Table of contents 目次

  1. About 99...997 99...997 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
    4. Related sequences 関連する数列
  2. Prime numbers of the form 99...997 99...997 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 99...997 99...997 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 99...997 99...997 について

1.1. Classification 分類

Near-repdigit of the form AA...AAB AA...AAB の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

9w7 = { 7, 97, 997, 9997, 99997, 999997, 9999997, 99999997, 999999997, 9999999997, … }

1.3. General term 一般項

10n-3 (1≤n)

1.4. Related sequences 関連する数列

2. Prime numbers of the form 99...997 99...997 の形の素数

2.1. Last updated 最終更新日

January 24, 2023 2023 年 1 月 24 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 101-3 = 7 is prime. は素数です。
  2. 102-3 = 97 is prime. は素数です。
  3. 103-3 = 997 is prime. は素数です。
  4. 1017-3 = (9)167<17> is prime. は素数です。
  5. 10140-3 = (9)1397<140> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 20, 2003 2003 年 5 月 20 日)
  6. 10990-3 = (9)9897<990> is prime. は素数です。 (discovered by:発見: Makoto Kamada / May 20, 2003 2003 年 5 月 20 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 28, 2006 2006 年 5 月 28 日)
  7. 101887-3 = (9)18867<1887> is prime. は素数です。 (discovered by:発見: Makoto Kamada / May 20, 2003 2003 年 5 月 20 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / July 15, 2006 2006 年 7 月 15 日) [certificate証明]
  8. 103530-3 = (9)35297<3530> is prime. は素数です。 (discovered by:発見: Makoto Kamada / May 20, 2003 2003 年 5 月 20 日) (certified by:証明: Maksym Voznyy / Primo 3.0.9 / January 3, 2011 2011 年 1 月 3 日) [certificate証明]
  9. 105996-3 = (9)59957<5996> is prime. は素数です。 (discovered by:発見: Henri Lifchitz / November 2002 2002 年 11 月) (certified by:証明: Markus Tervooren / Primo 3.0.9 / January 22, 2011 2011 年 1 月 22 日) [certificate証明]
  10. 1013820-3 = (9)138197<13820> is prime. は素数です。 (discovered by:発見: Henri Lifchitz / November 2002 2002 年 11 月) (certified by:証明: Markus Tervooren / PRIMO 4.3.3 / June 8, 2022 2022 年 6 月 8 日) [certificate証明]
  11. 1021873-3 = (9)218727<21873> is prime. は素数です。 (discovered by:発見: Henri Lifchitz / November 2002 2002 年 11 月) (certified by:証明: Markus Tervooren / CM 0.4.1dev / August 12, 2022 2022 年 8 月 12 日) [certificate証明]
  12. 1026045-3 = (9)260447<26045> is PRP. はおそらく素数です。 (Henri Lifchitz / November 2002 2002 年 11 月)
  13. 1087720-3 = (9)877197<87720> is PRP. はおそらく素数です。 (Markus Tervooren / srsieve, mprime & gmp's mpz_probab_prime_p function / July 28, 2010 2010 年 7 月 28 日)
  14. 10232599-3 = (9)2325987<232599> is PRP. はおそらく素数です。 (Markus Tervooren / sr2sieve, mprime & PFGW / October 16, 2010 2010 年 10 月 16 日)

2.3. Range of search 捜索範囲

  1. n≤230000 / Completed 終了 / Markus Tervooren / October 16, 2010 2010 年 10 月 16 日
  2. n≤407197 / Completed 終了 / Markus Tervooren / December 4, 2010 2010 年 12 月 4 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 106k+1-3 = 7×(101-37+9×10×106-19×7×k-1Σm=0106m)
  2. 106k+4-3 = 13×(104-313+9×104×106-19×13×k-1Σm=0106m)
  3. 1016k+11-3 = 17×(1011-317+9×1011×1016-19×17×k-1Σm=01016m)
  4. 1018k+5-3 = 19×(105-319+9×105×1018-19×19×k-1Σm=01018m)
  5. 1022k+20-3 = 23×(1020-323+9×1020×1022-19×23×k-1Σm=01022m)
  6. 1027k+6-3 = 757×(106-3757+9×106×1027-19×757×k-1Σm=01027m)
  7. 1028k+27-3 = 29×(1027-329+9×1027×1028-19×29×k-1Σm=01028m)
  8. 1034k+19-3 = 103×(1019-3103+9×1019×1034-19×103×k-1Σm=01034m)
  9. 1035k+9-3 = 71×(109-371+9×109×1035-19×71×k-1Σm=01035m)
  10. 1041k+26-3 = 83×(1026-383+9×1026×1041-19×83×k-1Σm=01041m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 21.47%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 21.47% です。

3. Factor table of 99...997 99...997 の素因数分解表

3.1. Last updated 最終更新日

December 3, 2022 2022 年 12 月 3 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=223, 224, 227, 228, 230, 231, 233, 234, 235, 238, 243, 245, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 262, 263, 264, 265, 266, 267, 268, 269, 272, 273, 276, 278, 279, 280, 281, 284, 285, 287, 289, 290, 291, 293, 294, 295, 296, 297, 299, 300 (50/300)

3.4. Factor table 素因数分解表

101-3 = 7 = definitely prime number 素数
102-3 = 97 = definitely prime number 素数
103-3 = 997 = definitely prime number 素数
104-3 = 9997 = 13 × 769
105-3 = 99997 = 192 × 277
106-3 = 999997 = 757 × 1321
107-3 = 9999997 = 7 × 1428571
108-3 = 99999997 = 1297 × 77101
109-3 = 999999997 = 71 × 2251 × 6257
1010-3 = 9999999997<10> = 13 × 769230769
1011-3 = 99999999997<11> = 17 × 5882352941<10>
1012-3 = 999999999997<12> = 5507 × 181587071
1013-3 = 9999999999997<13> = 72 × 56527 × 3610339
1014-3 = 99999999999997<14> = 839 × 119189511323<12>
1015-3 = 999999999999997<15> = 599 × 2131 × 3733 × 209861
1016-3 = 9999999999999997<16> = 13 × 433 × 39323 × 45177491
1017-3 = 99999999999999997<17> = definitely prime number 素数
1018-3 = 999999999999999997<18> = 47 × 1283 × 949261 × 17469877
1019-3 = 9999999999999999997<19> = 7 × 103 × 9431 × 155027 × 9486361
1020-3 = 99999999999999999997<20> = 23 × 19031 × 859249 × 265883581
1021-3 = 999999999999999999997<21> = 1164288119<10> × 858893931563<12>
1022-3 = 9999999999999999999997<22> = 13 × 769230769230769230769<21>
1023-3 = 99999999999999999999997<23> = 19 × 983513 × 2972507 × 1800293893<10>
1024-3 = 999999999999999999999997<24> = 37967337697<11> × 26338428255901<14>
1025-3 = 9999999999999999999999997<25> = 7 × 1428571428571428571428571<25>
1026-3 = 99999999999999999999999997<26> = 83 × 6947 × 173430153607087049797<21>
1027-3 = 999999999999999999999999997<27> = 17 × 29 × 1335869 × 1518410537203064741<19>
1028-3 = 9999999999999999999999999997<28> = 132 × 109 × 542858693881982519950057<24>
1029-3 = 99999999999999999999999999997<29> = 223283 × 228859 × 5834659 × 335398307039<12>
1030-3 = 999999999999999999999999999997<30> = 24551 × 1514197 × 26899761675796814351<20>
1031-3 = 9999999999999999999999999999997<31> = 7 × 1063 × 2089 × 95633 × 167826727 × 40083104483<11>
1032-3 = 99999999999999999999999999999997<32> = 59 × 4814471 × 36799991 × 9566469711577703<16>
1033-3 = 999999999999999999999999999999997<33> = 757 × 4492009 × 294078654564558761050369<24>
1034-3 = 9999999999999999999999999999999997<34> = 13 × 769230769230769230769230769230769<33>
1035-3 = 99999999999999999999999999999999997<35> = 2111 × 3759289 × 1501972065791<13> × 8389656836773<13>
1036-3 = 999999999999999999999999999999999997<36> = 1811 × 5963471 × 69425387 × 1333718356890134051<19>
1037-3 = 9999999999999999999999999999999999997<37> = 7 × 5779 × 702780737 × 40483675109<11> × 8688593630053<13>
1038-3 = 99999999999999999999999999999999999997<38> = 2399 × 34367 × 1212908750097169152242159463709<31>
1039-3 = 999999999999999999999999999999999999997<39> = 107 × 827 × 1093 × 187423 × 55165513569618566444754607<26>
1040-3 = 9999999999999999999999999999999999999997<40> = 13 × 4787 × 48239 × 5853526052603<13> × 569085301052150111<18>
1041-3 = 99999999999999999999999999999999999999997<41> = 19 × 44909 × 6387259 × 18348412175865138486980597873<29>
1042-3 = 999999999999999999999999999999999999999997<42> = 23 × 61 × 1597 × 3369415196267<13> × 132459430228679414184601<24>
1043-3 = 9999999999999999999999999999999999999999997<43> = 7 × 17 × 63473 × 71861 × 1004537 × 6948583 × 2639420403553807201<19>
1044-3 = 99999999999999999999999999999999999999999997<44> = 71 × 467 × 13825941769007037889<20> × 218137357234515008089<21>
1045-3 = 999999999999999999999999999999999999999999997<45> = 1511 × 143091007 × 7084864849<10> × 7665370631<10> × 85164473749219<14>
1046-3 = 9999999999999999999999999999999999999999999997<46> = 13 × 44436195239<11> × 74716684251563<14> × 231687279868248212917<21>
1047-3 = 99999999999999999999999999999999999999999999997<47> = 409 × 967 × 66977 × 230999 × 26846177 × 9450382559<10> × 64414344031291<14>
1048-3 = 999999999999999999999999999999999999999999999997<48> = 8737 × 106669 × 726599 × 554508243299<12> × 2663156190955741239949<22>
1049-3 = 9999999999999999999999999999999999999999999999997<49> = 7 × 168557936063381<15> × 10024665283411171<17> × 845440161194356421<18>
1050-3 = 99999999999999999999999999999999999999999999999997<50> = 14627 × 3674333699<10> × 44848033061277421<17> × 41488023184722935209<20>
1051-3 = (9)507<51> = 144203 × 1991177 × 273871783 × 1876732427<10> × 6775887552190427787707<22>
1052-3 = (9)517<52> = 13 × 179 × 1947862590871197811021597<25> × 2206202131092079878657863<25>
1053-3 = (9)527<53> = 103 × 28966193 × 33517479718779992603489942082562596233732843<44>
1054-3 = (9)537<54> = 21518801375655714851137<23> × 46470989835488840363806434126781<32>
1055-3 = (9)547<55> = 72 × 29 × 3989 × 1764175903156622301759112718314562795753064064813<49>
1056-3 = (9)557<56> = 313 × 3941689 × 19336103 × 4191836705988181479348939975589788043307<40>
1057-3 = (9)567<57> = 1439 × 694927032661570535093815149409312022237665045170257123<54>
1058-3 = (9)577<58> = 13 × 173219 × 171132083 × 3214902282801317877541<22> × 8071642288696029355717<22>
1059-3 = (9)587<59> = 17 × 19 × 1249 × 4345511 × 57041926629930666036665011901733531105845315401<47>
1060-3 = (9)597<60> = 719 × 757 × 6755603 × 271963805968702864258461551790513043662751795453<48>
1061-3 = (9)607<61> = 7 × 157 × 1321 × 6888100737095659876606563395668348970470023329997196543<55>
1062-3 = (9)617<62> = 3625031 × 603220214617<12> × 45731177968650786903285932397336219226657811<44>
1063-3 = (9)627<63> = 1346919923<10> × 259449246196264501631<21> × 2861579460492886363697385972683569<34>
1064-3 = (9)637<64> = 13 × 23 × 47 × 711591830925780972034441044616807799046466946559453497473849<60>
1065-3 = (9)647<65> = 640113583 × 156222274695895650131829806836015851268070966711543754259<57>
1066-3 = (9)657<66> = 3923 × 2546962972527613<16> × 100082710942204725571854029984014199096850397403<48>
1067-3 = (9)667<67> = 7 × 83 × 4462531 × 52308679461327694413683<23> × 73734181764135557483526518495064769<35>
1068-3 = (9)677<68> = 181 × 10927079 × 1407477156450817<16> × 16618414584512959499<20> × 2161655080961323535207341<25>
1069-3 = (9)687<69> = 347 × 911 × 240347 × 6719463889<10> × 724445935328640404936057<24> × 2703789257357684025009811<25>
1070-3 = (9)697<70> = 13 × 2838853 × 609124139649827<15> × 12036938568862646965703<23> × 36956589665321881667605033<26>
1071-3 = (9)707<71> = 4957 × 390869 × 911624502096187117724092068409<30> × 56615306657739612877438471735301<32>
1072-3 = (9)717<72> = 4919 × 725437 × 280235709382592215021783942116823254062739685689808590303568199<63>
1073-3 = (9)727<73> = 7 × 31820483 × 44894712269811510134166455882251333879142294243975761506466492937<65>
1074-3 = (9)737<74> = 191 × 277 × 445792777 × 20025961396631<14> × 211719305898683240805292394343293049479508278233<48>
1075-3 = (9)747<75> = 17 × 593 × 3019 × 29593547 × 203287386737<12> × 5461674546661760187240499608772098204986115329557<49>
1076-3 = (9)757<76> = 13 × 47843 × 695017 × 18660707022367378937999<23> × 1239694634341423432349916056158844097321901<43>
1077-3 = (9)767<77> = 19 × 9770545391<10> × 50670908789<11> × 492691725102017033<18> × 21577127639648878849780469624000867189<38>
1078-3 = (9)777<78> = 659 × 117361 × 7062049 × 1830880745642327756127708628460154103036454601740305990569843647<64>
1079-3 = (9)787<79> = 7 × 71 × 113 × 66457829 × 227601541763<12> × 13755478715667106004852653<26> × 855791776632840528315673335967<30>
1080-3 = (9)797<80> = 2663 × 4110612782962333<16> × 1634764941685338629653189<25> × 5588135774935638678380176533658718987<37>
1081-3 = (9)807<81> = 619 × 82711432890473<14> × 19531869160556511907230090805735936797585412429882883916315932831<65>
1082-3 = (9)817<82> = 13 × 1151 × 432661 × 6702143138293367<16> × 230472904760975218695860182014530586110889780505824741637<57>
1083-3 = (9)827<83> = 29 × 6286051 × 2384189546677451999<19> × 230082359474216559463433395796447020827820649934059530357<57>
1084-3 = (9)837<84> = 136039691 × 13631181661<11> × 21392516536095359<17> × 16775491065354149113<20> × 1502670426032911987830107685541<31>
1085-3 = (9)847<85> = 7 × 4073 × 64849 × 33819758330585864983<20> × 159924045213327762917315647618256183211961766315464550981<57>
1086-3 = (9)857<86> = 23 × 4347826086956521739130434782608695652173913043478260869565217391304347826086956521739<85>
1087-3 = (9)867<87> = 103 × 257 × 757 × 113123 × 4632613 × 95226283921568354649911469910374171419599375062477580588497655609249<68>
1088-3 = (9)877<88> = 13 × 302303497 × 2544564574556572962069409237534454425346031538731320831426673073619023437129577<79>
1089-3 = (9)887<89> = 269 × 1663 × 711780703 × 50085008861179389314983865307479<32> × 6270490382978711525333242984143695967656023<43>
1090-3 = (9)897<90> = 59 × 1981462151<10> × 5427392805973<13> × 6775211799337<13> × 78160868906623597<17> × 2976176599680018387033042268965119689<37>
1091-3 = (9)907<91> = 7 × 17 × 622802562607<12> × 541191531367411<15> × 249316864069717043485091626653147919697908905053883660187580519<63>
1092-3 = (9)917<92> = 107 × 3557017 × 76772438105837719738754548269930764941<38> × 3422354146951056095066841448159662200272103243<46>
1093-3 = (9)927<93> = 233 × 10744219 × 291653535584641<15> × 52792348845059647<17> × 25943645194741155506563259922410371213134407504184593<53>
1094-3 = (9)937<94> = 13 × 151548409 × 1465865413328343894556166417276893<34> × 3462670511054145557735868404409558124203646135593037<52>
1095-3 = (9)947<95> = 19 × 509 × 2591 × 11279 × 37728203 × 9378307897647822189773362682835304573974710330908432747151623394481317471521<76>
1096-3 = (9)957<96> = 38604899 × 67135031 × 3339133451<10> × 75802272361<11> × 1274839317373<13> × 371370564511057<15> × 3210299262702817<16> × 1002960752029899359<19>
1097-3 = (9)967<97> = 72 × 2281 × 56978387 × 572041744923931<15> × 2744989966329896961448749127879070039002143600805487375898998297932229<70>
1098-3 = (9)977<98> = 97 × 227 × 4907420475243384479<19> × 925441856044986409718150197395729413167764668894414882028382058169268699297<75>
1099-3 = (9)987<99> = 367 × 1517627 × 2113775865581<13> × 10526423190323<14> × 80691749292003731118629647616252267832462124947404914376760456191<65>
10100-3 = (9)997<100> = 13 × 596275259857<12> × 27089835581037121<17> × 47621545764299677617779790257997285086538394033923200643767527821353377<71>
10101-3 = (9)1007<101> = 811 × 1660609 × 104506081 × 458290213 × 3490351201<10> × 70036821437399159898409<23> × 6342114199338576625556578199506049340359539<43>
10102-3 = (9)1017<102> = 61 × 167341 × 48523022783<11> × 471886464223296562633<21> × 239334429244078719805120829701<30> × 17876284551980902328592233871781223<35>
10103-3 = (9)1027<103> = 7 × 692401 × 184181549987808479<18> × 22726445496584026420510640998186677007<38> × 492908871046517977034206424358751376938907<42>
10104-3 = (9)1037<104> = 15887 × 458401 × 13731328215929209456688791947124485531775729994561500117025176063615607948582945925408692322131<95>
10105-3 = (9)1047<105> = 1564699 × 140589838991740832020941105146256038160377<42> × 4545851677658139202437532906827438688087706303142425442239<58> (Makoto Kamada / SNFS for P42 x P58 / 30:42:45:32)
10106-3 = (9)1057<106> = 132 × 157752018614917<15> × 4676160827424241349622633359482724543174987<43> × 80213770421949436989344479680642134972992714547<47> (Makoto Kamada / PPSIQS 1.1 for P43 x P47 / 6:31:51:51)
10107-3 = (9)1067<107> = 17 × 7968678694697845825873096579<28> × 105268359025757399432466604657457309<36> × 7012403690728403318908561793540433456872731<43>
10108-3 = (9)1077<108> = 23 × 83 × 137401213 × 3207480541<10> × 92762470571<11> × 12813482135218256325700577527597759817402594010431832837282926939321359468931<77>
10109-3 = (9)1087<109> = 7 × 67083924033653745174874728162417169991<38> × 21295287196598135831894469055861840064477475149485170209040812034482381<71> (Makoto Kamada / GGNFS-0.41.4 for P38 x P71 / Total time: 1.1 hours (actual time: 1.9 hours))
10110-3 = (9)1097<110> = 47 × 263 × 1871 × 4443097 × 6714107380277349896183<22> × 144943428069060593210324709644363984350751705174143343752073126619771304837<75>
10111-3 = (9)1107<111> = 29 × 602657779 × 28696630206070791791<20> × 1993886046252076663845187938068087319893076521678350863668723255877085366512385237<82>
10112-3 = (9)1117<112> = 13 × 647 × 605811026672353<15> × 5310320545785083<16> × 369568082011564246318490814674287271310659910824755808150690685151322618547973<78>
10113-3 = (9)1127<113> = 19 × 373 × 3347 × 299261 × 1539149 × 3429445432781<13> × 2668868467392422552005114420965245432852788746018460429855287102487871476139285197<82>
10114-3 = (9)1137<114> = 71 × 757 × 336529 × 859221566249037791<18> × 180738878352484081081720836613058416283<39> × 356013547665340428768575295631333591720156299923<48>
10115-3 = (9)1147<115> = 7 × 149 × 16427 × 2086902480830030036633784894772704335879<40> × 279676051195225896934948823207443193519179150078386523465480944649163<69> (Makoto Kamada / GGNFS-0.41.4 for P40 x P69 / Total time: 1.7 hours (actual time: 3.3 hours))
10116-3 = (9)1157<116> = 563 × 1321 × 8774317 × 1088633633614509477084403918558191926908607051<46> × 14076468703627736973261941485232894367607527799709257855417<59> (Makoto Kamada / GGNFS-0.42.0 for P46 x P59 / Total time: 3.2 hours (actual time: 4.5 hours))
10117-3 = (9)1167<117> = 9127148480682127666098069205437229076855970260488284811<55> × 109563244436806168818039119184210587861133156574721974138239127<63> (Makoto Kamada / GGNFS-0.41.3 for P55 x P63 / Total time: 2.7 hours (actual time: 6.0 hours))
10118-3 = (9)1177<118> = 13 × 8461 × 89293 × 10073705259065735294499942560980394788643671299013<50> × 101071403953684443983895115462630189568665615571767163352181<60> (Makoto Kamada / GGNFS-0.42.0 for P50 x P60 / Total time: 2.9 hours (actual time: 3.5 hours))
10119-3 = (9)1187<119> = 7043 × 15599333329<11> × 300887275512254328094763<24> × 3025049262693665664747541346878285724445834135320710094168083527978858463925645677<82>
10120-3 = (9)1197<120> = 1314371 × 256328913578799661<18> × 2968140363021126452220649514855793697359082715974543882369932510137667044124281356330082986856987<97>
10121-3 = (9)1207<121> = 7 × 103 × 13869625520110957004160887656033287101248266296809986130374479889042995839112343966712898751733703190013869625520110957<119>
10122-3 = (9)1217<122> = 71866339938008210623739<23> × 397118863301683969907658455831<30> × 3503918176246150929723840345375125855783997495258623504869751070595633<70> (Makoto Kamada / GGNFS-0.42.0 for P30 x P70 / Total time: 4.4 hours (actual time: 6 hours))
10123-3 = (9)1227<123> = 17 × 15739 × 89069 × 376667884978938293477936774780616434222279<42> × 111400918951427393267751760550029690509932963494486357752363513131610869<72> (Makoto Kamada / GGNFS-0.42.0 for P42 x P72 / Total time: 4.7 hours (actual time: 7.8 hours))
10124-3 = (9)1237<124> = 13 × 2569393 × 520650671 × 8152274412311<13> × 901399309795043<15> × 30441559635772969237<20> × 2570495028748214654581797079357671705550480475040454114008023<61>
10125-3 = (9)1247<125> = 224027 × 40227639590406309217166835252731879997433918357<47> × 11096220704771508418838283142629113970847065959139563096883643429606751723<74> (Makoto Kamada / GGNFS-0.41.4 for P47 x P74 / Total time: 3.8 hours (actual time: 7.4 hours))
10126-3 = (9)1257<126> = 131 × 4967 × 166429 × 543769 × 1800047 × 11106023867<11> × 68240418225121295929<20> × 12448211784421770185094071021831790872657994261310382419295508082318163641<74>
10127-3 = (9)1267<127> = 7 × 4477018734318629180293<22> × 7609989926532955216740365501<28> × 1280396167057838504245589115975841<34> × 32747986372581105183234224891710798334981867<44>
10128-3 = (9)1277<128> = 3116303 × 3447709 × 10781786123<11> × 11821817016493727965504014725693386869935295703801<50> × 73022176650061765449324304407021730245121580937594754357<56> (Makoto Kamada / GGNFS-0.50.2 for P50 x P56 / Total time: 7.2 hours (actual time: 12.4 hours))
10129-3 = (9)1287<129> = 40619265259<11> × 17539599447243911<17> × 1403615855538288055865290988653397945429469842242039799304685291117752873519330257322000400837536246353<103>
10130-3 = (9)1297<130> = 13 × 23 × 691573 × 85078832171<11> × 568419884796013649225640400511660780275935536920717606117971907828538350105829659595877633791349852502897560241<111>
10131-3 = (9)1307<131> = 19 × 389 × 479 × 10185123149<11> × 324532173076818744317976869<27> × 8545495346710077139785136036953045644689885975695644116598380872477353722383518717890333<88>
10132-3 = (9)1317<132> = 19919 × 975064193101<12> × 51487198294454081995358167267058581242465394181123605884321434040119645137816603670221076374305249088065774874697663<116>
10133-3 = (9)1327<133> = 7 × 311 × 27107 × 2253341 × 4594450834406689<16> × 1010842705641010535483<22> × 1796829324576277978498688716576986881951<40> × 9011750921273770846529134556364445817479919<43>
10134-3 = (9)1337<134> = 2845259519627857412680439112018370619<37> × 124029943290906783114900331460245831990228837<45> × 283368499045509140564835336179818819934025259684556699<54> (Makoto Kamada / GGNFS-0.42.0 for P45 / Total time: 10.1 hours (actual time: 13.4 hours)) (Makoto Kamada / PPSIQS 1.1 for P37 x P54 / 3:15:12:98)
10135-3 = (9)1347<135> = 8891594935054218128128581330211366119702257623025863<52> × 112465762026293015888985715318626268035804442001514204439778594639800875198450472219<84> (Makoto Kamada / GGNFS-0.42.0 for P52 x P84 / Total time: 10.1 hours (actual time: 13.5 hours))
10136-3 = (9)1357<136> = 13 × 109 × 5194417 × 106197961 × 12793140224464242205884955416150288157100396559521578805992926399760242313447934267623249662207687031233567410146933693<119>
10137-3 = (9)1367<137> = 223 × 87880708839876574310987<23> × 1317974776987854639539412965694345386873<40> × 3871635708616963361655567348402090715393583483956963602661082587930518289<73> (Makoto Kamada / GGNFS-0.50.2 for P40 x P73 / Total time: 17.1 hours (actual time: 19.9 hours))
10138-3 = (9)1377<138> = 30047 × 20730732812459<14> × 19620811251546579405222533234378138253672631574917<50> × 81821468309254160472196820095045483222349432219761130729098894643898517<71> (Makoto Kamada / GGNFS-0.50.2-k1 for P50 x P71 / Total time: 21.82 hours (actual time: 23.28 hours))
10139-3 = (9)1387<139> = 72 × 17 × 29 × 157 × 2788661 × 15523411 × 44398433 × 24958916987067161555053422268090297995769<41> × 54964349212695694748863076665601324197711084936921370461642002386315059<71> (Makoto Kamada / GGNFS-0.53.0 for P41 x P71 / Total time: 14.72 hours (actual time: 14.80 hours))
10140-3 = (9)1397<140> = definitely prime number 素数
10141-3 = (9)1407<141> = 757 × 21395260840097<14> × 1998567824579494876129<22> × 12839483153589083628646788780690801027737944337<47> × 2406135617024184285708011017528134490384412631178837377241<58> (Sander Hoogendoorn / GGNFS-0.60.6-unstable for P47 x P58)
10142-3 = (9)1417<142> = 13 × 3947 × 55620027781<11> × 1448567705614466629<19> × 1745464342922221643<19> × 1385825472583120653686423290102430449498514937649419936194871100461577404398746984922103361<91>
10143-3 = (9)1427<143> = 277 × 1216793 × 5840089 × 8349701 × 90145919 × 20175914330451670548424029176641<32> × 214227176339184428053640364764759<33> × 15615621711258130384380831959853307643186586759613<50> (Makoto Kamada / GMP-ECM 5.0.3 B1=10000000, sigma=2092495096 for P33) (Makoto Kamada / PPSIQS 1.1 for P32 x P50 / 0:46:07:96)
10144-3 = (9)1437<144> = 167 × 337349307593677<15> × 24897458326243224332747<23> × 712932957281784950984395092073743731497066022895505935641190031194208447263463722058545529531369594509589<105>
10145-3 = (9)1447<145> = 7 × 107 × 676445318963<12> × 4763952371867371418729757278628913647895634646669909353<55> × 4143029976332174725198527972504156008079260574971910161750602000454997704627<76> (Makoto Kamada / GGNFS 0.53.0 for P55 x P76 / Total time: 25.75 hours (actual time: 26.03 hours))
10146-3 = (9)1457<146> = 786435493 × 33687902299127<14> × 739507611188227323791<21> × 147774458556369431910404840981974982225732968722011<51> × 34539886053501171347512504592110662553160109081260627<53> (Greg Childers / GGNFS for P51 x P53)
10147-3 = (9)1467<147> = 87257 × 2581475893243546379399562049<28> × 2978486598601309977385667600190257<34> × 76939696440259536071166115723477303<35> × 19372493773537840831076728862163526175658084499<47> (Greg Childers / GGNFS for P34 x P35 x P47)
10148-3 = (9)1477<148> = 13 × 59 × 8902981 × 2092098327453367265488153<25> × 1313437274082906131865018524905745892254428247173<49> × 532939316067522452437009431855311310168767228534802154162283932019<66> (Greg Childers / GGNFS for P49 x P66)
10149-3 = (9)1487<149> = 19 × 71 × 83 × 37573 × 721606590563161<15> × 420200185405225537573496373857<30> × 1609561207914191556407872402061<31> × 48704586230979775559414535682143440300694313427376479940972273211<65> (Makoto Kamada / GGNFS 0.53.0 for P31 / Total time: 36.29 hours (actual time: 36.80 hours)) (Tyler Cadigan / PPSIQS for P30 x P65 / 36:10:45:00)
10150-3 = (9)1497<150> = 661 × 219409451 × 6895141923876014443100467567268146905392631159761548211356179806046580541762123711605009064193916116161237785444672604185827887558556248027<139>
10151-3 = (9)1507<151> = 7 × 7573 × 50971 × 15184543441<11> × 243730068585584478919182949523798132584320178650870239133429187809547647306294989019226082403597339278196991144092927702654687675757<132>
10152-3 = (9)1517<152> = 23 × 4561 × 40897 × 45437738891493992896561871<26> × 512984128812055898727627163802656238643682023750525699947488641903977639699485179154894795956496215898216541692634677<117>
10153-3 = (9)1527<153> = 35603 × 108127 × 68063329 × 248622154980379092461<21> × 300828367847782232594681513978143<33> × 51027871295477704495929106254743812373411107183903051725312804583423782028610309611<83> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=970664626 for P33 x P83 / May 14, 2005 2005 年 5 月 14 日)
10154-3 = (9)1537<154> = 13 × 11243 × 6067869097<10> × 1640121535660974334937516641312705897<37> × 632474589733957453044658343116704489644784209341<48> × 10869739116142629212501414649177235931983515829671794207<56> (suberi / GGNFS-0.77.1-20060513-pentium4 for P37 x P48 x P56 / 37.22 hours on Pentium 4 2.26GHz, Windows XP and Cygwin / June 24, 2006 2006 年 6 月 24 日)
10155-3 = (9)1547<155> = 17 × 103 × 12007 × 154880702153<12> × 391686191030529649<18> × 78405002635391457030676706184615649785350711027657238478281095755337430351474499513887628112682439095176668630029454693<119>
10156-3 = (9)1557<156> = 47 × 193 × 123229 × 216167489536594248535065060052412135027<39> × 272299045624505473727969700938204637516311713<45> × 15198313925884879986745118948436722105397649149262271143998265333<65> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P39 x P45 x P65 / 25.97 hours on Cygwin on AMD 64 3400+ / April 11, 2007 2007 年 4 月 11 日)
10157-3 = (9)1567<157> = 7 × 20931943 × 59535608413<11> × 1146345737263487202260106834601213235154300950255680685786659448040558774755069512496959672228916815351320280319430705170599927403331513169<139>
10158-3 = (9)1577<158> = 18148299747349<14> × 722833212759131<15> × 8287054737166991<16> × 919868505139973359950095591853139091124511216455186709452186566975892509034778546678321136339914604508216901712293<114>
10159-3 = (9)1587<159> = 1829717473047571<16> × 1841110211004241<16> × 224446788508453775541671<24> × 1338658590656655944935771<25> × 987990919041950689473460539182933582912002522808957325027816830283534661995265547<81>
10160-3 = (9)1597<160> = 13 × 383 × 52771123082243438120761219452533939<35> × 3104829324566476660204837376960208819056316254480075411<55> × 12258118210972106300910696745912453876036288591144435630300652094167<68> (Patrick Keller / GMP-ECM B1=1000000, sigma=2766282211 for P35 / June 14, 2005 2005 年 6 月 14 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P55 x P68 / 24.28 hours on Core 2 Quad Q6600 / October 26, 2007 2007 年 10 月 26 日)
10161-3 = (9)1607<161> = 1832934247661461281400687301882801770474799900077065371833785212553683<70> × 54557330753999730405854658459191838430800911789742566920056359690858206347228970175385246959<92> (Samuel Chong / GGNFS-0.77.1 for P70 x P92 / 60.24 hours on dual Athlon MP 2600+ (2.0GHz Bartons), 3GB RAM / June 29, 2005 2005 年 6 月 29 日)
10162-3 = (9)1617<162> = 61 × 28573 × 2863453 × 354182214425353<15> × 63956593517591989<17> × 1666703277450239029<19> × 5307058833843425144878832431602327295573609756552142363190498888641659020136398337312984088684612281<100>
10163-3 = (9)1627<163> = 7 × 857 × 101212127218177995051360397159896256673<39> × 53769799816620504426761135790381137170338896156057801450767<59> × 306302235001175754564541527345578429311753804119402165243024733<63> (Kenichiro Yamaguchi / GGNFS-0.77.1 for P39 x P59 x P63 / 70.90 hours on PentiumM 760, Windows XP and Cygwin / October 26, 2005 2005 年 10 月 26 日)
10164-3 = (9)1637<164> = 78059 × 36841398161094229698993656374635785098993<41> × 34772900113347798545372640730250755934955225972025356975366115874254163597722740653619367252030365507420285880379259431<119> (Kenichiro Yamaguchi / GGNFS-0.77.1 for P41 x P119 / 77.00 hours on Pentium M 760, Windows XP and Cygwin / November 1, 2005 2005 年 11 月 1 日)
10165-3 = (9)1647<165> = 431 × 56725169383<11> × 6697081516361988272236718453873<31> × 6107470012775150366829754092015054516474407019707159078145089779525145974239872649362120407931411527628863447502994173893<121> (Patrick Keller / GMP-ECM B1=1000000, sigma=1182050795 for P31 x P121 / June 9, 2005 2005 年 6 月 9 日)
10166-3 = (9)1657<166> = 13 × 119301064770536868551<21> × 6447811431610474163489067561741208740789494828388135936707382305996480761498633521317934527284276325497821886483378695170021429839503092367013319<145>
10167-3 = (9)1667<167> = 19 × 29 × 359 × 16301 × 45083 × 18584261089<11> × 31526805695475073355593889809<29> × 1174090648077126681817106763823790572520076120924866337337210638180510291756960164289667261485502749802903120385251<115>
10168-3 = (9)1677<168> = 757 × 24733 × 13293083 × 869228495029187<15> × 3574884941983036986718429117<28> × 975590727494159829512394250459329181<36> × 1325372390074496447669080069340310031238497245742542719972705527019954706661<76> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=3602923848 for P36 x P76 / May 14, 2005 2005 年 5 月 14 日)
10169-3 = (9)1687<169> = 7 × 191 × 997 × 937984031 × 7997937200838313892127931718655153495116865289194887268859458211494173410942165025423695566604040066364480326329558069663167876425851246077505828792450783<154>
10170-3 = (9)1697<170> = 38817280012777264790994290797<29> × 785177523560258358188968099569100871126763206274307022292736906310723<69> × 3281006120624321591156094138451344572368459459917701683211206237910480987<73> (Kenichiro Yamaguchi / GGNFS-0.77.1 for P69 x P73 / 117.10 hours by PentiumM 760, Windows XP and Cygwin / November 8, 2005 2005 年 11 月 8 日)
10171-3 = (9)1707<171> = 17 × 1321 × 12853 × 3464525430120745536354805319810671584361881931738032778228475966245835497521320871384548149369868130565394162990421200406717269963938898091265099558109828511846257<163>
10172-3 = (9)1717<172> = 13 × 601 × 2412439469605103<16> × 19951191129181681573453<23> × 47695920600537482943787602169976077<35> × 557539556864326003687860376816030662505048470832785370594510043757742996211567557732388956389983<96> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=3844216337 for P35 x P96)
10173-3 = (9)1727<173> = 379 × 443 × 587 × 15166668857<11> × 47348365966898498973654947<26> × 35007558660244164081437512887499<32> × 40361001768340277480175803085457851847516030385154257084426979718995820425855241290021507034719463<98> (Patrick Keller / GMP-ECM B1=1000000, sigma=3747880546 for P32 x P98 / June 11, 2005 2005 年 6 月 11 日)
10174-3 = (9)1737<174> = 23 × 1163 × 9186220463951276381973369277117<31> × 4069636176380580243700448677397479416475319991645050276797201393172279819383880927886129587096100310693561839604958692725968199665999961109<139> (Makoto Kamada / GMP-ECM 5.0.3 B1=100840, sigma=3620393782 for P31 x P139)
10175-3 = (9)1747<175> = 7 × 1597 × 29881 × 172999063 × 9268821528859618014021841051698997978389808253059<49> × 18669541205894303564860318174560332272211175169567548259092720680541673892290464197693810037820913078505439459<110> (Kenichiro Yamaguchi / GGNFS-0.77.1 for P49 x P110 / 291.77 hours on PentiumM 1.3GHz, Windows XP and Cygwin / November 20, 2005 2005 年 11 月 20 日)
10176-3 = (9)1757<176> = 1630871011403<13> × 274954356330508669<18> × 6165326947505579813146109111140967<34> × 15902473362316519828155848907387241210869028241932019<53> × 2274568355541311973196278737571018169468417735311027313697927<61> (Patrick Keller / GMP-ECM B1=1000000, sigma=632850258 for P34 / June 11, 2005 2005 年 6 月 11 日) (Sinkiti Sibata / GGNFS-0.77.1 gnfs for P53 x P61 / 49.15 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 6, 2006 2006 年 5 月 6 日)
10177-3 = (9)1767<177> = 55371362340947<14> × 18059877122808340430742244613013563327679471278269573829298683525648181599376757758591753124682350190319081363056956527632819340314820942596332452226987651316311151<164>
10178-3 = (9)1777<178> = 13 × 887 × 10847 × 52170205801655912072668661692945628873867<41> × 791376560196615965346312862807404223815327503783<48> × 1936500685368344801593175804002836251063019833454008113128462336831727700966974861<82> (matsui / Msieve 1.41 snfs for P41 x P48 x P82 / 99.44 hours / May 21, 2009 2009 年 5 月 21 日)
10179-3 = (9)1787<179> = 47527552610960667080491218952801922312569073<44> × 38918563279240249010933742596447312973214118388632853991466677<62> × 54062702222061890579230284912359478718122077297383163210696543917211696057<74> (Kenichiro Yamaguchi / GGNFS-0.77.1 for P44 x P62 x P74 / 623.03 hours on Pentium M 1.3GHz, Windows XP and Cygwin / January 1, 2006 2006 年 1 月 1 日)
10180-3 = (9)1797<180> = 1367 × 157273 × 3065749 × 11776081 × 203111927 × 1997982784607846287288591439<28> × 884403266401745403066662061337<30> × 358973532348162743960395756571356050806941762717102886738109229779498599592784184526510037463<93> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=4115912066 for P30 x P93)
10181-3 = (9)1807<181> = 72 × 1109 × 22283 × 276839 × 567778372236420859008223<24> × 1532981193615527484514405799609482821607051<43> × 34273287916338305827882815931576821675327660476177005655675261693110284969286171894067224321037674217<101> (anonymous / for P43 x P101 / November 2, 2012 2012 年 11 月 2 日)
10182-3 = (9)1817<182> = 65534081280247754710444002932518609571718586565539736236949437<62> × 1525923581233455345160090558666254929382951100902891094757531494547444044927553100912619162340394581853825038559214658881<121> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P62 x P121 / 266.82 hours on Core 2 Quad Q6600 / August 25, 2007 2007 年 8 月 25 日)
10183-3 = (9)1827<183> = 12923 × 17483 × 25178196771757422913199<23> × 933117569841898167847121507997565334597441979145809194835421103277629<69> × 188390807605255530626257304680534003937129925316441881292013806724137417102624644823<84> (Dmitry Domanov / Msieve 1.40 snfs for P69 x P84 / November 27, 2012 2012 年 11 月 27 日)
10184-3 = (9)1837<184> = 132 × 71 × 682781111 × 21237789308365515286691<23> × 59850981433891272224551448459<29> × 35526514573141366935363086929873<32> × 27029640058852148978865133701306270767865770018364227207516059812926505552026723332704229<89> (Patrick Keller / GMP-ECM B1=250000, sigma=709592471 for P32, B1=B1=1000000, sigma=2309701949 for P29 x P89 / June 9, 2005 2005 年 6 月 9 日)
10185-3 = (9)1847<185> = 19 × 834149 × 209205551 × 14115364562059472946776292563<29> × 26150471097842868319059494133157249<35> × 81706751742101878914198180697174396445076811730083317624603767885137213081489306839670834484075902356418751<107> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=85275757 for P35 x P107 / February 28, 2005 2005 年 2 月 28 日)
10186-3 = (9)1857<186> = 2794375354729699423195302414791<31> × 1403798305304970569263149298320701925000798579112515574792490581<64> × 254923894058162016547383948462936505002153943365682215815145922514736240238287839605743865007<93> (Patrick Keller / GMP-ECM B1=250000, sigma=3937309623 for P31 / June 9, 2005 2005 年 6 月 9 日) (Dmitry Domanov / Msieve 1.40 snfs for P64 x P93 / November 28, 2012 2012 年 11 月 28 日)
10187-3 = (9)1867<187> = 7 × 17 × 26384109373<11> × 120481823420297<15> × 26435593693254727464251812484252639464200435992901604382899490599643545266965330830563291255340298310876315241349765520028520079300391507697131934074806361172623<161>
10188-3 = (9)1877<188> = 330546084791304846847511<24> × 3562247528919238271756225579280817<34> × 4509864049590597579503737782555387503<37> × 18831305910794443918566298283063276453852879246305489811969783216115588049782475570558077809077<95> (Patrick Keller / GMP-ECM B1=1000000, sigma=1742325444 for P34 / June 11, 2005 2005 年 6 月 11 日) (suberi / GMP-ECM 6.1.2 B1=3000000, sigma=2583964877 for P37 x P95 / March 28, 2007 2007 年 3 月 28 日)
10189-3 = (9)1887<189> = 103 × 1127252375215559<16> × 14562393969983724076149829192659260150257866876834441940485289038529<68> × 591437476219810516482416279726351680918559050304296108071406764500238722425132110736588185644157436019309<105> (Ignacio Santos / GGNFS, Msieve snfs for P68 x P105 / June 11, 2010 2010 年 6 月 11 日)
10190-3 = (9)1897<190> = 13 × 83 × 4643 × 60176382186443<14> × 24247727135706472746493<23> × 15856958895942670619463887<26> × 33133578244863317770306493209<29> × 2603721449712924915210778259443446461003757003516119146794621306240164054740371466779177155953<94>
10191-3 = (9)1907<191> = 113 × 2454455881<10> × 13778267355178489115141197<26> × 4177672914958740985247164938293269252349<40> × 6263791373890807735811613899906525630519387461611911965595048014000039506928204827175275652877326155130619692271533<115> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=1596751792 for P40 x P115 / July 17, 2008 2008 年 7 月 17 日)
10192-3 = (9)1917<192> = 3373 × 1103279 × 30864312787215673925304239<26> × 728214226699773901950646153594957<33> × 4461889850767293887261615958368082112572949<43> × 2679561266563623732221821991758971715091712588908370052804206440102760114201548833<82> (Patrick Keller / GMP-ECM B1=50000, sigma=4283842155 for P33 / June 8, 2005 2005 年 6 月 8 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P43 x P82 / 74.34 hours on Core i7 2.93GHz,Windows 7 64bit,and Cygwin / December 9, 2009 2009 年 12 月 9 日)
10193-3 = (9)1927<193> = 7 × 877 × 8231 × 1678751 × 2788197000323965150474047104253804184927<40> × 29882429209784000771022195617041437410042851<44> × 32086993995745969087474415925261704207577931<44> × 44095583371083728484819491359867319193267620311315009<53> (suberi / GMP-ECM 6.1.2 B1=1500000, sigma=1764724577 for P40 / March 30, 2007 2007 年 3 月 30 日) (Dmitry Domanov / Msieve 1.40 snfs for P44(2988...) x P44(3208...) x P53 / December 1, 2012 2012 年 12 月 1 日)
10194-3 = (9)1937<194> = 97 × 2797 × 13068964567247<14> × 670549628153749<15> × 33277844999548027200089593129<29> × 1263887731759476343000875801231412637930730552439455420562992121150851058349170733639270998372943091867382096788885439846712019565259<133>
10195-3 = (9)1947<195> = 29 × 757 × 10957 × 20143 × 353847791062159699<18> × 3716980845847683543091400230216607187416864185135016360613137<61> × 156921877738483238725473671891814394755506195376285264576632292127169763372797874371104470647913040421173<105> (Kai Inouye / for P61 x P105 / February 22, 2015 2015 年 2 月 22 日)
10196-3 = (9)1957<196> = 13 × 23 × 769 × 13230939634531520926993<23> × 925002610176773043912732992351<30> × 62987104284505836633516873338213171787376575065999<50> × 56417934556108457082508192988461477344095603874555189373146348761406089659711754834237591<89> (Patrick Keller / GMP-ECM B1=250000, sigma=2342286727 for P30 / June 9, 2005 2005 年 6 月 9 日) (anonymous / for P50 x P89 / November 4, 2012 2012 年 11 月 4 日)
10197-3 = (9)1967<197> = 310081 × 7705783 × 19800200290640756281384783<26> × 2113676338782529383631911341697070869314713846244158628386025817812523873083823305465977453836754943580723873981756958063209332596570098946045694781651672856933<160>
10198-3 = (9)1977<198> = 107 × 41953 × 2073251 × 170947076955579065366679559020455279601325092541107320602777<60> × 628549720461649540602505044227176831559394137125927190012807677679511205356326919345974981953850728143083406586903933619438341<126> (Robert Backstrom / Msieve 1.44 snfs for P60 x P126 / March 16, 2012 2012 年 3 月 16 日)
10199-3 = (9)1987<199> = 7 × 216878171849094139<18> × 152597703392299382887389016129264788431503444214442637<54> × 6511242962635549974788094857532291172489982863709487810260410919<64> × 6629399904164892073769715273555031277280878298877752355875612563<64> (Kai Inouye / for P54 x P64(6511...) x P64(6629...) / March 2, 2015 2015 年 3 月 2 日)
10200-3 = (9)1997<200> = 709 × 9851 × 534746072974693544711<21> × 26774775732017631627514624545783732791434385215877533890041040259902843412544963322536165460075231707657753257242364780631714040810943945024002334970573964625100669885838253<173>
10201-3 = (9)2007<201> = 7883 × 225433843953396359144405035764727<33> × 562716120728859843070127037446551003773236256599349759010747255073447704624743256990254941539487473534324785888749569847622334572845574661770387209388740096945370017<165> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1165535388 for P33 x P165 / November 19, 2012 2012 年 11 月 19 日)
10202-3 = (9)2017<202> = 13 × 47 × 8101 × 57839 × 48274188879361<14> × 203753845079761<15> × 7140875843750659390425960371851931<34> × 497309895843813237261017332023875845834715685907036554561774106955816728133453953115055934895317232302092477190239072785781539543<129> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3426857402 for P34 x P129 / November 17, 2012 2012 年 11 月 17 日)
10203-3 = (9)2027<203> = 17 × 19 × 1129663 × 274061842531634869413327790195047867490682561953892553654505182453259595496395457798780391365189435971656622907641633193826628736032619761345906088450735502370389652549575807217160456814939485953<195>
10204-3 = (9)2037<204> = 2221 × 2277551 × 1871536111824121<16> × 1110319612837217891186957997781390753<37> × 2012327108006077145242034146566993824855432800444486178949361<61> × 47275761222956520005785623682631634882386437406768816426485547353053721150374673799<83> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4061966475 for P37 / November 19, 2012 2012 年 11 月 19 日) (Eric Jeancolas / cado-nfs-3.0.0 for P61 x P83 / April 16, 2020 2020 年 4 月 16 日)
10205-3 = (9)2047<205> = 7 × 340058910613073<15> × 74717831386028312755331879<26> × 7905251771039027345926844430857688581256918219803<49> × 7112263465647481527499330764265855155325993309515935821864792358164551774130451599596355783299111600654055537682471<115> (Kai Inouye / GMP-ECM 7.0 B1=43000000, sigma=1:1104885351 for P49 x P115 / June 24, 2015 2015 年 6 月 24 日)
10206-3 = (9)2057<206> = 59 × 80989 × 156759721 × 2348753238485580433798251911<28> × 72274053033132537627237322163<29> × 786443754607019709469981752776671147244889065208817389105101903363706416571236681931862329444669756829006139682228178765408905666815999<135>
10207-3 = (9)2067<207> = 18070093 × 503686609 × 4559702501<10> × 419043737340749<15> × 243159088233333774864633055640623<33> × 236479140788234407734414842458654252888733494481517951601010254498241273782661930849862690549469937374622009115785991665650716597330703<135> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3513261930 for P33 x P135 / November 17, 2012 2012 年 11 月 17 日)
10208-3 = (9)2077<208> = 13 × 5731802772883013884776095396922971505848893<43> × 1561163725743806697713863596154985275130517768157<49> × 958809277692708899594878368451027943250613118103176939<54> × 89657108816892943713061510802150186818900766860319114678303771<62> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P43 x P49 x P54 x P62 / November 27, 2013 2013 年 11 月 27 日)
10209-3 = (9)2087<209> = 2777 × 5435603 × 2091192865679<13> × 3167979057815497013056834964537549990387590158346023877895331254352085490769285020655213408034005912529105967499458431668015605415575787968626038998956889315686510133852261724283105862153<187>
10210-3 = (9)2097<210> = 1091 × 4547 × 859106337781<12> × 234640714421537597169411770152445922884018872714257163443855221575912257535252383788973244762642187395590846349781601180168349876020233272965411112267067810686382511068942821518779464956595681<192>
10211-3 = (9)2107<211> = 7 × 227 × 701 × 3463 × 253427 × 279449413 × 1700111669<10> × 1273445871152325515057924908175554883797720950531462083<55> × 16907973993250511881912454075954455680692606118097547353568964592738562519360701134481850130677563234871104733081559930048923<125> (Bob Backstrom / Msieve 1.54 snfs for P55 x P125 / December 1, 2022 2022 年 12 月 1 日)
10212-3 = (9)2117<212> = 277 × 70537 × 9120227057824399233595409241261745312992513905880253<52> × 561174069919330982757123456775632030258300609893064210226032432844567905208593092149171984079739292797639227470907925645626705018518120269430437237724501<153> (Bob Backstrom / GMP-ECM 6.2.3 B1=21670000, sigma=3984550060 for P52 x P153 / July 3, 2020 2020 年 7 月 3 日)
10213-3 = (9)2127<213> = 16793993196960737479740347332312647575628746699909<50> × 59545099743220879112580198374997117571471366911820881928578198712623263107543149012624194969991175726303753912148052082341102867479693021191894843849196167885067033<164> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs for P50 x P164 / July 2, 2013 2013 年 7 月 2 日)
10214-3 = (9)2137<214> = 13 × 8677 × 7328423 × 3422044840725310277034002830200203<34> × 419724473797926018818480192540179957<36> × 8422219035129377901373105303026490800700440179994303405797696070915364171510290662334718665194806347892598657296542209501816090176909<133> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2348524856 for P36 / November 19, 2012 2012 年 11 月 19 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3136355831 for P34 x P133 / November 20, 2012 2012 年 11 月 20 日)
10215-3 = (9)2147<215> = 231904383941<12> × 1182894261433631753361943856644401596070681514211311849286084130757<67> × 364539938887134267123616921472313148857738593603357702299853318535367790732513010255262676411310055812056693651402826200986792725784498181<138> (Bob Backstrom / Msieve 1.54 snfs for P67 x P138 / October 12, 2019 2019 年 10 月 12 日)
10216-3 = (9)2157<216> = 30539 × 130577451896853018969047183196899<33> × 13546129000257392767444703775632400104555827499003335221825422989266402024157<77> × 18512360182087370815619030398613148892401676717921573341636853795011130743154483937844696346275164604961<104> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1543581884 for P33 / November 19, 2012 2012 年 11 月 19 日) (ebina / Msieve 1.53 snfs for P77 x P104 / September 6, 2021 2021 年 9 月 6 日)
10217-3 = (9)2167<217> = 7 × 157 × 1789693 × 7541057 × 30279943 × 936036979 × 1666411206031791807261099039433435003573857713655923<52> × 14274513236657326480342177997660526944268829244837628134778554975302528622620234503332884917729425473365901350762199666410816366150013<134> (ebina / Msieve 1.53 snfs for P52 x P134 / September 6, 2021 2021 年 9 月 6 日)
10218-3 = (9)2177<218> = 23 × 141880342322007778063943360462797860282968525570108562611<57> × 30644316300624744313610269497504293787116887280803013697861614805626412658869284495473394506341851179907941258477781483250087217127017129457143035904837320715849<161> (Bob Backstrom / Msieve 1.53 snfs for P57 x P161 / April 21, 2018 2018 年 4 月 21 日)
10219-3 = (9)2187<219> = 17 × 71 × 26674535350522921<17> × 14441694896309936797629389<26> × 293182257118929402244067679876613<33> × 7335673903875886994768326883663200012370207145719507424039934542463362908071396422761138662781610356066754443892782582088179637677200514144243<142> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1195197098 for P33 x P142 / November 18, 2012 2012 年 11 月 18 日)
10220-3 = (9)2197<220> = 13 × 14593 × 10075831812407<14> × 8291257103230174234688925672284314404232193913792833621450497930943<67> × 630972996458609528403907159141928323084701089187864034575660073588006410078609578843189673248972480466731231151593048770433166568861033<135> (Erik Branger / GGNFs, NFS_factory, Msieve snfs for P67 x P135 / October 25, 2017 2017 年 10 月 25 日)
10221-3 = (9)2207<221> = 19 × 1087 × 783602263 × 2018888662579<13> × 266453198373583579<18> × 3686077698131849229378710491<28> × 114055069325651439284747364358693<33> × 29469692986264775563893849482077661381<38> × 4544299622154902890384201363589234416009<40> × 204016934962379994847131594788567681711189<42> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1392959393 for P33, B1=1000000, sigma=1935294642 for P38, YAFU 1.24 for P40 x P42 / November 21, 2012 2012 年 11 月 21 日)
10222-3 = (9)2217<222> = 61 × 757 × 1117 × 16883 × 216002386007477768152393<24> × 787207485552203758254672001<27> × 6753419512161669523486594545323487451452671975087753329597258912450624452624776341486502277369771349858023979359825455085749655313553211765059395695650611932707<160>
10223-3 = (9)2227<223> = 72 × 29 × 103 × 19667817448695651761298518243<29> × [3473861733891730414577954317369168118671265502407731113624024333367523511951131054100618998423011558498661447747485526012645103146109836712906183862223655679239665277111478981674844158445933<190>] Free to factor
10224-3 = (9)2237<224> = 229 × 261138118273<12> × [1672223211208509376352720521364367583756480971523786108164918624789474582092907028540682685274549896266991880924908786492354187311737158332797980924028625957159624859108755959451618352961263528896542046877984441<211>] Free to factor
10225-3 = (9)2247<225> = 2851 × 118635935384943983443081<24> × 3680587185421797454594751616767609261987<40> × 803284550260334574853653324546764953514890761302540933957389781416742326904493267784970731772522048279827807626577828812734510152549451521743973538351961760301<159> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1180161185 for P40 x P159 / December 4, 2012 2012 年 12 月 4 日)
10226-3 = (9)2257<226> = 13 × 1321 × 8087 × 126115669 × 269911981 × 6316567801<10> × 22809843277141<14> × 7131122814787273<16> × 3723515583668756095295935044457<31> × 552917863125981801898671232079968359685956537252761960528111927023572829648590720925771436476161422068242681062782910593231699061723<132> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1900273758 for P31 x P132 / November 20, 2012 2012 年 11 月 20 日)
10227-3 = (9)2267<227> = 316272001 × [316183537220545804811852440899439593452978469630639229427077865169607599883620428354010382348072600963497872200201496812232834989398887699831513065236527213169274506850829327759557192038633859340587028442015010996815997<219>] Free to factor
10228-3 = (9)2277<228> = 577 × 517501 × 128788333107794797904121169<27> × [26003779291596522156584579099465196762932366481944131957863780503025853292788972201759471615197265797634010204877045160303528898270406629553138938479027887983161977608377787897952390003703734769<194>] Free to factor
10229-3 = (9)2287<229> = 7 × 1426220456043357480517739274142573524704430625270922227941278971874565148375527691<82> × 1001648393499132101020578803342977245017171084600769020848566857694446316725571985555238144261308071463413157490886076465968847085355255712575181681<148> (matsui / Msieve 1.52 snfs for P82 x P148 / March 5, 2014 2014 年 3 月 5 日)
10230-3 = (9)2297<230> = 179 × 1013542534467386620176433<25> × 283844551462896083224188641477680607<36> × [1941889116957965332471205367661566180832769244639831252009782967963593014218772539794749250792741006438838417135414275692756290605381678905594213973766505515771000766753<169>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=785623380 for P36 / November 19, 2012 2012 年 11 月 19 日) Free to factor
10231-3 = (9)2307<231> = 83 × 20261 × 993367 × 19708960643293106711<20> × [30372992319931445067257476932093493674577152443740910195053045869270044127026776895168620515070632400227202504114845533994552638312839312396215107073809048486467583032003264740011954267833299334691987<200>] Free to factor
10232-3 = (9)2317<232> = 13 × 2209179107624061673<19> × 348197557443889261141868853142218615020926193020105861766862428732644323135676605518778465589671560785092045968351190623842470413592284374256409189705665807235492105343585671766096625088891041298718769877981967753<213>
10233-3 = (9)2327<233> = 240379 × 13556251 × [30687667112906966432271391245736687238912521197611251727391719059022525287883189925593104508572392365344972908778789444184643693103131759497348951519393637958488663408615446487758770573875237058344961292761203828201469093<221>] Free to factor
10234-3 = (9)2337<234> = 4091 × 1778927 × 227836319 × [603100152577424218638071944091796376119335813551168310137957685441706340478755798316832619301379159952063413968729271677946989793024148219497350105612517039216490242295082746835160947762575988526326817183323285526359<216>] Free to factor
10235-3 = (9)2347<235> = 7 × 172 × 13366819 × 79025039 × 26214039451879206139<20> × [178516096723978329232381284814050083362194094811027384783434608297001753440141453513857796755028188006033443866358910009638510672046805100510703892891892663037406819200928580031953087405226562469061<198>] Free to factor
10236-3 = (9)2357<236> = 1669 × 8039 × 21928882007<11> × 74734865133486148511631068297927824671781381<44> × 4547805565146807560275801668434951008122941381209411302202391652471415855543449276414630415375076853401755266343798957408295342999312041178112322660843206244908762361468176901<175> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3037144666 for P44 x P175 / December 5, 2012 2012 年 12 月 5 日)
10237-3 = (9)2367<237> = 35591821479603912279488898728217107<35> × 28096342317660124883928856761932552006532909302325581100162822063059962294974274930430699866149027628193001822046280774336552062236823545650303603772417059857970782946200961461651680474073007115754852271<203> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2830885288 for P35 x P203 / November 20, 2012 2012 年 11 月 20 日)
10238-3 = (9)2377<238> = 13 × 2928529 × [262667970585495049142156614884390501432367843798292327229551344456814062885916707408657804231827914024675607026336693005522305146792389363659786455667937463063958311230918058441364510725613176707224264888880810389526881663377494561<231>] Free to factor
10239-3 = (9)2387<239> = 19 × 2141 × 42996725243<11> × 41634241301414599551991166209<29> × 1373231310737402670492344141967038195835576955183351775161623765743217024745381936596868234344258271216500068176410060656390583936274073441490676058529629868052809042622523586367037252575870178689<196>
10240-3 = (9)2397<240> = 23 × 491 × 8089 × 35768149 × 19205956153<11> × 15935417174696795283133442260238912769631231383545978693686369740831176043527010182822791279574497590172559692096926703666541286868470418314347843648629321548480267806793853122501429696446966947451920659082545292813<215>
10241-3 = (9)2407<241> = 7 × 606993414821<12> × 879089640503893018510087<24> × 83822750747666588236998695233723749523197727<44> × 31939117317371233917513203101448121241186351120616674727855683117224240487746432471845211523917258578458813852663728320618175531011909092132178411678809023038999<161> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=617916940 for P44 x P161 / January 8, 2013 2013 年 1 月 8 日)
10242-3 = (9)2417<242> = 347 × 274777 × 14938534267083503<17> × 611086113833239099640531<24> × 114889342735487381756200552266348266242358716918294957163714019988458504673101999670024635635807748102995976027531605950607147465693761500753421923930876412194618748329812054996098272522547841291<195>
10243-3 = (9)2427<243> = 22531 × 95913373 × 188091983970011951<18> × [2460198112216653348753656535252811919267938639780532716091703640127869082896274110530735089735055699996342679611752585283231487748254399491459423229848542090334052385469725805095375338466900852780615059922559932069<214>] Free to factor
10244-3 = (9)2437<244> = 13 × 109 × 9241 × 763679582346691132924006168392722530693618853782623341698424918498205773005255566517751693707669718050261877183980415589846635575234390446612802309244868283218515380926812232650097212592434822047765561365205551614544644211992259038281501<237>
10245-3 = (9)2447<245> = 7229 × 1981760853018867979<19> × 48664518406045534807<20> × [143435978390129183307010732394278039699367682824364874308708391871105024217270425816947645484978868463604448661457910762402983954483222264081831130504293860552245687645663236753332383776691239384402845781<204>] Free to factor
10246-3 = (9)2457<246> = 21864287 × 233699825580469834152940949959727<33> × 1001658908580908679627168423411356389619<40> × 195382847348592596632265951240639939565994502732394523875692502582286230498154242544846680966573573905450858468803102366061856459048445046123491776189880876837138903487<168> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=919899347 for P33 / November 19, 2012 2012 年 11 月 19 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1923514944 for P40 x P168 / November 20, 2012 2012 年 11 月 20 日)
10247-3 = (9)2467<247> = 7 × 18443 × 37191839 × 6025841528404983964001066789<28> × 28668524307964849087035745295781056773<38> × [12055901636376798970795833834592483128474794612809878931030896590005076514132155451307219380814234677940465679532983395277678774569258793552985594943069369432204765872359<170>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3225368248 for P38 / November 26, 2012 2012 年 11 月 26 日) Free to factor
10248-3 = (9)2477<248> = 47 × 181 × 485602081 × 24207114699956027586145886595934905473339420352714605882688183569957155341325619986728769737229315913938209280129430634341640249516817361539218382805264539086309150326228352139991885287771368793578455684868991074451136807176548566622791<236>
10249-3 = (9)2487<249> = 757 × 1543 × [856127001303881422985811407207390773176856147548351912716139963066681163750555412392095893073162045150425794764098485425721993303374595801039509404983172823789372210631213876791338734353208892419937143155564269025924381726482833369433355221647<243>] Free to factor
10250-3 = (9)2497<250> = 13 × 147900499659599<15> × 390834104023474062998399<24> × 13307441125015006506309905810362589654724975242956400997546874398954541443679168248540118255847865951835686568141698732259760519051011855212797945650499632601019405271355497941526054920553204373827651484721072769<212>
10251-3 = (9)2507<251> = 17 × 292 × 107 × 409 × 2153 × 2557 × [29031751597423233255832233846315778981110211752477910581640601417412377282452596392546901395381093522548807206842408411210421242126043376174905908855232751172650628982754288836471846872302738834976649231687512907488419472894635227875387<236>] Free to factor
10252-3 = (9)2517<252> = 252587339 × 783504462839876352684044772102382959989617<42> × [5052972652771328867739560150391834209866620925667343125860855969833209925628956700516594164258137829840475740643744829310391541125620018639371788370526652940115318194101224657140711204937787547273029319<202>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=437310518 for P42 / June 9, 2017 2017 年 6 月 9 日) Free to factor
10253-3 = (9)2527<253> = 7 × 10883 × 2983226471539<13> × 415559919969095623<18> × 2089635968419573811381189<25> × 8501025814665330280395277<25> × 5009573258417262187872507191<28> × 15469720165203580991721163486729<32> × 76914512729278692705050955917211876131422960721529471041689914614169453088210087494980118966645440114456287163<110> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2884172842 for P32 x P110 / September 7, 2015 2015 年 9 月 7 日)
10254-3 = (9)2537<254> = 71 × 664691 × 1036541549250602327<19> × 34045189143323363695343<23> × 27765469130828742402193093907<29> × [2162590896624570035092727183934497617157156333497268946997722856861783148375871816358532410751767335668617366595433205718123592340989122263841638446246144063944295288129249185051<178>] Free to factor
10255-3 = (9)2547<255> = 76386302273<11> × 116729725907<12> × [112150973348733561509160071252350439126267643930932202570348518415608136746645968224377190220969683850026690035748367489198173480385685177812799479613989558365791969407070869067985415656221022926354955677738322042741719988501355796527<234>] Free to factor
10256-3 = (9)2557<256> = 13 × 131 × 17317 × 91754881 × 521856062931253930311388254203<30> × [7081622715369345660907420368007298218024090790907542383979159307604067878614566282777625580608976666225924729244604729095936753871687640490686413583167887250632627975653466011240172572814901264982101594556917229<211>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1687706299 for P30 / September 9, 2015 2015 年 9 月 9 日) Free to factor
10257-3 = (9)2567<257> = 19 × 103 × 2711 × [18848624248340425756494246363205072843335701348826399835489207560484763997318217741946124223365998627443182235850196412088979831406595548294227778461563979675905445499485715287384031483234054487979949587469585388697271680488676971712173214333172428911<251>] Free to factor
10258-3 = (9)2577<258> = 43441 × 156733 × 75970466053<11> × 97938068273652359<17> × 1439480685474185147<19> × [13713160943132553298395424603442601828171636248336866821786568305961439003647928500470973877958466491570364817279594656061868610005032608909322256088826407934877718391844851956745140543544202575624613121<203>] Free to factor
10259-3 = (9)2587<259> = 7 × 3467 × 100469 × 31595603711021949139<20> × [129804390024445105519666073300078867784401278249148118896012209328395730920308666524501551034608830300270481593742519111223746277138813269138486309329382604215685099428051560578313305550132106389507726685221896706427095147996477343<231>] Free to factor
10260-3 = (9)2597<260> = 18209161 × 36372481 × 150986159495453155493007140523386498213033067989447529832263320766579377441524198107401832205494185466617143863357157442887039283452090016276725935846283430552731613654926618685436406297686456603651412570220735615812960348939662748910257483266517<246>
10261-3 = (9)2607<261> = 1220623 × 1518239 × 14119007945690759<17> × 38218542876848195853688138482729335066310500574903577179345116285758329222272259316332226576597772417494906233104331186432430250510098279301988416369569431772507999237970342787507913596220938129016509627858629730385609282823254543339<233>
10262-3 = (9)2617<262> = 132 × 23 × 419687 × 258303229 × 308021471 × 294090851121271536539465677<27> × [261979677013570400270140365775718332139118258627221433364135651065682161095789425489398647951174774586682582296064956528915165085159160331919624157780459140574639274478063736910473553144287263361982742862609891<210>] Free to factor
10263-3 = (9)2627<263> = 149 × 22079658409<11> × [30396346137481380645104469209047787359135491857953411716520580147615287728579668653153158735427060049018064699242250009135178880865940505466697435901763641906881075952797865308021367211573603044194686483733783526930886899815029609428532557319890250017<251>] Free to factor
10264-3 = (9)2637<264> = 59 × 191 × 2035043 × 20054369341<11> × 8721819734401<13> × [249301513761633374561053614751364085234578877270196997721741603054686261428168480012081658956792098865885784844277380621106006564382917466047375785710712260881516647058714815334245164900398104974204533286585342448288178099621881551<231>] Free to factor
10265-3 = (9)2647<265> = 73 × 1229 × 61611379835606449<17> × 3047090121059583135976357<25> × [126359460400903263538633971477595301081846563813387658656733025797958054977147514310992292331865913761408649433803118329299305112569192905961933194518566601719631592447515270104833868051238583969592720887903538570406107<219>] Free to factor
10266-3 = (9)2657<266> = 166200075290834461209952823<27> × [601684444637040198240444389707245363962431511439986410375333806077903652416020540822649379058114072920525014523587193918674616896632919754170410768755762503715948429132111440604670657104726688317580853115974832769347838017006440411841791339<240>] Free to factor
10267-3 = (9)2667<267> = 17 × 1249 × 28949287 × 82021349 × 35775047743<11> × 4295306034046777069324720799843<31> × [129077197193053355520928629624160537652243994207735673794612452761781293883575192310489628257268565975615770531684611975710887184302526900935145463735379031639542733112914140694790943306922874567760262873307<207>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3101690795 for P31 / September 11, 2015 2015 年 9 月 11 日) Free to factor
10268-3 = (9)2677<268> = 13 × 2080921 × 1524888383<10> × 216412856282304494090783<24> × 1971893264891803548422591<25> × 983050423304240602097497031627<30> × [577857485748945451238675360608618960659765732084969306955810421216523208073726324361028339558412835989705336730004371615213666659089641582292477220794557958988832296701360693<174>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4209157905 for P30 / September 8, 2015 2015 年 9 月 8 日) Free to factor
10269-3 = (9)2687<269> = 37913809 × 2911133856519425881<19> × 35197314793256435323249<23> × [25741323620666777811209612773532143007518430664075860905559462125377002786137544008374885044035351990440798555741302672863725171457067255443683097798096252281610800238270007741113188775477168833669384227426411620887748357<221>] Free to factor
10270-3 = (9)2697<270> = 1021 × 4933 × 120143346433999019<18> × 86491222191222804098350921171333<32> × 19106950737537605558981429982275833650803636298573364658925118636344369853184770469444254932859248394679034146458816917662367005746031848796194563927660543302399867515874189553250008907534030267889672859332891674427<215> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1687856417 for P32 x P215 / September 9, 2015 2015 年 9 月 9 日)
10271-3 = (9)2707<271> = 7 × 15671 × 494488305753139609<18> × 184352581752681437132761313663992888058428326158487295578336347980375341716158773507772044905757478917091495394864997023405938135281172578128913188808557557311747897282095713650094434206469794433004448825400456619285912844493868614852588716087808389<249>
10272-3 = (9)2717<272> = 83 × 2890782966814592260068299<25> × [416779568352046365422500377349809477639210145380596790843121387020573203923436564842734285066420691542168895374834624900225915891308726859020560507814819492762081772216942896367258863318691006528849219797951156087705822915595755378477383145010541<246>] Free to factor
10273-3 = (9)2727<273> = 28099807905486897799622221453624741019409719<44> × [35587431891473371896626705596482260837365334712372276210605784130417450999939215912761763271523254959902610761403155494148919213406944051479392600028931459278887826739137913515629108388093304151803978021411115736411125766221088363<230>] (Serge Batalov / GMP-ECM B1=11000000, sigma=2606631542 for P44 / September 8, 2015 2015 年 9 月 8 日) Free to factor
10274-3 = (9)2737<274> = 13 × 113618017 × 704797414994990507<18> × 9606056572683520648130909595443825499435524607507370422512139483883137158325302389569792524284376038154198241574489039819977185126351959787955068848218982091263676138252048142987911052066155264346691507832561352992135425784942284534510257477060851<247>
10275-3 = (9)2747<275> = 19 × 94687 × 89021437 × 62726176361383<14> × 33680337921596184733<20> × 151087208992090786939<21> × 2816954107305013052546284729<28> × 204574250877487978774451662045292783033724203<45> × 4355649696747067721438014662917822237365165406066816338373149031<64> × 779336115547311847659871888338019944259529568015515648822677189527427321<72> (Erik Branger / GMP-ECM GPU B1=110000000, sigma=3:3043790419 for P45 / September 6, 2019 2019 年 9 月 6 日) (Serge Batalov / Msieve 1.53 gnfs for P64 x P72 / September 27, 2019 2019 年 9 月 27 日)
10276-3 = (9)2757<276> = 757 × 1340929 × 11710967 × [84121223379934033506731342896391122159483184053625428784146000308069906056340941501811319880430667857013469644105783447629650444553148698833124414084813873168739739408691022250835283255635032553866967953902973396364568635059568961287207105917493601345236764447<260>] Free to factor
10277-3 = (9)2767<277> = 7 × 467 × 3049 × 16693 × 107253473 × 560379058975048734003663195023756202632308993658025248499335325950564125691154542166869120290619109771408770241389421691460562454326729191699637354220067564131532933339707117307174466667167957923111103001357904973120777124519413903416757979701332240080410733<258>
10278-3 = (9)2777<278> = 33469 × [2987839493262421942693238519226747139143685201230989871224117840389614269921419821327198302907167826944336550240521079207624966386805700797753144701066658699094684633541486151363948728674295616839463384027010069019092294361946876213809794137858914219128148435866025277122113<274>] Free to factor
10279-3 = (9)2787<279> = 29 × 1319 × 2480383994143837<16> × 1326053839316799776759<22> × 4695731070718433647898803663<28> × [1692676296635315931757679991569910437505477401455638033295696503607106203226752965624685979497612856392785621750300573592488999050172099767129631212249048524954760584381202122595097633194472966355920507562742843<211>] Free to factor
10280-3 = (9)2797<280> = 13 × 3851 × 1067854012369<13> × [187055828612089963879861324638270327627329464914577922513420972921280568918365481442617655192201107360852437245284356774467554371502853231044250864982880827463208524825081809034702744752768140257422026736371154618469444243876726628535125230367213717584361613597251<264>] Free to factor
10281-3 = (9)2807<281> = 277 × 1321 × 247249 × [1105306870458573829362801140550548271963977622708576730801625895835289653037192576451919748282615338019522332786181338306023643310907468632250972763563254587293624532816881981609841220500220260839011182086898036778942048811548601534288804318834391139587610784546881533009<271>] Free to factor
10282-3 = (9)2817<282> = 61 × 658115279 × 39520986737859875596543309<26> × 630289993180668665671915190754155305148639438329915047810935499221862902467956438499287439459021711522882563913650453766808417426550979642791526297812184108561630587724433541906935321448393930362997029015716848426183697006844718980101877865940907<246>
10283-3 = (9)2827<283> = 7 × 17 × 1523 × 38694451 × 9853076789518358387<19> × 28230439251547101637<20> × 5126428954121191952920421836315382756405896159419354371081281534273945239874253853456506655697522329101863109778201186384942355558930764801942593282973854739638510462105198688456258548131713043965867518536413151964366355782894311949<232>
10284-3 = (9)2837<284> = 23 × 269041 × 81756410916617474506621<23> × [197665956184384723271985286255839755630364048280090841368123606067837603746197409972064419313278782778994907117536430861892844031477977054479727139800594076058981105636030498970854003453812572266696470379210786594804992286522898288966697703090816233250199<255>] Free to factor
10285-3 = (9)2847<285> = 12032029337<11> × 5002776412663<13> × 750039308993086112951<21> × [22149605689620261291955211658486916909785057834942839025348200038584705609217626317366294629480511647192681545752677261879705874595781701683260590732417404744445087416971463147507679942623524578559018063776947938174090667816888561086316240437<242>] Free to factor
10286-3 = (9)2857<286> = 13 × 3361604749<10> × 328332404197001101<18> × 105340208354001049110131<24> × 6616100281669283177008650607471067802360980015227463365574933914380132839059213797030285121742522594534193577336205686477108559865046647718673544636110837959189466223642363013720333529681641035011991329439579614958396204917279519607251<235>
10287-3 = (9)2867<287> = 4217 × 17358823 × 32869819 × 41616493274871049<17> × 327549547088275079<18> × 35232819618127932031333<23> × 154541765382550783969087<24> × [559942015661178989346348724359202769116017608024777850689306867666200852553390554048502088203719211693178856709383652238048506162684955784860082225325575234687505529806450042693348438210773<189>] Free to factor
10288-3 = (9)2877<288> = 311 × 291107 × 17716837 × 20354591 × 1264894199<10> × 41835427114891957<17> × 61375325404626192454603542011<29> × 3566846280529670545210337865791822258353<40> × 2644002026609893238649831420053032782036830828674643143106447185347308452520417041564894579870797612286019438687765918925035148974624689377814577235086940259848426642882107<172> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1185078244 for P40 x P172 / May 4, 2017 2017 年 5 月 4 日)
10289-3 = (9)2887<289> = 7 × 71 × 9721 × 701653307 × 85262946467987<14> × [34597901269818409121257207219410908524445904775032612418473385891824555349760437092494470762338556226671018943602518017616515902718454059962429230189156846658175604403456559744740355033994486349275528657987037030572038182809727985969116248785508472379656421909<260>] Free to factor
10290-3 = (9)2897<290> = 97 × 48643908059<11> × 50422208345374884184440694783331989<35> × [420317956693754381659941691135908608996189489132501888276174836656424103890256260291537790076451358065145104895599058478467665827958406563041439266195318049993854886083740632730544393028963688002320065286539786740683823537411037296155077859851<243>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3825073158 for P35 / September 11, 2015 2015 年 9 月 11 日) Free to factor
10291-3 = (9)2907<291> = 103 × 174467 × 2476456280426253445187449<25> × [22470814606447744693794653115351894303561336840495699026192758619243422421836934419653634416607533026241557381241693314948228239820631601713676965388142055042725633456790063383118323318669502397495737767597886691564839880767244855184667005382284921156559829553<260>] Free to factor
10292-3 = (9)2917<292> = 13 × 89968116313483154586670513<26> × 8550037510516242222280569893210616840642983416016665310632647687834961931155251689519530363273334022227820305196835769815095622386183897186234651461651305801407799480915919231434786920304747031734440898702853241635004387929163622850966948487931096929531077600435713<265>
10293-3 = (9)2927<293> = 19 × 18013 × 684370058789<12> × 562621369891883<15> × 2818684025637325455650879<25> × 3913133226255171300522105049262936503<37> × 42709939526012970052528261558420911736124987<44> × [1610842726653952680376079811644683874688410454579880562050972649351103659962810124809914249994278429030721354481719596470601763347341995864524392052912300367<157>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3472073539 for P37 / September 11, 2015 2015 年 9 月 11 日) (Erik Branger / GMP-ECM B1=43000000, sigma=1550647664 for P44 / October 23, 2015 2015 年 10 月 23 日) Free to factor
10294-3 = (9)2937<294> = 47 × 40763 × 10526699 × 106260551 × 353159185907031683598570728838913<33> × [1321299369206623130232501227276288941929969262548881425492719512560428153593526733092928681136313551147557748132088078151701865292559582162386163647504804131104764389268032178966541033917866506307288388530259576881286966632395117648570355021<241>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2156838329 for P33 / September 9, 2015 2015 年 9 月 9 日) Free to factor
10295-3 = (9)2947<295> = 7 × 157 × 94176323 × 194279040497<12> × [497318514485821739556134575629419967391389715939207392293185957408069864250328364153943439471956870105016714930710484019610598148419052569510999786923206467417138297313035126465876299359737895522169571429790326106558572481767319221333358865902380410316087814712730443498413<273>] Free to factor
10296-3 = (9)2957<296> = 2207 × 43943 × 126438898053109837073403146459483<33> × [8155061896222659944639806637429789914579759589344999191740427683497592030426177125159518095971964517915438819462838318675288423483662933914295837357208088840704741544718425011752758811338364994052247849538049278367658830274761112641741608354837948814813759<256>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3558297455 for P33 / September 8, 2015 2015 年 9 月 8 日) Free to factor
10297-3 = (9)2967<297> = 79241606373046561<17> × 4337580735265395222911<22> × 1994831981861556732554591902771<31> × 588157528485607965368023115394469623347690747<45> × [2479700187891267842018007672620043628521643852710611939765229241164596149144570756712649102369325211887181782551068436921884997938730655588527771793455621325866123682917947061090680611<184>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1695564400 for P31 / September 8, 2015 2015 年 9 月 8 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1276851902 for P45 / May 4, 2017 2017 年 5 月 4 日) Free to factor
10298-3 = (9)2977<298> = 13 × 236053 × 3258720580677937712163076805762982172517319285206158069455718712453428809501386422671049428599639781027011860765297493489890959950649935526213311287002364853525397979397716744837942196162595818605274108911004015069627453287055156126932380570334758589091302507357376391025613869636186658211373<292>
10299-3 = (9)2987<299> = 17 × 373 × 21610324345804905709749246872653<32> × [729761523610527020558365413573056982058958426459284755453535243845855954123613266610283626512233232942943313642328593822441891900163660250980408977524453471319776068491039476341295258632211685831329001884114735269253496053662589316332041769304419480813074247097789<264>] (Serge Batalov / GMP-ECM B1=3000000, sigma=972542110 for P32 / September 8, 2015 2015 年 9 月 8 日) Free to factor
10300-3 = (9)2997<300> = 2879 × 12880703826373<14> × 522240231254706550549<21> × [51635503442373449542647282526899567340346498343518807994974261354987836068514701055702272405872631722439604524267857022892616021090700558202743502992166742541260793899185256479615902921652966224411763710162996472291394263223910382681410781844133266254667431170059<263>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク