18w9 = { 19, 189, 1889, 18889, 188889, 1888889, 18888889, 188888889, 1888888889, 18888888889, … }
17×103+19 = 1889 =
definitely prime number 素数
17×1011+19 = 188888888889
<12> = 3
2 × 263 × 79800967
17×1012+19 = 1888888888889
<13> =
definitely prime number 素数
17×1013+19 = 18888888888889
<14> = 293 × 569 × 113299117
17×1014+19 = 188888888888889
<15> = 3 × 7 × 71 × 126686042179
<12>
17×1015+19 = 1888888888888889
<16> = 59 × 1087 × 29452682533
<11>
17×1016+19 = 18888888888888889
<17> = 13 × 23 × 63173541434411
<14>
17×1017+19 = 188888888888888889
<18> = 3 × 1319 × 47735377530677
<14>
17×1018+19 = 1888888888888888889
<19> = 79 × 1231 × 482423 × 40261807
17×1019+19 = 18888888888888888889
<20> = 19 × 6088739 × 163277165729
<12>
17×1020+19 = 188888888888888888889
<21> = 3
2 × 7 × 227 × 13208089566386189
<17>
17×1021+19 = 1888888888888888888889
<22> = 199 × 1945549043
<10> × 4878779077
<10>
17×1022+19 = 18888888888888888888889
<23> = 13 × 31 × 53 × 884352679848723671
<18>
17×1023+19 = 188888888888888888888889
<24> = 3 × 59683973 × 1054939203912631
<16>
17×1024+19 = 1888888888888888888888889
<25> = 7481 × 10400117753
<11> × 24277753673
<11>
17×1025+19 = 18888888888888888888888889
<26> = 89 × 8405263 × 25250216039251727
<17>
17×1026+19 = 188888888888888888888888889
<27> = 3 × 7 × 367 × 89083 × 14175673 × 19408078153
<11>
17×1027+19 = 1888888888888888888888888889
<28> = 47 × 107 × 863 × 1543 × 3559 × 36779 × 2154865409
<10>
17×1028+19 = 18888888888888888888888888889
<29> = 13 × 1267961 × 1145927558490720922373
<22>
17×1029+19 = 188888888888888888888888888889
<30> = 3
4 × 97 × 36877 × 465169 × 1401468403507229
<16>
17×1030+19 = 1888888888888888888888888888889
<31> = 48523 × 53549 × 5722133 × 8315387 × 15278017
17×1031+19 = 18888888888888888888888888888889
<32> = 79 × 15401 × 15524956778976943704040991
<26>
17×1032+19 = 188888888888888888888888888888889
<33> = 3 × 7
2 × 8663 × 14281 × 10386330634334996841229
<23>
17×1033+19 = 1888888888888888888888888888888889
<34> = 109 × 7417 × 166861 × 14002216649604670520633
<23>
17×1034+19 = 18888888888888888888888888888888889
<35> = 13 × 1452991452991452991452991452991453
<34>
17×1035+19 = 188888888888888888888888888888888889
<36> = 3 × 29 × 53 × 181 × 2351 × 129281 × 744638322044057593609
<21>
17×1036+19 = 1888888888888888888888888888888888889
<37> = 1367 × 358073 × 3858924862823829933990645479
<28>
17×1037+19 = 18888888888888888888888888888888888889
<38> = 19 × 31 × 122891 × 350437 × 744665245345758865893803
<24>
17×1038+19 = 188888888888888888888888888888888888889
<39> = 3
2 × 7 × 23 × 5479 × 11923 × 451122233 × 4423407508417267301
<19>
17×1039+19 = 1888888888888888888888888888888888888889
<40> = 92657 × 20406289 × 337267556963
<12> × 2962030850053811
<16>
17×1040+19 = 18888888888888888888888888888888888888889
<41> = 13
2 × 15739 × 391722371 × 3722940391
<10> × 4869429862125239
<16>
17×1041+19 = 188888888888888888888888888888888888888889
<42> = 3 × 61 × 710079133 × 16053236911
<11> × 90549479231006381141
<20>
17×1042+19 = 1888888888888888888888888888888888888888889
<43> = 163 × 34176382225590628033
<20> × 339072617910952912691
<21>
17×1043+19 = 18888888888888888888888888888888888888888889
<44> = 1483073 × 2429183 × 5243045786303910615669291761671
<31>
17×1044+19 = 188888888888888888888888888888888888888888889
<45> = 3 × 7 × 79 × 113857075882392338088540620186189806442971
<42>
17×1045+19 = 1888888888888888888888888888888888888888888889
<46> = 55382608778959370879
<20> × 34106173951244135789669191
<26>
17×1046+19 = 18888888888888888888888888888888888888888888889
<47> = 13 × 226169 × 2438083 × 92708669 × 163153763 × 174206379358347137
<18>
17×1047+19 = 188888888888888888888888888888888888888888888889
<48> = 3
2 × 431 × 48695253644982956661224255965168571510412191
<44>
17×1048+19 = 1888888888888888888888888888888888888888888888889
<49> = 53 × 39521 × 45247 × 707647 × 28164118172493804463643744064917
<32>
17×1049+19 = 18888888888888888888888888888888888888888888888889
<50> = 71 × 233 × 1141805530368668856246683726584590998542518823
<46>
17×1050+19 = 188888888888888888888888888888888888888888888888889
<51> = 3 × 7 × 3320791 × 2708604364053321846811409990785025227120499
<43>
17×1051+19 = 1
(8
)509
<52> = 1583 × 1721 × 511871929 × 103752168934868381
<18> × 13055278140241144627
<20>
17×1052+19 = 1
(8
)519
<53> = 13 × 31 × 46870692031982354562999724290046870692031982354563
<50>
17×1053+19 = 1
(8
)529
<54> = 3 × 157 × 4251697 × 207326434673
<12> × 16321195858321
<14> × 27875106950959808159
<20>
17×1054+19 = 1
(8
)539
<55> = 49036228984579
<14> × 38520272215118948211091807023989051951891
<41>
17×1055+19 = 1
(8
)549
<56> = 19 × 1511456197
<10> × 657744530577107906087834874108247631204195623
<45>
17×1056+19 = 1
(8
)559
<57> = 3
3 × 7 × 4624457 × 490162164394267
<15> × 440904038876533656405904122949279
<33>
17×1057+19 = 1
(8
)569
<58> = 79 × 1259 × 18991251735744552024299865162112676213680627470957349
<53>
17×1058+19 = 1
(8
)579
<59> = 13 × 10253 × 141713786500678142148931186286106797176727928702960401
<54>
17×1059+19 = 1
(8
)589
<60> = 3 × 1231 × 630044357 × 790903264388314279
<18> × 102643773598090173216699464191
<30>
17×1060+19 = 1
(8
)599
<61> = 23 × 7242077 × 47860039 × 869082191 × 272634956509325694952341721987943491
<36>
17×1061+19 = 1
(8
)609
<62> = 53 × 391283 × 910834689927841586301980672720106163033805184815029111
<54>
17×1062+19 = 1
(8
)619
<63> = 3 × 7 × 8994708994708994708994708994708994708994708994708994708994709
<61>
17×1063+19 = 1
(8
)629
<64> = 29 × 554378860873338033252118387039
<30> × 117490229541309622726136121038419
<33>
17×1064+19 = 1
(8
)639
<65> = 13 × 1862393047
<10> × 780174440262207976044377625402213494976064229792763499
<54>
17×1065+19 = 1
(8
)649
<66> = 3
2 × 14834189 × 477214142481948133279
<21> × 2964741200902068554417095255184638891
<37>
17×1066+19 = 1
(8
)659
<67> = 373 × 18955394581703
<14> × 267155888351205392891107242065106014062720941840931
<51>
17×1067+19 = 1
(8
)669
<68> = 31 × 9103 × 17530957 × 25094557231
<11> × 152151070914412261338961851154626039411241219
<45>
17×1068+19 = 1
(8
)679
<69> = 3 × 7 × 72997 × 37089929 × 136951043247886846933
<21> × 24258322099943009003792323406695621
<35>
17×1069+19 = 1
(8
)689
<70> = 89 × 9481523 × 8932698501020143568787923
<25> × 250585320811541014977179616465798169
<36>
17×1070+19 = 1
(8
)699
<71> = 13 × 79 × 149 × 17827 × 119159 × 40124771 × 105273583275707996269
<21> × 13756647628981175463757695149
<29>
17×1071+19 = 1
(8
)709
<72> = 3 × 383 × 224209 × 3988777171
<10> × 183820340404802788918285563490388669083821596566745999
<54>
17×1072+19 = 1
(8
)719
<73> = 22891951 × 2025826091587073
<16> × 40730659674502545025398987684909888741879703521943
<50>
17×1073+19 = 1
(8
)729
<74> = 19 × 47 × 59 × 6373 × 44983 × 79811 × 7985716213
<10> × 1962158029319336989742779047663165658211281331
<46>
17×1074+19 = 1
(8
)739
<75> = 3
2 × 7
2 × 53 × 1181 × 224611 × 10168996297
<11> × 252077399795755687021511
<24> × 11884995846231507198031502069
<29>
17×1075+19 = 1
(8
)749
<76> = 179 × 1831 × 17483 × 141023 × 211464413 × 45195876432683
<14> × 244581174452254220619101043185626932751
<39>
17×1076+19 = 1
(8
)759
<77> = 13 × 58693 × 9656909 × 425892580162687237637622004361
<30> × 6019196736640557804539358608567029
<34>
17×1077+19 = 1
(8
)769
<78> = 3 × 1031 × 1404411641
<10> × 192888668974313946634910879
<27> × 225437082337612156824376619047665822307
<39>
17×1078+19 = 1
(8
)779
<79> = 5557879425036665565098330907536533
<34> × 339857838653350744323059224156689004976410133
<45>
17×1079+19 = 1
(8
)789
<80> = 45922307 × 566849837 × 1043444158989089213
<19> × 695417276720150973814973447309824713037489067
<45>
17×1080+19 = 1
(8
)799
<81> = 3 × 7 × 107 × 14324147724152541995851
<23> × 5868600527163593194704055285278902116212934457771975837
<55>
17×1081+19 = 1
(8
)809
<82> = 201923 × 756952152700210117854967005538027
<33> × 12358113897618558440201302251614880943543609
<44>
17×1082+19 = 1
(8
)819
<83> = 13 × 23 × 31 × 360645107296367543828719
<24> × 5650585947444811319002886850748270378109990617148142299
<55>
17×1083+19 = 1
(8
)829
<84> = 3
3 × 79 × 659 × 7649 × 27086599 × 538046909 × 1553595560333
<13> × 21345867518831127172339
<23> × 36349553508754367028739
<23>
17×1084+19 = 1
(8
)839
<85> = 71 × 68657377459057355674781597538761516277707
<41> × 387490315566668163523438761005514656135837
<42> (Makoto Kamada / GGNFS-0.54.5b for P41 x P42)
17×1085+19 = 1
(8
)849
<86> = 1487867 × 690352831111759
<15> × 18389553736207902065935380886253386157908209842953483454012751413
<65>
17×1086+19 = 1
(8
)859
<87> = 3 × 7 × 8994708994708994708994708994708994708994708994708994708994708994708994708994708994709
<85>
17×1087+19 = 1
(8
)869
<88> = 53 × 874293377 × 4440255156529458416593
<22> × 9180480797325830169074151611663698594384539130158344933
<55>
17×1088+19 = 1
(8
)879
<89> = 13 × 82285264406820096581
<20> × 17657978782298521370886750946242482127654493941635593404891062473913
<68>
17×1089+19 = 1
(8
)889
<90> = 3 × 283 × 44676439 × 390764256194093987
<18> × 626202891340045442251
<21> × 20351211706427432367700951454658538624127
<41>
17×1090+19 = 1
(8
)899
<91> = 31019 × 60894577158802311128304874073596469547338369673067761336241944901153773135461777906731
<86>
17×1091+19 = 1
(8
)909
<92> = 19 × 29 × 1061 × 70981 × 685057131086146508216792533
<27> × 664462573953886870942077347228111389895470898321885563
<54>
17×1092+19 = 1
(8
)919
<93> = 3
2 × 7 × 557 × 3499 × 115022279 × 13374721778166193800120684711752699902787058796976052730836348425373376877999
<77>
17×1093+19 = 1
(8
)929
<94> = 4243 × 85549 × 7509233 × 1010800847279
<13> × 820858928366870521
<18> × 835196641362320679949137384318294030730126383641
<48>
17×1094+19 = 1
(8
)939
<95> = 13 × 10840091 × 16389030519502000673189107470125664913
<38> × 8178560442885808673711251377253161550614245494391
<49> (Makoto Kamada / GGNFS-0.54.5b for P38 x P49)
17×1095+19 = 1
(8
)949
<96> = 3 × 1671888433
<10> × 37766034340881167
<17> × 997186706759816867178050895258414137826192764762412107373387733062733
<69>
17×1096+19 = 1
(8
)959
<97> = 79 × 457 × 22669 × 47837 × 515639 × 59211880037
<11> × 984241646822647
<15> × 24681089271480479403980501
<26> × 65049828148797771389327951
<26>
17×1097+19 = 1
(8
)969
<98> = 31 × 41295211 × 225664248613
<12> × 64859031159319147057
<20> × 1008119025954763047155407216041916420578177917236656910369
<58>
17×1098+19 = 1
(8
)979
<99> = 3 × 7 × 8994708994708994708994708994708994708994708994708994708994708994708994708994708994708994708994709
<97>
17×1099+19 = 1
(8
)989
<100> = 1330943 × 510376079 × 2021920955912164864811893
<25> × 1375284254884781399084858873906066854483660771869895058997509
<61>
17×10100+19 = 1
(8
)999
<101> = 13 × 53 × 1231 × 552497726717
<12> × 60803973290601103
<17> × 935546430694151854694482909
<27> × 708600306612795123169532624213598663169
<39>
17×10101+19 = 1
(8
)1009
<102> = 3
2 × 61 × 3215309 × 15332487375247529
<17> × 6979088982677331304317833228577630334626743259405285660218612307200722201201
<76>
17×10102+19 = 1
(8
)1019
<103> = 229 ×
8248423095584667637069383794274623968947113051916545366327025715672003881610868510431829209121785541<100>
17×10103+19 = 1
(8
)1029
<104> = 967 × 419243413 × 388294072070339
<15> × 3483853863083383933281333776629
<31> × 34442367805384471136791529981655708527964058589
<47> (Makoto Kamada / Msieve 1.35 for P31 x P47 / 8.9 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 10, 2008 2008 年 5 月 10 日)
17×10104+19 = 1
(8
)1039
<105> = 3 × 7 × 23 × 265864911884614770878329372513092064450057351103
<48> × 1470951173457249660790510390603202909803884594187358861
<55> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P48 x P55 / 0.65 hours on Cygwin on AMD 64 3400+ /
May 11, 2008 2008 年 5 月 11 日)
17×10105+19 = 1
(8
)1049
<106> = 44939 × 916073 × 2098183 × 21868024953848616152560301205317099427508889968151743691514864075005815205679990595107989
<89>
17×10106+19 = 1
(8
)1059
<107> = 13 × 167 × 2789 × 778574013914318900902142749
<27> × 4006804656620888493002892211152787320583575089272626306585195154823796619
<73>
17×10107+19 = 1
(8
)1069
<108> = 3 × 347 × 383676889 × 44217033793
<11> × 362305867244323
<15> × 714350757258473033
<18> × 339477530862202007600453
<24> × 121731374455696047020899606151
<30>
17×10108+19 = 1
(8
)1079
<109> = 349 × 59538491 × 550475059 × 8409336511
<10> × 19637390813135028673170366994790111691847138371386416968407752230552095754872179
<80>
17×10109+19 = 1
(8
)1089
<110> = 19 × 79 × 113 × 358384834926227
<15> × 966069961747782317
<18> × 321654086505113187872728494778412937221873857262154637851828846726543467
<72>
17×10110+19 = 1
(8
)1099
<111> = 3
4 × 7 × 379 × 17419 × 212794222035968358157
<21> × 236086657658428956781
<21> × 6600650783685691101076223
<25> × 152174853468371186699966773836058337
<36>
17×10111+19 = 1
(8
)1109
<112> = 268319064914547697
<18> × 15512359424088219424189
<23> × 30585645546941266981627861
<26> × 14837453471686768857223433459447769228862569353
<47>
17×10112+19 = 1
(8
)1119
<113> = 13 × 31 × 6491 × 20482984766767
<14> × 352530352018783422543209204676955484949314617799603720230266715900167582084313087418104616279
<93>
17×10113+19 = 1
(8
)1129
<114> = 3 × 53 × 89 × 2220046208670695120267
<22> × 18762080918146736784154405984746413
<35> × 320461795922942801708809319235463489099097846767274609
<54> (Sinkiti Sibata / Msieve v. 1.35 for P35 x P54 / 1.21 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 11, 2008 2008 年 5 月 11 日)
17×10114+19 = 1
(8
)1139
<115> = 354169 × 352129237 × 1810070189597
<13> × 42046165462781387868399401
<26> × 1033513490049827549784655279
<28> × 192555452288027000282662796877462551
<36>
17×10115+19 = 1
(8
)1149
<116> = 4519 × 85206749882772292395357406238644765829
<38> × 49055767028910420725937601905379783432564947652856091509002810221880045139
<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P38 x P74 / 1.05 hours on Cygwin on AMD 64 3400+ /
May 11, 2008 2008 年 5 月 11 日)
17×10116+19 = 1
(8
)1159
<117> = 3 × 7
2 × 31727 × 384587051 ×
105308981160315192638369614061818326468250646439616314787149292764387614748597331804466949376989201031<102>
17×10117+19 = 1
(8
)1169
<118> = 4281909650427032769018797087
<28> × 441132355209902880071236552721657351837840731643013402267304134754392529089208362722593447
<90>
17×10118+19 = 1
(8
)1179
<119> = 13
2 × 1076640391
<10> × 3920283946518380501569
<22> × 1090425439874314503024925117
<28> × 1345379322570070893829387373
<28> × 18050564602821757335694676957279
<32>
17×10119+19 = 1
(8
)1189
<120> = 3
2 × 29 × 47 × 71 × 2417 × 44567363 × 86639197230970329577098695493425102913119
<41> × 23238157441907373887888004008759141749503788540363070255980273
<62> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P41 x P62 / 2.07 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 12, 2008 2008 年 5 月 12 日)
17×10120+19 = 1
(8
)1199
<121> = 199 × 117512005951
<12> × 31364380158197
<14> × 72319984606854705642359
<23> × 35610335184427215455940341592989729009922304216168508754763537066932107
<71>
17×10121+19 = 1
(8
)1209
<122> = 1889 × 3943 × 237089141089579
<15> × 3853394749362998634419
<22> × 135767874043603375605744819973
<30> × 20445394499204348003694862307259940390975630891459
<50> (Makoto Kamada / Msieve 1.35 for P30 x P50 / 10 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 10, 2008 2008 年 5 月 10 日)
17×10122+19 = 1
(8
)1219
<123> = 3 × 7 × 79 × 192736559791549
<15> × 5893375689674476727
<19> × 50527621835560960201471
<23> × 7863547569475822138560281
<25> × 252280927777499956074003399449161279127
<39>
17×10123+19 = 1
(8
)1229
<124> = 163 × 311 × 7883 × 63472806272291900899683391
<26> × 74469629318016059441383744475051923557372363391678056750899361564204943366110914525670641
<89>
17×10124+19 = 1
(8
)1239
<125> = 13 × 10010792089
<11> × 3867416877307
<13> ×
37529573567910078382247736264717676554520734404526429027429203798443014191647147844477347710428849311<101>
17×10125+19 = 1
(8
)1249
<126> = 3 × 97 × 3527 × 3169642646447
<13> × 3815709611003249952027457
<25> × 2023564009703317937632016651871353
<34> × 7519784575053986462805397923095601985475499437171
<49> (Makoto Kamada / Msieve 1.35 for P34 x P49 / 27 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 10, 2008 2008 年 5 月 10 日)
17×10126+19 = 1
(8
)1259
<127> = 23 × 53 × 12660840616025647
<17> ×
122388373928321287111668332429878195062128932145767885879949221505548411008096564492207623178540074136390173<108>
17×10127+19 = 1
(8
)1269
<128> = 19 × 31 × 18379 × 39983 × 4082333 × 10712975491
<11> × 997873118577051000510709181121644811388602737575060104733540781882052165436130149388039616313760431
<99>
17×10128+19 = 1
(8
)1279
<129> = 3
2 × 7 × 2129 × 1014122503663
<13> × 2382942323809
<13> × 582755324419092177474480516888231081140389734701360417312506120890576753117021023577738055270580921
<99>
17×10129+19 = 1
(8
)1289
<130> = 852239 × 273146271888899
<15> × 30492449909076721
<17> × 6729959298046035632672774532523
<31> × 39540756448263316717593054313840418944154669628044642036622503
<62> (Sinkiti Sibata / Msieve v. 1.35 for P31 x P62 / 4.67 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 11, 2008 2008 年 5 月 11 日)
17×10130+19 = 1
(8
)1299
<131> = 13 × 1269019156841201657
<19> ×
1144972040144916940926317113968659366931650437166432843007307417410242094737224876160457617272717282341300916229<112>
17×10131+19 = 1
(8
)1309
<132> = 3 × 59 × 157 × 14045271655963944173807
<23> × 37117300691838920385389089950592039
<35> × 43295356781857972099814736448064893
<35> × 301151923637973034474137280902167609
<36> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=305304914 for P35(3711...) /
May 3, 2008 2008 年 5 月 3 日) (Makoto Kamada / Msieve 1.35 for P35(4329...) x P36 / 2.1 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 10, 2008 2008 年 5 月 10 日)
17×10132+19 = 1
(8
)1319
<133> = 8803 × 29339 × 78461252861251661
<17> × 764434950764564155154419754456677
<33> × 121936753814368589908864502423562855042102683681063541354324629952254041961
<75> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P33 x P75 / 6.63 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 11, 2008 2008 年 5 月 11 日)
17×10133+19 = 1
(8
)1329
<134> = 107 × 227 × 4813 × 685170157317962653049
<21> × 1234014527104641903445029379611028313
<37> × 191100667533990229020460551789426582958270387694681889491226478787821
<69> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P37 x P69 / 7.65 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 13, 2008 2008 年 5 月 13 日)
17×10134+19 = 1
(8
)1339
<135> = 3 × 7 × 409 × 1301 × 12714871233905837021626832695666376227
<38> × 1329457769065054174158179915996114710331432479966297431062804648433587475807882771460823363
<91> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P38 x P91 / 3.82 hours on Cygwin on AMD 64 3400+ /
May 11, 2008 2008 年 5 月 11 日)
17×10135+19 = 1
(8
)1349
<136> = 79 ×
23909985935302390998593530239099859353023909985935302390998593530239099859353023909985935302390998593530239099859353023909985935302391<134>
17×10136+19 = 1
(8
)1359
<137> = 13 × 131 × 683 × 456409592321987984917
<21> × 135271113016603325460958519014799560369771317
<45> × 263033602744615290623211932004282702100555610794776909675214160549
<66> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P45 x P66 / 8.98 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 14, 2008 2008 年 5 月 14 日)
17×10137+19 = 1
(8
)1369
<138> = 3
3 × 1944689 × 8065060301
<10> × 3001660645953381401713
<22> × 148601529651198679556688050910035740797174418655710049121059129667838718912768123266828371719743751
<99>
17×10138+19 = 1
(8
)1379
<139> = 4510061376844003663
<19> × 31840264865105550282268277463062426428832090106619
<50> × 13153680477112431114501007873566580075045768560448657392843078514243637
<71> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P71 / 13.84 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 13, 2008 2008 年 5 月 13 日)
17×10139+19 = 1
(8
)1389
<140> = 53 × 193 × 24763 × 2360119705529
<13> × 57146941923551
<14> × 1813455753862241
<16> × 1409539433849391386157353863
<28> × 216301113600834997321151988780206741612128022417052570696441151
<63>
17×10140+19 = 1
(8
)1399
<141> = 3 × 7 × 3023 × 7121 × 142888091809
<12> × 959922253880171
<15> × 43808521896921204679
<20> × 887678841787165579554448685089
<30> × 78336004908801861872486359113613068126829797389465976247
<56> (Sinkiti Sibata / Msieve v. 1.35 for P30 x P56 / 51.98 minutes on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 11, 2008 2008 年 5 月 11 日)
17×10141+19 = 1
(8
)1409
<142> = 109 × 223 × 1231 × 9920880509
<10> ×
6363071146350287524561055862580531472128148049294433804065308379772388182804098462170968806651614911283662620340912960769713<124>
17×10142+19 = 1
(8
)1419
<143> = 13 × 31 × 664121 × 1807595974287713487169417
<25> × 2064679961982390766828576564307
<31> × 165068032362383046164721138618260190017
<39> × 114561072250177202332934480288322533588561
<42> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2910867484 for P31 /
May 4, 2008 2008 年 5 月 4 日) (Makoto Kamada / Msieve 1.35 for P39 x P42 / 13 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 10, 2008 2008 年 5 月 10 日)
17×10143+19 = 1
(8
)1429
<144> = 3 × 899753171 × 82020986669
<11> × 651294001984968690031508343706506092549381
<42> × 1309965033693254983247199110421891812341830657407559148798183964348719311977188577
<82> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P42 x P82 / 7.26 hours on Core 2 Quad Q6700 /
May 13, 2008 2008 年 5 月 13 日)
17×10144+19 = 1
(8
)1439
<145> = 27437 ×
68844585373360385205703571414108280383747818234095888358380613364758861715526073874289787108243936614385278597838280019276483904540907857597<140>
17×10145+19 = 1
(8
)1449
<146> = 19 × 1345320680927
<13> × 3418229979015433
<16> ×
216185077981190809154843053678573920983799523598058069250040542096029379378774110444647040536100893614696824270050741<117>
17×10146+19 = 1
(8
)1459
<147> = 3
2 × 7 × 171598487 × 3210829111399465992677672913074119450171
<40> × 5441707777847825911517573089597079709549116073352279752874414335353976222031085839213018547986339
<97> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P40 x P97 / 6.41 hours on Cygwin on AMD 64 X2 6000+ /
May 14, 2008 2008 年 5 月 14 日)
17×10147+19 = 1
(8
)1469
<148> = 29 × 811393638548234794139
<21> × 17702986162478693428127
<23> × 38363237872610521585387
<23> × 4349156966878814739797567495532926740379
<40> × 27177527809746367315985145016239189155489
<41> (Makoto Kamada / Msieve 1.35 for P40 x P41 / 16 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin /
May 10, 2008 2008 年 5 月 10 日)
17×10148+19 = 1
(8
)1479
<149> = 13 × 23 × 79 × 2579 × 125681550014263882017357848163817899931
<39> × 20778615782132915248991027933944063474034054154181
<50> × 118732236759698250781220009050291048271486353167257761
<54> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P39 x P50 x P54 / 10.43 hours on Cygwin on AMD 64 X2 6000+ /
May 13, 2008 2008 年 5 月 13 日)
17×10149+19 = 1
(8
)1489
<150> = 3 ×
62962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963<149>
17×10150+19 = 1
(8
)1499
<151> = 12599100967
<11> × 232362627870787
<15> × 12255622955186676467421637879285692660200973908309
<50> × 52645976406605495742233878007732625356159233240897545278160906703716316402849
<77> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P77 / 27.02 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 15, 2008 2008 年 5 月 15 日)
17×10151+19 = 1
(8
)1509
<152> = 1999 × 23053 × 136739 × 3036797 × 10115327 × 241307805079199
<15> × 16052814829035632996593744878571920614918011
<44> × 25191586207757365324351562684284330771481754244914451059244679310463
<68> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P44 x P68 / 34.49 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
May 17, 2008 2008 年 5 月 17 日)
17×10152+19 = 1
(8
)1519
<153> = 3 × 7 × 53 × 7687 × 14567771 × 58748377 ×
25796773320316253375174805423570383630676957156074328198969690334934272247454908061129602575999091335177864765450889924798528973757<131>
17×10153+19 = 1
(8
)1529
<154> = 8315732151466041231689611
<25> × 28541740403377503460449760464851
<32> × 7958394580567082714146906680978421208589815943507370321952161983111345260926063331099333458135849
<97> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3732616468 for P32 x P97 /
May 4, 2008 2008 年 5 月 4 日)
17×10154+19 = 1
(8
)1539
<155> = 13 × 71 × 140600607147819071282411043598609766109102241498072762816470647254054550719
<75> × 145551777955531635886729066649473155038928609925267339235336817734887886875397
<78> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.35 for P75 x P78 /
May 12, 2008 2008 年 5 月 12 日)
17×10155+19 = 1
(8
)1549
<156> = 3
2 × 233707265677436331129169
<24> × 7432798877836175924862195765978994856188367
<43> × 12082013223071163764032145160054775612064289873932471918156403070758301397897940923198927
<89> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P43 x P89 / 15.92 hours on Core 2 Quad Q6700 /
May 14, 2008 2008 年 5 月 14 日)
17×10156+19 = 1
(8
)1559
<157> = 1570653419
<10> × 413097321610859
<15> × 67407421335827431871
<20> × 1683915841330240179281702206131814655635817
<43> × 25647531544462176640389814319070297296091174784612085044944710867824487
<71> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P71 / 18.48 hours on Cygwin on AMD 64 X2 6000+ /
May 15, 2008 2008 年 5 月 15 日)
17×10157+19 = 1
(8
)1569
<158> = 31 × 89 × 4993 × 10389319827483729125541276705287706636888901647006845589895676437721
<68> × 131979363484273526432917168541620540675529931962287016158799908174443540210525526807
<84> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.35 for P68 x P84 /
May 13, 2008 2008 年 5 月 13 日)
17×10158+19 = 1
(8
)1579
<159> = 3 × 7
2 × 5088556838519157777959041
<25> × 773952255048761259605344760131
<30> × 16713340926956566201930088601647275580275612424791
<50> × 19521671710027297651795646344507570669558565769398567
<53> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=243551441 for P30 /
January 24, 2008 2008 年 1 月 24 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P50 x P53 / 4.34 hours on Core 2 Quad Q6700 /
May 13, 2008 2008 年 5 月 13 日)
17×10159+19 = 1
(8
)1589
<160> = 293 × 337 × 219251 × 57322599431
<11> × 188719078795349
<15> × 410507363263033613
<18> ×
19647381232688181069953412880786333001963995006765962485680314568866134968856168825138669535694122127112257<107>
17×10160+19 = 1
(8
)1599
<161> = 13 × 2776731921313909477
<19> × 23804872312724088177544609
<26> × 3019027540589841111615402443598033601002863914943
<49> × 7281086248778730252929784206334560094320704875958402009234594411847
<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P49 x P67 / 24.37 hours on Core 2 Quad Q6700 /
May 15, 2008 2008 年 5 月 15 日)
17×10161+19 = 1
(8
)1609
<162> = 3 × 61 × 79 × 8706050959
<10> ×
1500745417916258090989490493767475717512129544715721072507713947390730301897218198488810039578597386678761980212833002274340278594872755432317174703<148>
17×10162+19 = 1
(8
)1619
<163> = 20652191611
<11> × 144101210699
<12> × 5984739686749
<13> ×
106054077707332959834477590523831260091466621273728154641273464914261056779373230635013470774678572241790470207808616386372200549<129>
17×10163+19 = 1
(8
)1629
<164> = 19 × 709 × 8221 × 9161 × 1458485858955241
<16> × 3449519123911918627
<19> × 1551277918048891382239
<22> × 2385550717872165710704324429964096591491184725629155390101673494162202519321540712155740250065343
<97>
17×10164+19 = 1
(8
)1639
<165> = 3
3 × 7 ×
999412110523221634332745443856554967666078777189888300999412110523221634332745443856554967666078777189888300999412110523221634332745443856554967666078777189888301<162>
17×10165+19 = 1
(8
)1649
<166> = 47 × 53 × 491 × 90533 × 2471429458963
<13> ×
6902335440126428277953380170495095494993981823725928309142904116509016143497206507835032151531572432240421687672249705006603164887080609793711<142>
17×10166+19 = 1
(8
)1659
<167> = 13 × 745033 × 7085413956200779
<16> × 671347539145262415473123
<24> × 878173932625410668935107562634861
<33> × 466868291565041584191404564367635894529401621360028875543317445660814498485125130692393
<87> (Robert Backstrom / GMP-ECM 6.1.3 B1=160000, sigma=1450624037 for P33 x P87 /
May 15, 2008 2008 年 5 月 15 日)
17×10167+19 = 1
(8
)1669
<168> = 3 × 439 × 1869749428162746085682491
<25> × 163609302509880042320150939
<27> × 67491671682398385317058511254298691184136924241
<47> × 6946708088484961654717938698979654691930307591413856517996301354013
<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P47 x P67 / 17.62 hours on Core 2 Quad Q6700 /
May 16, 2008 2008 年 5 月 16 日)
17×10168+19 = 1
(8
)1679
<169> = 1722973771
<10> × 441744465139454537703640231879
<30> × 62067659878874716493548893843727505309
<38> × 39984462054234271226059897447734856516947654297265965031547710425930629429688197202520858369
<92> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2835558633 for P30 /
May 5, 2008 2008 年 5 月 5 日) (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3404844789 for P38 x P92 /
November 24, 2008 2008 年 11 月 24 日)
17×10169+19 = 1
(8
)1689
<170> = 2286095969
<10> × 61583159712948473
<17> × 2904146275484962375815593435366057290811
<40> × 67503164136279247648768712027109846191861011687973
<50> × 684395851991037539017805425656538836579993071788064599
<54> (Serge Batalov / Msieve-1.38 snfs for P40 x P50 x P54 / 40.00 hours on Opteron-2.2GHz; Linux x86_64 /
October 18, 2008 2008 年 10 月 18 日)
17×10170+19 = 1
(8
)1699
<171> = 3 × 7 × 23 × 37501 × 1307923 × 46512393772229041
<17> × 4807025903651954567691869159809598947
<37> ×
35660637429904587067911820002302375560227157892722747763245437688750495106878532185673868322404000400823<104> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3211483261 for P37 x P104 /
November 24, 2008 2008 年 11 月 24 日)
17×10171+19 = 1
(8
)1709
<172> = 118169 × 2195497105725655013341867
<25> ×
7280647129906611758549904310937540808730874435121278419547318218039318603618111739883591741734675072654235394141584688875578698147071871855843<142>
17×10172+19 = 1
(8
)1719
<173> = 13 × 31 × 1294930917291103
<16> × 95733537760783307072873
<23> × 28198772682730763179964335972104682666986317
<44> × 13407890389895255782844265904350316871715693706791070361946333164750439404987154252563881
<89> (Sinkiti Sibata / Msieve 1.40 snfs for P44 x P89 /
May 20, 2010 2010 年 5 月 20 日)
17×10173+19 = 1
(8
)1729
<174> = 3
2 × 1631177846377
<13> × 29848584708034065277
<20> × 2375567706293982739150669
<25> × 750117892989274144279381739
<27> × 241903363276684909035441370958035543558858328855923576798341161083494928075756298023739539
<90>
17×10174+19 = 1
(8
)1739
<175> = 79 × 37199 ×
642758835863931584144561150544365691363313798379937697007946276250412641720288822548615159073926680650830374468651120296512969039554584762857341302181761687784886312409<168>
17×10175+19 = 1
(8
)1749
<176> = 29 × 22159530881744894279825531
<26> × 2287564939848348677181525097281935232755346862538152059229
<58> × 12849150624318225454983169816119634350749402321098929041720770220926407296469930333593909059
<92> (Warut Roonguthai / Msieve 1.47 snfs for P58 x P92 /
October 7, 2011 2011 年 10 月 7 日)
17×10176+19 = 1
(8
)1759
<177> = 3 × 7 × 60029 × 2153839 × 3235763626157
<13> × 68181036311913829222864062536130551017520299
<44> ×
315335151171449764650343824165775166487259848468133210842854523606712803082614231562952909525982326434030073<108> (Wataru Sakai / GMP-ECM 6.3 B1=3000000, sigma=1240119315 for P44 x P108 /
September 26, 2011 2011 年 9 月 26 日)
17×10177+19 = 1
(8
)1769
<178> = 157396778066711
<15> × 2438952335284021
<16> × 22481529999754860082224808568758676294687942518354009
<53> × 218867560239018844971929959113379123233286508627651093680088190635935075487365718173216188471691
<96> (Dmitry Domanov / Msieve 1.50 snfs for P53 x P96 /
May 13, 2013 2013 年 5 月 13 日)
17×10178+19 = 1
(8
)1779
<179> = 13 × 53 × 21383 × 739980681469
<12> × 1614311919025664294729
<22> × 72014409339636094720086892102083214767445086752450720039
<56> × 14903604461131208532937779991018960656826888693779685633461956797277867722455733573
<83> (Dmitry Domanov / Msieve 1.50 snfs for P56 x P83 /
May 13, 2013 2013 年 5 月 13 日)
17×10179+19 = 1
(8
)1789
<180> = 3 × 2743807290418847
<16> × 3561264681645949
<16> ×
6443581097780453251820240170726771856391204791840372691404252568605272480701111291479143215154140469912341893186944662956633419996769485195277728721<148>
17×10180+19 = 1
(8
)1799
<181> = 419 × 619 × 1031 × 11047 × 36990851 × 151697470590658823501920640983210298205869697881557467332199299
<63> × 113953077508775119110951706395076064124225984752728139265411216672447466696317445592474937465880193
<99> (Dmitry Domanov / Msieve 1.50 snfs for P63 x P99 /
May 13, 2013 2013 年 5 月 13 日)
17×10181+19 = 1
(8
)1809
<182> = 19 × 44839 × 48731 × 1008779 × 12003314779
<11> × 5830558817883227437007237
<25> × 758822763085731218605641418771
<30> × 242103400334044748484073044835249209568097447
<45> × 35078653987811118622758840608304843178836958530915817471
<56> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=2130668955 for P30 /
June 16, 2008 2008 年 6 月 16 日) (Sinkiti Sibata / Msieve v. 1.36 for P45 x P56 / 21.41 hours on Pentium 4 2.4GHz, Windows XP and Cygwin /
June 20, 2008 2008 年 6 月 20 日)
17×10182+19 = 1
(8
)1819
<183> = 3
2 × 7 × 1231 × 832014015458685569
<18> × 221620344427691306893
<21> × 22565235604128037877625327726444040282248020112752989
<53> × 585366237221547980749912109297547164040254928422579620101481420209000534294309356448401
<87> (Dmitry Domanov / Msieve 1.50 snfs for P53 x P87 /
June 3, 2013 2013 年 6 月 3 日)
17×10183+19 = 1
(8
)1829
<184> = 319747 × 42064223 × 173393162713
<12> × 139767067761204436361
<21> ×
5794957298391765686088964776881086659021163721102908520748032946182612933529255499187930556319653602298906617006034806509755814988575148333<139>
17×10184+19 = 1
(8
)1839
<185> = 13 × 257 × 314450540959
<12> × 3451394725393
<13> × 21370262564387263
<17> × 135277056908922227124923
<24> ×
1801975802134421621013624223497811951954185202253183263879379044827802258177994122224214916537182203294704823959723383<118>
17×10185+19 = 1
(8
)1849
<186> = 3 × 75931 × 49452800414894717
<17> ×
16767763807837814850247143242185008122470302385036938763942439735592811777022833799179269432794177342334154435860356852685838675675720398066617792198270498699483869<164>
17×10186+19 = 1
(8
)1859
<187> = 107 × 479 × 2381 × 4423 × 124739 × 17843684464119244352679970585661
<32> × 358610552729805566257011087607215547839210760222898377472777
<60> × 4384306706360374160661688714839358963390028660058737150290305337240839725375297
<79> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=2103242167 for P32 /
October 13, 2010 2010 年 10 月 13 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P60 x P79 /
October 30, 2016 2016 年 10 月 30 日)
17×10187+19 = 1
(8
)1869
<188> = 31 × 79 × 130843 × 1593572820774525571
<19> × 401251035354215913304376507788636619
<36> ×
92188989279893202082354946018460873053454431002569165645589484601320584026838530371839708831527792712289968067038874734127723<125> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1041092898 for P36 x P125 /
March 26, 2013 2013 年 3 月 26 日)
17×10188+19 = 1
(8
)1879
<189> = 3 × 7 × 495608171 ×
18148831115032190841330396456899809081224185455790224873017093567468633823219813288165086989646724356990060014556759587220354179743152367657382123739660851372433706293169639265279<179>
17×10189+19 = 1
(8
)1889
<190> = 59 × 71 × 1617391 × 12524207 × 3607698986231981
<16> × 370127884625109553441
<21> × 1756706333511604963524042522871
<31> × 668814360582016023721300568011912207
<36> × 14188743452434643875801927553951755349395681019380535143529908397628329
<71> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1009539771 for P31, Msieve-1.36/gnfs for P36 x P71 /
August 5, 2008 2008 年 8 月 5 日)
17×10190+19 = 1
(8
)1899
<191> = 13 × 649123 × 707912267722698978623
<21> × 24592951456281913764228758669239
<32> × 7213700843439887344632470841269291957
<37> × 17823288757233023573682324129309601544137069773637839144377564166930756298795605248649159083659
<95> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=1152808808 for P32 /
June 16, 2008 2008 年 6 月 16 日) (Wataru Sakai / GMP-ECM 6.2.1 [powered by GMP 4.2.4] B1=3000000, sigma=87697117 for P37 x P95 /
April 17, 2009 2009 年 4 月 17 日)
17×10191+19 = 1
(8
)1909
<192> = 3
5 × 53
2 × 5637641 × 6211305771103972675890907488420449093598611
<43> ×
7902564931763559765946083135651247960259094786230003392039155478714927041194749332642316368517113005666468881915489444696977027160982897<136> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1509936673 for P43 x P136 /
May 7, 2013 2013 年 5 月 7 日)
17×10192+19 = 1
(8
)1919
<193> = 23 × 1948662034201098323710903730958276574627075333548724371561250262056978094886490485343891106957
<94> × 42144611237527240110223119654035423284203139603203167827807897848137401763143004307433958811849899
<98> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.36 snfs for P94 x P98 / 177.74 hours, 7.98 hours /
August 25, 2008 2008 年 8 月 25 日)
17×10193+19 = 1
(8
)1929
<194> = 22542178234267
<14> × 11980646372633070109024401282997
<32> × 1069473181130128938338389338052085463811162687
<46> × 8206248302261205730784397605798480793972179520893
<49> × 7969218440116613052512756988587066487139277622134522021
<55> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1906493851 for P32 /
May 8, 2008 2008 年 5 月 8 日) (Jo Yeong Uk / GMP-ECM v6.4.4 B1=11000000, sigma=931895716 for P46, GGNFS/Msieve v1.39 gnfs for P49 x P55 /
February 14, 2017 2017 年 2 月 14 日)
17×10194+19 = 1
(8
)1939
<195> = 3 × 7 × 69997 × 6219806000331726087886510092395369514702995314880584167043695732640630803843139
<79> ×
20660025405200278553802759449425478696086412569232603141896247759522318661877897698801706439669956649515781123<110> (Robert Backstrom / Msieve 1.42 snfs for P79 x P110 /
February 25, 2010 2010 年 2 月 25 日)
17×10195+19 = 1
(8
)1949
<196> = 626987 × 6054774813189939559
<19> ×
497565064931818330434462497404790521830617300974397485242796284893679591038532724483959558303646546903389324745230096980679553100272525970109346257371300892030595512907933<171>
17×10196+19 = 1
(8
)1959
<197> = 13
2 × 1567 × 76185120133903791191690400321137479269091823110582049300522285191069163
<71> ×
936225690358746416834066797014232431566481342739412821308251213266451379641923167403248207342648269437398079244571833261<120> (matsui / Msieve 1.42 snfs for P71 x P120 / 985.18 hours /
October 15, 2009 2009 年 10 月 15 日)
17×10197+19 = 1
(8
)1969
<198> = 3 × 1783 × 3413 × 1828331 × 6389137 × 1191119701679
<13> × 8815252852432204901
<19> × 8565845295493745491035861955009586690156942363923687703
<55> × 9847819812486412742847500446219188984060153282672500651279817858195974233935843389438565023
<91> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=6385524368 for P55 x P91 /
November 16, 2017 2017 年 11 月 16 日)
17×10198+19 = 1
(8
)1979
<199> = 2017966990561113252691
<22> × 215242113001343605126117912970385162629281437777389
<51> ×
4348756664006189598933164529666845116060794707257788339132572571686441282737580420269145567715153152885001089965105362203372911<127> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=5114197046 for P51 x P127 /
March 11, 2018 2018 年 3 月 11 日)
17×10199+19 = 1
(8
)1989
<200> = 19 × 11426677 × 123255622367
<12> × 141857715300391
<15> × 5138161329524717989941204310400876953401360087726965357
<55> ×
968423731684091504254452860434926485292499218152567072454501235976859995144895145021083361879368400233852924907<111> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P55 x P111 /
April 27, 2018 2018 年 4 月 27 日)
17×10200+19 = 1
(8
)1999
<201> = 3
2 × 7
2 × 79 × 253537 × 706539269 ×
30266561120469566889258876289269262997466169901539877739359691139044939200711145394186472737428848999280383175714582613187551534616927834528754299489982403373313874464679854909115267<182>
17×10201+19 = 1
(8
)2009
<202> = 89 × 2137 × 664494379908102297547515921499
<30> × 381798419479901036784330126856385776090069049140778717
<54> ×
39145914638167675973277328422212689205565406124151478878225660040822301252120287925284757716843297756281970529831<113> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1533045033 for P30 /
March 20, 2013 2013 年 3 月 20 日) (Bob Backstrom / Msieve 1.54 snfs for P54 x P113 /
January 28, 2022 2022 年 1 月 28 日)
17×10202+19 = 1
(8
)2019
<203> = 13 × 31 × 937 ×
50022083278529727388473558473902743534719298137207043462422675422296725701552361792661995781078646779063345318035991771661548230557078286620063739903998794762040536130803628307673475849191069351499<197>
17×10203+19 = 1
(8
)2029
<204> = 3 × 29 × 1171 × 41413429357914119033054676216235814138559479350911267190782911787977335117814367352357585200187
<95> ×
44770203583531307121432372698332202945554954635361133528444958227426291358451909836704458042584462172111<104> (Bob Backstrom / Msieve 1.54 snfs for P95 x P104 /
April 20, 2021 2021 年 4 月 20 日)
17×10204+19 = 1
(8
)2039
<205> = 53 × 163 × 797 × 6408139 × 118782585957808715703034365104200767748279496200997721858138396895967419092960601
<81> ×
360412559892697729100078164652817983435443151918673333758172257040147449799670395158152441817288904920541966497<111> (Bob Backstrom / Msieve 1.54 snfs for P81 x P111 /
July 28, 2021 2021 年 7 月 28 日)
17×10205+19 = 1
(8
)2049
<206> = 1801 × 7214542547
<10> × 120514181028299
<15> × 614911790246954598472289863
<27> × 870208017709335049296397281857472133
<36> ×
22542903178676497475841204342213874234522048029993493023075523671863022681336173408789249011050392285416562923975147<116> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2125781496 for P36 x P116 /
March 26, 2013 2013 年 3 月 26 日)
17×10206+19 = 1
(8
)2059
<207> = 3 × 7 × 719 × 376031394620195482453
<21> × 263207669692109260491068474299
<30> × 392799512476153551931343038196838174539
<39> ×
321784144621083185378665197882184634826630173970428622411039550740558901044553058458120963458676222024295459358967<114> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3428541439 for P30 /
March 20, 2013 2013 年 3 月 20 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1517897480 for P39 x P114 /
March 27, 2013 2013 年 3 月 27 日)
17×10207+19 = 1
(8
)2069
<208> = 17851 × 9600819523
<10> × 121827477158656229
<18> × 198905230226672765541195255907730525908112983000056815278261524251513197
<72> ×
454824763338798732012937113194572982343579475328422314784650963416565769676776543455797513594142499116361<105> (Bob Backstrom / Msieve 1.44 snfs for P72 x P105 /
September 5, 2024 2024 年 9 月 5 日)
17×10208+19 = 1
(8
)2079
<209> = 13 × 83993627 × 20362095313685673503
<20> × 396434870057780516959827293483
<30> ×
2143001182383065446242637904810379105659183615429410550568607626752088436868378031579699712519001680067970625593416326211977317858600745507779538250411<151> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2019759384 for P30 x P151 /
March 20, 2013 2013 年 3 月 20 日)
17×10209+19 = 1
(8
)2089
<210> = 3
2 × 157 × 461801 × 17667470953174821323621217357347267258287960424191
<50> × 652773565693256310112917841394853723109919445438433026292710849084257
<69> × 25099925700975778456838682054451388003357644279498478274497801462020776295479126019
<83> (Bob Backstrom / Msieve 1.54 snfs for P50 x P69 x P83 /
September 28, 2020 2020 年 9 月 28 日)
17×10210+19 = 1
(8
)2099
<211> = 22101889 × 35953235692995250305713
<23> ×
[2377053939150813754730181079943839814552845539398702371519678873894718281467048766408390248627575285783660723766738337731774222499676824158661531839076428423274916042595164544688777<181>]
Free to factor
17×10211+19 = 1
(8
)2109
<212> = 47 × 159407 × 16459582227839
<14> × 594955433947835535628868341
<27> × 1371432295184649020534530898671019
<34> ×
187725621099405591051527295593291009513572475254315730565837897685261141892559762409117898808289406912998234272069394869797765885761<132> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2255931095 for P34 x P132 /
March 26, 2013 2013 年 3 月 26 日)
17×10212+19 = 1
(8
)2119
<213> = 3 × 7 × 531043 × 38083071233
<11> × 212371954349
<12> × 1513774592434065471079
<22> × 72691000705676353641680769463
<29> ×
19032088155647825036892226305932685116129292784290156645677574326310304337640094990567985696190628747213892387364242374730146796938307<134>
17×10213+19 = 1
(8
)2129
<214> = 79 × 269 × 761 × 995409406304210307766133
<24> ×
[117338530098925177052050272034210597926731768481400786033665737239926395332584744005265878151509887404848295683018444292549632580306502994068317402978362407509046436849607957349169503<183>]
Free to factor
17×10214+19 = 1
(8
)2139
<215> = 13 × 23 × 864641 ×
73063319267084257661145993237376929517970411393733654196315176044234744294376985361124895688197481759152466115391115226432653725800723275372593262405586122948991267850721105585413933945415445427790335148971<206>
17×10215+19 = 1
(8
)2149
<216> = 3 × 181 × 947 × 313711 × 1338329398477
<13> × 1735602967871
<13> × 512114121201427
<15> × 1777148178032629
<16> ×
[553889410366465518194520916421253630749041671407487143871732905630783501060776574859470363473754702205300396413735282231343621238306285062856168144879<150>]
Free to factor
17×10216+19 = 1
(8
)2159
<217> = 7303327218259544296977402097
<28> ×
258634021513694404429008672324997081343469892744973438838354428465317464244071180106874745941485102843656158345402342671183423444109680001015981740766110240610735240083375169573697596692937<189>
17×10217+19 = 1
(8
)2169
<218> = 19
2 × 31 × 53 × 45353353 × 5859797853547262896927
<22> ×
[119831118223154605188314236715819103636462719877795967830287405335535396923567548735464861036441764628827065046029289943427561628996078200215615303147477666659629133084041562990170053<183>]
Free to factor
17×10218+19 = 1
(8
)2179
<219> = 3
3 × 7 × 149 × 6627727 × 7592987 × 617207244059320841
<18> × 1231692616632154496621773
<25> ×
175326562922899313757228609818219605030571433794072534742591025763319225263908225007407108688563045478538744374978371736162024821681864178189381629649984319457<159>
17×10219+19 = 1
(8
)2189
<220> = 199 × 2683 × 513322637 × 1990716551
<10> × 2001019739
<10> × 1148802121589
<13> × 25894044546589
<14> × 51439706708149
<14> × 74596112138381123
<17> × 308001609187925399
<18> × 9354407827962800218199629620076605287
<37> × 5260806934919029928553294064518435109017521769376315829313970799361655286539
<76> (Dmitry Domanov / YAFU 1.34 for P37 x P76 /
March 29, 2013 2013 年 3 月 29 日)
17×10220+19 = 1
(8
)2199
<221> = 13 × 3967 ×
366269587343446682997981208215642296811946421222952606869924742372435843572722826567041338909249168891215778032011961933817240094023557598047136741364117214886057840431422483350892728255975041959413020668377361092259<216>
17×10221+19 = 1
(8
)2209
<222> = 3 × 61
2 × 97 × 113 × 322583 × 29677832586369837052129
<23> × 269483672171061551276793836018841327423984114833
<48> ×
598369151371779817384347667947208057980943823998354334827774735742535559757247251658643799350749147467093557724576610726621665167467641533<138> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P48 x P138 /
May 6, 2021 2021 年 5 月 6 日)
17×10222+19 = 1
(8
)2219
<223> = 14459680362592528005140383149253
<32> × 1517204539523689328346796670108215944749232704082542600316061637846588886822160763
<82> ×
86100086087291352438218636135881656763774050140718353224701709744849055294743177610709219540044394697814757151<110> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4004026986 for P32 /
March 25, 2013 2013 年 3 月 25 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P82 x P110 /
July 14, 2020 2020 年 7 月 14 日)
17×10223+19 = 1
(8
)2229
<224> = 1231 × 2570429 × 50018817251859480224405911
<26> ×
[119346401412713343836417216533813846599516021328366675109013712913696656268481091744650268342546823164722229919838947905329702103301084628406868699220790952908801288579026481939366201621301<189>]
Free to factor
17×10224+19 = 1
(8
)2239
<225> = 3 × 7 × 71 × 349 × 839 × 2591 × 24501906288188511131
<20> ×
[6815129195133275413849028982144206085709211044978676839020221641687911083124832634353736747410460192917150862371710816990047447909948343781157698020478559730765548216101997473748826858430132309<193>]
Free to factor
17×10225+19 = 1
(8
)2249
<226> = 3947 × 206897 ×
[2313050379733542068659770829164629782596866943245420695549213261215105631681982541321324214142007682510834408595280734115700936029349260021868794682377072473938521557229041246450569257352361024017450993089682938647771<217>]
Free to factor
17×10226+19 = 1
(8
)2259
<227> = 13 × 79 × 613181 × 22647613 × 738073235273819
<15> ×
1794425312809839064776163466989337780706244440309090672289383564659532609234084090392580660221514978156595548315019851062559839475995801086951672631726781243524113430961270182963438178334081984801<196>
17×10227+19 = 1
(8
)2269
<228> = 3
2 × 1019 × 1621 × 28810230393685749809
<20> × 20659614687686810641033231078271480319559
<41> ×
[21347044473430398046413579006739258304666394172682794203876935616917118629215660765066580920616707664341164551951883946999500911407390828449427018735610216115809<161>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=56021431 for P41 /
May 6, 2013 2013 年 5 月 6 日)
Free to factor
17×10228+19 = 1
(8
)2279
<229> = 302926903 × 5655297757
<10> × 489734868142060471237069882875870654461
<39> ×
2251396907443974268728844480942602457297381476445759923660109786489709143214325793682122780448681139108113909746671959038890869554598833819380534717052545913506121958062519<172> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2682315662 for P39 x P172 /
March 26, 2013 2013 年 3 月 26 日)
17×10229+19 = 1
(8
)2289
<230> = 3931 × 222186649 × 522152181977699164081
<21> ×
[41417922575230885500330109425987783327885427092612452148851974510107223785193294174167322994043427345042539631813935849069571854911246132416458848942701015336891451306576587519828347459978703250851<197>]
Free to factor
17×10230+19 = 1
(8
)2299
<231> = 3 × 7 × 53 × 283 × 680503 × 103900737299
<12> × 26906398945762205237
<20> ×
[315224933138629847214096844904467555662063427416887920412311599052077493150221001073612211374962106390250735669941741378992447783072449907221249698899383108938001710368190529861815794301419<189>]
Free to factor
17×10231+19 = 1
(8
)2309
<232> = 29 × 227673875041222741021384238591253731
<36> × 444110675968044926492555891157046499669659
<42> ×
644175200610885112531600691793575278582485775153378982148749518758917391610550046241734716648014744484180815377033302832305413177116610310422094526796829<153> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3357104581 for P36 /
May 8, 2013 2013 年 5 月 8 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2781134963 for P42 x P153 /
May 8, 2013 2013 年 5 月 8 日)
17×10232+19 = 1
(8
)2319
<233> = 13 × 31 × 487 × 911 × 2539 × 1145959095341297
<16> ×
[36309662390694851429604677149464931588003446079149316678086964375422963665047220438391227319655488598983668543773893871992653513966034039630705815416825119911439845967725285162478562626955153664089695409873<206>]
Free to factor
17×10233+19 = 1
(8
)2329
<234> = 3 × 470359 × 3212647 × 71410430627291952874483687789510421891749379
<44> × 574915781899566530208568596168118135461212237
<45> ×
1014908307984268026761160343733277618867697354835161601217831108203881551920465980087381004634556898285924804233497553760574923082997<133> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2609461639 for P45, B1=3000000, sigma=230195030 for P44 x P133 /
March 26, 2013 2013 年 3 月 26 日)
17×10234+19 = 1
(8
)2339
<235> = 37699 × 1079173 × 684369199 ×
67841439621409196678205286413534540157502498807998913226146081948796694539330004550540140616462949886529595527484271763487527912655226604460535066392171037418728684048454196440147045058430305096313400101278055406393<215>
17×10235+19 = 1
(8
)2349
<236> = 19 ×
994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625731<234>
17×10236+19 = 1
(8
)2359
<237> = 3
2 × 7 × 23 ×
[130358101372594126217314623111724560999923318763898474043401579633463691434705927459550647956445057894333256652097231807376734912966797024768039260792883981289778391227666589985430565140710068246300130358101372594126217314623111724561<234>]
Free to factor
17×10237+19 = 1
(8
)2369
<238> = 140453 × 34173005961461
<14> ×
[393543016054326041767085505631983684728342959048328707962030757936582865457482998690382976327733149937006401804596654988862244930172888895679475539771683177299991157754361177539807926348031477076638351458382548979834833<219>]
Free to factor
17×10238+19 = 1
(8
)2379
<239> = 13 × 34319080519
<11> ×
42337715084966696728329426400372058040597047762398793987718125700506708014609074410192329531070542286268791147067137221149540537694481143667524825535709830753609633238072038670430657903357011307141758595652339174285191256217787<227>
17×10239+19 = 1
(8
)2389
<240> = 3 × 79 × 107 × 1889 × 35897 × 2108461159725456806269453
<25> × 225432355754219984884464461341
<30> ×
231101263896180047195138317530603450236219859278339165704166071136378598307078505159469016667859795108586132075456937990460078778553466752492619528176301102647550093571475719<174> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1215727311 for P30 x P174 /
March 22, 2013 2013 年 3 月 22 日)
17×10240+19 = 1
(8
)2399
<241> = 222073 × 406833456346711
<15> × 62237538315826963
<17> ×
[335924427287431166990847743335324732704029478406801084728877639083751552814880627998987475647500164711291913209990221198901776425185535307566778215341498632427888418803728461949427491048124059252785644701<204>]
Free to factor
17×10241+19 = 1
(8
)2409
<242> = 86168999782499107673
<20> ×
[219207475270302665284829858901760364126255060607292695282230461493610432645268846083294386227286342665615795174605903750900367014494714389319664979179552975073791471647647328428723830522971797809940628119235454231956596193<222>]
Free to factor
17×10242+19 = 1
(8
)2419
<243> = 3 × 7
2 × 593 × 157799 × 932830391200774306002689
<24> ×
[14720665706995421427954075428249425868392100437917866978842581972664495338308459880550388362971462474951081183889602775274817994164674604646488222158046959338219675140497402508929332960454587825018279496999669<209>]
Free to factor
17×10243+19 = 1
(8
)2429
<244> = 53 × 1063 × 2090355282234402855018239323
<28> × 3434555203476272553183832120306153
<34> × 57920667776075363345563830274125897557
<38> × 660865389082334037465433168139974754338176890922215441359367034917
<66> × 122000076396527792747161302176528462336003705288038603755444347836293192841
<75> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=537211575 for P34 /
March 22, 2013 2013 年 3 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3630960768 for P38 /
May 6, 2013 2013 年 5 月 6 日) (Erik Branger / GGNFS, Msieve gnfs for P66 x P75 /
July 5, 2016 2016 年 7 月 5 日)
17×10244+19 = 1
(8
)2439
<245> = 13 × 24214382617
<11> × 1284429023078633153261
<22> × 619908419287149102567283
<24> ×
75361930327832612577650203608164045264211540386710750623170810746163235497727557853890391692182334891601523227896648257733244592054159453978513227569789587792521473575074064171125910154243<188>
17×10245+19 = 1
(8
)2449
<246> = 3
3 × 89 × 423541 × 7242409 × 83350489236279623
<17> × 8041982483210357015703436347746159408189
<40> × 47897685761364591897596563247614429492571
<41> ×
798157005555759232182377437859568513540936935319191377809711505084478259404013593924289981378697525530127008745881420654182702922871<132> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1293486577 for P41, B1=11000000, sigma=817620102 for P40 x P132 /
May 6, 2013 2013 年 5 月 6 日)
17×10246+19 = 1
(8
)2459
<247> = 227 × 6171314652592592303
<19> ×
1348350699202733962932424605596911989095604454089434112021458251016939917017085878731104328665252689968820100308266555313845233026920941484248795381283925369949755428543440429007938649509597958797504359727576761131241517787069<226>
17×10247+19 = 1
(8
)2469
<248> = 31 × 59 × 15031 × 117570994814446543967801
<24> × 142524116493638750952556806687543243157
<39> × 562015335050432585027001391267448466097
<39> × 117515439256873819352216572778691919789520779
<45> × 620830703660131432955737603225505507802711675279449204799980253759093862008740737235772661793821
<96> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2607191574 for P39(1425...) /
March 26, 2013 2013 年 3 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1717998225 for P39(5620...) /
May 7, 2013 2013 年 5 月 7 日) (Erik Branger / GGNFS, Msieve gnfs for P45 x P96 /
September 26, 2016 2016 年 9 月 26 日)
17×10248+19 = 1
(8
)2479
<249> = 3 × 7 × 457 × 173149 × 2030533 × 227950515098173185313782517331379646113310187
<45> ×
[245584130516048206774846309402925340105339310609262522486035840655491356845581516771175401879323146792884177598760563326265357335100079201306759897476067928040640418888849898905600850516503<189>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1554793093 for P45 /
May 8, 2013 2013 年 5 月 8 日)
Free to factor
17×10249+19 = 1
(8
)2489
<250> = 109 × 2203 × 331423 × 69261687468298291
<17> × 148797200386192789
<18> × 7605931508084652894618215727179
<31> ×
[302790701424535102007966927441668138962345906425481597670347294367092747849769214518114515389395478519405163361964002059284641074834430680469811074997933675105321915088305029<174>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3065967235 for P31 /
March 23, 2013 2013 年 3 月 23 日)
Free to factor
17×10250+19 = 1
(8
)2499
<251> = 13 × 312715384726777
<15> ×
[4646370226591020470172485561954011358113232255231780962501043378178772900377544012269516893507831944969203734422315694258283302515872034101382943555123151291115415438239088056812394468976656986192734344458269769007090246259796939017989<235>]
Free to factor
17×10251+19 = 1
(8
)2509
<252> = 3 × 6379 ×
9870350049061445832099539577200652604320890886183251757793221972560426863609180586763279975382185759987923336410560113334842916282013319166477968798081668437523587233573124778642884929136692736002972717191246741332961743684427490666713115372779897<247>
17×10252+19 = 1
(8
)2519
<253> = 79 × 373 × 1979 ×
[32391025249438664961443047764394587340024560818805639362093663805397829839796447023486467564102701141517080958454324053920028848895156514167566741807557575757125401074963241378432699157642998607393597906619101627407610378463274380124042269548673<245>]
Free to factor
17×10253+19 = 1
(8
)2529
<254> = 19 × 179 × 24373858121
<11> × 29740305221647043693
<20> × 568814823820447470907
<21> × 10338235668101265948931387
<26> ×
1302904985491010459602388295900793578457099542365401334028176253966393541185000721474624060750793653525469206340660370240363068407563298207502990054365815147470509537756759157<175>
17×10254+19 = 1
(8
)2539
<255> = 3
2 × 7 × 1523966679701
<13> × 5860963398562997
<16> ×
335676842681647314964460386379756590070163688438711865838849242637697618050426536025651838920187186356395852520693770024407012279176570189754308055073624192456788090446483668958947881324846957881229478715824374940792987090399<225>
17×10255+19 = 1
(8
)2549
<256> = 63508091 × 22114885369117477
<17> × 2708535904684005319781925199046389474507
<40> ×
[496544372132607246148525661119420499329012265225885669374895497864773130751423891492594069545036976042601512009044874382483996326020902530290431900143417912956146393677264250711313233846098461<192>] (ebina / GMP-ECM 7.0 B1=3000000, sigma=1:1627886147 for P40 /
July 13, 2022 2022 年 7 月 13 日)
Free to factor
17×10256+19 = 1
(8
)2559
<257> = 13 × 53 × 827 × 970893461 ×
[34143662458813288255260537488092332256001407412680949167298449802046118366263293186448248886006064314092757546718571003715961062877100898905918651631347602664760100844788991466926759740209825001208263528569610624726115289534102077516353965983<242>]
Free to factor
17×10257+19 = 1
(8
)2569
<258> = 3 × 47 × 496211 × 1195745515546687097
<19> × 5091061202508733064161261
<25> × 4954031067178129832041949993476537294740887833
<46> ×
89518976328676944798371813588330020968971205355316591676051489390901184746204586633990404264672892627180127240201701974214464274397084979409123536835189780872699<161> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4175590039 for P46 x P161 /
January 8, 2016 2016 年 1 月 8 日)
17×10258+19 = 1
(8
)2579
<259> = 23 × 325901227 × 5675040130841
<13> × 438454544700089933
<18> ×
[101274257398449660450591763326919578645208499914160808645697476547258224424842384905980480077327113598161396273050035637567875578193905582562768597805512611313416246938792724832609301480659397425044958994642970044066153<219>]
Free to factor
17×10259+19 = 1
(8
)2589
<260> = 29 × 71 × 8500027 × 26729741 × 96127972607170067
<17> × 190940365286855815778527
<24> × 62656522302708506753040410159039879
<35> × 428389147821379263519881016875139245088089
<42> × 50554737222063845181079081028261474325435363932527
<50> × 1621141313450919212986176880982060413611100328969122543463872321059796928041
<76> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=680312886 for P35 /
December 28, 2015 2015 年 12 月 28 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3404292111 for P42, Msieve 1.50 gnfs for P50 x P76 /
January 5, 2016 2016 年 1 月 5 日)
17×10260+19 = 1
(8
)2599
<261> = 3 × 7 × 151733 × 13018541 × 38995291 × 8448315143
<10> × 6381419385852394019924416951291
<31> ×
[2165933900480633745246039579071993189452459208926674143321052403076170590769518913286221965185708217597244513944634289109905728873288828019914237868787808867349525801813008430429689147859484682978091<199>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2032346523 for P31 /
December 28, 2015 2015 年 12 月 28 日)
Free to factor
17×10261+19 = 1
(8
)2609
<262> = 3643 × 519703 ×
[997681724477926051551348187587766534467552778477253901988258317705797920548777935926117953639913543246895667054132855459703266270190731130535339291622281266587755288892590264611837889177178471809588030078433286931091771988702927523852276684762018589341<252>]
Free to factor
17×10262+19 = 1
(8
)2619
<263> = 13 × 31 × 431 × 227627 × 16488867081409
<14> × 16527075870435336364973431
<26> ×
[1753127422480989467461456834223643824200136152240935765863265765033634065179878514755420506090722503549955548044681175940616771224106015621446813393801225143341438942207657654892876063251876586077804183327397031281<214>]
Free to factor
17×10263+19 = 1
(8
)2629
<264> = 3
2 × 313 × 3761 × 121343036794342401767694099709213
<33> ×
[146926919067310695495777032769606164439092260887477319263842278623692636512976088514154958684562155324106851289390786353446566588781991610257752242592063033051649743835944006228207456603628229685260620372487826249742119586269<225>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=134762178 for P33 /
December 28, 2015 2015 年 12 月 28 日)
Free to factor
17×10264+19 = 1
(8
)2639
<265> = 1231 × 34450303 × 693888224049609356611
<21> ×
64189766496061293187168854463312022855954763465144092885190963787116308586553349463906065289667308332316285796341543001609836955087925755760361916811690187137114569633972484277534914071219603557501620886686199894859842550079859592643<233>
17×10265+19 = 1
(8
)2649
<266> = 79 × 1907 × 717331 × 795054906487783093500446281
<27> × 1246168249115441248495562813797
<31> × 413038604326031415466195744967426082037
<39> ×
427114759838651164330760794130476946606929595006421228633930697368541889230135420499084019519311679168292395903145853353775955437305738653538852071722311632047<159> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2086375725 for P31 /
December 28, 2015 2015 年 12 月 28 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3802666548 for P39 x P159 /
January 8, 2016 2016 年 1 月 8 日)
17×10266+19 = 1
(8
)2659
<267> = 3 × 7 × 131 ×
[68661900722969425259501595379457974877822206066480875641180984692435074114463427440526677167898541944343471061028312936709883274768770951977058847287854921442707702249686982511409992326022860374005412173351104648814572478694616099196251868007593198432893089381639<263>]
Free to factor
17×10267+19 = 1
(8
)2669
<268> =
definitely prime number 素数
17×10268+19 = 1
(8
)2679
<269> = 13 × 20341 × 33957251 × 168436493584811
<15> × 255167944101646001808021947
<27> × 6043974580825758425450973989
<28> ×
8097916594991059803904385368018555185226616149838640203012198436116513763372800829351872968257125495766398648820562016771908971374561924807637723449586967110577713621348662395919742700591<187>
17×10269+19 = 1
(8
)2689
<270> = 3 × 53 × 1277 × 4129 × 7561 × 846983 × 2247835003
<10> × 927254616977476633
<18> × 953654162683845218482521470219
<30> ×
17699672592158062703486409600991791814996250949929739905608211473118293253868777643333084453207155827479684748128092922104723393356957691025624148231553453483135916161451687555097372955159599629<194> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1643366149 for P30 x P194 /
December 28, 2015 2015 年 12 月 28 日)
17×10270+19 = 1
(8
)2699
<271> = 1777099154907871
<16> × 22743985383237491729
<20> ×
[46733486685384507367972382150779985300152927609677930767843802730945850427479110084379580739586878675499291584190368816080903196806644904775806556590171873925518510151977828600909839955585729523952453057774964935904085116638834083569271<236>]
Free to factor
17×10271+19 = 1
(8
)2709
<272> = 19 × 787 × 35543 × 43487 × 491066555633263
<15> ×
1664271558555046357931657079948744305578446113065068268405189095777354182226339203594176902143570768887669827275415923906515930175160332330018913362568278424805678300614461542888904912385216098988522698630865093967947135577689450699934579043911<244>
17×10272+19 = 1
(8
)2719
<273> = 3
4 × 7 × 167 × 226217 × 213853771 ×
[41234879563600206291634157693844939501084103469900147737617045730658198896751299436856647068695632961077022117546188172485294458592102307553484732427292191279152494690434733433901300672237198165943342600191102623147261222942620095295952274090298095161843<254>]
Free to factor
17×10273+19 = 1
(8
)2729
<274> = 263 × 54851 ×
[130938123826288950847268634973217030394674386039032177173576899193750042988141388557365112724592290839267699428024534138137579413298154418672201621419110929060905537101367450755731333054774028256770615901432306719135267377227813010531114529828501789735447762208541653<267>]
Free to factor
17×10274+19 = 1
(8
)2739
<275> = 13
2 × 10467777301
<11> ×
[10677393117291237403292169820915782289338880016912969312855151956694143626224830761574233746190918929634374576332122237928238649684305661054027919340395435310930156872567845766437552330806837909151210604055635159677985506389279617540280700376862845034793923149581<263>]
Free to factor
17×10275+19 = 1
(8
)2749
<276> = 3 × 1868418637837291
<16> × 2005680211143595136617
<22> × 573152297860309306662823
<24> × 110540582996747822961634853179813
<33> × 5845334031063467498402004092755270606781680159547
<49> × 14156546819406466796831154181839306661091890163051236969
<56> × 3204725415655879125894681394249868988988210603842164550300555502665440760718297
<79> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3639120348 for P33 /
December 29, 2015 2015 年 12 月 29 日) (Dmitry Domanov / GMP-ECM 7.0.5 B1=43000000 for P49 /
April 23, 2024 2024 年 4 月 23 日) (Bob Backstrom / for P56 x P79 /
April 27, 2024 2024 年 4 月 27 日)
17×10276+19 = 1
(8
)2759
<277> = 1399 × 2841777916793819
<16> ×
475114803627282038565546111839615057933542907731606448403057190555619024495433370113454230791665356355218340890160476760510314406433900322895782919363970889517509965669152734514280462479221042397749078855371016347044837855141911138523438630787924538308887069<258>
17×10277+19 = 1
(8
)2769
<278> = 31 × 21611 × 60556558846669
<14> × 3369828128551593660583649
<25> × 3697523323084898357351393999
<28> ×
[37367151545174087326653959583191982064908109820034447950963937644670370411625752368777566870004825737748072871459767742651385825634727161035022724461009053973374561467102059908070471276370167317788301833991<206>]
Free to factor
17×10278+19 = 1
(8
)2779
<279> = 3 × 7 × 79 × 311 × 13840339 × 288952637 × 44706410301693415250858453
<26> × 49624791410174112815213939760680203
<35> × 52265608678752809757714166524510316796893
<41> ×
[789481105467240394333518387530176703449832388652576710249535911038178623310990289897695152793060940438343365739560306585376472140204861434996411889260682321<156>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=274305773 for P41 /
December 29, 2015 2015 年 12 月 29 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=1702093970 for P35 /
January 2, 2016 2016 年 1 月 2 日)
Free to factor
17×10279+19 = 1
(8
)2789
<280> = 885811 ×
[2132383644918485872143029256679911277788251544504289164267421480303234989053973013305195903966973642107502490812248762872541534129615560078717569423826176113063496489532065969929125839359512231039001422299891160630076719400514205500822284763780184360872566370127362257737699<274>]
Free to factor
17×10280+19 = 1
(8
)2799
<281> = 13 × 23 × 347 × 2219333046863
<13> × 53713731288096801543367
<23> ×
[1527207142714230718347689805131865984537170660408587994162589519346435633397633736164685416609783648647675478692854294790160985749071636135452141225988863293108529559211294420179068080542270844554110497752865778316576258954106370827565412553<241>]
Free to factor
17×10281+19 = 1
(8
)2809
<282> = 3
2 × 61 × 233 × 75527 × 2448073 × 2528954179358353957979
<22> ×
[3157988813247690733172633855266484511546255737849613541709575190409545335421495108061710338946543379992066379364775392148124872016206135328178395079619564629462302067876851702501488688699999798599106512756621952187156123241013475097959134835513<244>]
Free to factor
17×10282+19 = 1
(8
)2819
<283> = 53 × 1115517660742952535392080830329
<31> ×
31948766256346983380341858875269276015713890845813819515530432094400579248926143988176927271877841394422620540223495394018154206008745590458277161655341662550281668640201997420757958334160755208690674201423380950818427282327592248955717829367297477597<251> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=110703438 for P31 x P251 /
December 29, 2015 2015 年 12 月 29 日)
17×10283+19 = 1
(8
)2829
<284> = 1031 × 11093 × 32870567 × 19306914439
<11> × 5773548402365552239843309453
<28> × 3351227660009348072545668076887241
<34> ×
[134502985181771871456253775030686315336363239772693346199523198999221833688162427544268969812628654080302316429701031837885767162966173737193987092301020048576916145883174108884689650928625489795367<198>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=874402983 for P34 /
December 29, 2015 2015 年 12 月 29 日)
Free to factor
17×10284+19 = 1
(8
)2839
<285> = 3 × 7
3 × 887 × 10159 × 196756800424211
<15> × 4625837865113696783819250073
<28> ×
[22381866378547974974192514043339838033588576004402275827198685155182493410049296818956566245509661058755861976446811524680451324169872387992652332692544448530246008243561489291872412449072949993770721137843693499002810664819318798359<233>]
Free to factor
17×10285+19 = 1
(8
)2849
<286> = 163 × 991 × 1699 × 6199 × 14653 × 176699 × 6410119 × 244006727693
<12> × 1637057563351829
<16> ×
[167470244013008367229552694734502203296370886432581406218828537018015566145917329122756116011517101507803582124592082778282759044415967219154080487024215918893818850393193987240881888467975454746860772615338142836141638035951038673<231>]
Free to factor
17×10286+19 = 1
(8
)2859
<287> = 13 × 1069 × 4939271 × 11279210693
<11> × 318638007879255034135950017204969
<33> ×
[76567807609187583278617273339792426797382813396950433972426083450621778721128960408430386545289836243313029877578883134634223972585024825709376360756371059342259456802198772856264657780169474407052435809348661890442820136991841384291<233>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2851380277 for P33 /
December 29, 2015 2015 年 12 月 29 日)
Free to factor
17×10287+19 = 1
(8
)2869
<288> = 3 × 29 × 157 × 1432882463502765601
<19> × 34049695707266130033900481
<26> × 955332266179237352661991464435692483
<36> ×
[296694337704527668561604882723936887728804583419425064363482716286434089093049557242296446234489193648719452693920955102335484263429459793632911218482357031109814811912901278891945487128940248129433501577<204>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2172440118 for P36 /
December 30, 2015 2015 年 12 月 30 日)
Free to factor
17×10288+19 = 1
(8
)2879
<289> = 41562142562783
<14> ×
[45447341556936542525923487690362318574526600543376350893703120591762704936980835019042175794675742858341860625053481140106195980382907032584011679911998848206005385838115846646126620852260473625040373539164375777296174865453655145692069601005378467411015025739424586398321383<275>]
Free to factor
17×10289+19 = 1
(8
)2889
<290> = 19 × 89 × 15451 × 7192021270566331967
<19> ×
[100520640841132173746635724879962929353586950649774377172498497793780385087611763612378435029815272461188861557385844932197559811219717230436415317820522121351989400733220662280623994329067576019345031859172790092881164946141710290110102601930310951950433389302687<264>]
Free to factor
17×10290+19 = 1
(8
)2899
<291> = 3
2 × 7 × 389 × 2551407527
<10> × 11872833776303
<14> × 149157125095018843402810151674944819467
<39> ×
[1705838991445682865533084787041711111017662082698361215465443819110118518627746163593603667099167239320432654846282228945105957724242099193586575033651823064338823519825838855972007142809500557901573854337606142456723925321801<226>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1931088448 for P39 /
December 30, 2015 2015 年 12 月 30 日)
Free to factor
17×10291+19 = 1
(8
)2909
<292> = 79 × 14591 × 22511 × 586921 × 1295028098465595924298685567
<28> ×
95772458258923305900473969315832288103815428532738361333832731713363451002495769891537973454373221675916339873768727366958306086512278144176977589048217199056233320238305833722230067662479872921250604289013385983524109555508849477201865417062172113<248>
17×10292+19 = 1
(8
)2919
<293> = 13 × 31 × 107 × 1973 × 210481 × 485524279 × 100280508073
<12> × 748638286580011
<15> × 94705699540548596210679436949520463
<35> ×
305563852270975766623443049815669315812213568231145934727234535863874993448609545085108715930144071931716050233659050600117747014850591365949977712560306369334942013439042054776344852625858762572054150374487903<210> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=367663731 for P35 x P210 /
January 5, 2016 2016 年 1 月 5 日)
17×10293+19 = 1
(8
)2929
<294> = 3 ×
[62962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963<293>]
Free to factor
17×10294+19 = 1
(8
)2939
<295> = 71 × 286194323 × 79461033210283
<14> × 20446127020003935890920451671
<29> ×
[57216565637298057154352711236445973646024555665497026575191617437248092768120405757882578010398906547340425082095938989179706891517524312338274532749086824304101146899200969681170606511493068721519547658627378804871281543378303930203212427881<242>]
Free to factor
17×10295+19 = 1
(8
)2949
<296> = 53 × 7624021 × 29411240919544223
<17> ×
[1589399638158039942279439525401005108519882677371724781985494247051043116881438246736236002202895802204886765571098348867604001011076626151313896293392943516636049044907960061889679052301372387389328846652574519255774509516752888880641939983806270617740439940722806309311<271>]
Free to factor
17×10296+19 = 1
(8
)2959
<297> = 3 × 7 × 17977 × 27091 ×
[18469062990527710292438151168766985420006268914288068617568433063813783238045132353020550783663607641293400304468932805600947876108254309983564238198378175534973324737899644433254912656521609735848822785026156722949568758701249998893173499325750020614274533302929696553844900499102605487<287>]
Free to factor
17×10297+19 = 1
(8
)2969
<298> = 569 × 9883 × 21758119 × 544464493 × 836988444393027163
<18> × 1851382555446062180810657
<25> ×
18297797222899960626785126575821596152139643670989313564362104154987874343890165898794541265994454596882549917031059837464346591467871786845578650406842524711795306393667112252922127640161327967823741397506041608871803902781137644331<233>
17×10298+19 = 1
(8
)2979
<299> = 13 × 1250898881
<10> × 21907447091
<11> × 6831071232004001
<16> × 107253701503205533
<18> × 40942131028534830270082473090469541355453797
<44> ×
1767573724027388126154115573890860262100165751399284044697010829911789770993198517270369184481304806220383862230731559666769210508631130038516686616565655599415698933654410479132679786451883956026751743<202> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=277513058 for P44 x P202 /
January 13, 2016 2016 年 1 月 13 日)
17×10299+19 = 1
(8
)2989
<300> = 3
3 ×
6995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218107<298>
17×10300+19 = 1
(8
)2999
<301> = 2663 × 41413 × 144439 × 287327 × 211199939 × 756746729 × 91304793011707073637961149055428738739
<38> × 310948280479835930806453335116420666736012342049
<48> ×
[90951855836194153839917275434750056905282216722150138542972419453153813492316436858377992813500251755910470191744744591856963729010419086693803977250595821199179648900360211732347<179>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2428965086 for P38 /
January 6, 2016 2016 年 1 月 6 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=700013237 for P48 /
January 15, 2016 2016 年 1 月 15 日)
Free to factor