Table of contents 目次

  1. About 800...009 800...009 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 800...009 800...009 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 800...009 800...009 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 800...009 800...009 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

80w9 = { 89, 809, 8009, 80009, 800009, 8000009, 80000009, 800000009, 8000000009, 80000000009, … }

1.3. General term 一般項

8×10n+9 (1≤n)

2. Prime numbers of the form 800...009 800...009 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 8×101+9 = 89 is prime. は素数です。
  2. 8×102+9 = 809 is prime. は素数です。
  3. 8×103+9 = 8009 is prime. は素数です。
  4. 8×106+9 = 8000009 is prime. は素数です。
  5. 8×1012+9 = 8(0)119<13> is prime. は素数です。
  6. 8×1020+9 = 8(0)199<21> is prime. は素数です。
  7. 8×1021+9 = 8(0)209<22> is prime. は素数です。
  8. 8×1037+9 = 8(0)369<38> is prime. は素数です。
  9. 8×1042+9 = 8(0)419<43> is prime. は素数です。
  10. 8×1055+9 = 8(0)549<56> is prime. は素数です。
  11. 8×1060+9 = 8(0)599<61> is prime. は素数です。
  12. 8×1098+9 = 8(0)979<99> is prime. は素数です。
  13. 8×10100+9 = 8(0)999<101> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 6, 2004 2004 年 12 月 6 日)
  14. 8×10104+9 = 8(0)1039<105> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 6, 2004 2004 年 12 月 6 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  15. 8×10223+9 = 8(0)2229<224> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 6, 2004 2004 年 12 月 6 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  16. 8×10237+9 = 8(0)2369<238> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 6, 2004 2004 年 12 月 6 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  17. 8×10260+9 = 8(0)2599<261> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 6, 2004 2004 年 12 月 6 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  18. 8×10501+9 = 8(0)5009<502> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  19. 8×10570+9 = 8(0)5699<571> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  20. 8×10600+9 = 8(0)5999<601> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  21. 8×10698+9 = 8(0)6979<699> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 1, 2006 2006 年 6 月 1 日)
  22. 8×108857+9 = 8(0)88569<8858> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / January 2, 2005 2005 年 1 月 2 日)
  23. 8×1020911+9 = 8(0)209109<20912> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  24. 8×1024345+9 = 8(0)243449<24346> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  25. 8×1031964+9 = 8(0)319639<31965> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  26. 8×1067742+9 = 8(0)677419<67743> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  27. 8×10162924+9 = 8(0)1629239<162925> is PRP. はおそらく素数です。 (Bob Price / January 29, 2016 2016 年 1 月 29 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / January 29, 2016 2016 年 1 月 29 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 8×106k+5+9 = 7×(8×105+97+72×105×106-19×7×k-1Σm=0106m)
  2. 8×1016k+9 = 17×(8×100+917+72×1016-19×17×k-1Σm=01016m)
  3. 8×1018k+4+9 = 19×(8×104+919+72×104×1018-19×19×k-1Σm=01018m)
  4. 8×1021k+11+9 = 43×(8×1011+943+72×1011×1021-19×43×k-1Σm=01021m)
  5. 8×1022k+5+9 = 23×(8×105+923+72×105×1022-19×23×k-1Σm=01022m)
  6. 8×1028k+7+9 = 29×(8×107+929+72×107×1028-19×29×k-1Σm=01028m)
  7. 8×1028k+11+9 = 281×(8×1011+9281+72×1011×1028-19×281×k-1Σm=01028m)
  8. 8×1033k+15+9 = 67×(8×1015+967+72×1015×1033-19×67×k-1Σm=01033m)
  9. 8×1034k+9+9 = 103×(8×109+9103+72×109×1034-19×103×k-1Σm=01034m)
  10. 8×1041k+27+9 = 83×(8×1027+983+72×1027×1041-19×83×k-1Σm=01041m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 26.88%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 26.88% です。

3. Factor table of 800...009 800...009 の素因数分解表

3.1. Last updated 最終更新日

January 4, 2024 2024 年 1 月 4 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=216, 217, 218, 225, 226, 227, 228, 230, 231, 232, 234, 235, 236, 238, 239, 242, 244, 245, 246, 247, 250, 251, 252, 253, 255, 258, 259, 262, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 296, 297, 300 (53/300)

3.4. Factor table 素因数分解表

8×101+9 = 89 = definitely prime number 素数
8×102+9 = 809 = definitely prime number 素数
8×103+9 = 8009 = definitely prime number 素数
8×104+9 = 80009 = 19 × 4211
8×105+9 = 800009 = 7 × 23 × 4969
8×106+9 = 8000009 = definitely prime number 素数
8×107+9 = 80000009 = 29 × 181 × 15241
8×108+9 = 800000009 = 15299 × 52291
8×109+9 = 8000000009<10> = 103 × 77669903
8×1010+9 = 80000000009<11> = 1249 × 1571 × 40771
8×1011+9 = 800000000009<12> = 7 × 43 × 281 × 9458389
8×1012+9 = 8000000000009<13> = definitely prime number 素数
8×1013+9 = 80000000000009<14> = 4349 × 18395033341<11>
8×1014+9 = 800000000000009<15> = 87427 × 9150491267<10>
8×1015+9 = 8000000000000009<16> = 47 × 67 × 107 × 42683 × 556261
8×1016+9 = 80000000000000009<17> = 17 × 971 × 36299 × 133514113
8×1017+9 = 800000000000000009<18> = 7 × 9794467 × 11668395461<11>
8×1018+9 = 8000000000000000009<19> = 59 × 135593220338983051<18>
8×1019+9 = 80000000000000000009<20> = 179989 × 444471606598181<15>
8×1020+9 = 800000000000000000009<21> = definitely prime number 素数
8×1021+9 = 8000000000000000000009<22> = definitely prime number 素数
8×1022+9 = 80000000000000000000009<23> = 19 × 4201 × 1002267630514038011<19>
8×1023+9 = 800000000000000000000009<24> = 7 × 1141241 × 21511949 × 4655162243<10>
8×1024+9 = 8000000000000000000000009<25> = 17681 × 7113134851<10> × 63609520339<11>
8×1025+9 = 80000000000000000000000009<26> = 229 × 349344978165938864628821<24>
8×1026+9 = 800000000000000000000000009<27> = 3309041 × 241761888111993777049<21>
8×1027+9 = 8000000000000000000000000009<28> = 23 × 83 × 31012471823<11> × 135128724030187<15>
8×1028+9 = 80000000000000000000000000009<29> = 1697 × 114713 × 410956171673262658769<21>
8×1029+9 = 800000000000000000000000000009<30> = 7 × 1649705786423<13> × 69276422030085769<17>
8×1030+9 = 8000000000000000000000000000009<31> = 46704648643<11> × 171289159268710698563<21>
8×1031+9 = 80000000000000000000000000000009<32> = 139131947 × 574993750356990260475547<24>
8×1032+9 = 800000000000000000000000000000009<33> = 17 × 43 × 9241 × 5521473833<10> × 21448583772694763<17>
8×1033+9 = 8000000000000000000000000000000009<34> = 61 × 787 × 3375221 × 49372282483177977572947<23>
8×1034+9 = 80000000000000000000000000000000009<35> = 64864965563<11> × 1233331418673152930661643<25>
8×1035+9 = 800000000000000000000000000000000009<36> = 7 × 29 × 33149 × 118884029669292864417073708247<30>
8×1036+9 = 8000000000000000000000000000000000009<37> = 23209 × 344693868757809470464044120815201<33>
8×1037+9 = 80000000000000000000000000000000000009<38> = definitely prime number 素数
8×1038+9 = 800000000000000000000000000000000000009<39> = 467 × 659 × 2402177 × 1708219657<10> × 633488845598343577<18>
8×1039+9 = 8000000000000000000000000000000000000009<40> = 281 × 1621 × 640009 × 41979101 × 653704443842705715401<21>
8×1040+9 = 80000000000000000000000000000000000000009<41> = 19 × 1979 × 9547 × 21961 × 12350258161<11> × 821666387711990707<18>
8×1041+9 = 800000000000000000000000000000000000000009<42> = 72 × 94907 × 536267 × 320785396043173450958826771089<30>
8×1042+9 = 8000000000000000000000000000000000000000009<43> = definitely prime number 素数
8×1043+9 = 80000000000000000000000000000000000000000009<44> = 103 × 2769787 × 14999161 × 18695600658630129597481288229<29>
8×1044+9 = 800000000000000000000000000000000000000000009<45> = 16411124027<11> × 48747422704491148015135282847862667<35>
8×1045+9 = 8000000000000000000000000000000000000000000009<46> = 89 × 89887640449438202247191011235955056179775281<44>
8×1046+9 = 80000000000000000000000000000000000000000000009<47> = 883 × 7883 × 26833 × 36203507 × 13373620155283<14> × 884644740743297<15>
8×1047+9 = 800000000000000000000000000000000000000000000009<48> = 7 × 109 × 1048492791612057667103538663171690694626474443<46>
8×1048+9 = 8000000000000000000000000000000000000000000000009<49> = 17 × 67 × 6896204160779<13> × 15826404526806353<17> × 64353754661101513<17>
8×1049+9 = 80000000000000000000000000000000000000000000000009<50> = 23 × 347 × 3663755209<10> × 2735937847569708552076854414629531621<37>
8×1050+9 = 800000000000000000000000000000000000000000000000009<51> = 593 × 57493690383153019<17> × 23464705494759199762755708318427<32>
8×1051+9 = 8(0)509<52> = 1021 × 161492621449<12> × 48518968641063740609940065918345528021<38>
8×1052+9 = 8(0)519<53> = 1291 × 42312553 × 1464517328457659216762948789723742912490883<43>
8×1053+9 = 8(0)529<54> = 7 × 43 × 132547 × 2761585807<10> × 1632044746856723<16> × 4449005932754767674427<22>
8×1054+9 = 8(0)539<55> = 193 × 58411 × 4901392633<10> × 144783323906052206079728815302390046451<39>
8×1055+9 = 8(0)549<56> = definitely prime number 素数
8×1056+9 = 8(0)559<57> = 77801 × 22745209 × 35863735587456723491<20> × 12605478966889714222011011<26>
8×1057+9 = 8(0)569<58> = 1307 × 7783228826728800543247<22> × 786420091835356878224229391392421<33>
8×1058+9 = 8(0)579<59> = 19 × 113 × 163 × 18795713 × 557223887212474051819<21> × 21826384801279223060330627<26>
8×1059+9 = 8(0)589<60> = 7 × 3047962268015449<16> × 37495777255840692530338184431492145723309063<44>
8×1060+9 = 8(0)599<61> = definitely prime number 素数
8×1061+9 = 8(0)609<62> = 47 × 24623 × 64806809 × 4432020701<10> × 240673761620221523603054530469495145221<39>
8×1062+9 = 8(0)619<63> = 257 × 3112840466926070038910505836575875486381322957198443579766537<61>
8×1063+9 = 8(0)629<64> = 29 × 45641 × 9770143 × 39637688810676125341<20> × 15607293365345357129379978702887<32>
8×1064+9 = 8(0)639<65> = 17 × 17099 × 626947 × 367629955083599531<18> × 1194066828105233314985958772772952139<37>
8×1065+9 = 8(0)649<66> = 7 × 58049 × 96696537180983<14> × 20360398908127029575633689283605788478753756361<47>
8×1066+9 = 8(0)659<67> = 643 × 460989309877618137688867995353<30> × 26989084909696898765035658837040571<35> (Makoto Kamada / msieve 0.81 / 45 seconds)
8×1067+9 = 8(0)669<68> = 281 × 3347 × 412201 × 206356861337498973579391787560490189588781455748286982387<57>
8×1068+9 = 8(0)679<69> = 83 × 107 × 131 × 24119681 × 27984917156969099<17> × 1018735020709277613957868020342820198201<40>
8×1069+9 = 8(0)689<70> = 1787 × 244442761 × 274172226301<12> × 4354699959045631521349<22> × 15339335916668207656713763<26>
8×1070+9 = 8(0)699<71> = 313 × 423796739 × 11175202735292329<17> × 86955523850308077227<20> × 620633840941868836400489<24>
8×1071+9 = 8(0)709<72> = 7 × 23 × 29530701390613207663<20> × 168263666807397202077998630365541979672303536439463<51>
8×1072+9 = 8(0)719<73> = 307 × 41491 × 58187068627020551565620030129<29> × 10793722059181020019089978512840633233<38>
8×1073+9 = 8(0)729<74> = 547 × 146252285191956124314442413162705667276051188299817184643510054844606947<72>
8×1074+9 = 8(0)739<75> = 43 × 18604651162790697674418604651162790697674418604651162790697674418604651163<74>
8×1075+9 = 8(0)749<76> = 2243 × 58169 × 61315336444110722100217050925920213096546584591285801536343128961627<68>
8×1076+9 = 8(0)759<77> = 19 × 59 × 2777 × 25698542603525775798847227625162342512103210486804280220763330235588177<71>
8×1077+9 = 8(0)769<78> = 7 × 103 × 28807 × 33547 × 54157420592381<14> × 21200447559792061385992548548305073210570334277516321<53>
8×1078+9 = 8(0)779<79> = 2569509204317024048080109659048777<34> × 3113435042987674863077695004448408426718580417<46> (Makoto Kamada / GGNFS-0.70.1 / 0.11 hours)
8×1079+9 = 8(0)789<80> = 283 × 69109 × 4090429790150214387094857629267679617291207973965641514630930490457359647<73>
8×1080+9 = 8(0)799<81> = 17 × 2089 × 5923 × 66263299111915502803081<23> × 57396820895286367790009433124714885887818517296611<50>
8×1081+9 = 8(0)809<82> = 67 × 119402985074626865671641791044776119402985074626865671641791044776119402985074627<81>
8×1082+9 = 8(0)819<83> = 97 × 9677924790041<13> × 927247573678212338051<21> × 91905246535217242008974209136125599933865211867<47>
8×1083+9 = 8(0)829<84> = 72 × 881 × 573463594883<12> × 1268427869473822788024475947167<31> × 25476887542640341247194467235316523901<38> (Makoto Kamada / msieve 0.81 / 1.8 minutes)
8×1084+9 = 8(0)839<85> = 15187 × 38299 × 197569 × 3530563 × 303017243 × 65072943181149412306366233080396183385247809456482234233<56>
8×1085+9 = 8(0)849<86> = 4561 × 716063 × 1032881 × 20463535981553987931333665989<29> × 1158904670245516073488434857232218162707307<43>
8×1086+9 = 8(0)859<87> = 3049 × 742357787 × 21510131384849<14> × 16431462919693623138045644370052527020796478510434631722634307<62>
8×1087+9 = 8(0)869<88> = 7349809 × 1403370310478305653008290798213057061<37> × 775606873872654197928690034434567813621410341<45> (Makoto Kamada / GGNFS-0.70.3 / 0.15 hours)
8×1088+9 = 8(0)879<89> = 57623273 × 1274643679984491297500607994656857<34> × 1089189052229670980683952642822861583468074773769<49> (Makoto Kamada / GGNFS-0.70.3 / 0.15 hours)
8×1089+9 = 8(0)889<90> = 7 × 89 × 4241045810220763<16> × 36812927531102783<17> × 8224862018021160235769579111013613308155015002124002427<55>
8×1090+9 = 8(0)899<91> = 14083153619<11> × 470241828452729<15> × 1208005225667448985939397598223949959591482312803746035746123701259<67>
8×1091+9 = 8(0)909<92> = 29 × 10847 × 329341135169<12> × 772211688246570589486178169548509530972732763437683999332961141307802601347<75>
8×1092+9 = 8(0)919<93> = 141554827 × 5651520452919630921522725607937057490805311782126652593768490847719378725248274295867<85>
8×1093+9 = 8(0)929<94> = 23 × 61 × 1481 × 20269 × 66222307 × 87090827 × 372663492506553572550555698800861<33> × 88379464168044423546278721103437163<35> (Makoto Kamada / msieve 0.81 / 1.9 minutes)
8×1094+9 = 8(0)939<95> = 19 × 5003539 × 2924931924148891961<19> × 287702300243348382825311232964367149316669779371535547591950703293609<69>
8×1095+9 = 8(0)949<96> = 7 × 43 × 281 × 701 × 30951948054062593376170255876789<32> × 435924387164329767743036507138772994000848691533469803701<57> (Makoto Kamada / GGNFS-0.71.4 / 0.33 hours)
8×1096+9 = 8(0)959<97> = 17 × 161886908888610809<18> × 304436655939137221942322295963257493673<39> × 9548439312657203748551510632950329383961<40> (Makoto Kamada / GGNFS-0.71.4 / 0.31 hours)
8×1097+9 = 8(0)969<98> = 4201 × 19043084979766722208997857652939776243751487741014044275172577957629135920019043084979766722209<95>
8×1098+9 = 8(0)979<99> = definitely prime number 素数
8×1099+9 = 8(0)989<100> = 469649 × 23865623 × 22554687854161487<17> × 909259427564533421572112683801<30> × 34803199853815840641302860940252945842441<41> (Makoto Kamada / msieve 0.83)
8×10100+9 = 8(0)999<101> = definitely prime number 素数
8×10101+9 = 8(0)1009<102> = 7 × 149 × 487 × 941 × 8287 × 76346147 × 364439384627<12> × 1361074913684407<16> × 5333291197439114129508832175835592518590328200632104809<55>
8×10102+9 = 8(0)1019<103> = 1797476095531930969<19> × 1025449864861251092819651<25> × 4340226870404998482546017714450915314158824225785096351190011<61>
8×10103+9 = 8(0)1029<104> = 16829 × 101507309947<12> × 615774578203<12> × 76052343748605411280856605619513403568997745512065596011672356048977883354981<77>
8×10104+9 = 8(0)1039<105> = definitely prime number 素数
8×10105+9 = 8(0)1049<106> = 10607 × 1593335590601<13> × 473358479210729823351520557012029207512118935876076983937545197630391879565240345481937487<90>
8×10106+9 = 8(0)1059<107> = 7817 × 561624593 × 2080936219<10> × 30634478921<11> × 6630758324299<13> × 6261321390749812400818033<25> × 6885021419367412658060903003684364433<37>
8×10107+9 = 8(0)1069<108> = 7 × 47 × 5987 × 300569 × 2464369 × 15629824663<11> × 5903522259789205105450881268709<31> × 5942505552902249507608316506415160671906673051809<49> (Makoto Kamada / Msieve 1.33 for P31 x P49 / 14 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 16, 2008 2008 年 1 月 16 日)
8×10108+9 = 8(0)1079<109> = 444401 × 1138433 × 42414187 × 162259171523<12> × 7107371214632873<16> × 323279438555074240003686735217056819291764874161668173375266801<63>
8×10109+9 = 8(0)1089<110> = 83 × 223 × 409 × 32885650365304248277027303729<29> × 321349248358889927171344597458044843571350263821450310799967017699489807941<75>
8×10110+9 = 8(0)1099<111> = 8179 × 97811468394669274972490524513999266413987039980437706321066145005501895097200146717202592003912458735786771<107>
8×10111+9 = 8(0)1109<112> = 103 × 227 × 523 × 663763 × 109467672449<12> × 341638038631061<15> × 352330846847081<15> × 1156997193104983<16> × 5660849404803835943<19> × 11420772954052473766626841<26>
8×10112+9 = 8(0)1119<113> = 17 × 193 × 686088694115931837088239582171985283397511213262094457260962410915671123384475528073891752356285858854403403<108>
8×10113+9 = 8(0)1129<114> = 7 × 167 × 115903 × 5904468344436599948216336502204909304155674791537394175228693159519168734700553817727010404492467880079687<106>
8×10114+9 = 8(0)1139<115> = 67 × 1619 × 2131 × 654227059476304953156518569<27> × 59812477060225038016402609603651763<35> × 884432298709077437591050714383886146490310369<45> (Makoto Kamada / Msieve 1.33 for P35 x P45 / 15 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 16, 2008 2008 年 1 月 16 日)
8×10115+9 = 8(0)1149<116> = 23 × 164754409 × 1219038421<10> × 562467957547373531345562723972322221908786381<45> × 30790016732270191561933012796406982113872329442024087<53> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 0.61 hours on Core 2 Quad Q6600 / January 16, 2008 2008 年 1 月 16 日)
8×10116+9 = 8(0)1159<117> = 43 × 2731 × 4019 × 52816123 × 12084972759551561<17> × 11886227219294900277209<23> × 223421829034726678059787595903408308037489589932291251953847921<63>
8×10117+9 = 8(0)1169<118> = 570407 × 540758209 × 1090020499081<13> × 8959752026870266003989106938343<31> × 2655653222978175541447519201124671928388493948927052821291921<61> (Sinkiti Sibata / Msieve v. 1.30 for P31 x P61 / 12.6 hours on Pentium3 750MHz, Windows Me / January 17, 2008 2008 年 1 月 17 日)
8×10118+9 = 8(0)1179<119> = 3923 × 867599584961<12> × 33395249280707<14> × 114858715720081<15> × 32469888633351718442963<23> × 188722160020038206522232923463908019428002098207050843<54>
8×10119+9 = 8(0)1189<120> = 7 × 29 × 14465304005221497427<20> × 30410348961140592876766942703<29> × 8958699720360463845716150863618753331482271338487833053726537641941463<70>
8×10120+9 = 8(0)1199<121> = 4513 × 129802845572795609<18> × 1186666704803556185013425171<28> × 11508313470861399873651069777110269094750600309132327847624311334210422987<74>
8×10121+9 = 8(0)1209<122> = 107 × 17321 × 39837349575609258121788494808572654717964321457787972441<56> × 1083534667380804556636556284146554026394969807509139591856667<61> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 2.09 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 17, 2008 2008 年 1 月 17 日)
8×10122+9 = 8(0)1219<123> = 94291 × 128542241 × 66004550564547160260375655497679976030820711617686209181137104311790534903915264079379989614358981384439993939<110>
8×10123+9 = 8(0)1229<124> = 281 × 1847789 × 87594212224781<14> × 1787112760915200910007<22> × 98424659857194915940422342879064966149733000138496990651664155068405048104815903<80>
8×10124+9 = 8(0)1239<125> = 1579 × 418774289077175699561<21> × 120983974316377323584631711224014036378910595643970137940894681709354721752613108717289873341099175011<102>
8×10125+9 = 8(0)1249<126> = 72 × 33469 × 107687 × 1906621 × 2979407 × 3626501 × 219890205232072592446593237163885841336188475702436959073241875155709724565132477716281147966901<96>
8×10126+9 = 8(0)1259<127> = 401 × 389297 × 232424285281<12> × 9781973560753067<16> × 2728784228720769076664362884053977424213249851<46> × 8260139316381217641035166733618289230331842561<46> (Sinkiti Sibata / Msieve v. 1.30 for P46(2728...) x P46(8260...) / 6.74 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 17, 2008 2008 年 1 月 17 日)
8×10127+9 = 8(0)1269<128> = 595961 × 134236971882388277085245511031762145509521596211832653479002820654371678683672253721300554902082518822540401133631227546769<123>
8×10128+9 = 8(0)1279<129> = 17 × 47058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941177<128>
8×10129+9 = 8(0)1289<130> = 34687 × 576227 × 31039762823<11> × 12894700178823504949187763524490624731935971039051006872918781881555422921723812776002504208163826677571612667<110>
8×10130+9 = 8(0)1299<131> = 19 × 25216160984200256827<20> × 177844679544719357879627<24> × 45569197585367765957599099<26> × 20603697219057952184686365032752886363613940128976570662779041<62>
8×10131+9 = 8(0)1309<132> = 7 × 1901 × 116259161 × 86992144223<11> × 16230203845269219667208170361<29> × 320533644260071425417953654576232041<36> × 1142628400174886692888574117774187454934002429<46> (Makoto Kamada / Msieve 1.33 for P36 x P46 / 19 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 16, 2008 2008 年 1 月 16 日)
8×10132+9 = 8(0)1319<133> = 1934489 × 9941255627<10> × 415989607687626994379024208919654277878028055404905621947324703896224629797494192059360950252199449536431438674100403<117>
8×10133+9 = 8(0)1329<134> = 89 × 683 × 48247 × 28063523 × 419570597518623739301843398921438222427110769704939738021<57> × 2316656939278359599773662465108090166954145351342952510252907<61> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 6.79 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 17, 2008 2008 年 1 月 17 日)
8×10134+9 = 8(0)1339<135> = 59 × 16301584241<11> × 28571873631885209731492091721987844825451<41> × 29111825682462786935908160354061235293752365551347558913693510861695423975494302961<83> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 2.83 hours on Core 2 Quad Q6600 / January 17, 2008 2008 年 1 月 17 日)
8×10135+9 = 8(0)1349<136> = 14801185105213067737040565827661608911957391220799504238072333395727<68> × 540497260397233405983441758896201567297916533811770073388400426116967<69> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 3.58 hours on Cygwin on AMD 64 3200+ / January 19, 2008 2008 年 1 月 19 日)
8×10136+9 = 8(0)1359<137> = 42379 × 1887727412161683852851648221996743670214021095353830906817055617168880813610514641685740579060383680596521862243092097501120838150971<133>
8×10137+9 = 8(0)1369<138> = 7 × 23 × 43 × 380503 × 1649243 × 2510141 × 32927563 × 127389389 × 431974381 × 111174418969258896469<21> × 37947353343130853705098428563822981<35> × 9596604764068692453459531281727700969<37> (Makoto Kamada / Msieve 1.33 for P35 x P37 / 3 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / January 16, 2008 2008 年 1 月 16 日)
8×10138+9 = 8(0)1379<139> = 2546678620364651588556275988984437932502588301075923203<55> × 3141346511502304521005861647877216134965756685545711187785868781031519564330138156803<85> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 3.84 hours on Cygwin on AMD 64 X2 6000+ / January 17, 2008 2008 年 1 月 17 日)
8×10139+9 = 8(0)1389<140> = 163 × 3594343 × 102196891061<12> × 72184529568704507<17> × 18509771151205368273846244564703257984335172238825365225515524463829193697150899647161785603541663546563<104>
8×10140+9 = 8(0)1399<141> = 26748433 × 953838796272576050827<21> × 31355711451501286145053779659588086442446436410960279262292590035067875289508553179273502206721185655888267145099<113>
8×10141+9 = 8(0)1409<142> = 389 × 32563 × 4990867357422239873844609760866802279933879758965510129<55> × 126543531026932811719775808439501974442746850624376305592456058350578392937456103<81> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 6.10 hours on Core 2 Quad Q6600 / January 17, 2008 2008 年 1 月 17 日)
8×10142+9 = 8(0)1419<143> = 3329 × 29281922233<11> × 627552504355594804282068645958259<33> × 1795510682849862934729054445135297<34> × 728347356775380943407963675027056892979696390562810902400314219<63> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=2907880974 for P34 / January 16, 2008 2008 年 1 月 16 日) (Jo Yeong Uk / Msieve v. 1.32 for P33 x P63 / 4.62 hours on Core 2 Quad Q6600 / January 18, 2008 2008 年 1 月 18 日)
8×10143+9 = 8(0)1429<144> = 7 × 383 × 341296326661470018931101663238896398460963020877249035438454385737449<69> × 874302175383230664843059392215687849285838943004522735011833597504969961<72> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 7.48 hours on Core 2 Quad Q6600 / January 17, 2008 2008 年 1 月 17 日)
8×10144+9 = 8(0)1439<145> = 17 × 5659 × 1783403562694297290006912071546504111216735779123<49> × 46628531887385325172139496576332321929456019180371596843235469372553694072124836083262715161<92> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 17.72 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 18, 2008 2008 年 1 月 18 日)
8×10145+9 = 8(0)1449<146> = 103 × 263 × 19637441 × 66333767 × 342200413447<12> × 2824085392892504963662876213067<31> × 2345951909900622249766133589882940685013030624484792070733666366296781514821463224827<85> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=3142116591 for P31 / January 10, 2008 2008 年 1 月 10 日)
8×10146+9 = 8(0)1459<147> = 12823817 × 7793404954409<13> × 97339333989041<14> × 1034297732722561<16> × 269754004944570931<18> × 294743059681425655969283413607905086921958749719672881702479468320196720584811763<81>
8×10147+9 = 8(0)1469<148> = 29 × 67 × 367 × 3001 × 446447 × 374232083 × 2261489201544452814997994627<28> × 9894177162514598079546385073110092760647751592920357286724133551767904127884385201353837797093807<97>
8×10148+9 = 8(0)1479<149> = 19 × 23321975899<11> × 6264335206024583575242105787<28> × 28820137929138161280052635433696068751889719679695688629653783230633788507877847692016678795750468460331564747<110>
8×10149+9 = 8(0)1489<150> = 7 × 122869 × 592463 × 20514356776409<14> × 76529783665759227547879863175857801580145592186970477872758281314038502151477085534461711269605420792053370393025114611931269<125>
8×10150+9 = 8(0)1499<151> = 83 × 499 × 2482304185177<13> × 77813750743786303928117280787642992888695876575762740504349490131257779780805730683652263665564423971509372213489033589606739396053801<134>
8×10151+9 = 8(0)1509<152> = 281 × 284697508896797153024911032028469750889679715302491103202846975088967971530249110320284697508896797153024911032028469750889679715302491103202846975089<150>
8×10152+9 = 8(0)1519<153> = 179 × 10286545550776463644634627<26> × 434477611648684499985850664050081411437845728618159606645874026296642823905422801622721391632973272408528817371550125223113073<126>
8×10153+9 = 8(0)1529<154> = 47 × 61 × 48895464172194500888865555728935598425504411122071941<53> × 57068140361452359856128021667726448531461834024720351768797284045710734038067945628429182751862647<98> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.33 / January 20, 2008 2008 年 1 月 20 日)
8×10154+9 = 8(0)1539<155> = 40563621115070073380669170035211<32> × 1972210512790699616561524977329804968488111698587183762968630675670612708240336060878219924495201162954628514414235940921019<124> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=2632962093 for P32 / January 10, 2008 2008 年 1 月 10 日)
8×10155+9 = 8(0)1549<156> = 7 × 109 × 1470783867357781<16> × 10546742887006309<17> × 364319543132632908029981<24> × 21821922314714420047791463<26> × 8502032459994415884303071967448325665776936089423978775226417138915563289<73>
8×10156+9 = 8(0)1559<157> = 10267 × 53192891 × 14648489037119868817989444797313568211533852452691343823722793688789773824519265527846042207453436769844148769259855946967147098540481226063718097<146>
8×10157+9 = 8(0)1569<158> = 11489 × 716402649541<12> × 10593937852386983<17> × 3790480017172792738294451504361484879367<40> × 242046575091074164088712317063624793945838546238186463919115736744802008317537350438981<87> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 22.81 hours on Core 2 Quad Q6600 / January 19, 2008 2008 年 1 月 19 日)
8×10158+9 = 8(0)1579<159> = 43 × 133397260513579219<18> × 167167903992258454388890478299<30> × 2033479913775371639587434065835085127837961461819<49> × 410281407262533748598335324491991573466072616789247908444678817<63> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=1484630729 for P30 / January 17, 2008 2008 年 1 月 17 日) (Robert Backstrom / GGNFS-0.77.1-20050930-k8 gnfs for P49 x P63, Msieve 1.33 / January 20, 2008 2008 年 1 月 20 日)
8×10159+9 = 8(0)1589<160> = 23 × 75289 × 3073981 × 912782811803<12> × 106892778448396257701<21> × 15403294683357107492284292972438681857771414432918182754479601358964133084092682488569350637536794203521767133005829<116>
8×10160+9 = 8(0)1599<161> = 17 × 4705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941177<160>
8×10161+9 = 8(0)1609<162> = 7 × 361469 × 2281823 × 93410043703<11> × 104070924106063664505185233829029<33> × 379610134970967214429953242481364208742167<42> × 37547251435502570973405299828344898136743364461002377728913347569<65> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=897222511 for P33 / January 17, 2008 2008 年 1 月 17 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P42 x P65 / 10.59 hours on Core 2 Quad Q6600 / January 19, 2008 2008 年 1 月 19 日)
8×10162+9 = 8(0)1619<163> = 4339 × 31891930524271969<17> × 21467718354271832026587974954408013867919721<44> × 2692983165965493372324419233124120624401536996288557907855362716504013533241417008457888322335917819<100> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.33 / January 20, 2008 2008 年 1 月 20 日)
8×10163+9 = 8(0)1629<164> = 503 × 1087 × 399924341 × 29222738487023707<17> × 36035228405537339175432279337085862878520760605668457943<56> × 347429290363042316932943294898674175631435388823749992448700892981477531332209<78> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.34 / April 10, 2008 2008 年 4 月 10 日)
8×10164+9 = 8(0)1639<165> = 547 × 145375908511929289<18> × 665862476027077901987<21> × 15108650584694095421336839101744907722955551986198408204720288516498163374331216992376317984676111223948581486828821510198329<125>
8×10165+9 = 8(0)1649<166> = 3089 × 314438682222884322729688296198134025767975025422514323112159291576842309<72> × 8236374989606056257892776904055137083699957579463131990199160763315628777145426750588217509<91> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.33 / January 20, 2008 2008 年 1 月 20 日)
8×10166+9 = 8(0)1659<167> = 19 × 233 × 247318002448511232349795071846013961161<39> × 73067581878550869883137762289663789192178328142338528983715149951558468070091483340423029109213779504121706037391601196627747<125> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.33 / January 25, 2008 2008 年 1 月 25 日)
8×10167+9 = 8(0)1669<168> = 72 × 967 × 59723 × 85525507 × 104791781467<12> × 32070636141063417698309974804038142769<38> × 983547553579979304561951273616176372155814093748174239324385537878449421978287184323475247763731622141<102> (Robert Backstrom / GMP-ECM 6.0 B1=4262000, sigma=1855270650 for P38 / April 16, 2008 2008 年 4 月 16 日)
8×10168+9 = 8(0)1679<169> = 13523 × 365108141391685392803<21> × 3925702274486438236222373323<28> × 412741427767146656482060605643146065993784214777445361386847613635487121913351520321871886583067352379474102886920307<117>
8×10169+9 = 8(0)1689<170> = 2083 × 21187 × 347913094655913140947256232930961<33> × 5210272953749998271101503426402444733270293388626467088714412188109283843702487962421130258535164821785639637952029491481694049489<130> (Robert Backstrom / GMP-ECM 6.2.1 B1=792000, sigma=246426398 for P33 / June 20, 2008 2008 年 6 月 20 日)
8×10170+9 = 8(0)1699<171> = 113 × 452926193 × 3182006963<10> × 3558984497657<13> × 3739349584888004768232061820906349177229967138340283<52> × 369114253681640613419529242815258516418059888685901830643751071825955380199942725832817<87> (Wataru Sakai / Msieve / 70.90 hours / June 11, 2009 2009 年 6 月 11 日)
8×10171+9 = 8(0)1709<172> = 1609 × 47441 × 179947 × 2675683 × 717143003 × 8834088052212443456467<22> × 113402724882979773257549023<27> × 66045585799722886585090670007395970328026662921<47> × 4587394211090038825215575348339222477208606014167<49> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs for P47 x P49 / 4.94 hours on Cygwin on AMD 64 X2 6000+ / January 17, 2008 2008 年 1 月 17 日)
8×10172+9 = 8(0)1719<173> = 4201 × 31121 × 5041411 × 346459071611<12> × 122454245483536330061045540807347553945459<42> × 608296663654957875693373827303732266946233<42> × 4703167420425903988646488862192041281322859917358747628829697267<64> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=3000000, sigma=2462122556 for P42, GGNFS-0.77.1-20050930-nocona gnfs for P42 x P64 / 7.72 hours on Core 2 Quad Q6700 / November 19, 2008 2008 年 11 月 19 日)
8×10173+9 = 8(0)1729<174> = 7 × 643 × 661 × 443227 × 260680181687<12> × 8189545458237210393744457523666003154315736867<46> × 4183880356288717606362756534826033091154894241628947<52> × 67921338602004285032869683860445350931844687971789469<53> (Wataru Sakai / Msieve / 100.92 hours / October 8, 2009 2009 年 10 月 8 日)
8×10174+9 = 8(0)1739<175> = 107 × 878011819 × 5486878492542635057<19> × 15519599315742890524424924611307277485313260541377213615503272288516557671053444128075729565367482316113010438811763463229080260479799829964497889<146>
8×10175+9 = 8(0)1749<176> = 29 × 9907 × 828349 × 149397358667<12> × 3432767866354222343<19> × 75056191036086198203<20> × 266890443093272218468549330943<30> × 32721226544458263861906681169586495852149103259513363783751003948859549712960564477403<86> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=2573028571 for P30 / January 16, 2008 2008 年 1 月 16 日)
8×10176+9 = 8(0)1759<177> = 17 × 3217 × 103961611179868503438377681867481435196874462689578948106251372965474787726477889<81> × 140707421063833161706485449146184930821888979205845979668829757316153913675077037413502917929<93> (matsui / GGNFS-0.77.1-20060513-pentium4 snfs / February 24, 2008 2008 年 2 月 24 日)
8×10177+9 = 8(0)1769<178> = 89 × 89887640449438202247191011235955056179775280898876404494382022471910112359550561797752808988764044943820224719101123595505617977528089887640449438202247191011235955056179775281<176>
8×10178+9 = 8(0)1779<179> = 97 × 4817 × 8349953 × 643080328444181532267745772077361920255259647015699<51> × 31885435315622042511691137957740545112655694428559568324606418192336033358782251093798798406485062920172031044546403<116> (centylion torun / GMP-ECM B1=110000000, sigma=82896577 for P51 / December 11, 2010 2010 年 12 月 11 日)
8×10179+9 = 8(0)1789<180> = 7 × 43 × 103 × 281 × 64874204399140027<17> × 413369852432898383586010724769000432120059903<45> × 3424278682210520474518825384650397525932147218696471465227722326587804054510388061024712800327342516298551999623<112> (G.L.I.S. / GMP-ECM B1=110000000, sigma=1275872707 for P45 / December 11, 2010 2010 年 12 月 11 日)
8×10180+9 = 8(0)1799<181> = 67 × 86841941731033<14> × 5751212540972257<16> × 239070638384079464305466092471025322060071531552167545678913212961798899107584106689129062608889974510490101143409045500133259615588677789072157093467<150>
8×10181+9 = 8(0)1809<182> = 23 × 3478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434783<181>
8×10182+9 = 8(0)1819<183> = 181628417 × 4404597106630070998196278944610302913117389554741315616927939200174827268356360778060406703869472143227455426206792299467103762733339243935600672002773662889987088308984160777<175>
8×10183+9 = 8(0)1829<184> = 1709 × 1235389 × 53996821 × 912256291892709420829481<24> × 2078200117056154131058483<25> × 37014490001362985704295939467561832570982470665215294205702264521205912573311818585632408541503114700987023171504597223<119>
8×10184+9 = 8(0)1839<185> = 19 × 4502146292418701187836585771<28> × 935226454742198158831789694095815568184377471382396693364340767699219936355705178940216380025951801759748479274447141979232563950450419757911310397828855641<156>
8×10185+9 = 8(0)1849<186> = 7 × 24329 × 53381 × 25502165263849<14> × 11958203612381011725704592874030579567<38> × 1303028394848660857467715486468010946754987<43> × 221454293090384742218717863326746087344454398748013997486958446978047338608032823703<84> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=3000000, sigma=927156312 for P43 / November 18, 2008 2008 年 11 月 18 日) (Serge Batalov / Msieve-1.38+pol51 gnfs for P38 x P84 / 70.00 hours on Opteron-2.6GHz; Linux x86_64 / November 28, 2008 2008 年 11 月 28 日)
8×10186+9 = 8(0)1859<187> = 50153 × 302299 × 1722241 × 11771231219249<14> × 468906861490212793165420171<27> × 55507792726914566497798504244765417670582545786727387225014401377586633446438223809853812791819939065204663497110847337090122841673<131>
8×10187+9 = 8(0)1869<188> = 181 × 441988950276243093922651933701657458563535911602209944751381215469613259668508287292817679558011049723756906077348066298342541436464088397790055248618784530386740331491712707182320441989<186>
8×10188+9 = 8(0)1879<189> = 443 × 280009 × 46738919942089<14> × 1186986927040459<16> × 1443968284072142039096537<25> × 80506696766249900552485161273132377878249301551978500401524539107690180714415943050142655051843089545519564016550793067276582361<128>
8×10189+9 = 8(0)1889<190> = 2543 × 137944789 × 32904674261<11> × 6409379328215201885827901<25> × 75125429721777718514365695923<29> × 5312784824487735277961519362969<31> × 270929041462985763172625031527468593947500499762685217039308716400013884113298635281<84> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=708702101 for P31 / January 15, 2008 2008 年 1 月 15 日)
8×10190+9 = 8(0)1899<191> = 10979 × 93384737 × 1829065993<10> × 33295915167128085016755403<26> × 538680813586121424240758361537710132899<39> × 6350022202664860146059913355300429133521100785097<49> × 374562434586295016714727912805051180637746786286264130259<57> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=3000000, sigma=329758939 for P39, GGNFS-0.77.1-20050930-nocona gnfs for P49 x P57 / 8.41 hours, 8.41 hours on Core 2 Quad Q6700 / December 11, 2008 2008 年 12 月 11 日)
8×10191+9 = 8(0)1909<192> = 7 × 83 × 32815576605582649<17> × 5200740096042613643<19> × 11252349112258612460638218075704721317286256803103939166527236212039342167<74> × 717010418482443071479374894616586941248482723527077084421945407566097579414880481<81> (Edwin Hall / CADO-NFS for P74 x P81 / December 12, 2020 2020 年 12 月 12 日)
8×10192+9 = 8(0)1919<193> = 17 × 59 × 255560483051<12> × 22520567661717783905291022490556943117012307<44> × 25508252339288594931188710195437679476734185366631293417875809881801<68> × 54329450904984393961191514163271110370936558712594698781930602632179<68> (yoyo@home, ECM B1=43000000, sigma=2172363567 for P44 / February 26, 2010 2010 年 2 月 26 日) (Robert Backstrom / Msieve 1.44 gnfs for P68(2550...) x P68(5432...) / May 8, 2012 2012 年 5 月 8 日)
8×10193+9 = 8(0)1929<194> = 56569 × 65022989 × 41742282124703931771423017137079205118606645840124690428372775018839196871017083<80> × 521036762895731661552072731451295343525734770376166964065562592161590397313288920090916502314226579503<102> (Robert Backstrom / Msieve 1.44 snfs / March 8, 2012 2012 年 3 月 8 日)
8×10194+9 = 8(0)1939<195> = 36288787236817<14> × 1733287778383420857881<22> × 4640813787596588296684196149207787<34> × 2740644562907019485541894329504307053275818363204588691032659775150280382696305597977509234141114088628824622335852067596963491<127> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=636370792 for P34 / November 6, 2008 2008 年 11 月 6 日)
8×10195+9 = 8(0)1949<196> = 727 × 39461 × 3393105024121<13> × 730607749228338923709613697347888433650287132957378165289668780681329<69> × 112487926876783823216370650448954550759392289209637046200461648921620872549491401760283926294553098616453883<108> (Serge Batalov / GMP-ECM 7.0.3 [configured with GMP 6.1.1, --enable-asm-redc] [ECM] B1=3000000000, sigma=0:443692224 for P69 x P108 / October 6, 2016 2016 年 10 月 6 日)
8×10196+9 = 8(0)1959<197> = 491 × 24378181914136070883131<23> × 1608217088942848772529667<25> × 49190150242501720646518381872090808580176211<44> × 84485924293008186913574560859060051312349414776305050172426730128541587211580133085359214185307504216617<104> (Eric Jeancolas / cado-nfs-3.0.0 for P44 x P104 / July 19, 2021 2021 年 7 月 19 日)
8×10197+9 = 8(0)1969<198> = 7 × 12219247 × 15213705288655807<17> × 4865154059575323971503<22> × 37114608851460783280897610347<29> × 16621692800680584305294747562998773325126469691178650296201467<62> × 204831038833285778102275560455244890057538477743970633200511049<63> (Tyler Cadigan / GGNFS gnfs, Msieve for P62 x P63 / 81.57 hours on C2Q Q660 2.4 Ghz, 4 GB RAM, Windows Vista / June 2, 2008 2008 年 6 月 2 日)
8×10198+9 = 8(0)1979<199> = 131 × 14779577 × 46164732442019<14> × 89504807737012816465501621504961017111653905292881275753399321462371170990355484423739181105724254078782548384128641434162117806977859235261476637210465344401589470702839661353<176>
8×10199+9 = 8(0)1989<200> = 47 × 10029840581<11> × 34574850197219026620537581<26> × 4908375636455220759055677921494644701510929631554628307158601099794397912071382010172519640742111531902047338075363097067968113058601380373184350807396468927516327<163>
8×10200+9 = 8(0)1999<201> = 43 × 409695657661963<15> × 22793391171990396467<20> × 1992283906237365201538932207676295118684402950955556269932521925276598386991605490564720907345426515529769955531939362161987484955156634153382402844597947890557157003<166>
8×10201+9 = 8(0)2009<202> = 9558399327719115513331021204316880831375765547077427<52> × 836960219563144112829259430412657026547228356799284993794278444664897016092540823875938294086230613800774699515254781576603441597343181584836402701267<150> (Kenji Ibusuki / GGNFS-0.77.1-VC8 with factLat.pl (decomposed + modified) snfs / February 24, 2012 2012 年 2 月 24 日)
8×10202+9 = 8(0)2019<203> = 19 × 9295071204025581320208450145852128633536137411652551639037325507875832157991369233331369<88> × 452984837164662750015598958494376258125009928668196306365914695228497602437348244092973925023324000617095492597819<114> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / June 8, 2012 2012 年 6 月 8 日)
8×10203+9 = 8(0)2029<204> = 7 × 23 × 29 × 144847 × 418170185449<12> × 623253958898130601251617869769<30> × 2285354288682195024631283531046717706256203778916209<52> × 1986026141349369062692921715585976750679426128927374569806971196053754249456784182778795788993931769747<103> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1096411128 for P30 / February 7, 2012 2012 年 2 月 7 日) (Bob Backstrom / GMP-ECM 7.0.4 B1=68720000 for P52 x P103 / January 2, 2024 2024 年 1 月 2 日)
8×10204+9 = 8(0)2039<205> = 809 × 1495700739677971<16> × 547856505370874439048506475750569<33> × 223647387266560775229337015178043961<36> × 19189014301477203761791471894617744930721384738598609<53> × 2811987841508012717658121812563206451925056347646224131722852707051<67> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=854650909 for P33, B1=3000000, sigma=3170594452 for P36, Msieve 1.40 gnfs for P53 x P67 / February 13, 2012 2012 年 2 月 13 日)
8×10205+9 = 8(0)2049<206> = 12043 × 101455943 × 2300017155383683<16> × 41257190003623507<17> × 9078055620715140386353294472701466668607<40> × 76007115108134936446925969679488750316511287549294913965796863234678348815270572354587162255379615932155547349611234916523<122> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2815533490 for P40 / March 14, 2012 2012 年 3 月 14 日)
8×10206+9 = 8(0)2059<207> = 2541799129<10> × 314737695387730223744206814542503527626317004690420601682407768265467841381103880298009182298370360327556788615140012505685298785071697929596701817108853057601311342647800553243481735412932388332721<198>
8×10207+9 = 8(0)2069<208> = 281 × 6883 × 3370261 × 82680709 × 14843563359068337745366718255486737449542704765123913131191216808019533396406693166347075773476389424480648670271216190172251915727161954135831104525870179377787760100882313666141834269667<188>
8×10208+9 = 8(0)2079<209> = 172 × 1295761 × 213632459223992535959596910691983868431416405983216035271616274209908455580480262271443010274260576734096930691987660407567631850729318116781056923573113221686464356069081463127802609183484216642978521<201>
8×10209+9 = 8(0)2089<210> = 73 × 229312812523<12> × 2181421402609527255059993667919924340691230244344523334584941213708257832151141435273961<88> × 4662598033151286513495165227310399404256797023679228732839631592138138105726399504044257935084414832131334421<109> (Bob Backstrom / Msieve 1.54 snfs for P88 x P109 / June 7, 2021 2021 年 6 月 7 日)
8×10210+9 = 8(0)2099<211> = 61552331 × 142120665793<12> × 3786016004954670536603<22> × 39196921440858248984237468947606005277720607827<47> × 532070688881903804529742049270970881011482261461121970313<57> × 11582025327752550512453265671835035271686903066743190262652573441891<68> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1896337680 for P47 / March 14, 2012 2012 年 3 月 14 日) (Warut Roonguthai / Msieve 1.49 gnfs for P57 x P68 / March 15, 2012 2012 年 3 月 15 日)
8×10211+9 = 8(0)2109<212> = 6184995054848732624069<22> × 8223959478559241303903<22> × 31446576387231780393029<23> × 24146543135628100337366391171165943<35> × 5434121769422715787640346553236481127<37> × 381164079972458555786223587273986931886316263058346306707856839725809076623<75> (Lionel Debroux / GMP-ECM 6.5-dev (SVN r1712) for P35 / February 10, 2012 2012 年 2 月 10 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2202966019 for P37 / February 11, 2012 2012 年 2 月 11 日)
8×10212+9 = 8(0)2119<213> = 761 × 184073 × 14734044128997717751081<23> × 387608483258833412799297949690595095489472403108336699785419599525785503108977494633152741643031869673572343214147098896133846292432721297103715826274570262968229653968666045733946913<183>
8×10213+9 = 8(0)2129<214> = 61 × 67 × 103 × 577818978210823<15> × 171335874819558023<18> × 62555243579672841712217939543<29> × 105577089446546854006354569722204317321021<42> × 29065286725056253106315520764067381793185755642562335773223441631141394368026762543867901497883494777879387<107> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4246365244 for P29 / February 10, 2012 2012 年 2 月 10 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2588812785 for P42 / February 20, 2012 2012 年 2 月 20 日)
8×10214+9 = 8(0)2139<215> = 19687979 × 16470414619763564921290540205082237341176436046477835254898309160069854534326069461505175851500011897<101> × 246708616285510551482824712247133731599589211259876298702390771897194365516241292312111280841671034868165043<108> (Bob Backstrom / Msieve 1.54 snfs for P101 x P108 / December 1, 2019 2019 年 12 月 1 日)
8×10215+9 = 8(0)2149<216> = 7 × 541 × 1163 × 90187 × 57879483390290341512946590692485010215679045259194865545713649<62> × 34797366738649826197067568955607183209328759381398864405157582849905863744235548704752274907641018293117224881286422426158517351679985547024003<143> (ebina / Msieve 1.54 snfs for P62 x P143 / November 10, 2023 2023 年 11 月 10 日)
8×10216+9 = 8(0)2159<217> = 165667 × 651347 × 1010975435745720170439928187<28> × [73333254382042362762865200477702485759235679260911388531868971378204812350732504978675291793688157197959531819838124675656596679722213111062819022425350229170383488303276563506243<179>] Free to factor
8×10217+9 = 8(0)2169<218> = 59149037729754251740163<23> × [1352515663323410390342862706577643649857809104558706570186000510670196296546175343679516265294061218175931816320645384727153384906190312783356932742710516149537551521387851645759424536780157271043<196>] Free to factor
8×10218+9 = 8(0)2179<219> = 1249 × 7382953418307899<16> × 24499821379347203809<20> × [3541069920461940130064841921917866854198568490534294145500568809732280996934757375638624060516911490978465657723342267993361346145062181026508975878588744003061032328398926341413451<181>] Free to factor
8×10219+9 = 8(0)2189<220> = 5381 × 33014098926161<14> × 9437395440786671060222028283<28> × 4771724854961835200726545605065232064568839222305936528124654489073654241358822471243803121080450488335538469364902010334614171277881244300458727589512690658738626340220929503<175>
8×10220+9 = 8(0)2199<221> = 19 × 163 × 283 × 337 × 943291686864290209<18> × 1042029693537917113<19> × 275553761257696594265119225693602045376048971635230788994977023892664546469437612341939403935913972663706830904388800928564304956658769201875611149351715551383143378224490310571<177>
8×10221+9 = 8(0)2209<222> = 7 × 432 × 89 × 40854329 × 16999139866605223083905355862233952354798669524249437876977671957229212067802573624676078765634150069808911725545003559608079295891503952718349873114499862951530829572217987426305110640568527648291678104256823<209>
8×10222+9 = 8(0)2219<223> = 347 × 11715970993<11> × 18374174135249<14> × 23118264650418089153800009<26> × 9081642358750808529055679111263807164379677358871212741410968445451<67> × 510099350224343852313252486433294329211073940769000708695201078846770694227839764850158024810896279081369<105> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P67 x P105 / April 3, 2022 2022 年 4 月 3 日)
8×10223+9 = 8(0)2229<224> = definitely prime number 素数
8×10224+9 = 8(0)2239<225> = 17 × 227 × 28307 × 347788105897<12> × 352291370200327917978793338233<30> × 59772942171871470790616846407494393855954909852543902589119589719718330188585798069380906894325315616548913238233727128219325222338902871105162978258574747588072592994784508993<176> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1262323065 for P30 / February 8, 2012 2012 年 2 月 8 日)
8×10225+9 = 8(0)2249<226> = 232 × 307 × 424481927 × 489600047 × [237025616292543900793061079455761592039156204997644066041601171019079782584801343461703823170885452355617108079668021957094466661095402482130705066065394123906581994587384375950737759578176524561167134987<204>] Free to factor
8×10226+9 = 8(0)2259<227> = 4923538747<10> × [16248475763239484464241995331655709218286771411083199910480972599523649082394435759682668746955227323206440077194339179636398218437743514319498458899809690072903167507051610494820383303464637078441580506566489706148747<218>] Free to factor
8×10227+9 = 8(0)2269<228> = 7 × 1072 × 1222449883<10> × 73765435500704741<17> × [110698163908201984514227984462373524418722610991535808775987111333106934333943564107302250210687114063155939669595690299179329115581262504643019862283709623530056948608966429263800015807918938561921<198>] Free to factor
8×10228+9 = 8(0)2279<229> = 198507904100249<15> × 658103148011779<15> × 2114384016007270136483<22> × [28962386692514484327808006456555186467602912554408598673305571420411073731816296580927440260700755522590178286559713636947707756629068044807956307304911265889609020883376653664713<179>] Free to factor
8×10229+9 = 8(0)2289<230> = 1162243 × 53016495707003<14> × 1298320843904020909107055500396813522405861827052257954632474800865565682759941587418099171392641402191040449677227314821690349935233375253174550756631361344285263201482828752487751072651190809415307668560791321<211>
8×10230+9 = 8(0)2299<231> = 347539 × 8232277993<10> × 6265714497467<13> × [44626806551827117354729783766716165523480435894660964622520271860853024865343240525719148080673862336535210167018719162896965611721897432753941202022124618159713694042899487415823877104551878165026008001<203>] Free to factor
8×10231+9 = 8(0)2309<232> = 29 × 1187 × 17932836030268343<17> × 7333878841991349263662508923501<31> × [1767089562278786777115668566063831803156112866810968284987141492441276895784848221399914194727724904921372046429726819149604450661695889092447943483901942337453079774357300121262781<181>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1849300593 for P31 / February 10, 2012 2012 年 2 月 10 日) Free to factor
8×10232+9 = 8(0)2319<233> = 83 × 1361 × 76851433 × 15999558430692995355982848793<29> × [575961962316205680239898143378435304716940269155281416687710041565486141344080740094821791689074944975946103165815298815540861325626059289148443127248057837655274255462015554307413403753974147<192>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2316490494 for P29 / February 10, 2012 2012 年 2 月 10 日) Free to factor
8×10233+9 = 8(0)2329<234> = 7 × 11693714879668801410989<23> × 9773259863246398529517658318048363377201834060067431703990837262964860182519876621503513584708633129111204704881413619046729705196392665847966267487930193262092978084222284318982051388398860309646758751377199883<211>
8×10234+9 = 8(0)2339<235> = 2617 × 12583549974775086883<20> × [242931082911191250215061768761150488149897055406623331618456141410887646556848488210659967034555919793675644484739960601058389618439717067395842662407288325246522855166328644066963487897332582780050181437147930619<213>] Free to factor
8×10235+9 = 8(0)2349<236> = 281 × 1663 × 1259145743<10> × 61787941470947<14> × [2200450938117763100537551535967562476017165883933908788025691391064687687057131972349689444304174954994741528655223894675131909864780926252548870385388994680199322783145314244773806499820520622563982241092043<208>] Free to factor
8×10236+9 = 8(0)2359<237> = 1033 × 44352691 × 81372283 × [214581951101818738357315953368661888215261571897841058326400213894198180273788726380577474996251057142749889673474241018506172057934991146847889140836408723819787335185531551758563830846849930535847143904713361905610241<219>] Free to factor
8×10237+9 = 8(0)2369<238> = definitely prime number 素数
8×10238+9 = 8(0)2379<239> = 19 × 1147634209<10> × 18557619469047790819106930281648019<35> × [197701805542908003093963919433080948543218008914106562655210783965648760655387294935589529160614522929677450508365095901977053932023177730904686232832778315896366179985128474202954871710270685441<195>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3788514248 for P35 / February 10, 2012 2012 年 2 月 10 日) Free to factor
8×10239+9 = 8(0)2389<240> = 7 × 373727789 × 5032810546483<13> × 449320001909119223<18> × [135229119754796010001464322857173604309233659788024065060255420601575097800033378746369931455563327363030622436179986798251858401922232325170522547762685004675878620229324051270291736765150891278839487<201>] Free to factor
8×10240+9 = 8(0)2399<241> = 17 × 38011 × 1496220931<10> × 69627443825374163<17> × 266707002076115905000528467931<30> × 8432458117613813377039748151222427003939<40> × 52840507775424160136003690375395441679555302297208400335578099591514897445812381625284955000821096760135048995125197597285749573031291051491<140> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1533672734 for P30 / February 9, 2012 2012 年 2 月 9 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3311103968 for P40 / February 20, 2012 2012 年 2 月 20 日)
8×10241+9 = 8(0)2409<242> = 23327 × 1491197979053228818327<22> × 539633008105983652347829<24> × 2400439133932968412097481379746868487<37> × 1775442395908205280846293118231576036333142880766642356465599693190119072536000388123899257377679174925589192447913835469874362828319454766807149408502940027<157> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1915399015 for P37 / February 12, 2012 2012 年 2 月 12 日)
8×10242+9 = 8(0)2419<243> = 43 × 275688573237176292628051210403781465633670232402473529233<57> × [67484302828848190667966793395938045288767669676349567122845207173433643476108063723968143595686984226360481571779731514481005719413723561215768786944979871566819173180723591359692751211<185>] ([SG-FC] hl / GMP-ECM B1=260000000, sigma=1505490660 for P57 / January 3, 2014 2014 年 1 月 3 日) Free to factor
8×10243+9 = 8(0)2429<244> = 509 × 17987 × 5806941229<10> × 254195163957457963<18> × 6465997216564184256954404085137216749<37> × 91551031567382568528943953276119152435814275306082844023718990435531349558797793032582721964905246782053452815055552293465702294939345147691461893578522295634853347208870901<173> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1033817814 for P37 / February 12, 2012 2012 年 2 月 12 日)
8×10244+9 = 8(0)2439<245> = 55130051 × [1451114202669611170865776997013842776963874022173496628907526314459603891895547130910508317868234876111397030994946839428826213130113012229936083316882837637861064195278905147394113602398082309047746028749365749725136296354958931563477059<238>] Free to factor
8×10245+9 = 8(0)2449<246> = 7 × 47 × 587 × 210535421 × 7981228800283<13> × [2465250489236241911749272724623436021421476910999205156183998661464191580088334236160378723082046962518284662777734924615789102044228384959325959422066759908051570673458986258138595385870606737995108985952563980670888781<220>] Free to factor
8×10246+9 = 8(0)2459<247> = 67 × 193 × [618668316448843863583636223029928079808212821900858402289072770860722295259454025210733895290387441033176088469569252184672492459979893279715412574433531822751527337406233083288222101925605134947026525404067744180651148403062408166421777124739<243>] Free to factor
8×10247+9 = 8(0)2469<248> = 23 × 103 × 4201 × 748981909349<12> × [10732500483199843214310090667681040585071169167671173097042442950216655723086380110162406835061115253077587465086091985147904858010618534245701589973701454390537805539283359622463895623772331295809314078116081465745702764986483789<230>] Free to factor
8×10248+9 = 8(0)2479<249> = 419 × 34883 × 115873 × 27843756176184596343816216693680157949129<41> × 16964929641402031484471752802607139329320652613692946352138948417078402310214568032840824375974537448641405786773185222741765251364543040363291268448358707370559046918064739956586348204034233183801<197> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=772582183 for P41 / February 20, 2012 2012 年 2 月 20 日)
8×10249+9 = 8(0)2489<250> = 1492 × 332989 × 452533355450754704273087<24> × 855172384165830207922737623016194638141<39> × 2796297016109528852840182884344800871773241303133174528381044771283864808463222113764910177269249183601033354986677485176923154255571574379037217534947912774779362747034434095543<178> (Serge Batalov / GMP-ECM B1=2000000, sigma=437158316 for P39 / February 11, 2012 2012 年 2 月 11 日)
8×10250+9 = 8(0)2499<251> = 59 × 951019 × 48039047737<11> × 29891995098586150970910393267089003<35> × [992886234074122515353298993941105982392461559338069233098139887520588915561417788164051405411357242464659765868852415446248409587470476151039272593588419936406241337062431780810397692898421728441339<198>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1435481880 for P35 / February 11, 2012 2012 年 2 月 11 日) Free to factor
8×10251+9 = 8(0)2509<252> = 72 × 120601719516344167<18> × 1318367093140011653628870696259565927<37> × [102684301372156201847045961976064972493080947636408335794459682768113158565465918420878170823702035961114999516029089233597441182470514901528385254003719152103980730010939929766462539431964208236649<198>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1792795553 for P37 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10252+9 = 8(0)2519<253> = 98731 × [81028248473123942834570702211058330210369590098348036584254185615460189808672048292836089981869929404138517790764805380275698615429804215494626814273125968540782530309629194477924866556603295824006644316374796163312434797581306783077250306388064539<248>] Free to factor
8×10253+9 = 8(0)2529<254> = 229 × 269 × 2539067820463210614735842852826834547<37> × [511479136462504352133559667322721378536566067654851954018290898592804177360523586243888587030828705752733306652934238479018399841628717459168366036565485165581752869452829803869527948607030632716115688574587757747<213>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2755625100 for P37 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10254+9 = 8(0)2539<255> = 65256280920124260434575609327562415859<38> × 12259356321259330619172881179608051030763687134817349665618266160736132737820965918487046065664582363815051762188484702212983952990128253129003166274904013887371203672970961537827183161383260435682817268047650744056851<218> (Erik Branger / GMP-ECM B1=3e6, sigma=3:737389420 for P38 x P218 / April 8, 2019 2019 年 4 月 8 日)
8×10255+9 = 8(0)2549<256> = 547 × 7955923 × 101654987144431422474380441<27> × [18083537856295401742381261932548083891045021252247103291300066104036001605395518573896984335924350662211459962666854166104380385661570862895948586569722272075677771256786804672834364137816416754629822296322433692834163929<221>] Free to factor
8×10256+9 = 8(0)2559<257> = 17 × 19 × 1318520612404811993<19> × 6842766981310901475001<22> × 31301785290812430478433<23> × 877000178820809206888375449237602660581527390276461605852574246029646530398716137872576365685461781700656052863920834168429798608231809320241372000335919929994814580462686521523817916661536307<192>
8×10257+9 = 8(0)2569<258> = 7 × 84463 × 6629933574532124140806168101523876967<37> × 81853743791718819265690283247580128432587<41> × 2493318268578282930945569925739612049497814089366378221420544974530473471435347448851497800883126121848631512341231545634426938122371276652655122938134851468809221068301903781<175> (Erik Branger / GMP-ECM B1=3e6, sigma=3:4156554541 for P37, B1=3e6, sigma=3:979106447 for P41 x P175 / April 8, 2019 2019 年 4 月 8 日)
8×10258+9 = 8(0)2579<259> = 56843881 × [140736344163411361725987710093193671980278756828725329292699068172350863939075518084347548331543372276076645787081286726358462399849158786325655702502086372322115022371537228430972192064085138732874344030098859717196297698251813594501051045406276886689<252>] Free to factor
8×10259+9 = 8(0)2589<260> = 29 × 1129 × 296003119698841512588543641<27> × 1213172456431150933585286570746131541<37> × [6804233631874665147955958920576337910900947466854483545440264208664966723244426862318157564050490551656322439626197997075307883024875854412870240584977809224464319099589459886576161960967017129<193>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3358169377 for P37 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10260+9 = 8(0)2599<261> = definitely prime number 素数
8×10261+9 = 8(0)2609<262> = 710621959452869<15> × 467599020976409115707080453667<30> × 24075636076718218259935564879923770945400510724270877426566391371613747658075192084591676122078644967031620973772973404150538579818229612057036352021310336216935595390477465288030083221570172618123198331474788282562183<218> (Erik Branger / GMP-ECM B1=3e6, sigma=3:3076163051 for P30 x P218 / April 8, 2019 2019 年 4 月 8 日)
8×10262+9 = 8(0)2619<263> = 1276345817<10> × 540400821557366605064752837776553043<36> × [115986014900161978808737818718023075545843424834052940443465270509750864962308187364914227418324765293122054375380438716946431230282613176457362910703374706041014963916448409405309973551317778327401505484994576706968939<219>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:3780290944 for P36 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10263+9 = 8(0)2629<264> = 7 × 43 × 109 × 281 × 1429 × 30903436478989<14> × 1964950746751037955475680114251255044962574867765872301746089675091281124758440799167777143621308471940832365668081008180040071382454282845689656629798268786644162455286449839755428201999978221439083028561734622118007032385206860591761544441<241>
8×10264+9 = 8(0)2639<265> = 395994050390824906169<21> × 20202323727097487260127676612426191486939154597598065716849914824316770205337065455821890581968588665728541960191789958416961962578817608994608678331700016361711085424587819626704799905182413650899964502138546402518603000215822629566502916017361<245>
8×10265+9 = 8(0)2649<266> = 89 × 45587 × 4757586563<10> × 15125697713866181076129595729<29> × [274003967708664762453426535719989792865946339730094456782131890718927007588073103717334615068207583977592373186584454665718483264070232194331491025021242465758889265377227637203244881330494946995447353254575868347522846569<222>] Free to factor
8×10266+9 = 8(0)2659<267> = 601 × 739895078483501891<18> × 6950314618859226855133905677645016659<37> × [258845674648453320725043671526639513693764536682408555586534339176385475476720918791305800086181233087867483455270508766822586455796063062965241740058611051434515923117105457435532655933295902574184451998536761<210>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2797946211 for P37 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10267+9 = 8(0)2669<268> = 1303 × 90847 × [67582613261004618418385897245485589143954776215762426366525297637841519126711663790083131767485296832256769055536612242923236601297074236315836563648489953941688758226166245912804185857559285516950517725479103916386250212578998055825620840707265226385999227649<260>] Free to factor
8×10268+9 = 8(0)2679<269> = 7937 × 2912128689076683814963<22> × 1561560020407091938704443728820525723<37> × [2216482783766257983539805306983084210450100057286595895444085042460641193564564652704989361340169501175620743625263838041528142811377610301518389549064332297411312443044331684845145963879759558355737253892393<208>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:937872962 for P37 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10269+9 = 8(0)2689<270> = 7 × 23 × 12650767 × 261471248681099383<18> × [1502184626370434394994043787341538340598103784157325247759033685589405423279233398078434396436404843165277914285809282987605031295399364078896818277968841993967189727050270908020201810327709259544605038618994847330592500207828218047344351954929<244>] Free to factor
8×10270+9 = 8(0)2699<271> = 619 × 31177 × [414538636892290892332242561272567289077430272917211504296977966701458549012172564351034841298805512099527824947380797212725113263614498136467466515512061701174330959253287407979547492733008151954111816511934075091497745194810618800995701078883438108837430020048643<264>] Free to factor
8×10271+9 = 8(0)2709<272> = 467 × 1181 × [145051828831589387282943536762479443436132773191520995345649442366375535558549264133940858743089640217070061846473518068925002765050487102172695081111169534764390501280988963368973776442495109033646584845347553247619790146266637898053948401438188882865208774910385167<267>] Free to factor
8×10272+9 = 8(0)2719<273> = 17 × 2168827 × 3772527712434607171<19> × 269489979873589845158658561490891<33> × 15229784392303157250630537525391487747<38> × [1401352325795551288549846652752430957715673380221281954515654958323751716746498063595338426545488227242679135262105971292831868752992856326855856124238549700483241093920872402153<178>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2167878849 for P33, B1=3e6, sigma=3:2639815679 for P38 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10273+9 = 8(0)2729<274> = 61 × 83 × 5628247 × 260349333419908281798267643981<30> × 41625756089507704647619582747547<32> × 25905400200767778492580079047992358740394258316495430022459281052191507920951183402701190465623889369028468482757284598902536434859440219866596978879648786188278292733137354091746163819962171353487474167<203> (Erik Branger / GMP-ECM B1=3e6, sigma=3:157611667 for P30, B1=3e6, sigma=3:157612024 for P32 x P203 / April 8, 2019 2019 年 4 月 8 日)
8×10274+9 = 8(0)2739<275> = 19 × 97 × 569 × 5209 × 25090160069610279453401<23> × 205524454515476372043739<24> × 455509250140400527385856124438571<33> × 6234963149063646866852919213747832492955584670692315886632430837566248387308157643415839187133661405231987472327397738745390492826027963380772264461294306410005094196286231118366267985987<187> (Erik Branger / GMP-ECM B1=3e6, sigma=3:1504907772 for P33 x P187 / April 8, 2019 2019 年 4 月 8 日)
8×10275+9 = 8(0)2749<276> = 7 × 823 × 2180531443747<13> × [63683915596943802392021966795608217735323461804717085508841548477179704047321138701686641203451807278177822308050603030591320525443949064267538276089988173401788994534915129538073433952155917163289589472503631371413315442571186183805285543943962956193728176227<260>] Free to factor
8×10276+9 = 8(0)2759<277> = 1434161 × 2909821273<10> × 667506370829029426692965579<27> × [2871906847080256809655500634106067341503563207725154793665510104029851737214071826355798741582135680213976581795836083758387818202837813892553842899129373021434980149743433336143222749085334135714941553761197988732588143079693792353507<235>] Free to factor
8×10277+9 = 8(0)2769<278> = 614749 × 2068156593632401<16> × 62922900994084688662503641447478397199690231343582390713305539966083732126576578808536972710835237065884485641926740113568013643624492019412691641984231729189518318112118360239343716642948046418352532912706557167723482617501903806696675460017768805082731341<257>
8×10278+9 = 8(0)2779<279> = 563 × 1197739 × 1186367937776520214581868691055651946055606663874381656318441334617839604202623594265771838960927234453236539787843630898529999219651659328271622356093595099506736832599021753327035785841231638433277340671798076760250775463099947953000497798503731105661388283875431087737<271>
8×10279+9 = 8(0)2789<280> = 67 × 167 × 60289 × 11859343073837747948344395755730270395497721367316852136440123264173711293107324159656103718292298892013745079426994077492988715608255307095680220795351853819377262604225076865257380113296781286382379900384512663889061265264032611794050571094003689183689559067415712065029<272>
8×10280+9 = 8(0)2799<281> = 107 × 643 × 118579696899115836763<21> × [9805842208230142583482758160930833940866788664196752969256842033988953894766592756339679389749669988323697209449707823276484223553258971237834280487719074481666270029944997299749759982977807637928075212992113444637114835945203814597259101978706531154720043<256>] Free to factor
8×10281+9 = 8(0)2809<282> = 7 × 103 × 19966403 × 522933426995303<15> × 30266788110549417727327<23> × 32295532675387689044590703<26> × [108717560170742700351476334602169119441146914427946053122027441545088077095481352532470311325150933019394571750953167273481033700802591971141377113629638221642338534003660734314808715741647468873313162385320901<210>] Free to factor
8×10282+9 = 8(0)2819<283> = 113 × 11793675271369<14> × 169587243396572078437907723657500606963<39> × [35397223412951580065388124581554161706823836158921673513822527387701246999216925919237191228358981550865099688836646939771886300255411156895519082238505590240642900318494239643014482920762938343731151723191118209438332807383871019<230>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:2368122214 for P39 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10283+9 = 8(0)2829<284> = 18874003 × 155476769686502702462672981687<30> × [27262172312296697052601020862941798216177641942008495648026293278140057386727482215189680449103827108006752435032520433607812895348648905445713747302936369777569506463459106300095153351510270555988663993737591449313668120715096333060406227900920869<248>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:766562512 for P30 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10284+9 = 8(0)2839<285> = 43 × 937 × 2411 × 101561 × 75212513 × [1078121389030458468198924584957606887166452929258876656005639328143079558950932848754397447760746935757867501087408686042558086583887728803114750731706494253244607178594486922081448566803484158374241384121528922013246294552067167944167930471241412736264229402420113<265>] Free to factor
8×10285+9 = 8(0)2849<286> = 6235214490227<13> × 389945630266261<15> × 4361516621375444682835596160429<31> × 2808051634814557238585051105602824329<37> × [268653133235564954818119206475755415769539980685895885259029306936369112716693853614080771085510630778180807661014222264497704437767829395377288472519102742821172937082961917058192707939325867<192>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:731237961 for P31, B1=3e6, sigma=3:731237771 for P37 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10286+9 = 8(0)2859<287> = 4681321 × 2637779410803618545158764739139<31> × [6478628707001005187672122642099595289244909114700611752196001881067352236969709725860125218261876016965743450965178319004759139465670774077313310404328474578901988587148959971428904023843256696954041729757551935880532204101648134265635647162303124811<250>] (Erik Branger / GMP-ECM B1=3e6, sigma=3:1608178326 for P31 / April 8, 2019 2019 年 4 月 8 日) Free to factor
8×10287+9 = 8(0)2869<288> = 7 × 29 × 1823 × 151749643 × 1069795141<10> × 34873019871142025936809<23> × [381847036244830724273510727671228019851037387256698917509398084885610402364357777772573614809452467825538018972731973413944641766597795881939714642596080642543749728098456644210203127410191828917943280311338980456882092982899396180822367273483<243>] Free to factor
8×10288+9 = 8(0)2879<289> = 17 × 26050153 × [18064701397113393040679013647703516592871947476718105580235713688401708179196174575476863914817562514440329548837853613509656229838875892703631202111873788001078038152924837399792081157947178907954522773594368027658936567925904538155800512053445069412610269392998326321222171166609<281>] Free to factor
8×10289+9 = 8(0)2889<290> = 1123 × 5009 × 41543 × 342342914307988313674832858855362263658683820602012300719822012612161067574861332611470513475179745602441990610018951882882117640104077887589684785850564393500127635094663844743033350280535604140953806651070945041217806824781456887760020588230019179713717718449289772978812709109<279>
8×10290+9 = 8(0)2899<291> = 49592177 × [16131576558939931191163477255697002371966852755828807434688741331117607521041070651123059187339164400869112884477727202820719082366559548293272142499410743755007972325957781607369242935231498306678490843424760320564269642770471641121945503622476585369502935916687021019464420769429017<284>] Free to factor
8×10291+9 = 8(0)2909<292> = 23 × 47 × 281 × 3929 × 41146339489<11> × [162908873015718798295703780999506855473645477335122249997369596487370814281810293769332705602763673144417312710287249011258470411132918229369055710237129121438702349527093953823057834164463065970118621027241155925648447770264314326071082221648782740312133436401612647854849<273>] Free to factor
8×10292+9 = 8(0)2919<293> = 19 × 10891 × 633578690059426547<18> × [610194187429841111643250878989816969556860429146074598274227692328920868313756730214059082012367776021240952987086379620297755403009116942286918506041325926792016375518825749598725304921842285430925084818758152782453121844621519649740515157636187717781686674619934027043<270>] Free to factor
8×10293+9 = 8(0)2929<294> = 72 × 5345141767621<13> × 3054461662952573520860578759824937622124911932797205813499407297103096172426380345571018478846763658269747710825098949462466964107808784996431452685338951323301658140856191218985969722544291962419222855093209621003799175304743357112800754760730714466455526070417013732356299942021<280>
8×10294+9 = 8(0)2939<295> = 63679691 × 279575713 × 919706354417<12> × 488585316980445084133314015888319124259032050937888993595279306947370560814359766254971108064496339143140093093675928267361604389067298226564913038881685286240522349545533767183250245384574214501879889927339399424693925856265819405624769891527028349364895007858812619<267>
8×10295+9 = 8(0)2949<296> = 89705483561<11> × 46672628586418758503<20> × 19107714098650161702198962464721690036436246273774082977770697748972643415296954906560612689392390662576717137676413368630393084011320952778307594990896341830834620408499185008000565202310775286366970520897496264753444886098562247639568873243427896342361722832053623<266>
8×10296+9 = 8(0)2959<297> = 39862681 × 20293363331<11> × 403907316404666560873<21> × 5479238818410590065518130801<28> × [446855905349199722169586936541050679107139611658690309801308810252196384066688936469946621413597868344606815299356279759389431356908977705419243877709157445862061649296573396255136450557993834169552766020125525018415789590603778803<231>] Free to factor
8×10297+9 = 8(0)2969<298> = 1669 × 6709 × [714456609755136965350908489628903199256322114905877932766239353145274659894094310594471659783621457311083606516237232102214449331228425084893073977248665104804979691124332329134799297081864492408496639508682478603587411667487249851995847935412408021525863195312521629057521884029224490393729<291>] Free to factor
8×10298+9 = 8(0)2979<299> = 947 × 1259 × 2707 × 11623243 × 48031083329<11> × 198306822038804513<18> × 223892047356460027698904984640277610382043496774213099476879908822084810990091342450716487016405189251263701866319342072121979341998247295713138807125568121873490721411617885442178158220947172981004221920429731785781323539594974232612611110937098108576329<255>
8×10299+9 = 8(0)2989<300> = 7 × 1159861 × 1104239341<10> × 89232443472612650702066415222979717117135480613805738462497018669908716021413096916248470028931262865636075146191177916538734870741066684007033351293220347100371880531154988296744831380839728893223927351196552994972306349858864811133243144302558326116621299656801000646134153356345087<284>
8×10300+9 = 8(0)2999<301> = 2699 × 383777 × [7723393437453642442757077564967706083304678015092095823837304446562368410572443990513151170849598466036748564394694973665656420094978759041307259719608978530986876686947818339410689807711764517039704429672079302205073332447698244021722032457748213189790616515855325907735281960429496866398683<292>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク