Table of contents 目次

  1. About 211...11 211...11 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 211...11 211...11 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 211...11 211...11 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 211...11 211...11 について

1.1. Classification 分類

Near-repdigit of the form ABB...BB ABB...BB の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

21w = { 2, 21, 211, 2111, 21111, 211111, 2111111, 21111111, 211111111, 2111111111, … }

1.3. General term 一般項

19×10n-19 (0≤n)

2. Prime numbers of the form 211...11 211...11 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 19×100-19 = 2 is prime. は素数です。
  2. 19×102-19 = 211 is prime. は素数です。
  3. 19×103-19 = 2111 is prime. は素数です。
  4. 19×1012-19 = 2(1)12<13> is prime. は素数です。
  5. 19×1018-19 = 2(1)18<19> is prime. は素数です。
  6. 19×1023-19 = 2(1)23<24> is prime. は素数です。
  7. 19×1057-19 = 2(1)57<58> is prime. は素数です。
  8. 19×10128-19 = 2(1)128<129> is prime. は素数です。 (Makoto Kamada / PPSIQS / June 12, 2003 2003 年 6 月 12 日)
  9. 19×10543-19 = 2(1)543<544> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 28, 2006 2006 年 5 月 28 日)
  10. 19×10584-19 = 2(1)584<585> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 28, 2006 2006 年 5 月 28 日)
  11. 19×10833-19 = 2(1)833<834> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 28, 2006 2006 年 5 月 28 日)
  12. 19×102450-19 = 2(1)2450<2451> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Sinkiti Sibata / PRIMO 3.0.4 / October 20, 2007 2007 年 10 月 20 日)
  13. 19×102810-19 = 2(1)2810<2811> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Maksym Voznyy / Primo 3.0.9 / December 21, 2010 2010 年 12 月 21 日)
  14. 19×102873-19 = 2(1)2873<2874> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Maksym Voznyy / Primo 3.0.9 / December 22, 2010 2010 年 12 月 22 日)
  15. 19×103671-19 = 2(1)3671<3672> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / June 12, 2003 2003 年 6 月 12 日) (certified by: (証明: Markus Tervooren / Primo 3.0.9 / January 8, 2011 2011 年 1 月 8 日)
  16. 19×106384-19 = 2(1)6384<6385> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 22, 2004 2004 年 12 月 22 日)
  17. 19×1010296-19 = 2(1)10296<10297> is prime. は素数です。 (discovered by: (発見: Ray Chandler / srsieve, PFGW / September 21, 2010 2010 年 9 月 21 日) (certified by: (証明: Markus Tervooren / Primo 4.0.0 alpha 12 / February 2, 2012 2012 年 2 月 2 日)
  18. 19×1016704-19 = 2(1)16704<16705> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 23, 2010 2010 年 9 月 23 日)
  19. 19×1053049-19 = 2(1)53049<53050> is PRP. はおそらく素数です。 (Serge Batalov / PFGW / March 9, 2009 2009 年 3 月 9 日)
  20. 19×1056544-19 = 2(1)56544<56545> is PRP. はおそらく素数です。 (Serge Batalov / PFGW / March 13, 2009 2009 年 3 月 13 日)
  21. 19×1074253-19 = 2(1)74253<74254> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / February 4, 2012 2012 年 2 月 4 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 30, 2010 2010 年 9 月 30 日
  2. n≤75000 / Completed 終了 / Ray Chandler / February 4, 2012 2012 年 2 月 4 日
  3. n≤100000 / Completed 終了 / Ray Chandler / February 6, 2012 2012 年 2 月 6 日
  4. n≤100000 / Completed 終了 / Ray Chandler / February 6, 2012 2012 年 2 月 6 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 19×103k+1-19 = 3×(19×101-19×3+19×10×103-19×3×k-1Σm=0103m)
  2. 19×106k+1-19 = 7×(19×101-19×7+19×10×106-19×7×k-1Σm=0106m)
  3. 19×1015k+4-19 = 31×(19×104-19×31+19×104×1015-19×31×k-1Σm=01015m)
  4. 19×1016k+6-19 = 17×(19×106-19×17+19×106×1016-19×17×k-1Σm=01016m)
  5. 19×1022k+17-19 = 23×(19×1017-19×23+19×1017×1022-19×23×k-1Σm=01022m)
  6. 19×1028k+13-19 = 29×(19×1013-19×29+19×1013×1028-19×29×k-1Σm=01028m)
  7. 19×1030k+2-19 = 211×(19×102-19×211+19×102×1030-19×211×k-1Σm=01030m)
  8. 19×1033k+20-19 = 67×(19×1020-19×67+19×1020×1033-19×67×k-1Σm=01033m)
  9. 19×1035k+16-19 = 71×(19×1016-19×71+19×1016×1035-19×71×k-1Σm=01035m)
  10. 19×1042k+28-19 = 127×(19×1028-19×127+19×1028×1042-19×127×k-1Σm=01042m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 22.37%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 22.37% です。

3. Factor table of 211...11 211...11 の素因数分解表

3.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=201, 202, 207, 210, 211, 213, 216, 219, 224, 226, 228, 230, 235, 236, 237, 238, 240, 242, 243, 245, 249, 250, 252, 253, 257, 258, 259, 260, 262, 263, 267, 268, 269, 270, 271, 272, 273, 277, 280, 281, 282, 283, 284, 285, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300 (57/300)

3.4. Factor table 素因数分解表

19×100-19 = 2 = definitely prime number 素数
19×101-19 = 21 = 3 × 7
19×102-19 = 211 = definitely prime number 素数
19×103-19 = 2111 = definitely prime number 素数
19×104-19 = 21111 = 3 × 31 × 227
19×105-19 = 211111 = 107 × 1973
19×106-19 = 2111111 = 17 × 124183
19×107-19 = 21111111 = 37 × 72 × 197
19×108-19 = 211111111 = 1033 × 204367
19×109-19 = 2111111111<10> = 2087 × 1011553
19×1010-19 = 21111111111<11> = 3 × 7037037037<10>
19×1011-19 = 211111111111<12> = 9551 × 22103561
19×1012-19 = 2111111111111<13> = definitely prime number 素数
19×1013-19 = 21111111111111<14> = 3 × 7 × 29 × 33353 × 1039343
19×1014-19 = 211111111111111<15> = 971 × 37441 × 5806901
19×1015-19 = 2111111111111111<16> = 309577 × 6819340943<10>
19×1016-19 = 21111111111111111<17> = 32 × 71 × 769 × 42961940921<11>
19×1017-19 = 211111111111111111<18> = 23 × 47 × 6772313 × 28836887
19×1018-19 = 2111111111111111111<19> = definitely prime number 素数
19×1019-19 = 21111111111111111111<20> = 3 × 7 × 31 × 113 × 2027 × 23581 × 6003931
19×1020-19 = 211111111111111111111<21> = 67 × 157 × 20069503860738769<17>
19×1021-19 = 2111111111111111111111<22> = 307 × 408926327 × 16816191499<11>
19×1022-19 = 21111111111111111111111<23> = 3 × 17 × 653 × 95824423 × 6615330119<10>
19×1023-19 = 211111111111111111111111<24> = definitely prime number 素数
19×1024-19 = 2111111111111111111111111<25> = 1242488467163<13> × 1699099160197<13>
19×1025-19 = 21111111111111111111111111<26> = 32 × 7 × 2416619 × 138663563335249963<18>
19×1026-19 = 211111111111111111111111111<27> = 907 × 232757564620850177630773<24>
19×1027-19 = 2111111111111111111111111111<28> = 254083 × 8308746004695753399917<22>
19×1028-19 = 21111111111111111111111111111<29> = 3 × 127 × 431 × 3808127 × 33759610095081763<17>
19×1029-19 = 211111111111111111111111111111<30> = 571 × 775121 × 485481811 × 982499904311<12>
19×1030-19 = 2111111111111111111111111111111<31> = 151 × 277 × 294443687 × 171416304415893739<18>
19×1031-19 = 21111111111111111111111111111111<32> = 3 × 7 × 7741 × 45898459 × 2829414824112960389<19>
19×1032-19 = 211111111111111111111111111111111<33> = 211 × 1000526592943654555028962611901<31>
19×1033-19 = 2111111111111111111111111111111111<34> = 480929 × 4389652341844869224170534759<28>
19×1034-19 = 21111111111111111111111111111111111<35> = 33 × 31 × 1301 × 14257910171<11> × 1359729321137068093<19>
19×1035-19 = 211111111111111111111111111111111111<36> = 261054614207<12> × 808685614511732739982073<24>
19×1036-19 = 2111111111111111111111111111111111111<37> = 59 × 35781544256120527306967984934086629<35>
19×1037-19 = 21111111111111111111111111111111111111<38> = 3 × 7 × 18743 × 94273 × 568938553124386216109978669<27>
19×1038-19 = 211111111111111111111111111111111111111<39> = 17 × 61 × 389 × 523338558455677493439675728411527<33>
19×1039-19 = 2111111111111111111111111111111111111111<40> = 23 × 2531 × 2647 × 134626603 × 101766838187355299245367<24>
19×1040-19 = 21111111111111111111111111111111111111111<41> = 3 × 613 × 127529 × 638699 × 183538711 × 767885548900099829<18>
19×1041-19 = 211111111111111111111111111111111111111111<42> = 29 × 1395293 × 904176943368173<15> × 5770244954275794731<19>
19×1042-19 = 2111111111111111111111111111111111111111111<43> = 38461 × 2822473 × 7916000569<10> × 2456715731182934533523<22>
19×1043-19 = 21111111111111111111111111111111111111111111<44> = 32 × 7 × 33077041 × 10130803470711555798933072694249417<35>
19×1044-19 = 211111111111111111111111111111111111111111111<45> = 122053 × 703471 × 2488469 × 988062005097645009788154113<27>
19×1045-19 = 2111111111111111111111111111111111111111111111<46> = 181 × 11663597298956414978514426028238182934315531<44>
19×1046-19 = 21111111111111111111111111111111111111111111111<47> = 3 × 1307 × 1182523920493<13> × 4553069867392619592853346973587<31>
19×1047-19 = 211111111111111111111111111111111111111111111111<48> = 1504271 × 2209644049<10> × 63513009161149292935108135300409<32>
19×1048-19 = 2111111111111111111111111111111111111111111111111<49> = 774997 × 280372634044384779341<21> × 9715730248832975664343<22>
19×1049-19 = 21111111111111111111111111111111111111111111111111<50> = 3 × 73 × 31 × 10167281 × 6803303848669<13> × 9567739195405857237951001<25>
19×1050-19 = 2(1)50<51> = 122464257418949<15> × 1723858990047211171908077945154182939<37>
19×1051-19 = 2(1)51<52> = 71 × 687067322294042321718403<24> × 43276631483717892435103147<26>
19×1052-19 = 2(1)52<53> = 32 × 302833 × 2753102701103299<16> × 2813474418376229054507376103637<31>
19×1053-19 = 2(1)53<54> = 67 × 61171510618409<14> × 69709907825819<14> × 738911753767671992743423<24>
19×1054-19 = 2(1)54<55> = 17 × 3941411 × 5519706111539395297<19> × 5708138351644676754799254749<28>
19×1055-19 = 2(1)55<56> = 3 × 7 × 589471639 × 1705410300988213091970809820913208160308609869<46>
19×1056-19 = 2(1)56<57> = 407321147 × 596032123 × 869569837094348473594311975718733305631<39>
19×1057-19 = 2(1)57<58> = definitely prime number 素数
19×1058-19 = 2(1)58<59> = 3 × 107 × 5011 × 2064312709500904288067<22> × 6357789868556854704933691330943<31>
19×1059-19 = 2(1)59<60> = 49393 × 4274109916609865995406456605411922967042113479867817527<55>
19×1060-19 = 2(1)60<61> = 50141227 × 24508368763<11> × 1717915222144799494407434550219399334716911<43>
19×1061-19 = 2(1)61<62> = 33 × 7 × 23 × 31151 × 2082589192159836083849183<25> × 74859314911841687629072217461<29>
19×1062-19 = 2(1)62<63> = 211 × 7307166228141553<16> × 127830421171356954587<21> × 1071138006376320243550391<25>
19×1063-19 = 2(1)63<64> = 47 × 1201 × 97018923876294756019<20> × 385490582735336165329584773960001958627<39>
19×1064-19 = 2(1)64<65> = 3 × 31 × 5153 × 51859 × 5747113005675632553603107<25> × 147806701667341327678652402443<30>
19×1065-19 = 2(1)65<66> = 12739 × 2475305141<10> × 6694944946126267448966175440321760739922490488625689<52>
19×1066-19 = 2(1)66<67> = 6443483 × 60632708459313953264364882761<29> × 5403603021989434626396375701597<31>
19×1067-19 = 2(1)67<68> = 3 × 7 × 106782079 × 176418103 × 6417554653<10> × 7771576157<10> × 11057543542543<14> × 96763804532013781<17>
19×1068-19 = 2(1)68<69> = 216801707 × 699836947 × 4363729950699699268421<22> × 318855315242714703425321331979<30>
19×1069-19 = 2(1)69<70> = 29 × 97 × 2411 × 143413 × 2170479199726017936820628655473888600710180514661173592629<58>
19×1070-19 = 2(1)70<71> = 32 × 17 × 127 × 2246869 × 73662191 × 6564377603737469261506075108262240502824410868149939<52>
19×1071-19 = 2(1)71<72> = 1229 × 5492381 × 594781580835017<15> × 52582477137026497872673125133664597276697794567<47>
19×1072-19 = 2(1)72<73> = 487 × 78277 × 3198313 × 16939001 × 1022207823538352084257908438377766269470692991779853<52>
19×1073-19 = 2(1)73<74> = 3 × 7 × 36090244938200203<17> × 27854923318266027219396761630357444850229477092047515297<56>
19×1074-19 = 2(1)74<75> = 379 × 1753 × 4357 × 1105810333247<13> × 3440599207795770509<19> × 19168480024754421034229437664330323<35>
19×1075-19 = 2(1)75<76> = 2631457 × 802259398922768303305397394337475820851760492803458734499978951246823<69>
19×1076-19 = 2(1)76<77> = 3 × 539677 × 3196112963<10> × 69178315843874475281<20> × 58974439464146823706196857999992011838827<41>
19×1077-19 = 2(1)77<78> = 424903 × 496845423805224041983961306724384415057345114322824529624669891977959937<72>
19×1078-19 = 2(1)78<79> = 1457957 × 21024259 × 68872473102681455258936463203118353188378547350979441812627417897<65>
19×1079-19 = 2(1)79<80> = 32 × 7 × 31 × 397 × 881 × 3181 × 14138833 × 2057496923<10> × 333984263696010300885031500532548048427476659940029<51>
19×1080-19 = 2(1)80<81> = 2203 × 156638873 × 10215626233<11> × 90537866051<11> × 149414154072959119393547<24> × 4427005438192394935514069<25>
19×1081-19 = 2(1)81<82> = 269 × 18729698810059117529396721795457<32> × 419013502308186217970205330082337569070447791267<48>
19×1082-19 = 2(1)82<83> = 3 × 120519271 × 58389309681744067610872264876519515597111743540475257579653274180832350347<74>
19×1083-19 = 2(1)83<84> = 23 × 26879 × 11887363 × 8789012166052905559072447039<28> × 3268470411405408171702865794812605282768219<43>
19×1084-19 = 2(1)84<85> = 300893 × 1316303 × 5330195472004537009478811079993013432852977463663392384490295236060494109<73>
19×1085-19 = 2(1)85<86> = 3 × 7 × 131 × 2531 × 13933 × 2271904528341799294183765511978081009<37> × 95784148250308761589523082609932473423<38>
19×1086-19 = 2(1)86<87> = 17 × 67 × 71 × 1039 × 1974919 × 19174671396005167183881233043659<32> × 66349285914875491570086503303758989749801<41>
19×1087-19 = 2(1)87<88> = 5258293 × 401482213165206106071135844105893511660744487062837904070981041016754127453740427<81>
19×1088-19 = 2(1)88<89> = 34 × 149 × 1601 × 32392309 × 33729240780167051478894919433649258073924015142271220686981439506057441391<74>
19×1089-19 = 2(1)89<90> = 5646334549627<13> × 1229960931399481301537467<25> × 30398570968105468114032107319552314469756310178206879<53> (Tetsuya Kobayashi / for P25 x P53 / May 1, 2003 2003 年 5 月 1 日)
19×1090-19 = 2(1)90<91> = 186757 × 1286953 × 5128490671<10> × 90683897309<11> × 3079518139843841704692721<25> × 6132944054325337477275519728623489<34>
19×1091-19 = 2(1)91<92> = 3 × 72 × 613 × 2677 × 83137 × 154986845192219<15> × 62412651539822537<17> × 108823600427202046860783178680758200665291788983<48>
19×1092-19 = 2(1)92<93> = 211 × 659 × 1182164187257<13> × 3430193856833055987107<22> × 27436415619929598421577<23> × 13646440471704326071064053921093<32>
19×1093-19 = 2(1)93<94> = 5013383 × 2853010950905017003223207574802322731<37> × 147596741222832660048778465896375444441119435687107<51>
19×1094-19 = 2(1)94<95> = 3 × 31 × 59 × 78125716439981148532039651<26> × 49247265206943369702947571200315449790942405388534387576034768003<65>
19×1095-19 = 2(1)95<96> = 93985824851539<14> × 12158484877782366852679373<26> × 184743545985451285136043638846390384932060383695050526513<57>
19×1096-19 = 2(1)96<97> = 13877 × 152130223471291425460193926000656562017086626151986100101687044109757952807603308432017807243<93>
19×1097-19 = 2(1)97<98> = 32 × 7 × 29 × 421 × 27446719777514000355073880069102173014587353736069164578187976227673718595716029303273685833<92>
19×1098-19 = 2(1)98<99> = 61 × 157 × 205068315594137366276804140871<30> × 107493706948074386166535637770069689198384323338016585410762758233<66> (Robert Backstrom / NFSX v1.8 for P30 x P66 / June 11, 2003 2003 年 6 月 11 日)
19×1099-19 = 2(1)99<100> = 277 × 71461723605860009<17> × 106649257347029404881592041632894897385985616788828994406435613267720641287056627<81>
19×10100-19 = 2(1)100<101> = 3 × 81761 × 403687 × 1113199 × 36972461459<11> × 24135150679774806944283388703<29> × 214633590769934353256624673544163250846352217<45>
19×10101-19 = 2(1)101<102> = 1512214660237359141270003323<28> × 139603931017290125944771852291490909332969323724821527195248273928897297957<75>
19×10102-19 = 2(1)102<103> = 17 × 683 × 19507 × 5289979 × 23242033599798417481783014836320028513<38> × 75809373888618646148385995010402487213581064918309<50>
19×10103-19 = 2(1)103<104> = 3 × 7 × 7331 × 17203 × 36775881519133987<17> × 1073482327232546718977217922061792599<37> × 201913983681475207871725333420129339238599<42>
19×10104-19 = 2(1)104<105> = 6601670334927966091273<22> × 1866189774604180828229747<25> × 17135684315086894519173645358196821319620027593520800217781<59>
19×10105-19 = 2(1)105<106> = 23 × 109 × 151 × 197 × 276534191 × 851339947 × 25857695609<11> × 1335531205733<13> × 40773556647991<14> × 817574580827739211<18> × 104450831332913212160133811<27>
19×10106-19 = 2(1)106<107> = 32 × 2221 × 19051 × 232189 × 11371918577077119262310563<26> × 20995531049367701440543111840362555903911626860014761978165488272807<68>
19×10107-19 = 2(1)107<108> = 34543 × 165620297 × 36900944287591874756663331891012695168918242125744644869456986317742557108878449331912977651041<95>
19×10108-19 = 2(1)108<109> = 929 × 32173 × 125243 × 249311 × 925103 × 128875817440609<15> × 18973497467171433804823814799666948652714367777889122613001223346719273<71>
19×10109-19 = 2(1)109<110> = 3 × 7 × 31 × 47 × 419 × 12437 × 1561117 × 14803866599<11> × 79555414133801672586877607<26> × 72014878265820445873829759114754350221828773113192881241<56>
19×10110-19 = 2(1)110<111> = 937 × 51683 × 56311 × 3591613 × 21466638256307<14> × 14703540259908539198837547210259<32> × 68289676940988593304274186151515563646153317799<47>
19×10111-19 = 2(1)111<112> = 107 × 1103 × 6733 × 3247521756343<13> × 59883078028643<14> × 13661141899258399172435905135193533842008781144734839401011159298994397140123<77>
19×10112-19 = 2(1)112<113> = 3 × 127 × 233 × 109174735427764361215292162709625511<36> × 138661547990392980374543093364946273<36> × 15709125251313482558788273304217571469<38> (Robert Backstrom / GMP-ECM 5.0c for P36(1091...), PPSIQS Ver 1.1 for P36(1386...) x P38 / December 6, 2003 2003 年 12 月 6 日)
19×10113-19 = 2(1)113<114> = 1136618745395201361989589826146142199191<40> × 185736080780286585029119306711003883051477612553458854312713322734326199121<75> (Robert Backstrom / NFSX v1.8 for P40 x P75 / December 7, 2003 2003 年 12 月 7 日)
19×10114-19 = 2(1)114<115> = 10237351 × 378618883852051<15> × 544654663796380436488654998236711331702448126853353249665567302415483006412327261251285505211<93>
19×10115-19 = 2(1)115<116> = 33 × 7 × 263 × 977 × 481594688560800387802128659<27> × 902645635600354223186093628078302812383125975186923917565767705319575645180455111<81>
19×10116-19 = 2(1)116<117> = 167 × 523 × 2179 × 2633 × 22780752341<11> × 8566924688720742229<19> × 2158697707944673618238022641211571635835308345148888888525980990584556347777<76>
19×10117-19 = 2(1)117<118> = 227 × 9667097087959<13> × 3228603551096156029806074486994564644929<40> × 297971298770817090418322741791875127619978522016796947178728763<63> (Robert Backstrom / NFSX v1.8 for P40 x P63 / December 7, 2003 2003 年 12 月 7 日)
19×10118-19 = 2(1)118<119> = 3 × 17 × 413943355119825708061002178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061<117>
19×10119-19 = 2(1)119<120> = 67 × 2513801 × 10011919 × 6845462479159<13> × 113960418864771334013893601897<30> × 160483813447185388215934790174826257940966205063586547691577509<63>
19×10120-19 = 2(1)120<121> = 20366069 × 2284466958517<13> × 45375246745377279781365987449109785553844615234240737710543707249584921262696163745961206157162135807<101>
19×10121-19 = 2(1)121<122> = 3 × 7 × 71 × 1014731 × 434050759 × 5662574629<10> × 5677119827848553768914599400016377097299360253318208559267440262530132562334442509402624641181<94>
19×10122-19 = 2(1)122<123> = 211 × 8124643 × 13464034037<11> × 14630683745147<14> × 4430093751545731<16> × 94285906579063313<17> × 43007378870019312131<20> × 34800209020504018299328606395463415041<38>
19×10123-19 = 2(1)123<124> = 1721 × 495797 × 4410902396712067680758090011068891021640711626659006237<55> × 560917356569838753259253685987217852533633417044034796344319<60> (Robert Backstrom / NFSX v1.8 for P55 x P60 / December 12, 2003 2003 年 12 月 12 日)
19×10124-19 = 2(1)124<125> = 32 × 31 × 593 × 2086673 × 1363920929114143<16> × 44834115328950881840536763024636194379567638070711755440982543283921444479097598129032553182477167<98>
19×10125-19 = 2(1)125<126> = 29 × 41854147734989693<17> × 173930037536143154990302665118321382496749061324710749450597329874419618015924655050443349540257815929886063<108>
19×10126-19 = 2(1)126<127> = 1085586821944623873258448972960300144037<40> × 1944672750659826594525933115329989387511357929722642043469326652172740315616664274667003<88> (Robert Backstrom / GMP-ECM 5.0c for P40 x P88 / December 7, 2003 2003 年 12 月 7 日)
19×10127-19 = 2(1)127<128> = 3 × 7 × 23 × 809 × 706297 × 91969373 × 4186943869960596765173<22> × 8779858476838286714585030683<28> × 22625604824606448314329559162399548603538354732925280980247<59>
19×10128-19 = 2(1)128<129> = definitely prime number 素数
19×10129-19 = 2(1)129<130> = 1733 × 2843534856075886392293<22> × 11730675224777369340662624085358439<35> × 36520016199361838820408437804541533460744999473716200992552163644439721<71> (Robert Backstrom / NFSX v1.8 for P35 x P71 / December 8, 2003 2003 年 12 月 8 日)
19×10130-19 = 2(1)130<131> = 3 × 320431 × 21961161800940099544167190555960681198251845286620323991864198648186464596237683111300208272723416389291413867687698871323427<125>
19×10131-19 = 2(1)131<132> = 113 × 2531 × 16360198193<11> × 27326794513<11> × 500543932286794368034008215537074340475299<42> × 3298534646622181198091164518308463933199911850565520541889326207<64> (Robert Backstrom / NFSX v1.8 for P42 x P64 / December 10, 2003 2003 年 12 月 10 日)
19×10132-19 = 2(1)132<133> = 22859 × 1510713590128821963222983417<28> × 17615934918098592313822835788081<32> × 3470292092730591291771046157402871465884838440599143488241248044308077<70> (Robert Backstrom / GMP-ECM 5.0c for P32 x P70 / December 8, 2003 2003 年 12 月 8 日)
19×10133-19 = 2(1)133<134> = 32 × 72 × 193 × 257 × 21219745470778127708592919<26> × 31730260191554454705277152906949623766469777177<47> × 1433402858023490065733223512872491455415303214198134017<55> (Robert Backstrom / NFSX v1.8 for P47 x P55 / December 12, 2003 2003 年 12 月 12 日)
19×10134-19 = 2(1)134<135> = 17 × 37680317 × 27070605880817<14> × 12174458294838441396990979885591492687525759449632812231205852907352939565888031783266975858815268238321755835347<113>
19×10135-19 = 2(1)135<136> = 691 × 35821191303049<14> × 3068170806729597605497<22> × 539174554013026944765855678379<30> × 51556579666812997456926482229877486070573905050202134579394248504983<68> (Robert Backstrom / GMP-ECM 5.0c for P30 x P68 / December 10, 2003 2003 年 12 月 10 日)
19×10136-19 = 2(1)136<137> = 3 × 2539 × 3851 × 13855251741697829085205853<26> × 513601376061672883842767390669497<33> × 41912584787806197984964451447711989<35> × 2413062511152469414956446727207308317<37> (Robert Backstrom / GMP-ECM 5.0c for P35, PPSIQS Ver 1.1 for P33 x P37 / December 10, 2003 2003 年 12 月 10 日)
19×10137-19 = 2(1)137<138> = 433 × 1153 × 11393 × 368897952710839480161169<24> × 6537808630984692512469327874650028071620851099861<49> × 15389245976913122179432504758319730080753497050831216747<56> (Greg Childers / GGNFS for P49 x P56 / October 14, 2004 2004 年 10 月 14 日)
19×10138-19 = 2(1)138<139> = 232782754247700067<18> × 83845459775834452015372760685094399<35> × 519453467494562654362155883937185937<36> × 208225584050293597284203129689776748924665335039491<51> (Greg Childers / GGNFS for P35 x P36 x P51 / October 14, 2004 2004 年 10 月 14 日)
19×10139-19 = 2(1)139<140> = 3 × 7 × 31 × 1123 × 120937 × 843629 × 283034681742571201341694906886914785872195169574552666540246930307919883959275501739528002202316517050359071225543940544459<123>
19×10140-19 = 2(1)140<141> = 222326827 × 394108304678831242112558499262511688888855913<45> × 2409370758501444138484329720023565745017813043666268787378494727668172943572169242450061<88> (Greg Childers / GGNFS for P45 x P88 / October 14, 2004 2004 年 10 月 14 日)
19×10141-19 = 2(1)141<142> = 808001147 × 14451177179<11> × 1967526606641874254902868696224753606009599388741835659032403<61> × 91891485965508071388404658746315616009850224878544027799539749<62> (Greg Childers / GGNFS for P61 x P62 / October 19, 2004 2004 年 10 月 19 日)
19×10142-19 = 2(1)142<143> = 33 × 613 × 743 × 8287 × 1042724652739457<16> × 198669435928143140479065290147923791044859755850261418998267219901561083626227241451204592474906255892147524951806953<117>
19×10143-19 = 2(1)143<144> = 25433582493919<14> × 8300486616920222317426299776029603381637137799004389022539659945946458122539816125167413319309387558981574729288650823764815545369<130>
19×10144-19 = 2(1)144<145> = 1217 × 1734684561307404364101159499680452843969688669770839039532548160321373139779055966401899023098694421619647585136492285218661553912170181685383<142>
19×10145-19 = 2(1)145<146> = 3 × 7 × 13411301 × 15737208781057<14> × 474374445942941656135297<24> × 2067506532440277900025469<25> × 6878419644212920816678442957<28> × 706051428352403907187658926067476373772757145063<48>
19×10146-19 = 2(1)146<147> = 192366985120423<15> × 29365301023666568488392630000453630649<38> × 355187872431500922702175275160737857693544593<45> × 105217497198344900059826621607642715596457417792601<51> (Greg Childers / GGNFS for P38 x P45 x P51 / October 19, 2004 2004 年 10 月 19 日)
19×10147-19 = 2(1)147<148> = 6991 × 2159144727778714900139<22> × 139858876521024600438692742777689803350854865184174138064864030460845460065872996196723585106807138730539994236686057562139<123>
19×10148-19 = 2(1)148<149> = 3 × 7037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037<148>
19×10149-19 = 2(1)149<150> = 23 × 93157230415019<14> × 480914396491996833031<21> × 204879690288923389905328428747410450875147129351751448705638474119258214170967335481415474674836103208555656841013<114>
19×10150-19 = 2(1)150<151> = 17 × 56764051 × 3147159427316911<16> × 197555621831415754297<21> × 155339512971689127830087<24> × 747982759592238072627913<24> × 30283573759972397850305226384736125475786470006532903957829<59>
19×10151-19 = 2(1)151<152> = 32 × 7 × 509 × 52561 × 129682213061<12> × 1485417182883526511<19> × 65021994012651409409956253444002862572907384813266363490785973977349164701617488673386311620353181024699530926743<113>
19×10152-19 = 2(1)152<153> = 59 × 67 × 179 × 211 × 209919090707<12> × 23255047412505613<17> × 103466483476477569371883659837304092315490593<45> × 2799496547093994558129967204266584630456496784372432258039009023750741721<73> (JMB / GGNFS-0.77.1 gnfs for P45 x P73 / 39.11 hours on WinXP Pro, Cygwin, AMD 3800+, 4gb DDR, 6-drive SCSI RAID / August 27, 2006 2006 年 8 月 27 日)
19×10153-19 = 2(1)153<154> = 29 × 8878057 × 200001898648216235262467<24> × 40997846597295019807710973951681925150351316275186098714243835922693801942276413456580808405847530537300153458467353437161<122>
19×10154-19 = 2(1)154<155> = 3 × 31 × 127 × 33151 × 385289 × 139939777314991696117187762414165398539721575441429593728983829499281366923784260475737119665283750906483995753545917993366228449240131362459<141>
19×10155-19 = 2(1)155<156> = 47 × 1013 × 9323 × 77169526100999077209508970939525278156116721502063<50> × 6163143371863327704942361909436417682834706242621502254644653631482204422647185993572154300515649<97> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P50 x P97 / 30.43 hours on Athlon XP 2100+ / April 4, 2007 2007 年 4 月 4 日)
19×10156-19 = 2(1)156<157> = 71 × 6632063 × 36137897 × 72099682374588477659537<23> × 4636228306457607462635241942913928692255657<43> × 371144524930028738274438333409653087743425848528036989882492056181504067359<75> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 gnfs for P43 x P75 / 95.69 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 13, 2006 2006 年 9 月 13 日)
19×10157-19 = 2(1)157<158> = 3 × 7 × 4129 × 4139 × 136082245808735331544874467<27> × 6186192101868302643109806651993561689864386250254698505182203<61> × 69875771724775887872374741822268114523219808403456062141215761<62> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=1197949217 for P27) (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P61 x P62 / 45.81 hours on Cygwin on AMD XP 2700+ / July 15, 2007 2007 年 7 月 15 日)
19×10158-19 = 2(1)158<159> = 61 × 39367 × 646669 × 62551217 × 739943625517252740521418808909<30> × 2937193085089632089747224362641689745855264314033879001820429030148894557397526770204608930336708194542363229<109> (Makoto Kamada / GMP-ECM 6.0.1 B1=11000000, sigma=4093023201 for P30 x P109 / May 20, 2005 2005 年 5 月 20 日)
19×10159-19 = 2(1)159<160> = 1471 × 2713 × 186174083 × 569323967 × 1482021436531<13> × 678498914712919<15> × 2944072567478354446921673<25> × 1685845540320712051828575349149898976886705353463590266123864399800994703903103928921<85>
19×10160-19 = 2(1)160<161> = 32 × 15418862204910161<17> × 198440143099519652057552815018259<33> × 766631611792914428985345616031997540862285764082560979052617179307561469122129221254517402352149820216246478021<111> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=345517633 for P33 x P111 / July 14, 2007 2007 年 7 月 14 日)
19×10161-19 = 2(1)161<162> = 727717 × 384816673 × 674074250329<12> × 14467529402478870760723338650411987<35> × 77302329134119121600032539311233102902267933504106572342606708487422816772928441334860645111491619777<101> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=1044236717 for P35 x P101 / November 30, 2007 2007 年 11 月 30 日)
19×10162-19 = 2(1)162<163> = 557 × 219407 × 4819033 × 177225600791<12> × 20226421789053548149199179080691750633095972103766446981332242705314334734861564465926232350735077975756773304595344193417881838397486963<137>
19×10163-19 = 2(1)163<164> = 3 × 7 × 1005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291005291<163>
19×10164-19 = 2(1)164<165> = 107 × 229 × 889687 × 125707493 × 845802201983<12> × 22592882399170460816494928669<29> × 4031372864845724550299872900385168375806246814478667447835285938844407419313727510462772661729749756710041<106> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=2526448343 for P29 x P106)
19×10165-19 = 2(1)165<166> = 97 × 28030207 × 678175727 × 28933389748066579<17> × 1004850910964957079601987123021515538751<40> × 39379469642482560582795123873781476067047647244625665707647850841194751914774629866823998323<92> (matsuix / GMP-ECM 6.0 B1=33554432, sigma=3868624132 for P40 x P92 / November 6, 2007 2007 年 11 月 6 日)
19×10166-19 = 2(1)166<167> = 3 × 17 × 3175751 × 112713619 × 4135365673<10> × 4176850455607<13> × 829442422864343185621<21> × 6213420216137445595425609090774885058694729937893<49> × 12990870768842369846194484414899045383684817307326588209343<59> (Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs for P49 x P59 / 23.65 hours on P4 3.2 gig, 1024 Mb RAM / October 7, 2005 2005 年 10 月 7 日)
19×10167-19 = 2(1)167<168> = 48761 × 7783163 × 9213779069369765001437791549262278092034656923926957<52> × 60373251713664375579895563454106435402505689903757733131520095501842512209171123875885660397963312420961<104> (suberi / GGNFS-0.77.1-20060513-pentium4 for P52 x P104 / 247.08 hours on Pentium 4 2.26GHz, Windows XP and Cygwin / August 6, 2006 2006 年 8 月 6 日)
19×10168-19 = 2(1)168<169> = 277 × 1571 × 782497 × 87830969 × 55370800496786707417<20> × 1274805650829976441382091113664235560701404289024746047937569854099473257098029968156426436348211645692999078368310264103398666793<130>
19×10169-19 = 2(1)169<170> = 34 × 7 × 31 × 491 × 462439477 × 16949051215800180229661817614330899<35> × 312093377566977513799943865389981923191207592549396338466569241130995579041731748939733425239643489999444690210752448451<120> (Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=2768685903 for P35 x P120 / April 3, 2005 2005 年 4 月 3 日)
19×10170-19 = 2(1)170<171> = 120558470467949569214286965883841<33> × 1751109733656043126624126401132366088272468394797742343373508457364887662637296860240776768136294941520762853336527914226058508852018542471<139> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=3666404302 for P33 x P139 / December 12, 2004 2004 年 12 月 12 日)
19×10171-19 = 2(1)171<172> = 23 × 72582875371<11> × 1854738459983<13> × 923103499379601170530763<24> × 738611409071765914290297645421580082381853175054839512093375031466709960643167512309757850842506020119109786432582697688823<123>
19×10172-19 = 2(1)172<173> = 3 × 6451 × 769603865477<12> × 1417410202688985835987451072922327638285322150267572392861658613580699366233534843845186326357111808716694404635498400618946006570823873373372208467582909331<157>
19×10173-19 = 2(1)173<174> = 122117 × 375227 × 367609981 × 12532958146331257068598412561290406241420839161218448207096784187712601578567109515084635123534340433294131976967340970576256872457509070948943506106432309<155>
19×10174-19 = 2(1)174<175> = 307 × 2383 × 3581 × 211271 × 8595512533<10> × 443744197163298217154560027611558049259097325495723549983141802437667196284438798154734654600466453828689687990962984140500799551102818993656689483157<150>
19×10175-19 = 2(1)175<176> = 3 × 72 × 3777760632743<13> × 38015378611106367314960558165246302606314030956450877340090750667202346102376330580618427964854806057714225412919904620756019623424165688551159534781255206348091<161>
19×10176-19 = 2(1)176<177> = 157 × 448993 × 939193 × 560378115231464549903269301342209434250484668039927187114996072891714145203<75> × 5690309068212615543836389559339633338353500225140878335195823330467076434061949752682409<88> (Dmitry Domanov / Msieve 1.40 snfs for P75 x P88 / September 30, 2011 2011 年 9 月 30 日)
19×10177-19 = 2(1)177<178> = 907 × 2531 × 216080989 × 5932564178136601<16> × 717385600627580816021800029446245563423504852236926999129612373895619055671640542512797377085935117980923419761318936372190099921129747632102309547<147>
19×10178-19 = 2(1)178<179> = 32 × 397 × 3673 × 2724367 × 12614788641333053410848156411228056039795491<44> × 46807080909958651848849509824172339839759119067479128253950891045598442208274508121091872802215216239815885197487974626447<122> (Wataru Sakai / for P44 x P122 / August 25, 2012 2012 年 8 月 25 日)
19×10179-19 = 2(1)179<180> = 807409 × 60722190629<11> × 335903299749833134204034514164509426989575371303131877764955397<63> × 12819048905060370216043582412794484781133128926114845934374799675116171380740947877723171588457532783<101> (Dmitry Domanov / Msieve 1.40 snfs for P63 x P101 / September 14, 2012 2012 年 9 月 14 日)
19×10180-19 = 2(1)180<181> = 151 × 13980868285504047093451066961000735835172921265636497424576894775570272259013980868285504047093451066961000735835172921265636497424576894775570272259013980868285504047093451066961<179>
19×10181-19 = 2(1)181<182> = 3 × 7 × 29 × 16927 × 762571 × 1456187 × 29929729 × 68772367 × 895982677070183606906105931801470287051223370065375156395078947871544661992008541418896633013639226564015284909852611562633620529754086612929983807<147>
19×10182-19 = 2(1)182<183> = 17 × 211 × 15737 × 4356446449<10> × 858470528104255748019743446422025286314421366679507484497277407099193609950079677551049411614246704491340773548742596318660749204884753191143104169648692654802311781<165>
19×10183-19 = 2(1)183<184> = 157057 × 213634328431<12> × 2153969052526628580693509908676137930691<40> × 6458642828190006197534581028157575425650463667360357362537<58> × 4522744214933426280783650118164980703766292960776102046882380837161899<70> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=712194216 for P40 / August 30, 2012 2012 年 8 月 30 日) (Warut Roonguthai / Msieve 1.49 gnfs for P58 x P70 / September 5, 2012 2012 年 9 月 5 日)
19×10184-19 = 2(1)184<185> = 3 × 31 × 599 × 65867 × 3274196883256139<16> × 264423605764496945611126763461154643943<39> × 4182221185969091016266377183593324370310912040094337041<55> × 1588990956962526265254835776390963643772768420127061815790249421467<67> (Serge Batalov / GMP-ECM B1=5000000, sigma=1232963588 for P39 / July 25, 2011 2011 年 7 月 25 日) (Warut Roonguthai / Msieve 1.48 gnfs for P55 x P67 / July 27, 2011 2011 年 7 月 27 日)
19×10185-19 = 2(1)185<186> = 67 × 3847 × 26479 × 66601 × 10135868579<11> × 74758971743<11> × 1690037263966965088931706420284779<34> × 61704626773731708695534002772633771837500405500166682491<56> × 5877511293372784839680232508021590709785134367031814694121177<61> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=1192967129 for P34 / September 7, 2010 2010 年 9 月 7 日) (Dmitry Domanov / Msieve 1.40 gnfs for P56 x P61 / September 11, 2010 2010 年 9 月 11 日)
19×10186-19 = 2(1)186<187> = 983 × 29209 × 12424333241<11> × 5917902335224222400278574108034111331897269891855504064641717504174206259299763963208431512046339997972290497586733839795091249336893114232407679795516555375291635390593<169>
19×10187-19 = 2(1)187<188> = 32 × 7 × 329022937768969847915045880276123722387918253629<48> × 94329378756867316059517725551482756560238888705578834764291<59> × 10796858061879096975942872469334528421951068133497198680481477155854888637343823<80> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.36 for P48 x P59 x P80 / 128.02 hours on Cygwin on AMD 64 3200+ / August 7, 2008 2008 年 8 月 7 日)
19×10188-19 = 2(1)188<189> = 61921253 × 241603551859<12> × 329416901535195007727244081003046405823317040023287850729644302121173<69> × 42837307226102277994450260286989975639960153772703526788123352871762685702813843574637634082503698741<101> (Ignacio Santos / GGNFS, Msieve snfs for P69 x P101 / June 1, 2010 2010 年 6 月 1 日)
19×10189-19 = 2(1)189<190> = 4740670901<10> × 656090070147255793959313614401486357728397<42> × 678746837702374547386615876473976992707295382091836745328618258539873527032836981279854697745668827703025355392928008227996331059217692663<138> (Ignacio Santos / GGNFS, Msieve snfs for P42 x P138 / May 1, 2010 2010 年 5 月 1 日)
19×10190-19 = 2(1)190<191> = 3 × 223 × 2143 × 14725254268328078355092996568318243435268518499143183954928941735501417770731356103691520493330118577822542550753495135977260487345465237820994074015173057000761760653702087800801100333<185>
19×10191-19 = 2(1)191<192> = 71 × 991 × 3119 × 4748011 × 202605857546742670511208379225146311009985091638582610064456264260360595552294443489852077811614843633130023206171410730164762747301926969120773235202218362278681338073365108339<177>
19×10192-19 = 2(1)192<193> = 1901 × 104773 × 13919292389801624102199893282272063994693583108101219965366764829114931706807918622082548693<92> × 761486901778732788532033508170971157498934071263722152443468224043709683954788252377172377099<93> (Ignacio Santos / GGNFS, Msieve snfs for P92 x P93 / April 26, 2010 2010 年 4 月 26 日)
19×10193-19 = 2(1)193<194> = 3 × 7 × 23 × 613 × 2833 × 416490302317<12> × 33136289468939<14> × 6387850378064999378621<22> × 3585254944930175016436306851443401<34> × 105774509586365818991279929828972043<36> × 752822071840582304755740077449928254967150719264138691792961720686657<69> (Serge Batalov / GMP-ECM 6.2.1 B1=2000000, sigma=1729672148 for P34, pol51+Msieve 1.36 gnfs for P36 x P69 / 4.9 hours on Opteron-2.6GHz; Linux x86_64 / August 7, 2008 2008 年 8 月 7 日)
19×10194-19 = 2(1)194<195> = 7507 × 11161789 × 178836121301<12> × 93181621263192668143995454087024321362889773173591<50> × 1116271463067114401128222863966099353244291127820534892344749<61> × 135442680548314096818737777056507933220647833324442243984961623<63> (Dmitry Domanov / Msieve 1.40 snfs for P50 x P61 x P63 / October 4, 2012 2012 年 10 月 4 日)
19×10195-19 = 2(1)195<196> = 316533414963277<15> × 4857812070812422918438740450096143<34> × 126588695286253849690892581521208733549609<42> × 6324190678737370548476436678978590074164159847<46> × 1714947933091033167289891644318545729971630062753112110458387<61> (Ignacio Santos / GMP-ECM 6.2.3 B1=1000000, sigma=1505297614 for P34 / March 27, 2010 2010 年 3 月 27 日) (Serge Batalov / GMP-ECM B1=5000000, sigma=3202284549 for P42, Msieve 1.49 gnfs for P46 x P61 / July 25, 2011 2011 年 7 月 25 日)
19×10196-19 = 2(1)196<197> = 33 × 127 × 69151 × 808155451 × 10909553355730891834124017<26> × 14641108262503694644138722975237387048648872975260767099460547<62> × 689714430038183027304713012676298028730513177258491297730933331809948215040360125680840695941<93> (Dmitry Domanov / Msieve 1.40 snfs for P62 x P93 / October 7, 2012 2012 年 10 月 7 日)
19×10197-19 = 2(1)197<198> = 217409 × 148309607497483921<18> × 39352703424498545120297305189<29> × 90354753801168317876541801564500234074875754234683188117732449<62> × 1841360014270240882902426413018333759606618842736830021292528846332471989784494668459<85> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2585434931 for P29 / October 21, 2008 2008 年 10 月 21 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P62 x P85 / December 5, 2017 2017 年 12 月 5 日)
19×10198-19 = 2(1)198<199> = 17 × 8999 × 13940002231<11> × 989931343091403678301599257746720889262600661011676035323946273623171558440227975811856407823797440388583128675852446687350280626549959727237895882300032866387066022158563450656657207<183>
19×10199-19 = 2(1)199<200> = 3 × 7 × 31 × 661 × 16475500550693<14> × 12039737753351859168073867937<29> × 247327836283486034200948168590448445309507634613457627140571268083563989326717381589497786656561227759235505596834759223622464821469585496252648088182061<153> (Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=1591699330 for P29 x P153 / March 27, 2005 2005 年 3 月 27 日)
19×10200-19 = 2(1)200<201> = 1747 × 76757 × 523461214629526289617379298971821528567800634691<48> × 3007569595178184572864101723424702723424920521628456780142217226328313025949166598846976883533938456779927809662508914925896607316883133626528899<145> (matsui / Msieve 1.46 snfs for P48 x P145 / July 13, 2010 2010 年 7 月 13 日)
19×10201-19 = 2(1)201<202> = 47 × 64033 × 1053482549992746021932070813184353412063<40> × [665858637716779978428399984920089373486548193102892991295510186181587152913619310143799624439267439181243230240278405328211616082335065235187141975797148247<156>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3677537987 for P40 / August 31, 2012 2012 年 8 月 31 日) Free to factor
19×10202-19 = 2(1)202<203> = 3 × 12251 × 2717168291<10> × 9155638431591473337967069<25> × [23089425421597399905617460270952250201422987116059700528306283148406532901786415958998383535332845366241477800970718998308010553266418743976188564078729244826761953<164>] Free to factor
19×10203-19 = 2(1)203<204> = 197 × 1543 × 6473 × 1574627 × 8043269898215494346034109657097616083<37> × 8471552298131109167014828867520103757001563817023507279799893083122404608039395997180015769194433383697702302163669063594140382906575533215490338302637<151> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3117469885 for P37 x P151 / August 28, 2012 2012 年 8 月 28 日)
19×10204-19 = 2(1)204<205> = 313 × 5827 × 1044091 × 4171359041846837<16> × 17531830538897053<17> × 1165684186889599453<19> × 112695714677106848009<21> × 9497119901443483735197887<25> × 1287161830705094545101191339358873893187628201<46> × 9439851580183438151459050399962657223723517015651989<52> (Warut Roonguthai / Msieve 1.48 gnfs for P46 x P52 / August 29, 2012 2012 年 8 月 29 日)
19×10205-19 = 2(1)205<206> = 32 × 7 × 11197 × 14653 × 83227178053<11> × 56122384904692358640210139<26> × 205822959311643784352115300899671188917<39> × 2124453397025184862042760813485685789766621770564413218518499339757186142545039376485035246521826156350800281618759499403<121> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2627337106 for P39 x P121 / August 30, 2012 2012 年 8 月 30 日)
19×10206-19 = 2(1)206<207> = 541 × 5717 × 55049 × 1158039461<10> × 34790104414441<14> × 254001375842131659623953731690075842333807<42> × 121166075140045688883938464711138043720256540555982752976299430060305007874890982944693697018310817105961419891365725008519181915941<132> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2906513763 for P42 x P132 / September 17, 2012 2012 年 9 月 17 日)
19×10207-19 = 2(1)207<208> = 350592098158931<15> × 668273910253733158379701<24> × [9010615577128999174518590862811164073858805426022202743840401198495033979090080655661915467443340034738210495825714519460924846750170324468110092602297867003507009951081<169>] Free to factor
19×10208-19 = 2(1)208<209> = 3 × 769 × 817670837 × 99307440407520187<17> × 112694624323459466126110198031739436380592532088073446748314624810804134338738505745226930359580029393500324746955336864648163912658894185074951429369185985323623419210388571132667<180>
19×10209-19 = 2(1)209<210> = 29 × 1097 × 2797 × 1419683 × 18531059 × 90182522534216435151546559128202968339846772100428681869811340712502988763938890603733062826615833606381539952832871616529132853074131102758887450889558491974298154973986312314723893023583<188>
19×10210-19 = 2(1)210<211> = 59 × 49663632962486083281186428519293373<35> × [720477784682978607693088836923418772578120475905453131474012827430592869112037241480357018003867749705491376973946236883161362510728160706268625725493714777676864245398764873<174>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3102803142 for P35 / August 28, 2012 2012 年 8 月 28 日) Free to factor
19×10211-19 = 2(1)211<212> = 3 × 7 × 927743 × 300667438701503<15> × [3603941332432993320826689615051158929024299426977370636174987743114580025060196243219420746957903219246208370367452526717571751224547253542941708174702173981515216067830880165268726977054379<190>] Free to factor
19×10212-19 = 2(1)212<213> = 211 × 439 × 31981 × 282103 × 188533073 × 328720564573927<15> × 4076148066455466469500258759293415445072878847205971501090512293328752223483025954054703129395418974252752946134030753962068412519676816309484456243214138386421106633120990503<175>
19×10213-19 = 2(1)213<214> = 109 × 110623242926687<15> × 2796784694743017277194545989<28> × [62600697703375841211671752438814661275614094188000048625294351876822712919120853558445134384144536064203110867285316158926441890117565771396939486719554345080157474205753<170>] Free to factor
19×10214-19 = 2(1)214<215> = 32 × 17 × 31 × 61879 × 2808674767086007<16> × 25610215188185543930222951403807058001086437521559245404478316660343706085471935697608732501898590109051151785321564405324228215985361711736083356904723424728947631608941165383000901659489009<191>
19×10215-19 = 2(1)215<216> = 23 × 131 × 55589 × 415559 × 5888088263<10> × 515129112041494571744880605785186352664973603210597736993777833262236583711632386566149669899046979197225743986575024122881396467056925852601847836194690412898767705005442999432334709695627119<192>
19×10216-19 = 2(1)216<217> = 159473 × 1570981 × 3231211 × 1845366573620332959085931895688195776661<40> × [1413204547970865427471495376996886314240752922521650444651560690850916931747833872196066125998254664970322107398036069469126134270856281403285652638405363573757<160>] (Domanov Dmitry / GMP-ECM B1=3000000, sigma=3689587658 for P40 / August 30, 2012 2012 年 8 月 30 日) Free to factor
19×10217-19 = 2(1)217<218> = 3 × 72 × 107 × 859018977255921798167<21> × 2652826030502042714828164596519912381907<40> × 588977155782996214666212425792634213523816571598194091505555161413463794792955729345390100983127667432495142534790282923326468491679373717445525276569211<153> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=48988966 for P40 x P153 / September 10, 2012 2012 年 9 月 10 日)
19×10218-19 = 2(1)218<219> = 61 × 67 × 3041 × 285151 × 27132415042048334723566107089<29> × 495500087816805904538799256950494277191<39> × 55928064320298756242763719439687033775354326383593176990883410982283<68> × 79223341918605104183723739679619706322102844090680133931519544004049499<71> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1755017967 for P39 / August 23, 2012 2012 年 8 月 23 日) (Pawel Apostol / GGNFS-0.77.1-VC8 for P68 x P71 / October 4, 2012 2012 年 10 月 4 日)
19×10219-19 = 2(1)219<220> = 7937 × 87327594181<11> × 68850140936656115423<20> × [44238295148889901375159522174593769423828756170662152788104622572716908334563560888223114943521322890435307562829063254522515225372462312055234428718978354275204920047416625249591386181<185>] Free to factor
19×10220-19 = 2(1)220<221> = 3 × 94559 × 3520344155206367921540896547<28> × 21139847162459971974738957791080947895479219917558478868302233956341137546388396125268534187139853398692382695253862758583373095977246423417951833943010804266011104331700954052844706945969<188>
19×10221-19 = 2(1)221<222> = 427429610778311355853213889308942747<36> × 493908484081616454223053707880721448707940787875740425706010847589041881278577807506679245506949849726368790909486765460239378889479319769809306102879296052995073272656498569202719398213<186> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2494116276 for P36 x P186 / September 10, 2012 2012 年 9 月 10 日)
19×10222-19 = 2(1)222<223> = 57653 × 3750014196037<13> × 1680694102941599542910785096494104452809163<43> × 5809885754670073377225238398160495886585066999816112661945678033994564339830851349839267436447030788284484411069692516660278440726602757255010879749717699148764877<163> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4142758260 for P43 x P163 / September 7, 2012 2012 年 9 月 7 日)
19×10223-19 = 2(1)223<224> = 33 × 7 × 1381 × 2531 × 12702813170537752523<20> × 2515727243884312112478806126479315076036017631553962931702785580150458588226133205845708386065640461052110523699129162000462483868820818887141474302622843981573340108036012291927545342979515418583<196>
19×10224-19 = 2(1)224<225> = 5861 × [36019640182752279664069461032436633869836395002748867277104779237521090447212269426908566987051887239568522626021346376234620561527232743748696657756545147775313276081063148116551972549242639670894234961800223700923240251<221>] Free to factor
19×10225-19 = 2(1)225<226> = 181 × 22625129 × 23862521657131<14> × 419695483568791<15> × 7041804034042317558588761<25> × 7309823425610245591133768190297223475595347226277736369576573736964698570780752561361722376765156789964247399286013668297208372641667666753709192325479009277056519<163>
19×10226-19 = 2(1)226<227> = 3 × 71 × 1439 × 147260336701<12> × 7803034307761909<16> × [59940641783625628742896546100674414379281348258186897934097296964357829461206896259156783646396314471797595192765298251134025842409259252476556670693808099023142898907674396131763669518224830997<194>] Free to factor
19×10227-19 = 2(1)227<228> = 337 × 205763 × 2908909245167728781218970937249941<34> × 619321048702130865800044810175827045424788762097<48> × 285759654411924281330748331040852376661825052349161<51> × 5913804766031188015977901509857328815880505933613436852358409719622993348128020393933073<88> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3841661533 for P34 / August 28, 2012 2012 年 8 月 28 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1405251675 for P48 / September 10, 2012 2012 年 9 月 10 日) (Dmitry Domanov / Msieve 1.40 gnfs for P51 x P88 / October 10, 2012 2012 年 10 月 10 日)
19×10228-19 = 2(1)228<229> = 210999787472361041141404483158483967073<39> × [10005276007150701623534299424145552509393483135422719727600229824586752522929034294707621295170090065932215947792229459609363846294326552350966928144508792083525393487775553441668357888999207<191>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=974239992 for P39 / September 10, 2012 2012 年 9 月 10 日) Free to factor
19×10229-19 = 2(1)229<230> = 3 × 7 × 31 × 12890507121496457384897119109<29> × 2515707241034968089066517869652464813113573907607522084835303305829036582629672246868530573044307213402076917178872596718646728714759161138012375123148647166332069880419024886944694871969218552159729<199>
19×10230-19 = 2(1)230<231> = 17 × 227 × 1625573 × [33653468826163560342589615413380387347052300936299106579631787150268810439625305648395836099357324057751644271499027258802520567865537562045990724117448926859791696006436072736583565830009820413601580704550185549699574073<221>] Free to factor
19×10231-19 = 2(1)231<232> = 823 × 857 × 1441877 × 20766919 × 264264373 × 42100215916987209098907619<26> × 8984775099243342578783816083387439431708187288785071118925756208874101924061396694586560644253336815415312973195991028683492804043189232906708769476983413919315156983994677397021<178>
19×10232-19 = 2(1)232<233> = 32 × 1063 × 788329481 × 121159128921785776740317611<27> × 23103161136030716658097607258532570432256049284801252826483467100982089927660554687368427723996041932533439680219992921410291115101364309287596578351683703099995942737545535837496413366013434163<194>
19×10233-19 = 2(1)233<234> = 20059504078477793<17> × 136177059929356553<18> × 19033771502485679488009<23> × 120223751537658261360478190944436521793<39> × 350629211991781010711963060426934965128727644046141<51> × 96321607790535092230558504687007585856384793720436591424691205022196844944129982147021827<89> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1023756122 for P39 / September 10, 2012 2012 年 9 月 10 日) (Erik Branger / GGNFS, Msieve gnfs for P51 x P89 / July 1, 2016 2016 年 7 月 1 日)
19×10234-19 = 2(1)234<235> = 1993 × 227159 × 6366639943<10> × 4703587079756887226508771895569584479453<40> × 155716404152936168807363234693352429286234343097541148889416243690401845109290934633214141645910100013166532090373751812519850028466864197943055880355340629706684272301469398907<177> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2162727786 for P40 x P177 / August 31, 2012 2012 年 8 月 31 日)
19×10235-19 = 2(1)235<236> = 3 × 7 × 123970339636709<15> × [8109125200729283264879591778746247432230918953627198800837923690829721258895565432477108254565827118006445658961414925382609103616755823635235096794597795251763596357801825625609109716438338146042765622043366635947337999<220>] Free to factor
19×10236-19 = 2(1)236<237> = 149 × 49104094759<11> × 149999915987743483<18> × 1535631710844467161<19> × 354222057920211432047<21> × [353633520492373084345366357072297319481277424954446246109124614673259917893931499991483176875890646379343530438392146838580562974374138504068493623160299125506438119761<168>] Free to factor
19×10237-19 = 2(1)237<238> = 23 × 29 × 277 × 421 × 563 × 1667 × 106915481 × 245110641579954794267938896908495077446121<42> × [1103510925045775292301325183860744791583563557648509098272547630900392272242380597906288092120502744856759495427670229355155624313639430758348233734517803012870539421119013669<175>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1108486176 for P42 / August 31, 2012 2012 年 8 月 31 日) Free to factor
19×10238-19 = 2(1)238<239> = 3 × 127 × 15692623 × [3530941924056324290125706263401066234299393760350990979043328236798335134389592669756700950532559823036001395751385324825103493240724667196206003973034399685229818679137032078094854539476968594160472193221801738014718154454518397<229>] Free to factor
19×10239-19 = 2(1)239<240> = 2003 × 79229929 × 171199783 × 7770297835264131191980885535228903723085015137757291422631730337264500895655512461435855419602088709410659368706819288843282913471659022802636995852670750002733634165582179933570376717797140511627115043959833165821841091<220>
19×10240-19 = 2(1)240<241> = 16889 × 61010206729<11> × 21051848303873<14> × 7023146800758140773682817229261<31> × [13857429603337428045095198142785051127657291523266788071638756638847147783824068814321547081801182501748035466691645070209549411414576185515347481397943986698645879846533611241464227<182>] (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=16347922 for P31 / August 26, 2012 2012 年 8 月 26 日) Free to factor
19×10241-19 = 2(1)241<242> = 32 × 7 × 335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097<240>
19×10242-19 = 2(1)242<243> = 211 × 13062280608071494001849554864717<32> × [76596623741600327123328552830570973111283196688322192730003221214095130375308547573957434948514451783867301579302500642823410344883547967351613640680677634627348620176279919192802010281640301912009944722440753<209>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=77662217 for P32 / August 28, 2012 2012 年 8 月 28 日) Free to factor
19×10243-19 = 2(1)243<244> = 113 × 431 × [43346633905737041067513523009077697700575141389875595160690534692136236188963947007599349344211057041888818165433569002137673472088189867382114266289779091865205656963864877135106895080613332055748334006346859764513707802622243211118639737<239>] Free to factor
19×10244-19 = 2(1)244<245> = 3 × 31 × 613 × 3271 × 68441224301967409631436793<26> × 1654128919416464833731501773474991286067006326058533276025632558694216338475868656807440953528158107965351940611983503583923823236978991814698961948382250004337415747156446370312654944870937298645929767021075993<211>
19×10245-19 = 2(1)245<246> = 6011 × 61253639 × 1519126663<10> × 54650208762937897<17> × 63468313429598699<17> × [108815233786633135248598586459028896891358326337662441525611415612852704952525738154999882583890345472159566198699889388531200175376464360319639655583582752985626647241862999921055747567193031<192>] Free to factor
19×10246-19 = 2(1)246<247> = 172 × 70201291 × 113903191 × 913549867321883783212524273467603003933422785442966250558223850398658044390508374390578246708483093697925972788572003594951952086402533916093525555506972860452717035480479592666108529638878584093454833876323415163617034806169779<228>
19×10247-19 = 2(1)247<248> = 3 × 7 × 47 × 367 × 756281 × 5717191 × 63553191437<11> × 5171145047167712206472918233958360353<37> × 41014545141778826701651591976487804589272729803360388624967488771249841393641142960622284495319374909273485442177253704007832893293600358488698996794109130339580822847994582628304889<182> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1620567710 for P37 x P182 / September 10, 2012 2012 年 9 月 10 日)
19×10248-19 = 2(1)248<249> = 1803041753<10> × 44944130041423525921<20> × 157660318639412494000609901<27> × 16523799983905587003635085398746283522347425011660480895621463925234395987613094468586754335777747859129089499012042526170740552347460282404712154958079642243198421512446738253357245456004102747<194>
19×10249-19 = 2(1)249<250> = [2111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<250>] Free to factor
19×10250-19 = 2(1)250<251> = 35 × 15479104349167081551904427539721<32> × [5612534065119998625180211093779373751742629134250866692097527970813800930754665976757250758210653259068200556852309269907784681911622604429063340938752890334506521990184948410097854294979284637490686362590974310813237<217>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3329904425 for P32 / August 29, 2012 2012 年 8 月 29 日) Free to factor
19×10251-19 = 2(1)251<252> = 67 × 10133 × 36458909 × 86029432381<11> × 18375971166041<14> × 4868843452867921<16> × 1108080745287492066129789522421861982797520404590180949264337071746003890112026628913176876727050280424490084746798916017996973061148547111352325293860995947210991336083356742703553720844520012983529<199>
19×10252-19 = 2(1)252<253> = 591073480615192535767063<24> × [3571655945236884986403594924442900581674293534519571540234011626932592037038193425857942670563736078809466049816217134472706763081696349156453532923811949588752585643287929233459906862647492365601730149592335801568889368942662097<229>] Free to factor
19×10253-19 = 2(1)253<254> = 3 × 7 × 761 × [1321013147557168582135730624561110763476072280277273706971473068713541775302616301302240855460303554915907084106821294731938621557544027977667925105507234285158069652156380145867662293417878174776992122590020093305244422195801959271078850579507609731<250>] Free to factor
19×10254-19 = 2(1)254<255> = 157 × 162965023357951<15> × 21194062583002489<17> × 389316511750702349459798871719354930291367258318703294519869984593840464183839261057608115746329439369362096852899018162200666696693979628289657844092321958017070322665114084155076156179229414348814526786227906930563792757<222>
19×10255-19 = 2(1)255<256> = 151 × 105727518453415467841273199223388857899<39> × 132234904308892374559370983252288641613359580036326333561307681668237633999268557645527117852813543119100076173754190937352347620082883780618800481024566704777542488443469866534665818483854416287508585558066090081139<216> (Serge Batalov / GMP-ECM B1=3000000, sigma=1521174945 for P39 x P216 / September 16, 2015 2015 年 9 月 16 日)
19×10256-19 = 2(1)256<257> = 3 × 1625851 × 111845219303<12> × 1593492240089857<16> × 24285201765709138855580445726046530498668270041440875403666973582674542824595845560205486482024420752374985716858433282615605000907229460668575240417427645232716985500863570977054345331604788000542685690521472183825194050097<224>
19×10257-19 = 2(1)257<258> = 400399857751559513<18> × 7826710400921156827<19> × 371416311221999326601642251<27> × [181374797243530009624992500046945016348689941904948888278986228765834262485814114280249927009522605038081236023086370220776276621173654475739888168408459463038027670144041763625736013125753911111<195>] Free to factor
19×10258-19 = 2(1)258<259> = 221509 × 252979 × 781589 × [48201083969537748111367335590226245160838585487699881313683129630363813542450427648835569416702085818132786267441657779790189275772780902010237724492214378096100635460760562964337156619818162092704970371063689900709913337342944084298370951509<242>] Free to factor
19×10259-19 = 2(1)259<260> = 32 × 72 × 23 × 31 × 782608576910843<15> × 4039452625843993<16> × 13045895432038757<17> × [1627953353502125233824977310111866640696661407320252408144577792116310058285093289545304545758262921248909356290022516218494208513112492953124178654425997251819887454342142010783223353256046909573895152764969<208>] Free to factor
19×10260-19 = 2(1)260<261> = 8410984793479<13> × [25099452239502874760266997203800938966991954867742199320543058510862175813282097429247960173134192252983167772793305744351869221072620450072109162060468229226549599031190859647434710246062132537165241029322232024877917523443867272413638126479606209<248>] Free to factor
19×10261-19 = 2(1)261<262> = 71 × 97 × 3498297059<10> × 504096528623<12> × 18844743008659015051949<23> × 9132541127746495772137396153<28> × 1010017179681053163026382993831932880785410362299224297797271279269472862723761621863543403280437172064202051392620898148506487527752517868632322396336958919597041272572387817196512829057<187>
19×10262-19 = 2(1)262<263> = 3 × 17 × 2447 × 2041427 × 153789859 × 194607784292713739159839301<27> × [2768759188395807225128276834747010772162619110716423649999009900053912041868292819372001756046712153483270637979261197582990035601235859996082723054779378236897462141493458535810046609618091961034030616773267537958991<217>] Free to factor
19×10263-19 = 2(1)263<264> = 1201 × 33863 × 3511905385454697997943183<25> × [1478086486586502106558157437663661814501363127101334442191038549924321294098370339093907103537511391137552467168099825139173426972015119188864279459698890348624744153632252302687832259141301364220521307819723361782362638764438508959<232>] Free to factor
19×10264-19 = 2(1)264<265> = 811 × 10429 × 15803 × 15794578103162464516606508167815023654836687407941861038255710290552320221148224101434824470069731773728964202253035005302251960396824101279878162549256118271784362825995830246063072396633692107754441426384015103562491401268487316571312879658200013359323<254>
19×10265-19 = 2(1)265<266> = 3 × 7 × 29 × 12713 × 313883 × 10426777 × 952158112799<12> × 322980822484305807824888186443349<33> × 2709206216795892295962070252669408072202379638010840795335373687410116763678548766907711468135713217527263718066400596164084114294710653034242777758502422102722437469736700378664270957742704984930379663<202> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1938940508 for P33 x P202 / September 10, 2015 2015 年 9 月 10 日)
19×10266-19 = 2(1)266<267> = 993703 × 2366407 × 3991084454470601<16> × 55527271515385183480093<23> × 405105181050430106221264779849684722733065171316447007814844486851458538463701977912793662067823270756318616048154760402409384376999178783192986761767107031452013187258826161139037655151571280455567641671523980428587<216>
19×10267-19 = 2(1)267<268> = 8265372040927591<16> × [255416344316690819990003445350750820556501266302379964616864382229573450868449818049157636700534405675273838153373453750133342548676269116016941200570064188657274851512953901385588287296375818808221313770042261092199285938293575381311381989477282498721<252>] Free to factor
19×10268-19 = 2(1)268<269> = 32 × 59 × 912227 × [43582651462508207699969397156734293598563660593951535448844272989100802581339338659363183192707015449148241338637946668264030482185383279575818714793929847666317598760013742967949795459196166581548945522071722403747750372774861952737127143457850406789217545503<260>] Free to factor
19×10269-19 = 2(1)269<270> = 2531 × 20271991500559066493<20> × 50056435870206574714618636061<29> × 122963853080362185849207717678791<33> × [668474959978210043925154824448772980447423138522038506299200192353195460705489832601059945863297151680575570388592540479730233710829157694888293570131729526089485961254182004069336998867<186>] (Serge Batalov / GMP-ECM B1=3000000, sigma=3002326936 for P33 / September 16, 2015 2015 年 9 月 16 日) Free to factor
19×10270-19 = 2(1)270<271> = 107 × 8162797 × 4743091043<10> × 12179476115692999<17> × [41840633222606330949567561257038722641250509560721736218394177641390248512889288898531495603201946268424039577526720934066543950828976468144046805879361016246379176948641805347886808351371519638345711330989905502667653648283610275500037<236>] Free to factor
19×10271-19 = 2(1)271<272> = 3 × 7 × 47196559 × 150536912513021<15> × [141494140692176015037391715039670019919570431483487353497877554338979490316622690876007772969650746900516753962214809767468858870590052776482381173302101093594456062203844591078166496058738892656060051577250606511595780609860080743154156384504709769<249>] Free to factor
19×10272-19 = 2(1)272<273> = 211 × 1210017329<10> × 65853879375812519<17> × 529131990365320594154510131729<30> × [23729668070993056864848425967774592908514717895234950114816633608640390667704044870263954016182868460564893796774560528192157722613207192440699588491882144293358962592590257785718683835169290842957893754382065596219<215>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3278022956 for P30 / September 10, 2015 2015 年 9 月 10 日) Free to factor
19×10273-19 = 2(1)273<274> = 288136169759077<15> × 417549479495336708633416442777303<33> × [17547100607351911430630705690798749760171488172679948058792445683569720032447108547033719978074369321494466594353221704578179376573764554723384162518387802037944796792342831290387851246829752778813128986910687958518143111656381<227>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=902491616 for P33 / September 14, 2015 2015 年 9 月 14 日) Free to factor
19×10274-19 = 2(1)274<275> = 3 × 31 × 24577938689<11> × 3350252390036673199471455313<28> × 27594945196453138524935785602583<32> × 1449045072573240172845872827020164569<37> × 68943564027623697325438187068229072184864581830680036959432189326791155627402227588802063265231358942321570836681351934061004038188958738936251346343760184657257463293<167> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2557586251 for P32 / September 14, 2015 2015 年 9 月 14 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=2031268925 for P37 x P167 / September 16, 2015 2015 年 9 月 16 日)
19×10275-19 = 2(1)275<276> = 13769687 × 224587487 × 68265530174019151572348264367390832452786454053135826473926714171589237853549467987704766525461379829939245040440206942771416122967365512278709556365017019049008582639685335255936503857760235565928795513132725361910197849033601505803832729034354044178844152719<260>
19×10276-19 = 2(1)276<277> = 11768767 × 980392251527327<15> × 3290569255406909237915099309145035381437<40> × 55604407953616736791228582646920525740802371384547728627503316819574682304796786357629337822881847093011685616758107060907075934965091622614893306773957709951504552155733604824406812766209136467520811112178793850867<215> (Serge Batalov / GMP-ECM B1=3000000, sigma=1358876756 for P40 x P215 / September 16, 2015 2015 年 9 月 16 日)
19×10277-19 = 2(1)277<278> = 33 × 7 × 397 × 6577 × [42779030576323136913794950364986962598473013896309446480234341025798045466575439888626514061877466248966538269076382350634731130569765584347308878100247033388550862385865937625346851563733955156352989918050392855497159094225617128263090085197769402548705159585564848271<269>] Free to factor
19×10278-19 = 2(1)278<279> = 17 × 61 × 2150131 × 1683391637<10> × 56244783454311780916474508839226616363173763979451252578609520917684996953971126175841322707853605749988385155091827017018559348887335820010462976542849042216586124244926781462639155374746552613553068365705329163358397018717069441443806558227540452808816606349<260>
19×10279-19 = 2(1)279<280> = 798599 × 273592123839046555576387267019657<33> × 9688909284341476796085767444525676621311<40> × 997249549987370063657026560349566897945894326682257341967479816823214421695282560047454994098589673063414510172809530711405801651099101912390552009114152035552642481275115906045702169234263096387056007<201> (Serge Batalov / GMP-ECM B1=3000000, sigma=3706356816 for P33, B1=3000000, sigma=4044899384 for P40 x P201 / September 16, 2015 2015 年 9 月 16 日)
19×10280-19 = 2(1)280<281> = 3 × 127 × 5633131547<10> × [9836400940897560021188926621793238625550963972498270704866223619423492985868702435621535777433374134525725346246790148004489705095420603908458282393690210815811827674695594986510814839284754471756398986542767142556442140389896321852277702594831700792528183034893559273<268>] Free to factor
19×10281-19 = 2(1)281<282> = 23 × 499 × 27107 × [678580310460642168598156054936163341232247435941528507527954425714910009191759595999083489432430074689216887539182651251780616609935049110576733402393737260027443837781861024080239827396226515823420861625413467777921640375070752131426737378035059859610283877604939408365849<273>] Free to factor
19×10282-19 = 2(1)282<283> = 167 × 383 × 4721 × 276366187 × 1563799031<10> × [16176926028705666956048976219733602793184248942072968157421631318421869209270873956389894184657101515883073582157544921570461252753731974076431418362730969110745474793908337351259724303591054607670720669698147073169779447529220445939572507700935384852446523<257>] Free to factor
19×10283-19 = 2(1)283<284> = 3 × 7 × 3089 × [325442216021691580124730011424734636129909681220785137910421173613145124961246683486890673682515702586923046618741018223051243446193268142118902882904177821626834252279380152478242475005181382649819036999354254129262222496278825187857237064100126579893494752672480092357075199419<279>] Free to factor
19×10284-19 = 2(1)284<285> = 67 × 13000824590099<14> × [242362481264120558937293564350591018014911746855839760139371794758547165693667728912057304606130297001023164080155121895827610556586720124881251912527323601020494013653166533399426724070208775050456432793245689744376566376985593390875012056480592862103224460275906539967<270>] Free to factor
19×10285-19 = 2(1)285<286> = 21111202597993997<17> × 51530944911284901589600907<26> × 2236774417155264625421314124012657<34> × 5344665837128870174294154490646189<34> × [162325693815775330425456228145965289448296757069212784050968967033938784140738972773956516748110157342647694599280615761050463265887087975249162441123520068189550485489677155933<177>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3551771066 for P34(2236...), B1=1000000, sigma=3359057423 for P34(5344...) / September 14, 2015 2015 年 9 月 14 日) Free to factor
19×10286-19 = 2(1)286<287> = 32 × 2345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<286>
19×10287-19 = 2(1)287<288> = 956237 × 1744993 × 8444281 × 148869269916431<15> × 456262448558236298959913832047<30> × [220581657704824069314194550983432917482243365972805876509305030276216958308993095086648072551024681482059116395956721036432201477729549653009860878773598065976631998533099493901805946214936939398862388573311509231382248167963<225>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3234282631 for P30 / September 14, 2015 2015 年 9 月 14 日) Free to factor
19×10288-19 = 2(1)288<289> = 1601 × 1229577449<10> × [1072417445379419927820647613333658117017965706724600961937244633743819299694778437133731139973198123972681729870035521920856386481030854073242198583446920508383073226818193193953545615708325408436382288584249293211655119981596392556624819500034282459558969365445436431915677039<277>] Free to factor
19×10289-19 = 2(1)289<290> = 3 × 7 × 31 × 77490845670617134411<20> × 418484813599830722059240901141074027995871728532467064350861877393769290625077290428772722115661297761724964941926666619239092625802595429390821738562709789042263107473655208861166226622294756554582297883740329771435742175854102261710857519555239152399429705486791551<267>
19×10290-19 = 2(1)290<291> = 14969 × 422869 × 3613693 × 158908199 × 305055732856946989223790036275909<33> × [190386304189545789971737678313973077142996267444852402111780686433442823621070136922721003662152577942106682771801338723346437697151636566536267435061496956553097668172523212455146988563776170815147939703269409898182715684741981193877<234>] (Serge Batalov / GMP-ECM B1=3000000, sigma=1664787817 for P33 / September 16, 2015 2015 年 9 月 16 日) Free to factor
19×10291-19 = 2(1)291<292> = 15297921923<11> × 2770577611414411679<19> × [49809058308119786469125484821688850198995194604194442642909029876877810433114454846564525495546312435788052710178965099611113610390724194505489155923312210249404853292055977173893568609256673364061224466497358671707505341613392316722438317032839512246765614272883<263>] Free to factor
19×10292-19 = 2(1)292<293> = 3 × 1761077 × 4545197 × [879141497613454676556616299053756362409004592689582647722290983552375189514938099376275914548305254251803515723425113504797071906926771197570529720174395503433006454485712278039782948036347488877136678079731076901283488077359970816209324277527160771410737478262017847614936097373<279>] Free to factor
19×10293-19 = 2(1)293<294> = 29 × 47 × 4301199229<10> × 11080086596333<14> × [3249993719830341311098060747272390070243704232859745632331292169225142218415768825936123241626125881504045791034043752921482567264573001495635672024768385594756628445137849052984680426939410478527952221021816887815445175869725965144387312613324712712999979098158074021<268>] Free to factor
19×10294-19 = 2(1)294<295> = 17 × 16441457 × 2141881619<10> × 46008040134169592729<20> × [76646560695771130641107068263075472621323808698090588685265110321577335489396790484371648578323494658722576556405392322633132299169841220987777079045990154649976363965463558164269093258379324647789752977247046319660708680503600837770538196124108286653115269<257>] Free to factor
19×10295-19 = 2(1)295<296> = 32 × 7 × 613 × 589021 × 4283817659540359<16> × [216644821269739307696889003122320988328592260844630044493029985741616149156632609724965629147907281260092747706806610175342094984428051573280242271184851614976267020261219028429690314571496713768307559957869968819429372315323899313222790681132958768696963751877881754671<270>] Free to factor
19×10296-19 = 2(1)296<297> = 71 × 1256671464772399589<19> × 12341769557151248382143493443<29> × [191713879680595479320019087379068058098603787198931279902582983780538570147490071067097869739233100082917744872977606107978401495330464141475131381764987278020608939440701557657023847192111288391131292758678421753665162582762682544950222857430563983<249>] Free to factor
19×10297-19 = 2(1)297<298> = 839 × 109650529 × 4368932182633<13> × [5252464140507063941676687473301750611139938119101261791430228943977123297241467710433176797148568973586946236201897055468988088469324944241453558674179740318835489462872945621736589000274885638462976922117737217716922628859638571492650516103867195446829957942448557789169657<274>] Free to factor
19×10298-19 = 2(1)298<299> = 3 × 319859227 × [22000419068845673903404503122359628027979436832181918069341914082212913736070015066462462991686767995087529668284470146102857420577199847472391462501211625316148960233174817986529546127606433054491928216399513267869671419661865927779025855761969427372614256449250523065376622813626186363031<290>] Free to factor
19×10299-19 = 2(1)299<300> = 1804598825209<13> × 174717249839794784489<21> × 346652166398113879999<21> × 20674068899055240932617<23> × 20104313159622497526980383<26> × 12629898343818477758724949796739803<35> × [367947335846818825868212876075491774536898943227128762103226767490035951295621029106232973875617080919849169855405762846827608591233769903505411431395027617609786333<165>] (Serge Batalov / GMP-ECM B1=3000000, sigma=2535271425 for P35 / September 16, 2015 2015 年 9 月 16 日) Free to factor
19×10300-19 = 2(1)300<301> = 701 × 3719 × 53597 × 1684229270268551<16> × [8970676655869464904467917985700156163379048545468342332640561568778957605087974049697057274748704778132844958109848300510427386133507453427495215520766893135967182724970525552562751983913171934243457384820564828391809167713012278126487714966877818325823485865959401889444127<274>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク