Table of contents 目次

  1. About 244...441 244...441 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 244...441 244...441 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 244...441 244...441 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 244...441 244...441 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

24w1 = { 21, 241, 2441, 24441, 244441, 2444441, 24444441, 244444441, 2444444441, 24444444441, … }

1.3. General term 一般項

22×10n-319 (1≤n)

2. Prime numbers of the form 244...441 244...441 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 22×102-319 = 241 is prime. は素数です。
  2. 22×103-319 = 2441 is prime. は素数です。
  3. 22×106-319 = 2444441 is prime. は素数です。
  4. 22×1011-319 = 2(4)101<12> is prime. は素数です。
  5. 22×1030-319 = 2(4)291<31> is prime. は素数です。
  6. 22×10128-319 = 2(4)1271<129> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 9, 2004 2004 年 10 月 9 日)
  7. 22×10183-319 = 2(4)1821<184> is prime. は素数です。 (Makoto Kamada / PPSIQS / October 9, 2004 2004 年 10 月 9 日)
  8. 22×10375-319 = 2(4)3741<376> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 9, 2004 2004 年 10 月 9 日) (certified by:証明: Makoto Kamada / PFGW / December 31, 2004 2004 年 12 月 31 日)
  9. 22×102159-319 = 2(4)21581<2160> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 9, 2004 2004 年 10 月 9 日) (certified by:証明: Sinkiti Sibata / PRIMO 3.0.4 / November 25, 2007 2007 年 11 月 25 日) [certificate証明]
  10. 22×102568-319 = 2(4)25671<2569> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 9, 2004 2004 年 10 月 9 日) (certified by:証明: Makoto Kamada / PFGW / December 31, 2004 2004 年 12 月 31 日)
  11. 22×103369-319 = 2(4)33681<3370> is prime. は素数です。 (discovered by:発見: Makoto Kamada / October 9, 2004 2004 年 10 月 9 日) (certified by:証明: Ray Chandler / Primo 4.0.1 - LX64 / February 26, 2013 2013 年 2 月 26 日) [certificate証明]
  12. 22×1024989-319 = 2(4)249881<24990> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  13. 22×1038810-319 = 2(4)388091<38811> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)
  14. 22×1059558-319 = 2(4)595571<59559> is PRP. はおそらく素数です。 (Bob Price / PFGW / April 15, 2015 2015 年 4 月 15 日)
  15. 22×1074874-319 = 2(4)748731<74875> is PRP. はおそらく素数です。 (Bob Price / PFGW / April 15, 2015 2015 年 4 月 15 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / April 15, 2015 2015 年 4 月 15 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 22×103k+1-319 = 3×(22×101-319×3+22×10×103-19×3×k-1Σm=0103m)
  2. 22×106k+1-319 = 7×(22×101-319×7+22×10×106-19×7×k-1Σm=0106m)
  3. 22×1016k+12-319 = 17×(22×1012-319×17+22×1012×1016-19×17×k-1Σm=01016m)
  4. 22×1018k+16-319 = 19×(22×1016-319×19+22×1016×1018-19×19×k-1Σm=01018m)
  5. 22×1022k+13-319 = 23×(22×1013-319×23+22×1013×1022-19×23×k-1Σm=01022m)
  6. 22×1028k+5-319 = 29×(22×105-319×29+22×105×1028-19×29×k-1Σm=01028m)
  7. 22×1030k+2-319 = 241×(22×102-319×241+22×102×1030-19×241×k-1Σm=01030m)
  8. 22×1034k+8-319 = 103×(22×108-319×103+22×108×1034-19×103×k-1Σm=01034m)
  9. 22×1035k+26-319 = 71×(22×1026-319×71+22×1026×1035-19×71×k-1Σm=01035m)
  10. 22×1046k+40-319 = 47×(22×1040-319×47+22×1040×1046-19×47×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 22.62%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 22.62% です。

3. Factor table of 244...441 244...441 の素因数分解表

3.1. Last updated 最終更新日

July 25, 2023 2023 年 7 月 25 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=210, 213, 214, 215, 218, 223, 225, 227, 228, 231, 233, 234, 235, 237, 238, 240, 242, 245, 246, 247, 248, 251, 252, 253, 255, 256, 257, 259, 260, 261, 263, 264, 265, 268, 269, 271, 272, 274, 275, 276, 278, 280, 281, 283, 285, 287, 289, 290, 292, 293, 295, 297, 298, 300 (54/300)

3.4. Factor table 素因数分解表

22×101-319 = 21 = 3 × 7
22×102-319 = 241 = definitely prime number 素数
22×103-319 = 2441 = definitely prime number 素数
22×104-319 = 24441 = 3 × 8147
22×105-319 = 244441 = 29 × 8429
22×106-319 = 2444441 = definitely prime number 素数
22×107-319 = 24444441 = 32 × 7 × 587 × 661
22×108-319 = 244444441 = 103 × 2373247
22×109-319 = 2444444441<10> = 2729 × 895729
22×1010-319 = 24444444441<11> = 3 × 8148148147<10>
22×1011-319 = 244444444441<12> = definitely prime number 素数
22×1012-319 = 2444444444441<13> = 17 × 32237 × 4460429
22×1013-319 = 24444444444441<14> = 3 × 7 × 23 × 50609615827<11>
22×1014-319 = 244444444444441<15> = 227 × 3067 × 351107849
22×1015-319 = 2444444444444441<16> = 1889 × 20873 × 61995953
22×1016-319 = 24444444444444441<17> = 33 × 19 × 131 × 363740375347<12>
22×1017-319 = 244444444444444441<18> = 6299 × 122347 × 317186897
22×1018-319 = 2444444444444444441<19> = 701 × 3487081946425741<16>
22×1019-319 = 24444444444444444441<20> = 3 × 7 × 3413 × 5101 × 66860445317<11>
22×1020-319 = 244444444444444444441<21> = 6199 × 39432883439981359<17>
22×1021-319 = 2444444444444444444441<22> = 20771 × 71933 × 1636042542287<13>
22×1022-319 = 24444444444444444444441<23> = 3 × 541 × 15061271992880125967<20>
22×1023-319 = 244444444444444444444441<24> = 1709 × 3675401 × 38916464597749<14>
22×1024-319 = 2444444444444444444444441<25> = 22061447423<11> × 110801634977767<15>
22×1025-319 = 24444444444444444444444441<26> = 32 × 7 × 178877 × 191719457 × 11314071763<11>
22×1026-319 = 244444444444444444444444441<27> = 71 × 251 × 11593 × 1183183937833596997<19>
22×1027-319 = 2444444444444444444444444441<28> = 809 × 3021562972119214393627249<25>
22×1028-319 = 24444444444444444444444444441<29> = 3 × 17 × 3500676008741<13> × 136917221430151<15>
22×1029-319 = 244444444444444444444444444441<30> = 233 × 312782934593<12> × 3354140112152689<16>
22×1030-319 = 2444444444444444444444444444441<31> = definitely prime number 素数
22×1031-319 = 24444444444444444444444444444441<32> = 3 × 72 × 107 × 74460149 × 20871571886032840421<20>
22×1032-319 = 244444444444444444444444444444441<33> = 241 × 1014292300599354541263254956201<31>
22×1033-319 = 2444444444444444444444444444444441<34> = 29 × 9103 × 41767547 × 284144849 × 780223223881<12>
22×1034-319 = 24444444444444444444444444444444441<35> = 32 × 19 × 142949967511371020142949967511371<33>
22×1035-319 = 244444444444444444444444444444444441<36> = 23 × 63467 × 167457408159697127397561926701<30>
22×1036-319 = 2444444444444444444444444444444444441<37> = 22751 × 802609 × 133867654937794692662070199<27>
22×1037-319 = 24444444444444444444444444444444444441<38> = 3 × 7 × 75140020368697<14> × 15491360772988159681693<23>
22×1038-319 = 244444444444444444444444444444444444441<39> = 3301 × 191507 × 35324851428739<14> × 10946358062643917<17>
22×1039-319 = 2444444444444444444444444444444444444441<40> = 10193 × 15661 × 15312942706526721488379720875917<32>
22×1040-319 = 24444444444444444444444444444444444444441<41> = 3 × 47 × 263 × 240209 × 2744201737626836365506605612203<31>
22×1041-319 = 244444444444444444444444444444444444444441<42> = 61 × 139 × 8269 × 11047 × 40867 × 7722633637644979283107159<25>
22×1042-319 = 2444444444444444444444444444444444444444441<43> = 103 × 373 × 147661 × 178187 × 2418200427485079531279293677<28>
22×1043-319 = 24444444444444444444444444444444444444444441<44> = 34 × 7 × 14159 × 236759911243<12> × 12860455833345872323971779<26>
22×1044-319 = 244444444444444444444444444444444444444444441<45> = 17 × 10837 × 10301219 × 128805247493286530345757303800791<33>
22×1045-319 = 2444444444444444444444444444444444444444444441<46> = 383 × 1279 × 4423 × 3224014948783<13> × 349942642320631178215057<24>
22×1046-319 = 24444444444444444444444444444444444444444444441<47> = 3 × 300937333807290818399<21> × 27075896649519471162027053<26>
22×1047-319 = 244444444444444444444444444444444444444444444441<48> = 316324171 × 2817262271<10> × 1997733066871<13> × 137303957623218131<18>
22×1048-319 = 2444444444444444444444444444444444444444444444441<49> = 24693883 × 98989877146678164970832835178025442351227<41>
22×1049-319 = 24444444444444444444444444444444444444444444444441<50> = 3 × 7 × 191 × 1665757 × 2062859 × 2284816153<10> × 776238283068355918024829<24>
22×1050-319 = 244444444444444444444444444444444444444444444444441<51> = 97 × 518953 × 649573 × 133422967 × 56030158540138137510269612011<29>
22×1051-319 = 2(4)501<52> = 193 × 74489 × 60900796808101500793<20> × 2791950688681235837104681<25>
22×1052-319 = 2(4)511<53> = 32 × 19 × 151 × 1913 × 4547 × 17669 × 97893839 × 2642776151359<13> × 23808908148190219<17>
22×1053-319 = 2(4)521<54> = 59 × 2939239647812977<16> × 1409591143786894124569296854965284587<37>
22×1054-319 = 2(4)531<55> = 487238512233449<15> × 5016936024287927688504335661978205426609<40>
22×1055-319 = 2(4)541<56> = 3 × 7 × 1164021164021164021164021164021164021164021164021164021<55>
22×1056-319 = 2(4)551<57> = 784961 × 921919 × 900137146949<12> × 21569327729021<14> × 17397787910342097431<20>
22×1057-319 = 2(4)561<58> = 23 × 106280193236714975845410628019323671497584541062801932367<57>
22×1058-319 = 2(4)571<59> = 3 × 149 × 54685558041262739249316430524484215759383544618443947303<56>
22×1059-319 = 2(4)581<60> = 15559 × 4782161651<10> × 2123430995507091455891<22> × 1547163053051798992398439<25>
22×1060-319 = 2(4)591<61> = 17 × 472958789 × 304024056677806265228501689436331498025077893258357<51>
22×1061-319 = 2(4)601<62> = 32 × 7 × 29 × 712 × 5788201 × 1820629453<10> × 906245822681663<15> × 277916121794664776825417<24>
22×1062-319 = 2(4)611<63> = 241 × 3037 × 19918751 × 16767033585926255455679992979395746386565980412323<50>
22×1063-319 = 2(4)621<64> = 643 × 2053 × 562517402752285817463261007<27> × 3291882204704772056827087912697<31>
22×1064-319 = 2(4)631<65> = 3 × 21289857923<11> × 526767424536644542523<21> × 726552904469977329084766503646243<33>
22×1065-319 = 2(4)641<66> = 112241 × 151060607147599<15> × 26482725240123863<17> × 544395771738608292816108347473<30>
22×1066-319 = 2(4)651<67> = 80387 × 1295513 × 23472133939340167930010365457084184880319520503044077611<56>
22×1067-319 = 2(4)661<68> = 3 × 7 × 563 × 775615444420482296314487<24> × 2665667845950776076364338698632121592641<40>
22×1068-319 = 2(4)671<69> = 113 × 110567 × 173515393 × 231629609 × 486792770204805061886176479627039758224234583<45>
22×1069-319 = 2(4)681<70> = 79027107401531831063<20> × 30931721086846489755888001421697789696876841629007<50>
22×1070-319 = 2(4)691<71> = 33 × 19 × 196561147 × 2714222160941180854561640557<28> × 89314040395653732149514061176583<32>
22×1071-319 = 2(4)701<72> = 20501213 × 14413792751<11> × 10971707205488892918454823<26> × 75395969650279696440929073509<29>
22×1072-319 = 2(4)711<73> = 5881 × 155423 × 251790541 × 72531640492049<14> × 146435641204389646835234392676055181850123<42>
22×1073-319 = 2(4)721<74> = 3 × 72 × 850985552617<12> × 287726519709917009<18> × 679142262338579230987388634808128968510651<42>
22×1074-319 = 2(4)731<75> = 188927 × 432979 × 1863788342445041<16> × 62979678990223172085401<23> × 25457882415083283834174197<26>
22×1075-319 = 2(4)741<76> = 9151 × 1129679 × 136746763 × 374582597698279<15> × 14265835266599541857<20> × 323589710794560017818061<24>
22×1076-319 = 2(4)751<77> = 3 × 17 × 103 × 251 × 117922951844359<15> × 2891801878725433<16> × 54366599736109796751701917602704192803601<41>
22×1077-319 = 2(4)761<78> = 137177 × 7982999 × 223219841650550311571475191882972966751211601334968543770287272167<66>
22×1078-319 = 2(4)771<79> = 12889 × 43189 × 31701221 × 42299867 × 5935663927331<13> × 6684078489152144243<19> × 82539524566136792805491<23>
22×1079-319 = 2(4)781<80> = 32 × 7 × 23 × 961841 × 57316488327614179<17> × 1175515498308264299696689<25> × 260315822872373752204254480379<30>
22×1080-319 = 2(4)791<81> = 9933281 × 35914409583625335371513438057088737<35> × 685202152934343623512847549898657572953<39> (Makoto Kamada / GGNFS-0.54.5b for P35 x P39)
22×1081-319 = 2(4)801<82> = 299021887 × 6390272291427230221<19> × 1279257081080412927913664880344466696322408053146775683<55>
22×1082-319 = 2(4)811<83> = 3 × 257 × 4099 × 7734778386821259572799048594131954123904329088662745063708381135142715978129<76>
22×1083-319 = 2(4)821<84> = 3434129 × 685408251973521044894106421<27> × 103851850038281035896219534477507909029606219295749<51>
22×1084-319 = 2(4)831<85> = 107 × 773 × 3607 × 103582546161885894340675181091991<33> × 79101400947197117361272660657115188088240863<44> (Makoto Kamada / GGNFS-0.54.5b for P33 x P44)
22×1085-319 = 2(4)841<86> = 3 × 7 × 1528507196741587<16> × 741788315769892199<18> × 1026628698675015029402771990791240647679699007614417<52>
22×1086-319 = 2(4)851<87> = 47 × 3633983 × 1431197016187896688332992321369742144922178463828833146068034478178857535519241<79>
22×1087-319 = 2(4)861<88> = 139 × 307437230027<12> × 57201696923471361554058757298034742946205017987610211163541008414395996897<74>
22×1088-319 = 2(4)871<89> = 32 × 19 × 727 × 762550669 × 3332080794931945879<19> × 77386538347902155730694455362232907939286919996915922823<56>
22×1089-319 = 2(4)881<90> = 29 × 40791089 × 2846806155160221402442061<25> × 12370136261863633501243609<26> × 5867924183607418976566786507289<31>
22×1090-319 = 2(4)891<91> = 109 × 311 × 191799119 × 4258661821003<13> × 88282276210063232158239402429230625653467071689880202950838011887<65>
22×1091-319 = 2(4)901<92> = 3 × 7 × 4778777 × 1068006671<10> × 228071041848494532402952488360198884574620215994678366189449430504061483763<75>
22×1092-319 = 2(4)911<93> = 17 × 241 × 29910210041<11> × 356668314413<12> × 57643478661344209<17> × 288826226027966161311719<24> × 335925837087556413508528771<27>
22×1093-319 = 2(4)921<94> = 335589485178103727532057721<27> × 7284031688737599299985959882154369321787735190818342215126148796321<67>
22×1094-319 = 2(4)931<95> = 3 × 1108021 × 24254655577430309<17> × 105727855383136509339141443<27> × 2867651625724867073121083858928697803508086761<46>
22×1095-319 = 2(4)941<96> = 224027 × 1091138320133039519542039327600889376925301166575655811328297234013955659114501575454942683<91>
22×1096-319 = 2(4)951<97> = 71 × 55073 × 154371983986009<15> × 18237557896315193351<20> × 222048538382765781133682969543981202970357701613403243953<57>
22×1097-319 = 2(4)961<98> = 33 × 7 × 264961903 × 488129362851233925490044323684930333032326606684183499879738125564566339923979001456323<87>
22×1098-319 = 2(4)971<99> = 409 × 21751 × 11600153849<11> × 108123004958500494135887653<27> × 21907649229893296689900222195055691657660640334346808467<56>
22×1099-319 = 2(4)981<100> = 15651907068894557035312452980580947045838805729<47> × 156175502044881969417194145830331568749451490532092729<54> (Makoto Kamada / GGNFS-0.54.5b for P47 x P54)
22×10100-319 = 2(4)991<101> = 3 × 41479 × 61297 × 1084363474145359<16> × 1244015952572926083177100181<28> × 2375694484449824477206194806756186529235112699711<49>
22×10101-319 = 2(4)1001<102> = 23 × 61 × 313 × 107893138657<12> × 285918128501<12> × 42089850436264063<17> × 428711625677627754998550802013907404480252881865457257209<57>
22×10102-319 = 2(4)1011<103> = 4451 × 77931121 × 12383902761379<14> × 356105608825150637<18> × 1597994596259412806159538568474087971023754437238184724935877<61>
22×10103-319 = 2(4)1021<104> = 3 × 7 × 307 × 4605527 × 50934317849725249797046603<26> × 16163398275283957029829342303213584139046338121519642215559725044163<68>
22×10104-319 = 2(4)1031<105> = 269 × 40967007030392967024991291<26> × 22181640122806748864483900401014824830728454642617173568046176927272552488679<77>
22×10105-319 = 2(4)1041<106> = 2837 × 20521 × 674533 × 8995397135614217<16> × 365609990413490990755113353<27> × 18926953610496539421405647241132038129082155275801<50>
22×10106-319 = 2(4)1051<107> = 32 × 19 × 229 × 2557 × 9631591007156665672864019700139260889641266659<46> × 25346606237218165683573730083344826363369886203189673<53> (Serge Batalov / Msieve v. 1.36 for P46 x P53 / 25 minutes on Opteron-2.8GHz; Linux x86_64 / June 25, 2008 2008 年 6 月 25 日)
22×10107-319 = 2(4)1061<108> = 293 × 9281 × 10837 × 526739913527<12> × 362258630926108339321<21> × 43470409905992715399479476726945246142115988579943962863782740463<65>
22×10108-319 = 2(4)1071<109> = 17 × 181 × 104959 × 482753 × 21544099 × 138995389975794491309068904263146176694797<42> × 5235754528978806667489969821427816016907360493<46> (Robert Backstrom / Msieve v. 1.36 for P42 x P46 / 33.06 minutes / June 25, 2008 2008 年 6 月 25 日)
22×10109-319 = 2(4)1081<110> = 3 × 7 × 223 × 283 × 9011 × 1009369111<10> × 7006522642833321565891<22> × 1583747977983507909530400683<28> × 182750247974860980193201465798330359093613<42>
22×10110-319 = 2(4)1091<111> = 103 × 2063 × 1150386346796513911046898636844469334621766041745428913705859806599138988109711300088213716683896316724369<106>
22×10111-319 = 2(4)1101<112> = 59 × 5501 × 6299 × 334931 × 442633 × 8065211694771965214413455405587259201911679411640851824851662571541877096234354502859979487<91>
22×10112-319 = 2(4)1111<113> = 3 × 13166658539524499<17> × 67920191103320111469459714323<29> × 160434617774633954227538760679<30> × 56791895062768597558712540614567482509<38> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2487876651 for P30 x P38 / June 17, 2008 2008 年 6 月 17 日)
22×10113-319 = 2(4)1121<114> = 23801 × 5227222964371987<16> × 1964780060009462142862084353911476227908737476902852610752819109428134374163093919710351723643<94>
22×10114-319 = 2(4)1131<115> = 90091663 × 301366103453<12> × 46827117882817120814227<23> × 1922665512297220472963814411871098158241781002221180916795382031735430097<73>
22×10115-319 = 2(4)1141<116> = 32 × 72 × 947 × 1193 × 4621 × 2215136908305169<16> × 151502814112094416220578883<27> × 31636899699150893057227172108692457806492496408854461238396693<62>
22×10116-319 = 2(4)1151<117> = 106816327 × 2341301839<10> × 74779328381478672337559932601827975176268631<44> × 13070841991426997088803843630742662043950302826857829687<56> (Serge Batalov / Msieve v. 1.36 for P44 x P56 / 37 minutes on Opteron-2.8GHz; Linux x86_64 / June 25, 2008 2008 年 6 月 25 日)
22×10117-319 = 2(4)1161<118> = 29 × 461 × 349093 × 406887201344489491693<21> × 4410818249195386441095460907024479<34> × 291841410464168265137439674268152491306019075364735359<54> (Sinkiti Sibata / Msieve v. 1.36 for P34 x P54 / 1.31 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 25, 2008 2008 年 6 月 25 日)
22×10118-319 = 2(4)1171<119> = 3 × 14983 × 622449689 × 4537615633666849151611716577755232938567642751<46> × 192543196468245533005352464734298731237544060158976608782531<60> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P46 x P60 / 3.79 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 25, 2008 2008 年 6 月 25 日)
22×10119-319 = 2(4)1181<120> = 3793 × 17623 × 31593425603<11> × 6335510334741896507<19> × 18270026014767410088463541704680466284003141929085224053133146331534411247222140239<83>
22×10120-319 = 2(4)1191<121> = 1097 × 8713 × 28670463183686299<17> × 8920128702376121898986576905130603802601500399574267019204656192394996221525848352810785945970219<97>
22×10121-319 = 2(4)1201<122> = 3 × 7 × 421 × 569 × 4859219466669299480123152941657715211351419392362998890264710618792664637147394328597339254866524861390212529227929<115>
22×10122-319 = 2(4)1211<123> = 167 × 241 × 76387 × 62753711 × 1267032603365892852935591129585762949576260698310039913875215442586726971622945622074757370724825070943179<106>
22×10123-319 = 2(4)1221<124> = 23 × 433 × 1117 × 68729 × 501031 × 112756411670894054808299206741<30> × 1273632833538519302423429506126087703<37> × 44434587248671470710438581903003136233111<41> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P30 x P37 x P41 / 2.80 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 25, 2008 2008 年 6 月 25 日)
22×10124-319 = 2(4)1231<125> = 34 × 17 × 19 × 2017 × 5557 × 227041820659<12> × 23878635884624908008842982493<29> × 13023798127401956301310167931991<32> × 1180574246973429728203970223048511071759959<43> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=315111271 for P32 x P43 / June 17, 2008 2008 年 6 月 17 日)
22×10125-319 = 2(4)1241<126> = 36634471 × 42512933 × 3613617415685319396355961899<28> × 585005323487959369020933554431<30> × 74244996238834247206614835286032052462108962596476423<53> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1294017779 for P30 x P53 / June 17, 2008 2008 年 6 月 17 日)
22×10126-319 = 2(4)1251<127> = 251 × 947197 × 7866056173<10> × 147800376943<12> × 125539892302209994144376261639415159617845478621<48> × 70445263698076214469967576860456601215668550017537<50> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P48 x P50 / 4.06 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 25, 2008 2008 年 6 月 25 日)
22×10127-319 = 2(4)1261<128> = 3 × 7 × 151 × 227 × 5147 × 11471 × 791357043223<12> × 98537732136479733560450233<26> × 2027499064000932034526838707<28> × 3638035453571733583756331119254283558651641908833<49>
22×10128-319 = 2(4)1271<129> = definitely prime number 素数
22×10129-319 = 2(4)1281<130> = 1201 × 24554045210593<14> × 82892285248621913345749558371018122363433602573098875229247895729664481837935399078817036901964697455072538928137<113>
22×10130-319 = 2(4)1291<131> = 3 × 5791 × 117231343 × 85995374291128139645665669095946376417031817673599<50> × 139568213783908770745527523180712684153776037520035004684966931153181<69> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P50 x P69 / 4.42 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 25, 2008 2008 年 6 月 25 日)
22×10131-319 = 2(4)1301<132> = 71 × 727998077 × 157906643592948307<18> × 97541231017823678874502281517<29> × 307045654818544746273976059032468202494825199363153156512107453009659307117<75>
22×10132-319 = 2(4)1311<133> = 47 × 110921 × 1816202469242866673<19> × 258169108685937743921523720918445823586258814996126084259137545938758493635037261402094224212943326760231791<108>
22×10133-319 = 2(4)1321<134> = 32 × 7 × 139 × 1889 × 72848313288111029<17> × 12107233034358661681<20> × 5639657496580140043807608755154479<34> × 297081584751261613839479981912844720413453322599248782527<57> (Sinkiti Sibata / Msieve v. 1.36 for P34 x P57 / 2.92 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 25, 2008 2008 年 6 月 25 日)
22×10134-319 = 2(4)1331<135> = 61543 × 3971929292436905000478436937498081738693993540198632573069958312796653469028881342223233258769387979858707642533585370301162511487<130>
22×10135-319 = 2(4)1341<136> = 863 × 1489 × 16823 × 5313769235805384372189167900587<31> × 21279849046611645945710026350062429368584254811995832794692351302294520590191807808006657625763<95> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=617497882 for P31 x P95 / June 18, 2008 2008 年 6 月 18 日)
22×10136-319 = 2(4)1351<137> = 3 × 102913 × 15234311306269949<17> × 1562581549839689958881<22> × 70140031482922619884047309665806073419879<41> × 47419525476324695463991738004843827169691997828599769<53> (Sinkiti Sibata / Msieve v. 1.36 for P41 x P53 / 4.76 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 25, 2008 2008 年 6 月 25 日)
22×10137-319 = 2(4)1361<138> = 107 × 6260299 × 4230643473881898745530247026033528758893<40> × 86257107301040353258760835519646764214155993239698998324248576055986190717546106427894309<89> (Serge Batalov / Msieve v. 1.36 for P40 x P89 / June 25, 2008 2008 年 6 月 25 日)
22×10138-319 = 2(4)1371<139> = 137977193 × 18449653031753849<17> × 3825837938755335201721050723402917950510257463<46> × 250990967874013770505290290531406928058853824186456271102008457235151<69> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P46 x P69 / 13.38 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 25, 2008 2008 年 6 月 25 日)
22×10139-319 = 2(4)1381<140> = 3 × 7 × 35809 × 32506385657828032650004779916254685167528307521046776541205316094310481196459581781707504291212297579411991989835548717394063536094869<134>
22×10140-319 = 2(4)1391<141> = 17 × 1447 × 8237 × 86711 × 93229 × 881417 × 63355190713391485500322124879334139<35> × 2672420577333034720731187670756586117081501976010031863655603623277223815204027931<82> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P35 x P82 / 13.15 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 26, 2008 2008 年 6 月 26 日)
22×10141-319 = 2(4)1401<142> = 26497 × 577177 × 1430717 × 1907903 × 4589430756290401289<19> × 2117841802712755227263<22> × 2898663345538188602771<22> × 4282664976392041342097<22> × 485288725936350806538329356179049871<36>
22×10142-319 = 2(4)1411<143> = 32 × 19 × 189407 × 436463 × 1729181586315411486922122249292291696260629488053546940690409768796819835380089504355857799307118507185416567491391452819361852731<130>
22×10143-319 = 2(4)1421<144> = 1429 × 2131 × 8539 × 30697 × 101377089370163640052001<24> × 51705751863367893367331438399782672546461708678915431<53> × 58422867534690837233698901081105668200911196544155883<53> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P53(5170...) x P53(5842...) / 21.09 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 27, 2008 2008 年 6 月 27 日)
22×10144-319 = 2(4)1431<145> = 103 × 191 × 517211 × 1336861 × 1178187583<10> × 152525034303797173914338784464493648518467808403312581874207489522528623254018929714748708656024149491332233639719541969<120>
22×10145-319 = 2(4)1441<146> = 3 × 7 × 23 × 29 × 87715051 × 5226372663849925971967<22> × 3806804279541242078725093108175742581829464804716141280164095359870650625960834401461145961890712109556890441139<112>
22×10146-319 = 2(4)1451<147> = 97 × 131 × 4080687637301880861241344803<28> × 104910740816376092324396164031<30> × 44934905781513055340655166878873449605111550766766037029258233173533202215170436100591<86> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1629434937 for P30 x P86 / June 19, 2008 2008 年 6 月 19 日)
22×10147-319 = 2(4)1461<148> = 13693 × 125507 × 12294509113805087317<20> × 266636551525620123868180488233<30> × 433893093611076364891777978646834861088792475425072385426854770737241773421490082859359931<90> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1216356081 for P30 x P90 / June 19, 2008 2008 年 6 月 19 日)
22×10148-319 = 2(4)1471<149> = 3 × 11966832734670045232159<23> × 680894295826623540372554801452122072993053573955495150166675148609202556825271925372288104959967634018675043294958707878769133<126>
22×10149-319 = 2(4)1481<150> = 3617 × 81600139171<11> × 828210559133087065431973893331259909284523451747932986415434764864326840467905333886522858114192297860685988345664730071285461669808563<135>
22×10150-319 = 2(4)1491<151> = 78839 × 47567413 × 613925800595764424450450712559<30> × 45972127484749710794015017878432605888239<41> × 23095057306620505652516576474633038696841517536460420603268895763763<68> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2654604839 for P30 / June 19, 2008 2008 年 6 月 19 日) (Serge Batalov / pol51; Msieve 1.36 gnfs for P41 x P68 / 9.60 hours on Opteron-2.8GHz; Linux x86_64 / June 26, 2008 2008 年 6 月 26 日)
22×10151-319 = 2(4)1501<152> = 33 × 7 × 3167 × 432149 × 1787644932364570209061<22> × 19510620622076990461312153788769<32> × 2709470613529710289429566224657372239157470034344054793189036526022829244759185533609627<88> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=907373402 for P32 x P88 / June 19, 2008 2008 年 6 月 19 日)
22×10152-319 = 2(4)1511<153> = 241 × 33589 × 43063 × 267966650482880119367198545606586717<36> × 31215354255566197538002781232347164771547<41> × 83832565493279521861357860130355126983160895444458139420999716557<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P36 x P41 x P65 / 44.29 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 29, 2008 2008 年 6 月 29 日)
22×10153-319 = 2(4)1521<154> = 4450992226721<13> × 3130978137030994435259<22> × 4672251179457423783044554303760906137448973750934054087<55> × 37541975175578769737137485685757194683231428146965223756007180237<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P55 x P65 / 37.78 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 26, 2008 2008 年 6 月 26 日)
22×10154-319 = 2(4)1531<155> = 3 × 179 × 1549 × 60258383 × 38677036373<11> × 25070638326752702413568294387068201<35> × 502942589916015173876187946749795727665325828159843838684451355988388130195810478642949230888423<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P35 x P96 / 37.39 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 27, 2008 2008 年 6 月 27 日)
22×10155-319 = 2(4)1541<156> = 1063 × 52189 × 139891 × 229658171 × 23220397777079<14> × 771697152311011<15> × 7653845691931131002537375473242068837463685554655458030552809533043943142744013254657053078489658531725007<106>
22×10156-319 = 2(4)1551<157> = 17 × 228270198504556807992807524969<30> × 11043374768751479943688808816291<32> × 57040092727252683149742204858056280616750372672753607707386580713158538563675385933258663668587<95> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=126163563 for P32 / June 20, 2008 2008 年 6 月 20 日) (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=4156384907 for P30 x P95 / June 20, 2008 2008 年 6 月 20 日)
22×10157-319 = 2(4)1561<158> = 3 × 73 × 18541 × 1732231 × 3794897 × 44098693698355178723007115893291109054904999<44> × 4419774566759251381250748538579444137486855579222989929121298784868474730416401309522649387033<94> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P44 x P94 / 54.43 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / June 28, 2008 2008 年 6 月 28 日)
22×10158-319 = 2(4)1571<159> = 4663 × 7060551813474387733321657<25> × 81068623051371427177820056921295299<35> × 91584781770303176133445380087692926475272887375453049657832694465000381515308004496746796198349<95> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=3406106487 for P35 x P95 / June 20, 2008 2008 年 6 月 20 日)
22×10159-319 = 2(4)1581<160> = 47059 × 25802616459517<14> × 2013138851054355045573137622147401779947270199856913426461224820589880850281347777024153828329743938476990710397636816815965926019475653783647<142>
22×10160-319 = 2(4)1591<161> = 32 × 19 × 23251 × 6148121264090620624616144144826933041286394886730507081112638919245237630336328222931100603971870780240463642120767601882543552662249688674509489611198121<154>
22×10161-319 = 2(4)1601<162> = 61 × 1069 × 5849 × 5234395903879065741719989<25> × 122440316165427829786217401691790236789774425029203436812571506965372685262345861784968935313565406125140340259788382837283683909<129>
22×10162-319 = 2(4)1611<163> = 63737 × 175819093 × 14301556867419987422995670262853271843431921849<47> × 15252435624754255559351197971224772317866956646695045907287784752020816148507378065192759386215178367749<104> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.34 for P47 x P104 / 44.63 hours on Athlon 64 X2 6000+ / June 29, 2008 2008 年 6 月 29 日)
22×10163-319 = 2(4)1621<164> = 3 × 7 × 35643494423<11> × 1900403081509979834563<22> × 17184419888153031544699040547951577797925094657032149438461690849575099655201175263760762887026241231017719244945088599533521553329<131>
22×10164-319 = 2(4)1631<165> = 2083 × 73135006949<11> × 51845043108470586834361561919780616245850625521525516787582746406578547<71> × 30949836173738031868495545589299632987292537377947824460601813620688132316642509<80> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P71 x P80 / 58.82 hours on Cygwin on AMD 64 3200+ / July 1, 2008 2008 年 7 月 1 日)
22×10165-319 = 2(4)1641<166> = 1697 × 111127 × 3102605993391224233<19> × 9181028417573967427804067865162623442511111<43> × 455051740794629015966935014142950094789983481286596107420482412029657149588773814025318977528753<96> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P43 x P96 / 92.09 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / August 16, 2008 2008 年 8 月 16 日)
22×10166-319 = 2(4)1651<167> = 3 × 71 × 64951 × 1054167195644633213538682942324589961665224175651<49> × 1676120464464856575059394614578455426232363135439230363648406284394705342167031244505148822086872348576246745457<112> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P49 x P112 / 64.73 hours on Cygwin on AMD 64 3400+ / June 30, 2008 2008 年 6 月 30 日)
22×10167-319 = 2(4)1661<168> = 23 × 2539 × 37321 × 17383069455340930576859078822201728294481827<44> × 6452230846702379390519960216544745384363065802954977313588048296249399827777355779886850218076924772405182266503159<115> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P44 x P115 / 64.33 hours on Cygwin on AMD 64 X2 6000+ / June 30, 2008 2008 年 6 月 30 日)
22×10168-319 = 2(4)1671<169> = 8873219 × 11099060621790018608384460043<29> × 371200625538831365829940284569021747043127<42> × 66865800468067413875508513185834603191397073474295317096215322040316133061063996555098731599<92> (Robert Backstrom / GMP-ECM 6.2.1 B1=5878000, sigma=4081711366 for P42 x P92 / June 24, 2009 2009 年 6 月 24 日)
22×10169-319 = 2(4)1681<170> = 32 × 7 × 59 × 28753 × 228720159885289104917575029561378910137605128115575465603888086356631520476865231851250504966029811287913562085493248264570972041830892029967302093168202742423541<162>
22×10170-319 = 2(4)1691<171> = 643 × 797 × 10837 × 344349949 × 51523958402942910120527119<26> × 24512183185152555874872601627711724616592509609277977297743897<62> × 101207003405412029690244968621692294006581722262048299972092070569<66> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P26 x P62 x P66 / 37.73 hours on Core 2 Quad Q6700 / September 21, 2009 2009 年 9 月 21 日)
22×10171-319 = 2(4)1701<172> = 55658717 × 10204364477<11> × 1493175194075189174617<22> × 11618164998598963668323<23> × 1813956876167436956976197<25> × 136768395950517742705122952485724758357352145717997395754044147074237878436485535248887<87>
22×10172-319 = 2(4)1711<173> = 3 × 17 × 4629089 × 2378694448442409073<19> × 43528710883842874496093189108342197662679627077590348847595768819970125026350227875418083916512853499422275767932894106383803013346112726914141203<146>
22×10173-319 = 2(4)1721<174> = 29 × 53929390053448635802755667268850142007562273054280940188884371<62> × 156299167589182500831339219188302177128441788079387540549837743824293003742698300050396169986960092098989076799<111> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.36 for P62 x P111 / 195.03 hours on Cygwin on AMD 64 3200+ / July 7, 2008 2008 年 7 月 7 日)
22×10174-319 = 2(4)1731<175> = 704642225313497507<18> × 12495515440678662953161<23> × 265435321341913952341001<24> × 21418582913094775981829960293<29> × 40871627080366760827317768073469<32> × 1194774532459917813543282183415026959166443382826099<52> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=4026425759 for P32 x P52 / June 21, 2008 2008 年 6 月 21 日)
22×10175-319 = 2(4)1741<176> = 3 × 7 × 37589 × 105019 × 8119987 × 173910890581<12> × 17648557448824663035721330802182464599239282863081619<53> × 11831529746993533853814018315782976773435891595802324975497573677588703753115392218139479541967<95> (Warut Roonguthai / Msieve 1.48 snfs for P53 x P95 / November 5, 2011 2011 年 11 月 5 日)
22×10176-319 = 2(4)1751<177> = 251 × 5569 × 1163423 × 10926330072767<14> × 31053399005538343867<20> × 102563358812163844132959163591289718303271507730995178051<57> × 4319325092239368088186036005003119597734448908836377088498488681706048411787<76> (Warut Roonguthai / Msieve 1.48 snfs for P57 x P76 / March 26, 2012 2012 年 3 月 26 日)
22×10177-319 = 2(4)1761<178> = 503 × 761 × 256687 × 1092618477845982273668283983459<31> × 6063316493536270714476889446027251899684408411<46> × 3755302067277814796961647744208548749014749854810173192657520720198261432322174611092736729<91> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1865279094 for P31 / June 22, 2008 2008 年 6 月 22 日) (Dmitry Domanov / Msieve 1.50 snfs for P46 x P91 / May 20, 2013 2013 年 5 月 20 日)
22×10178-319 = 2(4)1771<179> = 33 × 19 × 47 × 103 × 1433 × 63823 × 18515317 × 185841819169515462999327694222224388992257867222577315135863<60> × 31277333355099724628943520080217876975818805033829702771849441198696703530731636243317146907047293<98> (Dmitry Domanov / Msieve 1.50 snfs for P60 x P98 / May 20, 2013 2013 年 5 月 20 日)
22×10179-319 = 2(4)1781<180> = 139 × 27528427 × 6203103509788629439<19> × 10298523084531413118264053324866965231817578543368128969277146237259788397308169251241533679863862622529731370895209353733680183489540390082941994706623<152>
22×10180-319 = 2(4)1791<181> = 113 × 57829 × 433336304165081944703<21> × 2825795160530357838421<22> × 305485283630286351791896689421382039504116109669006850281749154366474483876495927090022164075813549765999866585932279597544099408991<132>
22×10181-319 = 2(4)1801<182> = 3 × 7 × 16483780939799<14> × 575517452423560253<18> × 220186324611901009098364994306364210727117<42> × 231678858371217572343595801719401701797819592787<48> × 2405297487181681247569291935599674624563142759480313340874217<61> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3586700232 for P42, Msieve 1.50 gnfs for P48 x P61 / May 8, 2013 2013 年 5 月 8 日)
22×10182-319 = 2(4)1811<183> = 241 × 99923 × 187988238553<12> × 53996671032265321713876303823247228682196499212002517880031995375441436291451339945511578406915388412494733573264294734641523774772284472239996278974097859442363979<164>
22×10183-319 = 2(4)1821<184> = definitely prime number 素数
22×10184-319 = 2(4)1831<185> = 3 × 7019 × 6705079 × 202293075931<12> × 425042380540337999804473<24> × 2233556149517112120304444591<28> × 114423653990361075653055464062935164466831611<45> × 7878686770508480786149343903599253200453322043489051808630270100369<67> (Serge Batalov / pol51; Msieve 1.36 gnfs for P45 x P67 / 10.00 hours on Opteron-2.8GHz; Linux x86_64 / June 26, 2008 2008 年 6 月 26 日)
22×10185-319 = 2(4)1841<186> = 379 × 149292769 × 535370539267<12> × 137733546280768493220622977679<30> × 58587907849836612412654673840728409085277121067270478487088881221769798111554792987760600458636336582760691255252736489758571153714087<134> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=2397390493 for P30 x P134 / June 22, 2008 2008 年 6 月 22 日)
22×10186-319 = 2(4)1851<187> = 2609147 × 11184881843<11> × 20693708759<11> × 107449652673263951068137572239<30> × 171456587163938150377867556321935189380057680476175447590519<60> × 219711454591472501320115502574137369201432836002086108434234387703221959<72> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=3777051043 for P30 / June 22, 2008 2008 年 6 月 22 日) (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona gnfs for P60 x P72 / 397.44 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / July 29, 2008 2008 年 7 月 29 日)
22×10187-319 = 2(4)1861<188> = 32 × 7 × 25798291 × 113250031 × 1614211993541145995379522765447963115692695060590251202741450533922228629829361<79> × 82271570054710440921006045667974126804434331766363892012526788276308392424027778153173163747<92> (Dylan Delgado / msieve v1.53, GGNFS, factmsieve.py v0.76 snfs for P79 x P92 / March 2, 2018 2018 年 3 月 2 日)
22×10188-319 = 2(4)1871<189> = 17 × 20021 × 21388249 × 1529725566121<13> × 21951122220172663246505516087798710364097722742164410884735366520650547475969575357081425969290365357271257517212363850760359480482589011604450461732465177949168197<164>
22×10189-319 = 2(4)1881<190> = 23 × 971 × 2156117 × 1263059207<10> × 1115882194738987390798189186850989122952213993212547046581<58> × 36017927930833340144151855075969771875132762981425414111579618239802271361712704798023996624339873619203000368643<113> (Eric Jeancolas / cado-nfs-3.0.0 for P58 x P113 / August 20, 2020 2020 年 8 月 20 日)
22×10190-319 = 2(4)1891<191> = 3 × 107 × 30301683840760864991<20> × 2490251637797916931309772842307<31> × 70381765008385706451711041543554733421666938618114603<53> × 14338541851484797810859258131098595581368551358166468537712707202468499167486944664711<86> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1552533239 for P31 / July 11, 2008 2008 年 7 月 11 日) (Eric Jeancolas / cado-nfs-2.3.0 for P53 x P86 / March 3, 2019 2019 年 3 月 3 日)
22×10191-319 = 2(4)1901<192> = 3671 × 545688173839<12> × 124254185001136568019808150593354580768474043<45> × 982064969481577484243054299397357378416226342115142966920356941759704105257528533899149508917126868739944126367788027064258103390323<132> (matsui / Msieve 1.48 snfs for P45 x P132 / February 5, 2011 2011 年 2 月 5 日)
22×10192-319 = 2(4)1911<193> = 18365563 × 6063647531<10> × 711382564276783237<18> × 30855938477474589613723964626297431849270739304930616475060692732215144995055403153369359291567647777637033971647775079260473173840857265310405527104669350781<158>
22×10193-319 = 2(4)1921<194> = 3 × 7 × 609231430453<12> × 105260716553002424606690738894163766667<39> × 18151488878340453985241755044056501230673342657995620429915893662530618699980101842563032685659868556607538422920761852920461901892213080598371<143> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=320259484 for P39 x P143 / January 23, 2008 2008 年 1 月 23 日)
22×10194-319 = 2(4)1931<195> = 278595861831598911140273<24> × 11894864327951802442292729804333<32> × 35018293618452818567197231650421<32> × 5372482836426580900512209972203814089751370013919<49> × 392081183737090877140072638124636771184362766568147368455751<60> (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1905737881 for P32(3501...) / June 23, 2008 2008 年 6 月 23 日) (Makoto Kamada / GMP-ECM 6.2 B1=250000, sigma=1719424560 for P32(1189...) / June 23, 2008 2008 年 6 月 23 日) (Serge Batalov / pol51; msieve-1.36; GMP-ECM 6.2.1 for P49 x P60 / June 25, 2008 2008 年 6 月 25 日)
22×10195-319 = 2(4)1941<196> = 18307 × 61409 × 226017649145596719973<21> × 52333261226040013874068864421239<32> × 1615902059300938317767530453259748164693379579058885879<55> × 113761622492433692734088411392379539437321529711769589882507706715936467469809639<81> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1438106012 for P32 / October 22, 2008 2008 年 10 月 22 日) (Erik Branger / GGNFS, Msieve gnfs for P55 x P81 / November 8, 2011 2011 年 11 月 8 日)
22×10196-319 = 2(4)1951<197> = 32 × 19 × 853 × 6389 × 513943 × 11985101 × 9960866131<10> × 2093173551796789200919<22> × 165179111400614450404529741330250773360268841<45> × 1236482632552645890478183495465138095717429227953966406447375575098557476950145607610544691530267709<100> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1273570639 for P45 x P100 / May 13, 2013 2013 年 5 月 13 日)
22×10197-319 = 2(4)1961<198> = 33815143 × 7228845504052561435107473726917092867075689860144741793475320936671610244098167629941545550892523046389141233099160469155621918985953850452279454930722736983381807506904360701489402083689087<190>
22×10198-319 = 2(4)1971<199> = 109 × 811 × 495092711 × 10089323172507043<17> × 5832137622705399830109165327805941245397681739656790124577273875188634181737848723<82> × 949197290702903240029348699253921753262136590913993565023612795487286839592834194457721<87> (Eric Jeancolas / cado-nfs-3.0.0 for P82 x P87 / December 18, 2020 2020 年 12 月 18 日)
22×10199-319 = 2(4)1981<200> = 3 × 72 × 20177 × 712460515609<12> × 11567658043806657302431578778963696478683374401008599663932411657559196754792994536598796665468788857369346230848501790582104521804182688514551073691497872662101872301278637055500971<182>
22×10200-319 = 2(4)1991<201> = 47713862744287860379304252114030623412334743979315223<53> × 2395392072792774623211423837351600973074529935809359597689484971362983<70> × 2138744897728437264421864974178897354836969223259709418858727405909337720973849<79> (Serge Batalov / Msieve 1.36 snfs for P53 x P70 x P79 / 23 days on Opteron-2.6GHz; Linux x86_64 / August 1, 2008 2008 年 8 月 1 日)
22×10201-319 = 2(4)2001<202> = 29 × 71 × 1039 × 153871 × 34538733129830883792274919488101894041954907468702408807659<59> × 215003285861104643444819455031538541332266506848877551823345890513247923017022049957673531943864628319235854006325626138076862587169<132> (Bob Backstrom / Msieve 1.54 snfs for P59 x P132 / May 20, 2021 2021 年 5 月 20 日)
22×10202-319 = 2(4)2011<203> = 3 × 151 × 53961246014226146676477802305616875153298994358597007603630120186411577140053961246014226146676477802305616875153298994358597007603630120186411577140053961246014226146676477802305616875153298994358597<200>
22×10203-319 = 2(4)2021<204> = 2405341 × 7315667 × 13289854519<11> × 119582186007042207157609<24> × 46296329038327225056521129<26> × 188806228703636119916539508758833601151538878269274707133300389598952477729569182899043837729422869709452495746698547918634065117417<132>
22×10204-319 = 2(4)2031<205> = 172 × 697002950003<12> × 299003119792994017<18> × 855646145682965154889896452227655387620244719415046956123<57> × 47432694284406161996962902611132777418044609510062508551184324363154479952817981056071577038522937204633586659677753<116> (ebina / Msieve 1.54 for P57 x P116 / July 23, 2023 2023 年 7 月 23 日)
22×10205-319 = 2(4)2041<206> = 35 × 7 × 6299 × 27997377527879961309293241035851<32> × 81486731056923977291276161750145195498795108049452860585025048265719238876464258862765301158540804297497280291981125725945027957706118275754781217863409405370323729309<167> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2408601803 for P32 x P167 / March 31, 2013 2013 年 3 月 31 日)
22×10206-319 = 2(4)2051<207> = 149 × 7231613484651763008009389172209505476695471713810597688681021343537197955762897<79> × 226860401861879010728911326836226712656416256309723392298782573615011183207922676090850940379265631265871790758100527298429797<126> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P79 x P126 / December 20, 2013 2013 年 12 月 20 日)
22×10207-319 = 2(4)2061<208> = 6156708479<10> × 26960001492109407621760776821029483<35> × 14726911240040212126033921680708294332090783596451728753456486390849065806938453220902315871893631666763650339724010264909730317522123934627265082745251384095047413<164> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3831600274 for P35 x P164 / April 3, 2013 2013 年 4 月 3 日)
22×10208-319 = 2(4)2071<209> = 3 × 9907 × 193929211873<12> × 33733309450745704026047788467474296727103981088340322172925772663650961063553609284928296105309<95> × 125722952313110891801568512943939281808607491580031052704732280151552477108289294334533731862933653<99> (Bob Backstrom / Msieve 1.54 snfs for P95 x P99 / July 7, 2021 2021 年 7 月 7 日)
22×10209-319 = 2(4)2081<210> = 601 × 9007 × 6685768997<10> × 165172177733<12> × 40891898561490244565697813306902048731586473807424725328173996490861653735956450882813340296581584267366888739287343477680022417858713041727564639399559573969398148375207047173953863<182>
22×10210-319 = 2(4)2091<211> = 35136311531<11> × 190283520971<12> × 51001257949951<14> × 89688793359970087267063<23> × [79928884888831718940706182277089537807846839277404159567852479640444435539771655145868782279889436100082184129867865167902459663621196211278014232561657<152>] Free to factor
22×10211-319 = 2(4)2101<212> = 3 × 7 × 23 × 5981 × 3552182655289643<16> × 1233405128030638857083896584827617537055593<43> × 1931337615815684215114298662903330099260790826127162469861020397221288915521197989523219228850064948760938998638505684098836768122931432870111921733<148> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2299263482 for P43 x P148 / May 20, 2013 2013 年 5 月 20 日)
22×10212-319 = 2(4)2111<213> = 103 × 241 × 599 × 487856869 × 300620783171<12> × 3859356620149<13> × 1458991888769340144413<22> × 189033110722967629164743600567<30> × 349150494200329975809168048000367672617760627783961881<54> × 301626382118274793571306026401957303633927980524065562140953384661433<69> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2129560524 for P30 / March 28, 2013 2013 年 3 月 28 日) (Warut Roonguthai / Msieve 1.49 gnfs for P54 x P69 / April 1, 2013 2013 年 4 月 1 日)
22×10213-319 = 2(4)2121<214> = 49739 × 104262861426700012131786797<27> × [471360821587661661614372851026983111997209920418059350631631593814208915279077009121860149040809897080162513515429707604758665191452651332093261925371108652182620934823156595727926327<183>] Free to factor
22×10214-319 = 2(4)2131<215> = 32 × 19 × 41550677201390449<17> × [3440376358212215907663958606065163639814401551885049067732955094175716598554221314655923385773552530584160245656640043449351787007116691914681037877136962209024909249454808773370003065698384429179<196>] Free to factor
22×10215-319 = 2(4)2141<216> = 172871 × 5605366159<10> × [252263280946017199024147254957712373813387735490850051963834095577262320140066167517254887909090805819382074967478883438654682891723052979117050732043676968096472177829158617760305208427550844768464369<201>] Free to factor
22×10216-319 = 2(4)2151<217> = 389 × 22721 × 6875159 × 40227253466117762200525685173824208534820383719129231314542867305757547898457805354219948629743352361021627100635815188827155754499322097349957897556895560963161981966714402563678842678775428135270499971<203>
22×10217-319 = 2(4)2161<218> = 3 × 7 × 3495439 × 279428453 × 2612750479<10> × 456132047711045084056803866922166999314256625659455549315197617186185826264475647129647088006468538198172830173090763914540185259021939206053263136775798630817218894507525141843512233669229297<192>
22×10218-319 = 2(4)2171<219> = 122430608519<12> × 91378317923722663029779476969939<32> × [21849776750023502981460675149162640794641727502551389054989466954724321335993378960214455514500178955928106374674424327183993986995479222886761782726659592024899627058479100101<176>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2968921566 for P32 / April 3, 2013 2013 年 4 月 3 日) Free to factor
22×10219-319 = 2(4)2181<220> = 13836306621853<14> × 612818849544948741210797<24> × 44437217133241383950988282988267<32> × 7759558811693693729098156270929415070290965619<46> × 149446616580240323554011678402156192544832896014833<51> × 5594456593907594005194485588807463258395757615213205889<55> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1063036547 for P32 / March 31, 2013 2013 年 3 月 31 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P46 x P51 x P55 / November 24, 2017 2017 年 11 月 24 日)
22×10220-319 = 2(4)2191<221> = 3 × 17 × 171213968718589<15> × 10600890346235256754825411583<29> × 120198774488265479448507761934410858114295803108400031117394309138497161893509<78> × 2196991714095092370238689649825770135463224294495182522128420081549018741182581958267259104224918477<100> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3624676988 for P29 / March 31, 2013 2013 年 3 月 31 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P78 x P100 / December 3, 2018 2018 年 12 月 3 日)
22×10221-319 = 2(4)2201<222> = 61 × 1343681033<10> × 200957358044671<15> × 9095160770829502739876592528631837<34> × 1767028625741748105276664239502017860555935201540497388229511612773<67> × 923413610886636458981423179336676663244455667642225281319712410057893688468262173351587734677067<96> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1174491066 for P34 / April 3, 2013 2013 年 4 月 3 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P67 x P96 / May 13, 2021 2021 年 5 月 13 日)
22×10222-319 = 2(4)2211<223> = 47456083 × 2631816128077<13> × 24756227754344027493991<23> × 119824423599578769304384074854061255810524099813762656336984790389157<69> × 6597857332232510970785469650945072665151887060001525817664440917576079825064709430253141947338204397012565943173<112> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P69 x P112 / July 25, 2020 2020 年 7 月 25 日)
22×10223-319 = 2(4)2221<224> = 32 × 7 × 638437823 × [607744467347639177054218879938949576281615531217863545011190627209630937526718329583868248338424421126004216056615202564089534507430106743098364941337528922877334584243538268128798484432922881076455879098276221209<213>] Free to factor
22×10224-319 = 2(4)2231<225> = 47 × 3722549 × 32483520886608481848227828009<29> × 100472311387357447924047603264503329<36> × 428087355984138065859917029825131381918920867467429867111641267399539006853459351012259155924624546481331039203844652957436259038816163010883046849405027<153> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3418476413 for P36 x P153 / March 28, 2013 2013 年 3 月 28 日)
22×10225-319 = 2(4)2241<226> = 139 × 1009 × 461128860445157<15> × [37796527442493072365205496618892074857363357245483048618452102158899986968870372374692459563721826176714025080680522311966631892122803317435178230476059898117241437713267208479165270045610806291255501982463<206>] Free to factor
22×10226-319 = 2(4)2251<227> = 3 × 251 × 1029937 × 15679058237<11> × 63341417322793714164967931<26> × 692531101436345833777631906239308769217249<42> × 45827641028213612126736975740795637140358245243943870196158979542546753288797613793194831931305131122115566297023286546708614561341054271127<140> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1449508308 for P42 x P140 / May 21, 2013 2013 年 5 月 21 日)
22×10227-319 = 2(4)2261<228> = 59 × 661 × 382165513 × [16401184229589143868881238473027889659391383685758305573587215778564341381850041254202125403692396605943711335981778903318855439464512601372975724547172136743448677154139315217962882870299608493882597437308352691543<215>] Free to factor
22×10228-319 = 2(4)2271<229> = 373 × 5351173 × 6928237 × 790817627 × 1003893859<10> × [222656549117946215023852529493902451885448943264018215627866912925078159040172968869656696864634196479753578417580167241819117021429576187578800551165471842678317881088291781088607982956096337669<195>] Free to factor
22×10229-319 = 2(4)2281<230> = 3 × 7 × 29 × 809 × 2861 × 3539027 × 345368041 × 285127894252539777165131<24> × 15869757212318905831043315032371716893<38> × 31246402344508480017596804046911937778801179748168277<53> × 100350713839237488193388675150168473603290508771354374161609354855150187841542201025627909373<93> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3822365136 for P38 / April 3, 2013 2013 年 4 月 3 日) (Robert Balfour / CADO-NFS for P53 x P93 / April 1, 2020 2020 年 4 月 1 日)
22×10230-319 = 2(4)2291<231> = 176303 × 729317423 × 1096250557583959063703<22> × 1734179519659704679322219841583005506989001614929116945332764906975036749407602763322959400643738364496379587494112521358295753797847862373482690886224191122793908382034515098261058240555934650863<196>
22×10231-319 = 2(4)2301<232> = 3803324113<10> × [642712630272339990931623356088254696805127226990145408216079754453586439438022316254918778320916780737283550160702395137798881681700221809217247860791096465894187242107505457409447040845567937124280642248920121009009690057<222>] Free to factor
22×10232-319 = 2(4)2311<233> = 33 × 19 × 137050263282836380313645905919<30> × 347682580310843505649377601551149006964963798108199490684616094145629047925846933499845988803118335353420467055434565831557925304596122454692988823940153195691490708286525488968301734663823246623683303<201> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1404681107 for P30 x P201 / March 31, 2013 2013 年 3 月 31 日)
22×10233-319 = 2(4)2321<234> = 232 × 10837 × 242912048357267<15> × [175536069546085087135729066227742374191953005691774128439975461744706213900685243685334595522412313335514872366227575376384732070428881465686310491770023169457792972181582316181688069229391181403716268248654848551<213>] Free to factor
22×10234-319 = 2(4)2331<235> = 2719 × 43780337 × 391176900021091192334937904105707463<36> × [52495087369279690568928695137698990443815949406522446514156171943340535420448364684225130573291043712350890420916854154709188048147382857401421454836861409221097191885467350841611022311569<188>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=669607865 for P36 / April 3, 2013 2013 年 4 月 3 日) Free to factor
22×10235-319 = 2(4)2341<236> = 3 × 7 × 12601295499400127984246251077727131829<38> × [92373134498478833351468968154405555670002307241329880320967945478112890031777068057289294318852876997380144704367727462466428582472811033469186046047496626200456870267254140805821591865286545283649<197>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=764524986 for P38 / April 3, 2013 2013 年 4 月 3 日) Free to factor
22×10236-319 = 2(4)2351<237> = 17 × 71 × 267049 × 1182021557<10> × 1556893291771<13> × 1636485579162481882831457521139<31> × 1101395534127969985934280466405771492973<40> × 228634733098819132682875456556692116245576626990669556646927709253794296347802902018406844662783044774346250430560252326241403378091533543<138> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2987858005 for P31 / March 29, 2013 2013 年 3 月 29 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=444666721 for P40 x P138 / April 3, 2013 2013 年 4 月 3 日)
22×10237-319 = 2(4)2361<238> = 8521 × 616547 × 1005101 × 3067063 × 258111510983<12> × [584768058143373762471060558313751297544104494218787384878990768391190594007242770580625065966697899269373956207889646463729392135285001898884611982220779691009508473757462866410702772520896530749782938567<204>] Free to factor
22×10238-319 = 2(4)2371<239> = 3 × 41047 × 17203116965579756563942867<26> × [11539057916316721936632355921215574238355805220297083957620006523591947710590103855259446136372872193317663124060643728956317249465419550698380962724942278869152561236404995980636154887584397285516417267612103<209>] Free to factor
22×10239-319 = 2(4)2381<240> = 191 × 419 × 12805459619<11> × 1501484993002944949<19> × 1525383581971666732822139<25> × 104144789533310873756113914390222830752715610075241659998535244322305465015306135635486776791470402304591114730231369181423057749728863305976975085568013084180589288689790976000414281<183>
22×10240-319 = 2(4)2391<241> = 227 × 32256518293<11> × 245930047272330730379023<24> × [1357454345918534087616423241198006374506801791261033811985559306776274483586214446138735030015254951946641719120126664496957925960947095223941604381886171169291534960456923489177495464403992494762063549897<205>] Free to factor
22×10241-319 = 2(4)2401<242> = 32 × 72 × 1427 × 352036062353019423492961<24> × 566713982657773638447969751322071790791<39> × 194700257535244051741986012849730605110719288532787712554519172113573738568486408708709951480801358183625031441684735090504684561704403677541080379675327779108706812510710413<174> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1979417909 for P39 x P174 / April 3, 2013 2013 年 4 月 3 日)
22×10242-319 = 2(4)2411<243> = 97 × 241 × 3271 × 8049519487608370467374394319<28> × 32010743156957566060863777643<29> × [12406381665203673156661233586377191094940515237383327432338661609471156054751471470783202218391118802583960441127317296697331218288253280920110094432866452626919921690778106846819<179>] Free to factor
22×10243-319 = 2(4)2421<244> = 107 × 193 × 883 × 3907061 × 2705083899638795038462873<25> × 12683743469309714630588690929265162722012793003275451466442001079010995277788375030943333602375647934528141340432508038994204117866964255063845538972595606896548932563768916865206858617922106974170608607309<206>
22×10244-319 = 2(4)2431<245> = 3 × 10573181 × 265058453687<12> × 335184750607388434720343<24> × 298152627310226096017139609<27> × 516876974448909055963998653101<30> × 56286145788599595577919065800334227750711830445056993164483372113019987421865683753380426267076356148468631310175573031343237751138685923121532723<146> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=4189133250 for P30 x P146 / March 29, 2013 2013 年 3 月 29 日)
22×10245-319 = 2(4)2441<246> = 311 × 2411 × [326003732149999059034682203411806877167276515921059085360965409670367253577112996894518084242031690822802301408528761456993661746529430950112686153687939447474056400720231154428116102969167900664884611719923080901234353858380125982660454221<240>] Free to factor
22×10246-319 = 2(4)2451<247> = 103 × 1931 × 686776299737259600651624245169925699<36> × [17895563306057724299942389195017053197422667348136512423042263172649312884964175560061369215659055073322807659512829576112354430943319093985576498375114531366592088562294782740989820900122974330017533111263<206>] (Markus Tervooren / GMP-ECM B1=2311160, sigma=4107292891 for P36 / April 9, 2013 2013 年 4 月 9 日) Free to factor
22×10247-319 = 2(4)2461<248> = 3 × 7 × 147137 × 68058643 × 264065797706421651633527<24> × [440193413417003746366424005508128694349130052124773950806101269216140576208588746056876399405796024098190365817380066569278059667456881485776098636310243218752776511385771528682047170160798769571828377568521953<210>] Free to factor
22×10248-319 = 2(4)2471<249> = 1738336637<10> × 12330297869<11> × 763671303701840321461<21> × [14933659618122148026473591357404931123344402706163179177147365092522506637975103603194689027271260748241926191180745410336496334405397939694076435034998279357654212616158512441583934049203516684727452509885277<209>] Free to factor
22×10249-319 = 2(4)2481<250> = 1013 × 202877 × 196198727177<12> × 1492964241022445091258072587<28> × 128585629102365738783384903825034425264784796393<48> × 315791100296539639960742599775561894630203119071319807871653035066785564122721276574036544824484560720604480768326416246168048836682244356395776217483207163<156> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=570336296 for P48 x P156 / May 20, 2013 2013 年 5 月 20 日)
22×10250-319 = 2(4)2491<251> = 32 × 19 × 283 × 15271 × 57173 × 94568539014667<14> × 6015849901840754476472009<25> × 106894410608294319989160782007939197701<39> × 9513503854533977235224490103003025842542048755050499697526829968111429427968163458651115204713281518939509996103911136015029119113321392965581806944009740683013<160> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3376222634 for P39 x P160 / March 31, 2013 2013 年 3 月 31 日)
22×10251-319 = 2(4)2501<252> = 1889 × 122834909 × 715444975153<12> × 148034935591147956376297<24> × 8091007397059222111270577<25> × 77929592379855838290891473<26> × [15775420534833332117965466965865651126757007399523907888938395454876624354807235938059839410489328768043087310536435727943399428136163734290696274893503381<155>] Free to factor
22×10252-319 = 2(4)2511<253> = 17 × 2251 × 2542503944724010307<19> × 5594973674022823756483<22> × 148053513249385258266507321231465847517<39> × [30330345307404248439965496101518485121685966472754891966452999571753841747527222132772471645048930859905694081764800203036722669797579373784813018677509939654403849537599<170>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2752583514 for P39 / March 18, 2016 2016 年 3 月 18 日) Free to factor
22×10253-319 = 2(4)2521<254> = 3 × 7 × 293 × 1567 × 16103 × 1880951 × 142540193 × 5742631440494853233548790993711<31> × [102256682298130306292634599880501881099016251585840999117439833827294162338976078811740379328382475512374905524219013403450877698374450543827249492606781141432923682547620928272590644330170307717089<198>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4258784746 for P31 / February 16, 2016 2016 年 2 月 16 日) Free to factor
22×10254-319 = 2(4)2531<255> = 74381071 × 191265071565344983<18> × 17182330828490591398208554316686401125922497362024634199346918524231512002372149044084688927799196340419570548112644138023518712450049453887079091400714373242515082371457353057973044689391511743495575912027135077305101652680676737<230>
22×10255-319 = 2(4)2541<256> = 23 × 342187 × 117674387401<12> × 3354120850990791840449131<25> × [786915639141268245160443676601548047813008650963355673701575814346165757610513568134832394045711081308318015187743163685384425233693194104349354302809900603833279823303368275675910539541532641793750636942486719311<213>] Free to factor
22×10256-319 = 2(4)2551<257> = 3 × 307 × 1759 × 83859263749<11> × 7726456789509179<16> × 839076418955771611<18> × 4321853898357459671<19> × [6421724636303769032386259320615892895155333342929587311086150584833536964910224752497136392926429195489272902032738213158562055579462547785525356434050922995403581992969704239839959723469<187>] Free to factor
22×10257-319 = 2(4)2561<258> = 29 × 1436221 × 83114072094047<14> × 743553624745322442813743<24> × 583087005840362740179529838605637<33> × [162869844568389580252346484801472519633227591799571781278308500877315945783913250711490352861690639555486980428107551193696547274070483859443817884250099527330631332350468866085837<180>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1635013126 for P33 / March 18, 2016 2016 年 3 月 18 日) Free to factor
22×10258-319 = 2(4)2571<259> = 932203 × 172555741 × 370878583 × 41061463732696925801<20> × 997870262366405124284471082601450830921582965291298189646257131611623343633650539956823906904420620435922761661296344789563908738535286016814140621073033508356107961718181229788738147279521813950951586552930043554249<216>
22×10259-319 = 2(4)2581<260> = 33 × 7 × 219053 × 331461197 × [1781297537266597339787560454138746515216455919279161575721463574459704424565968172147674750275890520422605905483245900626975096582815614482067863891582130454339601475464832906984872626671137686064999737360353072782774382377158222509883932836709<244>] Free to factor
22×10260-319 = 2(4)2591<261> = 12541 × 1430462298102652609549021<25> × 2343455285889921125927126082455477573<37> × [5814534025747654371351362231512921465250931203602870988405418409741755103538719335472837199176094504835188468621021678579956354225122491484559966860315547209475859663752711437116955075653347807997<196>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=767931841 for P37 / March 24, 2016 2016 年 3 月 24 日) Free to factor
22×10261-319 = 2(4)2601<262> = 233 × 421 × 877 × 52020624719728538011<20> × 3084740259862907255971303<25> × 358121720139436734453839891675263253927263<42> × [494444709484542738258111995745947303038694958595924432107801237110707872463737817257019829710663293175291515228570619510533379939173058032328515754327464566418559388539<168>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4062819721 for P42 / March 24, 2016 2016 年 3 月 24 日) Free to factor
22×10262-319 = 2(4)2611<263> = 3 × 2287 × 12968604023<11> × 140504348209<12> × 859400243697344431183494475597<30> × 2275172265539539194657675149136279357190675314088024450894880085323218494880561510427393658239153024409307863706475473705248835355627695928353279068093030367244067670146609757701090207069665230595665380917639<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=115086390 for P30 x P208 / February 17, 2016 2016 年 2 月 17 日)
22×10263-319 = 2(4)2621<264> = 367 × 1277 × 309996422357<12> × 111664760812144680179126341<27> × [15067818774540912350357506483879405289568149137145139121030520504185656115112448662384607233142087961882157039403674592726566687434754004066250140924618531590402099940057827524026399934489764826290485444803696655420998027<221>] Free to factor
22×10264-319 = 2(4)2631<265> = 24281 × 4796119 × 11558429 × 1081276803973<13> × 438977304966833650703669<24> × 1050470038476636189867087361<28> × 882730983583468195516410915191<30> × [4126043933265295217892361794957097229581339585450496723664996060650565192886546105963229260768613587893060917024420499865468511827516665803317477263042653<154>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3301484142 for P30 / February 17, 2016 2016 年 2 月 17 日) Free to factor
22×10265-319 = 2(4)2641<266> = 3 × 7 × 832771 × 26518397183<11> × [52709392707196349339221317744806583207421585865368876731003608718179640428114831547253392965123934200273010331169583649878672470293376867659514017531681412082496634749945711795967281425968713666095316514288814197253961259591132111663969893833099097<248>] Free to factor
22×10266-319 = 2(4)2651<267> = 2072617319318941<16> × 940898777599078045193<21> × 480919428108088796499091008965406604303<39> × 260642853838510564701198167514875859870515308740910222196173006615426653806213704749931485635254862146461860308016948209225041794320830880287842702552910752141690862878990190863034429327256619<192> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2238811525 for P39 x P192 / March 24, 2016 2016 年 3 月 24 日)
22×10267-319 = 2(4)2661<268> = 5754319005496051<16> × 24226122647317380414803<23> × 96293398877691182713267<23> × 182098265473458095676820958635423402160333346219265527624485996870300750867055531471561050458983740851841374604092162812670657756867040234142400443191832741721416235573550061081419835321138182297576444336491<207>
22×10268-319 = 2(4)2671<269> = 32 × 17 × 192 × [442569558858733808492105162573904087129876060406721424591176370004244644405417856072356099513776989199291084033900828208579009730495255453161053074148506227154861123684109942325139761455007775142477222755317372665697036996803440777152145355936567712136665479775577<264>] Free to factor
22×10269-319 = 2(4)2681<270> = 1666070801<10> × 1636020739229106707<19> × [89680477808688014068095562347064095070171138208894060321563717654120542184372350995592879653866197863764353350171501914747088312415330262046454476760109596398793340372514685815718856016824991557863847372874592439928420306008458485725714261363<242>] Free to factor
22×10270-319 = 2(4)2691<271> = 47 × 52009456264775413711583924349881796690307328605200945626477541371158392434988179669030732860520094562647754137115839243498817966903073286052009456264775413711583924349881796690307328605200945626477541371158392434988179669030732860520094562647754137115839243498817966903<269>
22×10271-319 = 2(4)2701<272> = 3 × 7 × 71 × 139 × 1583 × 2693 × 705049811 × 2508372773<10> × 2186956252767619<16> × [7153498413436027646174620848574427336973733579424740196306435848263630652721356800423508425497683746227669455718324333493327017619663990304391312423978575918792141721853519221762524425500283379572368681264552389432674383335223<226>] Free to factor
22×10272-319 = 2(4)2711<273> = 241 × 78259 × 1339691 × 1071129331054263715589418564961307363<37> × [9031965769283332762255369270742854867030021882919345326140333612082762632137130618181334466801802890861367583352058097375365017336806378655689398746013326127601944353620810134570969664411888053660282147134933381709840553683<223>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=111078703 for P37 / February 17, 2016 2016 年 2 月 17 日) Free to factor
22×10273-319 = 2(4)2721<274> = 8803 × 6642301 × 309262852714441<15> × 5445650504544790382357002222328218294461008245139581<52> × 24822950114568880758534642567571510103187658782637358370157043972869212180687606898228064741983501087304881393224331861070859921884459924308886340807542566130015454888032600214323855669081600758307<197> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=618932348 for P52 x P197 / March 29, 2016 2016 年 3 月 29 日)
22×10274-319 = 2(4)2731<275> = 3 × 4989545971<10> × 45816727001<11> × 6755057766837110417<19> × 40639912990346309929<20> × [129835062158963293172027472016306362774105288703599306624141998909422657397119454628542496038034759292075326493618416336637166189938449252861478863086670979091911801180554024281048713319222739636086782718982764075249<216>] Free to factor
22×10275-319 = 2(4)2741<276> = 5739852562967<13> × 908356303051607801<18> × [46883842711537974394045402279168823730124085694349899090713192216226546665176197844319894165229310555221529298380404917216376578713186410618204974585683324798178837082572837812656806253642960175946209411290810231989132392254509788516309177209223<245>] Free to factor
22×10276-319 = 2(4)2751<277> = 131 × 251 × 1168879 × 1370782157914201<16> × [46397775054836818245613281920261152033722469379786606506417799246638404753749977117313406354661403561941562879770745895503299565863729087329029221114851902168837533047845187189745424700021564157629185267849359690375461438323572831763448880269653511359<251>] Free to factor
22×10277-319 = 2(4)2761<278> = 32 × 7 × 23 × 151 × 643 × 773 × 1999 × 7463231 × 2900376960025215133126325177010298753<37> × 5194577704101928977669268979638737983419150459774670650301751369662483232132057825180091790635967038641283591308836649522761197491124972137143724963539912320684220486826313924484819713315618440580268627313404981543177833<220> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4256847457 for P37 x P220 / February 18, 2016 2016 年 2 月 18 日)
22×10278-319 = 2(4)2771<279> = 1481 × 3104573 × [53164683978695615168067389961950745424978663810676662703887843541794193775860585036274567279849178467103487028348526463285128957626570165362788063055118061498248047361560176492093789211824874114763658512964644513182915458133081697112351999919238398535519506017346123557<269>] Free to factor
22×10279-319 = 2(4)2781<280> = 983 × 4981903 × 1007094391<10> × 43926976207<11> × 15211846946321<14> × 15726392428182923<17> × 47164892012127114785520143689784572311369412793525070490986562069538097178741605879746080310452360587518368876586716009137874053522378478536638416486136520647519825035246187320533247384709594193135334089732219316377123979<221>
22×10280-319 = 2(4)2791<281> = 3 × 103 × 12589 × 957448831 × 124924506069829723<18> × [52537238843183133326967082988834101443528233959568727143709625436449724677248884912098797891769683036837655063361906730336848493319419633407035512374331710856431505463127206691502645174854389702688064497882775675400547191385521945708446493107036757<248>] Free to factor
22×10281-319 = 2(4)2801<282> = 61 × 1607 × 3943 × 43304537 × 2474270075507<13> × [5902380189522716848203054291885112475597624483880779156361303394142697796390846638893495566441491178984928857212799487824139834740669555094335062514386681901563186469417401567606213546572042649209072335200241068987735879615354963404418352019673630485159<253>] Free to factor
22×10282-319 = 2(4)2811<283> = 126312404651<12> × 5111641920289<13> × 2312451488286959254002570859787<31> × 1637197657486311871708481973798211742420658053765478268690797353790212374458623732516162667839776649468937965794394936014529150277157692850499375359972505301164575844102476995840899829551820193913676205031179341161851402608082337<229> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=748758818 for P31 x P229 / February 18, 2016 2016 年 2 月 18 日)
22×10283-319 = 2(4)2821<284> = 3 × 72 × 2099628943046588374163<22> × [79199107188921708554234491859157762291375284666697087590701572793280938283610639603872961685137300711602180886121960299756357181152011253835989823703222850877458799830668787512798727232399732258972678511382484693537652698475872233453542866113708099200888869681<260>] Free to factor
22×10284-319 = 2(4)2831<285> = 17 × 1487 × 1304980333304007015675967<25> × 7409967698190835090001971418534998979911528749947975449668502878643296530850934058725783410321948403310926816882624441247948040487005293341912608992243214995821265649117105481126892308549957276242562472601454933816022601322570909076841325131622654965299737<256>
22×10285-319 = 2(4)2841<286> = 29 × 59 × 2803 × 343817813 × 2894212866078955334570399<25> × [512210197819057200640282347834500343317493499494862865046780680630543007185639930049001982108858807940409514182874690322514980303307836041657138981845790588623890500577215811638402581776159974682954683720621120934893437164595375114518153055754471<246>] Free to factor
22×10286-319 = 2(4)2851<287> = 34 × 19 × 51071794602040640802988762588518229578670017023<47> × 311000031372522585118296660902268305882265177227368203415004465660188705525335958125507326219770718409264241156662401222401938467097762506994960452999701560934288538078907473653268185729249214941111782796319681242736296408177502691250253<237> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1095753599 for P47 x P237 / March 26, 2016 2016 年 3 月 26 日)
22×10287-319 = 2(4)2861<288> = 11089609 × 61410841 × [358937548646747109443029023071375274245503493651196497573587039095489079223307515379167215844798597615324406125380080159961993490534444899902843012780891252311731152492441781950620642975373625314172095561880565800101803981561798592006148833617831122846783557155323305581689<273>] Free to factor
22×10288-319 = 2(4)2871<289> = 167 × 181 × 2466433 × 296873867 × 16229925680618889645732098243658480918345767<44> × 6804987037283578337167298255671359391837949947588731299909743808000607434293204241476472595730313156425042746616491888284449835515369681080027435459055554585271316471696442042943536551925214815415846200560216458486971642895759<226> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=84516335 for P44 x P226 / April 9, 2016 2016 年 4 月 9 日)
22×10289-319 = 2(4)2881<290> = 3 × 7 × 32137125949<11> × 6279251211150453314443801<25> × 1648446820076942221576920805523799951763<40> × [3499218346312892758266187020043049792301338344398643618766599272452652265102127835477095511058887427301772861237065671155595862891832055974620508926821725581698032222949308518630841313465652850057818834979406589083<214>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4022885878 for P40 / March 18, 2016 2016 年 3 月 18 日) Free to factor
22×10290-319 = 2(4)2891<291> = 184112573 × 2408707823318243534901510641039159<34> × [551204304980919639193544814209628236838809582940809068638830015111734478216510577867477406443014993033081553482816690598359263327777817514965682795720729543381697925737136102409825725899324382132350144620428831757576170154710111059393039271050947163<249>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2029972229 for P34 / February 19, 2016 2016 年 2 月 19 日) Free to factor
22×10291-319 = 2(4)2901<292> = 19603 × 1337170811<10> × 25798322489081<14> × 309786138882295124692815854534521<33> × 143278070673803307595578601661585189657<39> × 81439963389490974438094029381765643710495682019244842752707544741604750815431451182737284859151604484479960206622007612047308113532129212822958961675623159455571637630799635010252592892521539761<194> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1916134469 for P33, B1=1e6, sigma=2055501291 for P39 x P194 / February 19, 2016 2016 年 2 月 19 日)
22×10292-319 = 2(4)2911<293> = 3 × 113 × 509 × 22347598086411351740073067620269310104077<41> × [6339161828066830711112460414804620616807732762935303192013057008816595242333558950823078613092257508815627897705164232098850161820396105623680272743941953398963622943785174488506768815854622677820067225541904042451562704707166450503714716447357083<247>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2975114167 for P41 / March 25, 2016 2016 年 3 月 25 日) Free to factor
22×10293-319 = 2(4)2921<294> = 59761571 × 259835938470027722545534750669<30> × [15741965152646000076236088296475216265912211947642400218579567313006116563381317583911091772324004777923551048270419033035804696547920838598902747524617212820450480956027071039129142784735355941402152534401647633810081956307208531164284530177739253751774559<257>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1657055616 for P30 / February 19, 2016 2016 年 2 月 19 日) Free to factor
22×10294-319 = 2(4)2931<295> = 839 × 1297 × 6317 × 37566074251559840813193814959577783063<38> × 634128110228007834820996012620942658061<39> × 1154208406266288108901639618745728233194684334329<49> × 12933328439897756298032849365463914893632514972916166839263150656627367450269828361763757197305254961226841014991911787954781484059690776781567303472449056610473<161> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2530031456 for P49 / March 17, 2016 2016 年 3 月 17 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=329408390 for P38 / March 17, 2016 2016 年 3 月 17 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=100059954 for P39 x P161 / March 22, 2016 2016 年 3 月 22 日)
22×10295-319 = 2(4)2941<296> = 32 × 7 × 197122751676303807775853228071879<33> × [1968352467557218048027667199743905093910264616336988077523296759219309824037384050602058927116499003451872694385345366210110063638750765390554367532059176625890695193664376631559866947779616115927809049404499250100068710439546708201280491879641551552233053504033<262>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4055465004 for P33 / February 19, 2016 2016 年 2 月 19 日) Free to factor
22×10296-319 = 2(4)2951<297> = 107 × 10837 × 8936256519091769926731425435540097547<37> × 23590203831700907676330669717091399954666714541891741041956555487465904916193340694867916130502999488998649089735151673996071004929251106786328630589833718644672805054231774488006884857194204013361510365731200770250573571286734343165652375342597706869117<254> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2170158582 for P37 x P254 / February 19, 2016 2016 年 2 月 19 日)
22×10297-319 = 2(4)2961<298> = 23007791 × 2966457160021468270653347<25> × 843048421773272264417372795911<30> × [42482948121488279726512155523500683806708183846853009848013786128930262530997396430220267299217312775740156945429589964426361032012477411157051268104373981041117074760982689669760125011025003682023284062902488128432800635891343644577403<236>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=337498163 for P30 / February 19, 2016 2016 年 2 月 19 日) Free to factor
22×10298-319 = 2(4)2971<299> = 3 × 337 × 202665789119478936966203<24> × 1475779092195853125967226359<28> × [80840170062903716194345186384456073222174060356157433200069466476143684877943250874288875851434108384702557620378283374758389499018694675355706318130825194799480203179025703648234715184215748902732190633535678192712139497046973781776168911547503<245>] Free to factor
22×10299-319 = 2(4)2981<300> = 23 × 4231 × 6299 × 426435799 × 1215198013<10> × 1764447151727721064725503692547<31> × 436142430712739004306651045570784077180033529670845977467923014370100975752740269954479602599614398397920030676438194772834959679542718351611752820785418023434591904672829623524460683170344482313815520210570173073896545478549095442099192289387<243> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2342117942 for P31 x P243 / February 20, 2016 2016 年 2 月 20 日)
22×10300-319 = 2(4)2991<301> = 17 × 587 × 48739423834650319221889209458029129<35> × [5025887439239549606698779541087017102811049218780220168948139656851271641505051415741803131161237977378635196070153643704363417773566817394032983227834104361354617876342159031043385859324551224051502698094446081913142819850899942362744322851909637701096323247651<262>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1944399084 for P35 / February 20, 2016 2016 年 2 月 20 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク