Table of contents 目次

  1. About 400...001 400...001 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
    4. Algebraic factorization 代数的因数分解
    5. Related sequences 関連する数列
  2. Prime numbers of the form 400...001 400...001 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 400...001 400...001 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 400...001 400...001 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

40w1 = { 41, 401, 4001, 40001, 400001, 4000001, 40000001, 400000001, 4000000001, 40000000001, … }

1.3. General term 一般項

4×10n+1 (1≤n)

1.4. Algebraic factorization 代数的因数分解

  1. 4×104k+1 = (2×102k-2×10k+1)×(2×102k+2×10k+1)

1.5. Related sequences 関連する数列

2. Prime numbers of the form 400...001 400...001 の形の素数

2.1. Last updated 最終更新日

March 18, 2024 2024 年 3 月 18 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 4×101+1 = 41 is prime. は素数です。
  2. 4×102+1 = 401 is prime. は素数です。
  3. 4×103+1 = 4001 is prime. は素数です。
  4. 4×1013+1 = 4(0)121<14> is prime. は素数です。
  5. 4×10229+1 = 4(0)2281<230> is prime. は素数です。
  6. 4×10242+1 = 4(0)2411<243> is prime. は素数です。
  7. 4×10309+1 = 4(0)3081<310> is prime. は素数です。
  8. 4×10957+1 = 4(0)9561<958> is prime. は素数です。
  9. 4×101473+1 = 4(0)14721<1474> is prime. は素数です。
  10. 4×101494+1 = 4(0)14931<1495> is prime. は素数です。
  11. 4×103182+1 = 4(0)31811<3183> is prime. は素数です。
  12. 4×103727+1 = 4(0)37261<3728> is prime. は素数です。
  13. 4×104177+1 = 4(0)41761<4178> is prime. は素数です。
  14. 4×1023210+1 = 4(0)232091<23211> is prime. は素数です。 (Hugo Pfoertner)
  15. 4×1025719+1 = 4(0)257181<25720> is prime. は素数です。 (Hugo Pfoertner)
  16. 4×1032835+1 = 4(0)328341<32836> is prime. は素数です。 (Ray Chandler / srsieve, PFGW / August 30, 2010 2010 年 8 月 30 日)
  17. 4×1036990+1 = 4(0)369891<36991> is prime. は素数です。 (Peter Benson / NewPGen, PRP, OpenPFGW / August 23, 2003 2003 年 8 月 23 日)
  18. 4×10103958+1 = 4(0)1039571<103959> is prime. は素数です。 (Peter Benson / NewPGen, OpenPFGW, Proth.exe / December 31, 2004 2004 年 12 月 31 日)
  19. 4×10789955+1 = 4(0)7899541<789956> is prime. は素数です。 (Predrag Kurtovic / Srsieve, Prime95, LLR / March 14, 2024 2024 年 3 月 14 日)
  20. 4×101038890+1 = 4(0)10388891<1038891> is prime. は素数です。 (Predrag Kurtovic / Srsieve, Prime95, LLR / March 17, 2024 2024 年 3 月 17 日)

2.3. Range of search 捜索範囲

  1. n≤50000 / Completed 終了 / Ray Chandler / September 7, 2010 2010 年 9 月 7 日
  2. n≤150000 / Completed 終了 / Ray Chandler / February 20, 2012 2012 年 2 月 20 日
  3. n≤200000 / Completed 終了 / Predrag Kurtovic / February 7, 2015 2015 年 2 月 7 日
  4. n≤250000 / Completed 終了 / Predrag Kurtovic / June 27, 2017 2017 年 6 月 27 日
  5. n≤300000 / Completed 終了 / Predrag Kurtovic / June 17, 2018 2018 年 6 月 17 日
  6. n≤400000 / Completed 終了 / Predrag Kurtovic / July 7, 2018 2018 年 7 月 7 日
  7. n≤500000 / Completed 終了 / Predrag Kurtovic / August 27, 2019 2019 年 8 月 27 日
  8. n≤600000 / Completed 終了 / Predrag Kurtovic / June 24, 2020 2020 年 6 月 24 日
  9. n≤650000 / Completed 終了 / Predrag Kurtovic / September 12, 2021 2021 年 9 月 12 日
  10. n≤1000000 / Completed 終了 / Predrag Kurtovic / March 16, 2024 2024 年 3 月 16 日
  11. n≤1075000 / Completed 終了 / Predrag Kurtovic / March 17, 2024 2024 年 3 月 17 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 4×104k+1 = (2×102k-2×10k+1)×(2×102k+2×10k+1)
  2. 4×105k+1+1 = 41×(4×101+141+36×10×105-19×41×k-1Σm=0105m)
  3. 4×106k+4+1 = 13×(4×104+113+36×104×106-19×13×k-1Σm=0106m)
  4. 4×106k+5+1 = 7×(4×105+17+36×105×106-19×7×k-1Σm=0106m)
  5. 4×1013k+7+1 = 53×(4×107+153+36×107×1013-19×53×k-1Σm=01013m)
  6. 4×1016k+4+1 = 17×(4×104+117+36×104×1016-19×17×k-1Σm=01016m)
  7. 4×1018k+11+1 = 19×(4×1011+119+36×1011×1018-19×19×k-1Σm=01018m)
  8. 4×1022k+17+1 = 23×(4×1017+123+36×1017×1022-19×23×k-1Σm=01022m)
  9. 4×1028k+20+1 = 29×(4×1020+129+36×1020×1028-19×29×k-1Σm=01028m)
  10. 4×1032k+11+1 = 641×(4×1011+1641+36×1011×1032-19×641×k-1Σm=01032m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 14.86%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 14.86% です。

3. Factor table of 400...001 400...001 の素因数分解表

3.1. Last updated 最終更新日

October 4, 2024 2024 年 10 月 4 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=211, 213, 215, 225, 226, 231, 233, 237, 239, 243, 246, 247, 250, 251, 254, 257, 258, 261, 266, 267, 269, 271, 274, 275, 278, 279, 283, 285, 286, 287, 289, 290, 291, 293, 294, 295, 297, 299 (38/300)

3.4. Factor table 素因数分解表

4×101+1 = 41 = definitely prime number 素数
4×102+1 = 401 = definitely prime number 素数
4×103+1 = 4001 = definitely prime number 素数
4×104+1 = 40001 = 13 × 17 × 181
4×105+1 = 400001 = 7 × 57143
4×106+1 = 4000001 = 41 × 97561
4×107+1 = 40000001 = 53 × 754717
4×108+1 = 400000001 = 19801 × 20201
4×109+1 = 4000000001<10> = 47 × 127 × 670129
4×1010+1 = 40000000001<11> = 13 × 3076923077<10>
4×1011+1 = 400000000001<12> = 7 × 193 × 41 × 317 × 641
4×1012+1 = 4000000000001<13> = 277 × 7213 × 2002001
4×1013+1 = 40000000000001<14> = definitely prime number 素数
4×1014+1 = 400000000000001<15> = 7333 × 54547933997<11>
4×1015+1 = 4000000000000001<16> = 173 × 23121387283237<14>
4×1016+1 = 40000000000000001<17> = 13 × 41 × 457 × 569 × 821 × 351529
4×1017+1 = 400000000000000001<18> = 72 × 23 × 2687 × 132089534249<12>
4×1018+1 = 4000000000000000001<19> = 12056437 × 331772977373<12>
4×1019+1 = 40000000000000000001<20> = 922367 × 43366685928703<14>
4×1020+1 = 400000000000000000001<21> = 17 × 29 × 53 × 1129 × 5953 × 35933 × 63389
4×1021+1 = 4000000000000000000001<22> = 41 × 97560975609756097561<20>
4×1022+1 = 40000000000000000000001<23> = 13 × 273773 × 11238957373163449<17>
4×1023+1 = 400000000000000000000001<24> = 7 × 26249 × 2176953679868076607<19>
4×1024+1 = 4000000000000000000000001<25> = 1999998000001<13> × 2000002000001<13>
4×1025+1 = 40000000000000000000000001<26> = 733 × 1847 × 4219 × 2447761 × 2860952089<10>
4×1026+1 = 400000000000000000000000001<27> = 41 × 293 × 33297261300258053775077<23>
4×1027+1 = 4000000000000000000000000001<28> = 797 × 31557220333<11> × 159038740554601<15>
4×1028+1 = 40000000000000000000000000001<29> = 13 × 15384616923077<14> × 199999980000001<15>
4×1029+1 = 400000000000000000000000000001<30> = 7 × 19 × 131 × 35343237863<11> × 649577122635449<15>
4×1030+1 = 4000000000000000000000000000001<31> = 1199481995446957<16> × 3334772856269093<16>
4×1031+1 = 40000000000000000000000000000001<32> = 41 × 659 × 1613 × 752459 × 1474663 × 827143245899<12>
4×1032+1 = 400000000000000000000000000000001<33> = 593 × 877 × 3089 × 3121 × 3989 × 19999999800000001<17>
4×1033+1 = 4000000000000000000000000000000001<34> = 53 × 75471698113207547169811320754717<32>
4×1034+1 = 40000000000000000000000000000000001<35> = 13 × 78517 × 39187985747329583696230409681<29>
4×1035+1 = 400000000000000000000000000000000001<36> = 7 × 472477 × 1342739 × 277543751143<12> × 324532520167<12>
4×1036+1 = 4000000000000000000000000000000000001<37> = 17 × 41 × 881 × 267713 × 8479780817<10> × 2869440456241033<16>
4×1037+1 = 40000000000000000000000000000000000001<38> = 59 × 11161 × 60744207660148306983002252091499<32>
4×1038+1 = 400000000000000000000000000000000000001<39> = 89 × 21929 × 710777042881<12> × 288348545377013952641<21>
4×1039+1 = 4000000000000000000000000000000000000001<40> = 23 × 450493 × 26255689 × 14703498742403429328114331<26>
4×1040+1 = 40000000000000000000000000000000000000001<41> = 13 × 15384615383076923077<20> × 200000000020000000001<21>
4×1041+1 = 400000000000000000000000000000000000000001<42> = 7 × 41 × 18287 × 28607 × 8232503 × 323617065960441802399049<24>
4×1042+1 = 4000000000000000000000000000000000000000001<43> = 345997 × 405788401 × 244759045477<12> × 116399007761442929<18>
4×1043+1 = 40000000000000000000000000000000000000000001<44> = 379 × 641 × 18867364133062891<17> × 8726729622988730725849<22>
4×1044+1 = 400000000000000000000000000000000000000000001<45> = 541 × 42767521 × 467644594134881<15> × 36968576709426987061<20>
4×1045+1 = 4000000000000000000000000000000000000000000001<46> = 22013 × 64997 × 2795679912153810318713513708145726641<37>
4×1046+1 = 40000000000000000000000000000000000000000000001<47> = 13 × 41 × 53 × 5849 × 2494117169<10> × 888265814281<12> × 109273660408134809<18>
4×1047+1 = 400000000000000000000000000000000000000000000001<48> = 7 × 19 × 251 × 273641 × 49043851 × 892830248999542574297475458717<30>
4×1048+1 = 4000000000000000000000000000000000000000000000001<49> = 29 × 157 × 997 × 1093 × 196277 × 2346997 × 27736601 × 39336709 × 1604034898237<13>
4×1049+1 = 40000000000000000000000000000000000000000000000001<50> = 6047 × 9198701017619<13> × 719107005037030071155743700669957<33>
4×1050+1 = 400000000000000000000000000000000000000000000000001<51> = 20832397 × 19200862963585035365829481840231827379249733<44>
4×1051+1 = 4(0)501<52> = 41 × 127 × 2699 × 340957 × 834775929756340659346435744705824635801<39>
4×1052+1 = 4(0)511<53> = 13 × 172 × 15473 × 2717549 × 9730969 × 4596227727257<13> × 5661209930204358073<19>
4×1053+1 = 4(0)521<54> = 7 × 2887 × 19793161462714632094611311791775941412242070364689<50>
4×1054+1 = 4(0)531<55> = 397 × 5569 × 18513601 × 97724029689006262970120726321857649103557<41>
4×1055+1 = 4(0)541<56> = 47 × 311792317 × 3546491561<10> × 769658009527008787510356671896509059<36>
4×1056+1 = 4(0)551<57> = 41 × 61 × 941 × 622549 × 526655496128047225409<21> × 518389881029517119825821<24>
4×1057+1 = 4(0)561<58> = 2383 × 309519429257646847<18> × 5423105248953848825200534252128523601<37>
4×1058+1 = 4(0)571<59> = 13 × 173 × 10252493 × 1734766609991044971257473234202380382148194988893<49>
4×1059+1 = 4(0)581<60> = 72 × 53 × 1721 × 7172369 × 561815797 × 22210104408309019466753678280866226961<38>
4×1060+1 = 4(0)591<61> = 229 × 76597 × 69336888435401<14> × 28844674820724601<17> × 114020450593997974882777<24>
4×1061+1 = 4(0)601<62> = 23 × 41 × 231611 × 151054394039690896708813<24> × 1212427431602724544074830260849<31>
4×1062+1 = 4(0)611<63> = 5881 × 242593794022971299662713397<27> × 280368440058228030693613482669893<33>
4×1063+1 = 4(0)621<64> = 57463303 × 92412075452419139957<20> × 753252673202065154243392276401159931<36>
4×1064+1 = 4(0)631<65> = 13 × 113 × 3061 × 5233 × 697935976337<12> × 37277079488149<14> × 65338124795818366546880104541<29>
4×1065+1 = 4(0)641<66> = 7 × 19 × 2204550857157326593682271383927<31> × 1364231987313074370799674019902811<34>
4×1066+1 = 4(0)651<67> = 41 × 677 × 956647082893<12> × 15916078812572232654253<23> × 9464542666233135185372313917<28>
4×1067+1 = 4(0)661<68> = 164117 × 1742051 × 139908969084878224421852702990639345649008391006902174303<57>
4×1068+1 = 4(0)671<69> = 17 × 97 × 9929 × 91453 × 126085681 × 165300869 × 5685054840613<13> × 2254552250995694797203588661<28>
4×1069+1 = 4(0)681<70> = 1441373 × 2775131766725198820846512318463021022316915885062367617542440437<64>
4×1070+1 = 4(0)691<71> = 132 × 1493 × 214426983624269161<18> × 739322702995632778091948645116533136331014788973<48>
4×1071+1 = 4(0)701<72> = 7 × 41 × 54059 × 623599681 × 206158145486328458561<21> × 200541243562919356138928178827285917<36>
4×1072+1 = 4(0)711<73> = 53 × 2861 × 23173 × 41729 × 39024189068687294863375801<26> × 699056274030059420482348829080741<33>
4×1073+1 = 4(0)721<74> = 383 × 24733 × 4222643524750338840751339185002352540273726532526653589843444435659<67>
4×1074+1 = 4(0)731<75> = 1877 × 819374245465341477001<21> × 260083864515468281071095575684487609275500129561813<51>
4×1075+1 = 4(0)741<76> = 223 × 641 × 296554471805228957<18> × 700580501444791801<18> × 134689758945851757063416146149285251<36>
4×1076+1 = 4(0)751<77> = 13 × 29 × 41 × 7537 × 205929062893<12> × 3295105303424261<16> × 51048013082528437769<20> × 9912209782592943898697<22>
4×1077+1 = 4(0)761<78> = 7 × 167 × 27179 × 160481 × 905917 × 1631579 × 53075227971470436723416564853216129170625280592743997<53>
4×1078+1 = 4(0)771<79> = 661152529 × 1490111265532794649<19> × 32601096982344030022369<23> × 124539585518612667972527269049<30>
4×1079+1 = 4(0)781<80> = 10399301453<11> × 44286505549343<14> × 86852917252842856443203096773392846999695124656258528219<56>
4×1080+1 = 4(0)791<81> = 709 × 958682189 × 3901200066397<13> × 5347577827006842697<19> × 28208744710860366713399153737658674189<38>
4×1081+1 = 4(0)801<82> = 41 × 263 × 277 × 82613 × 6607585172530757<16> × 7457700591622276977648263<25> × 328961073500403971350916708317<30>
4×1082+1 = 4(0)811<83> = 13 × 89 × 8320453 × 127095503602181369<18> × 32692601016761314157119495004047542663458645548499540849<56>
4×1083+1 = 4(0)821<84> = 7 × 19 × 23 × 61331 × 2132065135506677737272745109390372272910797502215335604455310419649103760569<76>
4×1084+1 = 4(0)831<85> = 17 × 109 × 853425905273368333<18> × 21499961203232518024633<23> × 117647058823529411764823529411764705882353<42>
4×1085+1 = 4(0)841<86> = 53 × 971 × 2991889 × 3116849 × 829547000162864046944367046259459<33> × 100476073473841019014510202342341373<36>
4×1086+1 = 4(0)851<87> = 41 × 197 × 733 × 7986133 × 65307413 × 5076336961<10> × 1187792304317<13> × 576148187135201<15> × 37289088323622219708408124357<29>
4×1087+1 = 4(0)861<88> = 150893 × 409597 × 2164979 × 4035102268771272917<19> × 7408425138353516758928742273260814998297567120698567<52>
4×1088+1 = 4(0)871<89> = 13 × 309929 × 7230701 × 11817812485849<14> × 482836088598383929<18> × 7551796575516578981<19> × 31863018833731140278508013<26>
4×1089+1 = 4(0)881<90> = 7 × 186806046659<12> × 181062640643378909404647518804407631099<39> × 1689437662993745555909697934943056683623<40>
4×1090+1 = 4(0)891<91> = 317 × 773 × 845166009699652159666515021017148258333637<42> × 19314310664570004537506940810390365837495453<44>
4×1091+1 = 4(0)901<92> = 41 × 52562142481636817481601<23> × 18561072856541213939514050581011188369320296717040037332455429879961<68>
4×1092+1 = 4(0)911<93> = 2293 × 9076746840853577<16> × 2203432611999477182878829995513<31> × 8722197993894461404273789795028347143480157<43>
4×1093+1 = 4(0)921<94> = 127 × 2081291 × 176869847757581148834467117<27> × 85559780579232529861792445700437376029567083586972454614129<59>
4×1094+1 = 4(0)931<95> = 13 × 1361 × 225721 × 1939265163533<13> × 5164750569576816620964067538335815709623314583988191852709325014543362449<73>
4×1095+1 = 4(0)941<96> = 7 × 59 × 1607 × 26921 × 2181259 × 8726647 × 2050333674467557<16> × 573619207734231410765653214023473131490255218752669688731<57>
4×1096+1 = 4(0)951<97> = 41 × 653 × 21347052697<11> × 1948217037997<13> × 39654833524613<14> × 631411766525927033401<21> × 143475878369122834469397183454904461<36>
4×1097+1 = 4(0)961<98> = 251 × 691 × 53077 × 157211 × 2224367 × 543367039097502667247<21> × 22867526479928742063772216587242930120801823067098947687<56>
4×1098+1 = 4(0)971<99> = 53 × 7547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754717<97>
4×1099+1 = 4(0)981<100> = 5340514614533165278697161411<28> × 748991490279753729991982536795069576765844598816949515716785117147315691<72>
4×10100+1 = 4(0)991<101> = 13 × 17 × 3677 × 54829 × 267581 × 1729468241<10> × 530526767289696833<18> × 1976577034596636110381<22> × 1850013310736271697135674572900561429<37>
4×10101+1 = 4(0)1001<102> = 72 × 19 × 41 × 47 × 173 × 4517179 × 6579538699<10> × 43363042523148153702266204810980480699687116865954056179861696866240783475881<77>
4×10102+1 = 4(0)1011<103> = 463049479397<12> × 8638385697375033388477501655442812500798005297363031687909266430467188209717273606396266733<91>
4×10103+1 = 4(0)1021<104> = 75691460528272051<17> × 1023246397461943840048249<25> × 39556096425362661005215663<26> × 13056279985721006726424982182157633373<38>
4×10104+1 = 4(0)1031<105> = 29 × 1153 × 1229 × 4073 × 44773 × 136573 × 380321041 × 11586215577990829<17> × 3031758035603884709<19> × 29254915858051818526570428231358748733761<41>
4×10105+1 = 4(0)1041<106> = 232 × 3329 × 92623529 × 10065112367161<14> × 61374787300570333<17> × 1770038185341029783677361<25> × 22427348776522401264947020870679665813<38>
4×10106+1 = 4(0)1051<107> = 13 × 41 × 2237 × 236672805169<12> × 236806432528979638909578742022011126001<39> × 598583780294530529081821283615359397949289067281249<51> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 for P39 x P51 / 0.94 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / March 22, 2007 2007 年 3 月 22 日)
4×10107+1 = 4(0)1061<108> = 7 × 641 × 739 × 211511398519689785054417917<27> × 570329330270045351436503539535108189841256840826470291937286786510642047521<75>
4×10108+1 = 4(0)1071<109> = 14282353 × 449624801 × 4448153205854852299395290701502028576933415201<46> × 140032948352417840393666225586218181275872400017<48>
4×10109+1 = 4(0)1081<110> = 73637 × 85645489596205447<17> × 504566703184287260002689525090090859<36> × 12570160427975508498024126528760502161684857548395201<53>
4×10110+1 = 4(0)1091<111> = 2797 × 11813 × 12106185410285130629221105282016464351627060726230087557078015981435891044452369287927188316344672904641<104>
4×10111+1 = 4(0)1101<112> = 41 × 53 × 419 × 954263 × 4603818109825557387601129945008576400336570077856109340401190640622283958065767097101108400901358321<100>
4×10112+1 = 4(0)1111<113> = 13 × 409 × 5897 × 803237 × 882851476915327188602341<24> × 93926450809509114392492557<26> × 19153270310774260418014378549639674313960981532321<50>
4×10113+1 = 4(0)1121<114> = 7 × 503 × 1597 × 27693103 × 1921587721428489822984360074527<31> × 1336771611781129939139846137350975094986672392926838753978751165909733<70> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 for P31 x P70 / 1.48 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / March 22, 2007 2007 年 3 月 22 日)
4×10114+1 = 4(0)1131<115> = 1481 × 10284099811172636668173569<26> × 19239826379011231330142545758809249<35> × 13650152431907201963179891116352788668531001597230041<53> (Makoto Kamada / Msieve 1.17 for P35 x P53 / March 22, 2007 2007 年 3 月 22 日)
4×10115+1 = 4(0)1141<116> = 205327 × 194811203592318594242354877829023947167201585763197241473357132768705528254929941020908112425545593127060737263<111>
4×10116+1 = 4(0)1151<117> = 17 × 41 × 61 × 193 × 6197 × 53653 × 415721 × 8418828519021619133<19> × 1041409915758482772813621281597<31> × 40224367811668375803852835183908505200564069461<47>
4×10117+1 = 4(0)1161<118> = 4164125225093709812091452961256189013773247773370698915379<58> × 960585905509117746404238452290739780153822354353075575508219<60> (Makoto Kamada / GGNFS-0.77.1-20060722-pentium4 for P58 x P60 / 1.55 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / March 23, 2007 2007 年 3 月 23 日)
4×10118+1 = 4(0)1171<119> = 13 × 2521 × 1917014041<10> × 32794004557<11> × 19414403288312435820668470666126269499692898656496134681162055945274405314730287544170314937001<95>
4×10119+1 = 4(0)1181<120> = 7 × 19 × 663127 × 1049565721<10> × 100814601578535670801<21> × 17915709037898119173692619891853<32> × 2392459322134858608657877987740046002908201967261647<52>
4×10120+1 = 4(0)1191<121> = 509 × 18797 × 471749 × 3696899840127421<16> × 1332399407553263054444728109<28> × 3181885712427202864515492961<28> × 56543929648956861705455421014649847997<38>
4×10121+1 = 4(0)1201<122> = 41 × 179 × 35407 × 1677282149548946503<19> × 91775729995559202309480860055465558152596719087388419932408692990597402155192941860585945575179<95>
4×10122+1 = 4(0)1211<123> = 1693 × 2081 × 34301081 × 250868621552100821173<21> × 237061104674256043241201<24> × 55656577748792728734500686238834161290097068307476037683753452569<65>
4×10123+1 = 4(0)1221<124> = 151007 × 488636333 × 537902543 × 100779815274977560127837755663970009211033146759104806586600787111420881878953212789248848361924885397<102>
4×10124+1 = 4(0)1231<125> = 13 × 53 × 10253 × 14281 × 90620549 × 41641602785482764604422844952478401980473629079093433<53> × 105069597079303499041538586981063998401693897581284689<54>
4×10125+1 = 4(0)1241<126> = 7 × 3465927964099<13> × 18646352828611<14> × 40406937613934921<17> × 21882280681486971925481937485784203208914088263175996664282980555648871573032498247<83>
4×10126+1 = 4(0)1251<127> = 41 × 89 × 157 × 2333 × 43969 × 37132169765645505210537037<26> × 1833052150971326717676530757844097982202256630343703419817263946327914048885728723324893<88>
4×10127+1 = 4(0)1261<128> = 23 × 2544761 × 16180327 × 35832931081<11> × 54093077531<11> × 21790833172315990738253233519382438490953607919672593208341683869485576176214437220110961811<92>
4×10128+1 = 4(0)1271<129> = 373 × 761 × 2633 × 5817901501<10> × 34078691320501<14> × 1513015890063439996908593<25> × 862917513178823378823631229<27> × 2067538466388206817464922662772364909800768017<46>
4×10129+1 = 4(0)1281<130> = 2571557 × 3993481 × 389504261589723049023540667029763241272203254578966125062684058985602519974144182176885796920166971006571953362133253<117>
4×10130+1 = 4(0)1291<131> = 13 × 24329 × 26293188445622053<17> × 10943887203994016693<20> × 439518862738820048374800235746739067905044179173052197766563183577009727868501488261896597<90>
4×10131+1 = 4(0)1301<132> = 7 × 41 × 39983 × 6117344564173<13> × 13540374519737783<17> × 914330696485126819<18> × 460262717377104473504549506528838721203624141138015878165033860155386374302161<78>
4×10132+1 = 4(0)1311<133> = 17 × 29 × 433 × 701 × 3373 × 4254113 × 30223181 × 88380821229433<14> × 378879178609013<15> × 35917654067934382596442843652221<32> × 51247760017521254232765394554789953067443953049<47>
4×10133+1 = 4(0)1321<134> = 18650253859<11> × 656859394409<12> × 3004948379353932636885592567<28> × 1215103598620682615274146445588556223<37> × 894236732175920580152377822028339767396828303931<48> (Makoto Kamada / Msieve 1.17 for P37 x P48 / March 23, 2007 2007 年 3 月 23 日)
4×10134+1 = 4(0)1331<135> = 2521769 × 6482122769<10> × 498771505631914848917<21> × 339732985011027186094197732510445277293910533<45> × 144410272621457596142773322790127495868916847945915681<54> (Shaopu Lin / Msieve v. 1.17 for P45 x P54 / March 24, 2007 2007 年 3 月 24 日)
4×10135+1 = 4(0)1341<136> = 127 × 214556798183205397<18> × 146795921913563321819395980538666834042505147352976071774890915399867927840476992392706923237735278878621927216090179<117>
4×10136+1 = 4(0)1351<137> = 13 × 41 × 149 × 4481 × 11122527809<11> × 16596601969<11> × 1637757436921<13> × 2972939782892017<16> × 82473787923605350135609<23> × 410588190710389639144589153<27> × 3693097747722714009348879879577<31>
4×10137+1 = 4(0)1361<138> = 7 × 19 × 53 × 1009 × 3823 × 218117 × 1603681 × 23055346723785830899288317321960983887657807<44> × 1824138707895749513832021600956777695371243638120294559951871173502726613<73> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P44 x P73 / 7.70 hours on Cygwin on AMD XP 2700+ / March 26, 2007 2007 年 3 月 26 日)
4×10138+1 = 4(0)1371<139> = 6961 × 9998845837<10> × 27181130477<11> × 92639850016760801<17> × 21243739982186736081596209<26> × 1074340998593730730892428867826432317325432888260258081212279529347431801<73>
4×10139+1 = 4(0)1381<140> = 641 × 27851 × 7102095496029555951338486428062736055043334947960741098720689<61> × 315482054875753501037036269251586513863489506091455405288439226913423699<72> (Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 for P61 x P72 / 8.58 hours on Core 2 Duo E6300@2.33GHz / March 24, 2007 2007 年 3 月 24 日)
4×10140+1 = 4(0)1391<141> = 63377 × 83561 × 500467433 × 679233377 × 4899244937<10> × 23696426502493<14> × 3839802081892921<16> × 66052631879764390352533<23> × 7546035908518137699673476947473361898516667544440801<52>
4×10141+1 = 4(0)1401<142> = 41 × 3167 × 1385099246529648770253437136267455844731<40> × 41102459480233672086378912659093765960173<41> × 541102285545511773447658741193840771596059733459284964441<57> (Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 for P40 x P41 x P57 / 7.40 hours on Core 2 Duo E6300@2.33GHz / March 25, 2007 2007 年 3 月 25 日)
4×10142+1 = 4(0)1411<143> = 13 × 3250517 × 70502989264785613<17> × 13426309871176552568186516301787835466311568281191496953878958627394634905531548898527727705393436465260263421649042037<119>
4×10143+1 = 4(0)1421<144> = 72 × 7874219 × 10763828209<11> × 96314054182771268977482219619348989633785487937642420968781693916432139510787929323379246182872041692533059858697565965894819<125>
4×10144+1 = 4(0)1431<145> = 173 × 8317 × 25621 × 33113 × 319133 × 503249 × 579112895164952297<18> × 67704575690756412277<20> × 127833457376629982084572450664243129<36> × 4070728657304927469734608391624183892984329021<46>
4×10145+1 = 4(0)1441<146> = 3527 × 3016133 × 9386330623739<13> × 75701171851442047<17> × 431900725161775951764678157<27> × 12252413917377543644136805930318944909387796884332369139786560301466153041715531<80>
4×10146+1 = 4(0)1451<147> = 41 × 2729 × 2184156109565083400994331504190413<34> × 185296227258331476479382730913150879294782961<45> × 8833287103024449941246276528945173645345205610821578498935895813<64> (Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 for P34 x P45 x P64 / 11.10 hours on Core 2 Duo E6300@2.33GHz / March 26, 2007 2007 年 3 月 26 日)
4×10147+1 = 4(0)1461<148> = 47 × 251 × 733 × 863 × 6442862514461602713781483216855754068454488467466706327<55> × 83194530963377483428159654973172315536690121265505564170886744203220844329565112601<83> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P55 x P83 / 12.48 hours on Cygwin on AMD XP 2700+ / March 27, 2007 2007 年 3 月 27 日)
4×10148+1 = 4(0)1471<149> = 132 × 17 × 138549833 × 1693109461<10> × 2976415801<10> × 796769450569<12> × 162214004147497<15> × 1070055437699459212912601513126490566842954733<46> × 144182457504055569482879143621295762376248991721<48>
4×10149+1 = 4(0)1481<150> = 7 × 23 × 13259 × 207877 × 2614971570401<13> × 344706864796710622005213145364745706122291413413780429853772014962334522600966629386228064440103850507036806595831441440265287<126>
4×10150+1 = 4(0)1491<151> = 53 × 277 × 61357 × 2304158963285019721<19> × 5047235270038343639185708957<28> × 381833693783494213482826202929761765045615299273179467013156591317268744276402346427879154651849<96>
4×10151+1 = 4(0)1501<152> = 41 × 1601 × 980423 × 670961329 × 479516387641<12> × 1931836501146231929868971910071660171111512618650385393945865617903542995026941985367517437264335727157861561970857469063<121>
4×10152+1 = 4(0)1511<153> = 543661 × 4675861 × 14926753 × 52223864333161118057243878862623357<35> × 382966681140453190759201610136931180705493<42> × 527077985383865837122630444188680560669184029075046608177<57>
4×10153+1 = 4(0)1521<154> = 59 × 397 × 13063 × 167318969 × 606641514185778295831468249<27> × 3183635597702264953513076409369407360357<40> × 40455156645999949292666657280615001667447267467607551015375410772491397<71> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs for P40 x P71 / 26.67 hours on Athlon XP 3000+ / March 29, 2007 2007 年 3 月 29 日)
4×10154+1 = 4(0)1531<155> = 13 × 25707428533<11> × 622744718528007083089<21> × 192197594968209977118057036742684208332916351564626023278876166757315566433401247957901720654599642233127888813956068110721<123>
4×10155+1 = 4(0)1541<156> = 7 × 19 × 90173 × 63329687397592132145980877526417873030946686466430656344663544587463<68> × 526652909060236900579923203193911048657743442112564846958614597680814721066334503<81> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P68 x P81 / 25.81 hours on Cygwin on AMD XP 2700+ / April 3, 2007 2007 年 4 月 3 日)
4×10156+1 = 4(0)1551<157> = 41 × 117647489 × 601895033 × 454356957312809<15> × 5341058207367813588605221<25> × 5288095175146719223160893179452720213<37> × 107361595370695238400797719157921129302056548074664130232322929<63>
4×10157+1 = 4(0)1561<158> = 1321757 × 46712194341161070054665870112933244096080435997557581817007450649<65> × 647855429982898406721265781990638069224565341233236221727068040304877394852504476748157<87> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P65 x P87 / 28.48 hours on Cygwin on AMD 64 3200+ / April 17, 2007 2007 年 4 月 17 日)
4×10158+1 = 4(0)1571<159> = 25263414276699562450578618285557<32> × 15833172651129734691753638260959425453361976485639459624681318174193891148379882892150660341586988134980814335626714549512537693<128> (Makoto Kamada / GMP-ECM 5.0.3 B1=85070, sigma=3599089489 for P32 x P128)
4×10159+1 = 4(0)1581<160> = 131 × 52009 × 17330918709002002575539<23> × 33875725650758540850207863307029935526293568365103392584123312512205435389144906177579530015230347839191982884839325363901546049921<131>
4×10160+1 = 4(0)1591<161> = 13 × 29 × 853 × 249517493 × 519168493069<12> × 1092173329376508437<19> × 160550853845011584389826077<27> × 82739149005614537671026137265110876506013<41> × 66182786292580938056857269476000328045369018340249<50>
4×10161+1 = 4(0)1601<162> = 7 × 41 × 24481 × 1793611 × 6778769 × 51739157 × 24543891373<11> × 7075521653495357<16> × 365498852272237776807460331845037<33> × 1425813087563283653143535013962362288561660254770001654328238688640363615813<76> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs for P33 x P76 / 20.75 hours on Cygwin on AMD XP 2700+ / March 28, 2007 2007 年 3 月 28 日)
4×10162+1 = 4(0)1611<163> = 2497329853<10> × 75396687085921<14> × 376268494658838666197<21> × 7033585355523255976857977544415093<34> × 8027072786280128866004929270459039253458495879153981797095597384581952824282996219837<85> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=1124441233 for P34 x P85 / April 3, 2007 2007 年 4 月 3 日)
4×10163+1 = 4(0)1621<164> = 53 × 73978717 × 19915232337028022644423<23> × 512261774037057670967542856493977494372940799796521098095418261503423667203083915141568831529293379787730027819780685726100536178487<132>
4×10164+1 = 4(0)1631<165> = 17 × 97 × 937 × 262253 × 6891629 × 6639016981<10> × 4809423279366120261605554143564035809924606662417867200996041<61> × 4486013842492913780384052131069660841652414226854579805176904834375247431701<76>
4×10165+1 = 4(0)1641<166> = 23743 × 80900761 × 513790423 × 61142992571<11> × 7779120398579544883895822513251508700047607501669183213883240931<64> × 8521353913589854424771282379603548481995888227244581651836279018886769<70> (Kenji Ibusuki / GGNFS-0.77.1 snfs for P64 x P70 / 51.86 hours on Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin / March 2, 2008 2008 年 3 月 2 日)
4×10166+1 = 4(0)1651<167> = 13 × 41 × 4517 × 152421337841<12> × 941160476969540120952877<24> × 338717486802811900673981008844119653096357974239957<51> × 341928753479598700237304527485927308118819144008567869244980664981674968409<75> (Serge Batalov / Msieve 1.36 snfs for P51 x P75 / 23.50 hours on Opteron-2.6GHz; Linux x86_64 / August 22, 2008 2008 年 8 月 22 日)
4×10167+1 = 4(0)1661<168> = 7 × 1171 × 321850576013<12> × 452834568437<12> × 334819846493942686654911244234336665685732640496966982512267869273961723073832542974680534405433160996863130567626286114687860700987297851293<141>
4×10168+1 = 4(0)1671<169> = 457 × 108533 × 409730312389<12> × 93411933000652685441898259747177<32> × 52255203297194322487918784669188516128517<41> × 40322921276290620277618877465920528643175473599262864740732386428828904824821<77>
4×10169+1 = 4(0)1681<170> = 317 × 769 × 145112173 × 741131087 × 1525722368634215200183830631475295084172954111987708688260657091635320684718502089815481557958855197157252102548295224312605614793133357560373856487<148>
4×10170+1 = 4(0)1691<171> = 89 × 809 × 12037 × 389533 × 50122020190096192578898087923762046470485403737718517<53> × 23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893<104> (Kenji Ibusuki / GGNFS-0.77.1 snfs for P53 x P104 / 78.39 hours on Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin / March 20, 2008 2008 年 3 月 20 日)
4×10171+1 = 4(0)1701<172> = 23 × 41 × 641 × 55305917 × 571780967537331426467595011<27> × 983788565105385106532942023<27> × 3392183977152881040429986688657533088590419<43> × 62705813661270651499429351472678860702534232323580249870005333<62> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs for P43 x P62 / 10.75 hours on Cygwin on AMD XP 2700+ / March 26, 2007 2007 年 3 月 26 日)
4×10172+1 = 4(0)1711<173> = 13 × 293 × 6317 × 10821849037<11> × 1421625392482859915483832616008001758580123586608198873632381915389763080921<76> × 108056649779213250338622526245609523248658330816513865559158044196250326196011521<81>
4×10173+1 = 4(0)1721<174> = 7 × 19 × 19081 × 1380947158352491<16> × 1031387844700915926546275570854626898299232457527<49> × 4950984722498265333902822196208270860948138231881<49> × 22352008973784616122462526641600512964655392476154917761<56> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P49(1031...) x P49(4950...) x P56 / 92.56 hours on Core 2 Quad Q6700 / October 16, 2008 2008 年 10 月 16 日)
4×10174+1 = 4(0)1731<175> = 21669802129<11> × 90895849637269554525310385291775885388075787009<47> × 2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441<118> (matsui / GGNFS-0.77.1-20060513-pentium-m snfs for P47 x P118 / 105.95 hours / July 14, 2008 2008 年 7 月 14 日)
4×10175+1 = 4(0)1741<176> = 16811 × 33374333358396914109100082498630504183786129383<47> × 105371111708302205780401868932937382113312422601077<51> × 676600448832315856534571187702619060715236193076202145589311912099919790801<75> (matsui / GGNFS-0.77.1-20060513-prescott snfs for P47 x P51 x P75 / February 8, 2008 2008 年 2 月 8 日)
4×10176+1 = 4(0)1751<177> = 41 × 53 × 61 × 113 × 1013 × 430121 × 11426141 × 80884901 × 6252736601<10> × 18689267390859149292717056482637255317654199244915941552355138149<65> × 567495530173653267529874247825892220316564875841726498015299495959356337<72>
4×10177+1 = 4(0)1761<178> = 127 × 6659 × 9739 × 69371 × 1058602893359918430986584487<28> × 6613355335599340569623394994644333734548049640883060507455398558497289708022568396139682510787269921256324528401245789362207525550004619<136>
4×10178+1 = 4(0)1771<179> = 13 × 566167021042476149422414249581680453<36> × 6061095723787709816177996585617442722607441719998843595973408858077<67> × 896645819043518706309661143084647289327440781070529452934200366627156144117<75> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=531751960 for P36 / March 26, 2007 2007 年 3 月 26 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P67 x P75 / 59.57 hours on Core 2 Quad Q6700 / March 8, 2009 2009 年 3 月 8 日)
4×10179+1 = 4(0)1781<180> = 7 × 18457340200388066441<20> × 6004231495142581556980974994915411<34> × 515626709759236369230555350134883854087864590105169849025864162520888571350730707352467835084057429485986388639654825004337893<126> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=2723994585 for P34 x P126 / March 26, 2007 2007 年 3 月 26 日)
4×10180+1 = 4(0)1791<181> = 17 × 233 × 11113 × 60107617 × 5525523109177<13> × 18966827428229747257<20> × 84774463712793346273<20> × 470115515406025639190126858917694761<36> × 361956680025158803047826849991830275331755207987544646460405310663321715919113<78>
4×10181+1 = 4(0)1801<182> = 41 × 1619 × 39293 × 30576859493<11> × 241401448929077<15> × 2077692861147390086533008886417768067467725384178251411463577449555727370531714620689079810440916876471502278084657087636963275443748788347824202503<148>
4×10182+1 = 4(0)1811<183> = 1160317 × 413745536263432081<18> × 30385872315370452048023578488339493475461704437<47> × 27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649<113> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P47 x P113 / 87.22 hours on Core 2 Quad Q6700 / March 12, 2009 2009 年 3 月 12 日)
4×10183+1 = 4(0)1821<184> = 571331 × 17022010645669213<17> × 411302495331540351096624737709336167001799823065120271742613631066484339478569900893608595236556946204914561093603844242212191786134503556784400139088557339624167<162>
4×10184+1 = 4(0)1831<185> = 13 × 181 × 197 × 269 × 1945721 × 714653561 × 74953971409<11> × 404456814671197<15> × 6235763129526027221<19> × 2760112522862723807812664721033907942981<40> × 442140427088359732723919401655352200442156534928655623582787212323205365610813<78>
4×10185+1 = 4(0)1841<186> = 72 × 11387136743730658714583956573<29> × 716884805183080328390151232007836066382576126466769923060288875148399148124935727379700456665628633735390872417050473157442542103739431462713157977652619013<156>
4×10186+1 = 4(0)1851<187> = 41 × 1277 × 10302637 × 18930161 × 391726120432932548967124005640017420299524591508036017422310707844564674476058001102379920105794482705962546997707950441216394877921057009240485597529605804457857401649<168>
4×10187+1 = 4(0)1861<188> = 173 × 466357 × 17220341786228465534537012038573242088381604649445961<53> × 28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081<128> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P53 x P128 / 123.18 hours on Core 2 Quad Q6700 / March 17, 2009 2009 年 3 月 17 日)
4×10188+1 = 4(0)1871<189> = 29 × 3121 × 87442273 × 47981418968173<14> × 741548670319163677<18> × 469477203241985275180141<24> × 887855725323927778428067905829036736061102263034655095257<57> × 3407823789490258686400384521327420200673346836273759228105068009<64>
4×10189+1 = 4(0)1881<190> = 53 × 18077 × 2643247 × 96964568413<11> × 3643105412001703<16> × 13506270059310058545933600271041349759458769588496747569910410889<65> × 331054716915185039351115638053193982176316954185352183355312068630530447500029226468933<87> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P87 / 141.02 hours on Core 2 Quad Q6700 / March 23, 2009 2009 年 3 月 23 日)
4×10190+1 = 4(0)1891<191> = 13 × 3929 × 749212249 × 29090728066409<14> × 35931483680231802283901933540889672060081039517709758737692657346760870151470055777789795773004731558783470983290996179404117750527088920858749286063304888393298893<164>
4×10191+1 = 4(0)1901<192> = 7 × 19 × 41 × 647 × 46903543 × 4164599914798824246547757<25> × 765226605021062082766257793518013247<36> × 758492370060731172732749892408126693839219951872236949815340112500285954615089467270693873387494136665940937734088263<117> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=3120847556 for P36 / April 14, 2007 2007 年 4 月 14 日)
4×10192+1 = 4(0)1911<193> = 109 × 6581 × 26096209 × 6867491821<10> × 59570268209<11> × 273203515315421<15> × 24631420088448566099321<23> × 26230629738266686917601<23> × 1649861139458928415606764241<28> × 1793513415513160594803114592713415561157304692799480329352881941524270449<73>
4×10193+1 = 4(0)1921<194> = 23 × 47 × 9641387878495279411<19> × 3837909611610355848177122629200006844797882368715559135086528572099369204241254419822350508391343985371943871062052253656604854487110794376292596221461942865984755780601811<172>
4×10194+1 = 4(0)1931<195> = 721324202162977116296517293557<30> × 230366834312643340988031253121778481<36> × 4539551603725680577678687090612374940158174209<46> × 530269411486144259272416902466941069870793165414892485082648513501276740375531374317<84> (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=2362285868 for P30 / March 26, 2007 2007 年 3 月 26 日) (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=2436293813 for P36 / April 21, 2007 2007 年 4 月 21 日) (Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, sigma=632711195 for P46 x P84 / July 27, 2007 2007 年 7 月 27 日)
4×10195+1 = 4(0)1941<196> = 161971 × 4235420235990630674411<22> × 1782770591401940738293939<25> × 3270625053699212080692362493772858750666560394798793476886954585597967393938023443092469894332061712616542478561422647444539097061183051509475339<145>
4×10196+1 = 4(0)1951<197> = 13 × 17 × 412 × 25889 × 118801 × 553769 × 33209893 × 1013068290246913<16> × 18806089121412281873<20> × 14213662795471783729249<23> × 142851133452691513013398945489<30> × 49208667527925948973221056694552522133283274195899584254244124598255278818709511593<83>
4×10197+1 = 4(0)1961<198> = 7 × 251 × 5093190443767<13> × 1918281337544801<16> × 23301614476086791174193268524783637900374553651086479598676942509371151606132217635609620426691548453826094285457806633452456767854973084897460444026604823399971309779<167>
4×10198+1 = 4(0)1971<199> = 601 × 929931633094791878075356891588302829966299262696914473414281<60> × 7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521<136> (Wataru Sakai / Msieve for P60 x P136 / 598.43 hours / March 3, 2009 2009 年 3 月 3 日)
4×10199+1 = 4(0)1981<200> = 14092207 × 27329994207449<14> × 103858354572756598961544410066501676256846583840753041387052260431908902185135719697115097666505659907583087248314673208582579183479386989196198354232004355351786310608896508872807<180>
4×10200+1 = 4(0)1991<201> = 31541 × 51001 × 329257 × 1593797 × 18155779891740157<17> × 596998838337353504040649<24> × 173113057012428875682266741<27> × 3955770714637851776058805084888354384537087623653<49> × 63839354599755592537240016160672526653527833995247027347015572381<65>
4×10201+1 = 4(0)2001<202> = 41 × 5121931 × 103849329299<12> × 13503675809573<14> × 587861201947289<15> × 1860750042755447209<19> × 2795453108496978738236562037<28> × 1684776046154235009517333610464790582051<40> × 2636510377862930365366650606354695539107142487471106263373162893880619<70> (Robert Backstrom / GGNFS 0.77.1-20051202-athlon, Msieve-1.38 gnfs for P40 x P70 / 13.15 hours / November 4, 2008 2008 年 11 月 4 日)
4×10202+1 = 4(0)2011<203> = 13 × 53 × 401 × 57046808129<11> × 4352160109233622287476004876885802806219798409446401497170469759529369422418203133<82> × 583123015262945556349244647056353780728267122790222566698427071203798962005200699046348941121122402068437<105> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P82 x P105 / August 24, 2018 2018 年 8 月 24 日)
4×10203+1 = 4(0)2021<204> = 7 × 641 × 3996493212534098134156111341457064136963014957402517508990780184800320983<73> × 22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681<128> (Wataru Sakai / Msieve for P73 x P128 / 858.79 hours / May 8, 2009 2009 年 5 月 8 日)
4×10204+1 = 4(0)2031<205> = 157 × 977 × 1097 × 117757 × 119929 × 130729 × 14788601 × 112700188358977<15> × 1011168875778642564121<22> × 1145752847230341104854444689755408827131862665943263929<55> × 6668219558002128682158806103505276064352507360154596086811797813918493447153374881817<85>
4×10205+1 = 4(0)2041<206> = 49048739 × 1340576829415582072376659<25> × 608331683217417163805795747590704069377173907054777153930489027864772074508375822311131626385934663449597573367164604502335486269650432180157579535254123979829571693432017001<174>
4×10206+1 = 4(0)2051<207> = 41 × 8489980721<10> × 161526918197<12> × 8620981820393556165598209791935039169<37> × 9614845316674752971125223167274964585506988001<46> × 85827308286463291545643661160043563366431087143222524276657149458595022132599515717888654971338922437<101> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2709458539 for P37 / March 13, 2011 2011 年 3 月 13 日) (Jo Yeong Uk / GMP-ECM 6.3 B1=11000000, sigma=5407201763 for P46 / April 27, 2013 2013 年 4 月 27 日)
4×10207+1 = 4(0)2061<208> = 2137537151086140780378598137246884887064851<43> × 2812726946992196303955780250469663669810710081<46> × 4510386964277796118081223118223701478503227449062032837<55> × 147504388817832250629782059406052001349839987803889705588283463583<66> (Robert Backstrom / GMP-ECM 6.2.1 B1=3628000, sigma=3845259699 for P43, GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs for P46 x P55 x P66 / 101.97 hours, 17.25 hours / January 6, 2009 2009 年 1 月 6 日)
4×10208+1 = 4(0)2071<209> = 13 × 733 × 4513 × 46589 × 218233 × 8623123641424928553601<22> × 275759473220416681288561<24> × 36106110373082818812350759763661<32> × 1060615417762646572618195239987309218160726413<46> × 1004638515256209055038246038744545150819657528797448156508330342617613<70> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=696637667 for P32 / October 31, 2008 2008 年 10 月 31 日)
4×10209+1 = 4(0)2081<210> = 7 × 19 × 3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797<100> × 777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001<108> (Serge Batalov / Msieve-1.39 snfs for P100 x P108 / 1000.01 hours on Opteron-2.6GHz; Linux x86_64 / February 17, 2009 2009 年 2 月 17 日)
4×10210+1 = 4(0)2091<211> = 5717 × 3771013 × 233278222252612529180268961<27> × 911781382426316231653996553754721<33> × 872305985302314642837664533768067528978848533430533241529384958629887457539688700015453948305990321439785340542663401455101411284361180402201<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2914364967 for P33 x P141 / March 13, 2011 2011 年 3 月 13 日)
4×10211+1 = 4(0)2101<212> = 41 × 59 × 148721 × 1332356352410729241381459477648619855405009<43> × [83450977684793282694551706981476556088621921512009377560353348583288515960273808416054497177857020031325682869956011963367750061419815803842510520381026012953211<161>] (Serge Batalov / GMP-ECM 6.2.1 B1=43000000, sigma=1854358772 for P43 / February 17, 2009 2009 年 2 月 17 日) Free to factor
4×10212+1 = 4(0)2111<213> = 17 × 2857 × 2131693 × 70842509 × 663053414577744687381599917<27> × 139893211207942643736922745313159710321<39> × 23474613840481557853118432748582756807946049343049856395181<59> × 25046014308160060753652965557111998610872516551741092521547633774020201<71> (Makoto Kamada / Msieve-1.38 snfs for P39 x P59 / 1.62 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / November 2, 2008 2008 年 11 月 2 日)
4×10213+1 = 4(0)2121<214> = 1091 × 34361 × 4269047 × 2836927429276991352710729<25> × [8810291618252846318741362925342329396537080601641446794149478971401796137928306301441229305771806124478694771112148333660490759809147040407405323752228466732260965957031088877<175>] Free to factor
4×10214+1 = 4(0)2131<215> = 13 × 89 × 997 × 17503955120237<14> × 1485058612125103453932281<25> × 1333987279362861290496004852240598783809970645042807264538099579389277668813962496788930262902451506668191857384961859976223548132387811966426431129896290637992370007605877<172>
4×10215+1 = 4(0)2141<216> = 7 × 23 × 53 × 1297201 × 280709138925610745225627616235368407<36> × [128734342401119972983581009935100049656649334653400039391667634128613012584259319294236788779710630652264467617853270939946120791315424107847649862903165446035555727219771<171>] (Ignacio Santos / GMP-ECM 6.2.3 B1=1000000, sigma=2323201769 for P36 / June 22, 2010 2010 年 6 月 22 日) Free to factor
4×10216+1 = 4(0)2151<217> = 29 × 41 × 1373 × 688512200950880259397<21> × 50573650464010212230513357749<29> × 995113252657683337996926110413<30> × 41833433897402299416847516692008758830906126644136052429<56> × 1690346080592033636898907143447681168419065457194335326431482594037873908193<76> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2673524017 for P30 / November 1, 2008 2008 年 11 月 1 日)
4×10217+1 = 4(0)2161<218> = 18686807 × 578022421484392833484314349887736849483921909178334750733<57> × 3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371<154> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs for P57 x P154 / 174.05 hours, 56.83 hours / April 17, 2009 2009 年 4 月 17 日)
4×10218+1 = 4(0)2171<219> = 1049 × 3529 × 108052008673334736208579275462658441387593090182097348916954197563913438455331704809475945056634109696019985299524219992809138822789573305319049217960080725655679848381421429576698152121560670797675044929375856481<213>
4×10219+1 = 4(0)2181<220> = 127 × 277 × 491 × 5081 × 391976229133<12> × 33124455314005419719484291502626516313409725827657409<53> × 73254080393331932260764267211845352077103045721318111077525237<62> × 47918754047887215225543872174584546174623050261093695745230498173472499321834339201<83> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P53 x P62 x P83 / January 4, 2021 2021 年 1 月 4 日)
4×10220+1 = 4(0)2191<221> = 13 × 1181 × 6589057 × 124219769 × 1249376837<10> × 607021466763300821<18> × 444449141043266291533<21> × 42291256679033137134771637121479530755891442059584525827865339970574160993<74> × 223296850841264041346286705754966008069735102697303194855843986237022783354244973<81>
4×10221+1 = 4(0)2201<222> = 7 × 41 × 55493239095428870021395686757<29> × 25115279729838673041822990404411304580037176086385392155823273909673771694393791630240491096085374125051037065829934662353778187686075644790068872620199820114451706178407000835125992731217139<191>
4×10222+1 = 4(0)2211<223> = 6097015972179447612468707229921763686040066157<46> × 54079250430474920707905115940587495415224848381713477685218303490930060483526146809<83> × 12131429960066882484520570273300008089105747987528088615070148488973402528246761247280695376077<95> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=2238052366 for P46 / November 7, 2008 2008 年 11 月 7 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P83 x P95 / January 29, 2022 2022 年 1 月 29 日)
4×10223+1 = 4(0)2221<224> = 36796872653<11> × 1087048901606556863064837913903682960358560556067373250856900749347493740122437246841211878354460222448730825298921361571286572781237165318077336771872867018887307504469080947469940958626280897382760524021100973317<214>
4×10224+1 = 4(0)2231<225> = 257 × 459834665137<12> × 80139003431254841<17> × 1117554729596171621<19> × 14062325122689483593<20> × 2767593820315607196395314730016666048255527051377982687119041941<64> × 971075360824875755457217544245461262021767508202022480923000915283508183947227086253070744073<93>
4×10225+1 = 4(0)2241<226> = 31237 × 609641 × 3910997 × [53706768769429363793482678416871438245556988417973753812346805832702342873602425939717837859237868760949667888190502096723565700869017553283380850238323411769596938288424660294475642510961192383548068546243249<209>] Free to factor
4×10226+1 = 4(0)2251<227> = 132 × 41 × 797 × 7672476084343263227874361<25> × [944051236095625745605914377984667843452266499332174506062342859837045027395377946743564230504319254831003037392991414235483922896812610601139178907120628322515230507074953238453161918168433330957<195>] Free to factor
4×10227+1 = 4(0)2261<228> = 73 × 19 × 2274638262341070593950100717451021126508724154034353396727<58> × 26983602469312680130580985847029543470319676934990817496724014747605720259827010445557677689524276607304620925751442325052907279775178255048557619638932527039814094539<167> (RSALS + Jeff Gilchrist / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.48 for P58 x P167 / February 24, 2011 2011 年 2 月 24 日)
4×10228+1 = 4(0)2271<229> = 17 × 53 × 2381 × 21089 × 240017 × 249089 × 11728313 × 34665109 × 636573841 × 725488909 × 886678473578749<15> × 16755502705377552397<20> × 1214464431029862275147439736082080827831090257987254979629<58> × 436523024418824031180581936516007205843771593262444864684074629830283990147587370053<84>
4×10229+1 = 4(0)2281<230> = definitely prime number 素数
4×10230+1 = 4(0)2291<231> = 173 × 9152489 × 252624037933692072393129117016709280794603547867019871028519367412710565127633681619505155525156406852192846468232931112518868386764752050324638404041274228144403616182496393190297506216062340695715876578977682142204499933<222>
4×10231+1 = 4(0)2301<232> = 41 × 209929 × 171045796291<12> × 151665385898395010920361713151614617130219<42> × [17914505220645022132194954402500979428459361638158467906590559309010783910561177699484997168919844042329407282181531626843571647207113173504748854176220229117272439835781521<173>] (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=6134707835 for P42 / June 22, 2011 2011 年 6 月 22 日) Free to factor
4×10232+1 = 4(0)2311<233> = 13 × 313 × 337 × 251621 × 469541870881<12> × 30014273848957<14> × 534695718389538267842639037229978253206456308162436414822347550938002366555153353<81> × 15384615384615384615384615384615384615384615384615384615383076923076923076923076923076923076923076923076923076923077<116>
4×10233+1 = 4(0)2321<234> = 7 × 12983 × 12618170294693<14> × [348811271163252370210612734963523254646594918249087302660630940511337621609010871181668602767014545497037982893129583986945293766246967995915927305014200045819794612475555563990563745183513376198670997494006657169197<216>] Free to factor
4×10234+1 = 4(0)2331<235> = 101844481261409<15> × 15083067110761453<17> × 166470474810555341081321<24> × 281722440676563078737805904561<30> × 59520510316289955705069974366831129<35> × 932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437<117> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2491282100 for P30 / November 2, 2008 2008 年 11 月 2 日) (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3553856087 for P35 x P117 / November 21, 2008 2008 年 11 月 21 日)
4×10235+1 = 4(0)2341<236> = 641 × 44263 × 3599263 × 255771973 × 2525595417360720847349418399085176183355724297940127<52> × 606360356715044363553197719386419019822429801044602418979358571249578646327872607361512864562827095184920847571890230832148464068658949833446599287566868039930539<162> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=4030962254 for P52 x P162 / October 10, 2013 2013 年 10 月 10 日)
4×10236+1 = 4(0)2351<237> = 41 × 61 × 117544433 × 128559502397<12> × 645204292022947594566560089<27> × 6699286506274141797109815307016926080793<40> × 619463214764350244902246724110519391574061961990845426302616569085969<69> × 3952744382511096329705320980593637243303419285421995417863091081509746384257377<79> (Makoto Kamada / Msieve-1.38 snfs for P40 x P69 / 1.62 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / November 2, 2008 2008 年 11 月 2 日)
4×10237+1 = 4(0)2361<238> = 23 × 727 × 1699 × 4241 × 77962531 × 123866097520553272509520813<27> × 5083970348510261759335252157<28> × [676230413605955129605354486014521738526895649311989696184845947638518215716542400947488253388711090435926834770951019457366341947049456598366448537219021549936677729<165>] Free to factor
4×10238+1 = 4(0)2371<239> = 13 × 11728776877<11> × 286265807209<12> × 44874068978343506281<20> × 11885822804057748455895493<26> × 422911528517671635279241199954086672512819330893<48> × 4749360430317354949216389905325606214784731753082957<52> × 855431189865208976114047930253021465132317651100002178476508620983478733<72> (rkillian / GMP-ECM B1=110000000, sigma=3131248890 for P48 / August 31, 2010 2010 年 8 月 31 日) (Erik Branger / GGNFS, Msieve gnfs for P52 x P72 / September 11, 2010 2010 年 9 月 11 日)
4×10239+1 = 4(0)2381<240> = 7 × 47 × 41893 × 1098613 × 520512077 × [50751290197039174977112551431903899323929494349499256480302322628695135287849225834912975184531171005394421043505550569260012632282440159555947336687305498898507812826687595415993327189298091583773830362544443830680533<218>] Free to factor
4×10240+1 = 4(0)2391<241> = 3797 × 24977 × 275729 × 2471393 × 1295852116961<13> × 59021635048978918237423695747967725983412277880123146182396163677350125724605798633485923954941<95> × 809260202646847344797043610627690537279987440281654920929209559143365705090206211638537456406164458667642094964257<114>
4×10241+1 = 4(0)2401<242> = 41 × 53 × 22911583 × 62061919957<11> × 12945533764740055863423747387655263309689836911130140356964096739723898369118609489119010096253343363419508321485034771592993003974361916798079643431814073169713170812165542478032908785099461498126223933439950573612980127<221>
4×10242+1 = 4(0)2411<243> = definitely prime number 素数
4×10243+1 = 4(0)2421<244> = 167 × 499 × 33461534459<11> × 38246818028611<14> × [37506091803232300246153964037751360052070199287344009701430144095005843908692475793239852205548785338336670134733234023324341872177909170724055033663717297751021566608537985327024606478204000425747591569480230901853<215>] Free to factor
4×10244+1 = 4(0)2431<245> = 13 × 17 × 29 × 494041 × 6360593 × 70110421 × 1063728224989<13> × 12148418471901262420361101<26> × 65410771359361952392693793<26> × 2008466708215711599048187312289<31> × 153439118336387104335313493107209665842195972706444429<54> × 108749211544556029830506369336331342119441820820121702905724110978018201289<75> (Makoto Kamada / Msieve 1.38 for P31 x P54 / 51 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / November 3, 2008 2008 年 11 月 3 日)
4×10245+1 = 4(0)2441<246> = 7 × 19 × 367885532726263369<18> × 947255853369650441723806278949229684129<39> × 252848348718738248054735889573081237056927<42> × 60020541527437240963374051468568365819621167111923661277994930871623<68> × 568680468126153435753728167358980072501665559484793347884252370988739251938957<78> (yoyo@home / ECM B1=43000000, sigma=1774910016 for P39 / January 30, 2010 2010 年 1 月 30 日) (Youcef Lemsafer / msieve 1.52 (SVN 942) GPU for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845) gnfs for P42 x P68 x P78 / December 19, 2013 2013 年 12 月 19 日)
4×10246+1 = 4(0)2451<247> = 41 × 557 × 1597 × 37372533192409<14> × 8727020049799717<16> × [336277270197571194694599167999489364048869681650509232785741533248676206882399428414702744553461554191510107698912625436480348696350938968554576404701771244631046341141003347894755534981647251532984417755325653<210>] Free to factor
4×10247+1 = 4(0)2461<248> = 251 × 18797 × 85093 × 18313975459545581365621451<26> × [5440280160228364168388954886554154956082230667821654009825515137353304533015851832287889842237427177754937406635211474521081167104083163271414973599848661004051886455901155247175357847137327435058370081960353081<211>] Free to factor
4×10248+1 = 4(0)2471<249> = 317 × 4349 × 25633 × 1115580458177<13> × 234046722213975127327184686613228150778995773714719821<54> × 17613153769512112517578753541630628864236833323216296297<56> × 2461338222207399496484039883032285004259961128085456678539752052171509493196922687274302976705525864295840055350573941<118> (Sinkiti Sibata / Msieve snfs / 6.26 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 3, 2008 2008 年 11 月 3 日)
4×10249+1 = 4(0)2481<250> = 1746449 × 26733795833299<14> × 17677918550311046578053131<26> × 4846322688208438969819911619492873330875712349390199687135598584660142832537401299208570433227770123237467674481232936840180075956293104033604008336872481275509793405168852166511016795506306583658406071521<205>
4×10250+1 = 4(0)2491<251> = 13 × 3646063837616479765543282237<28> × 609367039316849421092272000364917<33> × [1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213<190>] (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3159199225 for P33 / November 2, 2008 2008 年 11 月 2 日) (Wataru Sakai / GMP-ECM 6.2.1 B1=1000000, sigma=1542610798 for P28 / February 17, 2009 2009 年 2 月 17 日) Free to factor
4×10251+1 = 4(0)2501<252> = 7 × 41 × 19087 × 97609247263201<14> × [748082434748235860636239907642765083824788407055672659789624670604847770974862363513254565669203926168070605695617394268245916336696424334921604552572906070388233659037980699576334071346025098331432910350184701172971776967267525329<231>] Free to factor
4×10252+1 = 4(0)2511<253> = 397 × 7873 × 1440350573<10> × 2229047435261<13> × 36932628930437<14> × 107736255909559973<18> × 4123529909623015354083772655568051493609117858463711973469746114474124049290479911005579086149<94> × 24294080290431977484205856648128532855996752201593191404216725955719772300601271009843048129492066193<101>
4×10253+1 = 4(0)2521<254> = 3461508126208175522569203302199346213088686293934196840625676973<64> × 11555656824014745965103174251426168741775970940225354060255626124188570583251500739239916948855700054108076590550861508217304724337729965415252719798975549997145212012347662797114164696224037<191> (NFS@home + Dmitry Domanov / Msieve 1.54 for P64 x P191 / July 23, 2022 2022 年 7 月 23 日)
4×10254+1 = 4(0)2531<255> = 53 × 387613 × 2607686673217004431453<22> × [7466728841485330116984362247807564055023379096637179913082368836295817176172476677041898711213023371963056286003054821025139078482163020837938497429137548907465615316057420651494358127038086352740157428245984413332304773796853<226>] Free to factor
4×10255+1 = 4(0)2541<256> = 6910973 × 815687281 × 48399152768807<14> × 713830174307666346787995247<27> × 1010259459145746627539912920221283077402823464041<49> × 20329725645650972024774590356021356682512473498087653567759079662474958078834432782959879933634853831470394064812300389830718548206402200900543089227093<152> (ebina / GMP-ECM 7.0.5 B1=11000000 for P49 x P152 / October 3, 2024 2024 年 10 月 3 日)
4×10256+1 = 4(0)2551<257> = 13 × 41 × 56197 × 567673 × 636553 × 7236234233<10> × 11534976517911799708073<23> × 4495452939128488386198992617835818205788246431269172596631251681228090482467453931182248215133<94> × 9848816726749033144940215248526050592330418607879728226701614448726504415289878465342152418428945565845544022157<112>
4×10257+1 = 4(0)2561<258> = 7 × 2557 × 160108014481<12> × 3848854942278832550475727<25> × [36264910333774066742885924834337095350499210417844182233379270797957539981698262682595152756504796676576346470134447930646971316977327675074019033861202447253032690208938150379348632163522220810399149402609962232119677<218>] Free to factor
4×10258+1 = 4(0)2571<259> = 89 × 152293 × 642345877 × 244145848153049<15> × [1881792610048936211778560849374308188440394585353865981060170928658490962932711290162010901371451294789909399077374198872533427266598503830447227210191574274708627532392161408569868918740101605690938045548988994147766449450025481<229>] Free to factor
4×10259+1 = 4(0)2581<260> = 23 × 3637 × 8097242180181481<16> × 81410585994660916003585960425437<32> × 725388798130252110871375368116262668325425260837498032426546343485831652844577394553417305385243340386900982885266262381044566518564567503629549190842682837940215938492339820511156124916258771582204891269583<207> (Serge Batalov / GMP-ECM B1=1000000, sigma=919186755 for P32 x P207 / November 27, 2013 2013 年 11 月 27 日)
4×10260+1 = 4(0)2591<261> = 17 × 97 × 4933 × 42841 × 488701 × 78124583041<11> × 21390872183292097<17> × 7415130526556777411200086328720558894888565818630568766776924866568141804792415130673422278868807200611629<106> × 189535422417303108316011451292600116581176240973405414634492639882722966871523215270608698695295930586005335501<111>
4×10261+1 = 4(0)2601<262> = 41 × 127 × 18383122529<11> × 1039937452221173925706321<25> × [40183328948972108128642045951367163089457837040801098562482396955496611432071442825034714169444597192873970262777510366317183675706791607969254805304710150153521812300145319159931912433629573383048445714461437097196506949527<224>] Free to factor
4×10262+1 = 4(0)2611<263> = 13 × 289853 × 128279634944813161<18> × 16771583128304592797678664819251569961<38> × 4934089976064961835172872410841383821855530477560066127435849435959653407843398088277016817346059409515839781777584342352023183696451906339105075076366279388564740838712830459651768164273507654869331929<202> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1906561011 for P38 x P202 / March 6, 2019 2019 年 3 月 6 日)
4×10263+1 = 4(0)2621<264> = 7 × 19 × 5443384022330201<16> × 552509024653569108513998872114125160915674700625221569419224416709485627649444927083817427320125090868326867767277727613695510471142159982516771005639656244272964299780872580833919180074129270261054796539454301541299313770069044335930271246629397<246>
4×10264+1 = 4(0)2631<265> = 35048935969<11> × 2235989233064513<16> × 280589003276980409509108055820930763237<39> × 5569664199018945342012125025897799237592789<43> × 1279765320779697626573449003825710054785721776540857<52> × 25520280863145368368504594177961197432182783462011204471092682007131932251045685899925721913155021264662433<107>
4×10265+1 = 4(0)2641<266> = 37369 × 97068877 × 263340401 × 12331625189138490383<20> × 22669096879101237479561714908776488303<38> × 36286514649400413375353684983915170059<38> × 2226788277197784608398983558507614353204405686240848249<55> × 1853840221275951099497815396903928608916529441247451874200114504374083891976840839551378833146703<97> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3172490337 for P38(2266...), B1=3e6, sigma=3:429851317 for P38(3628...) / March 6, 2019 2019 年 3 月 6 日) (Mehrshad Alipour / cado-nfs for P55 x P97 / June 23, 2024 2024 年 6 月 23 日)
4×10266+1 = 4(0)2651<267> = 41 × 23117 × [422031299951360892680605657118560198017085937178530845740174320028444909616721724166672821289790957346351592165832979002887749169917186908167044208833748154931910525144097311977142784794634294052418397610458779675394625642410769394712158827259423695158351419133<261>] Free to factor
4×10267+1 = 4(0)2661<268> = 53 × 641 × [117740558678950931622170547199246460424454714037618108497924822653283489830159244105613281135018985665086980837724075000735878491743443322638565919995290377652841962735113178112030141583021811438495275660083007093868660406793630235775468754599240573396520766491037<264>] Free to factor
4×10268+1 = 4(0)2671<269> = 13 × 3061 × 14929 × 78536606591077<14> × 100850137683037<15> × 5266926956928268901<19> × 12767813141635680191944316804737<32> × 12371453300851625336100226233553526689108901804677286873855739571109<68> × 10218318371920206805579751893993221448173825615249815786989174291060065485602328710741503398367904444958891886430649<116>
4×10269+1 = 4(0)2681<270> = 72 × 59 × 733 × 7181388860306826803303<22> × 1585861878247104125347783<25> × [16574259028808339503068451099871401604563230231839929782385029261365562321881910022253382052755329137951863469510745887712484397688660811982712641330141031752083545824134455258302540738055502765760561678448729733819983<218>] Free to factor
4×10270+1 = 4(0)2691<271> = 52769 × 75802080767117057363224620515833159620231575356743542610244651215675870302639807462714851522674297409463889783774564611798593871401769978585912183289431294889044704277132407284579961719949212605886031571566639504254391783054444844510981826451136083685497166897231329<266>
4×10271+1 = 4(0)2701<272> = 41 × 367 × 13729 × 189381313715615047766317318174129<33> × 3655756502102286109090975386197287<34> × [279677017327787744394644704056047045735121471323422340148759796517143739396402030389817713433414433069137467277612893793134280386172641789401522248897574460413210846591946014472058873731698029732449<198>] (Serge Batalov / GMP-ECM B1=250000, sigma=759012371 for P33, B1=250000, sigma=2497093279 for P34 / November 27, 2013 2013 年 11 月 27 日) Free to factor
4×10272+1 = 4(0)2711<273> = 292 × 3433 × 74653 × 35708317 × 1698112589189<13> × 11850603968626079117<20> × 62183941073792717542202469302909<32> × 315599474712830161124206807761437<33> × 661475750626788107893439102829883013<36> × 6164854975815183097666014881068023584333<40> × 32271211666552094737122815939006017043088192288221182216646347142623059150865531937<83>
4×10273+1 = 4(0)2721<274> = 173 × 12451 × 1288307886175860392792933<25> × 1441418161678896893493857172377103306352283780431015946697487157534855826403524711056830021234133782100320162817694821241236796097238561715491571144359345081405642796747461586761799614245011969891117979236169526224795464461857500236767938692939<244>
4×10274+1 = 4(0)2731<275> = 13 × 532093 × 715603287401<12> × 5922749794417694932693<22> × 100274288355343656837519241<27> × [13606417465634688667549332261596475546978742902713155780329346404934902645990546406812687107259324943527716622610970572684449567201278860646559719550283852521557938579469839008246155610400020288919531230000853<209>] Free to factor
4×10275+1 = 4(0)2741<276> = 7 × 171571 × 492668023 × 27446064450241<14> × 10001505067626639916691720388310823<35> × [2462738249623729529748167328626922839102801659363945760480812120380760632389672140446215177796223813370146637311704472051633807172510779591705589996803280506932170652032930969419742054936783902516708521393449577997<214>] Free to factor
4×10276+1 = 4(0)2751<277> = 17 × 41 × 5501 × 12241 × 344017 × 16878015685697<14> × 9225143708641590768727961<25> × 12097303041886415984718313<26> × 620740454339818647293247359897<30> × 1801003494791934182340101632949<31> × 57869656388325167891975686425478902773366341<44> × 2032966258414901380215871246281700628420911131551246082920311811702353824931709633497484499133<94> (factordb.com / for P44 x P94 / November 4, 2018 2018 年 11 月 4 日)
4×10277+1 = 4(0)2761<278> = 56194022545928357<17> × 1233632769306687811<19> × 1090510378744645875651911413<28> × 2328166517499983251079549080367<31> × 227268963047031105173024020971687631847864491481060532547063283946459654482599072726342127222612481191722884798630860744663272758086399405993808116904588395019284838079679866652412616253<186> (Serge Batalov / GMP-ECM B1=1000000, sigma=362282003 for P31 x P186 / November 27, 2013 2013 年 11 月 27 日)
4×10278+1 = 4(0)2771<279> = 3490649 × 2484333961693<13> × 64474936410618841841<20> × 40274146453655187523428236604117435493<38> × [17763419274212574169838493142338316955144535174758435121926889697125158328538126254507187490217543416269077745788072798632472135676277734189368059913722934154198196182838884045155777049496534067820655561<203>] (Serge Batalov / GMP-ECM B1=1000000, sigma=154634166 for P38 / November 27, 2013 2013 年 11 月 27 日) Free to factor
4×10279+1 = 4(0)2781<280> = 2213 × 10979 × 1002272099<10> × [164259369535554655124966328110762456538337380334388604378014410089089345077296833936665725122874028348781558534292732492281437836702364831538793045692915277678852184096999759181237622941617837947029929313431651802149847771300146536121344202657752377545922402983237<264>] Free to factor
4×10280+1 = 4(0)2791<281> = 13 × 53 × 271849 × 8919598277<10> × 2309302597109<13> × 714128437261677325177<21> × 1504018110618546143321<22> × 30564237166768160426582113<26> × 1811031061904134150062610843708191514800845797<46> × 2162709952694504347158542345232572892025005576782353<52> × 80634288543440300713293881031152543052448889730728931852602606148669415329811293080717<86>
4×10281+1 = 4(0)2801<282> = 7 × 19 × 23 × 41 × 3863 × 2675927333<10> × 11669206405189547743<20> × 2465234757970043033291561339<28> × 10725018001300738202791306438049748373532600387310492243305742926875239988360630766558585289475227606175682357617110559054602790865430406305993417521525398156831914182259133441817423204870735187238775298416961880100413<218>
4×10282+1 = 4(0)2811<283> = 157 × 197 × 5197 × 208108037 × 21033953009<11> × 10112145472508235274502494889<29> × 216521744102273452990658880630790769<36> × 9620203854347185964736756802042689725737517<43> × 1840271589106846161743879329820665646440628465178992792290360481<64> × 146663019552304909974862057415193108188039856182488527563273360713042623103151059845517<87> (Erik Branger / GMP-ECM B1=3e6, sigma=3:915599978 for P36, B1=3e6, sigma=3:278019505 for P43 / March 6, 2019 2019 年 3 月 6 日) (Bob Backstrom / for P64 x P87 / May 12, 2024 2024 年 5 月 12 日)
4×10283+1 = 4(0)2821<284> = 773 × [51746442432082794307891332470892626131953428201811125485122897800776196636481241914618369987063389391979301423027166882276843467011642949547218628719275549805950840879689521345407503234152652005174644243208279430789133247089262613195342820181112548512289780077619663648124191461837<281>] Free to factor
4×10284+1 = 4(0)2831<285> = 149 × 13829 × 41953 × 552886825287361670007498565355401<33> × 4132595417977996777449857169255008317144899432636201910123386508141<67> × 774208286515906125959068168479724621487305659143982683250058150798513<69> × 2615790617935131496085392114470830970913615481023665508135880079372565794706648319187165386818369138757669<106> (Serge Batalov / GMP-ECM B1=1000000, sigma=1822623960 for P33 / November 27, 2013 2013 年 11 月 27 日) (Erik Branger / Msieve v. 1.52 snfs for P67 x P69 / March 6, 2019 2019 年 3 月 6 日)
4×10285+1 = 4(0)2841<286> = 47 × 5167 × 256169 × 91252673417602728960491923091<29> × [704614379948494812027446383843039780948014414557892751098695471426612268652074620711407471026057218082430931345744692465286573876751870294678130116897853322618827616949896573798301616584098199881960344035605507134097664069602871941750044472168131<246>] Free to factor
4×10286+1 = 4(0)2851<287> = 13 × 41 × 52650548792889125968538921<26> × [1425377437382621879305881390086756267584009864371504172063418337715271471432367376756595541546445135577723564668218504397395230982700631791914133299267013106042483046184519626581979926754868805387027518335743066620835703194913852951295297296159865024537312757<259>] Free to factor
4×10287+1 = 4(0)2861<288> = 7 × 1637 × 26815239758938131779<20> × [1301761993056211582996867096099088523695235942689119275028543525723482807181421611605045798675333039288340382274545046258365559021396933887963309035894035920263158437022580007471516641032852456854443495500894696042403697194694545705069263880222429522876081138602041<265>] Free to factor
4×10288+1 = 4(0)2871<289> = 113 × 229 × 277 × 1657 × 14293 × 65213 × 5271517 × 15302761 × 1886906334739118018852657<25> × 10207457384959441989237717990428744617<38> × 9407401310817350002993634519379334667282511144625585322436433701410667609178583633<82> × 24719701314925605069747954139456168794795797910577570884844761091118247639761717429283834132512396508009485621237<113> (Erik Branger / Msieve v. 1.52 snfs for P38 x P82 / March 6, 2019 2019 年 3 月 6 日)
4×10289+1 = 4(0)2881<290> = 131 × 11610689 × [26298483358772393213642444225251114832321668920899243581259640009042233831730070731039895240412316063911991746741707819788083283949000300597581949524178220406207044570924034273948141385556463603468722354767199286847721700486574341865381628445863400737264437244254275961960897996139<281>] Free to factor
4×10290+1 = 4(0)2891<291> = 8792662477167137854990975723601<31> × [45492477510506455539754565259717139989257193597263860980416707653912565470148907541858180539760335453591566221728892352199856638664830790858574074624226113596782665550153140364805106121096602444427298876862593240165337011653729152221982499328774962273965236401<260>] Free to factor
4×10291+1 = 4(0)2901<292> = 41 × 4423 × 1080667649<10> × 55674882737557<14> × [366612892628810219783149043538657886788360105866128804663771988384986986299805157269985584632436691436396971709590063055738175508390657269556418407425935113107414348158332279497437057010638715964264478577387852136711386318193095172379474417957872690837379758188899<264>] Free to factor
4×10292+1 = 4(0)2911<293> = 13 × 17 × 2909 × 275729323690614099269934539131273<33> × 372111967394961909592835612503935795821<39> × 114663311787537402408686873721585791834042270457596128922919667261557719341<75> × 5288626808049290001851019382817251500647856783986038025226749874395113309358225136843218658275378797895126530396382579263294285638733902742153<142> (Serge Batalov / GMP-ECM B1=1000000, sigma=159599806 for P33 / November 27, 2013 2013 年 11 月 27 日) (factordb.com / for P39 x P75 / November 4, 2018 2018 年 11 月 4 日)
4×10293+1 = 4(0)2921<294> = 7 × 53 × 249971 × 15344237651<11> × [281093716696348505238023724718722466640598795377087970236962313417790593371243467181354449864550894581311254266586444130889236064647917418779959091378658051665500627917706140019154475617767355729413071690839318990001269841190120027627305387553158575962554014782093208226730211<276>] Free to factor
4×10294+1 = 4(0)2931<295> = 3519201209<10> × 689108590736380377835026441378001<33> × [1649408503008445059736945534726388599840251956186358805152902050048600066984901299056970106704782038236283617077735287829377270118390244493120488742982162579391234550102842435980261250113589514802948363337564759003618144443289066633304536818982756421689<253>] (Serge Batalov / GMP-ECM B1=1000000, sigma=2114117975 for P33 / November 27, 2013 2013 年 11 月 27 日) Free to factor
4×10295+1 = 4(0)2941<296> = 18371 × 7755544660931<13> × 1936547144327633503265767<25> × [144972896794635063476587324438000561472413049324255211909049170559537467408378462401566128538063833151652194485466528237194192093803401046529206817021615969499989960780450865822910891095505283090127794731988461728685192138264679238736194607128583824727903<255>] Free to factor
4×10296+1 = 4(0)2951<297> = 41 × 61 × 90793 × 17541905910541<14> × 1695502704314699670140875957239256050263283775495561<52> × 1938182199627468010237847883805414752917615172119009<52> × 106212692004607024538255608482366521391196698270737751314649713434169857095073<78> × 287705160721607300148523107064786015650118069448204602830522292834862744860460363438654328682001<96> (Erik Branger / Msieve v. 1.52 snfs for P52(1938...) x P78, Msieve v. 1.52 snfs for P52(1695...) x P96 / March 6, 2019 2019 年 3 月 6 日)
4×10297+1 = 4(0)2961<298> = 223 × 251 × 1051 × [67995268141294779155023822737151898862206280202754410117845489014573986781685875698224284873791347986302285237668025444441295885778012822309682646874921327349908392525055788842598654717019587889859156811418336586538606191856502514133538932892121104400223684033604417434986281869658408601687<290>] Free to factor
4×10298+1 = 4(0)2971<299> = 13 × 36958243081<11> × 230397432662477<15> × 2327857246449601083411853<25> × 25737694866504896208683249<26> × 6031171723243168960225265172087413591533155200793998355527599764365401988347155576176202692864731363396999097814628688075513459770352909686482533638687827352001327371502087781943501327144304461521425662528278973440224870693<223>
4×10299+1 = 4(0)2981<300> = 7 × 19 × 179 × 641 × 87877 × 338161 × 113277997909627531<18> × 8041825126081566720192211<25> × [968274197454224509976186833586434206705553758604611371080659121145842739685506803350889153564264928339855058793395096193675077025512908201717498909233237741011238368159142021039273036303189781058779808196209956812989201250100637772973814899<240>] Free to factor
4×10300+1 = 4(0)2991<301> = 29 × 109 × 569 × 27809 × 754373 × 4837213 × 1394518166441<13> × 55664430167317<14> × 8096547123326928430753<22> × 565816508635546421110971650045577892613<39> × 2010472718584962847333672313792242435240818902443265532497926289<64> × 30653559987029968722483384463576994151309325841460559042449393971528915456614014825719351580905808702942026001315693262450310017<128>
plain text versionプレーンテキスト版

4. Related links 関連リンク