Table of contents 目次

  1. About 188...889 188...889 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 188...889 188...889 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 188...889 188...889 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 188...889 188...889 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

18w9 = { 19, 189, 1889, 18889, 188889, 1888889, 18888889, 188888889, 1888888889, 18888888889, … }

1.3. General term 一般項

17×10n+19 (1≤n)

2. Prime numbers of the form 188...889 188...889 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 17×101+19 = 19 is prime. は素数です。 (Makoto Kamada / September 26, 2004 2004 年 9 月 26 日)
  2. 17×103+19 = 1889 is prime. は素数です。 (Makoto Kamada / September 26, 2004 2004 年 9 月 26 日)
  3. 17×1012+19 = 1(8)119<13> is prime. は素数です。 (Makoto Kamada / September 26, 2004 2004 年 9 月 26 日)
  4. 17×10267+19 = 1(8)2669<268> is prime. は素数です。 (Makoto Kamada / PPSIQS / September 26, 2004 2004 年 9 月 26 日)
  5. 17×10843+19 = 1(8)8429<844> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / September 26, 2004 2004 年 9 月 26 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  6. 17×106300+19 = 1(8)62999<6301> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 22, 2004 2004 年 12 月 22 日)
  7. 17×1037992+19 = 1(8)379919<37993> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95, PFGW 3.3.3 / May 10, 2010 2010 年 5 月 10 日)
  8. 17×1054117+19 = 1(8)541169<54118> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95, PFGW 3.3.3 / May 10, 2010 2010 年 5 月 10 日)
  9. 17×10121242+19 = 1(8)1212419<121243> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95, PFGW 3.3.3 / May 9, 2010 2010 年 5 月 9 日)
  10. 17×10121621+19 = 1(8)1216209<121622> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95, PFGW 3.3.3 / May 9, 2010 2010 年 5 月 9 日)

2.3. Range of search 捜索範囲

  1. n≤175000 / Completed 終了 / Serge Batalov / June 14, 2010 2010 年 6 月 14 日
  2. n≤200000 / Completed 終了 / Serge Batalov / April 2, 2011 2011 年 4 月 2 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 17×103k+2+19 = 3×(17×102+19×3+17×102×103-19×3×k-1Σm=0103m)
  2. 17×106k+2+19 = 7×(17×102+19×7+17×102×106-19×7×k-1Σm=0106m)
  3. 17×106k+4+19 = 13×(17×104+19×13+17×104×106-19×13×k-1Σm=0106m)
  4. 17×1013k+5+19 = 79×(17×105+19×79+17×105×1013-19×79×k-1Σm=01013m)
  5. 17×1013k+9+19 = 53×(17×109+19×53+17×109×1013-19×53×k-1Σm=01013m)
  6. 17×1015k+7+19 = 31×(17×107+19×31+17×107×1015-19×31×k-1Σm=01015m)
  7. 17×1018k+1+19 = 19×(17×101+19×19+17×10×1018-19×19×k-1Σm=01018m)
  8. 17×1022k+16+19 = 23×(17×1016+19×23+17×1016×1022-19×23×k-1Σm=01022m)
  9. 17×1028k+7+19 = 29×(17×107+19×29+17×107×1028-19×29×k-1Σm=01028m)
  10. 17×1035k+14+19 = 71×(17×1014+19×71+17×1014×1035-19×71×k-1Σm=01035m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 14.34%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 14.34% です。

3. Factor table of 188...889 188...889 の素因数分解表

3.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=201, 203, 204, 207, 209, 210, 213, 215, 217, 221, 222, 223, 224, 225, 227, 229, 230, 232, 236, 237, 240, 241, 242, 248, 249, 250, 252, 255, 256, 258, 260, 261, 262, 263, 266, 270, 272, 273, 274, 275, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 293, 294, 295, 296, 300 (58/300)

3.4. Factor table 素因数分解表

17×101+19 = 19 = definitely prime number 素数
17×102+19 = 189 = 33 × 7
17×103+19 = 1889 = definitely prime number 素数
17×104+19 = 18889 = 13 × 1453
17×105+19 = 188889 = 3 × 79 × 797
17×106+19 = 1888889 = 131 × 14419
17×107+19 = 18888889 = 29 × 31 × 21011
17×108+19 = 188888889 = 3 × 7 × 433 × 20773
17×109+19 = 1888888889<10> = 53 × 35639413
17×1010+19 = 18888888889<11> = 13 × 503 × 2888651
17×1011+19 = 188888888889<12> = 32 × 263 × 79800967
17×1012+19 = 1888888888889<13> = definitely prime number 素数
17×1013+19 = 18888888888889<14> = 293 × 569 × 113299117
17×1014+19 = 188888888888889<15> = 3 × 7 × 71 × 126686042179<12>
17×1015+19 = 1888888888888889<16> = 59 × 1087 × 29452682533<11>
17×1016+19 = 18888888888888889<17> = 13 × 23 × 63173541434411<14>
17×1017+19 = 188888888888888889<18> = 3 × 1319 × 47735377530677<14>
17×1018+19 = 1888888888888888889<19> = 79 × 1231 × 482423 × 40261807
17×1019+19 = 18888888888888888889<20> = 19 × 6088739 × 163277165729<12>
17×1020+19 = 188888888888888888889<21> = 32 × 7 × 227 × 13208089566386189<17>
17×1021+19 = 1888888888888888888889<22> = 199 × 1945549043<10> × 4878779077<10>
17×1022+19 = 18888888888888888888889<23> = 13 × 31 × 53 × 884352679848723671<18>
17×1023+19 = 188888888888888888888889<24> = 3 × 59683973 × 1054939203912631<16>
17×1024+19 = 1888888888888888888888889<25> = 7481 × 10400117753<11> × 24277753673<11>
17×1025+19 = 18888888888888888888888889<26> = 89 × 8405263 × 25250216039251727<17>
17×1026+19 = 188888888888888888888888889<27> = 3 × 7 × 367 × 89083 × 14175673 × 19408078153<11>
17×1027+19 = 1888888888888888888888888889<28> = 47 × 107 × 863 × 1543 × 3559 × 36779 × 2154865409<10>
17×1028+19 = 18888888888888888888888888889<29> = 13 × 1267961 × 1145927558490720922373<22>
17×1029+19 = 188888888888888888888888888889<30> = 34 × 97 × 36877 × 465169 × 1401468403507229<16>
17×1030+19 = 1888888888888888888888888888889<31> = 48523 × 53549 × 5722133 × 8315387 × 15278017
17×1031+19 = 18888888888888888888888888888889<32> = 79 × 15401 × 15524956778976943704040991<26>
17×1032+19 = 188888888888888888888888888888889<33> = 3 × 72 × 8663 × 14281 × 10386330634334996841229<23>
17×1033+19 = 1888888888888888888888888888888889<34> = 109 × 7417 × 166861 × 14002216649604670520633<23>
17×1034+19 = 18888888888888888888888888888888889<35> = 13 × 1452991452991452991452991452991453<34>
17×1035+19 = 188888888888888888888888888888888889<36> = 3 × 29 × 53 × 181 × 2351 × 129281 × 744638322044057593609<21>
17×1036+19 = 1888888888888888888888888888888888889<37> = 1367 × 358073 × 3858924862823829933990645479<28>
17×1037+19 = 18888888888888888888888888888888888889<38> = 19 × 31 × 122891 × 350437 × 744665245345758865893803<24>
17×1038+19 = 188888888888888888888888888888888888889<39> = 32 × 7 × 23 × 5479 × 11923 × 451122233 × 4423407508417267301<19>
17×1039+19 = 1888888888888888888888888888888888888889<40> = 92657 × 20406289 × 337267556963<12> × 2962030850053811<16>
17×1040+19 = 18888888888888888888888888888888888888889<41> = 132 × 15739 × 391722371 × 3722940391<10> × 4869429862125239<16>
17×1041+19 = 188888888888888888888888888888888888888889<42> = 3 × 61 × 710079133 × 16053236911<11> × 90549479231006381141<20>
17×1042+19 = 1888888888888888888888888888888888888888889<43> = 163 × 34176382225590628033<20> × 339072617910952912691<21>
17×1043+19 = 18888888888888888888888888888888888888888889<44> = 1483073 × 2429183 × 5243045786303910615669291761671<31>
17×1044+19 = 188888888888888888888888888888888888888888889<45> = 3 × 7 × 79 × 113857075882392338088540620186189806442971<42>
17×1045+19 = 1888888888888888888888888888888888888888888889<46> = 55382608778959370879<20> × 34106173951244135789669191<26>
17×1046+19 = 18888888888888888888888888888888888888888888889<47> = 13 × 226169 × 2438083 × 92708669 × 163153763 × 174206379358347137<18>
17×1047+19 = 188888888888888888888888888888888888888888888889<48> = 32 × 431 × 48695253644982956661224255965168571510412191<44>
17×1048+19 = 1888888888888888888888888888888888888888888888889<49> = 53 × 39521 × 45247 × 707647 × 28164118172493804463643744064917<32>
17×1049+19 = 18888888888888888888888888888888888888888888888889<50> = 71 × 233 × 1141805530368668856246683726584590998542518823<46>
17×1050+19 = 188888888888888888888888888888888888888888888888889<51> = 3 × 7 × 3320791 × 2708604364053321846811409990785025227120499<43>
17×1051+19 = 1(8)509<52> = 1583 × 1721 × 511871929 × 103752168934868381<18> × 13055278140241144627<20>
17×1052+19 = 1(8)519<53> = 13 × 31 × 46870692031982354562999724290046870692031982354563<50>
17×1053+19 = 1(8)529<54> = 3 × 157 × 4251697 × 207326434673<12> × 16321195858321<14> × 27875106950959808159<20>
17×1054+19 = 1(8)539<55> = 49036228984579<14> × 38520272215118948211091807023989051951891<41>
17×1055+19 = 1(8)549<56> = 19 × 1511456197<10> × 657744530577107906087834874108247631204195623<45>
17×1056+19 = 1(8)559<57> = 33 × 7 × 4624457 × 490162164394267<15> × 440904038876533656405904122949279<33>
17×1057+19 = 1(8)569<58> = 79 × 1259 × 18991251735744552024299865162112676213680627470957349<53>
17×1058+19 = 1(8)579<59> = 13 × 10253 × 141713786500678142148931186286106797176727928702960401<54>
17×1059+19 = 1(8)589<60> = 3 × 1231 × 630044357 × 790903264388314279<18> × 102643773598090173216699464191<30>
17×1060+19 = 1(8)599<61> = 23 × 7242077 × 47860039 × 869082191 × 272634956509325694952341721987943491<36>
17×1061+19 = 1(8)609<62> = 53 × 391283 × 910834689927841586301980672720106163033805184815029111<54>
17×1062+19 = 1(8)619<63> = 3 × 7 × 8994708994708994708994708994708994708994708994708994708994709<61>
17×1063+19 = 1(8)629<64> = 29 × 554378860873338033252118387039<30> × 117490229541309622726136121038419<33>
17×1064+19 = 1(8)639<65> = 13 × 1862393047<10> × 780174440262207976044377625402213494976064229792763499<54>
17×1065+19 = 1(8)649<66> = 32 × 14834189 × 477214142481948133279<21> × 2964741200902068554417095255184638891<37>
17×1066+19 = 1(8)659<67> = 373 × 18955394581703<14> × 267155888351205392891107242065106014062720941840931<51>
17×1067+19 = 1(8)669<68> = 31 × 9103 × 17530957 × 25094557231<11> × 152151070914412261338961851154626039411241219<45>
17×1068+19 = 1(8)679<69> = 3 × 7 × 72997 × 37089929 × 136951043247886846933<21> × 24258322099943009003792323406695621<35>
17×1069+19 = 1(8)689<70> = 89 × 9481523 × 8932698501020143568787923<25> × 250585320811541014977179616465798169<36>
17×1070+19 = 1(8)699<71> = 13 × 79 × 149 × 17827 × 119159 × 40124771 × 105273583275707996269<21> × 13756647628981175463757695149<29>
17×1071+19 = 1(8)709<72> = 3 × 383 × 224209 × 3988777171<10> × 183820340404802788918285563490388669083821596566745999<54>
17×1072+19 = 1(8)719<73> = 22891951 × 2025826091587073<16> × 40730659674502545025398987684909888741879703521943<50>
17×1073+19 = 1(8)729<74> = 19 × 47 × 59 × 6373 × 44983 × 79811 × 7985716213<10> × 1962158029319336989742779047663165658211281331<46>
17×1074+19 = 1(8)739<75> = 32 × 72 × 53 × 1181 × 224611 × 10168996297<11> × 252077399795755687021511<24> × 11884995846231507198031502069<29>
17×1075+19 = 1(8)749<76> = 179 × 1831 × 17483 × 141023 × 211464413 × 45195876432683<14> × 244581174452254220619101043185626932751<39>
17×1076+19 = 1(8)759<77> = 13 × 58693 × 9656909 × 425892580162687237637622004361<30> × 6019196736640557804539358608567029<34>
17×1077+19 = 1(8)769<78> = 3 × 1031 × 1404411641<10> × 192888668974313946634910879<27> × 225437082337612156824376619047665822307<39>
17×1078+19 = 1(8)779<79> = 5557879425036665565098330907536533<34> × 339857838653350744323059224156689004976410133<45>
17×1079+19 = 1(8)789<80> = 45922307 × 566849837 × 1043444158989089213<19> × 695417276720150973814973447309824713037489067<45>
17×1080+19 = 1(8)799<81> = 3 × 7 × 107 × 14324147724152541995851<23> × 5868600527163593194704055285278902116212934457771975837<55>
17×1081+19 = 1(8)809<82> = 201923 × 756952152700210117854967005538027<33> × 12358113897618558440201302251614880943543609<44>
17×1082+19 = 1(8)819<83> = 13 × 23 × 31 × 360645107296367543828719<24> × 5650585947444811319002886850748270378109990617148142299<55>
17×1083+19 = 1(8)829<84> = 33 × 79 × 659 × 7649 × 27086599 × 538046909 × 1553595560333<13> × 21345867518831127172339<23> × 36349553508754367028739<23>
17×1084+19 = 1(8)839<85> = 71 × 68657377459057355674781597538761516277707<41> × 387490315566668163523438761005514656135837<42> (Makoto Kamada / GGNFS-0.54.5b for P41 x P42)
17×1085+19 = 1(8)849<86> = 1487867 × 690352831111759<15> × 18389553736207902065935380886253386157908209842953483454012751413<65>
17×1086+19 = 1(8)859<87> = 3 × 7 × 8994708994708994708994708994708994708994708994708994708994708994708994708994708994709<85>
17×1087+19 = 1(8)869<88> = 53 × 874293377 × 4440255156529458416593<22> × 9180480797325830169074151611663698594384539130158344933<55>
17×1088+19 = 1(8)879<89> = 13 × 82285264406820096581<20> × 17657978782298521370886750946242482127654493941635593404891062473913<68>
17×1089+19 = 1(8)889<90> = 3 × 283 × 44676439 × 390764256194093987<18> × 626202891340045442251<21> × 20351211706427432367700951454658538624127<41>
17×1090+19 = 1(8)899<91> = 31019 × 60894577158802311128304874073596469547338369673067761336241944901153773135461777906731<86>
17×1091+19 = 1(8)909<92> = 19 × 29 × 1061 × 70981 × 685057131086146508216792533<27> × 664462573953886870942077347228111389895470898321885563<54>
17×1092+19 = 1(8)919<93> = 32 × 7 × 557 × 3499 × 115022279 × 13374721778166193800120684711752699902787058796976052730836348425373376877999<77>
17×1093+19 = 1(8)929<94> = 4243 × 85549 × 7509233 × 1010800847279<13> × 820858928366870521<18> × 835196641362320679949137384318294030730126383641<48>
17×1094+19 = 1(8)939<95> = 13 × 10840091 × 16389030519502000673189107470125664913<38> × 8178560442885808673711251377253161550614245494391<49> (Makoto Kamada / GGNFS-0.54.5b for P38 x P49)
17×1095+19 = 1(8)949<96> = 3 × 1671888433<10> × 37766034340881167<17> × 997186706759816867178050895258414137826192764762412107373387733062733<69>
17×1096+19 = 1(8)959<97> = 79 × 457 × 22669 × 47837 × 515639 × 59211880037<11> × 984241646822647<15> × 24681089271480479403980501<26> × 65049828148797771389327951<26>
17×1097+19 = 1(8)969<98> = 31 × 41295211 × 225664248613<12> × 64859031159319147057<20> × 1008119025954763047155407216041916420578177917236656910369<58>
17×1098+19 = 1(8)979<99> = 3 × 7 × 8994708994708994708994708994708994708994708994708994708994708994708994708994708994708994708994709<97>
17×1099+19 = 1(8)989<100> = 1330943 × 510376079 × 2021920955912164864811893<25> × 1375284254884781399084858873906066854483660771869895058997509<61>
17×10100+19 = 1(8)999<101> = 13 × 53 × 1231 × 552497726717<12> × 60803973290601103<17> × 935546430694151854694482909<27> × 708600306612795123169532624213598663169<39>
17×10101+19 = 1(8)1009<102> = 32 × 61 × 3215309 × 15332487375247529<17> × 6979088982677331304317833228577630334626743259405285660218612307200722201201<76>
17×10102+19 = 1(8)1019<103> = 229 × 8248423095584667637069383794274623968947113051916545366327025715672003881610868510431829209121785541<100>
17×10103+19 = 1(8)1029<104> = 967 × 419243413 × 388294072070339<15> × 3483853863083383933281333776629<31> × 34442367805384471136791529981655708527964058589<47> (Makoto Kamada / Msieve 1.35 for P31 x P47 / 8.9 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 10, 2008 2008 年 5 月 10 日)
17×10104+19 = 1(8)1039<105> = 3 × 7 × 23 × 265864911884614770878329372513092064450057351103<48> × 1470951173457249660790510390603202909803884594187358861<55> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P48 x P55 / 0.65 hours on Cygwin on AMD 64 3400+ / May 11, 2008 2008 年 5 月 11 日)
17×10105+19 = 1(8)1049<106> = 44939 × 916073 × 2098183 × 21868024953848616152560301205317099427508889968151743691514864075005815205679990595107989<89>
17×10106+19 = 1(8)1059<107> = 13 × 167 × 2789 × 778574013914318900902142749<27> × 4006804656620888493002892211152787320583575089272626306585195154823796619<73>
17×10107+19 = 1(8)1069<108> = 3 × 347 × 383676889 × 44217033793<11> × 362305867244323<15> × 714350757258473033<18> × 339477530862202007600453<24> × 121731374455696047020899606151<30>
17×10108+19 = 1(8)1079<109> = 349 × 59538491 × 550475059 × 8409336511<10> × 19637390813135028673170366994790111691847138371386416968407752230552095754872179<80>
17×10109+19 = 1(8)1089<110> = 19 × 79 × 113 × 358384834926227<15> × 966069961747782317<18> × 321654086505113187872728494778412937221873857262154637851828846726543467<72>
17×10110+19 = 1(8)1099<111> = 34 × 7 × 379 × 17419 × 212794222035968358157<21> × 236086657658428956781<21> × 6600650783685691101076223<25> × 152174853468371186699966773836058337<36>
17×10111+19 = 1(8)1109<112> = 268319064914547697<18> × 15512359424088219424189<23> × 30585645546941266981627861<26> × 14837453471686768857223433459447769228862569353<47>
17×10112+19 = 1(8)1119<113> = 13 × 31 × 6491 × 20482984766767<14> × 352530352018783422543209204676955484949314617799603720230266715900167582084313087418104616279<93>
17×10113+19 = 1(8)1129<114> = 3 × 53 × 89 × 2220046208670695120267<22> × 18762080918146736784154405984746413<35> × 320461795922942801708809319235463489099097846767274609<54> (Sinkiti Sibata / Msieve v. 1.35 for P35 x P54 / 1.21 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 11, 2008 2008 年 5 月 11 日)
17×10114+19 = 1(8)1139<115> = 354169 × 352129237 × 1810070189597<13> × 42046165462781387868399401<26> × 1033513490049827549784655279<28> × 192555452288027000282662796877462551<36>
17×10115+19 = 1(8)1149<116> = 4519 × 85206749882772292395357406238644765829<38> × 49055767028910420725937601905379783432564947652856091509002810221880045139<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P38 x P74 / 1.05 hours on Cygwin on AMD 64 3400+ / May 11, 2008 2008 年 5 月 11 日)
17×10116+19 = 1(8)1159<117> = 3 × 72 × 31727 × 384587051 × 105308981160315192638369614061818326468250646439616314787149292764387614748597331804466949376989201031<102>
17×10117+19 = 1(8)1169<118> = 4281909650427032769018797087<28> × 441132355209902880071236552721657351837840731643013402267304134754392529089208362722593447<90>
17×10118+19 = 1(8)1179<119> = 132 × 1076640391<10> × 3920283946518380501569<22> × 1090425439874314503024925117<28> × 1345379322570070893829387373<28> × 18050564602821757335694676957279<32>
17×10119+19 = 1(8)1189<120> = 32 × 29 × 47 × 71 × 2417 × 44567363 × 86639197230970329577098695493425102913119<41> × 23238157441907373887888004008759141749503788540363070255980273<62> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P41 x P62 / 2.07 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 12, 2008 2008 年 5 月 12 日)
17×10120+19 = 1(8)1199<121> = 199 × 117512005951<12> × 31364380158197<14> × 72319984606854705642359<23> × 35610335184427215455940341592989729009922304216168508754763537066932107<71>
17×10121+19 = 1(8)1209<122> = 1889 × 3943 × 237089141089579<15> × 3853394749362998634419<22> × 135767874043603375605744819973<30> × 20445394499204348003694862307259940390975630891459<50> (Makoto Kamada / Msieve 1.35 for P30 x P50 / 10 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 10, 2008 2008 年 5 月 10 日)
17×10122+19 = 1(8)1219<123> = 3 × 7 × 79 × 192736559791549<15> × 5893375689674476727<19> × 50527621835560960201471<23> × 7863547569475822138560281<25> × 252280927777499956074003399449161279127<39>
17×10123+19 = 1(8)1229<124> = 163 × 311 × 7883 × 63472806272291900899683391<26> × 74469629318016059441383744475051923557372363391678056750899361564204943366110914525670641<89>
17×10124+19 = 1(8)1239<125> = 13 × 10010792089<11> × 3867416877307<13> × 37529573567910078382247736264717676554520734404526429027429203798443014191647147844477347710428849311<101>
17×10125+19 = 1(8)1249<126> = 3 × 97 × 3527 × 3169642646447<13> × 3815709611003249952027457<25> × 2023564009703317937632016651871353<34> × 7519784575053986462805397923095601985475499437171<49> (Makoto Kamada / Msieve 1.35 for P34 x P49 / 27 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 10, 2008 2008 年 5 月 10 日)
17×10126+19 = 1(8)1259<127> = 23 × 53 × 12660840616025647<17> × 122388373928321287111668332429878195062128932145767885879949221505548411008096564492207623178540074136390173<108>
17×10127+19 = 1(8)1269<128> = 19 × 31 × 18379 × 39983 × 4082333 × 10712975491<11> × 997873118577051000510709181121644811388602737575060104733540781882052165436130149388039616313760431<99>
17×10128+19 = 1(8)1279<129> = 32 × 7 × 2129 × 1014122503663<13> × 2382942323809<13> × 582755324419092177474480516888231081140389734701360417312506120890576753117021023577738055270580921<99>
17×10129+19 = 1(8)1289<130> = 852239 × 273146271888899<15> × 30492449909076721<17> × 6729959298046035632672774532523<31> × 39540756448263316717593054313840418944154669628044642036622503<62> (Sinkiti Sibata / Msieve v. 1.35 for P31 x P62 / 4.67 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 11, 2008 2008 年 5 月 11 日)
17×10130+19 = 1(8)1299<131> = 13 × 1269019156841201657<19> × 1144972040144916940926317113968659366931650437166432843007307417410242094737224876160457617272717282341300916229<112>
17×10131+19 = 1(8)1309<132> = 3 × 59 × 157 × 14045271655963944173807<23> × 37117300691838920385389089950592039<35> × 43295356781857972099814736448064893<35> × 301151923637973034474137280902167609<36> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=305304914 for P35(3711...) / May 3, 2008 2008 年 5 月 3 日) (Makoto Kamada / Msieve 1.35 for P35(4329...) x P36 / 2.1 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 10, 2008 2008 年 5 月 10 日)
17×10132+19 = 1(8)1319<133> = 8803 × 29339 × 78461252861251661<17> × 764434950764564155154419754456677<33> × 121936753814368589908864502423562855042102683681063541354324629952254041961<75> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P33 x P75 / 6.63 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 11, 2008 2008 年 5 月 11 日)
17×10133+19 = 1(8)1329<134> = 107 × 227 × 4813 × 685170157317962653049<21> × 1234014527104641903445029379611028313<37> × 191100667533990229020460551789426582958270387694681889491226478787821<69> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P37 x P69 / 7.65 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 13, 2008 2008 年 5 月 13 日)
17×10134+19 = 1(8)1339<135> = 3 × 7 × 409 × 1301 × 12714871233905837021626832695666376227<38> × 1329457769065054174158179915996114710331432479966297431062804648433587475807882771460823363<91> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P38 x P91 / 3.82 hours on Cygwin on AMD 64 3400+ / May 11, 2008 2008 年 5 月 11 日)
17×10135+19 = 1(8)1349<136> = 79 × 23909985935302390998593530239099859353023909985935302390998593530239099859353023909985935302390998593530239099859353023909985935302391<134>
17×10136+19 = 1(8)1359<137> = 13 × 131 × 683 × 456409592321987984917<21> × 135271113016603325460958519014799560369771317<45> × 263033602744615290623211932004282702100555610794776909675214160549<66> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P45 x P66 / 8.98 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 14, 2008 2008 年 5 月 14 日)
17×10137+19 = 1(8)1369<138> = 33 × 1944689 × 8065060301<10> × 3001660645953381401713<22> × 148601529651198679556688050910035740797174418655710049121059129667838718912768123266828371719743751<99>
17×10138+19 = 1(8)1379<139> = 4510061376844003663<19> × 31840264865105550282268277463062426428832090106619<50> × 13153680477112431114501007873566580075045768560448657392843078514243637<71> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P71 / 13.84 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 13, 2008 2008 年 5 月 13 日)
17×10139+19 = 1(8)1389<140> = 53 × 193 × 24763 × 2360119705529<13> × 57146941923551<14> × 1813455753862241<16> × 1409539433849391386157353863<28> × 216301113600834997321151988780206741612128022417052570696441151<63>
17×10140+19 = 1(8)1399<141> = 3 × 7 × 3023 × 7121 × 142888091809<12> × 959922253880171<15> × 43808521896921204679<20> × 887678841787165579554448685089<30> × 78336004908801861872486359113613068126829797389465976247<56> (Sinkiti Sibata / Msieve v. 1.35 for P30 x P56 / 51.98 minutes on Pentium 4 2.4GHz, Windows XP and Cygwin / May 11, 2008 2008 年 5 月 11 日)
17×10141+19 = 1(8)1409<142> = 109 × 223 × 1231 × 9920880509<10> × 6363071146350287524561055862580531472128148049294433804065308379772388182804098462170968806651614911283662620340912960769713<124>
17×10142+19 = 1(8)1419<143> = 13 × 31 × 664121 × 1807595974287713487169417<25> × 2064679961982390766828576564307<31> × 165068032362383046164721138618260190017<39> × 114561072250177202332934480288322533588561<42> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2910867484 for P31 / May 4, 2008 2008 年 5 月 4 日) (Makoto Kamada / Msieve 1.35 for P39 x P42 / 13 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 10, 2008 2008 年 5 月 10 日)
17×10143+19 = 1(8)1429<144> = 3 × 899753171 × 82020986669<11> × 651294001984968690031508343706506092549381<42> × 1309965033693254983247199110421891812341830657407559148798183964348719311977188577<82> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P42 x P82 / 7.26 hours on Core 2 Quad Q6700 / May 13, 2008 2008 年 5 月 13 日)
17×10144+19 = 1(8)1439<145> = 27437 × 68844585373360385205703571414108280383747818234095888358380613364758861715526073874289787108243936614385278597838280019276483904540907857597<140>
17×10145+19 = 1(8)1449<146> = 19 × 1345320680927<13> × 3418229979015433<16> × 216185077981190809154843053678573920983799523598058069250040542096029379378774110444647040536100893614696824270050741<117>
17×10146+19 = 1(8)1459<147> = 32 × 7 × 171598487 × 3210829111399465992677672913074119450171<40> × 5441707777847825911517573089597079709549116073352279752874414335353976222031085839213018547986339<97> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P40 x P97 / 6.41 hours on Cygwin on AMD 64 X2 6000+ / May 14, 2008 2008 年 5 月 14 日)
17×10147+19 = 1(8)1469<148> = 29 × 811393638548234794139<21> × 17702986162478693428127<23> × 38363237872610521585387<23> × 4349156966878814739797567495532926740379<40> × 27177527809746367315985145016239189155489<41> (Makoto Kamada / Msieve 1.35 for P40 x P41 / 16 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / May 10, 2008 2008 年 5 月 10 日)
17×10148+19 = 1(8)1479<149> = 13 × 23 × 79 × 2579 × 125681550014263882017357848163817899931<39> × 20778615782132915248991027933944063474034054154181<50> × 118732236759698250781220009050291048271486353167257761<54> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P39 x P50 x P54 / 10.43 hours on Cygwin on AMD 64 X2 6000+ / May 13, 2008 2008 年 5 月 13 日)
17×10149+19 = 1(8)1489<150> = 3 × 62962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963<149>
17×10150+19 = 1(8)1499<151> = 12599100967<11> × 232362627870787<15> × 12255622955186676467421637879285692660200973908309<50> × 52645976406605495742233878007732625356159233240897545278160906703716316402849<77> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P50 x P77 / 27.02 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 15, 2008 2008 年 5 月 15 日)
17×10151+19 = 1(8)1509<152> = 1999 × 23053 × 136739 × 3036797 × 10115327 × 241307805079199<15> × 16052814829035632996593744878571920614918011<44> × 25191586207757365324351562684284330771481754244914451059244679310463<68> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P44 x P68 / 34.49 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / May 17, 2008 2008 年 5 月 17 日)
17×10152+19 = 1(8)1519<153> = 3 × 7 × 53 × 7687 × 14567771 × 58748377 × 25796773320316253375174805423570383630676957156074328198969690334934272247454908061129602575999091335177864765450889924798528973757<131>
17×10153+19 = 1(8)1529<154> = 8315732151466041231689611<25> × 28541740403377503460449760464851<32> × 7958394580567082714146906680978421208589815943507370321952161983111345260926063331099333458135849<97> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3732616468 for P32 x P97 / May 4, 2008 2008 年 5 月 4 日)
17×10154+19 = 1(8)1539<155> = 13 × 71 × 140600607147819071282411043598609766109102241498072762816470647254054550719<75> × 145551777955531635886729066649473155038928609925267339235336817734887886875397<78> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.35 for P75 x P78 / May 12, 2008 2008 年 5 月 12 日)
17×10155+19 = 1(8)1549<156> = 32 × 233707265677436331129169<24> × 7432798877836175924862195765978994856188367<43> × 12082013223071163764032145160054775612064289873932471918156403070758301397897940923198927<89> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P43 x P89 / 15.92 hours on Core 2 Quad Q6700 / May 14, 2008 2008 年 5 月 14 日)
17×10156+19 = 1(8)1559<157> = 1570653419<10> × 413097321610859<15> × 67407421335827431871<20> × 1683915841330240179281702206131814655635817<43> × 25647531544462176640389814319070297296091174784612085044944710867824487<71> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P71 / 18.48 hours on Cygwin on AMD 64 X2 6000+ / May 15, 2008 2008 年 5 月 15 日)
17×10157+19 = 1(8)1569<158> = 31 × 89 × 4993 × 10389319827483729125541276705287706636888901647006845589895676437721<68> × 131979363484273526432917168541620540675529931962287016158799908174443540210525526807<84> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.35 for P68 x P84 / May 13, 2008 2008 年 5 月 13 日)
17×10158+19 = 1(8)1579<159> = 3 × 72 × 5088556838519157777959041<25> × 773952255048761259605344760131<30> × 16713340926956566201930088601647275580275612424791<50> × 19521671710027297651795646344507570669558565769398567<53> (Makoto Kamada / GMP-ECM 6.1.3 B1=50000, sigma=243551441 for P30 / January 24, 2008 2008 年 1 月 24 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P50 x P53 / 4.34 hours on Core 2 Quad Q6700 / May 13, 2008 2008 年 5 月 13 日)
17×10159+19 = 1(8)1589<160> = 293 × 337 × 219251 × 57322599431<11> × 188719078795349<15> × 410507363263033613<18> × 19647381232688181069953412880786333001963995006765962485680314568866134968856168825138669535694122127112257<107>
17×10160+19 = 1(8)1599<161> = 13 × 2776731921313909477<19> × 23804872312724088177544609<26> × 3019027540589841111615402443598033601002863914943<49> × 7281086248778730252929784206334560094320704875958402009234594411847<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P26 x P49 x P67 / 24.37 hours on Core 2 Quad Q6700 / May 15, 2008 2008 年 5 月 15 日)
17×10161+19 = 1(8)1609<162> = 3 × 61 × 79 × 8706050959<10> × 1500745417916258090989490493767475717512129544715721072507713947390730301897218198488810039578597386678761980212833002274340278594872755432317174703<148>
17×10162+19 = 1(8)1619<163> = 20652191611<11> × 144101210699<12> × 5984739686749<13> × 106054077707332959834477590523831260091466621273728154641273464914261056779373230635013470774678572241790470207808616386372200549<129>
17×10163+19 = 1(8)1629<164> = 19 × 709 × 8221 × 9161 × 1458485858955241<16> × 3449519123911918627<19> × 1551277918048891382239<22> × 2385550717872165710704324429964096591491184725629155390101673494162202519321540712155740250065343<97>
17×10164+19 = 1(8)1639<165> = 33 × 7 × 999412110523221634332745443856554967666078777189888300999412110523221634332745443856554967666078777189888300999412110523221634332745443856554967666078777189888301<162>
17×10165+19 = 1(8)1649<166> = 47 × 53 × 491 × 90533 × 2471429458963<13> × 6902335440126428277953380170495095494993981823725928309142904116509016143497206507835032151531572432240421687672249705006603164887080609793711<142>
17×10166+19 = 1(8)1659<167> = 13 × 745033 × 7085413956200779<16> × 671347539145262415473123<24> × 878173932625410668935107562634861<33> × 466868291565041584191404564367635894529401621360028875543317445660814498485125130692393<87> (Robert Backstrom / GMP-ECM 6.1.3 B1=160000, sigma=1450624037 for P33 x P87 / May 15, 2008 2008 年 5 月 15 日)
17×10167+19 = 1(8)1669<168> = 3 × 439 × 1869749428162746085682491<25> × 163609302509880042320150939<27> × 67491671682398385317058511254298691184136924241<47> × 6946708088484961654717938698979654691930307591413856517996301354013<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P47 x P67 / 17.62 hours on Core 2 Quad Q6700 / May 16, 2008 2008 年 5 月 16 日)
17×10168+19 = 1(8)1679<169> = 1722973771<10> × 441744465139454537703640231879<30> × 62067659878874716493548893843727505309<38> × 39984462054234271226059897447734856516947654297265965031547710425930629429688197202520858369<92> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2835558633 for P30 / May 5, 2008 2008 年 5 月 5 日) (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3404844789 for P38 x P92 / November 24, 2008 2008 年 11 月 24 日)
17×10169+19 = 1(8)1689<170> = 2286095969<10> × 61583159712948473<17> × 2904146275484962375815593435366057290811<40> × 67503164136279247648768712027109846191861011687973<50> × 684395851991037539017805425656538836579993071788064599<54> (Serge Batalov / Msieve-1.38 snfs for P40 x P50 x P54 / 40.00 hours on Opteron-2.2GHz; Linux x86_64 / October 18, 2008 2008 年 10 月 18 日)
17×10170+19 = 1(8)1699<171> = 3 × 7 × 23 × 37501 × 1307923 × 46512393772229041<17> × 4807025903651954567691869159809598947<37> × 35660637429904587067911820002302375560227157892722747763245437688750495106878532185673868322404000400823<104> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3211483261 for P37 x P104 / November 24, 2008 2008 年 11 月 24 日)
17×10171+19 = 1(8)1709<172> = 118169 × 2195497105725655013341867<25> × 7280647129906611758549904310937540808730874435121278419547318218039318603618111739883591741734675072654235394141584688875578698147071871855843<142>
17×10172+19 = 1(8)1719<173> = 13 × 31 × 1294930917291103<16> × 95733537760783307072873<23> × 28198772682730763179964335972104682666986317<44> × 13407890389895255782844265904350316871715693706791070361946333164750439404987154252563881<89> (Sinkiti Sibata / Msieve 1.40 snfs for P44 x P89 / May 20, 2010 2010 年 5 月 20 日)
17×10173+19 = 1(8)1729<174> = 32 × 1631177846377<13> × 29848584708034065277<20> × 2375567706293982739150669<25> × 750117892989274144279381739<27> × 241903363276684909035441370958035543558858328855923576798341161083494928075756298023739539<90>
17×10174+19 = 1(8)1739<175> = 79 × 37199 × 642758835863931584144561150544365691363313798379937697007946276250412641720288822548615159073926680650830374468651120296512969039554584762857341302181761687784886312409<168>
17×10175+19 = 1(8)1749<176> = 29 × 22159530881744894279825531<26> × 2287564939848348677181525097281935232755346862538152059229<58> × 12849150624318225454983169816119634350749402321098929041720770220926407296469930333593909059<92> (Warut Roonguthai / Msieve 1.47 snfs for P58 x P92 / October 7, 2011 2011 年 10 月 7 日)
17×10176+19 = 1(8)1759<177> = 3 × 7 × 60029 × 2153839 × 3235763626157<13> × 68181036311913829222864062536130551017520299<44> × 315335151171449764650343824165775166487259848468133210842854523606712803082614231562952909525982326434030073<108> (Wataru Sakai / GMP-ECM 6.3 B1=3000000, sigma=1240119315 for P44 x P108 / September 26, 2011 2011 年 9 月 26 日)
17×10177+19 = 1(8)1769<178> = 157396778066711<15> × 2438952335284021<16> × 22481529999754860082224808568758676294687942518354009<53> × 218867560239018844971929959113379123233286508627651093680088190635935075487365718173216188471691<96> (Dmitry Domanov / Msieve 1.50 snfs for P53 x P96 / May 13, 2013 2013 年 5 月 13 日)
17×10178+19 = 1(8)1779<179> = 13 × 53 × 21383 × 739980681469<12> × 1614311919025664294729<22> × 72014409339636094720086892102083214767445086752450720039<56> × 14903604461131208532937779991018960656826888693779685633461956797277867722455733573<83> (Dmitry Domanov / Msieve 1.50 snfs for P56 x P83 / May 13, 2013 2013 年 5 月 13 日)
17×10179+19 = 1(8)1789<180> = 3 × 2743807290418847<16> × 3561264681645949<16> × 6443581097780453251820240170726771856391204791840372691404252568605272480701111291479143215154140469912341893186944662956633419996769485195277728721<148>
17×10180+19 = 1(8)1799<181> = 419 × 619 × 1031 × 11047 × 36990851 × 151697470590658823501920640983210298205869697881557467332199299<63> × 113953077508775119110951706395076064124225984752728139265411216672447466696317445592474937465880193<99> (Dmitry Domanov / Msieve 1.50 snfs for P63 x P99 / May 13, 2013 2013 年 5 月 13 日)
17×10181+19 = 1(8)1809<182> = 19 × 44839 × 48731 × 1008779 × 12003314779<11> × 5830558817883227437007237<25> × 758822763085731218605641418771<30> × 242103400334044748484073044835249209568097447<45> × 35078653987811118622758840608304843178836958530915817471<56> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=2130668955 for P30 / June 16, 2008 2008 年 6 月 16 日) (Sinkiti Sibata / Msieve v. 1.36 for P45 x P56 / 21.41 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / June 20, 2008 2008 年 6 月 20 日)
17×10182+19 = 1(8)1819<183> = 32 × 7 × 1231 × 832014015458685569<18> × 221620344427691306893<21> × 22565235604128037877625327726444040282248020112752989<53> × 585366237221547980749912109297547164040254928422579620101481420209000534294309356448401<87> (Dmitry Domanov / Msieve 1.50 snfs for P53 x P87 / June 3, 2013 2013 年 6 月 3 日)
17×10183+19 = 1(8)1829<184> = 319747 × 42064223 × 173393162713<12> × 139767067761204436361<21> × 5794957298391765686088964776881086659021163721102908520748032946182612933529255499187930556319653602298906617006034806509755814988575148333<139>
17×10184+19 = 1(8)1839<185> = 13 × 257 × 314450540959<12> × 3451394725393<13> × 21370262564387263<17> × 135277056908922227124923<24> × 1801975802134421621013624223497811951954185202253183263879379044827802258177994122224214916537182203294704823959723383<118>
17×10185+19 = 1(8)1849<186> = 3 × 75931 × 49452800414894717<17> × 16767763807837814850247143242185008122470302385036938763942439735592811777022833799179269432794177342334154435860356852685838675675720398066617792198270498699483869<164>
17×10186+19 = 1(8)1859<187> = 107 × 479 × 2381 × 4423 × 124739 × 17843684464119244352679970585661<32> × 358610552729805566257011087607215547839210760222898377472777<60> × 4384306706360374160661688714839358963390028660058737150290305337240839725375297<79> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=2103242167 for P32 / October 13, 2010 2010 年 10 月 13 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P60 x P79 / October 30, 2016 2016 年 10 月 30 日)
17×10187+19 = 1(8)1869<188> = 31 × 79 × 130843 × 1593572820774525571<19> × 401251035354215913304376507788636619<36> × 92188989279893202082354946018460873053454431002569165645589484601320584026838530371839708831527792712289968067038874734127723<125> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1041092898 for P36 x P125 / March 26, 2013 2013 年 3 月 26 日)
17×10188+19 = 1(8)1879<189> = 3 × 7 × 495608171 × 18148831115032190841330396456899809081224185455790224873017093567468633823219813288165086989646724356990060014556759587220354179743152367657382123739660851372433706293169639265279<179>
17×10189+19 = 1(8)1889<190> = 59 × 71 × 1617391 × 12524207 × 3607698986231981<16> × 370127884625109553441<21> × 1756706333511604963524042522871<31> × 668814360582016023721300568011912207<36> × 14188743452434643875801927553951755349395681019380535143529908397628329<71> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1009539771 for P31, Msieve-1.36/gnfs for P36 x P71 / August 5, 2008 2008 年 8 月 5 日)
17×10190+19 = 1(8)1899<191> = 13 × 649123 × 707912267722698978623<21> × 24592951456281913764228758669239<32> × 7213700843439887344632470841269291957<37> × 17823288757233023573682324129309601544137069773637839144377564166930756298795605248649159083659<95> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=1152808808 for P32 / June 16, 2008 2008 年 6 月 16 日) (Wataru Sakai / GMP-ECM 6.2.1 [powered by GMP 4.2.4] B1=3000000, sigma=87697117 for P37 x P95 / April 17, 2009 2009 年 4 月 17 日)
17×10191+19 = 1(8)1909<192> = 35 × 532 × 5637641 × 6211305771103972675890907488420449093598611<43> × 7902564931763559765946083135651247960259094786230003392039155478714927041194749332642316368517113005666468881915489444696977027160982897<136> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1509936673 for P43 x P136 / May 7, 2013 2013 年 5 月 7 日)
17×10192+19 = 1(8)1919<193> = 23 × 1948662034201098323710903730958276574627075333548724371561250262056978094886490485343891106957<94> × 42144611237527240110223119654035423284203139603203167827807897848137401763143004307433958811849899<98> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.36 snfs for P94 x P98 / 177.74 hours, 7.98 hours / August 25, 2008 2008 年 8 月 25 日)
17×10193+19 = 1(8)1929<194> = 22542178234267<14> × 11980646372633070109024401282997<32> × 1069473181130128938338389338052085463811162687<46> × 8206248302261205730784397605798480793972179520893<49> × 7969218440116613052512756988587066487139277622134522021<55> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1906493851 for P32 / May 8, 2008 2008 年 5 月 8 日) (Jo Yeong Uk / GMP-ECM v6.4.4 B1=11000000, sigma=931895716 for P46, GGNFS/Msieve v1.39 gnfs for P49 x P55 / February 14, 2017 2017 年 2 月 14 日)
17×10194+19 = 1(8)1939<195> = 3 × 7 × 69997 × 6219806000331726087886510092395369514702995314880584167043695732640630803843139<79> × 20660025405200278553802759449425478696086412569232603141896247759522318661877897698801706439669956649515781123<110> (Robert Backstrom / Msieve 1.42 snfs for P79 x P110 / February 25, 2010 2010 年 2 月 25 日)
17×10195+19 = 1(8)1949<196> = 626987 × 6054774813189939559<19> × 497565064931818330434462497404790521830617300974397485242796284893679591038532724483959558303646546903389324745230096980679553100272525970109346257371300892030595512907933<171>
17×10196+19 = 1(8)1959<197> = 132 × 1567 × 76185120133903791191690400321137479269091823110582049300522285191069163<71> × 936225690358746416834066797014232431566481342739412821308251213266451379641923167403248207342648269437398079244571833261<120> (matsui / Msieve 1.42 snfs for P71 x P120 / 985.18 hours / October 15, 2009 2009 年 10 月 15 日)
17×10197+19 = 1(8)1969<198> = 3 × 1783 × 3413 × 1828331 × 6389137 × 1191119701679<13> × 8815252852432204901<19> × 8565845295493745491035861955009586690156942363923687703<55> × 9847819812486412742847500446219188984060153282672500651279817858195974233935843389438565023<91> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=6385524368 for P55 x P91 / November 16, 2017 2017 年 11 月 16 日)
17×10198+19 = 1(8)1979<199> = 2017966990561113252691<22> × 215242113001343605126117912970385162629281437777389<51> × 4348756664006189598933164529666845116060794707257788339132572571686441282737580420269145567715153152885001089965105362203372911<127> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=5114197046 for P51 x P127 / March 11, 2018 2018 年 3 月 11 日)
17×10199+19 = 1(8)1989<200> = 19 × 11426677 × 123255622367<12> × 141857715300391<15> × 5138161329524717989941204310400876953401360087726965357<55> × 968423731684091504254452860434926485292499218152567072454501235976859995144895145021083361879368400233852924907<111> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P55 x P111 / April 27, 2018 2018 年 4 月 27 日)
17×10200+19 = 1(8)1999<201> = 32 × 72 × 79 × 253537 × 706539269 × 30266561120469566889258876289269262997466169901539877739359691139044939200711145394186472737428848999280383175714582613187551534616927834528754299489982403373313874464679854909115267<182>
17×10201+19 = 1(8)2009<202> = 89 × 2137 × 664494379908102297547515921499<30> × [14945848337947540764229123275495969638965952371425780920428917271000973060351936491803692823155887826317847444354969374624925707062896357669651693502258802140418406827<167>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1533045033 for P30 / March 20, 2013 2013 年 3 月 20 日) Free to factor
17×10202+19 = 1(8)2019<203> = 13 × 31 × 937 × 50022083278529727388473558473902743534719298137207043462422675422296725701552361792661995781078646779063345318035991771661548230557078286620063739903998794762040536130803628307673475849191069351499<197>
17×10203+19 = 1(8)2029<204> = 3 × 29 × 1171 × [1854087663446007331280749225918400511291939190287198179067786535615388055094760239199121380575486997937600134366823609734178361051943901851142935980534260813420977147824228126946110396742040783384757<199>] Free to factor
17×10204+19 = 1(8)2039<205> = 53 × 163 × 797 × 6408139 × [42810735875728250000204773112023802454380475798106294389874100331801983488988883583912685860958664194206674617142839383727585113627003487995376030964922439259094677368413407546999694282984697<191>] Free to factor
17×10205+19 = 1(8)2049<206> = 1801 × 7214542547<10> × 120514181028299<15> × 614911790246954598472289863<27> × 870208017709335049296397281857472133<36> × 22542903178676497475841204342213874234522048029993493023075523671863022681336173408789249011050392285416562923975147<116> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2125781496 for P36 x P116 / March 26, 2013 2013 年 3 月 26 日)
17×10206+19 = 1(8)2059<207> = 3 × 7 × 719 × 376031394620195482453<21> × 263207669692109260491068474299<30> × 392799512476153551931343038196838174539<39> × 321784144621083185378665197882184634826630173970428622411039550740558901044553058458120963458676222024295459358967<114> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3428541439 for P30 / March 20, 2013 2013 年 3 月 20 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1517897480 for P39 x P114 / March 27, 2013 2013 年 3 月 27 日)
17×10207+19 = 1(8)2069<208> = 17851 × 9600819523<10> × 121827477158656229<18> × [90467024264695716657366764027683197810746418197224405237329563923195203812513427268941747301921330520253640995883747364554236742560971836527470888244166156216005620489630116117<176>] Free to factor
17×10208+19 = 1(8)2079<209> = 13 × 83993627 × 20362095313685673503<20> × 396434870057780516959827293483<30> × 2143001182383065446242637904810379105659183615429410550568607626752088436868378031579699712519001680067970625593416326211977317858600745507779538250411<151> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2019759384 for P30 x P151 / March 20, 2013 2013 年 3 月 20 日)
17×10209+19 = 1(8)2089<210> = 32 × 157 × 461801 × [289473879193140949398485002728760429358398802972246342590636302575192476073532684019004330014480060682211771905276020344821567557598593402284747888796205653085086419370980899218140366547086216151122653<201>] Free to factor
17×10210+19 = 1(8)2099<211> = 22101889 × 35953235692995250305713<23> × [2377053939150813754730181079943839814552845539398702371519678873894718281467048766408390248627575285783660723766738337731774222499676824158661531839076428423274916042595164544688777<181>] Free to factor
17×10211+19 = 1(8)2109<212> = 47 × 159407 × 16459582227839<14> × 594955433947835535628868341<27> × 1371432295184649020534530898671019<34> × 187725621099405591051527295593291009513572475254315730565837897685261141892559762409117898808289406912998234272069394869797765885761<132> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1565413378 for P27, B1=3000000, sigma=2255931095 for P34 x P132 / March 26, 2013 2013 年 3 月 26 日)
17×10212+19 = 1(8)2119<213> = 3 × 7 × 531043 × 38083071233<11> × 212371954349<12> × 1513774592434065471079<22> × 72691000705676353641680769463<29> × 19032088155647825036892226305932685116129292784290156645677574326310304337640094990567985696190628747213892387364242374730146796938307<134> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1035742804 for P29 / March 25, 2013 2013 年 3 月 25 日)
17×10213+19 = 1(8)2129<214> = 79 × 269 × 761 × 995409406304210307766133<24> × [117338530098925177052050272034210597926731768481400786033665737239926395332584744005265878151509887404848295683018444292549632580306502994068317402978362407509046436849607957349169503<183>] Free to factor
17×10214+19 = 1(8)2139<215> = 13 × 23 × 864641 × 73063319267084257661145993237376929517970411393733654196315176044234744294376985361124895688197481759152466115391115226432653725800723275372593262405586122948991267850721105585413933945415445427790335148971<206>
17×10215+19 = 1(8)2149<216> = 3 × 181 × 947 × 313711 × 1338329398477<13> × 1735602967871<13> × 512114121201427<15> × 1777148178032629<16> × [553889410366465518194520916421253630749041671407487143871732905630783501060776574859470363473754702205300396413735282231343621238306285062856168144879<150>] Free to factor
17×10216+19 = 1(8)2159<217> = 7303327218259544296977402097<28> × 258634021513694404429008672324997081343469892744973438838354428465317464244071180106874745941485102843656158345402342671183423444109680001015981740766110240610735240083375169573697596692937<189>
17×10217+19 = 1(8)2169<218> = 192 × 31 × 53 × 45353353 × 5859797853547262896927<22> × [119831118223154605188314236715819103636462719877795967830287405335535396923567548735464861036441764628827065046029289943427561628996078200215615303147477666659629133084041562990170053<183>] Free to factor
17×10218+19 = 1(8)2179<219> = 33 × 7 × 149 × 6627727 × 7592987 × 617207244059320841<18> × 1231692616632154496621773<25> × 175326562922899313757228609818219605030571433794072534742591025763319225263908225007407108688563045478538744374978371736162024821681864178189381629649984319457<159>
17×10219+19 = 1(8)2189<220> = 199 × 2683 × 513322637 × 1990716551<10> × 2001019739<10> × 1148802121589<13> × 25894044546589<14> × 51439706708149<14> × 74596112138381123<17> × 308001609187925399<18> × 9354407827962800218199629620076605287<37> × 5260806934919029928553294064518435109017521769376315829313970799361655286539<76> (Dmitry Domanov / YAFU 1.34 for P37 x P76 / March 29, 2013 2013 年 3 月 29 日)
17×10220+19 = 1(8)2199<221> = 13 × 3967 × 366269587343446682997981208215642296811946421222952606869924742372435843572722826567041338909249168891215778032011961933817240094023557598047136741364117214886057840431422483350892728255975041959413020668377361092259<216>
17×10221+19 = 1(8)2209<222> = 3 × 612 × 97 × 113 × 322583 × 29677832586369837052129<23> × [161250716225549017634058770838847271717576338702554623605149390386132684426218705847868043879007997798260955439774233702847144670145974419089766627661338896118657838551310994539152158989<186>] Free to factor
17×10222+19 = 1(8)2219<223> = 14459680362592528005140383149253<32> × [130631441465018886388369012669434321988211525333983923778935914874173376584400336118710482167924776426014613017836226581886976209796351098100465058455429752278410473847226676454158957925866213<192>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4004026986 for P32 / March 25, 2013 2013 年 3 月 25 日) Free to factor
17×10223+19 = 1(8)2229<224> = 1231 × 2570429 × 50018817251859480224405911<26> × [119346401412713343836417216533813846599516021328366675109013712913696656268481091744650268342546823164722229919838947905329702103301084628406868699220790952908801288579026481939366201621301<189>] Free to factor
17×10224+19 = 1(8)2239<225> = 3 × 7 × 71 × 349 × 839 × 2591 × 24501906288188511131<20> × [6815129195133275413849028982144206085709211044978676839020221641687911083124832634353736747410460192917150862371710816990047447909948343781157698020478559730765548216101997473748826858430132309<193>] Free to factor
17×10225+19 = 1(8)2249<226> = 3947 × 206897 × [2313050379733542068659770829164629782596866943245420695549213261215105631681982541321324214142007682510834408595280734115700936029349260021868794682377072473938521557229041246450569257352361024017450993089682938647771<217>] Free to factor
17×10226+19 = 1(8)2259<227> = 13 × 79 × 613181 × 22647613 × 738073235273819<15> × 1794425312809839064776163466989337780706244440309090672289383564659532609234084090392580660221514978156595548315019851062559839475995801086951672631726781243524113430961270182963438178334081984801<196>
17×10227+19 = 1(8)2269<228> = 32 × 1019 × 1621 × 28810230393685749809<20> × 20659614687686810641033231078271480319559<41> × [21347044473430398046413579006739258304666394172682794203876935616917118629215660765066580920616707664341164551951883946999500911407390828449427018735610216115809<161>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=56021431 for P41 / May 6, 2013 2013 年 5 月 6 日) Free to factor
17×10228+19 = 1(8)2279<229> = 302926903 × 5655297757<10> × 489734868142060471237069882875870654461<39> × 2251396907443974268728844480942602457297381476445759923660109786489709143214325793682122780448681139108113909746671959038890869554598833819380534717052545913506121958062519<172> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2682315662 for P39 x P172 / March 26, 2013 2013 年 3 月 26 日)
17×10229+19 = 1(8)2289<230> = 3931 × 222186649 × 522152181977699164081<21> × [41417922575230885500330109425987783327885427092612452148851974510107223785193294174167322994043427345042539631813935849069571854911246132416458848942701015336891451306576587519828347459978703250851<197>] Free to factor
17×10230+19 = 1(8)2299<231> = 3 × 7 × 53 × 283 × 680503 × 103900737299<12> × 26906398945762205237<20> × [315224933138629847214096844904467555662063427416887920412311599052077493150221001073612211374962106390250735669941741378992447783072449907221249698899383108938001710368190529861815794301419<189>] Free to factor
17×10231+19 = 1(8)2309<232> = 29 × 227673875041222741021384238591253731<36> × 444110675968044926492555891157046499669659<42> × 644175200610885112531600691793575278582485775153378982148749518758917391610550046241734716648014744484180815377033302832305413177116610310422094526796829<153> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3357104581 for P36 / May 8, 2013 2013 年 5 月 8 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2781134963 for P42 x P153 / May 8, 2013 2013 年 5 月 8 日)
17×10232+19 = 1(8)2319<233> = 13 × 31 × 487 × 911 × 2539 × 1145959095341297<16> × [36309662390694851429604677149464931588003446079149316678086964375422963665047220438391227319655488598983668543773893871992653513966034039630705815416825119911439845967725285162478562626955153664089695409873<206>] Free to factor
17×10233+19 = 1(8)2329<234> = 3 × 470359 × 3212647 × 71410430627291952874483687789510421891749379<44> × 574915781899566530208568596168118135461212237<45> × 1014908307984268026761160343733277618867697354835161601217831108203881551920465980087381004634556898285924804233497553760574923082997<133> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2609461639 for P45, B1=3000000, sigma=230195030 for P44 x P133 / March 26, 2013 2013 年 3 月 26 日)
17×10234+19 = 1(8)2339<235> = 37699 × 1079173 × 684369199 × 67841439621409196678205286413534540157502498807998913226146081948796694539330004550540140616462949886529595527484271763487527912655226604460535066392171037418728684048454196440147045058430305096313400101278055406393<215>
17×10235+19 = 1(8)2349<236> = 19 × 994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625731<234>
17×10236+19 = 1(8)2359<237> = 32 × 7 × 23 × [130358101372594126217314623111724560999923318763898474043401579633463691434705927459550647956445057894333256652097231807376734912966797024768039260792883981289778391227666589985430565140710068246300130358101372594126217314623111724561<234>] Free to factor
17×10237+19 = 1(8)2369<238> = 140453 × 34173005961461<14> × [393543016054326041767085505631983684728342959048328707962030757936582865457482998690382976327733149937006401804596654988862244930172888895679475539771683177299991157754361177539807926348031477076638351458382548979834833<219>] Free to factor
17×10238+19 = 1(8)2379<239> = 13 × 34319080519<11> × 42337715084966696728329426400372058040597047762398793987718125700506708014609074410192329531070542286268791147067137221149540537694481143667524825535709830753609633238072038670430657903357011307141758595652339174285191256217787<227>
17×10239+19 = 1(8)2389<240> = 3 × 79 × 107 × 1889 × 35897 × 2108461159725456806269453<25> × 225432355754219984884464461341<30> × 231101263896180047195138317530603450236219859278339165704166071136378598307078505159469016667859795108586132075456937990460078778553466752492619528176301102647550093571475719<174> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1215727311 for P30 x P174 / March 22, 2013 2013 年 3 月 22 日)
17×10240+19 = 1(8)2399<241> = 222073 × 406833456346711<15> × 62237538315826963<17> × [335924427287431166990847743335324732704029478406801084728877639083751552814880627998987475647500164711291913209990221198901776425185535307566778215341498632427888418803728461949427491048124059252785644701<204>] Free to factor
17×10241+19 = 1(8)2409<242> = 86168999782499107673<20> × [219207475270302665284829858901760364126255060607292695282230461493610432645268846083294386227286342665615795174605903750900367014494714389319664979179552975073791471647647328428723830522971797809940628119235454231956596193<222>] Free to factor
17×10242+19 = 1(8)2419<243> = 3 × 72 × 593 × 157799 × 932830391200774306002689<24> × [14720665706995421427954075428249425868392100437917866978842581972664495338308459880550388362971462474951081183889602775274817994164674604646488222158046959338219675140497402508929332960454587825018279496999669<209>] Free to factor
17×10243+19 = 1(8)2429<244> = 53 × 1063 × 2090355282234402855018239323<28> × 3434555203476272553183832120306153<34> × 57920667776075363345563830274125897557<38> × 660865389082334037465433168139974754338176890922215441359367034917<66> × 122000076396527792747161302176528462336003705288038603755444347836293192841<75> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=537211575 for P34 / March 22, 2013 2013 年 3 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3630960768 for P38 / May 6, 2013 2013 年 5 月 6 日) (Erik Branger / GGNFS, Msieve gnfs for P66 x P75 / July 5, 2016 2016 年 7 月 5 日)
17×10244+19 = 1(8)2439<245> = 13 × 24214382617<11> × 1284429023078633153261<22> × 619908419287149102567283<24> × 75361930327832612577650203608164045264211540386710750623170810746163235497727557853890391692182334891601523227896648257733244592054159453978513227569789587792521473575074064171125910154243<188>
17×10245+19 = 1(8)2449<246> = 33 × 89 × 423541 × 7242409 × 83350489236279623<17> × 8041982483210357015703436347746159408189<40> × 47897685761364591897596563247614429492571<41> × 798157005555759232182377437859568513540936935319191377809711505084478259404013593924289981378697525530127008745881420654182702922871<132> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1293486577 for P41, B1=11000000, sigma=817620102 for P40 x P132 / May 6, 2013 2013 年 5 月 6 日)
17×10246+19 = 1(8)2459<247> = 227 × 6171314652592592303<19> × 1348350699202733962932424605596911989095604454089434112021458251016939917017085878731104328665252689968820100308266555313845233026920941484248795381283925369949755428543440429007938649509597958797504359727576761131241517787069<226>
17×10247+19 = 1(8)2469<248> = 31 × 59 × 15031 × 117570994814446543967801<24> × 142524116493638750952556806687543243157<39> × 562015335050432585027001391267448466097<39> × 117515439256873819352216572778691919789520779<45> × 620830703660131432955737603225505507802711675279449204799980253759093862008740737235772661793821<96> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2607191574 for P39(1425...) / March 26, 2013 2013 年 3 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1717998225 for P39(5620...) / May 7, 2013 2013 年 5 月 7 日) (Erik Branger / GGNFS, Msieve gnfs for P45 x P96 / September 26, 2016 2016 年 9 月 26 日)
17×10248+19 = 1(8)2479<249> = 3 × 7 × 457 × 173149 × 2030533 × 227950515098173185313782517331379646113310187<45> × [245584130516048206774846309402925340105339310609262522486035840655491356845581516771175401879323146792884177598760563326265357335100079201306759897476067928040640418888849898905600850516503<189>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1554793093 for P45 / May 8, 2013 2013 年 5 月 8 日) Free to factor
17×10249+19 = 1(8)2489<250> = 109 × 2203 × 331423 × 69261687468298291<17> × 148797200386192789<18> × 7605931508084652894618215727179<31> × [302790701424535102007966927441668138962345906425481597670347294367092747849769214518114515389395478519405163361964002059284641074834430680469811074997933675105321915088305029<174>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3065967235 for P31 / March 23, 2013 2013 年 3 月 23 日) Free to factor
17×10250+19 = 1(8)2499<251> = 13 × 312715384726777<15> × [4646370226591020470172485561954011358113232255231780962501043378178772900377544012269516893507831944969203734422315694258283302515872034101382943555123151291115415438239088056812394468976656986192734344458269769007090246259796939017989<235>] Free to factor
17×10251+19 = 1(8)2509<252> = 3 × 6379 × 9870350049061445832099539577200652604320890886183251757793221972560426863609180586763279975382185759987923336410560113334842916282013319166477968798081668437523587233573124778642884929136692736002972717191246741332961743684427490666713115372779897<247>
17×10252+19 = 1(8)2519<253> = 79 × 373 × 1979 × [32391025249438664961443047764394587340024560818805639362093663805397829839796447023486467564102701141517080958454324053920028848895156514167566741807557575757125401074963241378432699157642998607393597906619101627407610378463274380124042269548673<245>] Free to factor
17×10253+19 = 1(8)2529<254> = 19 × 179 × 24373858121<11> × 29740305221647043693<20> × 568814823820447470907<21> × 10338235668101265948931387<26> × 1302904985491010459602388295900793578457099542365401334028176253966393541185000721474624060750793653525469206340660370240363068407563298207502990054365815147470509537756759157<175>
17×10254+19 = 1(8)2539<255> = 32 × 7 × 1523966679701<13> × 5860963398562997<16> × 335676842681647314964460386379756590070163688438711865838849242637697618050426536025651838920187186356395852520693770024407012279176570189754308055073624192456788090446483668958947881324846957881229478715824374940792987090399<225>
17×10255+19 = 1(8)2549<256> = 63508091 × 22114885369117477<17> × [1344908260189942767370326756525974478146080561155422267926374186849425144123775987021427746741465899266668011729569523546685100585611533665907880280229026005082221810050501924631288251783746966514946846592033055369014053117971433727<232>] Free to factor
17×10256+19 = 1(8)2559<257> = 13 × 53 × 827 × 970893461 × [34143662458813288255260537488092332256001407412680949167298449802046118366263293186448248886006064314092757546718571003715961062877100898905918651631347602664760100844788991466926759740209825001208263528569610624726115289534102077516353965983<242>] Free to factor
17×10257+19 = 1(8)2569<258> = 3 × 47 × 496211 × 1195745515546687097<19> × 5091061202508733064161261<25> × 4954031067178129832041949993476537294740887833<46> × 89518976328676944798371813588330020968971205355316591676051489390901184746204586633990404264672892627180127240201701974214464274397084979409123536835189780872699<161> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4175590039 for P46 x P161 / January 8, 2016 2016 年 1 月 8 日)
17×10258+19 = 1(8)2579<259> = 23 × 325901227 × 5675040130841<13> × 438454544700089933<18> × [101274257398449660450591763326919578645208499914160808645697476547258224424842384905980480077327113598161396273050035637567875578193905582562768597805512611313416246938792724832609301480659397425044958994642970044066153<219>] Free to factor
17×10259+19 = 1(8)2589<260> = 29 × 71 × 8500027 × 26729741 × 96127972607170067<17> × 190940365286855815778527<24> × 62656522302708506753040410159039879<35> × 428389147821379263519881016875139245088089<42> × 50554737222063845181079081028261474325435363932527<50> × 1621141313450919212986176880982060413611100328969122543463872321059796928041<76> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=680312886 for P35 / December 28, 2015 2015 年 12 月 28 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3404292111 for P42, Msieve 1.50 gnfs for P50 x P76 / January 5, 2016 2016 年 1 月 5 日)
17×10260+19 = 1(8)2599<261> = 3 × 7 × 151733 × 13018541 × 38995291 × 8448315143<10> × 6381419385852394019924416951291<31> × [2165933900480633745246039579071993189452459208926674143321052403076170590769518913286221965185708217597244513944634289109905728873288828019914237868787808867349525801813008430429689147859484682978091<199>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2032346523 for P31 / December 28, 2015 2015 年 12 月 28 日) Free to factor
17×10261+19 = 1(8)2609<262> = 3643 × 519703 × [997681724477926051551348187587766534467552778477253901988258317705797920548777935926117953639913543246895667054132855459703266270190731130535339291622281266587755288892590264611837889177178471809588030078433286931091771988702927523852276684762018589341<252>] Free to factor
17×10262+19 = 1(8)2619<263> = 13 × 31 × 431 × 227627 × 16488867081409<14> × 16527075870435336364973431<26> × [1753127422480989467461456834223643824200136152240935765863265765033634065179878514755420506090722503549955548044681175940616771224106015621446813393801225143341438942207657654892876063251876586077804183327397031281<214>] Free to factor
17×10263+19 = 1(8)2629<264> = 32 × 313 × 3761 × 121343036794342401767694099709213<33> × [146926919067310695495777032769606164439092260887477319263842278623692636512976088514154958684562155324106851289390786353446566588781991610257752242592063033051649743835944006228207456603628229685260620372487826249742119586269<225>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=134762178 for P33 / December 28, 2015 2015 年 12 月 28 日) Free to factor
17×10264+19 = 1(8)2639<265> = 1231 × 34450303 × 693888224049609356611<21> × 64189766496061293187168854463312022855954763465144092885190963787116308586553349463906065289667308332316285796341543001609836955087925755760361916811690187137114569633972484277534914071219603557501620886686199894859842550079859592643<233>
17×10265+19 = 1(8)2649<266> = 79 × 1907 × 717331 × 795054906487783093500446281<27> × 1246168249115441248495562813797<31> × 413038604326031415466195744967426082037<39> × 427114759838651164330760794130476946606929595006421228633930697368541889230135420499084019519311679168292395903145853353775955437305738653538852071722311632047<159> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2086375725 for P31 / December 28, 2015 2015 年 12 月 28 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3802666548 for P39 x P159 / January 8, 2016 2016 年 1 月 8 日)
17×10266+19 = 1(8)2659<267> = 3 × 7 × 131 × [68661900722969425259501595379457974877822206066480875641180984692435074114463427440526677167898541944343471061028312936709883274768770951977058847287854921442707702249686982511409992326022860374005412173351104648814572478694616099196251868007593198432893089381639<263>] Free to factor
17×10267+19 = 1(8)2669<268> = definitely prime number 素数
17×10268+19 = 1(8)2679<269> = 13 × 20341 × 33957251 × 168436493584811<15> × 255167944101646001808021947<27> × 6043974580825758425450973989<28> × 8097916594991059803904385368018555185226616149838640203012198436116513763372800829351872968257125495766398648820562016771908971374561924807637723449586967110577713621348662395919742700591<187>
17×10269+19 = 1(8)2689<270> = 3 × 53 × 1277 × 4129 × 7561 × 846983 × 2247835003<10> × 927254616977476633<18> × 953654162683845218482521470219<30> × 17699672592158062703486409600991791814996250949929739905608211473118293253868777643333084453207155827479684748128092922104723393356957691025624148231553453483135916161451687555097372955159599629<194> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1643366149 for P30 x P194 / December 28, 2015 2015 年 12 月 28 日)
17×10270+19 = 1(8)2699<271> = 1777099154907871<16> × 22743985383237491729<20> × [46733486685384507367972382150779985300152927609677930767843802730945850427479110084379580739586878675499291584190368816080903196806644904775806556590171873925518510151977828600909839955585729523952453057774964935904085116638834083569271<236>] Free to factor
17×10271+19 = 1(8)2709<272> = 19 × 787 × 35543 × 43487 × 491066555633263<15> × 1664271558555046357931657079948744305578446113065068268405189095777354182226339203594176902143570768887669827275415923906515930175160332330018913362568278424805678300614461542888904912385216098988522698630865093967947135577689450699934579043911<244>
17×10272+19 = 1(8)2719<273> = 34 × 7 × 167 × 226217 × 213853771 × [41234879563600206291634157693844939501084103469900147737617045730658198896751299436856647068695632961077022117546188172485294458592102307553484732427292191279152494690434733433901300672237198165943342600191102623147261222942620095295952274090298095161843<254>] Free to factor
17×10273+19 = 1(8)2729<274> = 263 × 54851 × [130938123826288950847268634973217030394674386039032177173576899193750042988141388557365112724592290839267699428024534138137579413298154418672201621419110929060905537101367450755731333054774028256770615901432306719135267377227813010531114529828501789735447762208541653<267>] Free to factor
17×10274+19 = 1(8)2739<275> = 132 × 10467777301<11> × [10677393117291237403292169820915782289338880016912969312855151956694143626224830761574233746190918929634374576332122237928238649684305661054027919340395435310930156872567845766437552330806837909151210604055635159677985506389279617540280700376862845034793923149581<263>] Free to factor
17×10275+19 = 1(8)2749<276> = 3 × 1868418637837291<16> × 2005680211143595136617<22> × 573152297860309306662823<24> × 110540582996747822961634853179813<33> × [265190210574627176089343009216400305464186702124018651771754466503883342243037308408643518947234736177002154847432438368532899257679864110308344874057180924915114374184345458818707771<183>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3639120348 for P33 / December 29, 2015 2015 年 12 月 29 日) Free to factor
17×10276+19 = 1(8)2759<277> = 1399 × 2841777916793819<16> × 475114803627282038565546111839615057933542907731606448403057190555619024495433370113454230791665356355218340890160476760510314406433900322895782919363970889517509965669152734514280462479221042397749078855371016347044837855141911138523438630787924538308887069<258>
17×10277+19 = 1(8)2769<278> = 31 × 21611 × 60556558846669<14> × 3369828128551593660583649<25> × 3697523323084898357351393999<28> × [37367151545174087326653959583191982064908109820034447950963937644670370411625752368777566870004825737748072871459767742651385825634727161035022724461009053973374561467102059908070471276370167317788301833991<206>] Free to factor
17×10278+19 = 1(8)2779<279> = 3 × 7 × 79 × 311 × 13840339 × 288952637 × 44706410301693415250858453<26> × 49624791410174112815213939760680203<35> × 52265608678752809757714166524510316796893<41> × [789481105467240394333518387530176703449832388652576710249535911038178623310990289897695152793060940438343365739560306585376472140204861434996411889260682321<156>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=274305773 for P41 / December 29, 2015 2015 年 12 月 29 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=1702093970 for P35 / January 2, 2016 2016 年 1 月 2 日) Free to factor
17×10279+19 = 1(8)2789<280> = 885811 × [2132383644918485872143029256679911277788251544504289164267421480303234989053973013305195903966973642107502490812248762872541534129615560078717569423826176113063496489532065969929125839359512231039001422299891160630076719400514205500822284763780184360872566370127362257737699<274>] Free to factor
17×10280+19 = 1(8)2799<281> = 13 × 23 × 347 × 2219333046863<13> × 53713731288096801543367<23> × [1527207142714230718347689805131865984537170660408587994162589519346435633397633736164685416609783648647675478692854294790160985749071636135452141225988863293108529559211294420179068080542270844554110497752865778316576258954106370827565412553<241>] Free to factor
17×10281+19 = 1(8)2809<282> = 32 × 61 × 233 × 75527 × 2448073 × 2528954179358353957979<22> × [3157988813247690733172633855266484511546255737849613541709575190409545335421495108061710338946543379992066379364775392148124872016206135328178395079619564629462302067876851702501488688699999798599106512756621952187156123241013475097959134835513<244>] Free to factor
17×10282+19 = 1(8)2819<283> = 53 × 1115517660742952535392080830329<31> × 31948766256346983380341858875269276015713890845813819515530432094400579248926143988176927271877841394422620540223495394018154206008745590458277161655341662550281668640201997420757958334160755208690674201423380950818427282327592248955717829367297477597<251> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=110703438 for P31 x P251 / December 29, 2015 2015 年 12 月 29 日)
17×10283+19 = 1(8)2829<284> = 1031 × 11093 × 32870567 × 19306914439<11> × 5773548402365552239843309453<28> × 3351227660009348072545668076887241<34> × [134502985181771871456253775030686315336363239772693346199523198999221833688162427544268969812628654080302316429701031837885767162966173737193987092301020048576916145883174108884689650928625489795367<198>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=874402983 for P34 / December 29, 2015 2015 年 12 月 29 日) Free to factor
17×10284+19 = 1(8)2839<285> = 3 × 73 × 887 × 10159 × 196756800424211<15> × 4625837865113696783819250073<28> × [22381866378547974974192514043339838033588576004402275827198685155182493410049296818956566245509661058755861976446811524680451324169872387992652332692544448530246008243561489291872412449072949993770721137843693499002810664819318798359<233>] Free to factor
17×10285+19 = 1(8)2849<286> = 163 × 991 × 1699 × 6199 × 14653 × 176699 × 6410119 × 244006727693<12> × 1637057563351829<16> × [167470244013008367229552694734502203296370886432581406218828537018015566145917329122756116011517101507803582124592082778282759044415967219154080487024215918893818850393193987240881888467975454746860772615338142836141638035951038673<231>] Free to factor
17×10286+19 = 1(8)2859<287> = 13 × 1069 × 4939271 × 11279210693<11> × 318638007879255034135950017204969<33> × [76567807609187583278617273339792426797382813396950433972426083450621778721128960408430386545289836243313029877578883134634223972585024825709376360756371059342259456802198772856264657780169474407052435809348661890442820136991841384291<233>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2851380277 for P33 / December 29, 2015 2015 年 12 月 29 日) Free to factor
17×10287+19 = 1(8)2869<288> = 3 × 29 × 157 × 1432882463502765601<19> × 34049695707266130033900481<26> × 955332266179237352661991464435692483<36> × [296694337704527668561604882723936887728804583419425064363482716286434089093049557242296446234489193648719452693920955102335484263429459793632911218482357031109814811912901278891945487128940248129433501577<204>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2172440118 for P36 / December 30, 2015 2015 年 12 月 30 日) Free to factor
17×10288+19 = 1(8)2879<289> = 41562142562783<14> × [45447341556936542525923487690362318574526600543376350893703120591762704936980835019042175794675742858341860625053481140106195980382907032584011679911998848206005385838115846646126620852260473625040373539164375777296174865453655145692069601005378467411015025739424586398321383<275>] Free to factor
17×10289+19 = 1(8)2889<290> = 19 × 89 × 15451 × 7192021270566331967<19> × [100520640841132173746635724879962929353586950649774377172498497793780385087611763612378435029815272461188861557385844932197559811219717230436415317820522121351989400733220662280623994329067576019345031859172790092881164946141710290110102601930310951950433389302687<264>] Free to factor
17×10290+19 = 1(8)2899<291> = 32 × 7 × 389 × 2551407527<10> × 11872833776303<14> × 149157125095018843402810151674944819467<39> × [1705838991445682865533084787041711111017662082698361215465443819110118518627746163593603667099167239320432654846282228945105957724242099193586575033651823064338823519825838855972007142809500557901573854337606142456723925321801<226>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1931088448 for P39 / December 30, 2015 2015 年 12 月 30 日) Free to factor
17×10291+19 = 1(8)2909<292> = 79 × 14591 × 22511 × 586921 × 1295028098465595924298685567<28> × 95772458258923305900473969315832288103815428532738361333832731713363451002495769891537973454373221675916339873768727366958306086512278144176977589048217199056233320238305833722230067662479872921250604289013385983524109555508849477201865417062172113<248>
17×10292+19 = 1(8)2919<293> = 13 × 31 × 107 × 1973 × 210481 × 485524279 × 100280508073<12> × 748638286580011<15> × 94705699540548596210679436949520463<35> × 305563852270975766623443049815669315812213568231145934727234535863874993448609545085108715930144071931716050233659050600117747014850591365949977712560306369334942013439042054776344852625858762572054150374487903<210> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=367663731 for P35 x P210 / January 5, 2016 2016 年 1 月 5 日)
17×10293+19 = 1(8)2929<294> = 3 × [62962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963<293>] Free to factor
17×10294+19 = 1(8)2939<295> = 71 × 286194323 × 79461033210283<14> × 20446127020003935890920451671<29> × [57216565637298057154352711236445973646024555665497026575191617437248092768120405757882578010398906547340425082095938989179706891517524312338274532749086824304101146899200969681170606511493068721519547658627378804871281543378303930203212427881<242>] Free to factor
17×10295+19 = 1(8)2949<296> = 53 × 7624021 × 29411240919544223<17> × [1589399638158039942279439525401005108519882677371724781985494247051043116881438246736236002202895802204886765571098348867604001011076626151313896293392943516636049044907960061889679052301372387389328846652574519255774509516752888880641939983806270617740439940722806309311<271>] Free to factor
17×10296+19 = 1(8)2959<297> = 3 × 7 × 17977 × 27091 × [18469062990527710292438151168766985420006268914288068617568433063813783238045132353020550783663607641293400304468932805600947876108254309983564238198378175534973324737899644433254912656521609735848822785026156722949568758701249998893173499325750020614274533302929696553844900499102605487<287>] Free to factor
17×10297+19 = 1(8)2969<298> = 569 × 9883 × 21758119 × 544464493 × 836988444393027163<18> × 1851382555446062180810657<25> × 18297797222899960626785126575821596152139643670989313564362104154987874343890165898794541265994454596882549917031059837464346591467871786845578650406842524711795306393667112252922127640161327967823741397506041608871803902781137644331<233>
17×10298+19 = 1(8)2979<299> = 13 × 1250898881<10> × 21907447091<11> × 6831071232004001<16> × 107253701503205533<18> × 40942131028534830270082473090469541355453797<44> × 1767573724027388126154115573890860262100165751399284044697010829911789770993198517270369184481304806220383862230731559666769210508631130038516686616565655599415698933654410479132679786451883956026751743<202> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=277513058 for P44 x P202 / January 13, 2016 2016 年 1 月 13 日)
17×10299+19 = 1(8)2989<300> = 33 × 6995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218106995884773662551440329218107<298>
17×10300+19 = 1(8)2999<301> = 2663 × 41413 × 144439 × 287327 × 211199939 × 756746729 × 91304793011707073637961149055428738739<38> × 310948280479835930806453335116420666736012342049<48> × [90951855836194153839917275434750056905282216722150138542972419453153813492316436858377992813500251755910470191744744591856963729010419086693803977250595821199179648900360211732347<179>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2428965086 for P38 / January 6, 2016 2016 年 1 月 6 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=700013237 for P48 / January 15, 2016 2016 年 1 月 15 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク