Table of contents 目次

  1. About 899...993 899...993 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 899...993 899...993 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 899...993 899...993 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 899...993 899...993 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

89w3 = { 83, 893, 8993, 89993, 899993, 8999993, 89999993, 899999993, 8999999993, 89999999993, … }

1.3. General term 一般項

9×10n-7 (1≤n)

2. Prime numbers of the form 899...993 899...993 の形の素数

2.1. Last updated 最終更新日

October 21, 2023 2023 年 10 月 21 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 9×101-7 = 83 is prime. は素数です。
  2. 9×106-7 = 8999993 is prime. は素数です。
  3. 9×109-7 = 8999999993<10> is prime. は素数です。
  4. 9×1010-7 = 89999999993<11> is prime. は素数です。
  5. 9×1012-7 = 8(9)113<13> is prime. は素数です。
  6. 9×1013-7 = 8(9)123<14> is prime. は素数です。
  7. 9×1023-7 = 8(9)223<24> is prime. は素数です。
  8. 9×1061-7 = 8(9)603<62> is prime. は素数です。
  9. 9×10194-7 = 8(9)1933<195> is prime. は素数です。 (discovered by:発見: Makoto Kamada / November 29, 2004 2004 年 11 月 29 日) (certified by:証明: Makoto Kamada / PPSIQS / January 5, 2005 2005 年 1 月 5 日)
  10. 9×10233-7 = 8(9)2323<234> is prime. は素数です。 (discovered by:発見: Makoto Kamada / November 29, 2004 2004 年 11 月 29 日) (certified by:証明: Makoto Kamada / PPSIQS / January 5, 2005 2005 年 1 月 5 日)
  11. 9×10549-7 = 8(9)5483<550> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 1, 2006 2006 年 6 月 1 日)
  12. 9×10765-7 = 8(9)7643<766> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 1, 2006 2006 年 6 月 1 日)
  13. 9×10973-7 = 8(9)9723<974> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 1, 2006 2006 年 6 月 1 日)
  14. 9×101061-7 = 8(9)10603<1062> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 14, 2006 2006 年 9 月 14 日) [certificate証明]
  15. 9×101186-7 = 8(9)11853<1187> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 11, 2006 2006 年 9 月 11 日) [certificate証明]
  16. 9×101853-7 = 8(9)18523<1854> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / July 3, 2006 2006 年 7 月 3 日) [certificate証明]
  17. 9×103713-7 = 8(9)37123<3714> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 18, 2004 2004 年 12 月 18 日) (certified by:証明: Ray Chandler / Primo 4.0.2 - LX64 / April 15, 2013 2013 年 4 月 15 日) [certificate証明]
  18. 9×106789-7 = 8(9)67883<6790> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 25, 2004 2004 年 12 月 25 日)
  19. 9×107254-7 = 8(9)72533<7255> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 29, 2004 2004 年 12 月 29 日)
  20. 9×107765-7 = 8(9)77643<7766> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 29, 2004 2004 年 12 月 29 日)
  21. 9×109025-7 = 8(9)90243<9026> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / January 8, 2005 2005 年 1 月 8 日)
  22. 9×1010855-7 = 8(9)108543<10856> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / November 4, 2007 2007 年 11 月 4 日)
  23. 9×1023640-7 = 8(9)236393<23641> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  24. 9×1031440-7 = 8(9)314393<31441> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  25. 9×1031839-7 = 8(9)318383<31840> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  26. 9×1032287-7 = 8(9)322863<32288> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  27. 9×10120342-7 = 8(9)1203413<120343> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)
  28. 9×10132148-7 = 8(9)1321473<132149> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / September 8, 2015 2015 年 9 月 8 日
  3. n≤300000 / Completed 終了 / Bob Price / October 19, 2023 2023 年 10 月 19 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 9×1013k+5-7 = 53×(9×105-753+81×105×1013-19×53×k-1Σm=01013m)
  2. 9×1015k+4-7 = 31×(9×104-731+81×104×1015-19×31×k-1Σm=01015m)
  3. 9×1016k+3-7 = 17×(9×103-717+81×103×1016-19×17×k-1Σm=01016m)
  4. 9×1018k+2-7 = 19×(9×102-719+81×102×1018-19×19×k-1Σm=01018m)
  5. 9×1022k+3-7 = 23×(9×103-723+81×103×1022-19×23×k-1Σm=01022m)
  6. 9×1026k+20-7 = 859×(9×1020-7859+81×1020×1026-19×859×k-1Σm=01026m)
  7. 9×1028k+22-7 = 29×(9×1022-729+81×1022×1028-19×29×k-1Σm=01028m)
  8. 9×1028k+22-7 = 281×(9×1022-7281+81×1022×1028-19×281×k-1Σm=01028m)
  9. 9×1032k+27-7 = 449×(9×1027-7449+81×1027×1032-19×449×k-1Σm=01032m)
  10. 9×1041k+1-7 = 83×(9×101-783+81×10×1041-19×83×k-1Σm=01041m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 31.06%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 31.06% です。

3. Factor table of 899...993 899...993 の素因数分解表

3.1. Last updated 最終更新日

April 24, 2022 2022 年 4 月 24 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=207, 210, 211, 213, 216, 217, 218, 224, 227, 228, 236, 239, 242, 244, 246, 249, 250, 252, 253, 254, 257, 259, 260, 261, 262, 264, 267, 268, 269, 270, 271, 272, 274, 276, 277, 278, 280, 282, 283, 284, 285, 286, 289, 291, 292, 294, 295, 296, 298 (49/300)

3.4. Factor table 素因数分解表

9×101-7 = 83 = definitely prime number 素数
9×102-7 = 893 = 19 × 47
9×103-7 = 8993 = 17 × 232
9×104-7 = 89993 = 31 × 2903
9×105-7 = 899993 = 53 × 16981
9×106-7 = 8999993 = definitely prime number 素数
9×107-7 = 89999993 = 379 × 237467
9×108-7 = 899999993 = 1811 × 496963
9×109-7 = 8999999993<10> = definitely prime number 素数
9×1010-7 = 89999999993<11> = definitely prime number 素数
9×1011-7 = 899999999993<12> = 313 × 2875399361<10>
9×1012-7 = 8999999999993<13> = definitely prime number 素数
9×1013-7 = 89999999999993<14> = definitely prime number 素数
9×1014-7 = 899999999999993<15> = 3313 × 271657108361<12>
9×1015-7 = 8999999999999993<16> = 317 × 3701 × 7671215129<10>
9×1016-7 = 89999999999999993<17> = 1867 × 3217 × 14984668187<11>
9×1017-7 = 899999999999999993<18> = 269 × 23747 × 140890424351<12>
9×1018-7 = 8999999999999999993<19> = 53 × 13415189 × 12658138529<11>
9×1019-7 = 89999999999999999993<20> = 17 × 31 × 22963 × 1020847 × 7285219
9×1020-7 = 899999999999999999993<21> = 192 × 859 × 4621 × 8269 × 75954443
9×1021-7 = 8999999999999999999993<22> = 24049 × 393929 × 452443 × 2099731
9×1022-7 = 89999999999999999999993<23> = 29 × 281 × 523 × 2557231 × 8257841489<10>
9×1023-7 = 899999999999999999999993<24> = definitely prime number 素数
9×1024-7 = 8999999999999999999999993<25> = 227 × 1951 × 63317 × 320951236598777<15>
9×1025-7 = 89999999999999999999999993<26> = 23 × 3913043478260869565217391<25>
9×1026-7 = 899999999999999999999999993<27> = 113 × 337 × 787 × 30030283538930108419<20>
9×1027-7 = 8999999999999999999999999993<28> = 449 × 4096397 × 4893213091857087581<19>
9×1028-7 = 89999999999999999999999999993<29> = 6247 × 177892207 × 80986770372427217<17>
9×1029-7 = 899999999999999999999999999993<30> = 311 × 373 × 6967 × 428083 × 2601354241140871<16>
9×1030-7 = 8999999999999999999999999999993<31> = 16631 × 541158078287535325596777103<27>
9×1031-7 = 89999999999999999999999999999993<32> = 53 × 40213357 × 42227591383310023366633<23>
9×1032-7 = 899999999999999999999999999999993<33> = 109 × 34306163 × 140914869181<12> × 1707996761659<13>
9×1033-7 = 8999999999999999999999999999999993<34> = 962067047 × 3046158667<10> × 3071034173656957<16>
9×1034-7 = 89999999999999999999999999999999993<35> = 31 × 389 × 7463305415042706692097188821627<31>
9×1035-7 = 899999999999999999999999999999999993<36> = 17 × 1676887 × 12045008363<11> × 2621094531232243709<19>
9×1036-7 = 8999999999999999999999999999999999993<37> = 578509 × 15557234200332233379255983917277<32>
9×1037-7 = 89999999999999999999999999999999999993<38> = 13627 × 22961 × 19819511 × 14513044264682099118029<23>
9×1038-7 = 899999999999999999999999999999999999993<39> = 19 × 59 × 383 × 56989 × 1216373 × 30239897518043332553383<23>
9×1039-7 = 8999999999999999999999999999999999999993<40> = 10343147 × 6519673271990959<16> × 133463951944204741<18>
9×1040-7 = 89999999999999999999999999999999999999993<41> = 3178728147256931<16> × 28313210765653266304553203<26>
9×1041-7 = 899999999999999999999999999999999999999993<42> = 1519153 × 592435389983760687699000693149406281<36>
9×1042-7 = 8999999999999999999999999999999999999999993<43> = 83 × 50207 × 503527689989<12> × 4289204835102465899374777<25>
9×1043-7 = 89999999999999999999999999999999999999999993<44> = 3626823462259554793<19> × 24815103612440213368896401<26>
9×1044-7 = 899999999999999999999999999999999999999999993<45> = 53 × 233 × 2269 × 32120050759673104964293031794103622353<38>
9×1045-7 = 8999999999999999999999999999999999999999999993<46> = 26227 × 57367 × 16810357 × 885199967 × 12266713841<11> × 32770660463<11>
9×1046-7 = 89999999999999999999999999999999999999999999993<47> = 131 × 859 × 958577 × 834355331834150144176536910168297721<36>
9×1047-7 = 899999999999999999999999999999999999999999999993<48> = 23 × 6329 × 1294713809<10> × 4775356485451602167308132609781431<34>
9×1048-7 = 8999999999999999999999999999999999999999999999993<49> = 47 × 457 × 2454698263<10> × 170698748147353661187216091658935609<36>
9×1049-7 = 89999999999999999999999999999999999999999999999993<50> = 31 × 97 × 4297 × 61141 × 235427459 × 6051217595279<13> × 79967092297671167<17>
9×1050-7 = 899999999999999999999999999999999999999999999999993<51> = 29 × 281 × 110442999140998895570008590011044299914099889557<48>
9×1051-7 = 8(9)503<52> = 172 × 303053 × 102760469330812520066122479952203137078458429<45>
9×1052-7 = 8(9)513<53> = 617 × 3361 × 13461960683<11> × 1384640841470659<16> × 2328323800825706481137<22>
9×1053-7 = 8(9)523<54> = 257 × 2731 × 2730271 × 1107026068697<13> × 194441495124557<15> × 2181901445423281<16>
9×1054-7 = 8(9)533<55> = 1156997 × 1469179 × 5294629371545575527506732661455484247697311<43>
9×1055-7 = 8(9)543<56> = 1595289607<10> × 76474336411677317<17> × 737712693767839975691599501747<30>
9×1056-7 = 8(9)553<57> = 19 × 38064163680249424816411<23> × 1244436143416699013384483692272377<34>
9×1057-7 = 8(9)563<58> = 53 × 14667123451153<14> × 44590576184581379839<20> × 259644189592931992527643<24>
9×1058-7 = 8(9)573<59> = 4231 × 24419 × 41515165640477<14> × 20982867305985629592625867628978277881<38>
9×1059-7 = 8(9)583<60> = 61 × 181 × 199 × 449 × 593 × 1538437965218539798708007408281349027216862982511<49>
9×1060-7 = 8(9)593<61> = 931990420483693<15> × 9656751616963076551941680487833418652305879101<46>
9×1061-7 = 8(9)603<62> = definitely prime number 素数
9×1062-7 = 8(9)613<63> = 6553 × 13250766851189015597542931<26> × 10364809607688328974145571574517051<35>
9×1063-7 = 8(9)623<64> = 2969 × 4615291 × 209897257 × 170019792081371<15> × 3516986807500121<16> × 5233066331801641<16>
9×1064-7 = 8(9)633<65> = 31 × 193 × 19489 × 64411397793914660436341<23> × 11983156385596497470624913966200779<35>
9×1065-7 = 8(9)643<66> = 28477 × 3408318076147<13> × 9272741572275731948360977948814948957874962223647<49>
9×1066-7 = 8(9)653<67> = 101311949 × 88834536190790288715105066234586011172285314538761859176157<59>
9×1067-7 = 8(9)663<68> = 17 × 3925889327117306563949989<25> × 1348514236122437171783930286890948195647861<43>
9×1068-7 = 8(9)673<69> = 2239 × 24107 × 16674209276110880749705056396529593117983203253812608899955541<62>
9×1069-7 = 8(9)683<70> = 23 × 391304347826086956521739130434782608695652173913043478260869565217391<69>
9×1070-7 = 8(9)693<71> = 53 × 2203 × 41721353 × 4667317181<10> × 1109998406431<13> × 3566186797560116503238928077107754269<37>
9×1071-7 = 8(9)703<72> = 587 × 3299 × 2086577 × 116162821 × 1917434452242125040485081748409927752483794566690933<52>
9×1072-7 = 8(9)713<73> = 859 × 8419 × 1402709784884641<16> × 887198930441398371296360402386507058010071975542313<51>
9×1073-7 = 8(9)723<74> = 577 × 33037 × 313151771 × 62245170469<11> × 12758621487819479<17> × 18984615547684073234135295828317<32>
9×1074-7 = 8(9)733<75> = 19 × 15334860677681731423<20> × 3088937164037708421559949570368204959659123615233580189<55>
9×1075-7 = 8(9)743<76> = 107981 × 34645789 × 8452984712082679<16> × 284599822377750208940599462415807344841270317063<48>
9×1076-7 = 8(9)753<77> = 197 × 51417547 × 62450111 × 20902061156533<14> × 22231066131117421759<20> × 306183871590184218075442931<27>
9×1077-7 = 8(9)763<78> = 4787412431419<13> × 9572930986839253860842860383569<31> × 19637976601995850451812419925821163<35> (Makoto Kamada / msieve 0.81 / 1 minutes)
9×1078-7 = 8(9)773<79> = 29 × 281 × 99623 × 687707 × 1603249 × 16547411 × 19199909 × 31647902285474629463385388915403499874414487<44>
9×1079-7 = 8(9)783<80> = 31 × 3931 × 1961471469667<13> × 1489556428853252065481506534061<31> × 252777733809051042510627160716499<33>
9×1080-7 = 8(9)793<81> = 223 × 557 × 136333 × 24991979 × 11251141385453<14> × 16308863265043<14> × 11589388958273519680856002091406734971<38>
9×1081-7 = 8(9)803<82> = 195760283 × 63078669271237<14> × 728845375474101807285300781953461969406930066225944407957183<60>
9×1082-7 = 8(9)813<83> = 3329 × 27035145689396215079603484529888855512165815560228296785821568038449984980474617<80>
9×1083-7 = 8(9)823<84> = 17 × 53 × 83 × 123707 × 24154932913<11> × 6837637450591<13> × 42049390908982969<17> × 14007922697293690593254196391394339<35>
9×1084-7 = 8(9)833<85> = 2460043 × 17754601 × 462084737 × 445930595549615608997917209874756352721133615668023076371690323<63>
9×1085-7 = 8(9)843<86> = 35281 × 89658182401<11> × 178071489654670298983<21> × 159778117883200444491118378129099058561979659252591<51>
9×1086-7 = 8(9)853<87> = 653740973 × 19321136458939597512041299<26> × 71253161142181477236070250973511702994228555432462959<53>
9×1087-7 = 8(9)863<88> = 24213892169609<14> × 2546150484433285848884197116341593<34> × 145980160671059359421302969277919938950489<42> (Makoto Kamada / msieve 0.83 / 9.5 minutes)
9×1088-7 = 8(9)873<89> = 5737 × 2730224921<10> × 32428952447<11> × 44010331139998721<17> × 1354451509234875550609003<25> × 2972406589748367709819669<25>
9×1089-7 = 8(9)883<90> = 1433 × 4783101992794033<16> × 131306636683864008664877819453723561118073999554515651299297780880066737<72>
9×1090-7 = 8(9)893<91> = 400260503 × 22485356243106505065277450071060346416443692921657073918182729111295800275352174831<83>
9×1091-7 = 8(9)903<92> = 23 × 449 × 72843863 × 21709335236231<14> × 47820557697466403<17> × 1591998561797473609405739<25> × 72388825562933445729016559<26>
9×1092-7 = 8(9)913<93> = 19 × 2222921 × 2592719 × 28489831 × 3405203237224919964164302378007<31> × 84718160814355196926074187190089269343909<41> (Makoto Kamada / msieve 0.83 / 4.3 minutes)
9×1093-7 = 8(9)923<94> = 3038766889<10> × 85610088419<11> × 34595545127810416261578469644387860475288120433778789515166544632779921723<74>
9×1094-7 = 8(9)933<95> = 31 × 47 × 317 × 569 × 3727 × 8537 × 6928517 × 763440435724467257952628446906247<33> × 2034844887234688044040269293005960665313<40> (Makoto Kamada / msieve 0.83 / 4.7 minutes)
9×1095-7 = 8(9)943<96> = 1194573351918499376609<22> × 753407062491883834740246764193083836545273035497250653710655350316236317977<75>
9×1096-7 = 8(9)953<97> = 53 × 59 × 367 × 1291 × 6074664843579651527512711558479908510741720836416093561242761926313722830075197756377347<88>
9×1097-7 = 8(9)963<98> = 179 × 7216035925321271<16> × 69677216312777739656044295307979533123700507474608057068550974780959397438380277<80>
9×1098-7 = 8(9)973<99> = 859 × 20865827 × 50212719510705002347050467277299825456184999045640036446817653141163429602617765772232201<89>
9×1099-7 = 8(9)983<100> = 17 × 1987 × 14543 × 262027 × 290516931203304609450113<24> × 240671255931226803033040927898839013903307752914346444123063719<63>
9×10100-7 = 8(9)993<101> = 275573 × 29016007 × 633438539 × 146026016625925851960851<24> × 121683999812110022401627219316059813295878908746202034867<57>
9×10101-7 = 8(9)1003<102> = 1151 × 1579 × 495205039646665701933885725384595491763364621121375305445219593172553095609237004581747072375317<96>
9×10102-7 = 8(9)1013<103> = 153757 × 6203345868991<13> × 9435862781643766392765431242711860011853071767563210891048721721836926586677604249139<85>
9×10103-7 = 8(9)1023<104> = 8969263 × 22129553 × 3138341068996635669510657500009591<34> × 144481741911394492878214372456463812416287949515103488657<57> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 1.16 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 28, 2007 2007 年 10 月 28 日)
9×10104-7 = 8(9)1033<105> = 149 × 55001 × 61379 × 30483828623351<14> × 32825864633489<14> × 313678532475953<15> × 5700269168653034105761773345654567533050804427789849<52>
9×10105-7 = 8(9)1043<106> = 349 × 3718002955578853001<19> × 6935972328195994366867601230695622408433022905199687749554476469033858069752030913957<85>
9×10106-7 = 8(9)1053<107> = 29 × 281 × 21155789 × 26583757 × 367077182621<12> × 29842828862698429679<20> × 1792648855350778106226341288212621000032004613815105849951<58>
9×10107-7 = 8(9)1063<108> = 229346090476450181550249720633629<33> × 3924200312856059802459172311645063058914298932835598068216843393357783672717<76> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1313680099 for P33 / October 20, 2007 2007 年 10 月 20 日)
9×10108-7 = 8(9)1073<109> = 134885793285601424333<21> × 66723112796199255391367082753863720943876137047685460137756116714844525365672978998733021<89>
9×10109-7 = 8(9)1083<110> = 312 × 53 × 33889 × 26164060541<11> × 13546917651611965549<20> × 535200556128305490027165361453<30> × 274866812455110095849889444659599825151057<42> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2718962488 for P30 / October 20, 2007 2007 年 10 月 20 日)
9×10110-7 = 8(9)1093<111> = 19 × 41551595117<11> × 41281949109330068117018801413<29> × 27614743514922133541815936402538216668321370424896711617313719193012707<71> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 1.60 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 28, 2007 2007 年 10 月 28 日)
9×10111-7 = 8(9)1103<112> = 263 × 2273 × 30709243 × 15081727006323373636683367<26> × 32506270040987637556622159708982578295394684865809958591379888244283291147<74>
9×10112-7 = 8(9)1113<113> = 15149 × 73453 × 75516953 × 1071037180065325997386223485620247257953372676977259499895914366620144365351171155661589700049273<97>
9×10113-7 = 8(9)1123<114> = 23 × 6988483 × 5599274518176361830196040119648035327490274697857081118475491250638962766995728357019996172709224342517477<106>
9×10114-7 = 8(9)1133<115> = 15273767989713770811037<23> × 232741247748956358607337<24> × 2648289886635648530766401<25> × 955999003944617666214740280660713563539945797<45>
9×10115-7 = 8(9)1143<116> = 17 × 509 × 1741 × 3079 × 47681 × 5427249593<10> × 148651844507<12> × 50439630145140012356441776917545429269823969657927910498987184071213433369264909<80>
9×10116-7 = 8(9)1153<117> = 867848053 × 8221001536282820042554959373<28> × 126146175062235775566651327911035316108784424212762468419631710947788602532706697<81>
9×10117-7 = 8(9)1163<118> = 192335013307<12> × 1111873976141<13> × 6876114528185803<16> × 432493409946666533034050450858960849<36> × 14151614711419740654283488076476618603054437<44> (Makoto Kamada / Msieve 1.28 for P36 x P44 / 12 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 28, 2007 2007 年 10 月 28 日)
9×10118-7 = 8(9)1173<119> = 14831 × 29251 × 11591783009<11> × 15310381321<11> × 6287652139412027<16> × 185911647667040247363626898402204883489295784715746022479797536976854416751<75>
9×10119-7 = 8(9)1183<120> = 61 × 823 × 1004981 × 1446682233738538319<19> × 45567990874948473844291875103339917072403<41> × 270596365668481699029128282701225154281973286874043<51> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 2.11 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 28, 2007 2007 年 10 月 28 日)
9×10120-7 = 8(9)1193<121> = 20354029401725849662526304753223971301497103511422609997<56> × 442172889817918611600780346173978409068598975005735222119428696669<66> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / October 28, 2007 2007 年 10 月 28 日)
9×10121-7 = 8(9)1203<122> = 479 × 187891440501043841336116910229645093945720250521920668058455114822546972860125260960334029227557411273486430062630480167<120>
9×10122-7 = 8(9)1213<123> = 53 × 4483 × 916879 × 2468335253078521<16> × 21496643135387952418448986201888231937<38> × 77859405334185056592558073314508609031087592802266287870129<59> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 2.78 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 28, 2007 2007 年 10 月 28 日)
9×10123-7 = 8(9)1223<124> = 283 × 449 × 18553 × 335087805245091568482853093222231<33> × 11392970303565490307790042441076114728020253883982388272289002974166360045042039653<83> (Robert Backstrom / GMP-ECM 6.0.1 B1=226000, sigma=4254552781 for P33 / October 28, 2007 2007 年 10 月 28 日)
9×10124-7 = 8(9)1233<125> = 31 × 83 × 859 × 514997239710717504843060243797163586321<39> × 79068710858248681348102914984733040362741538735234491408794076224567905858038519<80> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / October 28, 2007 2007 年 10 月 28 日)
9×10125-7 = 8(9)1243<126> = 3947 × 6271 × 25471265971155677<17> × 1427539228774468658751300436716796405108840460052646950466256970887892354170913842793876805033960215257<103>
9×10126-7 = 8(9)1253<127> = 3677 × 59222213 × 41329889829588424255804826541199422267006803659109803054115055195001946595585602838886274959316159376530032937660393<116>
9×10127-7 = 8(9)1263<128> = 16927 × 2815289 × 34549727 × 18928495665651195086151678397725759673977330546366127<53> × 2887877797068484257309586094965034801453924030197429437839<58> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 4.41 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 28, 2007 2007 年 10 月 28 日)
9×10128-7 = 8(9)1273<129> = 19 × 66612701 × 711101942145111019404068618274937972375094369054808015476934662244540706244120337540907986111663916054561110611149382047<120>
9×10129-7 = 8(9)1283<130> = 1045571 × 838081845193<12> × 1049171226970903<16> × 343667900375662241<18> × 87159316066813584377999<23> × 326816061765706342325106563410532398059764756204215248403<57>
9×10130-7 = 8(9)1293<131> = 2424152785551971<16> × 37126372783267998055843159178235622465202870961889271394375011300773037140602920337986974471215514460301932358538483<116>
9×10131-7 = 8(9)1303<132> = 17 × 15807203 × 16332241 × 29548166606333<14> × 6940044233644260805865391929265730365559559192127918756730817212365746010803798216745229167635247471631<103>
9×10132-7 = 8(9)1313<133> = 87359 × 453683 × 227081811124422167203942227581830789744857547422644471095022036000911125598887487270340241668613617124449321596453861290269<123>
9×10133-7 = 8(9)1323<134> = 264101 × 534617 × 182955127132944612210518087078849494903<39> × 3484055901363921062151806188107621607898929991774539197434850631713521731052250641243<85> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 6.85 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 28, 2007 2007 年 10 月 28 日)
9×10134-7 = 8(9)1333<135> = 29 × 281 × 1093 × 45587 × 136753 × 38335721 × 422801499246408347784437788429319191683918585807111678844840089751748325423028958440969058106442511184501944579<111>
9×10135-7 = 8(9)1343<136> = 23 × 53 × 661 × 1110971 × 11332367 × 887184592663736351258794588647849201608579898071048711818340124356551553119117860137528284345310237225304875811724811<117>
9×10136-7 = 8(9)1353<137> = 5189 × 1932439 × 121773261717971<15> × 73705705266237112903061904785478879040191055453335729064388835136829403264289003861332547456910848959029601202673<113>
9×10137-7 = 8(9)1363<138> = 227 × 2521 × 221091843902924979644001926922716807503<39> × 7113299338479217992920918313593338363891253403625902931023690166695268837106428754985186805093<94> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 13.09 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 29, 2007 2007 年 10 月 29 日)
9×10138-7 = 8(9)1373<139> = 113 × 1039 × 21012038995387387919<20> × 8324111480329451493669984302302012442668075809611357389<55> × 438270694932342412379485394874876095508458992349269934992589<60> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 6.25 hours on Core 2 Quad Q6600 / October 29, 2007 2007 年 10 月 29 日)
9×10139-7 = 8(9)1383<140> = 31 × 34319 × 95880034599375142177521603584056943225357<41> × 882303513756038409718500891576339947944242061119473046440639355414422699311396515924957852941<93> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 6.16 hours on Core 2 Quad Q6600 / October 29, 2007 2007 年 10 月 29 日)
9×10140-7 = 8(9)1393<141> = 47 × 109 × 167 × 617 × 153337616869490449763658859895879<33> × 11119053224090329768606633153477332542273472771580149117582678104067239138069306589653736225297573611<101> (Robert Backstrom / GMP-ECM 6.0.1 B1=690500, sigma=3998297514 for P33 / October 29, 2007 2007 年 10 月 29 日)
9×10141-7 = 8(9)1403<142> = 2467639565737<13> × 53727058137272382231521263461791395461691665958866250660772681<62> × 67884046657300958448660911774042029705347021611364740350454114167369<68> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.28 / October 30, 2007 2007 年 10 月 30 日)
9×10142-7 = 8(9)1413<143> = 1009 × 1104997769<10> × 4632016416848161505913411911<28> × 17426888481989185445727912461939386208627868426094724708353318363551372222498559470563406941300809238903<104>
9×10143-7 = 8(9)1423<144> = 1777 × 1725179 × 133421887 × 156872632499525723095280260098133461577<39> × 14026414070177028542787457357907396822775755157120560213926799915579235133672913797156429<89> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 9.59 hours on Core 2 Quad Q6600 / October 30, 2007 2007 年 10 月 30 日)
9×10144-7 = 8(9)1433<145> = 30380069764762946805547503800941<32> × 5793759319832245415885975057146558926953<40> × 51132060310818176689028811056072205332653270314035794978186101297841513141<74> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=578800379 for P32 / October 22, 2007 2007 年 10 月 22 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 8.87 hours on Core 2 Quad Q6600 / October 30, 2007 2007 年 10 月 30 日)
9×10145-7 = 8(9)1443<146> = 97 × 3307 × 3767 × 88689612345000909646591931059<29> × 839785174596700619416492075514766572936766799231731694119293012984478206119418982501449042954689673043155839<108> (Robert Backstrom / GMP-ECM 6.0.1 B1=226000, sigma=1550273985 for P29 / October 29, 2007 2007 年 10 月 29 日)
9×10146-7 = 8(9)1453<147> = 19 × 307 × 2243 × 17371526793899<14> × 28598478520519<14> × 64299853807288749095977974116352073454267827<44> × 2153427995281495420234041605616327252058426335937525315582533212837981<70> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 10.37 hours on Core 2 Quad Q6600 / October 30, 2007 2007 年 10 月 30 日)
9×10147-7 = 8(9)1463<148> = 17 × 2029 × 744027979 × 606721972442519377<18> × 578006271211006103445168626846863596682660958592932126625470299729097430772395542470494910326825803676709393711920247<117>
9×10148-7 = 8(9)1473<149> = 53 × 839 × 3833 × 5333122741489<13> × 380397540317863012963011373<27> × 185048077381378285528736195447051909587258335893<48> × 1406572115111896750750738223467919885903244947129739803<55> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 30.10 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 31, 2007 2007 年 10 月 31 日)
9×10149-7 = 8(9)1483<150> = 35794409962129142828512220689799871821<38> × 123028439265110134626156384131454479013793<42> × 204372184460583650412981392697490828081020379007054396748321776875537981<72> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 12.84 hours on Core 2 Quad Q6600 / October 29, 2007 2007 年 10 月 29 日)
9×10150-7 = 8(9)1493<151> = 859 × 352963277 × 18139634852382632412042997<26> × 55504280314514112186236174411054189440309<41> × 29482533885016913889484106257918099812603456906714576053691076225565509087<74> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 12.99 hours on Core 2 Quad Q6600 / October 31, 2007 2007 年 10 月 31 日)
9×10151-7 = 8(9)1503<152> = 90997 × 1567079 × 655276266581<12> × 963163697811673343987868577874569117461268078514734619814169842532563771456880425444817362835048257153449785312467072290576114231<129>
9×10152-7 = 8(9)1513<153> = 27487 × 2387449 × 5618769997<10> × 75820868126956676281536230696860571433120407<44> × 32192229601894986931087007258474395061004652068487123300133829248970334366365297350334109<89> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 37.53 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 1, 2007 2007 年 11 月 1 日)
9×10153-7 = 8(9)1523<154> = 235483 × 15771126802857831503737789<26> × 2469438507084583723424410362013<31> × 29916323560200857306637278521712341<35> × 32803016936544339453376593485631195739277624165372655627383<59> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=2936328627 for P31 / October 30, 2007 2007 年 10 月 30 日) (Jo Yeong Uk / Msieve v. 1.28 for P35 x P59 / 1.42 hours on Core 2 Quad Q6600 / October 31, 2007 2007 年 10 月 31 日)
9×10154-7 = 8(9)1533<155> = 31 × 59 × 3116155837<10> × 3792154237087773328323098510929643<34> × 13515254733080096925398066307959108515533417271<47> × 308105468835983009135964692963347948427570307230290780677274397<63> (Robert Backstrom / GMP-ECM 6.0.1 B1=1030000, sigma=1277051764 for P34, GGNFS-0.77.1-20060513-athlon-xp gnfs for P47 x P63 / 15.47 hours on Cygwin on AMD 64 3200+ / November 1, 2007 2007 年 11 月 1 日)
9×10155-7 = 8(9)1543<156> = 449 × 889001 × 392454196502293<15> × 5745197219293534564290482940434600173511654661178231708789916857339132144601793786666361428268813939928088595947487494143849747067149<133>
9×10156-7 = 8(9)1553<157> = 1683043 × 1587868814184539<16> × 3367694427687296260583100430280362964295561507388352974134863965811500981423614721410604471883435025863666523126213907931758652262395209<136>
9×10157-7 = 8(9)1563<158> = 23 × 64057787 × 8547312778918799179387612593474476828728823510172134540253167241939987973<73> × 7146824962215572093535969278319248184705372720242480746696150650147917691641<76> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 37.30 hours on Msieve 1.28 / October 31, 2007 2007 年 10 月 31 日)
9×10158-7 = 8(9)1573<159> = 199 × 6421 × 13103 × 8523801288669106552991843<25> × 6306417307313970197809245310868775352913674246951445466422716802566492004315636870863362894640283909949213143762982427939823<124>
9×10159-7 = 8(9)1583<160> = 18104666690449826252281753693<29> × 22392329597836817510288640646341074175512979619336814351<56> × 22199985850784836127380389132731731977501124190563051137404670084573603137251<77> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 59.23 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 2, 2007 2007 年 11 月 2 日)
9×10160-7 = 8(9)1593<161> = 619 × 31247 × 201823 × 44832592826645189491277561661890927333335849<44> × 58928729369518409469720209631759471783420671<44> × 8726738097012509717654043907256703264726239277870739541104253<61> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.28 / November 2, 2007 2007 年 11 月 2 日)
9×10161-7 = 8(9)1603<162> = 53 × 710382599 × 3193863019<10> × 14169121763<11> × 637003641965194182950788890954509239897<39> × 829226536019218470577471928756725407087718463007725782007729866451066972588969963334914455291<93> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 72.73 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 4, 2007 2007 年 11 月 4 日)
9×10162-7 = 8(9)1613<163> = 29 × 281 × 106876054067<12> × 152750521995337087<18> × 67651133495946255417864949522676555857026289347396681034462798066358356607523483217492809572137338637499398298500262908602463817833<131>
9×10163-7 = 8(9)1623<164> = 17 × 7192250773<10> × 9013613223467<13> × 25920613065189923<17> × 3150536960730125128921763452780254558726841743770021618219961721828962470357835320722259465108199647406218744914989315887653<124>
9×10164-7 = 8(9)1633<165> = 19 × 1847353 × 5195304037384876588643582502770703788863<40> × 44521045988937219971985542168110282187182538753337627749<56> × 110856890051938744122912238100452821884732080214861054731598977<63> (Robert Backstrom / GMP-ECM 6.0.1 B1=141500, sigma=2371525520 for P40, GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.29 / November 6, 2007 2007 年 11 月 6 日)
9×10165-7 = 8(9)1643<166> = 83 × 3391 × 5882321 × 1963931828123<13> × 76471335051147697<17> × 259614078290227987469021383<27> × 139423052398459153337677410997022971547928633169768746347640708337313693782504396296367451593083457<99>
9×10166-7 = 8(9)1653<167> = 42709 × 1578482099<10> × 326236852168633890020751838911718198217<39> × 4092139473970466337231565660348581447470351547418909019180227591362356350317132972423887166170348215102482040007519<115> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 124.14 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 7, 2007 2007 年 11 月 7 日)
9×10167-7 = 8(9)1663<168> = 4102069211<10> × 1475840225808026944863592821406727235005191165802606042142091249608358711<73> × 148662072304606973843025284582176600459246392524700966245732210436802333527066765202333<87> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.33 / January 27, 2008 2008 年 1 月 27 日)
9×10168-7 = 8(9)1673<169> = 11369 × 646974011 × 57572701889099<14> × 5558386317692349989<19> × 49210457799346902131698308801292711620150749<44> × 77698147296321048398209905863232249781232086869460260825621557916054516169171993<80> (Robert Backstrom / GMP-ECM 6.1.3 B1=1586000, sigma=2359037686 for P44 / February 11, 2008 2008 年 2 月 11 日)
9×10169-7 = 8(9)1683<170> = 31 × 499 × 34493149577<11> × 998601279007657794155352289231<30> × 168909976039395744416817759101263773883251916332855772388288330175279034030465755378771075571923248100895582334666758448039131<126> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1164744747 for P30 / October 24, 2007 2007 年 10 月 24 日)
9×10170-7 = 8(9)1693<171> = 4153 × 7523 × 98899 × 13495865681<11> × 1229628762217<13> × 17551848263811700308379709724898741112272604074035145853754506241391337238338312466219663795813981932340712670682553891685621262885475889<137>
9×10171-7 = 8(9)1703<172> = 348827 × 1244911 × 14434703429<11> × 295943798048527087<18> × 4851510812226669980147389843090984419632343581457889655417604387714774941345657685885904675714457453463732257400553951728383159294303<133>
9×10172-7 = 8(9)1713<173> = 13195477 × 1856389490999279253223<22> × 1230572333966178569213783745709380647003<40> × 2985665619912987071009965308740715306903703470898269719229303606605231543658298741768182276250657874540761<106> (Sinkiti Sibata / Msieve 1.40 snfs / May 13, 2010 2010 年 5 月 13 日)
9×10173-7 = 8(9)1723<174> = 317 × 31815104256736732410487<23> × 1143831950766122847147685783<28> × 32933203402548031161720747926069273<35> × 2368938010738226751172660755825073523676287922290421869222162020029734816560986221793413<88> (Robert Backstrom / GMP-ECM 6.1.3 B1=2282000, sigma=3215918255 for P35 / February 10, 2008 2008 年 2 月 10 日)
9×10174-7 = 8(9)1733<175> = 53 × 197 × 7436921 × 5931924217<10> × 1741197521996180430496807<25> × 278427057302514025989131353<27> × 40304373398627470597587458659167052742345161887266956394465899657898964937941641047724930568377141640559<104>
9×10175-7 = 8(9)1743<176> = 28111 × 3837401 × 21374582844451<14> × 6871684579286135803<19> × 251708125395634031980166970606249136674893651112787<51> × 22566849394309859194946786232536651024766683710075427312106529413911041167911179333<83> (Warut Roonguthai / Msieve 1.47 snfs / September 26, 2011 2011 年 9 月 26 日)
9×10176-7 = 8(9)1753<177> = 131 × 859 × 4218701 × 3842326693<10> × 5266803491<10> × 1425412813104737<16> × 6570577352524454280361407329198116089534862000482006847<55> × 10002618626491237257044328548099948893728032266318767226567438548309828853181<77> (Warut Roonguthai / Msieve 1.48 snfs / October 20, 2011 2011 年 10 月 20 日)
9×10177-7 = 8(9)1763<178> = 256408211102806553939<21> × 305398083771533035043258313436922481348866163347550983513663<60> × 114932875645115465637330837941543017125838642645103637831465181873242210223610362729436008275705149<99> (Robert Backstrom / Msieve 1.44 snfs / January 13, 2012 2012 年 1 月 13 日)
9×10178-7 = 8(9)1773<179> = 3257 × 392492437 × 70403371649890161048146013166635871526439145455491501245844474127818963611181071610568931995045289197115706250942762177314828254968033727876418147210149639583247930877<167>
9×10179-7 = 8(9)1783<180> = 17 × 23 × 61 × 415999 × 390502486328174744753<21> × 37457574674179057991882902961495853146207127601<47> × 6201263321946707140413050056613102802441776271168702241656281439550588769801915267842062196313638178869<103> (Dmitry Domanov / Msieve 1.50 snfs / May 13, 2013 2013 年 5 月 13 日)
9×10180-7 = 8(9)1793<181> = 10891 × 5486819574558925029152624668200693996930258823313386814434120700542015883423<76> × 150610091392044818382883472006373182746590680311053182451698963556980981251397542935784243994273255701<102> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.36 snfs / 35.61 hours, 3.82 hours / September 24, 2008 2008 年 9 月 24 日)
9×10181-7 = 8(9)1803<182> = 3613 × 3761 × 17011 × 2340581 × 730684027 × 15300750882422633<17> × 979400478501517858241<21> × 16940272774462961564775996098870506033529998386074873<53> × 896797988999442350354441292775914106811664777578919757946243069497<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P53 x P66 / 38.34 hours on Core 2 Quad Q6600 / December 25, 2007 2007 年 12 月 25 日)
9×10182-7 = 8(9)1813<183> = 19 × 202823 × 233545608992232532540039448448309999099551929774392346762292348760404781249505337425398396372050610890439343404684976815408405098871533566861642650825700500592038118795309469989<177>
9×10183-7 = 8(9)1823<184> = 5095805838797<13> × 53788217895048934897759774462957<32> × 2977363295566134355716987326447671187290847<43> × 11028352820741991810400348173207780872206580956330420554196387180105586020050881417161266972915311<98> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=3272108598 for P32 / October 13, 2007 2007 年 10 月 13 日) (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=916485008 for P43 / February 28, 2011 2011 年 2 月 28 日)
9×10184-7 = 8(9)1833<185> = 31 × 311 × 22091 × 37100458201<11> × 1275537910469<13> × 282209150413571<15> × 480434327015263<15> × 14873984820428774119490711269<29> × 593474640229445793717454630072648349617<39> × 7461012807353624814862644671648910980191120545663272451503<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs for P39 x P58 / 8.00 hours on Cygwin on AMD 64 3400+ / October 29, 2007 2007 年 10 月 29 日)
9×10185-7 = 8(9)1843<186> = 3599750111<10> × 3801247698075277<16> × 511429239641393594286116552718821379525492217943216215358353<60> × 128605171074271089706265876284348082856864372238484502708779354735407583514883437244255130318364103123<102> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / October 15, 2014 2014 年 10 月 15 日)
9×10186-7 = 8(9)1853<187> = 47 × 309805571 × 156017926876754387969365267<27> × 2455524626025464022288068323784527<34> × 1613379861317499642941797679884392489924869887710630236149338813585946718446408151377883594843543655814671126354176321<118> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=3000000, sigma=4163344250 for P34 / February 28, 2011 2011 年 2 月 28 日)
9×10187-7 = 8(9)1863<188> = 53 × 449 × 1997 × 10391 × 54507041 × 353567687176836296397725275871337713846069593916198460906478598412494543249<75> × 9457137756301415333768460326947672411400990031196972465095958693650838326356622936589160504783<94> (LegionMammal978 / Msieve 1.53 snfs for P75 x P94 / July 14, 2017 2017 年 7 月 14 日)
9×10188-7 = 8(9)1873<189> = 6689591 × 2889983980206166400633343347830421444067318005274107662508507<61> × 46552982294567003262611165131940242875979617104663519183548141215584144647077930746442394215984131576858766423362881560989<122> (matsui / Msieve 1.42 snfs / 288.28 hours / July 29, 2009 2009 年 7 月 29 日)
9×10189-7 = 8(9)1883<190> = 229 × 857 × 111509 × 4417356837034719126053932314339876647693<40> × 2521535447519712965500829712864415465809253<43> × 36922297982483569405858068032116807465473204184283136830835962230083619343236636136201293780492921<98> (matsui / Msieve 1.46 snfs / June 28, 2010 2010 年 6 月 28 日)
9×10190-7 = 8(9)1893<191> = 29 × 281 × 401 × 727 × 214759 × 460700651766474898382043837818032330300809931640616466179041587072833751773017369<81> × 382903387432799448414203860928239815011297816502034521950062446735854912628115242060075120769421<96> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs (without procrels.exe, matbuild.exe for "finalFF" calculation) / March 29, 2018 2018 年 3 月 29 日)
9×10191-7 = 8(9)1903<192> = 2694899 × 72275153 × 550854319189<12> × 8388305470467760275118598470006215155634808322340793006782619203654349809033325076696383639330216355087681736024118375029382122889286338655336901330915612601852677671<166>
9×10192-7 = 8(9)1913<193> = 3469 × 42192949 × 667341094121537947<18> × 7326564598429775364823<22> × 12576218572910826994744471544154008911772696731264776763783641942128187748861284675431656667575547830909551595226118457123897290098155673516813<143>
9×10193-7 = 8(9)1923<194> = 511279 × 3106268111770496829983<22> × 25313282195995488001015974270922753793617<41> × 2238706474418559773565349675671260600341989139293305774021353476716466289221789053537675178434163005204076311296379271668194297<127> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=1287001053 for P41 / March 1, 2011 2011 年 3 月 1 日)
9×10194-7 = 8(9)1933<195> = definitely prime number 素数
9×10195-7 = 8(9)1943<196> = 17 × 439 × 119183 × 1271399 × 242885213 × 461827684596426570878380861037770727<36> × 90273726781308008410859820613528673953162767949<47> × 785941965246821725517634354985618196758423193048763238517231673375963788322474444838897417<90> (matsui / October 21, 2008 2008 年 10 月 21 日) (Wataru Sakai / GMP-ECM 6.2.1 B1=11000000, sigma=1202030130 for P47 / August 17, 2009 2009 年 8 月 17 日)
9×10196-7 = 8(9)1953<197> = 731413 × 15089069 × 101668669 × 13688355513133121<17> × 20476877778258297685878989<26> × 23222917624869682986808856353387<32> × 12322489474660531695741954992123566822217378113251020935855509359836204616518712285683147287205008714067<104> (Robert Backstrom / GMP-ECM 6.1.3 B1=696000, sigma=3337125325 for P32 / February 7, 2008 2008 年 2 月 7 日)
9×10197-7 = 8(9)1963<198> = 104572749495411191273052631155941<33> × 6705490534549797571934956800003022448129<40> × 1283492776237749514056214634480831887204643584599589999215158576194203115091542292412887604724010842076711482471179351071298437<127> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=2707934202 for P33 / October 29, 2007 2007 年 10 月 29 日) (Bob Backstrom / GMP-ECM 7.0.4 B1=35470000, sigma=1:3518309644 for P40 x P127 / March 28, 2021 2021 年 3 月 28 日)
9×10198-7 = 8(9)1973<199> = 7541 × 1511118722439549589<19> × 71998412045036748034474957<26> × 4417115504705009301556717078603793892803<40> × 50211444026482936981708622911020529833217<41> × 49459599680436889739968648765959533378468882314170304438562372871450551<71> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=3970191681 for P40 / March 2, 2011 2011 年 3 月 2 日) (Dmitry Domanov / Msieve 1.40 gnfs for P41 x P71 / March 4, 2011 2011 年 3 月 4 日)
9×10199-7 = 8(9)1983<200> = 31 × 743 × 6841 × 12697 × 316339 × 413089877 × 107105780766623<15> × 13919023264892149<17> × 19620579832179617602901623499857<32> × 6427503805579223317744356595461437807<37> × 1831041340434809452833718361805463604259680227651236173580827772015915361667<76> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3694671248 for P32 / July 13, 2008 2008 年 7 月 13 日) (Serge Batalov / pol51+Msieve 1.36 gnfs for P37 x P76 / 12.00 hours on Opteron-2.8GHz; Linux x86_64 / July 17, 2008 2008 年 7 月 17 日)
9×10200-7 = 8(9)1993<201> = 19 × 53 × 457 × 8017 × 15934453357<11> × 256144718010248113<18> × 53233625480766077029<20> × 17802940180354513744305268037686386634555232996219<50> × 63064448745252440797528276587900110400369626444298621672290454824179477424400635508926027260781<95> (Eric Jeancolas / cado-nfs-3.0.0 for P50 x P95 / May 18, 2020 2020 年 5 月 18 日)
9×10201-7 = 8(9)2003<202> = 23 × 18473551492149938551253025419884040839<38> × 21181869008369393932549895281176206440602071314901233547773826044115463753440350314470194147359203649884780565101875411593097870658027727125274244341497672422820569<164> (Serge Batalov / GMP-ECM B1=3000000, sigma=1318125982 for P38 / January 20, 2013 2013 年 1 月 20 日)
9×10202-7 = 8(9)2013<203> = 859 × 449077220849490881<18> × 233307295464234642614860113594967602499067134144009061548835067901794581622064472898086197444009370446912402852933687141515343006234511057589952261113915346369987332921783098457430267<183>
9×10203-7 = 8(9)2023<204> = 654413 × 9116851 × 5700733195303605079093859<25> × 3714817616108249415967179294405421727505728607106415503<55> × 7123239101368569534914712010464454782135910096872760936314670940929557069879893687344516616127185996532235960043<112> (Bob Backstrom / Msieve 1.54 snfs for P55 x P112 / February 26, 2022 2022 年 2 月 26 日)
9×10204-7 = 8(9)2033<205> = 467 × 877 × 852778217 × 64581526709789287365178051<26> × 2053558833372212002058214069709<31> × 194300751306947597754669850807502619790461622467210252600373615313385133534873580749349428852405670208521593826794916118650290102368209<135> (Serge Batalov / GMP-ECM B1=3000000, sigma=260029717 for P31 / January 20, 2013 2013 年 1 月 20 日)
9×10205-7 = 8(9)2043<206> = 487 × 54516555087497<14> × 288387721007212781599532200336102769015876043001<48> × 7791132857078085768169330855649104435741331285915869596287304819131<67> × 1508716945281805196990812250228695900528766934893279483663618496625218050477<76> (Bob Backstrom / GMP-ECM 7.0.4 B1=48140000, sigma=1:3893305144 for P48, CADO for P67 x P76 / June 16, 2021 2021 年 6 月 16 日)
9×10206-7 = 8(9)2053<207> = 83 × 7027 × 37686926380823333777918743310476873583491907229979313936382475630190942709927412913260003240096639<98> × 40945270467815697869802124945169170798638693085688843670705022093262292444277082489807139091402929789007<104> (Serge Batalov / for P98 x P104 / December 15, 2014 2014 年 12 月 15 日)
9×10207-7 = 8(9)2063<208> = 106087 × 987451559 × 87337438049<11> × 9941256980359<13> × 158839581926397451<18> × [622965588094753312963845339296698286706190518658460617232166441475927651257876166037983624292177021275491411422242555658903456189928901891116539364247181<153>] Free to factor
9×10208-7 = 8(9)2073<209> = 574536111103<12> × 1391105121913153482463639567447<31> × 2636581926170702349059315753735431199<37> × 14862841014106460425611150481332954439674343702681<50> × 2873572286012483740353684853340786764135524135911421440338673549038381281922241767<82> (Serge Batalov / GMP-ECM B1=3000000, sigma=1022288973 for P31 / January 20, 2013 2013 年 1 月 20 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=2710756109 for P37 / January 20, 2013 2013 年 1 月 20 日) (Warut Roonguthai / Msieve 1.49 gnfs for P50 x P82 / January 25, 2013 2013 年 1 月 25 日)
9×10209-7 = 8(9)2083<210> = 1373 × 26600975179<11> × 5389967025922824815570077202781153975800589462598781<52> × 90411464377991804146315798803470592261583141068440557<53> × 50566722132934450081376991972342552489576820047364263940220999663491818394985128615656559487<92> (Bob Backstrom / Msieve 1.54 snfs for P52 x P53 x P92 / June 4, 2021 2021 年 6 月 4 日)
9×10210-7 = 8(9)2093<211> = 563 × 25733 × 3357259 × 1241848757<10> × 4162592938604101<16> × [35795315755051556143482384255076882151591632985808593329074383552827847631716757686285387141751565124018657731300629295771004647245841545400949258434709664405781931442660109<173>] Free to factor
9×10211-7 = 8(9)2103<212> = 17 × 3135735106303<13> × [1688317880045848238737635477282196614078397543752708702777136968593143423264069517896376610156697713496264837758958701380734994977786389904428030201437542571489121827819183770213442415086421264667543<199>] Free to factor
9×10212-7 = 8(9)2113<213> = 59 × 1123 × 16043351717686627<17> × 4491866070251411837471<22> × 26037552998772984893743417633843<32> × 7239168261249652601175641354803299067820557189900761721873245280224416814877258075052436615024860628213110140325413976892595629907245076079<139> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3170107370 for P32 / January 13, 2013 2013 年 1 月 13 日)
9×10213-7 = 8(9)2123<214> = 53 × 4818742547441126957931019187<28> × [35239757900095959189948510121644992116968106544620591121962414716741988948045348661040205002875883304243208249247186434316103019572593354993882186446599258791675338600776772573266508663<185>] Free to factor
9×10214-7 = 8(9)2133<215> = 31 × 1297 × 1365548820189078960598033793408349753834010789<46> × 1639206275960755860192544465573038834070961355795909686010053192608450465373283185320044727810581013038497195864238647789104925497599717543912785743473449977395341291<166> (Bob Backstrom / Msieve 1.53 snfs for P46 x P166 / September 20, 2017 2017 年 9 月 20 日)
9×10215-7 = 8(9)2143<216> = 373 × 42594493 × 14335460384943499349502089131521786287516756150655932271224609427569567874796671702437<86> × 3951559989821888270290522080066971457437905189009643822349277214829334916058407242048141854127861827207903071614799254501<121> (Bob Backstrom / Msieve 1.54 snfs for P86 x P121 / March 23, 2020 2020 年 3 月 23 日)
9×10216-7 = 8(9)2153<217> = 1531 × 2719 × 146241356685573643172218848457<30> × [14783862129692949317475018927888153338416155864428159314036374204089970313827218283780018028017965573796400445589115191836812060879045701282325824746667677037394466961431203022008541<182>] (Serge Batalov / GMP-ECM B1=3000000, sigma=614155650 for P30 / January 20, 2013 2013 年 1 月 20 日) Free to factor
9×10217-7 = 8(9)2163<218> = 262957 × 73421239 × [4661611366472302138577489377779168246777410017014068428533764991254956557348592633526301994108867795835218676096295042181118439943632336511685406302943971788113412131260248527227757461561414940773696784491<205>] Free to factor
9×10218-7 = 8(9)2173<219> = 19 × 29 × 281 × 726187128727188163349259374603<30> × [8004533815769898690183447481208852476193163102671210019900458966591910211332399460647347159579945368023782391883683455350943416854607383776283068178709060861382977898123092802505255301<184>] (Serge Batalov / January 20, 2013 2013 年 1 月 20 日) Free to factor
9×10219-7 = 8(9)2183<220> = 449 × 1951 × 159701 × 63158037906822595224942243033760649763838484973833516166836119201083380410987212416522569156046352346313<104> × 1018597565591349500214532370668571355360359614927805758715107854853459966226018788227829648291875854188339<106> (Bob Backstrom / Msieve 1.54 snfs for P104 x P106 / March 15, 2020 2020 年 3 月 15 日)
9×10220-7 = 8(9)2193<221> = 75260651973370570125976289397269369<35> × 15682630947055255008118917819750016811<38> × 76252767537303327632880725241381302650389068242261095290287948360901508705233306302893861720141730092561206313306572852874043101202638033969041441027<149> (Serge Batalov / January 20, 2013 2013 年 1 月 20 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3310117485 for P38 / January 28, 2013 2013 年 1 月 28 日)
9×10221-7 = 8(9)2203<222> = 349 × 3637 × 78598523475414291157<20> × 2620589780561013146805911<25> × 3442392213553745374365612602200652128863904519091558208507880325456756735401634493662157955782855306496000471640731152129124313574316109108839108580376573332246883591846643<172>
9×10222-7 = 8(9)2213<223> = 142132421 × 394730569 × 5939811127<10> × 3671818914913<13> × 35244181375973610034177786987262098510391419731055177820220071251346506124996929891<83> × 208692709347936287369310605034290787099296506064770170447502303352003936832232696942652759914227181177<102> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P83 x P102 / April 23, 2022 2022 年 4 月 23 日)
9×10223-7 = 8(9)2223<224> = 23 × 565914229 × 1981690873781<13> × 2531570481161<13> × 244555354268664638547136759<27> × 1530560919151698721057534319<28> × 47192818741997150986206081887459<32> × 751925240918113249213728657273210872522801<42> × 103767116895828891993244277717324878249617708403313419080441821<63> (Serge Batalov / ECM for P32, Msieve 1.51 for P42 x P63 / January 20, 2013 2013 年 1 月 20 日)
9×10224-7 = 8(9)2233<225> = 75870953 × [11862247202826093406260496029356583935356657507649864369042524086919008385198483008378713787870833782725781762620010849211291704745029365849668449531667277198956496565951926292529896125069102532559463171630386664577681<218>] Free to factor
9×10225-7 = 8(9)2243<226> = 4073 × 120693253343593563076388548628735920212208887624011467<54> × 18308177119693579433081123023987034386650702014604952448966618748334513884121980859102097989911908693640166783401865769867575797018363992400224835267053472913414831211923<170> (Bob Backstrom / Msieve 1.54 snfs for P54 x P170 / September 12, 2018 2018 年 9 月 12 日)
9×10226-7 = 8(9)2253<227> = 53 × 925063 × 7571494175648054779994833698583367<34> × 242445281659127182367148236133057354076074365144420882219008029786914073838350984716405748566549369393481094361937065933294704293382288096058985007459491546992328429171120216387174790661<186> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1433781751 for P34 / January 21, 2013 2013 年 1 月 21 日)
9×10227-7 = 8(9)2263<228> = 17 × 1087 × 48523 × 144169 × 56042137793<11> × [124230954042644334296276040324436885628779762573283296242939903571000824579597929200035093975464582165172428645068117512519399521148672648062380477415958546762533166825043665838430487190857531537796718237<204>] Free to factor
9×10228-7 = 8(9)2273<229> = 617 × 691 × 859 × 16606425449161255957<20> × [1479823684976212208026497411548332854698756329227171402021602130542792274780536900423023843555071909564888213390814799535682546773909325656271770147697868404556143892351712405416242197398525345487736813<202>] Free to factor
9×10229-7 = 8(9)2283<230> = 31 × 1019 × 24989 × 217790949503<12> × 523501494985859812235665886784086975387850778477156226153562698642599259059837346520436128686009555779653402682569207051077552790874935287432531040471167420974552743664951178172633521953376911719225081747877111<210>
9×10230-7 = 8(9)2293<231> = 51237427786340924800239379315294597942435524037389830309662907605385003608714689353423882260715576183142758981623<113> × 17565284575817944220187662032055297125230805776180803212134090784297624398948378125807152313972935318264056805958370191<119> (matsui / Msieve 1.52 snfs / March 29, 2013 2013 年 3 月 29 日)
9×10231-7 = 8(9)2303<232> = 134489753158520949524261<24> × 8172223397499257517575047073<28> × 8188664594115595503580423196854750405631594703283051003754763393464283809901576925519295020997320716288677629674434349693395532796350581759007875765177277807975844334988284475890981<181> (Serge Batalov / GMP-ECM B1=3000000, sigma=3965648295 for P28 / January 20, 2013 2013 年 1 月 20 日)
9×10232-7 = 8(9)2313<233> = 47 × 3221 × 223747 × 542947 × 2633583264182581<16> × 1858198966356605741206616791354209768199094689953502342873434279871048621826631208216027617054133913688814012039136810855527192384379385000987247967633826627273845449746119709407234992737858069482813591<202>
9×10233-7 = 8(9)2323<234> = definitely prime number 素数
9×10234-7 = 8(9)2333<235> = 2383 × 6271518960001<13> × 602206900333626995406275540737996308679568146311954470692175641215152506020685807126707596458165635021202709612559559787631897839483212375735925250679881344269463450432164499513498710750969983922484312225102190318687671<219>
9×10235-7 = 8(9)2343<236> = 556054699 × 143766339316507<15> × 19379109037590456317<20> × 776438272066673328185940224749<30> × 182308333812625357482780802735163521<36> × 601201381906764207791557996852690222334833<42> × 682653854795073482299474970784742997784507541244272296778504446523147516112224673441929<87> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=731035129 for P30 / January 13, 2013 2013 年 1 月 13 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2987282525 for P42 / January 21, 2013 2013 年 1 月 21 日) (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=473056303 for P36 / January 22, 2013 2013 年 1 月 22 日)
9×10236-7 = 8(9)2353<237> = 19 × 215078117 × [220238217227053270823309379506198573178732176889160597158140551568208024377340169165752827133819574274176758518712626876083255589263044611049756156124525921117204812465514809354495824270309436601488134510778949359961838276745991<228>] Free to factor
9×10237-7 = 8(9)2363<238> = 2832991279<10> × 3176854114135096848633821720988079328287971055204932030431428659544419303523030718090678598237929838682006052161941724071223305731891735908164085809739621157513630312873264584447737722809982571781859692763282946908076239086791767<229>
9×10238-7 = 8(9)2373<239> = 61210468733265087121<20> × 630639403128246855206939<24> × 2331501513438456320884919109581828161802831311815699495444459651870522301428310421525893970024356669694710027426565500923380969738771147768402315271138490072338677134785084677903747342944002595147<196>
9×10239-7 = 8(9)2383<240> = 53 × 61 × 181 × 1097 × 70487429431<11> × [19890235701114469437485055147036442767058576937793951397755243149536659778873586871806064463546074587897849271216080361693384766514478354600872426776714641183888058533408690040719442113843963065364036046456243691866509563<221>] Free to factor
9×10240-7 = 8(9)2393<241> = 1493 × 727600073 × 8284951449288015589655214253531188170680080862743993548042677439169697347318322791612201327449841538844477934667438681715446795063023864783035511847797140937014668798637974378182858190916662429236269624721312497766627421381366637<229>
9×10241-7 = 8(9)2403<242> = 97 × 428977 × 7819153 × 333950511407755111267<21> × 640348536377035300721<21> × 17234896425085743278671<23> × 151865262155527239664587101<27> × 26366598223416408664066590830488778680400386657<47> × 18743785203443202798774284905711376437130006465216403601267394610637495193282374848223443281<92> (Serge Batalov / GMP-ECM B1=3000000, sigma=3036460514 for P27 / January 20, 2013 2013 年 1 月 20 日) (Erik Branger / GGNFS, Msieve gnfs for P47 x P92 / May 14, 2014 2014 年 5 月 14 日)
9×10242-7 = 8(9)2413<243> = 13753601 × 23996081019929<14> × [2727003961102287588138034269608582625495782167332837466984393061079851441565226163715120465722327507738881539880506919806528878019814939700394044154052656299652472553377429536588989142706646857168399660997815752019767771617<223>] Free to factor
9×10243-7 = 8(9)2423<244> = 17 × 15497078775043<14> × 54752784416363113<17> × 623932398575173364004302545824353773067706690871848245274022936070149459108138501135970645090176628692013836732107135993851745228732273889809771535846187888746639281898560720878763440044119949690751119329285737131<213>
9×10244-7 = 8(9)2433<245> = 31 × 159638243413260087892132991119<30> × 6195053198794057032257850600279149<34> × [2935613222040072107797581651663263843388960138131903713499021375072598111904917739042289432345457880040784198202743678822594851809696777932275399609799260999368273188632856566810413<181>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3768350025 for P30, B1=1e6, sigma=1172650598 for P34 / January 14, 2013 2013 年 1 月 14 日) Free to factor
9×10245-7 = 8(9)2443<246> = 23 × 1860904349<10> × 21027644329831535931444004080554846867932822156731037778926141099441930765664844332980906969250937174777683975089309841698955025937090295034171371424771802665631514551782889738085782907601817290675663378996586249955425395114192125659259<236>
9×10246-7 = 8(9)2453<247> = 29 × 281 × 68455272871<11> × 1558492461493855183749184811137<31> × [10352055215854388530080700415950825894651320495185249791532003376327943732655344147005599022003218723987383107692414575227948525517134886787393056269647335492933120773242470223656928504378627327279115491<203>] (Serge Batalov / GMP-ECM B1=3000000, sigma=2911317418 for P31 / January 20, 2013 2013 年 1 月 20 日) Free to factor
9×10247-7 = 8(9)2463<248> = 83 × 89783 × 824009388679363<15> × 14656765662384274914891948552588274083272069694930399633989650930567223888023179993194374467143672716303900791256591970756053099286090589682133511559625649623249859388218484551875662607436975908515045859964107926058857607228999<227>
9×10248-7 = 8(9)2473<249> = 109 × 54937567 × 36485895258851<14> × 4119282552375161508539024549658966967773023986781993109872276626822014849290001680770911185266416258735695984132533871652559010686460704806581967657102448575344845705262253694522612684671364550694425825820343318101087004586881<226>
9×10249-7 = 8(9)2483<250> = 52859 × 192408197 × 22097578747091<14> × 7447766937104939<16> × 937809330181667357223217916713939668971<39> × [5733432177420291334673646862167762084439087066950690364893303063295632113028266269161472739983721751603548072432556869419339663476577187625578436633189530331747134632429<169>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=56793237 for P39 / January 28, 2013 2013 年 1 月 28 日) Free to factor
9×10250-7 = 8(9)2493<251> = 113 × 227 × 541 × 9679 × [670055002346138812001188130600818579517754106596023863482960051225560197481805411507440327796370627319125614378999622117783596823012376481367639774927452921730442491652288141815246986178535862382411327236085383012391536461234711239231547537<240>] Free to factor
9×10251-7 = 8(9)2503<252> = 449 × 2004454342984409799554565701559020044543429844097995545657015590200445434298440979955456570155902004454342984409799554565701559020044543429844097995545657015590200445434298440979955456570155902004454342984409799554565701559020044543429844097995545657<250>
9×10252-7 = 8(9)2513<253> = 53 × 149 × 317 × 16661 × 3637607287<10> × [59320422236549840731139387729050121677297835649227773756269704657926281187394032427478868097657592575460219181592671936663910710016839859075313244875442147696598510059967281061068681583900511648405463065449264078877171382957420531751<233>] Free to factor
9×10253-7 = 8(9)2523<254> = 23581721 × 3532033069<10> × 436269692202961<15> × 5879285761271850312491120291689412580764911<43> × [421272042752509802441893659456778983888229528062893585872628293528615766275032087661538463634098432602147534842694981531412306585792199584646685991278881154233570178553213630802267<180>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3400662323 for P43 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10254-7 = 8(9)2533<255> = 19 × 859 × 15447898484615697361<20> × 4213508014433654812455105979676107<34> × [847193301943542221283831182444153585079582542756988228598344397802742965930550207717351054913906032765040713913847891724035295078461121501504680416075648741912495209626989782331507945683995794074779<198>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2140075374 for P34 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10255-7 = 8(9)2543<256> = 5857 × 12503 × 357611 × 2239816498651<13> × 153436875352954825686014977631640104855749854784863753788837898728020535979557856134708099503755346223057699740380817819343281718250399956806973031151824218008983741032004927625639158178030207147227940917485616608262127886306834903<231>
9×10256-7 = 8(9)2553<257> = 193 × 5563 × 14079661 × 302585341 × 287638273076120124293<21> × 68405242224715283367504471798106629398849810279165350478691136336387549436338242956679561994624725077176501999214016675267173444597972098681297335697998769702776203442643742192143112466892901891461459056346128209239<215>
9×10257-7 = 8(9)2563<258> = 199 × [4522613065326633165829145728643216080402010050251256281407035175879396984924623115577889447236180904522613065326633165829145728643216080402010050251256281407035175879396984924623115577889447236180904522613065326633165829145728643216080402010050251256281407<256>] Free to factor
9×10258-7 = 8(9)2573<259> = 8852408201971<13> × 2819312620168697<16> × 306191666134557539211555992227<30> × 1177726578539203481939276634648837573798889798787783529108339587882725288891122111972527881580330756292323284646634647161164079403379861880028573282234474956245763335636701812484245295099298361572850057<202> (Erik Branger / GMP-ECM B1=3e6, sigma=3:561439047 for P30 x P202 / March 31, 2019 2019 年 3 月 31 日)
9×10259-7 = 8(9)2583<260> = 17 × 31 × 8934139199789<13> × 1735838966976143<16> × 5028129345683033942773<22> × [2190096771187188259833272700597043827194412067975417305413043054559012757307762077351119855510229688224081757651761133482805123790430943580622612618943157420133583550875784129100322824985828021591449794001929<208>] Free to factor
9×10260-7 = 8(9)2593<261> = 2560549716682411<16> × [351487024109061035857157928137522248016271403343050034094032753076158984815643888483269597416496134440770005498358267290858505814607645832777800983579210478018590988562885339775926792588068624535616515973957131991767950347567335121161235547997163<246>] Free to factor
9×10261-7 = 8(9)2603<262> = 10867 × 71993 × 143443 × 6225119 × 425147167811<12> × [30302346736555904965266823952263950867110207520976026112789719495769764354334789149149462548718116551662250135198604561393572501100169601325408132641634982201551234956145023134286827662319707425984358716233090780096655360323033869<230>] Free to factor
9×10262-7 = 8(9)2613<263> = 2913654191923920531439453<25> × [30889046562032788497359691451896031395661891445276639376761868005709916742681990263141088437292875424827745317681261159138132716727891768486661778314327131495081947868600396278056511616847379742249560652485719509864748868240656151258703181<239>] Free to factor
9×10263-7 = 8(9)2623<264> = 56857 × 76436675096381<14> × 3364855142549962093<19> × 61544664498742261203732494676227068903302355169947688838416426336532205496390281381812403221718700402752469503444301866284278559411617187190024597500601231654244163368362534492280940217780466856199513521902471331518934867187753<227>
9×10264-7 = 8(9)2633<265> = 283 × 2789951 × 28024501 × 36815239830739<14> × [11048262283103462540015988193303072623124030843768426670843561468826897364800568508033009905430337796034424518603531589466903411164240423964274884578516296290265880432340107047724480845460939446602498188630191670240797508732164162212939<236>] Free to factor
9×10265-7 = 8(9)2643<266> = 53 × 6464413 × 68845961 × 3815566950464414720324458404736271716689967336290879921377400241635636737962870479376811195693992017580040300643631795656089976646182459296895357121548367851513979008420446122312580748849064621948961838380039450627200731917204870602575585498026997617<250>
9×10266-7 = 8(9)2653<267> = 54060125149<11> × 719659028909<12> × 38925985977503749703<20> × 57174961009212295685687<23> × 8220200635739513794295579<25> × 1264476514511561286579333522427100068177948938020919894790789574753642032795045695638415189899702405729299055304234465952725949389650144608550842116680170761052748267036425289267<178>
9×10267-7 = 8(9)2663<268> = 23 × 93383429 × 7316393671<10> × 2443074319577<13> × 130584692994641<15> × [1795224803690244928531694821772889412252790417429182654917054472313743949288509720973751839854349431367911216306771630089063896749309007802642934444454512690895399598314122046120837369105721005643305176461677088400793077757<223>] Free to factor
9×10268-7 = 8(9)2673<269> = 26443741097<11> × 622080327936822032800931<24> × 390913707853468698060515953681<30> × [13995623322108420474682001283387016020740982845906248658567211351583732000797265123960481664913918216357304495477243594729216854569246834713374471490520587855398292838195650518310649804350864476255008687179<206>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1312574879 for P30 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10269-7 = 8(9)2683<270> = 526469781839083<15> × 2197221776008463<16> × [778027891319306202981907269919341000332062058936433097374970924832194816099126258422111992642359804327085264546290443487687190067376310702588645546861962116774646747586216428332399910914098887097021267021306312894765023420251887605891409317<240>] Free to factor
9×10270-7 = 8(9)2693<271> = 59 × 149705639 × 224576266276151<15> × [4537205828768769066446030518014001176689798907630077512015365225690647080027978152330170603593708296064619267528322756761990788524588468484825452208161176187744658854156838088482441475415033811037951661626629702105633339389443368959055850250464443<247>] Free to factor
9×10271-7 = 8(9)2703<272> = 3989 × 5501 × 104884943 × 479519210469709591<18> × [81548818100088329228616559961951919441065059446203209063198487475197327264435001473445894985127859242048394218048833528933161769206407481551764435197913202197927045638425854933973993667010279172630011339967837910904451309017982800005951649<239>] Free to factor
9×10272-7 = 8(9)2713<273> = 19 × 197 × 27988913 × 368879241540239<15> × [23289085425056323487319513679163817103988040221812221238221844547523890341070194860142273139175101124104323093421786236837825555773864043210742795268251686131265661328347355825654801461951268960315600453493956261681088731100496319261523325921513593<248>] Free to factor
9×10273-7 = 8(9)2723<274> = 461 × 60319559 × 604289713 × 85899522425947<14> × 6235158183612274725508548092385648454222442751357842293609236339554557794666243804580895423779743628366445720198833747080466753738766593548372047141463523332125577464608629683995412209492731693818488830773125548313939697241981114902415777137<241>
9×10274-7 = 8(9)2733<275> = 29 × 31 × 281 × 48527 × 167572747 × 9019887460583<13> × 9670835119631594825567927<25> × 2070898730215501114405454516137<31> × [242530133309447937329976108605277306513963234586414260514974905873398034965612086758015957671886013400634088298356811689701079673828410545111914401506971066299312001822681306701041470128439<189>] (Erik Branger / GMP-ECM / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10275-7 = 8(9)2743<276> = 17 × 179 × 487266589 × 3233283491<10> × 187728469162318981832523859830057589506371818569359462450960871073070941047510141538449911569851594555852242506606069739514077984519311122607923207241217155200879231350732989298666836560275120067290809395565109445759355196095454883131950486771014195314149<255>
9×10276-7 = 8(9)2753<277> = 233 × 12097 × 21088768062725205053<20> × 82861229895020358090362868738559<32> × [1827285138982441227812339855605040233606561345716282063796017452951634742846909740305540818736678863177566967244113549444302514424681405195054724327003821021367542522803479145485859434340927530387466733546182014143565659<220>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3353975552 for P32 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10277-7 = 8(9)2763<278> = 653 × 14051 × 14747 × 41446021961<11> × [16048541194548222158111520517840971218042821968750577317935692114435897811977275255274879998596992434544859504041483660462849417601963542739598173488538467844248713693558403795719302911426752794023779776293246387079465184304079028240892438286177986062501893<257>] Free to factor
9×10278-7 = 8(9)2773<279> = 47 × 53 × [361300682456844640706543556804496186270574066639903653151344841429144921718185467683661180248896025692492974708952228020875150541951023685266961059815335206744279405861099959855479727017262143717382577278201525491770373344038538739462063428342031312725812926535527900441589723<276>] Free to factor
9×10279-7 = 8(9)2783<280> = 16747 × 537409685316773153400609064310025676240520690272884695766405923448975935988535260046575506060787006628052785573535558607511793156983340299755180032244581119006389204036543858601540574431241416373081745984355406938556159312115602794530363647220397683167134412133516450707589419<276>
9×10280-7 = 8(9)2793<281> = 859 × 2129 × 4481 × 15959 × 886421 × 231302821 × 1392422883509887788721<22> × 326348858699656401908831368987<30> × 61723522264576616880765710182753689480709<41> × [119665276409905618606929092305684746044414624940528149732169586677639367515697711601421530094616957143485297718998050458853401324586577352566580402934097706646019<162>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2589178780 for P30, B1=3e6, sigma=3:1535205533 for P41 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10281-7 = 8(9)2803<282> = 211273409019682711148060279496278317<36> × 4259882983741479523845233616813241168609666206481915488516676888627285980660017453819851816616691670429873042828385836338593987576772333567581109520978052301047663472539832364854627813715315306158712583290438070397090424992374688604054923535106429<247> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3234356668 for P36 x P247 / March 31, 2019 2019 年 3 月 31 日)
9×10282-7 = 8(9)2813<283> = 13831 × 37848871657<11> × [17192379583056893614358644779078996070124914264896915179430057675423032733982533555334325423681304905948834654146489039498876226913495037488021094023732229396302337989322515699541896823026247061046952680883152155893418940255471203798882453636202413037247085845436531879<269>] Free to factor
9×10283-7 = 8(9)2823<284> = 449 × 523 × 98621 × [3886199375786764491039979949815838121933644390364921067751861439228694935082979720470443380092744732760257225165238106850449649073814989837670458404467699471680439698304433512865077597061869222475556166155393390252278153904910948642254401578252720032218655101741028473744679<274>] Free to factor
9×10284-7 = 8(9)2833<285> = 1319 × 1047649 × 583630836216692597<18> × 1351846042745917127<19> × [825498801757700020673305504985970206806153512672532784259577990180748430330131057951386995753195820472147085137446387213290367414210173444483444213382298872863507229417685428660516482964895285124832236749345257261481121864836456105636738437<240>] Free to factor
9×10285-7 = 8(9)2843<286> = 269 × 3838735139<10> × 788930224133672478090039419<27> × [11047486689019826985130244671239802538212778541967905635092793723735134217672907889710968047659761403706077425749872847207953981311215538950101875576996805052379196894238302002533553104247211816493164529811496094990786226409382608148836267119407117<248>] Free to factor
9×10286-7 = 8(9)2853<287> = 1519417 × 445218509 × [133043088248905346370266033811386328806456618673081430346649157823637303325398893521757283270767146214537042413219318645292230812257554727761556975723685861168488816081548270908332095544716795867550456299171112828602562957409581144540458278534162210043484495187746465648581<273>] Free to factor
9×10287-7 = 8(9)2863<288> = 1619 × 786179 × 483460057 × 49377615569<11> × 103541686081<12> × 7617376472509<13> × 17961267096315090523724759<26> × 440059243199459546986813069<27> × 4751324988033151995598933268005639636852381125569253796216160203518873563752042679222385695650504692785531108335123892481042176831606643967986694274063967529475201908836861871676295719<184>
9×10288-7 = 8(9)2873<289> = 83 × 311075565540967<15> × 29883490468366121105386723530819736197041<41> × 11664528669994133232928266351562341841918630387203147422115087157905144766991159283865953588477357962629709020534805869143810461727549116131693947974580067603940244277570116063450118672081056113174757620795589515408757511423603263893<233> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1890656892 for P41 x P233 / March 31, 2019 2019 年 3 月 31 日)
9×10289-7 = 8(9)2883<290> = 23 × 31 × 3713862871<10> × 7698221743<10> × [4415060905604893125659233858232977574449909831278214582885679475163591508619895706338156031975463432302833481913650956767178025453740378426318537715506217590788682945277034771050900264951624035836812536650142228911639402734557589956898233573438764675764755730947017337<268>] Free to factor
9×10290-7 = 8(9)2893<291> = 19 × 13859 × 7429066847444811857<19> × 460068763301241556286973361789028318635305485977073589529121240422343382271381107731997944537336956008147409844640941889904768386039814973371700054382451105942590724739369541417868310626403000343095844628898924477354185075046864197327124798820753083670706359840029969<267>
9×10291-7 = 8(9)2903<292> = 17 × 53 × 12037 × 706082387 × 5205636259545709738518167<25> × 66259630942198167557944837<26> × [3407385322040401802284517692565996212105103344440812159592700910106949479498294186806973199046191415170896846137705282462260262958327077551449421231475121531045442487649438378130715178317380781429718723215999186948812807000793<226>] Free to factor
9×10292-7 = 8(9)2913<293> = 46690872694331602205746477431731722154484784931<47> × [1927571596041858574711742605275945963328677726469559734438327954983076624255776973155902809305583915359379765335499342071206656936462004551029632958036688234002729336871331320268091684095207965051283843697490023266192197478039928158615997235889203<247>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1:3936551490 for P47 / June 13, 2019 2019 年 6 月 13 日) Free to factor
9×10293-7 = 8(9)2923<294> = 18395917 × 10045053853<11> × 16394799399521<14> × 297072664444481204796105066107506578840634620329711944945836012995263061450274480365281024025126029420288059383797367625096086514848484543709438325690712523606220348237568383278632373130033754545475118765124045529667357696376228862546515655539822517556178401379233<264>
9×10294-7 = 8(9)2933<295> = 284848981 × 72629805866029527230943661930448834790914999453<47> × [435023738126056301123397544474885876762190433557321336981904139685288531464773537529283413963922848561981033943653895066281302859532971902147457756088218412973968880208876899611979225803369174981041666301976541253082081403182047382909898201<240>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1433992597 for P47 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10295-7 = 8(9)2943<296> = 219503 × 140706637079331353716523239<27> × [2913986032746433416051112522214093982770588011677348869525602527850317927109311357875388792296918801279593909345214737614754475429122250872766324406645462080658689119983058398330905356723608198478120281085885502726735244216074083014534231501071796347454757915906129<265>] Free to factor
9×10296-7 = 8(9)2953<297> = 50849 × 35869065806860187581<20> × [493446448022639538032855087697829860490914540004320593203703593285911450058186619820323886916477223585299136250104178461467056532894762866131019221263431403100097308582458529017658259491475211656955768611602244335455995822342196470091706055694841520186383113869533123285197<273>] Free to factor
9×10297-7 = 8(9)2963<298> = 1099687 × 2160032873769263889859363327611122971<37> × 3788899253810412043198614027916099084001214720620766332028911373020462658262317387060088875411728522265034311520075810251913171207863085541886352028068352056717532169182190944265806905082163724683206825802938421288328276681901876306648095603562958908720909<256> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2247565898 for P37 x P256 / March 31, 2019 2019 年 3 月 31 日)
9×10298-7 = 8(9)2973<299> = 419 × 12062193984038950942855862226938125303417<41> × [17807468220326420829085071717128485129185608625092552570957550569504497904337960212143944082094404841812756353933884601025108553116946675824071840053306814149263449514348258772473073931367265791945368778045839455141012579215395718220632416052801413757988491<257>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2657400841 for P41 / March 31, 2019 2019 年 3 月 31 日) Free to factor
9×10299-7 = 8(9)2983<300> = 61 × 307 × 48058952314839536498104341325359107171463662092166390772681155550808992363966465531051423078976878304052971645218134244673466118438618038126768836439365621829444118118225022694505259785336679660383403641800608746729321300795642654990121215357505206386500774283120627970310247236610241896726651359<296>
9×10300-7 = 8(9)2993<301> = 529003 × 102961043 × 165238575053718729792244995836767291177428843268601556914580276443633357351368013217981357397577331551608480901477407994847170429178697160504615424624351890180271024178002335477265307941297871401386784800906731639505277513236142190770194586273228514784938121954914216405103663905990878217<288>
plain text versionプレーンテキスト版

4. Related links 関連リンク