Table of contents 目次

  1. About 399...991 399...991 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
    4. Algebraic factorization 代数的因数分解
    5. Related sequences 関連する数列
  2. Prime numbers of the form 399...991 399...991 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 399...991 399...991 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 399...991 399...991 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

39w1 = { 31, 391, 3991, 39991, 399991, 3999991, 39999991, 399999991, 3999999991, 39999999991, … }

1.3. General term 一般項

4×10n-9 (1≤n)

1.4. Algebraic factorization 代数的因数分解

  1. 4×102k-9 = (2×10k-3)×(2×10k+3)

1.5. Related sequences 関連する数列

2. Prime numbers of the form 399...991 399...991 の形の素数

2.1. Last updated 最終更新日

August 27, 2019 2019 年 8 月 27 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 4×101-9 = 31 is prime. は素数です。
  2. 4×1017-9 = 3(9)161<18> is prime. は素数です。
  3. 4×1019-9 = 3(9)181<20> is prime. は素数です。
  4. 4×1029-9 = 3(9)281<30> is prime. は素数です。
  5. 4×1043-9 = 3(9)421<44> is prime. は素数です。
  6. 4×10119-9 = 3(9)1181<120> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / November 24, 2004 2004 年 11 月 24 日) (certified by: (証明: Makoto Kamada / PFGW / January 1, 2005 2005 年 1 月 1 日)
  7. 4×10173-9 = 3(9)1721<174> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / November 24, 2004 2004 年 11 月 24 日) (certified by: (証明: Makoto Kamada / PFGW / January 1, 2005 2005 年 1 月 1 日)
  8. 4×10949-9 = 3(9)9481<950> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  9. 4×101609-9 = 3(9)16081<1610> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / August 11, 2006 2006 年 8 月 11 日)
  10. 4×105579-9 = 3(9)55781<5580> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  11. 4×1019679-9 = 3(9)196781<19680> is PRP. はおそらく素数です。 (Sinkiti Sibata / PFGW / November 19, 2007 2007 年 11 月 19 日)
  12. 4×1034147-9 = 3(9)341461<34148> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  13. 4×1043493-9 = 3(9)434921<43494> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  14. 4×1097799-9 = 3(9)977981<97800> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤100000 / Completed 終了 / Erik Branger / November 22, 2013 2013 年 11 月 22 日
  3. n≤200000 / Completed 終了 / Dylan Delgado / August 26, 2019 2019 年 8 月 26 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 4×102k-9 = (2×10k-3)×(2×10k+3)
  2. 4×106k+3-9 = 13×(4×103-913+36×103×106-19×13×k-1Σm=0106m)
  3. 4×106k+4-9 = 7×(4×104-97+36×104×106-19×7×k-1Σm=0106m)
  4. 4×1013k+5-9 = 53×(4×105-953+36×105×1013-19×53×k-1Σm=01013m)
  5. 4×1013k+7-9 = 79×(4×107-979+36×107×1013-19×79×k-1Σm=01013m)
  6. 4×1015k+1-9 = 31×(4×101-931+36×10×1015-19×31×k-1Σm=01015m)
  7. 4×1016k+2-9 = 17×(4×102-917+36×102×1016-19×17×k-1Σm=01016m)
  8. 4×1018k+12-9 = 19×(4×1012-919+36×1012×1018-19×19×k-1Σm=01018m)
  9. 4×1021k+20-9 = 43×(4×1020-943+36×1020×1021-19×43×k-1Σm=01021m)
  10. 4×1022k+2-9 = 23×(4×102-923+36×102×1022-19×23×k-1Σm=01022m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 9.38%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 9.38% です。

3. Factor table of 399...991 399...991 の素因数分解表

3.1. Last updated 最終更新日

July 16, 2021 2021 年 7 月 16 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=203, 205, 207, 209, 211, 213, 225, 235, 239, 243, 245, 247, 253, 259, 265, 267, 271, 279, 281, 283, 287, 289, 293, 299, 301, 303, 307, 309, 313, 315, 317, 319, 321, 323, 327, 329, 333, 335, 337, 341, 343, 345, 349, 351, 353, 355, 357, 359, 361, 365, 367, 369, 371, 373, 377, 379, 381, 385, 387, 389, 393, 395, 397 (63/400)

3.4. Factor table 素因数分解表

4×101-9 = 31 = definitely prime number 素数
4×102-9 = 391 = 17 × 23
4×103-9 = 3991 = 13 × 307
4×104-9 = 39991 = 7 × 29 × 197
4×105-9 = 399991 = 53 × 7547
4×106-9 = 3999991 = 1997 × 2003
4×107-9 = 39999991 = 79 × 506329
4×108-9 = 399999991 = 83 × 241 × 19997
4×109-9 = 3999999991<10> = 132 × 23668639
4×1010-9 = 39999999991<11> = 7 × 28571 × 200003
4×1011-9 = 399999999991<12> = 175961 × 2273231
4×1012-9 = 3999999999991<13> = 19 × 105263 × 2000003
4×1013-9 = 39999999999991<14> = 67 × 2551 × 234031723
4×1014-9 = 399999999999991<15> = 59 × 257 × 1319 × 20000003
4×1015-9 = 3999999999999991<16> = 13 × 89 × 1361 × 4243 × 598681
4×1016-9 = 39999999999999991<17> = 7 × 31 × 223 × 743 × 4133 × 269179
4×1017-9 = 399999999999999991<18> = definitely prime number 素数
4×1018-9 = 3999999999999999991<19> = 17 × 53 × 211 × 233 × 2393 × 37735849
4×1019-9 = 39999999999999999991<20> = definitely prime number 素数
4×1020-9 = 399999999999999999991<21> = 43 × 79 × 337 × 1123 × 1229 × 253164557
4×1021-9 = 3999999999999999999991<22> = 13 × 347 × 2437 × 363857754541013<15>
4×1022-9 = 39999999999999999999991<23> = 73 × 47 × 1171 × 1733 × 336463 × 3633919
4×1023-9 = 399999999999999999999991<24> = 5717 × 69966765786251530523<20>
4×1024-9 = 3999999999999999999999991<25> = 23 × 97 × 26161 × 34267 × 2000000000003<13>
4×1025-9 = 39999999999999999999999991<26> = 369877 × 759263431 × 142432855693<12>
4×1026-9 = 399999999999999999999999991<27> = 617 × 64879 × 499621 × 19999999999997<14>
4×1027-9 = 3999999999999999999999999991<28> = 13 × 100197068443<12> × 3070871358550249<16>
4×1028-9 = 39999999999999999999999999991<29> = 7 × 8431 × 3388854059<10> × 199999999999997<15>
4×1029-9 = 399999999999999999999999999991<30> = definitely prime number 素数
4×1030-9 = 3999999999999999999999999999991<31> = 19 × 71 × 28169014084507<14> × 105263157894737<15>
4×1031-9 = 39999999999999999999999999999991<32> = 31 × 53 × 59747 × 407480025252759604989271<24>
4×1032-9 = 399999999999999999999999999999991<33> = 29 × 293 × 3067 × 767450903 × 20000000000000003<17>
4×1033-9 = 3999999999999999999999999999999991<34> = 13 × 79 × 3894839337877312560856864654333<31>
4×1034-9 = 39999999999999999999999999999999991<35> = 7 × 17 × 1680672268907563<16> × 200000000000000003<18>
4×1035-9 = 399999999999999999999999999999999991<36> = 445668752387<12> × 897527587154364423044093<24>
4×1036-9 = 3999999999999999999999999999999999991<37> = 107 × 1279 × 112957699 × 17705743103<11> × 14614221098551<14>
4×1037-9 = 39999999999999999999999999999999999991<38> = 317 × 126182965299684542586750788643533123<36>
4×1038-9 = 399999999999999999999999999999999999991<39> = 241 × 21977 × 910042316967739<15> × 82987551867219917<17>
4×1039-9 = 3999999999999999999999999999999999999991<40> = 13 × 1493 × 2166811449521<13> × 95112086615723827961719<23>
4×1040-9 = 39999999999999999999999999999999999999991<41> = 7 × 173 × 331 × 431 × 2339 × 4877 × 81971 × 861381217 × 287456395901<12>
4×1041-9 = 399999999999999999999999999999999999999991<42> = 43 × 1184658156896449<16> × 7852328983886332499055013<25>
4×1042-9 = 3999999999999999999999999999999999999999991<43> = 11850947 × 50267717 × 39786967050841<14> × 168762884518849<15>
4×1043-9 = 39999999999999999999999999999999999999999991<44> = definitely prime number 素数
4×1044-9 = 399999999999999999999999999999999999999999991<45> = 53 × 377358490566037735849<21> × 20000000000000000000003<23>
4×1045-9 = 3999999999999999999999999999999999999999999991<46> = 13 × 22277 × 221071 × 45219253 × 1381671421343196669691329557<28>
4×1046-9 = 39999999999999999999999999999999999999999999991<47> = 7 × 232 × 31 × 67 × 79 × 191 × 4372157 × 174456743 × 884907301 × 510655527299<12>
4×1047-9 = 399999999999999999999999999999999999999999999991<48> = 35267 × 12227186849<11> × 927608937918464402236039505790877<33>
4×1048-9 = 3999999999999999999999999999999999999999999999991<49> = 19 × 211 × 11471 × 43490325653166523<17> × 2000000000000000000000003<25>
4×1049-9 = 39999999999999999999999999999999999999999999999991<50> = 83 × 2683 × 27525479 × 6525688527105038387100875841973862161<37>
4×1050-9 = 399999999999999999999999999999999999999999999999991<51> = 17 × 61 × 181 × 20563 × 809707 × 1201200837522317<16> × 106554713181350794099<21>
4×1051-9 = 3(9)501<52> = 13 × 9533 × 11478529 × 20778496481<11> × 346549605163<12> × 390500219882387917<18>
4×1052-9 = 3(9)511<53> = 7 × 389 × 17209 × 3793020318169<13> × 7532632618541<13> × 29876158840183612897<20>
4×1053-9 = 3(9)521<54> = 157 × 163 × 569 × 761 × 1237 × 1665067809413<13> × 17525652127950822486483289769<29>
4×1054-9 = 3(9)531<55> = 113 × 1433 × 6053 × 8860097 × 335676199 × 686898522953<12> × 1997620911401736077<19>
4×1055-9 = 3(9)541<56> = 1213 × 435439 × 27926295591401<14> × 2711805491993242645187238684535013<34>
4×1056-9 = 3(9)551<57> = 509 × 62658571 × 944220544009<12> × 21181492106794667<17> × 627092674117858723<18>
4×1057-9 = 3(9)561<58> = 13 × 53 × 541999 × 15204376720919<14> × 704488101605429696569025928135183199<36>
4×1058-9 = 3(9)571<59> = 7 × 541 × 2659 × 139031879314767479609237<24> × 28571428571428571428571428571<29>
4×1059-9 = 3(9)581<60> = 79 × 89 × 14719049 × 1382642844254719<16> × 2795459032091734897902450212049031<34>
4×1060-9 = 3(9)591<61> = 29 × 199 × 5237 × 8837 × 1632417869<10> × 606070113479<12> × 24023856568681<14> × 630121869948239<15>
4×1061-9 = 3(9)601<62> = 31 × 48079 × 51067383403<11> × 525532120638669805503793461936388538314810453<45>
4×1062-9 = 3(9)611<63> = 43 × 11827 × 8898053 × 723962431 × 3104695253724121<16> × 39326649113872278841672877<26>
4×1063-9 = 3(9)621<64> = 13 × 5879 × 397951 × 41150327719<11> × 201555190323689<15> × 15856827214779275189453215813<29>
4×1064-9 = 3(9)631<65> = 72 × 227 × 599 × 2371 × 6883 × 13326490787<11> × 1349249466612248603<19> × 20459445058501213949971<23>
4×1065-9 = 3(9)641<66> = 71 × 907 × 2917 × 5335216441<10> × 399122198972580674414039835959554050436938872399<48>
4×1066-9 = 3(9)651<67> = 17 × 19 × 6299 × 11813 × 376757 × 1241427542057<13> × 1273584854099<13> × 279392706425459492737396141<27>
4×1067-9 = 3(9)661<68> = 3169 × 1035361 × 7119289 × 1099261249<10> × 1557788195773317123427567075719367853357359<43>
4×1068-9 = 3(9)671<69> = 23 × 47 × 241 × 10055497 × 3229088693532413<16> × 25699991466148591<17> × 1839927713575003331301821<25>
4×1069-9 = 3(9)681<70> = 13 × 3859451384609369<16> × 189256353195151619017207481<27> × 421250662534968233939990563<27>
4×1070-9 = 3(9)691<71> = 7 × 53 × 314663749 × 49300544393<11> × 34750228004651<14> × 200000000000000000000000000000000003<36>
4×1071-9 = 3(9)701<72> = 151 × 207997 × 1022933782794153551<19> × 12450260872825111678178680692319362199954369403<47>
4×1072-9 = 3(9)711<73> = 59 × 79 × 1613 × 120943 × 3547890075714688351659371161<28> × 1239925604463732176069435833849969<34>
4×1073-9 = 3(9)721<74> = 1031 × 38797284190106692531522793404461687681862269641125121241513094083414161<71>
4×1074-9 = 3(9)731<75> = 8573 × 5049497107807891<16> × 3960790465465279655633<22> × 2332905633967106030561063804969089<34>
4×1075-9 = 3(9)741<76> = 13 × 373 × 401 × 8443 × 26858801 × 3713923013<10> × 2442570608687872717356988936002096246082203654401<49>
4×1076-9 = 3(9)751<77> = 7 × 31 × 5653633 × 348331826708401<15> × 2645922409342926726059<22> × 35375483339650805066405972938109<32>
4×1077-9 = 3(9)761<78> = 6909201596477648329<19> × 172076998829363467934536230121<30> × 336441300962383991893868484199<30>
4×1078-9 = 3(9)771<79> = 211 × 2341 × 24024727 × 88033849 × 4860567927377<13> × 17127126974796668443<20> × 45993497522560350084477797<26>
4×1079-9 = 3(9)781<80> = 67 × 55843 × 155464245025206671<18> × 3651737033218895580218723<25> × 18831565676508989772214639824667<32>
4×1080-9 = 3(9)791<81> = 6770723 × 2359303200251<13> × 9976145988074011<16> × 1252019786340070350611<22> × 2004782209874335297654727<25>
4×1081-9 = 3(9)801<82> = 13 × 719 × 769 × 556495182212521892868277729494091621088551878498180886811245042497450208637<75>
4×1082-9 = 3(9)811<83> = 7 × 17 × 19603 × 260809 × 16954274587<11> × 329615502427472542979<21> × 11764705882352941176470588235294117647059<41>
4×1083-9 = 3(9)821<84> = 43 × 53 × 173 × 4334590831<10> × 234056903434069220367254497556350798823218530337710050465501450978683<69>
4×1084-9 = 3(9)831<85> = 19 × 6337 × 98327 × 10311465629<11> × 29391458183<11> × 557414635291<12> × 473476023375163705877<21> × 4224078731047546560439<22>
4×1085-9 = 3(9)841<86> = 79 × 643 × 1278163 × 124449733 × 5271060797<10> × 11374658929<11> × 1146546591356161409<19> × 72013447150613939027878801921<29>
4×1086-9 = 3(9)851<87> = 109 × 131 × 6263 × 8833091 × 23949661 × 2187467868975357653<19> × 1459842158613772062977<22> × 6620947236743160286544093<25>
4×1087-9 = 3(9)861<88> = 132 × 1013 × 4853242517<10> × 84485683303708399<17> × 716034478303081832491184053<27> × 79581989493293634276223487797<29>
4×1088-9 = 3(9)871<89> = 7 × 29 × 419 × 1091 × 1201 × 218809 × 1115911 × 22068793 × 33872427605755993<17> × 774778366537166689<18> × 2537961573918528140906387<25>
4×1089-9 = 3(9)881<90> = 107 × 479 × 6797351561328298574237479322906911<34> × 1148156180270793396284227336382345195326385956160677<52> (Makoto Kamada / GGNFS-0.54.5b)
4×1090-9 = 3(9)891<91> = 23 × 83 × 3769 × 5281 × 11125019 × 1137872495299<13> × 126823666282673<15> × 376099532000829380399<21> × 174346928210271221879232893<27>
4×1091-9 = 3(9)901<92> = 31 × 723799 × 890306831 × 10009707608420736556767604383961<32> × 200041094280928247178817127740041862433271929<45> (Makoto Kamada / GGNFS-0.54.5b)
4×1092-9 = 3(9)911<93> = 601 × 647 × 10825259 × 734482643 × 6338564899<10> × 4185387670524992598018391019<28> × 4876798072509021078191981031219049<34>
4×1093-9 = 3(9)921<94> = 13 × 12271757 × 25073207340424659020521047450035695158215103810506327032689150191965803454851029701151<86>
4×1094-9 = 3(9)931<95> = 7 × 5443 × 40762871 × 176905403 × 987525370892477<15> × 130400901777472032491<21> × 1130547719902031482893713540224658938201<40>
4×1095-9 = 3(9)941<96> = 63311 × 4783391 × 22339434383766054987787<23> × 59125219091727708259291180183537020669016066641432440106136693<62>
4×1096-9 = 3(9)951<97> = 53 × 6871 × 10949 × 1194151159441<13> × 31600563093091571718561868639841689<35> × 26584934299123232854555060648941702283057<41>
4×1097-9 = 3(9)961<98> = 20748910387<11> × 11947840377877<14> × 26998259611105711237<20> × 130854750156377789637493591<27> × 45671999240020004544736419427<29>
4×1098-9 = 3(9)971<99> = 17 × 79 × 241 × 311 × 2269 × 39317 × 161461 × 1089735593698011381725554998847<31> × 253164556962025316455696202531645569620253164557<48>
4×1099-9 = 3(9)981<100> = 13 × 26399 × 77773529 × 408808471 × 17465373185831<14> × 95419353470123<14> × 219969836350708990879865183829475893001854137377279<51>
4×10100-9 = 3(9)991<101> = 7 × 71 × 6491 × 144311 × 237151 × 1153609 × 4383461 × 8988086730774101<16> × 243852700434495407<18> × 1790067864550241141<19> × 18261123537479423831<20>
4×10101-9 = 3(9)1001<102> = 1242505016132702919907<22> × 321930289863134774281390210545910706737390060353248796493168385592837665658171613<81>
4×10102-9 = 3(9)1011<103> = 19 × 197 × 159239027032849<15> × 89342573911788731<17> × 3355526347347494765062846183242829<34> × 22385744135541414977650142665848487<35>
4×10103-9 = 3(9)1021<104> = 89 × 7348321 × 545099119 × 92975796938529587<17> × 246815893242841067<18> × 455914728317345369<18> × 10724566125055079702147046804421081<35>
4×10104-9 = 3(9)1031<105> = 43 × 409 × 3110999 × 4335631 × 10342885269851<14> × 140742896567473<15> × 1062270653575649523714584464177<31> × 1090467352009655798670870606607<31>
4×10105-9 = 3(9)1041<106> = 13 × 4049 × 230177683 × 5089468623085822110371775885182959<34> × 64868403116863325702101470038639463824085108816719708634719<59> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 1.24 hours on Pentium 4 2.4GHz, Windows XP / November 18, 2007 2007 年 11 月 18 日)
4×10106-9 = 3(9)1051<107> = 72 × 31 × 829 × 5641 × 14753 × 527513318280406704433683764738692440130410049<45> × 723565441067403738662633995275117669829853586533<48>
4×10107-9 = 3(9)1061<108> = 190125920843<12> × 2103868837170852718371967159514240270498075443738141548131610224029698744616010054224608219061637<97>
4×10108-9 = 3(9)1071<109> = 211 × 1129 × 5536417031655899<16> × 656886980652235583190527<24> × 14429686178846832587868560401<29> × 319968523864926281807959061371083793<36>
4×10109-9 = 3(9)1081<110> = 53 × 7969641884935205730310904257533114365615152149547<49> × 94698982969196667127271104615127284069462500623071914214001<59> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 0.96 hours on Cygwin on AMD XP 2700+ / November 18, 2007 2007 年 11 月 18 日)
4×10110-9 = 3(9)1091<111> = 61 × 463 × 947 × 36299 × 64577 × 86111 × 368453 × 60111533 × 630641640613593647<18> × 158397422352643703820307<24> × 33488629391928160215301711261193567<35>
4×10111-9 = 3(9)1101<112> = 13 × 79 × 2053 × 1897145318011355363300956967527037877929133085218344826081574402956511263588896198168211338194135828964761<106>
4×10112-9 = 3(9)1111<113> = 7 × 23 × 672 × 46757 × 55243 × 169709 × 87796968481<11> × 9368987878212461<16> × 34734396543207627172561909369<29> × 4418997809718205768560805948969128889<37>
4×10113-9 = 3(9)1121<114> = 7867 × 50845303165120122028727596288292868946231091902885470954620566925130291089360620312698614465488750476674717173<110>
4×10114-9 = 3(9)1131<115> = 172 × 47 × 617 × 3469 × 47161 × 381357863 × 1982502477023<13> × 2551886715660056082059<22> × 4129570129161813841531043869<28> × 366166948392750909072952624571<30>
4×10115-9 = 3(9)1141<116> = 465053419121<12> × 48540212971357<14> × 4565203528103689<16> × 388146190346759943944292211077936423971024540269272004873010728374421498427<75>
4×10116-9 = 3(9)1151<117> = 29 × 167 × 317 × 6091 × 36217 × 81839 × 133373771 × 830083951270177<15> × 8577012162065861<16> × 726279061919048761<18> × 20926320650104033519325587218683355651331<41>
4×10117-9 = 3(9)1161<118> = 13 × 9973 × 214363 × 581922332049027043<18> × 531991308851942132115845825480210110671439<42> × 464912723832181683082293085018597257414298049209<48> (Sinkiti Sibata / Msieve v. 1.28 for P42 x P48 / 7.54 hours on Pentium3 750MHz, Windows Me / November 18, 2007 2007 年 11 月 18 日)
4×10118-9 = 3(9)1171<119> = 7 × 24359 × 36382287863<11> × 1715548838023451276899<22> × 3204327551100096307916697319<28> × 1172931096162755918903544011307055767008967058230164269<55>
4×10119-9 = 3(9)1181<120> = definitely prime number 素数
4×10120-9 = 3(9)1191<121> = 19 × 97 × 3347 × 89627 × 13472671 × 195022804897<12> × 26159207707463133368869943944733<32> × 105263157894736842105263157894736842105263157894736842105263<60>
4×10121-9 = 3(9)1201<122> = 31 × 207550763771542349075740138245104441965655783933<48> × 6216901143594248208194826668257714111385850652570251799400319368993225117<73> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 1.55 hours on Cygwin on AMD 64 3200+ / November 18, 2007 2007 年 11 月 18 日)
4×10122-9 = 3(9)1211<123> = 53 × 197689 × 191000601601<12> × 493060093873981<15> × 2608655530952645899<19> × 78655827078856343401733<23> × 1975692680562017890358804953016577832115900417449<49>
4×10123-9 = 3(9)1221<124> = 13 × 15601 × 14877774143167099699747<23> × 470762130228440485791543763322013994572073144603<48> × 2815948587112211304623095233966680241651606098227<49> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 2.60 hours on Pentium 4 2.4GHz, Windows XP / November 18, 2007 2007 年 11 月 18 日)
4×10124-9 = 3(9)1231<125> = 7 × 79 × 67187 × 4145861 × 679928401 × 70949947126910415444647891266160232938407859977<47> × 5382940938022136860142931615845020393406317220316048073<55>
4×10125-9 = 3(9)1241<126> = 43 × 3271 × 9595471 × 296377134243523374156060249291119671964793449628338174285262650903842695326462431018241723161147304591463797875357<114>
4×10126-9 = 3(9)1251<127> = 173 × 709 × 1793399 × 159075667 × 123805374165243868085316016373<30> × 131703755921620208014649133623<30> × 7010505260167127084147004476059947918274173937609<49>
4×10127-9 = 3(9)1261<128> = 28597 × 1398748120432213169213553869286988145609679336993390915130957792775465957967618981011994265132706227926006224429135923348603<124>
4×10128-9 = 3(9)1271<129> = 241 × 1746565317767<13> × 148218399686044608087191<24> × 77257925744689962320417057501<29> × 82987551867219917012448132780082987551867219917012448132780083<62>
4×10129-9 = 3(9)1281<130> = 13 × 2063359 × 149122042113033985994532365764904552386517473543046892134472143573807414176443511619794564255513610424704422404289465716973<123>
4×10130-9 = 3(9)1291<131> = 7 × 17 × 59 × 773 × 723564791 × 250214207989<12> × 50930050051704367752914146546619588270224810241099<50> × 799315121261189397901309758464692809702923108613928727<54>
4×10131-9 = 3(9)1301<132> = 83 × 157 × 43427 × 89517934664444970329<20> × 2706709430006427754108248781033420387<37> × 2917230383237813120633073932480522042054906957099018520221291471441<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 2.06 hours on Core 2 Quad Q6600 / November 17, 2007 2007 年 11 月 17 日)
4×10132-9 = 3(9)1311<133> = 359 × 8423 × 1395047 × 488266873 × 5045396267<10> × 17702820451<11> × 120840716754001<15> × 453907009693924437841<21> × 269952174593306396039669287<27> × 1468411861087106185253786003407<31>
4×10133-9 = 3(9)1321<134> = 283 × 2206451413<10> × 17745322828110113689579957<26> × 3609900924935868884393553722022192916008376697080113513902182884643650707317688815148572213895197<97>
4×10134-9 = 3(9)1331<135> = 23 × 163 × 3083 × 6661 × 186283 × 2907419 × 434826671 × 3754592877473<13> × 474717736202574865914293<24> × 20832581206768470618341726869<29> × 594145999077637914442282147060469278819<39>
4×10135-9 = 3(9)1341<136> = 13 × 53 × 71 × 717631 × 5476770683<10> × 608840507813<12> × 40266621886486270135726643<26> × 848609592447617662992638138586825443628335178372470676088764528990820467296627<78>
4×10136-9 = 3(9)1351<137> = 7 × 31 × 179 × 289067 × 12221768408569<14> × 4929272942288469413<19> × 6265355337053585617939<22> × 6475919213812378888572319171<28> × 1457419800611451039734374629295231356806366627<46>
4×10137-9 = 3(9)1361<138> = 79 × 997 × 5237 × 655387 × 18609511 × 217696138293088164184518991<27> × 365234386003280635200403386279689112427897130966004676283859706524186487861765417504363403<90>
4×10138-9 = 3(9)1371<139> = 19 × 211 × 22783 × 473774831 × 254128194179<12> × 58676451232029416603<20> × 2067397236615734055061<22> × 4112502436486078502075149<25> × 729112006146231857757290002160431335436328591<45>
4×10139-9 = 3(9)1381<140> = 827 × 3169 × 100185797 × 974921923 × 18849219647987<14> × 8290159254208310080147936628003905810782930509779232189523941213775684048461272819925784127168553729081<103>
4×10140-9 = 3(9)1391<141> = 193 × 1009 × 165527 × 9015029 × 318197099659911533<18> × 4205472414155209188944371<25> × 28730710303722801189996006104739370162441<41> × 35802897529245969120774911383627717355267<41>
4×10141-9 = 3(9)1401<142> = 13 × 191 × 20359 × 195319 × 12420177806754397<17> × 163736308730108767707475962968700893<36> × 199209262950089812594969876563503547961581096151892699792833892052250192212997<78> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 5.44 hours on Core 2 Quad Q6600 / November 18, 2007 2007 年 11 月 18 日)
4×10142-9 = 3(9)1411<143> = 7 × 107 × 155731 × 110242819 × 292292453 × 108873161835557496912230201617128500051561735049298977361<57> × 97749457018750228999485760145263043889030650310456600905023807<62>
4×10143-9 = 3(9)1421<144> = 23319815050804253<17> × 41320276617255065999<20> × 65592239078997416563125307<26> × 6328768545120330781276890083775149723778473759165061794733839591210761469954001079<82>
4×10144-9 = 3(9)1431<145> = 29 × 149 × 143357 × 4179362655121<13> × 115107344774745155473488635437584064431083661453869669<54> × 13422818791946308724832214765100671140939597315436241610738255033557047<71>
4×10145-9 = 3(9)1441<146> = 67 × 11529868409241733729<20> × 51779855951746915613207527045979455969975971369762642935411255512701536677331213503472055536703777671434517482031353309260637<125>
4×10146-9 = 3(9)1451<147> = 17 × 43 × 151 × 7759 × 28481543869<11> × 35256146990949820675155255501335850511972129326274272679<56> × 465116279069767441860465116279069767441860465116279069767441860465116279<72>
4×10147-9 = 3(9)1461<148> = 13 × 89 × 6167403400563579766175239<25> × 9859117276170965916528849893551257536137453<43> × 56857301497661450675385390309929156870609092238968154609890852061865551467889<77> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 16.03 hours on Cygwin on AMD XP 2700+ / November 19, 2007 2007 年 11 月 19 日)
4×10148-9 = 3(9)1471<149> = 72 × 532 × 673 × 847507 × 26834343679421<14> × 23909542862637059743<20> × 4651884471734792048380131661572294455090942337043<49> × 170711446743697725633505677829515883121491856455923629<54>
4×10149-9 = 3(9)1481<150> = 797 × 279587197 × 6930505097787449<16> × 259011771676803216882760438429105713862269153762654978763387122923529476117102696830468777066082263142406640371598807420951<123>
4×10150-9 = 3(9)1491<151> = 79 × 331 × 171077 × 73525909 × 123379312751<12> × 10206815431870182840270817231<29> × 7493498919620788902689385842385931447646537<43> × 1288711252427299289691976770992371416501780989937179<52>
4×10151-9 = 3(9)1501<152> = 31 × 5519 × 371213 × 1158569 × 54827975693<11> × 85431185431<11> × 683451293547552766493247508223331705485919834283<48> × 169811308556460662649467994337463527761352643619555931552038754243<66> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 27.46 hours on Pentium 4 2.4GHz, Windows XP / November 21, 2007 2007 年 11 月 21 日)
4×10152-9 = 3(9)1511<153> = 103035186006031<15> × 1934982246763493955490755927821<31> × 100315363558355014647859823017153<33> × 19999999999999999999999999999999999999999999999999999999999999999999999999997<77>
4×10153-9 = 3(9)1521<154> = 13 × 7963 × 3046082801<10> × 2125945121483<13> × 36758374772653<14> × 18100935169352815275707<23> × 42510316950321522868841089<26> × 210957277462653394690465901462374782796266121499135809783812023957<66>
4×10154-9 = 3(9)1531<155> = 7 × 7159 × 23203 × 6478104454016753760887<22> × 4312505747417765608582777589439413779944095761779091<52> × 1231367864992827282186416781081264122250201636487892575467458025747902057<73>
4×10155-9 = 3(9)1541<156> = 1821613 × 3583357 × 4637483 × 32771932477841795426235506521<29> × 403208254555383837372946873770549114630370766010235538732585825933608884811798208240341232025096911389953557<108>
4×10156-9 = 3(9)1551<157> = 19 × 23 × 307 × 5693 × 8179 × 1237661 × 2486863 × 4822777 × 45908403975780047456872133<26> × 8232288831717810579373722530878388597<37> × 114139310551026338652399651844405362963557000608503422372020997<63>
4×10157-9 = 3(9)1561<158> = 2306893 × 17339339102420441693654625507121483311102855659105125378593632214411331604890213807055637170861414031773471938230338381537418510524762093430427852527187<152>
4×10158-9 = 3(9)1571<159> = 241 × 523 × 1571 × 4561 × 5647 × 1372638681719<13> × 685978596651857<15> × 32352462130214742144908089<26> × 402766851937457023692444225437<30> × 6392332516138127241768447324856462524373231004706954463263139<61>
4×10159-9 = 3(9)1581<160> = 13 × 199 × 2130173 × 64929089 × 24131072597<11> × 952589489681209<15> × 74079493501806378527450601403663790436099271<44> × 6564912794659200412500871081575072082513907943647734630671406825808638043<73> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 77.01 hours on Pentium 4 2.4GHz, Windows XP / November 24, 2007 2007 年 11 月 24 日)
4×10160-9 = 3(9)1591<161> = 7 × 47 × 1987 × 6299 × 414473453 × 16487355097<11> × 19966584998152201<17> × 501471938213707291<18> × 259021994710197509542516797106845199244858179099<48> × 548100043780603304955338234337098221979945589533507<51>
4×10161-9 = 3(9)1601<162> = 53 × 21806825430466113390135407080568754712841<41> × 346092091000860392504443010316442896408178789678554842890548184933093473061870388053493738110298874615414662714544919267<120> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.29 / November 20, 2007 2007 年 11 月 20 日)
4×10162-9 = 3(9)1611<163> = 17 × 1277 × 1523 × 2530899979<10> × 94728548632440270893171<23> × 133940570111507996479098559<27> × 313827973953327557599392191<27> × 3957387137241634817201597568481<31> × 3033556371527318787524930840338672101713<40>
4×10163-9 = 3(9)1621<164> = 79 × 2711431 × 1507192123<10> × 3204540690671<13> × 248748268553561479<18> × 227089159325096042476973<24> × 2129679099007734476891559517<28> × 321387735053205686267572567444278274455091556569548545847621764557<66>
4×10164-9 = 3(9)1631<165> = 825611 × 1402504993<10> × 18909138091<11> × 8812588523511893<16> × 2748849941029302910494614920725892417409755520329614893557061<61> × 754143246424861575508278194050733980225970187173199288191709719<63>
4×10165-9 = 3(9)1641<166> = 132 × 2488043 × 178101449 × 53413120622881228787039620154426573307960318677092493375505243684627286403897026319389625184870935049908649420094106231903695336468369821350035121077<149>
4×10166-9 = 3(9)1651<167> = 7 × 31 × 113 × 229 × 24979 × 385787823329569<15> × 5278397362612613211007287739<28> × 1890937814311875696421686100672206606653923849<46> × 74059954315926416227569410612850650660129447590211704312173034536059<68>
4×10167-9 = 3(9)1661<168> = 43 × 443 × 3803 × 8363 × 42090948879771092306041949813824861415659616231911<50> × 15685944386992125078642922951658875275870814395996579224833998729276744713659512994944344360612430130357121<107> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.32 / January 5, 2008 2008 年 1 月 5 日)
4×10168-9 = 3(9)1671<169> = 211 × 233713 × 10689751 × 30870029 × 174101240977<12> × 27501614868292675787<20> × 1901624710396775316537341<25> × 1265800626727778453024504210132287247243<40> × 21327495454449983020338735825860051020986349407972619<53>
4×10169-9 = 3(9)1681<170> = 173 × 563 × 462212928665557<15> × 61333882543515533360951<23> × 67426291872596114148024503677<29> × 214849165378180616457207496167989576239109216001953503018360303758200797034032319912192428035188231<99>
4×10170-9 = 3(9)1691<171> = 61 × 71 × 263 × 1069 × 784009 × 730869849769<12> × 188791641851297<15> × 92965737425275667<17> × 13941520301475528498949<23> × 123958877689262908298519237788099<33> × 18900957529184282114771140692935766432229545915707371997947<59>
4×10171-9 = 3(9)1701<172> = 13 × 1481551 × 2094373 × 35330951 × 23561463756765050201124699355493115971879<41> × 28941009474935683843948897020903479139997<41> × 4115993992441463544706180751361765698756507413749483861195184714376893<70> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs / 96.52 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 4, 2008 2008 年 11 月 4 日)
4×10172-9 = 3(9)1711<173> = 7 × 29 × 83 × 6271 × 161471 × 3708068388463<13> × 803341897652669<15> × 606376773754238324363<21> × 1047920541237702507248025832637<31> × 7562273344413334909707814556227561<34> × 163788380802911156632732710348911066987517958987<48>
4×10173-9 = 3(9)1721<174> = definitely prime number 素数
4×10174-9 = 3(9)1731<175> = 19 × 53 × 1019 × 2633 × 42719 × 13351343 × 9391183921538689<16> × 454731869459094847<18> × 6923141487770868883<19> × 60685815889202975701<20> × 199478980651013971577<21> × 1380394194751915908017<22> × 5254035963287563578959421946859218396907<40>
4×10175-9 = 3(9)1741<176> = 881 × 502411279 × 90370087395723989678725058277633153989461415339847760073141662282120456740059938920059986947649598798444671510431155920820192813041951544163357335628914648815191209<164>
4×10176-9 = 3(9)1751<177> = 79 × 1031 × 9712441 × 98836273 × 160330424167<12> × 259333214069<12> × 636360516185020985689<21> × 9967375987265890256911580767<28> × 19398642095053346265761396702230843840931134820562560620756547041707080504364694471387<86>
4×10177-9 = 3(9)1761<178> = 13 × 227 × 385001 × 5083123 × 1162925053<10> × 332230023790700823439<21> × 64657499314578118063033769725403663002679<41> × 27726100791358863600050685537869345949466612785403199549604397338078169719410730274414575719<92> (matsui / GGNFS-0.77.1-20060722-nocona / April 26, 2009 2009 年 4 月 26 日)
4×10178-9 = 3(9)1771<179> = 7 × 17 × 23 × 67 × 293 × 52201 × 31220972566629346037<20> × 55916398361587507836687691938105593431350598515146351210658005213<65> × 8169177456550289517691354506398079361026545374532074621024709760357587770970084513<82>
4×10179-9 = 3(9)1781<180> = 45509197 × 1874814157831<13> × 56509686961164460509008717533<29> × 82962091612775212635725896046171705731169425764309250070648134475290867457795804761148442726391599194995848372501717823470479622361<131>
4×10180-9 = 3(9)1791<181> = 1153 × 4000853 × 14192805091<11> × 1612351060219207303<19> × 1075823634240573613236619945236180905716293882720442899436436921102117<70> × 35221606618830262913343738393249032649822049079574497991150497364103099939<74>
4×10181-9 = 3(9)1801<182> = 31 × 587 × 12239 × 13095488550241<14> × 4460116554200837<16> × 3075008695410793039634658756642754100336392116486231060385034374663966161150639781687262650938183292256095536759895392902983609896041999450609681<145>
4×10182-9 = 3(9)1811<183> = 1871 × 6709 × 14341 × 177127 × 225859 × 751763 × 1719409 × 7464124611017<13> × 45186538905301<14> × 94820315277907<14> × 7391867565690931020532600599163374944095489619<46> × 181770388080836974514656491761082559023131975054065757127548899<63>
4×10183-9 = 3(9)1821<184> = 13 × 291521 × 175760151760128614736111330301882810113296736746728352650439858811633452129329386893<84> × 6005184777904143133368396782495819629853737419435935288123825152255604348922994197853024855519<94> (Serge Batalov / Msieve-1.38 snfs / 120.00 hours on Opteron-2.6GHz; Linux x86_64 / November 12, 2008 2008 年 11 月 12 日)
4×10184-9 = 3(9)1831<185> = 7 × 1489 × 8233 × 9241 × 162557 × 90668547845459<14> × 188080429537884826493<21> × 6577596128333935936571<22> × 169566414790523540512576421<27> × 16314628258551292008434336517105846942520383292613380752344187754615265581346898185381<86>
4×10185-9 = 3(9)1841<186> = 35063491934201<14> × 11407876909425532766767515070105844680213096690807109262204032112482211097777055634465400185816885175799524693160422392762895179447778330591954913521449642117729318052647791<173>
4×10186-9 = 3(9)1851<187> = 7321913 × 159129109 × 4211620326587<13> × 175746623295851659<18> × 62014234844721324719<20> × 2319100651175680426597602137387367174469580704823<49> × 32250659949410643441501571216321459031954131891410903461965466986948633363<74>
4×10187-9 = 3(9)1861<188> = 53 × 10684013423190202598370871<26> × 1626349888286077666713489931346081<34> × 1156412510086878791154526581085081807094186719<46> × 37559770618664727055350154373325301900026821932736805523253002218736318566782328163<83> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1057010532 for P34 / October 26, 2008 2008 年 10 月 26 日) (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P46 x P83 / 246.89 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / November 11, 2008 2008 年 11 月 11 日)
4×10188-9 = 3(9)1871<189> = 432 × 59 × 241 × 313 × 94427 × 3614470427<10> × 19340062151882758570550401967047<32> × 170653684700895671770239219522913<33> × 213089577421509928559482959036656417177388199<45> × 202503753322468777288652868121333740631106564440682715437<57>
4×10189-9 = 3(9)1881<190> = 13 × 79 × 5973538769414641<16> × 20781366525303489622716768590229880681<38> × 31375001761462013103697668026376674624654776647124316571555426864479743924882565051571614750837097034995171172364843563578914251410373<134> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=34890979 for P38 / May 2, 2011 2011 年 5 月 2 日)
4×10190-9 = 3(9)1891<191> = 72 × 1097 × 2777 × 323537 × 3184710803<10> × 63716737888419215547415929687932010189450906872448170069806562750426211617<74> × 4081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653<94>
4×10191-9 = 3(9)1901<192> = 89 × 305254752356293<15> × 7425626411708544883<19> × 262214928886895897078887971744126374204083<42> × 7561658168981530963355391622990846884778957115241506376403767002283987245749089487139172111153299702982917422388747<115> (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=3764813989 for P42 / December 21, 2013 2013 年 12 月 21 日)
4×10192-9 = 3(9)1911<193> = 192 × 643 × 5743731053<10> × 13387084763939<14> × 6888003416488249330043<22> × 21689554339683136588679658930304369012462798870108076460065939<62> × 1500091411952965086038653440170200318545430389961301405134148425303374129832161763<82>
4×10193-9 = 3(9)1921<194> = 356020398676981933<18> × 2055639902606412744129429071884327080386461134321599<52> × 54656028336871819601847490147533195539336289169465581194632272137735082474802472537999286047691863636741453163263918573820173<125> (Evan Engler / YAFU (ver. 1.35-dev) for P52 x P125 / January 16, 2021 2021 年 1 月 16 日)
4×10194-9 = 3(9)1931<195> = 17 × 109 × 347 × 14159 × 787429 × 784377317 × 1289241992537<13> × 38650745043061<14> × 36454802699034857<17> × 145923420596482481004347<24> × 45740554784041081835936926224367892182088323307351<50> × 5866952744783258583080885755055224630524999042809897791<55>
4×10195-9 = 3(9)1941<196> = 13 × 107 × 317 × 683 × 4813 × 34945726168123<14> × 235346907565680687670001<24> × 84023102213882289455105713911646201<35> × 3993335105848129845498334339702023428427294782244533437466867913637243996141634999335678685464308070534367797009<112> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3729024413 for P35 / September 23, 2008 2008 年 9 月 23 日)
4×10196-9 = 3(9)1951<197> = 7 × 31 × 1033 × 1801 × 26891720626840241453<20> × 425574857812513991947<21> × 136136864578743359737953547522723<33> × 1855514081798741393807817969446545214189<40> × 34272964492098008972146833105500148126083732893462398747862634497615158084103<77>
4×10197-9 = 3(9)1961<198> = 281910298133<12> × 190480094567465618641014493<27> × 7449025353749847708792163940858645078093979533400210025452931994205704095434922560694382108924013878016266620120475224815233471656885159688499655327843956585239<160>
4×10198-9 = 3(9)1971<199> = 211 × 1637 × 3844549383673931497619<22> × 79382035150980920346405340690307261392830949801<47> × 119405769425714490171006230771951087269574666783273<51> × 317786813596113683738897417841728349760581713829816055800984665620078724099<75>
4×10199-9 = 3(9)1981<200> = 877 × 19306917307<11> × 2362367512238169842814551460351364624763526014197834021710043197746268915212743618127338511233575062172571178528000029762748237070971655452443973681727811458036330149383339715017027238569<187>
4×10200-9 = 3(9)1991<201> = 23 × 29 × 53 × 197 × 379 × 3671 × 9187 × 28463 × 170547889 × 2351903621<10> × 1221402604855740137021<22> × 60059632438639530286975417<26> × 107607507117527462741165517473467<33> × 49861360773942694081325021246938997255965585182246410257045279125241288931457688087<83>
4×10201-9 = 3(9)2001<202> = 13 × 11842799 × 1803406453<10> × 2220194263669079<16> × 53348426169923083<17> × 1166568154373795165761511707<28> × 104266778771382632137951610299920123165342937251568662918164741420036887490286230927059861854945885129398920094404223797533319<126>
4×10202-9 = 3(9)2011<203> = 7 × 79 × 383 × 617 × 2393 × 397963 × 774799 × 1690313 × 21610019 × 216954797 × 217194433913<12> × 4359913632001<13> × 18484717176979<14> × 176407766384435368999<21> × 11562800031772242924518824714175876232173<41> × 1466104189413658796569889069140426117523998627396976056080427<61>
4×10203-9 = 3(9)2021<204> = 985938912916866838801<21> × 49069470515507153084854289<26> × [8267964665786356938287367844355281001398126993501074674861131857506894880016997246729292677860700547196512126677256262958971699221797075688092446705433239319<157>] Free to factor
4×10204-9 = 3(9)2031<205> = 439 × 701 × 2317751 × 5551873 × 21897763 × 9012245475577<13> × 322353810266010223<18> × 3631408672796406702085696216743007169009354928263686873187008923205595863<73> × 4372506411149619576025256338954642702426504653677338907773680184342622318497<76>
4×10205-9 = 3(9)2041<206> = 71 × 64845766618293547<17> × [8688004029721909942175244154709669118988350636890249453474633452691937733425391096642439015015723799168359501222655677453767063989307255031591129889665034649016117880912025795132376173043<187>] Free to factor
4×10206-9 = 3(9)2051<207> = 47 × 787 × 2068430377411<13> × 1303454060208099067<19> × 71811408358293195292411<23> × 77125858976287579050890129854699<32> × 37144778449564313154341134715055031<35> × 19531312895566268888765389214062836488273<41> × 998224205171980635252280650332109241844941<42>
4×10207-9 = 3(9)2061<208> = 13 × 7039 × 12973 × 493250413 × 80921269180941493<17> × [84418010434982193986856613428889246036872582652432364034631604487131148045456398691850103682827400223806128838737018133954106283264114247435395353221360608035387161086578609<173>] Free to factor
4×10208-9 = 3(9)2071<209> = 7 × 1499 × 397633 × 72924583 × 32500127761170009153191422527529<32> × 81143272388834334896650363044075567399043782163<47> × 6198620635061424030493749864953890386771151005333743<52> × 8042133907689848374500596451675451989411649913723669050575553<61>
4×10209-9 = 3(9)2081<210> = 43 × 157 × 1344799 × 43219643 × 456637813 × 52186574700410202710543580507939239<35> × [42778215758823271283365202134828897965312572658602223157505026013428737320090590105223875557676570260944693618416666386090018930911972785693795598359<149>] (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1610337776 for P35 / November 4, 2008 2008 年 11 月 4 日) Free to factor
4×10210-9 = 3(9)2091<211> = 17 × 19 × 467 × 2333 × 3961175617793<13> × 3347237247165798725331239871160802804281762325288903139153487422487976442557810503419931<88> × 857265323617659665666523789112730390055722246035147878268324046292327475353621945992284612087441063009<102>
4×10211-9 = 3(9)2101<212> = 31 × 67 × 1907 × 3169 × 395448671 × [8058615637588173282347575467486607487799336802402892318644677892935480193398494054573528576268437708581307652915930605834372668524365878972744353022629470411564500027782037497755941023184376431<193>] Free to factor
4×10212-9 = 3(9)2111<213> = 173 × 53299 × 42876259 × 5594493493318388089<19> × 20909268680821569816065383<26> × 5159197730271147217349752990276548876845323<43> × 1696335989904637732334935062814384104990952215712079<52> × 988289716009437275446318931091762783722563293522184539500353<60>
4×10213-9 = 3(9)2121<214> = 13 × 53 × 83 × 46511 × 20879639623952929785933043<26> × [72025121798108409233842522065435116582765026496376434367204039232590046757519564170865747537195002680126761039194558857562633016243332063395673539376739329935540307771477767135041<179>] Free to factor
4×10214-9 = 3(9)2131<215> = 7 × 5237 × 34159 × 135257 × 144512707 × 255054928321<12> × 8581253024316133683871<22> × 70366470719053751070081322438416837323<38> × 71688355828884849285727325871272978657<38> × 148016327942507378622392718611581342547343863899729003040292494919737429668418883589<84>
4×10215-9 = 3(9)2141<216> = 79 × 163 × 180953387521507871<18> × 171663743072338266564887148567062526733640502410291091642136206963746944559806932138235194935994380010451085187744180789748032714180965121610975677058994212875151283546675512614546605870601924173<195>
4×10216-9 = 3(9)2151<217> = 97 × 131 × 907 × 971 × 1663 × 211153 × 2334911 × 62038633 × 785013631 × 10956056139051043916590023409<29> × 9795426399848232136433658361416964220351<40> × 16021201316639818235833142024355288672757596038111<50> × 5206172069618515898494220381496970287426897628124942838563<58>
4×10217-9 = 3(9)2161<218> = 153138923096637815337324392839746144304740150626975813<54> × 261200739767238216403031051949070797540409290687764527939818984072695012732362463527871657040814436595996243277659214477992470411020857002428756477130421386528676107<165> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs / 201.57 hours, 62.91 hours / June 27, 2009 2009 年 6 月 27 日)
4×10218-9 = 3(9)2171<219> = 241 × 911 × 2719 × 8543 × 430741 × 11511113 × 34640887 × 1991149621<10> × 56507163833737820197672277<26> × 17549207512483876748254230582091<32> × 57204838642635824463463028377398262905391805414776179409<56> × 4042823160116869432898157597719278823120018001928691757871030681<64>
4×10219-9 = 3(9)2181<220> = 13 × 839 × 82467488022247679727947415497469791627336296247529111727738703553530989716089<77> × 4447048973020707963671116712924416171932599147193348095813779150964307930192515153073852957342284283845468243469970491789991587228466841917<139> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs / 250.14 hours, 69.87 hours / May 1, 2009 2009 年 5 月 1 日)
4×10220-9 = 3(9)2191<221> = 7 × 1304659 × 3513431 × 22141753 × 12373930450664908843<20> × 26184862097599361168293556342151923<35> × 159250894289275575513806398823291602495061691198560909053340523515792467<72> × 1091142984253028074855253881145711454222019861072878061773867745555021996423<76>
4×10221-9 = 3(9)2201<222> = 151 × 1481 × 43987 × 122861081880593685057526556505729911<36> × 4520901491708664102216490947309660917<37> × 73208964310774170192698424594773491343809456883679266073045536368506914914466981873365542119647546265130785085360591902960495469798780506369<140> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3686803269 for P37 / November 4, 2008 2008 年 11 月 4 日) (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=3578397712 for P36 / December 22, 2013 2013 年 12 月 22 日)
4×10222-9 = 3(9)2211<223> = 23 × 1012147 × 1975997557667018723564857673835915138808888432213897783622339442788448713477390141945784555010290007281551<106> × 86956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478261<110>
4×10223-9 = 3(9)2221<224> = 178643 × 43436879 × 162340517 × 16794970462970350799<20> × 109702385123835820767567110173<30> × 17234279655112338870804656441415583958437362921504443164270233279512818351598712300614757732961924029188836166061510146445768957731218168949630287526465917<155> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=766755851 for P30 / November 2, 2008 2008 年 11 月 2 日)
4×10224-9 = 3(9)2231<225> = 677 × 12697 × 831043 × 54670303 × 1130429630033873669<19> × 13815806123380392068501<23> × 137192114622451866628779759037281403166279150792129455795886714703171863952755707<81> × 478020270900772726633696605954219944463744295928749633602720299644323342149372542277<84>
4×10225-9 = 3(9)2241<226> = 13 × 3819696010750597<16> × [80554134890918714843219524447740449092908749517089885811728036093553440552453642999186640832559817408954172518033321888039314154346974487636600248247435391010058951132692487160606983723560130154373003279605431<209>] Free to factor
4×10226-9 = 3(9)2251<227> = 7 × 17 × 31 × 53 × 1372831668613383547870044381977<31> × 23098824314409211398591501573261950597735785754115833490357410540732332572989623<80> × 6451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613<112>
4×10227-9 = 3(9)2261<228> = 687707 × 371639483 × 1515901607401889<16> × 1032437298303243697422891016343669463744635607971675243782255307384911511456734794313424356241113953389772942272639396030992371562774622041321632359649141989935854372089845229976535638443750909120399<199>
4×10228-9 = 3(9)2271<229> = 19 × 29 × 79 × 211 × 269 × 46091 × 141642068744903728734080380860557<33> × 66720394280058370841709380872145894939733576500903<50> × 7477136952660057610131641830487159799848955980602003638351811<61> × 497100539534504959831516767690043182490203130774494939527873200330969211<72>
4×10229-9 = 3(9)2281<230> = 15889 × 2517464912832777393165082761659009377556800302095789539933287179809931399081125306816036251494744791994461577191767889735036817924350179369375039335389263012146768204418150922021524325004720246711561457612184530178110642582919<226>
4×10230-9 = 3(9)2291<231> = 43 × 61 × 181 × 96497 × 829756981 × 526124351571380221566747059280628606635611899137939746959670084844353770479041712935130444030667<96> × 20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<116>
4×10231-9 = 3(9)2301<232> = 13 × 2314547 × 132938457370840899885676250122511097120815566800893519253526632940401595779948433837078137669138845610958728557982321245715767408349153286715582923004936902256766575788829387481737163986001447500393082401138405185849458962081<225>
4×10232-9 = 3(9)2311<233> = 72 × 503 × 15031 × 3834191 × 5583119 × 6544399742820969529407841<25> × 41493132409708849993961614871982844651028070979055904408757610584660729478322747116357<86> × 18574254102686318016620255264499950584015414667812075794431937770191719340776172937008476822441053131<101>
4×10233-9 = 3(9)2321<234> = 31973 × 4142689 × 239003509289<12> × 11355474299929<14> × 1112716981600764213152482188294069031739505203433494550274585709542453327227562242953305068656198974213787159493188989224792626290716028485740596542143218171612651035142995380661306955934162447457163<199>
4×10234-9 = 3(9)2331<235> = 252481430303<12> × 14233541343533<14> × 79171895467787<14> × 9471209741101499<16> × 506583805706942727181861<24> × 50068989168351494592204398161861<32> × 8325386712283388629555879931366734094616947743<46> × 7029372274658901576417661765722869204475035431907927006123940343512211180833331<79>
4×10235-9 = 3(9)2341<236> = 89 × 8969 × 7320037 × 23673778073821711017054533587495901836159<41> × [289164591678319746378916772508496118707626003746531882117293165495036166800315509758986753690343097246399020999705233630255469573450589961153794548376578863255431698161486983087263797<183>] (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=3435681213 for P41 / January 19, 2014 2014 年 1 月 19 日) Free to factor
4×10236-9 = 3(9)2351<237> = 191 × 8248949 × 714997972759321<15> × 22950984299621533137884728246439<32> × 991811671612623385550841555017839892819<39> × 28203043059484251487882072762043305121719614244673667495654922297<65> × 553091130404568883549143340580413178416536717655739844547962308344784263446097<78>
4×10237-9 = 3(9)2361<238> = 13 × 165953750818291137381672377369<30> × 86247580418114063168182947448042170563<38> × 21497237085371017790885303619639658026600981428021037498959428854828701397853173045117752456175430759456678502375755247820994396190489950630319288966802551146795736115481<170> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2541232610 for P30 / November 3, 2008 2008 年 11 月 3 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1384465417 for P38 / May 3, 2011 2011 年 5 月 3 日)
4×10238-9 = 3(9)2371<239> = 7 × 223 × 5228659514109126391498531522208323958331928046131<49> × 38250721711810786837816564744277352704880578237524903785562032046531313<71> × 128122998078155028827674567584881486226777706598334401024983984625240230621396540679051889814221652786675208199871877<117>
4×10239-9 = 3(9)2381<240> = 53 × 631 × 1187 × 698329 × 933649 × 1329976841<10> × 479027965831<12> × 59130044921610281<17> × [410248662169011989705848636961221308898383625361767931648016616227557884046203953870267331768654827457937774615779686111326495440635952851591496964480847618998172071516834583209375281<183>] Free to factor
4×10240-9 = 3(9)2391<241> = 71 × 15565393 × 1809720710842767815340166917761946664738252406802091186211056001325106460010448078677115659855981539067984224299<112> × 2000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003<121>
4×10241-9 = 3(9)2401<242> = 31 × 79 × 73907 × 1255369899787<13> × 1799396021268199<16> × 162791655526760799733<21> × 179194028594672986043<21> × 333403450873810189809523<24> × 10059152711789417434542216086430824415874405255946405117791328448907306623634891193153641412019597412820975257872969429973094920761338111235277<143>
4×10242-9 = 3(9)2411<243> = 17 × 17417 × 14488801 × 65881399 × 2194247719<10> × 45230755231<11> × 39243438138434903<17> × 82493772245610301788337353942271<32> × 3835995654100008613560231526090607813<37> × 1148303381753459263937532296032611816041798243095825917207326175575587070103921456048688063386346672790951369351782741<118>
4×10243-9 = 3(9)2421<244> = 132 × 1620523 × 18917917748103512524609<23> × [772048803921848523968852685498834223050085320557341912320400746405229064342749644216420133766650676394900786195206701835499585828212522135978713138512042602470850389422223271355291768401998126112123579358309582877<213>] Free to factor
4×10244-9 = 3(9)2431<245> = 7 × 23 × 67 × 6389 × 1255591 × 1846821995548619239<19> × 873192647167017533911<21> × 2445409000264004985346080302093575163<37> × 5770283446250729246099452389095675049097<40> × 171991496996710309484092016279706178541733683213<48> × 118110223750443992209744996157769492200408400398154132891719193722281<69>
4×10245-9 = 3(9)2441<246> = 17573 × 11223067 × 95091449 × 504808921 × [42250712810402420322967365346732922952127222558971055343165327692752399042566749780487338910584435190462188668674797809565360337178848708454880332778225293301790980276068136455489626282787637003305399876101859141727969<218>] Free to factor
4×10246-9 = 3(9)2451<247> = 19 × 59 × 1559 × 13003 × 252444851578307<15> × 1132294115524073<16> × 1476825069370893260540808898912662128916853503986650844219312049234362445397625242702793784200603323<100> × 416974864952176659286921762537731373167739280498222726745880301034569498329218744986251818415970890775078491<108>
4×10247-9 = 3(9)2461<248> = 1453 × 276239 × 2105963 × 3990001 × 10954619018073076933<20> × [1082650708444936370588129006278800375365298729450186163329662492739819969833160015348395383059316894261095415990648775201719065324307177693102648608028023898984116103322656136559772379401228227294332778180187<208>] Free to factor
4×10248-9 = 3(9)2471<249> = 107 × 241 × 31536909893<11> × 807932595751<12> × 15473661967469980997<20> × 9336975976397637344374611852234644275771<40> × 67921085334223439767801410472062272050391919676586092874931678368742117499<74> × 62038450235564933442218840576529640620666357432793040061287595166043436265300664996855027<89>
4×10249-9 = 3(9)2481<250> = 13 × 11118150952998709252666041406775345134314224536305734253569<59> × 27674773349728543971461886494944024780027250034184418990444098974867816369781962915408831471917946812709403792160496417138904191102019340891652850104232170737868384357842228591924447445616403<191> (matsui / Msieve 1.40 snfs / June 8, 2010 2010 年 6 月 8 日)
4×10250-9 = 3(9)2491<251> = 7 × 233 × 144593 × 10817778017<11> × 41765060149<11> × 323601526579<12> × 9993023712544651881405293<25> × 397869046237867494121907980309<30> × 70950032524214449038440162186879<32> × 3721939007586273114581978136315755902636906895389<49> × 1104938488904480115616998648501886905041655534575552950019302930656654642413<76>
4×10251-9 = 3(9)2501<252> = 43 × 9302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837<250>
4×10252-9 = 3(9)2511<253> = 47 × 53 × 887 × 10243 × 7010931025589<13> × 9496596035573<13> × 72990180616825855013<20> × 16510776897831556985977<23> × 1363935016086710284190348118562849<34> × 2115455595883918282267614450587132366299796154935856176143403<61> × 763417782830847162690688109374854069023847014203787937595485836154119973418775879<81>
4×10253-9 = 3(9)2521<254> = 311 × 1929654049227643<16> × [66653068406500849673327401525636300925737122531429319857364465363165095327623581155500179421905576790645660456313537985295042020727270442705445379056796879170307289353682592243266834117241996139466444232572574608983995435704684056503667<236>] Free to factor
4×10254-9 = 3(9)2531<255> = 79 × 83 × 6299 × 32843 × 3835231 × 9504490972515427489<19> × 1195589420583881466001<22> × 16764844081995121858257311<26> × 8927757006598681262632931194240133629<37> × 2268642375519091333458799446695979155571481664083795247<55> × 19926453316790260570873229151431163816821436679406746821262860054342284432777657<80>
4×10255-9 = 3(9)2541<256> = 13 × 173 × 431 × 1049 × 92347 × 3190239826003<13> × 8303917648031<13> × 77382894533230357<17> × 55569830976755946311<20> × 373942281817067109811885764113374377819380443170163816043240608081417312630711013069968572517560396161039141988595162505151237538356935278446207919650638583015605941995987826994333<180>
4×10256-9 = 3(9)2551<257> = 7 × 29 × 31 × 2477 × 2963 × 193441 × 3909575333<10> × 9956140027<10> × 71529536223356588000887317708692914881364823122198486570716063082947853469443365847902713213788499628499<104> × 1608014948402127570106586247594522610290635832095644274448651737684348026668594835032873733512861038079830762256699673<118>
4×10257-9 = 3(9)2561<258> = 1213 × 218849 × 450113838620959<15> × 3347589974555544085889675642670025829685268667557385507618268933721506720056746740588897582894459914038343411652472381588347696354852067117281879781570525171496422784854784567902896462961218069755444646294059841911336505263049038026877<235>
4×10258-9 = 3(9)2571<259> = 17 × 199 × 211 × 727 × 43003 × 98411 × 91312817 × 108307883 × 32253271614371<14> × 10480156240669628026286652343<29> × 1238884993026977280505283074694462147755684809988667268631988063351<67> × 439778908259318879132175124451656910736124888008620424152716208102430896908420952389976088353089547098694511271471669<117>
4×10259-9 = 3(9)2581<260> = 1237 × 74231 × 158161 × [2754264080349269851023268480901108709140394262078817996697780148298011142719787659984130299080982811434984248572487715608905386531911518063353199718986422376251253829785589462226449862140096155349190057305731869162768166647926245280370015120910573<247>] Free to factor
4×10260-9 = 3(9)2591<261> = 331 × 12197 × 103423915189057<15> × 7741441883141489944158832660919<31> × 7805130056799676072052136059222932498058574784538345051201955549937727648892976307464232959867873<97> × 15854625846360807465839312919222637107991076910585397853870551265862533057270279414491351892335733031540359985607<113>
4×10261-9 = 3(9)2601<262> = 13 × 373 × 200401 × 24018523143427<14> × 31235506555973<14> × 2597867335026662437<19> × 25199615893274979283<20> × 83811223230197321240674937626880777800877763313526012186515883388341749330979895619356468548421994218725772824338672376722692063382766935802047803212915496285457336409186226552356270490599<188>
4×10262-9 = 3(9)2611<263> = 7 × 8093 × 92767 × 1361827 × 22377233 × 386273829607<12> × 4567358173159<13> × 62212943607129307<17> × 540506822274149821<18> × 20250623254125963298303817<26> × 43957292806838607565682258237<29> × 9567602985986402661630952546491957560608990072545800111<55> × 494328683079133106401078242337242213766572794591865006865231436633400917<72>
4×10263-9 = 3(9)2621<264> = 692401 × 9895009 × 35535649770710729757443<23> × 1642940556338967218438931696187049214688945341253978565098714364058102541933995363289608773491617127914078605567759217559187347446597451869315657230105092490253417721995379517398336312294656505739435742430392250208738917213576493<229>
4×10264-9 = 3(9)2631<265> = 19 × 463 × 883 × 312007369 × 2035213286473<13> × 275297805609606581<18> × 81483035220514238963<20> × 224921079033736342221790746096952105532091294451<48> × 834662212681919642405556463667806222934803506974724243740903<60> × 192565755118774612646331983883006930030794800546537948994802291846665356618143697402920173027<93>
4×10265-9 = 3(9)2641<266> = 53 × 4164438573637<13> × [181228986281563915251141583721036344000470040275182289215724972821475775463200879766445812253849209485627728270364010444606720455247543584819379753555045754240772861960690315272697738677501523512851739812046332520468803993091949892406585062989266810431<252>] Free to factor
4×10266-9 = 3(9)2651<267> = 23 × 557 × 71162352319717499<17> × 2739490804091120297<19> × 202774642894094696157617<24> × 5387015255111323942626049346281287077863<40> × 93664776152606764401059753977917406656658975593547100495177002729005709733<74> × 1565375987184300132253742064897937509211101557738800048039377218390189814067798915031396989<91>
4×10267-9 = 3(9)2661<268> = 13 × 79 × 32573 × 3115019387<10> × [38385838742536574783372481538719220878065279206907354262004875718207513250614139950212940331134579598569854171296260522513038413984132442610646146837948176638329725419880068728816730404963711907552090330612013635508792595813523538707071381248146756083<251>] Free to factor
4×10268-9 = 3(9)2671<269> = 7 × 7229 × 66905292289873<14> × 120160125308467<15> × 157756740409116882389<21> × 2221939400887640132398081007<28> × 245627325886145161242134796623575019<36> × 1548812039046919635536662930007713724729614506751564661212755368239186562789<76> × 737339247296593171731659164098751163305183427019906464474193591876106604044019<78>
4×10269-9 = 3(9)2681<270> = 220738723 × 32898098813<11> × 900088061495140402991<21> × 61196370238116068348597908776304184764872155602615474107940058897013367651822621567530698504801785845765841094610556996137932962666483571222204061773091777147856462420760628921324608668875879586662809321743609181632151237247057199<230>
4×10270-9 = 3(9)2691<271> = 257 × 1039 × 30169 × 99257 × 7020006299581572894488170104402102406297674139<46> × 10749361742827382298904906120880763303050229911440763032084434365062835850279407<80> × 66293214889456064171832012993470118333388577679074546720143193344161225098611157148065895455600119327786801020915509297623388246213<131>
4×10271-9 = 3(9)2701<272> = 31 × 30202177735606346764907<23> × [42722832503695827914321127770301452455246372564329943356686659384169839329541774435734593642755496300432927925871631930845604006614931847264993896026811651957046732318766511595785813401107256782754754246157689633422423934389651482772892607147348923<248>] Free to factor
4×10272-9 = 3(9)2711<273> = 43 × 23719 × 7835404340941139<16> × 26265181432486679<17> × 930663416767988537114497<24> × 19027796247545542861547220531447668624061661591338963907296386541991857083085115088901913792033<95> × 107614850749561407878824124427790571175221117550451406518629318663620901554531941180527256812039819026153650029950983<117>
4×10273-9 = 3(9)2721<274> = 13 × 769 × 692209815359<12> × 578032884152747004261208739111100206260126240181680661942162475576036683730359748569977921055172005223372261795906603883208923650353218479594748401646920227959361806752583269954399632881597514180908469811074696058905018012645449264727753613483209668219907117<258>
4×10274-9 = 3(9)2731<275> = 72 × 17 × 283 × 317 × 653 × 17264088293<11> × 1328613771450100770246781828785320550322299965818189662049<58> × 7000751848412477959806057766604418499857831431396426422451<58> × 576483264949148720398224057113036271804100390023761971950737<60> × 8854872751704570530521108482218419399537655969341394293738394189902236177869491<79>
4×10275-9 = 3(9)2741<276> = 71 × 401 × 84474682647521<14> × 818953304680362191<18> × 6718572700095321910194940175935384879<37> × 30226964810738355816644210088518044047158063430029864753580832080349747055498133633088448033525649794573852209720340727234565183662557560147731245778372056078296302820707693240744095857406884453469709409<203> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1764086939 for P37 / February 27, 2014 2014 年 2 月 27 日)
4×10276-9 = 3(9)2751<277> = 22082396421516652591<20> × 2792516776165070836944026656509845283656971<43> × 716199815546524866079650590503056034131183398218468977769146136824078266907549975600350599517207<96> × 90569880271293352518303498238803858248630888025984330258335249566554794436493185827628586008360528546509702442784359533<119>
4×10277-9 = 3(9)2761<278> = 67 × 929 × 17987 × 36599 × 12973319 × 80809574813441<14> × 565436964030157<15> × 1515401837949872107<19> × 1765110289183705733593895669591<31> × 615663986020623026981504914545261373583048698272679697412062651112455416702096848424307335241517875265006799695704312568778114219634588991497632984593608755838109576255627474513559<180> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=4171225888 for P31 / February 27, 2014 2014 年 2 月 27 日)
4×10278-9 = 3(9)2771<279> = 53 × 113 × 241 × 20663 × 41803841074986331004467759752042705661<38> × 331468644256359068076837242793801952073119679096103445167011822018914725489819506339762119501373<96> × 967913662101340560422010356676184484343996515510816435173982480762715965735856361612544161060833373663069254222523350917098194841020181<135>
4×10279-9 = 3(9)2781<280> = 13 × 89 × 1031 × 8191 × 11885072201<11> × 1175935190363<13> × 649382801709079<15> × 243280349283105805921<21> × [185412075980039968962242842836101051717026383534786282416221441289061420525616572475724184424684540954018706920028563565753055842564938100362152006153149743892318485511051461757476577655979301351433392354185413559<213>] Free to factor
4×10280-9 = 3(9)2791<281> = 7 × 79 × 7873 × 438869 × 754242675153051504745993<24> × 7036463668833882894493692791<28> × 64765040431139423250597025178825030172814291640805945008454962342549492619879321196452169216447274551849343<107> × 60905079120205992651499182035774058280731042907790381089516679191263999393874607733267630012429589633047391859<110>
4×10281-9 = 3(9)2801<282> = 352237 × 66116564428341103933<20> × 327688085009441514698183304096854321<36> × [52414818807970628835039384773766750411044054155348614012225165019257480137097191366360897279190370636000287082433411071789091681449994362696054866180780348080852281534547621052697640545310284487807248972161988654220773151<221>] (Serge Batalov / GMP-ECM B1=3000000, sigma=2672261608 for P36 / February 28, 2014 2014 年 2 月 28 日) Free to factor
4×10282-9 = 3(9)2811<283> = 19 × 167 × 511171 × 31993217 × 416824282517<12> × 40464415611439<14> × 1023170883475949245909<22> × 214884373867410502156141386709<30> × 40059260051938443901187811141767299<35> × 57043556884754993123007599776067037686087494765852279033731828829<65> × 9096555792178228083391163737686299219008089428520929845394614809182168672125704646024235237<91>
4×10283-9 = 3(9)2821<284> = 3169 × 3719 × 4250591 × [798476714240762304289927317927791738703273513215974404954580973493719053901007970687185281370572533405841786624835084802044373214279686219659739152616127094593700535792317828880418459640137315574828176597521673354697993089417977990056136224533802179883646662641961882991<270>] Free to factor
4×10284-9 = 3(9)2831<285> = 29 × 18121 × 477623 × 10062555889<11> × 5499130730309<13> × 11753001510582599<17> × 142203315288161311512583<24> × 1628892178337141932454034590460430447783<40> × 2969240859409506695099012352547967144102089819518203<52> × 3562837145624505123345782996745374516782957870662099008996375345266376225912969224718234215768341650186195378035432153661<121>
4×10285-9 = 3(9)2841<286> = 13 × 55812131887890896923<20> × 79937829311186296877639<23> × 68966101383640516446167371855786022310853016696718283063648159268421464915465728285961096528403280675638895904473279671087246024797801377438233086352611255046832833125984319855825990465309197229740336085477419596728250567726896174291039098831<242>
4×10286-9 = 3(9)2851<287> = 7 × 31 × 367 × 79869969541<11> × 213191226127907995641964733297<30> × 228969479001528543632608227557<30> × 300364480242690431385063688008727003<36> × 1654770841768982551074895703714451566312262310294250115213002864298336917<73> × 259189448587394079995709224242217573207735348894143323496982198581906017312796640460823662146191460771471<105>
4×10287-9 = 3(9)2861<288> = 157 × 50934683 × [50020350585806977048610190992840947242126788720749730735044346193952167937960908636080068210941357173768388620557768023258911798136788734716663127366299360350348517936922129762920791492700738261146186564062115736046512046245780916763584211777672925591294231391776597665625943961<278>] Free to factor
4×10288-9 = 3(9)2871<289> = 23 × 211 × 1201 × 342511487 × 95528206800101<14> × 129614923656859<15> × 3137467624232877973853<22> × 1168960033824751568738318599288806794044795142960334049<55> × 30972672201765739736938580712102556265014782254894828718827693754781089763714082501<83> × 1424581581949223240674405227318668880791852510435284297667922774714016704281163739428947<88>
4×10289-9 = 3(9)2881<290> = [39999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<290>] Free to factor
4×10290-9 = 3(9)2891<291> = 17 × 61 × 227 × 617 × 5231 × 262908713 × 7911360529<10> × 185405024863733<15> × 1698566896904071<16> × 42148020350828467<17> × 19181467147855111285267<23> × 511073459929064433496515670727<30> × 1134320138268801249042282616951572493682856422065040483699499756236497921<73> × 1714933198151159483494274806473776743828925126376508366289766922631413467958045570827771419<91>
4×10291-9 = 3(9)2901<292> = 13 × 53 × 5237 × 10601 × 59735477155129<14> × 44616186287502712079<20> × 454027205499851838839<21> × 41594031977050983708088540381120781759<38> × 2077656184064841971084288262193150304189081625784995837984244214934695103479814232637980914377895067517523482338022901652944507321424967075229299547366468046715394518695954016878961657020957<190> (Serge Batalov / GMP-ECM B1=3000000, sigma=1545062547 for P38 / February 28, 2014 2014 年 2 月 28 日)
4×10292-9 = 3(9)2911<293> = 7 × 149 × 14243 × 106441 × 1088196679<10> × 11297303071<11> × 1570076584418759<16> × 2011840031262686851<19> × 4448748130740857754356733813222510745804262837<46> × 95519408968726075748994090904376099816839216393188114257850974641<65> × 1532990132749980953389945553120218010491917071949279249377201842143209739521102656071536651055954979955117249500808887<118>
4×10293-9 = 3(9)2921<294> = 43 × 792 × 1151 × 403189284072959<15> × [3211833685071499366692493292881187812638884393310717978560527311696699590583927526848566449252753885735603806821030642633231027720963771938680833158710315158924609316667108797610331249587025472759181589769639309219213773559474536361602373761542425825111205522854726483973<271>] Free to factor
4×10294-9 = 3(9)2931<295> = 6328193 × 2807442959<10> × 1689189684351792543788723<25> × 9315019792951667720337833<25> × 37217298101001103011342694765763<32> × 19847917526656775016866295121378364453<38> × 608892479187265731705994468981721335175199066679255978067665568322719<69> × 31813154456124267948681707302764451170058560372489661494512147777300060017072412206709935547<92>
4×10295-9 = 3(9)2941<296> = 83 × 1494676633763<13> × 3903314172297168405628645213336843<34> × 82604012786733003405553219786216246542205184291162227355222354497931210907400429948277304129818833225027162793486091921937879986950269831230248412317913642657772771239382693959315868083557282075452028574422770692128404990604179755006856987584939853<248> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=554131394 for P34 / December 3, 2013 2013 年 12 月 3 日)
4×10296-9 = 3(9)2951<297> = 151 × 163 × 54917 × 108959 × 752584291 × 79496880961<11> × 360248308916767<15> × 3382153529722873153<19> × 22142194087798266515774322687941954125664442651683<50> × 3803413556430766247732445539023188610808389140958333384583058412229<67> × 442415990509240840865930832306408338652347903847608419715878443771841429161619240227976036213865734077353497221067<114>
4×10297-9 = 3(9)2961<298> = 13 × 182070532509348742770764491843683391<36> × 668503735825351157067606241570007290027<39> × 2527977114573086766546526287646398331473046089181770092871541877372974784720397275772930035752552194671829810614008725909018969756523608599150065487278697127477585511240720657451001952598006610288488497384636079535110319751<223> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=986245908 for P36 / February 27, 2014 2014 年 2 月 27 日) (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=4163654588 for P39 / October 2, 2014 2014 年 10 月 2 日)
4×10298-9 = 3(9)2971<299> = 7 × 47 × 173 × 197 × 1340484529<10> × 783752398071339239<18> × 36080667658326733243<20> × 3634354939784511165317<22> × 153014654938477682173751<24> × 228523786955320896343849<24> × 4925878260251331708626032851043074292536566448573065337112672161101403488977937<79> × 150335330555761799982346599520277823222294967921805913894675204804052376237077781705390405123139713<99>
4×10299-9 = 3(9)2981<300> = 643 × 115035841 × 336199363 × 103968628968644175121<21> × [154709379155695336098250291193930148487138808276254346130499600845282996030714668018661286166007042356549084205033194396583348223233336680499368315056713138941105352219435313834066870522399685752214680028293390662827890898867687737380046063667024596050349039759<261>] Free to factor
4×10300-9 = 3(9)2991<301> = 19 × 487 × 250250505961<12> × 1824453361909318934020125483109157972584403451163125882265065433<64> × 2250962543871412830161298255938234659251521136933600855735504876723568950774217694093<85> × 420631149137981990420608602170580936167680773461758324158080753438724281697849613462731528024601426730766721198010524787747092795030330583<138>
4×10301-9 = 3(9)3001<302> = 31 × 1072 × 1464391 × 36570187 × 38715517 × 18022392049342564660122961<26> × 8095454631303223375438498052951<31> × [372569904695611793473055093784523796435602455019890141858638849487303543901342414201197629681176844801740956134964250021267087945050057633694101438890935665993995484344998883809123310681633669677553112305018621665485791<219>] (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:671956220 for P31 / July 15, 2021 2021 年 7 月 15 日) Free to factor
4×10302-9 = 3(9)3011<303> = 109 × 206127409853<12> × 5351699092147<13> × 41659474526382217853629<23> × 232357967917576122963811199234684498812206335392391<51> × 3541933914244940727356281485918685455317930382157304642870395201<64> × 97027367754065425165181173621119251060810058720182234045762222524054645187828405948586729316796098149047845834331461971247418816223279407551<140>
4×10303-9 = 3(9)3021<304> = 13 × 997 × [308618162178844224982640228377440012344726487153768999305609135097600493789059486150759972224365403904019751562379446030398888974616156160790062495177841215955558984646246431602499807113648638222359385849857264099992284545945528894375433994290563999691381837821155775017359771622559987655273512846231<300>] Free to factor
4×10304-9 = 3(9)3031<305> = 7 × 53 × 59 × 9437 × 1077079 × 3473719 × 764892666772199274490037661811796227973<39> × 17930947920257063532703516829435538148362253000748922501535367754063948223945638948206096726431<95> × 3773584905660377358490566037735849056603773584905660377358490566037735849056603773584905660377358490566037735849056603773584905660377358490566037735849<151>
4×10305-9 = 3(9)3041<306> = 10213653845927837<17> × 39163261848694743640598935448329520465594776843522832258061150875647021299162924069006234273899602930003921051843122445571879746769303577411067985596651764483992008326816984169103795377303707888536598391427457678667111901695601560155131548344572197470886303178331893537745606934226262619043<290>
4×10306-9 = 3(9)3051<307> = 17 × 79 × 3677 × 8990693 × 294240857 × 921385311825262730764919<24> × 18536972846671778888746448349596139528250921<44> × 13024370107576147632519746158741250510023486439810098022457117528012765562134071<80> × 1376440289607705711643874895620590896694660344209270221136185143972927196557968203597288965288158512426106493567881141417634298421288841289<139>
4×10307-9 = 3(9)3061<308> = 576380555236408568077<21> × 841019479988943260455841<24> × [82517225111060335705669437035075780261014530098213501172513494196853142090930449328776622754199679993442517664312652449394134024411323591137678313544251557342654954796448556480448113262394112926253051884969207088582893971457427014462475159148369809249922571270963<263>] Free to factor
4×10308-9 = 3(9)3071<309> = 241 × 409 × 941 × 141906841 × 782375039 × 3782508951828121<16> × 299550549437767373<18> × 28301991263223655079<20> × 22278480958586947780123247<26> × 32826981394635607932036482961957538515492937504121287<53> × 92971411597094466836812021838084115808539485027367635029013923<62> × 17814706504328977485410892424619338104938573843248529336228689546358190125162267028033028349<92>
4×10309-9 = 3(9)3081<310> = 13 × 307 × 2671 × 3359 × 3795405871<10> × [29433109532729617232178966374336922312891483151009656651496168834646391006656770894423561681972341564824366381782221059001095387125050926785677701836329033543983330755391476731838283220137000307362896789837044345628300158372259555644221129019669106489842236316272610035688757511198027333279<290>] Free to factor
4×10310-9 = 3(9)3091<311> = 7 × 23 × 67 × 71 × 343866401642039<15> × 141423577541870006652967<24> × 1176075110392218874344361392155876226533549449<46> × 105015204394259862679542119957655122688478278199700532417643933576919<69> × 1111621257288759311574554337362336029819886569891919818320899807496833211589<76> × 7822495402005635711932598925376137473625943127630073484216479297850123896513649<79>
4×10311-9 = 3(9)3101<312> = 359 × 138955740997<12> × 55781124969235747307<20> × 680159359867116424363<21> × 2487591984573976571869603<25> × 106529797518554560102421230854064043<36> × 797518654635992259779707740334222276693149117235152743378033579378791682903402193210016554553541705922407230362256877080766281248550363324748106792024170799336196351430970069551615710866774998840453<198> (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:3900212173 for P36 x P198 / July 15, 2021 2021 年 7 月 15 日)
4×10312-9 = 3(9)3111<313> = 29 × 97 × 125353 × 21225989 × 845647631 × 1256265547<10> × 97436968800347339<17> × 141325597716279667<18> × 43135946585687043827750397163601212657<38> × 39134557867852232577558454632800142255822036800416522850859882961102818904957125240913476934321<95> × 21640751895235374752390739537526410686353388293787540565070651038085291064841286534914579421812560407779824260723<113>
4×10313-9 = 3(9)3121<314> = 109989767642046514039<21> × [363670192759903023329552897185096057834690206425076056750684793502460051630611841188005332028075813194778074777470683894596092306998694018326478526024000775960361466593695829277791280698874771376305482745862772127299309636708894020839003007372748567310715063812471248409839778500012171382736769<294>] Free to factor
4×10314-9 = 3(9)3131<315> = 43 × 179 × 8678368395079<13> × 2733863182530927049217<22> × 496078180985187011253921599029146472448633<42> × 59573402681404398007654718102866364909302643<44> × 1915938687245105985797755896058272648806048756431283226141003881366035015771171783110925141<91> × 38684724398115424654512004896712075071304442379362845270019006771965113736013768988351468162809875399<101>
4×10315-9 = 3(9)3141<316> = 13 × 17902267 × 1446730973<10> × 462976954920062306207483563<27> × [25660283808032508300042533950210310980805171992889702846924561841927187617967779681485071810499200520235537547157214741437125360172976219634345812942469235382255446291430111951981319685549176965329042801638343037661030273333117336859584688973919265205050849448553604293079<272>] Free to factor
4×10316-9 = 3(9)3151<317> = 73 × 31 × 571 × 8308493 × 627908707 × 19547338624799<14> × 176891153250092117<18> × 25560955073898763070557830367<29> × 765613002593259893435771444351052001550447832917<48> × 4486195411014709158764439342476979691484480174887014872203008588690204116766979<79> × 4159977593448370364304706171478541066565887961579230858181342138794851799577442531362916884055114039300431969<109>
4×10317-9 = 3(9)3161<318> = 53 × 9831762551728153977893<22> × [767631416199546990841458824998214893369623979904861335678896427287436235892828675404699307035455995838021091274166238541683107910085147729170417531207941989820580074145335573476613053674361661724170621292635027539784172636346478369437791157951177485170273064130826093425383889000912954188178079<294>] Free to factor
4×10318-9 = 3(9)3171<319> = 19 × 211 × 1895315654240578217<19> × 27027959896545436523<20> × 52589677955822857981<20> × 3896040234710280092225221728653869867<37> × 5874207548035032880370430336726048734418437859121<49> × 1661715856862486631625209578684315662965911900561608691<55> × 9738658207678451324435719062537714360497552822646565456174754048863655310132922791044018520009793860700775434306628537<118>
4×10319-9 = 3(9)3181<320> = 79 × 517747 × 74596649 × [13109797704417644018256358287284251578262959335330333965154764425731387476512931906530435653798594876259779382842707162597960323834335463083661220573336706068587202865950967222632767892443315275753132410329257688721413753140422469204608346494048258454864444502950372521013529498692650674907741726681981643<305>] Free to factor
4×10320-9 = 3(9)3191<321> = 15073 × 269741 × 1023361 × 2269267633<10> × 51894756337<11> × 1244702530203678363132386159041482385491409469399<49> × 300244161062830630302818080353294695395582491459143920704439<60> × 8845587159376599603050287573778844195307606321990000300773593282138846596884883531<82> × 246949676822489123478546797860086337445136656832298441810501694114885422418729064737492466489097<96>
4×10321-9 = 3(9)3201<322> = 132 × 41064293 × [576380045146629892540034360438169280449473009579070204913309417376135013654905094034835891474811701311531336983975737177098384397986886811311101664392670391857681296333396945853237634143624284873876468808235553017561449670956210259945877276860781566064459516816887620388739587732849722886063816501474721588614323<312>] Free to factor
4×10322-9 = 3(9)3211<323> = 7 × 17 × 6011 × 1645747984609139286241<22> × 13899436859622480875900698576457<32> × 23143371269685496536153160328427093498540901<44> × 5250976096680145607463471043357442149484478476541758912748098433643075952275139383190561991897383<97> × 20115883014377928383893387007175234704920014913458230162438995215793488735504372470773121940594252835379458979121030084588169<125>
4×10323-9 = 3(9)3221<324> = 89 × 773 × 99787 × 115192841437<12> × 29455222694952143337197<23> × [17172310121806940771558844731183430187604346413241773787787027614747090645981486935259912667769802097808745489974549514554450288657270708169327923338126153549240641642188729166521881882558129262225916551480980905065361820659987496793980829682452599548572280710200222456032965690321<281>] Free to factor
4×10324-9 = 3(9)3231<325> = 293 × 836131 × 1237373 × 922383270197<12> × 994957995931<12> × 179397930216237714296595927956723<33> × 7189045804898519263081151795037204467531679369449028078511722416595386581264805003152843804006862295551307784080752976388969<124> × 11148400639791637102996387547716707811007020632209029670143600424942142750952687051685685837339502521886454403702834010533758301361<131>
4×10325-9 = 3(9)3241<326> = 6753161 × 444095929 × 13337551076083765487843831140519603825247699569567730900176617734684369475104681208006746905359970704513431958948962091059826683131999176053044663954056522663978783709831680199635953576609997183939641641535127592787130114901875361696131563745631457149914066554119142185965886086010748985309211693736129332245239<311>
4×10326-9 = 3(9)3251<327> = 17091071 × 60901619 × 195831422029<12> × 356890571400141061<18> × 166140237444137244767<21> × 190635692847477990579123632346869310511<39> × 631467424737264651495425260061946168071504561817690296672097889180937084893277408137330615731353547645619<105> × 274925122460187569485340308736925473178651132530416258339342177005623400903082611229363119849296902241572092263825625137<120>
4×10327-9 = 3(9)3261<328> = 13 × 2195723 × 5959879 × [23512653581752087168971864005896820674627992432680030811442558388996460572296134985027024292969700457485870891231453414295762765301208339021922258719698019731827889636107207227564367573840940249784698512678061506533795207647681825043961941277345476233764420872389502148374439233042695836450108063067046881682115871<314>] Free to factor
4×10328-9 = 3(9)3271<329> = 7 × 479 × 1847 × 6359 × 6529 × 7297 × 10370741 × 53292601 × 97689419 × 205274357 × 139874026753<12> × 3925375099814913149<19> × 25826391871341962471<20> × 69298219423145010197<20> × 2153254071713608720591373<25> × 6582418788086270165044449804136959083935788871362889026363451583633652174166909560151<85> × 138113436171072982352946240535290905803608686060864069536374354358642139888493009820335510911672656033<102>
4×10329-9 = 3(9)3281<330> = 1998329 × 22998146337119<14> × 1609178735466889770313213717<28> × [5408737224100048555041813288042877286680465375120901120314075358327514394344982640521369787090937782107045732819102615473735956537159279528297249351950429803304408568696845263989598350852063785128506124084704588047873496922799248021929877942412414226995772113801028326632181464190573<283>] Free to factor
4×10330-9 = 3(9)3291<331> = 53 × 71881 × 238245737904007<15> × 94136405394950299<17> × 838305023383274289860418539450587157<36> × 1403781958927021896724841424949479359<37> × 2551589809127749396488652666886417210600862321179209<52> × 615183048749711493044799857844699363803138896771654939937<57> × 25343717347214324824522098723663613215893017202640604427624247481323908812513490062007103784101162836271292998421<113>
4×10331-9 = 3(9)3301<332> = 31 × 191 × 45343748044418267<17> × 1160354382673727953814450082900947<34> × 128397588743463323125734483751100466519795933473451930511085466139639195559419275254257412393933557207057526895777976656454576980575562109698455200797886991873706314945968988340625328054470163401562124981978039337616574327336558236319306957814376169807365964579814454948097411479<279> (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:3773366191 for P34 x P279 / July 15, 2021 2021 年 7 月 15 日)
4×10332-9 = 3(9)3311<333> = 23 × 79 × 193 × 729941 × 1137496712761<13> × 849138863352599004001<21> × 3151934443985899535720514258097<31> × 29139773847805639821445881025078673003<38> × 245334893549794309989767836564265608087<39> × 13531387192579406360450949532177073435621<41> × 5305986400511685990731500472797459622030647462365611131005646934719617025247082571798665631818734627082725026872229312742765194453979020894123<142>
4×10333-9 = 3(9)3321<334> = 13 × 41355691204232227<17> × 407934912180081648561847489<27> × [18238557224598333953952152620025443561515920572326678566469235198836249253788135425580581494832933387600323073275467181122588614070799852961538203872522860869889898457603040045220378238611609849674631377772471215336305664731546613777013122273372875505869425070603015086043539087802644986769<290>] Free to factor
4×10334-9 = 3(9)3331<335> = 7 × 77550151291532631003351523<26> × 1416288347210403639057173330195587867<37> × 337473788641314954387395638036113417304047480856561<51> × 4690700023174550771994364525354487199388452766958125990189<58> × 126343321023855007144178242728859599541361819987460022346207<60> × 260134302671767920102022631505867541342722247157905131978577734973578865145671722044817281277952599937931<105>
4×10335-9 = 3(9)3341<336> = 43 × 7255582357<10> × [1282092204827735626681317032920476206626457193465715545367468455751183968181004941656029544477458592623512729334674602653516156525700860622916479315941741102256686690546968361781824007050852541556449098045685267838291258113459360076739643792233691936743500508732685225150592181793848170270150681621203129208081682478971594641<325>] Free to factor
4×10336-9 = 3(9)3351<337> = 19 × 83 × 5113 × 107171503 × 1835111041<10> × 2124971131<10> × 296146061250647<15> × 57092174517726937<17> × 17170380743133123257952990693559<32> × 44858038464611919885751480065824250801088011690093127023208432690399488635724167714133938508092027766196393<107> × 91149659654726308272585876863370948930460841622720609441608189978732758903332080233873633785536467083928748067377658532027062552593899<134>
4×10337-9 = 3(9)3361<338> = 569 × 897594289 × 65907322904551<14> × 3610872820753374738772323889<28> × [329095376255041568055120637544252735673924484367063324976327762267358504203809009059281393094667429272720943625159263482311618981095143480896123639440770704310282803184100572809746483127652624757455292368856969587832010783926468677034599097383952264180956316931881872194983232037322009<285>] Free to factor
4×10338-9 = 3(9)3371<339> = 17 × 241 × 14153 × 93889 × 4568033 × 43680967143031<14> × 5896028798213843137237197474833906963102993131581871751699684425911935230535986344105005014558253978688551536750366043892471178185550208899868740133<148> × 62452486324637325769890221176637781858386879943374557476881667807207732700425836737424325616490243072104147833422224539009061776816394288678935699086007041701<158>
4×10339-9 = 3(9)3381<340> = 13 × 4283 × 15046951 × 1286412649<10> × 11933505319<11> × 43760039801<11> × 7107126030196500985539562943544421600840624999693106846650355418072398508110676352156145782650786327560823376000393524690627947167100166829968699860714201707544151341030023438757569213683773594797816530480416847709522781720711559145154300598016473553571749879652521125885829784269066708345623641209<298>
4×10340-9 = 3(9)3391<341> = 7 × 29 × 1013 × 5784407203<10> × 1834192081578759239<19> × 76541953053300386459<20> × 262632027912846093091<21> × 71775898228022209393560983425277906302357674967666842984378404894862822000808900815660770387246947459592034389179117862851<122> × 12706471680112835654690980720290430949855819667071375215198272273064756284147694488613045888308212030764851003333958296721086670252760342053743103<146>
4×10341-9 = 3(9)3401<342> = 173 × [2312138728323699421965317919075144508670520231213872832369942196531791907514450867052023121387283236994219653179190751445086705202312138728323699421965317919075144508670520231213872832369942196531791907514450867052023121387283236994219653179190751445086705202312138728323699421965317919075144508670520231213872832369942196531791907514450867<340>] Free to factor
4×10342-9 = 3(9)3411<343> = 4691 × 8627 × 2769503838393179<16> × 56976208855415157152685472638791<32> × 1494197448543319671819667216019537347<37> × 41713247973026961742658321646485423054431<41> × 1808260737095189373997972911343245292873628525108905125242459880129553110340203951049<85> × 5557713951456074967962531890753686473889384220379793822875068616831334165905093911472798378503095080109303609626110094430409519<127>
4×10343-9 = 3(9)3421<344> = 53 × 67 × [11264432554210081667136018023092086736130667417628836947338777809067868206139115742044494508589129822585187271191213742607716136299633905941988172345818079414249507181075753308927062799211489721205294283300478738383553928470853280765981413686285553365249225570261898056885384398760912419036891016615038017459870459025626584060827935792734441<341>] Free to factor
4×10344-9 = 3(9)3431<345> = 47 × 2213 × 40853 × 220028549159<12> × 1531324534463359<16> × 2439195933333443<16> × 5375143005441934662479<22> × 2488278116031430102776096707299610662488043<43> × 144598623750304627603800978611367204972835492142676576929116325082869033718437561821680337101937<96> × 59225767811436665677404655299131091454174324294278314763315069306690006550853237485054095184846979975166325383100663147992888076712071<134>
4×10345-9 = 3(9)3441<346> = 13 × 71 × 79 × 52639 × 69653 × 1435997 × 1030499926292167165478150893<28> × [10110723751011403958365512257224520317547781629019467293487210276028391494047284239943813172942433506595673235379281985843527463066435159734075847051814707705697133045030465636015311056553502943570365866815040448987008097564106887566576722828904447541206258160262549210878235886708647977617905926489<299>] Free to factor
4×10346-9 = 3(9)3451<347> = 7 × 31 × 131 × 10631 × 14367479993<11> × 3164590541963<13> × 1028215179829719535882320343<28> × 3226925443320811301909314322467<31> × 1377280097548571230432695973091803101076339<43> × 10704249832674713026912742559336870309487534796404441<53> × 138284106376553420246923079942434034576006381033927871198757392949<66> × 430361089471713503060658776757056607930496673647784651890647453877752335021838104625034871626829467<99>
4×10347-9 = 3(9)3461<348> = 140249 × 1503317 × 1897184856214737844987473199603874937334606961595650593809414623258173381875610717254477543872091471854461716409172682929549803612814038244280158702770499042455816608192139600538400919782124168535744662044619512875351774178734377500757395525614473749502948197835636162816269717139556296880091229031571235051666807082669517401320313860627<337>
4×10348-9 = 3(9)3471<349> = 211 × 797 × 6299 × 774051051841<12> × 4200221359757<13> × 2915451063446069399376601224037079185354693746657059794713463255831700287525577363096092505850841359833761517933310832779031230601002765860131859371<148> × 398382328716015746459924829238394574988800476783971007327645363238035632510627346596410615056501569725970723281044988718808406584224099621078648041761622754642498669901<168>
4×10349-9 = 3(9)3481<350> = 4744476984283062239215921<25> × [8430855525805527473154155016317287965032570727912267955715621178940392687243193117749926150586649733983114619832491359453333813246323074160699657389411836733017600803281797412758818537321557102250821694843640227972636060528787163004709905630346839836973556205908185346173051810919979917602431837326153450783172888971156277671<325>] Free to factor
4×10350-9 = 3(9)3491<351> = 61 × 1607 × 952681 × 9041761 × 65731411 × 1081691158291<13> × 13680046283699<14> × 76852616085817677774513791387885482895603<41> × 251898861882089203262483987189502786622824705946228241740108420753071099837412827838656218659332309040463<105> × 25157361478776660853308287916031703454789032599368643203698111891201776847435320364875878065064817921353442354089767932359910670007542286114601132482129283<155>
4×10351-9 = 3(9)3501<352> = 13 × 383839 × [801618146390303466577633611207583628312110826915211045015468224157283893266948662570264335587817568543862641127379728720394989325452358130121463185586424757014509488854201090320921812771260065568356283994872048717541228724302877789105087529687427040223394945036049770065854934771329405538019045244731014024910684708151875375633253285081265041613<345>] Free to factor
4×10352-9 = 3(9)3511<353> = 7 × 1307 × 17785019238356023897<20> × 25892411261964964027<20> × 3214888775730183633684484492940316319<37> × 382327974808924344375250235945475131233497457127498460037175594820337444676213458154174274593752449576287105681456329<117> × 7724270944737886318386430126568103804958048509602408131783640761948598469607350643640066420390696866601585926287587705869592946568962890281971168022378259111<157>
4×10353-9 = 3(9)3521<354> = 317 × 11369 × 430147 × 11208304489<11> × 4266302449640526606803<22> × [5395975922799448350505047350689788362272842495327768888866369348001484798205548956412885515887320883933632700396675545347818969259020821515731247243513202736365495759359337869242455332742272088928577422153203152228827053122664388674768852936094891944616578049977801191376786737082360089652920277169620146125483<310>] Free to factor
4×10354-9 = 3(9)3531<355> = 17 × 19 × 23 × 107 × 66090659226826860491<20> × 221303620588838744540899263379<30> × 314129679887073807583524645188651<33> × 129436443535881527128893364288064480493161761142268211249<57> × 207379590086116170683595680783934802558717377003150627710449<60> × 43779968748061432046513482796553162771143586000974553425324771322949<68> × 931987848923914489652952527655347978675348054328016114007617991049256542266907254327<84>
4×10355-9 = 3(9)3541<356> = 3169 × 493721 × 1309921 × 2184893 × 103506630718573<15> × 3814650654088208990161<22> × 2631153741019649830037041<25> × [8598282419681752075176837339959670284938188616843205903468814396632681512238977507665735243092944317984254982487792184738870129102546524617256510262056148240461563028833653382111337275027849997290087880466502510985342826463840931212917416983044849939296909377943715677461511<274>] Free to factor
4×10356-9 = 3(9)3551<357> = 43 × 53 × 337 × 1297 × 1447 × 1787 × 216787 × 29365373 × 1127811197<10> × 76190529753337<14> × 113629080538653227<18> × 11599818465140965879994476653062655563497677557<47> × 198710711995103149990233169293141838129420782191<48> × 204381963777669164792577925160889405410315156951866223<54> × 5303249027172655921940588313560365248852477668638803073380969651997775203643395415597588922210937546209863336469209756209034438146229468862433<142>
4×10357-9 = 3(9)3561<358> = 13 × 199 × 691399 × 2878769 × 9432027861349523<16> × 7724627207256381502081<22> × [10662164871075000841143884172748727009042909667921135162351637014705685076668906767451041720131887254391071897528190280317226891711133791570514438227288434532228536306667313385962461524998964819554527437778310903538986210985059921119674697049202448852432784552955055023098652037678196547024323657368654881<305>] Free to factor
4×10358-9 = 3(9)3571<359> = 72 × 79 × 811 × 7219 × 1989079332932927<16> × 8969703468441893<16> × 86895751811064544336849740319641090775480253420015628669829<59> × 5888327336151621339092064391533621133226986428026063636851455387805005773<73> × 77279425539607484572840555647164294919712911147901487533613444201950695923489405913069677<89> × 2501810197186437126229627022814289861260018713367709797946573918927451225309193178017466201869031<97>
4×10359-9 = 3(9)3581<360> = 13455875108412711641<20> × [29726791960926946417682240579163919739467937715963816669987390709773102966203704150577799916938447634862714243068555715895479571434860469989964327991175835508007420739501723141767942330684218244121202171585033713354853260958268615891772271272221441572921020837187020086816441274899950123381890523545791778639408811640808879754791334725654351<341>] Free to factor
4×10360-9 = 3(9)3591<361> = 1979 × 2593 × 2380977433<10> × 51067720369<11> × 2039081640448510323571<22> × 112032125257256292325042410655727<33> × 905172686450661562749851540460137766673<39> × 360880371169402630105325305389368378564231281<45> × 73041953120006531682243304867114152425466458123310047541535943923877620801<74> × 1176157985424367085220614176274745306343457486221056269990067414713580079192985994419522536405812661021796259633723616006609<124>
4×10361-9 = 3(9)3601<362> = 31 × 223747 × 1847804769251578753157878751<28> × [3120936933916319695795451757249605878223217168212214003417282179725987180544905137475278568984916367642069382818907855864770827000528089412685244996119444081753679092292937851612245058127822659284196574881542295231698115766720468525140115666343446668653119973399287235192259798962966798239392133610784386033382373422344706351613<328>] Free to factor
4×10362-9 = 3(9)3611<363> = 59 × 1164613849752444074993<22> × 65053696559439275202720977<26> × 29646802258927195774388196337379<32> × 5511837461824511266624821670808689<34> × 1147137242371709631910079611455202628254248681165795782894651629<64> × 3163138541455391797066485435516955368132165099527456308975977784797173528030758604063<85> × 150919791744741283064128923837226378867962889040741916589329187017248321610532109055108292989991354157<102>
4×10363-9 = 3(9)3621<364> = 13 × 599 × 575123 × 1264049 × 7847081079401<13> × 90044466910849506694742791424666669725292343475923581318875951910752941146796683291458062436362815247131253152987729328933510952105344300090883170299255080915359887005314975298306301797296004734924983762681057162959277982107968935996458803505708890437656297554180373927028753663007630856501206568351524026379124327611030633302961804159<335>
4×10364-9 = 3(9)3631<365> = 7 × 4567 × 5531 × 645503 × 6976873 × 18550824102112777026647<23> × 2381336767002444014015255401<28> × 325612568869149323675616094472872656162481<42> × 497892182486974750287792449089666784458187470962260411347366511635973641176575824646685926038156271581256219799204240731569729<126> × 7013708399743531402140830818139282059258463638362124055738476138251407779540967821286042235365980761678081831747998387238404717<127>
4×10365-9 = 3(9)3641<366> = 157 × 61151 × 1878684683<10> × [22177004312249987746043231390135983627961345572080344348996917380821170277299346861161403702937904599922761879707434058249109706125502205235664013068057914691633715198337229828427722279270066784911197617280842793459185400023041173402878698656161658719604807810814050338667646929160074902328990926655185651463594927500271611249369619562956024920276311<350>] Free to factor
4×10366-9 = 3(9)3651<367> = 37441 × 84061 × 16815977 × 107770823 × 2316040002909679<16> × 147912404254559543507<21> × 200270244249717633911873<24> × 8754945331971863643578588567<28> × 949144353624325440376001410577375375978814883<45> × 7443284907919028465924707807548173511764945050016169910818198185461325048000226757691114048862859652339<103> × 165263621461343967146615234240753093905509956335838533801711393326282423692813497174787331122094424554733471<108>
4×10367-9 = 3(9)3661<368> = 89 × 347 × 907 × 10667 × 378361 × [353821780086180881169104481959058512483108587603106967880138474612833998268682502272358068393245465522778629658879828989152868433321859457773284613605094328030707792800904246153823226801843769879003884220221782854647694668043320115262958803012141273357487615800274657310910658320685071910901172079849743020096320751348404754772362148091768476473851853<351>] Free to factor
4×10368-9 = 3(9)3671<369> = 292 × 241 × 2713 × 4253 × 5237 × 66857737 × 41715550696982867<17> × 45046753479013599736939609<26> × 89177151216694919128342839012937<32> × 16450357456538149478222257267964459<35> × 56831071349735800699564104034197250430260949<44> × 11106952378085416134328784349105056515147150726616078638907<59> × 280734873559781758253348251445739908956056985830730029555749391702366572037148720479831472201011105110825184173089405824194320945511353<135>
4×10369-9 = 3(9)3681<370> = 13 × 53 × 10169 × 21481 × 21521 × 409650757 × 15871638564872005940118811532237<32> × [189937209305368488699756555639288629754328933042439610757146002144712465664722880673604277276266408194890219181050489845842041953296680315735450264930192012047088689971250618837529878219674282350735790738917109109023378282111073445928965951522598594884079230203089816571727313389805069321906612833997171670842974039<315>] (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:1412554015 for P32 / July 15, 2021 2021 年 7 月 15 日) Free to factor
4×10370-9 = 3(9)3691<371> = 7 × 17 × 331 × 10139 × 1493783 × 1629098585915315381840811732409037<34> × 139703661574531915433064323942224155484964759896391<51> × 12381739908242089010679916203955564903195102834643116757540557250087725658757062968789736160958867<98> × 23793896485348836084155362360835910425178928920797710161916857648743628889915290695980051085831247984394491270349579323987469196155415850466965348776399545418511815476929867983<176>
4×10371-9 = 3(9)3701<372> = 79 × 151 × 88643 × 740236199 × 28064062864288267<17> × [18209190665695576690255666962886442327925320959081443072000570947449848213526306427292946580232881302876266337786386966973783928583123887135058684869121557009657048877700783846012581490246118055928558184872328579023279660698921759500760005150111955367421557230015514984386724932789094982843713417793589316920700694349500581482842714142841<338>] Free to factor
4×10372-9 = 3(9)3711<373> = 19 × 673 × 156033287693<12> × 309740823289<12> × 1457961196343189999407<22> × 20134967641613105163416519618269991614702019<44> × 536702269647034089326974744111747439562722018687<48> × 2094605899089145833509298930888551259266468064190461646178542207742096721296987095217288855538371<97> × 196129518818625224605331844109132005572907239230106882174824783188659356706656419547350123734666037979415918599396117880712943463613520849<138>
4×10373-9 = 3(9)3721<374> = [39999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<374>] Free to factor
4×10374-9 = 3(9)3731<375> = 10596105529<11> × 2650288267127376709<19> × 21691476478039441219<20> × 4899431565604784118723228083483<31> × 389595763391679786994327160166767<33> × 30188495243559431954129076808724172422794849359392479901419669<62> × 182258522814260407226204545556975019230375927589496525253684233311399812906067616297913<87> × 62523352205841974641767247686152369037786705686420794585068971430543609011985992247691266480187863785691927767719697<116>
4×10375-9 = 3(9)3741<376> = 13 × 22147 × 1036490569<10> × 353984092591<12> × 867586238720454441888981187<27> × 43645550710348098146862313041218986554606382887717459835085814345038289794949520266906833230636511991123966819133874328407782796271495263829009903629016345591075639418964119345164491770552353078163655504251514607403855436253526153330164135168291107211232956188530218320328738846472752538457627599287565970483298305047867597<323>
4×10376-9 = 3(9)3751<377> = 7 × 23 × 31 × 67 × 4403881 × 201496271 × 38749227373442623<17> × 23785222277923103118099188628420429739593966260699743933477349927854486154481670084027000572733631292076243413718690001102212460927078692317655609049585990575921572073733<170> × 146259730403886186279957041137190761363460033867303913880003445269962997670445012943335442114705790082617920870515179332209167952282006353839688894523254296294118406917567<171>
4×10377-9 = 3(9)3761<378> = 43 × 83 × 163 × 15452747 × 26500757 × 8340254803410329<16> × 328454134361976685952438347<27> × [612925673760548420262611912263139722938644074908461118732949435181164057750780563527857483899544824759984086315013954702971482402194726108017584618005898580762490546466539230665796420892327358651683961933556839210171519505643590485885098306881985133465256666746948942503086910115190715412093373337346775330832693289<315>] Free to factor
4×10378-9 = 3(9)3771<379> = 211 × 617 × 186762743 × 3025939986458771807<19> × 299721566142829669823<21> × 6007634365195440036739<22> × 31618164809434211754592287712179187<35> × 26515433818872756128486451063540368813<38> × 419817276608201618522516989479656415256109781516871114787<57> × 484578537409999154675042390540664390207331844965054363441<57> × 35960856659366982010140181518614170249139085672467809368871<59> × 4923006679232260879844150105623901082760825132994000095977307<61>
4×10379-9 = 3(9)3781<380> = [39999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991<380>] Free to factor
4×10380-9 = 3(9)3791<381> = 71 × 433 × 461 × 76949 × 1032007 × 3896947 × 209094547936744449194474908906729<33> × 34966959780535052264850174530936020777783<41> × 34446395954434388140001513015465553314448279869307180102939860821079122131241949069764159546294081893118303<107> × 362124848020381435553269669228501465689771701143726180072031580407100567034965962565918393207796527030962525986428762374804385655016892692252848716727565796737003612950351342637<177>
4×10381-9 = 3(9)3801<382> = 13 × 251263157 × [1224581874103841226143999725723050165718057533171517431454116083132345950376211772632896164349683418537592012774448693615306649624291346830079398818077843749721302386136570322196868312421576762675525515634222857064923002986497110309301366026805483096323221363917242780215118017910171795271631058538726820551361982241162032730121640188148665553492557238275517219214483990951<373>] Free to factor
4×10382-9 = 3(9)3811<383> = 7 × 53 × 829 × 1031 × 2221 × 283112539 × 12110972033<11> × 1278085313563<13> × 5806007837521<13> × 18580007275894843<17> × 117121349237684572025004166361887<33> × 2980061483271130133454822323000539259581<40> × 49371617551587041843675930397116659530937545163<47> × 182806214988875869300773608643861228898368769920609146878022777<63> × 100560756952935629434227230943212354457451323996998349267619421881<66> × 379266725313477244975216442892897216971059794842475211319820147649<66>
4×10383-9 = 3(9)3821<384> = 1695185065237<13> × 1878257758037<13> × 26739432240885847734761<23> × 4698243275213016619095460927384615719109080205510944589705524457607444253517795453193198464898965872274069421833899023156985661241648735768789826019748634409803621635101082643350799881715445933178034095306277157044653531480994741353761555211346039384032286382332190725549133694628520703386928298143276323252734906308472386022142447707799<337>
4×10384-9 = 3(9)3831<385> = 79 × 173 × 276519843869<12> × 35108586452041<14> × 137881619042308173307367<24> × 10356144553255211560838847446569517<35> × 34876652767087367824771974117100355091162711256918297<53> × 41733446592368214066530327214400601607954236617362271592609176269988064074729<77> × 14505196659942842895206338205973180372318448741832572534853326241618359742526002027358440505744124609747208577150542918462980365995792429450917677922476006106784912608891<170>
4×10385-9 = 3(9)3841<386> = 2267 × 573197 × [30782547796664147471694021684222483391447564231978175967801898273377573708331645712215535176306684658275768423413150753382194538146498560720806109289746663702625400175141461333073216700111815065311189290898762119011149222564553482648611586003523051821436482845683765688851673746281986719702421047153338526723667628767758935687068725490988351800031299540686909121828481122778409<377>] Free to factor
4×10386-9 = 3(9)3851<387> = 172 × 1999 × 2393 × 7561 × 498479939 × 3728792911<10> × 57498745506438625549628335013<29> × 20109277369861359866129287899115275654274037323316659944356086841136043<71> × 15879996261445769537267415871328221599257192124173107438617771634920532105397393<80> × 13204518309653988285253533541223281210472029154719159416351911592177934839932596309784809<89> × 84914855627628876822887170020630119458401404969220347791519669735345970257922349845596771<89>
4×10387-9 = 3(9)3861<388> = 13 × 2113634564979856340911<22> × [145574979133273260536047891963398752631006540636826938848442694022257424700390154451165232313585218091303327869391290544399241115913731862942433691262603357840372026517871986868647934304354462011120305625431376814741145319710333488416414387284990624470380649615078979689289951760588907489335201426379226010191511969370773016772726826211123009567083853559553571612637<366>] Free to factor
4×10388-9 = 3(9)3871<389> = 7 × 443 × 27107 × 2634001 × 46325179 × 125056452794705324377<21> × 383403235824016344915248750822050157<36> × 95581846303913650684936313179348791612051241183194251<53> × 24649019531831500007969147622486775132580007261905157612095323460036978593433099142373379147<92> × 34522861323878792390385877356200006655021210098971303161875903570112776063389543009387926531293432732559380227080738279210193247596555080851604262310465262862599586559<167>
4×10389-9 = 3(9)3881<390> = 2543732882382395724300358688115991<34> × [157249215422874960647187401971149140000545021452808087198375233267288346701908201188271378570831003180497757483339540637331182600804685957189892804663179848801009471341905472005357492470722157062505900701877209302764289360890006656330140764505635321055449304982648751175523998410496935010443411079909685002718895902439605288880424784345983666352832119124001<357>] (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:3701015842 for P34 / July 15, 2021 2021 年 7 月 15 日) Free to factor
4×10390-9 = 3(9)3891<391> = 19 × 47 × 113 × 11071 × 244507 × 13390259 × 21318959 × 126588259468129963800476691109<30> × 743736208082687143669590291734775986453<39> × 104315733950970586524012852330913828153019542073<48> × 369330338075803596253764802097004029292538219506122378093453932829357363544017147256606239<90> × 14142292454874449256385710545341601030413458600321097720419472709733367544401014551310864221172502405148901436989368784462014075518851628332348975139832488253<158>
4×10391-9 = 3(9)3901<392> = 31 × 1290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161<391>
4×10392-9 = 3(9)3911<393> = 601 × 863 × 1009 × 4513 × 457661 × 100531969 × 1456329317141<13> × 4588440736723<13> × 31938754629629412334116767753621039<35> × 34739974096182333336498956398761394712665299128822051<53> × 863767795454334095995331720940616645856427889828345455035329342862116841141043748872939590809968883391913076573287926075614753<126> × 574779056018038826079818762673364437285959587892423580463959074733449809079414441607465440021641387381279266470818308397711345799<129>
4×10393-9 = 3(9)3921<394> = 13 × 16737557 × 112401551 × [163550646809384883398330119785392956990560375730694055214675502027020083811978493070677183787624399891865505909029155240957854877219899941655942989245428597078290337347933910807082417430743871655362248772601223177340758992542223507357094525498279776170529015960111684201561817848425497116380141756000292288702497312240543649788743038600115713950442379987642648301492643882680201<378>] Free to factor
4×10394-9 = 3(9)3931<395> = 7 × 229 × 29836370592137497650499<23> × 16729518439454517288281783<26> × 45003138917615480291651707486311828111477830485732830843961796036510537<71> × 2772385807556537886278044630282889688258769602192237958344592362510261040148261536809278151720138041797820440202530552797127<124> × 400682673532747702599827593186249104211952228306848094072962577538564657735619425416018392875826151577920421751986920916957351046332971959489884265159<150>
4×10395-9 = 3(9)3941<396> = 53 × [7547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547<394>] Free to factor
4×10396-9 = 3(9)3951<397> = 29 × 197 × 11903 × 4205947 × 52157717415774943068631<23> × 1202575461497852123709722181169806824814923<43> × 22388361185594023898713964704438991440520568602692290206129907529<65> × 49111000098728410999628085323532736039706325695068709498811336069491<68> × 202788601485676509531082557252180775897090576494738829512582300906640638515328879905860195846578508304986895285186285822618395045725527941023479420310437994781872266708839494968756465861<186>
4×10397-9 = 3(9)3961<398> = 79 × 1156031 × 27456841 × 56344559 × 4466752391561<13> × 21556232617860071<17> × [2940330350840104350991580738524587484507444771709697905135349736618509784052920821915104553098091955136004327579299623658657886113937529565958965401120476683920656268839536682637395301448393595299463290457902587324863834444624377441986757200974676746260955884806133293083561239674719236702441381692712985635583037191509553356665597498142253648031<346>] Free to factor
4×10398-9 = 3(9)3971<399> = 23 × 43 × 241 × 6317 × 39503 × 20536689829<11> × 241585002691<12> × 2791892855273<13> × 7002385537531<13> × 15953688693543275865802877<26> × 21762838802020382865799787471876924157001<41> × 1650822877321040398455081458354580460326700853503002329227022520485062724197783051668669873368413008923<103> × 120971588687236521670810291211217797704710202102135926263422880462220595108007984055675529721463612199695520132939911182253886288797795503983566971990109205724983490250547<171>
4×10399-9 = 3(9)3981<400> = 132 × 23668639053254437869822485207100591715976331360946745562130177514792899408284023668639053254437869822485207100591715976331360946745562130177514792899408284023668639053254437869822485207100591715976331360946745562130177514792899408284023668639053254437869822485207100591715976331360946745562130177514792899408284023668639053254437869822485207100591715976331360946745562130177514792899408284023668639<398>
4×10400-9 = 3(9)3991<401> = 72 × 3917 × 18873739043<11> × 1737408773621<13> × 9318870262441<13> × 1353143889460780219324261867805948229627354629623799<52> × 107421636386525513520653234479254640339061189356540018700131<60> × 288930187492555799536718659699424506652533163856455735889878594247989358356453147<81> × 46229348644433214755924438644202543849471369171438338376543760504475737398042864287<83> × 351269691736020689086731151005390507435230742784114223916529804772069637453814458555389<87>
plain text versionプレーンテキスト版

4. Related links 関連リンク