Table of contents 目次

  1. About 211...113 211...113 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 211...113 211...113 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 211...113 211...113 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 211...113 211...113 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

21w3 = { 23, 213, 2113, 21113, 211113, 2111113, 21111113, 211111113, 2111111113, 21111111113, … }

1.3. General term 一般項

19×10n+179 (1≤n)

2. Prime numbers of the form 211...113 211...113 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 19×101+179 = 23 is prime. は素数です。
  2. 19×103+179 = 2113 is prime. は素数です。
  3. 19×107+179 = 21111113 is prime. は素数です。
  4. 19×1013+179 = 2(1)123<14> is prime. は素数です。
  5. 19×1024+179 = 2(1)233<25> is prime. は素数です。
  6. 19×1030+179 = 2(1)293<31> is prime. は素数です。
  7. 19×1048+179 = 2(1)473<49> is prime. は素数です。
  8. 19×1052+179 = 2(1)513<53> is prime. は素数です。
  9. 19×10163+179 = 2(1)1623<164> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 1, 2004 2004 年 10 月 1 日)
  10. 19×10175+179 = 2(1)1743<176> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 1, 2004 2004 年 10 月 1 日)
  11. 19×10219+179 = 2(1)2183<220> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 1, 2004 2004 年 10 月 1 日)
  12. 19×10228+179 = 2(1)2273<229> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 1, 2004 2004 年 10 月 1 日)
  13. 19×10261+179 = 2(1)2603<262> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 1, 2004 2004 年 10 月 1 日)
  14. 19×10754+179 = 2(1)7533<755> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  15. 19×10951+179 = 2(1)9503<952> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  16. 19×101344+179 = 2(1)13433<1345> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 8, 2006 2006 年 9 月 8 日) [certificate証明]
  17. 19×101573+179 = 2(1)15723<1574> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 5, 2006 2006 年 9 月 5 日) [certificate証明]
  18. 19×103294+179 = 2(1)32933<3295> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Ray Chandler / Primo 4.0.1 - LX64 / February 16, 2013 2013 年 2 月 16 日) [certificate証明]
  19. 19×103523+179 = 2(1)35223<3524> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 1, 2004 2004 年 10 月 1 日) (certified by:証明: Ray Chandler / Primo 4.0.1 - LX64 / March 22, 2013 2013 年 3 月 22 日) [certificate証明]
  20. 19×1014161+179 = 2(1)141603<14162> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  21. 19×1070794+179 = 2(1)707933<70795> is PRP. はおそらく素数です。 (Bob Price / PFGW / March 16, 2015 2015 年 3 月 16 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / March 16, 2015 2015 年 3 月 16 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 19×103k+2+179 = 3×(19×102+179×3+19×102×103-19×3×k-1Σm=0103m)
  2. 19×106k+5+179 = 7×(19×105+179×7+19×105×106-19×7×k-1Σm=0106m)
  3. 19×1015k+12+179 = 31×(19×1012+179×31+19×1012×1015-19×31×k-1Σm=01015m)
  4. 19×1021k+4+179 = 43×(19×104+179×43+19×104×1021-19×43×k-1Σm=01021m)
  5. 19×1022k+1+179 = 23×(19×101+179×23+19×10×1022-19×23×k-1Σm=01022m)
  6. 19×1028k+6+179 = 29×(19×106+179×29+19×106×1028-19×29×k-1Σm=01028m)
  7. 19×1035k+2+179 = 71×(19×102+179×71+19×102×1035-19×71×k-1Σm=01035m)
  8. 19×1041k+34+179 = 83×(19×1034+179×83+19×1034×1041-19×83×k-1Σm=01041m)
  9. 19×1046k+36+179 = 47×(19×1036+179×47+19×1036×1046-19×47×k-1Σm=01046m)
  10. 19×1053k+31+179 = 107×(19×1031+179×107+19×1031×1053-19×107×k-1Σm=01053m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 23.75%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 23.75% です。

3. Factor table of 211...113 211...113 の素因数分解表

3.1. Last updated 最終更新日

October 11, 2024 2024 年 10 月 11 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=212, 216, 217, 218, 225, 227, 230, 233, 235, 236, 237, 238, 239, 241, 242, 243, 244, 247, 248, 251, 252, 254, 255, 256, 258, 259, 260, 262, 263, 266, 267, 268, 270, 272, 274, 275, 276, 277, 278, 279, 280, 283, 284, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300 (57/300)

3.4. Factor table 素因数分解表

19×101+179 = 23 = definitely prime number 素数
19×102+179 = 213 = 3 × 71
19×103+179 = 2113 = definitely prime number 素数
19×104+179 = 21113 = 43 × 491
19×105+179 = 211113 = 33 × 7 × 1117
19×106+179 = 2111113 = 29 × 72797
19×107+179 = 21111113 = definitely prime number 素数
19×108+179 = 211111113 = 3 × 70370371
19×109+179 = 2111111113<10> = 659 × 3203507
19×1010+179 = 21111111113<11> = 167 × 181 × 698419
19×1011+179 = 211111111113<12> = 3 × 7 × 32117 × 313009
19×1012+179 = 2111111111113<13> = 31 × 68100358423<11>
19×1013+179 = 21111111111113<14> = definitely prime number 素数
19×1014+179 = 211111111111113<15> = 32 × 606443 × 38679299
19×1015+179 = 2111111111111113<16> = 547889 × 3853173017<10>
19×1016+179 = 21111111111111113<17> = 10527281 × 2005371673<10>
19×1017+179 = 211111111111111113<18> = 3 × 72 × 2389 × 434839 × 1382449
19×1018+179 = 2111111111111111113<19> = 149 × 647 × 21898811355571<14>
19×1019+179 = 21111111111111111113<20> = 101741 × 207498561161293<15>
19×1020+179 = 211111111111111111113<21> = 3 × 70370370370370370371<20>
19×1021+179 = 2111111111111111111113<22> = 59 × 61561 × 21036791 × 27629557
19×1022+179 = 21111111111111111111113<23> = 113 × 33577 × 34501 × 134417 × 1199789
19×1023+179 = 211111111111111111111113<24> = 32 × 7 × 23 × 22741 × 6406681702339357<16>
19×1024+179 = 2111111111111111111111113<25> = definitely prime number 素数
19×1025+179 = 21111111111111111111111113<26> = 43 × 490956072351421188630491<24>
19×1026+179 = 211111111111111111111111113<27> = 3 × 7816418722531<13> × 9002891588641<13>
19×1027+179 = 2111111111111111111111111113<28> = 31 × 3557 × 4903 × 37173607 × 105043440059<12>
19×1028+179 = 21111111111111111111111111113<29> = 25639 × 1711481 × 43022129 × 11182683383<11>
19×1029+179 = 211111111111111111111111111113<30> = 3 × 7 × 109279 × 91993064110305300286907<23>
19×1030+179 = 2111111111111111111111111111113<31> = definitely prime number 素数
19×1031+179 = 21111111111111111111111111111113<32> = 107 × 13001 × 13294428919<11> × 1141513019536661<16>
19×1032+179 = 211111111111111111111111111111113<33> = 33 × 4089116767<10> × 38565775817<11> × 49581052621<11>
19×1033+179 = 2111111111111111111111111111111113<34> = 959045911247<12> × 2201261781478362875879<22>
19×1034+179 = 21111111111111111111111111111111113<35> = 29 × 83 × 787 × 54484511 × 204544219857337746187<21>
19×1035+179 = 211111111111111111111111111111111113<36> = 3 × 7 × 10052910052910052910052910052910053<35>
19×1036+179 = 2111111111111111111111111111111111113<37> = 47 × 10960920569<11> × 4097945733705200616862591<25>
19×1037+179 = 21111111111111111111111111111111111113<38> = 71 × 3221 × 33594153587<11> × 2747883488955895970689<22>
19×1038+179 = 211111111111111111111111111111111111113<39> = 3 × 70370370370370370370370370370370370371<38>
19×1039+179 = 2111111111111111111111111111111111111113<40> = 38047501 × 55486196349955049902255370493613<32>
19×1040+179 = 21111111111111111111111111111111111111113<41> = 97 × 761 × 285992537100005569328354052740034289<36>
19×1041+179 = 211111111111111111111111111111111111111113<42> = 32 × 7 × 145511 × 1458045199332619<16> × 15794421708353242739<20>
19×1042+179 = 2111111111111111111111111111111111111111113<43> = 312 × 66637591 × 32966164031630129248528721399263<32>
19×1043+179 = 21111111111111111111111111111111111111111113<44> = 142169927 × 149581805267771<15> × 992714992278655632989<21>
19×1044+179 = 211111111111111111111111111111111111111111113<45> = 3 × 24774353273<11> × 7458717859003<13> × 380823141415617551009<21>
19×1045+179 = 2111111111111111111111111111111111111111111113<46> = 23 × 157 × 439 × 112771 × 1316761 × 272483040451<12> × 32913587323033037<17>
19×1046+179 = 21111111111111111111111111111111111111111111113<47> = 43 × 365947637947<12> × 1341601970997080443222689196761953<34>
19×1047+179 = 211111111111111111111111111111111111111111111113<48> = 3 × 7 × 18089 × 26267 × 206983267 × 309358826389409<15> × 330422045134477<15>
19×1048+179 = 2111111111111111111111111111111111111111111111113<49> = definitely prime number 素数
19×1049+179 = 21111111111111111111111111111111111111111111111113<50> = 223 × 5088905011<10> × 3544582652946761<16> × 5248277333355496837861<22>
19×1050+179 = 211111111111111111111111111111111111111111111111113<51> = 32 × 1197709 × 19584715589059437746110941909476166684442373<44>
19×1051+179 = 2(1)503<52> = 174649 × 2547997 × 4495111 × 1055372213040229118720951795649811<34>
19×1052+179 = 2(1)513<53> = definitely prime number 素数
19×1053+179 = 2(1)523<54> = 3 × 7 × 1051 × 778733 × 3147751 × 3902115599970786120790987345120205741<37>
19×1054+179 = 2(1)533<55> = 217143371 × 9722199215149474266525553345633153641660611003<46>
19×1055+179 = 2(1)543<56> = 361682129 × 58369240331227731495440050097446509753074117497<47>
19×1056+179 = 2(1)553<57> = 3 × 10837 × 6493528686017382150998465476642093787060106152105783<52>
19×1057+179 = 2(1)563<58> = 31 × 61 × 1613 × 111301 × 4873579577<10> × 3157859187541<13> × 404059485767644656121423<24>
19×1058+179 = 2(1)573<59> = 19891 × 11143487 × 95243065099861386065105680647613714301466780589<47>
19×1059+179 = 2(1)583<60> = 36 × 73 × 2237 × 37951 × 400839587 × 14015233213<11> × 1840230067801<13> × 961960363738307<15>
19×1060+179 = 2(1)593<61> = 47389151 × 65900729428399<14> × 675992599828664856827519182132613586137<39>
19×1061+179 = 2(1)603<62> = 6022663 × 7073899420499531<16> × 9140372444085173<16> × 54212540030610935133977<23>
19×1062+179 = 2(1)613<63> = 3 × 29 × 229 × 142547 × 74335843678679204692008937247153359522290034051003873<53>
19×1063+179 = 2(1)623<64> = 233 × 4496627 × 75043590645975713<17> × 26850643650475201989323151170634658811<38>
19×1064+179 = 2(1)633<65> = 12329 × 143813 × 178897 × 840319 × 14365327 × 24829459 × 70210747 × 3162652565697575215373<22>
19×1065+179 = 2(1)643<66> = 3 × 7 × 3731579 × 2694009708198607857438609782322725288692242627828608991007<58>
19×1066+179 = 2(1)653<67> = 579713 × 81895499091738951193<20> × 44467019212707966943270538173049377748657<41>
19×1067+179 = 2(1)663<68> = 23 × 43 × 2467 × 144909212610787<15> × 25532034857726831765557<23> × 2338644585471996627132289<25>
19×1068+179 = 2(1)673<69> = 32 × 337 × 9187 × 1529651099579<13> × 3807592064533147001<19> × 1300834865578465148219225412457<31>
19×1069+179 = 2(1)683<70> = 88759721 × 715187732711<12> × 33256390149376474396174887114171231828927387389623<50>
19×1070+179 = 2(1)693<71> = 557 × 37901456213844005585477757829642928386195890684221025334131258727309<68>
19×1071+179 = 2(1)703<72> = 3 × 7 × 961021 × 1127249 × 1383923 × 10973153 × 1253968981<10> × 487314018429110883806973820183839863<36>
19×1072+179 = 2(1)713<73> = 31 × 71 × 109 × 1721 × 44171 × 1559473 × 110335888139<12> × 672747037592366930543233662977442796949941<42>
19×1073+179 = 2(1)723<74> = 839 × 2693149 × 324239976527<12> × 28815236588773155552951041137675897057042525662939029<53>
19×1074+179 = 2(1)733<75> = 3 × 14639 × 560376092117995553<18> × 26949522270879788439239<23> × 318308148761883008244768160267<30>
19×1075+179 = 2(1)743<76> = 83 × 28078050566458800043545464941<29> × 905870354768457140894774530090056415504584671<45>
19×1076+179 = 2(1)753<77> = 30763 × 39097243 × 109126867 × 7984169360712770909<19> × 20145351289084654962306630531671372119<38>
19×1077+179 = 2(1)763<78> = 32 × 7 × 1792 × 359 × 39119 × 10821868987<11> × 688145089597703695526474846652388029062186374148565893<54>
19×1078+179 = 2(1)773<79> = 28661 × 1051927 × 251175716662194743<18> × 1319075031560708407<19> × 211342577728797400982592354893779<33>
19×1079+179 = 2(1)783<80> = 59 × 131 × 3391 × 3197770230097<13> × 251891051499289637978153008259630498989469247068931510235511<60>
19×1080+179 = 2(1)793<81> = 3 × 463 × 1505557987657<13> × 74981602993526598631<20> × 1346345855233333569104369023243004838156224851<46>
19×1081+179 = 2(1)803<82> = 699141943 × 110587669957<12> × 90787707012113863<17> × 300754392701878335724212545689664558932509301<45>
19×1082+179 = 2(1)813<83> = 47 × 19993 × 23588153 × 952448125711555779966425934480717255686248131490770465508709466688151<69>
19×1083+179 = 2(1)823<84> = 3 × 7 × 1407061 × 7144615658390114508221683390350562562712569002274992278268610993347163278673<76>
19×1084+179 = 2(1)833<85> = 107 × 51048946973<11> × 121270850627<12> × 3187014959485738766884716699806381367945630409578348397718429<61>
19×1085+179 = 2(1)843<86> = 6099215659<10> × 10473826091<11> × 61468878841<11> × 5376212811528468063732490422151222497366534797763867097<55>
19×1086+179 = 2(1)853<87> = 33 × 23561 × 2941039 × 6130295720465114289888695612507<31> × 18406507811971097242498270261536583532051623<44> (Makoto Kamada / GGNFS-0.54.5b for P31 x P44)
19×1087+179 = 2(1)863<88> = 31 × 38415614197<11> × 106521360887<12> × 16641976724926073614902284188750654342504505597762766987891085757<65>
19×1088+179 = 2(1)873<89> = 43 × 1572407 × 16087209830335589109555155011681050079<38> × 19408722064138713448550343153304780057306147<44> (Makoto Kamada / GGNFS-0.54.5b for P38 x P44)
19×1089+179 = 2(1)883<90> = 3 × 7 × 23 × 13761367 × 204917037536887571141421778631790304897<39> × 154997364933199333697488621547167800431189<42> (Makoto Kamada / GGNFS-0.54.5b for P39 x P42)
19×1090+179 = 2(1)893<91> = 29 × 220021341633318395070749511169153301<36> × 330863062307936390282735263072088040168374761868622697<54> (Makoto Kamada / GGNFS-0.54.5b for P36 x P54)
19×1091+179 = 2(1)903<92> = 15727 × 57030517 × 993994068258996019044130175292049<33> × 23679585902939041224465210664965598572318089243<47> (Makoto Kamada / GGNFS-0.54.5b for P33 x P47)
19×1092+179 = 2(1)913<93> = 3 × 827 × 4071486007<10> × 94478539060219<14> × 221206666741885198583073517857283686021473907388387373705866684381<66>
19×1093+179 = 2(1)923<94> = 191 × 465450060161<12> × 775198734073<12> × 9842291438828549<16> × 1104619810698206718394379<25> × 2817620706077464916380557961<28>
19×1094+179 = 2(1)933<95> = 2842787 × 1741599012763206019<19> × 159282036075604203635014038749<30> × 26770211497706862692863192202019015603029<41>
19×1095+179 = 2(1)943<96> = 32 × 7 × 14004139001<11> × 154491337267843149744539<24> × 1548852270894333289400230232161560250317633148987483338296509<61>
19×1096+179 = 2(1)953<97> = 2465599 × 9021972864913<13> × 89684705625676648170699460577590049<35> × 1058202401392789148304051935378010145920551<43> (Makoto Kamada / GGNFS-0.54.5b for P35 x P43)
19×1097+179 = 2(1)963<98> = 227 × 65673953 × 412356903364515532404253335067<30> × 3434146411266287318417409762014076335301591013520109883769<58> (Makoto Kamada / GGNFS-0.54.5b for P30 x P58)
19×1098+179 = 2(1)973<99> = 3 × 5685484354031<13> × 13261443061606531801<20> × 4457751471434589681052277<25> × 209370616121386347433619461044933408541633<42>
19×1099+179 = 2(1)983<100> = 2392463 × 2861340439<10> × 5412776727651230454165073<25> × 56973934971689002422751813586411722071240575745854406848033<59>
19×10100+179 = 2(1)993<101> = 1279 × 16505950829641212753018851533315958648249500477803839805403527061072018069672487186169750673269047<98>
19×10101+179 = 2(1)1003<102> = 3 × 72 × 278412521 × 16445890495492290275917452053<29> × 313651666758520757155939140229253964496510675735005119957907983<63>
19×10102+179 = 2(1)1013<103> = 31 × 16033 × 62017 × 773238569 × 1174954603<10> × 102763588923585018593589857<27> × 733584240008285973507105866798372165558723882557<48>
19×10103+179 = 2(1)1023<104> = 85717 × 17726953 × 1687950391<10> × 790573278647843417<18> × 55860835795248690337<20> × 186380639036019535027181661998056826696988067<45>
19×10104+179 = 2(1)1033<105> = 32 × 263 × 727 × 1637 × 2167609 × 3196703 × 710811880926766199361311779<27> × 15215696285443021941980953810039930924986322270750550617<56>
19×10105+179 = 2(1)1043<106> = 237581 × 3150047 × 783359782782066587583950077100340582667033<42> × 3600983077686881125873890262969601465402154039814123<52> (Sinkiti Sibata / Msieve v. 1.35 for P42 x P52 / 5.49 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10106+179 = 2(1)1053<107> = 14369 × 4436263108483<13> × 1253693355168811<16> × 264165395947682310588456517920685701507705667554531609424338505817051669929<75>
19×10107+179 = 2(1)1063<108> = 3 × 7 × 71 × 175191739 × 238713271 × 7184120236379579213291<22> × 122871411074848676514800208304357<33> × 3835472053043124237458484665547481<34> (Makoto Kamada / Msieve 1.36 for P33 x P34 / 48 seconds on Pentium 4 3.06GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10108+179 = 2(1)1073<109> = 275423 × 15694559 × 606585163603<12> × 11348942000802037<17> × 71728948715325866055066661759<29> × 989054319652027189062095994266939810041<39>
19×10109+179 = 2(1)1083<110> = 43 × 25558783554211<14> × 277479527503238122888261<24> × 69226362066157522054494848867009788265582060266489652618223789063032021<71>
19×10110+179 = 2(1)1093<111> = 3 × 6607 × 2270199252456242699778729641333819680492093<43> × 4691606222865481103080585512540588248203889051546135228221187921<64> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P64 / 0.77 hours on Cygwin on AMD 64 3200+ / May 26, 2008 2008 年 5 月 26 日)
19×10111+179 = 2(1)1103<112> = 23 × 1861 × 662083 × 902971 × 82499372045035821976905654632149292842276385605571068495452529415234711172933192838552007313347<95>
19×10112+179 = 2(1)1113<113> = 482834780039<12> × 20004228627402012641513<23> × 66077347308297488573671559<26> × 33077915710396575640325540463034935172526342757428401<53>
19×10113+179 = 2(1)1123<114> = 33 × 7 × 10463 × 6868531 × 8489867933<10> × 18693050947<11> × 20536802929054547<17> × 28424454782783520863<20> × 167773396393371069652104431163824242119410099<45>
19×10114+179 = 2(1)1133<115> = 18954079 × 3061870223<10> × 36376559904076801643378175613261473930532772565756257919578691400797825710973220183921973175045689<98>
19×10115+179 = 2(1)1143<116> = 791146974979<12> × 26684183569900496637908552378029620489985104400355949415743624689763526214071848232253709778753105914947<104>
19×10116+179 = 2(1)1153<117> = 3 × 83 × 71527 × 5602253 × 2966325687678056937474314854464720978353817202219<49> × 713280224924002374089503089945616997448142074923965033<54> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P49 x P54 / 1.45 hours on Cygwin on AMD 64 3200+ / May 26, 2008 2008 年 5 月 26 日)
19×10117+179 = 2(1)1163<118> = 31 × 61 × 61231 × 704964570643<12> × 63460649118500649720004637763831639443635857911<47> × 407545788120013284598901938387320489819499387145561<51> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P47 x P51 / 2.34 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10118+179 = 2(1)1173<119> = 29 × 15767 × 223176684859489<15> × 662117259885357335971123544083<30> × 312449831473901267313358389466038171202132642237755638686095636351593<69> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2729996912 for P30 x P69 / May 17, 2008 2008 年 5 月 17 日)
19×10119+179 = 2(1)1183<120> = 3 × 7 × 10687 × 10837 × 36637 × 634703 × 284270384600088361847<21> × 13131212859444036355639505007713658279078913078476303463827251379597680321881811<80>
19×10120+179 = 2(1)1193<121> = 7211 × 4865366557739<13> × 28523556703189<14> × 2109581712538918917139930535348159133493785148659822865022881547160626333806238798981021773<91>
19×10121+179 = 2(1)1203<122> = 1609 × 14898491627884431173138326429<29> × 36218395286981478538085535848918712611<38> × 24315518894413952771658466169562042509604178782165703<53> (Sinkiti Sibata / Msieve v. 1.35 for P38 x P53 / 2.27 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10122+179 = 2(1)1213<123> = 32 × 1531 × 3307 × 11688331 × 19453443557<11> × 89079392976173946432680652283943<32> × 228735175398607793111899350301449553707992296824016489167318686041<66> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3434838935 for P32 x P66 / May 17, 2008 2008 年 5 月 17 日)
19×10123+179 = 2(1)1223<124> = 157 × 9679 × 2006539826727473<16> × 13580044721106044148459691<26> × 29417771013805602099463483198175587379<38> × 1733094331302908424592902890279346359443<40> (Makoto Kamada / Msieve 1.36 for P38 x P40 / 7.4 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10124+179 = 2(1)1233<125> = 223718153 × 834759311 × 2098106958390013566678652050706071014416820177<46> × 53879179111506794848560367490910458372207156743626422470530943<62> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P46 x P62 / 1.99 hours on Cygwin on AMD 64 X2 6000+ / May 26, 2008 2008 年 5 月 26 日)
19×10125+179 = 2(1)1243<126> = 3 × 7 × 1987 × 3727 × 3160957 × 5400152789<10> × 21795220773379<14> × 21769371741788386995971686002193<32> × 167611083343969985171953195615674438687622824552784462787<57> (Sinkiti Sibata / Msieve v. 1.35 for P32 x P57 / 1.35 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10126+179 = 2(1)1253<127> = 5101168865899<13> × 413848505432501753640200663027564902039236896380970352618314815207993725618241173786414595760911825749185697612187<114>
19×10127+179 = 2(1)1263<128> = 245734261 × 255812441 × 37427739803<11> × 13026561039301<14> × 416290987862728131515569063<27> × 1654639275706350461397554075534854498436083371549540953381117<61>
19×10128+179 = 2(1)1273<129> = 3 × 47 × 7919 × 12925321139<11> × 25804322571617<14> × 566875687873197664551841276690362590248533884516785994996395253463269439414558529848698354914851569<99>
19×10129+179 = 2(1)1283<130> = 433 × 13591 × 1497948097<10> × 600649065848982445548891839<27> × 580172638748491501699214866543<30> × 687221863353255204502282561755477985081357629150363128159<57> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1141165706 for P30 x P57 / May 17, 2008 2008 年 5 月 17 日)
19×10130+179 = 2(1)1293<131> = 43 × 401 × 1931 × 1644781 × 7292837 × 52858082218846947986892705766420081974969789328078496771484281169347767596229042875443579602016900722493226913<110>
19×10131+179 = 2(1)1303<132> = 32 × 7 × 16708177 × 48371497 × 4146216222845244330818648279847957567260291994477092977839858685617486626715967303416317526975952315921710197927279<115>
19×10132+179 = 2(1)1313<133> = 31 × 911 × 333483323 × 46928703599228182185833657<26> × 4998028003187250350588924237218853249700597287<46> × 955695757724238214604079143204207742822053446549<48> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P26 x P46 x P48 / 6.35 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / May 26, 2008 2008 年 5 月 26 日)
19×10133+179 = 2(1)1323<134> = 23 × 5113 × 44543 × 432887617 × 1419074221<10> × 6560662933456950792792661611865203978281706672700277697613438286372579487953284512508791313301886277630637<106>
19×10134+179 = 2(1)1333<135> = 3 × 113 × 43643161 × 2887943029<10> × 4940905793974018726398627673368401404261105289014573434973270500378033388302777092435594802131214948158784694002143<115>
19×10135+179 = 2(1)1343<136> = 2590723 × 9205354079<10> × 4123024249815317544848192969<28> × 21470083011691627549648083404466369736551181287182353992262767784648981141180263307908547381<92>
19×10136+179 = 2(1)1353<137> = 97 × 269 × 389 × 2502211 × 232166479622999161<18> × 42988088756073048551393<23> × 7492236702408267501801491339<28> × 11116150150013450641017176411318126872943475279158003057<56>
19×10137+179 = 2(1)1363<138> = 3 × 7 × 59 × 107 × 3137 × 10378477 × 52018972561<11> × 257906784564331830598010239861334619288706259471606201<54> × 3645720115445636970073274698358696904155253499404580769129<58> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P54 x P58 / 11.28 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / May 26, 2008 2008 年 5 月 26 日)
19×10138+179 = 2(1)1373<139> = 57839 × 36499785803888571917064802488132767010340965630649062243661043778611509727192916736304415897769863087382408255867340567975087935668167<134>
19×10139+179 = 2(1)1383<140> = 148731907 × 195982271 × 319074255116019313<18> × 2269856464420178226327262997109665563828892770452602132981182115883690367871815254047907328027024063465933<106>
19×10140+179 = 2(1)1393<141> = 34 × 103142892767<12> × 1338967039267258903607662253178789037<37> × 18871954411427858011578814863318916834385230348366099626180972019620251580610578675135514787<92> (Robert Backstrom / GMP-ECM 6.0 B1=2032000, sigma=3875561415 for P37 x P92 / May 26, 2008 2008 年 5 月 26 日)
19×10141+179 = 2(1)1403<142> = 16309847789211100851050015566867<32> × 129437818083599938711580459683226155826039801485374763703300724845803479691240691247961353475510334333140069939<111> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=884553849 for P32 x P111 / May 18, 2008 2008 年 5 月 18 日)
19×10142+179 = 2(1)1413<143> = 71 × 7109 × 115015969 × 189613733299<12> × 322231073053166813<18> × 11861150895327891743346144866743<32> × 501790053285023603948131322212264157408448417965160016833219189411523<69> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P32 x P69 / 3.25 hours on Core 2 Quad Q6700 / May 26, 2008 2008 年 5 月 26 日)
19×10143+179 = 2(1)1423<144> = 3 × 72 × 51721 × 69073 × 445257779 × 44907917730197<14> × 7235857084230512962952890011521047<34> × 2778395777322023419518611783612670148440288856654912472918162716876208274883<76> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P34 x P76 / 25.03 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 28, 2008 2008 年 5 月 28 日)
19×10144+179 = 2(1)1433<145> = 15307 × 109831277 × 359677811 × 386378473254296309955379243<27> × 9035837409850644127857163254927375452769352862158648165245441914270034673864958828851549905126679<97>
19×10145+179 = 2(1)1443<146> = 28447 × 41017 × 78028900325725980152501066021599909<35> × 231875700865027574418442587619581173200268280817376948139532338530122326771487269224347720783283635043<102> (Robert Backstrom / GMP-ECM 6.0.1 B1=1120000, sigma=3542324101 for P35 x P102 / May 26, 2008 2008 年 5 月 26 日)
19×10146+179 = 2(1)1453<147> = 3 × 29 × 577 × 4618129 × 9134558203<10> × 99692484238061792819772086189880923419510551728291283331979493326362332848243507754525581639407439905657000776326830192494301<125>
19×10147+179 = 2(1)1463<148> = 31 × 37987 × 1792727997023694108520241738991447083434410168428682402478191699801469527445391854013818913525689273249771450768905755628717728655143577226429<142>
19×10148+179 = 2(1)1473<149> = 36373501 × 102958766380241<15> × 26224511757071848012274148820403<32> × 214958808080422153827853526584090210525279684543816668859493746840385486703480148495405135657631<96> (Jo Yeong Uk / GMP-ECM 6.2 B1=1000000, sigma=773076860 for P32 x P96 / May 26, 2008 2008 年 5 月 26 日)
19×10149+179 = 2(1)1483<150> = 32 × 7 × 107465559659018339<18> × 207366681507770646268378511<27> × 150370366972858488149370993614907009297807765939491636293624611877255733835059149130525849868218975688019<105>
19×10150+179 = 2(1)1493<151> = 831033443153<12> × 2540344348960741433988376412080072594699248468297955243013636406603704805295957597100974429442621147806671452446818531810575853978108803321<139>
19×10151+179 = 2(1)1503<152> = 43 × 1277 × 384460510846845096813227060354229773836045803411176469397955074777569359711371330172663238897691011110908763473823297902262044237240463861723718583<147>
19×10152+179 = 2(1)1513<153> = 3 × 356046920829177338700138389053899011999976498823798123<54> × 197643530258564893467617294435465707705350739812651298588563852360274701722217491033354235201386377<99> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P54 x P99 / 16.60 hours on Cygwin on AMD 64 X2 6000+ / May 27, 2008 2008 年 5 月 27 日)
19×10153+179 = 2(1)1523<154> = 631 × 28080280900663<14> × 15270966995993801<17> × 297851429000810929<18> × 1071730829955083205875392845598093<34> × 24441526913452149544679014625447927498593580679196528341183377269394693<71> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P34 x P71 / 39.96 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / May 28, 2008 2008 年 5 月 28 日)
19×10154+179 = 2(1)1533<155> = 54690521 × 14727770419<11> × 8607067355632979<16> × 3820477887669477059297<22> × 6582933642815515219936766255651<31> × 2601869793334469797735392158585149<34> × 46535469162556932033536214337174751<35> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2714858574 for P31 / May 21, 2008 2008 年 5 月 21 日) (Makoto Kamada / Msieve 1.36 for P34 x P35 / 1.3 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10155+179 = 2(1)1543<156> = 3 × 7 × 232 × 17977 × 1110054283755987536867<22> × 952301984141442873445322778261134137635399897709828393771455886693390395598634241317237619544396628175342210907642320869424223<126>
19×10156+179 = 2(1)1553<157> = 95279 × 521503 × 52179326264306578993<20> × 814251604143542062021691800900960227145036338630891299899357263720774211308208708154824384961526904556670704368240110594255593<126>
19×10157+179 = 2(1)1563<158> = 83 × 5235606853<10> × 20498480457834864109<20> × 33856715563926443640902086159<29> × 70000231852288879322187833488732193626565727486098674059334815489171253629922332713991176041310077<98>
19×10158+179 = 2(1)1573<159> = 32 × 2389001987346792021429461539<28> × 9818656597061992462227258801399852800203962161531292495866296506468409036220479353344707572796527803066885734294026544618148943563<130>
19×10159+179 = 2(1)1583<160> = 12497 × 582369490753755763634044705532923835566861195555346804624251<60> × 290072599328501239090268348704294814519427609152777687487796440289248834506309310228248097076379<96> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P60 x P96 / 53.77 hours on Cygwin on AMD 64 3200+ / May 29, 2008 2008 年 5 月 29 日)
19×10160+179 = 2(1)1593<161> = 1091 × 13723 × 321889 × 24546888341483136439651<23> × 56346892794173538280415510697608311<35> × 3167121486201706714211853387395270653867058889451744908587689927499196954815248430586933829<91> (Jo Yeong Uk / GMP-ECM 6.2 B1=1000000, sigma=2910349665 for P35 x P91 / May 27, 2008 2008 年 5 月 27 日)
19×10161+179 = 2(1)1603<162> = 3 × 7 × 36833 × 1060859273<10> × 14564381097589<14> × 4408021099498508159119<22> × 706991398277505775759368626955089<33> × 5668225218241225832747085084677390231483282542289051212302192258793615146195383<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P33 x P79 / 83.43 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / May 30, 2008 2008 年 5 月 30 日)
19×10162+179 = 2(1)1613<163> = 31 × 5927 × 31843723 × 360820025598895530112998757461559252484759165604153092007473877359469451556475362190888324076488858789460325058071272617796066664322717593994355716563<150>
19×10163+179 = 2(1)1623<164> = definitely prime number 素数
19×10164+179 = 2(1)1633<165> = 3 × 17707 × 4052051840400439<16> × 980776060181107799653976626134512059439567924410086049972297929709058225287220102426305188566860724752589941515548331988806540064418440664224127<144>
19×10165+179 = 2(1)1643<166> = 11525993 × 183160887839434841849297592937208196388034515647468388286467908761623498392816229465965414963475260752900952751846293079573370477590183432447955773624980607841<159>
19×10166+179 = 2(1)1653<167> = 149 × 16871 × 18719 × 26263 × 91235034150737<14> × 1483646562805777<16> × 13744570589082808939500895249451<32> × 9181925187844308613689501323504921834402655061140134944317112038335879923423752343055882449<91> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=4051721235 for P32 x P91 / January 19, 2008 2008 年 1 月 19 日)
19×10167+179 = 2(1)1663<168> = 33 × 7 × 12719167273<11> × 331020430061825622240821487692762096553201092980731173026412142307290539<72> × 265299120281487299747115556364341636867465798157268399080428918610074877812977268511<84> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P72 x P84 / 86.64 hours on Cygwin on AMD 64 3400+ / June 9, 2008 2008 年 6 月 9 日)
19×10168+179 = 2(1)1673<169> = 227487177154295025504685455361271692724662216695338616060397175372579537<72> × 9280132346445324494177855519611117213830193530355304266419412531346231676756164736608771764227449<97> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P72 x P97 / 99.00 hours on Core 2 Quad Q6700 / May 30, 2008 2008 年 5 月 30 日)
19×10169+179 = 2(1)1683<170> = 202343 × 11854813632301944696197779784107475828959<41> × 989586227294571474744567542974907856207448937<45> × 8893537356585734852905220128099726473408062960442837007302516244982560116409577<79> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P41 x P45 x P79 / 131.75 hours on Cygwin on AMD 64 3400+ / July 7, 2008 2008 年 7 月 7 日)
19×10170+179 = 2(1)1693<171> = 3 × 1733 × 2521 × 93779232098187967<17> × 171755936262646283840925880814667000800556800991984090272590397707987840902546764882910091306910850713654423980928347297819175634851229626464320641<147>
19×10171+179 = 2(1)1703<172> = 31633729472340713<17> × 291104186737583782427<21> × 6438741037805110785691<22> × 8577629963433708883037<22> × 730838499256988735456103400088494610213<39> × 5679662912466728551265886075488345660885194579796953<52> (Sinkiti Sibata / Msieve v. 1.35 for P39 x P52 / 3.11 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 26, 2008 2008 年 5 月 26 日)
19×10172+179 = 2(1)1713<173> = 43 × 707648759 × 1753889176149977<16> × 395569445590224778723865190613007308351503676506631234537089782319461887150061416402835660151791785852238063415087471034083939115474311178857080837<147>
19×10173+179 = 2(1)1723<174> = 3 × 7 × 11908775400215661195548462282129043797<38> × 826889165198643841886538166294656560201100292366830050189<57> × 1020886335567388225849072357898453571339187176611699612014911899812973186198741<79> (Robert Backstrom / GMP-ECM 6.1.3 B1=4290000, sigma=905570794 for P38, GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.34 for P57 x P79 / 96.48 hours / June 20, 2008 2008 年 6 月 20 日)
19×10174+179 = 2(1)1733<175> = 29 × 47 × 587 × 47210167 × 362526225839588277721250568695933<33> × 154170814914296419684578780282258752148256625618951459506216921761696825246434830876808235277658346703009606494528247566619760443<129> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=1707886364 for P33 x P129 / April 26, 2010 2010 年 4 月 26 日)
19×10175+179 = 2(1)1743<176> = definitely prime number 素数
19×10176+179 = 2(1)1753<177> = 32 × 167 × 1543 × 53611 × 2401409 × 974819639393790407634579313<27> × 4956648204881915050768672150327<31> × 146336874948973085318917842213648178095098263874900615495508640162228819919842162403788352528350133653<102> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2131237211 for P31 x P102 / August 28, 2008 2008 年 8 月 28 日)
19×10177+179 = 2(1)1763<178> = 23 × 31 × 61 × 71 × 9467 × 10427 × 184774558729<12> × 255689525809<12> × 346578832807007<15> × 317590097337318187<18> × 17542081602685043759746865753<29> × 75920035349464889747790194504704749340939097696069408194717411938141329208931327<80>
19×10178+179 = 2(1)1773<179> = 37798653795394244396057963<26> × 558514893820993545892162008932741970152609988261109097407991096735931090558354024017330926014165344227927132584994772736340637918861395181399962103185051<153>
19×10179+179 = 2(1)1783<180> = 3 × 7 × 1849590095332545517981729396507306427776395737285843<52> × 1590976674832112443983760714051680873712445958345760173293<58> × 3416272406688343554143889986701948138927926610009907327005065997766947<70> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P52 x P58 x P70 / 552.22 hours / June 20, 2008 2008 年 6 月 20 日)
19×10180+179 = 2(1)1793<181> = 109 × 128903 × 150252452193169012664961079909607808439637536361785382829369606426275237835199678352203182943202445812580009925044349976773738699265944808019792644815072959071714412032539019<174>
19×10181+179 = 2(1)1803<182> = 17644366090639159477<20> × 381518623009260368039<21> × 41926580343033277913682486336139<32> × 74799698613598121493227591965970482485733847740707891290258360311530129821940045107164135003925638821055863289<110> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2551276064 for P32 x P110 / May 23, 2008 2008 年 5 月 23 日)
19×10182+179 = 2(1)1813<183> = 3 × 2579 × 10837 × 119359 × 3303787432680509883023<22> × 3778542074508278308871<22> × 1689810056469802754584897315540933135257896526286374765285893208277021300758681180485582804828076563778415464681432365774810491<127>
19×10183+179 = 2(1)1823<184> = 111121 × 1808003 × 5293942426929243304651082837<28> × 31915639971925148649949624155831109558894465108660417931797103131<65> × 62191786511015051503313950395039243159321585308982879892428352038441609372369733<80> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P80 / May 30, 2014 2014 年 5 月 30 日)
19×10184+179 = 2(1)1833<185> = 39227 × 823547 × 434385278497<12> × 13645854488475905831<20> × 35187213663775580933321<23> × 3133119027804156062174550511125014416842458471288273047776207132459510680040483549860254455646455851068653739886963288591<121>
19×10185+179 = 2(1)1843<186> = 32 × 72 × 619 × 28871 × 26786750114361775454400753636383299004533348436447437497890914389737370258869437451045371695790397117856466414514334310063382073458735222873824679663214376876257795263591914357<176>
19×10186+179 = 2(1)1853<187> = 193 × 7753679 × 198110551 × 173912889834764345805215034021550561033<39> × 40945538543219501482020949112897867182239364436188393304212463622907079853221317896092457598608497628845370550491285718658436430313<131> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3407109608 for P39 x P131 / March 25, 2013 2013 年 3 月 25 日)
19×10187+179 = 2(1)1863<188> = 93888601 × 20409552461577403679<20> × 9375240122957622648018580386270703447369355334409585809290343787487<67> × 1175120336325584365158398705625198209914866727623647256453006727119825371685225050334493469681<94> (Dmitry Domanov / Msieve 1.52 snfs for P67 x P94 / February 27, 2016 2016 年 2 月 27 日)
19×10188+179 = 2(1)1873<189> = 3 × 191 × 1009 × 43586829788805481<17> × 12607144852434108355883795606667372343253262067<47> × 1159442247485019407401867258616698523751665315569367<52> × 573118142972279394701818974599044271038072296538170016768410102265201<69> (shun / GMP-ECM7.0.4, GMP-ECM B1=110000000, sigma=1:1423996612 for P47 x P52 x P69 / January 29, 2019 2019 年 1 月 29 日)
19×10189+179 = 2(1)1883<190> = 186609193 × 4230864132437<13> × 1841853104725919<16> × 2360741037102406521857608930054145098937<40> × 16932087725907070915058289851554777699829<41> × 36319104179812048986620859562889162164610658022402470629723830306625588239<74> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=4096056192 for P41, B1=3000000, sigma=2101637049 for P40 x P74 / March 12, 2013 2013 年 3 月 12 日)
19×10190+179 = 2(1)1893<191> = 107 × 181 × 46507 × 470453 × 36224005811316473<17> × 1375364138188469338046378946092708316221275948085360436112356203465258290135990674732809817454529609176166882353386038983083149016817271766598358170443143881633<160>
19×10191+179 = 2(1)1903<192> = 3 × 7 × 1627 × 5159821878045688607762327346221433523<37> × 1197483489481970933197735726304293294387797401694296550112736151012667802612072712189611721185927094362433494974127049810061666990228118386344080983493<151> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=2833440132 for P37 x P151 / September 2, 2009 2009 年 9 月 2 日)
19×10192+179 = 2(1)1913<193> = 31 × 1242889 × 41040003549532193923<20> × 15253228975026497112291313<26> × 87528175109945841103810062633261831531269030689772987950528125716918497673901531037141449466576812336808349746973563536606702893574357749893<140>
19×10193+179 = 2(1)1923<194> = 43 × 571 × 1632355094902684148047<22> × 17526569711396802496986111063060815981873<41> × 72515908696646951418677567738876536131173<41> × 414440005250020479227431185712489784053314590823247423254627707297256770082758820600467<87> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1095729776 for P41(7251...) / February 21, 2016 2016 年 2 月 21 日) (Dmitry Domanov / Msieve 1.52 gnfs for P41(1752...) x P87 / February 25, 2016 2016 年 2 月 25 日)
19×10194+179 = 2(1)1933<195> = 33 × 1117309201<10> × 495951443326367470693312333191677243<36> × 14110252768097715648052479058753964712718977645950695113515799625599873518496632263975111678437158766263932625994938329981018969342883859860860588033<149> (matsui / Msieve 1.48 snfs for P36 x P149 / February 28, 2011 2011 年 2 月 28 日)
19×10195+179 = 2(1)1943<196> = 59 × 1267577 × 158612774241033861923<21> × 282503324001414019100503379652927974071<39> × 629974551490611084435937066618096229596276276489387128835727689298806791822488193421449041113663483875019510871892831411163366727<129> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=2969301091 for P39 x P129 / July 14, 2008 2008 年 7 月 14 日)
19×10196+179 = 2(1)1953<197> = 431 × 1014469123<10> × 757172298992736651155640421818664707001111018013619179<54> × 63767629268607029088294293890954146645953874430674959861032700294960917208246154264617187829329264257313053274568136463964092939719<131> (Eric Jeancolas / cado-nfs-3.0.0 for P54 x P131 / November 15, 2020 2020 年 11 月 15 日)
19×10197+179 = 2(1)1963<198> = 3 × 7 × 90017 × 189037603483<12> × 1167987135194728007608387<25> × 130987118004416341717932217759037<33> × 15872932989461007548410407402377925558623951734243828910973433<62> × 243273738880783002227362363624452946028222802288282346250262049<63> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3671506003 for P33 / October 21, 2008 2008 年 10 月 21 日) (Erik Branger / GGNFS, Msieve gnfs for P62 x P63 / 99.47 hours / September 30, 2009 2009 年 9 月 30 日)
19×10198+179 = 2(1)1973<199> = 83 × 20610016199011393121113<23> × 1234112257954691178243438505202353798438318066522253057018566033588408262728846850879340625535894283549652941303487046954243790163187509653908579552787769448227667733151496747<175>
19×10199+179 = 2(1)1983<200> = 23 × 4787 × 4995283 × 4189034999<10> × 599249691149<12> × 15291071630016161015604402610188370299879457691019258489274011949661059937263325364094019386881409517529337334514947089719382911957941325477195944972031685517222455061<167>
19×10200+179 = 2(1)1993<201> = 3 × 126544763 × 2943578385629665516163<22> × 898447831098242238266148503<27> × 210269939678342336529513921152874898053927458055258874398493904056791369753272627555998930381253413935650920678917164241827912150245681803371653<144> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2082085495 for P27 x P144 / October 21, 2008 2008 年 10 月 21 日)
19×10201+179 = 2(1)2003<202> = 157 × 25618127 × 258365487521097126475500323<27> × 4312413486870019024184708737<28> × 5689574825102194903522337422096099<34> × 82799812964864815493104170946381838816531860642932752622489055942088875401237043037278271514937960332283<104> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1623807866 for P34 x P104 / March 10, 2013 2013 年 3 月 10 日)
19×10202+179 = 2(1)2013<203> = 29 × 32775327385105941917497<23> × 62519678118940957710043<23> × 2126362175450792355424633<25> × 500502620413739623812491561<27> × 333814907812812422266777678304626533385280072411379246242063690836210780981615530392757373045378120544639<105>
19×10203+179 = 2(1)2023<204> = 32 × 7 × 154873 × 12571373805559<14> × 1118134262540191005677<22> × 218780450023277616585569<24> × 7035737437954091547446842599869656132654750167247281330385926938820570172232603559278240696697429942168127484354938218264878775932708804461<139>
19×10204+179 = 2(1)2033<205> = 887 × 2467 × 3863 × 221785026606443249<18> × 813843101001616328833<21> × 1539505408768024985265951816555803248074982453854405050263673973837551<70> × 898751206632791394886786132421007085431430823608281960127867765142349370838068761483757<87> (Bob Backstrom / Msieve 1.44 snfs for P70 x P87 / August 1, 2024 2024 年 8 月 1 日)
19×10205+179 = 2(1)2043<206> = 257 × 99080827 × 829064549597966824310514279178431013046173798572475188693449831601604502186332976617825384004507624898679633587780655878372520483937830195330865978055974933287205920211158037281237399412944509067<195>
19×10206+179 = 2(1)2053<207> = 3 × 172594517343173856770030854125525572639<39> × 554508386043231371824387687934640058591798906742680775844017<60> × 735283334307036850145921579400935487484704746658695101794703898859623949826034510813084045823960809093783917<108> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=96857654 for P39 / March 25, 2013 2013 年 3 月 25 日) (Bob Backstrom / Msieve 1.44 snfs for P60 x P108 / June 19, 2024 2024 年 6 月 19 日)
19×10207+179 = 2(1)2063<208> = 31 × 2833333 × 165161140362432556564215221153599699648099180958828437558500411101902928908620590527<84> × 145527110038196401451022994922486529866022919213364578981225757328406337702127267139486012261098973598857298704108453<117> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P84 x P117 / August 1, 2017 2017 年 8 月 1 日)
19×10208+179 = 2(1)2073<209> = 4737628247118642429666769184435631688971331772849876462822862702208350930841440451<82> × 4456050582683558211076224869900877135728531191035272405320762097691058548270417511472889596108876471612882034485343359883397763<127> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P82 x P127 / April 17, 2013 2013 年 4 月 17 日)
19×10209+179 = 2(1)2083<210> = 3 × 7 × 131 × 443 × 7700295893<10> × 7197844746223<13> × 17841181730221<14> × 2879838620533640775889446978005443<34> × 513476661279476568310042691907158951<36> × 118466186640499355793166499731905494844484094736986627970001778818895655370644706825178362216453823<99> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4258928262 for P36, B1=1000000, sigma=2513164041 for P34 x P99 / March 10, 2013 2013 年 3 月 10 日)
19×10210+179 = 2(1)2093<211> = 227 × 3373 × 286537541560873947118667597614579<33> × 9622487657909241060594497512571953931188651799841206385348661510477012147643148592208082491650960275616448483822949198668168626563769246233994679416135326880325973881195957<172> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=946229226 for P33 x P172 / March 10, 2013 2013 年 3 月 10 日)
19×10211+179 = 2(1)2103<212> = 383 × 2707 × 119338813664189805517816601761<30> × 315252843713287896319737593987<30> × 1043941946298180406122716617445572910452684113379130295671<58> × 518450126236655500871145151241358398411825864826812543189907932424449639421711154364884009<90> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=607418778 for P30(1193...), B1=1e6, sigma=1956284135 for P30(3152...) / February 25, 2013 2013 年 2 月 25 日) (ebina / Msieve 1.53 gnfs for P58 x P90 / October 6, 2024 2024 年 10 月 6 日)
19×10212+179 = 2(1)2113<213> = 32 × 71 × 5023 × 348457 × 320730173460071<15> × [588515685940010206837200430854099116669640138405354818209464506043135043760966951975478517825679059683092494176833822659325639425584755835879077216483769784599633810824382189391959398807<186>] Free to factor
19×10213+179 = 2(1)2123<214> = 63643179099392317<17> × 306740631751289850037049455189460180563<39> × 108140386753727653846003328364650868650408609164165019214654851095398710513518578513596488834411516433667338220224251704748396805564538826495737195934982718703<159> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1277634090 for P39 x P159 / March 25, 2013 2013 年 3 月 25 日)
19×10214+179 = 2(1)2133<215> = 43 × 939711512813<12> × 1189095233960095429182101<25> × 4768930573890818767111005761<28> × 22638915108954673858691219276887177<35> × 1287276240907564331509001687507934260097307348472477<52> × 3161426470571468423686825604295304531017303168038045678729583503<64> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2270162391 for P35 / February 25, 2013 2013 年 2 月 25 日) (Warut Roonguthai / Msieve 1.49 gnfs for P52 x P64 / March 12, 2013 2013 年 3 月 12 日)
19×10215+179 = 2(1)2143<216> = 3 × 7 × 11173 × 231367 × 1936771 × 56214835817671859<17> × 3700028252220498023241444184567979175308861<43> × 1046475936866495925368695677410999658548913967<46> × 9224802477666171134378906553243808009515420165533680116827897970014631726623156873051430600181<94> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3707198594 for P43 / March 18, 2013 2013 年 3 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P46 x P94 / October 30, 2013 2013 年 10 月 30 日)
19×10216+179 = 2(1)2153<217> = 673 × 491773 × 993354690352480837744338211<27> × [6421359723844533545670787896886933310123097779197747100586723117425680225050892956907800784881707328834495282577420824586388569975039807277368878897021158428948759471922488962878527<181>] Free to factor
19×10217+179 = 2(1)2163<218> = 9511 × 13469 × 18790337543957435186483<23> × [8770310621538023359669036118482157663517356110593740766408901091897890260930068405400868175676810371824231225578973088112522836166141513022929772491006793917292082619970872888724862545529<187>] Free to factor
19×10218+179 = 2(1)2173<219> = 3 × 1571 × 1871 × 15601 × 24371 × 3846523 × [16369889358890160052748066037086811223620876065204758339403618395208058548404895351102296777317469301158323095988513531778974643248596988474438716515895278583656992848490835644107957679850553187007<197>] Free to factor
19×10219+179 = 2(1)2183<220> = definitely prime number 素数
19×10220+179 = 2(1)2193<221> = 47 × 411613 × 1091249734173000610370436840880494031039128373119695582217313666049518994634606484634379562123868113417995818893873775108787691098145800716812084596045681988266664608225062837174988999484752079461083906542409160883<214>
19×10221+179 = 2(1)2203<222> = 34 × 7 × 23 × 367 × 44109702874023408276414985291851732987810422904562180670417802230339800489028024821133413673353210094073691944753386481810795236885703611166190200620911393287845086166331235591942810237992044606145972053995940932279<215>
19×10222+179 = 2(1)2213<223> = 31 × 51058913 × 147059863 × 21108534909300249696974098919368234446172061231839897639513673<62> × 1412927053980135689201447906159100780410939620184230597848524719<64> × 304092594439062662437083939087384410254566680160976646340619662368148067766113591<81> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P62 x P64 x P81 / July 14, 2020 2020 年 7 月 14 日)
19×10223+179 = 2(1)2223<224> = 76597439027<11> × 80108763769067027<17> × 103355894248558867620417505830757<33> × 33287529415210767330073488126290672277512910163389333732000441647224489246796022093424740577697610636595274875205475068215214712135184235185277709206937086084749421<164> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=952292163 for P33 x P164 / March 11, 2013 2013 年 3 月 11 日)
19×10224+179 = 2(1)2233<225> = 3 × 569224076353<12> × 12921938970533<14> × 28136170546643<14> × 380485023730381<15> × 893668263354775273394437720316588761802048213697435398328866111133805084297337558146384863310944025032637404493435882540275146796131393763278750572017041361865723558956913<171>
19×10225+179 = 2(1)2243<226> = 467 × 155657 × 13586784169412479<17> × 1917257555875008180620779<25> × [1114880759306322888282110967857829662584409900269445842174335012467612520480417114954941757420348463739169331194795180012917398424699899400379257435154887247277343964455689198447<178>] Free to factor
19×10226+179 = 2(1)2253<227> = 621614814977444328409<21> × 9193844865987949891930889<25> × 129489511149140575763658185461619381048233<42> × 15361284863475839290790492111991794667503831286530993<53> × 1857079215972812178025680933417339947879082384597256966927472890598601530735018452052177<88> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3116699069 for P42 / March 15, 2013 2013 年 3 月 15 日) (Erik Branger / GGNFS, Msieve gnfs for P53 x P88 / June 27, 2016 2016 年 6 月 27 日)
19×10227+179 = 2(1)2263<228> = 3 × 72 × 5447823499<10> × 30098192227183<14> × [8758511741912531796715182688334795060013481181272590561232493174526640906265694916981939803724964338573502944016574383633627002628417940226445479554691095543095759874555752448184611367603057262977640087<202>] Free to factor
19×10228+179 = 2(1)2273<229> = definitely prime number 素数
19×10229+179 = 2(1)2283<230> = 97287270589760371<17> × 216997670744944166964876214818442029370451470450355482899396030276922691109185734826759252590538860589182958881642898338042071668288518224559962140518143096966097476199059641881101472620061892270767465080901730003<213>
19×10230+179 = 2(1)2293<231> = 32 × 29 × 8403411469<10> × 8453083775498167471<19> × [11386749902621383326242017304934968633501168451871829118344929383487258207921719976051071706718522393458363789028915496813192720853932955597774841840276009808565001048603242791589033695804414850845767<200>] Free to factor
19×10231+179 = 2(1)2303<232> = 2067697 × 131923861 × 27231724660822943<17> × 284201059943843507314140944472016936754710171790657507554569809414403363657466512491117334790192182915449161544078601976127415897923463595281952603901084378647790622524177492951276177062232299352884523<201>
19×10232+179 = 2(1)2313<233> = 97 × 75972934076335183<17> × 6976021706884206931<19> × 5712496067435169637447<22> × 148253564057191292499210841<27> × 484888158094763099623085971746590345974617069345787862102815581771782796350701949876215741640190405908196521478569608741324841059246723218924767699<147>
19×10233+179 = 2(1)2323<234> = 3 × 7 × 4303617914155035498882612630648023347113479<43> × [2335920672661253887330264626577795195439330517454916386857854962188101054037940136146697218539156395324361528906116869654421561714884628484655830755519665938887413948057867343140053927568307<190>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4017947848 for P43 / March 11, 2013 2013 年 3 月 11 日) Free to factor
19×10234+179 = 2(1)2333<235> = 463 × 1033 × 18899 × 1500371 × 3810809 × 3187029367<10> × 12817078527171468323863740649062666962069450773287066787432891452976466054257958595358496345375616637964420586150243422263295522632583006033047795393396448299253939046967639727980062014610414711865386281<203>
19×10235+179 = 2(1)2343<236> = 43 × 4123667 × 313838737 × 512471716353863308695551<24> × [740257131315326498070068151172786982183716262516151620459949464224629072746226669560244460951794131149467520654675548773291911735603713494315751394159953729056660468250947615515065789083929733879<195>] Free to factor
19×10236+179 = 2(1)2353<237> = 3 × 743 × 2749 × 2688781 × 1071973127<10> × 1663591007094755227<19> × [7185225298017577760744369883328645928550697481322283305143762825304583556097870951886718666636818131217345783687720872738491702528132935466306995093175639732883831169419174059212923950316818782097<196>] Free to factor
19×10237+179 = 2(1)2363<238> = 31 × 61 × [1116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087843<235>] Free to factor
19×10238+179 = 2(1)2373<239> = 914044181 × 10640360567<11> × 28422221438912143<17> × [76371186803904833186276805360346026359467302268687147671913579179060367661770542220218508254281466541820377699353600376354585758650305684526209498050296425665773179730343751002178615827265404607613552333<203>] Free to factor
19×10239+179 = 2(1)2383<240> = 32 × 7 × 83 × 20347 × 154733 × 157655551 × [81339191648420751218489181327185903870122992920093195970943744837565029084441907010386204412012252129412516068056492807273532338280769461204485046134945211364500071910663868268143738228195756426233873356604544589380397<218>] Free to factor
19×10240+179 = 2(1)2393<241> = 26119 × 641219592148301089262991905824508813<36> × 126051425837205961719725057614694880130956067244811772182682824468511308885173153441579818990515697292687732248119941270315577968388598854767094801714707937000018648842483392340269783712742613954222379<201> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=463138310 for P36 x P201 / February 25, 2013 2013 年 2 月 25 日)
19×10241+179 = 2(1)2403<242> = 6125597719<10> × [3446375697449078782888176648661689746053516693741460352517659527865432638788520338860846946046590545152171967352646049774185491385042601605277094937339144440005808208887233182527425959280678501753097428811275014631941277029052503327<232>] Free to factor
19×10242+179 = 2(1)2413<243> = 3 × 13163 × 26801 × 353603 × 1827647 × 240496577 × 3267114582071611<16> × 49800967350655754848253394086609<32> × [7887959166501926785130623147596807490264553796693734579354439262308596940233798530616447265814789815235733110397916912702883718249993556454671130971887815240268303719<166>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1969590845 for P32 / March 11, 2013 2013 年 3 月 11 日) Free to factor
19×10243+179 = 2(1)2423<244> = 23 × 107 × 6736940014835571407<19> × 11010704288412489445813266747155318175883<41> × [11564362541643364054701440384668291107919460220310551714480803123324262352421356616973616766524435043287358228150943298815528945287080932460149346561530674795196453010547475847509593<182>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2766418558 for P41 / March 26, 2013 2013 年 3 月 26 日) Free to factor
19×10244+179 = 2(1)2433<245> = 136337 × 6525731483<10> × 4764184333487237<16> × 191317745789760743950627<24> × [26033007685594131539607865221935227937465423008153010369283724053845075857135720497570982681186895680410630415487050996563026950869645567250042381662568441748648048854987264479715306150665397<191>] Free to factor
19×10245+179 = 2(1)2443<246> = 3 × 7 × 10837 × 2359482523<10> × 69489789375803<14> × 3208931437063610899279<22> × 13916784232088244694227637853<29> × 61118541951991650560986150208497<32> × 2072872768775772779749421391724340294109371784790352169697871655346137633258293297633025608697665672627771602694152216282505343303055859<136> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3130351618 for P32 x P136 / March 10, 2013 2013 年 3 月 10 日)
19×10246+179 = 2(1)2453<247> = 113 × 49037 × 205384803353<12> × 820041213011<12> × 33984219823607256962009<23> × 66562168918653552941719589128811309966862267579241634023855439524073723352676987376202945710383831951911603774326596011836266190847040881685151577291451947012826333374387264603823553184585603359<194>
19×10247+179 = 2(1)2463<248> = 71 × 437543 × 615679 × 1027576889<10> × [1074146045393422199142104832727324650403618011777113479778167949396888403593159949011322136801285069978369849605921487162662395678876086348551254569522197235805371916017300644231873169232170844375532912244827669742503708224191<226>] Free to factor
19×10248+179 = 2(1)2473<249> = 33 × 1678293073<10> × 5294726184793<13> × 153601514581769618840829630637<30> × [5728494779069476947603659179320481195768965736414940742801820937157442794014846705929380772515057536373087488606426043380779576616824986515601380182642655660505912042389285495099840969557331607583<196>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=282565145 for P30 / February 25, 2013 2013 年 2 月 25 日) Free to factor
19×10249+179 = 2(1)2483<250> = 10385591 × 177638257 × 532923301 × 1531472550217492733<19> × 743229943921777377524814649262583073<36> × 5192262444330344175386021170607718692263<40> × 363320256478021209435583165981334108766623009634666138917659107138552149621455586556825289078860339774369784209523497944464246026697<132> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2882974797 for P36 / March 15, 2013 2013 年 3 月 15 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2795670655 for P40 x P132 / March 20, 2013 2013 年 3 月 20 日)
19×10250+179 = 2(1)2493<251> = 768623 × 27466145445961298466362717627642044423743644297804139495059490948242650962970287268415219309220659687663667508142627934775710733494978827215827669886421706234540354778755138879673274298467663745569819158561623983553850341599342084625507057570631<245>
19×10251+179 = 2(1)2503<252> = 3 × 7 × 31794432458939<14> × [316184604518193836489280542214313819059825954664407563636436946103245917473076164208058542595468620816634797598754167954169265339743184817821416433756923734888048576779856521144404721412167214368676278216391173828818867627065978727183327<237>] Free to factor
19×10252+179 = 2(1)2513<253> = 31 × 1109 × 343104472692533<15> × 333351400720023892041654739<27> × [536894787580391535886013067700927116129640613582767042388644862064354662287952658357373664987974289816065695818860049388520898190528891033907677726059898827755364365835114459273374800665540395612969882425781<207>] Free to factor
19×10253+179 = 2(1)2523<254> = 59 × 313 × 977 × 367313 × 81830564083<11> × 131417405879<12> × 296220727564255092763617699715254491743252412653215432327467380878836498534589649951414016816044830000985569025653959892100263374131398231354808656005074042929800811079219545096407627778078971995993820829901880252719127<219>
19×10254+179 = 2(1)2533<255> = 3 × 3259 × 12567128617009<14> × 109517746884010403<18> × 150901452956997363739<21> × [103966038166029885059384164146552249454848808990558014775632425487379663726957689236864868411744641064458660036641741361901260495596259010896487932718638772751636919359424814261578716224617468843199673<201>] Free to factor
19×10255+179 = 2(1)2543<256> = 179 × 23321 × 2257403 × 225840619883<12> × [991972737447549691905314879257737364883087305104580046125407696735626870747193715151224860322980287214957160530867532346851574536702082846417199472670023137509517240215851117900628051531027702325140321730956078374978699920455759443<231>] Free to factor
19×10256+179 = 2(1)2553<257> = 43 × 359 × 13043 × 32550534080338317688317103432394950417412831<44> × [3221162053718373694592561228701048621042952870429491612031071483426040736219245221014081370978865340418900123666688239591148038030618277962219692016210508510263556095524461935738288478266834911307676713153<205>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3543012927 for P44 / February 23, 2016 2016 年 2 月 23 日) Free to factor
19×10257+179 = 2(1)2563<258> = 32 × 7 × 7932889 × 9662201 × 43718282974479911942372496775463495485817899492973682177437960574447026645229329432665206114921402922543192835519471762282744908109639871993481326024948266553324656202682938122505550734398785537569521859424300914254928142741979967704002836359<242>
19×10258+179 = 2(1)2573<259> = 29 × 9127 × 4605391745894596057<19> × [1731882663361264208603575645925254212834511977805617523006403265208365033990569311469341975669962279049891207024408903465565000197015432091849071945963819583611731451591198232934954578553830779871933141070404971304998554800602370216723<235>] Free to factor
19×10259+179 = 2(1)2583<260> = 184843 × 41775544190981<14> × [2733921038491550645525960106456978281335211005810680951974154971932507878456962883614700629684457325570924876554808615710810788399611162657616435013970150830500526492896246190779821258076713784291213710854654464131080856289650065660344794111<241>] Free to factor
19×10260+179 = 2(1)2593<261> = 3 × 41176111 × 50367969256841873858483218739<29> × 947806052035107678459432989991616742911<39> × [35798975000833710798642941973260441291290600405519698796925787154774515787581905007995363781642450811644658854005531177501817979296216289400153945173886061138608831216226051552274813409<185>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2538279428 for P39 / February 17, 2016 2016 年 2 月 17 日) Free to factor
19×10261+179 = 2(1)2603<262> = definitely prime number 素数
19×10262+179 = 2(1)2613<263> = 37139 × 201577 × 17494486752697975116485822354558196509<38> × [161190225341911751475130501873272424708803846776799859936195732696752085769749601669054176430890220587083213423764338796170298883098502591122360743973487184718874829426228176737299034318409575873013930024660407697719<216>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=211092354 for P38 / January 19, 2016 2016 年 1 月 19 日) Free to factor
19×10263+179 = 2(1)2623<264> = 3 × 7 × 817180792756943<15> × 1265240130005849604626891903276304303475211<43> × [9723009013707878821770234881635329764054938861915321626256432132615601062804091760408742448094702701923682235096071463924745960660949923288386671958906868482451134685749496507101784807614334081206758152961<205>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1425228441 for P43 / February 26, 2016 2016 年 2 月 26 日) Free to factor
19×10264+179 = 2(1)2633<265> = 439 × 253361 × 29994817406697371642801<23> × 632791423367846533399201725315608628079415653460419913477335038814766248561719991708934543357297586031548570166361128116455996572166156836653420630772259057179197347584406894960640727239599609056930489846449945616998116988316623066847<234>
19×10265+179 = 2(1)2643<266> = 23 × 246803 × 3145453 × 2879405537<10> × 410626322238260433218485658096811591455443412969356458241893977715252647019488291288462768235382069694788703271793345709241191541277706316699293503309935041523032591651557926604651327469822871950260335058207585734486270557614327415962301399257<243>
19×10266+179 = 2(1)2653<267> = 32 × 47 × 167315562937<12> × [2982870404664827212230781493203740741364938372836570720780593294519505581317423169750926599759343924899537910516813640609263728128216559503453904980189291992143143547659759731644975042553355983959154503717457016630930778672026461992099630878486659853063<253>] Free to factor
19×10267+179 = 2(1)2663<268> = 31 × 165673 × 483464923 × [850222690540706980257842146926692399836988946553605065690384189814046370078224926184237252428275372649504153616221294844156789976828101345747157784142475095551245262091720795326096272826723035445437517692104152334907612126160405016363443187193231440237<252>] Free to factor
19×10268+179 = 2(1)2673<269> = [21111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113<269>] Free to factor
19×10269+179 = 2(1)2683<270> = 3 × 72 × 1436130007558578987150415721844293272864701436130007558578987150415721844293272864701436130007558578987150415721844293272864701436130007558578987150415721844293272864701436130007558578987150415721844293272864701436130007558578987150415721844293272864701436130007558579<268>
19×10270+179 = 2(1)2693<271> = 949096259 × 5260003642903276219<19> × 603219779605753736394763337<27> × [701034209386547659464877070228541561273752099661967582176830773378531923512646840874641638025163349389139411866172335380815566415708389472619849918250031033990914571983111136161124446194125552935947742230007340097169<216>] Free to factor
19×10271+179 = 2(1)2703<272> = 223 × 2011 × 12637 × 672667 × 26379038374951168352239<23> × 16957699743235662459611203<26> × 7917159059998990082666551841<28> × 429843725094031621275590225441017159<36> × 1375345388609611309944928510728809651042903616026820651437<58> × 2645041022031872754685775536279891488803913057924092863355745726331523234844551346421349<88> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2481960191 for P36 / January 19, 2016 2016 年 1 月 19 日) (Robert Balfour / CADO-NFS for P58 x P88 / April 2, 2020 2020 年 4 月 2 日)
19×10272+179 = 2(1)2713<273> = 3 × 65109169 × 337489992467363<15> × 1229246713716644909601070293899<31> × 31612738050180281793800085478033891<35> × [82411082061959400088775349733800447859124076372381533910715782456423120205746464968152826740230975496204406240976843335436771885356472108169055641130749388390891176244977765242369307377<185>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2322006234 for P31, B1=25e4, sigma=230229619 for P35 / January 19, 2016 2016 年 1 月 19 日) Free to factor
19×10273+179 = 2(1)2723<274> = 34768087 × 127281211 × 5121062732874777687947087868458819<34> × 76443371298905132087873392761371808139<38> × 2110429287094979233945986015858453905371<40> × 31864642115919167878341483629225456526839941<44> × 1759673275985786518003974332324792449198595147<46> × 10298030658275479226004277236081170081570683818498095114497<59> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1212803531 for P34 / February 19, 2016 2016 年 2 月 19 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=408837147 for P44 / February 19, 2016 2016 年 2 月 19 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=258549164 for P38 / February 20, 2016 2016 年 2 月 20 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2562868919 for P46, Msieve 1.50 gnfs for P40 x P59 / February 21, 2016 2016 年 2 月 21 日)
19×10274+179 = 2(1)2733<275> = 2470081921005659<16> × [8546725082913857412046092859936503406202911291352028334655929811473363358262474140778387475169268370346138095313528800014941630606682439834556359713580267393686964432436019023592519820502180438187535429522868787522873900926996488755631533558859237633641838507<259>] Free to factor
19×10275+179 = 2(1)2743<276> = 33 × 7 × 40113743 × 1871872110225355151<19> × 51129618732622663690367<23> × [290942637615794686831850846233818585431718829412315856910799136234572716980293800751901490369083427137653987267279525449212142472136636116435451760091439691985555755645124242165669579545396194395787149464421086468862548726307<225>] Free to factor
19×10276+179 = 2(1)2753<277> = 40865235572957083<17> × 9424394723475876659<19> × 13630079971888734858922699<26> × [402165871904662950875362609150588404880599483789335929607545259654268083606003342831689132493455114280353095722504786957584937043486500629418794976320390573138370211976936220444388238310222040380110948616526974466971<216>] Free to factor
19×10277+179 = 2(1)2763<278> = 43 × 2819 × 508480896594032212489<21> × 617962289423616001291582637<27> × 6517492567950240406901469610660373<34> × [85041399900324940529868512917839809638692641380788085027517011778356223317555243449448637661812651847599838833291582988514722681323976265181531767906168538890416315368975751179112347292080401<191>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=694415154 for P34 / February 18, 2016 2016 年 2 月 18 日) Free to factor
19×10278+179 = 2(1)2773<279> = 3 × 7573 × 143593 × 5189058162926868698199733864416061<34> × 15069178832440083231646700041300429<35> × [827580950567094137736788544049560966751409388284903014014616327378281303175785426423526130440922457519059326096434407927778849339711096283896853037956120476453087100705260355999045361249038982353603831<201>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1638373825 for P35, B1=1e6, sigma=4121134653 for P34 / January 20, 2016 2016 年 1 月 20 日) Free to factor
19×10279+179 = 2(1)2783<280> = 157 × 1019 × 56779381462039<14> × 5107314314045492293469<22> × [45504464922468699406099455163230618430001968204223310055204543130554673132251632874015384413087557613715266994044860551816117218628016252029461533127320987744797852583042801988925893485740714767293912381122209660588399424105812104438422021<239>] Free to factor
19×10280+179 = 2(1)2793<281> = 83 × 118831 × 9471127 × 16532554914001037<17> × [13669782771173255011219438311664762969582703901904057624317443167281266221521104990119523763817784068678931018087992440311453544144745660717401625191917292502519134973361145813917781221724976372111129678837681565311546480483084198481912787729003504119<251>] Free to factor
19×10281+179 = 2(1)2803<282> = 3 × 7 × 3557 × 245224519 × 1031621289653593<16> × 286130504299915279<18> × 98875557179603299097<20> × 260432465984594186369863031945345297921171<42> × 1516266419292348979246896788689778304413771563951204055849126157395631345369308815535591341174451062905214773620653680664048567640927280780231856578298168176662930917586284819<175> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=532273740 for P42 x P175 / February 18, 2016 2016 年 2 月 18 日)
19×10282+179 = 2(1)2813<283> = 31 × 71 × 362054937264565340096909<24> × 2649211152966503392614944852645112529513325935982321932937094268308355146765343397894628682463103234559200178686988519407807979339625734538068750828858754573921048495824632651095969995946290114787408574784274229958946981330012834731645753929343242399154357<256>
19×10283+179 = 2(1)2823<284> = 191 × 73751 × 20206765852713241<17> × 1785793521524341859<19> × [41531896087010828943375339544214874652485511843409012196262628627163872210212391582959996391756861810926436906188969917487293823762824663011474603066093440517669299937005130700506601720618319651410403538407655307036644996970148097759852011747<242>] Free to factor
19×10284+179 = 2(1)2833<285> = 32 × 151091 × 15850949 × 4289758100771605265661908720762333<34> × [2283189270105511798276701077647755356413166311350372242639514674479338102303019417071199159174302606479114867536945378069210741779035652952270840899261863169163949469149917436335041176298144874932057224989621733247720006447071012173403531<238>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1502458346 for P34 / January 20, 2016 2016 年 1 月 20 日) Free to factor
19×10285+179 = 2(1)2843<286> = 677 × 679037 × 20664404564016349<17> × 222231740621234190679776259979596641932513586944210325390301617398980966659352192781859530787700693601240914314381258224172259224425306290694154595503105012812688220181836678653499617421118973016774394888867983652775866772376440269195989855892906051941997020813<261>
19×10286+179 = 2(1)2853<287> = 29 × [727969348659003831417624521072796934865900383141762452107279693486590038314176245210727969348659003831417624521072796934865900383141762452107279693486590038314176245210727969348659003831417624521072796934865900383141762452107279693486590038314176245210727969348659003831417624521072797<285>] Free to factor
19×10287+179 = 2(1)2863<288> = 3 × 7 × 23 × 432007 × 169732444346441<15> × 255198947947683586403<21> × 976839440947882834913<21> × [23911468302336110155751304981607737290254098431709947688044056586669600959550932035216737370369064471096041073444161605968479653677855431891666240136164879183590858336309235388324397775808987370426266907747000904070410655327<224>] Free to factor
19×10288+179 = 2(1)2873<289> = 109 × 92143 × 17088761 × [12300185744906988310731906110401956853705371841810839098603643432782603019885022792459986727436715832597576757433844808623134817194444350405926134766485689542278776887897893830976298903750846334337048131430467779483305143835875231395318668784055914700531578077212303566279259<275>] Free to factor
19×10289+179 = 2(1)2883<290> = 2693 × 7839254033089903865990015265915748648760160085819202046457894953995956595288195733795436728968106613854850022692577464207616454181623138177167141147831827371374345009695919461979617939513966249948425960308619053513223583776870074679209473119610512852250691092131864504682922803977389941<286>
19×10290+179 = 2(1)2893<291> = 3 × 229 × [307294193757075853145722141355329128254892447032185023451398997250525634805110787643538735241792010350962316027818211224324761442665372796377163189390263626071486333495067119521267992883713407730874979783276726508167556202490700307294193757075853145722141355329128254892447032185023451399<288>] Free to factor
19×10291+179 = 2(1)2903<292> = 42120833 × 15980906141201<14> × 600505055896490618741431<24> × 66695092504419267058219873177<29> × [78307289514441872429716192832370298374271502159983787305970126369212242932640614208559303648344618208899053959811979565272553914962079457520216038092443042929807994545620606366966721435779823009463139924990503948803303<218>] Free to factor
19×10292+179 = 2(1)2913<293> = 601 × 64579 × 26219829347<11> × 2673550300483<13> × 27628297124177173<17> × 1218948986058551856322101225067883<34> × 191592310888946242409134797424408964462509<42> × [1202567214744865095882828637654262006023798950095570802544305144789445485791355427625506627775983560144574664028874483617119901426039549612283384685976248846551167079520537<172>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2827809950 for P34 / January 21, 2016 2016 年 1 月 21 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=49895034 for P42 / February 17, 2016 2016 年 2 月 17 日) Free to factor
19×10293+179 = 2(1)2923<294> = 32 × 7 × 503 × 46000027421<11> × 270051275800968884057893<24> × 301813859788831798456217471<27> × [1776883905503394204341031004398682970317393140545686846616180112345437592154167580398563457476110982563175791480439832981732339504182999306279602210342630830350705306651705546515019699534323155069467863581744271870156258434902959<229>] Free to factor
19×10294+179 = 2(1)2933<295> = 11351 × 149354273 × 7440126779647<13> × 3567185394800792492711<22> × [46919491687556540964270186535881981676685211634525803573139361600871888538634816133151776746211524855813056609002382081449753942215739727725970010548384195481812726184950272148215121932455869874283339808960042458601999684884489728537317630293035543<248>] Free to factor
19×10295+179 = 2(1)2943<296> = 233 × [90605627086313781592751549833094897472579876013352408202193609918931807343824511206485455412494039103481163567000476871721506914639961850262279446828803051979017644253695755841678588459704339532665712923223652837386742966142107773009060562708631378159275154983309489747257987601335240820219361<293>] Free to factor
19×10296+179 = 2(1)2953<297> = 3 × 107 × 239027218340911800153365054344781928460421<42> × [2751431478691285545097597701675290272112550098438058357445031289103632258428932217219619280886119542598000343149889930223053231244654916301518068392632817348470101026953015919356004933265316969545272067083436101510454672269431752329353958756517497143093<253>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=733335755 for P42 / February 15, 2016 2016 年 2 月 15 日) Free to factor
19×10297+179 = 2(1)2963<298> = 31 × 61 × [1116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087842999001116399318408837181973088900640460661613490804395087843<295>] Free to factor
19×10298+179 = 2(1)2973<299> = 43 × 6809137043<10> × 580812850963<12> × 1715505455726749591937841514922561<34> × 13411546587931017902724878785310368965170287<44> × 17412437174995957848847580816130358265362019<44> × [309873056126033455351710617326124520367686911797235995368725232204005468047897261179767984792041399419207134279361408483900679286255493106407165122523157903<156>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=550316500 for P34 / January 21, 2016 2016 年 1 月 21 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3231704911 for P44(1341...), B1=11000000, sigma=2153384336 for P44(1741...) / February 18, 2016 2016 年 2 月 18 日) Free to factor
19×10299+179 = 2(1)2983<300> = 3 × 7 × 169254098614341355835651<24> × [59395371427999456158595567287216783769950034142198129103474544882538424655799657534215600439425103897278980140124779039279918958952915198682078868935303224726608573659709924230692630595973822435338416345456696929830979984402590354692360677449643853413534550076822266782138103<275>] Free to factor
19×10300+179 = 2(1)2993<301> = 2459 × [858524242013465274953684876417694636482761736930098052505535222086665762956938231440061452261533595409154579549048845510821923998011838597442501468528308707243233473408341240793457141566128959378247706836564095612489268446974831684063078939044778817043965478288373774343680809723916677963038272107<297>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク