Table of contents 目次

  1. About 499...997 499...997 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 499...997 499...997 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 499...997 499...997 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 499...997 499...997 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

49w7 = { 47, 497, 4997, 49997, 499997, 4999997, 49999997, 499999997, 4999999997, 49999999997, … }

1.3. General term 一般項

5×10n-3 (1≤n)

2. Prime numbers of the form 499...997 499...997 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 5×101-3 = 47 is prime. は素数です。
  2. 5×1015-3 = 4(9)147<16> is prime. は素数です。
  3. 5×1041-3 = 4(9)407<42> is prime. は素数です。
  4. 5×1064-3 = 4(9)637<65> is prime. は素数です。
  5. 5×10131-3 = 4(9)1307<132> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PFGW / January 2, 2005 2005 年 1 月 2 日)
  6. 5×10138-3 = 4(9)1377<139> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  7. 5×10192-3 = 4(9)1917<193> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  8. 5×10287-3 = 4(9)2867<288> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PFGW / January 2, 2005 2005 年 1 月 2 日)
  9. 5×10495-3 = 4(9)4947<496> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  10. 5×10966-3 = 4(9)9657<967> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  11. 5×101091-3 = 4(9)10907<1092> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 13, 2006 2006 年 9 月 13 日)
  12. 5×101366-3 = 4(9)13657<1367> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 6, 2006 2006 年 9 月 6 日)
  13. 5×101714-3 = 4(9)17137<1715> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / July 22, 2006 2006 年 7 月 22 日)
  14. 5×101774-3 = 4(9)17737<1775> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / August 3, 2006 2006 年 8 月 3 日)
  15. 5×103253-3 = 4(9)32527<3254> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 18, 2004 2004 年 12 月 18 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / February 16, 2013 2013 年 2 月 16 日)
  16. 5×106331-3 = 4(9)63307<6332> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 24, 2004 2004 年 12 月 24 日)
  17. 5×1035326-3 = 4(9)353257<35327> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  18. 5×1036991-3 = 4(9)369907<36992> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  19. 5×1059586-3 = 4(9)595857<59587> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  20. 5×1088261-3 = 4(9)882607<88262> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  21. 5×10127179-3 = 4(9)1271787<127180> is PRP. はおそらく素数です。 (Bob Price / July 17, 2015 2015 年 7 月 17 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / July 17, 2015 2015 年 7 月 17 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 5×106k+2-3 = 7×(5×102-37+45×102×106-19×7×k-1Σm=0106m)
  2. 5×1016k+4-3 = 17×(5×104-317+45×104×1016-19×17×k-1Σm=01016m)
  3. 5×1018k+3-3 = 19×(5×103-319+45×103×1018-19×19×k-1Σm=01018m)
  4. 5×1021k+6-3 = 43×(5×106-343+45×106×1021-19×43×k-1Σm=01021m)
  5. 5×1022k+5-3 = 23×(5×105-323+45×105×1022-19×23×k-1Σm=01022m)
  6. 5×1028k+9-3 = 29×(5×109-329+45×109×1028-19×29×k-1Σm=01028m)
  7. 5×1032k+12-3 = 353×(5×1012-3353+45×1012×1032-19×353×k-1Σm=01032m)
  8. 5×1033k+18-3 = 67×(5×1018-367+45×1018×1033-19×67×k-1Σm=01033m)
  9. 5×1035k+2-3 = 71×(5×102-371+45×102×1035-19×71×k-1Σm=01035m)
  10. 5×1043k+4-3 = 173×(5×104-3173+45×104×1043-19×173×k-1Σm=01043m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 27.43%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 27.43% です。

3. Factor table of 499...997 499...997 の素因数分解表

3.1. Last updated 最終更新日

October 20, 2021 2021 年 10 月 20 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=209, 216, 217, 223, 224, 225, 228, 231, 233, 234, 235, 236, 238, 240, 248, 250, 251, 252, 256, 257, 258, 259, 260, 261, 263, 264, 265, 267, 268, 270, 271, 272, 273, 274, 275, 276, 279, 280, 283, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300 (50/300)

3.4. Factor table 素因数分解表

5×101-3 = 47 = definitely prime number 素数
5×102-3 = 497 = 7 × 71
5×103-3 = 4997 = 19 × 263
5×104-3 = 49997 = 172 × 173
5×105-3 = 499997 = 23 × 21739
5×106-3 = 4999997 = 43 × 116279
5×107-3 = 49999997 = 1181 × 42337
5×108-3 = 499999997 = 7 × 71428571
5×109-3 = 4999999997<10> = 29 × 139 × 1240387
5×1010-3 = 49999999997<11> = 19009 × 2630333
5×1011-3 = 499999999997<12> = 49369 × 10127813
5×1012-3 = 4999999999997<13> = 109 × 353 × 129947761
5×1013-3 = 49999999999997<14> = 2711 × 18443378827<11>
5×1014-3 = 499999999999997<15> = 72 × 421 × 24237723593<11>
5×1015-3 = 4999999999999997<16> = definitely prime number 素数
5×1016-3 = 49999999999999997<17> = 3572939 × 13994081623<11>
5×1017-3 = 499999999999999997<18> = 313 × 1033 × 1546412477693<13>
5×1018-3 = 4999999999999999997<19> = 67 × 113 × 6779 × 9907 × 9833519
5×1019-3 = 49999999999999999997<20> = 2593 × 56611 × 340617267839<12>
5×1020-3 = 499999999999999999997<21> = 7 × 17 × 181 × 4021 × 435889 × 13244467
5×1021-3 = 4999999999999999999997<22> = 19 × 12720394507<11> × 20687872109<11>
5×1022-3 = 49999999999999999999997<23> = 229 × 971 × 1097819 × 204825747857<12>
5×1023-3 = 499999999999999999999997<24> = 1094578489<10> × 456796844652773<15>
5×1024-3 = 4999999999999999999999997<25> = 5669089 × 881975922410108573<18>
5×1025-3 = 49999999999999999999999997<26> = 557 × 146236513 × 613845372682417<15>
5×1026-3 = 499999999999999999999999997<27> = 7 × 643 × 6317 × 17585313477732438541<20>
5×1027-3 = 4999999999999999999999999997<28> = 23 × 432 × 383 × 306977456373745298717<21>
5×1028-3 = 49999999999999999999999999997<29> = 61 × 911 × 899749869536268917241007<24>
5×1029-3 = 499999999999999999999999999997<30> = 191 × 2617801047120418848167539267<28>
5×1030-3 = 4999999999999999999999999999997<31> = 322433 × 2041997 × 7594084417641586097<19>
5×1031-3 = 49999999999999999999999999999997<32> = 622129 × 80369183883085340821598093<26>
5×1032-3 = 499999999999999999999999999999997<33> = 7 × 1123 × 1619 × 39286682702442900931793683<26>
5×1033-3 = 4999999999999999999999999999999997<34> = 1129 × 173653383642913<15> × 25503090523739861<17>
5×1034-3 = 49999999999999999999999999999999997<35> = 36293 × 1377676135893974044581599757529<31>
5×1035-3 = 499999999999999999999999999999999997<36> = 67347553037<11> × 176928946829<12> × 41961334436789<14>
5×1036-3 = 4999999999999999999999999999999999997<37> = 17 × 294117647058823529411764705882352941<36>
5×1037-3 = 49999999999999999999999999999999999997<38> = 29 × 71 × 2113 × 195585376487827<15> × 58759457879881133<17>
5×1038-3 = 499999999999999999999999999999999999997<39> = 7 × 3361 × 21252178348280698771624091469375611<35>
5×1039-3 = 4999999999999999999999999999999999999997<40> = 19 × 225149 × 17121977485637<14> × 68264114230454681951<20>
5×1040-3 = 49999999999999999999999999999999999999997<41> = 7643219 × 48290939 × 4136883279409<13> × 32745738023213<14>
5×1041-3 = 499999999999999999999999999999999999999997<42> = definitely prime number 素数
5×1042-3 = 4999999999999999999999999999999999999999997<43> = 4817 × 409682873 × 2533643749583487010279026456917<31>
5×1043-3 = 49999999999999999999999999999999999999999997<44> = 7561 × 746807 × 8854874008852855451773797354845011<34>
5×1044-3 = 499999999999999999999999999999999999999999997<45> = 7 × 353 × 202347227842978551193848644273573452043707<42>
5×1045-3 = 4999999999999999999999999999999999999999999997<46> = 677 × 3027428738207<13> × 2439536983653170370610845109223<31>
5×1046-3 = 49999999999999999999999999999999999999999999997<47> = 4327 × 8280554629<10> × 1395480211752957375265854958248959<34>
5×1047-3 = 499999999999999999999999999999999999999999999997<48> = 47 × 173 × 2473 × 24865770839144671193198435863443751114919<41>
5×1048-3 = 4999999999999999999999999999999999999999999999997<49> = 43 × 1651511 × 70407687122545269432123842390251982493889<41>
5×1049-3 = 49999999999999999999999999999999999999999999999997<50> = 23 × 29131 × 739565251 × 2987996491<10> × 33769932662779040776648609<26>
5×1050-3 = 499999999999999999999999999999999999999999999999997<51> = 7 × 4387227565368409<16> × 16281027223754998360326042544283219<35>
5×1051-3 = 4(9)507<52> = 67 × 300193 × 248596288626456283273680996568824305119925087<45>
5×1052-3 = 4(9)517<53> = 17 × 3677 × 257717 × 12139327 × 119713669183429<15> × 2135728453357986306103<22>
5×1053-3 = 4(9)527<54> = 425265963026981804453233<24> × 1175734818843887943670434047309<31>
5×1054-3 = 4(9)537<55> = 367 × 16473271601937179631311<23> × 827035365581707602005266206781<30>
5×1055-3 = 4(9)547<56> = 139 × 787 × 49435256077967<14> × 9245782729395351332467938214449160387<37>
5×1056-3 = 4(9)557<57> = 72 × 59 × 163 × 1299498307<10> × 4524528497<10> × 180461790630901333843350411205871<33>
5×1057-3 = 4(9)567<58> = 19 × 32177391176368489<17> × 8178347750270967277344457649259263348567<40>
5×1058-3 = 4(9)577<59> = 2099 × 2999 × 4271 × 1859736987140698819198693702767734129421681448807<49>
5×1059-3 = 4(9)587<60> = 48974662411<11> × 16635557394639191<17> × 613707168695722466584698699698497<33>
5×1060-3 = 4(9)597<61> = 233 × 41777 × 42463 × 9376520341<10> × 1290103220476154397741030067691242892399<40>
5×1061-3 = 4(9)607<62> = 311 × 1583 × 648289 × 676147 × 1938149 × 119545094830966443902052138062218869307<39>
5×1062-3 = 4(9)617<63> = 7 × 197 × 293 × 8039 × 88468482586239187<17> × 1739993038949011535440162573544271607<37>
5×1063-3 = 4(9)627<64> = 167 × 17299 × 1785366409<10> × 115657693218525186820517<24> × 8381671757023602578039453<25>
5×1064-3 = 4(9)637<65> = definitely prime number 素数
5×1065-3 = 4(9)647<66> = 29 × 131314247333<12> × 131298618851482181584328241886372263802209663605540621<54>
5×1066-3 = 4(9)657<67> = 53925917 × 92719795566944183814250205518062863910130633476293041062241<59>
5×1067-3 = 4(9)667<68> = 461 × 32971 × 34865971782071<14> × 35091540579747323647873<23> × 2688640586966877618597989<25>
5×1068-3 = 4(9)677<69> = 7 × 17 × 41568481 × 101078523226983145307263214261632832948073114831985361232523<60>
5×1069-3 = 4(9)687<70> = 43 × 20947 × 112253 × 198769 × 1747835281<10> × 38004721695027601<17> × 3745372768984992571207374721<28>
5×1070-3 = 4(9)697<71> = 1433 × 2897 × 16493 × 1729261171697<13> × 37028084047618890113<20> × 11404699033160168654595173689<29>
5×1071-3 = 4(9)707<72> = 23 × 11353 × 149731 × 2110523758961021<16> × 26920795580009566388927<23> × 225082468551809774638219<24>
5×1072-3 = 4(9)717<73> = 71 × 349 × 155598491 × 6994523477<10> × 185405543696407919195030575934031570210978713161249<51>
5×1073-3 = 4(9)727<74> = 48407 × 160877 × 1016357 × 268746202513<12> × 23506028487363238571922241716603804791870018203<47>
5×1074-3 = 4(9)737<75> = 7 × 677938716601<12> × 17741010347467491414453286391<29> × 5938861240593698575102089053545381<34>
5×1075-3 = 4(9)747<76> = 19 × 5021 × 15649 × 8735994979<10> × 18138840105166494863<20> × 21135751940953336766613571493361815111<38>
5×1076-3 = 4(9)757<77> = 353 × 183343 × 125930581713339864823<21> × 134679748234620219473<21> × 45550952233475565843224079317<29>
5×1077-3 = 4(9)767<78> = 8017 × 19852901 × 354022858667399<15> × 8873661119772503513029672449229538800267442894476559<52>
5×1078-3 = 4(9)777<79> = 131 × 244261 × 183755241179<12> × 11755343318154434399<20> × 72338504393891025220215008336518586671927<41>
5×1079-3 = 4(9)787<80> = 1607 × 5347 × 6859387 × 848317912662988806779202387974523826894655699305027596825197570539<66>
5×1080-3 = 4(9)797<81> = 7 × 172987 × 9751817 × 76862754967<11> × 460038342713<12> × 1197465410772493667462142873805048959806322119<46>
5×1081-3 = 4(9)807<82> = 3728175643<10> × 277918858753<12> × 9135030446338840867<19> × 160167869777620760903<21> × 3298148630427917388043<22>
5×1082-3 = 4(9)817<83> = 11093389 × 261623623 × 1244715174394860475234429<25> × 13840724449798488461365406835612824692643219<44>
5×1083-3 = 4(9)827<84> = 149 × 3355704697986577181208053691275167785234899328859060402684563758389261744966442953<82>
5×1084-3 = 4(9)837<85> = 17 × 67 × 1017941673039419526224420164436140217<37> × 4312443182168100804562477456886283570843205319<46> (Makoto Kamada / GGNFS-0.70.1 / 0.09 hours)
5×1085-3 = 4(9)847<86> = 85989984830930394836756501<26> × 581463063382412853579106568135187289640179971385687508519497<60>
5×1086-3 = 4(9)857<87> = 7 × 24007 × 13751275850579238667<20> × 212726017267844634288437537<27> × 1017115958899049974640700114891213607<37>
5×1087-3 = 4(9)867<88> = 97 × 51546391752577319587628865979381443298969072164948453608247422680412371134020618556701<86>
5×1088-3 = 4(9)877<89> = 61 × 359 × 54046563493832658585276653<26> × 42245225808354132161273077324801322118957521719430900088851<59>
5×1089-3 = 4(9)887<90> = 47431408363<11> × 84525494597<11> × 124714302875049678148805341922275832596363490145645792167758270394827<69>
5×1090-3 = 4(9)897<91> = 43 × 173 × 19013 × 35351251841208087458601121128186841999637338577611414472379702818570156825294120471<83>
5×1091-3 = 4(9)907<92> = 40129 × 23143662641039<14> × 459796009224121<15> × 117088536923954656081204739644858816618483581008940121732747<60>
5×1092-3 = 4(9)917<93> = 7 × 307 × 26700711889<11> × 15691400866882474068152329<26> × 555327308725165670003861333418825567223707716199279713<54>
5×1093-3 = 4(9)927<94> = 19 × 23 × 29 × 47 × 28210817543<11> × 107163935353<12> × 2776696326585547910155279839323266477429202975387367931027633753853<67>
5×1094-3 = 4(9)937<95> = 431 × 8761 × 12757885337<11> × 48338932002343<14> × 18578525604235081<17> × 1155718494199024207955032531266751956063729663677<49>
5×1095-3 = 4(9)947<96> = 308946279399080237<18> × 22676233040483221042061<23> × 71370070109630870091248927030963492367950914029032163221<56>
5×1096-3 = 4(9)957<97> = 201733007152836779621429730266961864863837<42> × 24785235051851998084352952192883779041908273502066971681<56> (Makoto Kamada / GGNFS-0.70.7 / 0.46 hours)
5×1097-3 = 4(9)967<98> = 479 × 3366859 × 5074541179<10> × 6109600045120382050258893299772953687202955270799840261766487291285615985250763<79>
5×1098-3 = 4(9)977<99> = 72 × 127717621 × 142993129728145626508153927141<30> × 558737644001524335178682594713952083761417477204020419416773<60> (Makoto Kamada / GGNFS-0.70.7 / 0.48 hours)
5×1099-3 = 4(9)987<100> = 7583 × 659369642621653699063695107477251747329552947382302518792034814717130423315310563101674798892259<96>
5×10100-3 = 4(9)997<101> = 17 × 7207 × 1334569 × 3354763271<10> × 692525032882977697275662049735786342907<39> × 131621904980530428297593073312604988569391<42> (Makoto Kamada / GGNFS-0.70.7 / 0.52 hours)
5×10101-3 = 4(9)1007<102> = 139 × 30386606303<11> × 176954069560232966083<21> × 668978946265009758045871206554126812408617563906961279774295881869827<69>
5×10102-3 = 4(9)1017<103> = 78309830957840149<17> × 63848943853446216214777149910191846007410635442277704392718547915383184329039295962953<86>
5×10103-3 = 4(9)1027<104> = 283 × 842759 × 1452767 × 498429245563<12> × 289521411006855383115663631782174876295815412826844384347712844942270704403181<78>
5×10104-3 = 4(9)1037<105> = 7 × 71428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571<104>
5×10105-3 = 4(9)1047<106> = 24025776632807<14> × 431637716673367890124964879<27> × 482140021278924611961643030310682727260397528056078510093027700949<66>
5×10106-3 = 4(9)1057<107> = 51379467791652406382241099912651400334898984400190777<53> × 973151380289763769238966237755432094392232133691333861<54> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 0.45 hours on Core 2 Quad Q6600 / July 5, 2007 2007 年 7 月 5 日)
5×10107-3 = 4(9)1067<108> = 71 × 6961480511303<13> × 79597445851530989<17> × 103431017316905824987766131<27> × 122874033693383963661499128866972978668358916801691<51>
5×10108-3 = 4(9)1077<109> = 353 × 275712539 × 2513201759<10> × 76791462467689<14> × 12751229015610633649<20> × 14359354259501360821<20> × 1453822987959198885561662215466256829<37>
5×10109-3 = 4(9)1087<110> = 2693 × 7889023531<10> × 33721565957<11> × 69791521342352869030548964331408787932383154514908110161743386761475302321702795577487<86>
5×10110-3 = 4(9)1097<111> = 7 × 72786830951<11> × 981339213362057897893224784375341784090315992037033624684707306986920293504571806544173452091808621<99>
5×10111-3 = 4(9)1107<112> = 19 × 43 × 333055208641<12> × 185378244525629501<18> × 99122661055162110029905919956067325849100338665475993414631874254654688359400401<80>
5×10112-3 = 4(9)1117<113> = 607 × 83608081 × 327963190673738479808377021<27> × 577336234149077392998838133<27> × 5203303278327103730936777358401450159929086149587<49>
5×10113-3 = 4(9)1127<114> = 907436158859512909422687304965377963070381712507<48> × 551002949483974443730009627016215019549109574303626681725606916071<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 0.63 hours on Core 2 Quad Q6600 / July 5, 2007 2007 年 7 月 5 日)
5×10114-3 = 4(9)1137<115> = 59 × 712631 × 956279711 × 9202885265709596121907<22> × 13512768386683038916744427714183215658302802817587439013021833625030003451509<77>
5×10115-3 = 4(9)1147<116> = 23 × 14449 × 22660679 × 548730830237<12> × 3134568752899<13> × 3860062146961249899263896736192967296857430245067460795434497691890919375204443<79>
5×10116-3 = 4(9)1157<117> = 7 × 17 × 315726038418057960174583<24> × 13307995416917099960618857864075104653763886460581819322490445081904622186633225903897726061<92>
5×10117-3 = 4(9)1167<118> = 67 × 12101 × 18119 × 388299389 × 111766095673<12> × 7842651710208697455142960797690144959947666677422363541492545101534567994244352081933537<88>
5×10118-3 = 4(9)1177<119> = 2887441 × 63010830359033312483466077306764627266644155646127728707<56> × 274815790254415776711435696262112720520718579760139674831<57> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 0.78 hours on Core 2 Quad Q6600 / July 5, 2007 2007 年 7 月 5 日)
5×10119-3 = 4(9)1187<120> = 457013 × 118627038406481516183<21> × 1319367367045859375865097583<28> × 999144768687761095197723818237<30> × 6996222377535669692412866745524065733<37> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1403367851 for P30 / June 28, 2007 2007 年 6 月 28 日)
5×10120-3 = 4(9)1197<121> = 109 × 71651015110439976712949381761124614909<38> × 640208091432102618875345096934692490876535014728092248096211914729816834699112037<81> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 0.93 hours on Core 2 Quad Q6600 / July 6, 2007 2007 年 7 月 6 日)
5×10121-3 = 4(9)1207<122> = 29 × 109021647242663<15> × 15814638419440270938523385070650359939106588455397732994852492896025083385119581683337173285479589221251511<107>
5×10122-3 = 4(9)1217<123> = 7 × 2446494083906698889244510653<28> × 6303845095126307972819884509608992783019357<43> × 4631506328102789383103305306718062753677381160084451<52> (Kenichiro Yamaguchi / Msieve v. 1.25 / 04:33:12 on Pentium M 760 (2GHz), Windows XP / July 6, 2007 2007 年 7 月 6 日)
5×10123-3 = 4(9)1227<124> = 41339256942088911622012358254358042113678371404430757997789<59> × 120950408155723983526356287938613353278226690610618708055828192673<66> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 1.04 hours on Core 2 Quad Q6600 / July 5, 2007 2007 年 7 月 5 日)
5×10124-3 = 4(9)1237<125> = 179 × 191 × 1464829 × 27211267 × 53419493 × 87576549321455915873827<23> × 586221827091178536524456904006541<33> × 13378220118302064821208417451785190438884061<44> (Makoto Kamada / Msieve 1.25 for P33 x P44 / 5.8 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / July 5, 2007 2007 年 7 月 5 日)
5×10125-3 = 4(9)1247<126> = 2807305474271<13> × 178106730664869952086240345850096421061808491273668174689291374444561795317299963156418406208903581512193898643107<114>
5×10126-3 = 4(9)1257<127> = 883 × 6829 × 8909674456439<13> × 93065850815795888011197180657815071785375966756519972123773055947698717489210131710984281262067555817164589<107>
5×10127-3 = 4(9)1267<128> = 839 × 2617 × 50111 × 11155436211691<14> × 182360423114391435624149<24> × 223385049140021603369221354202728175984799882252173314217689792310950586366165131<81>
5×10128-3 = 4(9)1277<129> = 7 × 1871 × 142184699 × 9755302500995483441296854824102920959702641390257253<52> × 27523557876492693925945733984595465953928510734994989947908285283<65> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 1.77 hours on Core 2 Quad Q6600 / July 6, 2007 2007 年 7 月 6 日)
5×10129-3 = 4(9)1287<130> = 19 × 5261 × 39239 × 1746136413761693<16> × 13370920529524715599137581<26> × 54599754997926400656415199579497073147906461174046230827544830875855570088194309<80>
5×10130-3 = 4(9)1297<131> = 113 × 53227621220765657<17> × 3502832699809212443971673<25> × 2373204197833222270432763356249522493603788300541190233363703665742931304634376645500829<88>
5×10131-3 = 4(9)1307<132> = definitely prime number 素数
5×10132-3 = 4(9)1317<133> = 17 × 43 × 9419 × 847130269 × 4529169242543850181<19> × 120009204729313242223006669<27> × 372519304405885797098098771571<30> × 4233657686251174597098957236732250419191843<43> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=722899130 for P30 / June 28, 2007 2007 年 6 月 28 日)
5×10133-3 = 4(9)1327<134> = 173 × 643 × 18781969 × 524739791 × 104657760217<12> × 435769042984043360503414201073276165060691178435433159024443337581976278289187604164251904217522174061<102>
5×10134-3 = 4(9)1337<135> = 7 × 77509 × 389398126303<12> × 12900807453287380031<20> × 376492399798776045137<21> × 487251142523833608129857052952509141965372408196733295887622477848443727348559<78>
5×10135-3 = 4(9)1347<136> = 1493 × 54236831003629030989999433<26> × 61747004016719732154878504154513215246371875482868105950504703384975400346808513978993674558229897554882113<107>
5×10136-3 = 4(9)1357<137> = 279607 × 2771172851<10> × 64529507260597859445648909410295463969480925045019244724059040787422621205532732077314391107629225158818572642169021194921<122>
5×10137-3 = 4(9)1367<138> = 23 × 163 × 39461 × 93871607 × 5891496177752933541219267704741<31> × 7812216930943689316265896059629904893<37> × 782262172768407880210825956642975867414150295248290803<54> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 4.00 hours on Core 2 Quad Q6600 / July 6, 2007 2007 年 7 月 6 日)
5×10138-3 = 4(9)1377<139> = definitely prime number 素数
5×10139-3 = 4(9)1387<140> = 47 × 176244870499<12> × 919081360411<12> × 7694310452423100287<19> × 11351706862980386196270719<26> × 75191860162165508011176972481403272889846230145437130059613662725908803<71>
5×10140-3 = 4(9)1397<141> = 72 × 353 × 17683 × 7038071 × 443271161426990882726557133<27> × 523986563585219789193843440900278639481035903039565783132044798590919676166907149866411586422062429<99>
5×10141-3 = 4(9)1407<142> = 44500177 × 112359103650306829116657221385883476373588356738446231348697781584104710414972057302154101544360149398956323252377175937974359068279661<135>
5×10142-3 = 4(9)1417<143> = 71 × 2143 × 2343611 × 1711248061<10> × 2674951691<10> × 1461605018313863471<19> × 8731327716744500293395495818364077<34> × 2400295605687202500809285138795364428820556768937793554302027<61> (Jo Yeong Uk / Msieve v. 1.21 / 02:39:21 on Core 2 Quad Q6600 / July 6, 2007 2007 年 7 月 6 日)
5×10143-3 = 4(9)1427<144> = 409 × 2935742145013115478236491256387688161775892870102820487172343<61> × 416417323846778387561709274459675711946255835461780664134795831916578834221071331<81> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 8.13 hours on Core 2 Quad Q6600 / July 6, 2007 2007 年 7 月 6 日)
5×10144-3 = 4(9)1437<145> = 107240446964887<15> × 46624199558186432392309966785117744461899150432398560117273761842841195911722401828932218973493247420129350977649336923019363835531<131>
5×10145-3 = 4(9)1447<146> = 193 × 16747 × 14345549 × 1078346918901343442115600850696384562296641670997616702236943978144911413673163402803507433175570331505167266214993533670206814869843<133>
5×10146-3 = 4(9)1457<147> = 7 × 797 × 239329 × 93483761128799642385893<23> × 128452413621408811962701715902967521602390963<45> × 31184577944989473183131805515755584538817242291977209687873566291246313<71> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 / 62.55 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / July 10, 2007 2007 年 7 月 10 日)
5×10147-3 = 4(9)1467<148> = 19 × 139 × 601 × 13681 × 40487 × 354995006736248519<18> × 10067361505415681618873296936552921933923299611<47> × 1591313628803614731260135467601813388393486021881617569796951585055279<70> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 9.23 hours on Core 2 Quad Q6600 / July 7, 2007 2007 年 7 月 7 日)
5×10148-3 = 4(9)1477<149> = 17 × 61 × 3907 × 184094837 × 856199339682423221681610853181988817318913<42> × 1556144666064391456467500163826224366444427919<46> × 50313134072976025481264005755700033644273942497<47> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 10.81 hours on Core 2 Quad Q6600 / July 7, 2007 2007 年 7 月 7 日)
5×10149-3 = 4(9)1487<150> = 29 × 6983106863<10> × 208747880384388120276325252490914165886057736101<48> × 11827725694599174236257190431349303144204489375682681972938043512380134113838243183754907011<92> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 12.93 hours on Cygwin on AMD 64 3400+ / July 9, 2007 2007 年 7 月 9 日)
5×10150-3 = 4(9)1497<151> = 67 × 3116051 × 28212754553911189<17> × 9067846705098386264105687808083859986016022518939144596253611<61> × 93614039200569581281008047873083290213666429881740082969167944179<65> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 15.95 hours on Cygwin on AMD 64 3200+ / July 10, 2007 2007 年 7 月 10 日)
5×10151-3 = 4(9)1507<152> = 634507637 × 417761827603<12> × 71242202947734331<17> × 2647689517508960167810841091299215220446330764938054299070368674486891427750492647521070621669252396317887203793417<115>
5×10152-3 = 4(9)1517<153> = 7 × 524804457379260584103481<24> × 136105115770676701521934334580362621193664065825914114640867828567815549525402218036536872710968833906143547278185182407042067891<129>
5×10153-3 = 4(9)1527<154> = 43 × 33904609 × 76081459 × 579700368787<12> × 77760742606762207107995752029372273554455602306771829540480336580906176937542807401473811395618930861974645382481719762287007<125>
5×10154-3 = 4(9)1537<155> = 223 × 421 × 2256879067<10> × 7689247183<10> × 7976152762042959475996039114316239979<37> × 2921647769384774308532275896959632201186400323<46> × 1316950995804027485247023644858332723329794421707<49> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1009369748 for P37 / June 29, 2007 2007 年 6 月 29 日) (Jo Yeong Uk / Msieve v. 1.21 / 02:06:04 on Core 2 Quad Q6600 / July 6, 2007 2007 年 7 月 6 日)
5×10155-3 = 4(9)1547<156> = 10301 × 134672277970002900389<21> × 637435188281167806145157344589<30> × 565426783792604218081409721295694210735558603928980771914241878254880135871524101129682205666445409057<102> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2147666242 for P30 / June 29, 2007 2007 年 6 月 29 日)
5×10156-3 = 4(9)1557<157> = 1973 × 2053063 × 88666131158617287229707084514778242205719232955907723<53> × 13921399093960280961780774878816447259601802769512930326480215435970153126193617396031190315661<95> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 33.75 hours on Cygwin on AMD XP 2700+ / July 11, 2007 2007 年 7 月 11 日)
5×10157-3 = 4(9)1567<158> = 170751714607368696896080865604341002901<39> × 35723845046279761616907730154034566105895929934169<50> × 8196845212810478814820742135146474925279643255860336587608186692950513<70> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000, sigma=3485350061 for P39 / July 6, 2007 2007 年 7 月 6 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 24.71 hours on Core 2 Quad Q6600 / July 19, 2007 2007 年 7 月 19 日)
5×10158-3 = 4(9)1577<159> = 7 × 2111 × 80552352457081<14> × 5710039315042630712188991<25> × 467341027637686776935113873903056598872599949645184321<54> × 157410063903105298144279249626151629802510455702264743972251571<63> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P54 x P63 / 75.59 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / July 13, 2007 2007 年 7 月 13 日)
5×10159-3 = 4(9)1587<160> = 23 × 10611966307<11> × 4368534516821<13> × 5006536233163<13> × 3603669365157562557541028774720347<34> × 191027376246576260076013368620556928804243<42> × 1360606753360105851237415658886311322045879676319<49> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=1850681587 for P34 / July 11, 2007 2007 年 7 月 11 日) (Jo Yeong Uk / Msieve v. 1.21 for P42 x P49 / 00:56:01 on Core 2 Quad Q6600 / July 12, 2007 2007 年 7 月 12 日)
5×10160-3 = 4(9)1597<161> = 197 × 253807106598984771573604060913705583756345177664974619289340101522842639593908629441624365482233502538071065989847715736040609137055837563451776649746192893401<159>
5×10161-3 = 4(9)1607<162> = 509 × 1747 × 84102469602460672319344905855931567246447997<44> × 2165440703043832390582601658352828177598414559503<49> × 3087480849537780573910857739142506288073610114206777292982835929<64> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 / 84.32 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / July 23, 2007 2007 年 7 月 23 日)
5×10162-3 = 4(9)1617<163> = 8544406184158733288717788329856875808280189100763<49> × 585178172974730942884427619934926129351771486625491327311590996532550927049973737667478017100778019085012646208519<114> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 43.47 hours on Cygwin on AMD 64 3400+ / July 11, 2007 2007 年 7 月 11 日)
5×10163-3 = 4(9)1627<164> = 2833 × 184967 × 13315699 × 74998792236344109387450078891725779<35> × 95545654112791421636906751022948221950213818775035727503822215288586505310116495426553720942470582028517007755987<113> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 / 96.02 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / July 27, 2007 2007 年 7 月 27 日)
5×10164-3 = 4(9)1637<165> = 7 × 17 × 265628159462057789779216016761<30> × 14415395583187368964117409453669561022245725587364267441064003881<65> × 1097292384810779781467311229833121140205885608438153270649880660837643<70> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1474611541 for P30 / July 1, 2007 2007 年 7 月 1 日) (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.34 / April 13, 2008 2008 年 4 月 13 日)
5×10165-3 = 4(9)1647<166> = 19 × 57057317 × 98215463 × 2605629635761<13> × 3946732535812616137099<22> × 7543512127570632979961763022705421<34> × 605342568468243602479097354297941125861779312424902349610895360925921457852332187<81> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P34 x P81 / 27.02 hours on Core 2 Quad Q6600 / July 13, 2007 2007 年 7 月 13 日)
5×10166-3 = 4(9)1657<167> = 257 × 895590737 × 217233744326767615319704467628936874431778189354924875395856802292143455579986647283792288326880661605293373774414504665263969225325378402357466796444695533<156>
5×10167-3 = 4(9)1667<168> = 14831 × 33713168363562807632661317510619648034522284404288315015845189130874519587350819229991234576225473670015508057447238891511024206054885038095880250825972624907288787<164>
5×10168-3 = 4(9)1677<169> = 2957 × 5297 × 38287 × 66179 × 1421954227<10> × 1694194073272983839<19> × 8731823085626565428330649512690831<34> × 5989126214432165607435098739078535035401301616100708973660232195133893598575906722810990487<91> (Robert Backstrom / GMP-ECM 6.0 B1=2892000, sigma=1753386300 for P34 / February 10, 2008 2008 年 2 月 10 日)
5×10169-3 = 4(9)1687<170> = 8179 × 27521513353<11> × 222125022568951667698673364523718462498830378136922674372333018515744861393233471503319841448129128649180398413072190888288546580600806975946758570048804631<156>
5×10170-3 = 4(9)1697<171> = 7 × 5651 × 227097137 × 15754689472675987541294126496349<32> × 1282193342543925932322422945370800329162612510700818603591681<61> × 2755317386704286894836646040390450824249315418803775935856090488957<67> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2046799467 for P32 / July 1, 2007 2007 年 7 月 1 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 27.21 hours on Core 2 Quad Q6700 / September 8, 2009 2009 年 9 月 8 日)
5×10171-3 = 4(9)1707<172> = 46000847 × 6121638571<10> × 958447987411<12> × 6312681043024475375491430161<28> × 241198112402284085400049735671995479639288153<45> × 12166907050378837298642013658257125610939904245160777794608634185199787<71> (Jo Yeong Uk / GGNFS-0.77.1-20050930-pentium3 gnfs for P45 x P71 / 26.09 hours on Core 2 Quad Q6600 for sieving/matrix step and Pentium III 1GHz for square root / July 12, 2007 2007 年 7 月 12 日)
5×10172-3 = 4(9)1717<173> = 59 × 353 × 523 × 23317240815680513793728307194023<32> × 196863154737187697808157354538347125371017344088184233882709087124676505651120496188022985521571073738622003460582153635002254179501059<135> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=4172484179 for P32 / July 2, 2007 2007 年 7 月 2 日)
5×10173-3 = 4(9)1727<174> = 102763 × 25709777413703494223347<23> × 30109330950025896743761895062141655572845141032519385869<56> × 6285412834914536207453140621762752934767726328887047023537856812367872673794884930822419233<91> (Wataru Sakai / June 17, 2010 2010 年 6 月 17 日)
5×10174-3 = 4(9)1737<175> = 43 × 176159 × 37080907 × 17801080494251007545211645509111674643532888770315437763813231971051393413656757016542969430351784204906239783765921191160533743858193244067401584121996377576283<161>
5×10175-3 = 4(9)1747<176> = 82494503209048359090450275383194039527<38> × 622774835002136324568118505508503461561760982623<48> × 973226526109222661257558042447772889974058312437132710684127975133165175685221991693254757<90> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000, sigma=464340137 for P38 / July 6, 2007 2007 年 7 月 6 日) (Warut Roonguthai / Msieve 1.48 snfs / September 24, 2011 2011 年 9 月 24 日)
5×10176-3 = 4(9)1757<177> = 7 × 173 × 77699 × 628139 × 647526059 × 2274865420007889661155682783404718380337573973025278945780720705852739617093<76> × 5743038306872859190986059734897667468860648548431816569636283614382583135304561<79> (Warut Roonguthai / Msieve 1.48 snfs / October 13, 2011 2011 年 10 月 13 日)
5×10177-3 = 4(9)1767<178> = 29 × 71 × 647 × 11597 × 32257 × 11155845410727571<17> × 4116890636843482409367503214379<31> × 218457987170696445427188464234004646047913220813017808820800049784287693771198669963461651749956944384214219693687749<117> (matsui / GMP-ECM 6.2.1 for P31 / October 30, 2008 2008 年 10 月 30 日)
5×10178-3 = 4(9)1777<179> = 14347 × 3485049139192862619362933017355544713180455844427406426430612671638670105248484003624451104760577124137450338049766501707674078204502683487837178504216909458423363769429148951<175>
5×10179-3 = 4(9)1787<180> = 1900472818297<13> × 143368179663990121285177<24> × 806484427355480910242618688187<30> × 621517573913879824531937479098749<33> × 3661054312333149079554418503387457027608632989634573487936702648419063794797276451<82> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=4151330572 for P30 / July 2, 2007 2007 年 7 月 2 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P33 x P82 / 25.17 hours on Core 2 Quad Q6600 / July 17, 2007 2007 年 7 月 17 日)
5×10180-3 = 4(9)1797<181> = 17 × 2792672428288371043<19> × 105317631985606073391499578163669849676817552257631637698762206369454508556540779142062121449428437936539368598624910487123901432376521799607434565201577649085487<162>
5×10181-3 = 4(9)1807<182> = 23 × 540217 × 1645561 × 436106813 × 17352918959<11> × 26419556438538889559<20> × 466672319325375067753482435099566145666765998596399651<54> × 26209392953072228584871481098029356797578500614279335967751183815135680712549<77> (Warut Roonguthai / Msieve 1.49 gnfs for P54 x P77 / April 1, 2012 2012 年 4 月 1 日)
5×10182-3 = 4(9)1817<183> = 72 × 29770834642130994832881614532449420836505709773<47> × 342754301493868147025468004954466202887529212100972680571593317530253611454746160580734860582053102922819500742588146493363342762650561<135> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 526.30 hours on Cygwin on AMD 64 3400+ / September 12, 2007 2007 年 9 月 12 日)
5×10183-3 = 4(9)1827<184> = 19 × 67 × 97 × 9533 × 31319069530997<14> × 1558003914352530342621269436839277180069274141247<49> × 87048817913172222637044583663802881819197632065198800095818192015977818647042819630300618825841655451541252023771<113> (Dmitry Domanov / Msieve 1.50 snfs / February 20, 2014 2014 年 2 月 20 日)
5×10184-3 = 4(9)1837<185> = 1009 × 442151 × 112074865543951919219198440606459602091325060440461977168426684004259840115476203223372207225198050240736923263274266434757469621115831751768321151172767419757685667834140827883<177>
5×10185-3 = 4(9)1847<186> = 472 × 32752877 × 11398583918308311218706977630346228414893336146411<50> × 606280965113162727317335313147807804249146421743294918972031072509629360133892713710215314034646846435307514835203848156835539<126> (Robert Backstrom / Msieve 1.44 snfs / February 10, 2012 2012 年 2 月 10 日)
5×10186-3 = 4(9)1857<187> = 67317521395141<14> × 46615341719911308568542113<26> × 440247862165415629914964024062743623<36> × 3619226468217882437161494597428834606600520897650913186570957157465554197450093428407182748230547242163506739583<112> (matsui / GMP-ECM 6.2.1 for P36 / October 2, 2008 2008 年 10 月 2 日)
5×10187-3 = 4(9)1867<188> = 35291108798039<14> × 703813207854313<15> × 11382308173113211<17> × 83056511670823649247354301344346917109696640026355065633422259561<65> × 2129331414362278665956004632986128757391413126962568285744208580545409961269601<79> (Daniel Morel / GGNFS-0.77.1 for P65 x P79 / December 11, 2014 2014 年 12 月 11 日)
5×10188-3 = 4(9)1877<189> = 7 × 349 × 31450423 × 273604616919899<15> × 24372134717950196431771259606208452211059944416590906754551<59> × 975894914336940880208134219437306377088340517696594811196213126616013256756126138633275940535193118973477<105> (Daniel Morel / GGNFS-0.77.1 for P59 x P105 / December 18, 2014 2014 年 12 月 18 日)
5×10189-3 = 4(9)1887<190> = 35419 × 169284407 × 1070584910443<13> × 11963613435479<14> × 12479109782276652638113259008995156003707320730233<50> × 5217346222426476280764232566702176959503656770372047964238316166268374690050745808988793934033180399309<103> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + gnfs-lasieve4I13e with factMsieve.pl (decomposed + modified) snfs (without procrels.exe, matbuild.exe for "finalFF" calculation) / August 4, 2017 2017 年 8 月 4 日)
5×10190-3 = 4(9)1897<191> = 4287851 × 346355837 × 527532459262379364819400889710475341<36> × 63820267577847809560959879869697351983691654704798909324639277821967156041651574670042751579050089651798672266382540835075316502462738829391<140> (Serge Batalov / GMP-ECM B1=100000000, x0=1656522531 for P36 / March 20, 2011 2011 年 3 月 20 日)
5×10191-3 = 4(9)1907<192> = 8972041493<10> × 79909084566274171564735976999<29> × 183900076206165335672138277556518142029746396354406430023389<60> × 3792282363333548542317920175491094481474621264129135630631455609886971231562084151994734546139<94> (Eric Jeancolas / cado-nfs-3.0.0 for P60 x P94 / July 20, 2020 2020 年 7 月 20 日)
5×10192-3 = 4(9)1917<193> = definitely prime number 素数
5×10193-3 = 4(9)1927<194> = 139 × 124367 × 416128249 × 5670353807<10> × 630601422409414751<18> × 1628951248743679743054506189<28> × 14620629278240550652432989762103729163476871<44> × 81617556881746859330571187100259479960634045948609207766222314981106404568681507<80> (Andreas Tete / GGNFS/Msieve v 1.42 for P44 x P80 / 1.73 hours on Windows Vista 32bit/Intel Core 2 Duo T8100 / July 23, 2009 2009 年 7 月 23 日)
5×10194-3 = 4(9)1937<195> = 7 × 1529449 × 9195382457<10> × 5755564147069739<16> × 25044074318110485734983<23> × 20105755782453768600877431349138008412652616066375763<53> × 1752483274112536563697927910643992182336051204092421853839415596739642855020054467448637<88> (Eric Jeancolas / for P53 x P88 / August 12, 2019 2019 年 8 月 12 日)
5×10195-3 = 4(9)1947<196> = 43 × 174775624948367<15> × 183308509550493983<18> × 6820156072606917116399<22> × 46193865520509883656902099943016945593331<41> × 11520184642745628330720272408605081786728595956306215778680537224716396806777677739451993392990236531<101> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4044658704 for P41 / November 7, 2013 2013 年 11 月 7 日)
5×10196-3 = 4(9)1957<197> = 17 × 33769 × 23729845067997327059<20> × 6796853979753144094988869<25> × 540007809177269837028997988781185208780768340999802777663850897684487991061811768086894001086968346470377131425875996011266656293332356882846545659<147>
5×10197-3 = 4(9)1967<198> = 269 × 2466967609<10> × 500946622366070831<18> × 975512482547443559<18> × 198189029991858080050709162198595637042387300373716360283047222061<66> × 7779476644403690755470126354951009822706603104450852771883459097209519391126398128053<85> (Eric Jeancolas / cado-nfs-3.0.0 for P66 x P85 / July 27, 2020 2020 年 7 月 27 日)
5×10198-3 = 4(9)1977<199> = 1303 × 111286577 × 34481234352518130788670405006822101492981828543399764354103795658712890459962966380132721844795895517794739849826714795716374196672183245124122226224183167019216289998818348856442283873787<188>
5×10199-3 = 4(9)1987<200> = 219619 × 3639959 × 4744042763965047965693<22> × 8093176768651631185069802113901<31> × 1629055878393401770330660883294105510464026569183051106513390639156296434054875594593755637398223572917720059576936252313923440973374849<136> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=2930831738 for P31 / July 14, 2008 2008 年 7 月 14 日)
5×10200-3 = 4(9)1997<201> = 7 × 181 × 1887172681<10> × 50794360261631667852636062096828082385172365922016212519<56> × 11253965251335513782225607622598562629545857352525134299837<59> × 365814304435674529471462671041837150304257491479682728893759284330567273637<75> (matsui / Msieve 1.50 snfs / November 15, 2011 2011 年 11 月 15 日)
5×10201-3 = 4(9)2007<202> = 19 × 4051 × 11443 × 39409 × 7178617 × 343549007 × 6511184053267<13> × 63450933350279<14> × 2460854750972931021505486058156208636960769826560850428288559833<64> × 57452032745452609738972071708507558739927212269899634037028255990250250551664064709<83> (Eric Jeancolas / cado-nfs-3.0.0 for P64 x P83 / September 28, 2020 2020 年 9 月 28 日)
5×10202-3 = 4(9)2017<203> = 5766053 × 1741145699<10> × 1317088864188614190727121082106128317898413616662815807<55> × 3781300412738586519039633347374065897458048493409364895304315188971917034524220170791115307274998036230064670370472459663416621420493<133> (Bob Backstrom / Msieve 1.54 snfs for P55 x P133 / September 3, 2021 2021 年 9 月 3 日)
5×10203-3 = 4(9)2027<204> = 23 × 653 × 19194137982240429647<20> × 2171351938135075231199<22> × 798785465265103753765305547833131396297314795386181809608507412772142624807894574410083933828273379054165385585242790376163462451310321055892953234379950073671<159>
5×10204-3 = 4(9)2037<205> = 353 × 54516725793132959<17> × 139841045028704573253827559063092344934065964790285265613535965781421<69> × 1857936528625965399407974061945476952468587780565404754839470707885944769227153798894405242066307749400397540153977391<118> (Bob Backstrom / Msieve 1.54 snfs for P69 x P118 / October 20, 2021 2021 年 10 月 20 日)
5×10205-3 = 4(9)2047<206> = 29 × 126499 × 202648123 × 75587700239<11> × 14248841649279530921189<23> × 45991657682947829700317<23> × 1357789898121911103759893148490418159724725169578431185665033791873691348269325015484823457212564850519091486107305775807546618118596687<136>
5×10206-3 = 4(9)2057<207> = 7 × 593 × 3237243599<10> × 58744393474619<14> × 54804773124667859<17> × 327486441663061627341257<24> × 35290983158354139576937349555910630989580482468443186247605452826125490830004993474111092134259189588419479471490317225324164244395695625949<140>
5×10207-3 = 4(9)2067<208> = 1439 × 4101791 × 7107677 × 11295983 × 26892984876865419839<20> × 500026614453720761235471977725411<33> × 784606389450036448512011214306490468977302888219876436022242985436755574310167808657364476747088218518469252545249292302003805176827<132> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2848085071 for P33 / September 13, 2013 2013 年 9 月 13 日)
5×10208-3 = 4(9)2077<209> = 61 × 131 × 293 × 50430137 × 821311559 × 515588438574147602445282702643151342534811252141256998084625257292095909543698792143139309340206134812954801595764548834110678504282266244436730964050034029525064407380712946025928462593<186>
5×10209-3 = 4(9)2087<210> = 18913 × 261071809 × 2036536529228783<16> × 105744795470497822819<21> × [470217076899004466689983705715906357139602829879380441128399517449842627428012334003357804575831803501180356001689564236974288938959822115116113040335360344842033<162>] Free to factor
5×10210-3 = 4(9)2097<211> = 9964613 × 501775633434033012621764638526353206090392070419593816638940217748546782499230025290495476342131902162181311005254293367941133288367546235864854962254931526191734691552998596132132778262437286826894330969<204>
5×10211-3 = 4(9)2107<212> = 6379 × 36328554389<11> × 19788349350181111943<20> × 10903344063071102289006953540345490084236851931855833940311539890048808294358563834712082839318923376376872262295069885189738222462490526220277110333380529674001492356073233557709<179>
5×10212-3 = 4(9)2117<213> = 7 × 17 × 71 × 370441 × 1360206774071<13> × 275824322513180591232208097<27> × 425802446906204193846862741341500894654141949620963581852685874392451187277635367523520147888233769122665258587228890115444608869534211715845736256410561727309643059<165> (Serge Batalov / GMP-ECM B1=2000000, sigma=1872252611 for P27 / September 20, 2013 2013 年 9 月 20 日)
5×10213-3 = 4(9)2127<214> = 9643 × 4016161 × 13395623 × 32032125877414228188621115967<29> × 300883272632221253855654493178997560762067811467600141662787587930113949509913564053001760112062197465670821654091326833326885355487257470196583612615389210350627106479<168>
5×10214-3 = 4(9)2137<215> = 2753 × 3257 × 16381 × 18556080943<11> × 515407524967<12> × 35593329153972535014438777901347436731406646989798478230841031402310236616351937049932424447716785692155603623987746138973902378929169678679227135258074057237070981308485974251155937<182>
5×10215-3 = 4(9)2147<216> = 18503 × 164183 × 28249723 × 430615950520321500493555657048908648557257<42> × 11743290126639636399698092425907436600256364729043997221<56> × 1152140840818624723301381844893733974132662069983813396018580219409605298390225140834092672869691864163<103> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1164320885 for P42 / December 12, 2013 2013 年 12 月 12 日) (Dmitry Domanov / factordb.com for P56 x P103 / August 8, 2021 2021 年 8 月 8 日)
5×10216-3 = 4(9)2157<217> = 43 × 67 × 311 × 10243 × 41333 × 295937 × [44539259198795271328060364150208504504771337034675509121677285172105829922967212451471895565271098633099818453840899211900274426475977096290057341554319775228450307893487286356586502860921868897589<197>] Free to factor
5×10217-3 = 4(9)2167<218> = 45119 × 2544767 × 8156642001134786897082550488072548877499<40> × [53388917235950525693293776010697845067477494995783685474357557399567492487419126726677599311442099016245060933849799318288843691364389268712334925137823717996236097511<167>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=846214406 for P40 / December 12, 2013 2013 年 12 月 12 日) Free to factor
5×10218-3 = 4(9)2177<219> = 7 × 163 × 21634435369<11> × 380890441226174413733888195385634882210053385546944290896867542783606799724473532706952400934788873<99> × 53178823005134746391474383554965318145081202465888468775036727023404227993741129832190366418549045582866041<107> (Bob Backstrom / Msieve 1.54 snfs for P99 x P107 / June 25, 2020 2020 年 6 月 25 日)
5×10219-3 = 4(9)2187<220> = 19 × 173 × 191 × 8353 × 38113 × 19556861 × 678744289 × 8660812397<10> × 7652919996613546205624416727<28> × 61867242804395634279252514176212562471938227<44> × 459588775158477261388235366345126962937328108289922581897113095467435093354974905697102880428790612091505097<108> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2306706339 for P44 / September 27, 2013 2013 年 9 月 27 日)
5×10220-3 = 4(9)2197<221> = 1811 × 27609055770292655991165102153506350082827167310877967973495306460519050248481501932633903920485919381557150745444505797901711761457758144671452236333517393705135284373274434014356709000552181115405853119823302043070127<218>
5×10221-3 = 4(9)2207<222> = 452026009900469222633281624505347959353795491<45> × 216255795906576014002702474049439015163896014641340721790243119539327133989639<78> × 5114919738420876163977632588273552003889108908541011353267066869379899557121504882981664351636315753<100> (Serge Batalov / GMP-ECM B1=260000000, sigma=666829191 for P45 / November 14, 2013 2013 年 11 月 14 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P78 x P100 / September 16, 2021 2021 年 9 月 16 日)
5×10222-3 = 4(9)2217<223> = 38583616044343<14> × 96244513111587466338067<23> × 1346452687086129739249148542965823868772883430751681367347995737167427443951564242497932502392326954317022624122699749212867776711661015750078342075197996869149254080087565082149132209737<187>
5×10223-3 = 4(9)2227<224> = 3410721524425672798723763886789769<34> × [14659654751033782649504670509552036846200412038276725200105860693592829302214120998597926163553008636000036417508419935256858210297472853856134080469196492492264065266005120118248996262157013<191>] (Serge Batalov / GMP-ECM B1=2000000, sigma=1063663231 for P34 / September 20, 2013 2013 年 9 月 20 日) Free to factor
5×10224-3 = 4(9)2237<225> = 73 × 31381747 × [46451395695780285565772612606245038551393358894180623318850306243289033896710442973245398632672193904057348077067890757091446048030411858082712970012226344584262122525784559147131215485706615176733911808846695456457<215>] Free to factor
5×10225-3 = 4(9)2247<226> = 23 × 486240915791<12> × 123525423889921<15> × 101872157860014926669338265940361<33> × [35528658470604345534961214319758707485661990206704644569507446764815894556499941369688795335699864927664565663825197920380745018852039835555064261107654454305084148509<167>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2858722229 for P33 / September 27, 2013 2013 年 9 月 27 日) Free to factor
5×10226-3 = 4(9)2257<227> = 659 × 36607 × 2072623655110781112578574717232991045063688201461340615261648217483550518730030530160964512827944504921299785404691997139945165839530927130573176195850997095715377039466858188146391730098968194056270820281849458462818769<220>
5×10227-3 = 4(9)2267<228> = 1709 × 20639 × 1510273 × 172647501903297721<18> × 22968654325002417337871021539<29> × 822347242632851908941153314060430466034325571<45> × 2878278019793875076320398738475474155577474855014659069157830577826362187059729626727497728966396867778778629310174056868911<124> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2996657156 for P45 / October 22, 2013 2013 年 10 月 22 日)
5×10228-3 = 4(9)2277<229> = 17 × 109 × [2698327037236913113869400971397733405288720992984349703184025903939557474365893146249325418240690771721532649757150566648677819751753912574203993524015110631408526713437668645439827307069616837560712358337830545062061521856449<226>] Free to factor
5×10229-3 = 4(9)2287<230> = 167 × 887 × 337543627513856165909443795610582667809814418513592881879982987801173301649238164032701226633542385353306914918753248857414820865596878396532751858177669463778193331488094836257586293028373917328814749306347845459025579056093<225>
5×10230-3 = 4(9)2297<231> = 7 × 59 × 2287 × 2675370469<10> × 197865400793941223193130508594295195456302714945814761367761978294896426833044236482071822713656080747499524542397464658078314226331380315068863757433703901307487924540891249297873591036786975054508788354095292641923<216>
5×10231-3 = 4(9)2307<232> = 47 × 149 × 12263 × 3743917861672571797517<22> × [15551161715766158415050736197629784251734011050038640855093936094575297801097945839334047925685128430453321585142668063820623932028148755519280709112748070741580137012604419776566553183855963210912412069<203>] Free to factor
5×10232-3 = 4(9)2317<233> = 2647 × 3816455715696640287222591649<28> × 4949437399106669525611415293014435099003912636894293174614018865471062159464481309733693519405823022870252679808202010958064575578784809605644434658906574833771005623746212928277335572046534924830808299<202>
5×10233-3 = 4(9)2327<234> = 29 × 5927 × 12601 × 2088078073<10> × 4678300286593<13> × 30014126863448063381784832550467<32> × [787356698113821630813139089116201347225149625896941597406823418704608729013689665096331717278381049341003911314581505021067210584984471159128804024002299126294771367026893<171>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=766371161 for P32 / September 13, 2013 2013 年 9 月 13 日) Free to factor
5×10234-3 = 4(9)2337<235> = 143061199199<12> × [34950077505256576078702802989496419676240882647908356710097452871834290152321289154636984820931355542704910833312131993042262517208385476173251492471574720956704903120626888350035771882094189602473947314727066451954689517603<224>] Free to factor
5×10235-3 = 4(9)2347<236> = 389 × 73849 × 14674081 × 790436852721420176183<21> × [150057494876801901714957615236222730172216722263090888322060236713446143872855875742014216935932405288274993238298964982583343938040642891404400325967064061698718855732291084070212396978691654201662599<201>] Free to factor
5×10236-3 = 4(9)2357<237> = 7 × 353 × 27773 × 2099706421<10> × 13836504667<11> × 1438280529797<13> × 17417625063805751<17> × 1894859228136759611<19> × [5282992625246720199210935863873565590335290575944164603802485559655546755675025524678677741399153603822385337231958419065982983771147819800474816242892867266078561<163>] Free to factor
5×10237-3 = 4(9)2367<238> = 19 × 43 × 1483 × 5043285749<10> × 539804540357<12> × 1515851605171787262148164768861779397067941711445070887694015744622254855543655418827495639968095288311083937372383412905721389052030278949045977872094820786540469364475295755064137034500292487922615311105287439<211>
5×10238-3 = 4(9)2377<239> = 5519 × 53199781 × 636809079714061<15> × 10414817638040110126424006028519617<35> × [25676678828604653495791189801958013145159397531826949625245995945126199056638899381200442519333346459321420398135381107671325859750306035093376346556033259180422264103274141354579<179>] (Serge Batalov / GMP-ECM B1=3000000, sigma=3991780135 for P35 / September 20, 2013 2013 年 9 月 20 日) Free to factor
5×10239-3 = 4(9)2387<240> = 139 × 8011 × 1399708898690627089<19> × 1051104023748520736304255332317427786466383<43> × 305200365985470391162034675118981822524756765600501608582874833436344274028367866164197918580874843253075086698136500522107029900955777146365707233203949445311811872072507739<174> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=240901187 for P43 / December 2, 2013 2013 年 12 月 2 日)
5×10240-3 = 4(9)2397<241> = 643 × 46594463168548449694007041799<29> × 802633549738809093327420299145539051<36> × [207925335001319194919361682507142571121985192585295855144764090001490962969536483366655380104129497515568328318363777195973858499318274388501627431538966676659333552555615771<174>] (Serge Batalov / GMP-ECM B1=3000000, sigma=1698229514 for P36 / September 20, 2013 2013 年 9 月 20 日) Free to factor
5×10241-3 = 4(9)2407<242> = 136733059 × 380161921 × 11915129209<11> × 12907363526316306659237<23> × 5638549400343534513421556335319<31> × 1109236554297785332444709712014554930539641454750867540189848136847193802592282453820641623495764646719041232132506254611198729606498825102783112697439085588905549<163> (Serge Batalov / GMP-ECM B1=3000000, sigma=464248283 for P31 / September 20, 2013 2013 年 9 月 20 日)
5×10242-3 = 4(9)2417<243> = 7 × 113 × 17231 × 36299 × 22436114849493420577155376199<29> × 45044391358634424129294048627105417400667685174714108120412322862743089129792057134028692244234938958721174727854140134516685682148645113396374031497689647703022374042253722619540710069406155974728210457<203> (Serge Batalov / GMP-ECM B1=2000000, sigma=3485673266 for P29 / September 20, 2013 2013 年 9 月 20 日)
5×10243-3 = 4(9)2427<244> = 337134772033<12> × 9532657533359<13> × 1555795336762753675684362374721596220933434374979197932530186876858121125268069830488099476954856036433500676751371298127213168792402916050294260325292393678815781246061285747389543851192425016063755690076861117324410451<220>
5×10244-3 = 4(9)2437<245> = 17 × 283 × 609730538763607<15> × 148545555536788515989423149<27> × 1525172651656679686606844461<28> × 29991339125600602565305282937<29> × 58446352271189576484295791649103646369216367<44> × 42920498701228733626205118861204652545240345267586371077750490719018022718992671075116651405862438831<101> (Dylan Delgado / ecm.py 0.41, GMP-ECM 7.05 B1=110000000, sigma=1:2977783518 for P44 x P101 / August 6, 2018 2018 年 8 月 6 日)
5×10245-3 = 4(9)2447<246> = 307 × 379 × 2791224752711335337991493118177022150455786510737073293975372380970603806576153634824602116003<94> × 1539563517040434978959132970355429386570745634456959812186594847057658580928490155437166919021266966977769125466304278064568473574277617341150949983<148> (ebina / Msieve 1.53 snfs for P94 x P148 / September 13, 2021 2021 年 9 月 13 日)
5×10246-3 = 4(9)2457<247> = 1013 × 1511 × 71765074331657706427093011371<29> × 45517977375274784014038140187247503078368618020959731859103424190743514551612616774070445846281653516258072441968646157044945196799452395860772256660192965944114303180593210507768903745655752655244062460872366349<212>
5×10247-3 = 4(9)2467<248> = 23 × 71 × 1718774597<10> × 17814141321124232484549829619716652398312109321583353794983864667170986172037492321265763966505040102339505267217651462245108632806123460388317427612698460105634055620053017722856048471427283898309710475904283494653461206397832086920697<236>
5×10248-3 = 4(9)2477<249> = 7 × 1934661213523<13> × 41452849149843899767<20> × [890661445959639839010430233749255985646323766933897319333246060652262867894444534229382048970223755430798541923011090414589645168842476288649537985697828795466819146417822962504259897142321298017093661783465579597231<216>] Free to factor
5×10249-3 = 4(9)2487<250> = 67 × 19031 × 53670220927129<14> × 73063455712049727919229050490315571294538475814278648554942448289345667396326895436307835548300464625846234490711296819069366590166081560792937797710504323672670962015112348504221452257371428407545254039129172471224081346656486209<230>
5×10250-3 = 4(9)2497<251> = 229 × 4259070191831730677<19> × 48962060222315676104625638023<29> × [1047032206545066992947826172508736791784765805000761321248258061036708277812702423284143636749712703392724317442924200132903264269138354909059955760389775504550610144432599165983031383529195468506170083<202>] Free to factor
5×10251-3 = 4(9)2507<252> = 14519 × 12467073726847339<17> × [2762286820496581479630313230732685952159647806210368527772557560038613280129721884313343996766609188457263655588454470070599958508661716810867036752505471710039898583512977018192671712964606076703767208210022075041754379551605606017<232>] Free to factor
5×10252-3 = 4(9)2517<253> = 491 × 726105717140326451<18> × 75570811034540163635812139<26> × [185581453902028575169391168206798083947656820787691502801077765102670255666932117772079738518876596794944033137350185317789935424165783993202592530224502426635563278792367784645180100943288144563418603208903<207>] Free to factor
5×10253-3 = 4(9)2527<254> = 503 × 227569 × 441547 × 32938463 × 1814614214674631<16> × 10600760493804583747<20> × 77139968511441781096919<23> × 20239876657205509098521334633572123254915974335621026914997540630853139476767536362629508013616611932184207767776329537811700534805179839637715662753021911425916307136607518917<176>
5×10254-3 = 4(9)2537<255> = 7 × 727 × 4022903860065453680083747<25> × 7326694045552722829993700863<28> × 3333418515081850537401201187288841030953944243439449705439868057103858964550076315510782266259147037189640229044831334767863997306765446085321849861459315478894623330734601535973773158104056691040193<199>
5×10255-3 = 4(9)2547<256> = 192 × 292951711004336180170982379887518695217<39> × 47278834675453950210217338461480273503054228280091479151407971565454528424662859655543381869220516954689656762372391230587976561184352643191611667665582335576637930919889013118299657836582195398974961132792422498181<215> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1924979011 for P39 x P215 / March 18, 2019 2019 年 3 月 18 日)
5×10256-3 = 4(9)2557<257> = [49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997<257>] Free to factor
5×10257-3 = 4(9)2567<258> = 8837 × 195053 × 42476816423247437604169<23> × 690494482078812021880765863399401377781<39> × [9890092263442331324339176402655675279815888884623986086466352275551106402984314869738270759213840417016854480141137238066928564361348535081938482012910448266398309842900798306903100849793<187>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3195677181 for P39 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10258-3 = 4(9)2577<259> = 43 × 197 × 719 × 20297 × 797711 × 630820656083922299<18> × 148097478923145460571795258222350507<36> × [542719502833386295882598840766923256608596581382569326563579379590251273978959217365779194374157906913724199579143207852864659331899660253115960981910182940470113347670740104045744350945563<189>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1853279819 for P36 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10259-3 = 4(9)2587<260> = 102772757 × 3415411387<10> × 38624813965065418076358536250577<32> × [3687929195851758436703368221256615459850363839224750705045570301669703482285746097934035832410923586071067315623929151235001888286335565687234333586926079727868731979131147274249909339209332164876830866686108379<211>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2263619972 for P32 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10260-3 = 4(9)2597<261> = 7 × 17 × [4201680672268907563025210084033613445378151260504201680672268907563025210084033613445378151260504201680672268907563025210084033613445378151260504201680672268907563025210084033613445378151260504201680672268907563025210084033613445378151260504201680672268907563<259>] Free to factor
5×10261-3 = 4(9)2607<262> = 29 × 57097 × 199130346741306825710871861976060114098105858347207<51> × [15164261548356797711157989868628665029047632833704131090022810121683317132935605008291494921256806591407492773231812721482546536258746674917361318121978406023164335990805744291524038907506280148962056017567<206>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2125934232 for P51 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10262-3 = 4(9)2617<263> = 173 × 3299 × 58447783687034108156169976975843<32> × 1498903031997226639603378357402877339723422865250826121314247001833670344834660528457023526414357301166438303166127098721616063168264851926420961687141077942067552981800427278705746610723465754003732188976633626757110495392777<226> (Erik Branger / GMP-ECM B1=3e6, sigma=3:879050499 for P32 x P226 / March 18, 2019 2019 年 3 月 18 日)
5×10263-3 = 4(9)2627<264> = 3433 × 52181 × [2791154026803775893263769141015593658393103710413348531129793892869021809312789241360595368337795151210574021312682753252164750679915351890305994383427739559405060606755687993705255463358838024268671172262864433096269643297716551866594582694924302590950689<256>] Free to factor
5×10264-3 = 4(9)2637<265> = 121123 × 399059 × 850468574414962859767<21> × 1498313081657385084419<22> × [81179324543806002063427764824709315223887210097940739240761068638694495117459596521151696416467100058442638942098979057922664129731719095306308589234543561510279922759798479751080246943884290887278878316190023777<212>] Free to factor
5×10265-3 = 4(9)2647<266> = 263 × 180593763786607531<18> × [1052716685531325718790024964278331512521452335438696177171528569353287573743769226055191869215762973658709855416256130832623089124265473496358637026105726246758700459424898059241144344769006983484712803129017776832467560254593916333081353261116049<247>] Free to factor
5×10266-3 = 4(9)2657<267> = 72 × 6967 × 16604821 × 88080581133005323271<20> × 16017838105152954614263000497205019<35> × 535895638864843561895319367823941621<36> × 16341379301073221391700927062187683539<38> × 7139058011107036996501758164513364867060106733328766550438320669624017935848570078676086309637053688246912297176784331088429909<127> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2358755521 for P35, B1=3e6, sigma=3:4294958693 for P36, B1=3e6, sigma=3:414835356 for P38 x P127 / March 18, 2019 2019 年 3 月 18 日)
5×10267-3 = 4(9)2667<268> = 359 × 195931 × 2697983 × 733296527 × 929066353 × 2933124577<10> × 27668670513187369<17> × [476527568772951772359279197291891608869343789752251706328890350807820993663478267155847170323026792602600097894157788878104611979432596062716507021946283323606800196886217825051946152914673681316323710802560057<210>] Free to factor
5×10268-3 = 4(9)2677<269> = 61 × 353 × 3067 × 4031821 × 447884167 × 8830922756934350467<19> × 10758269198368933613<20> × 8728581743743924774879769674911907<34> × [505583111728071724397044312462994252181411397876260238193746372772991826423914669063015460881950265797877807941400289689955160960696129319433254747694538778022790126778059813<174>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1840274701 for P34 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10269-3 = 4(9)2687<270> = 23 × 21739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739<269>
5×10270-3 = 4(9)2697<271> = 238423 × 7959661 × 2447494619<10> × 305215757755215408593<21> × [3526944186529255824994893650498215957984421282271758522489383631857643249072421694930109356156458136973456738544542847489650460032919416859902636355381038537175330854589823782109028280555212916050233963580117375450877153143844197<229>] Free to factor
5×10271-3 = 4(9)2707<272> = 173256811253<12> × 43969256651790435851953<23> × 1830238812612311340535253<25> × 980131425944740052156448717824280004867<39> × [3658798469318249611457490263639319834131851160225942585888833335259505922472672267549718032751962826611639965545342191285461446050004335662929949915038513374258200593437648583<175>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2444467457 for P39 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10272-3 = 4(9)2717<273> = 7 × [71428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571<272>] Free to factor
5×10273-3 = 4(9)2727<274> = 19 × 433 × 267797 × [2269461395022605194901800766281733681810825070229311222383701007132363869867941616429842749396669475259797716578603265875955119111480772683466696272910165691429252723475884523248201171906381509344689531755597205205315269766570858070721635922328371856046308058380963<265>] Free to factor
5×10274-3 = 4(9)2737<275> = 4673 × 109128981518855373794701<24> × 3665807514713714500257099164999<31> × [26746346346559238420227434481959776040717487738626446363892597267396834172304952082530256468554372333380647556340466837241943970686339490773143747731791826761438529455716226355158203744234503607267125959555311348341511<218>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2653328007 for P31 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10275-3 = 4(9)2747<276> = 201344149985544255412033651<27> × [2483310292530963026844810736855707067170165236223910837191406839535988791912485296336448523253884182502749201265280886505451024596588666292014923520669624387347540192660169000613631353474946566711687051829694906104400712191681445400638287651289258447<250>] Free to factor
5×10276-3 = 4(9)2757<277> = 172 × [17301038062283737024221453287197231833910034602076124567474048442906574394463667820069204152249134948096885813148788927335640138408304498269896193771626297577854671280276816608996539792387543252595155709342560553633217993079584775086505190311418685121107266435986159169550173<275>] Free to factor
5×10277-3 = 4(9)2767<278> = 47 × 922027844459916644711<21> × 1721987174395258480985117<25> × 924593022646521357051642075211<30> × 837208075218518286207690499207000847<36> × 865593879612904107327288348665100809775298466229293585436988476171045961653659304548896857181672498346298936592274690327411527803498082154427747960294674686725545669<165> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3426117943 for P30, B1=3e6, sigma=3:3235879349 for P36 x P165 / March 18, 2019 2019 年 3 月 18 日)
5×10278-3 = 4(9)2777<279> = 7 × 151687 × 8445939833<10> × 3194669687314616112954973112018225093<37> × 17452178968816539878480064799038072573915984286236984017554386545183949160305489446047100024806664853381106471251601871063171049855824653253698139545479073509375431440149926010401189060278639717926533994110960251080236787323057<227> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1095886847 for P37 x P227 / March 18, 2019 2019 年 3 月 18 日)
5×10279-3 = 4(9)2787<280> = 43 × 97 × 15427 × 79987 × 28157890490881<14> × 310187934763201086625804249081<30> × 299547198137550194802940517220983<33> × [371311711971424881952573221119157532662073225981672282418640438182026084832469134868713112488582385050348399194356497352120999676987505897187665767353897779243403935025241451344142881527297361<192>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2175952203 for P30, B1=3e6, sigma=3:650015819 for P33 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10280-3 = 4(9)2797<281> = 24533958629683<14> × [2037991534701061135542488537242918179091508685028381343331302294848453603488731398105643901674724928678616908648105988920934672599467748071850045185259060018384286401881318358993107094833346710875340336682856911083348706242333039259666330229126754938309488023924498959<268>] Free to factor
5×10281-3 = 4(9)2807<282> = 337 × 1264035603327951783351531275955047<34> × 1173764031105074752826081035832503722877969585359744779911221448217464249489141953022789684629975426623789962748505054999972875850015049960152840306264551370203111183980357418060510531293358231088796839352465137574386470101682188277660235844061323<247> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2641534799 for P34 x P247 / March 18, 2019 2019 年 3 月 18 日)
5×10282-3 = 4(9)2817<283> = 67 × 71 × 101740511 × 29952673536767029<17> × 31603949068340258923<20> × 175677972165812404380011<24> × 62122465320220349185734079301525114187642396789460625146765659051399309981042048868621866472409015237586162711620458086411382659815868038481319326813455549564573692258762874175583907415048775498813536028233041203<212>
5×10283-3 = 4(9)2827<284> = 663026827 × 125586743860882657<18> × 209309258807600131<18> × [2868842216608157071140901455020384949849724141424645774732462107886810306523701227335020825178765532027035477081388769025525105260328722774715275222323604634392094917672815522679185844025858421787609811848003025811050836448564060365905137533<241>] Free to factor
5×10284-3 = 4(9)2837<285> = 7 × 10764732137<11> × 6635424878159365255316670350008489818442806221456045188301053907456966253300518278244216804651603884918054284830791366357565741575551052522341882349484738374538206256954392489165248183877910511859917302517402024179003631121325742973159447095253678343206082190638402452667683<274>
5×10285-3 = 4(9)2847<286> = 139 × 5309 × 34798794053<11> × 656473984204677911<18> × 9000598210233194501632127<25> × 653013793483870811523764040878207<33> × 50462299298250553031371846688001521895815714410793488987879117609626716249433670982849550718658754739942074640700496541798938440836202568228335558884280163039719075203820531713759723534511156881<194> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3598812830 for P33 x P194 / March 18, 2019 2019 年 3 月 18 日)
5×10286-3 = 4(9)2857<287> = 1198520869020595344887281<25> × 41718088764577700126684502257122418742331499184506731011410306512214949186421170900027560160368121092490688848251428816219525613511090292904070527052997190920724481192028039708082307966906627294514501357259892117118107807995248135722349362190044406548963961042637<263>
5×10287-3 = 4(9)2867<288> = definitely prime number 素数
5×10288-3 = 4(9)2877<289> = 59 × 4021 × 1960768603<10> × 156657944801619352343320668469<30> × [68612801273523767527836076447944074360893945290640134437588615186933568932104890587574870178377845642567562266394060276808432717639346182542545478289526497059955841253399740630810739785217392127552573848744545963697163898571009267911806939346189<245>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:581452449 for P30 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10289-3 = 4(9)2887<290> = 29 × 492674827 × 37746127735822945702541<23> × 6591614595084011484349291<25> × 920134608419475370472646091<27> × 240061557940362949829086552578451342271<39> × [63675657145000312024596041790241127620462361732358454516977018971953469364395185545950385487663964869022793955078782684413445453387865692354518638024929355342673831449<167>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2980994005 for P39 / March 18, 2019 2019 年 3 月 18 日) Free to factor
5×10290-3 = 4(9)2897<291> = 7 × 1825868310816983488499<22> × [39120330313751250023320080512048228764438035124705596167516319384110687137390082146898376893835983221048626025807214044421751555004808693967486670443877779810367017149175885644987123135623046144085376941514312564007879217910521804859732475886893837325329613941388887929<269>] Free to factor
5×10291-3 = 4(9)2907<292> = 19 × 23 × [11441647597254004576659038901601830663615560640732265446224256292906178489702517162471395881006864988558352402745995423340961098398169336384439359267734553775743707093821510297482837528604118993135011441647597254004576659038901601830663615560640732265446224256292906178489702517162471395881<290>] Free to factor
5×10292-3 = 4(9)2917<293> = 17 × 233 × 18523 × 46027 × 7046659969<10> × 60683001813299<14> × 1918748680841221<16> × 6512531729191861<16> × [2770912733805814541669948419742548053395638912433830641300072400919928264417365261605471163867090543879468506287857877704689495667520558222830883039265366832421830028004775100754957854826747402606020701716364612265543266186167<226>] Free to factor
5×10293-3 = 4(9)2927<294> = 2635345624045085689<19> × 121190003190147428868046253<27> × [1565545256631748999074578271986640769291064028305319825151239356133602428168716160417911178293395373842608396097180881876075953454416504322246839445914980713185600756908373300361611993711146024911208705820333825224688427815131264977100966394573182041<250>] Free to factor
5×10294-3 = 4(9)2937<295> = 421 × 5949583 × 6295761931087421587<19> × 78846408560368242229617713580473057<35> × 552723005878019761824200919050590807<36> × 7275513085764100623017882233256293327090116096253252371317544206933323041018165011404387273622038542824048085788610180988109381028012609406121491549232146097687396510496306895433809039039256150683<196> (Erik Branger / GMP-ECM B1=3e6, sigma=3:2788445556 for P35, B1=3e6, sigma=3:1172659871 for P36 x P196 / March 18, 2019 2019 年 3 月 18 日)
5×10295-3 = 4(9)2947<296> = 1901 × [26301946344029458179905312993161493950552340873224618621778011572856391372961599158337716991057338243029984218832193582325092056812204103103629668595476065228826933193056286165176223040504997369805365597054182009468700683850604944765912677538137822198842714360862703840084166228300894266175697<293>] Free to factor
5×10296-3 = 4(9)2957<297> = 7 × 599 × 16937 × 276217226631601<15> × 169221383570779321<18> × 15968354144219140362439034438707<32> × 9432840622627273289821392790280952675788482434649868382843475863658625050870577589575368847998023125445495513089535919216317422730421013258997402041996294968442622901987906668889749787233047558476644445612236393005837101701311<226> (Erik Branger / GMP-ECM B1=3e6, sigma=3:296045595 for P32 x P226 / March 18, 2019 2019 年 3 月 18 日)
5×10297-3 = 4(9)2967<298> = 338449819 × [14773238806193600003077561108106250752641117530040694156790197603858077406742533964835714685372604675554576083256821006011529289664060951972321781622817177514874073547665274419898567001449629967153269477741986914757369097603210714082255130412700855957615388767573842313090437788060982830663<290>] Free to factor
5×10298-3 = 4(9)2977<299> = [49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997<299>] Free to factor
5×10299-3 = 4(9)2987<300> = 163 × 26005943 × 1648736305921<13> × [71541590685332547128637012035627282372701048639538685408662968192246652526564834308156714521416762479528829816691992072026048690135123949313462051924134865254782443907970375601666131434272609447265018311652809417980116205179243728991910407373107419022504311172662240626917845273<278>] Free to factor
5×10300-3 = 4(9)2997<301> = 43 × 353 × 30727 × 443749 × [24158462736402563864104322192150792126070423047174703691286405180613771004283205720049257490336695283652227076370366199300604548180007837123364143097869447189684945289263452238986719891124794271236443226038875496213845652253926285139427915215143551461568141223372172424210956121006690141<287>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク