Table of contents 目次

  1. About 177...771 177...771 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 177...771 177...771 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 177...771 177...771 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 177...771 177...771 について

1.1. Classification 分類

Plateau-and-depression of the form ABB...BBA ABB...BBA の形のプラトウアンドデプレッション (Plateau-and-depression)

1.2. Sequence 数列

17w1 = { 11, 171, 1771, 17771, 177771, 1777771, 17777771, 177777771, 1777777771, 17777777771, … }

1.3. General term 一般項

16×10n-619 (1≤n)

2. Prime numbers of the form 177...771 177...771 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 16×101-619 = 11 is prime. は素数です。
  2. 16×106-619 = 1777771 is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  3. 16×1048-619 = 1(7)471<49> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  4. 16×10102-619 = 1(7)1011<103> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  5. 16×10192-619 = 1(7)1911<193> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  6. 16×10366-619 = 1(7)3651<367> is prime. は素数です。 (Patrick De Geest / November 22, 2002 2002 年 11 月 22 日)
  7. 16×101002-619 = 1(7)10011<1003> is prime. は素数です。 (David Broadhurst / January 23, 2003 2003 年 1 月 23 日)
  8. 16×1020364-619 = 1(7)203631<20365> is PRP. はおそらく素数です。 (Patrick De Geest / October 20, 2004 2004 年 10 月 20 日)
  9. 16×1037446-619 = 1(7)374451<37447> is PRP. はおそらく素数です。 (Patrick De Geest / October 21, 2004 2004 年 10 月 21 日)
  10. 16×1056082-619 = 1(7)560811<56083> is PRP. はおそらく素数です。 (Serge Batalov / PFGW / May 16, 2009 2009 年 5 月 16 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 16×102k+1-619 = 11×(16×101-619×11+16×10×102-19×11×k-1Σm=0102m)
  2. 16×103k+2-619 = 3×(16×102-619×3+16×102×103-19×3×k-1Σm=0103m)
  3. 16×106k+3-619 = 7×(16×103-619×7+16×103×106-19×7×k-1Σm=0106m)
  4. 16×106k+4-619 = 13×(16×104-619×13+16×104×106-19×13×k-1Σm=0106m)
  5. 16×1016k+9-619 = 17×(16×109-619×17+16×109×1016-19×17×k-1Σm=01016m)
  6. 16×1018k+2-619 = 19×(16×102-619×19+16×102×1018-19×19×k-1Σm=01018m)
  7. 16×1022k+3-619 = 23×(16×103-619×23+16×103×1022-19×23×k-1Σm=01022m)
  8. 16×1028k+11-619 = 29×(16×1011-619×29+16×1011×1028-19×29×k-1Σm=01028m)
  9. 16×1032k+28-619 = 353×(16×1028-619×353+16×1028×1032-19×353×k-1Σm=01032m)
  10. 16×1041k+11-619 = 83×(16×1011-619×83+16×1011×1041-19×83×k-1Σm=01041m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 7.11%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 7.11% です。

3. Factor table of 177...771 177...771 の素因数分解表

3.1. Last updated 最終更新日

December 27, 2024 2024 年 12 月 27 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=216, 217, 223, 231, 233, 234, 239, 248, 252, 254, 256, 258, 260, 261, 262, 263, 264, 266, 267, 268, 269, 272, 273, 276, 277, 279, 280, 281, 282, 283, 284, 285, 286, 289, 290, 291, 292, 295, 297, 298, 299, 300 (42/300)

3.4. Factor table 素因数分解表

16×101-619 = 11 = definitely prime number 素数
16×102-619 = 171 = 32 × 19
16×103-619 = 1771 = 7 × 11 × 23
16×104-619 = 17771 = 13 × 1367
16×105-619 = 177771 = 3 × 11 × 5387
16×106-619 = 1777771 = definitely prime number 素数
16×107-619 = 17777771 = 11 × 1616161
16×108-619 = 177777771 = 3 × 659 × 89923
16×109-619 = 1777777771<10> = 72 × 11 × 17 × 194017
16×1010-619 = 17777777771<11> = 13 × 113 × 1601 × 7559
16×1011-619 = 177777777771<12> = 32 × 11 × 29 × 83 × 746047
16×1012-619 = 1777777777771<13> = 229157 × 7757903
16×1013-619 = 17777777777771<14> = 11 × 74383 × 21727567
16×1014-619 = 177777777777771<15> = 3 × 290803 × 203778019
16×1015-619 = 1777777777777771<16> = 7 × 11 × 293 × 479 × 164506709
16×1016-619 = 17777777777777771<17> = 13 × 1367521367521367<16>
16×1017-619 = 177777777777777771<18> = 3 × 11 × 411947 × 13077423521<11>
16×1018-619 = 1777777777777777771<19> = 283 × 6281900274833137<16>
16×1019-619 = 17777777777777777771<20> = 112 × 146923783287419651<18>
16×1020-619 = 177777777777777777771<21> = 33 × 19 × 107 × 3169 × 1022007519649<13>
16×1021-619 = 1777777777777777777771<22> = 7 × 11 × 139 × 66853 × 2484568912769<13>
16×1022-619 = 17777777777777777777771<23> = 13 × 167 × 21341 × 383709793529861<15>
16×1023-619 = 177777777777777777777771<24> = 3 × 11 × 35521 × 9159077 × 16558715311<11>
16×1024-619 = 1777777777777777777777771<25> = 1439 × 37906499 × 32591399059111<14>
16×1025-619 = 17777777777777777777777771<26> = 11 × 17 × 23 × 661 × 941 × 333581 × 19921206691<11>
16×1026-619 = 177777777777777777777777771<27> = 3 × 63029 × 971633483 × 967638922751<12>
16×1027-619 = 1777777777777777777777777771<28> = 7 × 11 × 17783 × 62607707 × 20737381696883<14>
16×1028-619 = 17777777777777777777777777771<29> = 13 × 127 × 3532 × 86413379319574148969<20>
16×1029-619 = 177777777777777777777777777771<30> = 32 × 11 × 1083571 × 339041191 × 4888013990789<13>
16×1030-619 = 1777777777777777777777777777771<31> = 5011 × 28439 × 12474948150236558426399<23>
16×1031-619 = 17777777777777777777777777777771<32> = 11 × 315179 × 5127757928547321241631459<25>
16×1032-619 = 177777777777777777777777777777771<33> = 3 × 131 × 1277 × 202717 × 3075130243<10> × 568251172681<12>
16×1033-619 = 1777777777777777777777777777777771<34> = 7 × 11 × 28097 × 12055678763<11> × 68160870671465093<17>
16×1034-619 = 17777777777777777777777777777777771<35> = 13 × 827 × 1709 × 601807 × 5792329 × 277572279619823<15>
16×1035-619 = 177777777777777777777777777777777771<36> = 3 × 11 × 163 × 12435349 × 67927039 × 121713763 × 321466393
16×1036-619 = 1777777777777777777777777777777777771<37> = 229 × 68942418252163<14> × 112604430390390320773<21>
16×1037-619 = 17777777777777777777777777777777777771<38> = 11 × 431619980513<12> × 3744408713981995206392897<25>
16×1038-619 = 177777777777777777777777777777777777771<39> = 32 × 19 × 25391 × 40945064288741113033737786119311<32>
16×1039-619 = 1777777777777777777777777777777777777771<40> = 7 × 11 × 29 × 35687660757821729<17> × 22308515331835493603<20>
16×1040-619 = 17777777777777777777777777777777777777771<41> = 13 × 47 × 3461 × 620317518239<12> × 13552537496370440300059<23>
16×1041-619 = 177777777777777777777777777777777777777771<42> = 3 × 112 × 172 × 59 × 28722417705201972720273433108190867<35>
16×1042-619 = 1777777777777777777777777777777777777777771<43> = 24281 × 446305907687629291<18> × 164050768309621153001<21>
16×1043-619 = 17777777777777777777777777777777777777777771<44> = 11 × 48437 × 33366261662811820748934938500766277053<38>
16×1044-619 = 177777777777777777777777777777777777777777771<45> = 3 × 4099 × 27756863246309063<17> × 520844298520037808653461<24>
16×1045-619 = 1777777777777777777777777777777777777777777771<46> = 7 × 11 × 683 × 27673 × 1221545930648401625736331367494809997<37>
16×1046-619 = 17777777777777777777777777777777777777777777771<47> = 13 × 2887 × 473682496543598033033433102709167828669041<42>
16×1047-619 = 177777777777777777777777777777777777777777777771<48> = 34 × 11 × 23 × 383 × 100649 × 3421012303<10> × 3478007941<10> × 18913786814005667<17>
16×1048-619 = 1777777777777777777777777777777777777777777777771<49> = definitely prime number 素数
16×1049-619 = 17777777777777777777777777777777777777777777777771<50> = 11 × 647 × 8910289403<10> × 280342342159827617315726438897833621<36>
16×1050-619 = 177777777777777777777777777777777777777777777777771<51> = 3 × 857 × 69147327023639742426206836941959462379532391201<47>
16×1051-619 = 1(7)501<52> = 72 × 11 × 1740080102857<13> × 33341500160383<14> × 56850505475385469120919<23>
16×1052-619 = 1(7)511<53> = 13 × 83 × 8382977 × 88900534341721351549<20> × 22108199891132828136113<23>
16×1053-619 = 1(7)521<54> = 3 × 11 × 56681 × 288836257 × 329059414961129147247891364795360746611<39>
16×1054-619 = 1(7)531<55> = 2333 × 28169387 × 390890918328164961299<21> × 69203770567609165843799<23>
16×1055-619 = 1(7)541<56> = 11 × 1616161616161616161616161616161616161616161616161616161<55>
16×1056-619 = 1(7)551<57> = 32 × 19 × 4192637 × 247967121254576916875855488408709268424534756373<48>
16×1057-619 = 1(7)561<58> = 7 × 11 × 17 × 16193 × 161471 × 46501462800782959<17> × 11169901957012155950913566647<29>
16×1058-619 = 1(7)571<59> = 13 × 1367521367521367521367521367521367521367521367521367521367<58>
16×1059-619 = 1(7)581<60> = 3 × 11 × 113023 × 612971 × 345073811375061697<18> × 225343364160086008784458702687<30>
16×1060-619 = 1(7)591<61> = 353 × 2671 × 1885510172504147238546615762605784485951594004407615717<55>
16×1061-619 = 1(7)601<62> = 11 × 185326092897027693049<21> × 8720637180106097041253385250182512925289<40>
16×1062-619 = 1(7)611<63> = 3 × 19889 × 1394831 × 21698785909<11> × 98443318422405716798505199502693432533547<41>
16×1063-619 = 1(7)621<64> = 7 × 112 × 40430557 × 21244453082608641940644091<26> × 2443648765156430950072120939<28>
16×1064-619 = 1(7)631<65> = 13 × 463 × 937 × 3152198361853734567994268200108723261748287622418332303057<58>
16×1065-619 = 1(7)641<66> = 32 × 11 × 10929913 × 5510842133<10> × 29813132031288310719752921462192607572655958301<47>
16×1066-619 = 1(7)651<67> = 197 × 21514953420652397358168850297<29> × 419440958231987282049920955415162919<36>
16×1067-619 = 1(7)661<68> = 11 × 29 × 139 × 4673 × 6674319577<10> × 20912837167<11> × 614690152157167421736181890317973064633<39>
16×1068-619 = 1(7)671<69> = 3 × 269 × 4768064351<10> × 46202112192605692415064002722190939124448781496927712003<56>
16×1069-619 = 1(7)681<70> = 7 × 11 × 23 × 1627 × 114259 × 27282858921413399397607<23> × 197920629236374823550023593645780951<36>
16×1070-619 = 1(7)691<71> = 13 × 127 × 908417 × 9478483715101<13> × 780213665209051<15> × 1602849426511163192090504822854663<34>
16×1071-619 = 1(7)701<72> = 3 × 11 × 199 × 103534718373643<15> × 261471555441010974731754989809926464164547126279199991<54>
16×1072-619 = 1(7)711<73> = 97 × 1381 × 7514713 × 173828169149<12> × 741739844137753<15> × 13697076991101156887038902989930123<35>
16×1073-619 = 1(7)721<74> = 11 × 17 × 107 × 181 × 443 × 3907 × 11113 × 7031155877<10> × 36296799813955998012367902558723252328674840499<47>
16×1074-619 = 1(7)731<75> = 33 × 19 × 57641 × 72493 × 30888799189<11> × 17964194745361<14> × 149459577060774777549180309148671235571<39>
16×1075-619 = 1(7)741<76> = 7 × 11 × 74074909333883087266393<23> × 470903329682993742243193<24> × 661887010520924476083173927<27>
16×1076-619 = 1(7)751<77> = 132 × 853 × 36599 × 119849 × 921751 × 30501730957034197228981152777884255836998689147391909503<56>
16×1077-619 = 1(7)761<78> = 3 × 11 × 499 × 1019 × 22129 × 478770094224055203936420866001452943085498411686412035570099120763<66>
16×1078-619 = 1(7)771<79> = 1357108542028053610146119<25> × 1309974642942766371478162851928361227704419022215333309<55>
16×1079-619 = 1(7)781<80> = 11 × 20258057 × 350999082882935846615083971043<30> × 227290360558650942925229357101227327448211<42>
16×1080-619 = 1(7)791<81> = 3 × 1783 × 238656907 × 437905823 × 1684891663850591269<19> × 188746177778955448186142091004304933345431<42>
16×1081-619 = 1(7)801<82> = 7 × 11 × 23088023088023088023088023088023088023088023088023088023088023088023088023088023<80>
16×1082-619 = 1(7)811<83> = 13 × 109 × 264538287362809400641<21> × 76740988101942459164737963<26> × 618004587080310337966641640287161<33>
16×1083-619 = 1(7)821<84> = 32 × 11 × 21817 × 958871 × 366557821086509868971684085886211<33> × 234177180417296400131317041474951381677<39>
16×1084-619 = 1(7)831<85> = 756600723901820421121949766505399991678987<42> × 2349690823198933964135445765680242530617633<43> (Tetsuya Kobayashi / for P42 x P43)
16×1085-619 = 1(7)841<86> = 112 × 14054860513<11> × 10453592417478846526352195920816872924102395285666954443306363858763606627<74>
16×1086-619 = 1(7)851<87> = 3 × 47 × 44417 × 55652383 × 510064822931659863529306662958641440689462745783883282277411080928952521<72>
16×1087-619 = 1(7)861<88> = 7 × 11 × 11059 × 137483141332747794148503909181<30> × 15185232413104279305070229615012803596374870180709137<53>
16×1088-619 = 1(7)871<89> = 13 × 764511632737469<15> × 12346967374359353387275438636837<32> × 144873756856306521834468427355494380121639<42>
16×1089-619 = 1(7)881<90> = 3 × 11 × 17 × 13769923 × 14499297989359390381823434344623<32> × 1587216335890096223522324915658660101644635385159<49>
16×1090-619 = 1(7)891<91> = 353600626867<12> × 394197161175719189246707013<27> × 12754133384432713716752753714316030386418436977644501<53>
16×1091-619 = 1(7)901<92> = 11 × 232 × 12876290977178756970996047<26> × 237267543416547860781980234475213396141517058226065266888729247<63>
16×1092-619 = 1(7)911<93> = 32 × 19 × 353 × 3169 × 23993 × 2186683 × 2464523 × 4341653 × 70579933 × 133714121 × 175415325798740862988978659261724069312986841<45>
16×1093-619 = 1(7)921<94> = 72 × 11 × 83 × 39738421838249721210134291029299635151614497569747139454540487242724764239394187759075883<89>
16×1094-619 = 1(7)931<95> = 13 × 727 × 1021 × 353945561 × 5205200921016872468789566836749185082048391250142801608866443039318597979701341<79>
16×1095-619 = 1(7)941<96> = 3 × 11 × 29 × 34626461 × 5364848085603732862770613876824140463966027746123054119464427037367101704125585251123<85>
16×1096-619 = 1(7)951<97> = 5676733 × 8235663569102119<16> × 38025979347688216924794154761141855475958679413508847356058233526795272673<74>
16×1097-619 = 1(7)961<98> = 11 × 2371709 × 3145652658740083<16> × 67217401967381810029<20> × 442086159843029743660447<24> × 7289940417140591721849463763501<31>
16×1098-619 = 1(7)971<99> = 3 × 751 × 2113 × 17471 × 1922867 × 596626211 × 7252776019281882896523057216611<31> × 256887622817663924239480323452369644981787<42>
16×1099-619 = 1(7)981<100> = 7 × 11 × 59 × 141485559283<12> × 2765811770500235818586273184761417248019270459201378387137166961711847880494051588759<85>
16×10100-619 = 1(7)991<101> = 13 × 55286350879878282337818061874857<32> × 24735243794487494621487788772935861198378042673830517244659559794431<68> (Tetsuya Kobayashi / for P32 x P68)
16×10101-619 = 1(7)1001<102> = 33 × 11 × 2711 × 277357331 × 2881793357<10> × 113628911250322601143<21> × 2431085177988285659641385666718265138957289547196709747573<58>
16×10102-619 = 1(7)1011<103> = definitely prime number 素数
16×10103-619 = 1(7)1021<104> = 11 × 337 × 244021 × 591000852246729578096482950405701019799<39> × 33253669605348907854656824307226049743772768002763036507<56> (Tetsuya Kobayashi / for P39 x P56)
16×10104-619 = 1(7)1031<105> = 3 × 4523 × 27182469697<11> × 1966176188551540208391162580175265997067<40> × 245142316637483796792128783237203928701103900847841<51> (Tetsuya Kobayashi / for P40 x P51)
16×10105-619 = 1(7)1041<106> = 7 × 11 × 17 × 7753 × 8369 × 162795612166496329699672548940609049525621<42> × 128573592764684374691951103184199359644417436749231427<54> (Tetsuya Kobayashi / for P42 x P54)
16×10106-619 = 1(7)1051<107> = 13 × 1367521367521367521367521367521367521367521367521367521367521367521367521367521367521367521367521367521367<106>
16×10107-619 = 1(7)1061<108> = 3 × 112 × 368550761 × 1328842580497069810292380071704050756842742407372552161357916814070802436748438565391683948545497<97>
16×10108-619 = 1(7)1071<109> = 13665334897<11> × 3192327507363357385140298034185999327924867<43> × 40752077512002785469292357740154114966766925061086699529<56> (Makoto Kamada / SNFS for P43 x P56 / 19:31:19:70)
16×10109-619 = 1(7)1081<110> = 11 × 1616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161<109>
16×10110-619 = 1(7)1091<111> = 32 × 19 × 1039636127355425601039636127355425601039636127355425601039636127355425601039636127355425601039636127355425601<109>
16×10111-619 = 1(7)1101<112> = 7 × 11 × 5192071 × 4660076558779<13> × 954230016564301935577851381123447880542766161685200137225340096321448990367195049497188547<90>
16×10112-619 = 1(7)1111<113> = 13 × 127 × 353765165013788701<18> × 30437945418433483693763408867754338853973362945372708670162324390271801331184229466809335421<92>
16×10113-619 = 1(7)1121<114> = 3 × 11 × 23 × 139 × 12594299849<11> × 2374230605264333<16> × 56353898983494525615095037911289919041936158568514701134333243123816090307160216363<83>
16×10114-619 = 1(7)1131<115> = 575486341 × 19039511971<11> × 756463800507901<15> × 214485773047451914538240637810088312170694947031105042060823615766115512181301161<81>
16×10115-619 = 1(7)1141<116> = 11 × 1607 × 25523 × 303834043 × 129688288281716601186245770841182002455615159724927090298201908090391902683299425380261925761782807<99>
16×10116-619 = 1(7)1151<117> = 3 × 163 × 4047471245669<13> × 2367053649904633<16> × 37946938248317113321604812734910245094699957436362890855120700074476671379138370921007<86>
16×10117-619 = 1(7)1161<118> = 7 × 11 × 593 × 739 × 16787 × 2207370155127563<16> × 38536293085403232798841610502268381<35> × 36895162135245328171585523934447637472312789501736739009<56> (Yoichi Hanatani / for P35 x P56 / January 31, 2003 2003 年 1 月 31 日)
16×10118-619 = 1(7)1171<119> = 13 × 70489 × 14986356077934073614367<23> × 1294543725799705667546851390165564132158214116408579226619705767529600808967001060536519409<91>
16×10119-619 = 1(7)1181<120> = 32 × 11 × 47407 × 37879113402418680823417114119612344206461812159986128668672034279082464652809397959551593684387013079681532301047<113>
16×10120-619 = 1(7)1191<121> = 464983 × 3606814030701313<16> × 25634379480101930243<20> × 41351744756038673438147414059136100234364610080575884625810809119810390299501743<80>
16×10121-619 = 1(7)1201<122> = 11 × 17 × 31907 × 2678363 × 184671722197<12> × 96657131271263353772010538345154833<35> × 62322685197543790079896719213840617658919749958756793912526413<62> (Robert Backstrom / GMP-ECM 5.0c for P35 x P62 / June 26, 2003 2003 年 6 月 26 日)
16×10122-619 = 1(7)1211<123> = 3 × 113 × 514847321 × 620304791808011<15> × 1642079509008906650034137116231817190169154741051636199735385908237832321371037275851004586794419<97>
16×10123-619 = 1(7)1221<124> = 7 × 11 × 29 × 1686547 × 48241537 × 157015605221<12> × 182553614992747<15> × 341378299365310855448827618602771596888967535141406824268485128621983520256103159<81>
16×10124-619 = 1(7)1231<125> = 13 × 353 × 1299538393<10> × 233526123867629<15> × 1265822649620533<16> × 7345401692067236275491953<25> × 1372923747305590262500400262862155994068567107937922680463<58>
16×10125-619 = 1(7)1241<126> = 3 × 11 × 1163 × 346457057068885513<18> × 13370092336620420084601353303061838049543034349564644087472222555464391377856770750042808656554622418873<104>
16×10126-619 = 1(7)1251<127> = 107 × 4327 × 76886838946797081044216806848263<32> × 49940719414957212598849972675875657029172260824719691603140977759877382354491907409618353<89>
16×10127-619 = 1(7)1261<128> = 11 × 389 × 1069 × 33050401731467512973571894200881<32> × 117592801977221054252109109823374593466724327143019750584655559721005094902167363576855441<90> (Tetsuya Kobayashi / GMP-ECM 4c for P32 x P90)
16×10128-619 = 1(7)1271<129> = 37 × 19 × 263 × 6509765591893348486783<22> × 2498929421238883889176261592393710956360307260890032455142563779914053022385590927080864527171332883<100>
16×10129-619 = 1(7)1281<130> = 7 × 112 × 439 × 9587423 × 11862063049<11> × 162703661782563931426151<24> × 258386666102291034681870637469344303139728717957217645153666455373251731432264075331<84>
16×10130-619 = 1(7)1291<131> = 13 × 149 × 4229 × 40481069040301039091<20> × 7268589304070269430838080167<28> × 7375781855971437496120345039283312236925365927632176286002705123521167096691<76>
16×10131-619 = 1(7)1301<132> = 3 × 11 × 5231 × 84157983464047<14> × 5769136452829079081<19> × 2121156350420330075198004091189799262770054866391735389167140587492287805930501153944984959411<94>
16×10132-619 = 1(7)1311<133> = 47 × 1360432571286141965088644267323351<34> × 27803700014250129988165874862919688593173942054275443737482276869190386969420489543595321525738243<98> (Tetsuya Kobayashi / GMP-ECM 4c for P34 x P98)
16×10133-619 = 1(7)1321<134> = 11 × 2753 × 10251189591490696924072054985430136229966369393<47> × 57266983952493311566835138999517831719905305347487287821527144409967072783875220209<83> (Robert Backstrom / NFSX v1.8 for P47 x P83 / August 31, 2003 2003 年 8 月 31 日)
16×10134-619 = 1(7)1331<135> = 3 × 83 × 41519 × 47036851 × 23170013929<11> × 178165588651<12> × 88561075131636425501418800590832406388951405716418435558994637720218121026779391487515182761588629<98>
16×10135-619 = 1(7)1341<136> = 72 × 11 × 23 × 2243 × 2287 × 346373 × 273689989 × 141244933025617143628728464381<30> × 364788903740446748591721623266704283<36> × 5723319545192481797674670640417352321502346533<46>
16×10136-619 = 1(7)1351<137> = 13 × 503 × 6197 × 31013 × 219871 × 1771433387<10> × 261051488023704407<18> × 1148198174559468623<19> × 121172776152129342174503843827849330915662102731091742423830475208097523517<75>
16×10137-619 = 1(7)1361<138> = 32 × 11 × 17 × 27845898611152957<17> × 3793430395461894781799072132929018772333018914082234544320576344587862456080166766484856128666364200002596428886178941<118>
16×10138-619 = 1(7)1371<139> = 16042351605515825209286468908057429487<38> × 3485522429009746712067055498406026150258776989171<49> × 31793735785353085560856887992480869986943633359093223<53> (Robert Backstrom / GMP-ECM 5.0c for P38 / May 30, 2003 2003 年 5 月 30 日) (Robert Backstrom / NFSX v1.8 for P49 x P53 / June 13, 2003 2003 年 6 月 13 日)
16×10139-619 = 1(7)1381<140> = 11 × 601 × 5653 × 11721571 × 173908413895577<15> × 41905101224716768849<20> × 7123909525202177297570459<25> × 781699122815490602496585194419060734643527945010530093081899032621<66>
16×10140-619 = 1(7)1391<141> = 3 × 442107125130577<15> × 30154321072153686427716497510827463<35> × 4445075578675759393024265367172301403842365080537740815991935318822106930826072528771176207<91> (Robert Backstrom / GMP-ECM 5.0c for P35 x P91 / July 24, 2003 2003 年 7 月 24 日)
16×10141-619 = 1(7)1401<142> = 7 × 11 × 8145283 × 225825996657840027181548856531<30> × 171753205960140656655453880050575159236721<42> × 73080545763236130903420906441424013946310457077508500923074431<62> (Robert Backstrom / GMP-ECM 5.0c for P30 x P42 x P62 / July 26, 2003 2003 年 7 月 26 日)
16×10142-619 = 1(7)1411<143> = 13 × 14011 × 168481 × 3563479047113386761119623011481295788624826790313<49> × 162569790755232174632253038467971580277889280486954183359029125576276166458052487149<84> (Greg Childers / GGNFS for P49 x P84 / December 21, 2004 2004 年 12 月 21 日)
16×10143-619 = 1(7)1421<144> = 3 × 11 × 541 × 3777559 × 41314201 × 585278303828958603403<21> × 6781373468336971839816239803424973990462518899<46> × 16075909995899462039765753864202879468478273494535100080009<59> (Greg Childers / GGNFS for P46 x P59 / December 21, 2004 2004 年 12 月 21 日)
16×10144-619 = 1(7)1431<145> = 189467 × 1083923 × 121013687 × 754174919 × 3979082437789453<16> × 106945245805206203945351953<27> × 222891991507459733708163750007555050299038212212802401222430881263617624103<75>
16×10145-619 = 1(7)1441<146> = 11 × 1616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161<145>
16×10146-619 = 1(7)1451<147> = 32 × 19 × 146890314509<12> × 1275008940157<13> × 13203685413461<14> × 1535375128727451317<19> × 1436014684780513730348145587<28> × 190680561173454037544398277899313746399092996478366008144384683<63>
16×10147-619 = 1(7)1461<148> = 7 × 11 × 7793199059<10> × 2962586084768335701649119532392928194430202490227843674933136734602570867436638267451072434243594891860324547509806279160139187083482797<136>
16×10148-619 = 1(7)1471<149> = 13 × 37397 × 618719 × 19458539 × 157234417488341<15> × 4658734931463023<16> × 990653064230909381<18> × 4185587933425340414167150531570889812455892532203767674327726843377019649264397337<82>
16×10149-619 = 1(7)1481<150> = 3 × 11 × 402944041 × 40640490410659<14> × 382063269536629<15> × 154310536196256722624599<24> × 5579933043394059824921109520426959065913789805646060812571766111881971349542232115993563<88>
16×10150-619 = 1(7)1491<151> = 1949 × 1857671213<10> × 1429171016153<13> × 729285287404633<15> × 4611947474035473907<19> × 102148214134220813226059786873023860940577752893750117578157292588635596312844669598926971681<93>
16×10151-619 = 1(7)1501<152> = 112 × 292 × 1639052759<10> × 127259957021<12> × 4691097589091<13> × 8845358547510784479949<22> × 66960553217864554889186042949417995666847599<44> × 301441095313063233249611821438602804319646034089<48> (Yoichi Hanatani + Tetsuya Kobayashi / for P44 x P48 / February 19, 2003 2003 年 2 月 19 日)
16×10152-619 = 1(7)1511<153> = 3 × 1913 × 883839533 × 77564572433<11> × 451860545780785695107152141664750417710034613950131762431756949155486923145844074391788049491855115262544806689873889976870863701<129>
16×10153-619 = 1(7)1521<154> = 7 × 11 × 17 × 1072775102057<13> × 439657792699587139<18> × 2879481986487968092741456081837972525449959817960540184112457405810826040041128788648623083554150904623390409963165296453<121>
16×10154-619 = 1(7)1531<155> = 132 × 127 × 3733121936303998720580918507923629269009<40> × 221878321587930532169969709902563560847331538413982435341417449466367100689787271320174821863118816102475066813<111> (Naoki Yamamoto / GGNFS 0.50.2 for P40 x P111 / 75 hours / August 12, 2004 2004 年 8 月 12 日)
16×10155-619 = 1(7)1541<156> = 33 × 11 × 313 × 3413 × 564653293741502455894429<24> × 147578844538555167154379562564198635879111107545264229249<57> × 6724104070964062862708978830908866005677012688304296879046893860907<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P57 x P67 / 19.42 hours on Cygwin on AMD 64 3400+ / May 5, 2007 2007 年 5 月 5 日)
16×10156-619 = 1(7)1551<157> = 353 × 9320453 × 52622551337<11> × 118052925097<12> × 2966774020885178915193117624664369288559<40> × 29317884310296032844640928591941378129027096529790688817039501129820426892441986873169<86> (suberi / GMP-ECM 6.1.2 B1=3000000, sigma=2631712953 for P40 x P86 / April 6, 2007 2007 年 4 月 6 日)
16×10157-619 = 1(7)1561<158> = 11 × 23 × 59 × 10312592287166464639<20> × 115488061680880071168105109571432774245730173582611646373827830229930027214178361375180910379458546414991983404106025346408414559126107<135>
16×10158-619 = 1(7)1571<159> = 3 × 179 × 232118740895273<15> × 1802850806668602594023<22> × 791103294033663166060918601667728036598426108846813426687846144004084192934202435670593086401968064123976958259310182877<120>
16×10159-619 = 1(7)1581<160> = 7 × 11 × 139 × 283 × 1123 × 5563 × 11321 × 1123247 × 11160628967<11> × 188771796820566483431209728112718047569192774367<48> × 3506798873133264834251861643109592173565728384191166286258478470759285819773297<79> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P48 x P79 / 29.47 hours on Core 2 Quad Q6600 / October 20, 2007 2007 年 10 月 20 日)
16×10160-619 = 1(7)1591<161> = 13 × 1327 × 1295839 × 4401890623787<13> × 1006532755847210575307<22> × 19245530568847226999028132005704799<35> × 89756634152617025348451558530890297099<38> × 103907894526749031467610609421857285497159971<45> (Tetsuya Kobayashi / GMP-ECM 4c for P35 x P38 x P45 / April 15, 2003 2003 年 4 月 15 日)
16×10161-619 = 1(7)1601<162> = 3 × 11 × 223 × 293 × 241667 × 347838697 × 463516751 × 9405191432179<13> × 118572847683009651860426161<27> × 12262926004677444482365426058854435702309510289<47> × 154733151983181550079396103025502070596891218687<48> (Yoichi Hanatani + Tetsuya Kobayashi / for P47 x P48 / February 19, 2003 2003 年 2 月 19 日)
16×10162-619 = 1(7)1611<163> = 131 × 8707 × 605867 × 1885954734667<13> × 1364046168290996393794028287828830766685678842104353048086266050134183447200674272082689629560527563909963511773316021104309256546333998667<139>
16×10163-619 = 1(7)1621<164> = 11 × 347 × 646634560597002933420775479995833343960443<42> × 398763057690552657144449211172587774514959984401<48> × 18062650687187667320018671801554696018440996733928315494676273037001241<71> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp for P42 x P48 x P71 / 57.05 hours on Cygwin on AMD 64 3200+ / June 23, 2007 2007 年 6 月 23 日)
16×10164-619 = 1(7)1631<165> = 32 × 19 × 197 × 3169 × 89669 × 14740591254002200766572775574601<32> × 1259898814565088756936051259992209284341462157891195567086149446142754499764032627534174818288513359687784748943618524353<121> (Robert Backstrom / for P32 x P121 / August 21, 2003 2003 年 8 月 21 日)
16×10165-619 = 1(7)1641<166> = 7 × 11 × 2297 × 14401 × 22033424713<11> × 6235777318703<13> × 5079962408245657689415377530008944077561182280024672744672090518946028944301925468533733122369151546797921316133718154932845439019481<133>
16×10166-619 = 1(7)1651<167> = 13 × 257 × 15109262159303914200235970117303182989937<41> × 583000610683684808553479287729266199706051525409391<51> × 604072035468266231595132183421912411669884078283681280966762593973524393<72> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P41 x P51 x P72 / 69.44 hours on Cygwin on AMD XP 2700+ / May 10, 2007 2007 年 5 月 10 日)
16×10167-619 = 1(7)1661<168> = 3 × 11 × 811 × 3181722708103<13> × 464716527742343<15> × 5881624796039309952017<22> × 2521539755383719174762886476991<31> × 6319149199228570564394249965620235093<37> × 47936959828274463266816042474940016248676484963<47> (Robert Backstrom / GMP-ECM 5.0c, PPSIQS Ver 1.1 for P31 x P37 x P47 / August 22, 2003 2003 年 8 月 22 日)
16×10168-619 = 1(7)1671<169> = 97 × 238529 × 276893190703697940414783252826468932935031019517441970031773419<63> × 277493155611403703683054353264914582179810037056175052898430042343277972816202057969029288816183393<99> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.34 for P63 x P99 / 72.06 hours / May 27, 2008 2008 年 5 月 27 日)
16×10169-619 = 1(7)1681<170> = 11 × 17 × 66529 × 23306879 × 61311331750767100807762857590842984112458229994364703075921472463525233195520143088652767776927094340037524120813803519612253332779842879958674934250992463<155>
16×10170-619 = 1(7)1691<171> = 3 × 199 × 18773 × 38669 × 36501139 × 21671373617<11> × 2083352443623955517456574595370861273778187700398395438300935987<64> × 248914913845551113972421378475204343559532544725717959578969110953994879400519<78> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P64 x P78 / 25.77 hours on Core 2 Quad Q6700 / September 9, 2009 2009 年 9 月 9 日)
16×10171-619 = 1(7)1701<172> = 7 × 11 × 6869 × 478273 × 1326288982702582673029121665373066080254716222864506558111<58> × 5298820469813085006548338151874038728594716331197631203696580068921274591131231214539222639337102417189<103> (Dmitry Domanov / GGNFS/msieve 1.41 snfs for P58 x P103 / 43.23 hours / June 19, 2009 2009 年 6 月 19 日)
16×10172-619 = 1(7)1711<173> = 13 × 5669 × 6421 × 25981 × 965796108123814414970503619<27> × 1497213312876704964183346316968568150937621125953913130265015149815041556891735137045585099343633543972066563530426999771066506044697<133>
16×10173-619 = 1(7)1721<174> = 32 × 112 × 193 × 1657 × 2104223572441<13> × 210616545877992201763<21> × 135965850818832163366428434716861267669987620088028202331<57> × 8471407319939913542116337682015819400286695431157188693445958256424728328043<76> (Dmitry Domanov / Msieve 1.40 snfs for P57 x P76 / April 15, 2011 2011 年 4 月 15 日)
16×10174-619 = 1(7)1731<175> = 554017 × 3209226003761<13> × 3087070986953208387155929633433<31> × 323897401051110497284523223634885696980532979863839251820835767079910271917647564672075187707322438566228626886062088999504051<126> (Yoichi Hanatani / for P31 x P126 / November 30, 2002 2002 年 11 月 30 日)
16×10175-619 = 1(7)1741<176> = 11 × 83 × 12716289793<11> × 21737709479618248717366069<26> × 70442133152432059240716591792731700423688310314063046887428114355318955748028569387483475583379641359246586232469554399036238803045631151<137>
16×10176-619 = 1(7)1751<177> = 3 × 5261 × 817155339792930387676948727914630841<36> × 82068059256691752376549618258291108277699770021<47> × 167961262476658922873420456452482801466586899559238933534140806772990773903374749438824417<90> (suberi / GMP-ECM 6.1.3 B1=11000000, sigma=3334271468 for P36 / December 10, 2007 2007 年 12 月 10 日) (Dmitry Domanov / Msieve 1.40 snfs for P47 x P90 / April 15, 2011 2011 年 4 月 15 日)
16×10177-619 = 1(7)1761<178> = 73 × 11 × 476023 × 1679496249744950825404090737325281377487612457874973605344416067<64> × 589364119647175295631609228905344719973480502372064776005673680489141572855930476390006755732096752189947<105> (matsui / Msieve 1.47 snfs for P64 x P105 / September 12, 2010 2010 年 9 月 12 日)
16×10178-619 = 1(7)1771<179> = 13 × 47 × 220556272758797<15> × 131921885263200928786164138433866871896566206611833714388226586399870080628597666487761494407231241885223009140134336290354611410591271172314117675921407105919613<162>
16×10179-619 = 1(7)1781<180> = 3 × 11 × 23 × 29 × 107 × 19562614351742767018731532020867171831091<41> × 3858575729040119354883278764537129621673195247212491754942684997916510277957985901671846419809832403343016142109955609123635925988353<133> (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=14936716 for P41 x P133 / June 28, 2010 2010 年 6 月 28 日)
16×10180-619 = 1(7)1791<181> = 797 × 10321 × 19060153960923793233160601088929639<35> × 11338901153976187080143046659830388697159707203423631892364273338526332224638434739375629776751522713609459125169669440674197939164958394097<140> (Robert Backstrom / GMP-ECM 5.0c for P35 x P140 / September 1, 2003 2003 年 9 月 1 日)
16×10181-619 = 1(7)1801<182> = 11 × 875423954337579283724570530051042761164622675183831303860786988601476587061520145977<84> × 1846147353123941432037361969644146179225690892776532016346590270070332318078159872250761970493993<97> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P84 x P97 / 455.66 hours on Cygwin on AMD XP 2700+ / September 9, 2007 2007 年 9 月 9 日)
16×10182-619 = 1(7)1811<183> = 33 × 19 × 5503 × 1369916107999177774949457836675762205868687<43> × 2449342752020599495396447367308393102360236361<46> × 18767959605684364672702062889014345723987887445632086122556366922692263187499179777077827<89> (Dmitry Domanov / Msieve 1.40 snfs for P43 x P46 x P89 / August 23, 2010 2010 年 8 月 23 日)
16×10183-619 = 1(7)1821<184> = 7 × 11 × 1741 × 3527 × 8053 × 865454252302769523821262120413514764943777533037528703<54> × 10592011405254735497638715963668563975094422287033349239473<59> × 50933352425352990483859090846713507381499075370761085089327<59> (Dmitry Domanov / Msieve 1.40 snfs for P54 x P59(1059...) x P59(5093...) / April 17, 2011 2011 年 4 月 17 日)
16×10184-619 = 1(7)1831<185> = 13 × 72787764202407783427<20> × 600988789274730065773<21> × 3306358423978627805257389064398085822369547730491<49> × 9454954414899663100614128402066155468047735130070141273812074682670407214593404087323570810947<94> (Dmitry Domanov / Msieve 1.40 snfs for P49 x P94 / April 21, 2011 2011 年 4 月 21 日)
16×10185-619 = 1(7)1841<186> = 3 × 11 × 17 × 233 × 509 × 821 × 3915166379901174117146850512522031279127428887324486329099<58> × 831280377056776699125672696659090108177362353866724263173674093298986320848399854987890490487646811801650745771445097<117> (Robert Backstrom / Msieve 1.44 snfs for P58 x P117 / February 9, 2012 2012 年 2 月 9 日)
16×10186-619 = 1(7)1851<187> = 11821 × 49727 × 10820057 × 58218730948492698541<20> × 4801077466750128791143654381949808200943793929019055120316600334728650793198106050789780890336487054715825556095205076824683154469817332789293674414549<151>
16×10187-619 = 1(7)1861<188> = 11 × 224187443841669121284171214256607419<36> × 7208974724307126960936798016662298358054035706538253992990330169438604402959170146020867892824891898686186801010965926966443527148977721432936345060819<151> (suberi / GMP-ECM 6.1.2 B1=3000000, sigma=3436893762 for P36 x P151 / April 2, 2007 2007 年 4 月 2 日)
16×10188-619 = 1(7)1871<189> = 3 × 167 × 353 × 2537428050557<13> × 48106275120026634781605996370477<32> × 9909948442446916533736903357587811669301317906365556003<55> × 830994557990457843859395091142323435087546910426728215618282415381209980344723342621<84> (Tetsuya Kobayashi / GMP-ECM 4c B1=11000000 for P32 / March 30, 2003 2003 年 3 月 30 日) (LegionMammal978 / GGNFS/Msieve v1.53 for P55 x P84 / January 29, 2017 2017 年 1 月 29 日)
16×10189-619 = 1(7)1881<190> = 7 × 11 × 6779 × 3405815472491973450816938056943957519263611607615147960331615738017862224972418216259490783756899703204467919027588595371454200190001930671645968887449931851761030105918732559830066837<184>
16×10190-619 = 1(7)1891<191> = 13 × 109 × 8353 × 1219891 × 61566587 × 195452790030217399<18> × 780043984544746420521955762987<30> × 34094621548106215029203735244490780734764543703560567350309<59> × 3847265829146448766592546059775321362358930468529413258124622339<64> (Tetsuya Kobayashi / GMP-ECM 4c for P30 / March 10, 2003 2003 年 3 月 10 日) (Tyler Cadigan / GGNFS gnfs + Msieve for P59 x P64 / February 12, 2008 2008 年 2 月 12 日)
16×10191-619 = 1(7)1901<192> = 32 × 11 × 511001 × 19074551 × 228062320886448775750037817815064187<36> × 632212448963202133415532483621302508673<39> × 1277760980710380051791405788936054879244781885079050784827585632984359968005056168663808145344352525029<103> (Robert Backstrom / GMP-ECM 5.0c for P36 x P39 x P103 / September 6, 2003 2003 年 9 月 6 日)
16×10192-619 = 1(7)1911<193> = definitely prime number 素数
16×10193-619 = 1(7)1921<194> = 11 × 318229 × 102041326625741231<18> × 182197177581819462542690317992209111844276612569966165090974274413<66> × 273166408515499590850054757227010968632391841299557511530332714634311025442484398225061652897909130415903<105> (Edwin Hall / CADO-NFS/Msieve for P66 x P105 / January 8, 2021 2021 年 1 月 8 日)
16×10194-619 = 1(7)1931<195> = 3 × 881 × 36229 × 2810870631902323<16> × 32274239167570545719314458174132287758095505562807204328797<59> × 20465723029280930921941941415580075339941244986243215432695183418798102830116376992302603147609026367728264999203<113> (Eric Jeancolas / cado-nfs-3.0.0 for P59 x P113 / December 31, 2020 2020 年 12 月 31 日)
16×10195-619 = 1(7)1941<196> = 7 × 113 × 250953103 × 665441726617783865460466939<27> × 1142611992063225787964993583101379549972904628650586134362230753724495550355144455662360968548821899964432771529434333117649956874521876352309295994267231539<157>
16×10196-619 = 1(7)1951<197> = 13 × 127 × 44304259 × 1549767805741<13> × 156826080310343563012991696362910417861477967337954726241634251394822956459930847477356699139349502798513770361951586129151367258730348877265797994064598264546092332264078159<174>
16×10197-619 = 1(7)1961<198> = 3 × 11 × 163 × 431 × 57281531 × 14956860751033<14> × 89504236301032631332103160878399816536551156470579327910359492118831940390049791055983961434988257299301453139252945887752812241845060234916555338022172712867608891470973<170>
16×10198-619 = 1(7)1971<199> = 379 × 592556088219593<15> × 9253114653352851067<19> × 1129246659228815792118485211521871666013521780068314315671236829037<67> × 757586175006829195567622619480692476617831723242764894159772963047314978250599260956429500510167<96> (Eric Jeancolas / cado-nfs-3.0.0 for P67 x P96 / November 6, 2020 2020 年 11 月 6 日)
16×10199-619 = 1(7)1981<200> = 11 × 67270907819<11> × 10018935150608554771<20> × 2397926868735282435979671144171625706313381968459795627340974670814996527815839358216382759530946725149923110706130408580401252551652130178913488007764714638608725739889<169>
16×10200-619 = 1(7)1991<201> = 32 × 192 × 54717690913443452686296638281864505317875585650285557949454533018706610581033480387127663212612427755548715844191375123969768475770322492390821107349269860811873738928217229232926370507164597653979<197>
16×10201-619 = 1(7)2001<202> = 7 × 11 × 17 × 23 × 569 × 103776190507971934533542595427087896040021858638447170398500636410731296091262649904139662723618962185298783359723942880105933697508632671052494945986017053398693913079540487071085464641710399737<195>
16×10202-619 = 1(7)2011<203> = 13 × 28349 × 34392594053953<14> × 774084065902289048718087399845195164903118275130190680221774746273506046965659<78> × 1811937926574308234353786750203646785787624484509080432572793765971884896831505727576451727981291770736729<106> (Bob Backstrom / Msieve 1.54 snfs for P78 x P106 / September 14, 2021 2021 年 9 月 14 日)
16×10203-619 = 1(7)2021<204> = 3 × 11 × 91665371598605909009152456397<29> × 657215411796458624805543553673069067129523602011<48> × 89423258445250364959512839162353922378060729126520876969850895801103432091515498759383603001376217764662225741542054792287061<125> (Bob Backstrom / Msieve 1.54 snfs for P48 x P125 / December 19, 2021 2021 年 12 月 19 日)
16×10204-619 = 1(7)2031<205> = 15193 × 30259 × 42402071 × 2923254199368776908071747957545298023251<40> × 31197925229682662506627037226765024800636356485294267263733275741215700091433054976387888574771008007185826047920561881157023843453168730284826713773<149> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1411629582 for P40 x P149 / April 21, 2011 2011 年 4 月 21 日)
16×10205-619 = 1(7)2041<206> = 11 × 139 × 25220681 × 2338643067216454247241199<25> × 197128417533010803334219400313467278663010739448429114890135208428650917394193712865299718777425822945476124529130224168577576632777284160704602893468128205833133523729221<171>
16×10206-619 = 1(7)2051<207> = 3 × 15725091139<11> × 475800748495892867<18> × 4901783965719986289006496835311<31> × 490788208443118459113864108769759<33> × 1517999133476517856754106431080765696307429236392467<52> × 2168793065506607897851349768372855861079489954737258129969373083<64> (Tetsuya Kobayashi / GMP-ECM 4c B1=11000000 for P31 / March 30, 2003 2003 年 3 月 30 日) (Tetsuya Kobayashi / GMP-ECM 4c for P33 / April 15, 2003 2003 年 4 月 15 日) (Tetsuya Kobayashi / mpqs4linux 0.61 (PPMPQS method) for P52 x P64 / March 25, 2004 2004 年 3 月 25 日)
16×10207-619 = 1(7)2061<208> = 7 × 11 × 29 × 9048304351615529959999<22> × 13283420049020070909345613997926745744203<41> × 152134542640701443140077305268634634748463981643<48> × 43539537412599222428072270532313725395154705616540640071425626626892219931349209029998354312997<95> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3273968639 for P41 / April 22, 2011 2011 年 4 月 22 日) (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=1673999548 for P48 x P95 / May 15, 2011 2011 年 5 月 15 日)
16×10208-619 = 1(7)2071<209> = 13 × 3845903 × 82915387 × 1003933832175446107525169757096739021938391257612683<52> × 4271649124910793036299191011536063321719783582521219936677213986621965351215041950268125420012659136463054110299409136480748455396802412108209<142> (Bob Backstrom / Msieve 1.54 snfs for P52 x P142 / July 9, 2021 2021 年 7 月 9 日)
16×10209-619 = 1(7)2081<210> = 34 × 11 × 1879 × 12119 × 44434739 × 73618063218024707<17> × 7443511842620385575871994496973309250519956120669500575178633812312763<70> × 359849827435502427676558768346084027097333170160644261015886505840759115999500865825895193533174954031019<105> (ebina / Msieve 1.53 for P70 x P105 / July 12, 2023 2023 年 7 月 12 日)
16×10210-619 = 1(7)2091<211> = 1601 × 6359 × 174621339899881509598427561027402551988292599577082394129728223384698309603220916807654299426769436127284594181806855243089221322081956539564268025377850293654704701071676264783183432372554715987067150669<204>
16×10211-619 = 1(7)2101<212> = 11 × 142070942423413<15> × 105505865936566226471<21> × 107820891998393950968735120888933519173362691773357078744357496909736501773917870968464128106924120214894598435656265469091727393415286617503652175480421175890430498460048152507<177>
16×10212-619 = 1(7)2111<213> = 3 × 3263041518593<13> × 895070328816061991406958700185430392267435539467558402101684982280013<69> × 20289738887881956215987981246561202495077532498054614792237735393679843043561171554686146229716395359873927807414661975650076260573<131> (Bob Backstrom / Msieve 1.44 snfs for P69 x P131 / October 15, 2020 2020 年 10 月 15 日)
16×10213-619 = 1(7)2121<214> = 7 × 11 × 36739 × 701735753995253<15> × 9242562959716967<16> × 15343317696192422017522869439279665157<38> × 488382430326013611322394826953489183663048852873377999567794432277<66> × 12930463280816031468431249838165445283268929093062473082670903265716598263<74> (suberi / GMP-ECM 6.1.2 B1=3000000, sigma=1376874633 for P38 / April 4, 2007 2007 年 4 月 4 日) (Markus Tervooren / Msieve 1.44 for P66 x P74 / February 16, 2010 2010 年 2 月 16 日)
16×10214-619 = 1(7)2131<215> = 13 × 863 × 18661 × 369819256019<12> × 584833068852155422531<21> × 4516565897012282883697690057920883<34> × 16814750565378686502204377710527501824320586545945603<53> × 5169733908173540534007921788791377675334362229095173255753307146459503895142109161685829<88> (suberi / GMP-ECM 6.1.2 B1=1000000, sigma=3214346417 for P34 / March 18, 2007 2007 年 3 月 18 日) (Serge Batalov / Msieve-1.36+pol51 gnfs for P53 x P88 / 19 days on Opteron-2.8GHz; Linux x86_64 / August 4, 2008 2008 年 8 月 4 日)
16×10215-619 = 1(7)2141<216> = 3 × 11 × 59 × 166627 × 113650993829753<15> × 105772984753259713<18> × 10950773945920257459811<23> × 16105506479277392641419740381<29> × 2642243356116844953643918897797407<34> × 4330859096168901897940963503386710819148959<43> × 22586663374640520557656963042902371340078821723557<50> (Robert Backstrom / GMP-ECM 5.0c, PPSIQS Ver 1.1 for P34 x P43 x P50 / October 15, 2003 2003 年 10 月 15 日)
16×10216-619 = 1(7)2151<217> = 83 × 45734749 × 13663537919328949<17> × 16993254544088994418802208329222111041<38> × [2017034616574578333352594311052563596623521835744304536991343545930368699537861663516241055764361488063643138782918033528620871827176764508692767386386057<154>] (suberi / GMP-ECM 6.1.2 B1=1500000, sigma=907993680 for P38 / March 31, 2007 2007 年 3 月 31 日) Free to factor
16×10217-619 = 1(7)2161<218> = 112 × 17 × 357140913977385032759873377<27> × [24199343030304673917570818401198090307706604729662034881244790117480409070719630603838594427982130442667613637004200332400246256214237608195295430110631679470541689001223915098825589372339<188>] Free to factor
16×10218-619 = 1(7)2171<219> = 32 × 19 × 463 × 2237 × 3767 × 42488199915811907825218401930593218201413183069156125657<56> × 11155030042747976376970193483677128103653680188426636075287879721351<68> × 562211456701312316047511385337657079944341409237290044237468967791738343818854771859<84> (Bob Backstrom / Msieve 1.54 snfs for P56 x P68 x P84 / December 30, 2019 2019 年 12 月 30 日)
16×10219-619 = 1(7)2181<220> = 72 × 11 × 46993 × 154333 × 404166774733389037<18> × 212114590904713320009900689948963961604923720604596073813<57> × 5304758121484009393136878494986835923753701529927592679795942499825999163144746609762841509694809220669229020376512127513385060188901<133> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P57 x P133 / May 5, 2020 2020 年 5 月 5 日)
16×10220-619 = 1(7)2191<221> = 13 × 353 × 1877 × 16492937 × 1805034167<10> × 937019983238111<15> × 55949358235598934650206505967480781<35> × 502302273034882362079860646223768728379203876736278008316737227<63> × 2632707497199637986790781217412309087011431749152792902304523313521897147926180843269<85> (JMB / GMP-ECM B1=1000000, sigma=2519299828 for P35 / September 24, 2007 2007 年 9 月 24 日) (Serge Batalov / Msieve-1.39+pol51 gnfs for P63 x P85 / 1400.00 hours on Opteron-2.6GHz; Linux x86_64 / December 24, 2008 2008 年 12 月 24 日)
16×10221-619 = 1(7)2201<222> = 3 × 11 × 40547480142119922688518914038786161136818885750756170028782710211441154919<74> × 132861656712651410768724637841254958549779105856049539596201523367987125563433527252580925341831118918802493988686721629211532202122209163723587773<147> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs for P74 x P147 / 174.43 hours, 67.07 hours / August 28, 2009 2009 年 8 月 28 日)
16×10222-619 = 1(7)2211<223> = 1483 × 3407971716741567435158971<25> × 36935777665541691709580287003272744463270207642633357582461192113<65> × 9523423401310362648523974084807767439799091872560734112361572966919520603965193227844666978113926132424519216284595239572802761219<130> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P65 x P130 / March 3, 2020 2020 年 3 月 3 日)
16×10223-619 = 1(7)2221<224> = 11 × 23 × 751 × 75280480369<11> × 41845922388795147174569394043<29> × [29701712371995265047576462303446939830155267217566283047907774744836950137561132980649587490988350258096650150738524862620232368858755602727757274825030561843824628281911734470171<179>] Free to factor
16×10224-619 = 1(7)2231<225> = 3 × 47 × 1997 × 8075780727239953749637263748157<31> × 78180019996424723562709227211242710993514754596984976458278446626949447373479357147240525389760733675352685498240333696995320731279107261931657679440852959343057898538770879532240353480239<188> (Tetsuya Kobayashi / GMP-ECM 4c B1=11000000 for P31 x P188 / March 30, 2003 2003 年 3 月 30 日)
16×10225-619 = 1(7)2241<226> = 7 × 11 × 449201 × 926808400874602241473<21> × 55456961644019587100963978635636474845030775804418029595445952914335642367115153710208959339980511116047416295934706761353493700633062300135654647255893177587292628897177947942935014343775759318151<197>
16×10226-619 = 1(7)2251<227> = 13 × 284602268241262723<18> × 4805026242314041594567959912675887404665708974006896071443399040470508578266211380768064521361538445849599091925223316017849976381654715464332903590234923295449520323446904994758792022569407738562886645788829<208>
16×10227-619 = 1(7)2261<228> = 32 × 11 × 1795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129<226>
16×10228-619 = 1(7)2271<229> = 545054955047657<15> × 3261648685722593580242374157527229437905949510092049235613904266508550394058484968085709008284709829983938704694893033177055074190929727640143441586787265849323866891911018868381765929579170523955374826594570596403<214>
16×10229-619 = 1(7)2281<230> = 11 × 1616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161<229>
16×10230-619 = 1(7)2291<231> = 3 × 38945078819<11> × 21466915501116342896358829<26> × 247046739661072661230637470210755114559<39> × 286916059622781100623601679240117939871882618550760849903268950587193753296459162143817854883327763147036008100603481526880988265406728788824854702756946273<156> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2834035577 for P39 x P156 / April 21, 2011 2011 年 4 月 21 日)
16×10231-619 = 1(7)2301<232> = 7 × 11 × 32033860091<11> × [720738088461269480890298588025480429544528945293228914698515628477434996333299777850462237104612416721036993402407848707710334960769092659863675218672637113475492674368722803169341690311844848067330690522340897586335253<219>] Free to factor
16×10232-619 = 1(7)2311<233> = 132 × 107 × 5424611 × 2251879303<10> × 3383480632586611<16> × 659860332420269216293<21> × 401303020798046802054496312007947<33> × 87223325153410539792960778242188741603814806673799<50> × 1029846499365735297813123521677298882667759078003887769594019571105528710392948346877097419831<94> (suberi / GMP-ECM 6.1.2 B1=3000000, sigma=1023882424 for P33 / April 4, 2007 2007 年 4 月 4 日) (Erik Branger / GGNFS, Msieve gnfs for P50 x P94 / December 22, 2017 2017 年 12 月 22 日)
16×10233-619 = 1(7)2321<234> = 3 × 11 × 17 × 123593 × 183189877945441<15> × [13996494072952104062470127690478079363804488933901736270836962200084383928216208548605936620083031380752053672052476979361905186298348726859619394948761470078486621629801975069111238498799364994045183074401944547<212>] Free to factor
16×10234-619 = 1(7)2331<235> = 113 × 18217 × 22868736871<11> × 394296268123<12> × 799151801608369597<18> × [119847242045153154572043049773442389707845920086886217837687497703703496231486731548925284535034185164350180772869465102244612292892254468589838696030092784205183248643759021769521364951851<189>] Free to factor
16×10235-619 = 1(7)2341<236> = 11 × 29 × 37037719357719760261079<23> × 386429589610739568586536276533<30> × 713567298076051856522358950335091<33> × 125605990791686900936504691140588363699<39> × 151909019354249419571440528481694434053<39> × 285985047765230062977841876142162519940065363490818809053547121928669731<72> (Tetsuya Kobayashi / GMP-ECM 4c for P33 / April 15, 2003 2003 年 4 月 15 日) (suberi / GMP-ECM 6.1.2 B1=1000000, sigma=1848886819 for P30 / March 19, 2007 2007 年 3 月 19 日) (suberi / GMP-ECM 6.1.2 B1=5000000, sigma=1291122901 for P39(1519...) / April 17, 2007 2007 年 4 月 17 日) (suberi / GGNFS-0.77.1-20060513-pentium4 gnfs for P39(1256...) x P72 / 41.18 hours on Pentium 4 2.26GHz, Windows XP and Cygwin / April 20, 2007 2007 年 4 月 20 日)
16×10236-619 = 1(7)2351<237> = 33 × 19 × 3169 × 280459144651536871886377<24> × 274218227242304524161773438009<30> × 1421909464038927224396609520935005933786829775273504634801305178443143988862167579984687300680501175621905163101924775302759797354709824785464301697180073182292057849889503055851<178> (Tetsuya Kobayashi / GMP-ECM 4c B1=11000000 for P30 x P178 / March 30, 2003 2003 年 3 月 30 日)
16×10237-619 = 1(7)2361<238> = 7 × 11 × 438324427960483<15> × 52673366153584717467262012529625387367690192983339959732316512089910352044867119451941888993853682084524853308020952270988081900789383156387948511231515596345964603434847968950119545418137092964794895233885727897523168381<221>
16×10238-619 = 1(7)2371<239> = 13 × 127 × 5657 × 46430180224264648553519<23> × 254357642020012614687158935739<30> × 2995094195117222887884298164866532149<37> × 53813170009834495019293890293026883737954771285601624407366337052839069598577066902859258931966909830488746548353116927917982040532206068831417<143> (Yoichi Hanatani / for P30) (suberi / GMP-ECM 6.1.2 B1=1500000, sigma=1853018970 for P37 x P143 / March 31, 2007 2007 年 3 月 31 日)
16×10239-619 = 1(7)2381<240> = 3 × 112 × 1447 × 3033185910027188269<19> × 815821100045190986442820221468007365907<39> × [136775513402527513276449960252663240132942816718177192411429017991695294109856094335387861403514950816382124132603420271754341116847737151134113233593519139011699375754070276417<177>] (Ignacio Santos / GMP-ECM 6.3 B1=3000000, sigma=3295713768 for P39 / October 2, 2010 2010 年 10 月 2 日) Free to factor
16×10240-619 = 1(7)2391<241> = 214259 × 45971639314341857839<20> × 3635546933168771123588232262171985799019073<43> × 49645358754231505271704520463941124503054131985354822418891186123680825347035422254985426027429954370789824305822464117472409850554663118163426845863590649176484170127543527<173> (suberi / GMP-ECM 6.2.1 B1=11000000, sigma=1812907080 for P43 x P173 / June 27, 2008 2008 年 6 月 27 日)
16×10241-619 = 1(7)2401<242> = 11 × 39983 × 755700267855397<15> × 209869239626872379<18> × 254865497052259206068530529012740713255890394671665788407045593049966479350489248532654576327363515246881623850754952979522644007380038839039928913543311941341311954475956179568334733806595714314460186009<204>
16×10242-619 = 1(7)2411<243> = 3 × 6719 × 268283 × 582809 × 1330056337237<13> × 512721017321156131<18> × 3156799717939849367093<22> × 1008989719228524520321892178343217630278739<43> × 2401751091201983739092508643496917164072520725929834284569799293701<67> × 10812328939122043235237703044935268315327034409219609424564177639321<68> (Serge Batalov / GMP-ECM B1=11000000, sigma=4221855083 for P43 / August 15, 2011 2011 年 8 月 15 日) (Markus Tervooren / Msieve 1.49 for P67 x P68 / November 3, 2011 2011 年 11 月 3 日)
16×10243-619 = 1(7)2421<244> = 7 × 11 × 30296731 × 60143609 × 1911168697<10> × 73816070285390658060425630041457<32> × 89815552858504538029397848590765921832955963914835824465961063265706776182932599671826275231815308372814936304804714931802441141565531885161718561173705190056377611445342403457383082453<185> (suberi / GMP-ECM 6.1.2 B1=1500000, sigma=469010008 for P32 x P185 / April 2, 2007 2007 年 4 月 2 日)
16×10244-619 = 1(7)2431<245> = 13 × 11093 × 1330706156723<13> × 3353370740535258743<19> × 23927338568455349437657020835689181<35> × 6950297122404667017126180580571804584478873<43> × 689374275326868006879050949809921591183884129<45> × 240973081915639082845341170724077395917094580643682269940315761724024326654500463959123<87> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=3921543760 for P35 / June 18, 2008 2008 年 6 月 18 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=2300138562 for P43 / August 11, 2011 2011 年 8 月 11 日) (Warut Roonguthai / Msieve 1.48 gnfs for P45 x P87 / September 1, 2011 2011 年 9 月 1 日)
16×10245-619 = 1(7)2441<246> = 32 × 11 × 23 × 661 × 3593 × 10301 × 4840133 × 5764841 × 679164323 × 3629375857<10> × 334689967902904368763<21> × 6805943732941698014429478017066561<34> × 20370134213368423426672455205813626417541067572894236720844778196943084983955699624795881283538877410006319344463020634482928235221594799195308979<146> (suberi / GMP-ECM 6.1.2 B1=1000000, sigma=4067790032 for P34 x P146 / March 15, 2007 2007 年 3 月 15 日)
16×10246-619 = 1(7)2451<247> = 7873 × 73735471 × 50471251208266401221148968621<29> × 60675964949918263205609110309720019624586192956489493080965555374327360718253084322742804690412945082154262349245969473440450190732883309700083469169362728986304992360444260458290295833946365316166058187897<206>
16×10247-619 = 1(7)2461<248> = 11 × 1519462863204010887343118174303851<34> × 2446972297993506364536910147344312252817<40> × 434675983297164654943064917508776598208565289076376758993205934839973130416427780890879508995035601216645271796689898925197909151263983145235974828216649664885501680694980083<174> (Yoichi Hanatani / for P34 / January 26, 2003 2003 年 1 月 26 日) (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=1310421718 for P40 x P174 / June 17, 2008 2008 年 6 月 17 日)
16×10248-619 = 1(7)2471<249> = 3 × 265423 × 180159113 × 1498026559<10> × 119850733046506139<18> × 42057469111728052258549913951<29> × [164118707278697012148901963411649001516134817629050281366776093237182031111661894441228458503313250765273030656112662531626679174373740660593229857490939673830703101301869297279693<180>] Free to factor
16×10249-619 = 1(7)2481<250> = 7 × 11 × 17 × 41549 × 32687164677316631140111000177003039675461889913147322895982522532605850247812325189426358421718966957544229171068070001009563510536847475656790809841849507276437633648750784719230197496114563560088546178676471328803868838101983091669259524931<242>
16×10250-619 = 1(7)2491<251> = 13 × 1117 × 3001 × 68960274559011859<17> × 105187359738922024391561<24> × 47127519770374767542490387021015569<35> × 1193377463091214465280930122329596329399002506548645441537440214904924329099256353065394411257513274567225314616795075715769044965685150587906045369454735928523088581121<169> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=137838325 for P35 x P169 / June 18, 2008 2008 年 6 月 18 日)
16×10251-619 = 1(7)2501<252> = 3 × 11 × 139 × 363390883 × 574521427 × 28088930341<11> × 6608962296465227177671810700180976962054000955947223455506838758479685290988231781256583274972237103758621265534100990178157980232241714117420079672328632077093513159346482307893521306171109553689410118076990914306207093<220>
16×10252-619 = 1(7)2511<253> = 353 × 23949447611<11> × [210284502279937669588616997431091621095874451555956664862345129288820145684647696211777194053630527228015687471184161918944474483076292640409232390691071752385583805428800537262104111795340397550023379149184221832197259604680005493121583537<240>] Free to factor
16×10253-619 = 1(7)2521<254> = 11 × 181 × 20806335551<11> × 80501681573<11> × 327141194806053563783<21> × 16295602680923199926972178510446356229030239513570891570821754697926070369030027285735191011617248093862074566787515644028554067280814641855639764715205477820470933116903874499024346644742649389704727837345409<209>
16×10254-619 = 1(7)2531<255> = 32 × 19 × 479 × 18257863271<11> × 8390210836727497<16> × [14168472275119053432216683971680269901239873994700666170444561420434678584783881287409082983345527777887163284162386272162314650186773377764935653219352068791734739086705174616729654655734398812207787630885391491195495374337<224>] Free to factor
16×10255-619 = 1(7)2541<256> = 7 × 11 × 60550035571359909537766471<26> × 33273696103095296162560387112426707632251<41> × 11459648575619606808262864861898631836834380107025454538075369618977123371092173776853361924845570946529600730468494194070828968033243397880956979774128467482267328075554585213578418244163<188> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3842423267 for P41 x P188 / April 10, 2017 2017 年 4 月 10 日)
16×10256-619 = 1(7)2551<257> = 13 × 563 × [2428989995597455632979611665224453856780677384585022240439647189203139469569309711405626148077302606609889025519576141245768243992045057764418332801991771796389913619043281565484052162560155455359718237160510695146574365046833963352613441423388137420109<253>] Free to factor
16×10257-619 = 1(7)2561<258> = 3 × 11 × 83 × 6791 × 27793 × 61083945066247211<17> × 11973396328052014063537384089091<32> × 470188331252182007816600686479685732232199272249927511812291210269221188654889243641592032757035298041216499473736376226061709807065370550885468011413428406041711709811988249747091951334724759705503<198> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2210026221 for P32 x P198 / December 10, 2015 2015 年 12 月 10 日)
16×10258-619 = 1(7)2571<259> = 13289919586806923<17> × 503129547936483273721<21> × [265873649301496070870765989842227930618513112116579464123142885420154377840353196277461105991261732498306428514347285964716994007976639093038957674965969187393646542280677722472601771553752682678719545134468357435035375337<222>] Free to factor
16×10259-619 = 1(7)2581<260> = 11 × 78311 × 481619 × 8385038359<10> × 93032853876141341<17> × 3163998047910101765049794798959819<34> × 17361242467634415021486222941311063076862537465851537968155582707214813711103665014107914598484758990177109431357744593421967972642745661279227254756121369330823649274797871981562602192389<188> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3989661915 for P34 x P188 / April 9, 2017 2017 年 4 月 9 日)
16×10260-619 = 1(7)2591<261> = 3 × [59259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257<260>] Free to factor
16×10261-619 = 1(7)2601<262> = 72 × 112 × 101946129953505399761491<24> × [2941204887575052414787376350198780376316236337247724739360377225827961345801545082309523797001768429263473059893176148119871655265456991753507909663620644070896923026071551267839843815279079616675448556855222032651904259635804299758689<235>] Free to factor
16×10262-619 = 1(7)2611<263> = 13 × 197 × 4129 × 22249267 × 19180197298905755556665503403619331<35> × 4276413179629164474945783581019417526833487<43> × [921243792443016891540393166526247920522723920975281616126295913015653358818377946002669988118186458469458141124629852769781006177759656467076070982219143300136030599758541<171>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3668006641 for P35 / December 10, 2015 2015 年 12 月 10 日) (Seth Troisi / GMP-ECM 7.0.6, ecm-db 0.1 B1=10000000000 for P43 / January 2, 2024 2024 年 1 月 2 日) Free to factor
16×10263-619 = 1(7)2621<264> = 33 × 11 × 29 × 159777127 × 1298335648422439211839343<25> × 5903533731531880640347031777322544607633<40> × [16854248292486266588908287883091279569977976369351093203755505445986315753916531653831013390117411916383630402934506784497863444994303837155369819109318194958052191778240671072253332553159<188>] (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P40 / December 26, 2024 2024 年 12 月 26 日) Free to factor
16×10264-619 = 1(7)2631<265> = 97 × 229 × [80033213783720243901219005887443288964920441983423120595046944481960013405563308773140853454183486146750901624174032223372699670363200728302245431854219501092953575733929580776022049150397414927194785836121990626109835581766433069723935433204779983693232691567<260>] Free to factor
16×10265-619 = 1(7)2641<266> = 11 × 17 × 9127 × 1383268697728582979<19> × 7530109070801540774306124727027138730278423477841287416894429431427507335163138701960982516213299068796876145581370723475749741919533087626518555056567497035675661690629428750160258232139636350195997806968269900646729040094143197108372027501<241>
16×10266-619 = 1(7)2651<267> = 3 × 1821457132736009563<19> × 42552274507661567878013897855837<32> × [764565126066190048176002016499952462926347931147170232408320275580386835430707573278863935182538240051301856576947906900617941139607164387102174057895232918527104723222489742003719578424785578472556986218903575923447<216>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2267066335 for P32 / December 10, 2015 2015 年 12 月 10 日) Free to factor
16×10267-619 = 1(7)2661<268> = 7 × 11 × 23 × 731779 × 4231309 × 89975876995960242228014874628627567<35> × [3603115132162798320667038914971586491131517916442761761958443702014610104329745117622775072362924348566032068193220689073015184185448394912127623352594827589020795583632982977346698514663116482042269279601473313434073<217>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3784341758 for P35 / April 10, 2017 2017 年 4 月 10 日) Free to factor
16×10268-619 = 1(7)2671<269> = 13 × 450083 × 5073379 × 61874741 × 5143172789<10> × 6128188907466638161<19> × 220854035593359868752191<24> × [1390471883667446714452748453032046284664383999029058439009230107201506274724213887931566116448736310879189031923622614888135160307697116830230179055950121897775740981247868445944816830200473418969<196>] Free to factor
16×10269-619 = 1(7)2681<270> = 3 × 11 × 199 × 1871 × 1481854445252341893828260734092142329167<40> × 22265208998030165233360274662004431508389644373<47> × [438535086235183905825892124290739914374443449428165606147774072569622105644514049453945954804362820683150529874238732960251919035170101053813677209621606020574147829146416569033<177>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1374754921 for P40 / April 9, 2017 2017 年 4 月 9 日) (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P47 / December 27, 2024 2024 年 12 月 27 日) Free to factor
16×10270-619 = 1(7)2691<271> = 47 × 4261 × 23916852901<11> × 2048602952854387<16> × 26160922568587216615400621<26> × 50031242497466824636665527278869763810859<41> × 138424164352877987817142925355546314230992972179829991261798694001375274643521287560101262764404757778371707937801502824526616567632752125641050229251877567764925736214948241<174> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1833699921 for P41 x P174 / April 7, 2017 2017 年 4 月 7 日)
16×10271-619 = 1(7)2701<272> = 11 × 6571 × 25013 × 785803 × 16691036166093859<17> × 749705258584731194418936221973334184364522213989738752634178223582899439811412035540292726835085552726548492215328035725055779920809551682274966516956679178855751635172079910811926622854999390299650697771624240921169364823762591055885931191<240>
16×10272-619 = 1(7)2711<273> = 32 × 19 × 274061 × [3793447908879503471999431248355021696044443125272934131597112056642227828985649644989347630781600181548726747109716914684780399398805840142981310874718137040387362812060553509713534722693587761212288649739026550386961441562744627749300482871066497697961547378603141<265>] Free to factor
16×10273-619 = 1(7)2721<274> = 7 × 11 × 59 × 83723693 × 1358342387717750558626269706113170445678259<43> × [3440940053339322598554357451137619789646824174160008527032736573255218107525422139956432810614054876018279922941465037208988116492349727604814937218063685962193237958475253461379798776367992937266993243347446708036858131<220>] (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P43 / December 27, 2024 2024 年 12 月 27 日) Free to factor
16×10274-619 = 1(7)2731<275> = 13 × 1190381 × 1148809807550160428776602925887902714649781345234313653668465279201673683776472715476278201153682197146432546695151693047324782038289730364788686452086657567087782287789680380791966074325251765079853733822505165461748270109626683698346468501570103494193344417768362707<268>
16×10275-619 = 1(7)2741<276> = 3 × 11 × 955103 × 2754991 × 4479491 × 4925491321<10> × 1540650986089<13> × 20260136475941<14> × 2972817715993739913208074325668190121044908765008125044829312056594315600272074152831760068281757473258254942683507546092462855986687456725207001234972452715300910138748895614602236206591934827573877678592788716372222421<220>
16×10276-619 = 1(7)2751<277> = 1145479367705222019572831<25> × 2963347813186466319272104192000391<34> × [523730147276805449848739099221416747450380290327310294628618971847719512196491052537330823282034853509013135826667138953900003720746786473892978224033775891312288039178744032345577022323766706755078055671449595561058851<219>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1285145994 for P34 / November 20, 2015 2015 年 11 月 20 日) Free to factor
16×10277-619 = 1(7)2761<278> = 11 × 991 × 3137 × 65633849 × 859595711123978944574239915131133<33> × 3421041549702520055819195727807912441707<40> × [2693494868526788294390118820602973926479247951162163701842479816253475312440715422356344281415324357893051700323182825204338924805721204373595836201327844634318317867944455883416155406219657<190>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4059224243 for P33 / December 11, 2015 2015 年 12 月 11 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3370394698 for P40 / April 7, 2017 2017 年 4 月 7 日) Free to factor
16×10278-619 = 1(7)2771<279> = 3 × 149 × 163 × 15803 × 154398403576785234144417164572158380368898715231748085426768864347999892735955071126820172105146385518699594167762307411890722101567637996644518745453099097672984682440186485221190786750389042747814793676611876128325861959362116879898953447544520921283651802848249631237<270>
16×10279-619 = 1(7)2781<280> = 7 × 11 × 1313960440914631433652324949<28> × [17571322826090413981940830496970932347304883776339080945921362283708266397634280701083039948156279141295141614150294207228761246084710041678474678501557581104416850555376412897008651944160391208702034714937206099380478012498411671595493133346639405627<251>] Free to factor
16×10280-619 = 1(7)2791<281> = 13 × 127 × 5125926277<10> × 58672419846319<14> × 203281997585320471<18> × 10293105796933901216552539<26> × [17111129869997332061143769156901753401343046194366530871446996190160226823400559776403766963605925090061120208972690135581196979545785327354564812400924646943527246179260446006089756679240875359702192483238644743<212>] Free to factor
16×10281-619 = 1(7)2801<282> = 32 × 11 × 17 × [105631478180497788340925595827556611870337360533438964811513831121674258929160889945203670693866772298144847164455007592262494223278537004027200105631478180497788340925595827556611870337360533438964811513831121674258929160889945203670693866772298144847164455007592262494223278537<279>] Free to factor
16×10282-619 = 1(7)2811<283> = 21365975555234249<17> × 9886938209108570638766648955441731<34> × [8415751944405533463927499456783822609902458946070202946451583705165043209214459832305698248188839982632184812155272884270882404470448328716602740977971831575172224006962799393340307519376942645049015855040945821235595920654837335409<232>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3480400301 for P34 / December 11, 2015 2015 年 12 月 11 日) Free to factor
16×10283-619 = 1(7)2821<284> = 112 × 1948443624889<13> × 142083979451693<15> × 69039121149193603<17> × 71781162439243654879<20> × 439490523737292409595449970428596326519<39> × [243671024528554554116202807235702611766885496583015998012266317466092358233540964953447430152904117868266515225155835208176169468974129397770494908482870369441299965203511658764421<180>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3867346386 for P39 / December 19, 2015 2015 年 12 月 19 日) Free to factor
16×10284-619 = 1(7)2831<285> = 3 × 353 × 73309 × 3395879993629<13> × [674329071598332998833784972448313670418958824727392898566880764738151176839033306694090665759856083814236789751336116887912122500548363438246341498508565304653913350068383755119736393936474579983307702886506863526776734064942598457231664989012930283329356088006929<264>] Free to factor
16×10285-619 = 1(7)2841<286> = 7 × 11 × 107 × 405696483359416993<18> × [531865385974604793506946344020131290784104866210409516140681490144525238752482146555841130703570283877333176006609214128490732130210743580260645668509430466901318082640666013166660794194248730014235428242317463269229695883064991237453226253714068122220006749180773<264>] Free to factor
16×10286-619 = 1(7)2851<287> = 13 × 16264109 × [84082157068755965750569020874206359620900312923466482016784403469096740643309840552677525794220966394246836477025662304732925816441673350895983380800102084987718747305577423353933582683279331278923509890481398112095865043782448910513411310842021617508919026635121626860799292563<278>] Free to factor
16×10287-619 = 1(7)2861<288> = 3 × 11 × 120997 × 1773887 × 49743527 × 1912624177<10> × 1393153581549537737<19> × 967866070281311511839<21> × 3406337340486662461535055923743160126449<40> × 57437409824108390381820681732194938338432596744120306094093795055072302858131577144686514245261355230739840774693492912427126032188604382359022561433727834962893457452330343022961<179> (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=2935440967 for P40 x P179 / December 19, 2015 2015 年 12 月 19 日)
16×10288-619 = 1(7)2871<289> = 243137 × 579999307 × 35423696147702803248080723<26> × 20173226125932503401460672533<29> × 17641264608350994492882037171925502728346666116229078249441753758381777773476244523808122045376201363293196005487802028774819672099010456923066239432679706103366697198173452230071242905279907162150521155172789859822453391<221>
16×10289-619 = 1(7)2881<290> = 11 × 23 × 853 × 2557 × 650007206623681728967<21> × 108836700954153189674485098953<30> × 60644909252122145069775255816442827844660939<44> × [7509124442961873914236159667751579641092036272099573417727405696774694729397436928928558042913888756562671699937821606875603664012540840095241247519530945559536379593317178886714797448203<187>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1730019649 for P30 / November 20, 2015 2015 年 11 月 20 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1213667830 for P44 / April 6, 2017 2017 年 4 月 6 日) Free to factor
16×10290-619 = 1(7)2891<291> = 34 × 19 × 54421 × 278237 × 9657641561<10> × 34754278939<11> × 218578897699<12> × 107646141798979860013220763503711<33> × [965987236672562686336181380181441598308043930492561567114247921443839023628243688395714649294444200368748578497865598746176656636141783896195660296866534001961031806608779198278553000734573864877062096683568080847<213>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4142591857 for P33 / December 12, 2015 2015 年 12 月 12 日) Free to factor
16×10291-619 = 1(7)2901<292> = 7 × 11 × 29 × 116047325461<12> × 31919961319540845647<20> × 17937651544239447176836243619487167<35> × [11981899562498825933415346302917810717046409263324021117533497237961262740839961773007246655662730065059500234783518884473878795606062265967285160805877882049699046144049485106412598370372137313393577026642897057112161953383<224>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4121212807 for P35 / December 12, 2015 2015 年 12 月 12 日) Free to factor
16×10292-619 = 1(7)2911<293> = 13 × 131 × 1051 × 3049 × 1929794908885392046824193154457682670879689<43> × [1688074185344844821002266920510929329071999100100952884741570047058118865328393873286625145833440800611289589879838699351867274247521670577411798336467811668697154533850277477195980998768682949193313299818341321014712896270587698027734462487<241>] (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P43 / December 27, 2024 2024 年 12 月 27 日) Free to factor
16×10293-619 = 1(7)2921<294> = 3 × 11 × 3301 × 508693 × 28259039 × 455243303 × 52754694028639376088466597<26> × 19545771220045143467911336013<29> × 241850713761467714996715965813758454936084302217892233068556748206837360760345006713498515843949972057155920907313200730224829022744595482395418494636814032374921223304451481512047801742737095525353000438813352107<213>
16×10294-619 = 1(7)2931<295> = 443 × 4266557 × 20068273029527<14> × 8986886952935532662043633352042219<34> × 5215271417446842642309207687671551524878271754733153720076166361397924061687085129263714170573862273118870630783050897346225940015240275732733116697975872735762813142498314787212256096344395120658463662016579721773889395238025181216807017<238> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=147078837 for P34 x P238 / April 5, 2017 2017 年 4 月 5 日)
16×10295-619 = 1(7)2941<296> = 11 × 214003 × 1529228741<10> × 29700348524645878269387885503<29> × 586578574821715069015583041475446633681<39> × [283468452654237167027741508026842038309189038816828388067417811519348743719908683209095742280261024501003774056760015710015688712767220819219399841515982251978169346830378681711234733045780030315843704192814687249<213>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=790489913 for P39 / December 12, 2015 2015 年 12 月 12 日) Free to factor
16×10296-619 = 1(7)2951<297> = 3 × 87118766878061123<17> × 451883514800558785910834501<27> × 1505282458973985842584171222140867606541845803601083046696949820088863252232287528039856000679048209291129833565351795179429447212368124413792652584180537705135971763916949796512454364763460343861827036736034397620915214991691112852479321418559634125559<253>
16×10297-619 = 1(7)2961<298> = 7 × 11 × 17 × 139 × 1697741531<10> × 165322018061<12> × [34811341178070048977119165342675561604625478755606844799926706168988687889141779160890826131575438014113279256346519227801996100775260094687963635154979986402136311920888392978395178753678439262040248062867110829972771366028364312506662460986978085692662174541117106590731<272>] Free to factor
16×10298-619 = 1(7)2971<299> = 13 × 83 × 109 × [151157440866736765929868615841866643237263332322467947537031211177336964890850156684134798426828934179437108584892380625772910508181868853914836008347669671865537898476994309867085372777867527508292402732548637268433886097199902881344243121627890059414321600681720058308982814343707457446818561<294>] Free to factor
16×10299-619 = 1(7)2981<300> = 32 × 11 × [1795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129068462401795735129<298>] Free to factor
16×10300-619 = 1(7)2991<301> = 283 × 1961623 × 20424869 × 3296001084773<13> × 90133927024938521<17> × [527764985773642652113156457566520986057720726567254385684904367003675570836994677824979904644229223960094742460923732649180440206425440050635154347896268586192094188151998681049477439563510018528867414660459746316255354129057133378606177735224689552916647<255>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク