549517588067037479713410281691109662302307843405300543<195>
29×10229-119 = 3(2)2281<230> = 1123 × 1214127944631016001514090854742530973340919<43> × 23632587641807017296827902845632231445489222234965396020950552528606288313496514934083873484069376250795123047990784374636107906574798850280376713942347112875948112592642954433935165033<185> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4276483362 for P43 x P185 / June 3, 2013 2013 年 6 月 3 日)
29×10230-119 = 3(2)2291<231> = 3 × 727 × 78823 × 25514443 × 1569532409<10> × 1219143949879234536229243<25> × [38391536651729667901118153729703031864710736557115662990322344959477248954243625481970991460340201497503517333347738682567157499642655627145335906367520143257805220871564396121208687<182>] Free to factor
29×10231-119 = 3(2)2301<232> = 53 × 223 × [272630698216619191320942738152315950776057384061445318742890449464609715053915070836976243525020917355294206127609968882496169068637128540673679856351825215519267469517067621814216280753212811762604469263239040715984619868197159<228>] Free to factor
29×10232-119 = 3(2)2311<233> = 7 × 846556748732088817<18> × 523866973178008475797978033090249<33> × [10379593673728211662035877467478410461233603256499976596745740030745110127189872646867527603149107909364445204141349063700152523113875319052141713092509489710601662466418334086899491<182>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3660714689 for P33 / May 22, 2013 2013 年 5 月 22 日) Free to factor
29×10233-119 = 3(2)2321<234> = 33 × 191 × 4595621 × 121932428159235553<18> × 42281062224850533451399920326057<32> × [2637236268899382821785962954229050501515178181387000977451151041015419849018650205751327269732591096463087944527322675823698342902316244711887036668018850356700221600178877933<175>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3592642228 for P32 / May 18, 2013 2013 年 5 月 18 日) Free to factor
29×10234-119 = 3(2)2331<235> = 1249 × 2579841651098656703140290009785606262788008184325237968152299617471755181923316430922515790410105862467751979361266791210746374877679921715149897695934525398096254781603060225958544613468552619873676719153100257984165109865670314029<232>
29×10235-119 = 3(2)2341<236> = 673 × 903751 × 30594390089<11> × 51339700219<11> × 1135601116963<13> × 1252168764689806282186477567<28> × 70140235531864785482154429354884850407<38> × 338174306522483520188431429428331207294255936225680399314785246329590970245693033387526022506281460199148755942916863831497298651<129> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3668642533 for P38 x P129 / June 3, 2013 2013 年 6 月 3 日)
29×10236-119 = 3(2)2351<237> = 3 × 4243 × 3239402449<10> × 1235650644518259877368595193729811697<37> × 6324127189013295668848665754186618613261203081996547516313105429307247763258513045159978970402701662764620624674425476096326340786216958734249383104305393342583507057904923927316644471733<187> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3257237972 for P37 x P187 / May 22, 2013 2013 年 5 月 22 日)
29×10237-119 = 3(2)2361<238> = 1049 × 147541 × 2344353392567<13> × [8880638644681941654108568798040500686259846643987549856707257486300335864953773903785042534080946681593551291996448486787310176290096993770088935633316288740886624448273979085167960025759461815474761000137170578392007<217>] Free to factor
29×10238-119 = 3(2)2371<239> = 7 × 172 × 6313231 × 654422849 × 9322088557<10> × 363830560031<12> × 43203657835687570876986484123391<32> × 1002159241818216463299824284854970589799040883<46> × 26253053171531615923851678438611671315507537971645853942393900896163737766427530294919223461805498239244519442899890546083<122> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1006291500 for P32 / May 18, 2013 2013 年 5 月 18 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2315347010 for P46 x P122 / June 27, 2013 2013 年 6 月 27 日)
29×10239-119 = 3(2)2381<240> = 3 × 19 × 23 × 3931 × 73961 × 13151965753837284710130503<26> × [64277105141128889796944323904075178475564464569841610493307455927368414675626057479127296067108296730068771908421510895256433049322822834006802726842572693436358620493507771634828588975527028840344191607<203>] Free to factor
29×10240-119 = 3(2)2391<241> = 397 × 12192158318374513144741697747089<32> × 665708938433692457201789925856973984014724366253875108962222594544890506797317354776052417814316515047867382249740576160664019174667480753357188397837040694448109685751578793216976365886350121943299721204337<207> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=807570709 for P32 x P207 / May 22, 2013 2013 年 5 月 22 日)
29×10241-119 = 3(2)2401<242> = 31 × 401 × 6971 × 247069 × 93733273 × 10671553589<11> × 22064240771950658963821504890383<32> × 7490699795666195609251305377257777<34> × 2515783140202920698466766914580476606127<40> × 3618512419583787295972010367208064066947158827866648724199025842799407460041533098108051673882522145027121<106> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=346259170 for P32, B1=3000000, sigma=2013062167 for P34 / May 22, 2013 2013 年 5 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3671570284 for P40 x P106 / June 3, 2013 2013 年 6 月 3 日)
29×10242-119 = 3(2)2411<243> = 32 × 181 × 49339 × [4009073894543597758589824791568006295805405934498542459021240818628060656441971608957990281891519605852628000263199848494609134504275711178292959533034353468037414375219309302399728365060031271135811651297460247955220591072445777652291<235>] Free to factor
29×10243-119 = 3(2)2421<244> = 127 × [25371828521434820647419072615923009623797025371828521434820647419072615923009623797025371828521434820647419072615923009623797025371828521434820647419072615923009623797025371828521434820647419072615923009623797025371828521434820647419072615923<242>] Free to factor
29×10244-119 = 3(2)2431<245> = 72 × 53 × 167 × 769 × 28392382222854241<17> × 2027161206027397507623982949<28> × 1678613101636878423324026553312292283955978534936229296341199393718787566630919989108853322498647892516475234595711711330754130514634455895176336812544229074341785310873876706111366569093743299<193>
29×10245-119 = 3(2)2441<246> = 3 × 233 × 21881 × 9017451882530828699<19> × 1358111291311131617988613121<28> × 1720251531062881602749276395852503489827430165285378643421385177366966192332446632991638089336740575251057425916255849697863765042506450750982178893948300145735233640308440361912456834634077021<193> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2080164442 for P28 / May 22, 2013 2013 年 5 月 22 日)
29×10246-119 = 3(2)2451<247> = 27031 × 20201791 × [5900699553393553031365210387918469299057433048019635097417772530446009333720593037483663953403556696569092985611506100779187192310390168859395617253997345023777822992499743685446881317574231148775779002357358012450574607074889707445701<235>] Free to factor
29×10247-119 = 3(2)2461<248> = 10429 × 174989 × 2724825185023<13> × 3696939373434575745919535801<28> × [1752754530583627191409601427340806021916716007696720086598808322176579117089882745350540455784707656244415948167050099966608207382488208225737400199271104345515877111851475776475687036917537236684867<199>] Free to factor
29×10248-119 = 3(2)2471<249> = 3 × 1993 × 441572077308978406451792922460093<33> × [122046500711956968528863343023524852786776289279983753033013176550721119793437394211014470004463392029199620841901793046516724062632552529720653503572467403576589045822600398357349724161926791362681589983838512643<213>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4002892418 for P33 / May 22, 2013 2013 年 5 月 22 日) Free to factor
29×10249-119 = 3(2)2481<250> = 8681 × 147139 × 3639345952537639<16> × [693161752356015201479714813134180815690641141594735380981677182184469588210352408641081654033103656491855238180314694648824784165742874778740726427692105353869417148482887733580919541310982832583241989347564229543461121679121<225>] Free to factor
29×10250-119 = 3(2)2491<251> = 7 × 337 × 379 × 20484154463<11> × 18915088815633912811199<23> × 76492438597816085972719312873456766503<38> × 1216027521605229470812062745587417490713558194785907855342990789107809926831089067227475710260865092103734241313596377728861444779150662945221234040996889801235742982876584151<175> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2776810428 for P38 x P175 / May 21, 2013 2013 年 5 月 21 日)
29×10251-119 = 3(2)2501<252> = 32 × 443 × 41237363 × 353340603713<12> × 202112255667913<15> × 142594160746090201<18> × [192455545627126917428048635814586451676825478524338228434210435895091340106543006611054730720755855780104229258187608242208425889874440101917624827967396208248404572828822298031354790355893826014789<198>] Free to factor
29×10252-119 = 3(2)2511<253> = 139 × 3299 × 7026812620833917891452221672192406729360373477513836157506247199875746568552978169147010369879301166523586223473479476497613670203576453780897682581428037321582564200231206365613783601793921031710551534522609254215300084879050382004187495714250061<247>
29×10253-119 = 3(2)2521<254> = 180680985608421785161<21> × 149845064611370852181913513<27> × 7191727735573087033545721276095733849861<40> × 165488323633111744565842217528152511682729580658237036584076237825703043083505041488674866602241200188811136917498261498532162333289746181464141499362589005957862846777<168> (Erik Branger / GMP-ECM B1=3000000, sigma=1:2900830081 for P40 x P168 / September 28, 2016 2016 年 9 月 28 日)
29×10254-119 = 3(2)2531<255> = 3 × 17 × 6133 × 5632368792209<13> × [182903183323989236510038510228668902369692890654806850739484833576694547659167396858126034418844809387685394410588738502134976387391892615809810023636285320009966394708792866374878259532320306625241229345618542486510662179941780102312243<237>] Free to factor
29×10255-119 = 3(2)2541<256> = 293 × 38189 × 1399390163<10> × 8673118275713<13> × 1791187366270536315314839<25> × 13246296710327053457508545735816095882378455958600253462333920275073248552014832145648488957372284354704952519210841826269924466011324366329380798238377144359834497784898167903263597385375458108423040953<203>
29×10256-119 = 3(2)2551<257> = 7 × 31 × 367 × 165457 × 214107353 × 124259504125822357<18> × 5305772489599976653108687<25> × [17323463391714724104752205150000123654963878098672127129853564190766982105897795236735891590753804893916181587327518437886392316234283576133514206301876251208863204160053765458834691369959999557401<197>] Free to factor
29×10257-119 = 3(2)2561<258> = 3 × 19 × 53 × 19300189 × 25951147 × 89984561 × 2841362233<10> × 338205105853<12> × 336401133859523<15> × [7320730627895916167709875399113399229825461640075653136413658581713972702638029140180693039286743642623582178648752167985248139662182096449706877970045168225321128631902634268794815548712660558001<196>] Free to factor
29×10258-119 = 3(2)2571<259> = 733 × 5581 × 11731 × 4285703402534772120993281<25> × [15666873783891140572704129562197039721418218336206706118115669649140756445150802816899959961952752602175792807947389285696078308316874013788943504479168498646366607848026317527548334479491321208815031137625048575059081717207<224>] Free to factor
29×10259-119 = 3(2)2581<260> = 2841263379233<13> × 94544546744275518167<20> × 611066719992730542142880027<27> × [196299357794988533540691214168698941451933982276958378009015267498504278584525720914955946920741670653926621233075311530093670835630135097219357181501134089785853792263319678525044776032039476917680193<201>] Free to factor
29×10260-119 = 3(2)2591<261> = 33 × 47 × 61 × 928652137950123583<18> × [4482403705163501535378774451435348164503826223298914590655152136773704666130871833499341655092215020681250975450533064513629865285925318659834134594616396851349903647707809289268576546729486353098497781455413916791050376586753732131265043<238>] Free to factor
29×10261-119 = 3(2)2601<262> = 23 × 13337 × 7693424761446739457<19> × [1365368220807125742125278515170508170405681532925639854199162876539223970610047186916259803254283718677357904036224979775810509946584749032966716797058086431406451875884009173486470784520524575166694996049623364681312393286746406579562803<238>] Free to factor
29×10262-119 = 3(2)2611<263> = 7 × 47431 × [97049916788062726373114094224760244873672800556062557707051814281263375737453872007223191048115675469094119343955948708115012852420876708789677101540650696266221977254846053732857721810094730758431713503291163471214492698332381240184153890379776403684818013<257>] Free to factor
29×10263-119 = 3(2)2621<264> = 3 × 32165069 × 520248384691787<15> × 20678476245189124755217921<26> × [310399113742544997931404030170638721526008458788149789207494348916659654914051336243275333589019004363042697004633949689730136170816022176608981658792888805578861427730294696897953638689709738083467725667280402494689<216>] Free to factor
29×10264-119 = 3(2)2631<265> = 83 × 79693 × 401330967901277<15> × [1213820722862211289491990033195639686658671984601762141471542928342337349824339980944580803324447167411804664340429607144806541296032363949283370880763774905848723965981553257505042210048146195530362123683441589091566875250814161290743871239767<244>] Free to factor
29×10265-119 = 3(2)2641<266> = 4111 × 7603 × 3925993 × 689913341298341<15> × [380608915406070824430489716763534088112542860874066781355749540323133682037760065421266757994306785464309397812610223578689411922798995083631121615964176535029486133316088093770296028271698698329488113101075718076449020438683697130775349<237>] Free to factor
29×10266-119 = 3(2)2651<267> = 3 × 3353927 × 513149899 × 1051437466909<13> × [59354401707352630480430862491109475117683021634505172109260183791186583691750252034941733052960783165433238316400740825996644477039980879134681929235590790724516448173518988491970829085717881417563921007511072227580026762206053001280256551<239>] Free to factor
29×10267-119 = 3(2)2661<268> = 107 × 38737 × 83751326371199<14> × 15364799594458002963010757058041786329<38> × 604125452473643587517135062753858898185116851931688427086272334356708257815198893993827904856069368360361802451286338173038352425817255320214820939178208277362531495742504688508400807597174649240219138487698289<210> (Erik Branger / GMP-ECM B1=3000000, sigma=1:1382396922 for P38 x P210 / September 28, 2016 2016 年 9 月 28 日)
29×10268-119 = 3(2)2671<269> = 7 × 54367 × 5428271 × 8538053 × 42564451 × 2402790248736113<16> × 17862359051677493281498105595850231133888024306437152827545752117394179768636743588800723883480990884408293749991773018599468389268799402864721410925441052225485503515627799507086349551546937708666643757034445479951703646065861<227>
29×10269-119 = 3(2)2681<270> = 32 × 751 × 1427 × 67960939 × 753717094751<12> × 1399069521257<13> × [466167548035547106517671845649523307007895646331185429755412101404762081502357365300880408901162343318658767889020918526668648562687632275293226340124508976610427642901395595831142808176125990162703515391546065968808612480671118589<231>] Free to factor
29×10270-119 = 3(2)2691<271> = 17 × 53 × 6709 × 233327988811465910524298507513<30> × [2284578408549567310568936965625011264015425573000202937608883910549962898668253691912058484886615216898961510217754697466595940606255988411384237945698761932755669829655624603946142421307619260090809145290720509391978921054633771016013<235>] (Makoto Kamada / GMP-ECM 7.0.1 B1=1e6, sigma=5556854730638191847 for P30 / July 1, 2016 2016 年 7 月 1 日) Free to factor
29×10271-119 = 3(2)2701<272> = 31 × 113 × 10427 × 25349137573<11> × 318565627144701621592008069961<30> × 109243064643841393251304585848009789032210948045595504473426633534289001205641587628568032303243546205321982959252234420775974523103486913945426496565848127024721119547688254728649905821030441872593188237595213828716116454397<225> (Makoto Kamada / GMP-ECM 7.0.1 B1=25e4, sigma=12753062627745427965 for P30 x P225 / July 4, 2016 2016 年 7 月 4 日)
29×10272-119 = 3(2)2711<273> = 3 × 4271 × 27956719225739<14> × 1233439399443626465431105145226296317<37> × [729290641626963994598941448300505619620914863826751442773549660695497224595192695016525069068819709403022988941497727260059195238363604745760353618059304121994274333737796157038956802663408570856569760238896492520080159<219>] (Makoto Kamada / GMP-ECM 7.0.1 B1=1e6, sigma=18150424268513358436 for P37 / July 4, 2016 2016 年 7 月 4 日) Free to factor
29×10273-119 = 3(2)2721<274> = 59 × 951322909643589318877<21> × [57408410347574982602039561097977283390675690199830012372376286073099128924259965403378458343961726733179076413010975267727616328641806383245944965178302825240530568294255603711122487291732420787103750268913465919790946649154271082465037725206190414147<251>] Free to factor
29×10274-119 = 3(2)2731<275> = 7 × 4603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603174603<274>
29×10275-119 = 3(2)2741<276> = 3 × 19 × 439988291117133383<18> × 12848117908188114010252296118681436860677947549524719137765943520901011156369510745977610376731162368165613697996094186464848158438291184244104492552128359881735141469554073803328201492993670585989994492141705734870978066335642022114660068293025432880286691<257>
29×10276-119 = 3(2)2751<277> = 193 × 248310905126985885157<21> × [67236080187757026688292439303174825563210106199099796973123317079672286749923197986753794641085148645132527622383977066994430423934833115569433654789702962068134870465715704839333009469779961293632191875421128610191281803685266708994462334332843854910921<254>] Free to factor
29×10277-119 = 3(2)2761<278> = 1069 × 361594491130670515213<21> × 3670756665575956344711559<25> × [22709124002438520814677153729790164222585841579213336513623395781658601625005555907922139565158082683104872050600885619421564541805185009096142763426544119004939752210728039918108715196753764004092534455470711003842803879907523827<230>] Free to factor
29×10278-119 = 3(2)2771<279> = 32 × 313 × 213847 × 2093201598885432026749917529<28> × [255537370545302895797091336617987230264485458116512297136014673172418786398767513932013371109173420038034855645728470937068689780619482379351052309200123024132790480433322690464400128618908435666656869509231057566585805419238044618467193139251<243>] Free to factor
29×10279-119 = 3(2)2781<280> = 33861152584097308510127<23> × [95159850634721748044943914943517495441666502824558287073408558786471273658613758646734268439991414878361642633202166661571809012382681393465796391611887528252985022691560475516377690969534418732063689571558682775933567726902556583547324073112830249194625923<257>] Free to factor
29×10280-119 = 3(2)2791<281> = 7 × 409 × 1129 × 48079 × 35138471 × 73890202594079<14> × [79857379562731029296623817076679645220522589396696909231912806830558992123274296279792348282986107789982296337117414958768031721667655733929687857692271819907099894346404539132760163259257416400393631732386824260688216488967888723914936276954379693<248>] Free to factor
29×10281-119 = 3(2)2801<282> = 3 × 1367 × 7349 × 3930906331444003<16> × 18304835179995209<17> × 148586363449958286303323201033520397794254067949101294855880842271955764959669837454163098225746279130210293792765486169275550447495007373148084660937681213443958141906719325763230038652738207624905856803540417506204415298753457628206042535327<243>
29×10282-119 = 3(2)2811<283> = 23056719712721<14> × 62973918022051<14> × [2219204139722507948554208469481081112828658944491437125814578080632446765503183103208961443856347280985450129561752965164140408642849793943838586831719227972421426363089097113191594858297328967757647935175183818145052632367846265715000526646746952111049951<256>] Free to factor
29×10283-119 = 3(2)2821<284> = 23 × 53 × 26433324218393947680247926351289763923069911585087959165071552274177376720444809042019870567860723726187220854981314374259411174915686810682708959985416096982955063348828730288943578525202807401330781150305350469419378361133898459575243824628566220034636769665481724546531765563759<281>
29×10284-119 = 3(2)2831<285> = 3 × 2237 × 476401 × 115392573214043<15> × 408711351852005342743<21> × [2136982800919245056458089198614515556265277504169859180908141242703185977317418822010992191263686870986861233929128292935402809788643457282896667103349217180106277375050202756230784772684312371014905917941314550462492787587824616155283574039<241>] Free to factor
29×10285-119 = 3(2)2841<286> = 127 × 131 × 309885902515613290446436394191<30> × 42996141736532682939857041065695729<35> × [14536142321277563461734708876573580829036574777738898295848796307047700721635506032515965351071684837752108906060525493348106931785897148197337938217357930179327639670002680338655037599802817161606400727642047125421647<218>] (Makoto Kamada / GMP-ECM 7.0.1 B1=25e4, sigma=10188050085085933021 for P30, B1=1e6, sigma=5622550005069252292 for P35 / July 7, 2016 2016 年 7 月 7 日) Free to factor
29×10286-119 = 3(2)2851<287> = 73 × 17 × 31 × 41077 × 32486394867478135985548461585331<32> × [133582792011734051473019497198834910480960344547606139657290842328914794247011618150205619017100380423868500182008401908675805113582042941894858469181860256913758856155605820851250469158425762400478614055025085305109618491552947028868026053658203<246>] (Makoto Kamada / GMP-ECM 7.0.1 B1=25e4, sigma=3597454860726773990 for P32 / July 7, 2016 2016 年 7 月 7 日) Free to factor
29×10287-119 = 3(2)2861<288> = 34 × 1801 × 245279 × 1634568937<10> × [5509258475277766636303480513953150106477052773934606314885667270085932526439004918980259150067404747492130134412025267532088214180166799031862813834356598213174742495832962679261502641119261064557643208054972698544567459503676631070073270692139686842286223947304355667<268>] Free to factor
29×10288-119 = 3(2)2871<289> = 7537 × 85920283 × [4975781194254268224156041053903133488387274491356241424380559043104328226775437371769777973461167598602493779697475148545507516677051295630944338456732138563063899080572985242668317650827695440269115714378599727974490719688483675378852079148089953068349673688250295626153851751<277>] Free to factor
29×10289-119 = 3(2)2881<290> = 487 × 11149 × 92269935282683<14> × 212531668493846005009<21> × 302626352978181200325340483606044447478176475495241612920641524223965505826189363041886733709848107744825352733741661335831995511718043026878395930441705689598768554443884666298262416846915050499765765668643184472936705299368316520453157925100585861<249>
29×10290-119 = 3(2)2891<291> = 3 × 151 × 52757 × 2067823 × 1422322205084369<16> × [4584224131640156192732979345520466115170414322152586224058774585820674767504566851558327083378621536375735248897543380845551466897957701906299782883354319524910789315640639034219334463637963488199411852472922351193752107745457261078262953192033217074270961322523<262>] Free to factor
29×10291-119 = 3(2)2901<292> = 8729446004897<13> × [369121043925884468512339268713879073578135015545098171304098390361318737136680193275025621987285533509283975710172053664059514822512537237343392395227787612500466385129988585099291309092351643116524946242934495553391589511781573353340848607221132542965537121063580316594417264493<279>] Free to factor
29×10292-119 = 3(2)2911<293> = 7 × 4849308137<10> × [949243577254369714349866772175092897092832152846673841836579213273986918559713419006147840219866523853071284961154986133355537394916136502588095816682602195836328353158351416719463996225448185950814658073480797370739363922297844815872669543787989359351903600140964728134908201360019<282>] Free to factor
29×10293-119 = 3(2)2921<294> = 3 × 19 × 159233 × [35501569665176984077754117817884023447733958680016872794289006942625754119140011445461221641575687467391349190513407663581837343094844928470396875352605568538724420522262611990772676851038682277710685932070880377350835900984359367258706756899904511795329190691894865553658180285760458741<287>] Free to factor
29×10294-119 = 3(2)2931<295> = 2883679817<10> × 1117399443317677533345312525805364827097315090797482327498712809495736822373516033878813329511270849326134539513691863600619091277643818326250130363284441652081730480905960518508640733126933773668057067176893939547319105927709942501644322540341940542916461457559323141117723550035243813<286>
29×10295-119 = 3(2)2941<296> = 41046307651827977953<20> × 785021213005190267149679114664590997616585639191271522973252507115347892455641881514969686496257097460110822685542272921505004006668604095960756873524054052258389726304981684345364291230470545384109618528481304773753945551863210202943890274608808451597380274303482774978381357<276>
29×10296-119 = 3(2)2951<297> = 32 × 53 × 129403 × 854899 × 9357343915691<13> × [652567384507347734181405295491328680282893554647384485893936603956246513245512861473707361173632921219457151908379481486851972756977360345596511809989488494439667547763373927864408798888193570684097422150854830011137566429707511470865361494039086485873201641503230244499<270>] Free to factor
29×10297-119 = 3(2)2961<298> = 59341 × [54300099799838597634388065961514336162555774628371989387139114983269952009946280349542849332202393323709108748120561200893517504292516510038965002649470386785228125953762528811820195517807624108495344234546472459551106692206437744935579485047812174082375123813589629804388571514167645004671681<293>] Free to factor
29×10298-119 = 3(2)2971<299> = 7 × 139 × 24912362873<11> × 471117703682555337428549989<27> × 2520654103182140608471081266187<31> × 69710122441122444694530733182675455880427<41> × 16057916795313093953421849410502556971541410355274844247496214851348048173854519423425560127228087648890267043828649733663568464700141733861092039059212611172508756428737405355298005386909<188> (Makoto Kamada / GMP-ECM 7.0.1 B1=5e4, sigma=3508113911931796789 for P31 / July 11, 2016 2016 年 7 月 11 日) (Serge Batalov / GMP-ECM 6.4.4 [configured with GMP 5.1.3, --enable-asm-redc] [ECM] B1=11000000, sigma=2857925965 for P41 x P188 / July 30, 2016 2016 年 7 月 30 日)
29×10299-119 = 3(2)2981<300> = 3 × 107407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407<300>
29×10300-119 = 3(2)2991<301> = 163 × [19768234492160872528970688479890933878663940013633265167007498295841854124062713019768234492160872528970688479890933878663940013633265167007498295841854124062713019768234492160872528970688479890933878663940013633265167007498295841854124062713019768234492160872528970688479890933878663940013633265167<299>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク