Table of contents 目次

  1. About 200...009 200...009 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 200...009 200...009 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 200...009 200...009 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 200...009 200...009 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

20w9 = { 29, 209, 2009, 20009, 200009, 2000009, 20000009, 200000009, 2000000009, 20000000009, … }

1.3. General term 一般項

2×10n+9 (1≤n)

2. Prime numbers of the form 200...009 200...009 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 2×101+9 = 29 is prime. は素数です。 (Makoto Kamada / September 27, 2004 2004 年 9 月 27 日)
  2. 2×105+9 = 200009 is prime. は素数です。 (Makoto Kamada / September 27, 2004 2004 年 9 月 27 日)
  3. 2×1025+9 = 2(0)249<26> is prime. は素数です。 (Makoto Kamada / PPSIQS / September 27, 2004 2004 年 9 月 27 日)
  4. 2×10455+9 = 2(0)4549<456> is prime. は素数です。 (discovered by:発見: Makoto Kamada / September 27, 2004 2004 年 9 月 27 日) (certified by:証明: Julien Peter Benney / January 15, 2005 2005 年 1 月 15 日)
  5. 2×10761+9 = 2(0)7609<762> is prime. は素数です。 (discovered by:発見: Makoto Kamada / September 27, 2004 2004 年 9 月 27 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  6. 2×109205+9 = 2(0)92049<9206> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / January 3, 2005 2005 年 1 月 3 日)
  7. 2×1013561+9 = 2(0)135609<13562> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / November 14, 2007 2007 年 11 月 14 日)
  8. 2×1015955+9 = 2(0)159549<15956> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / November 14, 2007 2007 年 11 月 14 日)
  9. 2×1026669+9 = 2(0)266689<26670> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  10. 2×10113941+9 = 2(0)1139409<113942> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / June 20, 2015 2015 年 6 月 20 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 2×102k+9 = 11×(2×100+911+18×102-19×11×k-1Σm=0102m)
  2. 2×105k+3+9 = 41×(2×103+941+18×103×105-19×41×k-1Σm=0105m)
  3. 2×106k+3+9 = 7×(2×103+97+18×103×106-19×7×k-1Σm=0106m)
  4. 2×1016k+4+9 = 17×(2×104+917+18×104×1016-19×17×k-1Σm=01016m)
  5. 2×1018k+2+9 = 19×(2×102+919+18×102×1018-19×19×k-1Σm=01018m)
  6. 2×1021k+8+9 = 43×(2×108+943+18×108×1021-19×43×k-1Σm=01021m)
  7. 2×1022k+21+9 = 23×(2×1021+923+18×1021×1022-19×23×k-1Σm=01022m)
  8. 2×1028k+1+9 = 29×(2×101+929+18×10×1028-19×29×k-1Σm=01028m)
  9. 2×1032k+14+9 = 449×(2×1014+9449+18×1014×1032-19×449×k-1Σm=01032m)
  10. 2×1033k+11+9 = 67×(2×1011+967+18×1011×1033-19×67×k-1Σm=01033m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 8.76%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 8.76% です。

3. Factor table of 200...009 200...009 の素因数分解表

3.1. Last updated 最終更新日

September 27, 2024 2024 年 9 月 27 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=213, 215, 218, 225, 227, 232, 235, 237, 238, 239, 240, 246, 248, 251, 252, 254, 256, 259, 261, 263, 265, 267, 268, 269, 275, 279, 281, 284, 285, 287, 289, 290, 293, 294, 295, 297, 299 (37/300)

3.4. Factor table 素因数分解表

2×101+9 = 29 = definitely prime number 素数
2×102+9 = 209 = 11 × 19
2×103+9 = 2009 = 72 × 41
2×104+9 = 20009 = 11 × 17 × 107
2×105+9 = 200009 = definitely prime number 素数
2×106+9 = 2000009 = 112 × 16529
2×107+9 = 20000009 = 61 × 327869
2×108+9 = 200000009 = 11 × 41 × 43 × 10313
2×109+9 = 2000000009<10> = 7 × 285714287
2×1010+9 = 20000000009<11> = 11 × 59 × 30816641
2×1011+9 = 200000000009<12> = 67 × 44027 × 67801
2×1012+9 = 2000000000009<13> = 11 × 293179 × 620161
2×1013+9 = 20000000000009<14> = 41 × 487 × 10243 × 97789
2×1014+9 = 200000000000009<15> = 11 × 449 × 40494027131<11>
2×1015+9 = 2000000000000009<16> = 7 × 1049 × 7243 × 37604341
2×1016+9 = 20000000000000009<17> = 11 × 139 × 30011 × 435855011
2×1017+9 = 200000000000000009<18> = 109 × 227 × 259943 × 31095641
2×1018+9 = 2000000000000000009<19> = 11 × 41 × 9433 × 470114470523<12>
2×1019+9 = 20000000000000000009<20> = 7541 × 52069 × 50935645921<11>
2×1020+9 = 200000000000000000009<21> = 11 × 172 × 19 × 9283 × 356695406323<12>
2×1021+9 = 2000000000000000000009<22> = 7 × 23 × 10061 × 669763 × 1843494383<10>
2×1022+9 = 20000000000000000000009<23> = 11 × 40569840803<11> × 44816094473<11>
2×1023+9 = 200000000000000000000009<24> = 41 × 38461 × 358541 × 353742093449<12>
2×1024+9 = 2000000000000000000000009<25> = 11 × 401 × 453411924733620494219<21>
2×1025+9 = 20000000000000000000000009<26> = definitely prime number 素数
2×1026+9 = 200000000000000000000000009<27> = 11 × 20352701491<11> × 893336847192409<15>
2×1027+9 = 2000000000000000000000000009<28> = 7 × 41047 × 6960661819725819530921<22>
2×1028+9 = 20000000000000000000000000009<29> = 112 × 41 × 4031445273130417254585769<25>
2×1029+9 = 200000000000000000000000000009<30> = 292 × 43 × 472 × 89 × 2094523 × 13430577524641<14>
2×1030+9 = 2000000000000000000000000000009<31> = 11 × 83 × 454942123 × 4815075133927565291<19>
2×1031+9 = 20000000000000000000000000000009<32> = 823 × 80256031021<11> × 302797637315914523<18>
2×1032+9 = 200000000000000000000000000000009<33> = 11 × 28890990217<11> × 629324853362750415907<21>
2×1033+9 = 2000000000000000000000000000000009<34> = 7 × 41 × 72269 × 96426422324683867179738803<26>
2×1034+9 = 20000000000000000000000000000000009<35> = 11 × 193 × 218233 × 337651 × 127847293448774220001<21>
2×1035+9 = 200000000000000000000000000000000009<36> = 5741 × 7129 × 954469 × 5119788334648167235249<22>
2×1036+9 = 2000000000000000000000000000000000009<37> = 11 × 17 × 10695187165775401069518716577540107<35>
2×1037+9 = 20000000000000000000000000000000000009<38> = 1484701 × 13470725755556169221951086447709<32>
2×1038+9 = 200000000000000000000000000000000000009<39> = 11 × 19 × 41 × 1483 × 10071097 × 1562722707810233592746411<25>
2×1039+9 = 2000000000000000000000000000000000000009<40> = 7 × 149 × 3821 × 3596472601<10> × 93032788129<11> × 1499877730007<13>
2×1040+9 = 20000000000000000000000000000000000000009<41> = 11 × 1818181818181818181818181818181818181819<40>
2×1041+9 = 200000000000000000000000000000000000000009<42> = 883 × 930014956806907<15> × 243545079134079430191689<24>
2×1042+9 = 2000000000000000000000000000000000000000009<43> = 11 × 4241 × 11497 × 3728932368795505641616445421060947<34>
2×1043+9 = 20000000000000000000000000000000000000000009<44> = 23 × 41 × 21208907741251325556733828207847295864263<41>
2×1044+9 = 200000000000000000000000000000000000000000009<45> = 11 × 67 × 36528474011<11> × 7429010599852401467336771554187<31>
2×1045+9 = 2000000000000000000000000000000000000000000009<46> = 72 × 6074034929<10> × 6719804381719623940272402683357929<34>
2×1046+9 = 20000000000000000000000000000000000000000000009<47> = 11 × 283 × 449 × 1907 × 32059 × 234047426113207262147671874889889<33>
2×1047+9 = 200000000000000000000000000000000000000000000009<48> = 1731067467438184669<19> × 115535647086003523584167000861<30>
2×1048+9 = 2000000000000000000000000000000000000000000000009<49> = 11 × 41 × 163 × 28537 × 36468931 × 168818627520547<15> × 154851043313464577<18>
2×1049+9 = 20000000000000000000000000000000000000000000000009<50> = 189198096947243195029<21> × 105709308511580247938565203621<30>
2×1050+9 = 200000000000000000000000000000000000000000000000009<51> = 112 × 43 × 113 × 59107 × 16211680485621601<17> × 355001978506001694400033<24>
2×1051+9 = 2(0)509<52> = 7 × 538723 × 85044023 × 488249074145149<15> × 12772655934378094780447<23>
2×1052+9 = 2(0)519<53> = 11 × 17 × 106951871657754010695187165775401069518716577540107<51>
2×1053+9 = 2(0)529<54> = 41 × 2703956023<10> × 1562577159727<13> × 7920589175167<13> × 145763086274943607<18>
2×1054+9 = 2(0)539<55> = 11 × 2911019240065883<16> × 62458598457792006328210826619359720993<38>
2×1055+9 = 2(0)549<56> = 3023 × 2270987 × 2913246278409705136446520782589641894213466709<46>
2×1056+9 = 2(0)559<57> = 11 × 19 × 3539 × 6565331 × 3670344089<10> × 11221211285062218825102052466375801<35>
2×1057+9 = 2(0)569<58> = 7 × 29 × 107 × 5342927 × 188120825317456907<18> × 91608139747400811360509956061<29>
2×1058+9 = 2(0)579<59> = 11 × 41 × 219043145841147320217666241<27> × 202452799123852793233265501699<30>
2×1059+9 = 2(0)589<60> = 367 × 1303 × 294641 × 2301389 × 20101589 × 667062216563<12> × 45998065950907597606763<23>
2×1060+9 = 2(0)599<61> = 11 × 563 × 101467 × 13139851787<11> × 693028866500016187<18> × 349512171627437692539331<24>
2×1061+9 = 2(0)609<62> = 4283 × 28844463821<11> × 26729010502241<14> × 24461633261845369<17> × 247600272560040847<18>
2×1062+9 = 2(0)619<63> = 11 × 97 × 139 × 168078737 × 8023022312625828841992028418040992416510704227489<49>
2×1063+9 = 2(0)629<64> = 7 × 41 × 68521 × 29751563 × 380358699283<12> × 8987135022148872197993855300256665423<37>
2×1064+9 = 2(0)639<65> = 11 × 857 × 27017 × 84311281819<11> × 163439249699118427<18> × 5698719932220935368650763027<28>
2×1065+9 = 2(0)649<66> = 23 × 8695652173913043478260869565217391304347826086956521739130434783<64>
2×1066+9 = 2(0)659<67> = 11 × 1601598851<10> × 11969892307<11> × 20332669969<11> × 466443351749446330897573017637655843<36>
2×1067+9 = 2(0)669<68> = 61 × 349 × 6709 × 478660063162785401<18> × 2536263714501575129<19> × 115344088021464462949421<24>
2×1068+9 = 2(0)679<69> = 11 × 17 × 41 × 59 × 7227388910897<13> × 3289997519865923<16> × 18594115536462765214221462835200563<35>
2×1069+9 = 2(0)689<70> = 7 × 539740801 × 1949722149563899718621<22> × 271502592538863503531227531866382719547<39>
2×1070+9 = 2(0)699<71> = 11 × 2015033 × 16298006497216920746969<23> × 55363133267774886724404466350444678652747<41>
2×1071+9 = 2(0)709<72> = 43 × 83 × 245577779992609<15> × 228188828458774720372776116881640164992479027739767929<54>
2×1072+9 = 2(0)719<73> = 112 × 181273 × 26916707 × 57880195778602153990643<23> × 58527447576177963010919224531233473<35>
2×1073+9 = 2(0)729<74> = 41 × 89 × 501432247 × 1058333453193154149893175191567<31> × 10328121737167435895349294449809<32>
2×1074+9 = 2(0)739<75> = 11 × 19 × 22123 × 43255336032322117296792378928855137230797712744341282871081580212587<68>
2×1075+9 = 2(0)749<76> = 7 × 47 × 405047 × 235700724911720503<18> × 1084648200895015927<19> × 58705509196858509238041564866903<32>
2×1076+9 = 2(0)759<77> = 11 × 135241 × 526937 × 1580987 × 20035216001<11> × 1157925690587833<16> × 695612255861189718959992970837417<33>
2×1077+9 = 2(0)769<78> = 67 × 2985074626865671641791044776119402985074626865671641791044776119402985074627<76>
2×1078+9 = 2(0)779<79> = 11 × 41 × 449 × 305017 × 78741913 × 76522719281<11> × 20305796531751219017<20> × 264646820848193818596505270123<30>
2×1079+9 = 2(0)789<80> = 229 × 31077602691094392542803<23> × 2810263243583837226156189011309719115572048079559636407<55>
2×1080+9 = 2(0)799<81> = 11 × 39771059 × 27836603215538022005345017<26> × 16423053823408056835791531692774764353830594273<47>
2×1081+9 = 2(0)809<82> = 7 × 7649 × 4425301816783<13> × 1278970397125878266903<22> × 6599695620279254922475936937462701538747687<43>
2×1082+9 = 2(0)819<83> = 11 × 1112467 × 3272715447524445111888642702192846283<37> × 499392398091346738710766423887072983179<39> (Makoto Kamada / GGNFS-0.54.5b for P37 x P39)
2×1083+9 = 2(0)829<84> = 41 × 101076595663<12> × 187877398175321<15> × 256874501021852149176435997053760056758145817339890847463<57>
2×1084+9 = 2(0)839<85> = 11 × 17 × 379 × 28219491202573617597674713924907933909951603572587586245819987865618782893344433<80>
2×1085+9 = 2(0)849<86> = 29 × 2838202880048942448717220328062944203<37> × 242990089701374897288622846361937103373749756407<48> (Makoto Kamada / GGNFS-0.54.5b for P37 x P48)
2×1086+9 = 2(0)859<87> = 11 × 9721 × 28499 × 35803 × 82071802817<11> × 547401292843566242954582707<27> × 40801632078104344642174583807587873<35>
2×1087+9 = 2(0)869<88> = 72 × 23 × 307 × 25849 × 4108483 × 54430517486392339090785773613953990227402617124363175922445962299430943<71>
2×1088+9 = 2(0)879<89> = 11 × 41 × 1702721 × 27721220343381257076458424944002176353<38> × 939501800230822486174052085248184918431843<42> (Makoto Kamada / GGNFS-0.54.5b for P38 x P42)
2×1089+9 = 2(0)889<90> = 2140969 × 1886580489308539446706320638087827063<37> × 49515854479238906606262876846361163979289913447<47> (Makoto Kamada / GGNFS-0.54.5b for P37 x P47)
2×1090+9 = 2(0)899<91> = 11 × 452160227 × 12458065615317241<17> × 6443608918628362377014196737<28> × 5009163004689515461591613905321010641<37>
2×1091+9 = 2(0)909<92> = 21089 × 114661 × 140216227 × 11916483323<11> × 4950076349176704697425435045834741583904776163113112008777440101<64>
2×1092+9 = 2(0)919<93> = 11 × 19 × 43 × 10896922858883096372867<23> × 126711412399413252598259<24> × 16117424543515892742052912457835019898643619<44>
2×1093+9 = 2(0)929<94> = 7 × 41 × 181 × 6389 × 1415056261<10> × 4050470989<10> × 20066780047<11> × 126965783319979654339039601<27> × 412660610128968747552703743121<30>
2×1094+9 = 2(0)939<95> = 112 × 1543120989506268996285423871281737<34> × 107113607631785513101955325009794702764258548802713911771017<60> (Makoto Kamada / GGNFS-0.54.5b for P34 x P60)
2×1095+9 = 2(0)949<96> = 256567 × 779523477298327532379456438279279876211671805025587858142317601250355657586517361936648127<90>
2×1096+9 = 2(0)959<97> = 11 × 2203 × 31660883 × 1858315750470042749433025101539<31> × 1402750017009259714557971657708893475985709195927486729<55> (Makoto Kamada / GGNFS-0.54.5b for P31 x P55)
2×1097+9 = 2(0)969<98> = 5843 × 60742103225637221371161109<26> × 56351344682677980294493000094110763747146116399995372092816591898407<68>
2×1098+9 = 2(0)979<99> = 11 × 41 × 2017 × 938548729 × 54212814621329426683180997533831133966657<41> × 4321044850333249736743790602253941241129659<43> (Makoto Kamada / GGNFS-0.54.5b for P41 x P43)
2×1099+9 = 2(0)989<100> = 7 × 409 × 565603 × 1235085273118689102920260383221554544661177201309727157565507831379605151377395904945957581<91>
2×10100+9 = 2(0)999<101> = 11 × 17 × 317491 × 86544169 × 293811361073643157457<21> × 13248007739908625176984095770708714983018144865175293640556425169<65>
2×10101+9 = 2(0)1009<102> = 20091602898139802832029<23> × 9954407371774063900188061102342382950286301206885097912655059418057878550390621<79>
2×10102+9 = 2(0)1019<103> = 11 × 233 × 23677673 × 32956597731712999758016395372782555411263044081914009979411272038332914167237601231808826891<92>
2×10103+9 = 2(0)1029<104> = 41 × 421 × 863 × 199319563 × 25140967889<11> × 848609722389294667<18> × 1414219689329517101569<22> × 223252558803311442422624902284607802683<39>
2×10104+9 = 2(0)1039<105> = 11 × 131 × 643 × 84673 × 356312797019<12> × 40380052744286385929<20> × 519037828088831068431783441931<30> × 341360119193972136545554932717011<33> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=140052606 for P30 x P33 / November 6, 2007 2007 年 11 月 6 日)
2×10105+9 = 2(0)1049<106> = 7 × 2914861 × 69291270907<11> × 11291916234585461821<20> × 125276015330566720088694226873317175066308201741726685037631761782661<69>
2×10106+9 = 2(0)1059<107> = 11 × 54139 × 117314948419<12> × 4118632960553843<16> × 69505734341854253773711120742996628298486631723888025027620426927997607913<74>
2×10107+9 = 2(0)1069<108> = 1609 × 75098161 × 7841038472751687801924850081<28> × 211091654895565396061051196921548195748022311544537423496465842770161<69>
2×10108+9 = 2(0)1079<109> = 11 × 412 × 139 × 317227 × 29474603 × 6231137404753<13> × 9334243948811<13> × 325194719751529<15> × 1763472813619084887619<22> × 2495042567190726259223420017<28>
2×10109+9 = 2(0)1089<110> = 23 × 95905845140127483764287<23> × 748402279230484392743519946043122325419467<42> × 12114959912210466897728207722918366529921027<44> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P42 x P44 / 1.20 hours on Pentium 4 2.4GHz, Windows XP / November 13, 2007 2007 年 11 月 13 日)
2×10110+9 = 2(0)1099<111> = 11 × 19 × 67 × 107 × 449 × 1163 × 56325617 × 2018317416964019<16> × 118225856497661106031129<24> × 19019153289687723044204980359442664802860560995659201<53>
2×10111+9 = 2(0)1109<112> = 7 × 147039845194247<15> × 1943107906138250029045376321787529767237254575572700887602566885187820379834022134562685486463321<97>
2×10112+9 = 2(0)1119<113> = 11 × 83 × 10859 × 4136577279787441<16> × 9206018018107001474355735891329<31> × 52973226058227628382351941365777895979723862883622018652443<59> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P31 x P59 / 2.05 hours on Pentium 4 2.4GHz, Windows XP / November 13, 2007 2007 年 11 月 13 日)
2×10113+9 = 2(0)1129<114> = 29 × 41 × 43 × 66063586712481298029647<23> × 126503094686428494316629112361<30> × 468076014118751200598434885891146498395685059990909881001<57> (Sinkiti Sibata / Msieve v. 1.28 for P30 x P57 / 5.65 hours on Celeron 750MHz, Windows 2000 / November 14, 2007 2007 年 11 月 14 日)
2×10114+9 = 2(0)1139<115> = 11 × 285760086552214643<18> × 636261641756465676681933792627408169020630641002713755921964003960109844998211323052685590190233<96>
2×10115+9 = 2(0)1149<116> = 2549 × 3610985855871191931623417922834769<34> × 347349964829672312277520077897474727<36> × 6255573247015228068683536228478645049008707<43> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P34 x P36 x P43 / 0.64 hours on Core 2 Quad Q6600 / November 14, 2007 2007 年 11 月 14 日)
2×10116+9 = 2(0)1159<117> = 112 × 17 × 569 × 13510267 × 10095059977<11> × 1438547896763<13> × 870936066733004333114245895726262287882963375200068502357384411108511639579947369<81>
2×10117+9 = 2(0)1169<118> = 7 × 89 × 587 × 821 × 169987 × 39187267481242181451186265057292575128632379116079378543177761900373819616950590883020234339696802119467<104>
2×10118+9 = 2(0)1179<119> = 11 × 41 × 5590755252166048259<19> × 7932004890976668029952475988668047207040713722544032482578473406820921785275351498473865958532801<97>
2×10119+9 = 2(0)1189<120> = 167 × 2887 × 26116571303<11> × 15883659934903907149675128381456008158034180942678533028014907931056793864420110456059640172106424402207<104>
2×10120+9 = 2(0)1199<121> = 11 × 179 × 412651 × 438017 × 4121705913569<13> × 44783377670434516936153<23> × 54208476616466592738601289<26> × 561628788452468954000231229160989443071228171<45>
2×10121+9 = 2(0)1209<122> = 47 × 25022303 × 6042247621<10> × 23276367811865773221842316006407580116078609884723<50> × 120918048180665503779004167358585435298916357823336103<54> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P54 / 2.13 hours on Pentium 4 2.4GHz, Windows XP / November 14, 2007 2007 年 11 月 14 日)
2×10122+9 = 2(0)1219<123> = 11 × 18181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181819<122>
2×10123+9 = 2(0)1229<124> = 7 × 41 × 54403 × 128092956546193746617145075712864522932834266095568489670680053832345918103383953321389519088444407752928669323613469<117>
2×10124+9 = 2(0)1239<125> = 11 × 7699 × 530843 × 12933342699273453806862343859989698555609089656801<50> × 34397439116451164611055979433447141435329163111083759614363162267<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P65 / 2.57 hours on Pentium 4 2.4GHz, Windows XP / November 14, 2007 2007 年 11 月 14 日)
2×10125+9 = 2(0)1249<126> = 109 × 32687 × 81163 × 26853192701<11> × 1663841661983<13> × 3889078698334094567<19> × 3980298920193276647203644370909665834088185353170255223695413807984473861<73>
2×10126+9 = 2(0)1259<127> = 11 × 59 × 354881 × 56367028499<11> × 7975478704936916161<19> × 19316153596334472130615936452035148328309343369482652785083151099371690549219558500588699<89>
2×10127+9 = 2(0)1269<128> = 61 × 327868852459016393442622950819672131147540983606557377049180327868852459016393442622950819672131147540983606557377049180327869<126>
2×10128+9 = 2(0)1279<129> = 11 × 19 × 41 × 3628268961937<13> × 838738174203331430476288994347<30> × 7669622162401410990558076424963758890890607406854931844023679051213111668308932099<82> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P30 x P82 / 1.75 hours on Core 2 Quad Q6600 / November 14, 2007 2007 年 11 月 14 日)
2×10129+9 = 2(0)1289<130> = 73 × 163 × 4507 × 82003635083982433094568610504258544735069<41> × 96789357905979190059916421135822880484975096215801511141201084498141280349953947<80> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P41 x P80 / 1.72 hours on Core 2 Quad Q6600 / November 14, 2007 2007 年 11 月 14 日)
2×10130+9 = 2(0)1299<131> = 11 × 227 × 2156045860526473<16> × 6410442801838633<16> × 1252178110512139743057577<25> × 462806363651736604150975074904396566025587872497093719045267588143370929<72>
2×10131+9 = 2(0)1309<132> = 23 × 5816239007<10> × 74887441003<11> × 57062021722090451670266439953685372616833385097687<50> × 349867635331476129784259517594411816903548623239985088658229<60> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P60 / 4.46 hours on Pentium 4 2.4GHz, Windows XP / November 14, 2007 2007 年 11 月 14 日)
2×10132+9 = 2(0)1319<133> = 11 × 17 × 338993 × 2059033 × 22755127841<11> × 113606374765035095179<21> × 64553585691076468757776709697760029089923<41> × 91818881868322405255423164024086685058772234099<47> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P41 x P47 / 4.49 hours on Pentium 4 2.46GHz, Windows XP / November 14, 2007 2007 年 11 月 14 日)
2×10133+9 = 2(0)1329<134> = 41 × 106261 × 138657907177600053240515967083<30> × 337482959187671618348715804443<30> × 98101523251692854700293015379351134705420468393200528633582388590261<68> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=188742066 for P30(1386...) / November 7, 2007 2007 年 11 月 7 日) (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P30(3374...) x P68 / 5.55 hours on Pentium 4 2.4GHz, Windows XP / November 15, 2007 2007 年 11 月 15 日)
2×10134+9 = 2(0)1339<135> = 11 × 43 × 422832980972515856236786469344608879492600422832980972515856236786469344608879492600422832980972515856236786469344608879492600422833<132>
2×10135+9 = 2(0)1349<136> = 7 × 809 × 353169698039908175878509623874271587497792689387250573900759314850785802578138795691329683913120254282182588733886632526929189475543<132>
2×10136+9 = 2(0)1359<137> = 11 × 626113 × 1638117457<10> × 14068805453502347862038393<26> × 7479989621822215707304648726870274177<37> × 16845400134770192015265810071674311005731257071385123440419<59> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P26 x P37 x P59 / 7.86 hours on Pentium 4 2.4GHz, Windows XP / November 15, 2007 2007 年 11 月 15 日)
2×10137+9 = 2(0)1369<138> = 1747 × 187546628295101<15> × 17157672728274349<17> × 1099656391248576163177704783751416330647<40> × 32352842794331493715586477085068987078828228518142150588757859949<65> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P40 x P65 / 8.22 hours on Pentium 4 2.4GHz, Windows XP / November 16, 2007 2007 年 11 月 16 日)
2×10138+9 = 2(0)1379<139> = 112 × 41 × 9034909729<10> × 799755820751262322119275375033<30> × 20766309102022228980253099855875658537<38> × 2686706507069958673687375702336773298121688744721734859241<58> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P30 x P38 x P58 / 4.74 hours on Core 2 Quad Q6600 / November 15, 2007 2007 年 11 月 15 日)
2×10139+9 = 2(0)1389<140> = 2206123 × 2695507 × 1714842976028596963<19> × 80349081972434863246042305841<29> × 24409255383874634535721641370459280352084527082421144381540836807757468355109443<80>
2×10140+9 = 2(0)1399<141> = 11 × 132023638883<12> × 14886629460322550667251<23> × 9251011762732059776576508198116050940040165589601099792830550858867066237804180470985489985428446193596243<106>
2×10141+9 = 2(0)1409<142> = 7 × 29 × 84089 × 1843241 × 193589288637298059074525377001965216949<39> × 468214580957084640590379178323139739604088747<45> × 701271823576894703710295051061370970173632749<45> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P39 x P45(4682...) x P45(7012...) / 5.50 hours on Core 2 Quad Q6600 / November 15, 2007 2007 年 11 月 15 日)
2×10142+9 = 2(0)1419<143> = 11 × 449 × 183695312580749129<18> × 470754046684836857<18> × 237679956825681386323<21> × 36136781193374500273671200283243499<35> × 5452012051103151492998305179171168472959562758251<49> (Sinkiti Sibata / Msieve v. 1.28 for P35 x P49 / 3.73 hours on Pentiu3 750MHz, Windows Me / November 13, 2007 2007 年 11 月 13 日)
2×10143+9 = 2(0)1429<144> = 41 × 67 × 3331649 × 14935649 × 82226933119967<14> × 1277854822563168097967<22> × 378442673724566134246810453283328526129<39> × 36795294718689337041099821264332695452995703051552587<53> (Jo Yeong Uk / Msieve v. 1.28 for P39 x P53 / 1.11 hours on Core 2 Quad Q6600 / November 14, 2007 2007 年 11 月 14 日)
2×10144+9 = 2(0)1439<145> = 11 × 42923 × 128461577505546794238270375795409<33> × 32974179012994192473352789524852599153449785137428491442089586166492685253837254412846376457647278813227617<107> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=72529746 for P33 x P107 / November 13, 2007 2007 年 11 月 13 日)
2×10145+9 = 2(0)1449<146> = 223 × 607 × 25023221 × 4396185525896109048128527223<28> × 1343127428139630606668682629173058051283756157885469887158607203256795835962010194737037400857522704739043<106>
2×10146+9 = 2(0)1459<147> = 11 × 19 × 443 × 5697591929599718777554446090898432894508443<43> × 379130428884937776481991873307188799908650024737963391395977785501700705423478684413792248504210049<99> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P99 / 8.11 hours on Cygwin on AMD 64 3200+ / November 16, 2007 2007 年 11 月 16 日)
2×10147+9 = 2(0)1469<148> = 7 × 188393823755666606087<21> × 48974472633629490212445941599538267<35> × 30966742771240142891864085906864765198542074244953818306582481386219016872212029624089901403<92> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P35 x P92 / 17.87 hours on Pentium 4 2.4GHz, Windows XP / November 17, 2007 2007 年 11 月 17 日)
2×10148+9 = 2(0)1479<149> = 11 × 17 × 41 × 89819 × 609146353706828448793174289718131<33> × 150327116082360350342458857196514705709372161<45> × 317159220689745360562169219217954642762236170568071499368229363<63> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P33 x P45 x P63 / 20.82 hours on Pentium 4 2.4GHz, Windows XP / November 18, 2007 2007 年 11 月 18 日)
2×10149+9 = 2(0)1489<150> = 467 × 1867 × 4621 × 108421 × 1863452397272640607861076350654167212689<40> × 245697714723845525541313190866322224591579633478192557941408979790414184607140661966923663278569<96> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P40 x P96 / 9.32 hours on Core 2 Quad Q6600 / November 16, 2007 2007 年 11 月 16 日)
2×10150+9 = 2(0)1499<151> = 11 × 4685001021564209421964846163<28> × 38808568233241727255465111622004267408235160236349234301386443224741295463862147001251900944349498107851358312464940145913<122>
2×10151+9 = 2(0)1509<152> = 5361545627942898041009151470006806437953024698709373565545033283<64> × 3730267610848168946728870898319835513379653329283710892077298113553792162530729021571523<88> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P64 x P88 / 11.44 hours on Core 2 Quad Q6600 / November 14, 2007 2007 年 11 月 14 日)
2×10152+9 = 2(0)1519<153> = 11 × 5689 × 246315360411796404596074328483957549191621049813614560388841748191993<69> × 12975075126577197804004996961447593348172069718738575880540661517804485822477547<80> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P69 x P80 / 16.67 hours on Cygwin on AMD 64 3200+ / November 17, 2007 2007 年 11 月 17 日)
2×10153+9 = 2(0)1529<154> = 7 × 23 × 41 × 83 × 3482753797249<13> × 36236576853259787647<20> × 2959271181514799226974060568985564239580538542286449<52> × 9774340558371489481440431760860958181256487808303078991400909109<64> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P52 x P64 / 13.75 hours on Core 2 Quad Q6600 / November 19, 2007 2007 年 11 月 19 日)
2×10154+9 = 2(0)1539<155> = 11 × 139 × 123307 × 830079215274331883817516423026643554541585944243418276953<57> × 127795405115706014236248092068937621366157768320616692605819506501989361071666161673603051<90> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve for P57 x P90 / November 18, 2007 2007 年 11 月 18 日)
2×10155+9 = 2(0)1549<156> = 432 × 108166576527852893455922120064899945916711736073553272038939967550027041644131963223363980530016224986479177934018388318009734991887506760411032990805841<153>
2×10156+9 = 2(0)1559<157> = 11 × 337 × 499 × 1033 × 1046662206026099142777948955601959824531665540186873027522225009756972001297720882736755439759524459786379519802778026649337513141871033947337847361<148>
2×10157+9 = 2(0)1569<158> = 12301 × 2791181 × 17502507689<11> × 148787847961<12> × 223683442352951472019666097131220771265873039330463763885481574641169645939085095477299553197485031195749400598299687436419041<126>
2×10158+9 = 2(0)1579<159> = 11 × 41 × 97 × 4773739 × 7061641 × 3675342336556885802003207981173427<34> × 36899426515186775228625677333483856599631170454625200580800988523050776047130897857948345990003506238466139<107> (Robert Backstrom / GMP-ECM 6.0.1 B1=873000, sigma=2242299254 for P34 x P107 / November 19, 2007 2007 年 11 月 19 日)
2×10159+9 = 2(0)1589<160> = 7 × 8641 × 12601 × 2623994612036407342715201279797743334982509573673861954217599479017415356464282296204732781789170909896647189178873982694180878799857601585192930653607<151>
2×10160+9 = 2(0)1599<161> = 112 × 39077573083<11> × 877399605649669387<18> × 4820805463206207164702265416060826003849397109007440518644968222756545515163150944740521233589890922577787096778387650666134188649<130>
2×10161+9 = 2(0)1609<162> = 89 × 34658477847360659014058595102069167012530568460007500101714626375633760287<74> × 64838133432541527475079803698431770081537553848180889286332859833318730119895305215663<86> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P74 x P86 / November 18, 2007 2007 年 11 月 18 日)
2×10162+9 = 2(0)1619<163> = 11 × 113 × 2081 × 2657 × 27122851242050836906551105038309233622985323233<47> × 10729015936115722072912979992395528159519097329221924474233456905349010539193520511048503243582233656097483<107> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs for P47 x P107 / 36.87 hours on Cygwin on AMD 64 3200+ / November 21, 2007 2007 年 11 月 21 日)
2×10163+9 = 2(0)1629<164> = 41 × 107 × 27509 × 165724820746440667949581173189704713420229430601915117685794075823232039533191959565331305502330037119128213198154027681165961616656564219697980932249016823<156>
2×10164+9 = 2(0)1639<165> = 11 × 17 × 19 × 2124275874910691323<19> × 67130200642296191884709171155818744379421413745297802772910633<62> × 394735263859854699241113017883444812425244047937865162764408227983060854002018867<81> (Robert Backstrom / GGNFS-0.77.1-20051202-k8 snfs, Msieve 1.33 for P62 x P81 / January 22, 2008 2008 年 1 月 22 日)
2×10165+9 = 2(0)1649<166> = 7 × 221941 × 68599261 × 9200902203664309<16> × 11100519924069883<17> × 366998242783326060323<21> × 500653503730584794024899566091031624992527253317851284646276669116306478098290592678409962135563427<99>
2×10166+9 = 2(0)1659<167> = 11 × 347 × 800524808177<12> × 97508708774457730801<20> × 67125824792697930457794534244975450824686622250750857408418920499615396427444999039607095327460647317831111266266975619349516276801<131>
2×10167+9 = 2(0)1669<168> = 47 × 184481867 × 10008810089<11> × 118729587401<12> × 10440234088181<14> × 6290280740566369228935563961231140837620944228695383054749943<61> × 295567569227359507343672924451640185453395509237894904088703543<63> (matsui / GGNFS-0.77.1-20060513-pentium4 snfs for P61 x P63 / December 26, 2007 2007 年 12 月 26 日)
2×10168+9 = 2(0)1679<169> = 11 × 41 × 1389038782966586131<19> × 3192560103305722288900863446601222937194306703129145197972621029629549708641696678126113794171311437199080814984787729484691806467906510934861583889<148>
2×10169+9 = 2(0)1689<170> = 29 × 2896121 × 642722461 × 8651584635503<13> × 42824880228868782876595963844344828682420295522265569529247315928824373869792581134014087169631499505135901247030728767584235733732436999047<140>
2×10170+9 = 2(0)1699<171> = 11 × 20856546081214729<17> × 31898045403876622590018206760962939<35> × 27329447332447825571832005501356411557247380282440211338517340420235479911185535153515772085011975930967362685161689849<119> (Serge Batalov / GMP-ECM 6.2.1 B1=43000000, sigma=2478872043 for P35 x P119 / October 2, 2008 2008 年 10 月 2 日)
2×10171+9 = 2(0)1709<172> = 72 × 3181 × 55360013450292649181<20> × 332698364302461530229511915253909389<36> × 327466429908302051990172078925450170528187<42> × 2127436513348211799209267764223221467462419313254632912251556151595967<70> (Dmitry Domanov / for P36 / June 10, 2009 2009 年 6 月 10 日) (Robert Backstrom / GMP-ECM 6.2.1 B1=4406000, sigma=3722705023 for P42 x P70 / June 12, 2009 2009 年 6 月 12 日)
2×10172+9 = 2(0)1719<173> = 11 × 2131849 × 5772855211<10> × 147737316174756038891708020702800545898856355428222063743708994992070429014539191597443956854326436517737360645673355805169692360709183154062481407035350121<156>
2×10173+9 = 2(0)1729<174> = 41 × 3347 × 3930707656181641<16> × 370782887250882734022208477041896772413367067042038250946757410655335914342142050693926419189967863318431562431976177381924173534188645587196436067434787<153>
2×10174+9 = 2(0)1739<175> = 11 × 449 × 773713 × 2243296177<10> × 74158382575383580813200721<26> × 6474833169609810754024951641805051<34> × 6504635362555600808299400218239308558804216297<46> × 74698635967538385695610601830647283165089131842313<50> (Robert Backstrom / GMP-ECM 6.1.3 B1=2726000, sigma=261808550, Msieve v. 1.33 for P46 x P50 / February 15, 2008 2008 年 2 月 15 日)
2×10175+9 = 2(0)1749<176> = 23 × 8128184047<10> × 4882696943921<13> × 7179446402803<13> × 3051812893602400751283328896943780404497982270223713292106047294906441748524831527390410805565775746287174379577260949135602173360731485403<139>
2×10176+9 = 2(0)1759<177> = 11 × 43 × 67 × 26083 × 5439697 × 44479695080952416094994129413400367705614886095907492171811716697530070572624930861671775506801765198639835983756887662575726072847527925710053363419149085253049<161>
2×10177+9 = 2(0)1769<178> = 7 × 13915141 × 2216581807987<13> × 196483701915073792726649<24> × 47144827145886381548402938267502574394578984989719837021528821504080877556295585455896611622975356990280793621394670242672135607742489<134>
2×10178+9 = 2(0)1779<179> = 11 × 41 × 2011 × 2559497 × 3607936990392616468032632672857678386811<40> × 2387964213017067719981893822914230918809066561665386940290151207986766746538763247553089857459596549258060136674347450493027907<127> (Dmitry Domanov / ECMNET for P40 x P127 / July 11, 2009 2009 年 7 月 11 日)
2×10179+9 = 2(0)1789<180> = 71174055487<11> × 1456349062809436989167539279826921<34> × 1929491201087555608892709636519787278782502149025926069860554864817462889929790905160468424725930351070637487831883300700726830778091167<136> (Dmitry Domanov / ECMNET for P34 x P136 / July 11, 2009 2009 年 7 月 11 日)
2×10180+9 = 2(0)1799<181> = 11 × 17 × 6079571 × 25230643818391368849433612677582025214393<41> × 188381030611937474058452477960311181949708981007667786593139<60> × 370126306304570492482152625078331368757963894231215299250456690859821771<72> (Dmitry Domanov / GGNFS/msieve 1.42 snfs for P41 x P60 x P72 / 103.49 hours / October 13, 2009 2009 年 10 月 13 日)
2×10181+9 = 2(0)1809<182> = 19526445927449<14> × 1261481608100983452099826583383264628723756547588583<52> × 811943612296195715347682002355010911159697937936474250522482727122338922394138319045468538601865056237746879402333927<117> (Dmitry Domanov / GGNFS/msieve 1.42 snfs for P52 x P117 / 123.07 hours / October 13, 2009 2009 年 10 月 13 日)
2×10182+9 = 2(0)1819<183> = 112 × 19 × 4792421492537717215974620350584419014570035427<46> × 18152482101795525258673725492310366645321546282550812322674378256610903698310179167802038160476302016480186262806948758018518330672633<134> (Serge Batalov / Msieve-1.38 snfs for P46 x P134 / 220.00 hours on Opteron-2.2GHz; Linux x86_64 / October 21, 2008 2008 年 10 月 21 日)
2×10183+9 = 2(0)1829<184> = 7 × 41 × 349 × 266221 × 10939063185828649<17> × 344618225745749586411461042704126893948843706169<48> × 19895826657608469488864484374369820394043609778637709304640322693139917994922066124762553757203947117837606543<110> (Dmitry Domanov / GGNFS/msieve snfs for P48 x P110 / 134.56 hours / October 16, 2009 2009 年 10 月 16 日)
2×10184+9 = 2(0)1839<185> = 11 × 59 × 30816640986132511556240369799691833590138674884437596302003081664098613251155624036979969183359013867488443759630200308166409861325115562403697996918335901386748844375963020030816641<182>
2×10185+9 = 2(0)1849<186> = 3221 × 25309 × 5227693762306268399155697518001267230014289<43> × 469303881636488913910845986301497789032248197460711815322014514424627055233095974458951755240392494538034911487605992840453516750955929<135> (Dmitry Domanov / GGNFS/msieve snfs for P43 x P135 / 146.87 hours / October 16, 2009 2009 年 10 月 16 日)
2×10186+9 = 2(0)1859<187> = 11 × 571 × 1297 × 90336178769<11> × 357262445685375714446644002349895705129177657<45> × 7606977704130228676753060368209396335418132864772317258963737679591760422481190900647054523251242045655517818742535330613289<124> (Dmitry Domanov / GGNFS/msieve snfs for P45 x P124 / 167.46 hours / October 16, 2009 2009 年 10 月 16 日)
2×10187+9 = 2(0)1869<188> = 61 × 149 × 283 × 70663 × 2939271579080203<16> × 4012670006992512529<19> × 5937247290902120471857247<25> × 875378053458562890900671686629987206094799966703<48> × 1795070177818256857278501924746661172178297270528928854534971402770967<70> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P48 x P70 / 33.41 hours on Core 2 Quad Q6600 / December 23, 2007 2007 年 12 月 23 日)
2×10188+9 = 2(0)1879<189> = 11 × 41 × 14593 × 23091128449<11> × 1305147022359775081<19> × 463365458429616581769746971<27> × 2176108879669829946811131184844482932647465554855729473490963124662285745985824123016192327941045862554688838884761265440104337<127>
2×10189+9 = 2(0)1889<190> = 7 × 601769500435849<15> × 262389630418130593543987483<27> × 231192776199581655479023863569<30> × 7826739065615167308219291506990415678354983695078282263339825293001255086110103549843948541000279804194903492659561669<118> (Dmitry Domanov / ECMNET for P27 x P30 x P118 / July 11, 2009 2009 年 7 月 11 日)
2×10190+9 = 2(0)1899<191> = 11 × 2267 × 3598257171209322387124035246065550912037121<43> × 222891543042545298957116640948488621345212099759851442244790596744882493938600415976943482712976628381818095574564453234501990920912116689990817<144> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P43 x P144 / 868.84 hours / October 30, 2008 2008 年 10 月 30 日)
2×10191+9 = 2(0)1909<192> = 139787422364207720750158040677389843257571643<45> × 46096944919325148346223203940223926055682830814085225169569170904023<68> × 31037716041925551555377656141714970107015368138481092969610634477807320110383981<80> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=3000000, sigma=3278687019 for P45 / November 16, 2007 2007 年 11 月 16 日) (Dmitry Domanov / GGNFS/msieve snfs for P68 x P80 / 245.12 hours / October 27, 2009 2009 年 10 月 27 日)
2×10192+9 = 2(0)1919<193> = 11 × 20093929 × 18030878833963<14> × 1763760718928113<16> × 9175528006628232666271619<25> × 920387728051512002382691993<27> × 853103872666102935229522644049<30> × 4895647020240705920122343772853433<34> × 8066813022775334158349877246657430676371<40> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1130780830 for P30 / November 12, 2007 2007 年 11 月 12 日) (Makoto Kamada / Msieve 1.29 for P34 x P40 / 4 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / November 13, 2007 2007 年 11 月 13 日)
2×10193+9 = 2(0)1929<194> = 41 × 200183 × 5328527 × 1518763338461<13> × 711262813661921<15> × 8504621858298220990261<22> × 13056246011809721884007205309537122134790655929126011321<56> × 3812573573319637471194915345352510153300362083742249817651638622768023693649<76> (Dmitry Domanov / GGNFS/msieve 1.42 gnfs for P56 x P76 / July 22, 2009 2009 年 7 月 22 日)
2×10194+9 = 2(0)1939<195> = 11 × 83 × 386297 × 30012787171<11> × 305322490515193<15> × 2643304814085557167142740766212794564787092479761<49> × 23411298965592819498323902257006544390074859563323248495186898066821901827724109659825174326068861411467793246643<113> (Dmitry Domanov / GGNFS/msieve snfs for P49 x P113 / 376.74 hours / November 3, 2009 2009 年 11 月 3 日)
2×10195+9 = 2(0)1949<196> = 7 × 263 × 5309 × 376787 × 398925029 × 208929543907045046083316767984164355764039923<45> × 22272790228074941650412202144206513847480230663694503321323<59> × 292551145750263592463612261169824232947788536994442651259033585380015683<72> (Dmitry Domanov / ECMNET B1=3000000, sigma=4163169800 for P45 / July 12, 2009 2009 年 7 月 12 日) (Dmitry Domanov / GGNFS/msieve gnfs for P59 x P72 / 114.52 hours / October 18, 2009 2009 年 10 月 18 日)
2×10196+9 = 2(0)1959<197> = 11 × 17 × 276401 × 1726033 × 192367662427<12> × 16215174894011<14> × 193963468016641857772145026803551171115923<42> × 53708156977454565812877224264090874901376708881<47> × 6898994351244504504781634659534366111507825716105635993739478162742689<70> (Dmitry Domanov / ECMNET for P42, GGNFS, Msieve 1.40 gnfs for P47 x P70 / 31.25 hours / October 13, 2009 2009 年 10 月 13 日)
2×10197+9 = 2(0)1969<198> = 23 × 29 × 43 × 1663 × 1270728829<10> × 7478155481<10> × 467185812127459488296885761755886497555061<42> × 944509734505196888324435883534798002347210233678036138305231061654282177613689218732584175782493585739887365690596605198501571127<129> (Dmitry Domanov / ECMNET for P42 x P129 / October 13, 2009 2009 年 10 月 13 日)
2×10198+9 = 2(0)1979<199> = 11 × 41 × 5849 × 758179141809447594468173345529908461241313636344681885091127446501932029998115924832603522727746589236358177473815335613683465515548548295442698905454681926790980246021549725747649928977568891<192>
2×10199+9 = 2(0)1989<200> = 393247 × 515227 × 50801941129<11> × 1943057518788892674996489053163666044563133706774085489925583164769140268905687598674402893274850598879509301301620344934914433732134714629152026503619122194136568049500793856909<178>
2×10200+9 = 2(0)1999<201> = 11 × 19 × 139 × 1259 × 5326345617905713<16> × 1991350749169858454527790418207027923203<40> × 26929252008257191020431416687258193026593735560915113070125073<62> × 19144401031633854466395611803227504370594464318406318304124607255623786615883<77> (Dmitry Domanov / ECMNET for P40 / October 12, 2009 2009 年 10 月 12 日) (Dmitry Domanov / GGNFS/msieve gnfs for P62 x P77 / 393.79 hours / November 1, 2009 2009 年 11 月 1 日)
2×10201+9 = 2(0)2009<202> = 7 × 69761 × 11737043 × 405763268549<12> × 15646442363492462006584854089570815780450056344091469559510641<62> × 54963227574520994337517345655330514371449634010434125919496404712249771905109101177961263856877693572140499987325441<116> (Bob Backstrom / Msieve 1.54 snfs for P62 x P116 / October 16, 2021 2021 年 10 月 16 日)
2×10202+9 = 2(0)2019<203> = 11 × 8179 × 114752140758891510899<21> × 10154618909493427970970822721<29> × 190771140703131610829744107752674358172987961363517807716872722844099059240912537213495175536293431424182489626904601379938938663722516836938490051459<150> (Serge Batalov / GMP-ECM B1=2000000, sigma=1119420523 for P29 x P150 / December 23, 2009 2009 年 12 月 23 日)
2×10203+9 = 2(0)2029<204> = 41 × 269 × 45667 × 19580779508683<14> × 65243088900889<14> × 138200537694841543<18> × 12672224792356232505403119611241476723970457945452014887551558525183221<71> × 177486074511105442256025552068575805264094061599905520214143395875984397709812383<81> (anonymous / factordb, 2018, http://factordb.com/index.php?id=1000000000024650227 for P71 x P81 / April 3, 2021 2021 年 4 月 3 日)
2×10204+9 = 2(0)2039<205> = 112 × 929 × 26683 × 36299 × 51988020680093672117247242539<29> × 14102079172213643776767904098610073617128681679946324030859913<62> × 25056082059607090951733920054660219880759878227784994974773122485881753544182179379765009288177970979<101> (Bob Backstrom / Msieve 1.44 snfs for P62 x P101 / October 12, 2023 2023 年 10 月 12 日)
2×10205+9 = 2(0)2049<206> = 89 × 523 × 2585029 × 166216020596255882928796555382784301075068176594751007723941186773077131737387223348680609216364544499265242882946550246447889958373781719031913812566855240029930251885838719252040412080510024343<195>
2×10206+9 = 2(0)2059<207> = 11 × 449 × 37889 × 5459297 × 497722769 × 18407538588139<14> × 24344893023390593<17> × 323741686389098916654004123<27> × 2711136483797538038202253516832307917320448337187566527521383600664259635005848954582002685047002495526453006376009521762786643<127>
2×10207+9 = 2(0)2069<208> = 7 × 14111025329<11> × 652049310658239223<18> × 35850201875176264953202091784306961117153044471340759636905974683943353310549<77> × 866166411638407809106953306851168838048637238065581179997743848363762730710299625693501471594704395189<102> (Bob Backstrom / Msieve 1.44 snfs for P77 x P102 / June 16, 2024 2024 年 6 月 16 日)
2×10208+9 = 2(0)2079<209> = 11 × 41 × 131681731 × 1830506219<10> × 383364544390785612982215343481634580581922450533159040732212907078907<69> × 479893396265117102035392391163508603675987727531981392817964234300191582233604413167822131292542845850985664060993318233<120> (Bob Backstrom / Msieve 1.54 snfs for P69 x P120 / August 9, 2021 2021 年 8 月 9 日)
2×10209+9 = 2(0)2089<210> = 67 × 4242817049<10> × 940546855820965267913114723<27> × 748032473292812146645380409489462862412186346838758858484624841159556443473624508647054376893740962759291798592778796779532710041483084607738560034620775229840240133078601<171>
2×10210+9 = 2(0)2099<211> = 11 × 163 × 35887838809<11> × 31081530825700505224965507850746203805111164251801643775128680532212390156037835065434206943735344836312298164564072074008454432500476221731520438035658139112157343490953044469365723499631212702257<197>
2×10211+9 = 2(0)2109<212> = 643 × 280965067 × 184011117384793680559783718319108924069854734399903555290789766794969976364983049<81> × 601620510333901441159591913262560354924476162002641837600943236467681680314210402992525992846903240413555572214325104161<120> (Bob Backstrom / Msieve 1.54 snfs for P81 x P120 / September 30, 2020 2020 年 9 月 30 日)
2×10212+9 = 2(0)2119<213> = 11 × 17 × 20353 × 1381923056737330482439098571<28> × 2240943540763641964491268576729<31> × 3886663926655765880683493595373168556542321<43> × 600489491525951725586310527450870082711421078250491<51> × 7270474867254376318368915407851886750704209826108627931<55> (Serge Batalov / GMP-ECM B1=2000000, sigma=1282349060 for P31 / December 23, 2009 2009 年 12 月 23 日) (anonymous / factordb, 2018, http://factordb.com/index.php?id=1000000000024650236 for P43 x P51 x P55 / April 3, 2021 2021 年 4 月 3 日)
2×10213+9 = 2(0)2129<214> = 72 × 41 × 47 × 134852570194289<15> × [157069901999142650536574491045989025773984617819717483896249541875699110917110166712844510182420609122352870800054529098709462171025750419387242008532178107039389475346864920601033355560231087247<195>] Free to factor
2×10214+9 = 2(0)2139<215> = 11 × 792769 × 108073286126852074103935205123<30> × 98182174874672995947524262380434456510338854832499047669277588847315038237481<77> × 216142238995513785556653561709630049502401512438636014492425032230481294061526006685918023907278437377<102> (Serge Batalov / GMP-ECM B1=2000000, sigma=1593094740 for P30 / December 23, 2009 2009 年 12 月 23 日) (ebina / Msieve 1.54 snfs for P77 x P102 / October 24, 2023 2023 年 10 月 24 日)
2×10215+9 = 2(0)2149<216> = 218794321 × 10826531273093526781328991763529<32> × [84431521515330295235327680873213130349430459871381881520420584924480627631102287648956120680337807274004266843502840550795215945616015601670178617482078519562517437776926226801<176>] (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=3239976602 for P32 / December 25, 2009 2009 年 12 月 25 日) Free to factor
2×10216+9 = 2(0)2159<217> = 11 × 107 × 37489 × 17914893243474064093353886339<29> × 1384417940673721095572606999981881567926019<43> × 272295122021784125963195075721336114675770126363858259753138428017<66> × 6711635651584595222530143426514008582842299417307583058094704697822027849<73> (Serge Batalov / GMP-ECM B1=2000000, sigma=3828974228 for P29 / December 23, 2009 2009 年 12 月 23 日) (anonymous / factordb, 2018 for P43 x P66 x P73 / April 3, 2021 2021 年 4 月 3 日)
2×10217+9 = 2(0)2169<218> = 17324807 × 7919188963783<13> × 107411105875493866921<21> × 5173938809178624041155896767<28> × 102699093136418169307668176696792069<36> × 467066681050485435798497334956180095244989456946079206083<57> × 5468458395983536988518042915683384244729834087373257219201<58> (Wataru Sakai / GMP-ECM 6.2.1 B1=1000000, sigma=34838519 for P36 / December 24, 2009 2009 年 12 月 24 日) (Dmitry Domanov / GGNFS/msieve gnfs for P57 x P58 / 22.32 hours / December 25, 2009 2009 年 12 月 25 日)
2×10218+9 = 2(0)2179<219> = 11 × 19 × 41 × 43 × 601 × 6121 × 715440399759056651441<21> × [206234389465895672046071357779268314060599740386453012821509990031498766039851108046202347906284545189922440144452819036397926469000789909130159163167875098896636309579796121485114585507<186>] Free to factor
2×10219+9 = 2(0)2189<220> = 7 × 23 × 43812902092987<14> × 526193214629567<15> × 572377081058542253267987719218349283<36> × 1642704150511781548855913666836766850941231383<46> × 573080016994459853298036411999573951761221685161699272051987725626841188610357687227411391981098656889953649<108> (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=2695859916 for P36 / December 31, 2009 2009 年 12 月 31 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=383008260 for P46 x P108 / June 26, 2011 2011 年 6 月 26 日)
2×10220+9 = 2(0)2199<221> = 11 × 161826779 × 264366737 × 539628245729<12> × 78756323812635519922436557371865549550802792204487566037290941493378188554102120590658583214626203771055592975609620505904264571445425268430979170848148336199017954900809678586248493880977457<191>
2×10221+9 = 2(0)2209<222> = 40311276844071860136985326683517016181703190200370796622762464688777209496811195145374686624161389<98> × 4961390847866725880235542731512971477275683085518141508850326126190658290515042612026747411810967819235266264988830617597581<124> (Dmitry Domanov / GGNFS/Msieve v1.48 for P98 x P124 / February 24, 2011 2011 年 2 月 24 日)
2×10222+9 = 2(0)2219<223> = 11 × 257 × 491 × 63926809 × 16788044898549682673<20> × 5074037943546851151385411658928548616449123232705873303863738753<64> × 264597560574051518699162262494122991131208220666824905544150550860540573832675765351471215640979333082394183380511376716525097<126> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P64 x P126 / July 14, 2020 2020 年 7 月 14 日)
2×10223+9 = 2(0)2229<224> = 41 × 414629 × 13400861 × 1321138989139163<16> × 66451570992185325513540837919168027207624034068310980866048490282158613061006311711145317450726262895844049526980297130945772803744506448717510698266830221823434023421358793522353980621513476067<194>
2×10224+9 = 2(0)2239<225> = 11 × 401 × 4068203 × 226272536448892100510091550585495000412230321909201231635885883040774123129704603691810516348819626342987<105> × 49255924734539883231709715107733854974482938359302841147537356871871537226255033892628700385199817231811995779<110> (matsui / Msieve 1.50 snfs for P105 x P110 / January 5, 2012 2012 年 1 月 5 日)
2×10225+9 = 2(0)2249<226> = 7 × 29 × 13650149 × 685685347 × 1017035730957640742390794952714265163301<40> × [1034988408737746177159615870724745637279849949389759175786098372389926567959412739961733978307579543063325365451025619017268250126951537965277683820030848996680656124401<169>] (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=1068312719 for P40 / December 31, 2009 2009 年 12 月 31 日) Free to factor
2×10226+9 = 2(0)2259<227> = 113 × 193 × 560969 × 1267337153513<13> × 4314728132434243<16> × 4733504752749750139<19> × 3634318635917846231371<22> × 6296561595659808889632914054972827377526471954382693133656942723411771281<73> × 234315431386034047753559174281479947727100863055816396882407246086189816617<75> (Markus Tervooren / Msieve 1.44 for P73 x P75 / February 28, 2010 2010 年 2 月 28 日)
2×10227+9 = 2(0)2269<228> = 3329562443<10> × 107408205320411861<18> × 19542622842364325687<20> × 3105956746871376560683<22> × [9213552555132826284688108026799672225240027749386611370806244490553632019786246246963905181152150149242331894379939268572996351530071057711905758901844820267323<160>] Free to factor
2×10228+9 = 2(0)2279<229> = 11 × 17 × 41 × 10499 × 24846006624964052487039919196811094556907063748256384898830725809123560470515287418666752600721580209002868508733862037305707489231150636083236755870331822021147355540752028741661695705416204587882207517499694673636087473<221>
2×10229+9 = 2(0)2289<230> = 2172841954623092027926900794507167061233744028370654413865112222803660212219603365313557931172150483893294107<109> × 9204535082474170401321727290471233429691652107066206945430845050199752356883387307148694223331985823112096176125374486187<121> (Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (100% by Jeff Gilchrist) for P109 x P121 / January 22, 2010 2010 年 1 月 22 日)
2×10230+9 = 2(0)2299<231> = 11 × 6067 × 75913 × 6084433096051<13> × 7073788323327073327258989897992617<34> × 3303258174737052152437657497734399871388360043<46> × 277672239321038177387783564205201197243734699065269909906632005088411286221102565783690689734747275313434128530529475473351150169<129> (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=3376074941 for P34 / December 27, 2009 2009 年 12 月 27 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=787881152 for P46 x P129 / June 26, 2011 2011 年 6 月 26 日)
2×10231+9 = 2(0)2309<232> = 7 × 4561 × 169030747 × 857212843 × 432332120985305978464468522265327760417783698115540773556470068016175273440779868920156215856099149196269541514608807151026712316569384861038590070574165241024876311161569781633513782369272760479967633290480327<210>
2×10232+9 = 2(0)2319<233> = 11 × 5946560897<10> × 73993355247912524605793<23> × 725944193076549352434013974547<30> × [5692138820981647145598644020442888386091603585079441314627842965886036788191654953913900564073220128074518028099154918934320189673146164090638777342373105447226758181337<169>] (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3605338194 for P30 / December 21, 2009 2009 年 12 月 21 日) Free to factor
2×10233+9 = 2(0)2329<234> = 41 × 109 × 48187 × 51941 × 13403101 × 30477355668284441367487<23> × 43772048498402916588530537535619916618298474903754212282777308243864905867091216234033160616900864562289698053577559237951122313141134582281826323261199855580091876601409960437551793762337809<191>
2×10234+9 = 2(0)2339<235> = 11 × 131 × 271489 × 823651 × 319703161 × 1078869731<10> × 140239420405201921<18> × 31537930735794751543553<23> × 87211834129437057201132899<26> × 11429780024455220807441469459289<32> × 4421646001155731662524341299889414727107084802590443<52> × 923111247852638260463789169912288203586464742324595249<54> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=343692324 for P32 / December 21, 2009 2009 年 12 月 21 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P52 x P54 / 9.09 hours on Core i7 2.93GHz,Windows 7 64bit,and Cygwin / December 26, 2009 2009 年 12 月 26 日)
2×10235+9 = 2(0)2349<236> = 83 × 39946459475107<14> × 5597255966071525628690941886573668967<37> × [1077701388235713140657768167225997210775897574734278788245136540226913285517350939506154941640102108022207364856469909939766859083984229537100369171781109255856912568500608122864937767<184>] (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1725877940 for P37 / December 21, 2009 2009 年 12 月 21 日) Free to factor
2×10236+9 = 2(0)2359<237> = 11 × 19 × 138107 × 4159291 × 8773419562122098610424962990443<31> × 1621538670024234287528298561381857<34> × 30519099161701331079343499675023210273173803<44> × 121787190834203474711890632339036435768265158458770793<54> × 31504977920459959354093897455365246373050907956577825056535137<62> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3296081510 for P31 / December 21, 2009 2009 年 12 月 21 日) (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=632518576 for P34 / December 27, 2009 2009 年 12 月 27 日) (Dmitry Domanov / ECMNET/GGNFS/msieve, GMP-ECM B1=11000000, sigma=569188867 gnfs for P44 x P54 x P62 / 21.20 hours / January 19, 2010 2010 年 1 月 19 日)
2×10237+9 = 2(0)2369<238> = 7 × 3889 × 114205272740735785945447<24> × [643291565499724240895733377296104690110778157002496454454133540173643658765255796487592497523162306319278095263157985043724681927011144675044971061359930179279612996859594500019974301027789660391213923342100489<210>] Free to factor
2×10238+9 = 2(0)2379<239> = 11 × 41 × 449 × 5945281 × 205709886542393<15> × 934803133267021438680222877011857<33> × [86389190127266350770385031495384179967873028613332220537337837050627344935518971489006603171048516781100773290444922675961442798454864564423577019533963800409624412975235359485611<179>] (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=3043688549 for P33 / December 27, 2009 2009 年 12 月 27 日) Free to factor
2×10239+9 = 2(0)2389<240> = 43 × 28201 × [164929002187783214020944333987826590348519720973114098708358519366375759394974448374336057685567805199056935965490255582228240298257607556387164235475733583585605986263063407779536104195546422153923289871792440149326718580818921974563<234>] Free to factor
2×10240+9 = 2(0)2399<241> = 11 × 307 × 7019 × 552217 × 78313511370269089<17> × 268180246275204019<18> × 1568790795032498801<19> × [4637515836168100257953330325759694616565226497777848038399574526085866644199027391211153986749277087667978373453914070021966402375314552843762840646553708717389638754815407969<175>] Free to factor
2×10241+9 = 2(0)2409<242> = 23 × 11827 × 229376321 × 2727862121<10> × 1386106253052049787<19> × 105073858185151552219454459705794081<36> × 360921848171532022239564048151089455378639175197048821<54> × 2235384268153789766641335938374128937734419910232176161534364900238255661012683284504122282010997625645608452587<112> (Serge Batalov / GMP-ECM B1=2000000, sigma=3024908771 for P36 / December 23, 2009 2009 年 12 月 23 日) (RSALS + Zeta-Flux / ggnfs-lasieve4I14e on the RSALS grid + msieve for P54 x P112 / March 24, 2010 2010 年 3 月 24 日)
2×10242+9 = 2(0)2419<243> = 11 × 59 × 67 × 6846820699<10> × 41907171851<11> × 1090063220993<13> × 3786433753021468383299901570467<31> × 84423801458016780588188637308776081<35> × 73147444517773675356349288592153293437883820279811737<53> × 628907938443312534074168851758506121332113148472747784772194406259082816737024575145161<87> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3475872808 for P31 / December 22, 2009 2009 年 12 月 22 日) (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3776059296 for P35 / December 22, 2009 2009 年 12 月 22 日) (Markus Tervooren / Msieve 1.44 for P53 x P87 / June 23, 2010 2010 年 6 月 23 日)
2×10243+9 = 2(0)2429<244> = 7 × 41 × 227 × 421 × 275090641212239281388428941781<30> × 2152585623621383922763148657303616437647<40> × 123141345570497236474337703058822767653445913462444776390912934132710520410688756774307314328791237633003420422816480205730722695898675938576097017595328324890030626203<168> (Serge Batalov / GMP-ECM B1=2000000, sigma=1128384573 for P30 / December 23, 2009 2009 年 12 月 23 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=847426820 for P40 x P168 / June 25, 2011 2011 年 6 月 25 日)
2×10244+9 = 2(0)2439<245> = 11 × 17 × 1777 × 25243 × 724627 × 169950585499129<15> × 19360778521804486968566066004914094676168895482961537208752519901851429490456275045417093181385575124403049424584766251277814657410176474806149848716944429423379339832701456706526464105489175255884940578683980409939<215>
2×10245+9 = 2(0)2449<246> = 54073807 × 17143423889<11> × 52441815947<11> × 37907299299807143021<20> × 48780799114142980351071675283<29> × 82916067005458582299154335356811909133074686005106687<53> × 26832263785196712127524216555213205918454258211800990466960970184341361385135540875950363230403637960429980842708029<116> (Serge Batalov / GMP-ECM B1=2000000, sigma=2117120045 for P29 / December 23, 2009 2009 年 12 月 23 日) (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=1340622085 for P53 x P116 / January 20, 2010 2010 年 1 月 20 日)
2×10246+9 = 2(0)2459<247> = 11 × 139 × 9268817 × 62973730201<11> × [2240984142321922775229363370030942297326581800389415160239473169538891002971234699931706448303103357818012590348564609641166019734011959465653256127578950549796673181960535648172555127172758468055134454013212452206273550023913<226>] Free to factor
2×10247+9 = 2(0)2469<248> = 61 × 1187 × 3437661623705243995609921801789884146142456507556397059151887<61> × 80350080419078169605944096638863837667669704493857648931424668314468462837174011259151601269570866568795942355366532856184140561377524685121550380921762692989316410704320819691702001<182> (RSALS + Jeff Gilchrist / ggnfs-lasieve4I14e on the RSALS grid + msieve for P61 x P182 / June 6, 2010 2010 年 6 月 6 日)
2×10248+9 = 2(0)2479<249> = 112 × 41 × 11107489204958914007580419<26> × 63380532867978197628346597706813686961<38> × [57264962758655073499640385596911912843405767555810142578271507896184241753434450997205171439568565855573766028794311486964572257868682891212249064270760929321618096156966261093582291<182>] (Dmitry Domanov / ECMNET, GMP-ECM B1=11000000, sigma=2228662224 for P38 / December 24, 2009 2009 年 12 月 24 日) Free to factor
2×10249+9 = 2(0)2489<250> = 7 × 89 × 36605089566343<14> × 4466085821920771247<19> × 19636921807097022023414836232906604445313614046859598610354260390885044845532011734151457464256924541295397517803262484211208480726195980654180071781974066227784590907055904838779034101713509679310799549434179516623<215>
2×10250+9 = 2(0)2499<251> = 11 × 16086281 × 3309214125374779<16> × 14338102354379641<17> × 47232604292440857523<20> × 781590814029965241677077444393<30> × 64527341869298438256433256605996899102195801603940087561331726805894424367384901368353031747240116231093969047894696259674986621491632829507903066070381165748419<161> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=270044940 for P30 x P161 / December 23, 2009 2009 年 12 月 23 日)
2×10251+9 = 2(0)2509<252> = 454994563 × 177172454020449588634910030539966836065189<42> × [2481004705608499189114189869328383627521717526271315023963753841104442045326072368659343294282043154990191206740388094042786849637918421483244145785659853637462570120560063374098549379530502124225530887<202>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2933624146 for P42 / August 19, 2016 2016 年 8 月 19 日) Free to factor
2×10252+9 = 2(0)2519<253> = 11 × 213947 × [849828143503679968318406810182810781089794116384814080972475341174131061346119281028394033016673203261470449138422982412381656119591215666411859861639479956165864358080187234136576730770619911388419476871289703439721902238319855767167484555435777<246>] Free to factor
2×10253+9 = 2(0)2529<254> = 29 × 41 × 104748901 × 9806491077663257319703<22> × 2578530361121269239488838583<28> × 6350571045492594122921772277432509061671890433863610640159929330457807296442102450767214325771247034248459625755894692908244179424730426214718413188289086220543169272463007602900796774257191169<193>
2×10254+9 = 2(0)2539<255> = 11 × 19 × 97 × 1091 × 148807687018140885362627<24> × [60766169174668871814438349834984985924363650010511334872013028741070252674886138515850837086153918516436682851131054074481112638664947938759593768097434660434163568300729293313769753437504532214650209836570594040758615676369<224>] Free to factor
2×10255+9 = 2(0)2549<256> = 72 × 42829 × 38666081 × 55295941 × 14559959969<11> × 2893384843807<13> × 10580499931366970023043787226528890993891610739521997643273030445967236605548171598751346432274518497133402852635071972544421537335610909522033135301192774414183062747012430843345843966946300761055441900670236103<212>
2×10256+9 = 2(0)2559<257> = 11 × 784321 × 22290186032648531<17> × 1244085574725768165889<22> × [83594849395484836803090920266233438415104602407421640524508335970771721827383701857399409069704571795693562109423585943136594739036900501365108579703647370628953297099997339303046922080685070015268813172196196921<212>] Free to factor
2×10257+9 = 2(0)2569<258> = 683 × 9689 × 71852942728883<14> × 1859460551085195672309811711374118829843<40> × 226203232929730535801221284772104670787915346027272556852755696087478931232133933302573753323818852400785616683486348212880778421179111864449056075892004657909993451044686223034251410904254387745403<198> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2364745351 for P40 x P198 / August 24, 2016 2016 年 8 月 24 日)
2×10258+9 = 2(0)2579<259> = 11 × 41 × 17941757369<11> × 73032829039771<14> × 3384311661715322416199422392284609928544787688106656357010146778397463252039847582824501106572462990254862370457838583376756801430071009132787134682177976711979454906912677169802088926207962497899530672754922097707115967694543279041<232>
2×10259+9 = 2(0)2589<260> = 47 × 3692585084058881<16> × [115239569354993256586908854756062076849600236021419156009401385753599066283160948759646759050911704958092019989627554163027987419998098387256721065104522863918435395470083004134540147180020221595862063407466664703829492503727109529791775330887<243>] Free to factor
2×10260+9 = 2(0)2599<261> = 11 × 17 × 43 × 6659 × 3735174694774130157652946205883314748660374926750889751295073777077191811249520707052134952085832671009043810405595336514867984265726005251767676093270225564771953858117036058946958259553517013412582783844002371163599736513306681243310418845868744579211<253>
2×10261+9 = 2(0)2609<262> = 7 × 383 × 1689755827<10> × 2778631864018786192828049<25> × 5530867492670831037441919609907<31> × [28726648698214867720838921114968694543646018266224894199005180907584943868974668601849875556599177102317815570603577340667880561483081178239211988282873291914293153507547150256073908280211021849<194>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2389013052 for P31 / January 16, 2016 2016 年 1 月 16 日) Free to factor
2×10262+9 = 2(0)2619<263> = 11 × 6875476171<10> × 16108681313579<14> × 61345900159541786082131<23> × 267601778883688267155933539836989460900033218767798852352964815665940867590966712236672670705475973468431142472549889129989465370596754425258047908247393924190347016192810554619972481006933463210590994689790151752161<216>
2×10263+9 = 2(0)2629<264> = 23 × 41 × 709 × [299138332034574408416556110124785555208222714470966381338554294355110105341563625975377923890234180443233266575628900950811188371894757152023596031630887229335897945966643084594824607717469828159985162738731085109342538816937810636461672153362240067485607707<258>] Free to factor
2×10264+9 = 2(0)2639<265> = 11 × 181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181819<264>
2×10265+9 = 2(0)2649<266> = 7349 × 2478643 × [1097963160432623500349576949718950601065513177635353838257560304347322434546696244669162469820471204244825580717174655699876327082043425740018991678496966731316635199268486084866194984946575643692924127778313766488939203363025235050516426129822758831350887<256>] Free to factor
2×10266+9 = 2(0)2659<267> = 11 × 219371 × 2997089 × 2274434161<10> × 8726994853125253190009401<25> × 1458383826931461510204229861170827916904721<43> × 955319245264753827997805565225000048737624265531619416193072116798636919446136988308574631959300516613851794630839302258593010155875774308889293608462554553493138662572156100121<177> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3057168864 for P43 x P177 / August 25, 2016 2016 年 8 月 25 日)
2×10267+9 = 2(0)2669<268> = 7 × 881 × 102841 × [3153477642451347835526343413522900815589756600830625695673920774742855302487590722536260329683126725177941164675190612389701147556978717212502611099197184981328739784386043296393438415901466513267428604363491926333305365665702039404604689447989367646483337047<259>] Free to factor
2×10268+9 = 2(0)2679<269> = 11 × 41 × 328787 × 46560401 × 66352891177<11> × 158605102977436217<18> × [275261262214214848946275542579019103345019914391714723607609371940856370879277634650072562141002708646752432350963456291662184753431781673687142679042922384563032874755465033917517736616802966060875874886401782676525883091873<225>] Free to factor
2×10269+9 = 2(0)2689<270> = 107 × 1419379207<10> × [1316884782647568330339970720906150807242033577736857757626421805858347318992828406587970075889715894897662951966780397162243140867828863649871278240267798675313318971903541963678488818162772332802114669470873483085124262205037873978072596087022928004648496141<259>] Free to factor
2×10270+9 = 2(0)2699<271> = 112 × 449 × 45695640435618809<17> × 805607528121573059861650520392610164794046242287486150443767268858787714584966869415454751821144957337437821466282050512299113476885573572874884376882187302430244325740101983552568121188370285191798804121679740676226906348831359106701511969867058969<249>
2×10271+9 = 2(0)2709<272> = 2629643 × 885835427 × 8585787946946596482401413345269228130016879383482333096665227883850196426950296735958018513426854840383509025719779551290614457874864830726425544003080509771778222743741643986006175425168463907524648048585301865124648915670288414126894765135567151647215369<256>
2×10272+9 = 2(0)2719<273> = 11 × 192 × 6907 × 8713 × 641177624341933603411<21> × 1305252640686284405637953510272025113753023285865030420607558245631823579352659161841040639238306620122667415676213328834614682834078452461120703437509084900294286820701989363349412712765697909200554058869139509654825552267241473081817722379<241>
2×10273+9 = 2(0)2729<274> = 7 × 41 × 181 × 2707 × 129572886763<12> × 3508553168559177523740504424147<31> × 31285209786447889549307176103644055835425301624299705390473467082601079681541296250061679182251636687843068503417020311740901865006568036936577695416380413164658374289922430059507489661961591408243729291228500707210016320361<224> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2926401486 for P31 x P224 / January 16, 2016 2016 年 1 月 16 日)
2×10274+9 = 2(0)2739<275> = 11 × 113 × 761 × 6577 × 104149603130339937365000088721<30> × 30866596805708905983031265568093746974927881181097654301177756857180676913486336317180308575826424564612419348777966647951894716592129001625424401947605479717122251843478403263343504554483602329876232393276564926015673613721071832421699<236> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3262506457 for P30 x P236 / January 16, 2016 2016 年 1 月 16 日)
2×10275+9 = 2(0)2749<276> = 67 × 1935847 × 2527396621<10> × 83690956359636864697232418523<29> × [7290078955009505173437164882473454671721064744318190596538814325913646954818975678800169456685487993350965465453967721816143138601776057448341505561471562350507912714379950180604217894960513168229660079681177968874484742266403227<229>] Free to factor
2×10276+9 = 2(0)2759<277> = 11 × 17 × 83 × 1881961 × 2410002046979<13> × 10078658764417758614203495396319990579267369<44> × 14995560171380736605511686115482187889009777<44> × 187982244505895661363819033036852985495172340356550150072927780368287151000637441838398770183178765222649563924145819627390422175961690914899939238199287581215633367907<168> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4152667802 for P44 / August 22, 2016 2016 年 8 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2325946213 for P44 x P168 / August 23, 2016 2016 年 8 月 23 日)
2×10277+9 = 2(0)2769<278> = 10009 × 11313428429<11> × 1973462965971624689<19> × 74131514028750287474491463789806243<35> × 1207294498949127989457438627698265061198592502761294035579989451811902356829045214812508248911792223933367530190782750581201909959605438685137029103599082596786539115695709802699536209366512606626709776881521847<211> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3740260899 for P35 x P211 / January 17, 2016 2016 年 1 月 17 日)
2×10278+9 = 2(0)2779<279> = 11 × 41 × 25931 × 135731 × 2189081 × 922564694773383212305839407813417<33> × 1576041782250164985951778089820404859<37> × 39584826947933432021742955363795130969852897514648316925006825300532667725227589126502369761597823252326627932629187278230376089380392917586644976081494629138295536636114296835801708681155433<191> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3582280423 for P33, B1=1e6, sigma=543369708 for P37 x P191 / January 17, 2016 2016 年 1 月 17 日)
2×10279+9 = 2(0)2789<280> = 7 × 2361062421045563502389963<25> × 5602358134652824961731643<25> × [21599993413532183286721261978543373402953054375293148188958356877595605420572880677728299856768455980308719142276642010079479755830109203290602547229389522286566079217732976423963656091440175549269517499643977455496112094089178743<230>] Free to factor
2×10280+9 = 2(0)2799<281> = 11 × 811 × 2593 × 9840732231875113<16> × 4196665093123013750643412264468525331<37> × 20935445753510018510219367865378108970175667554373433137177747556806162197563197126251345317717394528391792994679113886315398290168689406780173166289709215912593308734257182641353255717855218551127686184122344443359117651<221> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1150814865 for P37 x P221 / February 22, 2016 2016 年 2 月 22 日)
2×10281+9 = 2(0)2809<282> = 29 × 43 × 1186114847<10> × 5968309079809<13> × 11406051910920635054457910682077369<35> × [1986324276257031651070838942406412812468731376712057050163657221180488092872795436969567648617063343702973871306133437595890151595888113267892750262833535987216585112732268518374024104129299025764511307767179905204663632081<223>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=541825918 for P35 / January 17, 2016 2016 年 1 月 17 日) Free to factor
2×10282+9 = 2(0)2819<283> = 11 × 1331814378946640689<19> × 136519161147655987695981374133116985797609057397584249187560941943608779594382309301444265062054972081657066818783489528545679593715434809349834864119983618599329696107695226969736884727894649200348559069055612181212071674782917681103677572034404455568721944416171<264>
2×10283+9 = 2(0)2829<284> = 41 × 482441 × 4119677706779845643<19> × 245436239724473019573180216843049193387893492144921110395661103911998872412905799073316368785080101833995170137460130458353189532219120499830098133178003775240352732407635831407132027264481404012296478564215859725604510251712830060476017443844163086823183723<258>
2×10284+9 = 2(0)2839<285> = 11 × 5345554723<10> × 2947639394616923<16> × 115741108863907668209<21> × [9969710321699511962421416406007247714230584972581506164464811906090487534182258330732499855987714373622072446640750950939139794636254952555851819632174643879683584154219356297140082666960025188447103179630929151243769816581472295362362779<238>] Free to factor
2×10285+9 = 2(0)2849<286> = 7 × 23 × 167 × 1483 × [50158726034568240332325636167511184957016855915122005709016038528522546384971582949955560622701523403271567794496489277907706991080599780991954515264692236966574801795913122177302017802786472723270972912005719298577365609035653098338364295353538889978865871578964844777176254829<278>] Free to factor
2×10286+9 = 2(0)2859<287> = 11 × 93761 × 38717057 × 326958552663142415242963893326968907<36> × 5254100676870913642419035394327976473960720913<46> × 291555775901664710808377818798196681515505769214500743874928787203353639223453284959135314169432632207557661204518664297081461502733637643764408411367825643650191541666874692966568277379954817<192> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4026357241 for P36 / January 17, 2016 2016 年 1 月 17 日) (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P46 x P192 / September 25, 2024 2024 年 9 月 25 日)
2×10287+9 = 2(0)2869<288> = 9067 × 597855763 × [36895207737701721624593571948965268723345637574175189207111144430793116400487054322784569778188844084997670180293648103931941525749739307341741164877346092363574314333608269958399655136773058115400034929031973974875176912413206856627248454001574461495273134609334271151269529<275>] Free to factor
2×10288+9 = 2(0)2879<289> = 11 × 41 × 3617 × 647802046265417<15> × 533320582636761554130008456953211<33> × 3548740840640500644732335751999536902358150596051052441414978805466968824738115347591909907225684217870840311610030226922119187925449748139926815612765991368972007762101282990850884744580605030839152867105101185909856594288778366395121<235> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3253254003 for P33 x P235 / January 17, 2016 2016 年 1 月 17 日)
2×10289+9 = 2(0)2889<290> = 14268998243<11> × [1401640091294529427744635541896744488932655901231790487368132756732024218807663637610555139235081620018109634299434260572289286250772720065012905895835423574380770915061636958672376227301494944896392051507522215902763567254578994063725038192227353265362652410272638926976424044963<280>] Free to factor
2×10290+9 = 2(0)2899<291> = 11 × 19 × 294337 × 85948307 × [37826967304722796033099909136610932179540404749468169634902699501888126358873324493054712591136752833521675777565051555904647469685174324404210095694316111272273003354182417810013244654959540204634645474413569905946917094315751049860544937945783033769204887912809646339020739<275>] Free to factor
2×10291+9 = 2(0)2909<292> = 7 × 163 × 752809 × 1026581 × 2268121558878477058975025594314909973769064148407114564143806097013899456521885096892322379902083291036914817067681659859678500696702870850267292885042450172359244527378645108931631947758486139396363403314609190836303139649428115094956762869376838274793553097695680341351094281<277>
2×10292+9 = 2(0)2919<293> = 112 × 172 × 139 × 33577 × 250966400656337<15> × 6347856568557606558857356523<28> × 248817641434973356321971943729<30> × 309147853426070218762404526967259619523883559355521125883919915991125455472379609372205154126905218244181398717490621094963582008006617691326006026102936306412482202928244853897796263240642071342101871658698353<210> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3116245641 for P30 x P210 / January 18, 2016 2016 年 1 月 18 日)
2×10293+9 = 2(0)2929<294> = 41 × 89 × 14503 × 82301 × 459907300403<12> × 5336242819974565723138361<25> × [18710581553897135067943382445823688944818401395869924728728373133750077902322013168384806934964604228092070778741324813941172143853447434035711114549396573362821254820535781912650347777067142711373200110403920531900384290509781078393037367802209<245>] Free to factor
2×10294+9 = 2(0)2939<295> = 11 × 22481 × 1669963 × 3033511774787101935803309033<28> × [1596500838285947238855364880975870235152361229192392357244717102979613849075620544699100674562866766753471436524579860713539691062139824656568682751516793710560691533014816374885358294147778131261967042076369030701795464066615751211308881477481277144881881<256>] Free to factor
2×10295+9 = 2(0)2949<296> = 182505565778027<15> × 156417129112904786629864463<27> × [700599094466021547253159843378611226081475306730880419287089777581008161536729565887468442411519055766762955560106782773159167422326569171450210915245626064267890807724032867974747167094353831451523519613664615954631502454285033801953777112837548725259509<255>] Free to factor
2×10296+9 = 2(0)2959<297> = 11 × 146154759936511981011179<24> × 124401136095164902660868199090311421616904210548589835024294233600908747801920142334797287201172698320834655250600988128598593045225428539974462774652594744924790355025467995674867136700072975329864787296541371011679926960338002377882182008424442972037191704321629113058161<273>
2×10297+9 = 2(0)2969<298> = 72 × 11261 × 1042370779907<13> × 931958759156617889<18> × 443218425635981088701<21> × [8418219147973387859982425512775602337643481408332454256016474263490973172277534157196465637634326219314480320372327629787257844009937605244566704322072031936033107241245929950037387517676980952655607514958929162555371484311525766110492346747<241>] Free to factor
2×10298+9 = 2(0)2979<299> = 11 × 41 × 179 × 7658401393<10> × 32349107109819589260485828425212207603070164010995964710724202512179477538793066289517917852002311086475118365033377753880285320924809675637081354202024140058348450528042782718078941428222675369237360685510695813404457645567177451483121892142495345928731972917394102438493129512194497<284>
2×10299+9 = 2(0)2989<300> = 349 × 19069 × 50018701 × [600819806604101705241666026227393868702925226497760233492226899898856115266403689821753977192795378028500040518366224467398179833219930736910125314914743568487080802853502751493297298090096097667289295056813637187954410221411853991836129610284916604059014468229886943960623557914879589<285>] Free to factor
2×10300+9 = 2(0)2999<301> = 11 × 59 × 12512147 × 3937832601748813003<19> × 1839193045493931021666524196602513728493011<43> × 34007044873088363962772869408363926013681729194284393498315900488315298774601036015533359173358809551917357221707672476366325295555784429998181541377907225650798856693759416408827910889949625053589924969637047546877973630967525291<230> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3573992853 for P43 x P230 / February 16, 2016 2016 年 2 月 16 日)
plain text versionプレーンテキスト版

4. Related links 関連リンク