Table of contents 目次

  1. About 511...119 511...119 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 511...119 511...119 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 511...119 511...119 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 511...119 511...119 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

51w9 = { 59, 519, 5119, 51119, 511119, 5111119, 51111119, 511111119, 5111111119, 51111111119, … }

1.3. General term 一般項

46×10n+719 (1≤n)

2. Prime numbers of the form 511...119 511...119 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 46×101+719 = 59 is prime. は素数です。
  2. 46×103+719 = 5119 is prime. は素数です。
  3. 46×107+719 = 51111119 is prime. は素数です。
  4. 46×1015+719 = 5(1)149<16> is prime. は素数です。
  5. 46×1022+719 = 5(1)219<23> is prime. は素数です。
  6. 46×10189+719 = 5(1)1889<190> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by:証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  7. 46×10445+719 = 5(1)4449<446> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  8. 46×10543+719 = 5(1)5429<544> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  9. 46×10633+719 = 5(1)6329<634> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  10. 46×10757+719 = 5(1)7569<758> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  11. 46×108725+719 = 5(1)87249<8726> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 31, 2004 2004 年 12 月 31 日)
  12. 46×109003+719 = 5(1)90029<9004> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / January 5, 2005 2005 年 1 月 5 日)
  13. 46×1037402+719 = 5(1)374019<37403> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 19, 2010 2010 年 9 月 19 日
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / July 17, 2015 2015 年 7 月 17 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 46×103k+2+719 = 3×(46×102+719×3+46×102×103-19×3×k-1Σm=0103m)
  2. 46×106k+719 = 13×(46×100+719×13+46×106-19×13×k-1Σm=0106m)
  3. 46×106k+5+719 = 7×(46×105+719×7+46×105×106-19×7×k-1Σm=0106m)
  4. 46×1013k+8+719 = 79×(46×108+719×79+46×108×1013-19×79×k-1Σm=01013m)
  5. 46×1015k+4+719 = 31×(46×104+719×31+46×104×1015-19×31×k-1Σm=01015m)
  6. 46×1016k+4+719 = 17×(46×104+719×17+46×104×1016-19×17×k-1Σm=01016m)
  7. 46×1018k+5+719 = 19×(46×105+719×19+46×105×1018-19×19×k-1Σm=01018m)
  8. 46×1028k+9+719 = 29×(46×109+719×29+46×109×1028-19×29×k-1Σm=01028m)
  9. 46×1030k+24+719 = 241×(46×1024+719×241+46×1024×1030-19×241×k-1Σm=01030m)
  10. 46×1033k+21+719 = 67×(46×1021+719×67+46×1021×1033-19×67×k-1Σm=01033m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 16.88%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 16.88% です。

3. Factor table of 511...119 511...119 の素因数分解表

3.1. Last updated 最終更新日

June 11, 2024 2024 年 6 月 11 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=217, 223, 230, 232, 233, 235, 236, 237, 238, 239, 241, 243, 244, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 261, 262, 263, 264, 267, 269, 271, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 290, 292, 294, 295, 296, 297, 298, 300 (50/300)

3.4. Factor table 素因数分解表

46×101+719 = 59 = definitely prime number 素数
46×102+719 = 519 = 3 × 173
46×103+719 = 5119 = definitely prime number 素数
46×104+719 = 51119 = 17 × 31 × 97
46×105+719 = 511119 = 32 × 72 × 19 × 61
46×106+719 = 5111119 = 13 × 109 × 3607
46×107+719 = 51111119 = definitely prime number 素数
46×108+719 = 511111119 = 3 × 79 × 127 × 16981
46×109+719 = 5111111119<10> = 29 × 176245211
46×1010+719 = 51111111119<11> = 9643 × 5300333
46×1011+719 = 511111111119<12> = 3 × 7 × 24338624339<11>
46×1012+719 = 5111111111119<13> = 13 × 439 × 1907 × 469631
46×1013+719 = 51111111111119<14> = 1201 × 42557128319<11>
46×1014+719 = 511111111111119<15> = 32 × 2549 × 13693 × 1627063
46×1015+719 = 5111111111111119<16> = definitely prime number 素数
46×1016+719 = 51111111111111119<17> = 47 × 6444353 × 168747809
46×1017+719 = 511111111111111119<18> = 3 × 7 × 257 × 94702818438227<14>
46×1018+719 = 5111111111111111119<19> = 13 × 393162393162393163<18>
46×1019+719 = 51111111111111111119<20> = 31 × 1648745519713261649<19>
46×1020+719 = 511111111111111111119<21> = 3 × 17 × 10021786492374727669<20>
46×1021+719 = 5111111111111111111119<22> = 67 × 79 × 965635955244872683<18>
46×1022+719 = 51111111111111111111119<23> = definitely prime number 素数
46×1023+719 = 511111111111111111111119<24> = 33 × 7 × 19 × 23316011 × 6104437696619<13>
46×1024+719 = 5111111111111111111111119<25> = 132 × 241 × 1663 × 11651767 × 6476308591<10>
46×1025+719 = 51111111111111111111111119<26> = 227 × 563 × 460539319 × 868389084401<12>
46×1026+719 = 511111111111111111111111119<27> = 3 × 373 × 599 × 762532596196387949399<21>
46×1027+719 = 5111111111111111111111111119<28> = 10463 × 2141205673<10> × 228139618813481<15>
46×1028+719 = 51111111111111111111111111119<29> = 3019 × 389422391191<12> × 43474169074811<14>
46×1029+719 = 511111111111111111111111111119<30> = 3 × 7 × 24338624338624338624338624339<29>
46×1030+719 = 5111111111111111111111111111119<31> = 13 × 57923 × 8089541 × 839067775582852741<18>
46×1031+719 = 51111111111111111111111111111119<32> = 69379 × 180773 × 4075244979456315889057<22>
46×1032+719 = 511111111111111111111111111111119<33> = 32 × 929 × 257667559 × 237245156927855093681<21>
46×1033+719 = 5111111111111111111111111111111119<34> = 1056871 × 1529683 × 3161490642986832578083<22>
46×1034+719 = 51111111111111111111111111111111119<35> = 31 × 79 × 389100869 × 53636982373500181385299<23>
46×1035+719 = 511111111111111111111111111111111119<36> = 3 × 7 × 157 × 115163 × 1346118848583231522926359229<28>
46×1036+719 = 5111111111111111111111111111111111119<37> = 13 × 17 × 5598343 × 14822520481<11> × 278702898958642733<18>
46×1037+719 = 51111111111111111111111111111111111119<38> = 29 × 5740492525640417<16> × 307021061243011021883<21>
46×1038+719 = 511111111111111111111111111111111111119<39> = 3 × 131 × 358168988290759<15> × 3631071424151348143537<22>
46×1039+719 = 5111111111111111111111111111111111111119<40> = 139 × 5922273047<10> × 6208863259318995940076112443<28>
46×1040+719 = 51111111111111111111111111111111111111119<41> = 457 × 716968003 × 155990930202768132121989428189<30>
46×1041+719 = 511111111111111111111111111111111111111119<42> = 32 × 7 × 19 × 22469 × 56899361 × 333987365789073267133791503<27>
46×1042+719 = 5111111111111111111111111111111111111111119<43> = 13 × 1861 × 325262507 × 334728021343277<15> × 1940436885352897<16>
46×1043+719 = 51111111111111111111111111111111111111111119<44> = 700939925533157249<18> × 72917962366367375767863631<26>
46×1044+719 = 511111111111111111111111111111111111111111119<45> = 3 × 14479 × 11766722174899535214474091468359028273387<41>
46×1045+719 = 5111111111111111111111111111111111111111111119<46> = 173 × 4096349 × 7212274848142562330125125804944886247<37>
46×1046+719 = 51111111111111111111111111111111111111111111119<47> = 3331 × 691209847 × 38083197611<11> × 582904444598227654907497<24>
46×1047+719 = 511111111111111111111111111111111111111111111119<48> = 3 × 72 × 79 × 6708808835541025981<19> × 6560326876413687634404023<25>
46×1048+719 = 5111111111111111111111111111111111111111111111119<49> = 13 × 113 × 401 × 1431413 × 54964463 × 110281383916258970315288378929<30>
46×1049+719 = 51111111111111111111111111111111111111111111111119<50> = 31 × 2414021 × 11344855528249<14> × 60202373653635644050782622981<29>
46×1050+719 = 511111111111111111111111111111111111111111111111119<51> = 33 × 127 × 199 × 433 × 94313648227<11> × 18341393139296881591039552514279<32>
46×1051+719 = 5(1)509<52> = 7549 × 193573 × 137211078751<12> × 25491297252734548606854954151297<32>
46×1052+719 = 5(1)519<53> = 17 × 1693 × 13676120871983<14> × 12306635512909733<17> × 10551329220167742241<20>
46×1053+719 = 5(1)529<54> = 3 × 7 × 1889 × 2551265731426063<16> × 5050197632202944394079848910040477<34>
46×1054+719 = 5(1)539<55> = 13 × 67 × 241 × 6481 × 311322485813<12> × 48868645000311403<17> × 246943339159914431<18>
46×1055+719 = 5(1)549<56> = 283 × 9668933 × 42420994097<11> × 676452286043839<15> × 650927058962769960887<21>
46×1056+719 = 5(1)559<57> = 3 × 29101 × 109343289305649277189<21> × 53541929788880915589389869126757<32>
46×1057+719 = 5(1)569<58> = 194063220489667693<18> × 2023958470398817763<19> × 13012792091844159750041<23>
46×1058+719 = 5(1)579<59> = 96097951321<11> × 531864731854506785330047599247624246979248577639<48>
46×1059+719 = 5(1)589<60> = 32 × 7 × 19 × 59 × 208650053 × 38310930975543716428703<23> × 905373867855494310145667<24>
46×1060+719 = 5(1)599<61> = 13 × 79 × 20143033 × 72289164323<11> × 3417801296354582772787951254848318699183<40>
46×1061+719 = 5(1)609<62> = 207643 × 507301 × 5902151 × 139711054897<12> × 588425142070785090332406049201039<33>
46×1062+719 = 5(1)619<63> = 3 × 47 × 523 × 86783 × 100501 × 1020552491633<13> × 3951337829701<13> × 197065213754722415831447<24>
46×1063+719 = 5(1)629<64> = 20107 × 1965389 × 3681592835000987309771<22> × 35130454391069487364668797916643<32>
46×1064+719 = 5(1)639<65> = 31 × 1648745519713261648745519713261648745519713261648745519713261649<64>
46×1065+719 = 5(1)649<66> = 3 × 7 × 29 × 61 × 1553 × 311338099 × 9798180919<10> × 135431304683<12> × 552741137939<12> × 38795215150851791<17>
46×1066+719 = 5(1)659<67> = 13 × 461 × 852846839831655449876708011198249809963475907076774755733540983<63>
46×1067+719 = 5(1)669<68> = 3203 × 264163486650353<15> × 825322560519553781<18> × 73191707426090551536255039315361<32>
46×1068+719 = 5(1)679<69> = 32 × 17 × 421093 × 19633892881756739<17> × 404054038754694953740942538107701258269531849<45>
46×1069+719 = 5(1)689<70> = 115110922937609<15> × 2342362114096906787<19> × 18955914936540297513478234894972813693<38>
46×1070+719 = 5(1)699<71> = 191 × 75793 × 9337099 × 378129790404266323974217623509561557853778831391957105987<57>
46×1071+719 = 5(1)709<72> = 3 × 7 × 8790486377<10> × 2768746039161780345290059521654650147959455092461300634166107<61>
46×1072+719 = 5(1)719<73> = 13 × 3257 × 164081899 × 5152788785969654327<19> × 11323423644619805839<20> × 12608790846769740925297<23>
46×1073+719 = 5(1)729<74> = 79 × 645368477016322578157819841<27> × 1002491000188255956458681531919412205723709121<46>
46×1074+719 = 5(1)739<75> = 3 × 197 × 101518141632927827<18> × 8518912986065860878484987112196852175068401329961042267<55>
46×1075+719 = 5(1)749<76> = 12192340630827061<17> × 148759720191368842688917<24> × 2818012283996562711684142772992358887<37>
46×1076+719 = 5(1)759<77> = 648857565443<12> × 78770925751964671943049259879308471936483406867960246203810110533<65>
46×1077+719 = 5(1)769<78> = 35 × 7 × 19 × 509 × 27551 × 37043197359633055027<20> × 30443444801845866741051013232135905487594617657<47>
46×1078+719 = 5(1)779<79> = 13 × 577 × 681390629397561806573938289709520212119865499414892829104267579137596468619<75>
46×1079+719 = 5(1)789<80> = 31 × 193 × 587 × 140443392569<12> × 1448274271853<13> × 71549415571944143973033503309214678734585945643127<50>
46×1080+719 = 5(1)799<81> = 3 × 5987 × 28456717950621408112639113140198825851072385229726135020940432665837710100279<77>
46×1081+719 = 5(1)809<82> = 331 × 357446051 × 210596979338959<15> × 205127878002288092748627433026471219735478097340317642561<57>
46×1082+719 = 5(1)819<83> = 3952939127641028957<19> × 2310665988125921668595109557<28> × 5595746398645256173830722626728012431<37>
46×1083+719 = 5(1)829<84> = 3 × 7 × 70379671225380851<17> × 345818954747364026629894732102285642436556249335004388409930918689<66>
46×1084+719 = 5(1)839<85> = 13 × 17 × 241 × 256464979 × 2469246691<10> × 151535175450742991430373835289834569892624329776468468202407811<63>
46×1085+719 = 5(1)849<86> = 139 × 149 × 135319 × 18237087165878857783784777739322619675547303760463931018043987693361274328591<77>
46×1086+719 = 5(1)859<87> = 32 × 79 × 229 × 3598806827717<13> × 65801542952523829138217<23> × 13256095558356792888876522945838634485792243609<47>
46×1087+719 = 5(1)869<88> = 67 × 343081 × 4967439084451950789313821969389771<34> × 44762187512326931193329471165521713032931710807<47> (Makoto Kamada / GGNFS-0.70.3 / 0.19 hours)
46×1088+719 = 5(1)879<89> = 173 × 2352582701992093<16> × 8624591220741129530543<22> × 14560818876953289949128116172823931499428783948297<50>
46×1089+719 = 5(1)889<90> = 3 × 73 × 621460061309<12> × 799257506764587045353546432238763823837692012654743176722944149129475209279<75>
46×1090+719 = 5(1)899<91> = 13 × 84211 × 335953 × 46369447 × 5086416024337311440902879997<28> × 58922454048805778103788547793884675650554379<44>
46×1091+719 = 5(1)909<92> = 1181 × 12651255299<11> × 297472901071693<15> × 271838405626851319<18> × 42303235171805337810166084698196706267552713403<47>
46×1092+719 = 5(1)919<93> = 3 × 127 × 359 × 50867 × 7870697 × 9542696006817973<16> × 221043234519971868855379<24> × 4424847050607451591885443376450124617<37>
46×1093+719 = 5(1)929<94> = 29 × 412109 × 427666492913208274167765885767174512259613196668600741895378290955256239214843738705479<87>
46×1094+719 = 5(1)939<95> = 31 × 54667 × 11552405324371525457<20> × 2610693987193185782779586525799656725064238903859338493965626460513571<70>
46×1095+719 = 5(1)949<96> = 32 × 7 × 19 × 7250407 × 3780601936446877<16> × 15577502624916768499698040248229754955499666253211494241308368177676993<71>
46×1096+719 = 5(1)959<97> = 13 × 1285381780373483419570709<25> × 1274547719778095424820524465316103<34> × 239984796882154778642803007573974852969<39> (Makoto Kamada / msieve 0.81 / 6.3 minutes)
46×1097+719 = 5(1)969<98> = 397 × 18221257378008332075983<23> × 7065558114562199970774618547664057889339180871708230101266340693774508869<73>
46×1098+719 = 5(1)979<99> = 3 × 8463595412022867824171<22> × 2678557589455070669207507<25> × 7515159196343663991518143819856232201763505414668309<52>
46×1099+719 = 5(1)989<100> = 79 × 1187 × 36073568774537951191<20> × 919971795861363444688603<24> × 1642380914003612234653115220995593499576096350413911<52>
46×10100+719 = 5(1)999<101> = 17 × 97 × 29938872759017041727447048147<29> × 1035283332317945531319994597432576747779218955421280541519148395919973<70>
46×10101+719 = 5(1)1009<102> = 3 × 7 × 1163 × 37277 × 910268395208904786366326084731<30> × 616745365847203538452641773299137697957859556570687989939496119<63> (Max Dettweiler / GGNFS (sieving) + msieve 1.40beta2 (postprocessing) via factMsieve.pl snfs / 0.37 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 11, 2009 2009 年 3 月 11 日)
46×10102+719 = 5(1)1019<103> = 132 × 65761 × 135764219057<12> × 39245537028726767533358976269182768669507<41> × 86314668482891233623049273837729786727473709<44> (Makoto Kamada / Msieve-1.39 for P41 x P44 / 42 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10103+719 = 5(1)1029<104> = 1317887 × 501354839658847793537<21> × 77355631632421790404777874637690649027849201943137921175983740100461382529201<77>
46×10104+719 = 5(1)1039<105> = 33 × 46397742154740265377875973078126593<35> × 407994878050965040134414999083253246694580794853731611179624305780829<69> (Ignacio Santos / GGNFS, Msieve snfs / 0.31 hours / March 11, 2009 2009 年 3 月 11 日)
46×10105+719 = 5(1)1049<106> = 167 × 421 × 2371 × 552252197993<12> × 421121887179950792518106759<27> × 131837796095880353222197649820356930331108413444101285802921<60>
46×10106+719 = 5(1)1059<107> = 62610787 × 19250400330226491636054203<26> × 42405910651521893128067057135601322755439367064742183438644244616416098079<74>
46×10107+719 = 5(1)1069<108> = 3 × 7 × 731189 × 46288141 × 56430397 × 214580979993296859784573092191<30> × 59387126083426088250265937436159975707328840461240397793<56> (Makoto Kamada / Msieve-1.39 for P30 x P56 / 35 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10108+719 = 5(1)1079<109> = 13 × 47 × 293 × 14812630248175958830843<23> × 3927609920047832384781263<25> × 38346609854556074165003209<26> × 12797318721846472182633623857013<32>
46×10109+719 = 5(1)1089<110> = 312 × 6311 × 3589986801616458311<19> × 10057144253987734316503348115093<32> × 233413635538382582586643407079627161551044904309595043<54> (Makoto Kamada / Msieve-1.39 for P32 x P54 / 32 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10110+719 = 5(1)1099<111> = 3 × 6257 × 58321 × 8444591119<10> × 302307327998581<15> × 3564194486070188852941<22> × 189078990594406203399888931<27> × 271375714881037338903356712361<30>
46×10111+719 = 5(1)1109<112> = 516956081 × 20440457576449<14> × 93762916486361<14> × 5158696200807966382069791525246836393504058307987013182639879326830556819991<76>
46×10112+719 = 5(1)1119<113> = 79 × 3671 × 90318973 × 1951303644902595507892606414878458547912311827420432196571398315770670110111908684841153127927497267<100>
46×10113+719 = 5(1)1129<114> = 32 × 7 × 19 × 157 × 9391 × 646982951506426311350449<24> × 7567511495204004338951059<25> × 59151226305341732624699248719185007124668410192422757731<56>
46×10114+719 = 5(1)1139<115> = 13 × 109 × 241 × 947 × 2347 × 159629 × 329659068901<12> × 6107727700946771490361<22> × 20951198587384175868045506001440906220399246078486934764166303087<65>
46×10115+719 = 5(1)1149<116> = 178069 × 1411900511398192257605592479<28> × 285440628474942638285543745317599<33> × 712208443348392114619046994719327274655939956174931<51> (Makoto Kamada / Msieve-1.39 for P33 x P51 / 25 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10116+719 = 5(1)1159<117> = 3 × 17 × 409 × 1579 × 46237 × 12033211 × 324588960960104483<18> × 85928015604598247627346813895735385617972625836869532947169056372176038537326259<80>
46×10117+719 = 5(1)1169<118> = 59 × 3631 × 6343 × 13807 × 206369 × 1029383334434131<16> × 673283108602330091695140462278499284819<39> × 1904687422374998347002863248936709140968659171<46> (Makoto Kamada / Msieve-1.39 for P39 x P46 / 18 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10118+719 = 5(1)1179<119> = 795649 × 59804944815318712649<20> × 1074129655159396881346290827153624066455880308645076575795337571779784332066280470545212831319<94>
46×10119+719 = 5(1)1189<120> = 3 × 7 × 13451 × 22691 × 7350015319<10> × 10849246451867729519938049386461984354454057369485464568499214764246480041839966070767378364613242341<101>
46×10120+719 = 5(1)1199<121> = 13 × 67 × 3955861644380123<16> × 1483392481299417938947153800330176951819887223888222011774853587428442283813673353044667454534338426843<103>
46×10121+719 = 5(1)1209<122> = 29 × 701233933 × 46009683390482676142661469113136711350972508440317<50> × 54626723951423242493762457044144963710391442346120152601866451<62> (Ignacio Santos / GGNFS, Msieve snfs / 1.85 hours / March 11, 2009 2009 年 3 月 11 日)
46×10122+719 = 5(1)1219<123> = 32 × 6133 × 41346233297<11> × 223956616330839455421460963118469864316055014536536209072196600322935774770574730463392774716521844159101291<108>
46×10123+719 = 5(1)1229<124> = 557 × 1487 × 10771 × 24059249 × 57070560644988673<17> × 2325628125244688811374238167<28> × 179414961330353562261326604270253594399884386538812423649667969<63>
46×10124+719 = 5(1)1239<125> = 31 × 1172957771<10> × 1405630757113813988061740471014492085682864077848157689313148894893607992696992623035968838513919116797651233384019<115>
46×10125+719 = 5(1)1249<126> = 3 × 7 × 61 × 79 × 8369 × 465929 × 6571519 × 5392645199<10> × 6504236561<10> × 8489409413<10> × 161221573927633<15> × 408196858052623<15> × 10057998225062272103398374172977610273307771723<47>
46×10126+719 = 5(1)1259<127> = 13 × 7416377 × 52095415469<11> × 1017608358618442489944069694281022111874874046256666048217339930678953174090956680641192761604073032667895951<109>
46×10127+719 = 5(1)1269<128> = 11801 × 70481 × 546812675438656739603<21> × 9075496631707207025247942661883<31> × 12382703711409351645217927532546045507336155172403710924133030054551<68> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=4254698207 for P31 / March 8, 2009 2009 年 3 月 8 日)
46×10128+719 = 5(1)1279<129> = 3 × 186475951384166345773<21> × 1370699867468772090856264595932743748201541<43> × 666544064106153667875823113158516179177104168930788199356268868261<66> (Ignacio Santos / GGNFS, Msieve snfs / 3.01 hours / March 11, 2009 2009 年 3 月 11 日)
46×10129+719 = 5(1)1289<130> = 412876198061<12> × 8538467243791808437910109352246048481<37> × 1856651886231892063895947145518138484891<40> × 780881394845341467663468221315394520530449<42> (Ignacio Santos / GGNFS, Msieve snfs / 2.65 hours / March 11, 2009 2009 年 3 月 11 日)
46×10130+719 = 5(1)1299<131> = 1319 × 3230393 × 144516821 × 5445770699<10> × 15241840607973862239160955201879952206441344314361169981138607272938327964899566525377582574293679915383<104>
46×10131+719 = 5(1)1309<132> = 33 × 72 × 19 × 139 × 173 × 10733 × 2958650081<10> × 530919129224999<15> × 24836285458873298928376313085558197539<38> × 2019348256878070729579299955784787789740821226032796066657<58> (Max Dettweiler / GGNFS (sieving) + msieve v1.40beta2 (postprocessing) snfs / 3.76 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 11, 2009 2009 年 3 月 11 日)
46×10132+719 = 5(1)1319<133> = 13 × 17 × 653 × 3888067 × 1061074121<10> × 451405513150730965092349969817<30> × 40522260920844917436074325770416771118003<41> × 469320880811478719321147765326254475460159<42> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2289527538 for P30 / March 8, 2009 2009 年 3 月 8 日) (Makoto Kamada / Msieve-1.39 for P41 x P42 / 22 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10133+719 = 5(1)1329<134> = 51407 × 172217 × 958562955075491<15> × 256136707909961588934109<24> × 23513895193067171298683142517856542653091687218039219392043939815390910604429932082879<86>
46×10134+719 = 5(1)1339<135> = 3 × 127 × 124601 × 455899 × 6394686118343375863<19> × 3693013940656237960602973177888435183779829792572480405186722240054581282098758012215177218229269330527<103>
46×10135+719 = 5(1)1349<136> = 57719 × 7913196622413294944729351989<28> × 4073095510555953166009954261289693<34> × 2747387848474171759521012098472172516349340423226028190381151990067113<70> (Max Dettweiler / GGNFS (sieving) + msieve v1.40beta2 (postprocessing) via factMsieve.pl snfs / 4.42 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 11, 2009 2009 年 3 月 11 日)
46×10136+719 = 5(1)1359<137> = 335108900747261<15> × 724818341431800756488011<24> × 1198025869871058329297191<25> × 175644270733034190492413729129493291414635750214319856049255456821541876679<75>
46×10137+719 = 5(1)1369<138> = 3 × 7 × 137489835013012857852899791<27> × 177021263690663284911145118274400032132532888797067907153971728076442655709108235491552568090443596902684954429<111>
46×10138+719 = 5(1)1379<139> = 13 × 79 × 227 × 431 × 176503 × 199411 × 106950229 × 1136682833457194861<19> × 76740292668631354057<20> × 220585457489113995806312749764643<33> × 702294391127582035089014350934771353855103<42> (Makoto Kamada / Msieve-1.39 for P33 x P42 / 2 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10139+719 = 5(1)1389<140> = 31 × 10663 × 154623044144542966214528717364873745242400193346032591176335144775909191902996224844763505734666183973859293702102570877018545017322823<135>
46×10140+719 = 5(1)1399<141> = 32 × 446998291 × 170709216132860956637096332810026479832037334714407579<54> × 744234814445627626849250096187520695493006138311265255510571169683581844890519<78> (Max Dettweiler / GGNFS (sieving) + msieve v1.40beta2 (postprocessing) via factMsieve.pl snfs / 3.79 hours on Core 2 Quad Q6600 (2.8Ghz), Windows Vista 32-bit / March 11, 2009 2009 年 3 月 11 日)
46×10141+719 = 5(1)1409<142> = 11993619606257<14> × 640348147023647<15> × 4690614968798029<16> × 141879323639280259639053715782063224549229754420113929324400307931696473787105321347233063019774309<99>
46×10142+719 = 5(1)1419<143> = 887 × 483776039 × 648884462389<12> × 183560813203731566614014749431384553135010827616337628285068234064278450386058991931558910552361714410777824160311420947<120>
46×10143+719 = 5(1)1429<144> = 3 × 7 × 19079 × 97048476889694747931582548591254566855340946171026940283703<59> × 13144730780789614385948948986670127604676454170169609999833165175217833747435347<80> (Ignacio Santos / GGNFS, Msieve snfs / 9.57 hours / March 11, 2009 2009 年 3 月 11 日)
46×10144+719 = 5(1)1439<145> = 13 × 241 × 137273 × 2139989681<10> × 500082844191092308756949487823356333584022932113<48> × 11104938743856477054517868159608136536088822909774673995551781412181151757616147<80> (Ignacio Santos / GGNFS, Msieve snfs / 8.25 hours / March 11, 2009 2009 年 3 月 11 日)
46×10145+719 = 5(1)1449<146> = 1214659 × 42078567821183649988277459855902859247830964172752279537805352046221294298326617685384219860150965094821765706351421354562153749415359463941<140>
46×10146+719 = 5(1)1459<147> = 3 × 593 × 3659 × 7188543623<10> × 230211757577<12> × 24148169986644262188264915023<29> × 611134958113531502328771287835413519939267<42> × 3215046068556093932138125748101914783298678553189<49> (Max Dettweiler / Yafu v1.06 for P42 x P49 / March 11, 2009 2009 年 3 月 11 日)
46×10147+719 = 5(1)1469<148> = 839 × 211093 × 351688501 × 4046688703<10> × 8763831311<10> × 20083500427<11> × 379679851741<12> × 3008910831083<13> × 100846603422799854252640264167300565627239146501233436964869948483613179913389<78>
46×10148+719 = 5(1)1479<149> = 17 × 497339 × 6045244687652523330471961320632063975194941728243726182639431893136580068667934407045012510831008641059614694239343091120485708601306874138413<142>
46×10149+719 = 5(1)1489<150> = 32 × 7 × 19 × 29 × 199 × 15557131706506123<17> × 49266879156806711<17> × 3717593605046269974941029954521038665650971<43> × 25967109193812927293021015198828053542275514600080287790314157459599<68> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 35.80 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / March 14, 2009 2009 年 3 月 14 日)
46×10150+719 = 5(1)1499<151> = 13 × 1947223 × 38390909 × 42538139961910785733246934292034615902317<41> × 123637264648317163042355890662940623511699502455330354446549884735561640038234169014759390237077<96> (Ignacio Santos / GGNFS, Msieve snfs / 11.95 hours / March 11, 2009 2009 年 3 月 11 日)
46×10151+719 = 5(1)1509<152> = 79 × 379 × 24007 × 1233534392384537<16> × 57644764050316802000799599290581760095234846219923612922991511297609697146909221481331802675188843926542178021008487395481375101<128>
46×10152+719 = 5(1)1519<153> = 3 × 1249 × 17761 × 250951 × 123294373531036139<18> × 248217287858637150540387313018715603482410943907866086874938692360564966809289308235320239992819092096606306937724428473913<123>
46×10153+719 = 5(1)1529<154> = 67 × 167907469285391491<18> × 7133083920115793161754192878302086398429<40> × 63693214863059925710776140780854555073194599184277823947866274871020184275904123806802758151363<95> (Ignacio Santos / GGNFS, Msieve snfs / 25.06 hours / March 12, 2009 2009 年 3 月 12 日)
46×10154+719 = 5(1)1539<155> = 31 × 47 × 128663 × 2622880181<10> × 172027646543117329<18> × 604262158246494971822434806562008712115603780845466492584280211055133619976126068991615224786764856280971249543912278341<120>
46×10155+719 = 5(1)1549<156> = 3 × 7 × 1213 × 10166011 × 4597186214497<13> × 402860191982771<15> × 290046167362909594280300384857<30> × 3674270019594953950716003983882113913200293166790356458780052078851609215652846554063047<88> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=116817522 for P30 / March 8, 2009 2009 年 3 月 8 日)
46×10156+719 = 5(1)1559<157> = 13 × 12791 × 14542537 × 4407263369<10> × 1097910141634106723759003<25> × 2715484761041453250674567065722056986464791<43> × 160858540162485163688402882005891457614428281179133660553932660406097<69> (Ignacio Santos / GGNFS, Msieve snfs / 27.31 hours / March 12, 2009 2009 年 3 月 12 日)
46×10157+719 = 5(1)1569<158> = 10847 × 939495941 × 5015460032986758738787863293290239619096209806339781249235891209371935074301453499404057356140780885972121658265726783851304453519187258928493597<145>
46×10158+719 = 5(1)1579<159> = 34 × 1453 × 39347028827<11> × 31735734222617<14> × 3477796733107225968955072800780302681545971555765371210910791293288810652912698323156340730584690869550822604155088843219680659337<130>
46×10159+719 = 5(1)1589<160> = 223 × 1129 × 1040821 × 3437641 × 4950433 × 36093390157627667798369<23> × 31754778482704642667846168066614834937764316777207910737006385548047892289242125720094262894963813989927311813181<113>
46×10160+719 = 5(1)1599<161> = 113 × 6691 × 502613 × 882835783 × 2989090312018631<16> × 3447527333509037<16> × 25921830421766513617<20> × 7931939574617051430473<22> × 19748475881470417072939901375003<32> × 3640883666741216783337255468560034407<37> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1232561883 for P32 / March 8, 2009 2009 年 3 月 8 日)
46×10161+719 = 5(1)1609<162> = 3 × 7 × 467 × 1549693919876341<16> × 16992883783519846308764066577664900740967<41> × 1979092671373367048595934073451965110198678986743029049601958788254140099138182740089543592879492970011<103> (Max Dettweiler / GGNFS (sieving) + msieve v1.40beta2 (postprocessing) for P41 x P103 / 1.61 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 13, 2009 2009 年 3 月 13 日)
46×10162+719 = 5(1)1619<163> = 13 × 57800249016433959471978077093391209607071442449632919182640852059<65> × 6802088223713498538731821213822390527250157537497199065944202659052719853731469736697689689346257<97> (Ignacio Santos / GGNFS, Msieve snfs / 43.47 hours / March 11, 2009 2009 年 3 月 11 日)
46×10163+719 = 5(1)1629<164> = 7541934798456785863129669147390842480985292538523<49> × 6776922961674152159210898254957167446794903963445963850920375427234007766800528046684857758168998176148283384837853<115> (Ignacio Santos / GGNFS, Msieve snfs / 48.64 hours / March 12, 2009 2009 年 3 月 12 日)
46×10164+719 = 5(1)1639<165> = 3 × 17 × 79 × 179 × 233 × 41244039563019883<17> × 38761045063606867373<20> × 2085491164318326769316061631065415687<37> × 912313446682833428261016780631623637749006006146390104272853716796969509502773150281<84> (Andreas Tete / GMP-ECM 6.2.1 B1=3000000, sigma=983803196 for P37 / April 14, 2009 2009 年 4 月 14 日)
46×10165+719 = 5(1)1649<166> = 181 × 191 × 1361 × 23993 × 25637611 × 1804773857<10> × 694575844284880677867191247137091366345427839339582636913<57> × 140877189974738893565168112114361733965740981505111702335142003362792062349532543<81> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 34.25 hours, 0.98 hours / April 18, 2009 2009 年 4 月 18 日)
46×10166+719 = 5(1)1659<167> = 491339 × 805735179083<12> × 498761600663922149<18> × 555390051101086169<18> × 5420857252012215894665725317554057<34> × 629418313124727314930887154750413469<36> × 136597674964269841592017706389161608930167319<45> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1120248322 for P34 / March 9, 2009 2009 年 3 月 9 日) (Makoto Kamada / Msieve-1.39 for P36 x P45 / 8 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 10, 2009 2009 年 3 月 10 日)
46×10167+719 = 5(1)1669<168> = 32 × 7 × 19 × 1117 × 4679 × 27883 × 107947980468983175179209407936978627331988033676681083<54> × 27143192890863234580560273644490456064319074781755462331364854263414746355660087083256912160513206201<101> (Ignacio Santos / GGNFS, Msieve snfs / 62.79 hours / March 18, 2009 2009 年 3 月 18 日)
46×10168+719 = 5(1)1679<169> = 13 × 131 × 269 × 811 × 359987 × 17471464129836365814931789218571329749<38> × 141275887934387088918433822407219888328785550169645917<54> × 15482581541185975084705285429391126016253950713185106907656310157<65> (Robert Backstrom / GMP-ECM 6.2.1 B1=1902000, sigma=2699684377 for P38, GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 gnfs for P54 x P65 / 28.53 hours, 1.3 hours / March 28, 2009 2009 年 3 月 28 日)
46×10169+719 = 5(1)1689<170> = 31 × 646102036844022206006504343271<30> × 7869899312705939875327158792352250969639308808703596351<55> × 324252506725723163935370179632867223784323136137681244398680972982897152912578221369<84> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3104034857 for P30 / March 9, 2009 2009 年 3 月 9 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 44.46 hours on Core 2 Quad Q6700 / September 3, 2009 2009 年 9 月 3 日)
46×10170+719 = 5(1)1699<171> = 3 × 6018609784609<13> × 647712397785247731413<21> × 881886116850514563564169<24> × 221815649306556716453554007<27> × 236552161487728374390396127<27> × 944461070347121925343810381764545495356404247533035066539009<60>
46×10171+719 = 5(1)1709<172> = 1889 × 557329198726405685969<21> × 107082527069405649192511<24> × 45337018490778287885986028991199896290451997703938255639032915789729858221527632056517152700427287017286802448009160544123969<125>
46×10172+719 = 5(1)1719<173> = 197 × 23563 × 46883601728218168478809<23> × 1269359887331725771628730353<28> × 1955938999159069482043304901345331<34> × 94592666598604770978903820599325507097005874985563292774803682806961506334518555867<83> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1592344803 for P34 / March 11, 2009 2009 年 3 月 11 日)
46×10173+719 = 5(1)1729<174> = 3 × 72 × 126509766445013568298328610136223<33> × 1180604026176186007639458182676328295836124161667627<52> × 23279286946766512066852874314714772481738009363765283757882378099668313192812207895727137<89> (Ignacio Santos / GGNFS, Msieve snfs / 99.49 hours / March 14, 2009 2009 年 3 月 14 日)
46×10174+719 = 5(1)1739<175> = 13 × 173 × 241 × 101194003303<12> × 4296927987659850186700929072931835480188889642038147766781718379122212929<73> × 21686824831775734689806659595287405096413315799427533051935971168770783255493286074593<86> (Wataru Sakai / November 14, 2010 2010 年 11 月 14 日)
46×10175+719 = 5(1)1749<176> = 59 × 866290018832391713747645951035781544256120527306967984934086629001883239171374764595103578154425612052730696798493408662900188323917137476459510357815442561205273069679849341<174>
46×10176+719 = 5(1)1759<177> = 32 × 127 × 2969039 × 1078878081676867964959492087<28> × 139598521732504415001569336873666012019702533314204692495659368253905863253095950764510093592393288592893378382852514482729010871737430476081<141>
46×10177+719 = 5(1)1769<178> = 29 × 79 × 139 × 935468861 × 3899324383<10> × 2266499782854692648258837464915736605427064015536979314661157<61> × 1941337527548228894996566917823139493616268466983368734724020363472724463054259444206245071441<94> (Robert Backstrom / Msieve 1.44 snfs / January 18, 2012 2012 年 1 月 18 日)
46×10178+719 = 5(1)1779<179> = 301987358663348695516213202159<30> × 169249174327489206034164467968894139877111470560964098347821869949162177687945915103723675787020585299769888419146145185091773482803832289761745201441<150> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=1000000, sigma=2958435836 for P30 / March 29, 2009 2009 年 3 月 29 日)
46×10179+719 = 5(1)1789<180> = 3 × 7 × 6551 × 174071 × 325411 × 51978762967639<14> × 138116364625017164097108602581191679854015309251549631822227891<63> × 9136054802610640549412921849822711841197693503797057153899414648626247032423943515532381<88> (Ben Meekins / Msieve 1.52 snfs / December 13, 2013 2013 年 12 月 13 日)
46×10180+719 = 5(1)1799<181> = 132 × 17 × 263 × 8790595600733481247<19> × 769494723834732972612172394173925836795403329264841501875975086242757709277510945012535947746069968286082659969340439717335535086769934763354070514341595423<156>
46×10181+719 = 5(1)1809<182> = 70871923 × 47281522471<11> × 901315379852585864707<21> × 399294800345173667436648534282263<33> × 42381782299320171023732178894254098905399239328284274081276529548461897485909631949435851001819856609534331623<110> (Ignacio Santos / GMP-ECM 6.3 B1=3000000, sigma=1679645645 for P33 / June 8, 2011 2011 年 6 月 8 日)
46×10182+719 = 5(1)1819<183> = 3 × 58733 × 1774823 × 25827526641592153<17> × 465844686356268889049<21> × 117845274305787930833478395083<30> × 120741530617798527131119236048256983443581<42> × 9546936235292443702002424002293228582932021131309767346381629137<64> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2699646370 for P30 / March 9, 2009 2009 年 3 月 9 日) (Serge Batalov / Msieve-1.40b2 gnfs for P42 x P64 / 4.09 hours on AMD Phenom(tm) II X4 940/openSUSE / March 11, 2009 2009 年 3 月 11 日)
46×10183+719 = 5(1)1829<184> = 1229 × 223991659 × 21355886603129958308194757<26> × 27931617933657183404104209845177419<35> × 31125611611073045093352061544221746165242292601870300162515069612695641781711197647359305249203269041117179975463<113> (Serge Batalov / GMP-ECM B1=100000000, x0=4080825442 for P35 / March 20, 2011 2011 年 3 月 20 日)
46×10184+719 = 5(1)1839<185> = 31 × 109950766165990238619142052692775317<36> × 134771221574088133724659091482897123337416694856663190306844801524247<69> × 111264905540411279641051128761549512672616741711975214520109941731668278384894651<81> (Dmitry Domanov / ECMNET / June 22, 2009 2009 年 6 月 22 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / August 23, 2014 2014 年 8 月 23 日)
46×10185+719 = 5(1)1849<186> = 33 × 7 × 19 × 61 × 783868091 × 5175977947287848546724772792246381482718974636856754634911793280147431764950957<79> × 575088494336712116075747328360563142656819573844789145352154349414203983382322505160072446387<93> (Ben Meekins / Msieve 1.52 snfs / February 19, 2014 2014 年 2 月 19 日)
46×10186+719 = 5(1)1859<187> = 13 × 67 × 857 × 155275117 × 636125023807252002470753<24> × 9930266960549564573225561180214708476124596178275437220263<58> × 6980894520826856100862875331839965161142840922990717059927619714021101439066807341805108979<91> (LegionMammal978 / Msieve 1.53 snfs for P58 x P91 / February 24, 2017 2017 年 2 月 24 日)
46×10187+719 = 5(1)1869<188> = 5027017 × 1130789519357464405183<22> × 160819926264177365027149537796309<33> × 55909207345801224171809033642078842590590079883454249599782460837423396001686262912506337911121958580799761932050851274780874181<128> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=565695631 for P33 / June 8, 2011 2011 年 6 月 8 日)
46×10188+719 = 5(1)1879<189> = 3 × 10889 × 36749 × 5256173899<10> × 29420718373331819<17> × 13826404143888325933007602257630223<35> × 199126150836918433734212739176738106376290382162007550285895120053233146782672635111439257595447412165879529697928622711<120> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=3930800050 for P35 / March 11, 2009 2009 年 3 月 11 日)
46×10189+719 = 5(1)1889<190> = definitely prime number 素数
46×10190+719 = 5(1)1899<191> = 79 × 74007950771<11> × 47818353904417<14> × 10978128027316435544315821<26> × 7139232419469872045475429420300015004358093<43> × 2332573933022069564010192256552699982332980888897720320124098331666384425972628015668546369247491<97> (Eric Jeancolas / cado-nfs-2.3.0 for P43 x P97 / February 20, 2019 2019 年 2 月 20 日)
46×10191+719 = 5(1)1909<192> = 3 × 7 × 157 × 331 × 141358597958989<15> × 634012479440061732361103859985566272578439<42> × 222508019785177125876782715429174719770621628276826100511<57> × 23485655019210233460506368487320703372961526996151843038694728405181306057<74> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2031315716 for P42 / October 21, 2013 2013 年 10 月 21 日) (Cyp / yafu v1.34.3 / January 24, 2014 2014 年 1 月 24 日)
46×10192+719 = 5(1)1919<193> = 13 × 457 × 499 × 6637 × 91943 × 9172049 × 16123684803471109510530721589<29> × 389265670085295373158594092812203435046590218808986402768171<60> × 49078125424861306129043727544647649395425340122499035586907838293438343324786030821<83> (Eric Jeancolas / cado-nfs-3.0.0 for P60 x P83 / April 17, 2020 2020 年 4 月 17 日)
46×10193+719 = 5(1)1929<194> = 10931312551<11> × 2224659832007<13> × 2101741970674372337232760026118516561914625296663805974675648971145986394175820478017774412999753667099281054055241594585657246277606213296399325090678983862193065241835167<172>
46×10194+719 = 5(1)1939<195> = 32 × 10531 × 51663707 × 2696703481759799<16> × 14526783345873623633<20> × 2152057685182887798600975551143647323<37> × 1238115246815406506202115754117063714445047434421919918315224461524095501579297084267511623151914502927478812403<112> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=527240730 for P37 / June 7, 2011 2011 年 6 月 7 日)
46×10195+719 = 5(1)1949<196> = 389 × 1849625527<10> × 955023333205734509921<21> × 364527077022335818265669387<27> × 20405072150742166211332651342519954639125405846331593583531552099574940582900976396221493642155721276716073605869641495812818300121254399<137>
46×10196+719 = 5(1)1959<197> = 172 × 97 × 283 × 397 × 11500787207222329<17> × 83650181726699390390462513<26> × 16868417682508351308695617620159096805358529010367576481949069551981282072243208826803282502569667861766414495219834330801169632676575716060207209<146>
46×10197+719 = 5(1)1969<198> = 3 × 7 × 124162131244975063<18> × 23223741985091153717464024306852549<35> × 7893083532631061569822178037760573533798421955599<49> × 1069369940282684308800094509362803148375186192620488493289103541737058152667723673241971522951503<97> (Serge Batalov / GMP-ECM B1=3000000, sigma=947195329 for P35 / March 20, 2011 2011 年 3 月 20 日) (Eric Jeancolas / cado-nfs-3.0.0 for P49 x P97 / June 3, 2020 2020 年 6 月 3 日)
46×10198+719 = 5(1)1979<199> = 13 × 337 × 870561239 × 398493872027<12> × 3362955302849941694250576673967899925395959805428819895935582043474191156525351455697880706437519896110302459727255478339797044236211381107311875652779761292111280609147513383<175>
46×10199+719 = 5(1)1989<200> = 31 × 23397759563<11> × 70465957019256752191693581822864411042401532761179503351974916126952240758934956045975728178258890321654582289440193152977599281765611228609816778005739897068268427425618875683343632995923<188>
46×10200+719 = 5(1)1999<201> = 3 × 472 × 367 × 210151399921266321168628178716953521043304848224775744471613365647309027313788613549438413784543008192112734713415850651065026736511854983107710678720037264411714734459315397094090401010444478891<195>
46×10201+719 = 5(1)2009<202> = 661 × 27197 × 1243247962512217918452331179583137376389554262214491385052239190827893781699693942788158559071<94> × 228683644730158774913974473305081495920836484299375166133485584070870719288676280610883190936974745617<102> (matsui / Msieve 1.45 snfs / August 10, 2010 2010 年 8 月 10 日)
46×10202+719 = 5(1)2019<203> = 6151 × 83227 × 2146672481419<13> × 208405570409924857843524140433036350217032413683711554746190921676733381986265568385979<87> × 223167137524869494043853766001605772531982896350018425771801533726909565430797152737899852158947<96> (Bob Backstrom / Msieve 1.54 snfs for P87 x P96 / September 25, 2021 2021 年 9 月 25 日)
46×10203+719 = 5(1)2029<204> = 32 × 7 × 192 × 79 × 92791 × 1088338800057367174870865272151991399454339720634650983927089164992575007657247<79> × 2816894047912147351595809919313139820999514997532731049706888186326627901696641001173432775749632895100035312611151<115> (Bob Backstrom / Msieve 1.54 snfs for P79 x P115 / May 15, 2021 2021 年 5 月 15 日)
46×10204+719 = 5(1)2039<205> = 13 × 241 × 81107281349<11> × 31063141726072198338387138548821237762279657734566117861451797<62> × 647514808037328810649338696820666234265285056920374526455168154712419803779806792585516592850470285613995495749369925665954425731<129> (Bob Backstrom / Msieve 1.54 snfs for P62 x P129 / July 28, 2021 2021 年 7 月 28 日)
46×10205+719 = 5(1)2049<206> = 29 × 60708720964911127126841<23> × 494335242256992903965355455929546992070598562521429<51> × 1074065862008045407125047115771470006885781307018942880342531<61> × 54678142769847093194176638873712992966202260944942693248314066776727629<71> (Bob Backstrom / Msieve 1.54 snfs for P51 x P61 x P71 / October 25, 2021 2021 年 10 月 25 日)
46×10206+719 = 5(1)2059<207> = 3 × 4884497 × 564395519341<12> × 278172605170433<15> × 929270394057064529274797401851016781<36> × 149482557200065507146717518807898517810684247086735938207098441<63> × 1599350628878451019658249745686965378367388357935307399655882264465668046693<76> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1327355299 for P36 / October 18, 2013 2013 年 10 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P63 x P76 / May 19, 2014 2014 年 5 月 19 日)
46×10207+719 = 5(1)2069<208> = 3967 × 20021 × 12610421 × 454405254803<12> × 42252576894691<14> × 4333564242122506975631<22> × 451548415220961073483433087<27> × 2021744499617405297851405825035786310407560498892449981<55> × 67183928160526998978877390185031526780643054779445700728190521157<65> (Dmitry Domanov / Msieve 1.50 gnfs for P55 x P65 / October 2, 2013 2013 年 10 月 2 日)
46×10208+719 = 5(1)2079<209> = 21839 × 39633527 × 54799120969390781<17> × 4125794731283250777621383<25> × 261179233458897071745075630940908580311144170897446990232113524128284689050990644878444846241415265851459592980476291180456875237807446808732168597195279701<156>
46×10209+719 = 5(1)2089<210> = 3 × 7 × 977 × 2025769877<10> × 13337578147<11> × 2022091508604143<16> × 455967168035636043243205399860570153652333098894937425141553029337211745530407189919775780122852935520288725616701068732457563342420977182065119499514019325388056927634771<171>
46×10210+719 = 5(1)2099<211> = 13 × 6460746219235073277991469<25> × 23694160367025501661843715017<29> × 2568313084335211471384297675832718392526643185932813869118327232481750919466874642779628556592980304851396655991642108673890904091829913677891252480027648031<157>
46×10211+719 = 5(1)2109<212> = 420671 × 240961892471<12> × 54941076685564038464993<23> × 28753366448156729872495662265005793<35> × 319182092544324949720532210898160165098498674478610306113761073495904205615566113433767933897772826710626997158723820879071036894257351191<138> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=204198468 for P35 / September 24, 2013 2013 年 9 月 24 日)
46×10212+719 = 5(1)2119<213> = 33 × 17 × 373 × 1069 × 2065512654724171<16> × 1352035950437677749515523779929129590854702494205130148294015039692721402046441002021935433366979182103505692352027708219231394434654455149251562270290126729559696560445471391247202010514583<190>
46×10213+719 = 5(1)2129<214> = 1201 × 8221 × 29327 × 13892869 × 5852517054931<13> × 31531160712207973<17> × 8378368697772708181<19> × 266503179242543602324524123380935124165220181789<48> × 3083497342553273275728883730158973696832078890602903104354105270031877431841027005319093881976993759<100> (Ignacio Santos / GMP-ECM B1=43000000, sigma=1:2765955206 for P48 x P100 / June 22, 2021 2021 年 6 月 22 日)
46×10214+719 = 5(1)2139<215> = 31 × 1087 × 8513 × 34763 × 4855655633<10> × 47622083009953708249271<23> × 6248549229141868511206483603127<31> × 3547225031126625173845979682852889701232774124269109129571775359001822018475706128426708102703448700299884476511893221073422015364290775053<139> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2614739501 for P31 / September 24, 2013 2013 年 9 月 24 日)
46×10215+719 = 5(1)2149<216> = 3 × 72 × 571 × 2897 × 2101906455611845113066645370516007356254041095079537010743786553983863685159332421185438494157002316686111289053485345163890058062931418327668656595883600534741634784823890495049283540030267663151456130812671<208>
46×10216+719 = 5(1)2159<217> = 13 × 79 × 21559 × 584599 × 699073 × 2576933 × 219195958296705075691666171923519861066816029156283664845687674434079730229611276044937289254225191606281372333826472698294923701107767425993548544610493793748380996702835913115938331846816113<192>
46×10217+719 = 5(1)2169<218> = 173 × 5059 × 6571 × 11279 × 1517521 × 4040989 × [128493186081982162386510303380078145933971030125792062091195596427080220441636683293248078862408745774603187958895679010423493228597146659165174823090768176083507601919423200629242068001215577<192>] Free to factor
46×10218+719 = 5(1)2179<219> = 3 × 127 × 739 × 3943396691083351315598085638822401921<37> × 12392406308927409992491222980312886423<38> × 37146662186782431849600833053617326974412786093627722989099637587196703976645654826402329546522449240972830164153236923835898039538339837727<140> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1 for P38 / October 4, 2013 2013 年 10 月 4 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3011044777 for P37 / October 18, 2013 2013 年 10 月 18 日)
46×10219+719 = 5(1)2189<220> = 67 × 15271 × 87313 × 20071027 × 99593017 × 107458263346646937451800107<27> × 20624438843344125234601199963<29> × 4643324713583069543667244834496418062636535501632217163<55> × 2781279495006170497293735394863807613151061332470041246102854278458651703909402242547<85> (Erik Branger / GGNFS, Msieve gnfs for P55 x P85 / November 28, 2015 2015 年 11 月 28 日)
46×10220+719 = 5(1)2199<221> = 156872879 × 9079033589<10> × 644234826439369076565319117384579<33> × 55703647506604040157192545443207249368249922550669425092791405594761759252559789437035966774533581957914867439056674402918224268527850987320176785361338991790063357501631<170> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3151745964 for P33 / October 18, 2013 2013 年 10 月 18 日)
46×10221+719 = 5(1)2209<222> = 32 × 7 × 19 × 1035508525317619645297<22> × 9050410328989122649996787<25> × 556449327619411505531977144460602988640600360677456039997732586304794104412666819673<84> × 81879201993807638906064746934428749908287363616651192232597827478851160350651261498620641<89> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P84 x P89 / October 7, 2021 2021 年 10 月 7 日)
46×10222+719 = 5(1)2219<223> = 13 × 109 × 1015499420609456640284939<25> × 3551941398959884984968688822611877524738135392337560125836326500385146986243029502705299670390220420880537178698179252384757435473752504646858750218766035494527116258921217963252767986435123224613<196>
46×10223+719 = 5(1)2229<224> = 139 × 2683 × 9311 × 61027 × 823489 × 240670271 × 2709677687319752957<19> × [449121263403477581413586488987182677025637393204244870245093867898983296180100027162365337745137781386362099852327753754321884686159344527719379328097749725279133895611420218337<177>] Free to factor
46×10224+719 = 5(1)2239<225> = 3 × 8623 × 5635197457<10> × 3506118118970401272749679513063876447988379263730947097251261701335318813011327804702056219437111416752631718268559800226768373031713842128648754221395313121533892148642338411997532722805189463471527513037138843<211>
46×10225+719 = 5(1)2249<226> = 137156256631851229322090354543661370326552371180589200789193423912264443478265750527497<87> × 37264877568291543398858236231226234108237040488556766511046033580872243648835775153806083490600760226966381114954748592118107243757066127127<140> (matsui / Msieve 1.52 snfs / December 11, 2013 2013 年 12 月 11 日)
46×10226+719 = 5(1)2259<227> = 460887853 × 135155782092222732984225668717<30> × 820512931654458850919909424225265209676456577755244034384441974414212398590952909735229655823745830215317262184507777350917767520862253664158794583844304590731732806243428751726754456593719<189> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=524694300 for P30 / September 24, 2013 2013 年 9 月 24 日)
46×10227+719 = 5(1)2269<228> = 3 × 7 × 383 × 711175872698502669198996464620648381<36> × 89355283935373464568128906841531158429046931178982894796157836075473149845096629931349755495498444378948951354106741441396234454177064964217768319543566909883046182975393699008457253260593<188> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=370584595 for P36 / October 21, 2013 2013 年 10 月 21 日)
46×10228+719 = 5(1)2279<229> = 13 × 17 × 2643404483<10> × 4365595841<10> × 32873347674376872953<20> × 131114297755312743460482148685921<33> × 9781735752007979820096936548475137164379055133171022384415841<61> × 47534177847414225112525093559442535911422908560812969802656771347660372962319309849320994234961<95> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2088288051 for P33 / September 24, 2013 2013 年 9 月 24 日) (NFS@Home + Greg Childers / GGNFS + Msieve for P61 x P95 / September 13, 2022 2022 年 9 月 13 日)
46×10229+719 = 5(1)2289<230> = 31 × 79 × 1024121081493810533639117<25> × 20378641577834501461928906727412391844628117373264593356597997354245339884451379641276197145767771468751556419816386969542803530187627019262397197331827034287417585645798196355888248148742289753595988443<203>
46×10230+719 = 5(1)2299<231> = 32 × 55129903 × 528510687709<12> × 886593112478406744830543<24> × [2198403754775609877860862244195506394704394721923743324722158610749520380754649153513244571296232220643902797390725411095860915817262407664666071935232739434313764738887124306427321577731<187>] Free to factor
46×10231+719 = 5(1)2309<232> = 439 × 18869 × 46301 × 1540709 × 2411693 × 44997493 × 12586726121334895009<20> × 169347232977111601591522573<27> × 1035693670005059192926354464583<31> × 36104254093121528980157293599387254166733771018643027350016842398846640119564660415034590192115480000948622540871151464549279<125> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=670199333 for P31 / September 24, 2013 2013 年 9 月 24 日)
46×10232+719 = 5(1)2319<233> = 82609 × 104072567 × 43166664692071424744741<23> × 121264305787441745259213672646066169<36> × [1135717222872695914833601431830486930493058672215480659467382326629280853821335572178633152586816064866001366680941128031557496355929646876590075858954216881523437<163>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1078807518 for P36 / October 18, 2013 2013 年 10 月 18 日) Free to factor
46×10233+719 = 5(1)2329<234> = 3 × 7 × 292 × 59 × 149 × 475050233683<12> × 28848958127892835995073907381696230613497<41> × [240210552560543134771048545588632899874041625566191611856848139243434713751709830175566498196168874021958511865688826655435904912694214200163321516497940024649865415637154919<174>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4043517751 for P41 / October 21, 2013 2013 年 10 月 21 日) Free to factor
46×10234+719 = 5(1)2339<235> = 13 × 241 × 2153 × 11340743 × 1499731211633<13> × 1555686176120382223<19> × 22855914742708321777<20> × 685625379775283502957979<24> × 5811901667008091930604702498947443849523<40> × 314434517845534732855256182375896158129653741030109616133497448614817856000461636125813952027037780335580107<108> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1557314957 for P40 / October 21, 2013 2013 年 10 月 21 日)
46×10235+719 = 5(1)2349<236> = 137970397 × 1588710919839710160309773<25> × [233176364940369439181891203810165734765456451995355851187906906836572301897583754022003585624947850374121994418336461792135974031188701282462820452601830423151057669538074476370185751728303443277995420999<204>] Free to factor
46×10236+719 = 5(1)2359<237> = 3 × 1607 × 32251 × 13853567513<11> × 30862474230919245956801<23> × [7688518074726661773477254247982205843777990637378132502648957672620616276519564890561240537992426395710285780351185602843738110155024846238174859520591851327001070261761558542885294368045779037553<196>] Free to factor
46×10237+719 = 5(1)2369<238> = 5479 × 369622547406263<15> × [2523803660896149174225563094692136568400599206398585904751860199930666700426663447992706828780968177432797148686496600536795095602907592663998228442245606769366837127877931726178502136218849927625285855689111875837473647<220>] Free to factor
46×10238+719 = 5(1)2379<239> = 14890627 × 218347755450144004296098733894891553<36> × [15720038502074219100570221415340751785209884248804700355443408197464029799871670825542815927072709329284758800816592822727889681104027466974397553307426347152145790942353288545233719035036100909349<197>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=47192459 for P36 / October 21, 2013 2013 年 10 月 21 日) Free to factor
46×10239+719 = 5(1)2389<240> = 34 × 7 × 19 × 2068297159<10> × [22938537605495540370914661711794179293373718712746569466283533597276364872190624962617687612405677827218604897178145519269855685986529164537382202416313076883262327898267040582967283538487445144712798602983498484255624368132117<227>] Free to factor
46×10240+719 = 5(1)2399<241> = 13 × 1095696911<10> × 358824040859592386304685304677648363282793258839800783551868928434346167827393275513572349929863399206382505164480100612780829855933027415820799364435182899217977619325781929117040645889338609619537745655279265812553151536988464133<231>
46×10241+719 = 5(1)2409<242> = 1873 × 2113 × 93050599 × 7624507643<10> × 71224639117<11> × [255574084107198410367678270772515708654282880125503152374224724968540371371119183733385855842630994905294308372365611465260470399530812017304811923183028596980660971804815710452849907064244090191688949988599<207>] Free to factor
46×10242+719 = 5(1)2419<243> = 3 × 79 × 2261447 × 772643333855510591<18> × 1234245351746995692564297396115342845072900134970362109572728684511009989055697436750504824828869202602872132016264476836913972502754034686995500360183006929369093437032402819777915712655603588079901105702436644619331<217>
46×10243+719 = 5(1)2429<244> = 682953944999<12> × 34968324116161<14> × [214017400790423287492936043693408772442463615575142056152440003720343813150308169873732873132726835565063421336402208376142806586698943759221497147888736687011280392047449765454617648632907421352631159563143867199074521<219>] Free to factor
46×10244+719 = 5(1)2439<245> = 17 × 31 × 98259630191<11> × 1104494508456749<16> × 3423349737941271039521<22> × [261044622269614594368844020143884997027377781596912260317856657802616200765713314685054324834927520765050350393065624933648089324382350820460574329105683329895076600547780221960368800541790742923<195>] Free to factor
46×10245+719 = 5(1)2449<246> = 3 × 7 × 61 × 421 × 31847 × 1931918537322365689<19> × 5613876550686799229443704118561828333<37> × 16668771536900408780486607396815272884521<41> × 164611550897602299723865502873222128755457444832924050034510270604300962228761309141165598090954281332622188496100272457573492661949286563001<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2383247462 for P37 / October 18, 2013 2013 年 10 月 18 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2551394784 for P41 / October 21, 2013 2013 年 10 月 21 日)
46×10246+719 = 5(1)2459<247> = 13 × 47 × 3210589 × 27264019 × 51726894334245593361590762159<29> × 1847494348536712252916289693938321210997843107206169586542429158614742639779452774784626186961558633919360606080552031427705463957615305118323645108956017990591747955187800046100870119155084724331739741<202> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3979444609 for P29 / October 18, 2013 2013 年 10 月 18 日)
46×10247+719 = 5(1)2469<248> = 17093 × 4283721835339<13> × [698032699256566989626972396369522256132177425322784678415517244132303794806439478721598574786564838518063985215022138270607971720573065997370043364943612158777866491231390250063818757543914420148303866224667994042713739100643741097<231>] Free to factor
46×10248+719 = 5(1)2479<249> = 32 × 199 × 401 × 29851 × 1088746019<10> × [21897266264633986867477158830981329557897016128274970459615338688897483787132965656931995725337309629447682322828123485945419322432949689439623362667145522939775766142716583739622300623246052153179334794802696941170978464246254961<230>] Free to factor
46×10249+719 = 5(1)2489<250> = 159790103673140365135029060471459644167485842180777189<54> × 31986405876337473667915871421471627616138122756251708646798873692125179282754424937563555845773902840234802484347893904745362282712769989163180104828654450774930325076753204879388780056993644766371<197> (Sean Wellman / Msieve for P54 x P197 / April 24, 2017 2017 年 4 月 24 日)
46×10250+719 = 5(1)2499<251> = 203591 × 950029375367<12> × [264252869883747770094390316318081973360367184461535539926266736148689607667828869387451114092003695814385682116505548226068874462567655217146836912463827283790270210934091931133098823387664823313884637751705484193047614207215470225727<234>] Free to factor
46×10251+719 = 5(1)2509<252> = 3 × 7 × 227 × 821 × 3449 × 326101 × 601394471198257861623101<24> × [193073316658663643032114525068548376409805262524690780972690502262481539598404160926743168647035375198564230708641093194747856418956048876482081204152720695426693746450525010975654344808228114921132212741728166933<213>] Free to factor
46×10252+719 = 5(1)2519<253> = 13 × 67 × 100106705105358104155322983007<30> × [58618405372130690404400669707087551525596140130365820791101459008545303286292582095858920829492642430861952175777149765263868452494552869622532227359000201597106339282695753909154984688524671147365028648984837083001971527<221>] (Jason Parker-Burlingham / GMP-ECM for P30 / January 2, 2021 2021 年 1 月 2 日) Free to factor
46×10253+719 = 5(1)2529<254> = 12973 × 20208961051954083906521<23> × [194953446481279076610027698151759162749112749444155915288005625262021806233889017000454002462793218686691470966088751160906142910204867255461068532960737187609689334251254434720553894818065386081231188543735864244033267062771043<228>] Free to factor
46×10254+719 = 5(1)2539<255> = 3 × 293 × 605379001665328578012544287485643677593<39> × [960503815386645275873720580032979873962872717449970926715687136476410747840776125590409272402005164297567013664607094222258317195943648438037065536072263225012667553032080522053164932115143959630089721357017730377<213>] (Marlon Trifunovic / GMP-ECM 7.0.5-dev B1=3000000, sigma=1:1955301298 for P39 / April 15, 2022 2022 年 4 月 15 日) Free to factor
46×10255+719 = 5(1)2549<256> = 79 × 677 × 17116884209<11> × 19235092661<11> × 3714275201081<13> × 25826912549473003541017463<26> × [3025756646841630637208495185156341319506151938624714239393173297307665512250488051624261405942317812723911329416117994173691797708046273187073181240419451685852621502980801215736881669078882519<193>] Free to factor
46×10256+719 = 5(1)2559<257> = 391265696027630969<18> × 286479453232693065016581735821<30> × [455984489326617884896418729862732673071539108320420624019258507659510160263825130722107349085180689842602127136229171048536342394948155598616797507267404876532241324926334224569737087463516579846304675590840931<210>] (Jason Parker-Burlingham / GMP-ECM for P30 / January 2, 2021 2021 年 1 月 2 日) Free to factor
46×10257+719 = 5(1)2569<258> = 32 × 72 × 19 × 398445444266815076957960831635951<33> × 153092623771964646781140604120498004327217243400814108489614465774408761584907744656713950704157286084804173639566766969231360140949007511095542275786847468227009924660308893562796580316945998673667936468611539928194534611<222> (Jason Parker-Burlingham / GMP-ECM for P33 x P222 / January 2, 2021 2021 年 1 月 2 日)
46×10258+719 = 5(1)2579<259> = 132 × 823 × 5011 × 6359 × 9941 × 10303 × 173845933 × 14946118436941<14> × 24537527193520817039<20> × [176602982047235785082720220153061477748635067820379224946883714813806441437677912394874151597766273848707044911684370893355212606961587151350168568188760861828520560368011673641330669162624177625393<198>] Free to factor
46×10259+719 = 5(1)2589<260> = 31 × 11843299907<11> × 72086598186373<14> × 247182988155577637769253<24> × 7812819519240206487912368686239235301674924528712895290275937878138062429429172642090604971880124085010930633500881091510490674127964994152930597279088842657226446441896296353353138849359410197020243748582273203<211>
46×10260+719 = 5(1)2599<261> = 3 × 17 × 127 × 173 × 191 × 40433 × 126359 × 4212651211023938429<19> × 110959452666599220956075577601824325966514312353482105125116782476438310345089607157213320109341854713809708793058949699482158113322739820345439079370762284506506130087921674253506337795711145909000522832390470692709441789083<225>
46×10261+719 = 5(1)2609<262> = 29 × 190818509334059<15> × [923627437102672732066688987786601269910314105016567148284514932031582532735603803565267215223437096965959579193998069941448896282359189484879236594276118130863837174390319036457162456650448781806723764514376657690778563266197444116726788328992529<246>] Free to factor
46×10262+719 = 5(1)2619<263> = 2343096827<10> × [21813486545731689094686786117657574341084245389194541857109139054419073357018852346007257476052700536182797327953152962513533851117758827092257895457049804246570776100116801153054146110672493822258550269937739585830232149903001473831585326589284443220797<254>] Free to factor
46×10263+719 = 5(1)2629<264> = 3 × 7 × 1812431 × 37462258154255423<17> × [358459911673059095337283211979314334792813180571737307108014981036328857900778908429959300434377361112923334199052090264745894385008514137739651969631678689982274349095682493904892712081886442701576348045793662053109521103081208669427068803<240>] Free to factor
46×10264+719 = 5(1)2639<265> = 13 × 241 × 2833341419<10> × 8804523356663183<16> × 1703571359915153537861383<25> × [38387500658983304052915116320703513809462094165078109553555078818281811225871548302967431704712620191134122840682435517273789969408876013468250212224713031160486140904950117517860060718598460653515493508053553673<212>] Free to factor
46×10265+719 = 5(1)2649<266> = 112367105143<12> × 3511822463747472737<19> × 37975587580967526966382003<26> × 3410665082054514236006070579491691042312531188472704314271803297826070768224362242377721065910891646335210836982995965029068231813442844991225336045503137183545315474130678313006957387898275805609457959981381203<211>
46×10266+719 = 5(1)2659<267> = 33 × 266719 × 2435365553119<13> × 1733218020634600492392691<25> × 2531508758013261240966967729609<31> × 6642029726220592550631489312504285749200871646380794609520333031270056358893382768081954852357896538304564123336840727909090278419946704047887459301515650518041597655546873252379796656364422583<193> (Ignacio Santos / GMP-ECM B1=1000000, sigma=1:2125896168 for P31 x P193 / May 8, 2021 2021 年 5 月 8 日)
46×10267+719 = 5(1)2669<268> = 78293581 × 25148636931059<14> × 4164519949033844852743<22> × 37681291947911463561778657<26> × [16541846344490746255638808021741024372305026315950140743460731867091794054252511725702123312504930818289472184899197354776280884970714767540953680862464226420355857856085538260099214514331717975967311<200>] Free to factor
46×10268+719 = 5(1)2679<269> = 79 × 1103 × 17657852263<11> × 114495700497094904569<21> × 22818429283378120560433<23> × 24519882730849888668269<23> × 256917247192071062591900093<27> × 2018311831324278009184351895256825734496112255761657597383867427187194219317188902794134672991913119291304041052407600711608460618545630036828100404134452725710361<163>
46×10269+719 = 5(1)2689<270> = 3 × 7 × 139 × 157 × 313 × 68891 × 940022173 × 11549294827835333369<20> × [4764103441467403282441046285367822051609973004560208097693572545084023163540387451811273479620260402686504812925679387938910687883066003650266643331781455254257472817731770109009493594623787286397417796932863158380350508202656883<229>] Free to factor
46×10270+719 = 5(1)2699<271> = 13 × 197 × 387180675862067966723370091050227<33> × 5154565589302729997837905589892134611831734468027457627047405282673133868758703889314341231466038874540217111611355633495168687411816912779951910566914928798970637215432208401868842607394129204204217409796505141661864582035327214724277<235> (Jason Parker-Burlingham / GMP-ECM for P33 x P235 / January 2, 2021 2021 年 1 月 2 日)
46×10271+719 = 5(1)2709<272> = 167 × 193 × 359 × 2213 × 3467 × 9461 × 139340074963417<15> × [436715650162460264221122731667827770069192077005293163180296754273505207826683971179938785448552969677867507173091266717494217321010739349448729606787890368297656738999203910462643125937897801661272410203753528145267850317688414723901262493<240>] Free to factor
46×10272+719 = 5(1)2719<273> = 3 × 113 × 45939807035279<14> × 7799338096632234032899<22> × 4207931972887523459057346581327741024375456649470290682497074188687829868778543368320249628387403590669141734250001192712481293776362337086229619754796567295118350875363173581413847391058329540256776484636920546374350796955668588968201<235>
46×10273+719 = 5(1)2729<274> = 257 × 991 × [20068205723539525421835865635509904750187921295987275012509908676575997640677031458657533015470405286139893717037426767409059398835084284282712156926388512610031572522787229466408223078174822865364589127482404328101203088933126194549039060144848818789773765881694437137<269>] Free to factor
46×10274+719 = 5(1)2739<275> = 31 × 8081 × 243310014655132059425120311843<30> × 838549176459752536882230055518937545998978199454676891858216090132243558816534202442724680958028688151919529482458017555694228853156849553248185556813977580808161477977151296678797117937154839674128900208956211219037223208108265029858054603<240> (Jason Parker-Burlingham / GMP-ECM for P30 x P240 / January 2, 2021 2021 年 1 月 2 日)
46×10275+719 = 5(1)2749<276> = 32 × 7 × 19 × 46643 × 5958146532287<13> × [1536467987874040516833693745016023689334731230808429489966728071777925468531403813203838704912384945478399734818281939416248766801675342100142896362656796526232905193615338624168136065906153537959995155510057568119748334070098010021553821910350960961721047<256>] Free to factor
46×10276+719 = 5(1)2759<277> = 13 × 17 × 3389117101<10> × 19685888571343773107627761<26> × [346642215032428469797594084200723066228473424989934903624950920157870295316274560463386408532464449524370148488424885771555133896342773174799539032475489741428700804588955516986808843180953763608700175491601478383334503166341587032758909399<240>] Free to factor
46×10277+719 = 5(1)2769<278> = 2324813069<10> × 4989707221<10> × 16190171842885418450467<23> × [272145252168429859008243260637575608535876094238579899595116154280614819470170086506806031647776232712205255505130127108168463789719735810484596509890274025357939603609967256423668944026545995221912259733802584486346696345751343595172693<237>] Free to factor
46×10278+719 = 5(1)2779<279> = 3 × 3217 × 1377333598976567<16> × [38450665837004329572908114231825533758052355925081179941341105461119791196079381783047559406226204667416978774237505975455052186357990538566725642835730424538158905189427953636936821225966423691781087961533801543979638438626688458609624230995173552908575657907<260>] Free to factor
46×10279+719 = 5(1)2789<280> = 3797 × 10493977441655017<17> × [128272807085437242184418821812860582177171139117838060195347294579915944172682297153698714385528876386819025879864026505154334876603845516940368009525768525063001857405194000160636709436032300267187247372421723990607379880796419468442585945884322852206207019931<261>] Free to factor
46×10280+719 = 5(1)2799<281> = 151121 × 1266943 × 23844470704929992273831073877381<32> × 70103702218172372615917533081902996927<38> × 159699952422321619170380757049058442324473844531216027257711225799569869899769590655604604569575411398637402803902175088426584656327565206657976172709039780643044587386157867527722325083714708105234579<201> (Jason Parker-Burlingham / GMP-ECM for P32 / January 2, 2021 2021 年 1 月 2 日) (Ignacio Santos / GMP-ECM B1=3000000 for P38 x P201 / June 6, 2024 2024 年 6 月 6 日)
46×10281+719 = 5(1)2809<282> = 3 × 7 × 79 × 67073 × 3633083839111<13> × 1250904637493431<16> × 156508267532454929095925957<27> × 6457795647444364716774866866368089858577554878404153198534099727159517233284180163285948522884828543079990748406035581700357331505293738689016614881100528557964437387600919195361927122117971114653864527834513395386850841<220>
46×10282+719 = 5(1)2819<283> = 13 × 488339 × 33624545840177784047<20> × [23943858277677931299629509379513716474063904084278734475689144804612552113786850083132130399893531711325631359400426370540544017982688877848991464525336588185021310129753340172964080985558460231201368752007898442533530364225421088778038778172123555602582311<257>] Free to factor
46×10283+719 = 5(1)2829<284> = 2269 × 9781 × 9103189061<10> × 10912319983<11> × 375167873281<12> × [61796129008677208307624082181248053400905882105641273581140254348996352888288639409718944050457753773166681082711250326072916759788141713724858809120956182029723315203849032220104469994870170415897533239166615543008698534498071255040594053941357<245>] Free to factor
46×10284+719 = 5(1)2839<285> = 32 × 1091 × 478399 × 32673343121<11> × 650806478900029<15> × [5116963954987087572785747943603555255658242983938632359456019661510985753129228818615734970282887082067892717155831245221696182690478337024312040009711791279419437161616911723243907758484005469512933045457879730518509933790650710585102771614411273711<250>] Free to factor
46×10285+719 = 5(1)2849<286> = 67 × 11199163 × 457475454257<12> × 6919614510521849<16> × [2151816612601341592301737002162661677514176673256895814314997314264880876457729607400179871449869003778465844355114231129077579255109209545702479033971033602057241267004905411538873281157209425129319198896605546478246589794073199857388679120914627623<250>] Free to factor
46×10286+719 = 5(1)2859<287> = 983 × 3631804635983726306874580058479331<34> × [14316581362200121711890174195637752812135812862504375839408647719732329169240026346353623521678414587927592105291362276778589608114590203870808112082341557252673239157684879409306670824238535442239386861670048829197091819546490177289511993449285468003<251>] (Jason Parker-Burlingham / GMP-ECM for P34 / January 2, 2021 2021 年 1 月 2 日) Free to factor
46×10287+719 = 5(1)2869<288> = 3 × 7 × 1567097536297<13> × 42934182327199740470128321<26> × [361740224191171279947332367255110729275249432504427819977700078568765838913726578015545831736930934140676486402001650453190213718786228486515554159496149921066642142863470573299285538058026354322006404677102210296062424586005949097190399193291843547<249>] Free to factor
46×10288+719 = 5(1)2879<289> = 13 × 393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393162393163<288>
46×10289+719 = 5(1)2889<290> = 29 × 31 × 1889 × 1013609 × 29692940944147903736159058413384297877964928545825971794100479462051554895580527821349657607171429576912255735480006103835816277012902762230484742303230954437144080766264540175039007106514632689960417531966992093930252719108797077124026762253360836993103784258511878031055172381<278>
46×10290+719 = 5(1)2899<291> = 3 × 291654257 × [584151838285598452178156859100364066931381599447630796523468438077248330273370123894232650855394064659136349826604349445070401870974132122372451331544837935865857669858631174961284279729784195710780831737938151783501553246213616454672116684963629282360758994065944219598242896109589<282>] Free to factor
46×10291+719 = 5(1)2909<292> = 592 × 1429 × 3511 × 292649806100257598559249774621339216499818105157583056126932655423585557471206004691586699539186479112632153592337828566626383695057110619553301107008849892639819555408254321856657844708424218083744877707365457635679172576318280169155708689696875855327647932525757002923370480715021<282>
46×10292+719 = 5(1)2919<293> = 17 × 47 × 97 × 58947563384982048330552383760119<32> × 32929325633552833870406475827881129<35> × [339741119682837996732154506596400193430726984464760650697255984426967013669342350676847788193371909784936054180675461439222303664766018042066208843279951393445507708973811502853115062601689078526884299201820808366194317823<222>] (Jason Parker-Burlingham / GMP-ECM for P32 x P35 / January 2, 2021 2021 年 1 月 2 日) Free to factor
46×10293+719 = 5(1)2929<294> = 33 × 7 × 19 × 8761 × 19518152962890479805786298359451<32> × 832352943236193770278524319712181287836224133107321804425004504607946091287217889465001072504986776692254933554273546026717493488735387680270040146553044806163075432067179055539907793867078890079614397580101671608779401875638356137855773401589342342404819<255> (Jason Parker-Burlingham / GMP-ECM for P32 x P255 / January 2, 2021 2021 年 1 月 2 日)
46×10294+719 = 5(1)2939<295> = 13 × 79 × 241 × 7879 × 16199189 × 2839169367280673927057<22> × 2874109782466152664253041<25> × [19827538855614617782051885495615121879425090411690529216966947233220693754031465181060240939733696096976651495224667159008162819919048585129046933027000507129532088735458495436303530519751537252366341545037100373023206440803470446711<233>] Free to factor
46×10295+719 = 5(1)2949<296> = 397 × 307663488305933<15> × 363466663115424412937<21> × 19383565278159115187017<23> × [59395099014441132194955300613460813754181665594549609875871563908216195351909436537080901386650559158709019900509920155110364420645406844465964662381641468725340769782968397977843090024670425808106845450278030243054545289551209135920711<236>] Free to factor
46×10296+719 = 5(1)2959<297> = 3 × 12015105074919853311479<23> × 84861913336152799852169<23> × [167091237321701925294203307454514695730286352683578596908006076764770875247397540292595168391934800009225651381419387087661297633684365999910991348308248265094382625334481566403344088265177876607955253972820129488146825918211350854024552018905072792523<252>] Free to factor
46×10297+719 = 5(1)2969<298> = 4517 × 370408777 × 13255175189<11> × [230461556505761240183415156828948758435751383940145359588222870746043081820536610725880653006326352912876836294164215809177426309759279823993939538545730470814527618316433489320837410827375420532626544741017139166619447761709112504772837516971287299857376368818230540885745119<276>] Free to factor
46×10298+719 = 5(1)2979<299> = 131 × 5273 × 10453 × 156007 × 875429 × 69551269 × 23471408778536847581872758678965447<35> × 191177018200852325005224276669816113<36> × [166073520073716614020072098195796337068570069945032326027648140841832160867335764122991355138410988123960120307125642493251367746617511664731896949163377075805900793387799216559820589051292304520065473<201>] (Jason Parker-Burlingham / GMP-ECM for P35 / January 2, 2021 2021 年 1 月 2 日) (Marlon Trifunovic / GMP-ECM 7.0.5-dev B1=3000000, sigma=1:2288728880 for P36 / April 15, 2022 2022 年 4 月 15 日) Free to factor
46×10299+719 = 5(1)2989<300> = 3 × 72 × 5323 × 290241857 × 398734441260053713<18> × 4887066752016954827469349<25> × 1154913495188621837821898036480563487789888229349592026394152470815028996968951186041832728907998319908053412379804593789023724947219449871250399037798648128595330500190917995101881703587817256925138606858248862377899170652641371848062533783811<244>
46×10300+719 = 5(1)2999<301> = 13 × 503 × 878440303042582547<18> × 549093325004044130141263<24> × [1620487060259950191360866151527646095988227382883147702444301879256490472896188140525872619455424510711705311341134104354043247391318885699587610970808595665804653350986773908007982110349465894435020261539453306749633846066117167860824169750227812688563761<256>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク