Table of contents 目次

  1. About 188...883 188...883 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 188...883 188...883 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 188...883 188...883 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 188...883 188...883 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

18w3 = { 13, 183, 1883, 18883, 188883, 1888883, 18888883, 188888883, 1888888883, 18888888883, … }

1.3. General term 一般項

17×10n-539 (1≤n)

2. Prime numbers of the form 188...883 188...883 の形の素数

2.1. Last updated 最終更新日

January 18, 2024 2024 年 1 月 18 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 17×101-539 = 13 is prime. は素数です。
  2. 17×1016-539 = 1(8)153<17> is prime. は素数です。
  3. 17×1022-539 = 1(8)213<23> is prime. は素数です。
  4. 17×1028-539 = 1(8)273<29> is prime. は素数です。
  5. 17×1034-539 = 1(8)333<35> is prime. は素数です。
  6. 17×1090-539 = 1(8)893<91> is prime. は素数です。
  7. 17×102068-539 = 1(8)20673<2069> is prime. は素数です。 (discovered by:発見: Makoto Kamada / September 26, 2004 2004 年 9 月 26 日) (certified by:証明: Sinkiti Sibata / PRIMO 3.0.4 / October 7, 2007 2007 年 10 月 7 日) [certificate証明]
  8. 17×102374-539 = 1(8)23733<2375> is prime. は素数です。 (discovered by:発見: Makoto Kamada / September 26, 2004 2004 年 9 月 26 日) (certified by:証明: Ray Chandler / Primo 3.0.9 / September 20, 2010 2010 年 9 月 20 日) [certificate証明]
  9. 17×102854-539 = 1(8)28533<2855> is prime. は素数です。 (discovered by:発見: Makoto Kamada / September 26, 2004 2004 年 9 月 26 日) (certified by:証明: Ray Chandler / Primo 4.0.1 - LX64 / January 5, 2013 2013 年 1 月 5 日) [certificate証明]
  10. 17×103720-539 = 1(8)37193<3721> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Ray Chandler / Primo 4.0.2 - LX64 / April 15, 2013 2013 年 4 月 15 日) [certificate証明]
  11. 17×104242-539 = 1(8)42413<4243> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 18, 2004 2004 年 12 月 18 日)
  12. 17×1022666-539 = 1(8)226653<22667> is PRP. はおそらく素数です。 (Erik Branger / PFGW / March 23, 2010 2010 年 3 月 23 日)
  13. 17×1029292-539 = 1(8)292913<29293> is PRP. はおそらく素数です。 (Erik Branger / PFGW / March 23, 2010 2010 年 3 月 23 日)
  14. 17×1029508-539 = 1(8)295073<29509> is PRP. はおそらく素数です。 (Erik Branger / PFGW / March 23, 2010 2010 年 3 月 23 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / February 11, 2015 2015 年 2 月 11 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 17×103k+2-539 = 3×(17×102-539×3+17×102×103-19×3×k-1Σm=0103m)
  2. 17×106k+1-539 = 13×(17×101-539×13+17×10×106-19×13×k-1Σm=0106m)
  3. 17×106k+3-539 = 7×(17×103-539×7+17×103×106-19×7×k-1Σm=0106m)
  4. 17×1015k+5-539 = 31×(17×105-539×31+17×105×1015-19×31×k-1Σm=01015m)
  5. 17×1018k+17-539 = 19×(17×1017-539×19+17×1017×1018-19×19×k-1Σm=01018m)
  6. 17×1021k+14-539 = 43×(17×1014-539×43+17×1014×1021-19×43×k-1Σm=01021m)
  7. 17×1022k+4-539 = 23×(17×104-539×23+17×104×1022-19×23×k-1Σm=01022m)
  8. 17×1028k+25-539 = 29×(17×1025-539×29+17×1025×1028-19×29×k-1Σm=01028m)
  9. 17×1034k+21-539 = 103×(17×1021-539×103+17×1021×1034-19×103×k-1Σm=01034m)
  10. 17×1035k+26-539 = 71×(17×1026-539×71+17×1026×1035-19×71×k-1Σm=01035m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 12.61%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 12.61% です。

3. Factor table of 188...883 188...883 の素因数分解表

3.1. Last updated 最終更新日

December 6, 2024 2024 年 12 月 6 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=213, 214, 215, 218, 227, 229, 231, 233, 236, 237, 238, 239, 240, 241, 244, 245, 246, 247, 248, 249, 250, 252, 255, 259, 260, 261, 262, 263, 265, 266, 267, 268, 269, 272, 273, 274, 275, 277, 278, 280, 283, 284, 285, 289, 290, 292, 293, 294, 295, 296, 297, 298, 299, 300 (54/300)

3.4. Factor table 素因数分解表

17×101-539 = 13 = definitely prime number 素数
17×102-539 = 183 = 3 × 61
17×103-539 = 1883 = 7 × 269
17×104-539 = 18883 = 23 × 821
17×105-539 = 188883 = 32 × 31 × 677
17×106-539 = 1888883 = 47 × 40189
17×107-539 = 18888883 = 13 × 1452991
17×108-539 = 188888883 = 3 × 89 × 593 × 1193
17×109-539 = 1888888883<10> = 7 × 4099 × 65831
17×1010-539 = 18888888883<11> = 51539 × 366497
17×1011-539 = 188888888883<12> = 3 × 62962962961<11>
17×1012-539 = 1888888888883<13> = 139 × 13589128697<11>
17×1013-539 = 18888888888883<14> = 132 × 267419 × 417953
17×1014-539 = 188888888888883<15> = 32 × 43 × 59 × 283 × 29231897
17×1015-539 = 1888888888888883<16> = 72 × 38548752834467<14>
17×1016-539 = 18888888888888883<17> = definitely prime number 素数
17×1017-539 = 188888888888888883<18> = 3 × 192 × 113 × 1543474688377<13>
17×1018-539 = 1888888888888888883<19> = 4152877 × 454838630879<12>
17×1019-539 = 18888888888888888883<20> = 13 × 131 × 1913 × 25933 × 223575409
17×1020-539 = 188888888888888888883<21> = 3 × 31 × 2803 × 167413 × 4328238529<10>
17×1021-539 = 1888888888888888888883<22> = 7 × 103 × 487 × 42620723 × 126218023
17×1022-539 = 18888888888888888888883<23> = definitely prime number 素数
17×1023-539 = 188888888888888888888883<24> = 33 × 4057 × 1724398514582832497<19>
17×1024-539 = 1888888888888888888888883<25> = 277 × 3881 × 1757045468099134159<19>
17×1025-539 = 18888888888888888888888883<26> = 13 × 29 × 127 × 990994561 × 398098067957<12>
17×1026-539 = 188888888888888888888888883<27> = 3 × 23 × 71 × 64919 × 3071617 × 193357084279<12>
17×1027-539 = 1888888888888888888888888883<28> = 7 × 9784133 × 343545019 × 80279076547<11>
17×1028-539 = 18888888888888888888888888883<29> = definitely prime number 素数
17×1029-539 = 188888888888888888888888888883<30> = 3 × 155231 × 350483999 × 1157280156609169<16>
17×1030-539 = 1888888888888888888888888888883<31> = 149 × 397 × 2447 × 401119 × 32532874175257427<17>
17×1031-539 = 18888888888888888888888888888883<32> = 13 × 92377 × 94463 × 4520368471<10> × 36835251071<11>
17×1032-539 = 188888888888888888888888888888883<33> = 32 × 20987654320987654320987654320987<32>
17×1033-539 = 1888888888888888888888888888888883<34> = 7 × 827 × 20681 × 13411847 × 603469661 × 1949338661<10>
17×1034-539 = 18888888888888888888888888888888883<35> = definitely prime number 素数
17×1035-539 = 188888888888888888888888888888888883<36> = 3 × 19 × 31 × 43 × 41231 × 7756387 × 7773526240684986619<19>
17×1036-539 = 1888888888888888888888888888888888883<37> = 11801297173<11> × 160057734433672911703135271<27>
17×1037-539 = 18888888888888888888888888888888888883<38> = 13 × 733 × 24421 × 37403617 × 2170111458225427295311<22>
17×1038-539 = 188888888888888888888888888888888888883<39> = 3 × 773803 × 81368207364100375629149748660787<32>
17×1039-539 = 1888888888888888888888888888888888888883<40> = 7 × 3251 × 12355051 × 6718106123871269003792356069<28>
17×1040-539 = 18888888888888888888888888888888888888883<41> = 4003 × 304506173 × 15496182436389757774844554757<29>
17×1041-539 = 188888888888888888888888888888888888888883<42> = 32 × 20987654320987654320987654320987654320987<41>
17×1042-539 = 1888888888888888888888888888888888888888883<43> = 2103106799<10> × 131087114267<12> × 6851490840606215537351<22>
17×1043-539 = 18888888888888888888888888888888888888888883<44> = 13 × 54577 × 26622779797193927688458351558192150383<38>
17×1044-539 = 188888888888888888888888888888888888888888883<45> = 3 × 4032748307550797<16> × 15612916592159495596993945813<29>
17×1045-539 = 1888888888888888888888888888888888888888888883<46> = 7 × 2086960377375157<16> × 129298702920588572237307034817<30>
17×1046-539 = 18888888888888888888888888888888888888888888883<47> = 11519 × 959805453907614191<18> × 1708474182082880838394627<25>
17×1047-539 = 188888888888888888888888888888888888888888888883<48> = 3 × 7607893375738040774981<22> × 8276004914021936313279581<25>
17×1048-539 = 1888888888888888888888888888888888888888888888883<49> = 23 × 3559 × 261167 × 88355235246888634304099442613643384957<38>
17×1049-539 = 18888888888888888888888888888888888888888888888883<50> = 13 × 1452991452991452991452991452991452991452991452991<49>
17×1050-539 = 188888888888888888888888888888888888888888888888883<51> = 33 × 31 × 29717 × 7594094369425289793209728011658239254453627<43>
17×1051-539 = 1(8)503<52> = 7 × 84960544993514627251<20> × 3176077435259718347112632798519<31>
17×1052-539 = 1(8)513<53> = 47 × 89 × 4515632055675086992323425505352352113050176640901<49>
17×1053-539 = 1(8)523<54> = 3 × 19 × 29 × 19433 × 838993 × 40833701 × 171639257024090722305321363331219<33>
17×1054-539 = 1(8)533<55> = 167 × 9341 × 19319 × 59443 × 20371783 × 51758557637957409188619667960099<32>
17×1055-539 = 1(8)543<56> = 13 × 103 × 14106713135839349431582441291179155256825159737781097<53>
17×1056-539 = 1(8)553<57> = 3 × 43 × 13831 × 105867612799294747328570909909090235387918549942517<51>
17×1057-539 = 1(8)563<58> = 72 × 8563 × 2317984129<10> × 1773392884339<13> × 1095138301451398651303731887339<31>
17×1058-539 = 1(8)573<59> = 139 × 1597 × 26203 × 52423698933087721<17> × 61945251120519856261418645774527<32>
17×1059-539 = 1(8)583<60> = 32 × 7559287 × 19181531 × 72783636466081<14> × 1988685237387679990328727737191<31>
17×1060-539 = 1(8)593<61> = 229 × 11503 × 192082787709791872717259<24> × 3733114922925761149990536928651<31>
17×1061-539 = 1(8)603<62> = 13 × 71 × 17050705256819578185948301537<29> × 1200224157520245279672184963433<31>
17×1062-539 = 1(8)613<63> = 3 × 61 × 503 × 271919 × 3414349 × 1203554034310669<16> × 1836429577958211619303050039653<31>
17×1063-539 = 1(8)623<64> = 7 × 853 × 4423 × 33703951 × 2122079190734117880851160984674084615116000348601<49>
17×1064-539 = 1(8)633<65> = 291691 × 1247959 × 3012437 × 3032047641632925571987<22> × 5681056010194894616897153<25>
17×1065-539 = 1(8)643<66> = 3 × 31 × 491 × 534408034690354291<18> × 7740499594725429529304049414113129048173151<43>
17×1066-539 = 1(8)653<67> = 181 × 7116740989<10> × 789455777753<12> × 1857457430840842475865961041446497355845579<43>
17×1067-539 = 1(8)663<68> = 13 × 127 × 36385573957<11> × 226931298507928805717273<24> × 1385593095265702887218312157653<31>
17×1068-539 = 1(8)673<69> = 32 × 2377 × 8829471737899728363898886967180334169536244981484078384933804931<64>
17×1069-539 = 1(8)683<70> = 7 × 1202807 × 24346982507<11> × 193908423075957744417713<24> × 47519362614957344992135522537<29>
17×1070-539 = 1(8)693<71> = 23 × 732352460369<12> × 2523411855224439317212687<25> × 444396154203768726737303602010107<33>
17×1071-539 = 1(8)703<72> = 3 × 19 × 3313840155945419103313840155945419103313840155945419103313840155945419<70>
17×1072-539 = 1(8)713<73> = 59 × 32015065913370998116760828625235404896421845574387947269303201506591337<71>
17×1073-539 = 1(8)723<74> = 13 × 52263168301009<14> × 27801442205397282358554324290585951296867515552686339305999<59>
17×1074-539 = 1(8)733<75> = 3 × 710921243 × 88565313785345647581054154775007845648189419714615227727782165827<65>
17×1075-539 = 1(8)743<76> = 7 × 10795981329907<14> × 24994603232015253899148664835074392176584394696585881366712567<62>
17×1076-539 = 1(8)753<77> = 109 × 881 × 10822807 × 31974300573899<14> × 3898886869633027<16> × 145788210321262542318941099030321257<36>
17×1077-539 = 1(8)763<78> = 34 × 43 × 7283 × 73243 × 2332541 × 43586020298657272033175817483246697795401150564407215082269<59>
17×1078-539 = 1(8)773<79> = 587677 × 496328597 × 430951521263<12> × 253104211891576618491937<24> × 59370489392798632052612777597<29>
17×1079-539 = 1(8)783<80> = 13 × 332617 × 412384261 × 1036763971<10> × 10217311621998305543797278929043504778297708866118148233<56>
17×1080-539 = 1(8)793<81> = 3 × 31 × 571 × 13243128133<11> × 23866116788370922368214741<26> × 11254209945188910691274384704852069915637<41>
17×1081-539 = 1(8)803<82> = 7 × 29 × 5919269 × 406251889 × 3869429192252864276645646413364984605223981139747451491430849621<64>
17×1082-539 = 1(8)813<83> = 1091 × 4073 × 1278161832671<13> × 115649832101737<15> × 28756524732446171559109582907035557686159835710303<50>
17×1083-539 = 1(8)823<84> = 3 × 349 × 1553 × 3943694143244656699<19> × 2183682737197394633914157<25> × 13489489306705111507932505516174891<35>
17×1084-539 = 1(8)833<85> = 283316308855409<15> × 5771109098205160017822250646671<31> × 1155248870405503948338477679439320562797<40>
17×1085-539 = 1(8)843<86> = 13 × 19571 × 9656607736140522644929918094131<31> × 7688213808741051604923308140008887699397198633191<49>
17×1086-539 = 1(8)853<87> = 32 × 50341 × 5634067496575774947991<22> × 75761568425772673681962111623<29> × 976722206140044652513825027999<30>
17×1087-539 = 1(8)863<88> = 7 × 18253 × 155461 × 23476697 × 1632582545897<13> × 2481078568040057202805333834630633226705609179838028148277<58>
17×1088-539 = 1(8)873<89> = 2521 × 285101 × 1213633 × 52115281 × 31282124921<11> × 104415865369<12> × 1514273141539<13> × 84006986790143122629725881207741<32>
17×1089-539 = 1(8)883<90> = 3 × 19 × 103 × 219714178743778870959555396659231461649<39> × 146432085455201027658532262339648199757602917677<48> (Makoto Kamada / GGNFS-0.54.5b for P39 x P48)
17×1090-539 = 1(8)893<91> = definitely prime number 素数
17×1091-539 = 1(8)903<92> = 132 × 97 × 435181 × 1132675328911502137<19> × 318509463629715691505846383<27> × 7339226068669195546353022642342729681<37>
17×1092-539 = 1(8)913<93> = 3 × 232 × 79595079972655229147337841381655400719111<41> × 1495351400332865014995535500443407380651146625719<49> (Makoto Kamada / GGNFS-0.54.5b for P41 x P49)
17×1093-539 = 1(8)923<94> = 7 × 277 × 983 × 17137 × 76549741 × 342658722832633<15> × 385396031877529<15> × 5720414938048517722683818149227254239107476611<46>
17×1094-539 = 1(8)933<95> = 3391 × 167821037 × 81619148516554874134925700720657042662869<41> × 406668151888876876773881814279552153048221<42> (Makoto Kamada / GGNFS-0.54.5b for P41 x P42)
17×1095-539 = 1(8)943<96> = 32 × 31 × 401 × 809 × 276902651773999<15> × 7536716853999325427537465507017305768026843387997159619473629775359654947<73>
17×1096-539 = 1(8)953<97> = 71 × 89 × 141632089 × 2110553647170967608833503415342595190300435676168279479827413834401728578788359671813<85>
17×1097-539 = 1(8)963<98> = 13 × 179 × 13337 × 689093 × 48767374319995596305129<23> × 6522929962696023550890850999<28> × 2776527314919077655096385020512839<34>
17×1098-539 = 1(8)973<99> = 3 × 43 × 47 × 733 × 102132040443007<15> × 167593427955402399431586244158329<33> × 2483109528283539287324070841842142967974940759<46>
17×1099-539 = 1(8)983<100> = 72 × 2087 × 17959 × 243869243399<12> × 9882807262175504533<19> × 3481428345556494471379<22> × 122577543824213124461803850912600316443<39>
17×10100-539 = 1(8)993<101> = 409 × 647 × 749437853 × 66507566773<11> × 1432096024790847623130118358255312319118455351525380904326868539024158827709<76>
17×10101-539 = 1(8)1003<102> = 3 × 463 × 2351 × 59747 × 139318629690671<15> × 6949062846550674074487698038696873659116645794527626408313207048699132116981<76>
17×10102-539 = 1(8)1013<103> = 8893 × 9931 × 21387751906561763165605286268221479234366843226458774799335802609679892448594604342989101907501<95>
17×10103-539 = 1(8)1023<104> = 13 × 1439 × 3623 × 278698051037806867722949001983016963748706761122419940292090213726305585570106102102188414312503<96>
17×10104-539 = 1(8)1033<105> = 33 × 139 × 1215463 × 15853792454098265153552008138381<32> × 2611878293362696035834569502178477397915530892823191844676083137<64> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P32 x P64 / 0.60 hours on Cygwin on AMD 64 X2 6000+ / May 3, 2008 2008 年 5 月 3 日)
17×10105-539 = 1(8)1043<106> = 7 × 1507889 × 51241951 × 354185281722766111<18> × 11492814405145589190698862712093151<35> × 857939055847532207005818807697300707611<39> (Makoto Kamada / Msieve 1.35 for P35 x P39 / 3.8 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 2, 2008 2008 年 5 月 2 日)
17×10106-539 = 1(8)1053<107> = 8630106820148450673420782464300565409835605393871<49> × 2188720172592715591130753702142474055753413658268136225373<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P49 x P58 / 0.68 hours on Cygwin on AMD 64 X2 6000+ / May 3, 2008 2008 年 5 月 3 日)
17×10107-539 = 1(8)1063<108> = 3 × 19 × 9789899963<10> × 1060679948543<13> × 93231858661753747555233330990664897834019<41> × 3422981886629292384067736826750714955820389<43> (Robert Backstrom / Msieve v. 1.34 for P41 x P43 / May 3, 2008 2008 年 5 月 3 日)
17×10108-539 = 1(8)1073<109> = 523 × 1567 × 436466083 × 23056961040173<14> × 402659857745813<15> × 23065712250659218583<20> × 24659141584044872210885936907639037826296940683<47>
17×10109-539 = 1(8)1083<110> = 13 × 29 × 1272 × 1489 × 6379 × 133163092855224104302363788449929<33> × 2455989164158808006628046290075502317087684176170758096093506249<64> (Sinkiti Sibata / Msieve v. 1.35 for P33 x P64 / 7.11 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 3, 2008 2008 年 5 月 3 日)
17×10110-539 = 1(8)1093<111> = 3 × 31 × 1123 × 353321 × 753913910669<12> × 6789729922027019037805710068563120180055137942658005558540560954764387097184152438047953<88>
17×10111-539 = 1(8)1103<112> = 7 × 741937667 × 21406727974433936850882602900693924335418266933<47> × 16989893695587092805835674132504936884778981121981724779<56> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P47 x P56 / 0.78 hours on Core 2 Quad Q6700 / May 3, 2008 2008 年 5 月 3 日)
17×10112-539 = 1(8)1113<113> = 223 × 4001 × 8549198048140881562228719565616138334096186877231<49> × 2476324871342590569760961715536698238992882278782339631491<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P49 x P58 / 0.93 hours on Cygwin on AMD 64 X2 6000+ / May 3, 2008 2008 年 5 月 3 日)
17×10113-539 = 1(8)1123<114> = 32 × 898374064668333973654196301031<30> × 23361821257313318306446981242709332423583119435491566355727548435325558375139533677<83> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=451145600 for P30 x P83 / April 25, 2008 2008 年 4 月 25 日)
17×10114-539 = 1(8)1133<115> = 23 × 135963488010063195216983<24> × 45407051110420976718615060333667020841308287<44> × 13302491197732416716475505613313966954879008701<47> (Sinkiti Sibata / Msieve v. 1.35 for P44 x P47 / 2.29 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 3, 2008 2008 年 5 月 3 日)
17×10115-539 = 1(8)1143<116> = 13 × 6856083938923<13> × 211927313891623489737243495802133402181171242652635087164624102001258921183562304971743037601660213117<102>
17×10116-539 = 1(8)1153<117> = 3 × 3238037953<10> × 200976479996422199<18> × 40639575279507524445937749287780453<35> × 2380722773741498849314583916531534950249488824911854571<55> (Sinkiti Sibata / Msieve v. 1.35 for P35 x P55 / 2.54 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 3, 2008 2008 年 5 月 3 日)
17×10117-539 = 1(8)1163<118> = 7 × 19963 × 194681 × 968263 × 7954543 × 22986474206855147447689<23> × 392173337773795106408899223587033290562210900273445369271499322092486423<72>
17×10118-539 = 1(8)1173<119> = 132374213887<12> × 3436416298429411402363<22> × 1011354866382751324067587439<28> × 31862612490886293717845803187<29> × 1288582703199736438396935922051<31> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=749230199 for P31 / April 25, 2008 2008 年 4 月 25 日)
17×10119-539 = 1(8)1183<120> = 3 × 43 × 257 × 99119 × 391319717 × 2984398163<10> × 787581151504029361<18> × 62494652525814287720007310494333594525374795438926999600052751816672677299<74>
17×10120-539 = 1(8)1193<121> = 112589 × 8652069511229<13> × 2508138705739007495801<22> × 4842674298537866638634043814157<31> × 159644381637953366021802311296650342678705016520399<51> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=565165582 for P31 x P51 / April 25, 2008 2008 年 4 月 25 日)
17×10121-539 = 1(8)1203<122> = 13 × 1867 × 2477 × 250608647 × 366522047 × 53750268615518041391177<23> × 63637914810524623771635509046537451389795814995169838390461637627831449393<74>
17×10122-539 = 1(8)1213<123> = 32 × 61 × 193 × 188547420308555141<18> × 8683625517058930309<19> × 115816844812023315883441<24> × 1117786758274664240715307<25> × 8410549820171509807551231504210173<34>
17×10123-539 = 1(8)1223<124> = 7 × 103 × 117563 × 3908264192111<13> × 5701860314171290706450848624362722691559980178717751917358537970734467287162859184531950047092880216311<103>
17×10124-539 = 1(8)1233<125> = 293 × 82613 × 1363147661<10> × 572463096674631847833837829628931757176896885368753522059354929466896130339879494973658664901538089963052967<108>
17×10125-539 = 1(8)1243<126> = 3 × 19 × 31 × 591926703067084367669371<24> × 180593423126091723373193059275084096377392885419908040521471339226222220442361501498995940505735919<99>
17×10126-539 = 1(8)1253<127> = 2539 × 333367 × 641721697 × 727894902607689657739464596480166721<36> × 4777555082205456186505940897215974516974069492382172337337363813495100943<73> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P36 x P73 / 2.08 hours on Core 2 Quad Q6700 / May 3, 2008 2008 年 5 月 3 日)
17×10127-539 = 1(8)1263<128> = 13 × 4003 × 540251 × 328798120789209691542180686790545783365122362891647<51> × 2043396115186747802808184830871608870858489870879968003790681182801<67> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.34 for P51 x P67 / May 3, 2008 2008 年 5 月 3 日)
17×10128-539 = 1(8)1273<129> = 3 × 313 × 2045697173576072885436493<25> × 4004240923599095557112102414494870267401405247<46> × 24557224171047782792269547057638686525422784224174595907<56> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P46 x P56 / 2.88 hours on Core 2 Quad Q6700 / May 3, 2008 2008 年 5 月 3 日)
17×10129-539 = 1(8)1283<130> = 7 × 113 × 397 × 12158291 × 463072478903813769233<21> × 1068360732017664131709091228595261657204263070469398502225176336500504642759783818500224555422643<97>
17×10130-539 = 1(8)1293<131> = 59 × 433 × 479 × 12851536795962440562749361929843<32> × 11614451771081002807800660499716452065000621<44> × 10341349396259693395744386085621912743878339580497<50> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1985828501 for P32 / April 25, 2008 2008 年 4 月 25 日) (Sinkiti Sibata / Msieve v. 1.35 for P44 x P50 / 3.5 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 4, 2008 2008 年 5 月 4 日)
17×10131-539 = 1(8)1303<132> = 33 × 712 × 167021 × 1116548947<10> × 7441784755409601134485764579172936662985291307816041756827135821627499976017687460861940135785416038620644198287<112>
17×10132-539 = 1(8)1313<133> = 2527099 × 86034467933<11> × 58355590170193937<17> × 302773452238120173413<21> × 491712694436775951387499990041565266970076532928501815044828063449020163364329<78>
17×10133-539 = 1(8)1323<134> = 13 × 9293 × 8751737149<10> × 27537178718993<14> × 3764382625358250645569863551537179<34> × 172345383011769458501536322137290527842023267217164289309509635505102629<72> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P34 x P72 / 3.61 hours on Core 2 Quad Q6700 / May 3, 2008 2008 年 5 月 3 日)
17×10134-539 = 1(8)1333<135> = 3 × 719 × 102881 × 851179371581009299588763751952465910024583447172941477628452827083206573323022186481500825784435029889887135532985412964089599<126>
17×10135-539 = 1(8)1343<136> = 7 × 12526489 × 6994006470802381<16> × 1347794481418895554693419393197617111453<40> × 2285226791368354411931518719607928339055696989105013365535936167657426597<73> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P40 x P73 / 3.16 hours on Core 2 Quad Q6700 / May 3, 2008 2008 年 5 月 3 日)
17×10136-539 = 1(8)1353<137> = 23 × 307 × 87787008817<11> × 4634682690678541<16> × 6574911977716216942050275717807753114292495116513821799916419757939122325236307007044910646852690560826099<106>
17×10137-539 = 1(8)1363<138> = 3 × 29 × 7481722787113<13> × 12913552174389691856827<23> × 22471901630383732291642189859123351501756183206109415929687349889068011652627736790391850287644654759<101>
17×10138-539 = 1(8)1373<139> = 1187 × 1979 × 100520408961365189<18> × 52269084438711395174858006507068213911373<41> × 153042044567989424299284094191024360306276834800651709136147324967796139843<75> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.34 for P41 x P75 / May 4, 2008 2008 年 5 月 4 日)
17×10139-539 = 1(8)1383<140> = 13 × 109363 × 10038594233<11> × 1303876585637<13> × 1093771935863111803994728995558734837426133433<46> × 928018175045653313023689862079602922263543547526513521806182993649<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P46 x P66 / 6.77 hours on Core 2 Quad Q6600 / May 4, 2008 2008 年 5 月 4 日)
17×10140-539 = 1(8)1393<141> = 32 × 31 × 43 × 89 × 10416211045177969<17> × 2199553991945068036403<22> × 38770123268705413047738066497<29> × 199160022643799127833796061370630292550733822605403852646915352573069<69>
17×10141-539 = 1(8)1403<142> = 73 × 4241 × 1717861 × 275704477 × 2741651067239635527853600760669449154284578291126612362078069994975814610763448791920486162801456268735325287122453666053<121>
17×10142-539 = 1(8)1413<143> = 1067029 × 1527173 × 244863342785827<15> × 180280219243349327<18> × 5812880350102104118685752874347<31> × 45172977411817853583314487385516736976079129109325013547106832353973<68> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=3495432361 for P31 x P68 / May 3, 2008 2008 年 5 月 3 日)
17×10143-539 = 1(8)1423<144> = 3 × 19 × 82003 × 33747234085323696229891580573<29> × 284184304370485849583806799703613180155918074201814599<54> × 4213699332694306433921848962284585352045581816321987099<55> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P54 x P55 / 10.08 hours on Core 2 Quad Q6700 / May 5, 2008 2008 年 5 月 5 日)
17×10144-539 = 1(8)1433<145> = 47 × 8699557 × 62108569 × 177541321 × 418948313036823305827385655774638051159975719244583662017610183130473402273577762086786455945340880500497900629428984473<120>
17×10145-539 = 1(8)1443<146> = 13 × 1693 × 21139 × 152839 × 906712254747545828169857551757513<33> × 292966518254180953679091271458567512967760755284807647661567847660425624429080931183692604031429719<99> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P33 x P99 / 9.04 hours on Core 2 Quad Q6700 / May 5, 2008 2008 年 5 月 5 日)
17×10146-539 = 1(8)1453<147> = 3 × 1097 × 1127347041996924922003<22> × 50912086988301831407196927294428769528287017754861018921169424070821162495723299023883665849177785454055188716995087408371<122>
17×10147-539 = 1(8)1463<148> = 7 × 6337 × 6633161 × 19136653 × 337720847085066287<18> × 993299631315255841386450751900954199116772872944164569394202242128109600585730638859231894611359861877960618447<111>
17×10148-539 = 1(8)1473<149> = 599 × 1523 × 5449 × 196920964872399960571095869962957319355465848009092572272618008697<66> × 19296161407988911730535538884844824784794847267080297111232954814015304743<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.34 for P66 x P74 / May 4, 2008 2008 年 5 月 4 日)
17×10149-539 = 1(8)1483<150> = 32 × 131 × 255137 × 3375511 × 5388930257121078729270880943678492107897<40> × 34520499532221180433112166674230849735039209965903167809354543240545253834351079688548856476663<95> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P40 x P95 / 15.38 hours on Core 2 Quad Q6700 / May 6, 2008 2008 年 5 月 6 日)
17×10150-539 = 1(8)1493<151> = 139 × 1109 × 19867 × 53699 × 58524777302241362713821490265536758164758485666839114161<56> × 196255486079589701227585169591220827496285377009347149826952814709503321846950741<81> (Justin Card / GGNFS for P56 x P81 / May 8, 2008 2008 年 5 月 8 日)
17×10151-539 = 1(8)1503<152> = 13 × 127 × 29327 × 373517 × 292010357 × 23463278202626958161336281<26> × 152438399886032564781634905111019103137641760103044787644588055547129585171183813506953958315645488809911<105>
17×10152-539 = 1(8)1513<153> = 3 × 50069 × 149351 × 18723967 × 30648249803303357<17> × 14672514893342869832589570368227512292157559807519140077683273612786730092233481062320957199285909430148035743223267001<119>
17×10153-539 = 1(8)1523<154> = 7 × 6319531639<10> × 1259809096919<13> × 77968467421217<14> × 532678978275967<15> × 68205067888519467463<20> × 18412938086992723467197<23> × 649822052117915048227388446535964553122412755759638915837521<60>
17×10154-539 = 1(8)1533<155> = 971 × 102437 × 371631714756730591<18> × 101739334408004478253<21> × 1274109118835390829488419042276855939<37> × 3942049247854730324039591295348901289336792997888410316410784299138286157<73> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P37 x P73 / 11.95 hours on Core 2 Quad Q6700 / May 5, 2008 2008 年 5 月 5 日)
17×10155-539 = 1(8)1543<156> = 3 × 31 × 283 × 7176902195709901169835057900713890683114437816364181347653364067361559667498342979934225802229905729278805763474633872445339446365321208590329757547357<151>
17×10156-539 = 1(8)1553<157> = 94115205417543442260889014109032287575728859357342112763830605058897534630713<77> × 20069965108281988776637007571562300370718669072099530779317161803679127900838091<80> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P77 x P80 / 31.24 hours on Cygwin on AMD 64 X2 6000+ / May 5, 2008 2008 年 5 月 5 日)
17×10157-539 = 1(8)1563<158> = 13 × 103 × 1606069667<10> × 96829103143<11> × 7966230062417543067682362213686161549493<40> × 11386826441643864898561421221923570419394152237250887959212635282363431012333153776133535984209<95> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=3216558942 for P40 x P95 / May 6, 2008 2008 年 5 月 6 日)
17×10158-539 = 1(8)1573<159> = 36 × 23 × 5701 × 202987 × 4056804786019<13> × 58559290886515109<17> × 15148998534261869401<20> × 361116074126888201347<21> × 62424841302462897129825893621398645483<38> × 119995144131890006675094424027008873437<39> (Makoto Kamada / Msieve 1.35 for P38 x P39 / 8.2 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 2, 2008 2008 年 5 月 2 日)
17×10159-539 = 1(8)1583<160> = 7 × 733 × 64373087450280690223885039799015227383176824847<47> × 5718736130150877068395855148563309851888644433107510229967183373492458900540607629747479591403697254369712119<109> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.35 for P47 x P109 / May 12, 2008 2008 年 5 月 12 日)
17×10160-539 = 1(8)1593<161> = 5021 × 20521 × 22425473836472089683229<23> × 8174779402632942791266862745271566277412997899936946260947995333118878424901222799168602243155117246917414172097402684994820394147<130>
17×10161-539 = 1(8)1603<162> = 3 × 19 × 43 × 254355202674105893<18> × 3287574485420198704133928558179<31> × 6592109827352816863838466122643365447<37> × 13980491502316873967791731851571399701122210654779288236879044841952532537<74> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=3720085718 for P31 / May 7, 2008 2008 年 5 月 7 日) (Justin Card / GGNFS gnfs for P37 x P74 / May 9, 2008 2008 年 5 月 9 日)
17×10162-539 = 1(8)1613<163> = 277 × 2521688466726891448397587854031<31> × 2704177598331092219820552204643591669675256637402379863078241577478040763475133718336050465295630373181424829869186858865816960809<130> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2447176514 for P31 x P130 / April 27, 2008 2008 年 4 月 27 日)
17×10163-539 = 1(8)1623<164> = 13 × 1733 × 23472466891217<14> × 37464998032005354061197314116355187433310192513<47> × 953410757092344732158061608063141390017470114019584701189414810489033337617424683715457001145387587<99> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P47 x P99 / 62.14 hours on Cygwin on AMD 64 X2 6000+ / May 19, 2008 2008 年 5 月 19 日)
17×10164-539 = 1(8)1633<165> = 3 × 3162156699067<13> × 262881178953307<15> × 105290032030122334034954183<27> × 1216259663201331434035013956830378303572945186485863881<55> × 591464542648869639542420113968295913254867921520280460903<57> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P55 x P57 / 15.70 hours on Core 2 Quad Q6700 / May 7, 2008 2008 年 5 月 7 日)
17×10165-539 = 1(8)1643<166> = 7 × 29 × 43402480428621987030205003566889274936988593086053286493942371994002021584433<77> × 214385705193492725009349612317191476170118142711660225267764600968001857107379610049417<87> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.35 for P77 x P87 / May 10, 2008 2008 年 5 月 10 日)
17×10166-539 = 1(8)1653<167> = 71 × 1643251 × 49163423 × 4173193033396687973<19> × 8377636022470702931<19> × 8184120308115925347480138753229<31> × 11509065941646056948432515660425345857569615698355520088149637434614083526839114163<83> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=935727121 for P31 x P83 / April 28, 2008 2008 年 4 月 28 日)
17×10167-539 = 1(8)1663<168> = 32 × 2842894383216641696187208791071<31> × 823828965221082614714987491762129205824830523981<48> × 8961198957496977939253687411601927777122185598907503134441460972542651247105156582110937<88> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2708123677 for P31 / April 28, 2008 2008 年 4 月 28 日) (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs for P48 x P88 / 56.29 hours, 1.74 hours / April 24, 2009 2009 年 4 月 24 日)
17×10168-539 = 1(8)1673<169> = 3371 × 48487 × 520151 × 149492575450278766064355105465537861991<39> × 148618640254097296463041504915115243088101259415265146325211387004955010597261896312036315375075730295290862505541119<117> (Robert Backstrom / GMP-ECM 6.2.1 B1=2528000, sigma=631359469 for P39 x P117 / June 10, 2008 2008 年 6 月 10 日)
17×10169-539 = 1(8)1683<170> = 133 × 1153 × 1899184819671361163387290225408063<34> × 3926266888112567544073047887536313671079408556962007900627998803362902182734040273650475604473730549935716930277198186398648831001<130> (Robert Backstrom / GMP-ECM 6.2.1 B1=386000, sigma=2244556447 for P34 x P130 / July 1, 2008 2008 年 7 月 1 日)
17×10170-539 = 1(8)1693<171> = 3 × 31 × 2333 × 90168271 × 115142149344161629850376984688397<33> × 1772963737984840369465746226474583<34> × 47295606304386422476579305729270226175133053046692469208394133140258992145305451848568435167<92> (Robert Backstrom / GMP-ECM 6.2.1 B1=1252000, sigma=374355149 for P33, B1=1372000, sigma=495894633 for P34 x P92 / October 2, 2008 2008 年 10 月 2 日)
17×10171-539 = 1(8)1703<172> = 7 × 683341357 × 39122856452740637<17> × 10093461016545113955657757815726212142735335399665534933537411666235746324914740426149514342036429576795725236496512307731624073227210703277604541<146>
17×10172-539 = 1(8)1713<173> = 462931566953<12> × 4243054134278387643902015996987107<34> × 9616367306177254454400989800479749240068989346224909729607233753965222432813638290499093357045250756981484447816404226835696073<127> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=2577178989 for P34 x P127 / September 15, 2009 2009 年 9 月 15 日)
17×10173-539 = 1(8)1723<174> = 3 × 33538283375647<14> × 344480854549100429<18> × 5082667344375497681419535599351<31> × 1072229004522264389297731966081077378110519279231987469943729528228287736187297292244073007381734462645151035597<112> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2733813737 for P31 x P112 / August 8, 2008 2008 年 8 月 8 日)
17×10174-539 = 1(8)1733<175> = 996571 × 10721092702631<14> × 66193574957206441<17> × 239577184791959983<18> × 189454127509773704238671718329<30> × 58842856862639499152451052446431284653766574674469574777580305207022606914324649821968415809<92> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2549688710 for P30 x P92 / April 29, 2008 2008 年 4 月 29 日)
17×10175-539 = 1(8)1743<176> = 13 × 14694077825670504732489643<26> × 282695848238775238636101214033492233452720004084041237<54> × 349785090279582737442556872391856391639482611214962214307293059322809551094454215259188496110601<96> (Wataru Sakai / for P54 x P96 / December 5, 2010 2010 年 12 月 5 日)
17×10176-539 = 1(8)1753<177> = 32 × 461 × 1433 × 24692141 × 7846216621307<13> × 1143236734438861<16> × 143437125587705933702661928936827203210437813712467913316917409885990626648376732498704872892988727082662498331367704730957109684684357<135>
17×10177-539 = 1(8)1763<178> = 7 × 617887 × 1034387 × 61321815157<11> × 40814705044175887905753677<26> × 196635134737399463953633508063819007731<39> × 857873941458154810248195695721179682036072963861787153119121622819576388188043308927091139<90> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=3335034176 for P39 x P90 / December 4, 2011 2011 年 12 月 4 日)
17×10178-539 = 1(8)1773<179> = 149 × 71023 × 2981057 × 738493163 × 18978130740089<14> × 43743537687611<14> × 93010512334718522114163289<26> × 40841462947354589786207930836285747643<38> × 257100965516938781704461385818273110825314784282900274223801951843<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P38 x P66 / 4.95 hours on Core 2 Quad Q6700 / May 4, 2008 2008 年 5 月 4 日)
17×10179-539 = 1(8)1783<180> = 3 × 19 × 43063 × 25359077 × 26604918932254488873702260991430211897<38> × 114059612585374475600178949348288186025416291213608933974036444631041504306498648616559148827652054979082007238943314245835524177<129> (matsui / Msieve 1.47 snfs for P38 x P129 / September 13, 2010 2010 年 9 月 13 日)
17×10180-539 = 1(8)1793<181> = 23 × 729690740257185401<18> × 2094053201242285989199853022384636228051024211291766374542672331185989<70> × 53746727918383123040227294445571711423593287528017026984067171710878603642335229093293119689<92> (Dmitry Domanov / Msieve 1.50 snfs for P70 x P92 / May 13, 2013 2013 年 5 月 13 日)
17×10181-539 = 1(8)1803<182> = 13 × 12569 × 975496516300291<15> × 79773494662146057147807433977988974829895018163585643<53> × 1485518254380213099372587146339424079063903590614718970877671728493815626027503131751145116477847948095017303<109> (Dmitry Domanov / Msieve 1.50 snfs for P53 x P109 / May 17, 2013 2013 年 5 月 17 日)
17×10182-539 = 1(8)1813<183> = 3 × 43 × 61 × 5791 × 160423 × 473993644702351307<18> × 111826477963936455942613406180863<33> × 487471806229642431932006327213105850347151393350146162101398545935253616249804148475785205144982282303204142873879752939<120> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=152531090 for P33 x P120 / April 30, 2008 2008 年 4 月 30 日)
17×10183-539 = 1(8)1823<184> = 72 × 5821 × 50658203 × 362091197858082068188978559777<30> × 361031407961693999098354936235724091615243481184799851541872277040464627609443906129093345283585731799226593933218472589257546465002577911917<141> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3427888369 for P30 x P141 / April 30, 2008 2008 年 4 月 30 日)
17×10184-539 = 1(8)1833<185> = 892 × 109 × 715718755268180558753<21> × 542183237173173260756944572437088392766392623559057615764187759<63> × 56378227333732930766272023533174366167143977560747428152894680777720285729807398450483053568961<95> (Dmitry Domanov / Msieve 1.50 snfs for P63 x P95 / June 17, 2013 2013 年 6 月 17 日)
17×10185-539 = 1(8)1843<186> = 33 × 31 × 1597997386322290245461276699108764584415883034598743632467843957463923933713820829<82> × 141222823208483395121283940637151729989074192145153563988529735450619888690572081943928291407031714371<102> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.34 for P82 x P102 / 96.19 hours / June 3, 2008 2008 年 6 月 3 日)
17×10186-539 = 1(8)1853<187> = 1471 × 3373 × 921247991 × 1791547609<10> × 230660107734905393664617328196890130863114951956204295884249232801497310912180793731908990799345365945574294966407081660218899728843523095074151050538254399071679<162>
17×10187-539 = 1(8)1863<188> = 13 × 97 × 8147 × 7079249 × 259720614007762327981180077787119942887282548838203338134942756067747338840545770817541858677408571937464871788320427189868382194410211146709582782763796536494051464931392501<174>
17×10188-539 = 1(8)1873<189> = 3 × 59 × 100297 × 2207171 × 902424438039328610914357<24> × 8404592170259213655605992390643141401811<40> × 547447325590487112962872343516844208948842247<45> × 1161019170658147844520718638618967733245813401242909977531376192593<67> (shun / GMP-ECM 7.0.4 B1=43000000, sigma=1:1110947807 for P40, B1=110000000, sigma=1:3048242061 for P45 x P67 / February 6, 2019 2019 年 2 月 6 日)
17×10189-539 = 1(8)1883<190> = 7 × 1487 × 37763269 × 107409211127<12> × 1892069578404541<16> × 3090777110713708539900218209<28> × 18308463842770442763352292651<29> × 3425376722500250431425989302857061<34> × 121989164029539344478888387906348661308781361217618006478634011<63> (Sinkiti Sibata / Msieve v. 1.35 for P34 x P63 / 8.77 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 4, 2008 2008 年 5 月 4 日)
17×10190-539 = 1(8)1893<191> = 47 × 320081 × 29208199 × 9647449436664621401<19> × 4455858273443522059249722914852061754006632898503696296189210359592062934432935685007825034169055247541394146517916055842893304359247567587059918499911124131<157>
17×10191-539 = 1(8)1903<192> = 3 × 1032 × 263 × 1597 × 2683 × 5266588306233441555784851767693026499047159698783427696481164674354985902542901355475223725979320550746025528236097856798189977708720706924859327848862312008867992289490447240633<178>
17×10192-539 = 1(8)1913<193> = 1949 × 6149779 × 3474090577886207485559<22> × 3205095166979268451820739499022372222766587881122012416384652021157999<70> × 14153146334761968550850183782594065927780606171398735511737347373426382499387875550129381853<92> (Eric Jeancolas / cado-nfs-3.0.0 for P70 x P92 / December 5, 2020 2020 年 12 月 5 日)
17×10193-539 = 1(8)1923<194> = 13 × 29 × 127 × 367 × 76642027853<11> × 707045930643469694171<21> × 700152996380659538246179111144166956012373803669<48> × 1851804007754893715112333521422630729014733951063<49> × 15300044392400175891460338285418856748004242626214770012471<59> (Edwin Hall / CADO-NFS/Msieve for P48 x P49 x P59 / January 8, 2021 2021 年 1 月 8 日)
17×10194-539 = 1(8)1933<195> = 32 × 419 × 48947 × 428231 × 178569036726907545268843741064938838081017740450776097417380023770292039<72> × 13382570560838566124957067533161751305642535675468801273470953308573144214385969104361642161474880300375438051<110> (Eric Jeancolas / cado-nfs-3.0.0 for P72 x P110 / January 4, 2021 2021 年 1 月 4 日)
17×10195-539 = 1(8)1943<196> = 7 × 1009 × 315097 × 199832831199047859894023987911<30> × 6743298777866628602709701154122977611887<40> × 629845010581525052452768965041849294879816454294841293615400555271970693423340998876109931908783959939783905436144229<117> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=865559548 for P30 / May 1, 2008 2008 年 5 月 1 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=370390129 for P40 x P117 / April 2, 2013 2013 年 4 月 2 日)
17×10196-539 = 1(8)1953<197> = 139 × 12611 × 320339 × 3147482505116597957<19> × 337109363509220322744923<24> × 4555767242387605257093485195274397573453468693371167237<55> × 6958836016072269201059376855229528647657884370985126449771734377415189031701669170740299<88> (Eric Jeancolas / cado-nfs-3.0.0 for P55 x P88 / April 24, 2020 2020 年 4 月 24 日)
17×10197-539 = 1(8)1963<198> = 3 × 19 × 619 × 8581 × 20073649757649413<17> × 5797970114799596368404037<25> × 2604864000866961077367688444027<31> × 2057859104406529255404097678068784747468733410880713070871039782861735411913581127133206348898129767928452882855107983<118> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=2658882083 for P31 x P118 / July 12, 2008 2008 年 7 月 12 日)
17×10198-539 = 1(8)1973<199> = 7603 × 30803 × 43261 × 102559 × 1042469 × 2250737867569<13> × 1941823279749679397<19> × 532909957499658687338853693037114127<36> × 12127492055545606309658842712355349019<38> × 61735571024736893980769353536098228900774070762653834895799357457201053<71> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=323913398 for P38, Msieve-1.36 gnfs for P36 x P71 / 6.00 hours on Opteron-2.8GHz; Linux x86_64 / July 12, 2008 2008 年 7 月 12 日)
17×10199-539 = 1(8)1983<200> = 13 × 349 × 8420156453<10> × 21260378927<11> × 23256613253305529116207791400349832193537723947953679972955659009048695172741094994645822581214721342592545024800715656066020561359324449584492571624376290038295078875501365889<176>
17×10200-539 = 1(8)1993<201> = 3 × 31 × 820429 × 4807832063609<13> × 1629813555479937134046216265544401<34> × 315933184606345460222023644972790420698532602642072827304029035909153495390406167400003118871158393699840636533268009489385723661675135436522533171<147> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=43418887 for P34 x P147 / May 2, 2008 2008 年 5 月 2 日)
17×10201-539 = 1(8)2003<202> = 7 × 71 × 26976088135778077934147<23> × 62286681846956900102907295197846290557097330653567173757<56> × 2261912786819875161781515572586953347240231411229704002188206727822739170798968265669616023784465272634831421245138069941<121> (Bob Backstrom / Msieve 1.54 snfs for P56 x P121 / October 16, 2021 2021 年 10 月 16 日)
17×10202-539 = 1(8)2013<203> = 23 × 1111283 × 1188896927<10> × 1101408662273<13> × 11059864830488651<17> × 51028334495617801851287820219953645854034933480756756447222949666967616493655442006101761652164429925253227006010122161623045901526663161918516270116166827147<158>
17×10203-539 = 1(8)2023<204> = 32 × 43 × 19380623 × 92761327 × 8644532910919<13> × 53169179893901<14> × 590689521621094435868879829151503331694156228128449189319220037983951790482292840264526731901033059615943942103274275084249169883918096557114033917506523111491<159>
17×10204-539 = 1(8)2033<205> = 233 × 35776100212847<14> × 226598740985928780854242671511640625624752597430917182349373458734152443776309515426806394904772669443524644982822108348738187514649624491687160158153749221430919767352844894272381831753333<189>
17×10205-539 = 1(8)2043<206> = 13 × 72457649573627191967068092617281800076348899390145959418999035096130779738065597012116983372353235763<101> × 20052975241972329419841738304333078765615896599949798057135869792744965413762216068339020902463546991557<104> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P101 x P104 / November 15, 2013 2013 年 11 月 15 日)
17×10206-539 = 1(8)2053<207> = 3 × 2653542125032258032931<22> × 16129482734488819920793879<26> × 20990914993148031810566683<26> × 4113617030735563001875080557<28> × 11457510704733867615520442792183<32> × 1486939272099335270108111040405386742994580442249145105262589743734302635093<76> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=517879824 for P32 x P76 / March 17, 2013 2013 年 3 月 17 日)
17×10207-539 = 1(8)2063<208> = 7 × 12289 × 1142723952630188095855026553<28> × 19215447233236273637305472876011229771721722994490404201735365419573778634756648397794944342055679038950346032031788967889875937108408927748509223149587218755650067746802600157<176>
17×10208-539 = 1(8)2073<209> = 1877 × 3203 × 1352779 × 11248613 × 23375329 × 1486220573<10> × 1529334424000127<16> × 5305231378407202152727151<25> × 7755298072305060446895649192716078812031505588729121693393659<61> × 94452418600031097575454731372055844215334319864131017606141348303646789<71> (Warut Roonguthai / Msieve 1.49 gnfs for P61 x P71 / March 22, 2013 2013 年 3 月 22 日)
17×10209-539 = 1(8)2083<210> = 3 × 19949 × 141679 × 1386611 × 49967918522261<14> × 68746335798339522306907027300576685910009135079<47> × 217804972525775814474682297410169162179951049030912783<54> × 21473127289152660342960756380623230019407838660015094282005164347410265695947053<80> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=910047128 for P47 / January 22, 2016 2016 年 1 月 22 日) (Erik Branger / GGNFS, Msieve gnfs for P54 x P80 / January 30, 2016 2016 年 1 月 30 日)
17×10210-539 = 1(8)2093<211> = 2383 × 18623851 × 159673279 × 1016635707084858407<19> × 5072140641026842905031866221676283146995099913730305659<55> × 51692077975960581337121366766512649158882726406987979604133062792702661304339725320240635002689250594440666434205894813<119> (ebina / Msieve 1.53 snfs for P55 x P119 / October 10, 2022 2022 年 10 月 10 日)
17×10211-539 = 1(8)2103<212> = 13 × 409657 × 2260182246533<13> × 31847477927833<14> × 1333095813178429<16> × 36962625352485885675427636180250929472938492068852546971385664097085113181488806566745336258670035982832436987607654796805683253757957417744523608371962974918087423<164>
17×10212-539 = 1(8)2113<213> = 33 × 1759 × 8163479 × 2304697486378258047619<22> × 18272623097581172337821<23> × 15050543289320223395520554615304391<35> × 558128536732742851547006153929338903820409354561992627307<57> × 1377210415461192217665467467874163764213569436844277345913122080803<67> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4230638252 for P35, Msieve 1.49 gnfs for P57 x P67 / March 21, 2013 2013 年 3 月 21 日)
17×10213-539 = 1(8)2123<214> = 7 × 135301 × 9349536181<10> × [213312987861091993799716263209298581009982717769261797011580107449535500421109552703181737330574546396887650195002090622384876220783939845107336538709705821887853366834147053384837652675796289076749<198>] Free to factor
17×10214-539 = 1(8)2133<215> = 4003 × 461213171 × 97949756919120832430947351<26> × [104451759043132388510270286801785516651448762503401922547429347469795539178892809898830181377461920640038069907010383564189536015803154246632213457990517749213703767427195612141<177>] Free to factor
17×10215-539 = 1(8)2143<216> = 3 × 19 × 31 × 80001697 × 1448541005385274345069103238984563347<37> × [922443700437346043646972112858344220951412472672459428271577643555266762889585093455063042817203710185302981836344599825698961709048315037838643038748480900843779951511<168>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3187588546 for P37 / April 2, 2013 2013 年 4 月 2 日) Free to factor
17×10216-539 = 1(8)2153<217> = 3999095055329148761148702200781604432447579469563<49> × 472329080143213139329903776895616720711678511965878774688815312366584925736026512908785991547895371912158851890125756973422751153695729516488018981078943242404491673641<168> (Serge Batalov / GMP-ECM B1=11000000, sigma=1174788220 for P49 x P168 / May 24, 2014 2014 年 5 月 24 日)
17×10217-539 = 1(8)2163<218> = 13 × 3797327 × 5031623 × 165445699 × 46876521266851<14> × 80946727120250699289683679070686651969809<41> × 121134211979051941414568016346944997964937885204548546875733854121375511447899796652173614093725348903239029754352133994735118760240053532831<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3258512632 for P41 x P141 / March 21, 2013 2013 年 3 月 21 日)
17×10218-539 = 1(8)2173<219> = 3 × 930385763 × 29759633970195867487<20> × [2274021234998482219961847640471042449931958939090904891723504626594008845391221032586095148092945337883000631074017045517698417581188306666068798454419080469814192049080079047716557431466981<190>] Free to factor
17×10219-539 = 1(8)2183<220> = 7 × 22240693 × 9385222874591<13> × 27939432350603<14> × 46269828298470759133600195139968572528538578399515505862983271264667772023660621655674050126086490065447644822039243186548544022563276955795558984908167460688409447657709777787345281021<185>
17×10220-539 = 1(8)2193<221> = 167 × 733 × 12821 × 1630141 × 354834637 × 4304749833479002662537493<25> × 72776655376318203129024186893<29> × 86255488975098542358276214306498693<35> × 769991864627571244018131383211284908100159706843202100419123539737436026199200298261554103583636071056501897<108> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2704494847 for P35 x P108 / March 19, 2013 2013 年 3 月 19 日)
17×10221-539 = 1(8)2203<222> = 32 × 29 × 5913197 × 14666330121918330158177197<26> × 8344918518103192499936789820008235746047386415277424288731336931101781412062420851604213809816923109785263121060875715026571991464224056177851702121363598058817647865285866077108390039167<187>
17×10222-539 = 1(8)2213<223> = 12589 × 99352871 × 27420275104624060834779467<26> × 53737210010240993810435380041751<32> × 616646846562423258656534204310753823850546027902116660508257580889<66> × 1662077689321362521693620220842209458854002700307477919846077391533421631363215328995589<88> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1062321696 for P32 / March 20, 2013 2013 年 3 月 20 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P66 x P88 / September 24, 2018 2018 年 9 月 24 日)
17×10223-539 = 1(8)2223<224> = 13 × 15707987 × 92500169053581021645420985705644713829530891067802194606666751951822534068368623744815487271092817494148231180290094013411966247043077702537759386545930614244396271335814894133347032499546440384308406480821062014693<215>
17×10224-539 = 1(8)2233<225> = 3 × 23 × 43 × 63663258809871550013107141519679436767404411489345766393289143541924128375088941317454967606635958506534846271954462045463056585402389244654158708759315432722915028273976706737070741115230498445867505523723926150619780549<221>
17×10225-539 = 1(8)2243<226> = 72 × 103 × 2086349 × 1916852202521324638451086973036806446192655091<46> × 93583120168416499933276387172482172293502845550067628029349018081090286521271936645560088493618154652413942924925252118371307279616886728083602731005334428795150892892771<170> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=885678387 for P46 x P170 / April 2, 2013 2013 年 4 月 2 日)
17×10226-539 = 1(8)2253<227> = 97687 × 2155700573525391347746865263<28> × 72502040519378597334415157534765431<35> × 121148747097075615035854791750849110197411991<45> × 10212029141265311965393112371404685827637194748511288331824587594630878760555849384986233732959668757695811917522683<116> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2495719746 for P35 / March 18, 2013 2013 年 3 月 18 日) (ebina / GMP-ECM 7.0.5 B1=43000000 for P45 x P116 / January 24, 2024 2024 年 1 月 24 日)
17×10227-539 = 1(8)2263<228> = 3 × 2339 × 4813 × 69828648981621688972741<23> × [80095005248112402388525333744235874862196858264026635811243326883964678747904992951241994232032834091380564032891876017040834923013376477557215504163572021713198866526252874918308277776042122903803<197>] Free to factor
17×10228-539 = 1(8)2273<229> = 89 × 397 × 467 × 6451 × 9587 × 30013 × 49871 × 217747 × 1670531 × 13936579 × 27114940006962709188565237<26> × 130523647244554649532488901881157227738131<42> × 68925672893186177667635654905095026221501305400102486357716058753045149254081763041161015110396841411766000046717398683<119> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4080953491 for P42 x P119 / April 2, 2013 2013 年 4 月 2 日)
17×10229-539 = 1(8)2283<230> = 13 × 2503 × 200200057 × [2899599480229509898069538901993468587231455408539679257395445387863961965947903094185420334609231946554687710509907804605296023614424863785521810009425846100878950044144371895246800315615677096073571811885455770643921<217>] Free to factor
17×10230-539 = 1(8)2293<231> = 32 × 31 × 677021107128634010354440461967343687773795300677021107128634010354440461967343687773795300677021107128634010354440461967343687773795300677021107128634010354440461967343687773795300677021107128634010354440461967343687773795300677<228>
17×10231-539 = 1(8)2303<232> = 7 × 277 × 1163 × 836754605817440307423331<24> × [1001038490273960082528866756604679800063350756915442010662159838157304151970555451895872421358582799335324423248867048117208941433596687087247803920688036492194222150503363674992108417053466677972521249<202>] Free to factor
17×10232-539 = 1(8)2313<233> = 2267 × 7337860427<10> × 425117360909<12> × 9438845677517<13> × 50181645087333383156628146920327049<35> × 5032486226481411466191155408257297535129847311359787111783<58> × 1120547391545185523451633913556926412641349207562222652623531467469508172193571038097371106932318070237<103> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4158134439 for P35 / March 21, 2013 2013 年 3 月 21 日) (Edwin Hall / CADO-NFS (poly + sieving)/Msieve (LA + SR) for P58 x P103 / December 6, 2024 2024 年 12 月 6 日)
17×10233-539 = 1(8)2323<234> = 3 × 19 × [3313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419103313840155945419<232>] Free to factor
17×10234-539 = 1(8)2333<235> = 271393 × 5795904281<10> × 3138077543116030864552169032063959889<37> × 382668659191048681820468414254349331719846191807561934197964088192849600558672830258589635795310942754347929312965836627381445625356109873815317002413116674965761196234426517093856859<183> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1522804401 for P37 x P183 / March 21, 2013 2013 年 3 月 21 日)
17×10235-539 = 1(8)2343<236> = 13 × 127 × 711016969253195257<18> × 23208916618448511463<20> × 693305275129111642361588967542781620494067775246785809084610424840113424070976105024782707478826862228677950938730843956505761009879527984612618456089738300344496948759461352565080599174129442063<195>
17×10236-539 = 1(8)2353<237> = 3 × 47 × 71 × 1283 × 1742285339<10> × 185321070480342787593996434442144258367913175637<48> × [45546835857117762353916637741133074874126311089853107111659902920741882219936281671278392320861956562868572548804740278448112161991676976694486785252550306463017156226690837<173>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2612195586 for P48 / February 4, 2016 2016 年 2 月 4 日) Free to factor
17×10237-539 = 1(8)2363<238> = 7 × 124435969484680425491115093361898139956502086267<48> × [2168515027919564437625823864517047311815963860156218118502690657401825467197157959248074226915169783243604677588173093898457592959269794068741594948175026780878946086703453511438712116352207<190>] (Serge Batalov / GMP-ECM B1=43000000, sigma=1139954734 for P48 / February 24, 2014 2014 年 2 月 24 日) Free to factor
17×10238-539 = 1(8)2373<239> = 1181 × 626808243619<12> × 147156256152609327941<21> × [173397600950347569919166688007353294098398252341647581516909702241013232202457665157566548144283889351323983680513848198547059800502484473501908123328784312600866545649876455016927674431873361242996194017<204>] Free to factor
17×10239-539 = 1(8)2383<240> = 34 × 601 × 379221122641<12> × 68332118744178783781305163<26> × [149737133376536667336532201441349497177508461507137011271941085073587495269836181052507383112612965919301608453755683733753026809168839710131656605985940180220881531486670428294254212596882839907521<198>] Free to factor
17×10240-539 = 1(8)2393<241> = 593227 × 17292139 × 1639280061701654541364693629490173117474229<43> × [112326862453302365420904327784030100474792622543720966853307871002809785691494138019518937551622930775017627827856232130841632409451596838975009193296628160180802402717039110666833132959<186>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3700639392 for P43 / February 5, 2016 2016 年 2 月 5 日) Free to factor
17×10241-539 = 1(8)2403<242> = 13 × 113 × 2474103401963<13> × [5197168166940879573065097830741131163073267821999477719244110833184218454230683632034266331275762218732440668877447215261637731820791425392307572072604892409540478572695339452611770356863089557783127680990646659666286293446989<226>] Free to factor
17×10242-539 = 1(8)2413<243> = 3 × 61 × 139 × 49991 × 107183 × 953823803 × 1452963260455753657111721781958507213374643070214260502598211735723225560888971845973963209402689203960248281846726352257192424983845612646851405384643749822474000292835807075060721209795768091398060387867123606146262101<220>
17×10243-539 = 1(8)2423<244> = 7 × 2707 × 548908099617654791403643<24> × 82675342126792320669653297<26> × 750622407141387578260847387<27> × 63566125262047322608845699021925050477410538590077958719<56> × 46035960864654615395039532996452489010012366418755012158223069645079121165013820348696230261229943466908609<107> (Mehrshad Alipour / cado-nfs for P56 x P107 / August 8, 2024 2024 年 8 月 8 日)
17×10244-539 = 1(8)2433<245> = 1667 × 15159848091767<14> × [747439357658406860596603792592586282108486131006234636330098409991358065172033779651874048509604764614802831858449491678469559252603744636244077554800683245853394983351685015676641387423639944474062963463181215395404206723585847<228>] Free to factor
17×10245-539 = 1(8)2443<246> = 3 × 31 × 43 × 260118258613162339919568429647251<33> × [181586755892247049630509776446573846952397861147453166497551517632736220392936596556401174022461148605018292377744976245036217748734183720376209763202661848910041149644194705103046447023389594453896479026538367<210>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1795206798 for P33 / March 19, 2013 2013 年 3 月 19 日) Free to factor
17×10246-539 = 1(8)2453<247> = 23 × 59 × 181 × 17727233 × 5508204975892081<16> × [78758410613194351561690387047381271686573487321549653020724687458800087214494455351000896834893292187481668079673069845603167282751696772625595550281916972977210172742278440157370024043604839405285756463551646650748563<218>] Free to factor
17×10247-539 = 1(8)2463<248> = 132 × 2009631482247222793<19> × [55616452217424602846882155053588826673641873278512578990314991736166431853023253630052722660560148186691201347458387783008721658294449182501415374123345662669040100197613702240224979974473093163526105500455106194131344240537699<227>] Free to factor
17×10248-539 = 1(8)2473<249> = 32 × 673997761 × 93210757687<11> × [334071487174412483329305978330098492143083452328039643344721505586867432189954100146654658304827259665431458803405272110572472414291572614871285226254166213497194765704248947042897115941438001639993600208997359915571019288295741<228>] Free to factor
17×10249-539 = 1(8)2483<250> = 7 × 29 × 81199 × 134201300858041<15> × 37607047521618138607728004402887191<35> × [22705639005282865431262801913087224455200369286404854029278810959239612910376834919217390642714968096353936096414594258316247714833906080000430132925131780107803929395961563719544125366341848969<194>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1182518506 for P35 / March 22, 2013 2013 年 3 月 22 日) Free to factor
17×10250-539 = 1(8)2493<251> = 25033 × 2132881 × [353774794265014988226656087416600870937967125110428406506235909072725271748923565188712564765532622726807189071105126865376832169897933816554445103347355857218880198738184591798748430490031325859173655977866741780425658607989708846362996971<240>] Free to factor
17×10251-539 = 1(8)2503<252> = 3 × 19 × 1212227 × 9027217 × 7881836749<10> × 29207348749<11> × 22160537514043016550013<23> × 59359995471083324059534054484186279866608811911793046937966797777095651459393036445012078898622929244624890179253470360584162270168636212075835728759838899024055702590917155470590622596309285557<194>
17×10252-539 = 1(8)2513<253> = 4106279 × 360617197 × [1275591229418343791313288420582291843219029869764452575623918133852277469200511396992646290505815682177849124945854527282368492804900127003436086454573679386588329370529630969295486257714390943182864602639927980534270363113922790803280841<238>] Free to factor
17×10253-539 = 1(8)2523<254> = 13 × 2347 × 2663 × 22460154977262976729729052544815110338209<41> × 1968218329764597841186846630277171466491543417<46> × 5258874211994872896864255537437149558874616507697024836393919251946423895997916798669114996528261225516485415305643763860942622644521677741963912060295754967027<160> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3575801514 for P41 / January 14, 2016 2016 年 1 月 14 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=97152248 for P46 x P160 / January 18, 2016 2016 年 1 月 18 日)
17×10254-539 = 1(8)2533<255> = 3 × 2902519 × 1857784831785044621783<22> × 11676553491387781512052750872883751133043587944314207725028189938628500913796573617832778082204013637555652845997272699992032714769592231532476101899281543205354960971951656467049020745803534611321651598184483809206383141893793<227>
17×10255-539 = 1(8)2543<256> = 7 × 463 × 1871 × 4327 × 10273 × [7007601712618172759195434079825046349798610789382304528487813178678466549487588159770981128224851972713626048067590968754178043678908183669680708906995284055831095577234635142902737583647774133354906648611589158130462479752275518961396831043<241>] Free to factor
17×10256-539 = 1(8)2553<257> = 98010733 × 179068518037377137456548077919<30> × 690721223599740499250009623683538027393367<42> × 1558155276346865387661889345126577364255090681258115979920637291344582879284031092198368385193854901076957596764008928139284436230046672512505248405357014280865899275043175259687<178> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1337266422 for P30 / December 25, 2015 2015 年 12 月 25 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3292762432 for P42 x P178 / January 15, 2016 2016 年 1 月 15 日)
17×10257-539 = 1(8)2563<258> = 32 × 90823 × 3873707 × 151759322329186766712003301<27> × 393084493888086737153102707010523051812773324648245331679012676703120607092100605398819543204294546854239892501807740052426500715643653285377255340612535235991817867300872788645694032557687218186601527159029557942194267<219>
17×10258-539 = 1(8)2573<259> = 22545431729407509859267<23> × 9353001456545386790811721<25> × 11444651505443080444565894656991766741268039<44> × 14962781411432671960067892536900934544578529<44> × 89690162631380885640948707654384470933958730991979410091981<59> × 583226351384334103168805779981872838673778350428491549227110515979<66> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1289929586 for P44(1496...) / January 28, 2016 2016 年 1 月 28 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1829657388 for P44(1144...), Msieve 1.50 gnfs for P59 x P66 / January 29, 2016 2016 年 1 月 29 日)
17×10259-539 = 1(8)2583<260> = 13 × 103 × 2113 × 28649 × 1253831 × 2088780493<10> × 300207934174597814384323<24> × [296389557420309298652378101134311627149701680510800197233581625044621846455617838475230278907497876063592953878970536410700706260815072871227967353938867018281815681523070312906209040376487231759215471062497009<210>] Free to factor
17×10260-539 = 1(8)2593<261> = 3 × 31 × 507270433 × 17351911186426001365672229601115823<35> × [230747283895979901238527499330899817415020265810137418203190830672342103895778143550410765098823796925107104943508831731602484218932171981850387586136468560037439079276574393574999080125858951732084245587548882742209<216>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3142270659 for P35 / December 25, 2015 2015 年 12 月 25 日) Free to factor
17×10261-539 = 1(8)2603<262> = 7 × 22859 × 75269 × 156749890639661145787<21> × 160176428280360959512901689<27> × [6246390718856775494958145726870535365124496346230079780723413019977359619292124947420020009355258434327862661053062498171551426673499116563004601843992246320088741114953246121849208249186942327808717074673<205>] Free to factor
17×10262-539 = 1(8)2613<263> = 3923 × 6581 × 15073 × 23340637 × 15094321081972192610572739<26> × [137774938400164605697589301376340385567529947620684332978047517734909716280636858471545962800089566312909391795252447954098560287439226499653118616498463748282130205815597987297671035886537450267465390810597242154435819<219>] Free to factor
17×10263-539 = 1(8)2623<264> = 3 × 3015699026387<13> × 116576996450010343604144840631515303<36> × [179095345729471946783921537056244957811731684464134082598743407974674186511920911547079921675454793107045568084713744609518239904712499306338861605564583571653837579420019128755946095263449761537960116455119844680701<216>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2442249387 for P36 / January 5, 2016 2016 年 1 月 5 日) Free to factor
17×10264-539 = 1(8)2633<265> = 754038396044868202999<21> × 64209040624339650568697194288267<32> × 39013666755077735260919465601000977278820095553769680297580802576221892142109375839678390548571510824969267103423368687112301175496624071379217337136174023968831608162570992424444811835697461531936876089463281551<212> (Makoto Kamada / GMP-ECM 6.4.4 B1=5e4, sigma=1227853763 for P32 x P212 / October 21, 2015 2015 年 10 月 21 日)
17×10265-539 = 1(8)2643<266> = 13 × 1019 × 3086861 × [461925355581414383140045577877518321641194064749029250430690132183195524570029522182835961411319593645585366793454155506501539692259446388937040062677914809416204512581273114217671929567955819120280421467539514122285976138944533200457424573380150191659649<255>] Free to factor
17×10266-539 = 1(8)2653<267> = 33 × 43 × 82506617 × 3425285271927020118611<22> × [575689972422992369501015451242601121011721794469105067559694299751478491933115095474858514773766723293757508686219221130393421747697154886718830014131647964678910973458223886358684620789133570793623501300240819747179109731784315039969<234>] Free to factor
17×10267-539 = 1(8)2663<268> = 72 × 154740995039<12> × 9694117209203481377<19> × [25697843524500370385267808707764505072570037052593015012995527525782927777934416977135511579623495241446811626531950427769655476009662258597474857599514482514304131921761845350954831337856782297930269067272034110737502897368221339343389<236>] Free to factor
17×10268-539 = 1(8)2673<269> = 23 × 29899787090397515103893<23> × 1237672357345389016157485915611013<34> × [22192426426050600953697564496777992147494026124848708114567325712024742380277590857158424751703098515119718089378115993662752852477606848725121649524600714525945601346158622050583416550170521571970247179390310269<212>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4190026672 for P34 / December 25, 2015 2015 年 12 月 25 日) Free to factor
17×10269-539 = 1(8)2683<270> = 3 × 19 × 1746499040743825380729158346199<31> × 19363112111712887639432146346272060667943176521<47> × [97991418580795403764759075636235939462245865279880595183261575964210693375566167495415473364512269247257914595545042779933311075108446643655449447324906456143987473925644863979640197271589061<191>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2115737283 for P31 / December 25, 2015 2015 年 12 月 25 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2314460396 for P47 / January 6, 2016 2016 年 1 月 6 日) Free to factor
17×10270-539 = 1(8)2693<271> = 293 × 3463 × 1861599698902674582188586400838990132536043034052710209921647458790479253511661443784452598251125638159114430452880119221224952312933595315163901260313946743574825521568220346824784374739581365649828059366633409735575093591924862331964619531181302180228913249563537<265>
17×10271-539 = 1(8)2703<272> = 13 × 71 × 269 × 76076834022276192023299201685504633302947350803259489578145005130711188619979656159560866613591887166419864466882635373132257785904573694510340408031386616652860958845565369467144429184326561152572985653251635763809176029711136261217417298887532931200138907348708909<266>
17×10272-539 = 1(8)2713<273> = 3 × 89 × [707449022055763628797336662505201831044527673741156887224302954640033291718684977111943404078235538909696213066999583853516437786100707449022055763628797336662505201831044527673741156887224302954640033291718684977111943404078235538909696213066999583853516437786100707449<270>] Free to factor
17×10273-539 = 1(8)2723<274> = 7 × 1416109 × 2262327144434471<16> × 6466718814765954377<19> × 1471064434422600979915571<25> × [8854022258039255545735843124294205438128758912522673420326909702751736422861003811111135333359882922147084413853854404567532007790442346313413848620188096831052622174563688562739172034277867536331410209287213<208>] Free to factor
17×10274-539 = 1(8)2733<275> = 904902524144115941734573450357713018239027<42> × [20873948723653488351702695571911779992732623253914313725954121193617059006731955667243267033947427076150428435437373863755564119831738655168583446559783792023028603679742347206123146891710263077920312614458471091586322551312362787329<233>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=919136580 for P42 / January 11, 2016 2016 年 1 月 11 日) Free to factor
17×10275-539 = 1(8)2743<276> = 32 × 31 × 179 × [3782240821947676035499667385292422836725113411603469872227005644438214871325942389797739109927492218595720728237097552890188199853605031715201715802424638851622692554992669127348048474978252115273800862795876912534568568688830597883280048234694717544480264489875831258663<271>] Free to factor
17×10276-539 = 1(8)2753<277> = 853 × 2837 × 1091729 × 6449795449506169<16> × 5966814017855443321300053550385396616343<40> × 18577820197808874997015948610751998955127554425362174579573104497051195163797236951885489399447181366390677655317562686973536346827026270469544014757972201952308657726881981749013957594651820366495921022700421<209> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1711789194 for P40 x P209 / January 16, 2016 2016 年 1 月 16 日)
17×10277-539 = 1(8)2763<278> = 13 × 29 × 127 × 541 × 138994243 × 89539945271858524252830548911323007<35> × [58593634610255188409939485785361009331740985527779937159318230184963737500922131645603184602484683505322211969431158035740715679810693460560731557606402682717717815027124578492984221403770551234343133702066195106059751307719597<227>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=578485657 for P35 / December 26, 2015 2015 年 12 月 26 日) Free to factor
17×10278-539 = 1(8)2773<279> = 3 × 307613397956273763049461197<27> × 1580631820357875123656945972381<31> × 22358442715605402766913934978293<32> × [5791721072996804587276780271680039246116819417753935425094725913993707326347774303000657920668219806239216606542254251462695948455623189026397326640281367238743637303106176465046207242698261<190>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=95759026 for P31, B1=25e4, sigma=3200308011 for P32 / December 26, 2015 2015 年 12 月 26 日) Free to factor
17×10279-539 = 1(8)2783<280> = 7 × 131 × 19105168492786702760822984098438103689093<41> × 107816741970467152120520646918044842780728593695789096615830755488785125912244217572745635827871975893003804464251930762290660914995257474289635575658998770779305870809161738518146271765783343246136886819236040604960102668372927666198843<237> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=935143185 for P41 x P237 / January 19, 2016 2016 年 1 月 19 日)
17×10280-539 = 1(8)2793<281> = 6054950050249525797198392054507<31> × 3784096871349907650688537936783071121<37> × [824391682617042971907948704269226899631184549171981999633045683453105036093659535932162378971793499415364059668143870930068350684055144597226577000200902532834120967467650644475085701057511361328826545207631110089<213>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=499049586 for P37, B1=1e6, sigma=1272200865 for P31 / December 26, 2015 2015 年 12 月 26 日) Free to factor
17×10281-539 = 1(8)2803<282> = 3 × 733 × 822589 × 1094088967<10> × 417924405924541<15> × 61517024018980607107598842241444288183307139<44> × 3712381458845939771284477729872500092380010511837776510147259835109898013845197405228788472333746370045219501980948029498793594920241366783541335876408835574119135663615370689222469186591763255946651808041<205> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2810348695 for P44 x P205 / January 16, 2016 2016 年 1 月 16 日)
17×10282-539 = 1(8)2813<283> = 47 × 1531 × 21202127 × 74970146918509<14> × 29133672024530278559197<23> × 566852861064202916420359753087898531224550555709357510115689239675955348967789294401689010071454102305865835411039477092109143788115855250142315508418906113023428328808064667042149224465516419296404531963955329707569143600370458809489<234>
17×10283-539 = 1(8)2823<284> = 13 × 97 × 650416881440168461<18> × [23030296041273233437890840770668210205289505705730515588246126686729666972276281160343565344083210519462651490595061086529412146585101351409974201365190038450566184157878035793909634184135748412525089944558852496229190103361713215627153746019940935658254586674523<263>] Free to factor
17×10284-539 = 1(8)2833<285> = 32 × 6599 × [3180429507650803806787036569326815323683536038943423900740665907105266604180581045762638933321359951657471483707782136837044146232407080010252208059956708741878211999947616455168104407888213515328734806433447641711520076928977267412383844166437488658027123451177600796229881444813<280>] Free to factor
17×10285-539 = 1(8)2843<286> = 7 × 10202147009722813<17> × 181476597090094967798883611761649299790982317<45> × [145745839971067571671445905239388588261978010103217871208029375330611293748038894288027347601038063767651428050831956832305727556563653419019993479149979299056937524726157505690062931410380326227768278650993106263566578732189<225>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=447455878 for P45 / January 16, 2016 2016 年 1 月 16 日) Free to factor
17×10286-539 = 1(8)2853<287> = 724403 × 5982437947<10> × 41594571032258593<17> × 104787944018027956027005677924286038038311417181984405679838236963449076183711670706599822673599612406209034773580412543902380741703248177909414998752360065203265341133856314094744017383429012608852450752585293264658803338032775250941402688652184176086291<255>
17×10287-539 = 1(8)2863<288> = 3 × 19 × 432 × 13669 × 3915931 × 79189203824134524629<20> × 94116127114025758127<20> × 4492549248355930213702333235684632838823733142557956857893663443599777521067970996150119905976299352965346263121382982587316255992091109627126510132600108968244409236834033363220381652868424137003804625186064162391337289635551177663<232>
17×10288-539 = 1(8)2873<289> = 139 × 229 × 19590147527729<14> × 104576863134647339745709<24> × 2500661912643403829938296407768460848497033<43> × 11583180731261348710610740956583938184390093561245427254739303536418046615063842326695610994267707796355039858013166718267223983628961144564763299982951297046699373537158115196486781936238783784840756194561<206> (Dmitry Domanov / GMP-ECM B1=110000000, sigma=3941422807 for P43 x P206 / February 4, 2016 2016 年 2 月 4 日)
17×10289-539 = 1(8)2883<290> = 13 × 307 × 15767 × 15773 × [19030987027218976814455191219899809270754266566082725993503827896412423159376996687527909214905395261419464796909931794280441122859924024861790278705142790111211864415097922346820931552112561995881943388817514663121137698953108106782886733368981375729581077631834373388309779743<278>] Free to factor
17×10290-539 = 1(8)2893<291> = 3 × 23 × 31 × 198719 × 25487629 × 173820583 × 6715491767<10> × 21351579283<11> × 65312399800202385557<20> × [10710805410430482558624133390771544676903600770189966414224053076326655333623035179869564047828775869115599397303464163541221157651679538853304475561115747676012389181828952758308562071933230340332090494972233924284015016373917<227>] Free to factor
17×10291-539 = 1(8)2903<292> = 7 × 587 × 10788090139<11> × 5279328872201<13> × 1020344074819637<16> × 42311037667271581855445048074815077<35> × 183884657689636068583002368175282524035112072359<48> × 3208074107647063018326273101562135693329271942833<49> × 316925202316544916726796504918198541233069364727543961537584549896381410722393322649845903874439152093359496702180684011<120> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2993916385 for P35 / January 6, 2016 2016 年 1 月 6 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3862020494 for P48 / January 15, 2016 2016 年 1 月 15 日) (yoyo / GMP-ECM 7.0.5 B1=110000000, sigma=0:11679770143583609733 for P49 x P120 / January 18, 2020 2020 年 1 月 18 日)
17×10292-539 = 1(8)2913<293> = 109 × 106136130761<12> × 8194420589800376952843871<25> × [199250037528160094154529205932763824324559996224549594994155526994837538324760799938359326055930251954844215495559287296744944957092003759451189001088099068765817232747321769136547975462242292181758137494280000970557005203597789883471734614973224080366777<255>] Free to factor
17×10293-539 = 1(8)2923<294> = 33 × 103 × 787 × 67883 × 621878149 × 4192346297<10> × [487648864408740677957500773062123432349587484542346285987377198392449344781214329183701985628891064980725726626387212648606573623779952573769839384909823367662182157796728797117959562224894032775332970813140070900656981154855683846243087034231391994352989515598411<264>] Free to factor
17×10294-539 = 1(8)2933<295> = 1753 × 7433 × 9981609498689<13> × 807442947658106619095321<24> × [17986553010190632644130779409258911246055304730397573129656255736966768131372188816013000492839232163722176820944422011205186618857796878241655353234548803108018399498140175496843912485698793218584660498859605910162043409352083791872792944139909160843<251>] Free to factor
17×10295-539 = 1(8)2943<296> = 13 × 401 × 286862571154390213<18> × [12631205485231517352824608147480039938785237571012402163195108651057056470283658986063526220363283984091909903198913499474801632881199922545514000566328255025969948979384119740238869379254781910871206843422655559256109303126965387906132001041921728303751848866345247121272707<275>] Free to factor
17×10296-539 = 1(8)2953<297> = 3 × 283 × 1069 × 8200061 × 18376856801<11> × 14379798866597<14> × 6409960146925529<16> × 13118119928274332791<20> × [1142228426925012034897580426964028441262503830261251279058298855263533890201957177795025897399757762759343375790238207966291558826307873688878504115330730203165648120143008254702143100965636006992373533306640573715978305200961<226>] Free to factor
17×10297-539 = 1(8)2963<298> = 7 × 809 × 3808147807<10> × 101840545188520820902213130546043123808193087<45> × [860053243945401904016831138151495600028926688779255791300648578254290437727865660919042650159033063061892914507650969863306658846072725461141131206998972970365035679527547412882843454126445218246243308710357825536529437623815011646704862349<240>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2560999725 for P45 / January 31, 2016 2016 年 1 月 31 日) Free to factor
17×10298-539 = 1(8)2973<299> = 499 × 5249363351676375828103<22> × [7211062030061964055217438616048721674061346651738917751878123346982917458100824151120597294011051682794178600636051865143818383532144936527169780119217128291500816257226793205410253129037946599324949729879390629423978108299053087690764337564269421745642464973227616063301239<274>] Free to factor
17×10299-539 = 1(8)2983<300> = 3 × 10753003 × [5855384115764030100518242481933927012106568087348526078060516021706955997590902091533217554478777971415330486094253201916056655332744068141984426393535179239042615626812618108909944781282304390965292482756952914731165141771369631624111233202758611986155212917076556471058639429651694783583987<292>] Free to factor
17×10300-539 = 1(8)2993<301> = 277 × 4173751 × 99702118203277<14> × 229438096604850339325781257<27> × [71421701200735507484275289610343731551881695780137326019851845179469258959682089244072680025723743919912596077473912125576444445481652506712776918523638998000190467970546023074460405994937129040112006123669606208678154582465829630115344324104958601261<251>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク